
Tags: Augmenting Microkernel
Messages with Lightweight Metadata

by

Ahmad Saif Ur Rehman

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2012

c© Ahmad Saif Ur Rehman 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this work, we propose Tags, an efficient mechanism that augments microkernel inter-
process messages with lightweight metadata to enable the development of new, systemwide
functionality without requiring the modification of application source code. Therefore, the
technology is well suited for systems with a large legacy code base and for third-party
applications such as phone and tablet applications.

As examples, we detailed use cases in areas consisting of mandatory security and run-
time verification of process interactions. In the area of mandatory security, we use tagging
to assess the feasibility of implementing a mandatory integrity propagation model in the
microkernel. The process interaction verification use case shows the utility of tagging to
track and verify interaction history among system components.

To demonstrate that tagging is technically feasible and practical, we implemented it
in a commercial microkernel and executed multiple sets of standard benchmarks on two
different computing architectures. The results clearly demonstrate that tagging has only
negligible overhead and strong potential for many applications.

iii

Acknowledgements

I would like to thank all the little people who made this possible.

iv

Dedication

This is dedicated to the one I love.

v

Table of Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 System Model and Terminology . 4

1.1.1 Microkernel and Monolithic Kernel 4

1.1.2 Multiprocess and Multithread . 4

1.1.3 Inter Process Communication . 5

1.1.4 The Concept of of a Tag . 5

1.1.5 Tag Propagation . 6

1.1.6 Distributed Tagging . 6

1.1.7 Tag Propagation Modes . 6

1.1.8 Controlling Tag Propagation . 7

1.1.9 Lifeline . 9

1.2 Layout . 10

2 Literature Review 11

2.1 Labelling Techniques . 11

2.2 µUMIP: Mandatory Security for Microkernel-based Systems 13

2.3 Intersert: Assertions on Process Interaction Section 14

vi

3 Use Case: Mandatory Access Control in Microkernel Based Operating
System 16

3.1 Overview . 17

3.2 UMIP . 20

3.3 Our Adaptation of UMIP — µMIP . 21

3.3.1 Design Aspects of µMIP . 23

3.4 Discussion . 32

3.5 Summary . 32

4 Use Case: Assertions on Process Interaction Sessions 34

4.1 Overview . 35

4.2 Assertions on Interaction History . 36

4.3 Intersert . 38

4.3.1 The Developers’ Perspective . 39

4.3.2 Interaction Sessions . 40

4.4 Code Transformation . 41

4.5 Runtime Support . 41

4.6 Case Study . 43

4.7 Discussion . 44

4.8 Summary . 45

5 Implementation 47

5.1 Basic Implementation . 47

5.2 µUMIP: Mandatory Security for Microkernel-based Systems 49

5.3 Intersert: Assertions on Process Interaction Sessions 51

5.3.1 Toolchain . 52

5.3.2 Runtime System . 53

5.4 Lifeline . 55

5.5 Tagging Library . 55

vii

6 Performance Evaluation 57

6.1 Goal . 57

6.2 Services and Outcomes . 57

6.3 Performance Metric . 58

6.4 Parameters . 59

6.5 Factors . 61

6.6 Evaluation Technique . 62

6.7 Workload . 63

6.8 Design Experiments . 64

6.9 Results and Analysis of Output Data . 65

6.10 Performance of intersert() . 75

7 Conclusion and Discussion 80

7.1 Discussion . 80

7.2 Conclusion . 83

7.3 Future Work . 83

APPENDICES 85

A Full libMicro Experimental Data 86

References 92

viii

List of Tables

3.1 Relationship between DAC permissions and file integrity for administrator-
owned files . 27

3.2 µMIP file access permissions and integrity 27

3.3 Sensitive operations in QNX Neutrino and their message types 30

5.1 Mapping of LTL operators to intersert() statements. 52

6.1 Factors with their levels and corresponding values 62

6.2 Performance summary for MiBench . 66

6.3 Slowdown for system calls in emulated clock ticks. 71

6.4 IOZone overhead summary results . 72

6.5 The ten microbenchmarks of the libMicro suite with the worst overhead
results. Mean and std. dev. are reported in [us] and values less than 0.004
show as 0.00. 73

6.6 Aggregates for all 138 libMicro-benchmarks. 73

6.7 Results for pipebench. Values except count are reported in MB/s and values
less than 0.004 show as 0.00. 74

6.8 Results for the unixbench benchmark. “NSD” stands for “Not Statistically
Distinct” (See Section 6.9). 75

6.9 Results for the lmbench benchmark (in microseconds). “NSD” stands for
“Not Statistically Distinct” (See Section 6.9). 76

6.10 Results for the iozone benchmark (in kb/sec). “NSD” stands for “Not Sta-
tistically Distinct” (See Section 6.9). 77

ix

A.1 The full data set from the libMicro experiments. Mean and std. dev. are
reported in [us]. 91

x

List of Figures

1.1 Example of tag propagation . 7

1.2 Limiting tag propagation . 9

3.1 The UMIP state-machine for integrity levels, which we adopt for µMIP as
well. 22

3.2 Tracking integrity propagation to files . 28

3.3 µMIP example . 31

4.1 Interaction diagram of the example application. 38

4.2 Process interaction in the case study. 44

5.1 Converting C programs with an intersert() call into regular C programs. . . 52

5.2 Code Generator output for A→XB. All other transitions lead to a state
returning false. 54

6.1 Density plot of the execution time of the MiBench lame program. 67

6.2 Individual results for MiBench tiff2rgba program. 68

6.3 Histogram for the calls benchmark program. 69

6.4 Individual results of the OS benchmark on the msgpass program. 70

6.5 Ratio of the execution time for the unmodified and the tagging kernel. . . 78

6.6 Execution times for checking “A → XB” with different history lengths. . . 79

xi

Chapter 1

Introduction

In todays world, embedded systems are becoming omnipresent, controlling technologies in
applications ranging from handheld devices to safety-critical medical devices. Embedded
systems are specialized systems that are designed to implement a particular task. Most
embedded systems work in real time; i.e., temporal requirements, along with the logical
result, define the correctness of the outcome.

Real-time embedded systems can be broadly categorized into two classes: hard real-time
systems and soft real-time systems. In hard real-time embedded systems, strict temporal
requirements drive the correctness of outputs. A missed deadline leads to a catastrophic
failure on such systems. Hard real-time embedded systems are usually deployed in safety-
critical systems such as those used in avionics. In soft real-time embedded systems, viola-
tions of a temporal requirement affect the usefulness of the outcome but do not lead to a
catastrophic failure. Less safety-critical systems such as household systems are examples
of soft real-time embedded systems.

Embedded systems are proliferating with increasing speed. With an increase in de-
mand, embedded systems have become rich in features. Several components, at different
software layers, provide support to implement these features. Generally, an embedded sys-
tem categorizes components into three layers: the application layer, the system software
layer, and the hardware support layer. To implement a particular task, components in-
teract with other components of either the same or a different layer. A multi-component
environment improves the performance, modularity, and reusability of the system, but
several interacting components can add to the complexity of the system.

Building complex systems—especially those with a high level of interaction between sev-
eral components at several abstraction layers—is a difficult task. Development of system-

1

wide functionalities on such systems requires between 30 and 50 percent of the total devel-
opment cost in software systems [24, 51]. In such complex systems, component interaction
information can aid the development of system-wide features that are orthogonal to the
application functionality. Profiling, tracing, interaction verification, and mandatory secu-
rity are examples of such functionalities that only require runtime access to components’
execution flow.

Tracking and extraction of a component’s interaction flow are challenges for the de-
velopment of systemwide features, specifically in real-time systems. In real-time systems,
the overhead of tracking component information should be minimal so that applications
can meet the timing constraints. Instrumenting the source code of an application can help
in extracting the interaction pattern, but retrofitting a large code base will still be time
consuming. In the case of real-time systems, code instrumentation will degrade the appli-
cation’s performance to the extent that it may violate its timing constraints. Furthermore,
instrumentation, at the source level, will not be applicable to closed-source applications.

Dedicated embedded systems often run everything as a single application when they
aim to avoid the complexities of a multi-component environment. In contrast, rich-featured
embedded systems must run an operating system to support a multitude of applications.
Many operating systems are specifically tailored for real-time embedded systems. Modern
operating systems play an important role in helping the developer to build systemwide
features because operating systems provide common abstractions for system services and
hardware, manage resources, and provide basic functionality as a part of libraries and sys-
tem calls. Any modern operating system should strive to provide a rich set of functionality
to allow developers to rapidly implement systemwide features. For example, a versatile and
reusable interprocess communication infrastructure will potentially speed up development
if it keeps the programmer from reimplementing the same functionality. To aid the devel-
opment of systemwide functionality, an operating system may contain the infrastructure
for tracing and extracting the interaction between system components. Tracking interac-
tion among system components at the operating system level does not require access to
the source code of the application. This makes it instantly reusable and applicable for
closed-source applications.

In the operating system, one way to track and extract the program’s interaction in-
formation is to attach information with programs and propagate this information as the
program communicates with other system components. Past approaches [43] have used
this mechanism for information flow control (IFC). IFC is a mechanism to track data flow
between components. Other approaches [104] have proposed a labelling technique for pro-
filing and debugging purposes. These approaches track information flow among different
components in the system at the granularity of memory byte, function call, and process

2

communication. These information-tracking mechanisms introduce great overhead in the
system, which limits these approaches to the testing of systems only.

In this study, we introduce the notion of Tags. A Tag represents lightweight metadata
that the system attaches with threads and propagates with passed messages. The tagging
mechanism has the following properties:

• It provides a generic infrastructure to track and extract components interaction pat-
terns.

• It snoops the communication layer to track interaction patterns with minimal over-
head and is thus applicable to real-time systems.

• The operating system implements tagging and thus makes the tagging mechanism
application-agnostic and applicable for closed-source applications.

The application-agnostic behaviour of tagging can help in realizing some important
systemwide use cases that are orthogonal to an application’s functionality. These use cases
include, but are not limited to, mandatory security, verification of process interaction, and
profiling. Each of these use cases is briefly described in the following paragraphs.

µMIP: Mandatory Security for Microkernel-based Systems µMIP assesses the
feasibility of realizing mandatory security in microkernel-based systems. The µMIP in-
frastructure is an adaptation of a recent approach called the Usable Mandatory Integrity
Protection Model (UMIP) [88]. Like UMIP, µMIP assigns integrity levels to the processes
that define the capabilities of a process in the system. The integrity level of a process
disseminates in the system as the process communicates with other processes. The tag-
ging infrastructure implements the mechanism to define and propagate integrity levels.
Chapter 3 discusses the µMIP model in detail.

Intersert: Assertions on Process Interaction Section The Intersert framework uses
the tagging mechanism to verify the process interaction patterns. intersert() demonstrates
the utility of assertions on the interaction history, among system components. In the
proposed framework, tagging solves the challenges of efficiently maintaining interaction
data. intersert() provides an expressive interface for developers to program assertions on
the interaction history of threads. The assertions contain Linear Temporal Logic (LTL)

3

statements placed on the interaction history. Chapter 4 discusses the intersert() framework
in detail.

Profiling/Debugging To aid the system designer in understanding the interaction be-
tween system components, tagging enables comprehensive tracing of those interactions. If
a thread creates a tag, it will be passed on with each message it sends and, eventually,
all components in the system that it interacts with (directly or indirectly) will also have
received that tag. Lifeline implementation also offers additional information for profiling.
The lifeline, as described in Section 1.1.9, for a particular tag shows the complete flow of
the tag through different threads in the system, helping the developer to identify how much
time is spent in each component, the number of involved threads, the order of execution,
and the termination of the flow (either expected or unexpected).

1.1 System Model and Terminology

For the benefit of the reader, this section briefly describes the tagging model and associated
concepts. This section also provides a brief description of standard operating system
services, which aid the development of the tagging infrastructure.

1.1.1 Microkernel and Monolithic Kernel

Microkernel and monolithic kernel are two well-known operating system architectures. A
monolithic kernelbased operating system provides most of the services as part of the ker-
nel. These services run as a part of system process in privileged mode. In a microkernel
architecture, services are strictly categorized as essential and optional. A microkernel sys-
tem implements the essential services, which include scheduling, synchronization, memory
management and Inter Process Communication (IPC). All other optional services, such as
device drivers and web servers, run as external processes in the user space.

1.1.2 Multiprocess and Multithread

Processes and threads are the key entities of the operating system. Process represents a
container that contains all of the resources, whereas thread is the executional unit. Process
provides all of the resources for the threads to execute. A multiprocess operating system
has the ability to host multiple processes. In a multithreaded operating system, a process
can contain more than one thread.

4

1.1.3 Inter Process Communication

All the services communicate through Inter Process Communication (IPC) mechanism,
which the microkernel provides. Modern microkernels support both synchronous and asyn-
chronous communication among services. Services use messages for synchronous communi-
cation. Pulses and signals implement asynchronous communication. Following paragraphs
provide brief description of different forms of supported IPC.

Messages: In a microkernel, the services usually communicate through a messaging layer.
A message contains the sender identification, the receiver identification and the payload.
The microkernel uses sender and receiver information to deliver the message. The payload
represents the data that the sender wants to exchange with the receiver. The protocol
between the sender and the receiver defines the structure of the payload. The system
contains two types of messages: requests and replies. Request messages initiate communi-
cation between two services. A reply message is a response to a request message. Modern
microkernels also implement transparent distributed messaging.

Pulses and Signals: Pulses and signals are short asynchronous messages. These short
non-blocking messages are used to notify other services about events in the system.

Shared Memory: Shared memory provides high-performance IPC among services. Ser-
vices communicate through shared memory by directly reading and writing to the shared
memory region. Access to a shared memory is unsynchronized and services should agree
on a synchronization mechanism to prevent data inconsistency.

1.1.4 The Concept of of a Tag

The key abstraction for the tagging model is the notion of a tag. A tag is an abstract
entity similar to a label, which users or programs can attach to threads. We extend the
concept of IPC, as described in Section 1.1.3, to include the propagation of tags. In the
tagging infrastructure, all communications between sending and receiving threads contain
an additional field, a tag. When it is received, the receiving thread will acquire the tags
the sender had at the time of the transmission. All future communication initiated by the
receiver will carry its current tags unless the developer deliberately chooses to change this
behaviour.

5

1.1.5 Tag Propagation

The well-defined message-passing mechanism of microkernels serves as the medium for tag
propagation among threads. The tagging infrastructure adds a tag which is passed with
the message. Once a thread has a tag, the thread propagates the tag to the receiving
thread via request messages, as described in section 1.1.3. Tags do not propagate with
reply messages. We found this propagation mechanism to be intuitive and sufficient for a
large variety of use cases.

In addition to the request messages, the tagging mechanism also propagates tags
through pulses, signals and shared memory.

1.1.6 Distributed Tagging

Tagging also works for distributed systems in which all participating nodes run a compatible
microkernel. In a microkernel architecture, messages can transparently pass through an
interconnect from one node to another. The implementation of this mechanism is more
complicated: however, the underlying concept and system remains the same.

1.1.7 Tag Propagation Modes

One can implement different semantics for tag propagation such as tag duplication or baton
passing as entities interact. Tag duplication mode refers to the concept of “copying” tags
to other entities on interaction as opposed to baton passing, where the tag passes from one
entity to another.

In baton passing mode of propagation, tags are propagated without duplication. As an
example, consider two threads, A and B. Thread A currently holds a tag and interacts with
Thread B. Thread B will receive Thread A’s tag, while Thread A will lose its tag. Tag
duplication propagation mode copies the tag from source to the receiver while retaining
the tag at the source. For example, in the previous example, Thread A will retain it’s tag
even after the reception of tag at Thread B.

Example 1 (Abstract Example) The example shown in figure 1.1 illustrates the tag
propagation mechanism with duplication mode. Large circles represents the processes P1,
P2 and P3. Each of these processes contains two threads t1 and t2, shown as small circles
in the diagram.For simplification we will be referring to these threads as txpy where tx

6

represents the thread x in the process y. Horizontal line shading shows the tag τa whereas
the vertical line indicates the presence of tag τb. Lines represent a message pass from one
thread to the other with arrow indicating the direction of the message pass.

The system starts with 3 processes. At the system start-up, the user assigns tag τa and
tag τb to thread t1p1 and t2p1, respectively. As soon as these threads communicate with
any other thread in the system they will propagate their respective tags. The figure shows
the dissemination of tag τa and tag τb by shading threads with horizontal and vertical lines,
respectively. As shown in the figure 1.1, thread t1p1 propagates the tag τa to t1p2 as soon
as it communicates with t1p2. The kernel further propagates the tag τa to t2p3 as a result
of the message pass from t1p2 to t2p3. Propagation of tag τa stops at t2p2 as t2p2 does
not communicate further with other threads in the system. As a result of not receiving any
messages from other processes, thread t1p3 will not have any tag.

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

t1

t2t2

t1t1

t2

P2P1 P3

Figure 1.1: Example of tag propagation

1.1.8 Controlling Tag Propagation

In a microkernel nearly every action results in a message pass between two or several
threads. As a tag propagates with messages, occasionally the large number of messages
may result in uncontrolled dissemination of this tag through the system. Referring to
figure 1.1, thread t2p2 will propagate tag τb with all the future outgoing messages. Often-
times a guided and limited propagation of a particular tag is desirable to extract only the
information of interest. We provide several mechanisms to control or limit the dissemina-
tion of any particular tag in the system. These mechanism include tag propagation modes,
time to live (TTL) counters, tag terminators and system tags. Figure 1.2 highlights these
mechanisms by showing the tag propagation in different scenarios. Figure 1.2 shows the
processes as large circles. The small circles, within the large circles, represent the threads.

7

Vertical and horizontal line shadings of threads represent the presence of tag τa and tag
τb, respectively. The arrows in the figure indicates the message pass where direction of the
arrow indicates the message flow. Process P5 is a system process and processes P1 to P4
represent user processes.

Time to live (TTL) is a concept that involves limiting the timespan of a packet or
data on a computer or network. The tagging mechanism implements the TTL as counter.
The TTL value puts an upper threshold on tag propagation. Every time a tag propagates
to another thread, the kernel increments the TTL count of the tag. As soon as the TTL
count of the tag reaches the predefined TTL threshold, the kernel will not allow further
propagation of the tag. Figure 1.2 explains the TTL mechanism by associating TTL value
of 3 with tag τa. As shown in the figure 1.2, tag τa propagates from thread t1p1 to thread
t1p2 as a result of message pass between two threads. Upon reception at thread t1p2, the
TTL value of tag τa will increment to 2. As figure 1.2 indicates, the τa tag will propagate
to thread t1p3 as soon as thread t2p1 communicates with thread t1p3. As a result of this
propagation of tag τa the TTL value will reach it’s threshold value i.e., 3. Now the TTL
value of tag τa will prevent the further propagation of tag τa. As depicted in the figure 1.2,
the message pass from t1p3 to t1p4 will not propagate tag τa to t1p4.

Tag terminator is an attribute of a thread in the tagging infrastructure. A thread
can have a tag terminator for one or several tags. Presence of a tag terminator prevents
the tag from propagating further in the system. In other words, any particular tag will
not propagate beyond a thread that defines a tag terminator for that tag. In figure 1.2,
thread t2p2 has the tag terminator for tag τb. The presence of this tag terminator will
prevent further propagation of tag τb from t2p2 to any other thread in the system. Consider
figure 1.2, thread t2p2 will mark the end of propagation for tag τb and will not propagate
it to t2p3 with the message.

System threads frequently communicate with all components of the system. During
our experiments the instant propagation of the system thread’s tag, to almost all of the
components, became evident. Tagging mechanism distinguishes the system level thread
by means of system tags. All system level threads carry system tags. The unpassable
property differentiates systems tags from user tags i.e., system tags do not propagate
with the message. Furthermore, threads with system tags do not receive tags from other
threads. In figure 1.2, process P5 is a system process with threads t1p5 and t2p5. As
shown in figure 1.2, the thread t1p5 will not receive or propagate tags to any other thread
in the system.

8

t1

t1

t2t2

t1t1

t2

P1 P3P2

t2

P4

t1

P5

t2

Figure 1.2: Limiting tag propagation

1.1.9 Lifeline

The lifeline mechanism offers additional information for several purposes. The lifeline for a
particular tag shows the complete flow of the tag through different threads in the system.
This aids the developer in the identification of how much time is spent in each component,
the number of involved threads, order of execution, and the termination of flow (either
expected or unexpected). Example 2 illustrates the lifeline mechanism along with other
tagging features.

Example 2 (Tracing File Writes) This example uses our tagging mechanism to deter-
mine what processes are involved in the mmap() system call. The mmap() function maps a
file or memory in the process address space. The example consists of three threads running
in a microkernel such as QNX Neutrino: the parent process thread, the child process thread,
and the filesystem resource manager thread. The parent process spawns the resource man-
ager thread and the child process. The resource manager thread handles all file operations
whereas the child process calls file functions. Using tags, we can discover how the child
process interacts with the resource manager thread to perform its file operations.

We setup three tags to track the activity of each thread in the system. We use Create-
Tagsfield() to create the tags τp, τc and τr and assign them to the parent thread, the child
thread, and the resource manager thread, respectively.

After execution of the program, τp and τr are still only associated with their original
threads. On the other hand τc is spread throughout the system, as a printout of the list of
threads containing τc shows:

9

Process ID 253980 Thread ID 0 Time Fri Apr 23 12:39:25:901577382

Process ID 249877 Thread ID 1 Time Fri Apr 23 12:39:25:913575546

Process ID 249877 Thread ID 1 Time Fri Apr 23 12:39:25:914575393

Process ID 249877 Thread ID 1 Time Fri Apr 23 12:39:25:914575393

Process ID 8200 Thread ID 6 Time Fri Apr 23 12:39:25:915575240

Process ID 249877 Thread ID 1 Time Fri Apr 23 12:39:25:915575240

Process ID 249877 Thread ID 1 Time Fri Apr 23 12:39:25:915575240

Process ID 249877 Thread ID 1 Time Fri Apr 23 12:39:25:916575087

Process ID 249877 Thread ID 1 Time Fri Apr 23 12:39:25:916575087

Process ID 253980 Thread ID 0 is the child thread, Process ID 249877 Thread ID 1
is the resource manager thread, and Process ID 8200 Thread ID 6 is the devb-eide thread,
which manages the IDE bus.

The user can employ the information above to understand the interaction among the
threads in the system. For example, the propagation of τc to the resource manager indicates
the request of the child process thread to the resource manager thread for functions calls
like stat(), unlink() and write(). The resource manager thread has also propagated τc to the
devb-eide thread for example through the unlink() operation.

The tag thread list for τc also gives the user an idea of the execution flow of mapping a
file initiated by the child process. Dissemination of τc can help in identifying the number of
threads used to complete the file mapping operation. In this example, τc was propagated to
three threads, i.e., the child process thread, the resource manager thread and the devb-eide
thread.

If τa were a system tag, then the tag list would have shown more entries. The system
thread that manages the memory also handles requests from mmap() issued by the client.
However, since it is a system thread and τa in our example is only a user tag, this system
thread is absent in the tag list for τa.

1.2 Layout

The remainder of the thesis is structured as follows: Chapter 2 highlights the past work on
information tracking. Chapter 2 also describes the approaches that relate to the tagging
mechanism in terms of the proposed use cases. Chapter 3 and 4 describe the mandatory
security and process interaction verification use cases of the tagging infrastructure, respec-
tively. Chapter 5 discusses the implementation details. Chapter 6 presents the evaluation
methodology and results. Chapter 7 concludes the thesis and discusses the future work.

10

Chapter 2

Literature Review

The use cases explored in Chapters 3 and 4 demonstrate the versatility of tags; tags are
more than a simple message logging or a profiling mechanism. Tag creation, deletion and
propagation is completely dynamic and distributed. Furthermore, applications can act
upon the presence of a tag at runtime, not only in after-the-fact trace analysis. It is, there-
fore, difficult to compare tagging with related approaches since we feel not many similar
works are as versatile; we will, then, make a series comparisons by use case, highlighting
why tagging generally has a versatility edge.

2.1 Labelling Techniques

Asbestos [43] presents the idea of attaching labels to processes for controlling and tracking
information flow. In Asbestos, each process contains two labels: a clearance label and a
tracking label. The tracking label contains the level of all the information the process has
seen whereas the clearance label represents the information level the process is allowed to
see. A process can send a message to another process, if the tracking label of the sender
process is less than or equal to the clearance label of the receiver process. If the receiver is
cleared, its tracking label will be updated to represent the different level of information the
process has viewed. In our proposed mechanism the propagation of tags could be used for
similar means, by having the kernel stop messages that broke the clearance relationship.
Also, our approach can easily be used to implement the tracking of information flow with
minimum overhead.

The concept of badges in sel4 [117] allows the server to provide multiple interfaces to
the clients through same endpoint. Badges propagates with the messages like the tags, in

11

our tagging mechanism. Tag differs from badges in the area of application as badges are
used to identify the capability of the badged endpoint or thread.

strace [49] is a tool used for profiling system calls made by a process in Linux. It logs all
the system calls made by a process and the signals it receives. strace is useful for tracing
the activities beyond the user space boundary into the kernel as both levels communicate
through signals and system calls. Tracing of system calls is supported by Tags through the
logging of interaction between user and system threads. Our implementation of Tags was
done in the kernel, allowing it to trace different kinds of activities initiated by a process
either from the user space or the kernel space. Furthermore, tagging is not limited to
system calls, as it also profiles the interaction between threads at different system layers.
Furthermore, applications can dynamically act upon the presence or absence of tags, a
feature that is absent from systems that focus exclusively on tracing.

The Data Tomography [104] system proposes tracking data flow across multiple layers
of abstraction by tagging the data in the system. The data tomography technique consists
of inserting tags at the application, the network and the instruction level. It creates a tag
map for each byte in the physical memory. The tag map of every byte stored in physical
memory either the instruction or the data, points to some format of the tag. The format
can vary from a simple collection of numbers to any other complex format. In contrast,
our approach is to attach tags to threads rather than the physical memory in the system.
Our mechanism incurs less overhead than the data tomography by avoiding the approach
of tagging all the physical memory. Overhead reduction makes our tagging mechanism
deployable in a production system rather than using it just for instrumenting purposes.

TaintDroid [45] is an extension to the Android [15] operating system that uses message-
based taint tracking to detect the leak of sensitive information in mobile devices. While
TaintDroid’s approach is similar to ours (attaching metadata to IPC messages), Tagging is
a more general mechanic aimed at enabling a wide range of use-cases. Furthermore, because
it is based on a real microkernel, Tagging is capable of tracking interactions between system
services and user applications; the same functionality would require modifications to the
underlying native services in the case of Android. On the other, TaintDroid’s is capable of
tracking taints at the variable level while tagging only tracks them at the thread level.

The labeling approaches like HiStar [147] and LoStar [148] are based on the Asbestos
labeling technique. The HiStar defines new kernel architecture with focus on the system
security. The LoStar is an extension of the HiStar and uses tagged memory architecture.

Different kinds of related work in the past addressed the issue of dynamically tracing
and debugging operating systems. This includes for example the Linux Trace tool [145],
dynamic probes [101], kernel probes [77] and DTrace [30]. All of them provide mechanisms

12

for inserting probes, sensors, and monitors into the system, with the objective of capturing
data or the system state for tracing purposes. The tagging mechanism gives the user the
provision of tracing the system at the granularity of the threads. The user can utilize
the tagging without the deep understanding of the system and access to the source code.
DTrace’s D scripts are powerful, and may conceivably be used to achieve functionality
similar to Tags, but they offer no direct support for distributed systems.

2.2 µUMIP: Mandatory Security for Microkernel-based

Systems

The µUMIP model relates to the past work along two dimensions: Integrity Models, and
security.

Integrity Models: The Clark-Wilson model [34] attaches integrity with data in terms
of constrained data items and unconstrained data items. Transformation procedures are
allowed to change constrained data items. The system certifies each transformation pro-
cedure by assigning the list of CDI to the transformation Procedure.

Usable integrity propagation model (UMIP) [88] is the most recent work on integrity
propagation and closely related to our work. Like our model, UMIP propagates and tracks
the integrity levels among processes in the system. UMIP also associates and updates the
integrity level of the files. UMIP model trusts most of the components of the operating
system like kernel modules, device drivers and filesystems.

Microsoft Windows vista [11] introduces Mandatory Integrity Control (MIC). The MIC
associates the mandatory label with each securable object i.e., processes, files etc. Each
object also has a security identifier that represents the integrity level of the object. The
operating system performs a mandatory access control check based on the integrity level
of the requesting process and the mandatory label of the object being accessed. MIC
enforces different policies like no write up, no read up and no execute up. These policies
define integrity access rules. For example, no write up policy prevents lower integrity level
processes from writing to objects at higher integrity level.

Other works on mandatory access control includes Trusted Solaris and 1X [98] and
PACL [143]. Trusted Solaris provides multi-level security through mandatory access con-
trol mechanism. PACL focuses on data integrity and attaches integrity with the object. It
binds a list of programs, allowed to change the file, with a file.

Security: AppArmor [67] provides system protection by creating system profiles for
programs. A security profile list all the system operations and files, a process is allowed

13

to access. AppArmor does not attach integrity with the processes and files in the sys-
tem. Furthermore AppArmor does not guarantee the security in the scenarios where user
downloads and executes a malicious program.

Securelevel [72] uses securelevel indicator to reflect the security state of the system. The
positive securelevel restricts all the processes from certain tasks. The super user process is
allowed to raise the securelevel and only the init process is allowed to lower it. Securelevel
is very restrictive in terms of usability, and protecting a system with it is difficult.

SELinux [7] provides the mandatory access control for the Linux operating system.
SELinux requires extensive configuration that includes manual labelling of all the files in
the system, definition of the MAC privileges of the users, definition of different complex
policies and updating the policies with the installation of the new application. All these
configurations can be error prone and difficult to understand by a system administrator.

The µMIP model is the first model to provide a mandatory integrity protection mech-
anism for microkernels. Our model takes advantages over all previously proposed integrity
propagation model by ensuring the system integrity with minimal configuration and im-
pact on usability, negligible impact on performance, reducing the trusted code base and
dynamic assignment and tracking of processes and files contamination.

2.3 Intersert: Assertions on Process Interaction Sec-

tion

Several works propose the idea of using LTL to verify applications at run time, or to use
more sophisticated assertions in programming languages. Some approaches attempt to
verify LTL properties statically [64, 70] while most apply runtime verification at run time.
Our work relates specifically to the work that provide assert based verification (ABV) at
software level.

Partial translation verification [132] provides a mechanism for the verification of the
correctness of code generated by code generators. The work demonstrates the effectiveness
of its proposed strategy by showing its applicability to model-based development. When
using modelling languages like Simulink, LTL properties can capture the requirements
of the model before code generation. The proposed infrastructure translates these LTL
properties into C assertions. The C assertions, based on a set of LTL properties, verify the
correctness the generated C code for a particular model.

14

The Trace Analyzer (TaZ) [52] translates LTL properties to finite-state automata called
observers. These LTL-based observers permit verification of the traces of a running pro-
grams. The observer checks whether the current running process conforms the supplied
LTL formula. The TaZ has been integrated into the Java language.

Different existing approaches use code annotation techniques to verify the safety proper-
ties of the code. Denny proposed a code annotation mechanism [39] to specify safety prop-
erties. A proof checker verifies these safety properties expressed as annotations. Frama-
C [29] is also based on the idea of annotating code with LTL properties and verifying the
annotations using an external checker. Necula and Lee proposed a compiler [106] that
verifies the memory-safety properties of assembler using code annotations.

sPSL [32], a subset of the Property Specification Language (PSL), proposes assertion-
based verification (ABV) of C programs using LTL properties. sPSL provides developers
with the provision of writing specifications of C programs, captured as LTL properties, in
PSL. sPSL checks the specified properties during the execution of the program.

Several published tools have presented the idea of runtime monitoring by translating
LTL properties into executable code. The executable code is merged with the target pro-
gram and performs monitoring during execution. Temporal Rover and DBRover [41, 42] are
examples of such tools. They both support LTL properties written within code comments.
A parser converts the LTL formulae contained within the comments into assertions.

ASAP [38] proposes the idea of detecting faults at run time by using assertions and
pre-processors. ASAP creates C assertion statements from first-order logic and partial
functions. These assertions are placed into the application’s code and are responsible for
checking the system at run time.

Java-Mac [74], uses runtime monitors to check the executing program against the de-
fined formal specification. Java-Mac defines events and their desired relations by using
Primitive Event Definition Language (PEDL). Java-Mac can only be used to verify Java
programs and is oblivious to process interactions.

The Intersert framework differs from past work as it concentrates on the interaction
behaviour of applications. Unlike the approaches mentioned above, Intersert validates the
interaction history of threads.

15

Chapter 3

Use Case: Mandatory Access Control
in Microkernel Based Operating
System

Microkernels provide protection against attacks and faults by isolating components into
address spaces. Components in microkernel-based systems communicate through Inter
Process Communication (IPC). Spatial protection, using address space, does not guarantee
security as an attacker can exploit IPC mechanisms to gain control of trusted components.
For instance, in case of remote attacks, restricting network-facing applications is not suf-
ficient to thwart security attacks on systems. As successful attacks against network-facing
applications can cascade into local attacks against other software (to achieve a privilege
escalation, for example), simply marking network-facing software as a potential intruder is
insufficient. For example, if a webserver becomes compromised and then performs IPC with
other software, any faults in the participating processes could conceivably be exploited. It
is important, therefore, to mark participating processes as potential intruders too. As the
marked processes communicate, the security model needs to propagate the threat flag to
further participating process. The tagging propagation model provides the grounds for
tracking such attacks in the system.

This chapter assesses the feasibility of the tagging mechanism for the implementation
of mandatory-security propagation models in microkernel-based systems. The particular
focus is on our design of the tagging infrastructure for the propagation of what we (and Li
et al [88]) call an integrity level. An integrity level defines a process’ capabilities and the
trust given to it. The mandatory security model, presented in this chapter, exploits the
tagging propagation mechanism to define and track the integrity level of processes.

16

The structure of the chapter is as follows: The first Section 3.1 provides an overview and
motivation for the work. In the next section, we discuss UMIP. In Section 3.3 we describe
our adaptation of UMIP to microkernel-based systems. In Section 3.3.1 we discuss the
design of µMIP The chapter concludes with Section 3.5, in which we also discuss future
work.

3.1 Overview

The security administration of enterprise operating and file systems can be a significant
challenge. With the number, size and complexity of programs that are run, it is difficult
for a security administrator to have some sense of control over his systems. The operating
system and the security administrator seem powerless in the presence of bugs in user
programs such as buffer overflows [1] and format-string vulnerabilities [3] that impact
security and show no sign of abatement.

The situation seems no different in microkernel-based systems. Unlike monolithic op-
erating systems, the kernel in a microkernel-based operating system is small, and provides
only the most basic services. Components such as device drivers and file system man-
agers reside outside the kernel, in userspace. Microkernel-based systems are the operat-
ing systems of choice for emergent embedded- and application-centric devices that have
started to proliferate [2, 4, 5]. The modern enterprise comprises not only traditional com-
puter systems that run monolithic operating systems, but also scores of devices that run
microkernel-based operating systems.

It has been argued [137] that microkernel-based systems are inherently more secure
than monolithic systems. However, the discovery of security vulnerabilities in deployed
microkernel based systems suggests otherwise. Indeed, a perusal of the security vulnerabil-
ities that have been discovered in deployed QNX systems suggests that such systems are as
susceptible as monolithic systems to user programs that are buggy [8]. QNX Neutrino [10]
is a widely-deployed [9] microkernel-based operating system, and the system on which we
have carried out our proof-of-concept implementation.

In our work, we focus on a particular approach for mitigating the impact of buggy
programs on the security of a system. The approach is mandatory security protection.
With mandatory security, the system imposes rules that individual users are unable to
influence as the system runs. Mandatory security is typically contrasted with discretionary
approaches, in which users may change security rules at runtime. Mandatory security has
been explored extensively for monolithic systems (see, for example, [6, 7, 16, 54]). Our
intent is to assess its feasibility for microkernel-based systems.

17

The usefulness of mandatory security (in particular, access control), as a complement
to other approaches that are typically deployed in enterprise settings has been recognized
since the work on Multics [68]. SE Linux [7] is a more recent example of the realization of
mandatory security. SE Linux complements traditional discretionary protections in Linux
by providing configurable mandatory protection. The objective of SE Linux is [7]:

. . . provides a mechanism to enforce the separation of information based on
confidentiality and integrity requirements. This allows threats of tampering and
bypassing of application security mechanisms to be addressed and enables the
confinement of damage that can be caused by malicious or flawed applications.

It is our premise that mandatory security, as a complement to other approaches such
as discretionary and role-based [126], can greatly ease security administration. Consider
the passage on SE Linux from above. Rather than relying on users that may not be fully
trustworthy to exercise good judgement, which is the case with discretionary security, with
mandatory security, an administrator can configure a system to ensure that certain kinds
of operations are not possible. For example, a somewhat draconian policy such as, “no
process that has ever communicated over the network is allowed to read /etc/passwd,”
can be effected with mandatory security, notwithstanding the actions of particular users.

To establish the premise that mandatory protection can be meaningfully realized in
realistic, commercial microkernel-based systems, we have chosen to focus on and realize
Usable Mandatory Integrity Protection (UMIP) [88] on QNX Neutrino. UMIP has been
explored in past work for monolithic systems, and, as mentioned before, QNX Neutrino is
widely deployed in realistic settings. Our choice is motivated by UMIP’s newness, and the
philosophy that underlies its design. In this context, “usable” refers to ease of administra-
tion. An intent behind UMIP is to mitigate the somewhat high administrative impact that
approaches prior to it have imposed on a security administrator from the standpoint of con-
figuration. We discuss our choice of UMIP in more detail in Section 3.2. We argue however
(see Section 3.3) that there is nothing inherent to our work that is limited to UMIP. We
reemphasize that our goal is to demonstrate that mandatory protection, whether UMIP
or some other approach, can be meaningfully and effectively realized in microkernel-based
systems.

Novelty and Contributions The novelty of our work is in the demonstration that
mandatory protection can be realized effectively in realistic, commercial microkernel-based
systems. To our knowledge, there is no prior work that establishes this. In our section on
related work (Section 2.2 of Chapter 2), we discuss relevant prior work in more detail. Here,

18

we summarize by asserting that prior work can be broadly dichotomized into: (1) work on
monolithic systems to realize mandatory protection, and, (2) work on microkernel-based
systems that is related to security, but not mandatory protection for realistic, commercial
systems.

As contributions, we point to our concrete instantiation of an effective approach to
mandatory protection from the literature that has been touted as easy to administer.
The instantiation, as it turns out, is not simply a matter of reimplementing the UMIP
approach in a microkernel. As we discuss in Section 3.3.1, we have had to make a number
of design choices in doing so, and the adaptation to microkernel-based systems is not
straightforward. Indeed, we were unsure when we started this work that it would even be
possible to meaningfully realize an approach such as UMIP in microkernel-based systems.
We provide a comprehensive empirical assessment of the approach, and a clear articulation
of the trade-offs we encountered in our work.

Motivation We assert above that microkernel-based systems, in practice, have shown
themselves to be susceptible to the same kinds of security issues as monolithic systems.
This may come as somewhat of a surprise, and therefore may be worth reemphasizing.

A common way for a remote attacker to compromise a monolithic system is to first
find a buggy program that he can access that runs with elevated privileges. Once he
compromises such a program, for example, via a buffer overflow, he installs a rootkit. A
rootkit grants a privileged access to an attacker. To our knowledge, microkernel-based
systems (that run QNX Neutrino, for example), do not have a well-known rootkit available
for them.

However, a rootkit can certainly be developed for such systems. The nature of bugs
with security consequence that have been discovered for such systems [8] is similar to
those for monolithic systems, and lend themselves well to the installation of a rootkit.
The kinds of problems include buffer overflows that can result in elevated privileges for
a remote attacker, misconfigurations in systems that have been shipped such as incorrect
permission settings on sensitive files, format-string vulnerabilities, and the provision of
sensitive services such as the qconn utility for remote administration [122] which an attacker
could potentially compromise. Indeed, we have been able to simulate a breach in the QNX
Neutrino microkernel and have used the qconn utility as the equivalent of a rootkit. In
our attack, we managed to read and then remove the /etc/shadow file that is used for
authenticating users.

In summary, we assert that microkernel-based systems, in practice, appear to suffer
from several of the problems that monolithic systems have. As mandatory protection is

19

seen as a possible approach to mitigating the vulnerability of monolithic systems, it is
natural to ask whether mandatory protection is feasible for microkernel-based systems as
well. This is exactly the question we address.

3.2 UMIP

UMIP [88] is a recent approach to mandatory protection in monolithic systems. Underlying
UMIP is a number of design choices that distinguishes it from approaches prior to it. We
refer the reader to the original work on UMIP [88] for a comprehensive discussion on their
design rationale. We give a limited discussion here.

One of the goals of UMIP, as its name suggests, is to be usable. What usable means
in this context is easy to administer. Prior approaches to mandatory protection such as
SELinux [7] have imposed a significant burden on the administrator from the standpoint of
configuration. The designers of UMIP have also made other appealing design choices, such
as providing policy and not just mechanism, and articulating a clear security objective.
The security objective of UMIP, that we adopt as well, is to protect the integrity of a system
from network-based attacks. That is, an adversary is someone that is remote to the system,
and attempts to compromise the system over the network. The (remote) adversary may
attempt to do this in several steps, and via indirection. For example, he may first exploit
a buffer overflow, then install a rootkit, and then overwrite system files, or compromise
the kernel, for example, by dynamically loading modules. In the security model of UMIP,
the kernel of the operating system is fully trusted, and therefore it is certainly necessary
to preclude any contamination of the kernel. Once that can be assured, the mechanisms
related to mandatory protection can be part of the kernel.

Integrity, in this context, means the following. We recognize and reconcile ourselves to
the reality that many userspace programs have bugs such as buffer overflows and format-
string vulnerabilities that lend themselves to security compromises. These bugs may be
exploited by an adversary. However, we are then able to confine the (further) damage to
the system that the adversary can effect. In particular, he is unable to “take over” the
system by, for example, installing a rootkit. He is also unable to compromise the system
by some indirection, such as overwriting the /etc/passwd file so he can later login as a
legitimate user.

We recognize that the above characterization of integrity is informal and not precise.
However, we argue that this is necessary to realize solutions such as UMIP that are realistic,
and in practice, are able to deter attacks. (“Good enough security” is another design goal

20

of UMIP.) UMIP associates an integrity level with every process. The integrity level is one
bit; if it is set, the process is said to be of low integrity, and high integrity otherwise. In
keeping with our discussions on the semantics of integrity from above, a process with low
integrity can be thought of as tainted, and therefore, its privileges are restricted.

In the case of UMIP, as the threat is from the network, a process that has directly or
indirectly interacted with the network or otherwise received low integrity data (e.g., from
a file that is deemed to be of low integrity) is susceptible to be downgraded to the low
integrity level. In this context, “directly communicated with the network” means that the
process read from a network socket. “Indirectly” means that the process received some
Inter-Process Communication (IPC) from another process of low integrity. We say that
such a process is only susceptible to the lower integrity level, because such conditions are
not always sufficient for lowering its integrity level. Other conditions, such as exceptions,
may be applied in the determination as well. We defer a discussion of those details to the
next section on our adaptation of UMIP to microkernel-based systems.

From the standpoint of mechanism, UMIP works as follows. Every process is associated
with an integrity level as we discuss above. This bit is maintained as part of the Process
Control Block (PCB) by the kernel. A process may be created as a low or high integrity
process. Once a process reaches low integrity, it cannot be upgraded to high integrity. A
process can change from high to low integrity in one of three ways: (1) receive network
traffic, (2) receive IPC from a low integrity process, and, (3) read a low integrity file. In
Figure 3.1, we reproduce the figure from the work on UMIP that illustrates this somewhat
simple state-machine.

A process that is of low integrity is restricted in various ways. For example, it can write
to only those files that are world-writable (i.e., writable by any process according to the
discretionary access control policy), and it can only read files that are world-readable, or
not owned by certain privileged users such as root. There can be exceptions to these rules,
and a process can be excepted explicitly via a configuration by the administrator.

3.3 Our Adaptation of UMIP — µMIP

As we mention in Section 4.1, our objective is to demonstrate that realistic mandatory
protection can be effectively realized for microkernel-based systems. Our approach has
been to adapt and realize UMIP for the QNX Neutrino microkernel. We call our version
µMIP. In this section, we discuss why we have chosen to focus on UMIP. We discuss also
details of our adaptation, which reflects the difficulties we encountered, and the trade-offs

21

(b)

(c)

(a)

High Low

(c): read a low−integrity file

(b): receive IPC traffic from low−integrity process

(a): receive remote network traffic

The state−transition rules for processes:

The UMIP Default Policy

Figure 3.1: The UMIP state-machine for integrity levels, which we adopt for µMIP as well.

we have made. The discussion in this section is mostly about our design. In Section 5.2,
we discuss implementation details related to QNX Neutrino.

Our choice of UMIP There are three reasons we chose to focus on UMIP. One is its
newness. To our knowledge, it is the state-of-the-art in practical mandatory protection for
realistic, albeit monolithic systems. We call it practical because it has been implemented
for the Linux operating system, and therefore holds promise for real-world microkernel-
based systems. A second reason is the focus on what UMIP calls usability. As we mention
in the previous section, usability in this context refers to ease of administration. This is an
appealing design philosophy to us. Indeed, it has been observed that administration can
be a significant challenge in security [88].

UMIP’s other design choices, such as the exception policy and not just mechanism are
also appealing to us. We argue that the validity of the principles based on which UMIP
is designed holds for microkernel-based systems as well. Our final reason is that UMIP
has all the elements of a mandatory protection mechanism. Consequently, we argue that a
demonstration that UMIP can be realized effectively for microkernel-based systems can be
used to infer that other approaches to mandatory protection are also feasible. The reason
is that the underlying mechanisms are the same, and one should be able to meaningfully
reason about potential trade-offs with other approaches based on our observations in this

22

work.

Challenges that we faced Having justified our choice of UMIP in the above discussion,
we now discuss the challenges in adapting UMIP to microkernel-based systems to realize
µMIP. We faced two challenges. We discuss each challenge here, and the manner in which
we address these challenges in the next two sections.

One challenge we faced regards an aspect that is customarily touted as an advantage,
from a security standpoint, that microkernels have over monolithic systems. The filesystem
and device drivers, are not part of the kernel. Consequently, unlike in UMIP, we cannot
simply consult and trust attributes of files and devices as managed by a filesystem and
device drivers. UMIP uses the discretionary access control settings (i.e., the Unix file
permission bits) to determine whether a file should be deemed to be high or low integrity.
We cannot do the same in µMIP.

The second challenge regards the interposition of our mandatory protection mechanism.
As much as possible, we want the kernel to be the only entity that we trust. Consequently,
the most natural location for our mechanism is as part of the kernel. However, we still
need to clarify where exactly in the kernel we locate our mechanism. Or more specifically,
at what points in the working of the system our mechanism kicks in. The location of our
mechanism in the kernel raises other issues as well.

One is that the code-base of the kernel is now larger. This can be seen as a trade-off
with the increased security from mandatory protection. However, an excessive increase
may be deemed to be unacceptable. Also, our mechanism introduces overhead, quantified
as delay, in the working of the kernel. This can also be seen as a trade-off for increased
security. However, in this aspect as well, excessive overhead is unacceptable. Consequently,
our challenge was to realize the mandatory protection mechanism is a lightweight manner,
both in terms of the size of the code and the overhead it introduces to the working of the
kernel.

Having discussed why we have chosen UMIP, and the specific challenges that we had
to address in realizing µMIP, in the following sections, we discuss our design of µMIP and
rationalize it. Section 5.2 of Chapter 3 discusses the specific implementation aspects of
µMIP in QNX Neutrino.

3.3.1 Design Aspects of µMIP

A microkernel implements only basic system functions such as IPC and memory man-
agement; all other services such as filesystems or device drivers are executed as different

23

processes, each with its own address space. As we discuss in Section 4.1, microkernel-based
systems are nonetheless susceptible to network-based attacks. µMIP aims to maintain the
integrity of a microkernel system by restricting the effect of a successful attack.

µMIP accomplishes this by associating integrity level, with all processes, tracking low-
integrity operations throughout the system and limiting the privileges of all low-integrity
processes. µMIP uses the tagging infrastructure to define and track integrity levels. In
µMIP model, a tag represents an integrity level. Since µMIP uses tagging mechanism
that performs all operation tracking from within the microkernel, no modification in the
source code of user-space binaries (which includes applications, drivers, filesystems, network
stacks, etc.) is necessary. Also, it is easy to configure µMIP.

Integrity Levels

As in UMIP, µMIP defines two tags that represent integrity levels: high and low. These
integrity levels define a process’ capabilities and the trust given to it. A low-integrity flags
a process as being potentially compromised. The propagation of integrity levels is a key
mechanism in µMIP: a process’ integrity value will drop from high to low whenever it
performs a potentially insecure operation (see Figure 3.1). When a process’ integrity value
is low or is dropped to low, the process is prohibited from performing sensitive operations.

µMIP’s uses duplication mode (Section 1.1.7 of Chapter 1) of tag propagation model to
disseminate integrity level as the process communicates with other processes in the system..
While MAC models for monolithic kernel architectures must trust services such as filesys-
tems or network stacks, because they are linked against (and essentially indistinguishable
from) the rest of the kernel, we can perform integrity tracking on an individual basis for
each of these services.

It is also important for µMIP to protect files, as they are also an entry vector for
exploits. Malicious code can modify files to exploit vulnerabilities in any program that
reads them, in a manner similar to a network-based attack. To prevent such attacks
through file I/O, µMIP extends the tagging model to associate tags with files. A file tag
represents the integrity level of the file. µMIP assigns an integrity level to files based on
the access permissions and the process that creates the file. If a process of low integrity
creates a file, then the file is of low integrity. I/O requests on files update the integrity
level of the requesting process depending on the flow of information.

In the following two sections, we discuss how µMIP handles tracking of the integrity
levels of processes and the files handled by them.

24

Process Integrity

Microkernels use message passing for virtually all functionality. Whenever a process wants
to manipulate a file, it sends a request to the process responsible for handling that file,
which we term a server. Therefore, each request to an file passes through a server process.
A web browser, for instance, sends requests to the filesystem process to manipulate files,
and the filesystem sends requests to the disk driver to manipulate logical blocks. In a
microkernel, each of these components executes as a separate process, and µMIP performs
integrity tracking and protection at this level.

The µMIP model divides servers into two categories as follows.

Boot-time Servers Boot-time servers are the servers responsible for initializing the
system at boot-time such as initial disk management. Boot-time servers terminate after
completing the initialization. The µMIP model trusts boot-time servers as they are part
of the boot process and must be included in the immutable system image. For example,
the boot-time filesystem server is responsible for mounting disks and loading any files
required for the boot process. The boot-time filesystem server assigns an integrity level
to each file according to its access permissions. After the boot process finishes, this boot-
time filesystem server terminates. Doing so protects the system against attacks where, for
instance, the boot-time filesystem server is compromised and is used to compromise the
initialization files. We assume that at boot-time, the system is not susceptible to network-
based attacks. This can be ensured by simply disabling networking functionality till after
the booting process.

Run-time Servers After the boot process finishes, dynamic integrity tracking and pro-
tection becomes active. All run-time servers, except for those that implement network
stacks, are of high integrity by default. It is not until they receive data from the network
or another low-integrity source that their integrity is lowered.

One problem specific to filesystem servers is that if all of them have their integrity
levels lowered it will become impossible to write to any high-integrity file. To overcome
this limitation, µMIP allows any process to instantiate servers to mediate access to files.
Low-integrity processes are restricted to initializing only low-integrity servers.

If at any given time the system has multiple servers with different integrity levels, the
kernel redirects requests to the appropriate server based on the integrity level of the file
being requested. Thus, the kernel protects high-integrity servers from having their integrity
constantly lowered by serving requests from low-integrity processes. This can be seen as

25

an exception to the rule expressed by the state-machine in Figure 3.1. Reception of IPC
from a low integrity process lowers the receiver’s integrity level.

File Integrity Tracking

In a microkernel architecture, each server, including the filesystem server, enforces discre-
tionary access control (DAC) on the objects it handles. Henceforth, we focus on files as
filesystem server objects. We point out, however, that the concept behind file integrity
tracking applies to other server/object relationships as well, because like filesystems, all
servers handle requests to a certain mountpoint through standard client APIs. For ex-
ample, a serial port may be accessed by opening /dev/ser1 through the standard open()
call.

µMIP generates integrity information based on DAC permissions. This integrity map-
ping is only done for system files, however; user files are all treated as low-integrity from
boot time. This is to avoid situations where a user becomes unable to write to her own
files because all of his applications use the network at some point during their execution.

Table 3.1 summarizes the mapping of DAC permissions to integrity levels for system
files. As shown in Table 3.1, µMIP marks a file as low integrity only if the file is world-
writable. In µMIP, all high-integrity files have limited DAC permissions, i.e., read and
write access is not allowed to everyone. This predefinition of integrity levels takes the
burden of manually setting them off the system administrator.

Table 3.2 indicates the different relationships between processes and files depending
on their respective integrity levels. The first three columns describe the integrity of the
requesting process at the time of the request, the current integrity of the file, and the re-
quested operation. The second to last column shows whether µMIP permits the operation.
The last column shows the resulting integrity level of the requesting process.

µMIP ensures the integrity of files even when their server is compromised. µMIP
maintains integrity information within the kernel, so a compromised server cannot access
it. The kernel is responsible for controlling file access based on integrity level. If all
filesystem servers are compromised, the kernel would prevent the attacker from writing to
any high-integrity file, because their integrity level of the filesystem servers would have
dropped as per the integrity propagation rules listed in Table 3.2. This approach may
seem somewhat heavy-weight, and at odds with the mindset of a microkernel. Somewhat
surprisingly, however, we are able to do this without significant overhead (see Chapter 6).

To make µMIP realistic, we introduce two exceptions to the integrity propagation rules.
These exceptions are ambivalent operations as they leave the integrity of the requesting

26

DAC Permission File Integrity
Limited Read High Integrity
Limited Write High Integrity

World Writeable Low Integrity
World Readable Low Integrity

Table 3.1: Relationship between DAC permissions and file integrity for administrator-
owned files

process intact regardless whether it reads a high or low-integrity file. The first exception is
a read request for a high-integrity file from a low-integrity process. With µMIP, we redirect
such a read request to the high-integrity filesystem server. The high-integrity filesystem
server retains its high integrity level even after receiving the IO READ IPC from a low-
integrity client. This is because only a high-integrity filesystem should have access to
high-integrity file metadata, and reading the high-integrity file does not compromise the
filesystem.

The second exception is a write request to a low-integrity file from a high-integrity
process. In this case, µMIP does not lower the integrity level of the high-integrity process
as a consequence of the IO WRITE IPC message to the low-integrity filesystem server.
This exception is needed because writing to a file does not compromise the process that
does the write.

Process Integrity File Integrity Operation µMIP Access Post Process Integrity

High
High

Read Allowed High
Write Allowed High

Low
Read Allowed Low
Write Allowed High

Low
High

Read Allowed Low
Write Not allowed Low

Low
Read Allowed Low
Write Allowed Low

Table 3.2: µMIP file access permissions and integrity

To summarize, the kernel performs the following integrity checks/changes with each file
operation, depending on the integrity relation:

• Equal integrity level: If the process and the file have the same integrity level, then
the kernel simply mediates the request and allows the client process to operate on
the file.

27

fsys

fsys

Low IntegrityHigh Integrity

IO_W
RITE

IO
_READ

f1P1

P2 f2

Figure 3.2: Tracking integrity propagation to files

• Low-integrity process accessing a high-integrity file: In this scenario, the
kernel does not permit the process to modify the file unless the operation is a read.

• High-integrity process accessing a low-integrity file: In this case, the high-
integrity process can write to a low-integrity file without lowering its integrity level.
For all other operations, the kernel lowers the integrity of the process from high to
low.

• Ambivalent operations: µMIP does not restrict a low integrity process from read-
ing a high integrity file. A high-integrity process can also write to low-integrity files
without having its integrity level lowered.

Example 3 (Tracking integrity propagation to files) Figure 3.2 shows the integrity
level propagation mechanism to and from a file. Processes P1 and P2 are shown as circles,
Files f1 and f2 are shown as rectangles. Arrows indicate the flow of information and
shading indicates the low-integrity level.

As soon as process P1 reads from the low-integrity file f2, µMIP drops P1’s integrity
level to low. The low-integrity process P2 cannot write to the high-integrity file f1.

Figure 3.2 also illustrates integrity ambivalent operations. An IO READ operation by
process P2, a low-integrity process, to file f1, a high-integrity file, does not affect the integrity
levels of either the process or the file. This ambivalence also applies to the IO WRITE
operation from process P1, a high-integrity process, to the file f2, a low-integrity file.

28

Even if an attacker tries to exploit a vulnerability in P1 through f2, µMIP protects the
system’s integrity by lowering process P1’s integrity as soon as the process reads from f2
and thereafter restricts the privileges of process P1. This mechanism identifies possibly
compromised files and the processes whose faults could be exploited by these files.

Integrity Propagation Rules

To summarize, the µMIP integrity propagation rules are the following:

• The kernel, as the only trusted entity, propagates integrity from a process to process
along with IPC;

• When a process requests to open a file, the kernel redirects the request to the appro-
priate server according to the file’s integrity level;

• When a process receives data from a low-integrity source—be it a file, the network
or another process—its integrity is lowered.

For example, consider two high-integrity processes bash and adduser and a low-integrity
file userlist.txt. Bash executes a script that opens the user list then feeds it into adduser.
The kernel will lower bash’s integrity when it reads from the file and bash will, in turn,
spawn low-integrity adduser processes. These propagation rules also contribute to making
µMIP more usable, as they require no administrator input.

Restrictions on Low-integrity Processes

Once integrity values are in place, µMIP restricts the actions of low-integrity processes at
runtime. In a microkernel, every operation results in a message pass from one process to
another through the kernel. µMIP relies on message passing, since it limits the effect of a
successful attack by restricting the type of messages a low-integrity process can send.

Table 3.3 shows a list of some of the sensitive operations that µMIP restricts low-
integrity processes from performing. Whenever one of these forbidden operations happens,
an error code is returned to the calling process, allowing developers to detect and cor-
rect their program’s behaviour. The kernel differently handles each of these operations
depending on their effect on the system’s integrity.

Take for example, the chmod() libc function. This call is used to change a file’s permis-
sions. In QNX Neutrino, a commercial microkernel [63], when a process calls the chmod()

29

function, it sends a message of type IO CHMOD to the filesystem. Since the µMIP model
prevents a low-integrity process from changing the permissions of a high-integrity file, the
kernel will check the integrity of the requesting process. If the process is marked as low
integrity, the message will simply be dropped within the kernel and a log entry will be
generated. In the case of the IO LOCK message, a similar rationale applies. However, both
high and low-integrity processes are allowed to use IO SPAWN. µMIP will only force the
spawned process to inherit the integrity of the caller.

Operation Message Type
Spawn a new process PROC SPAWN
Write to a file/device IO WRITE

Lock a file/device IO LOCK
Configure the path of a file/device IO PATHCONF

Change permissions of a file/device IO CHMOD

Table 3.3: Sensitive operations in QNX Neutrino and their message types

µMIP Example

To illustrate the full functionality of µMIP, Figure 3.3 shows a sequence of operations,
their handling by the kernel and their consequences on processes’ integrity levels. Again,
processes are shown as circles, files are shown as rectangles, shading represents a low
integrity value and arrows indicate the flow of information. The timeline of the example
is as follows:

Example 4 (Integrity with Process Pooling) Take the example given in the intro-
duction, where a faulty tftp implementation is exploited into writing over /etc/shadow. In
µMIP, all of tftp’s requests to open, read and write to shadow are subject to approval by the
kernel. In this example, the filesystem server R1 has registered to handle all IO requests
under the /etc/ directory. It has three instances: server processes RP1 through RP3. As
a result of the open(”/etc/shadow”) request from compromised tftp, the kernel will check
the integrity value of that file. Since it has a high integrity value, the kernel forwards the
request to the one of the high-integrity servers RP2 or RP3. Any read calls from tftp will
also be forwarded to that process. If tftp were to write to that file, however, the request
would be dropped, protecting the high-integrity file from corruption.

If an attacker gains control of tftp, µMIP protects the system in two ways: First,
the mechanism of resource manager assignment prevents the contamination of all high-
integrity resource managers. This also prevents the system from entering a denial-of-service

30

state where high-integrity objects become inaccessible. Second, the µMIP model prevents
tftp from writing to system-sensitive files marked as high integrity. In this way, µMIP
guarantees the integrity of the data.

Consider also the adduser process as shown in Figure 3.3. If it were to open the shadow
file, it would be forwarded by the kernel to one of the high-integrity servers, exactly like tftp
was. However, when it writes to the high-integrity file, its request would be allowed since it
is also of high integrity. If it were to open and read from the low-integrity file /etc/profile,
however, its requests would be forwarded to RP1 and its integrity value would be lowered.

Manager

tftp process

adduser process

/etc/shadow

/etc/profile[3]I/O requests

[4]I/O responses

[4]I/O responses

[3]I/O requests

 Path

[1]O
pen request

[1
]O

pen
 re

ques
t

High Integrity Low Integrity

RP1

RP2

RP3

Filesystem server R1 process pool

[2]Return
RP

1 fd

[2]
Re
tu
rn
RP

1
fd

Figure 3.3: µMIP example

It is very important to notice that integrity checks happen in addition to, not instead
of, normal DAC that the filesystems implement. In the example above, if tftp was executed
under a non-root user, it would be kept from reading /etc/shadow regardless of integrity
value. µMIP’s integrity protection relates only to operations that would already normally
be allowed by ordinary filesystem access control.

31

3.4 Discussion

Extension of microkernel architecture: The design of µMIP applies to the microkernel
based systems. Filesystem manager in a microkernel system runs as an external process
and is responsible for enforcing access rules. In our proposed integrity protection model,
the kernel is responsible for enforcing the access control mechanism based on the integrity
levels of the file and the process as discussed in section 3.3.1. The µMIP model extends the
microkernel to maintain the integrity information of all the files in the kernel as describe
in Section 5.2 of Chapter 3.

µMIP restricts the operations of a low integrity process based on the message types.
In order to enforce these restrictions, µMIP based kernel should have the information of
specific message types. An example of such restriction is a low integrity process is not
allowed to change the permission of any file in the system. The kernel enforces this rule
by checking the integrity level of requesting process on all messages of IO CHMOD type.
Section 3.3.1 discusses these scenarios in detail.

Extension in the tagging infrastructure: In µMIP model a tag represents an
integrity level which µMIP model assigns to the processes (rather than thread). µMIP
extends the tagging model to support the assignment of tags to processes. µMIP model
also extends the basic tagging infrastructure to associate tags with files.

Multiple Levels of Integrity: Currently µMIP provides two different labels i.e.,
high integrity and low integrity. The binary choice of labels adds to the simplicity and
performance of the µMIP model. µMIP implementation can easily be extended to contain
multiple levels of integrity. We can use multiple bits, in the tag bitmap, to represent an
integrity level. However, manipulation of multiple integrity levels on every message pass
might incur performance overhead. Multiple integrity levels will also add complexity to
the µMIP model.

3.5 Summary

We have discussed our design of µMIP, our adaptation of a particular approach from
prior work called UMIP, for mandatory security. Our focus is microkernel-based systems.
We have discussed our implementation of µMIP in the widely-deployed QNX Neutrino
commercial microkernel-based system. Our work is strongly motivated by the observation
that such microkernel-based systems have been shown to be susceptible to the same kinds of
vulnerabilities as their monolithic counterparts. We have discussed the trade-offs inherent

32

to µMIP, and the increase in size in the microkernel’s code-base that results from it. We
have also presented empirical results for the overhead imposed by µMIP across three well-
established benchmarks for POSIX-compliant systems. We observe that µMIP offers its
protection with only a very small runtime overhead.

There is tremendous scope for future work. One aspect is to investigate approaches
other than UMIP for microkernels. As we assert in this work, it is likely that other
approaches will also be feasible as the underlying mechanisms to realize them are the same
as for UMIP. We also seek to refine our trust assumptions regarding servers, particularly the
high integrity filesystem servers. It is quite possible that we can combine our approach with
an approach such as privilege separation [120] for a more robust system. Yet another avenue
for future work is a long-term study from deployments of µMIP in QNX Neutrino. Only
such a study can fully validate that the approach is useful, and does not significantly impact
usability in realistic settings. To carry out such work, we will have to build meaningful
probes that coexist with µMIP to collect data.

33

Chapter 4

Use Case: Assertions on Process
Interaction Sessions

In a modern system, an application can be abstracted as a number of interacting compo-
nents. In such systems, the correct operation of individual components does not guarantee
the correctness of the system as a whole. A system’s correctness also depends on the pat-
tern of its component’s interaction. An unexpected interaction among components might
lead to a incorrect results, a system failure or a security threat. Testing and verification of a
system, in the presence of complex interactions among custom and third party components,
can be difficult.

The need is clear for a mechanism to ensure that component interaction patterns com-
ply with developer’s intent at run-time. This chapter demonstrates the utility of tagging
for the tracking and verification of a component’s interaction pattern at run-time. The
tagging infrastructure provides a lifeline mechanism for the efficient maintenance and ma-
nipulation of component’s interaction history. The proposed framework builds upon the
lifeline mechanism and supports assertions on interaction history among system compo-
nents. Subsequently, our tool chain enables developers to program assertions on interac-
tion history written in Linear Temporal Logic (LTL). The LTL statements can incorporate
inter-component interaction behaviour.

The chapter is structured as follows: Section 4.1 provides an overview of assertions and
our proposed assertion mechanism. Section 4.2 provides a guiding example and demon-
strates the utility of intersert(). Section 4.3 provides an overview of our infrastructure
from the developers’ perspective. Section 4.5 details the runtime support used for inter-
sert(). Section 4.6 applies the Intersert infrastructure to a commonly found use case in a

34

safety-critical systems. Sections 7.1 and 7.2 discusses the framework and summarizes the
chapter.

4.1 Overview

Assertions are a widely used method for increasing program reliability and enhancing
debugging as they permit checking program state against a specified statement at run
time. Developers use assertions to check whether their assumptions about the state of
a program are true at the moment an assertion is executed. This concept is useful for
achieving a variety of goals [80] including testing software correctness, detecting software
defects, and isolating fault.

Assertions operate on program state information, which is commonly encoded in global
and local variables. Developers write assertions based on these variables to verify that the
application is following its expected behaviour. For example, an assertion can check that
the size of an input buffer is sufficient to contain data required by an application.

An important type of information that traditional assertions do not operate on is the
history of interaction between threads (or single-threaded processes). Interaction properties
a developer might want to assert include, for example, event ordering such as whether
Process A communicated with Process B before opening a file or that a pair of redundant
sensors have both been read before their values are used in calculations.

In contrast to assertions on program state, assertions on interaction history require
supporting infrastructure. Often it is left to the developer to create and manage this
infrastructure, and to developing a state-based checking mechanism for the specific in-
teraction properties to be asserted. This additional development effort incurs cost and
introduces another source for defects.

Adaptations of traditional assertions to operate on interaction history are already used
in modern software. The Canadian Darlington nuclear power station uses interaction
history to verify at run time whether a particular set of actions has occurred, and whether
it has occurred in a particular sequence [113]. The Apache Portable Runtime (APR) uses
assertions to prevent threads in thread-pools from interacting with task abstractions which
have already been taken by other threads. In fact, any standard concurrency problem such
as producer-consumer, reader-writer, or the barber shop problem can utilize assertions on
interaction history. For example, in the barber shop problem [136], interaction history
assertions could ensure that customers only interact with chairs which are empty, or that
the barber only interacts with customers which are in chairs. Finally, applications such

35

as the GNU C Compiler (GCC) and the Linux kernel use assertions on specific program
interaction with manually coded infrastructure to support them. For example, GCC has
41 assert statements that the authors are aware of which check whether a particular action
was completed prior to executing the current action.

We propose that, instead of requiring the programmer to implement infrastructure to
record interaction history on a case-by-case basis, the operating system should provide
support for recording these interactions and verifying assertions about them. Leaving
developers with the task of developing and maintaining this infrastructure counteracts their
original intention, which is to increase reliability and provide debugging support. This is
because a hand-coded support infrastructure, like all hand-coded software, is prone to
defects [116]. However, it is unclear how the operating system should solve the problem of
maintaining the interaction history, in operating system, with negligible runtime overhead,
how to use it in assertions, and how to minimize the runtime overhead.

This work introduces Intersert, which is an infrastructure for programming assertions
on interaction history of threads. The assertions contain Linear Temporal Logic (LTL)
statements [118] placed the interaction history. This work shows that the lifeline (as de-
scribed in Section 1.1.9 of Chapter 1) mechanism can provide interaction history at run
time with negligible overhead and that this information is particularly useful in combi-
nation with assertions. In the context of the use we will refer to lifeline as interaction
history. The contributions of this work are demonstrating: (1) the utilization of lifeline to
expose interaction history for placing assertions, (2) the applicability of LTL for checking
properties of the interaction history at the programming level, and (3) the feasibility of
providing this functionality with negligible overhead at run time in a fully working tool
chain on a commercial platform used for safety-critical applications.

4.2 Assertions on Interaction History

To illustrate the use of assertions on interaction history, consider the example application
shown in Figure 4.1. This application, composed of 6 threads, periodically takes sensor
readings in Thread A. Each sensor reading is processed by a branched pipeline of threads
until, eventually, Thread E returns the final validated reading. The branch in Thread B
can route the readings through either Thread C or C’ based, for instance, on the reading
quality. Thread D can return the reading to Thread B for further processing, or forward
it to Thread E for finalization.

The developer intends the application to obey the following rules: (1) any interaction
must be initiated by Thread A, (2) if a reading passes through Threads C, then the reading

36

is validated and Thread C must pass it on to Thread D which must forward it immediately
to Thread E, and (3) if a reading passes through Thread C’, then Thread D must return
the data to Thread B for further processing. To verify the proper operation of the system,
the developer can use LTL assertions on interaction history. As the data passes through
the threads, the system records the interaction history. Let the propositional variables A
through E be true, if their corresponding threads are present in the interaction history.
The following assertions can then be used to capture the desired behaviour of the system:

• Check that Thread A initiates all interactions. With this assertion, the devel-
oper ensures that Thread A initiates all interaction chains. This assertion could be
checked in any thread. To check this in Thread E, the assertion statement can state
this LTL property as “A R E”. R is the LTL “release” operator. It ensures that, if
Thread A is absent from the interaction history prior to Thread E receiving the data,
then the assertion will fail.

• Check that a reading which reaches Thread C’ has not yet passed through
Thread C. With this assertion, the developer ensures that a validated reading is
not returned for further processing. This assertion is checked in Thread C’ by “¬C”.
This statement means that if Thread C is present in the interaction history when
Thread C’ receives the reading, then this assertion will fail, alerting the developer of
an unintended sequence of events.

• Check that Thread D only initiates interaction with Threads B or E.
With this assertion, the developer ensures that Thread D only starts interaction as
intended. This assertion is checked in Thread E by “D → XB ∨ XE”. X is the
LTL “next” operator. This assertion states that if Thread D participates in the
interaction, then the only threads that can follow it are Threads B and E.

Consider the following interaction history in sequence: [A, B, C, D, E]. All the assertions
described earlier would pass when applied to this history. The same is true for the following
sequence: [A, B, C’, D, B, C, D, E]. Another history sequence containing [A, B, C, D, B,
C’] will fail the second assertion when checked in C’ as the propositional variable for C will
resolve to true while the assertion ¬C will resolve to false.

This simple example demonstrates the utility of placing assertions on interaction his-
tory. The challenge is how to realize this functionality in a user-friendly way, that hides as
much complexity from the user as possible, and at the same time has low overhead at run
time. Our framework, called Intersert, demonstrates how these goals can be achieved.

37

A B D E

C

C’

Start End

Figure 4.1: Interaction diagram of the example application.

4.3 Intersert

Intersert provides a variation on the standard C assert function, referred to as intersert().
Developers can use intersert() statements to verify properties in the form of an LTL state-
ment on the history of interaction among threads (and single-threaded processes). Intersert
uses LTL syntax in intersert() statements, because LTL has been proven to be a good choice
to specify properties to be checked on sequences of events [18, 118].

Currently, the Intersert framework supports assertions on the interaction history be-
tween threads (and processes for single-threaded applications). An interaction simply
indicates inter-process (or inter-thread) message passing.

Lifeline mechanism, as described in Section 1.1.9 of Chapter 1, supports the recording
of interaction history in the operating system. An interaction history is a list of threads
in the sequence in which they communicated in one continuous interaction. For example,
consider a system with three threads, T1, T2, and T3. If T1 interacts with T3, which
subsequently interacts with T2, then the interaction history will consist of the following
entries: [T1, T3, T2]. The interaction history is similar to a list of participating threads in
a UML sequence diagram [112].

The Intersert framework uses standard LTL syntax in intersert() statements. Proposi-
tional variables in these statements represent the presence of a thread in the interaction
history. For example, intersert(“T1 –> X T3”) will verify that T3 directly follows T1 in the
interaction history; in other words, T1 will directly interact with T3. The violation of an
LTL property results in the termination of the program similarly to standard C assertions.

38

4.3.1 The Developers’ Perspective

From a developer’s perspective, the use of intersert() statements is very similar to regular
assert() statements. The developer writes intersert() statements inside C functions. Our
tool chain processes the intersert() statements during the compilation stage and automat-
ically generates the necessary infrastructure for checking whether they hold. However,
there are three differences between intersert() and regular assert() statements: (1) to be
available as propositional variables, threads must register themselves in a lookup directory,
(2) intersert() statements use LTL syntax, and (3) intersert() statements operate on a finite
interaction session (interaction sessions are detailed in Section 4.3.2).

The lookup directory enables developers to refer to specific threads in the propositional
logic portion of their intersert() statements. For example, to give a specific identifier to
the threads in Figure 4.1, one would use the fill id() function. When fill id(“A”) is called
at run time, the calling thread will become associated with the label “A”. Thus, each time
this thread participates in an interaction, the system will record an “A” in the interac-
tion history. Note that our framework currently prohibits delisting a thread or reusing a
propositional variable, which is a minor limitation for safety-critical systems.

Listing 4.1 shows sections of code for the example presented in Figure 4.1. The example
excludes the code for Threads C and D. Line 31 shows the first assertion of our example
application: intersert(“A R E”). When checking this assertion, Thread E will be present in
the interaction history, as the intersert() happens immediately after receiving a message.
If Thread A is present in the interaction history, the assertion will pass; otherwise, the
assertion will fail and the program will be halted. Line 23 shows the second assertion, that
verifies that a reading is not returned through Thread C′: intersert(“!C”). This assertion
will hold only if Thread C is absent in the interaction history prior to calling Thread C′.

1 void A () {
fill_id ("A") ;

3 start_session () ;
data = read_sensor () ;

5 msg_send (B , data) ;
}

7

void B () {
9 fill_id ("B") ;

. . .
11 msg_receive(&data) ;

13 i f (is_valid (data))
msg_send (C , data) ;

15 else
msg_send (Cprime , data) ;

17 }

39

19 void Cprime () {
fill_id ("Cprime") ;

21 msg_receive(&data) ;
. . .

23 intersert ("!C") ;
. . .

25 msg_send (D , data)
}

27

void E () {
29 fill_id ("E") ;

msg_receive(&data) ;
31 intersert ("A R E") ;

intersert ("D --> X B | X E") ;
33 . . .

end_session () ;
35 }

Listing 4.1: Example usage of the intersert() statement.

4.3.2 Interaction Sessions

Interaction sessions are periods of execution during which interaction history is recorded.
When a session is started, a new baton with a unique identifier symbolizes the new session.
This baton is passed along with every interaction between threads. Upon receiving the ba-
ton, a thread automatically adds itself to the interaction history. Calling end session() will
destroy the specified baton with its associated interaction history. This mechanism pre-
cludes the need for branching in interaction history, guaranteeing linearity in the sequence
of threads that take part in it. Duplication propagation mode can be used for branching in
the interaction history. The branching in the interaction history will introduce complexity
and other challenges. On the other hand, baton propagation mode simplifies the expression
of properties, while still allowing a wide range of properties to be verified.

Interaction sessions and their batons allow the developer to (1) define the boundaries for
the history sequence on which properties are checked, and (2) define multiple, concurrent
interaction histories to be maintained independently. Limiting history is important for
practical concerns; as the time for verifying properties depends on the length of history
being analyzed, it is of interest to the developer to keep history as short as possible,
while still permitting to verify the properties of interest. Permitting concurrent sessions is
important as periodic interactions (such as the ones initiated by Thread A in Figure 4.1)
require properties to be verifiable on each separate interaction history.

40

In the example presented in Listing 4.1, a new session starts each time Thread A takes a
reading from the sensor (Line 3). Intuitively, this means that multiple sensor readings pass
through the system at any given time, and that properties are checked on a per-reading
basis on separate interaction history sessions. After Thread E processed a reading, it will
end the session (Line 34).

It is worth noting that, while a session must start at some point to start recording
history information, it need not end; in this case, the system will continue recording more
interaction history, and any intersert() call will verify properties over the entire history.
This is useful in systems that enter a steady-state with no clear session boundaries, but
where invariants such as “Tx is never present” are of interest. Infinite interaction history
is obviously impossible to implement. Section 5.4 of Chapter 5, provides details on the
circular buffer (lifeline) used to record history and our framework leaves it to the devel-
oper to ensure the proper configuration of the buffer size to guarantee proper and correct
operation at run time.

4.4 Code Transformation

As a proof-of-concept, we have implemented a fully functioning Intersert framework com-
prising a pre-processor for intersert() statements and runtime support. The pre-processor
phase consist of a tool chain that translates a C program with intersert() statements into
ANSI-compliant C code. The tool chain performs the conversion in several phases that
includes extraction of LTL properties, mapping of LTL propositions to list operations and
generation of TGBA. The Section 5.3 of Chapter 5 provides the details of these phases.

4.5 Runtime Support

The runtime support for intersert() consists of two components: a history recording mech-
anism, and a property verification mechanism. The first component is responsible for the
collection of the interaction sessions as described in Section 4.3.2. The tagging mecha-
nism provides this support. The second component are the TGBA’s produced by the code
generator.

Recording Interaction Sessions: In a microkernel architecture, interaction between
threads manifests as messages passed between them. To record interaction history for

41

intersert() statements, our runtime system snoops these messages and records their asso-
ciated metadata. Snooping these interactions while keeping overhead low enough for use
in embedded systems is a challenge. intersert() system uses baton mode of the tagging
mechanism to snoop the interaction between system entities and consequently to record
interaction history sessions.

To create a session, an application must call the start session() function. Creating a
session instantiates a new tag, uniquely identifying that session. The system then uses the
lifeline mechanism(Section 1.1.9 of Chapter 1) of the tagging infrastructure to record that
tag propagation through the system.

To build the history within the session, lifeline records the identity of threads as they
pass the baton. Lifeline of a tag results in a comprehensive history of interactions from the
beginning of the session. Due to practical memory limitations, lifeline is implemented as
circular buffer with fixed length. The length of this buffer is configurable, and it should be
sufficiently large to correctly verify all properties of interest. Additional refinements could
provide a mechanism for handling session overflows (i.e., the history buffer is too small).
Our current implementation assumes that the developer specifies an adequate buffer size.

Finally, sessions also have a termination point. A session will be terminated when
the end session() function is called. The number of concurrent sessions is also limited by
number of supported tags, however, this can easily extended as the need arises. Similar to
length of a lifeline, we assume that the developer specifies adequate limits.

Processing intersert() Statements: At run time, a call to intersert() retrieves the
interaction history of the current session for a given process, passes it on to the appropriate
TGBA for that assertion, and returns the truth value determined by the automaton. The
verification mechanism processes the interaction history from the start, processing entries
in the interaction history while traversing the automaton. The state of the TGBA after
processing the last interaction entry dictates whether the assertion passes (true accepting
state), fails (false accepting state), or is undecided (non-accepting state).

Our evaluation of the LTL properties specified in intersert() statements follows the
approach presented in [18]. Since interaction history may not lead to a final decision
whether the property holds or not, the authors suggest an additional third, undecided,
state labeled as ‘?’. In this state, it is unknown whether the property will hold and thus
no verdict is made. If an unknown state is left when a given session’s list is traversed,
then a warning will be issued indicating that the assertion is potentially unverifiable. For
example, the “A→ XB” property is unverifiable if the only entry in the interaction history
is [A].

42

4.6 Case Study

We demonstrate the applicability of the Intersert framework by applying it to a real-
world data acquisition and control case study. A common need in data acquisition for
safety-critical systems is to eliminate potentially spurious data from sensors to prevent
incorrect decisions. The typical approach to solve this problem is to use cross validation
of measurements combined with filtering before making decisions. Note that this problem
differs from the fault masking of sensors for which triple-modular redundancy would be
more appropriate.

Our application is a temperature-based safety shutdown system. The purpose of this
trigger is to obtain input from temperature sensors installed in two different locations
within a host system. The temperature data serves as the basis for determining, whether
the host system must be shut down or whether it may continue running. The events fed to
the temperature trigger are the inputs from the two different temperature sensors. Each
sensor generates events at a given frequency. The system first temporally orders the input
events, filters them, cross-validates them, and the finally makes its decision. Usually the
system uses redundancy and diversity in the computation platform to process the data in
two parallel streams.

Figure 4.2 shows an abstract model for this application. Each node represents a process,
and arrows between them indicate message passing. Processes E1 and E2 produce new
measurements at arbitrary times, and communicate them to D1 and D2. D1 and D2 agree
cooperatively upon the order in which the events occur and identify correlated events.
Once in agreement, D1 and D2 separately pass on the data to the filter processes S1 and
S2. Note that D1 passes on the measurements originating in E1 while D2 passes on the
measurements from E2. S1 and S2 filter the data to remove spurious events and performs
other data transformations. The V1 and V2 processes cross validate the data and confirm
with each other that the results were calculated across the same set of input events. When
V1 and V2 have confirmed matching event sets, they pass on their results to O1 which
decides on the course of action.

The following contains a set of example intersert() statements useful for this application:

1: E1 ∧XD1 → XD2 2: E2 ∧XD2 → XD1

3: V1 ∧ V2 → XO1 4: S1 → XV1
5: D1 ∧XD2 → XS1 6: D2 ∧XD1 → XS2

7: E1 → XD1 ∨XD2 8: E2 → XD1 ∨XD2

intersert1 in S1 and S2 checks that if data is produced by E1 and D1 accesses this data,
then D1 will communicate this data to D2 to agree on correlated events. Similarly, intersert2

43

E1

D1

S1

V1 V2

S2

D2

E2

O1

Figure 4.2: Process interaction in the case study.

checks the same property with E2 as the data source. intersert3 in O1 checks that when
V1 and V2 agree (i.e., the session continues), then O1 will be the next process receiving
data. intersert4 in V1 checks the integrity of the interaction between S1 and V1. intersert5
in S1 checks that if D1 receives the data first and D2 agreed, then S1 will filter the data.
intersert6 in S2 checks a similar interaction to intersert4, in the case D2 receives the data
first. intersert7 and intersert8 in S1 and S2 check that data can be received by either D1 or
D2.

4.7 Discussion

This work lead to several interesting observations about checking interaction history, asser-
tions, and the intersert() infrastructure. Furthermore, this section also discusses potential
mistakenly perceived limitations of intersert().

The current implementation only supports a limited number of concurrent sessions and
a finite number of entries in the interaction history. The Intersert infrastructure uses
tags from the tagging framework to represent its interaction sessions. In this framework,
tags are encoded as bit-field metadata in the thread control block. The width of the bit
field bounds the number of concurrently active tags and thus the number of concurrent
sessions. This, however, is merely a perceived limitation, as the developer can trivially
widen the bit field and thus increase the number of concurrent sessions. The same holds

44

for the maximum length of the interaction history per session. To increase the length,
the developer just needs to configure the size of the circular buffer storing the interaction
history.

At the moment, the Intersert framework relies on the developer to specify the bounds
on the number of concurrent sessions and the maximal history length. Automatic con-
figuration of these parameters based on a high-level specification might be an interesting
avenue for future work. Yet to this date our case studies and example have not resulted in
this specific need as safety-critical systems are usually well understood prior to implemen-
tation and only a couple of kilobytes of memory already drastically increase the number
of sessions and length of the history. In our implementation of Intersert, an additional tag
incurs the overhead of 64x bytes, where x is the length of the history session. An additional
entry in the session consumes 64 bytes of memory.

The concepts of the Intersert framework and intersert() statements are also applicable
to single-threaded programs. Our implementation of intersert() statements only uses inter-
action between processes and threads, however this can easily be extended. For instance,
it is possible to use intersert() statements to check interaction history of messages passed
in an object system such as Smalltalk’s [53]. Furthermore, using aspect-oriented program-
ming, a developer could weave a runtime support system similar to the one in the Intersert
framework into regular applications. This would permit the developer to specify intersert()
statements in single-threaded programs.

Currently our the Intersert framework does not permit assertions on resource interac-
tion. Adding resource interaction, such as file access, to interaction history would allow for
finer grained control over resource access. Each time a thread holding a session accessed
a resource it would add that resource to the interaction history. Assertions on file access
could be used for the shutdown of threads which attempt to access certain files.

Intersert only verifies the safety properties. Safety property ensures that ‘something bad
never happens”. In contrast to the safety properties, Intersert framework does not support
liveness properties, which states that ‘something good eventually happens”. Verifying only
safety properties makes the system simpler and easier. Furthermore, most of the properties
can be expressed a safety properties.

4.8 Summary

Program assertions are a common means for adding runtime checks to applications. This
work explores the idea of using interaction history and session information in program

45

assertions. To accomplish this, this work presents the Intersert infrastructure, which sup-
ports LTL statements for checking interaction behaviour between processes and threads at
run time.

The work resulted in a number of surprising insights and results: (1) placing assertions
and interaction history is useful, (2) exposing interaction history can be achieved with
negligible overhead, and (3) it is possible to push the complexity of this work into a
toolchain that makes it easy for the developer to program such assertions.

The work’s results open up several possible and interesting avenues for further work
and Section 7.1 already highlights some of these. Others include extending the amount of
history information used beyond interaction on the local host as well as synthesizing the
interaction assertions from high-level specifications.

46

Chapter 5

Implementation

We have implemented our tagging mechanism in QNX operating system. QNX is a com-
mercially available microkernel based operating system. Our choice of QNX is influenced
by its true microkernel architecture where user and system level services interact through
well defined message passing interface.

5.1 Basic Implementation

A global variable holds the a tag field which contains the set of all the tags present in the
system. Each bit in the global tag field represents a single tag. The length of the global
tag field puts an upper bound on the number of tags in the system. Currently the tagging
mechanism supports 32 tags but it can be easily extended or reduced by changing the size
of the global tag field. In addition to the global field, a global set of the “passable” tags
defines the tag passable property. A set bit in passable tag set, marks the associated tag
as passable.

Each thread in the system has a tag field similar to the global tag field. The thread
specific tag field, defined in the thread control block, contains all the tags that the thread
has received since its creation. In addition to the tag field, thread control blocks also
define an additional bit to mark the active tag. An active tag represents the most recent
tag received by the thread. The active tag is set automatically every time the thread
receives a tag. Users can also explicitly change the active tag of a thread through an API.

A thread passes a message to another thread by using message passing routines. De-
pending on the structure of the message, QNX provides several message passing routines.

47

The most common routines are MessageSend(), MessageSendv() and MessageSendPulse().
These message routines pass a message payload to the receiving thread. The tagging mod-
ule modifies these routines such that they pass both their original payload and the tag of
the sending thread to the receiving thread. The basic thread passing mechanism is simply
a logical OR operation between the active tag of the sending thread and the tag field of
the receiving thread. Listing 1 shows the pseudocode of the tag passing routine.

Algorithm 1 Tag Passing Routine

if recv thread == sys thread then
return

else
if tag ttl val ≥ threshhold ttl then

return
else if sender tag & sender tagterminator then

return
else

if PROPAGATION MODE == BATON then
reciever tag = sender tag
sender tag = 0

else
reciever tag ∨ sender tag

end if
tag ttl = tag ttl + 1

end if
end if

As shown in listing 1, the first condition prevents the propagation of the tag to the
system thread. This condition simply checks if the receiving thread is a system thread by
checking it’s parent process ID (QNX identifies system threads by assigning a unique global
ID of 1 to the parent system process). In case of a receiving system thread, the routine
does not pass the tag and simply returns. The next condition imposes the TTL threshold.
This condition will prevent further propagation of the tag if the TTL value has exceeded
the TTL threshold. The next condition, as shown in listing 1, enforces the tag terminator
mechanism. If the tag terminator field of the sending thread contains the current tag of
the sending thread than this condition will not pass on the tag. At the end, depending
on the propagation mode, the tag of the sending thread will propagate to the receiving
thread. After the assignment of the sender’s tag to the receiver, baton mode clears the
sender’s tag field by assigning it 0. Duplication differs only in that it does not clear the

48

sender’s tag field. In case of successful propagation, the tag passing routine terminates by
incrementing the TTL value.

5.2 µUMIP: Mandatory Security for Microkernel-based

Systems

This section describes the implementation of mandatory security model, µmip. µmip de-
scribed in detail in Chapter 3. The tagging model provides the basis for the implementation
of µmip model. The implementation of µMIP was a matter of creating a high-integrity
tag, whose presence in a thread indicates that it should be treated as high integrity as per
µMIP rules; its absence indicates low integrity.

During system startup, µmip assigns high integrity tags to all the processes. An ex-
ception is the network stack (i.e., io-pkt-v4 in QNX), which starts with the low integrity.
Because integrity value initialization and propagation is performed from within the kernel,
it is entirely transparent to all software (such as drivers, filesystems and other operating
system components) but the microkernel and therefore using µMIP requires no modifica-
tion of application source code.

The basic tag propagation mechanism provides mandatory access control functionality.
Tagging high and low-integrity processes in this manner provides the functionality defined
in Section 3.3.1 of Chapter 3, but there tagging the files handled by those servers is also
required. To accomplish this in QNX Neutrino, we modified the original path manager,
which is also located inside the kernel.

Since all device drivers run as servers in user space, they are decoupled from the kernel.
In a manner similar to Linux, device drivers use the kernel’s path manager to create special
files that allow clients to communicate with them. A serial port driver, for example, may
ask the path manager to create a file called /dev/ser1. When an application or some other
server needs to use that serial port, it does so by opening, reading and writing to this file.
It is the path manager’s responsibility to forward all operations made on the file to the
appropriate server.

In our implementation of the µMIP, we modified Neutrino’s path manager to perform
the following operations:

Integrity Check: As soon as the kernel gets an IO OPEN request from a process, it
will look up the requested file in an internal integrity table. The file integrity table is a
bitmap where each bit represents the integrity level of a particular file on the disk. High

49

integrity is indicated by a bit value of 1 and low as a value of 0. After lookup, the rules
of Section 3.3.1 are applied. If the rules mandate it, the operation will be dropped. In
the case of a dropped operation, the kernel will reply back to the client with an error.
Algorithm 2 shows the pseudocode for the integrity check imposed by the path manager.

An integrity table is part of the path manager component of the kernel. We have
implemented the internal integrity table as a hash table, solving collisions with linked lists.
The worst case complexity of the lookup and insert operations is, therefore, O(n); however,
it is much better in the average case.

Algorithm 2 Path Manager Integrity Check

if msg type == IO OPEN then
{Get file integrity level from hash table}
file integrity ← get file integrity(filepath);
if file integrity == requesting process integrity then
{Get the relevant server with same integrity as of file else returns NULL}
rel server ← lookupserver(filepath);
if rel server ≡ NULL then

return ERROR
else

return rel server
end if

else if file integrity 6= requesting process integrity then
if file integrity == LOWINTEGRITY then
{Lower the integrity level of the process}
requesting process integrity ← LOW INTEGRITY;

else
{File has higher integrity than requesting process}
return ERROR

end if
else

return ERROR
end if

else
return ERROR

end if

Resource Manager Instantiation: After the integrity check, if µMIP allows the file
IO operation, the kernel will redirect the request to the appropriate resource manager.

50

This involves checking the integrity of the file, and choosing between servers of different
integrity values if multiple exist. At this point, the kernel may still drop the request even
if the integrity rules permit it, on the basis of the integrity level of the available servers.
For example, the kernel will deny a low-integrity process from reading a low-integrity file
if there are only high-integrity filesystem servers available. To work around this case, as
discussed in Section 3.3.1, the client process can use the resmgr attach() call to initialize a
new resource manager of the appropriate integrity level.

Cryptography: After the client has been connected to the appropriate server, the
kernel mediates all the I/O requests between them. To prevent unauthorized tampering
by the compromised filesystem server, µMIP encodes the metadata of the file. The encoded
metadata includes information like the address of the file, file name and amount of space
on the storage media.

To elaborate more on the effectiveness of the cryptography consider a disk driver server.
The disk driver provides the interface to the disk and does not require any mediator to
write to and read from the disk. A compromised disk driver means that the attacker has
complete control over the disk. To protect the disk content from the compromised disk
driver µMIP uses cryptography, storing all information about files on the disk in encoded
form. The attacker cannot get the meaningful data without obtaining the file encryption
key from the kernel. However, cryptography does not prevent an attacker from writing
garbage data or blindly deleting the contents of the disk.

We have implemented and tested µmipwith QNX Neutrino’s embedded transaction
filesystem (ETFS) [121]. We have used the AES encryption to encode the metadata of
high-integrity files. Other works on filesystem encoding like VPFS [142] and I3FS [115]
are complementary to µMIP. VPFS and I3FS can be used with µMIP to encode the entire
contents of the disk.

5.3 Intersert: Assertions on Process Interaction Ses-

sions

intersert() approach builds upon the tagging infrastructure. The Intersert framework uses
baton passing semantics for tags. In this mode of operation, tags are propagated without
duplication. The implementation of intersert() framework consist of two phases: a tool
chain to convert intersert() functions into ANSI C code and runtime system to record,
retrieve and verify interactions among components.

51

LTL properties Assertion logic

ANSI C source

C source with
intersert()

Predicate file

Extract properties

Merge assertion logic and C program

Generate assertion state machines

Extract predicates

Figure 5.1: Converting C programs with an intersert() call into regular C programs.

5.3.1 Toolchain

Figure 5.1 shows the internals of our tool chain which converts intersert() statements into
ANSI-compliant C code. Each node represents artifacts (e.g., the code and LTL data
structures) at different stages in the tool chain. The transitions describe the associated
transformation process, with arrows indicating the direction of the transformation.

LTL Operators List Operation Flow Assert Syntax
A ∧ B Both tags for A and B exist in the list intersert(“A & B”)
A ∨ B Either A or B exists in the list intersert(“A — B”)

A → XB The node next to A must be B intersert(“A –¿ XB”)
∼A A does not exist in the list intersert(“∼A”)

A R B A exists before B in the list intersert(“A R B”)

Table 5.1: Mapping of LTL operators to intersert() statements.

Table 5.1 summarizes the mapping of different LTL properties to intersert() statements.
The LTL formulae enclosed by the intersert() statements can use any syntax accepted by
the Spot library [91]. The Spot library supports various syntaxes for expressing LTL
statements. The second column of the table, shows the semantics of the list operation for
the given LTL property.

Each propositional variable in an LTL statement that occurs in an intersert() statement
represents a thread. These symbols are linked to threads through fill id() statements.
Whether or not a symbol evaluates to true is determined through the use of list operations.
If the symbol’s associated thread is present in the current interaction session, then the
symbol will evaluate to true.

Developers insert intersert() statements in their C source code and compile these pro-
grams with our Intersert tool chain. The first stage in the tool chain extracts the LTL
properties from the source code and writes them into a property file. A simple script parses
the source to extract statements containing intersert() calls. The tool chain then extracts

52

all propositional terms (i.e., the identifiers registered with fill id()) used in the LTL ex-
pressions, saving them to a predicate file. The tool chain uses the spot library [91] parser
for the extraction of propositional terms. This phase also checks the LTL properties for
any syntax errors. After the extraction, this phase maps the LTL propositions to the list
operation. An example of this mapping is shown in table 5.3.1.

A code generator module synthesizes state machines to check the intersert() LTL state-
ments in C. Our approach uses a code generator based on LTL3 tools [18] to generate
the state machines. The code generator uses the files containing the predicates and LTL
properties as input, and translates the properties into Transition-based Generalized Büchi
Automata (TGBA). Each LTL property results in the generation of a separate TGBA.
The TGBAs, which provide the support for assertion evaluation, are essentially a series of
if statements and C data structures. The C data structure represent the states and the if
statements mimics the transitions in the TGBA.

The resulting C code containing the TGBA logic is then merged into the original
program, replacing the intersert() statement with a C assert() statements. This generated
C assert() passes the current interaction history as a parameter to the appropriate TGBA,
which evaluates the LTL property based on that history. Section 4.5 of Chapter 4 discusses
the details of the runtime mechanism for processing intersert() statements.

The output from the various stages of the process of transforming intersert() statements
is shown below. The output from the code generation phase is omitted for brevity reasons,
and is instead summarized in a state transition diagram shown in Figure 5.2. The figure
only shows all states that return true for the intersert() statement. All other transitions
and states will return false. Note that the Intersert framework uses LTL3 and Section 4.5
of Chapter 4 provides details why partially evaluated statements also return true.

Toolchain Stage Output

LTL Statement A → XB
intersert() statement intersert(“A → XB”)

LTL Parser Output
a: curnode = searchnode(A)

b: isequal (curnode->next,B)

TGBA Generator Output See Figure 5.2

5.3.2 Runtime System

The basic tagging implementation, described in Section 5.1, provides tracking of interaction
among components at runtime. The tag lifeline, as described in Section 5.4, maintains the

53

true

true

true

A

B
¬A

Figure 5.2: Code Generator output for A→XB. All other transitions lead to a state re-
turning false.

interaction history. The tagging library implements the following functions to support the
Intersert runtime system.

start session() A developer calls start session(), that creates a tag in baton propagation
mode via CreateTagField() function call. The new tag uniquely identifies a session. As soon
as start session() creates a tag, the tag starts propagating while recording the receiving
components in the lifeline.

end session() A developer can call end session() to end the tag propagation and stop
recording the interaction history in the lifeline. Terminating a session removes the tag and
associated lifeline history from the system by calling DeleteTagField().

fill id() fill id() maps the LTL predicates to the thread identifiers. fill id() writes the
mapping of LTL predicates to the thread identifier into the file. intersert() retrieves the
predicate-to-thread mapping before running generated TGBA on the given LTL property.

intersert() The intersert() implementation is the core of the Intersert framework. inter-
sert() retrieves and manipulates the lifeline of a tag. The lifeline of a tag provides the
interaction history of components for a single session. After retrieval, intersert() translates
the propositions of the given LTL property to the list operations as shown in table 5.1. The
tagging library provides APIs to simplify the proposition translation to lifeline operations
i.e., searchnode() and isequal(). Table 5.3.1 shows an example for such translation for the
LTL property A → XB. Finally, intersert() runs the TGBA on a translated LTL property.

54

As described earlier, the TGBA is a sequence of if statements, representing transitions in
the TGBA.

5.4 Lifeline

Our implementation of the tagging mechanism allows the user to log and timestamp the
flow of tags through different threads in the system. We call this mechanism the lifeline of
the tag [48]. The lifeline mechanism is built on the top of a tag’s thread list. The presence
of a thread in a tag’s thread list, in addition to the associated timestamps, indicate the
reception of that tag by that thread at that particular time. The user can access this
information through a system call. Our current implementation registers the local wall
time at the time of propagation, but for the distributed case a logical clock, vector clock,
or matrix clock [37] would be required.

A circular buffer of predefined length implements the lifeline. Each entry of the circular
buffer can contain IDs for the source and receiver with the time of reception. The length of
the circular buffer and contents are configurable. When circular buffer overflows it starts
overwriting the old entries, starting from the initial index.

5.5 Tagging Library

The user can create and control the behaviour of tag via command line utilities. The
developer might want to access the tagging features from the application source to control
and retrieve the tag information at runtime. At application level, tagging library provides
an interface to the tagging module. The developer can use the following functions through
tagging library:

• GetTagsField() gets the tag field for the calling thread.

• SetTagsField(char *tag) sets the calling thread’s tag to tag.

• UnSetTagsField(char *tag) clears the tag tag from the calling thread.

• CreateTagsField(char *tag) creates tag as a new tag.

• DeleteTagsField(char *tag) deletes tag from the tag list.

55

• SetTagFieldtoPass(char *tag) marks tag as a passable tag.

• UnSetTagFieldtoPass(char *tag) marks tag as an impassable tag.

• SetActiveTagField(char *tag) marks tag as an active tag of the calling thread.

• LookupTag(char *tag) searches for tag in the tag list of the calling thread and returns the
tag number associated with it.

• GetThreadsForTag(char *tag,struct tag lifeline node *temp) gets a list of all threads which
own the tag tag.

All these functions use Neutrino’s ThreadCtl() kernel call. It allows the user to access Neutrino-
specific thread settings. The commands for each of the functions above are defined and passed
to ThreadCtl() as its parameter. ThreadCtl() resolves the command and calls the kernel-level
functions to manipulate tags at the kernel level.

56

Chapter 6

Performance Evaluation

6.1 Goal

Since the propagation of tags involves adding instructions to every message pass, it is imperative
that the incurred overhead is minimal. The goal of the evaluation study is to compare the modified
QNX operating system (with tagging) with the QNX baseline operating system under different
system workload. The baseline operating system is the original operating system without tagging
support.

6.2 Services and Outcomes

The evaluation study compares the performance of the QNX microkernel with and without tagging
feature. QNX microkernel implements message passing services along with the core POSIX
features listed below. QNX microkernel is a POSIX compliant operating system, so most of its
services and outcomes of services should comply with the POSIX standards. Below is the brief
description of the outcome of core services in QNX microkernel.

• Threads Management: The outcome of thread management should result in correct POSIX
based thread operations that includes thread creation, thread scheduling etc.

• Inter Process Communication: The outcome of inter process communication should result
in reliable information interchange between processes and threads.

– Signals: A signal of supported length and type should be delivered from source thread
to the receiver thread.

57

– Pulses: A pulse of supported length and type should be delivered from source thread
to the receiver thread.

– Shared memory: The shared memory of one process should be accessible to other
processes upon request.

• Clocks: All the clocks, maintained by the kernel, should output the correct time i.e., time
of the day.

• Timers: All the timers, maintained by the kernel, should output the correct timing infor-
mation i.e, real time counters etc.

• Interrupt handlers: The kernel should provide support for interrupt handlers according
to the underlying hardware.and react to the interrupt request Proper registered interrupt
service routine should be called upon hardware signal.

• Synchronization: As a result of synchronization mechanism, the kernel should control the
access to particular objects depending on the synchronization technique.

– Semaphores: The operating system should provide the correct semaphore functional-
ity according to the POSIX document.

– Mutual exclusion locks (Mutexes): The operating system should provide the correct
mutex functionality according to the POSIX document.

– Condition variables (condvars): The operating system should provide the correct
condvar functionality according to the POSIX document.

– Barriers: The operating system should provide the correct barrier functionality ac-
cording to the POSIX document.

6.3 Performance Metric

Since tag propagation incurs overhead to every message pass and in a microkernel architecture
even the simplest of libc calls causes a message to be emitted. To show that the tagging overhead
is negligible, we choose a broad set of performance metrics focusing on the performance of system
calls, libc calls, file operations and user-level applications. Following text briefly highlights and
justifies the inclusion of all the performance metrics, for the evaluation of tagging system.

Execution speed of standard System Calls: Almost all the system calls in QNX op-
erating system results in a message pass between a user thread and the system thread. Since
the purpose of this evaluation is to study the overhead that tagging adds to each message pass,
we have chosen the execution speed of system calls, under different workloads, as one of the
performance metric.

58

Execution speed/Performance of library C calls: Like the system calls, most of the
C library functions exchange messages with system thread to acquire/release different OS level
resources and functionalities. Since the purpose of this evaluation is to study the overhead that
tagging adds to each message pass, we have chosen the execution speed of library C function,
under different workload, as one of the performance metric.

Execution speed/Performance of file operations: QNX implements filesystems in a
server/client manner. The server process is the process responsible for specific paths in the
filesystem. Any request, from the client process, to access the file will result in messages exchange
between the server process and client process. Eventually, all file operations result in a message
pass from client to server. Since the purpose of this evaluation is to study the overhead that
tagging adds to each message pass, we have chosen the execution speed of standard file operations,
under different workload, as one of the performance metric.

Execution speed/Performance of standard user application: Message passing is the
core for most of the operations in QNX operating system. Since the purpose of this evaluation is
to study the overhead that tagging adds to each message pass, we were interested to study the
impact of tagging on some real world user level applications. The execution speed of the user
application will help us understanding the overhead of tagging on standard applications.

6.4 Parameters

For the evaluation of the tagging mechanism, we ran several benchmark suites as describe in
Section 6.7. All the benchmark suites provide a set of parameters to configure and control the
behaviour of different benchmark tests. These parameters impact the performance metrics. We
have characterized all the parameters as System Parameters and Workload Parameters.

Workload Parameters: Workload parameters define the load of the system at the time of
evaluation. To ensure that the tagging overhead is minimal under different workloads, following
parameters stress system calls, C library function calls and file operations under different work-
load. In addition to the measurement of performance, workload parameters also helps in proving
the integrity of the results. For example, one can verify the integrity of results by verifying that
the performance of the system decreases as the workload increases.

• Amount of Memory: Different memory intensive benchmarks in various benchmark suites
uses the amount of memory as parameter e.g., malloc() benchmark, in libmicro benchmark
suite, uses the amount of memory parameter to direct the size of the allocated memory.

59

The amount of memory has the huge impact on most of the benchmarks. Usually the large
amount of memory degrades the performance.

• File size: Different file intensive benchmarks in various benchmark suites uses the size of
file as parameter e.g., read() benchmark, in IOZone benchmark suite, uses the size of file
as the parameter. The size of the file has the huge impact on the performance of the file
operations. Usually the large size of file results in performance degradation.

• Sample size: The sample size represents the number of times we want to run a particular
benchmark. The benchmark suites use the sample size parameter in there own contexts.
For example, libmicro takes sample size as parameter that determines the number of runs
for each benchmark in the suite. The sample size impacts the credibility of the measured
data. The large sample size makes the data more reliable.

• Number of threads: Few of the benchmark use number of thread as parameter. This
parameter directs the number of threads that will be used to execute the benchmark. For
instance, libmicro uses number of threads as parameter to all the benchmarks included in
the suite.In a multithreaded environment, number of threads can impact the performance
results by running the different tasks concurrently. On the other hand, a bad multi thread
design might lead to a worst performance.

• Number of processes: Few of the benchmarks use number of processes as parameter. This
parameter directs the number of processes that will be used to execute the benchmark. For
instance, libmicro uses number of processes as parameter to all the benchmarks included
in the suite. Like threads, In a mutiprocess environment, number of processes can impact
the performance results by running the different tasks concurrently.

• Number of synchronization objects: Different benchmarks stress the synch operation by
increasing the number of synchronization objects. For example, libmicro increases the
number of mutexes for mutual execution benchmark.

• Number of blocks: This parameter quantifies the number of blocks that file operation
benchmarks use to measure the performance of the file operations e.g., IOZone uses this
parameter for benchmarks focusing on file operations. Usually the number of file blocks
has an inverse impact on the performance of the file operations i.e, larger number of blocks
usually results in low performance.

• Size of buffer: This parameter represents the size of file buffers that different file operation
benchmarks use to buffer file data. e.g., IOZone uses this parameter for benchmarks that
measure the performance of the file operations. The size of file buffer can be effectively
manage to improve the performance.

• Number of File descriptors: The performance of few file operations are sensitive to the
number of file descriptors e.g., select operation on file.

60

• Record Length: Varying the record length introduces the variation in performance of filesys-
tem operations. Due to its direct impact on performance of file operations we have included
record length in the parameter list.

System Parameters System parameters direct the hardware and software resources. The
following system parameters describe the resources and scheduling discipline included in the
evaluation study of the tagging mechanism.

• Operating System: We ran all the benchmarks on QNX Neutrino 6.5 operating system
with tagging and without tagging.

• Hardware: The underlying hardware has a deep impact on the performance evaluation.
Faster hardware will yield better performance compare to the slower hardware. We ran all
the benchmarks on a 1.8GHz and 3.2GHz Pentium 4 with 1GB of RAM.

• Scheduling Technique: The scheduling technique in operating system affects the execution
time of different threads or processes. We have used priority based scheduling to schedule
threads during the execution of benchmarks.

• Filesystem: The filesystem parameter indicate the type of filesystem used for the evaluation.
The possible values for this parameter can be memory based filesystem, network based file
system and disk based file system. The filesystem impacts the performance numbers as some
filesystem performs file operations faster than the other e.g., memory based filesystem is
faster than disk based filesystem.

• Compiler: Compiler translates the source code into machine level byte code. Different
options supported by compilers can directly influence the performance of the generated
machine code e.g., time optimization, space optimization etc. We have compiled the source
of all the benchmarks and operating system kernel using the GNU C compiler with basic
options set that excludes the optimization.

6.5 Factors

Most of the parameters, explained in the above Section 6.4, are variables that can take on different
values. Since we want to measure the performance of the tagging mechanism under different
workload, we have obtained the performance numbers by varying values of such parameters. We
term the parameters with varied values during evaluation as factors. The number of possible
values for the factors are called levels. Table 6.1 shows the list of all the factors with respective
levels and possible values. For each factor, table 6.1 also indicates the respective benchmark
test and benchmark suite. Table 6.1 only shows the varying parameters, all the parameters with
constant values are not shown in the table.

61

Benchmark Factor/Parameter Benchmark Suite Level Values

memset Amount of memory Libmicro 5 1k,4k,10k,1m,10m

malloc Amount of memory Libmicro 5 1k,4k,10k,1m,10m

memcpy Amount of memory Libmicro 5 10,1k,10k,1m,10m

strcpy Amount of memory Libmicro 2 10,1k

strlen Amount of memory Libmicro 2 10,1k

strchr Amount of memory Libmicro 2 10,1k

scasecmp Amount of memory Libmicro 2 10,1k

read Amount of memory Libmicro 3 1k,10k,100k

write Amount of memory Libmicro 3 1k,10k,100k

pwrite Amount of memory Libmicro 3 1k,10k,100k

mmap Amount of memory Libmicro 2 8k,128k

unmmap Amount of memory Libmicro 2 8k,128k

mprot Amount of memory Libmicro 2 8k,128k

mutex Number of threads Libmicro 2 1,2

malloc Number of threads Libmicro 2 1,2

pthread Number of threads Libmicro 4 8,32,128,512

memset Number of Processes Libmicro 2 1,2

fork Number of Processes Libmicro 3 10,100,1000

File Copy File buffer size Unixbench 2 256,1024

File Copy Number of blocks Unixbench 2 500,2000

Select Number of file descriptors Lmbench 2 100,250

IOZone file operations Record length IOZone 12 4,8,16,328192

All benchmarks Operating system All suites 2 Tag, No tag

IOZone file operations Filesystem IOZone 2 ETFS,QNET

Table 6.1: Factors with their levels and corresponding values

6.6 Evaluation Technique

For the evaluation and comparison of the two techniques i.e., operating system with and without
tagging, we have both the systems fully implemented. Having the luxury of implemented systems,
we have used measurement technique to collect the performance data. Measuring technique
generally provides the valid results.

62

6.7 Workload

To measure the overhead in terms of performance metrics, we have conducted six sets of bench-
marks. Each benchmark suite focuses on one or more performance metrics. For example, IOZone
focuses on performance of file operations whereas libmicro focuses on the performance of C library
functions. Following is the brief description of each benchmark suite.

Standard OS Benchmark: OS benchmark programs measure the performance of the QNX
kernel and its closest components including the C Library, the process manager and the path
manager.

MiBench: MiBench suite [59] is an application-level benchmark, which serves to illustrate the
effects that tagging has on the performance of real world applications. MiBench has been widely
used in academia to evaluate the performance of processors and other software systems [27].

IOZone: IOZone is a filesystem benchmark with focus on file I/O operations. We configured
IOZone [109] benchmark to measure the overhead that propagating tags over the network adds
to QNET. QNET in QNX allows two QNX nodes to communicate transparently over network.
Another run of IOZone is configured with memory based file system, ETFS, to gauge the filesystem
overhead specifically. These operations range from simple reads to random reads, to mmap calls,
etc. Put together, these different benchmark suites allow us to confidently evaluate the overhead
of µMIP as implemented in QNX Neutrino.

lmbench and unixbench: The fourth and fifth sets of benchmarks are lmbench [84] and
unixbench [95]. Both suites are designed to tax the most frequent operations in a POSIX system.
lmbench and unixbench benchmark suites comprise different microbenchmarks, each focused on
stressing a particular part of the system. These microbenchmarks might, for example, stress the
memory read and write, creating/deleting files or forking processes.

Libmicro: libmicro [130] benchmark suite focuses on the C library operations. The libMicro
benchmark set focuses on stressing system and library calls, and was created to compare the
performance between Solaris and Linux. Since our implementation of intersert() is based on the
QNX microkernel, every system call (such as malloc() or write()) results in the submission of
a message from the application to the kernel, stressing our interaction tracking mechanism.

63

Pipebench: In addition to above benchmark suites, we collected data from the execution of
pipebench [60] on both the original and the modified kernel. Pipebench stresses the message
passing aspect of the system by generating fread() and fwrite() calls in a tight loop, while also
collecting a measure of useful work, i.e., throughput.

6.8 Design Experiments

To measure the overhead caused by Tags, we executed all benchmarks with and without tagging
enabled in the kernel, and also with the extension for lifelines. In every test shown here, the
tag vector width is set to 32-bits, the word size for the architectures used. We ran Mibench,
IOZone, lmbench, unixbench on QNX Neutrino 6.5, running on a 1.8GHz Pentium 4 with 1GB of
RAM. Pentium 4 platform with 3.2Ghz Pentium 4 with 1GB of RAM was used for libmicro and
pipebench. For Mibench and OS benchmarks, all the code (benchmark and kernel) was compiled
without GCC optimizations to eliminate compiler interference on the results; indeed, compiler
optimizations made the tagged benchmarks execute faster than their untagged counterparts. The
unoptimized numbers shown here are, therefore, the worst case overhead we observed. We ran
the all the benchmarks, except standard OS benchmark, libmicro and pipebench, without lifeline
support to avoid modification of its original source code, and also because the internal benchmarks
conducted prior to them showed no evidence of significant slowdown.

To measure the execution time of each run of the OS benchmarks, we used the ClockCycles()
libc function. For all the other benchmarks, we used the clock gettime() libc function, which
allows measurements as precise as the system’s free running counter. After each run of each
benchmark, we recorded the execution time in a file for further processing. We analyzed the data
using R 2.10.1.

To evaluate the overhead that distributed tagging incurs on QNET (QNX network proto-
col) communication, we executed the IOZone benchmark between two Pentium 4 machines, one
mounting a remote directory exported by the other through QNET. IOZone is a filesystem bench-
mark with focus on file I/O operations. These operations include simple reads, random reads,
strides, record rewrites, file rewrites, etc. Every file operation performed by IOZone in that setup
lead to the propagation of tags between the two participating nodes, stressing message passing
over the network. We collected statistics on a 10MB file with record sizes ranging from 4 to
8192 bytes resulting in more than 2.6 million individual measurements. Since tagging mechanism
extends the file I/O operations to propagate and track the tags to the files, we also configured the
IOZone benchmark suites to perform all file I/O operations on a particular mount point where we
mounted our modified memory-based filesystem. Two instances of the memory-based filesystem
server ran during the benchmark tests.

In case of libmicro benchmark suite, to measure reliable results, we collect for each mi-
crobenchmark approximately 1000 samples, each containing between 5 and 50 000 system calls.

64

The number of system calls depends on their execution time; system calls with a short execution
time (e.g., getpid()) will have a high call count while others (e.g., memcpy() with 10Mb jobs) have
lower call counts. To remove outliers, libMicro ignores any samples that are more than three
standard deviations from the mean. Prior to analysis, some consistency checks were performed
on the data, ensuring that the coefficients of variation were acceptable for all benchmarks in both
kernel versions.

Pipebench measures the data throughput of a pipe between two processes. Our experiment
uses pipebench by using the shell pipe operator and pushing 800MB of data through that pipe to
pipebench. Pipebench then reports the throughput in MB/s, the execution time, and the amount
data received.

We executed pipebench on the same platform as libMicro. For the experiment, we collected
thirty samples by executing the following line:

dd if=/dev/zero bs=80k count=5k 2>/dev/null | \

./pipebench -q -Sresults.dat > /dev/null

Each benchmark suite uses its own data collection and data processing mechanisms. To permit
future comparison with our work, we report the raw values are produced by lmbench, unixbench,
libmicro, and iozone. For example, lmbench collects measurements internally before aggregating
the results, unixbench has sample size of of three and reruns three times before reporting the
results, likewise IOZone collects ten measurements and libmicro collects the data depending on
the sample size parameter. Appendix A shows the sample size for each benchmark in libmicro.

6.9 Results and Analysis of Output Data

MiBench All programs have an execution time distribution that differs from the normal dis-
tribution. We established this using the Shapiro-Wilk test for normality and visual inspection.
Figure 6.1 shows histograms of the execution time for the MiBench lame program on the Pentium
platform. The x-axis show the execution time in seconds and the y-axis show the frequency of
a particular execution time occurring in the sample. The distribution of execution times can be
justified by several timing properties such as instruction scheduling anomalies. Figure 6.2 shows
the individual results for the MiBench tiff2rgba program on the Pentium platform. The x-axis
shows the grouped results for the baseline and for tagging. The y-axis shows the execution time
in seconds. Using visual inspection, both figures confirm the results of the Shapiro-Wilk test for
normality. We therefore rely on robust statistics using for example the median and rank-based
testing mechanism in the subsequent analysis.

Table 6.2 shows all results for the MiBench benchmark on the Pentium platform. None of
the execution times significantly differ for any of the benchmark programs. The first column

65

indicates the name of the benchmark program. The second column indicates whether the our
basic tagging mechanics are enabled. The third column shows the median of the execution time.
And finally, the last column shows the median absolute deviation for the runs. We used the
Kruskal-Wallis rank sum test to check for significant slowdown when using tagging. The analysis
showed no significant slowdown for any of the benchmark programs. The program tiffmedian
has the largest difference in the median, however, it is still insignificant with a p = 0.0458 given
a Bonferroni correction of seven tests on the data. Even if were significant, it would only be a
negligible slowdown of a factor of 1.005 (0.5%).

Name Tag Median MAD

1 jpeg N 0.163 0.003
2 Y 0.165 0.001

3 lame N 2.365 0.007
4 Y 2.368 0.009

5 mad N 0.642 0.004
6 Y 0.645 0.006

7 tiff2bw N 0.658 0.012
8 Y 0.656 0.013

9 tiff2rgba N 0.913 0.048
10 Y 0.910 0.044

11 tiffdither N 0.630 0.001
12 Y 0.630 0.001

13 tiffmedian N 0.923 0.013
14 Y 0.918 0.015

Table 6.2: Performance summary for MiBench

System Calls The distribution of the execution time for system calls also differs from a
normal distribution. Similarly to the MiBench, we confirmed this using a statistical test and
visual inspection. Figure 6.3 and Figure 6.4 also confirm this. We again use robust statistics
instead of average and mean errors.

Table 6.3 shows all results of our comparison with the unmodified kernel on the Pentium
platform. All raw speed measurements are in CPU clock cycles. The first column lists the name
of the system call tested in this row. The second column shows the median of the execution
times for the baseline (i.e., the unmodified kernel). The third column shows the median absolute
deviation of the baseline. The next two pairs of columns provide the same data for the modified
version of the kernel with tagging and with lifelines. The last two columns show the ratio between
the baseline and the tagging and the lifeline extension.

66

MiBench Lame Execution Time Histogram

Execution time [s]

F
re

qu
en

cy
 [r

un
s]

0

50

100

150

200

250

2.4 2.6 2.8 3.0 3.2

Figure 6.1: Density plot of the execution time of the MiBench lame program.

Although some results show a statistically significant difference, the overall differences are
negligible and just a few clock cycles. The function most affected by tagging is msgpass and
the results show no increase in the median. The reason is that (1) the best case, our extension
adds eleven instructions and (2) in the worst case, our extension adds 58 instructions. Given the
regular interference from the computer architecture resulting from pipeline stalls, cache misses,
page alignments, and out-of-order execution, it is expected that the measurements show nearly
identical values.

67

MiBench tiff2rgba

E
xe

cu
tio

n
tim

e
in

 [s
]

0.5

1.0

1.5

2.0

2.5

3.0

baseline tagging

Figure 6.2: Individual results for MiBench tiff2rgba program.

68

OS Benchmark 'calls' Execution Time Histogram

Execution time [emulated ticks]

F
re

qu
en

cy
 [r

un
s]

0

50

100

150

200

1000 2000 3000 4000

Figure 6.3: Histogram for the calls benchmark program.

69

OS Benchmark, msgpass

E
xe

cu
tio

n
tim

e
[e

m
ul

at
ed

 ti
ck

s]

250

300

350

baseline tagging lifelines

Figure 6.4: Individual results of the OS benchmark on the msgpass program.

70

N
a
m
e

B
a
se
li
n
e

T
a
g
g
in
g

L
if
e
li
n
e

R
a
ti
o

M
ed

ia
n

M
A

D
M

ed
ia

n
M

A
D

M
ed

ia
n

M
A

D
T

ag
gi

n
g

L
if

el
in

e

1
ca

ll
s

21
06

29
72

.6
13

21
03

29
69

.6
48

21
28

30
05

.2
30

0.
99

9
1.

0
1
0

2
ch

an
n

el
90

2.
96

5
89

2.
96

5
86

2.
96

5
0.

98
9

0.
9
5
6

3
d

ev
n
u

ll
10

72
65

.2
34

10
73

60
.7

87
10

80
25

0.
55

9
1.

00
1

1.
0
0
7

4
d

ev
n
u

ll
r

83
9

38
.5

48
85

0
59

.3
04

83
3

26
.6

87
1.

01
3

0.
9
9
3

5
k
il

l
80

2.
96

5
80

2.
96

5
76

1.
48

3
1.

00
0

0.
9
5
0

6
m

al
lo

c
10

9
2.

96
5

10
8

2.
96

5
10

6
2.

96
5

0.
99

1
0.

9
7
2

7
m

sg
p

as
s

21
3

5.
93

0
21

3
7.

41
3

21
3

5.
93

0
1.

00
0

1.
0
0
0

8
m

u
te

x
35

1.
48

3
34

1.
48

3
35

1.
48

3
0.

97
1

1.
0
0
0

9
m

u
te

x
al

lo
c

15
9

1.
48

3
15

8
1.

48
3

15
5

1.
48

3
0.

99
4

0.
9
7
5

10
p

ro
ce

ss
39

93
4

16
9.

01
6

39
92

7
18

0.
87

7
39

99
1

14
0.

84
7

1.
00

0
1.

0
0
1

11
sb

rk
41

23
54

.8
56

41
19

54
.8

56
41

24
35

.5
82

0.
99

9
1.

0
0
0

12
si

gn
al

34
82

9
11

23
.8

11
34

95
3

13
23

.9
62

34
73

5
85

3.
97

8
1.

00
4

0.
9
9
7

13
sy

sc
al

l
72

9
38

2.
51

1
73

6
35

7.
30

7
73

6
36

7.
68

5
1.

01
0

1.
0
1
0

14
th

re
ad

58
41

40
.0

30
58

32
42

.9
95

58
67

34
.1

00
0.

99
8

1.
0
0
4

15
ti

m
er

11
1

2.
96

5
11

2
4.

44
8

11
3

4.
44

8
1.

00
9

1.
0
1
8

16
y
ie

ld
53

4
10

.3
78

53
7

8.
89

6
54

0
8.

89
6

1.
00

6
1.

0
1
1

T
ab

le
6.

3:
S
lo

w
d
ow

n
fo

r
sy

st
em

ca
ll
s

in
em

u
la

te
d

cl
o
ck

ti
ck

s.

71

Reclen Mean SEM CI
4 0.992 0.004 0.008
8 1.001 0.009 0.018

16 1.003 0.008 0.015
32 0.997 0.000 0.001
64 0.980 0.018 0.036

128 0.999 0.000 0.001
256 0.999 0.000 0.000
512 0.990 0.021 0.041

1024 1.027 0.026 0.052
2048 1.018 0.036 0.071
4096 1.030 0.052 0.103
8192 0.979 0.042 0.082

Overall 1.001 0.018 0.035

Table 6.4: IOZone overhead summary results

Distributed Overhead Since the addition of tags to QNET represents an extra 32-bits per
message on the network, we expected the overhead to be very low. The results shown in Table 6.4
confirm this. The column titled ‘Mean’ shows the ratio between the results of IOZone over QNET
with Tags enabled and Tags disabled. The column titled ‘SEM‘ describes the standard error of
the mean, and the column titled ‘CI’ shows the 95% confidence interval. Each row is the summary
of a single record length and subsumes the results on the individual micro-benchmarks of IOZone
like random read and block rewrite.

The table clearly shows that tagging, even in the distributed version with our modification of
QNET at least for message sizes between 4 and 8192 bytes causes no significant overhead.

Libmicro Table 6.5 shows the results for libmicro benchmarks. We ran individual benchmarks
with different factor levels. While Welch’s t-tests conducted at the 99% confidence level showed
statistically different means for the majority of benchmarks, libMicro shows negligible differences
between the original kernel and the kernel supporting tags. Table 6.5 shows the ten (out of 138)
microbenchmarks with the largest ratio between means, i.e., the ones where tagging overhead
is the highest. The first column shows the benchmark name, the next three columns show the
results for the original kernel with the number of samples, the mean, and the standard deviation.
Next, the table shows the same metrics for the modified kernel that supports tagging. The last
column shows the ratio computed by dividing the tag-based kernel’s mean by the original kernel’s
one. This data confirms that, even in the worst case, the overhead is negligible. Appendix A
shows the complete set of results for libmicro.

72

Original Tagging-kernel

Name Samples Mean Std. Dev Samples Mean Std. Dev. Ratio

open zero 894 14.00 0.00 1001 15.19 0.39 1.08

write t1k 887 14.24 0.65 996 15.32 0.95 1.08

write u1k 998 14.92 1.00 909 16.00 0.00 1.07

write u10k 988 26.30 0.71 947 27.98 1.07 1.06

mktimeT2 1002 27.60 0.84 1001 28.90 1.01 1.05

read t100k 1001 16.43 0.82 1002 17.18 0.98 1.05

read t10k 909 14.00 0.00 1002 14.60 0.92 1.04

write t10k 961 26.03 0.70 967 27.15 0.99 1.04

writev t1k 897 26.00 0.00 991 26.99 1.00 1.04

pthread 128 102 26.65 3.86 102 27.49 3.92 1.03

Table 6.5: The ten microbenchmarks of the libMicro suite with the worst overhead results.
Mean and std. dev. are reported in [us] and values less than 0.004 show as 0.00.

Original Tagging Ratio
Sample Count Median 1 001 1 001 1

Execution
Mean 444.7761 445.6836 1.0020
Median 6.8564 6.99894 1.0207

Table 6.6: Aggregates for all 138 libMicro-benchmarks.

Figure 6.5 shows the ratio of the execution time for all libmicro benchmarks, and it also
demonstrates that our approach incurs only negligible overhead. The x-axis shows the identifier
number for the benchmark. The y-axis shows the ratio between the tag-based kernel and the
original kernel. The higher the value, the more overhead ourtag-based-kernel has. Error bars
have been intentionally suppressed, as the variance of a ratio is highly sensitive to denominator
values that approach zero.

Finally, Table 6.6 shows the aggregate results for libMicro. This table shows that the analysis
of the two different versions has been thorough and again, overall, the tagging mechanism incurs
only negligible overhead.

Pipebench Prior to our statistical analysis, we performed a series of consistency checks on
the data and the benchmark: the throughput remains unaffected by the amount of data passed
through the pipe, all data values are positive values, and the data contains no drastic outliers.

73

Table 6.7 shows the throughput results for pipebench in MB/s. The columns show the number
of samples, the mean value, the median, the standard deviation, the standard error of the mean,
and the 95% confidence interval. Although a difference between the means of the original and
the tag-based kernel is statistically significant (at the 95% level), the additional overhead of
approximately 1% is negligible in practical terms.

Samples Mean Median S.D. S.E. C.I.

Original 30 81.83 81.84 0.16 0.03 ±0.15
intersert() 30 80.98 80.97 0.18 0.03 ±0.18

Table 6.7: Results for pipebench. Values except count are reported in MB/s and values
less than 0.004 show as 0.00.

Other Benchmarks: unixbench, lmbench and IOZone Tables 6.8, 6.9 and 6.10 show
the results for the unixbench, lmbench and IOZone suites, respectively. This time we have
configured IOZone to work for memory based file system i.e., ETFS [121]. The first column
of each table lists the name of the microbenchmark, the second column lists the results for
the kernel with tagging enabled and the last column shows the percentage overhead imposed
by tagging.Timing measurements (the second column) are in microseconds. In Table 6.10, the
speed of file operations is in Kilobytes per second. We show the mean of at least 50 benchmark
iterations. “NSD” in the last column (% Overhead) stands for “Not Statistically Distinct.” We
collected not only the mean, but also the standard deviation, and computed a 95% confidence
interval. If the confidence intervals for the original system and the system with Tags overlap, then
this means that we cannot conclude that the mean values for the two are statistically distinct.
In such cases, we write “NSD” in the column for % Overhead.

As shown in the results of benchmarks, tagging has only negligible overhead compared to
the original version. In most cases, we are not even able to statistically distinguish the overhead
imposed by tagging. In some cases, we have observed that the mean values for tagging are faster
than for the original system. (We reemphasize however, that the confidence intervals overlap in
all such cases, and therefore we cannot conclude that the values are indeed distinct.) We premise
that this is because of architecture effects such as instruction ordering and cache affinity, some
benchmarks are actually faster with the addition of the small numbers of instructions necessary
to implement tagging.

We point out that the reading and writing of files is nearly as fast with tagging as it is on the
unmodified kernel only because the data itself remains unencrypted.

Impact of Factors on Performance Metrics: Most of the factors in various benchmark
suites are varied to increase/decrease the workload of the systems. Factors like file size, amount

74

of memory can be tuned to control the workload of specific benchmark operation. For example,
increase in amount of memory for malloc() operation will increase the amount of work that the
memory manager has to perform. As shown by the results, the variation in the values of the factors
introduces the variation in the performance metric. As value of factors defines the workload of
the system, the factor value is inversely proportional to the performance i.e., increasing the factor
value results in performance degradation of the system. We can deduce the same relationship
from our results. For example in table 6.9, Select() operation on 100 file descriptors is faster than
the the Select() operation on 250 file descriptors.

Test Tagging % Overhead

Dhrystone 2 using register variables [l/s] 4244181 NSD
Double-Precision Whetstone [MWI/s] 549 NSD
Execl Throughput[l/s] 341 NSD
File Copy 1024 bufsize 2000 maxblocks [KB/s] 21134 NSD
File Copy 256 bufsize 500 maxblocks [KB/s] 11758 NSD
Pipe Throughput [l/s] 60299 NSD
Pipe-based Context Switching[l/s] 32978 NSD
Shell Scripts (8 concurrent) [l/m] 64 NSD
System Call Overhead [l/s] 41278 NSD

Table 6.8: Results for the unixbench benchmark. “NSD” stands for “Not Statistically
Distinct” (See Section 6.9).

6.10 Performance of intersert()

To demonstrate the feasibility of checking LTL properties at run time with low overhead, we have
executed a property verification benchmark on a series of synthetic interaction histories. The
property to be checked is the following: “A → XB”. Interaction histories were generated with
the following pattern: [C, C, C, . . . , C, A, B]. Interaction histories ranging in size from 100 to
15,000 were generated by increasing the number of C entries at the start of the history. Since
all interaction histories end with [A,B], the intersert() will always pass. This also means that the
full interaction history will have to be iterated through, which is the worst case for any given
assertion.

Figure 6.6 shows the verification times of the property for different history lengths. 200
execution time measurements were collected for each history length. As it is to be expected, the
execution time of this particular verification procedure grows linearly with the size of history.
Even in the longest history sizes used, the property was checked in under 350 microseconds. This
demonstrates that our system could be used at run time with little overhead.

75

Test Tagging % Overhead

syscall 9 NSD
read 5 NSD
write 5 NSD
stat 47 NSD
fstat 11 NSD
open/close 50 NSD
Select on 100 fd’s 300 0.01
Select on 250 fd’s 775 0.01
Select on 100 tcp fd’s 100 0.03
Select on 250 tcp fd’s 248 NSD
Signal handler installation 1 NSD
Signal handler overhead 3 NSD
Protection fault 2 NSD
Pipe latency 30 NSD
AF UNIX sock stream latency 29 NSD
Process fork+execve 6606 0.01
Process fork+/bin/sh -c 12292 NSD
File write bandwidth 12605 NSD
Pagefaults 8462 NSD
UDP latency using localhost 37 NSD
TCP latency using localhost 37 NSD
TCP/IP connection cost to localhost 164 0.01

Table 6.9: Results for the lmbench benchmark (in microseconds). “NSD” stands for “Not
Statistically Distinct” (See Section 6.9).

It is worth noting that the complexity of the TGBA also affects the verification times of
properties. As arbitrarily complex properties can be created and checked, execution times are
bound to vary widely. Therefore, we suggest developers investigate that the execution times for
verifying their properties incur acceptable overhead.

76

Test Tagging % Overhead

write 292609 NSD
rewrite 256002 NSD
read 341339 NSD
reread 409603 NSD
random read 341336 NSD
random write 256000 NSD
bkwd read 409600 NSD
record rewrite 227556 NSD
stride read 341390 0.02
fwrite 227555 NSD
frewrite 227577 NSD
fread 186181 NSD
freread 186183 NSD

Table 6.10: Results for the iozone benchmark (in kb/sec). “NSD” stands for “Not Statis-
tically Distinct” (See Section 6.9).

77

●

●

●●●●
●

●
●●●

●
●●

●

●

●

●

●

●

●
●

●

●

●●

●
●
●
●●●●●●●●

●●

●

●
●

●●

●

●

●

●●

●

●●
●

●

●

●●

●

●●●

●

●
●●●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

0 20 40 60 80 100 120

0.
95

1.
00

1.
05

Microbenchmark ID

R
at

io
 o

f m
od

ifi
ed

/o
rig

in
al

Figure 6.5: Ratio of the execution time for the unmodified and the tagging kernel.

78

0

50

100

150

200

250

300

●
●●●
●
●
●
●●
●
●●
●
●
●
●●
●
●
●
●●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●
●
●
●●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●
●
●●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●●
●
●
●
●●
●
●
●
●●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●
●●●●●
●
●●●●●
●
●●●●●
●
●●●●
●
●●●●●
●
●●●●●●
●
●●●
●
●●●●
●
●●●●●●●●
●
●●●
●
●●
●
●●●
●
●●●●●●
●
●●
●
●
●
●●●
●
●●
●
●●●
●
●●●
●
●●
●
●●●
●
●●
●●
●
●●
●
●●●
●
●●●
●
●●
●
●●●
●
●●
●
●●●
●
●●
●
●●●
●
●●
●
●●
●●
●●●
●
●●
●
●●●●●●
●
●●●●●
●
●●●●●
●
●●●●
●
●●●●●
●
●●●●●●●●●●●●
●
●●●●●
●
●●●●
●
●
●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●
●●●
●
●●●
●
●●●●●●●
●
●
●
●●
●
●
●
●●
●
●●
●
●
●
●●
●
●●
●
●
●
●●
●
●●
●
●
●
●●
●
●●
●
●●
●
●
●
●●
●
●●
●
●
●●●
●
●●●●
●
●●●●
●
●●●●●●●
●
●●●●●●
●
●●●●
●
●●●●●●
●
●●●●
●
●●●●
●
●
●●●
●
●●●
●
●●●
●
●●●
●
●●
●
●●
●
●●●
●
●●●
●
●●●
●
●●
●
●●
●
●●●
●
●●●
●
●●
●●
●
●●●
●
●●
●
●●●
●
●●
●
●●
●
●●●
●
●●
●
●●●
●
●●
●
●●●
●
●●
●
●●
●
●●●
●
●●
●
●
●●
●
●●●●●
●
●●●●●●
●
●●●●
●
●●●●●●
●
●●●●●
●
●●●●●
●
●●●●●
●
●●●●
●
●
●●
●
●
●
●●
●
●
●
●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●
●
●●
●
●●
●
●
●
●●
●
●
●
●●●
●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●
●●
●
●●
●
●●
●●
●●
●
●
●
●●
●
●●
●
●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●
●
●
●●
●
●●●●
●
●●●●
●
●●●●●●●
●
●●●●●
●
●●●●●
●
●●●●
●
●●●●●
●
●●●●●
●
●●
●
●●●
●
●●●
●
●
●
●●●
●
●●●
●
●●●
●
●●●
●
●●●
●
●●●
●
●●●
●
●●
●
●●●
●
●●●
●
●
●●
●
●●●●
●
●●●
●
●●
●
●●●
●
●●
●
●●●
●
●●
●
●●●
●
●●
●
●●●
●
●●
●
●●
●
●
●
●●●●●
●
●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●
●
●●●●●
●
●●●●●
●
●●●●●
●
●
●
●
●
●
●
●
●●
●
●
●
●●
●
●●
●
●●
●
●
●
●
●
●●●
●
●
●
●●
●
●
●
●
●
●●
●
●
●
●●
●
●
●
●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●
●●
●
●
●
●
●
●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●
●
●●
●
●
●●
●
●
●
●
●
●
●●
●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●
●
●
●●●●●●●●
●
●
●
●●●●●●●●
●
●●●●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●●
●
●
●
●●
●
●●
●
●●
●
●
●
●
●
●●
●
●●
●
●●
●●
●●
●
●
●
●
●●●●
●
●●●●
●
●●●
●
●●●●
●
●●●●
●
●●●●●●
●
●●●●
●
●●●●
●
●●●●
●
●●●●●●
●
●●●
●
●●●
●
●●
●
●●●
●
●●
●
●●●●●●●
●
●●●
●
●●●
●
●●●
●
●●
●
●●
●
●●●
●●
●●
●●
●
●●●
●
●●
●
●●
●
●●●
●
●●
●
●●●
●●
●
●
●●●
●
●●
●
●●
●
●●●
●
●
●
●●
●
●
●
●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●
●
●●●●●●
●
●●●
●
●●●●●●●
●
●●●●
●●
●
●
●
●●
●
●
●
●
●
●●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●
●
●●
●
●
●
●●
●
●●
●
●
●
●●●●●●
●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●
●
●
●
●
●
●●
●●
●●
●
●●●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●
●
●
●●●
●
●●●●●●●●●●
●
●●
●
●
●
●●
●
●●
●●
●●
●
●●
●
●
●
●●
●
●
●
●●
●
●●
●
●
●
●●
●
●●
●●
●●
●
●
●
●●
●
●
●●●●
●
●●
●
●●●●
●
●●●●●●●
●
●●●●●●
●
●●●●
●
●●●●
●●
●●●●●●●●
●
●●●●
●
●●
●
●●
●
●
●
●●●
●
●●
●
●
●
●●●●●●
●
●●
●
●●●
●
●●●
●
●●●
●
●●●
●●
●●●
●
●
●●●
●
●●●
●
●●●
●
●●
●
●●●
●
●
●
●
●●
●
●●
●
●●●
●
●●●
●
●●
●
●●
●
●●●●●
●
●●●●●
●
●●●
●
●●●●●●●
●
●●●
●
●●●●
●
●●●●
●
●●●
●
●●●●●
●
●●●●
●
●●●
●
●●
●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●
●
●●
●
●●
●
●●●
●
●
●
●●
●
●●●
●
●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●●●●
●
●●●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●●●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●●●●●
●
●
●
●
●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●
●
●
●
●
●
●
●
●
●
●●●●●●●●●
●●
●●
●
●●
●
●●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●●
●
●●
●
●
●
●
●
●●
●
●●
●
●●
●●
●
●
●●
●●●●
●
●●●●●●
●
●●●●●●●●●
●
●●●●●●
●
●
●
●●●
●
●●●●●●●●
●
●●●●
●
●●
●
●●●
●
●●
●
●●
●
●
●
●●●
●
●●●
●
●●
●
●●
●
●●●
●●
●●●
●
●●●
●
●●
●
●●●
●
●●●
●
●
●
●
●
●●
●
●●●
●
●●●
●
●●
●
●●
●
●●●●●
●
●●
●
●●
●
●●●
●
●●
●
●●●
●
●
●
●
●●
●
●●
●
●●
●
●●●●
●
●
●●●
●
●●●●
●
●●●●
●
●●●●●●●●●●
●
●●
●
●●●●●
●
●●●●
●
●●
●●
●
●
●
●
●
●
●
●●
●
●
●
●●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●●
●
●●
●
●
●
●●
●
●
●
●●●
●
●
●
●●●●●
●
●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●
●●●
●
●
●●
●
●
●
●
●●
●●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●
●●
●
●
●
●
●
●●
●
●
●
●
●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●●
●
●●●●
●
●●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●●
●
●●
●
●
●●
●●
●
●
●
●●
●
●
●
●
●
●
●●●●●
●
●●●●
●
●●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●
●
●
●
●●
●
●●●●●●
●
●●●
●
●●●
●●
●●●●
●
●●●
●
●●
●
●●●
●
●
●
●●
●
●●
●
●●
●
●●●
●
●●●
●●
●●●
●●
●
●●●
●
●●●
●
●●●●●
●
●●●
●
●●●
●
●●●
●
●●
●
●
●
●
●●
●
●●
●
●●●
●
●●
●
●●
●
●
●●●●
●
●●
●
●●●●●
●
●●
●
●●●●
●
●●●●
●
●●●●●
●
●
●
●●●●
●
●●●●
●
●●●●●●●
●●●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●●●
●
●●
●
●
●
●●●●
●
●●
●
●
●
●●
●
●●
●
●●●●
●
●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●
●●●●
●
●
●
●
●
●
●
●
●●●
●
●●●●
●●
●
●●●
●
●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●
●●
●
●
●
●●●●
●
●●
●●
●
●
●●
●
●
●
●●
●
●●
●
●
●●
●●
●
●
●
●●
●
●
●
●
●
●●
●
●
●
●●●
●
●●●●●●●
●
●●●●●●●●
●
●●●●●●●
●
●●●●
●
●●●●●
●
●●●●●●
●
●
●●●
●
●●●
●
●●
●
●●●
●
●
●
●●
●
●●●
●
●
●
●●●
●
●
●
●●
●
●●
●
●●●
●
●●
●
●●●
●
●
●
●
●●
●
●●●
●
●●
●
●●●●●
●
●●
●
●●●
●
●●
●
●●●●
●
●●●
●
●●●
●
●●
●
●●●●●●
●
●●●●●●●●●●●
●
●●●●●
●
●●●●●●●
●
●●
●
●
●
●●●●●
●
●●●●
●
●●
●
●●●●●●●●
●
●
●●
●
●●
●
●
●
●●
●
●●
●
●
●
●●●
●
●●
●
●
●
●●
●
●
●
●●●
●
●●
●
●
●
●●
●
●
●
●
●
●
●
●
●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●
●
●●●
●
●●
●
●
●
●●
●●
●
●
●●
●
●●
●●
●
●
●
●
●
●
●
●
●●
●
●●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●
●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●●
●
●●
●
●
●
●●
●●
●●
●
●●
●
●●
●
●
●●●●●●●●●
●
●●●●
●
●●●●●●●●
●
●●●●●
●
●
●
●
●●●●●●
●
●●●●●●●●●●●●●●
●
●●
●
●●
●
●
●
●●
●
●●●●
●
●●●
●●
●●
●
●●●
●
●●
●
●●
●
●
●
●
●
●●●
●
●●
●
●●
●●●
●
●●
●●
●●●●
●
●●●●
●
●●●●
●
●●●
●
●●●●
●
●●●
●
●●
●
●●
●
●●●●●●
●
●●●●●●●●
●
●●
●
●●●●●●
●
●●●
●
●●
●
●●●●●●
●
●●
●
●●●●
●
●●●●●
●
●●
●
●●●
●●
●
●
●
●●
●
●●●
●●
●
●
●●
●
●
●
●●
●
●●●
●
●●
●
●
●
●
●
●●
●
●
●
●
●
●●
●
●
●
●
●
●●
●
●
●●
●
●●●●●●●●
●
●●●●●
●
●
●
●
●●
●
●●
●
●●
●
●
●●
●
●●●●●●
●
●●●●●●●●●
●●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●●
●
●●●
●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●
●
●
●
●●
●●
●
●
●
●
●
●
●●
●
●●
●●
●●
●
●●
●
●●
●
●
●
●●
●●
●●
●
●
●
●●
●
●
●
●
●●
●●
●●●
●
●
●
●●●
●
●
●●●●●●●
●
●●
●
●
●●●●●●●
●
●●●
●
●
●●●●●●●●
●
●●
●
●
●
●
●
●●●
●
●●●
●
●
●
●●
●
●●●
●
●●
●
●
●
●●●
●
●
●
●●●
●
●●
●
●
●
●●
●
●●●
●
●●
●
●
●
●
●
●●
●●
●
●●●●●●●●
●
●●
●
●
●
●●●●●
●
●●●
●
●
●
●●●●●
●
●●●
●
●
●
●●●
●
●●
●
●
●●●●●●
●●
●●●●●
●
●●
●
●●●
●
●●●●●
●
●●●●●
●●
●●●
●
●●●
●
●●●
●
●●●●
●●
●
●
●
●●●●
●
●
●
●●●
●
●
●
●●●
●
●●
●
●●
●
●
●
●●●●
●
●
●
●●
●
●
●
●●●●
●
●
●
●●●●●●●●
●
●●●
●
●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●
●
●
●●
●
●●
●
●●●●
●
●
●
●
●
●●
●●
●
●
●
●
●
●
●
●
●●
●●
●
●
●●●
●●●
●●
●
●
●●
●●
●
●
●
●
●
●●
●●
●
●
●●
●
●●●●●●●●●●●●
●
●●
●
●●
●
●
●●●●
●
●
●●●●●●●●
●
●
●●●●●●●●●●
●
●
●●
●
●●
●●
●●
●
●
●●
●●
●
●
●
●
●
●●
●●
●
●
●●
●
●
●
●●
●
●
●●
●●
●
●
●
●●
●
●●
●●
●
●
●
●●
●
●●●●●●●●
●
●●●●
●
●
●
●●●
●
●●●●●●
●

●
●●●
●
●●●●
●
●●
●
●●●
●
●●●●●●
●
●
●
●●●
●
●●●●
●●
●
●
●●
●
●●●
●
●
●●
●●●●
●
●●●●
●●●
●●●
●
●●●●●●
●●
●●
●●●
●
●
●●
●
●
●
●
●
●●●
●
●
●
●
●
●
●
●
●
●●●
●
●●●
●
●
●
●
●●●
●
●●●●●
●
●●●
●
●●●●
●
●●●●●●
●
●●●
●
●●●●●●●●
●
●●●●●●●
●
●●●●●
●
●●
●
●●●●●●●
●●
●●
●
●
●●●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●●●
●
●
●
●●●
●
●●●
●
●
●
●●●●
●
●
●
●
●
●●●
●
●●●●●
●
●●●●●
●
●●●●●●
●
●
●●
●
●●●●●
●
●●●●
●
●●●●●●●●●●
●
●●●
●
●
●●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●●●
●
●
●
●
●●●
●
●
●
●
●
●●
●●
●
●
●
●
●
●
●●
●
●
●
●
●●●●●●●●●●
●
●●●●●●●●●
●
●
●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●
●
●
●●
●
●
●
●
●●
●●●
●
●
●●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●●
●
●
●●
●
●●
●
●
●●
●●
●●●●●
●
●
●●
●●
●●●●●
●
●
●●●●
●
●●●●●
●
●●
●
●●●●●●
●
●
●●
●
●●●●●
●
●
●
●
●●●
●
●
●
●●
●
●
●
●●●
●
●●●
●
●●
●
●●
●
●
●
●●
●●
●●●
●
●●
●
●●
●●
●●●
●
●
●
●●
●
●
●●●
●
●●●
●
●●●●●
●
●●●●
●
●
●
●
●●●●
●
●●●●●●●
●
●●●●
●
●
●
●●
●●
●
●●●●
●●
●●●●●●●●
●
●●●●
●
●●●●
●●
●●●
●
●●
●
●●
●
●
●
●●
●
●●●●
●
●●●●●
●
●
●
●
●●●
●
●●
●
●●
●
●
●
●
●●
●
●●
●
●●●●●
●
●
●
●●
●
●
●
●
●
●
●●
●
●
●
●●●●●
●
●●
●
●
●●●
●
●●●●●●
●
●●
●
●●●●●●●●
●
●●●●
●
●
●●●
●
●●●●●●●●
●
●●
●
●●●●●●
●●●●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●●
●●●
●
●●
●
●●
●
●●●
●
●●
●
●
●
●●●●
●
●
●
●
●
●●●
●
●●●●
●
●
●
●●
●
●●●●●●●●●
●
●●●●●
●
●
●
●
●
●
●●●●●●●●
●
●●●●●●●●●
●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●
●●
●
●
●
●
●●
●
●
●●
●
●
●
●
●●
●
●
●●
●
●
●●
●
●
●
●
●●●●●●●●●●●
●
●
●
●●●●●●
●
●●●●
●
●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●
●
●
●
●●
●
●
●●
●●●●●
●
●●
●
●●
●
●●
●
●●
●●
●●●●
●
●
●
●
●
●●
●●
●
●●
●
●●
●●
●●
●●
●
●●●●●●
●
●●●●
●
●
●
●●
●
●●●●●●●●●
●
●●●
●
●
●
●
●●●
●
●●●●●●
●
●●●●●●
●
●●●●
●
●●●
●
●●●●
●
●●
●
●
●
●●●●
●
●●●
●
●●
●
●●
●
●●
●●
●●●●
●
●●●
●●●●
●
●●
●
●
●
●
●
●●
●
●●
●
●●●●●●
●
●●●
●
●
●
●
●
●
●●
●
●●●●
●
●●●
●
●●●●●●●●●●●
●
●
●
●●●●●
●
●
●
●●●●●●●
●●
●●●●●
●
●●●
●
●●●●●
●
●
●
●
●●●●●
●
●●
●●●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●●●●
●
●
●
●
●
●
●●
●●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●
●
●●
●
●
●
●●●●●
●
●●
●
●
●●
●
●
●●●●●●●●●
●●
●●●●
●
●●●
●
●●
●
●
●●●
●●●
●●
●●
●●
●●●
●●
●●
●
●
●
●●●
●●
●
●
●
●
●
●
●●
●
●
●
●●
●●●
●
●
●
●
●
●
●
●

●
●
●
●
●●
●●
●
●●●●●●●●
●
●●
●
●●●●●●●●●●●●●
●
●
●
●●●●●●
●
●
●
●●
●
●
●●●●
●●
●●
●
●●
●
●
●●
●●
●
●●
●
●
●
●●
●
●
●
●●
●●●
●●
●
●●
●
●
●●
●●
●
●●
●
●
●●
●●
●●
●
●●
●
●
●●●
●
●●●●
●
●●●
●
●●●●●●●●●●
●
●
●
●●●●
●
●●●●●●●●●●
●●
●
●●●
●
●●●
●●
●
●
●●●●●●
●
●●●
●
●
●
●●
●
●●●●●●●●
●●
●●
●
●●
●
●
●●
●●●
●
●●
●
●
●●
●
●
●
●●
●
●
●
●
●●●●●●●●
●
●●
●
●●●●
●
●
●
●●●
●
●
●
●
●●
●
●●●●●●●
●●
●
●●
●●●
●
●●●
●●
●●●●●
●
●●
●
●●
●
●●●●
●●
●●●
●
●●●
●
●
●
●●●●●●
●
●●●●
●
●
●●●●
●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●●●●
●
●●
●
●
●
●●●
●●
●
●
●●●●
●
●●
●
●
●
●
●
●●●●●●●●
●

●
●
●●●●●
●
●●●●●●●●
●
●●●●●●●●
●
●
●
●
●
●
●
●●
●●●
●
●●
●
●
●
●
●
●
●
●
●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●●
●
●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●
●
●
●●
●
●●
●●
●●
●●
●
●
●
●●
●
●
●●
●
●●
●
●●
●●
●●
●●●
●●
●
●
●
●
●●
●
●
●
●
●●
●●●
●
●●●●●●
●
●●●
●●
●●
●
●
●
●●●●●
●
●
●
●●●●●●●●●●●
●
●●
●
●
●
●●●●●●
●
●
●●
●
●●
●●
●
●
●
●
●●●
●
●●●
●
●●
●
●
●●
●●
●
●●
●●
●●
●
●●●
●●●
●●
●
●●●
●
●●●●
●●●●●●●●●
●
●
●
●
●●●●
●
●●
●
●
●
●
●●●●●●●
●
●●●
●
●
●
●
●
●
●
●
●●
●
●
●●●
●
●
●●
●●●
●
●●
●●
●●●
●
●●●
●●
●●
●
●●●
●●
●●●●●●
●●
●●●
●
●●●
●
●●●●●●●
●
●●
●
●●
●
●
●
●
●
●
●●●
●
●●●
●
●●
●●●
●
●
●
●
●●
●
●●
●
●
●
●●
●
●
●
●
●●
●
●●
●
●
●●●●●●●
●●
●
●
●
●●●
●
●●●
●
●●●
●●
●●●●●●
●
●●●●●●●
●
●●
●
●
●●●
●
●●●●●
●
●
●
●
●●
●●
●
●
●
●
●●
●●
●
●
●
●
●●
●●
●
●
●

●
●
●●●
●
●
●●●
●●
●●
●●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●
●
●
●
●
●●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●●●
●●●
●
●
●●
●
●
●
●
●●●
●●
●●
●●
●
●●
●
●
●●
●
●
●●●●●●
●
●●
●
●
●
●
●
●●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●
●
●●●●
●
●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●●
●
●●
●
●
●
●●
●●●
●
●
●●
●
●
●●●
●
●
●●●●
●
●●
●
●●●●
●
●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●
●
●
●●
●
●
●●
●
●
●●●
●●●
●●●●
●
●●
●
●
●●
●
●
●●●●
●●
●
●
●
●●
●
●
●
●●
●
●
●
●
●●
●
●
●
●●●
●
●
●
●
●
●
●●●●●●
●
●
●
●●
●
●
●
●●●●●●
●
●●
●
●●●●●●●●
●
●
●
●
●●
●
●
●●●●●●
●
●
●
●●
●
●●
●
●●●●●
●
●
●●
●
●
●●
●●
●
●●●●●●
●
●●●
●●
●
●
●
●●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●●●
●
●
●●●●●
●●
●●●
●
●
●
●
●
●●●●
●●
●●
●
●
●●●
●
●●
●
●●●●●
●
●
●
●●
●
●
●
●●
●●●●●●
●
●●●●●●●
●
●
●●●●
●
●
●
●●●●

5000 10000 15000
Interaction history length

T
im

e
[u

s]

Figure 6.6: Execution times for checking “A → XB” with different history lengths.

79

Chapter 7

Conclusion and Discussion

This chapter discusses a few aspects of the tagging mechanism that we encountered during our
investigation of the tagging mechanism. The chapter ends with a conclusion and discusses the
future work.

7.1 Discussion

Types of Use-Cases As our investigation of tagging progressed, and as different use cases
were implemented, we were able to identify different “levels” of tag integration in programs.
Depending on the use case, the developer’s use of the tagging mechanism can range from what
we call “application-agnostic” to “deeply integrated”. We classify these levels of integration as
follows, ranging from least to most integrated:

1. Application-Agnostic: This level of integration occurs when the system designer uses tags
without modifying any source code and is attempting identify systemwide interactions with
a low level of detail. An example of this would be tagging a thread to identify the message
chains that include the thread.

2. Source Code Agnostic: when the system designer targets specific interactions, but still does
so without modifying the source code. The mandatory use case in Chapter 3 is an example
of this.

3. Integrated: This term describes the level of integration that occurs when the system de-
signer targets specific interactions but does so without modifying the source code The
Intersert use case in Chapter 4 is an example of this mechanism.

80

4. Deeply Integrated: This term is used when tags are integral to the functionality of the
system and their removal or disabling would require the reimplementation of at least part
of the application.

Part of our future work will include exploring more use cases at these different levels of inte-
gration and investigating what new interactions are enabled by different propagation mechanics
and by tagging more elements of the operating system.

Tags vs. Raw Message Logging Logging of message passing in microkernels is either of
standard functionality (as is the case with Neutrino) or is easily implementable. The tagging
mechanism differs in three fundamental ways from simply logging every message pass. First, the
mechanism allows tags to be created in a way that they affect only a subset of all messages, effec-
tively filtering and differentiating the particular message flow in which the developer is interested.
For example, two different tags can be created in either outcome of an if branch and therefore
differentiate between two types of messages that would appear identical to a raw logger.

Second, tags can be easily read and acted on by applications at run time, which is not the
case with an eagle-eye” view such as the one provided by the Neutrino message logger. Without
tagging, a thread can only know the sender of the messages it receives, whereas tagging enables
it to construct a longer history of the message flow that lead to it and to receive tag information
from several hops away.

Finally, the propagation of tags cannot be contained without affecting the functionality of the
system. The same cannot be said if one tries to limit message passing in any way.

Ease of Implementation Our implementation of tagging on the Neutrino operating system
is entirely modular and consists of relatively few lines of code. The non-invasiveness and size,
of the code, are valuable features because they limit the likeliness of inserting new bugs into the
kernel and facilitate recertification of the tagging-compatible kernel if such a need arises. We
believe that these characteristics would carry over to other microkernels as well.

Applicability to Non-Microkernel Systems Message tagging as a concept is not nec-
essarily tied to microkernel operating systems. Equivalent functionality could conceivably be
implemented in monolithic systems through a couple of ways. One would be adding tag passing
to every method call during the compilation process: the preprocessor can perform code insertion
before each call, or tags could be handled by modified calling conventions in the compiler itself.
Another way would be through aspect-oriented programming [73], where tagging itself would be
an aspect. However, both of these approaches require access to the source code that is meant to
use tagging.

81

Message tagging as a concept is not necessarily tied to microkernel operating systems. Equiva-
lent functionality could conceivably be implemented in monolithic systems through a few different
approaches. One approach would be to add tag passing to every method call during the com-
pilation process: the preprocessor could perform code insertion before each call or tags could
be handled by modified calling conventions in the compiler itself. Another approach would be
through the use of aspect-oriented programming [73], in which tagging itself would be a compo-
nent. However, both of these approaches require access to the source code that is meant to use
tagging.

Kernel Space vs User Space We believe that tagging is best transparently implemented
in the operating system. For this reason, we intercept the message-passing functionality of the
QNX Neutrino kernel to propagate tags across address space boundaries (or even network nodes).
Normal POSIX applications that are ignorant of tags will normally receive and propagate tags. If
a simple program that reads data from the network and writes it to disk is to implement tagging
in the user space, it must be programmed as follows:

1 int main () {
initialize_tags () ;

3

send_tag (filesystem) ;
5 file = open ("filename") ;

7 send_tag (network) ;
socket = create () ;

9

send_tag (network) ;
11 listen (socket) ;

13 send_tag (network) ;
accept (socket) ;

15

send_tag (network) ;
17 while (! socket . empty ()) {

send_tag (network) ;
19 read (socket) ;

21 send_tag (filesystem) ;
write (file) ;

23

send_tag (network) ;
25 }

27 send_tag (network) ;
close (socket) ;

29

send_tag (filesystem) ;
31 close (file) ;

}

82

Listing 7.1: Tagging in user space

Implementation of this program assumes the following: (1) the networking stack sends tag
information to the application before each of its messages, (2) the filesystem supports tagging
passes along the tags, and (3) the semantics of the tag vector are uniform across all system
components. This implementation of tagging requires the modification of the source code of all
of the participating components. This way of implementing tagging also requires careful tracking
of every message pass to avoid bugs that may arise from omission. Performing all tagging in the
kernel as we propose solves both of these problems and is free of assumptions

The implementation of tagging inside the kernel also allows us to enforce access control on
tags because such control may be useful, depending on the use case.

Security Model The tagging mechanism provides various options to modify the behavior of
the tag propagation. The user can modify the tag features either through the command line
options or through APIs provided by the tagging library. The API calls restrict unauthenticated
modification by permitting only the respective threads to change the thread level features such as
the tag terminator. The security model for the other features, such as TTL, can be implemented
only by allowing the tag owner to modify such features. In addition to these restrictions, we can
restrict the command line access based on the current user privileges in the system.

7.2 Conclusion

This thesis introduced Tags, a mechanism to augment the messages of microkernel-based oper-
ating systems. We showed that tagging is useful in a number of contexts and situations ranging
from mandatory security to the verification of components’ interaction.

We presented the basic tag propagation mechanics and measured their impact on the system
using several standard benchmarks. The measurements show that tagging has a negligible impact
on the system performance which demonstrates its adoptability for commercial applications.

7.3 Future Work

Tagging has proved to be a promising and versatile mechanism, and many possible extensions to
the current mechanism can be explored.

83

The tagging infrastructure currently supports file tags, shared-memory tags, and messages
tags. Tagging devices and possibly other operating system elements, should make tagging more
expressive and allow an entire new class of additional use cases.

Information flow control is an important topic for the security community. An extension to the
tagging infrastructure can aid in the development of information flow control for the microkernels.
Tagging can exploit well-defined IPC, provided by microkernels, to track information among
different components of the system.

A tagging-aware scheduler will be an interesting extension of the tagging infrastructure. Pri-
ority can be associated with the tag. The priority will propagate with the messages, as the tag
propagates. This priority propagation will add smartness to the scheduler that will be useful for
partitioning the CPU.

The propagation mechanics have been deliberately kept simple for reasons of performance
and usability reasons: however, some use cases would benefit from different mechanics, such as
propagate-on-reply, in addition to or in place of propagate-on-send. We also plan to investigate
the passing of data fields along with tags, to add to the expressiveness of tags. The main obstacle
in this case would be the added overhead of copying data with every message pass.

Extraction of component interaction patterns can help in designing hardware-software models
and simulators. The interaction information can be used to understand, design and optimize
the application-specific simulator. Providing component interaction information, to design and
optimize the simulator, can be an interesting future application for tagging.

Finally, the use of microkernels enables straightforward tagging of messages, but we believe
that through a mix of static analysis and dynamic tracking one could achieve similar if not
equivalent functionality on monolithic kernels. The issues would be defining the edges between
taggable entities and how to track all of the interactions between them without incurring excessive
overhead.

84

APPENDICES

85

Appendix A

Full libMicro Experimental Data

libMicro consists of a set of system call microbenchmarks. It is internally structured in a pair
of nested loops. Since the execution time of an individual system call is generally too short to
measure precisely, the inner loop executes each system call multiple times. A full execution of
the inner loop is called a sample. The outer loop, therefore, controls how many samples will be
collected.

The number of iterations of both the inner and the outer loops are configurable parame-
ters. Our choice of parameters focused on gathering reliable data, with variance estimates that
permitted a fair comparison between the original and the tag-based kernels. Wherever the de-
fault parameters resulted in data too variable to analyze, we raised the inner loop count until
acceptable variances were achieved.

Table A.1 shows both iteration numbers: the number of outer loop iterations is listed in
the “Samples” column, and the inner loop iterations is listed in the “Calls” column. The total
number of individual calls to each system call is, therefore, Samples × Calls.

The number of outer loop iterations varies between microbenchmarks because libMicro scales
the outer loop according to execution times of the inner loop. It can be seen in the full table
that the difference in number of Samples between the original and the tag-based kernels is small,
and does not affect statistical analysis in a detrimental way. Nevertheless, to compensate for the
difference in sample sizes, we use Welch’s t-tests to compare the means.

It should be noted that a small number of benchmarks yielded too large a variance to analyze
properly. Since libMicro performs outlier checks internally and does not expose accurate numbers
in these cases, these benchmarks were omitted from the analysis. This does not affect the results
presented, as the conclusion from the analysis is still valid given the benchmarks that presented
reliable results.

86

Since libMicro is composed of an extensive number of microbenchmarks, the full data set is
too large to include in the main paper. Therefore, the full data set is presented in Table A.1.
The mean, standard deviation and 95% confidence interval values are in microseconds.

87

O
ri
g
in
a
l

in
te

rs
er

t(
)-
k
e
rn

e
l

N
a
m
e

S
a
m
p
le
s

C
a
ll
s

M
e
a
n

S
td

.
D
e
v
.

9
5
%

C
.I
.

S
a
m
p
le
s

C
a
ll
s

M
e
a
n

S
td

.
D
e
v
.

9
5
%

C
.I
.

b
in

d
10

2
5
0
0

5
.3

5
3
4

0
.9

2
4
3
5

0
.2

1
2
8
8

1
0
2

5
0
0

5
.4

5
7
3
5

0
.8

7
5
7
8

0
.2

0
1
7

c
co

n
d

1
91

0
50

0
0
0

1
.4

5
9
7
8

1
e-

0
5

0
1
0
0
1

5
0
0
0
0

1
.4

6
5
9
9

0
.0

0
9
5
1

0
.0

0
0
7

c
fc

n
tl

1
10

02
5
0

3
4
.6

1
0
6
4

8
.7

2
5
5

0
.6

4
1
1
6

1
0
0
2

5
0

34
.9

8
9
1
1

8
.5

1
4
4
7

0
.6

2
5
6
5

c
fl

o
ck

99
9

50
0
0

3
4
.9

8
0
9
8

0
.1

1
8
2
1

0
.0

0
8
7

1
0
0
1

5
0
0
0

3
5
.1

7
1
9
2

0
.1

0
6
1
4

0
.0

0
7
8

c
lo

ck
f

1
10

02
5
0

3
5
.5

1
4
7
8

8
.1

8
5
3
7

0
.6

0
1
4
7

1
0
0
2

5
0

3
5
.8

3
0
2

7
.9

6
6
7
2

0
.5

8
5
4

c
m

u
te

x
1

10
02

50
0
0
0

0
.3

1
3
5

0
.0

0
9
2
2

0
.0

0
0
6
8

1
0
0
2

5
0
0
0
0

0
.3

1
3
7
5

0
.0

0
9
1
2

0
.0

0
0
6
7

cl
os

e
b

ad
10

02
50

0
0

0
.8

9
5
5
4

0
.1

0
0
0
3

0
.0

0
7
3
5

1
0
0
2

5
0
0
0

0
.8

6
9
8
9

0
.0

9
7
2
6

0
.0

0
7
1
5

cl
os

e
tm

p
10

02
50

0
0

8
.9

7
2
3
4

0
.0

6
6
1
1

0
.0

0
4
8
6

1
0
0
2

5
0
0
0

9
.1

5
2
9
7

0
.0

8
2
4
1

0
.0

0
6
0
6

cl
os

e
u

sr
93

5
50

0
0

8
.9

9
8
6
3

8
e-

0
5

1
e-

0
5

9
9
9

5
0
0
0

9
.1

7
2
6
8

0
.0

6
5
7
4

0
.0

0
4
8
4

cl
os

e
ze

ro
10

02
50

0
0

3
.3

4
2
7
1

0
.0

9
1
4
7

0
.0

0
6
7
2

1
0
0
2

5
0
0
0

3
.3

5
4
6
9

0
.0

8
6
2
1

0
.0

0
6
3
4

co
n

n
ec

ti
on

10
2

5
0
0

1
0
6
.2

5
4
5
8

3
0
.3

8
7
4
9

6
.9

9
8
4
9

1
0
2

5
0
0

1
07

.0
6
7
0
8

3
0
.3

5
3
8
9

6
.9

9
0
7
5

d
u

p
96

9
5
0
0

3
.9

9
9
3
6

0
.0

0
0
9
2

7
e-

0
5

9
8
9

5
0
0

3
.9

9
9
3
5

0
.0

0
0
9
2

7
e-

0
5

ex
it

10
20

1
1
0

2
6
8
.3

7
7
8
9

4
5
.8

6
5
3
7

7
.5

2
4
8
3

2
0
2

1
0

2
69

.5
9
0
5
8

4
7
.0

3
5
4
1

7
.6

9
7
6
6

ex
it

10
0

19
7

1
0
0

2
8
7
.6

0
3
3
2

7
.7

7
7
5
5

1
.2

8
8
9

1
9
7

1
0
0

2
84

.6
0
8
9
8

8
.7

3
7
9
1

1
.4

4
8
0
5

ex
it

10
00

47
10

0
0

3
4
6
.1

7
4
7

4
.2

2
4
5
9

1
.4

3
3
3
3

4
3

1
0
0
0

3
4
8
.3

9
7
0
8

4
.6

8
9
3
1

1
.6

6
3
3
5

ex
it

10
n

ol
ib

c
20

1
1
0

2
5
8
.3

8
2
1
1

4
9
.8

5
4
7
7

8
.1

7
9
3
4

2
0
1

1
0

2
50

.4
8
3
1
6

5
0
.0

1
1
5
8

8
.2

0
5
0
7

ex
p

10
01

50
0
0
0

0
.1

4
2
5
3

0
.0

0
7
5
5

0
.0

0
0
5
5

1
0
0
1

5
0
0
0
0

0
.1

4
2
4
6

0
.0

0
7
4
9

0
.0

0
0
5
5

fc
n
tl

n
d

el
ay

10
02

50
0
0

4
.8

2
1
5
5

0
.0

8
8
1
2

0
.0

0
6
4
8

1
0
0
2

5
0
0
0

4
.8

9
7
8
8

0
.0

9
9
9
6

0
.0

0
7
3
5

fc
n
tl

tm
p

10
01

50
0
0

6
.9

5
5
1
5

0
.0

8
1
8
6

0
.0

0
6
0
2

9
3
7

5
0
0
0

6
.9

9
8
9
3

9
e-

0
5

1
e-

0
5

fc
n
tl

u
sr

99
9

50
0
0

6
.9

7
0
9
1

0
.0

6
7
9
7

0
.0

0
5

9
4
4

5
0
0
0

6
.9

9
8
9
3

9
e-

0
5

1
e-

0
5

fi
le

lo
ck

10
01

50
0
0

1
6
.9

6
1

0
.0

8
6
0
4

0
.0

0
6
3
3

1
0
0
1

5
0
0
0

1
7
.0

3
8
6
7

0
.0

9
4
2
3

0
.0

0
6
9
3

fo
rk

10
94

9
5
0
0

7
9
0
.6

6
3
3
3

2
.9

8
9
0
3

0
.2

2
5
6
9

9
6
1

5
0
0

7
95

.4
0
0
9
8

2
.8

8
8
8

0
.2

1
6
7
5

fo
rk

10
0

98
1
0
0

7
7
6
.7

6
3
5
5

5
.0

8
5
4
7

1
.1

9
4
8
9

1
0
1

1
0
0

7
79

.6
7
1
0
5

3
.7

2
0
2
7

0
.8

6
1
0
4

fo
rk

10
00

50
10

0
0

8
1
3
.5

5
7
1
1

2
.3

6
4
1
2

0
.7

7
7
6
7

5
0

1
0
0
0

8
1
6
.2

3
7
6
8

3
.0

7
8
7
5

1
.0

1
2
7
4

ge
te

n
v

10
02

50
0
0

1
.1

4
5
7
7

0
.0

8
7
3
7

0
.0

0
6
4
2

1
0
0
2

5
0
0
0

1
.1

4
4
9
3

0
.0

8
7
8
1

0
.0

0
6
4
5

ge
te

n
v
T

2
10

02
50

0
0

6
.4

9
2
6

0
.6

1
7
0
6

0
.0

4
5
3
4

1
0
0
2

5
0
0
0

6
.5

2
6
0
3

0
.5

6
4
8
5

0
.0

4
1
5
1

ge
tp

id
10

00
2

50
00

0
0
0

0
.0

0
6
2
6

0
.0

0
0
1

0
1
0
0
0
2

5
0
0
0
0
0
0

0
.0

0
6
2
6

0
.0

0
0
1

0
ge

tr
u

sa
ge

99
6

50
0
0
0

3
.8

1
7
7
1

0
.0

1
2
2
3

0
.0

0
0
9

1
0
0
1

5
0
0
0
0

3
.8

8
4
2
7

0
.0

1
1
6
4

0
.0

0
0
8
6

ge
ts

o
ck

n
am

e
10

02
50

0
0
0

5
.4

6
6
1
9

0
.0

1
7
1
3

0
.0

0
1
2
6

1
0
0
2

5
0
0
0
0

5
.5

4
4
0
8

0
.0

1
2
0
2

0
.0

0
0
8
8

ge
tt

im
eo

fd
ay

10
00

2
50

0
0
0

0
.0

9
2
5
3

0
.0

0
9
5
6

0
.0

0
0
2
2

1
0
0
0
2

5
0
0
0
0

0
.0

9
2
5
6

0
.0

0
9
5
6

0
.0

0
0
2
2

is
at

ty
n

o
10

01
5
0
0

2
3
.3

9
6
3
7

0
.9

3
3
4
6

0
.0

6
8
6
3

1
0
0
0

5
0
0

22
.9

5
2
2
3

1
.0

3
1
5
8

0
.0

7
5
8
8

is
at

ty
ye

s
10

02
5
0
0

5
.5

3
4
3
4

0
.8

2
9
5
1

0
.0

6
0
9
5

1
0
0
2

5
0
0

5
.6

6
6
8
1

0
.7

2
9
1
4

0
.0

5
3
5
8

li
st

en
10

02
5
0
0

4
.5

4
6
0
5

0
.9

2
5
6

0
.0

6
8
0
1

1
0
0
2

5
0
0

4
.6

4
0
6
8

0
.9

5
7
6
7

0
.0

7
0
3
7

lo
ca

lt
im

e
r

90
1

5
0
0

7
.9

9
8
7
3

0
.0

0
0
9
8

8
e-

0
5

1
0
0
2

5
0
0

7
.5

0
6
6
8

0
.8

4
6
4
6

0
.0

6
2
2

lo
g

10
00

1
50

0
0
0

0
.0

9
3
2
8

0
.0

0
9
3
2

0
.0

0
0
2
2

1
0
0
0
1

5
0
0
0
0

0
.0

9
3
3
7

0
.0

0
9
2
8

0
.0

0
0
2
2

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

88

O
ri
g
in
a
l

T
a
g
g
in
g
-k
e
rn

e
l

N
a
m
e

S
a
m
p
le
s

C
a
ll
s

M
e
a
n

S
td

.
D
e
v
.

9
5
%

C
.I
.

S
a
m
p
le
s

C
a
ll
s

M
e
a
n

S
td

.
D
e
v
.

9
5
%

C
.I
.

lo
n

g
jm

p
88

0
50

0
0
0

0
.3

7
9
9
4

1
e-

0
5

0
1
0
0
2

5
0
0
0
0

0
.3

8
8
4
8

0
.0

0
9
9
6

0
.0

0
0
7
3

lr
an

d
48

93
7

50
0
0
0

0
.0

2
1
e-

0
5

0
9
3
5

5
0
0
0
0

0
.0

2
1
e-

0
5

0
ls

ee
k

t8
k

10
01

50
0
0

6
.7

5
2
4
5

0
.0

8
3
3
3

0
.0

0
6
1
3

9
2
5

5
0
0
0

6
.7

9
8
9
6

7
e-

0
5

1
e-

0
5

ls
ee

k
u

8k
10

02
5
0
0

6
.6

8
0
3
1

0
.9

6
8
1
9

0
.0

7
1
1
4

1
0
0
2

5
0
0

6
.7

1
8
1
6

0
.9

7
6
8
3

0
.0

7
1
7
8

m
al

lo
cT

2
10

99
9

5
0
0

2
.2

5
8
8
8

0
.1

3
7
0
1

0
.0

1
0
0
8

9
9
7

5
0
0

2
.2

0
3
0
4

0
.1

3
2
4
5

0
.0

0
9
7
6

m
al

lo
cT

2
10

0
99

2
5
0
0

2
.3

1
8
9
7

0
.1

2
5
4
8

0
.0

0
9
2
7

9
9
7

5
0
0

2
.2

6
5
7
6

0
.1

2
5
5
6

0
.0

0
9
2
5

m
al

lo
cT

2
10

0k
99

6
50

0
0

2
3
.9

0
1
0
6

0
.3

7
4
9
9

0
.0

2
7
6
4

9
9
5

5
0
0
0

2
3
.6

7
0
2
6

0
.3

6
8
3
4

0
.0

2
7
1
6

m
al

lo
cT

2
10

k
10

02
5
0

3
.3

6
4
3
3

0
.9

4
2
0
5

0
.0

6
9
2
2

1
0
0
2

5
0

3
.4

5
8
9
6

0
.9

0
0
7
8

0
.0

6
6
1
9

m
al

lo
cT

2
1k

10
00

5
0
0

3
.1

5
5
9
4

0
.1

4
3
9
1

0
.0

1
0
5
9

9
9
4

5
0
0

3
.1

2
7
9
1

0
.1

3
2
5
9

0
.0

0
9
7
8

m
al

lo
c

10
10

02
50

0
0

0
.2

5
2
1
4

0
.0

0
9
6
7

0
.0

0
0
7
1

1
0
0
2

5
0
0
0

0
.2

5
3
2
1

0
.0

0
9
3
4

0
.0

0
0
6
9

m
al

lo
c

10
0

10
02

50
0
0

0
.2

8
4
4
1

0
.0

0
8
8

0
.0

0
0
6
5

1
0
0
2

5
0
0
0

0
.2

8
4
3
9

0
.0

0
8
7
9

0
.0

0
0
6
5

m
al

lo
c

10
0k

98
6

5
0
0

0
.3

9
9
9
4

9
e-

0
5

1
e-

0
5

9
7
8

5
0
0

0
.3

9
9
9
4

9
e-

0
5

1
e-

0
5

m
al

lo
c

10
k

10
02

50
0
0

0
.4

5
0
1
1

0
.0

0
9
9
8

0
.0

0
0
7
3

1
0
0
2

5
0
0
0

0
.4

4
4
6
2

0
.0

0
8
9
2

0
.0

0
0
6
6

m
al

lo
c

1k
96

7
50

0
0

0
.3

7
9
9
4

1
e-

0
5

0
1
0
0
1

5
0
0
0

0
.3

7
7
1
2

0
.0

0
6
8
1

0
.0

0
0
5

m
em

cp
y

10
94

6
50

00
0
0

0
.0

3
3
9
9

0
0

9
5
6

5
0
0
0
0
0

0
.0

3
3
9
9

0
0

m
em

cp
y

10
k

10
02

50
0
0

1
.1

3
4
4
1

0
.0

9
2
5
6

0
.0

0
6
8

1
0
0
2

5
0
0
0

1
.1

3
2
1

0
.0

9
3
4
3

0
.0

0
6
8
7

m
em

cp
y

10
m

10
01

5
1
7
7
0
8
.4

6
0
2
1

9
8
.7

9
6
5
4

7
.2

6
3
3
1

1
0
0
1

5
1
7
7
0
5
.7

2
4

9
9
.1

7
1
2
9

7
.2

9
0
8
6

m
em

cp
y

1k
10

02
50

0
0
0

0
.1

5
5
2
4

0
.0

0
8
3
5

0
.0

0
0
6
1

1
0
0
2

5
0
0
0
0

0
.1

5
5
4
8

0
.0

0
8
2

0
.0

0
0
6

m
em

cp
y

1m
10

02
5
0
0

1
7
0
2
.7

9
2
6

1
.8

2
1
3
5

0
.1

3
3
8
3

1
0
0
2

5
0
0

1
7
04

.3
9
0
6
9

1
.8

0
4
5
3

0
.1

3
2
6

m
em

ra
n

d
20

2
10

00
0
0

0
.1

2
0
6
1

0
.0

0
3
1
8

0
.0

0
0
5
2

2
0
2

1
0
0
0
0
0

0
.1

2
0
6
1

0
.0

0
3
1
8

0
.0

0
0
5
2

m
em

se
tP

2
10

m
99

6
5

2
1
8
6
0
.7

3
6
2
6

1
1
1
.4

8
4
7
6

8
.2

1
6
6
6

9
9
4

5
2
1
8
41

.1
7
1
0
8

1
1
2
.4

4
2
1
3

8
.2

9
5
5
6

m
em

se
t

10
10

02
50

00
0
0

0
.0

1
2
4
8

0
.0

0
0
9

7
e-

0
5

1
0
0
2

5
0
0
0
0
0

0
.0

1
2
5
3

0
.0

0
0
9
2

7
e-

0
5

m
em

se
t

10
k

99
6

50
0
0

1
.6

2
3
0
1

0
.0

7
3
4
7

0
.0

0
5
4
1

1
0
0
2

5
0
0
0

1
.6

2
3
5
1

0
.0

7
4
0
2

0
.0

0
5
4
4

m
em

se
t

10
m

10
02

5
1
0
7
3
1
.1

7
4
2
4

5
4
.5

6
7
7
7

4
.0

0
9
7

1
0
0
2

5
1
0
7
06

.8
8
7
3
8

4
6
.9

3
8
8
7

3
.4

4
9
1
2

m
em

se
t

1k
97

0
50

0
0
0

0
.1

8
4
5
5

0
.0

0
8
8
6

0
.0

0
0
6
6

1
0
0
1

5
0
0
0
0

0
.1

8
4
9

0
.0

0
9
0
3

0
.0

0
0
6
6

m
em

se
t

1m
99

6
5
0
0

2
0
1
.3

9
2
2
1

1
.0

9
6
2
9

0
.0

8
0
8

9
9
6

5
0
0

2
00

.3
6
2
7
5

1
.2

2
4
6
4

0
.0

9
0
2
6

m
em

se
t

25
6

94
7

50
00

0
0

0
.0

6
3
0
2

0
.0

0
1
1
4

9
e-

0
5

9
2
2

5
0
0
0
0
0

0
.0

6
3
0
5

0
.0

0
1
1
8

9
e-

0
5

m
em

se
t

25
6

u
97

1
50

0
0
0

0
.0

6
5
6
1

0
.0

0
9
3
1

0
.0

0
0
7

1
0
0
2

5
0
0
0
0

0
.0

6
5
4
4

0
.0

0
9
2
5

0
.0

0
0
6
8

m
em

se
t

4k
10

02
50

0
0

0
.6

6
0
2
5

0
.0

9
4
5
9

0
.0

0
6
9
5

9
9
6

5
0
0
0

0
.6

5
9
9
4

0
.0

9
4
4
5

0
.0

0
6
9
6

m
em

se
t

4k
u

c
90

9
50

0
0

4
.1

9
9
3
6

8
e-

0
5

1
e-

0
5

9
1
1

5
0
0
0

4
.1

9
9
3
6

8
e-

0
5

1
e-

0
5

m
k
ti

m
e

10
02

5
0
0

8
.4

1
0
8
4

0
.8

6
2
2
5

0
.0

6
3
3
6

1
0
0
2

5
0
0

8
.1

9
2
2

0
.6

9
9
7
8

0
.0

5
1
4
2

m
k
ti

m
eT

2
10

02
5
0
0

2
7
.5

5
8
3
6

0
.8

4
2
0
3

0
.0

6
1
8
7

1
0
0
1

5
0
0

28
.8

4
1
9
1

1
.0

0
7
7
8

0
.0

7
4
0
9

m
u

te
x

T
2

10
02

50
0
0
0

0
.3

7
7
2
1

0
.0

0
9

0
.0

0
0
6
6

1
0
0
2

5
0
0
0
0

0
.3

5
5
2
8

0
.0

0
9

0
.0

0
0
6
6

m
u

te
x

m
t

10
02

50
0
0
0

0
.1

5
0
5
6

0
.0

0
9
9
5

0
.0

0
0
7
3

1
0
0
2

5
0
0
0
0

0
.1

4
8
6
4

0
.0

0
9
9
7

0
.0

0
0
7
3

m
u

te
x

st
10

02
50

0
0
0

0
.1

5
0
6
2

0
.0

0
9
9
4

0
.0

0
0
7
3

1
0
0
2

5
0
0
0
0

0
.1

4
8
7
3

0
.0

0
9
9
8

0
.0

0
0
7
3

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

89

O
ri
g
in
a
l

T
a
g
g
in
g
-k
e
rn

e
l

N
a
m
e

S
a
m
p
le
s

C
a
ll
s

M
e
a
n

S
td

.
D
e
v
.

9
5
%

C
.I
.

S
a
m
p
le
s

C
a
ll
s

M
e
a
n

S
td

.
D
e
v
.

9
5
%

C
.I
.

op
en

tm
p

10
01

5
0
0

2
7
.1

0
1
1
3

0
.9

8
8
9
1

0
.0

7
2
7

1
0
0
1

5
0
0

27
.5

7
0
5
5

0
.8

0
9
9
1

0
.0

5
9
5
4

op
en

u
sr

10
02

5
0

2
4
.5

3
8
4

8
.8

4
5
4
3

0
.6

4
9
9
7

1
0
0
2

5
0

25
.3

5
8
7
2

9
.2

1
5
0
5

0
.6

7
7
1
3

op
en

ze
ro

89
4

10
0
0

1
3
.9

9
7
8
7

0
.0

0
0
3
3

3
e-

0
5

1
0
0
1

1
0
0
0

1
5
.1

4
3
9
9

0
.3

9
2
2
8

0
.0

2
8
8
4

p
ol

l
10

10
02

5
0
0

1
0
.1

2
4
6
2

0
.6

2
7
9
7

0
.0

4
6
1
4

1
0
0
2

5
0
0

10
.1

0
7
8
1

0
.6

0
7
5
8

0
.0

4
4
6
5

p
ol

l
10

0
10

02
5
0
0

5
5
.3

8
5
8
6

1
.1

7
3
9

0
.0

8
6
2
6

1
0
0
2

5
0
0

55
.2

7
4
4
5

1
.1

8
9
2
8

0
.0

8
7
3
9

p
ol

l
10

00
98

1
5
0

5
9
4
.7

5
3
8
3

1
0
.8

2
5
1
3

0
.8

0
3
9
1

9
3
3

5
0

6
01

.1
0
4
7
2

6
.1

8
8
8
8

0
.4

7
1
2
8

p
ol

l
w

10
10

02
5
0
0

1
0
.1

6
6
6
9

0
.6

7
4
4
4

0
.0

4
9
5
6

1
0
0
2

5
0
0

10
.1

4
1
4
4

0
.6

4
7
2
7

0
.0

4
7
5
6

p
ol

l
w

10
0

10
02

5
0
0

5
5
.4

2
3
7
2

0
.8

9
1
1
2

0
.0

6
5
4
8

1
0
0
2

5
0
0

55
.4

6
1
5
7

0
.8

7
1
4
9

0
.0

6
4
0
4

p
ol

l
w

10
00

10
02

5
0

5
7
4
.8

6
4
8
4

8
.5

7
3
8
1

0
.6

3
0
0
1

1
0
0
2

5
0

5
76

.0
8
4
4
4

7
.7

1
3
5
5

0
.5

6
6
8

p
th

re
ad

12
8

10
2

1
2
8

2
6
.3

6
3
2

3
.8

6
3
3
4

0
.8

8
9
7
6

1
0
2

1
2
8

2
7
.2

5
8
3

3
.9

2
2
2
1

0
.9

0
3
3
2

p
th

re
ad

32
10

02
2
5
0

2
9
.6

9
4
7
5

1
.9

9
2
3
1

0
.1

4
6
4

1
0
0
2

2
5
0

30
.0

3
1
1
4

1
.9

9
6
0
9

0
.1

4
6
6
8

p
th

re
ad

51
2

52
5
1
2

3
5
.2

3
0
3
1

0
.7

9
8
2
2

0
.2

5
7
4
7

4
8

5
1
2

35
.1

5
0
6
9

0
.0

0
0
8

0
.0

0
0
2
7

p
th

re
ad

8
10

00
5
0
0

3
4
.4

7
8
8
9

0
.9

0
2
7
6

0
.0

6
6
4

9
9
9

5
0
0

34
.7

7
8
5
6

0
.9

8
8
2
8

0
.0

7
2
7
3

re
ad

t1
00

k
10

01
5
0
0

1
6
.3

4
0
6
4

0
.8

2
0
1
9

0
.0

6
0
3

1
0
0
2

5
0
0

17
.1

3
7
2
2

0
.9

8
3
3
1

0
.0

7
2
2
6

re
ad

t1
0k

90
9

5
0
0

1
3
.9

9
8

0
0

1
0
0
2

5
0
0

14
.5

2
3
5
3

0
.9

1
7
1
8

0
.0

6
7
4

re
ad

t1
k

10
01

5
0
0

9
.6

9
5
2
9

0
.7

0
2
1
4

0
.0

5
1
6
2

1
0
0
1

5
0
0

9
.7

4
7
9
1

0
.6

4
7
5
1

0
.0

4
7
6

re
ad

u
10

0k
10

00
5
0
0

1
6
.7

2
7
9
5

0
.9

7
8
8
9

0
.0

7
2

1
0
0
0

5
0
0

16
.4

1
8
5
2

0
.8

6
6
2
2

0
.0

6
3
7
1

re
ad

u
10

k
91

4
5
0
0

1
3
.9

9
8

0
0

8
9
7

5
0
0

1
3
.9

9
8

0
0

re
ad

u
1k

10
02

5
0
0

9
.7

2
5
0
4

0
.6

7
2
2
2

0
.0

4
9
4

1
0
0
1

5
0
0

9
.7

3
9
4
9

0
.6

5
6
7
5

0
.0

4
8
2
8

re
ad

z1
00

k
10

02
5
0
0

5
9
.9

0
2
5
5

0
.8

2
1
4
9

0
.0

6
0
3
6

1
0
0
2

5
0
0

60
.5

4
3
8
2

1
.2

0
8
5
4

0
.0

8
8
8

re
ad

z1
0k

10
02

5
0
0

8
.3

4
5
6
7

0
.8

2
2
6
8

0
.0

6
0
4
5

1
0
0
2

5
0
0

8
.4

9
0
7
4

0
.9

0
2
5
7

0
.0

6
6
3
2

re
ad

z1
k

10
02

5
0
0

2
.8

8
2
8
1

0
.9

9
8
5
6

0
.0

7
3
3
8

1
0
0
2

5
0
0

2
.9

2
0
6
6

1
.0

0
0
0
6

0
.0

7
3
4
9

re
ad

zw
10

0k
10

02
5
0
0

6
0
.2

1
7
9
1

0
.8

4
7
4

0
.0

6
2
2
7

1
0
0
2

5
0
0

60
.7

4
7
8
1

1
.0

8
6
1
8

0
.0

7
9
8
1

re
al

p
at

h
tm

p
10

01
5
0
0

3
7
.5

6
8
9
3

0
.8

0
2
9
6

0
.0

5
9
0
3

1
0
0
1

5
0
0

37
.7

4
7
8
5

0
.6

4
2
8
3

0
.0

4
7
2
6

re
al

p
at

h
u

sr
10

02
5
0

3
7
.5

1
2
3
7

6
.4

4
8
5
2

0
.4

7
3
8
4

1
0
0
2

5
0

37
.7

0
1
6
2

6
.2

2
9
5
8

0
.4

5
7
7
6

re
cu

rs
e

98
3

50
0
0

0
.7

9
9
8
7

0
.0

0
0
1

1
e-

0
5

9
7
9

5
0
0
0

0
.7

9
9
8
7

0
.0

0
0
1

1
e-

0
5

sc
as

ec
m

p
10

10
02

50
00

0
0

0
.0

5
3
0
2

0
.0

0
1

7
e-

0
5

9
9
9

5
0
0
0
0
0

0
.0

5
1
7
1

0
.0

0
0
6
8

5
e-

0
5

sc
as

ec
m

p
1k

93
2

50
0
0

3
.1

9
9
5
1

0
.0

0
0
1

1
e-

0
5

9
3
3

5
0
0
0

3
.1

9
9
5
1

0
.0

0
0
1

1
e-

0
5

se
le

ct
10

10
02

5
0
0

1
0
.1

0
3
6
1

0
.6

0
2
3
2

0
.0

4
4
2
6

1
0
0
2

5
0
0

10
.1

3
3
0
3

0
.6

3
7
7
3

0
.0

4
6
8
6

se
le

ct
10

0
10

02
5
0
0

5
4
.3

1
1
3
8

0
.8

0
4
1
9

0
.0

5
9
0
9

1
0
0
2

5
0
0

54
.4

3
9
6
5

0
.8

8
1
3
6

0
.0

6
4
7
6

se
le

ct
w

10
10

02
5
0
0

1
0
.4

2
1
1

0
.8

6
8
0
2

0
.0

6
3
7
8

1
0
0
2

5
0
0

10
.4

1
4
7
8

0
.8

6
4
5
9

0
.0

6
3
5
3

se
le

ct
w

10
0

10
02

5
0
0

5
5
.4

6
3
6
8

0
.8

6
6
9
1

0
.0

6
3
7

9
9
0

5
0
0

55
.9

9
1
4
6

0
.0

0
0
8
7

6
e-

0
5

se
ts

o
ck

op
t

10
02

5
0
0

4
.5

4
1
8
5

0
.9

2
4
1

0
.0

6
7
9

1
0
0
2

5
0
0

4
.5

9
4
4
1

0
.9

4
3
1
7

0
.0

6
9
3
1

si
ga

ct
io

n
10

02
50

0
0

0
.3

5
6
2

0
.0

8
1
1
4

0
.0

0
5
9
6

1
0
0
2

5
0
0
0

0
.3

6
2
3

0
.0

7
6
6
3

0
.0

0
5
6
3

si
gl

on
g
jm

p
95

5
50

0
0
0

0
.3

7
9
9
4

1
e-

0
5

0
1
0
0
2

5
0
0
0
0

0
.3

8
7
4
1

0
.0

0
9
8
2

0
.0

0
0
7
2

C
o
n
ti

n
u

ed
o
n

n
ex

t
p

a
g
e

90

O
ri
g
in
a
l

T
a
g
g
in
g
-k
e
rn

e
l

N
a
m
e

S
a
m
p
le
s

C
a
ll
s

M
e
a
n

S
td

.
D
e
v
.

9
5
%

C
.I
.

S
a
m
p
le
s

C
a
ll
s

M
e
a
n

S
td

.
D
e
v
.

9
5
%

C
.I
.

si
gn

al
86

7
50

0
0

1
.3

9
9
8

0
0

1
0
0
2

5
0
0
0

1
.4

3
4
6
9

0
.0

8
2
4
1

0
.0

0
6
0
6

si
gp

ro
cm

as
k

10
02

50
0
0
0

0
.3

7
7
0
4

0
.0

0
6
8
9

0
.0

0
0
5
1

1
0
0
2

5
0
0
0
0

0
.3

8
3
2

0
.0

0
8
0
9

0
.0

0
0
5
9

so
ck

et
i

10
02

5
0
0

2
5
.5

9
4
3
8

0
.7

9
9
7
6

0
.0

5
8
7
7

9
9
9

5
0
0

25
.7

3
6
8
2

0
.6

5
7
4
1

0
.0

4
8
3
8

so
ck

et
u

10
02

5
0
0

2
5
.4

2
8
2
7

0
.8

9
1
1
3

0
.0

6
5
4
8

1
0
0
2

5
0
0

25
.4

3
8
7
9

0
.8

8
5
8
6

0
.0

6
5
0
9

so
ck

et
p

ai
r

10
02

5
0
0

3
6
.6

2
9
4
7

1
.6

0
5
4
2

0
.1

1
7
9
7

1
0
0
2

5
0
0

36
.6

2
1
0
6

1
.5

9
9
4

0
.1

1
7
5
3

st
at

tm
p

10
01

5
0
0

3
1
.0

5
8
3
9

0
.9

9
4
1
9

0
.0

7
3
0
9

9
7
9

5
0
0

31
.7

4
9
9
6

0
.6

4
1
7
7

0
.0

4
7
7
1

st
at

u
sr

10
02

5
0

3
1
.0

1
4
9
3

9
.8

9
3
8
7

0
.7

2
7
0
1

1
0
0
2

5
0

31
.8

1
3
9
6

9
.7

5
0
4
2

0
.7

1
6
4
7

st
rc

h
r

10
99

6
50

00
0
0

0
.0

1
6
5

0
.0

0
0
9
1

7
e-

0
5

1
0
0
1

5
0
0
0
0
0

0
.0

1
6
4
1

0
.0

0
0
8
6

6
e-

0
5

st
rc

h
r

1k
10

02
50

0
0

1
.0

8
4
3
7

0
.0

9
9
5
7

0
.0

0
7
3
2

1
0
0
2

5
0
0
0

1
.0

8
4
7
9

0
.0

9
9
6
1

0
.0

0
7
3
2

st
rc

m
p

10
98

5
50

0
0
0

0
.0

1
7
6
4

0
.0

0
6
3

0
.0

0
0
4
7

9
9
3

5
0
0
0
0

0
.0

1
7
6
6

0
.0

0
6
2
8

0
.0

0
0
4
6

st
rc

m
p

1k
10

02
50

0
0

1
.2

4
2
7
1

0
.0

8
7
1
5

0
.0

0
6
4

1
0
0
2

5
0
0
0

1
.2

4
3
5
5

0
.0

8
7
5
9

0
.0

0
6
4
4

st
rc

p
y

10
10

02
50

0
0
0

0
.0

1
5
9

0
.0

0
8
0
6

0
.0

0
0
5
9

1
0
0
2

5
0
0
0
0

0
.0

1
6

0
.0

0
8
0
5

0
.0

0
0
5
9

st
rc

p
y

1k
10

01
50

0
0

0
.8

1
5
2
4

0
.0

6
5
9
1

0
.0

0
4
8
5

1
0
0
2

5
0
0
0

0
.8

1
5
0
1

0
.0

6
5
6
7

0
.0

0
4
8
3

st
rf

ti
m

e
10

02
50

0
0

8
.7

9
2
3
5

0
.0

7
8
0
7

0
.0

0
5
7
4

1
0
0
2

5
0
0
0

8
.6

9
1
2
1

0
.1

0
2
4

0
.0

0
7
5
2

st
rl

en
10

10
02

50
00

0
0

0
.0

1
6
3
6

0
.0

0
0
8
3

6
e-

0
5

1
0
0
2

5
0
0
0
0
0

0
.0

1
6
3
5

0
.0

0
0
8
3

6
e-

0
5

st
rl

en
1k

10
02

50
0
0

0
.7

0
5
0
4

0
.0

9
9
5
4

0
.0

0
7
3
1

1
0
0
2

5
0
0
0

0
.7

0
5
2
5

0
.0

9
9
5
1

0
.0

0
7
3
1

st
rt

ol
94

4
50

0
0
0

0
.0

9
9
9
8

1
e-

0
5

0
9
4
6

5
0
0
0
0

0
.0

9
9
9
8

1
e-

0
5

0
ti

m
e

10
02

50
0
0
0

0
.0

4
8
9
7

0
.0

0
9
9
9

0
.0

0
0
7
3

1
0
0
2

5
0
0
0
0

0
.0

4
8
9
5

0
.0

0
9
9
9

0
.0

0
0
7
3

ti
m

es
10

02
5
0
0

1
0
.9

0
0
4
6

0
.9

9
9
4
9

0
.0

7
3
4
4

1
0
0
2

5
0
0

11
.1

0
4
4
2

0
.9

8
8
7
7

0
.0

7
2
6
6

w
ri

te
n

10
0k

10
02

5
0
0

2
.6

7
6
7
4

0
.9

6
7
1
6

0
.0

7
1
0
7

9
9
8

5
0
0

2
.7

0
8
4
2

0
.9

7
4
4

0
.0

7
1
7
4

w
ri

te
n

10
k

99
8

5
0
0

2
.6

9
5
7
6

0
.9

7
1
4
9

0
.0

7
1
5
3

1
0
0
2

5
0
0

2
.6

8
7
2
6

0
.9

6
9
7
6

0
.0

7
1
2
6

w
ri

te
n

1k
10

02
5
0
0

2
.6

0
1
0
5

0
.9

4
5
2
1

0
.0

6
9
4
6

1
0
0
2

5
0
0

2
.6

4
5
2

0
.9

5
8
7
1

0
.0

7
0
4
5

w
ri

te
t1

00
k

93
1

5
0
0

1
2
2
.4

9
0
3
9

0
.9

2
3
9
2

0
.0

7
0
4
3

9
1
9

5
0
0

1
22

.8
9
5
3
7

1
.0

1
3
0
6

0
.0

7
7
7
3

w
ri

te
t1

0k
96

1
5
0
0

2
5
.9

2
5
8
8

0
.7

0
3
1
3

0
.0

5
2
7
6

9
6
7

5
0
0

27
.1

0
0
4
4

0
.9

8
9
0
6

0
.0

7
3
9
8

w
ri

te
t1

k
88

7
5
0
0

1
4
.1

4
5
1

0
.6

5
1
6
7

0
.0

5
0
9

9
9
6

5
0
0

15
.2

8
5
1
8

0
.9

4
6
6
3

0
.0

6
9
7
7

w
ri

te
u

10
0k

91
9

5
0
0

1
2
2
.2

9
9
8
1

0
.8

0
2
2
9

0
.0

6
1
5
6

8
6
7

5
0
0

1
23

.1
7
6
8
6

0
.9

7
6
2
6

0
.0

7
7
1
2

w
ri

te
u

10
k

98
8

5
0
0

2
6
.2

0
4
9
6

0
.7

1
4
0
1

0
.0

5
2
8
4

9
4
7

5
0
0

27
.8

7
3
3
8

1
.0

7
0
2

0
.0

8
0
8
9

w
ri

te
u

1k
99

8
5
0
0

1
4
.8

6
0
5
8

0
.9

9
7
1
5

0
.0

7
3
4
2

9
0
9

5
0
0

15
.9

9
7
5
5

0
.0

0
0
8
2

6
e-

0
5

w
ri

te
v

t1
0k

93
4

5
0
0

1
2
3
.8

2
1
0
2

1
.0

2
5
5
1

0
.0

7
8
0
5

9
2
5

5
0
0

1
24

.3
0
4
5
1

0
.8

1
2
0
8

0
.0

6
2
1
1

w
ri

te
v

t1
k

89
7

5
0
0

2
5
.9

9
6

0
0

9
9
1

5
0
0

2
6
.9

3
3
2

1
.0

0
0
3
2

0
.0

7
3
9
1

T
a
b

le
A

.1
:

T
h

e
fu

ll
d

a
ta

se
t

fr
o
m

th
e

li
b

M
ic

ro
ex

p
er

im
en

ts
.

M
ea

n
a
n

d
st

d
.

d
ev

.
a
re

re
p

o
rt

ed
in

[u
s]

.

91

References

[1] Buffer overflow bug in QNX. http://www.cvedetails.com/cve/CVE-2008-3024.

[2] Cisco. http://www.cisco.com/en/US/products/ps5763/.

[3] Format string vulnerability in fontsleuth in QNX Neutrino. http://www.cvedetails.com/
cve/CVE-2006-0618.

[4] Fortna- Warehouse Control Systems. http://www.fortna.com/products.php/content/

fortna_wcs_warehouse_control_system.

[5] Intalysis- Technology for Online Analysis. http://intalysis.com.au/products/.

[6] LIDS. http://www.lids.org/.

[7] National Security Agency – Central Security Service, Security-Enhanced Linux. http:

//www.nsa.gov/research/selinux/index.shtml, accessed May 2011.

[8] QNX : Security Vulnerabilities. http://www.cvedetails.com/vulnerability-list/

vendor_id-436/QNX.html.

[9] QNX Customers. http://www.qnx.com/company/customer_stories/.

[10] QNX Neutrino. http://www.qnx.com/products/neutrino-rtos/index.html.

[11] Windows Integrity Mechanism. http://msdn.microsoft.com/en-us/library/bb625957.
aspx.

[12] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young.
Mach: A New Kernel Foundation for UNIX Development. In Proceedings of the USENIX
Summer Conference, pages 93–112, 1986.

[13] Aleph1. Smashing The Stack For Fun And Profit. Phrack, 7(49), November 1996.

92

http://www.cvedetails.com/cve/CVE-2008-3024
http://www.cisco.com/en/US/products/ps5763/
http://www.cvedetails.com/cve/CVE-2006-0618
http://www.cvedetails.com/cve/CVE-2006-0618
http://www.fortna.com/products.php/content/fortna_wcs_warehouse_control_system
http://www.fortna.com/products.php/content/fortna_wcs_warehouse_control_system
http://intalysis.com.au/products/
http://www.lids.org/
http://www.nsa.gov/research/selinux/index.shtml
http://www.nsa.gov/research/selinux/index.shtml
http://www.cvedetails.com/vulnerability-list/vendor_id-436/QNX.html
http://www.cvedetails.com/vulnerability-list/vendor_id-436/QNX.html
http://www.qnx.com/company/customer_stories/
http://www.qnx.com/products/neutrino-rtos/index.html
http://msdn.microsoft.com/en-us/library/bb625957.aspx
http://msdn.microsoft.com/en-us/library/bb625957.aspx

[14] A. Alonso and J. Antonio de la Puente. Implementation of Mode Changes with the Raven-
scar Profile. In Proc. of the 10th International Workshop on Real-time Ada Workshop,
pages 27–32, New York, NY, USA, 2001. ACM.

[15] Android. Android Operating System, 2011. http://www.android.com.

[16] Lee Badger, Lee Badger, Daniel F. Sterne, Daniel F. Sterne, David L. Sherman, David L.
Sherman, Kenneth M. Walker, Kenneth M. Walker, Sheila A. Haghighat, and Sheila A.
Haghighat. A domain and type enforcement unix prototype. In In Proceedings of the Fifth
USENIX UNIX Security Symposium, pages 127–140, 1996.

[17] Victor R. Basili and Barry T. Perricone. Software errors and complexity: an empirical
investigation0. Commun. ACM, 27(1):42–52, 1984.

[18] A. Bauer, M. Leucker, and C. Schallhart. Runtime Verification for LTL and TLTL. ACM
Transactions on Software Engineering and Methodology (TOSEM), 20(4):14:1–14:64, 2011.

[19] D.E. Bell. Looking back at the bell-la padula model. In Computer Security Applications
Conference, 21st Annual, pages 15 pp. –351, December 2005.

[20] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Uppaala
tool suite for automatic verification of real-time systems. In Proceedings of the DIMAC-
S/SYCON workshop on Hybrid systems III : verification and control: verification and con-
trol, pages 232–243, Secaucus, NJ, USA, 1996. Springer-Verlag New York, Inc.

[21] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Uppaal
— a Tool Suite for Automatic Verification of Real–Time Systems. In Proc. of Workshop on
Verification and Control of Hybrid Systems III, number 1066 in Lecture Notes in Computer
Science, pages 232–243. Springer–Verlag, October 1995.

[22] Gérard Berry. The foundations of Esterel, pages 425–454. MIT Press, Cambridge, MA,
USA, 2000.

[23] Biba. Integrity Considerations for Secure Computer Systems. MITRE Co., technical report
ESD-TR 76-372, 1977.

[24] B. Bouyssounouse and J.Sifakis, editors. Embedded Systems Design: The ARTIST Roadmap
for Research and Development, volume 3436 of LNCS. Springer, first edition, May 2005.

[25] Mic Bowman, Saumya K. Debray, and Larry L. Peterson. Reasoning about naming systems.
ACM Trans. Program. Lang. Syst., 15(5):795–825, November 1993.

[26] Johannes Braams. Babel, a multilingual style-option system for use with latex’s standard
document styles. TUGboat, 12(2):291–301, June 1991.

93

http://www.android.com

[27] I. Branovic, R. Giorgi, and E. Martinelli. A Workload Characterization of Elliptic Curve
Cryptography Methods in Embedded Environments. In Proc. of the 2003 Workshop on
Memory Performance (MEDEA), pages 27–34, New York, NY, USA, 2003. ACM.

[28] G.C. Buttazzo. HARTIK: A Real-time Kernel for Robotics Applications. In Proc. Real-
Time Systems Symp., pages 201–205, 1993.

[29] Géraud Canet, Pascal Cuoq, and Benjamin Monate. A value analysis for c programs. In
Proceedings of the 2009 Ninth IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM ’09, pages 123–124, Washington, DC, USA, 2009. IEEE
Computer Society.

[30] B.M. Cantrill, M.W. Shapiro, and A.H. Leventhal. Dynamic Instrumentation of Production
Systems. In USENIX 2004 Annual Technical Conference, pages 15–28, 2004.

[31] K. Mani Chandy, Jayadev Misra, and Laura M. Haas. Distributed deadlock detection.
ACM Trans. Comput. Syst., 1:144–156, May 1983.

[32] Ping Hang Cheung and Alessandro Forin. A C-Language Binding for PSL. In Proceedings
of the 3rd international conference on Embedded Software and Systems, ICESS ’07, pages
584–591, Berlin, Heidelberg, 2007. Springer-Verlag.

[33] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. An empir-
ical study of operating systems errors. In SOSP ’01: Proceedings of the eighteenth ACM
symposium on Operating systems principles, pages 73–88, New York, NY, USA, 2001. ACM.

[34] David D. Clark and David R. Wilson. A comparison of commercial and military computer
security policies. Security and Privacy, IEEE Symposium on, 0:184, 1987.

[35] Malcolm Clark. Post congress tristesse. In TeX90 Conference Proceedings, pages 84–89.
TeX Users Group, March 1991.

[36] J. Clause, W. Li, and A. Orso. Dytan: a Generic Dynamic Taint Analysis Framework.
In Proc. of the 2007 International Symposium on Software Testing and Analysis, pages
196–206, New York, NY, USA, 2007. ACM.

[37] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems (3rd ed.): con-
cepts and design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[38] Igor D.D. Curcio. ASAP - A Simple Assertion Pre-Processor. SIGPLAN Not., 33(12):44–51,
December 1998.

[39] Ewen Denney and Bernd Fischer. Annotation Inference for Safety Certification of Automat-
ically Generated Code. In Proceedings of the 21st IEEE/ACM International Conference on

94

Automated Software Engineering, ASE ’06, pages 265–268, Washington, DC, USA, 2006.
IEEE Computer Society.

[40] Will Drewry and Tavis Ormandy. Flayer: Exposing Application Internals. In Proc. of the
First USENIX Workshop on Offensive Technologies (WOOT), pages 1–9, Berkeley, CA,
USA, 2007. USENIX Association.

[41] Doron Drusinsky. The temporal rover and the atg rover. In Proceedings of the 7th Interna-
tional SPIN Workshop on SPIN Model Checking and Software Verification, pages 323–330,
London, UK, UK, 2000. Springer-Verlag.

[42] Doron Drusinsky. Monitoring temporal rules combined with time series. In In CAV03,
volume 2725 of LNCS, pages 114–118. Springer-Verlag, 2003.

[43] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler, Eddie
Kohler, David Mazières, Frans Kaashoek, and Robert Morris. Labels and Event Processes
in the Asbestos Operating System. In Proc. of the Twentieth ACM Symposium on Operating
Systems Principles (SOSP), pages 17–30, New York, NY, USA, 2005. ACM.

[44] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler, Eddie
Kohler, David Mazières, Frans Kaashoek, and Robert Morris. Labels and event processes
in the asbestos operating system. In Proceedings of the twentieth ACM symposium on
Operating systems principles, SOSP ’05, pages 17–30, New York, NY, USA, 2005. ACM.

[45] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N. Sheth. Taintdroid: an information-flow tracking system for re-
altime privacy monitoring on smartphones. In Proceedings of the 9th USENIX conference
on Operating systems design and implementation, OSDI’10, pages 1–6, Berkeley, CA, USA,
2010. USENIX Association.

[46] Dawson Engler and Ken Ashcraft. Racerx: effective, static detection of race conditions
and deadlocks. In Proceedings of the nineteenth ACM symposium on Operating systems
principles, SOSP ’03, pages 237–252, New York, NY, USA, 2003. ACM.

[47] David Evans and David Larochelle. Improving security using extensible lightweight static
analysis. IEEE Software, 19:42–51, 2002.

[48] Advanced Computing for Science Department. NetLogger Toolkit - Example: Lifelines,
2010. http://acs.lbl.gov/NetLoggerWiki/index.php/NetLogger_Toolkit.

[49] John Fusco. The Linux Programmer’s Toolbox. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2007.

95

http://acs.lbl.gov/NetLoggerWiki/index.php/NetLogger_Toolkit

[50] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo. A new Kernel Approach for Modular
Real-time Systems Development. In Proc. of the 13th Euromicro Conference on Real-Time
Systems (ECRTS), pages 199–206, 2001.

[51] M.P. Gallaher and B.M. Kropp. The Economic Impacts of Inadequate Infrastructure for
Software Testing. National Institute of Standards & Technologg Planning Report 02–03,
May 2002.

[52] Dimitra Giannakopoulou, Dimitra Giannakopoulou Riacs, Klaus Havelund, Klaus
Havelund, and Kestrel Technologies. Automata-based verification of temporal properties
on running programs. In In Proceedings, International Conference on Automated Software
Engineering (ASE), pages 412–416. IEEE Computer Society, 2001.

[53] Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley Publishing Company, Boston, MA, USA, 1983.

[54] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure environment for
untrusted helper applications confining the wily hacker. In Proceedings of the 6th USENIX
Security Symposium, Focusing on Applications of Cryptography - Volume 6, Berkeley, CA,
USA, 1996. USENIX Association.

[55] R. P. Goldberg. Architecture of virtual machines. In Proceedings of the workshop on virtual
computer systems, pages 74–112, New York, NY, USA, 1973. ACM.

[56] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

[57] Gregor Gössler, Sussane Graf, Mila Majster-Cederbaum, M. Martens, and Joseph Sifakis.
An approach to modelling and verification of component based systems. In Proceedings
of the 33rd conference on Current Trends in Theory and Practice of Computer Science,
SOFSEM ’07, pages 295–308, Berlin, Heidelberg, 2007. Springer-Verlag.

[58] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: a Call Graph
Execution Profiler. SIGPLAN Not., 39(4):49–57, 2004.

[59] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
MiBench: A Free, Commercially Representative Embedded Benchmark Suite. In Proc.
of the IEEE International Workload Characterization (WWC-4), pages 3–14, Washington,
DC, USA, 2001. IEEE Computer Society.

[60] Thomas Habets. pipebench, April 2012.

[61] Matthias Hauswirth, Peter F. Sweeney, Amer Diwan, and Michael Hind. Vertical Profiling:
Understanding the Behavior of Object-oriented Applications. SIGPLAN Not., 39(10):251–
269, 2004.

96

[62] Maurice Herlihy. A methodology for implementing highly concurrent data objects. ACM
Trans. Program. Lang. Syst., 15(5):745–770, November 1993.

[63] Dan Hildebrand. An Architectural Overview of QNX. In Proc. of the Workshop on Micro-
kernels and Other Kernel Architectures, pages 113–126, Berkeley, CA, USA, 1992. USENIX
Association.

[64] Gerard Holzmann. Spin model checker, the: primer and reference manual. Addison-Wesley
Professional, first edition, 2003.

[65] C.E. Hrischuk and C.M. Woodside. Logical clock requirements for reverse engineering sce-
narios from a distributed system. Software Engineering, IEEE Transactions on, 28(4):321
–339, April 2002.

[66] Galen C. Hunt and James R. Larus. Singularity: rethinking the software stack. SIGOPS
Oper. Syst. Rev., 41(2):37–49, 2007.

[67] Immunix. Apparmor. https://apparmor.wiki.kernel.org/index.php/Main_Page.

[68] David M. Jordan. Multics data security. Scientific Honeyweller, 2(2), 1981. Available from
http://www.multicians.org/multics-data-security.html.

[69] Journal paper citation withheld due to the double-blind process.

[70] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model Checking. The MIT
Press, 1999.

[71] Arun Kejariwal, Alexander V. Veidenbaum, Alexandru Nicolau, Milind Girkar, Xinmin
Tian, and Hideki Saito. On the Exploitation of Loop-level Parallelism in Embedded Appli-
cations. ACM Trans. Embed. Comput. Syst., 8(2):1–34, 2009.

[72] BSD kernels. securelevel. http://www.freebsd.org/doc/en/books/faq/security.html.

[73] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In ECOOP, pages
220–242, 1997.

[74] Moonzoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and Oleg Sokolsky.
Java-mac: A run-time assurance approach for java programs. Form. Methods Syst. Des.,
24(2):129–155, March 2004.

[75] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. sel4: formal verification of an os kernel. In
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles, SOSP
’09, pages 207–220, New York, NY, USA, 2009. ACM.

97

https://apparmor.wiki.kernel.org/index.php/Main_Page
http://www.multicians.org/multics-data-security.html
http://www.freebsd.org/doc/en/books/faq/security.html

[76] Donald Knuth. The TEXbook. Addison-Wesley, Reading, Massachusetts, 1986.

[77] R. Krishnakumar. Kernel korner: kprobes-a Kernel Debugger. Linux J., 2005(133):11,
2005.

[78] Natalija Krivokapić, Alfons Kemper, and Ehud Gudes. Deadlock detection in distributed
database systems: a new algorithm and a comparative performance analysis. The VLDB
Journal, 8:79–100, October 1999.

[79] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek, Eddie
Kohler, and Robert Morris. Information flow control for standard os abstractions. In Pro-
ceedings of twenty-first ACM SIGOPS symposium on Operating systems principles, SOSP
’07, pages 321–334, New York, NY, USA, 2007. ACM.

[80] Gunnar Kudrjavets, Nachiappan Nagappan, and Thomas Ball. Assessing the Relationship
between Software Assertions and Code Quality: An Empirical Investigation. Microsoft
Technical Report, 2006.

[81] Bell Laboratories. Unix Programmer’s Manual, January 1979.

[82] Leslie Lamport. LaTeX User’s Guide and Document Reference Manual. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1986.

[83] Leslie Lamport. LATEX — A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, second edition, 1994.

[84] Carl Staelin Larry McVoy. lmbench. http://www.bitmover.com/lmbench/.

[85] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. Unmodified device driver
reuse and improved system dependability via virtual machines. In OSDI’04: Proceedings of
the 6th conference on Symposium on Opearting Systems Design & Implementation, pages
2–2, Berkeley, CA, USA, 2004. USENIX Association.

[86] John Levon. OProfile, 2004. http://oprofile.sourceforge.net.

[87] D. Li, P.H. Chou, and N. Bagherzadeh. Mode Selection and Mode-Dependency Modeling
for Power-Aware Embedded Systems. In Proc. of the 2002 Asia and South Pacific Design
Automation Conference (ASP-DAC), page 697, Washington, DC, USA, 2002.

[88] Ninghui Li, Ziqing Mao, and Hong Chen. Usable mandatory integrity protection for oper-
ating systems. In Proceedings of the 2007 IEEE Symposium on Security and Privacy, SP
’07, pages 164–178, Washington, DC, USA, 2007. IEEE Computer Society.

[89] Ninghui Li, Ziqing Mao, and Hong Chen. Usable mandatory integrity protection for op-
erating systems. In SP ’07: Proceedings of the 2007 IEEE Symposium on Security and
Privacy, pages 164–178, Washington, DC, USA, 2007. IEEE Computer Society.

98

http://www.bitmover.com/lmbench/
http://oprofile.sourceforge.net

[90] Tong Li, Carla S. Ellis, Alvin R. Lebeck, and Daniel J. Sorin. Pulse: a dynamic deadlock
detection mechanism using speculative execution. In Proceedings of the annual conference
on USENIX Annual Technical Conference, ATEC ’05, pages 3–3, Berkeley, CA, USA, 2005.
USENIX Association.

[91] Spot Library. Spot library, April 2012.

[92] J. Liedtke. On micro-kernel construction. SIGOPS Oper. Syst. Rev., 29(5):237–250, 1995.

[93] Jochen Liedtke. Toward real microkernels. Commun. ACM, 39:70–77, September 1996.

[94] Peter A. Loscocco and Stephen D. Smalley. Meeting critical security objectives with
security-enhanced linux. In Proceedings of the Ottawa Linux Symposium, 2001. Available
from http://www.nsa.gov/research/_files/selinux/papers/ottawa01-abs.shtml.

[95] Byte Magazine. unixbench. http://code.google.com/p/byte-unixbench/.

[96] Milo M. K. Martin. Formal verification and its impact on the snooping versus directory
protocol debate, 2005.

[97] MathWorks. Polyspace. http://www.mathworks.com/products/polyspace/.

[98] M. D. McIlroy and J. A. Reeds. Multilevel security in the unix tradition. Softw. Pract.
Exper., 22:673–694, August 1992.

[99] Marshall Kirk Mckusick. Using gprof to Tune the 4.2BSD Kernel. In Proc. of the European
UNIX Users Group Meeting, 1984.

[100] D. Molnar and D. Wagner. Catchconv: Symbolic Execution and Run-time Type Inference
for Integer Conversion Errors. Technical Report EECS-2007-23, UC Berkeley EECS, 2007.

[101] Richard J. Moore. Dynamic Probes and Generalised Kernel Hooks Interface for Linux. In
Proc. of the 4th Annual Linux Showcase & Conference (ALS), pages 35–35, Berkeley, CA,
USA, 2000. USENIX Association.

[102] Andrew C. Myers. Jflow: practical mostly-static information flow control. In Proceedings
of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’99, pages 228–241, New York, NY, USA, 1999. ACM.

[103] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label
model. ACM Trans. Softw. Eng. Methodol., 9(4):410–442, October 2000.

[104] S. Mysore, B. Mazloom, B. Agrawal, and T. Sherwood. Understanding and Visualizing Full
Systems with Data Flow Tomography. SIGARCH Comput. Archit. News, 36(1):211–221,
2008.

99

http://www.nsa.gov/research/_files/selinux/papers/ottawa01-abs.shtml
http://code.google.com/p/byte-unixbench/
http://www.mathworks.com/products/polyspace/

[105] Shashidhar Mysore, Bita Mazloom, Banit Agrawal, and Timothy Sherwood. Understand-
ing and visualizing full systems with data flow tomography. In Proceedings of the 13th
international conference on Architectural support for programming languages and operating
systems, ASPLOS XIII, pages 211–221, New York, NY, USA, 2008. ACM.

[106] George C. Necula and Peter Lee. The design and implementation of a certifying compiler.
SIGPLAN Not., 33(5):333–344, May 1998.

[107] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN conference on Pro-
gramming language design and implementation, PLDI ’07, pages 89–100, New York, NY,
USA, 2007. ACM.

[108] J. Newsome and D. Song. Dynamic Taint Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity Software. In Proc. of the 12th Annual
Network and Distributed System Security Symposium (NDSS), San Diego, USA, February
2005.

[109] William D. Norcott. Filesystem benchmark iozone. http://www.iozone.org/.

[110] NSA. Security enhanced linux. http://www.nsa.gov/research/selinux/.

[111] Augusto Oliveira, Ahmad Saif Ur Rehman, and Sebastian Fischmeister. Specification of
mtags. Tech Report, September 2011.

[112] OMG UML. OMG Unified Modeling Language (OMG UML), Infrastructure, V2.1.2, 2007.

[113] Ontario Power Generation Inc. SDS1 Software Design Description, NK38-MAN-68258-001,
Rev06, 2002.

[114] Thomas J. Ostrand and Elaine J. Weyuker. The distribution of faults in a large industrial
software system. SIGSOFT Softw. Eng. Notes, 27(4):55–64, 2002.

[115] Swapnil Patil, Anand Kashyap, Gopalan Sivathanu, and Erez Zadok. Fs: An in-kernel
integrity checker and intrusion detection file system. In Proceedings of the 18th USENIX
conference on System administration, pages 67–78, Berkeley, CA, USA, 2004. USENIX
Association.

[116] Shari Lawrence Pfleeger and Les Hatton. Investigating the influence of formal methods.
Computer, 30(2):33–43, February 1997.

[117] Kevin Elphinstone Philip Derrin, Dhammika Elkaduwe. sel4 Reference Manual. http:

//www.ertos.nicta.com.au/research/sel4/sel4-refman.pdf.

100

http://www.iozone.org/
http://www.nsa.gov/research/selinux/
http://www.ertos.nicta.com.au/research/sel4/sel4-refman.pdf
http://www.ertos.nicta.com.au/research/sel4/sel4-refman.pdf

[118] A. Pnueli. The temporal logic of programs. In Symposium on Foundations of Computer
Science (FOCS), pages 46–57, 1977.

[119] J.A. Poovey, T.M. Conte, M. Levy, and S. Gal-On. A Benchmark Characterization of the
EEMBC Benchmark Suite. IEEE Micro, 29(5):18–29, 2009.

[120] Niels Provos. Preventing privilege escalation. In In Proceedings of the 12th USENIX Security
Symposium, pages 231–242, 2003.

[121] QNX. Embedded transaction file system. http://www.qnx.com/developers/docs/6.3.

2/neutrino/sys_arch/fsys.html#ETFS.

[122] QNX. qconn. http://www.qnx.com/developers/docs/6.4.1/neutrino/utilities/q/

qconn.html.

[123] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann,
C. Kaiser, S. Langlois, P. Lonard, and W. Neuhauser. Overview of the CHORUS Distributed
Operating Systems. Computing Systems, 1:39–69, 1991.

[124] Sergio Ruocco. A Real-time Programmer’s Tour of General-purpose L4 Microkernels.
EURASIP J. Embedded Syst., 2008:1–14, 2008.

[125] S.L. Salas and Einar Hille. Calculus: One and Several Variable. John Wiley and Sons, New
York, 1978.

[126] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based
access control models. IEEE Computer, 29(2):38–47, February 1996.

[127] Stefan Schäfer and Bernhard Scholz. Optimal Chain Rule Placement for Instruction Se-
lection based on SSA Graphs. In Proc. of the 10th International Workshop on Software
& Compilers for Embedded Systems (SCOPES), pages 91–100, New York, NY, USA, 2007.
ACM.

[128] Bernhard Scholz, Bernd Burgstaller, and Jingling Xue. Minimal Placement of Bank Se-
lection Instructions for Partitioned Memory Architectures. ACM Trans. Embed. Comput.
Syst., 7(2):1–32, 2008.

[129] Inc. Silicon Graphics. KernProf, 2003. http://oprofile.sourceforge.net.

[130] Bart Smaalders and Phil Harman. libmicro - portable microbenchmarks, April 2012.

[131] Daniel J. Sorin, Manoj Plakal, Anne E. Condon, Mark D. Hill, Milo M. K. Martin, and
David A. Wood. Specifying and verifying a broadcast and a multicast snooping cache
coherence protocol. IEEE Trans. Parallel Distrib. Syst., 13(6):556–578, June 2002.

101

http://www.qnx.com/developers/docs/6.3.2/neutrino/sys_arch/fsys.html#ETFS
http://www.qnx.com/developers/docs/6.3.2/neutrino/sys_arch/fsys.html#ETFS
http://www.qnx.com/developers/docs/6.4.1/neutrino/utilities/q/qconn.html
http://www.qnx.com/developers/docs/6.4.1/neutrino/utilities/q/qconn.html
http://oprofile.sourceforge.net

[132] Matthew Staats and Mats P. Heimdahl. Partial Translation Verification for Untrusted
Code-Generators. In Proceedings of the 10th International Conference on Formal Methods
and Software Engineering, ICFEM ’08, pages 226–237, Berlin, Heidelberg, 2008. Springer-
Verlag.

[133] Michael M. Swift, Muthukaruppan Annamalai, Brian N. Bershad, and Henry M. Levy.
Recovering device drivers. In OSDI’04: Proceedings of the 6th conference on Symposium
on Opearting Systems Design & Implementation, pages 1–1, Berkeley, CA, USA, 2004.
USENIX Association.

[134] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the reliability of
commodity operating systems. In SOSP ’03: Proceedings of the nineteenth ACM symposium
on Operating systems principles, pages 207–222, New York, NY, USA, 2003. ACM.

[135] QNX Software Systems. System Architecture - Interprocess Communication (IPC), 2010.
http://www.qnx.com/developers/docs/6.4.1/neutrino/sys_arch/ipc.html.

[136] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper Saddle
River, NJ, USA, 3rd edition, 2007.

[137] Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert Bos. Can we make operating systems
reliable and secure? Computer, 39:44–51, May 2006.

[138] Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert Bos. Can we make operating systems
reliable and secure? Computer, 39(5):44–51, 2006.

[139] Inc. Underbit Technologies. MAD: MPEG Audio Decoder, 2010. http://www.underbit.

com/products/mad/.

[140] M. Vuagnoux. Autodafé: an Act of Software Torture. Technical report, Swiss Federal
Institute of Technology (EPFL), 2006.

[141] Common Vulnerabilities and Exposures. Linux kernel network stack exploit. http://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1173.

[142] Carsten Weinhold and Hermann Härtig. Vpfs: building a virtual private file system with a
small trusted computing base. In Proceedings of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008, Eurosys ’08, pages 81–93, New York, NY, USA,
2008. ACM.

[143] David Wichers, Douglas Cook, Ronald Olsson, John Crossley, Paul Kerchen, Karl Levitt,
and Raymond Lo. PACLs: An access control list approach to anti-viral security. In Proc.
of the 13th National Computer Security Conference, pages 340–349, 1990.

102

http://www.qnx.com/developers/docs/6.4.1/neutrino/sys_arch/ipc.html
http://www.underbit.com/products/mad/
http://www.underbit.com/products/mad/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1173
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1173

[144] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution-time problem - overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst., 7:36:1–36:53, May 2008.

[145] Karim Yaghmour and Michel R. Dagenais. Measuring and Characterizing System Behavior
using Kernel-level Event Logging. In Proc. of the Annual Conference on USENIX Annual
Technical Conference (ATEC), pages 2–2, Berkeley, CA, USA, 2000. USENIX Association.

[146] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making infor-
mation flow explicit in histar. In OSDI ’06: Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation, pages 19–19, Berkeley, CA, USA, 2006.
USENIX Association.

[147] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazires. Making infor-
mation flow explicit in histar. In Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation - Volume 7, pages 19–19, Berkeley, CA, USA, 2006.
USENIX Association.

[148] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos Kozyrakis. Hardware en-
forcement of application security policies using tagged memory. In Proceedings of the 8th
USENIX conference on Operating systems design and implementation, OSDI’08, pages 225–
240, Berkeley, CA, USA, 2008. USENIX Association.

[149] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos Kozyrakis. Hardware en-
forcement of application security policies using tagged memory. In OSDI’08: Proceedings
of the 8th USENIX conference on Operating systems design and implementation, pages
225–240, Berkeley, CA, USA, 2008. USENIX Association.

[150] Dino Dai Zovi. Kernel rootkits. http://www.theta44.org/lkr.pdf.

103

http://www.theta44.org/lkr.pdf

	List of Tables
	List of Figures
	Introduction
	System Model and Terminology
	Microkernel and Monolithic Kernel
	Multiprocess and Multithread
	Inter Process Communication
	The Concept of of a Tag
	Tag Propagation
	Distributed Tagging
	Tag Propagation Modes
	Controlling Tag Propagation
	Lifeline

	Layout

	Literature Review
	Labelling Techniques
	UMIP: Mandatory Security for Microkernel-based Systems
	Intersert: Assertions on Process Interaction Section

	Use Case: Mandatory Access Control in Microkernel Based Operating System
	Overview
	UMIP
	Our Adaptation of UMIP — MIP
	Design Aspects of MIP

	Discussion
	Summary

	Use Case: Assertions on Process Interaction Sessions
	Overview
	Assertions on Interaction History
	Intersert
	The Developers' Perspective
	Interaction Sessions

	Code Transformation
	Runtime Support
	Case Study
	Discussion
	Summary

	Implementation
	Basic Implementation
	UMIP: Mandatory Security for Microkernel-based Systems
	Intersert: Assertions on Process Interaction Sessions
	Toolchain
	Runtime System

	Lifeline
	Tagging Library

	Performance Evaluation
	Goal
	Services and Outcomes
	Performance Metric
	Parameters
	Factors
	Evaluation Technique
	Workload
	Design Experiments
	Results and Analysis of Output Data
	Performance of

	Conclusion and Discussion
	Discussion
	Conclusion
	Future Work

	APPENDICES
	Full libMicro Experimental Data
	References

