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Abstract

Arbitrageurs play an important role in keeping market prices close to their fundamental
values by providing market liquidity. Most arbitrageurs however use leverage. When
funding conditions worsen they are forced to reduce their positions. The resulting selling
pressure depresses market prices, and in certain situations, pushes arbitrage spreads to
levels exceeding many standard deviations. This phenomenon drove many century old
financial institutions into bankruptcy during the 2007−2009 financial crisis. In this thesis,
we provide empirical evidence and demonstrate analytically the effects of funding liquidity
on arbitrage. We further discuss the implications for risk management.

To conduct our empirical studies, we construct a novel Funding Liquidity Stress Index
(FLSI) using principal components analysis. Its constituents are measures representing
various funding channels. We study the relationship between the FLSI index and three
different arbitrage strategies that we reproduce with real and daily transactional data.
We show that the FLSI index has a strong explanatory power for changes in arbitrage
spreads, and is an important source of contagion between various arbitrage strategies. In
addition, we perform “event studies” surrounding events of changing margin requirements
on futures contracts. The “event studies” provide empirical evidence supporting important
assumptions and predictions of various theoretical work on market micro-structure.

Next, we explain the mechanism through which funding liquidity affects arbitrage
spreads. To do so, we study the liquidity risk premium in a market micro-structure frame-
work where market prices are determined by the supply and demand of securities. We
extend the model developed by Brunnermeier and Pedersen [BP09] to multiple periods
and generalize their work by considering all market participants to be risk-averse. We
further decompose the liquidity risk premium into two components: 1) a fundamental
risk premium and 2) a systemic risk premium. The fundamental risk premium compen-
sates market participants for providing liquidity in a security whose fundamental value is
volatile, while the systemic risk premium compensates them for taking positions in a mar-
ket that is vulnerable to funding liquidity. The first component is therefore related to the
nature of the security while the second component is related to the fragility of the market
micro-structure (such as leverage of market participants and margin setting mechanisms).
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Chapter 1

Introduction

Arbitrageurs are active market participants and play an important role in keeping mar-
ket prices close to their fundamental values by providing market liquidity. Most arbi-
trageurs however use external financing, mainly in the form of leverage, to conduct arbi-
trage. [Gea09] and [FG08b] studied the impacts of leverage on the general functioning of
financial markets and fluctuations in asset prices. They argue that collateral rates1 are
more important to the stability of financial markets during periods of stress than interest
rates2. The author, John Geanakoplos, proceeds to say: “Despite the cries of newspa-
pers to lower the interest rates, the Fed would sometimes do much better to attend to the
economy-wide leverage and leave the interest rate alone”.

One form of leverage is collateralized borrowing through margin accounts. Typically,
when an arbitrageur purchases a security St, he can borrow Lt by posting the security as
a collateral. The difference between St and Lt is called dollar margin, mt = St − Lt. In
other words, the arbitrageur can effectively purchase the security by paying only mt and
posting the security as collateral. Highly leveraged arbitrageurs are however vulnerable
to changes in margin requirements. As margin requirements increase, they are forced to
reduce their positions to de-lever, leading to a downward pressure on market prices. For
example, the increase in margin requirements for silver future contracts by the Chicago
Mercantile Exchange (CME) the first week of May 2011 led to over 20% drop in the price.
As one news article puts it “Silver prices also continued to retreat with the July silver

1The collateral rate is the ratio of the collateral value to the amount borrowed. Hence, as the collateral
rate decreases, the leverage increases. A variety of assets can be purchased through collateralized borrowing
such as purchasing a stock on margin or using a mortgage loan to buy a house.

2Most economists consider the federal funds target rate, widely known as the “interest rate”, as the
variable that has the most impact on the economy.
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contract in New York down $3.48 to US$35.90 an ounce. The drop in silver came after the
main U.S. metals exchange announced further hikes to margin requirements. The latest
hike amounts to an 84 per cent increase in margin requirements in two weeks by CME
Group Ltd., spread over four separate changes. Silver prices are down over 20 per cent this
week and analysts say volatility in the sector has spread to other areas since investors have
been forced to sell other securities to meet higher margin calls”3. On the same topic, Dave
Meger, director of metals trading at Vision Financial Markets, added “this was panic-type
selling. As the market started falling in the midst of thin volumes it drew more sellers to
the market, and this created a vacuumed to the downside”4. The anecdotal evidence of
spiralling effects between margins and market prices is further supported by theoretical
studies such as [BP09] and [BS09]. In this thesis, we provide further empirical evidence
on the relationship between funding liquidity and arbitrage. Funding liquidity is the “ease
with which investors can obtain funding” [BP09]. We show that funding liquidity 1) has
a strong explanatory power for changes in arbitrage spreads, 2) is a principal source of
contagion between various arbitrage spreads, and 3) is correlated with the probability of
being in a period of stress.

Various theoretical studies have attempted to explain the effects of funding liquidity
on the deviation of market prices from their fundamental values by studying the micro-
structure of capital markets. The literature on market micro-structure evolved gradually
towards an accurate depiction of the functioning of capital markets. In 1988, Grossman
and Miller [GM88] proposed a market micro-structure model where market prices are
determined by the supply and demand of securities. Their model served as a foundation
for future work in the literature. The work by De Long et al. [DLSSW90] is perhaps the
first formal attempt in the literature to assert that arbitrageurs have short term horizons
and are therefore deterred from betting aggressively on mispriced assets. [SV97] and [BP09]
further argued that the aggregate wealth of arbitrageurs affects their ability to conduct
arbitrage and keep markets liquid. Key to their thesis is that arbitrage requires capital
which is controlled by an “agency relationship”. They both successfully show that markets
are vulnerable to liquidity shocks when financiers5, uninformed about the fundamentals, use
past performance [SV97] or market price volatility [BP09] to control funding of arbitrage
positions. For instance, after periods of high volatility or after losses on existing positions,
financiers indiscriminately withdraw capital at the very moment when it is needed the
most and when opportunities are the most attractive.

3“TSX negative, demand concerns, new silver margin requirements roil commodities” - The Canadian
Press, Thursday May 5, 2011

4“Silver Prices Tumble 12% After CME Hikes Margin” - The Wall Street Journal, Monday May 2, 2011
5i.e., those who control the capital
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The analytical studies in [SV97] and [BP09] were however conducted in a single-period
setting, restricted to illustrating “liquidity shocks”. “Liquidity shocks” occur when the
arbitrageur is forced to de-lever due to binding funding conditions, and market prices
drop far below their fundamental values due to the selling pressure. Arbitrageurs however
require a liquidity risk premium6 at all time in order to be compensated for the risk of
future losses, in particular for those losses that result from future “liquidity shocks”. In
this thesis, we extend the market micro-structure model of [BP09] to multiple periods and
compute the liquidity risk premium at various points in time. We further decompose the
liquidity risk premium into two components: 1) a fundamental risk premium and 2) a
systemic risk premium. The fundamental risk premium compensates market participants
for providing liquidity in a security whose fundamental value is volatile, while the systemic
risk premium compensates them for taking positions in a market vulnerable to liquidity
shocks. The first component is therefore related to the nature of the security while the
second component is related to the fragility of the market micro-structure (such as leverage
of market participants and margin setting mechanisms). The decomposition of the liquidity
risk premium into its two components is novel because the systemic risk premium only
appears in multi-period market micro-structure models with financial constraints.

The basis to those theoretical studies is that the market price is determined by the
supply and the demand for the security [GM88]. As a result, any change to either the supply
or the demand causes the market price to change. Clearly, a change to the fundamental
value of the security is most often accompanied by a change in the supply and demand
such that the market price moves in tandem with the fundamental value. However, in
certain situations, the supply or the demand changes, not in response to changes to the
fundamental value, but due to factors related to the market micro-structure7 in which the
security trades. In those situations, the market price deviates from its fundamental value.
The 2007−2009 financial crisis provided ample evidence of large deviations of market prices
from their fundamental values as the market micro-structure came under stress. In most
cases, investors were forced to sell some of their holdings causing the supply of securities
to overwhelm the demand. For instance, in Figure 1.1 we show a closed-end fund8 trading

6A risk premium is the component of the future expected return that compensates the investor for a
specific risk. As the risk premium increases, the price drops to make room for a larger future expected
return.

7Such as binding funding constraints restricting the number of shares that can be purchased.
8A Closed-End Fund (CEF) is an investment company that raises capital by selling a fixed number of

shares through an Initial Public Offering (IPO). The capital is used to purchase an investment portfolio.
After the IPO, the shares trade on the stock exchange where the market price is affected by the supply
and demand of the security. The Net Asset Value (NAV) per share is equal to the value of the investment
portfolio divided by the number of shares outstanding.
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at a substantial discount from its net asset value. According to the Wall Street Journal9,
certain hedge funds were forced to liquidate their equity Quant positions (such as closed-
end funds arbitrage positions) in order to raise capital after receiving margin calls from
their brokers to cover for losses in other strategies (mainly subprime credit). In other cases,
investors were forced to buy a large number of shares in a market with insufficient supply.
For instance, in Figure 1.2 we show the “meteoric rise” of Volkswagen shares as a result of a
short squeeze. “Short sellers desperate to close their positions paid as much as 1, 005 Euros
a share during the session following Sunday’s news that there was less than 6 percent of
VW stock still floating in the market”10. Porsche had been discreetly accumulating a large
number of VW shares to gain control of the firm. Those hedge funds are currently suing
Porsche for more than 2 Billion dollars in damages11. As shown in Figure 1.1 and Figure
1.2, liquidity shocks are characterized by a sharp deviation of the market price followed
by a quick reversal. It is interesting to note that the price deviation does not revert to
its “pre-shock” level. In the aftermath, market participants are reminded of the fragility
of capital markets and, as a result, price-in a larger systemic risk premium. With respect
to Figure 1.1, we first note that the discount didn’t shrink completely after August 15th

as investors priced-in a systemic risk premium (i.e., the risk of future liquidity shocks).
Second, the volatility of the fundamental value (i.e., the NAV) didn’t change significantly
as to justify an abrupt change in the fundamental risk premium. The rise in the liquidity
risk premium is therefore attributed solely to the rise in the systemic risk premium.

1.1 Outline

The thesis is composed of five chapters. The introduction was Chapter 1. In Chapter
2 we provide empirical evidence on the effects of funding liquidity on arbitrage spreads.
In Chapter 3 we explain the mechanism through which funding liquidity affects arbitrage
spreads by conducting analytical studies in a market micro-structure setting. In Chapter
4 we discuss the implications for risk management, and we conclude the thesis in Chapter
5. In what follows, we provide a more detailed break-down.

Chapter 2 is organized into six sections. In Section 2.1, we conduct a literature review.
In Section 2.2, we present and motivate the constituents of our funding liquidity index. The
constituents are classified into four categories: 1) margin requirements on futures contracts,
2) general collateral repo spreads, 3) LIBOR-based measures, and 4) corporate credit yield

9“The Minds Behind the Meltdown” - Wall Street Journal, January 23, 2010
10“Short sellers make VW the world’s priciest firm” - Reuters, October 28, 2008
11“Hedge Funds Sue Porsche for Billions Lost on VW” - Reuters, April 29, 2010
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Figure 1.1: Forced Sellers. In the first plot, we show the market price and the net-asset-
value (NAV) of a closed-end fund, Credit Suisse Asset Management Income Fund. In the
second plot, we show the discount of the market price from its NAV. The discount suddenly
widened on August 15th and rebounded shortly after. First, we note that the discount
didn’t shrink completely after August 15th as investors priced-in a systemic risk premium
(i.e., the risk of future liquidity shocks). Second, the volatility of the fundamental value
(i.e., the NAV) didn’t change significantly as to justify an abrupt change in the fundamental
risk premium. The rise in the liquidity risk premium is therefore attributed to a rise in
the systemic risk premium. The likely cause for the rise in liquidity risk premium is a
decline in funding liquidity 1) as arbitrageurs reduced the capital allocated for the CEF
arbitrage strategy to cover for losses in other strategies, 2) as financiers made more strict
their margin setting mechanism to protect themselves from counter-party risk, 3) as the
collateral value of the CEF book declined due an increase in volatility and drop in market
prices.
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Figure 1.2: Forced Buyers. Volkswagen briefly became the world’s biggest company by
market value on Tuesday October 29, 2008. Short sellers desperate to close their positions
paid as much as 1, 005 Euros a share during the session following Sunday’s news that there
was less than 6 percent of VW stock still floating in the market after a buying spree by
Porsche.
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spreads. In Section 2.3, we construct the Funding Liquidity Stress Index (FLSI) using
principal component analysis. In Section 2.4, we reproduce and study three arbitrage
strategies: 1) Closed-End Funds (CEF) arbitrage, 2) Mergers and Acquisitions (M&A)
arbitrage, and 3) on-the-run/off-the-run Treasury arbitrage. In Section 2.5, we study the
relationship between the FLSI index and the three arbitrage strategies. In Section 2.6, we
conduct event-studies surrounding changes in margin requirements.

Chapter 3 is organized into five sections. In Section 3.1, we conduct a literature re-
view and describe the market micro-structure model. In Section 3.2, we construct the
multiperiod optimization problem and show that it is an instance of “finite dynamic op-
timization problems”. We also derive a recursive formulation which we use to obtain the
numerical results in Section 3.4. In Section 3.3, we derive the analytical solution at time
T − 1 (essentially, the one-step problem) by solving the general multiperiod problem. In
Section 3.4, we discuss our numerical approach to solve the problem at times t < T − 1
and we compute the numerical results. In Section 3.5, we summarize our findings.

Chapter 4 is composed of two sections. In Section 4.1, we fit a Markov regime-switching
model and show that the FLSI index has a strong explanatory power for the probability
of being in a “bad regime”. In Section 4.2, we decompose the variance and covariance of
market prices and show that the increase in volatility and correlation during periods of
stress is primarily due to changes in the liquidity discounts.
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Chapter 2

Empirical Evidence

2.1 Literature Review

2.1.1 Related Work

The main objective of our empirical studies is to motivate and to provide empirical evidence
supporting the theoretical studies on market micro-structure models which we extend in the
next chapter. In particular, we provide empirical evidence 1) of the effects of funding liq-
uidity on arbitrage spreads, supporting the theoretical work of [SV97], [GV09] and [BP09],
and 2) of the commonality across various arbitrage spreads, supporting other aspects of
the theoretical work in [BP09].

We also contribute to the large empirical literature that attempts to explain the prop-
erties of hedge fund returns. Exposure to classic factors was explored by the early work of
[FF93], [Aga04] and [FH04]. More recently, many have explored the effects of funding liq-
uidity on hedge fund returns and the resulting contagion across various hedge fund styles.
For instance, [DN10a] shows that margins on futures contracts have significant explanatory
power for the returns of hedge funds. In a follow up paper, [DN10b] examines the role of
changes in margin requirements in explaining the asymmetric correlation among various
hedge fund styles. They found that after controlling for classic risk factors, an increase in
margin requirements leads to a significant increase in the probability of contagion. Others
have studied the returns in a regime switching framework. For instance, [BGP08] found
that, during high volatility regimes, hedge fund returns have significant exposures to the
Large-Small and Credit Spread risk factors. The authors used those two factors as proxies
to market liquidity and funding liquidity risk, respectively. They find that the exposure
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to those two factors largely explains the increase in correlation during high volatility peri-
ods. [AB02] also found that the correlation of returns increases during periods of elevated
volatility. [BSS08] studied the returns of hedge fund indices and found that there is no
contagion between traditional asset classes and hedge fund returns. However they found
evidence of contagion across various hedge funds styles. In a follow up paper, [BSS10]
shows that adverse shocks to certain funding liquidity and market liquidity measures are
associated with a significant increase in hedge fund contagion for certain styles.

During periods of crisis, contagion is not however restricted to hedge funds. [AB08]
proposes a new measure for systemic risk based on contagion between financial institutions.
The authors show that poor hedge fund returns increase the probability of poor returns
of investment banks in the following months. Others have studied the impact of financial
institutions leverage on market prices. For instance, [MAE11] develops a capital asset
pricing model where a broker-dealer leverage factor enters the pricing kernel. They find that
risky asset returns can be largely explained by their covariance to the leverage of broker-
dealers. [AS10] shows that collateralized borrowing and lending by financial intermediaries
have significant predictive power of market-wide risk, as measured by the implied volatility
of the S&P 500 index.

2.1.2 Contributions

Our approach is different from the literature in at least two major ways: 1) we construct
a novel and comprehensive index of funding liquidity, and 2) we reproduce three arbitrage
strategies with real and daily transactional data to test the effects of funding liquidity.

We construct an index with daily observations, called the Funding Liquidity Stress
Index (FLSI), reflecting the funding conditions. The FLSI index is novel in couple of
ways. First, its constituents are funding measures representing the various funding chan-
nels. They are split into four categories: 1) margin requirements on futures contracts, 2)
general collateral repo spreads, 3) LIBOR-based measures, and 4) corporate credit yield
spreads. Related studies however have used measures from only one or two of the above
four categories. For instance, [BGP08] uses corporate credit spread (category 4), [DN10a]
uses margins of futures contracts (category 1), and [BSS10] uses credit spreads (category 4)
and TED spreads (category 3). Second, we use principal components analysis to compute
the weightings of the various funding measures in the FLSI index. Not unexpectedly, we
find that the FLSI index explains 78% of the idiosyncratic risk of banks’ stock prices1.

1The banking sector is the most sensitive sector of the economy to funding conditions. Their assets
have longer maturity than their liabilities and, as a result, banks need a healthy funding environment to
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That strong relationship shows that the FLSI index is a strong measure of the funding
conditions.

Second, we reproduce three arbitrage strategies using daily transactional data for the
past twelve years. That enables us to 1) obtain daily observations of arbitrage spreads,
and 2) study the relationship between actual arbitrage strategies and funding liquidity. To
the best of our knowledge, no other work studied the effects of funding liquidity on actual
arbitrage strategies with daily frequency. The majority have used monthly returns of hedge
fund indices, while others collected monthly returns of individual hedge funds. Hedge fund
returns however are not proxies to fully-hedged arbitrage strategies2 as many elect to
hedge or unhedge certain risk factors on a discretionary basis to improve the returns. To
synthetically obtain returns of fully-hedged arbitrage strategies, it is common to regress
the returns of hedge funds on various traditional factors and asset classes, and then study
the residuals3. In this thesis, however, we study actual arbitrage strategies by reproducing
them from daily and real transactional data, instead of synthetically creating them from
hedge fund returns. Also note that using daily observations rather than monthly is very
important given the high intra-month volatility of market prices and market conditions4.

Equipped with the daily observations of the FLSI index and the spreads of three arbi-
trage strategies, we perform various studies. We show that the FLSI index explains up-to
65% of the variation in arbitrage spreads. We also show that the contagion between the
arbitrage strategies is mostly due to their common exposure to the FLSI index.

To further support the theoretical studies on market micro-structure, we perform event-
studies surrounding events of changing margin requirements. In particular, we show that
margins rise after periods of increasing volatility and decreasing asset prices which sup-
ports the “margin setting mechanism” in [BP09] as well as the assumption regarding the
use of “backward-looking risk measures” by market participants in [BCG+09]. More im-
portantly, asset prices continue to decrease after margins increase, providing evidence of
spiraling effects as predicted by the theoretical model of [BP09]. The opposite is also true.
Margins decrease after periods of rising prices and decreasing market volatility. Our ob-
servations further support the concepts of “performance-based arbitrage” in [SV97] and
“pro-cyclicality” of financing in [Gea09].

roll-over their maturing short term debt [Bru09] [BO10].
2See [Aga04] and [FH04].
3See [DN10b] and [BSS10].
4For instance, the VIX, “a popular measure of the implied volatility of S&P 500 index options”, had

the following values at month ends in 2008: 39.4 on September 30th, 59.9 on October 31st and 55.3 on
November 30th. At a first glance, it seems that the index didn’t change much. The intra-month values
however where much higher: the VIX reached a value of 80 on October 27th and 80.9 on November 20th.
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Throughout this chapter, we perform further literature review and discuss other con-
tributions as we tackle various topics, variables and indices.

2.1.3 Outline

The rest of the chapter is organized into five sections. In Section 2.2, we present and
motivate the constituents of our funding liquidity index. The constituents are classified
into four categories: 1) margin requirements on futures contracts, 2) general collateral
repo spreads, 3) LIBOR-based measures, and 4) corporate credit yield spreads. In Section
2.3, we construct the Funding Liquidity Stress Index (FLSI) using principal component
analysis. In Section 2.4, we reproduce and study three arbitrage strategies: 1) Closed-End
Funds (CEF) arbitrage, 2) Mergers and Acquisitions (M&A) arbitrage, and 3) on-the-
run/off-the-run Treasury arbitrage. In Section 2.5, we study the relationship between the
FLSI index and the three arbitrage strategies. In Section 2.6, we conduct event-studies
surrounding changes in margin requirements.

2.2 Empirical Funding Measures

Funding liquidity is the ease by which an arbitrageur can borrow to fund his arbitrage
positions. There are two types of lending: secured and unsecured. The dominant form of
unsecured lending is interbank lending5. Another form of unsecured lending is corporate
credit in the bond market. When lending is secured, the borrower posts collateral. For
instance, when an arbitrageur purchases a security St, he can borrow Lt by posting the
security as collateral. The difference between St and Lt is called dollar margin, mt = St−Lt.
The arbitrageur can effectively purchase the security by paying only mt and posting the
security as collateral. The dollar margin mt is set by the lender. In case of default at time
t+ 1, the lender liquidates the security and recovers St+1 +mt. mt is therefore set so that
mt > St − St+1 with a certain level of confidence6. The lender updates mt regularly to
adjust for changes in volatility. Two primary examples of secured lending are 1) trading
on margin, and 2) conducting general collateral repo transactions.

In this section, we present seven empirical funding measures. They are classified into
four categories reflecting the four forms of lending discussed above: 1) margin requirements

5LIBOR is the most popular reference rate associated with this form of lending
6For instance, the Chicago Mercantile Exchange (CME) sets margins so they cover 99 percent of the

potential price moves.
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on futures contracts, 2) general collateral repo spreads, 3) LIBOR-based measures, and 4)
corporate credit yield spreads.

2.2.1 Margin Requirements on Futures Contracts

A futures contract is a standardized contract between two parties to exchange a specific
asset at a future date for a price determined today. The underlying asset can be a physical
asset such as a commodity or a currency, or a referenced item such as an index or a financial
instrument. Futures contracts trade on exchanges that perform clearing functions. Those
functions aim to reduce the risk of default by either party by asking each of them to post
an amount of cash, called an initial margin. As the price of the underlying asset changes,
the profits and losses are settled daily by debiting or crediting the margin accounts. The
parties are then asked to fund their margin accounts so that they don’t fall below a certain
level, called maintenance margin. Since the profits and losses are settled on an on-going
basis, the asset is exchanged at maturity at the spot price, not at the price specified at
contract initiation.

We study the margins of futures contracts that trade on the Chicago Mercantile Ex-
change (CME). CME publishes the historical margins of certain contracts on their website7.
We focus on futures contracts on the following assets: 1) the S&P 500 index, 2) the Dow
Jones index, 3) the AUS/USD foreign exchange rate, and 4) the NZD/USD foreign ex-
change rate. CME reports the dollar margin mt per contract. The dollar margin does
not change that often, only few times a year. We are however interested in the percentile
margin. We compute the percentile margin as follows: Mt = mt

St×n where St is the spot
price of the asset and n is the contract size (i.e., the number of units of the underlying
asset). In Figure 2.1 and Figure 2.2, we plot the dollar and percentile margin requirements
on the S&P 500 futures contract. In Appendix B, we plot the margins of futures con-
tacts on the remaining three assets (Figure B.1 to Figure B.6). To represent the margin
requirements on various assets, we construct an equally weighted index of the percentile
margins on three of the four futures contracts. We exclude the margins of the Dow Jones
futures contract due to its short history. In Figure 2.3, we plot the index. We note that
the custom index increased during most periods of financial crisis. In particular, the areas
in yellow correspond to periods of financial stress whereas the areas in grey correspond
to official U.S. recessions. For more information, refer to Appendix A. In Table 2.1, we
compute the annualized volatilities of the four assets and their mean margin requirements.
We note that higher the volatility of the asset, higher is its margin requirement. That is

7http://www.cmegroup.com/clearing/risk-management/historical-margins.html
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Table 2.1: We compute the annualized volatility of the four assets and their mean margin
requirements. We note that higher the volatility of the asset, higher is its margin require-
ment. That is consistent with the hypothesis that lenders use the volatility of an asset to
set its margin requirement.

Asset Annualized Volatility Average Margin (%)
S&P 500 21.2% 8.3%

Dow Jones 19.4% 8.0%
NZD / USD FX 14.0% 3.5%
AUD / USD FX 12.7% 2.9%

consistent with the hypothesis that lenders use the volatility of the asset to set its margin
requirement. We conduct further analysis in Section 2.6 in the form of event-studies.

Figure 2.1: Margin requirement (in dollars) on the S&P 500 futures contract. It is the
dollar amount required to hold a position in the contract. Note that the futures contract
is on 250 units of the S&P 500 index.
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2.2.2 General Collateral Repo Spread

A general collateral repo transaction is another form of secured lending. In a repurchase
agreement (repo), a financial institution (the borrower) sells a security and pledges to buy
it back from the other party (the lender) at a later date. The security is transferred to the
lender and is used as a collateral in case of default. To protect the lender from changes
in the market value (i.e., liquidation value) of the security, a “haircut” is applied to the
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Figure 2.2: Margin requirement (in percent) on the S&P 500 futures contract. We compute
the percentage value as follows: Dollar margin

S&P500 index×Contract size
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Figure 2.3: Custom Futures Margin Index. We construct an equally weighted index of
percentile margin requirements on three futures contracts: 1) the S&P 500 stock index, 2)
the AUS/USD foreign exchange, and 3) the NZD/USD foreign exchange
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security, valuing it at a price lower than the market value. The security is later purchased
by the borrower at a price higher than the original sale price; the difference is effectively
the interest rate on the loan, known as the repo rate. The Federal Reserve uses repos to
make collateralized loans to broker-dealers via auctions over various types of collateral8

[Kea96]. The typical term of the loan is overnight, but they can exist with terms up to
65 days. Broker-dealers borrow through repos using listed securities as collateral in order
to finance their operations (such as buying inventory and funding their customers’ margin
accounts). [AS10] shows that financial institutions adjust their total leverage through repos
and reverse repos.

[AB08] used the difference between the three-month repo rate and the yield on three-
month U.S. Treasury Bill as a proxy for short term funding liquidity risk. This funding
measure is called the general collateral repo spread and is one of the several empirical fund-
ing measures used in this chapter to construct our Funding Liquidity Stress Index. The
yield on three-month U.S. Treasury Bill is published by the Board of Governors of the Fed-
eral Reserve System. Historical values can be obtained from the Federal Reserve Economic
Data portal9. We obtain the historical values of the three-month General Collateral Repo
rate from Bloomberg. In Figure 2.4, we plot the historical values of the spread. We note
that it is very sensitive to the level of financial stress in the market as it spikes during most
periods of stress. The shaded areas in the figure correspond to periods of stress.

Figure 2.4: General Collateral Repo Spread. It is the difference between the three-month
general collateral repo rate and the yield on three-month U.S. Treasury Bill.
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8http://www.newyorkfed.org/aboutthefed/fedpoint/fed04.html
9http://research.stlouisfed.org/fred2/series/DTB3
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2.2.3 Libor-based Measures

To meet reserves requirements, banks borrow unsecured funds from each other in the “in-
terbank lending market”. The majority of the loans are overnight. The London Interbank
Offered Rate (LIBOR) is “the reference rate at which banks borrow unsecured funds from
each other in the London interbank lending market”. LIBOR plays a critical role in the
financial system. It is used 1) as a reference rate in many financial instruments10, 2) to
price derivatives on financial securities, and 3) to finance arbitrage operations in major
banks.

Since the loans bear some risk, the banks charge each other a rate larger than the yield
on Treasury bills. The spread between the three-month LIBOR and the yield on the three-
month U.S. Treasury Bill is a widely used measure of the health of the financial system and
the state of funding liquidity ([MSW08] [GS00] [CT03]). The measure is called the TED
spread. As shown in Figure 2.5, the TED spread spiked during all periods of financial stress,
and that is for the following two main reasons. First, banks hoard cash during periods
of stress in anticipation to difficulties in obtaining other forms of financing11 needed to
roll-over their short-term debt. Second, an increase in counterparty risk and information
asymmetry makes banks more reluctant to lend during periods of stress [MU08].

Figure 2.5: TED Spread. It is the difference between the three-month LIBOR and the
yield on the three-month U.S. Treasury Bill. We note that the TED spread spiked during
all periods of stress.

0
1

2
3

4

1998 2000 2002 2004 2006 2008 2010

Libor3M − m3TBill as TedSprd 
 Custom Index

Date (Daily)

T
E

D
 S

pr
ea

d 
(%

)

10LIBOR is used as a reference rate in many financial instruments such as variable rates mortgages,
forward rates agreements, interest rates swaps and futures

11Other forms of financing are asset-backed commercial paper, repurchase agreements and securitization.
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Another important LIBOR-based funding measure is the two-year swap spread. An
interest rate swap is a contract to exchange fixed for floating rate payments. The floating
rate is typically the LIBOR while the fixed rate is a specified rate (the spread) on top of
the yield of a Treasury security of the same maturity. The spread is positive and captures
funding liquidity risk and counterparty risk [Gri02]. In Figure 2.6, we plot the two-year
swap spread. Similar to the TED spread, it spiked during most periods of stress as funding
and counter-party risk increased.

Figure 2.6: Two-year swap spread.
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2.2.4 Corporate Credit Yield Spreads

Corporations issue bonds to finance their operations. Credit rating agencies, such as
Moody’s, Fitch and Standard & Poor, assess the credit worthiness of a bond and as-
sign a rating in the form of letters. The credit rating determines to a large extent the
cost to issue debt in the primary market and affects credit yields in the secondary market.
In this chapter, we use Moody’s credit rating to categorize corporate bonds. Bonds rated
below Baa are called junk bonds (or high-yield bonds), while those rated higher are called
investment grade bonds. Those rated Aaa (i.e., the highest rating) are called prime bonds.

Bonds issued by the US Treasury and certain major corporations are rated Aaa by
Moody’s and are considered the safest bonds in the market. The yields of corporate Aaa
bonds are however higher than the yield of US Treasury bonds, with similar maturity,
for few reasons. First, US Treasury bonds have higher collateral value and can be used
to obtain repo loans at favourable rates [Sen11]. Second, US Treasury bonds are more
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liquid than the highest-rated corporate bonds. As a result, the difference between yields
of corporate prime bonds and the yield of US Treasury bonds is positive and increases
during periods of stress, as flight-to-liquidity gains traction. In Figure 2.7, we plot the
spread between Moody’s Seasoned AAA Corporate Bond Yield12 and the yield of ten-year
Treasury bonds. We observe that the spread increases during periods of financial stress.

Figure 2.7: Aaa/10-year Treasury Spread. It is the difference between Moody’s Seasoned
AAA Corporate Bond Yield and the yield of ten-year Treasury bonds. We observe that
the spread increases during periods of financial stress.
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Baa is the lowest credit rating in the investment grade category, while Aaa is the highest.
The spread between Baa bonds yields and Aaa bonds yields increase during periods of stress
[LMN05] [DNFL11]. The increase is due to 1) a higher perception of risk of Baa bonds,
and 2) an increase in information asymmetry as certain bonds are perceived riskier than
others in the same Baa category. The issue related to information asymmetry is known
as the ‘adverse selection problem’ or the ‘external finance premium’ [BG95] [DG08]. In
Figure 2.8, we plot the spread between Moody’s Seasoned Baa Corporate Bond Yield13 and
Moody’s Seasoned AAA Corporate Bond Yield. Similar to Figure 2.7, the spread increased
significantly during the 2007− 2009 financial crisis.

Bonds rated below Baa are called high-yield or junk bonds [HK96] [Mil99]. The differ-
ence between the yields of junk bonds and the yields of Baa rated bonds is very sensitive
to flight-to-quality [GL99] and flight-to-liquidity [Kwa01]. That is for the following three
reasons. First, the difference in credit risk between junk bonds and Baa rated bonds is

12Available from the Federal Reserve Economic Data portal.
13Available from the Federal Reserve Economic Data portal.
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Figure 2.8: Baa/Aaa Corporate Spread. It is the difference between Moody’s Seasoned Baa
Corporate Bond Yield and Moody’s Seasoned AAA Corporate Bond Yield
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higher than the difference between the Baa and Aaa rated bonds. Second, junk bonds have
lower liquidity as they are issued in smaller quantities and the majority of institutional
investors do not invest in them. Third, due to the low credit rating and sensitivity to eco-
nomic cycles, investors in junk bonds are subject to adverse selection effects more so than
investors in Baa bonds. In Figure 2.9, we plot the spread between Merrill Lynch US High
Yield Effective Yield14 and Moody’s Seasoned Baa Corporate Bond Yield. Similar to the
other corporate spreads, it dramatically increased during periods of financial stress. At the
peak of the crisis, the spread exceeded 6 standard deviations due to severe flight-to-quality
and flight-to-liquidity.

2.3 Funding Liquidity Stress Index

2.3.1 Constructing the Index

In the previous section, we presented seven funding measures grouped into four different
categories. Each category captures one aspect or another of the funding liquidity (see Table
2.2). In Table 2.3, we list the seven funding measures. In the middle column, we list the
starting date at which each measure became available. In the last two columns, we compute

14Also available from the Federal Reserve Economic Data portal http://research.stlouisfed.org/
fred2/series/BAMLH0A0HYM2EY.
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Figure 2.9: Junk Bonds/Baa Corporate Spread. It is the difference between Merrill Lynch
US High Yield Effective Yield and Moody’s Seasoned Baa Corporate Bond Yield.
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Table 2.2: Four different categories of funding measures.
Category of Funding
Measures

Aspects of Funding Liquidity Captured

Margins on Futures Con-
tracts

Cost to finance positions in various instruments such as
indices, commodities and currencies

Collateral Repo Spreads Cost of secured lending to broker-dealers
Libor-based Measures Cost of unsecured lending between major banks
Corporate Credit Yield
Spreads

Cost of borrowing by corporations. It also reflects the
balance sheet strength of various financial institutions
since they are major holders of corporate bonds.

the mean and standard deviations over the period ranging from 2000/01/04 to 2011/07/29
which is the longest period common to all seven measures. In Table 2.4, we compute the
correlation matrix over this entire period. We observe that the majority of the correlation
coefficients are high and positive. Some of the pair-wise correlation coefficients are however
small or even negative. That is a good property as it indicates that the funding measures
capture different aspects of the funding liquidity. However we observe that during periods
of stress, such as the 2007 − 2009 financial crisis, all correlation coefficients increase and
become positive (see Table 2.5) showing commonality in the worsening of all aspects of
funding liquidity.

Our objective is to construct a funding liquidity stress index composed of the seven
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Table 2.3: We list the seven Funding Measures. The means and standard deviations are
computed over the period from 2000-01-04 to 2011-07-29. It is the longest period common
to all measures.

Category Funding Measure Date Mean Standard
Available Deviation

Futures Mar-
gins

Custom Futures Margin In-
dex

2000-01-04 5.10% 1.60%

Repo Spreads General Collateral Repo
Spread

1991-05-21 0.20% 0.26%

Libor Mea-
sures

TED Spread 1985-01-02 0.51% 0.50%

2-year Swap Spread 1996-02-26 0.47% 0.22%
Corporate Aaa / 10-year Spread 1983-01-03 1.55% 0.50%
Credit Yield Baa / Aaa Spread 1986-01-02 1.11% 0.51%
Spreads Junk / Baa Spread 1991-05-21 3.27% 2.32%

Table 2.4: Correlation matrix of all seven funding measures listed in Table 2.3 over the
period ranging from 2000-01-04 to 2011-07-29. It is the longest period common to all
measures.

2-year
Swap

Spread

TED
Spread

Aaa /
10y

Spread

Baa /
Aaa

Spread

Junk /
Baa

Spread

Gen
Repo

Spread

Futures
Margin
Index

2-year Swap Spread 1.00
TED Spread 0.85 1.00
Aaa/10y Spread 0.23 0.17 1.00
Baa/Aaa Spread 0.35 0.46 0.56 1.00
Junk/Baa Spread 0.51 0.42 0.76 0.79 1.00
Gen Repo Spread 0.73 0.81 −0.15 0.01 0.07 1.00
Futures Margin In-
dex

0.14 0.27 0.65 0.80 0.70 −0.18 1.00
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Table 2.5: Correlation matrix computed over a shorter time period, the 2007−2009 financial
crisis.

2-year
Swap

Spread

TED
Spread

Aaa /
10y

Spread

Baa /
Aaa

Spread

Junk /
Baa

Spread

Gen
Repo

Spread

Futures
Margin
Index

2-year Swap Spread 1.00
TED Spread 0.88 1.00
Aaa/10y Spread 0.88 0.80 1.00
Baa/Aaa Spread 0.73 0.71 0.85 1.00
Junk/Baa Spread 0.82 0.83 0.90 0.97 1.00
Gen Repo Spread 0.52 0.66 0.38 0.12 0.26 1.00
Futures Margin In-
dex

0.69 0.77 0.80 0.95 0.95 0.21 1.00

funding measures. We use Principal Component Analysis (PCA) [Flu88] to find the most
appropriate linear combination of these measures. Many financial stress indices use PCA
to weight their variables. Important ones are 1) the St. Louis Feds Financial Stress Index
(STLFSI) [SL10], 2) the Kansas City Fed’s Financial Stress Index (KCFSI) [HK09], and 3)
the Chicago Feds National Financial Conditions Index (NFCI) [BB11] [BB10]. There are
two major differences between our funding liquidity stress index and those three indices.
First, we focus solely on funding conditions whereas those three financial stress indices
cover general financial and economic conditions. Second, our funding liquidity stress index
is daily whereas the NFCI and the STLFSI are weekly indices, and the KCFSI is a monthly
index. Daily measurements enable us to capture quick changes in funding conditions and
to better study the relationship between the index and the various arbitrage strategies.
Since most arbitrage strategies and funding measures are mean-reverting, using weekly or
monthly frequency prevents us from capturing extreme events that occur in between.

We use PCA to identify the factor that accounts for as much as possible for the variabil-
ity of our measures. That factor will be used as our funding liquidity stress index. We first
standardize our measures by subtracting the mean and then dividing by the standard devi-
ation. The standardized measures will therefore have equal variances and our index won’t
be biased towards any measure in particular. Next, we compute the eigenvectors using
singular value decomposition of the data matrix. The eigenvectors (or sets of coefficients)
are used to construct the principal components (or factors), by providing the loadings of
the funding measures. We choose the principal component with the highest variance as
our funding liquidity stress index. The corresponding eigenvector provides the weights of
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Table 2.6: Importance of principal components.
PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 1.92 1.49 0.72 0.51 0.40 0.34 0.21
Proportion of Vari-
ance

0.53 0.32 0.07 0.04 0.02 0.02 0.01

Cumulative Propor-
tion

0.53 0.85 0.92 0.95 0.98 0.99 1.00

Table 2.7: Coefficients of funding measures.
Funding
Liquidity

PC2

Stress Index
(PC1)

2-year Swap Spread 0.20 0.28
TED Spread 0.19 0.28
Aaa/10y Spread 0.19 −0.21
Baa/Aaa Spread 0.23 −0.14
Junk/Baa Spread 0.24 −0.12
Gen Repo Spread 0.10 0.40
Futures Margin Index 0.20 −0.23

the funding measures. In Table 2.6, we compute the standard deviation of each principal
component and the corresponding proportion of total variance explained by each principal
component. The principal component PC1 explains 53% of the variability in the data,
followed by PC2 which explains 32%. Together, PC1 and PC2 explain 85% of the data.
The final step is to standardize PC1 and PC2 so their mean is zero and standard deviation
is one. In Table 2.7, we list the resulting weights of the funding measures corresponding
to PC1 and PC2. We will call PC1 the Funding Liquidity Stress Index (FLSI).

Not unexpectedly, all the coefficients of the Funding Liquidity Stress Index are positive,
indicating that any increase in the funding measures (i.e., any deterioration in funding
conditions) increases the value of the index. The coefficients range from a low of 0.10 for
the General Collateral Repo Spread to a high of 0.24 for the Junk/Baa Corporate Yield
Spread. Since each funding measure is standardized, a one standard deviation move by a
funding measure corresponds to a change in the index equal to the variable’s coefficient.
For instance, a one standard deviation move by the Junk/Baa Corporate Yield Spread
affects the FLSI index 2.4× more than a one standard deviation move by the General
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Collateral Repo Rate. We plot the FLSI index in Figure 2.10. The index spiked during all
periods of financial crisis as funding conditions deteriorated.

Figure 2.10: The Funding Liquidity Stress Index (FLSI).

−
1

0
1

2
3

4
5

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Funding Liquidity Stress Index 
 Principal Component Analysis

Date (Daily)

In
de

x 
(P

C
1)

The second principal component (PC2), plotted in Figure 2.11, is interesting as well.
The coefficients of the seven funding measures, corresponding to PC2, are listed in Table
2.7. The coefficients of the 2-year swap spread, the TED spread and the general collateral
repo spread (group A) are positive, while those of the Aaa/10y spread, the Baa/Aaa Corp
spread, the Junk/Baa Corp spread and the futures margin index (group B) are negative.
That categorization is not just statistical, but makes sense in finance. Measures in group
B are funding measures derived from investable assets such as stocks, corporate bonds
and currencies. Those measures therefore reflect the risk premia priced in the underlying
assets. So when assets are in a bubble state (i.e., when investors are overly optimistic and
risk is mispriced), funding liquidity is artificially deflated. Measures in group A, however,
are rates negotiated between two parties and are not derived from investable assets.

In Table 2.8, we calculate the average values of the FLSI index and PC2, over various
periods. We observe that the averages are high and positive during periods of stress, and
negative during ‘normal’ periods. The averages are zero over the entire period since the
FLSI index and PC2 have been standardized.

2.3.2 Idiosyncratic Volatility of Banks’ Stock Prices

The banking sector is the most sensitive sector of the economy to funding conditions. Their
assets have longer maturity than their liabilities and, therefore, they rely on a healthy
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Figure 2.11: The second principal component (PC2) .
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Table 2.8: We calculate the average values of the FLSI index and PC2, over various periods.
We observe that the averages are high and positive during periods of stress, and negative
during “normal” periods. The averages are zero over the entire period since the FLSI index
and PC2 have been standardized.

Funding
Liquidity

PC2

Stress Index

07-09 crisis (see Table A.3) 1.17 1.79
98-02 crisis (see Table A.2) 0.35 0.17
Recessions (see Table A.1) 1.44 0.20
“Normal” periods −0.36 −0.11
All periods 0.00 0.00
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funding environment to roll-over their maturing short-term debt [BO10] [Bru09]. If our
Funding Liquidity Stress Index is a good measure of funding conditions, then it should
have a strong explanatory power for the idiosyncratic volatility (i.e., risk) of banks’ stock
prices. We define the idiosyncratic volatility as the downside deviation of unexpected
returns. Unexpected returns are the returns in excess of what is expected from changes in
the general equity market.

The KBW Bank Index is the most widely used index of U.S. banks stocks and is used
to conduct our analysis. We use the returns of the S&P 500 index to proxy the returns of
the general equity market. The time-varying downside deviation of unexpected returns is
computed over a two-month rolling window from 1995/01/01 to 2011/06/01. For instance,
to compute the downside deviation on day t, we perform the following four steps: 1) first
we regress the daily returns of the KBW Bank index against the daily returns of the S&P
500 over the period from t − 300 to t − 60 (i.e. the 8 months immediately prior to the
two-month window) to obtain the beta of the bank index, 2) next we compute the expected
returns over the period from t− 60 to t (i.e. over the two-month window) by multiplying
the daily returns of the S&P 500 index by the beta, 3) the unexpected returns are then
calculated by subtracting the daily expected returns from the daily bank index returns
over the period from t− 60 to t, and 4) we finally compute the downside deviation of these
daily unexpected returns. The methodology is the same as in [HK09], [HH09] and [Smi84].

In Figure 2.12, we plot the value of the idiosyncratic volatility of banks’ stock prices.
We observe a spike in idiosyncratic volatility during the financial crisis of 2007 − 2009,
a period widely known as a banking crisis [Gor08] [Bru09]. In Table 2.9, we regress the
idiosyncratic volatility of banks’ stock prices against the Funding Liquidity Stress Index
(FLSI). The factor loading is positive and R2 equals 78%. The FLSI index therefore has
a strong explanatory power for the idiosyncratic volatility of banks’ stock prices. That
constitutes another evidence that the custom Funding Liquidity Stress Index is a good
proxy to funding conditions.

2.4 Classic Arbitrage Strategies

Next we reproduce three classic arbitrage strategies: 1) closed-end funds arbitrage, 2)
mergers and acquisitions arbitrage, and 3) on-the-run/off-the-run Treasury arbitrage.
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Figure 2.12: Idiosyncratic Volatility of Banks Stock Prices. We observe a spike during the
financial crisis of 2007− 2009, a period widely known as a banking crisis
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Table 2.9: We regress the idiosyncratic volatility of banks’ stock prices against the Funding
Liquidity Stress Index (FLSI). The factor loading is positive and R2 equals 78%. The FLSI
index therefore has a strong explanatory power for the idiosyncratic volatility of banks’
stock prices.

( 1 )
idiosyncratic volatility

(Intercept) 0.122∗∗∗

(0.001)
FLSI.pc1 0.103∗∗∗

(0.001)
R2 0.783
adj.R2 0.783
N 2823

Standard errors in parentheses
∗ (p ≤ 0.1), ∗∗ (p ≤ 0.05), ∗∗∗ (p ≤ 0.01)
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2.4.1 Closed-End Funds Arbitrage

A Closed-End Fund (CEF) is an investment company that raises capital by selling a fixed
number of shares through an Initial Public Offering (IPO). The capital is used to purchase
an investment portfolio15. After the IPO, the shares trade on the secondary market16 where
the market price is affected by the supply and demand of the security. The market price
can therefore deviate from its fundamental value known as the Net Asset Value (NAV).
The NAV is equal to the value of the investment portfolio divided by the number of shares
outstanding. We refer to the deviation of the market price from its NAV as a spread. If the
CEF trades above the NAV, the spread is positive and we say that it trades at a premium.
Conversely, if it trades below the NAV, the spread is negative, and we say that it trades
at a discount. According to textbook arbitrage, sophisticated traders can arbitrage these
spreads. For instance, if a CEF trades at a discount, they will buy the CEF and short a
basket of securities similar to the CEF’s underlying investment portfolio17. In doing so,
they collectively exercise trading pressures that push the market price closer to its NAV.

In practice, however, CEFs trade at various discounts and sometimes at a premium.
A large number of studies have been performed to study this phenomenon. [GT] and
[Pon96] provide evidence that CEF spreads persist because various costs affect the ability
of rational agents to profit from the mispricing. In particular, they show that the spreads
vary according to the difficulty in shorting the underlying securities of the NAV. [Mal77] and
[LST91] argue that pricing theories based on the fundamentals of the investment portfolio
or management fees have had little, if any, ability to explain the mispricing. They state that
fluctuations of CEFs’ market prices are mostly driven by changing investors sentiments.
The vulnerability of CEFs makes them riskier than their underlying investment portfolios,
and as a result, they trade at a discount from their NAV.

Our study on CEFs is somewhat complementary to the literature. We don’t aim to
explain the cross-sectional differences of CEF spreads. Our objective is however to study
the changes in CEF spreads through time and under various market conditions. [Mal77]
and [LST91] assert that spreads are affected by retail investors sentiment. We provide
strong evidence of other factors. We show that the ability of sophisticated investors to
conduct arbitrage significantly affects the spreads of CEFs. In particular, we show that
1) funding liquidity has a strong explanatory power for the changes in CEFs spreads,
and 2) the spreads are highly correlated with the spreads of other arbitrage strategies.

15More information is available on the Security and Exchange Commission (SEC) at http://www.sec.
gov/answers/mfclose.htm.

16i.e., on a stock exchange such as NYSE and NASDAQ
17They place short positions to hedge future changes in the net asset value.
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Table 2.10: The number of CEFs in different asset classes.
Asset Class # CEFs
Debt 282
Equity 146
Many Classes 35
Commodity 2

In other words, deteriorating funding conditions that limits the arbitrageur from using
leverage (observation 1) and the reduction of his capital due to losses in other strategies
(observation 2) hinder his ability to conduct arbitrage and as a result causes CEF discounts
to widen.

CEFs have different investment objectives and invest in different asset classes. There
are approximately 600 CEFs listed in the U.S. according to Bloomberg. We remove those
that have missing information and those that are chronically illiquid18. The universe is
reduced to 465 CEFs, representing more than 94% of total assets managed by closed-end
funds in the US. In Table 2.10, Table 2.11 and Table 2.12 we show the number of CEFs in
different asset classes, different investment objective categories and different size categories,
respectively. In Figure 2.13, we plot the number of CEFs indexed in time since January
1st, 1999. The shaded areas correspond to periods with unusual events. In particular,
the areas in yellow correspond to periods of stress whereas the areas in grey correspond
to official U.S. recessions. For more information, refer to Appendix A. We note that the
number of CEFs doubled from 2001 to 2011.

In Figure 2.14 we plot the daily median of the spreads of all outstanding CEFs. The
median varied between 0% and negative 30% in the past 12 years. The past 12 years were
characterized by two long periods of crisis, each followed by a recovery period. The first
period of crisis included the dot-com crash, September 2001 attacks, various corporate
accounting scandals, and the 2001 U.S. recession (for a complete list, refer to Table A.2).
During that period, the median reached a low of negative 15%. It narrowed back to
zero in the following recovery period. The second period of crisis corresponds to the
2007-2009 financial crisis which included the “Great Recession”. During that period, the
median reached a 12-year low of negative 30%. It narrowed down to zero in the following
recovery. We observe the following pattern: CEF spreads widen during periods of stress and
contract in the following recovery period. In Section 2.5, we show that funding conditions,

18We used the 20-days average daily volume to assess the liquidity of a closed-end fund. In particular,
we removed all CEFs that traded less than 12, 000 shares on average in the last 20 business days prior to
June 26th, 2011.
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Table 2.11: The number of CEFs in different investment objective categories.
Investment Objective # CEFs
Municipal 131
Government and Corporate 88
Growth and Income 45
Corporate High Yield 40
Sector Specific 39
Other 39
Country Specific 27
Balanced 26
Income Equity 16
Global Corp Debt 14

Table 2.12: The number of CEFs in different size categories.
Total Assets (Mln) # CEFs

> 1, 500 17
1, 000 - 1, 500 37
500 - 1, 000 103
250 - 500 140
100 - 250 126
< 100 42

Figure 2.13: The number of CEFs outstanding.
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which affects the ability of sophisticated investors to conduct arbitrage, have a significant
explanatory power for CEF arbitrage spreads.

Figure 2.14: The median of CEFs premiums.
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We revisit Figure 2.13 in light of Figure 2.14. The number of CEFs increased every
year except two years, 2000 and 2008, in the past 12 years. Those two years correspond to
periods of high financial stress and CEFs trading at large discounts. During such periods,
investment bankers and CEF sponsors have a hard time raising money for new funds for
the following reason. Money is raised in the primary market through an IPO. The newly
formed CEF uses the money to pay for IPO expenses and buy the investment portfolio
whose value is the new NAV. As a result, the price per share in the primary market (i.e.,
price at IPO) is larger than the NAV per share. However, in periods of stress, CEFs trade
at a large discount to the NAV in the secondary market. That reduces the incentive for
investors to buy CEFs in the primary market at a premium.

In Figure 2.15 we plot the median of the daily volumes of CEFs. It is clear that the
daily volume is time-varying. We also observe a general trend of increasing daily volumes.
It is perhaps the result of increasing liquidity in the market overall, as new trading venues
are created and trading commissions drop. More interestingly, we observe spikes in volume
during periods of stress, coinciding with sudden widening of the discounts. The coincidence
of a sudden increase in volume and a drop in market price provides a clear indication of
selling pressures. This phenomenon is perhaps best described by Lasse Pedersen [Ped09].
He provides an analogy between “The dangers of shouting “fire” in a crowded theatre” and
“the dangers of rushing to the exit in the financial markets”.

Arbitrageurs typically use a statistical measure called standard score to evaluate the
attractiveness of a particular arbitrage spread. As the name implies, a standard score
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Figure 2.15: The median daily volume (i.e., number of shares traded) of closed-end funds.
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measures the number of standard deviations19 an observation is above its mean. Arbi-
trageurs take a long position (a short position) in the arbitrage spread if the standard
score is low (high). For instance, a strategy can consist of 1) taking a long position when
the standard score falls below −1 and later close the position when it goes to zero, and 2)
taking a short position when the standard score rises above +1 and later close the position
when it goes back to zero20. In Figure 2.16, we plot the standard score of the median
time-series. We observe that the standard score crosses the interval [−1,+1] many times
in the past 12 years, generating arbitrage profits. Arbitrageurs frequently use leverage to
boost their returns. They should manage their risk very carefully as arbitrage spreads can
widen many standard deviations before narrowing down to zero. For instance, the median
of CEFs widened to levels exceeding seven standard deviations during the 2007 − 2009
financial crisis. In Figure 2.17 we zoom into the 2007 − 2009 financial crisis. We observe
that the standard score dropped temporarily below −1 with unusually high volume during
most periods of stress. We hypothesize that closed-end funds suffered from broad sell-off
by multi-strategy funds looking to reduce risk and raise cash after incurring losses in other
strategies [KL11]. CEF positions were a good source of cash as they were relatively liquid,
yet required large margin balances.

19The standard deviation used is the historical standard deviation over the whole time period.
20 Arbitrageurs can change the threshold to −0.5 and +0.5 (instead of −1 and +1) during periods of

low volatility.
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Figure 2.16: The normalized median of closed-end funds spreads. We normalize the time-
series of Figure 2.14 so that the mean is zero and the standard deviation is one. We refer
to the normalized spread as standard score. The dashed blue lines correspond to values of
+1 and −1 of the standard score.
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Figure 2.17: A focus on the 2007− 2009 financial crisis. We repeat the plot in Figure 2.16
but zooming over the period ranging from January 2007 to January 2009. Shaded areas
correspond to the financial crises listed in Appendix A
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2.4.2 Mergers and Acquisitions Arbitrage

Mergers and Acquisitions (M&A) arbitrage is perhaps the most widely used arbitrage
strategy. It is commonly known as risk arbitrage. In the event of a merger or an acquisition,
a company (the acquirer) announces publicly its intent to purchase another company (the
target) at a specific price. The price can be a fixed dollar amount, a certain number
of shares of the acquirer, or a combination of both. The arbitrage entails capturing the
difference between the price the acquirer has agreed to pay and the price that the target
is trading at after the deal is announced21. In a “cash” deal, arbitrageurs take a long
position in the target and exchange the shares for cash at deal completion. In a “stock”
deal, arbitrageurs take simultaneously a long position in the target and a short position
in the acquirer. The number of acquirer’s shares shorted is equal to the number of shares
arbitrageurs expect to receive at deal completion.

Early anecdotal treatment of risk arbitrage was performed by [BM85] and [WP82].
[SR86] and [BR86] examine the relationship between the arbitrage spread and the proba-
bility of deal completion. They observe that, under normal conditions, the market properly
discriminates between those merger proposals that complete and those that ultimately fail,
well in advance of deals completion. In our study, we don’t try to explain the relationship
between the arbitrage spread and the probability of deal completion. We try however to
study the sensitivity of spreads to various market conditions.

Empirical studies on the returns of risk arbitrage report positive annual excess returns.
Using a sample of 37 Canadian deals in 1997, [KSoB98] found that the average annualized
excess return of a risk arbitrage strategy was 33.9 percent in excess of the TSE 300 index.
[DFM92] examined 761 deals in the U.S. between 1971 and 1985. They found that the
returns on risk arbitrage in that period of time was exceptionally high as only few arbi-
trageurs were executing this type of arbitrage. They also show that returns diminish after
1986 as risk arbitrage became more popular. Similar to [SR86] and [BR86], they show that
arbitrage spreads were inversely proportional to the probability of deal completion. [Mit01]
examines 4, 750 mergers from 1963 to 1998 in the U.S. He finds that risk arbitrage gener-
ates 4% annualized excess return after controlling for transaction costs and the non-linear
relationship with market returns. [BS02] studies 1, 901 risk arbitrage positions between
1981 and 1996. He reports that a portfolio constructed of those positions has abnormal
returns between 0.6% and 0.9% per month.

In what follows, we study 1, 417 risk arbitrage deals between 1997 and 2011. We are
not interested in the historical mean return on risk arbitrage or the relationship between

21Sometimes investors take speculative long positions in companies that are potential targets. In our
study, a merger or an acquisition event is triggered only after the deal is officially announced.
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Table 2.13: The number of M&A deals in different size categories.
Deal Size (Mln) # deals

> 2, 500 226
1, 000 - 2, 500 301
500 - 1, 000 269
250 - 500 360
150 - 250 261

arbitrage spreads and the probability of deal completion. We are however interested in
1) the variation of spreads throughout various periods of financial stress, 2) the extent of
contagion to/from other arbitrage strategies, and 3) the effects of funding liquidity on the
spreads. Clearly, since arbitrageurs have long positions in risk arbitrage, changing spreads
affects their profits and losses. If arbitrageurs are highly leveraged, a large widening of the
spreads can lead to forced liquidations or even bankruptcies.

We use Thomson Financial SDC database and Bloomberg to construct a list of mergers
and acquisitions. We filtered the deals according to the following characteristics:

1. Date Range: 01/01/1997 to 01/01/2011 (14 years)

2. Deal Size: larger than $150 Mln

3. Deal Status: Completed or Terminated (i.e., not currently pending)

4. Country of Target: United States

5. Payment Type: Cash22

6. Deal Type: Company Takeover, Tender Offer or Management Buyout

7. Nature of Bid: Friendly or Unsolicited (not Hostile)

1, 255 deals completed while 162 failed, for a total of 1, 417. In Table 2.13, we show the
number of deals in different size categories. As shown in Table 2.14, half the deals take
longer than 3 months to either complete or fail. The average is 20 days longer than the
median, due to outliers. In Figure 2.18, we plot the number of deals, satisfying our criteria,

22We restricted M&A deals to those that pay only cash in order to calculate the spreads accurately.
Other forms of M&A deals have a complex pay structure. For instance, some deals offer Contingent Value
Rights while others have a collar structure for stock exchange.
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Table 2.14: Completed vs. terminated M&A deals.
Deal Status # deals median lifetime mean lifetime
Completed 1, 255 91 days 109 days
Terminated 162 90 days 121 days

TOTAL 1, 417 91 days 111 days

outstanding at any given day. The number varies as deals are completed or terminated, and
new ones are announced. The median in the past 14 years was 23. The number is usually
higher during periods of improving economic conditions, and lower during periods of stress.
A record 93 deals were outstanding just before the downturn started mid-2007. The large
number of deals was the result of record low corporate credit yields, loose lending standards
by financial institutions and the rise of private equity. The number of deals outstanding
reached a low of 3 deals towards the end of the crisis (i.e., early 2009) as all three factors
that triggered the boom were muted.

Figure 2.18: The number of deals outstanding
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Let pt be the price of the stock23 at time t and v the cash amount offered at completion.
We compute the arbitrage spread st as follows: st = pt−v

pt
. If pt < v, the spread is negative

and we say that the stock trades at a discount from the offer price. The target company
usually trades at a discount to compensate the arbitrageur for 1) the risk that the deal

23We identify the common stock of a company being acquired by its 9-digits CUSIP instead of the ticker.
We can not use the ticker because it is often reused by another company after the original company is
delisted from the exchange. Delisting occurs right after a company is acquired. CUSIP is therefore used
to obtain historical stock prices from CRSP and Bloomberg.
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might fail, and 2) the risk-free rate. The target company can however trade at a premium
if the market expects the acquirer to raise the offer price v.

In Figure 2.19, we plot the daily median of risk arbitrage spreads. We consider only
deals that successfully complete (i.e., those that do not fail), representing 89% of our
original universe. We do so because our objective is to illustrate the widening of spreads in
reaction to liquidity shocks and varying market conditions, rather than to company specific
news24. In Figure 2.20, we compute the standard score. It is below one standard deviation
during most periods of stress25 and reaches −8 standard deviations at the peak of the
2007 − 2009 financial crisis. In Figure 2.21, we plot the median adjusted daily volume26

of all the target companies. Similar to closed-end funds, the daily volume increases during
periods of stress as arbitrageurs are forced to reduce their positions. The combination of
unusually high volume and widening arbitrage spreads is evidence of selling pressures that
pushes market prices below their fundamentals. In later sections, we show that such forced
liquidations are associated with deteriorating funding conditions.

Figure 2.19: The daily median of arbitrage spreads. Note the sharp widening of the median
during periods of stress.
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24Sometimes there is positive company specific news that tightens the spread of an M&A. We don’t have
the tools to filter them out. However, by keeping them, we take a conservative stance as we aim to show
the extent of spread widening during periods of stress.

25Recall that periods of stress are represented by yellow regions on the chart
26We adjust the daily volume of each company by subtracting its historical median.
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Figure 2.20: We normalize the median spread of Figure 2.19. We note that the standard
score is below one standard deviation during most periods of stress. Periods of stress are
indicated by yellow regions in the chart.
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Figure 2.21: We plot the median adjusted daily volume of all target companies. Similar
to closed-end funds, the daily volume increases during periods of stress as arbitrageurs are
forced to reduce their positions.
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2.4.3 Off-the-run/On-the-run Treasury Arbitrage

The US federal government periodically auctions Treasury securities to issue government
debt. The most recently issued securities are called on-the-run securities while those is-
sued previously are called off-the-run securities. On-the-run Treasury securities trade at a
premium relative to the off-the-run securities for the following reasons. First, on-the-run
Treasury securities are more liquid. [SE04] observes that on-the-run issues “turn over more
than fourteen times per week on average and account for 74 percent of the total volume in
Treasury coupon securities.” In contrast, off-the-run securities have a turnover of just 22
percent. Second, investors can borrow money at a cheaper rate in the repo market when
they post on-the-run bonds as collateral (see [VW08] and [FG09]). Third, the bid/ask
spread of on-the-run securities is half the bid/ask spread of off-the-run securities [SE04].

Long Term Capital Management (LTCM) was an active arbitrageur in this space. They
bought off-the run securities and shorted on-the-run securities, with similar maturity and
coupons, trading at a significant premium27. For instance, consider a zero-coupon Treasury
bond (A), issued 5 years ago with a maturity of 15 years and a newly issued zero-coupon
Treasury bond (B) with a maturity of 10 years. Bond A and bond B have essentially the
same payoffs: 1) they don’t pay coupons, and 2) they both pay the Par value in 10 years
if the U.S. government does not default. Bond A is the off-the-run security while bond B
is the on-the run security. If bond B trades at a premium to bond A, an arbitrageur can
profit by buying A and shorting B, and wait for the yield differential to disappear. [War92]
observes that a portfolio of on-the-run Treasury securities returns 0.55% per annum less
than a portfolio of off-the-run securities, with matched duration. Many factors push yields
to converge: 1) the on-the-run security becomes off-the-run security once another security
with similar maturity is issued, 2) if held to maturity, the two bonds have identical payoffs,
and 3) the U.S. Treasury sometimes elects to reduce the government interest expense by
buying off-the-run debt and issuing on-the-run debt with lower yield. The yield differential
does not however decrease monotonically. During periods of financial stress, spreads widen
as investors shun illiquid assets and move into liquid ones, a phenomenon called “flight-to-
liquidity”. The Federal Reserve monitors the yield differential in addition to other indices
to determine whether a “flight-to-liquidity” has occurred and whether the financial system
is under stress [FOM98].

In this section, we compute the spread between the on-the-run and off-the-run yields
of 10-years U.S. Treasury bonds. The yield of on-the-run Treasury securities is computed

27Certain bond indices are required to hold only on-the-run securities and roll their existing positions
into new securities when issued. Arbitrageurs like LTCM can be seen as providing liquidity to passive
investors like index sponsors.
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and officially published by the Federal Reserve in their release entitled “H.15 Selected
Interest Rates”28. Historical data can be obtained from the Federal Reserve Economic
Data portal29. The portal is a comprehensive repository of various economic indicator
and indices. For the off-the-run yield, we use the 10-year par yield extracted from the
off-the-run yield curve computed by [GSW07]. In Figure 2.22, we plot the yield of on-
the-run 10-year Treasury bonds. In Figure 2.23 we plot the off-the-run 10-year yield. In
Figure 2.24, we plot the yield differential: we subtract the off-the-run yield from the on-
the-run yield. The spread varied significantly in the past 15 years. It ranged between
−61 bps and −2 bps. “bps” is short for one basis point, i.e., 0.01 percent. We observe
that during periods of financial stress, specifically towards the end of 2008 when Lehman
Brothers failed and AIG got rescued, the spread widened significantly. In Figure 2.25, we
compute the standard score for the period between 1997 and 2011. Spread widening to
−61 bps towards the end of 2008 corresponds to a four standard deviations event. We
also note that the spread exhibits a mean-reversion process that can lead to profitable
arbitrage opportunities. In later sections, we show that spreads widening is associated
with worsening funding conditions and contagion from losses in other arbitrage strategies.

Figure 2.22: On-the-run 10 years US Treasury yield.
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28http://www.federalreserve.gov/releases/h15/
29http://research.stlouisfed.org/fred2/series/DGS10
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Figure 2.23: Off-the-run 10 years US Treasury yield.
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Figure 2.24: The spread between the on-the-run (Figure 2.22) and off-the-run (Figure 2.23)
US 10-years Treasury yields. We subtract the off-the-run yield from the on-the-run yied.
The negative spread corresponds to a liquidity premium.

−
0.

6
−

0.
4

−
0.

2
0.

0

1997 1999 2001 2003 2005 2007 2009 2011

Date (Date (Daily))

S
pr

ea
d

On−the−run/ Off−the−run Treasury Spreads 
 (10−years US government bonds)

41



Figure 2.25: We normalize the time-series plotted in Figure 2.24. We subtract the mean
and divide by the standard deviation. We make two observations: 1) spread widening
towards the end of 2008 corresponds to a four standard deviation event, and 2) the spread
exhibits a mean-reversion process that can lead to profitable arbitrage opportunities.
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2.5 Relationship Between Funding Liquidity and Ar-

bitrage Spreads

2.5.1 Effects on Arbitrage Spreads

Having constructed the Funding Liquidity Stress Index in Section 2.3 and reproduced the
daily arbitrage spreads of three classic arbitrage strategies in Section 2.4, we now study
the effects of funding liquidity on arbitrage spreads. In Table 2.15, we perform linear
regressions of each arbitrage strategy against the Funding Liquidity Stress Index (FLSI).
We find that all three R2 are high. FLSI explains 48%, 43% and 64% of the variability
of CEF spreads, M&A spreads and Treasury spreads, respectively. Funding liquidity is
therefore a major risk factor to various arbitrage strategies. Factors loadings are significant
and negative, indicating that an increase in funding liquidity stress leads to a widening of
arbitrage discounts (i.e., arbitrage spreads become more negative). In Table 2.16, we add
an additional factor PC2 and repeat the three linear regressions. All factors loadings are
significant and negative. As expected, the explanatory power increases; the three R2 are
now 60%, 52% and 74%. The FLSI index however explains the majority of the variability
of the arbitrage spreads. FLSI is more important than PC2, but they are both significant.
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Table 2.15: We perform linear regressions against the Funding Liquidity Stress Index
(FLSI). We find that all three R2 are high. Funding liquidity is therefore a major risk
factor to various arbitrage strategies.

( 1 ) ( 2 ) ( 3 )
CEF arbitrage M&A arbitrage Treasury arbitrage

(Intercept) -5.794∗∗∗ -1.518∗∗∗ -0.183∗∗∗

(0.044) (0.018) (0.001)
FLSI -2.228∗∗∗ -0.802∗∗∗ -0.084∗∗∗

(0.044) (0.018) (0.001)
R2 0.477 0.426 0.645
adj.R2 0.477 0.426 0.645
N 2792 2792 2792

Standard errors in parentheses
∗ (p ≤ 0.1), ∗∗ (p ≤ 0.05), ∗∗∗ (p ≤ 0.01)

Table 2.16: We add an additional factor PC2 and repeat the three linear regressions
performed in Table 2.15. All factors loadings are significant and negative.

( 1 ) ( 2 ) ( 3 )
CEF arbitrage M&A arbitrage Treasury arbitrage

(Intercept) -5.784∗∗∗ -1.515∗∗∗ -0.183∗∗∗

(0.039) (0.016) (0.001)
FLSI -2.232∗∗∗ -0.803∗∗∗ -0.083∗∗∗

(0.039) (0.016) (0.001)
PC2 -1.142∗∗∗ -0.38∗∗∗ 0.033∗∗∗

(0.039) (0.016) (0.001)
R2 0.602 0.521 0.743
adj.R2 0.602 0.521 0.743
N 2792 2792 2792

Standard errors in parentheses
∗ (p ≤ 0.1), ∗∗ (p ≤ 0.05), ∗∗∗ (p ≤ 0.01)

43



2.5.2 Contagion

Next we study whether contagion between arbitrage strategies is mainly attributed to
their common exposure to funding liquidity risk factors. [BHN05] defined contagion as
“correlation over and above what one would expect from economic fundamentals”. The
majority of studies have used monthly returns of hedge fund indices to study contagion.
Hedge fund returns however are not proxies to fully-hedged arbitrage strategies30 as many
elect to hedge or unhedge certain risk factors on a discretionary basis to improve the
returns. To synthetically obtain returns of fully-hedged arbitrage strategies (i.e., to remove
the effects of common exposures to fundamentals), it is common to regress the returns
of hedge funds on various asset classes and then study the residuals31. In this chapter,
however, we don’t need to synthetically create arbitrage strategies from hedge fund returns
or remove the exposure to fundamentals since we reproduce real arbitrage strategies from
daily transactional data.

To assess the impact of funding liquidity on contagion, we compute the contagion
between the arbitrage spreads twice, before and after regressing against our two funding
liquidity risk factors (i.e., the FLSI index and PC2). Essentially, we first check for contagion
between the arbitrage spreads and then check for contagion between the residuals of the
three regressions performed in Table 2.16. If contagion between the residuals is significantly
lower than the contagion between the arbitrage spreads, we conclude that contagion is
mainly due to their common exposure to funding liquidity risk factors.

We use three techniques to assess contagion: 1) computing a correlation matrix, 2)
computing a “coupling coefficient”, and 3) performing a logistic regression on the number
of simultaneous threshold exceedances. First we compute the correlation matrix. The
correlation matrix of the arbitrage spreads is shown in Table 2.17. Correlations are high, in
particular the correlation between the M&A and CEF arbitrage spreads. The correlation
matrix of the residuals is shown in Table 2.18. We observe that pair-wise correlations
significantly dropped after accounting for the effects of FLSI and PC2 risk factors.

As an alternative to computing correlation coefficients between each pair and then, for
instance, computing the average of all pairs, we compute the “coupling coefficient” [SA00].
The coupling coefficient measures the degree of co-movement between all the variables,
and is often called the absorption ratio [KLPR10]. It equals the fraction of total variance
explained by a particular eigenvector, in a PCA analysis. The eigenvector of interest is
the vector with coefficients of same sign across all the variables ( i.e., all the variables

30See [Aga04] and [FH04].
31See [DN10b] and [BSS10].
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Table 2.17: The correlation matrix of the arbitrage spreads.
CEF Spreads M&A Spreads Treasury Spreads

CEF Spreads 1.00
M&A Spreads 0.63 1.00

Treasury Spreads 0.47 0.47 1.00

Table 2.18: We compute the correlation matrix of the residuals from the regressions per-
formed in Table 2.16. Compared to Table 2.17, we see a significant drop in pair-wise
correlations.

CEF Residuals M&A Residuals Treasury Residuals
CEF Residuals 1.00

M&A Residuals 0.08 1.00
Treasury Residuals 0.13 0.17 1.00

moving in the same direction as a single block). Over the period ranging from 2000/01/04
to 2011/07/29, the coupling coefficient of the arbitrage spreads is 70.20%. After removing
their common exposure to the funding liquidity risk factors, the coupling coefficient drops
to 36.89%.

Last, we perform a logistic regression to test for contagion [BSS10] [BKS03]. This
technique checks whether an arbitrage spread is more likely to widen beyond a specific
quantile given that other arbitrage spreads widened beyond their corresponding quantiles.
We will use the lowest 10th percentile to determine exceedances. Our conclusion holds for
other low percentiles as well. Define Ik,t as an indicator variable taking the value of 1 if
the spread of arbitrage strategy k is below its 10th percentile at time t. In Figure 2.26,
we plot the daily count of all three indicators. We note that during financial crises most
arbitrage spreads exceeded their 10th percentile at the same time. For instance, during
the bankruptcy of Lehman Brothers and the dot-com crash, all three arbitrage spreads
widened to levels within their lowest 10th decile. Ik,t is the dependent variable in the logistic
regression. The independent variable of Ik,t is the sum of all other indicator variables. In
Table 2.19, we show the regression results. We find significant explanatory power in all
three regressions. The R2 ranges from 13.6% to 22.4%. In other words, the likelihood that
an arbitrage spread is in its lowest 10th decile increases when other spreads are in their
lowest 10th deciles as well. On the other hands, if we apply the logistic regression to the
residuals (see Table 2.20), the explanatory power drops significantly. In that case, the R2
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ranges from 0.8% to 2.2%.

Figure 2.26: Counting the number of arbitrage strategies whose spreads exceeded the 10th
percentile worst spread. We note that there is a significant number of simultaneous spreads
widening beyond the 10th percentile, providing evidence of contagion.
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In all three tests for contagion, we find significant contagion between the three arbitrage
spreads. However, after removing their common exposure to the funding liquidity risk
factors, evidence of contagion drops dramatically.

2.6 Further Evidence from Event-Studies

In this section we provide further evidence to support the theoretical studies on market
micro-structure which attempt to explain the relationship between funding liquidity and
market prices. This section is primarily motivated by the market micro-structure model
developed by [BP09] which we extend in the next chapter. In the model, investors use mar-
gins to leverage their positions. Margin requirements are set by uninformed financiers to
control counter-party risk. Financiers increase margin requirements if volatility increases,
and decrease margin requirements otherwise. An increase in margin requirements however
forces highly leveraged investors to reduce their positions to raise cash, exercising undue
selling pressures that depress market prices. In addition to presenting empirical evidence
supporting the theoretical model developed by [BP09], we also provide empirical evidence
supporting various assumptions and predictions of other theoretical models. In particu-
lar, our study on the relationship between margins and volatility supports the “margin
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Table 2.19: Logistic regression applied to the three arbitrage spreads.

Spreads
ICEF,t IMA,t IGov,t

(Intercept) 0.056∗∗∗ 0.04∗∗∗ 0.053∗∗∗

(0.006) (0.005) (0.006)
otherCount 0.222∗∗∗ 0.299∗∗∗ 0.236∗∗∗

(0.011) (0.011) (0.011)
R2 0.136 0.225 0.152
adj.R2 0.136 0.224 0.152
N 2792 2792 2792

Standard errors in parentheses
∗ (p ≤ 0.1), ∗∗ (p ≤ 0.05), ∗∗∗ (p ≤ 0.01)

Table 2.20: Logistic regression applied to the residuals.

Residuals
ICEF,t IMA,t IGov,t

(Intercept) 0.088∗∗∗ 0.081∗∗∗ 0.08∗∗∗

(0.006) (0.006) (0.006)
otherCount 0.059∗∗∗ 0.094∗∗∗ 0.103∗∗∗

(0.012) (0.013) (0.013)
R2 0.008 0.019 0.022
adj.R2 0.008 0.019 0.022
N 2792 2792 2792

Standard errors in parentheses
∗ (p ≤ 0.1), ∗∗ (p ≤ 0.05), ∗∗∗ (p ≤ 0.01)
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setting mechanism” and “margin spiral” concepts in [BP09], as well as the assumption re-
garding the use of “backward-looking risk measures” by market participants in [BCG+09].
Moreover, our study on the relationship between margins and market returns supports
the concepts of “loss spirals” in [BP09], “performance-based arbitrage” in [SV97], and
“pro-cyclicality” of financing in [Gea09].

In this section, we illustrate the following: 1) declining market prices coincide with
increasing market volatility, 2) margins increase after an increase in market volatility32,
and 3) market prices continue to decline after margins increase. The converse is also
true. We perform event studies on three different assets: 1) the S&P 500 index, 2) the
Australian dollar / U.S. dollar foreign exchange rate, and 3) the New Zealand dollar / U.S.
dollar foreign exchange rate. The event graphs (for instance Figure 2.29) have a vertical
line at T = 0 corresponding to the date of a margin change, and plots the average path of
a variable (typically, volatility or cumulative returns) during a window of time before and
after the event. We study events of margin increase and decrease separately.

Futures contracts on each of those three assets trade on the Chicago Mercantile Ex-
change (CME). CME, like other exchanges, requires investors to post margins to cover a
certain percentage of possible price move of a position to reduce counter-party risk. In
Figure 2.27, we plot the dollar margin on a S&P 500 Index futures contract. The size of
the contract is 250× S&P 500 Index futures price. From January 1998 to June 2011, CME
changed the margin on the S&P 500 Index futures contract 16 times: increasing it 10 times
and decreasing it 6 times. In Figure 2.28, we plot the S&P 500 Index implied volatility,
proxied by the popular Chicago Board Options Exchange Market Volatility Index, widely
known as the VIX index.

Next we perform two event studies. In Figure 2.29, we plot the average value of the
implied volatility of the S&P 500 Index surrounding 10 margin increases. The vertical
dashed red line, corresponds to T = 0, the date that a margin increase occurred. To the
left are the days preceding the event while to the right are the days following the event.
We identify a clear trend of increasing volatility prior to a margin increase. The volatility
also stays high for almost a month after a margin increase. In Figure 2.30, we plot the
average cumulative return of the S&P 500 Index in the period surrounding 10 margin
increases. For each one of the 10 instances, the cumulative return starts from a base of 1

32This observation is expected since we mentioned earlier that the Chicago Mercantile Exchange (CME)
sets margins so they cover 99 percent of potential price moves. It was not clear however whether the
changes in margin requirements lead, lag or coincide with changes in market volatility. The event-studies
that we perform show that the exchanges are often late in adjusting their margin requirements reflecting
the use of backward looking risk measures. We also show that changes in margin requirements exacerbate
(i.e., increases further) the volatility of market prices as predicted in [BP09].
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at T = −50. We note that a margin increase occurs following an average drop of 6%, and,
more interestingly, the index would fall another 4% on average after the margin increases.
This observation is in accordance with the downward spiraling effect of funding and market
liquidity, modelled by [BP09].

We also study decreasing margins events. In Figure 2.31 and Figure 2.32, we plot the
average path of the volatility and the average path of the cumulative return, respectively,
surrounding periods of decreasing margins. Not unexpectedly, the CME exchange reduced
margins on future contracts during periods of decreasing volatility and increasing asset
prices.

Figure 2.27: Margin requirement (in dollars) on the S&P 500 Index futures contract. It is
the dollar amount required to initiate a position in the contract. Note that the size of the
futures contract is 250× the S&P 500 Index futures price.
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Next, we perform event studies to the AUD/USD foreign exchange in order to check for
consistency across various asset classes. The margins on the AUD/USD foreign exchange
futures contract increased 29 times and decreased 30 times during the period from January
2000 to June 2011. In Figure 2.33 and Figure 2.34, we plot the dollar margin requirement
and the implied volatility of the AUD/USD foreign exchange, respectively. Comparing
these two figures, we note that margins increased during periods of high volatility. In
Figure 2.35, we plot the average path of the AUD/USD implied volatility surrounding
29 margin increases. We identify a clear trend of increasing volatility prior to a margin
increase. The volatility also stays high for almost a month after a margin increase. In
Figure 2.36, we show that the margin increases following a period of declining market
prices. It is interesting to note that market prices continue to decrease, possibly due to
forced selling following a margin increase. On the other hand, we show that the margin

49



Figure 2.28: We plot the Chicago Board Options Exchange Market Volatility Index, known
as the VIX index. It is widely used as a proxy to the S&P 500 implied volatility.
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Figure 2.29: Event study of increasing margins. We plot the average value of the implied
volatility of the S&P 500 Index surrounding 10 margin increases. The vertical dashed red
line, corresponds to T = 0, the date that a margin increase occurred. To the left are the
days preceding the event while to the right are the days following the event. We identify
a clear trend of increasing volatility prior to a margin increase. The volatility also stays
high for almost a month after a margin increase.
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Figure 2.30: Event study of increasing margins. We plot the average cumulative return
of the S&P 500 Index surrounding 10 margin increases. For each one of the 10 instances,
the cumulative return starts from a base of 1 on day T = −50. We note that a margin
increase occurs following an average drop of 6%, and, more interestingly, the index would
fall another 4% on average after the margin increases. This observation is in accordance
with the downward spiraling effect of funding and market liquidity, modelled by [BP09].
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Figure 2.31: Event study of decreasing margins. In contrast to Figure 2.29, margins de-
crease following a period of decreasing volatility.
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Figure 2.32: Event study of decreasing margins. In contrast to Figure 2.30, margins de-
crease following a period of rising asset prices.
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decreases following periods of decreasing volatility and increasing market prices, as shown
in Figure 2.37 and Figure 2.38, respectively. In Appendix C, we perform similar event-
studies with respect to the NZD/USD foreign exchange. We obtain similar observations.

Figure 2.33: Margin requirement (in Dollar) on the AUD / USD FX futures contract.
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The event-studies show strong consistency with respect to changes in margin require-
ments. In particular, margins increased after periods of rising volatility and decreasing
market prices. More importantly, market prices continued to drop after an increase in mar-
gins providing evidence of spiraling effects between market and funding liquidity. These
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Figure 2.34: We plot the implied volatility of the AUD/USD foreign exchange rate.
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Figure 2.35: Event study of increasing margins. We plot the average path of the AUD/USD
implied volatility surrounding 29 margin increases. We identify a clear trend of increasing
volatility prior to a margin increase. The volatility also stays high for almost a month after
a margin increase.
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Figure 2.36: Event study of increasing margins. We plot the average cumulative return of
the AUD/USD foreign exchange in the period surrounding 29 margin increases.
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Figure 2.37: Event study of decreasing margins. We plot the average value of the
AUD/USD implied volatility in the period surrounding 30 margin decreases.
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Figure 2.38: Event study of decreasing margins. We plot the average cumulative return of
the AUD/USD foreign exchange in the period surrounding 30 margin decreases.
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observations will become familiar in the next chapter when we talk about “margin setting
mechanisms”, “margin spirals”, and “loss spirals” [BP09].
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Chapter 3

Analytical Model

In the previous chapter we provided empirical evidence on the effects of funding liquidity
on market prices. In this chapter, we study the mechanism through which funding liquidity
affects market prices. Existing theoretical studies have focused on the spiraling effects of
funding liquidity and market liquidity when financing constraints bind (“liquidity shock”)
in a single-period market micro-structure setting [SV97] [BP09]. In this chapter, we extend
their model into a multi-period setting and show that arbitrageurs price-in a liquidity risk
premium that keeps market prices below their fundamental values even when their financing
constraints are not binding. The liquidity risk premium is further decomposed into 1) a
systemic risk premium which compensates arbitrageurs for the risk of a “liquidity shock”,
and 2) a fundamental risk premium which compensates them for providing liquidity in a
security whose fundamental value is volatile.

3.1 Literature Review

3.1.1 Related Work

The literature on market micro-structure evolved gradually towards an accurate depiction
of the functioning of capital markets. In 1988, Grossman and Miller [GM88] proposed
a market micro-structure model where market prices are determined by the supply and
demand of securities. Their model served as a foundation for future work in the litera-
ture. The work by De Long et al. [DLSSW90] is perhaps the first formal attempt in the
literature to assert that arbitrageurs have short term horizons and are therefore deterred
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from betting aggressively on mispriced assets. Shleifer and Vishny [SV97] were the first to
argue that the aggregate wealth of arbitrageurs affects their ability to conduct arbitrage
and keep markets liquid. They further emphasized the importance of the ‘agency rela-
tionship” in which external investors use past performance to control the flow of capital
to arbitrageurs; a mechanism they call “performance-based arbitrage”. As a result, arbi-
trageurs often decide to provide less liquidity by taking smaller positions than what they
can afford. Liu and Longstaff [LL04] made similar conclusions but in a different setting.
In their model, the price discount is stochastic and follows a Brownian bridge. Gromb
and Vayanos [GV02] built on the market micro-structure model developed by [GM88] with
the added feature that arbitrageurs are financially constrained, limiting their ability to
take on large positions. While others studied market liquidity with margin-constrained
arbitrageurs such as [GV02] and [LL04], [BP09] studied “how market conditions lead to
changes in the margin requirement itself, . . . as happened in October 1987, and the result-
ing feedback effects between margins and market conditions as [arbitrageurs] are forced to
de-lever”. In particular, [BP09] assumes that margins are set by “uninformed financiers”
to control their value-at-risk. As a result, market liquidity is fragile, and vulnerable to
“loss spirals” and “margin spirals” that push market prices significantly below their fun-
damental values, creating a “liquidity shock”. In what follows, we study in more detail the
related works mentioned above.

[GM88] lay the groundwork for future work on market micro-structure. In their model,
market prices are determined by the supply and demand of securities. The asynchronous
arrival of “natural” investors is bridged by arbitrageurs that charge for providing liquidity.
For instance, they charge by offering to buy, from a seller, the security at a discount from
its fundamental value. The discount compensates the arbitrageurs for the risk of holding
the security until the natural buyers arrive to the market. By transacting now instead of
waiting for the natural buyers, the seller mitigates the risk of holding excess shares of the
security by selling some of the shares at a price that is not uncertain, but lower on average
than what he would expect when the buyers arrive. According to [GM88], the number of
arbitrageurs “will adjust until, in equilibrium, the returns to each from assuming the risk
of waiting to trade with the ultimate buyers just balance the [fixed] costs of maintaining a
continuous presence in the market. This adjustment determines the equilibrium amount of
immediacy provided, i.e., the amount by which price is temporarily depressed by a typical
sell order.”

In [DLSSW90], arbitrageurs have short term horizons and are therefore deterred from
betting aggressively on mispriced assets. They worry that “irrational noise traders with
erroneous stochastic beliefs will affect [market] prices” causing arbitrageurs to exit their
arbitrage positions at a loss. Their “basic model is a stripped down overlapping gener-
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ation model with two-period lived agents [Sam58]”. The infinitely extended overlapping
generations structure assures that each agent’s horizon is short.

In [GM88] and [DLSSW90], it is assumed that the market has “a very large number of
tiny arbitrageurs, each taking an infinitesimal position against the mispricing in a variety
of markets. Because their positions are so small, capital constraints are not binding.”
Shleifer and Vishny [SV97] however present a more realistic treatment to arbitrage. “More
commonly, arbitrage is conducted by relatively few professional, highly specialized investors
who combine their knowledge with resources of outside investors to take large positions.
The fundamental feature of such arbitrage is that brains and resources are separated by
an agency relationship. The money comes from investors with only a limited knowledge of
individual markets, and is invested by arbitrageurs with highly specialized knowledge of these
markets.” The agency relationship is particularly important considering arbitrage requires
capital and the number of specialized arbitrageurs is limited. [SV97] further assumes that
outside investors determine the ability of arbitrageurs to invest profitably based on their
past performance. As a result, “the aggregate supply of funds to [arbitrageurs at time t] is
an increasing function of arbitrageurs’ gross return” between time t−1 and time t. Shleifer
and Vichny call this mechanism “performance-based arbitrage (PBA)”.

The key innovation in [SV97], and later reiterated in different settings by Gromb and
Vayanos [GV02], Liu and Longstaff [LL04], and Brunnermeier and Pedersen [BP09], is the
negative correlation between capital gains on existing positions and future return oppor-
tunities. Profits and losses on existing positions affect arbitrageurs’ wealth and therefore
affect the ability of financially constrained arbitrageurs to conduct arbitrage. As a result,
arbitrageurs often decide to provide less liquidity by taking smaller positions than what
they can afford.

Liu and Longstaff [LL04] make similar conclusions to [SV97], using however a different
setting. In their model, the equilibrium market price is not determined by the supply and
demand for the security. Arbitrageurs are assumed to invest in an arbitrage opportunity
with a discount converging to zero at some future point in time. The discount process is
modelled as a Brownian-bridge. Since the discount can widen and arbitrageurs have wealth
constraints, Liu and Longstaff [LL04] observe that arbitrageurs often do not invest up to
their wealth constraints, and as a result, fail to push the discount closer to zero.

Gromb and Vayanos [GV02] build on the market micro-structure model developed by
[GM88]. They consider a model in which arbitrageurs exploit discrepancies between the
market prices of two identical assets trading in different markets. The existence of two
identical assets allows arbitrageurs to hedge the risk of changes in fundamental values.
Arbitrageurs use leverage to trade the assets and hold separate margin accounts for each
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asset (i.e., cross-margining is not possible). Furthermore, arbitrageurs are required to keep
in each margin account enough capital to cover the maximum loss that can occur. [GV02]
shows that “if arbitrageurs’ wealth is insufficient, they may be unable to eliminate price
discrepancies between the risky assets.” [GV02] further provide a qualitative assessment of
market prices in a two-period setting where the market is subject to endowment shocks, a
form of exogenous shocks similar to the effects of noise traders in [DLSSW90]. In particular,
they show that “if the capital gain on the arbitrage opportunity until the next period is risky,
arbitrageurs may choose not to invest up to the financial constraint.”

The model of Brunnermeier and Pedersen [BP09] “is similar in spirit to [GM88] with
the added feature that [arbitrageurs] face the real-world funding constraint.” In particular,
“uninformed financiers” increase margin requirements after periods of high volatility to
control their value-at-risk. The concept of “uninformed financiers” in [BP09] is similar to
“outside investors” in [SV97] as they both constrain arbitrageurs from taking large posi-
tions in attractive arbitrage opportunities after periods of stress. “Outside investors” in
[SV97] however use past performance, instead of past volatility of market prices, to control
the financing of arbitrage positions. Brunnermeier and Pedersen [BP09] demonstrate, in
a single-period setting, two important properties of market liquidity: 1) market liquid-
ity is fragile as small losses can lead to a large sudden drop in market liquidity, and 2)
“when markets are illiquid, market liquidity is highly sensitive to further changes in funding
conditions” due to two reinforcing liquidity spirals: a “loss spiral” and a “margin spiral”.

The following chain of events illustrates those two liquidity spirals. A fall in market
prices reduces the value of the assets relative to the money borrowed, leading to an increase
in leverage (the start of the loss spiral). At the same time, an increase in volatility during
periods of stress erodes the collateral value of the assets leading to an increase in margin
requirements (the start of the margin spiral). That forces the arbitrageur to cut back
on leverage by reducing his positions. That in turn creates a selling pressure on market
prices, exacerbating the initial price decline and increasing the volatility further leading
to a second round of loss and margin spirals. This vicious cycle causes market prices to
deviate significantly from their fundamental values, creating a “liquidity shock”.

In Table 3.1, we compare the various market micro-structure models discussed in this
section. The comparison is based on six factors:

1. Financing Constraints : It indicates whether arbitrageurs are limited by financing
constraints.

2. Liquidity Shocks : It indicates whether liquidity shocks are endogenous or exogenous.

3. Loss Spirals : It indicates whether loss spirals can occur.
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4. Margin Spirals : It indicates whether margin spirals can occur.

5. Liquidity Analysis : It indicates whether it is a single-period or a multi-period analysis
of market liquidity.

6. Time Periods : We keep the terminology of each paper for ease of reference. We place
a star next to the time period where a market liquidity analysis was performed.

It is clear from Table 3.1 that Brunnermeier and Pedersen’s model [BP09] is the most
comprehensive. They however restrict their study of market liquidity to a single-period. In
this chapter, we extend their model to multiple periods and compute, at equilibrium, the
discount of market prices from their fundamental values assuming all market participants to
be risk-averse. We further decompose the discount into two components: 1) a fundamental
risk premium and 2) a systemic risk premium.

3.1.2 Market Micro-Structure Model

In this section we consolidate the models in [GM88], [GV02] and [BP09].

Economy

Consider an economy with two assets: a risk-free asset called cash, and a risky asset. The
risk-free interest rate is normalized to zero. The risky asset trades at times t = 0, 1, 2, . . . , T
and pays a single dividend v at maturity t = T

v = v̄ +
T∑
t=0

δt (3.1)

where v̄ is a constant and δt ∼ N (0, σt) is a zero-mean random variable1 revealed at time
t. The δt are normally distributed with an ARCH volatility structure:

σt = σ + θ |δt−1| (3.2)

θ ≥ 0 so that shocks δt to the fundamental value increase future volatility [BP09]. The
fundamental value vt of the risky asset at time t is the conditional expected value of its
final payoff

vt = E
[
v
∣∣vt−1, δt

]
= vt−1 + δt (3.3)

1Intuitively, the δt terms can be considered as adjustments announced at time t to the base dividend v̄.
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Define
Λt = E

[
v
∣∣vt−1, δt

]
− pt = vt − pt (3.4)

Λt is the discount of the market price pt from its fundamental value vt [GV02].

Investors

There are two groups of market participants: investors and arbitrageurs. They trade assets
to maximize their expected utility functions [GM88]. For simplicity we assume that the
aggregate effect of each group of investors is reduced to a single representative investor. At
t = 0, the investor is informed that he will receive at t = T “an endowment of size u in the
security, which [at the current price,] is inappropriate in the light of the [investor’s] risk
preference and information on the risk-return pattern associated with the [asset]” [GM88]2.
For concreteness in exposition, we assume that u is positive. Since the investor’s demand
for the asset decreases as u increases, we refer to u as the “supply shock”. The investor has
initial wealth Winv,0 invested in the risk-free asset. At times t < T , he chooses to hold yt
shares of the risky asset to maximize his expectation of his utility function Uγ (Winv,T ) over
final wealth Winv,T . The investor is risk-averse3 and has an exponential utility function

Uγ (Winv,s) =
1− e−γWinv,s

γ
(3.5)

where γ is the risk aversion parameter. The wealth of the investor evolves according to:

Winv,s+1 = Winv,s + (ys + u) · (ps+1 − ps) , ∀s < T (3.6)

Arbitrageurs

The investor’s demand for immediacy is accommodated by arbitrageurs (such as market
makers, proprietary traders and hedge funds) who provide market liquidity by acting as
intermediaries. For instance, when there is a “supply shock”, they offer to buy and hold the
security until they find the natural buyer or until the security matures (i.e., pays off its last
dividend) [GM88]. For simplicity, we also assume that the aggregate effect of arbitrageurs

2This specification of endowments is common across the literature on market micro-structure [GM88]
[GV02] [BP09].

3Risk aversion of market participants, in particular the exponential utility function, is classic in the lit-
erature of market micro-structure [GM88] [DLSSW90] [SV97] [GV02] [LL04]. Brunnermeier and Pedersen
[BP09] however assume risk-neutral arbitrageurs for simplicity.
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is represented by a single arbitrageur. At times t < T , the arbitrageur chooses to hold
xt shares of the risky asset to maximize his expectation of his utility function over final
wealth Warb,T . The arbitrageur is risk-averse and has an exponential utility function:

Uα (Warb,s) =
1− e−αWarb,s

α
(3.7)

The arbitrageur is required at all time to have enough capital Warb,s to cover his total
margin requirement ms |xs|:

ms · |xs| ≤ Warb,s ∀s < T (3.8)

where ms is the dollar margin required to trade one share at time s. The number of shares
xs that the arbitrageur can trade is therefore limited by his wealth Warb,s. The wealth of
the arbitrageur evolves as follows:

Warb,s+1 = Warb,s + xs · (ps+1 − ps) , ∀s < T (3.9)

Margin Setting Mechanism

The arbitrageur uses leverage in the form of margin trading. [BP09] proposes a margin
setting mechanism where the “financier sets margins to limit his counterparty credit risk”.
In particular, the financier “ensures that the [total] margin is large enough to cover the
position’s π-value-at-risk”. Let Gs be his information set at time s, the financier therefore
sets the dollar margin per share, mt, according to

π = Pr
(
−∆ps+1 > ms

∣∣Gs) if xs > 0 (3.10)

and

π = Pr
(

∆ps+1 > ms

∣∣Gs) if xs < 0 (3.11)

In [BP09], the financier is uninformed about the fundamental value vs and the sup-
ply shock u, so his information set Gs is restricted to information on observed prices4

4Since“arbitrage is conducted by relatively few professional, highly specialized investors” [SV97], the
financier in general is uninformed about the fundamental value of the security being traded. As a result,
he assesses the risk of the security by observing its market price.
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σ {p0, . . . , ps}. As a result, he “interpret[s] price volatility as fundamental volatility” [BP09]
and sets margins according to:

ms = Φ−1 (1− π) σ̄ + Φ−1 (1− π) θ |∆ps|
= Φ−1 (1− π) σ̄ + Φ−1 (1− π) θ |δs −∆Λs| (3.12)

“Intuitively, since liquidity risk tends to increase price volatility, and since uninformed
financiers may interpret price volatility as fundamental volatility, this increases margins.
[Equation (3.12)] corresponds closely to real-world margin setting, which is primarily based
on volatility estimates from past price movements. . . . [BP09] denotes the phenomenon that
margins can increase as illiquidity rises by destabilizing margins.”

Equilibrium

Similar to [BP09] and [GV02], we define the “competitive equilibrium” of the economy as
follows:

Definition 3.1.1 A competitive equilibrium consists of a price process {pt} such that for
all t

1. the investor selects yt to maximize the expectation of his utility function, Equation
(3.5), over final wealth subject to Equation (3.6),

2. the arbitrageur selects xt to maximize the expectation of his utility function, Equation
(3.7), over final wealth subject to Equations (3.8) and (3.9),

3. the margin mt is set according to Equation (3.12), and

4. the market clears xt + yt = 0.

Note that the conditions (1), (2) and (4) are classic conditions of market equilibrium
(see [GM88]). Condition (3) reflects the arbitrageur’s funding constraint similar to [BP09].
The equilibrium price pt at time t is usually solved using dynamic programming, starting
from time t = T and working backwards. At time t = T , we have the base case pT = vT
as the asset pays its last dividend5.

5 i.e., the asset matures and pays off its fundamental value in full.
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If, at any time t, there is more than one solution to the four conditions above, i.e.,
if the demand function and the supply function intersect at more than one point, we
select the price that makes the market most liquid6. We therefore add the condition
pt = argp∈R+ min |vt − p| such that the equilibrium price pt 1) satisfies all four conditions
in Definition 3.1.1, and 2) is the solution that is the closest to the fundamental value vt.

3.1.3 Illustration of Equilibrium price at time T − 1

[BP09] studied the equilibrium market price at time t = T − 1 in great detail. We repeat
some of the illustrations conducted in [BP09] to provide insights into the problem before
tackling the general multi-period solution in the next section7. [BP09] however assumed
that arbitrageurs are risk neutral rather than risk averse; so we will point out the differences.
The parameters, used in the following three graphs to illustrate the analytical expressions,
are:

α = 0.01 λ = 1.65 σ = 4

π = 0.05 u = 15 θ = 0.25

vT−1 = 100 pT−2 = 102 Warb,T−2 = 150

δT−1 = −6 xT−2 = 3

At time T − 1, each market participant makes the decision of how many shares of the
asset he or she would like to hold. The desired holding of the asset is a function of the
price and is therefore called a “demand function”.

In [BP09], the arbitrageur is risk-neutral and his demand function at time T − 1 is:

xT−1(p) =


Warb,T−1(p)

mT−1(p)
if p < vT−1,

∈
[
−Warb,T−1(p)

mT−1(p)
,
Warb,T−1(p)

mT−1(p)

]
if p = vT−1,

−Warb,T−1(p)

mT−1(p)
if p > vT−1.

(3.13)

6We believe that it is the case in practice. To justify our approach, we assume that market participants
would like to maximize the sharpe ratio of their investments. We know that at maturity the price will equal
the final payoff (i.e., the fundamental value). Since an illiquid price today 1) will increase the volatility,
and 2) won’t affect the final return on the asset, market participants have the incentive to select the most
liquid state since it increases their sharpe ratio.

7All the equations in this section are derived later when we solve the general multi-period problem.
However, in order to build intuition into the problem and give credit to [BP09], we present here some of
the analytical expressions for the period t = T − 1.
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Figure 3.1: Position Limits at time T − 1. We show the arbitrageur’s position limits set
according to Equation (3.8). The dotted curve in green shows the limit on a short position
while the solid curve in blue shows the limit on a long position. Uninformed financiers use
changes in the market price as a proxy to changes in the fundamental value to set their
margin requirements. Note that pT−2 = 102. As pT−1 deviates from pT−2, the margin mT−1

increases reflecting the perceived increase in volatility due to the ARCH effect; hence the
shape of a “hyperbolic star” [BP09]. Moreover, note that the “hyperbolic star” is narrower
when prices are lower compared to when prices are higher due to profits and losses on the
existing position xT−2 = 3 (See Equation (3.15)).
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where

mT−1(p) = Φ−1 (1− π) (σ̄ + θ |p− pT−2|) (3.14)

Warb,T−1(p) = Warb,T−2 + xT−2 (p− pT−2) (3.15)

The arbitrageur’s demand function xT−1(p) is constrained by
Warb,T−1(p)

mT−1(p)
on the long

side and by −Warb,T−1(p)

mT−1(p)
on the short side. In Figure 3.1, we graph the arbitrageur’s

long and short position limits which take the shape of a “hyperbolic star”8. Those limits
reflect his financing constraint given by Equation (3.8). When the price falls below the
fundamental value (i.e., p < vT−1), the expected profit form holding the asset to the next
period becomes positive, and as a result, a risk-neutral arbitrageur tries to buy as many
shares as possible of the asset. The opposite is true; when the price rises above vT−1 a
risk-neutral arbitrageur tries to short as many shares as possible. In [BP09], xT−1(p) is
therefore always on the boundary; that is if p < vT−1 it hits the limit on the long position,
and if p > vT−1 it hits the limit on the short position.

Our model however assumes all market participants risk-averse. The demand function
when the arbitrageur is risk-averse becomes:

xT−1(p) =


Warb,T−1(p)

mT−1(p)
if p < vT−1 − ασ2

T
Warb,T−1(p)

mT−1(p)
,

vT−1−p
ασ2

T
otherwise,

−Warb,T−1(p)

mT−1(p)
if p > vT−1 + ασ2

T
Warb,T−1(p)

mT−1(p)
.

(3.16)

Similar to the risk-neutral arbitrageur, xT−1(p) is bounded by −Warb,T−1(p)

mt−1(p)
≤ xT−1(p) ≤

Warb,T−1(p)

mt−1(p)
. However, between those two bounds, the arbitrageur’s demand function is

downward sloping xT−1(p) = vT−1−p
ασ2

T
. It is a function of both the price and the volatility

of the fundamental value. Since the arbitrageur is risk-averse, he needs the price to be low
enough (i.e., the expected profit to be high enough) to compensate for the uncertainty of
the final payoff. The red curve in Figure 3.2 corresponds to the demand function of the
risk-averse arbitrageur. Note that the demand function is downward sloping inside the
“hyperbolic star”. Rather than hitting the long position limit whenever p < vT−1, the risk
averse arbitrageur slowly increases the size of his position as the price drops and only hits

the position limit when p < vT−1 − ασ2
T
Warb,T−1(p)

mT−1(p)
. If the arbitrageur was risk neutral (as

is the case in [BP09]) the red line inside the “hyperbolic star” would be a horizontal line
instead of a downward sloping line as is the case in Figure 3.2.

8The term “hyperbolic star” is borrowed from [BP09]
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Figure 3.2: Equilibrium price pT−1 at time T − 1. We graph the investor’s supply and
the arbitrageur’s demand functions. The investor’s supply function is the upward sloping
black dashed curve while the arbitrageur’s demand is the curve in red bounded by his
position limits shown in Figure 3.1. When the price is higher than the fundamental value,
the arbitrageur would like to short the asset and when the price is lower he would like to
buy. The equilibrium price, pT−1 = 96.5, is at the intersection of the supply and demand
functions. When p = 96.5, xT−1(p) = −yT−1(p) = 11.57.
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[BP09] derived the analytical expression of the investor’s demand function at time
t = T − 1:

yT−1(p) =
vT−1 − p
γσ2

T

− u (3.17)

−yT−1(p) is the negative of the demand function and is called the investor’s supply
function. If the market is liquid (i.e., p = vT−1), we get −yT−1 = u which means that the
investor sells all his excess holdings in the asset (i.e., the entirety of his endowment shock
u). However, as the expected future profit of holding the asset increases (i.e., p < vT−1) the
investor sells less than u9. The upward sloping black dashed curve in Figure 3.2 corresponds
to the investor’s supply function.

The equilibrium price pT−1 is the value of p where the supply function −yT−1(p) equals
the demand function xT−1(p) (i.e., the market clears). The intersection of the black dashed
line and the red curve in Figure 3.2 corresponds to the equilibrium market price. If the
functions −yT−1(p) and xT−1(p) intersect at two points, then pT−1 is the price that mini-
mizes |vT−1 − p|, i.e., the price that makes the market most liquid by keeping the market
price closer to its fundamental value.

Brunnermeier and Pedersen [BP09] further illustrate that market prices are fragile, in
the sense that a small shock (for instance, a decrease in Warb,T−2 or δT−1) can sometimes
trigger a large drop in the equilibrium market price. To illustrate the fragility of market
prices, we redraw Figure 3.2 but with δT−1 = −18 and Warb,T−2 = 125 instead of δT−1 = −6
and Warb,T−2 = 150. All other parameters are kept the same. The new supply and
demand functions are graphed in Figure 3.3. We observe that the equilibrium market
price drops significantly as the “hyperbolic star” shrinks. The drop in market liquidity is
due to the reduced ability of the arbitrageur to purchase shares due to binding financing
constraints. In summary, a “liquidity shock” occurs when binding financing constraints
cause the equilibrium market price to settle on the “hyperbolic star”10 leading to a large
deviation of the market price from its fundamental value, as shown in Figure 3.3.

Moreover, Brunnermeier and Pedersen [BP09] compute the arbitrageur’s demand func-
tion xT−2 at time T − 2. They show that, even if the arbitrageur’s financing constraints

9To understand the behaviour of the investor, note that the expected profit per share is ET−1 [pT − p] =
ET−1 [vT − p] = vT−1 − p. So if p = vT−1 (i.e., the market is liquid), the expected profit is zero and, as a
result, the risk-averse investor has no incentive to hold onto the risky asset, so he sells all the supply shock
u. However, if the market price p drops below the fundamental value vT−1, the expected profit increases
and the investor is willing to hold onto some shares which compensates for the riskiness of the asset.

10i.e., when xT−1(p) = −Warb,T−1(p)
mT−1(p)

or xT−1(p) =
Warb,T−1(p)
mT−1(p)
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Figure 3.3: Illiquid equilibrium price pT−1 at time T−1. We redraw the plot shown in Figure
3.2 but with δT−1 = −18 and Warb,T−2 = 125 instead of δT−1 = −6 and Warb,T−2 = 150.
All other parameters are kept the same. We observe that the market price at equilibrium
drops significantly as the “hyperbolic star” shrinks.
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are not binding, he won’t purchase the asset unless it trades at a discount in order to be
compensated for future “liquidity shocks”. Brunnermeier and Pedersen [BP09] however
don’t compute the equilibrium price at time T − 2. In this thesis, we continue their effort
and compute the equilibrium market price (i.e., both the arbitrageur’s demand and the
investor’s supply functions) at time t ≤ T − 2. We further decompose the liquidity risk
premium, i.e., the discount of the market price from its fundamental value, at time t into
its two components: the fundamental risk premium and the systemic risk premium.

3.2 Equilibrium Price pt : Solution to a Dynamic Op-

timization Problem

In this section, we express the equilibrium price pt as the solution to a “dynamic opti-
mization problem”. First, we formalize the problem of computing pt and present a general
formulation in a multi-period setting. Then, we derive the corresponding recursive for-
mulation and discuss the numerical computational issues. This section is self-contained.
Finance terms are not mentioned, except in Section 3.2.2, as we focus purely on the math-
ematics of the problem. To ease the transition from the economic model to its general
mathematical formulation, we provide the economic intuition and certain derivations in
Section 3.2.2.

3.2.1 General Problem Formulation

Objective Function

Let T ∈ N+ and It = (δt, vt, wt−1, pt−1, xt−1) ∈ R5. Given a state vector It, our objective is
to compute pt at time t ∈ NT

pt : R5 → R+

pt(It) = argp∈R+ min |vt − p| (3.18a)

subject to

xt(p, It) + yt(p, It) = 0 if t < T (3.18b)

Since the constraint in Equation (3.18b) applies only to t < T , we have a trivial base case
at t = T

pT (IT ) = vT (3.19)
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Define

xt :
(
R+,R5

)
→ R (3.20a)

xt(p, It) = argx∈St,It min E

[
T∏

s=t+1

k(ps(Is), Is)

∣∣∣∣It, pt = p, xt = x

]
yt :

(
R+,R5

)
→ R (3.20b)

yt(p, It) = argy∈R min E

[
T∏

s=t+1

h(ps(Is), Is)

∣∣∣∣It, pt = p, xt = −y

]

where

Ss,Is = {r ∈ R : |r| ≤ l(ps(Is), Is)} ∀s < T (3.20c)

Cost functions k(·, ·) and h(·, ·) are given by Equations (3.23) and (3.24), respectively.
The operator E[ · | ·] denotes the expectation over future states Is given the current informa-
tion set (It, pt, xt). The state vector evolves according to the p.d.f. q(Is|Is−1, ps−1, xs−1) ∀s <
T . For each Is and ∀s < T , computing ps(Is) in Equations (3.20a), (3.20b) and (3.20c)
corresponds to solving at time s the optimization problem given by Equations (3.18a)
and (3.18b). The domain11 of x in Equation (3.20a) is limited to the set St,It defined by
Equation (3.20c). The function l(·, ·) is given by Equation (3.25).

State Vector

The state vector Is is composed of current values δs and vs, and lagged values ws−1, ps−1

and xs−1:

Is = (δs, vs, ws−1, ps−1, xs−1) ∈ R5 (3.21)

For all ∀s < T , the state vector evolves as follows. Given Is, we first compute

1. ps = ps(Is), from Equation (3.18a)

2. xs = xs(ps(Is), Is), from Equation (3.20a)

Now given (Is, ps, xs):

11i.e., the range of xt(p, It)
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1. generate δs+1 ∼ N (0, σ + θ |δs|)

2. set vs+1 = vs + δs+1

3. set ws = ws−1 + xs−1 (ps − ps−1)

The evolution can be also expressed using the random function Is+1 = M(Is, ps, xs)

M :


δs
vs
ws−1

ps−1

xs−1

 ∈ R5, ps ∈ R+, xs ∈ R →


δs+1

vs + δs+1

ws−1 + xs−1 (ps − ps−1)
ps
xs

 ∈ R5

Given (Is, ps, xs), δs+1 is the only random variable involved in the evolution from Is to Is+1.
Its probability distribution is:

δs+1 ∼ N (0, σ + θ |δs|) , ∀s < T (3.22)

where σ and θ are constants.

Some Function Definitions

Below we define the functions used earlier

k(p, It) = e−αxt−1(p−pt−1) (3.23)

h(p, It) = e−γ(−xt−1+u)(p−pt−1) (3.24)

l(p, It) =
wt−1 + xt−1 (p− pt−1)

λ (σ + θ |p− pt−1|)
(3.25)

Note that u, α, γ, σ, θ and λ are constants.

3.2.2 Economic Intuition and some Derivations

The purpose of this section is to explain the connection between the market micro-structure
model discussed in Section 3.1.2 and its general mathematical formulation in Section 3.2.1.

Equation (3.18b) corresponds to the market clearing condition of Definition (3.1.1).
The equilibrium price is the price p that satisfies xt(p, It) + yt(p, It) = 0. If Equation
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(3.18b) has more than one solution, we select the one that satisfies Equation (3.18a). In
other words, we select the price p that makes the market most liquid, i.e., the price that
is closest to the fundamental value vt.

Equation (3.19) is the base case which corresponds to the final payout. Before time
T , the security does not pay any dividend. But at time T , the security pays out its
fundamental value as a dividend, and hence pT = vT .

Equation (3.20b) corresponds to the utility maximization problem of the investor. In
what follows, we derive Equation (3.20b) from the market micro-structure model. Recall
that the investor’s objective is to maximize the expected value of his exponential utility
function over final wealth. That is:

yt(p, It) = argy∈R max E

[
Uγ (Winv,T )

∣∣∣∣It,Winv,t−1, pt = p, yt = y

]
(3.26)

where

Uγ (Winv,T ) =
1− e−γWinv,T

γ
(3.27)

Winv,s = Winv,s−1 + (ys−1 + u) · (ps − ps−1) ,∀s ≤ T (3.28)

Equation (3.26) can be written as:

yt(p, It) = argy∈R max E

[
1− e−γWinv,T

γ

∣∣∣∣It,Winv,t−1, pt = p, yt = y

]
(3.29)

= argy∈R max E

[
1− e−γWinv,t−1−γ

∑T
s=t(ys−1+u)·(ps−ps−1)

γ

∣∣∣∣It,Winv,t−1, pt = p, yt = y

]
(3.30)

Since xs = −ys ∀s < T , Equation (3.30) can be written as:

yt(p, It) = argy∈R max E

[
1− e−γWinv,t−1−γ

∑T
s=t(−xs−1+u)·(ps−ps−1)

γ

∣∣∣∣It,Winv,t−1, pt = p, xt = −y

]
(3.31)

Further, since {xt−1, pt−1} ⊂ It, pt = p and Winv,t−1 is known at time t, the equation above
is equivalent to

yt(p, It) = argy∈R max−c · E
[
e−γ

∑T
s=t+1(−xs−1+u)·(ps−ps−1)

∣∣∣∣It, pt = p, xt = −y
]

(3.32)

= argy∈R min E

[
e−γ

∑T
s=t+1(−xs−1+u)·(ps−ps−1)

∣∣∣∣It, pt = p, xt = −y
]

(3.33)
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where c is a constant and equals to e−γWinv,t−1−γ(−xt−1+u)·(p−pt−1)

γ
.

Define

h(p, It) = e−γ(−xt−1+u)(p−pt−1) (3.34)

The utility maximization problem of the investor, yt(p, It), becomes:

yt(p, It) = argy∈R min E

[
T∏

s=t+1

h(ps, Is)

∣∣∣∣It, pt = p, xt = −y

]
(3.35)

Note that all ps in Equation (3.35) are optimized equilibrium market prices that satisfy
the Equations (3.18a) and (3.18b). For clarity of exposition, we replace ps by ps(Is) and
Equation (3.35) becomes:

yt(p, It) = argy∈R min E

[
T∏

s=t+1

h(ps(Is), Is)

∣∣∣∣It, pt = p, xt = −y

]
(3.36)

which is identical to Equation (3.20b).

Having derived Equation (3.20b), we now derive Equation (3.20a) which is the arbi-
trageur’s demand function xt(p, It). The derivation of xt(p, It) is similar to yt(p, It) except
that the range of xt(p, It) is constrained. The constraint on the number of shares is due
to the financing constraint, given by Equation (3.8). The arbitrageur should have enough
capital to cover his total margin requirement:

mt · |xt(p, It)| ≤ wt (3.37)

where

wt = wt−1 + xt−1 (p− pt−1) (3.38)

mt = λ (σ + θ |p− pt−1|) (3.39)

mt is the dollar margin required to trade one share at time t and wt is the wealth of the
arbitrageur at time t. Substituting the variables mt and wt by Equations (3.38) and (3.39),
respectively, Equation (3.37) becomes:

|xt(p, It)| ≤
wt−1 + xt−1 (p− pt−1)

λ (σ + θ |p− pt−1|)
(3.40)
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now set

l(p, It) =
wt−1 + xt−1 (p− pt−1)

λ (σ + θ |p− pt−1|)
(3.41)

The constraint on the arbitrageur’s position, xt(p, It), can be written as xt ∈ St,It where

St,It = {r ∈ R : |r| ≤ l(pt(It), It)} (3.42)

which is Equation (3.20c). Proceeding similarly to Equations (3.26)-(3.36) and adding the
constraints on the range of xt(p, It), we get:

xt(p, It) = argx∈St,It min E

[
T∏

s=t+1

k(ps(Is), Is)

∣∣∣∣It, pt = p, xt = x

]
(3.43)

where

k(p, It) = e−αxt−1(p−pt−1) (3.44)

which is identical to Equation (3.20a).

Finally, Equation (3.22) corresponds to the ARCH volatility structure of the funda-
mental value according to Equation (3.2), and the constant λ corresponds to Φ−1(1 − π)
where π = 95%.

3.2.3 A Dynamic Optimization Problem

To solve pt(It), we need to solve Equations (3.20a) and (3.20b). The evaluation of each of
these two equations requires solving ps(Is) for all t + 1 ≤ s < T and for infinitely many
state vectors Is. The problem is however more tractable if we express it recursively and
use dynamic programming to solve it.

Recursion

Define

Ct,k(I, p, x) =

E

[∏T
s=t+1 k(ps(Is), Is)

∣∣∣∣It = I, pt = p, xt = x

]
if t < T

1 if t = T
(3.45)
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Equation (3.45) can be written recursively as follows:

Ct,k(I, p, x)

= E

[
k(pt+1, It+1)×

T∏
s=t+2

k(ps, Is)

∣∣∣∣It = I, pt = p, xt = x

]

= E

[
k(pt+1, It+1)× E

[
T∏

s=t+2

k(ps, Is)

∣∣∣∣It+1, pt+1, xt+1

] ∣∣∣∣It = I, pt = p, xt = x

]

= E

[
k(pt+1, It+1)× Ct+1,k(It+1, pt+1, xt+1)

∣∣∣∣It = I, pt = p, xt = x

]
(3.46)

with base case CT,k(I, p, x) = 1.

Note that all the indexed variables inside the expectation term are optimized. In
particular, pj = pj(Ij) ∀j < T as given by Equation (3.18a) and xj = xj(p, Ij) ∀j < T
as given by Equation (3.20a). We can rewrite Equation (3.46) to show explicitly the
optimization of the variable xt+1 :

Ct,k(I, p, x) = E

[
k(pt+1, It+1)×min

x′
Ct+1,k(It+1, pt+1, x

′)

∣∣∣∣It = I, pt = p, xt = x

]
(3.47)

Now, define

Ct,h(I, p, y) =

E

[∏T
s=t+1 h(ps(Is), Is)

∣∣∣∣It = I, pt = p, xt = −y
]

if t < T

1 if t = T
(3.48)

Similar to Ct,k(I, p, x), Ct,h(I, p, y) can be expressed recursively as follows

Ct,h(I, p, y) = E

[
h(pt+1, It+1)×min

y′
Ct+1,h(It+1, pt+1, y

′)

∣∣∣∣It = I, pt = p, xt = −y
]

(3.49)

with base case CT,h(I, p, y) = 1.

Putting Things Together

Using the definitions and recursive formulations of Ct,k and Ct,h, our general problem
formulation becomes:

pt(It) = argp∈R+ min |vt − p| (3.50a)

77



subject to

xt(p, It) + yt(p, It) = 0 if t < T (3.50b)

where

xt(p, It) = argx∈St,I minCt,k(I, p, x) (3.51a)

yt(p, It) = argy∈R minCt,h(I, p, y) (3.51b)

and

Ct,k(I, p, x) = E

[
k(pt+1, It+1)×min

x′
Ct+1,k(It+1, pt+1, x

′)

∣∣∣∣It = I, pt = p, xt = x

]
(3.51c)

Ct,h(I, p, y) = E

[
h(pt+1, It+1)×min

y′
Ct+1,h(It+1, pt+1, y

′)

∣∣∣∣It = I, pt = p, xt = −y
]
(3.51d)

with a base case at t = T

CT,k(I, p, x) = 1 [base case]

CT,h(I, p, y) = 1 [base case]

Compared to our initial problem formulation in Section 3.2.1 , it is relatively easy
here to compute pt(It) given the values of the two functions Ct,k(I, p, x) and Cs,h(I, p, y)
evaluated on the entire space (I, p, x) ∈ R7 and (I, p, y) ∈ R7, respectively.

Computing Ct,k and Ct,h

Cs,k(I, p, x) and Cs,h(I, p, y) are computed recursively starting at time s = T and going
back in time. The base case, at time s = T , is:

CT,k(I, p, x) = 1 [base case] (3.52)

CT,h(I, p, x) = 1 [base case] (3.53)
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Now, given the functions Cs,k(I, p, x) and Cs,h(I, p, y) at a time s, Cs−1,k(I, p, x) and
Cs−1,h(I, p, y) are computed as follows:

Cs−1,k(I, p, x) (3.54)

= E

[
k(ps(Is), Is)×min

x′
Cs,k(Is, ps(Is), x

′)

∣∣∣∣Is−1 = I, ps−1 = p, xs−1 = x

]
Cs−1,h(I, p, y)

= E

[
h(ps(Is), Is)×min

y′
Cs,h(Is, ps(Is), y

′)

∣∣∣∣Is−1 = I, ps−1 = p, xs−1 = −y
]

where

ps(Is) = vs for s = T

ps(Is) is computed according to Equations (3.50a) and (3.50b) for s < T

h(·, ·) and k(·, ·) functions are given by Equations (3.24) and (3.23)

Generating Is from (Is−1, ps−1, xs−1) is demonstrated in Section 3.2.1

The expectation term E[ · | ·] consists of an integral over the random variable δs which
enters the function M that maps (Is−1, ps−1, xs−1) into Is. Refer to Section 3.2.1 for more
detail on the evolution of the state variable Is.

3.2.4 Numerical Computational Issues

According to the literature [EW89] [Pak91] [Rus91] [AM07], our optimization problem is
an instance of “finite dynamic optimization problems” but with a more complex structure
than the problems commonly studied in the literature.

The expectation term E[ · | ·] in Ct,k(I, p, x) and Ct,h(I, p, y) consists of an integral over
the random variable δt+1 which enters the function M that maps (It, pt, xt) = (I, p, x)
into It+1. Since the integral does not have a closed-form solution, we must use numerical
integration. So for each δt+1 drawn from its density function, we generate It+1 and then
compute the integrand. That in turn requires computing pt+1(It+1) according to Equations
(3.18a) and (3.18b). Here again, there is no analytical solution and we need to solve

xt+1(p
(i)
t+1, It+1) and yt+1(p

(i)
t+1, It+1), Equations (3.51a) and (3.51a) respectively, at t+1 for

many values of the pair
(
p

(i)
t+1, It+1

)
. These two minimization problems, in turn, need to be

solved numerically and require computing Ct+1,k(It+1, p
(i)
t+1, x

(j)
t+1) and Ct+1,h(It+1, p

(i)
t+1, y

(j)
t+1)

for many x
(j)
t+1 and y

(j)
t+1, respectively.
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Since the state vector Is = {δs, vs, ws−1, ps−1, xs−1} ∈ R5, price ps ∈ R, and the decision
variables (xs, ys) ∈ R2 are continuous, finding the exact solution to our problem is impos-
sible as it would require evaluating Cs,k(I, p, x) and Cs,h(I, p, y) for an infinite number of
combinations of (I, p, x) ∈ R7 and (I, p, y) ∈ R7, respectively, and for all t < s ≤ T − 1.

Related Work

Three aspects affect the computational burden required to solve such problems [GK01]:

1. The number of (state, price, decision) combinations determines the number of inte-
grals that must be evaluated at each time period. Hence, if the number of state and
decision variables is large, the number of integral evaluations may be very large. This
is referred to as “curse of dimensionality”, a term coined by Richard E. Bellman.

2. The number of stochastic terms in the cost functions (i.e., k(p, I) and h(p, I)) and
in the law of motion M determines the dimensionality of the integration required to
compute the expectation term. Hence, as the number of stochastic terms increases,
the computational time required to evaluate each integral increases.

3. The time required to evaluate the integrand affects directly the time required to eval-
uate each integral and therefore limits the number of random variables realizations
that can be practically used to estimate each integral.

Since a base case exists at time t = T , “backsolving” through dynamic programming
can save a lot of computations while providing a good approximation [SVA98]. Keane and
Wolpine (1994) [KW94] propose a technique to numerically solve finite dynamic optimiza-
tion problems. Adapting their technique to our problem, we proceed as follows. For each
time period s ∈ {t, t+ 1, ..., T − 1}, we compute (and store) Cs,k(I, p, x) and Cs,h(I, p,−x)
at only a subset of the continuous state and decision variables (I, p, x) ∈ R7. When we
need to evaluate Cs,k(I

′, p′, x′) at a later time, we retrieve its value if the function was pre-
viously evaluated at (I ′, p′, x′), otherwise we interpolate using a regression function. The
application of this technique is non-trivial due to the complex evaluation of the integrand
in our case.

Regarding the numerical estimation of the expectation term E[ · | ·] few options are
available to obtain good approximations efficiently. Keane and Wolpine (1994) [KW94]
suggest using crude frequency simulators. As [GK01] pointed out, crude frequency simula-
tors are highly inefficient if the integrand takes large values with low probabilities (which
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is the case in our problem). [Rus97] proposes numerically integrating using a “low dis-
crepancy” sequence instead of generating a sequence drawn from a random number gen-
erator. Importance sampling [GI89] can also be used to increase the efficiency of a Monte
Carlo integration. Finally, since the integrals are one-dimensional, we could use numerical
quadrature.

Note that the concept of reducing a T -period optimization problem like Equation
(3.20a) to a two-period optimization problem like Equations (3.51a) and (3.51c) is known
as the Bellman’s principle of optimality [Bel57].

3.3 Analytical Solution of pt(It) at t = T − 1

In this section, we derive the analytical solution to pT−1(IT−1). Although the numerical
approximate solution presented in the next section applies to t = T − 1 as well, we will use
the analytical solution whenever we need to compute pT−1(IT−1) to improve the accuracy
of our numerical results.

pT−1(IT−1) can be computed analytically because the functions xT−1(p, I) and yT−1(p, I)
have analytical solutions. That is only possible at t = T −1. For ease of exposition, we use
numerical values for the constant parameters and for the state variables in IT−1 to simplify
the derivation of the analytical solution and gain insights into the problem. In appendix
D, we provide the analytical expressions without numerical values.

We use the following numerical values for the constant parameters:

α = 0.005 λ = 1.65 σ = 4

γ = 0.02 u = 10 θ = 0.20

and the following numerical values for the state variables in IT−1:

vT−1 = 100 pT−2 = 102 wT−2 = 150

δT−1 = −6 xT−2 = 3

Objective

Given IT−1, compute
pT−1(IT−1) = argp∈R+ min |vT−1 − p| (3.55)

subject to

xT−1(p, IT−1) + yT−1(p, IT−1) = 0 (3.56)
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Solving yT−1(p, IT−1)

yT−1(p, IT−1) = argy∈R minCT−1,h(IT−1, p, y) (3.57)

where

CT−1,h(IT−1, p, y) (3.58)

= E

[
h(pT , IT )×min

y′
CT,h(IT , pT , y

′)

∣∣∣∣IT−1, pT−1 = p, xT−1 = −y
]

CT,h(I, p, y) = 1 [base case] (3.59)

h(p, IT ) = e−γ(−xT−1+u)(p−pT−1) (3.60)

δT ∼ N (0, σ + θ |δT−1|) (3.61)

By setting CT,h(I, p, x) to 1, we get

CT−1,h(IT−1, p, y) = E

[
e−γ(−xT−1+u)(pT−pT−1)

∣∣∣∣IT−1, pT−1 = p, xT−1 = −y
]

(3.62)

Now setting pT = vT = vT−1 + δT (base case) and inserting the numerical values, Equation
(3.62) becomes

CT−1,h(IT−1, p, y) = E
[
e−0.02(y+10)(100+δT−p)

]
, δT ∼ N (0, 5.2) (3.63)

Equation (3.57) can be written as

yT−1(p, IT−1) = argy∈R min E
[
e−0.02(y+10)(100+δT−p)

]
(3.64)

Equation (3.64) is easy to solve as the only random variable is δT which is normally
distributed N (0, 5.2). We know that

E [er] = eE(r)+ 1
2

Var(r) if r is normally distributed (3.65)

Equation (3.64) can therefore be written as

yT−1(p, IT−1) = argy∈R min eE(r)+ 1
2

Var(r) (3.66)

where

r = −0.02 (y + 10) (100 + δT − p) (3.67)

E [r] = −0.02 (y + 10) (100− p) (3.68)

Var [r] = 0.022 (y + 10)2 σ2
T (3.69)

= 0.022 (y + 10)2 5.22 (3.70)
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Since the exponential function is monotonically increasing, Equation (3.66) is equivalent
to

yT−1(p, IT−1) = argy∈R min

[
E (r) +

1

2
Var (r)

]
(3.71)

To find yT−1(p, IT−1), we take the derivatives of E (r) + 1
2
Var (r) with respect to y and set

it to 0:

−0.02 (100− p) + 0.022 (y + 10) 5.22 = 0 (3.72)

The solution is:

yT−1(p, IT−1) =
100− p

0.02× 5.22
− 10

=
vT−1 − p
γσ2

T

− u (3.73)

Solving xT−1(p, IT−1)

We proceed similarly to the previous section.

xT−1(p, IT−1) = argx∈ST−1,IT−1
minCT−1,k(IT−1, p, x) (3.74)

where

CT−1,k(IT−1, p, x) (3.75)

= E

[
k(pT , IT )×min

x′
CT,k(IT , pT , x

′)

∣∣∣∣IT−1, pT−1 = p, xT−1 = x

]
CT,k(I, p, x) = 1 [base case] (3.76)

k(p, IT ) = e−αxT−1(p−pT−1) (3.77)

δT ∼ N (0, σ + θ |δT−1|) (3.78)

ST−1,IT−1
= {r ∈ R : |r| ≤ l(pT−1, IT−1)} (3.79)

l(p, IT−1) =
wT−2 + xT−2 (p− pT−2)

λ (σ + θ |p− pT−2|)
(3.80)

Replacing the state variables by their numerical values in Equation (3.80), we get:

l(p, IT−1) =
150 + 3 (p− 102)

1.65 (4 + 0.20 |p− 102|)
(3.81)
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Proceeding similarly to Equations (3.62) – (3.73) and adding the constraint on x given by
Equations (3.79) and (3.81), we get:

xT−1(p, IT−1) =


150+3(p−102)

1.65(4+0.20|p−102|) if p < 97.69,
100−p

0.005×5.22
otherwise,

− 150+3(p−102)
1.65(4+0.20|p−102|) if p > 102.98.

(3.82)

Computing pT−1(IT−1)

Next, we solve Equations (3.55) and (3.56) using Equations (3.73) and (3.82). The solution
is:

pT−1(IT−1) = 98.92

In Figure 3.4, we plot xT−1(p, IT−1) and −yT−1(p, IT−1) as a function of p according to
Equations (3.73) and (3.82), respectively. The dashed line in black corresponds to −yT−1

while the solid curve in red corresponds to xT−1. Their intersection is pT−1(IT−1) = 98.92.
At pT−1(IT−1) = 98.92, xT−1(p, IT−1) = −yT−1(p, IT−1) = 8.00. The dotted curve in
blue and the dotted curve in green correspond to the upper bound and the lower bound
constraints, respectively, on the range of xT−1(p, IT−1) as given the Equations (3.79) and
(3.81).

3.4 Numerical Estimation of pt(It)

An analytical solution to compute pt(It) for t ≤ T−2 does not exist. In this section, we will
solve Equations (3.18a) – (3.20c) numerically and provide a numerical estimate for pT−2,
pT−3 and pT−4. In Section 3.2.3, we formulated our optimization problem recursively. We
discussed the numerical computational issues in Section 3.2.4 and suggested “backsolving”
using dynamic programming.

Our numerical technique is based on [KW94] and can be summarized as follows. For
each time period s ∈ {t, t+1, ..., T−1}, we compute and store Cs,k(I, p, x) and Cs,h(I, p,−x)
at only a subset of the continuous state and decision variables (I, p, x) ∈ R7. Denote this
subset by R7

d ⊂ R7. When we need to evaluate Cs,k(I
′, p′, x′) at a later time, we retrieve

its value if the function was previously evaluated at (I ′, p′, x′), i.e., if (I ′, p′, x′) ∈ R7
d

, otherwise we interpolate using a regression function. The expectation term E[ · | ·] in
Cs,k(I, p, x) and Cs,h(I, p,−x) is computed using numerical integration. In particular, we
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Figure 3.4: pT−1(IT−1) is the intersection of xT−1(p, IT−1) and −yT−1(p, IT−1). The
dashed line in black corresponds to −yT−1 while the solid curve in red corresponds to
xT−1. Their intersection is pT−1(IT−1) = 98.92. At pT−1(IT−1) = 98.92, xT−1(p, IT−1) =
−yT−1(p, IT−1) = 8.00. The dotted curve in blue and the dotted curve in green corre-
spond to the upper bound and the lower bound constraints, respectively, on the range of
xT−1(p, IT−1) as given by Equations (3.79) and (3.81). Note that the axes have changed
from previous plots; we flipped the x-axis and the y-axis to illustrate that the demand
functions (y-axis) are functions of the price (x-axis).
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use quasi-Monte Carlo with Importance Sampling. We compared the accuracy of that
technique against the Gauss-Hermite quadrature. Although they were both satisfactory,
we obtained more accurate results using the quasi-Monte Carlo method with Importance
Sampling due to its ability to sample from the tails and around the point of discontinuity.

3.4.1 Dimension Reduction

The number of state and decision variables affects the number of integrals that must be
evaluated and stored, and as a result affects the computational burden involved in solving
our dynamic optimization problem. For instance, if we discretise each dimension into d
values, the total number of function evaluations that we need to compute and store is 2×dn
where n is the dimension of (I, p, x). This is referred to as the “curse of dimensionality”.
It is therefore very important to try to reduce n.

Specific to our problem, we can rewrite the state and decision variables in a more
parsimonious way and therefore save on the total number of computations required to
obtain an estimate of pt(It). Let

pt(It) = vt − Λt(I
∗
t ) (3.83)

and

I∗t = (δt, wt−1,Λt−1, xt−1) ∈ R4 (3.84)

I∗t ∈ R4 can be derived from It ∈ R5 by setting Λt−1 = pt−1− vt−1. According to Equation
(3.83), we can compute pt(It) at time t if we have Λt(I

∗
t ). In Appendix E, we rewrite our

dynamic optimization problem in such a way that (I∗,Λ, x) ∈ R6 are the only variables
that enter the conditioning set in the expectation terms and are the only relevant variables
affecting the evaluations of Cs,k and Cs,h functions. That way, we reduce the number of
dimensions n from 7 to 6; we drop the two variables ps and vs and add the variable Λs.
Below we give a quick snapshot on how to compute Λs(I

∗
s ). Refer to Appendix E for a

complete exposition.

Given I∗s ∈ R4, Λs(I
∗
s ) is computed as follows:

Λs(I
∗
s ) = argΛ∈R min |Λ| (3.85a)

subject to

xs(Λ, I∗s ) + ys(Λ, I∗s ) = 0 if t ≤ s < T (3.85b)
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where

xs(Λ, I∗s ) = argx∈Ss minCs,k(I
∗
s ,Λ, x) (3.86a)

ys(Λ, I∗s ) = argy∈R minCs,h(I
∗
s ,Λ, y) (3.86b)

The state vector evolves according to the following:

M :


δs
ws−1

Λs−1

xs−1

 ∈ R4,Λs ∈ R, xs ∈ R →


δs+1

ws−1 + xs−1 (δs + Λs−1 − Λs)
Λs

xs

 ∈ R4 (3.87)

3.4.2 Numerical Mapping to a Lower Dimension

Similar to [KW94], we compute and store the values of Cs,k(I
∗
s ,Λ, x) and Cs,h(I

∗
s ,Λ,−x)

evaluated on a grid representing only a subset of (I∗s ,Λ, x) ∈ R6. This step is performed
at each time period s ∈ {t, t + 1, ..., T − 1}. For ease of exposition, we will expand
the vector I∗s = (δs, ws−1,Λs−1, xs−1) ∈ R4 in our treatment below. The dimension
of the grid, as it stands right now, is 6 consisting of the following vector (I∗s ,Λ, x) =
(δs, ws−1,Λs−1, xs−1,Λ, x) which forms the conditioning set of the expectation term in Cs,k
and Cs,h.

Not all possible combinations of (I∗s ,Λ, x) ∈ R6 need to be considered when designing
the grid. For instance, Cs,k(δs, ws−1 = 150,Λs−1 = 5, xs−1 = 10,Λ, x) and Cs,k(δs, ws−1 =
140,Λs−1 = 6, xs−1 = 10,Λ, x) are identical. The vector (ws−1, xs−1,Λs−1) ⊂ (I∗s ,Λ, x) ∈
R6 is used just to compute ws in the random functionM (see Equation (E.8)). In particular,
the vector appears in the expression ws = ws−1 +xs−1 (δs + Λs−1 − Λ) and, as a result, the
value of ws is identical for many values of (ws−1, xs−1,Λs−1), given δs and Λ.

We therefore only need to evaluate the functions Cs,k and Cs,h for the various combi-
nations of Us = (ws, δs,Λ, x) ∈ R4. For instance, if we need to evaluate the function Cs,k
at (I∗s

′,Λ′, x′) ∈ R6, we first compute the intermediate vector Us
′ = (w′s, δ

′
s,Λ

′, x′) ∈ R4

and then retrieve the value of Cs,k corresponding to the vector Us
′. The mapping from

I∗s to Us effectively reduced the dimension of our numerical problem further by two. The
numerical solution needs to deal with just four dimensions (ws, δs,Λ, x) ∈ R4, down from
seven initially.
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3.4.3 Grid Discretization

In the previous two sections, we successfully reduced the dimension of the parameter vector
of the functions Cs,k and Cs,h from n = 7 to n = 4. Since the variables are continuous, the
parameter vector must be discretized and the functions Cs,k and Cs,h evaluated at a subset
of the infinitely many combinations of (ws, δs,Λ, x) ∈ R4. Discretizing each dimension
consists of selecting 1) the range to focus on, and 2) the number of observations in that
range. We select the range of each dimension by inspecting the problem, using economic
intuition and performing simple trials. For instance, if the value of the constant u is
positive (i.e., there is selling pressure), then Λ must be positive (i.e., the price trades below
its fundamental value). We therefore narrow down the discretization range of Λ to R+

instead of R. Furthermore, since the price can not be negative, then Λ can not be larger
than vs. For all those reasons, we discretize the variable Λ over the range [0, 100]. We
discretize ws, the wealth of the arbitrageur, in the range [0, 350]. His wealth restricts the
size of his position xs in the security. We performed simulations and found that if his
wealth exceeds 325, there are effectively no constraints on the position size relative to the
amounts he would like to hold. As a result, the values of the functions Cs,k and Cs,h when
ws ∈ [325,+∞] are practically identical to the values when ws = 325. It is therefore
sufficient to discretize the variable ws in the range [0, 350]. To select the range of x, we
use economic reasoning. Since the constant u is positive (i.e., investors are forced to sell)
the market clears only if the arbitrageurs take the other side of the trade and buy the
asset. Hence x > 0. Furthermore, investors won’t sell more than u shares (the value of the
constant u is 10), hence x ∈ [0, 10]. To discretise δs, we use a low-discrepancy sequence
with importance sampling, as explained in the next section.

We determine the number of discretizations, d, within each range, by assessing the
sensitivity of the solution to the variable being discretized. For instance, if the solution
is continuous and almost linear with respect to a particular variable, we can use a coarse
discretization along that dimension. On the other hand, if the solution is discontinuous
and non-linear with respect to a particular variable, we increase the number of observation
in the range.

3.4.4 Numerical Integration

As mentioned earlier, the expectation term E[ · | ·] in Cs,k(I
∗
s ,Λ, x) and Cs,h(I

∗
s ,Λ, x) con-

sists of an integral over the random variable δs+1 which enters the function M that maps
(I∗s ,Λs, xs) into I∗s+1. Since the integral does not have a closed-form solution, we compute
it numerically. So for each δs+1 drawn from its density function, we generate I∗s+1 and
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evaluate the integrand. To select an appropriate sampling technique for δs+1, we should
take into account the following. First, evaluating the integrand is computationally inten-
sive as it requires solving Λs+1(I

∗
s+1) each time we generate a new δs+1. Second, certain

realizations of δs+1 that occur with low probability affects the integrand significantly more
than others. Third, the integrand has one point of large discontinuity with respect to δs+1

(a characteristic of market liquidity called liquidity fragility [BP09]). The point at which
the discontinuity occurs is different for different values of the parameter vector(I∗s ,Λ, x).

There are many ways to generate the random variable δs+1 whose distribution is given
by Equation (3.22). Given the three considerations mentioned above, Importance Sam-
pling is perhaps the most suitable technique as it enables us to obtain accurate results
with fewer draws of δs+1 by sampling more frequently from “important” areas of the dis-
tribution. Importance Sampling is a classic variance reduction technique. The work by
Glynn and Iglehart (1989) [GI89] provides a good overview. To improve the efficiency of
the Importance Sampling technique, we use a low-discrepancy sequence. The advantage
of using a low-discrepancy sequence instead of a sample generated randomly is the fast
convergence rate and systematic improvement in results as we increase the sample size. In
Appendix F, we compare the Gauss-Hermite quadrature method against the Quasi-Monte
Carlo with Importance Sampling. Both numerical integration methods were satisfactory.
However since the integrand takes on large values with small probability (at the tails) and
the existence of a point of discontinuity when t < T − 1, we find that the quasi-Monte
Carlo with Importance Sampling is more appropriate in our particular case.

3.4.5 Numerical Results

We compute the value of pt(It) at five different time periods, t ∈ {T − 4, T − 3, T − 2, T − 1, T}.
We use the following numerical values for the state variables in It:

vt = 100 pt−1 = 102 wt−1 = 150

δt = −6 xt−1 = −yt−1 = 3

The values of the constants are:

α = 0.005 λ = 1.65 σ = 4

γ = 0.02 u = 10 θ = 0.20

In what follows, we remove references to the state vector It as we use the numerical values
shown above. At time t = T , we have the trivial base case pT = vT ∈ IT . Hence, pT = 100.
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Table 3.2: Numerical estimates to pt(It) and xt(pt(It), It) with wt−1 = 150.
t = T t = T − 1 t = T − 2 t = T − 3 t = T − 4

pt(It) 100 98.92 97.3 93.15 89.01
xt(pt(It), It) - 8.0 6.8 5.0 3.10
Λt(It) 0 1.08 2.80 6.83 10.99

Table 3.3: In this set of simulations, we consider loose constraints to the range of the
function xt(p, It) by setting wt−1 = 250 instead of wt−1 = 150.

t = T t = T − 1 t = T − 2 t = T − 3 t = T − 4
pt(It) 100 98.92 97.86 96.05 93.48
xt(pt(It), It) - 8.0 7.93 7.00 6.11
Λt(It) 0 1.08 2.14 3.95 6.52

At time t = T − 1, we use the analytical solution of pT−1 that we derive in Section 3.3.
We get pT−1 = 98.92 and xT−1(pT−1) = −yT−1(pT−1) = 8. The liquidity discount at time
t = T −1 is ΛT−1 = vT−1−pT−1 = 1.08. At time t ≤ T −2, we can only obtain a numerical
estimate of pt(It) and xt(pt(It), It). In Table 3.2, we provide the estimated numerical
values of pt(It), xt(pt(It), It) and Λt(It) at t ∈ {T − 4, T − 3, T − 2}. We observe that
pt(It) and xt(pt(It), It) decrease as the time horizon T − t increases.

We also perform additional simulations for two different values of wt−1 ∈ It. First,
Table 3.3 shows the values of pt(It) and xt(pt(It), It) when wt−1 = 250. The increase in
wt−1 has the effect of loosening the constraint on the range of the demand function xs(p, Is)
for all t ≤ s. More specifically, the constraint is imposed by the expression x ∈ St,It in
Equation (3.20a). Visually, the constraint on xs(p, Is) is represented by a “hyperbolic star”
in Figure 3.1. In a finance context, this is equivalent to loosening the financing constraints
on the arbitrageur’s positions.

Next we estimate the values of pt(It) and xt(pt(It), It) when wt−1 = 400. The values
are shown in Table 3.4. The case wt−1 = 400 is representative to all scenarios where
wt−1 > 400 as they all lead to similar results. In all those cases, the constraint on xs(p, Is)
for all t ≤ s is very loose, and hence almost non-existent.

Typically, when the constraint is very tight, the intersection of xs(p, Is) and −ys(p, Is)
occurs on the “hyperbolic star” and, as a result, the values of ps(Is) and xs(p, Is) drop
significantly. On the other hand, when the constraints are loose, as is the case when
wt−1 = 400, the intersection occurs inside the “hyperbolic star”. For illustration, refer to
Figures 3.2 and 3.3.
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Table 3.4: In this set of simulations, we consider no constraints on xt(p, It) by setting
wt−1 = 400.

t = T t = T − 1 t = T − 2 t = T − 3 t = T − 4
pt(It) 100 98.92 97.92 96.90 95.74
xt(pt(It), It) - 8.0 8.0 8.0 8.0
Λt(It) 0 1.08 2.08 3.10 4.26

3.5 Summary

In Table 3.2, Table 3.3 and Table 3.4 we estimate numerically the equilibrium market price
pt, the number of shares traded xt(pt) and the discount Λt of the market price from its
fundamental value vt. The difference between the three tables is the value of the input
parameter wt−1, representing the initial wealth of the arbitrageur. The discount Λt is
the expected profit that compensates the arbitrageur for the risks of holding the publicly
traded asset. As discussed earlier, there are two major risks of holding the asset: 1) the
risk of changes in the fundamental value driven by the uncertainty in the final payout, and
2) the risk of liquidity shocks triggered by margin calls forcing the arbitrageur to sell at a
loss before the final payout. The first risk, called fundamental risk, is mainly associated
with the volatility of the fundamental value vt while the second risk, called systemic risk,
is associated with the fragility of the market micro-structure specifically the leverage of
market participants and the margin setting mechanism. The liquidity risk premium Λt can
therefore be decomposed into a fundamental risk premium and a systemic risk premium,
corresponding to each of the two risks discussed above.

We can decompose the value of the liquidity risk premium into its two components if
we can build a hypothetical scenario where one of the two risk components is absent. For
instance, this can be accomplished by considering a scenario where the arbitrageur has a
large initial wealth so that his leverage is too low and as a result, margin calls and liquidity
shocks never happen. The discount Λ′t in this hypothetical case corresponds solely to the
fundamental risk premium as it bears only the risk of changes in the final payout. We can
then compute the systemic risk premium in our original case by taking Λt − Λ′t.

The values of Λt(It) in Table 3.4 correspond to Λ′t since wt−1 = 400. wt−1 = 400 is the
numerical proxy to large arbitrageur wealth. Increasing his wealth further will not change
the results since beyond this point the financing constraints are effectively non-existent. In
Table 3.5 we summarize our results. The liquidity risk premium in Table 3.5 corresponds
to Λt(It) in Table 3.2 and the fundamental risk premium corresponds to Λt(It) in Table
3.4. The systemic risk premium is the difference between the two. We observe that all
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Table 3.5: The liquidity risk premium at each time period is decomposed into a fundamental
risk premium and a systemic risk premium, for the case where wt−1 = 150.

t = T t = T − 1 t = T − 2 t = T − 3 t = T − 4
Liquidity Risk premium 0 1.08 2.80 6.83 10.99
Fundamental Risk premium 0 1.08 2.08 3.10 4.26
Systemic Risk Premium 0 0 0.72 3.73 6.73

Table 3.6: The liquidity risk premium at each time period is decomposed into a fundamental
risk premium and a systemic risk premium, for the case where wt−1 = 250.

t = T t = T − 1 t = T − 2 t = T − 3 t = T − 4
Liquidity Risk premium 0 1.08 2.14 3.95 6.52
Fundamental Risk premium 0 1.08 2.08 3.10 4.26
Systemic Risk Premium 0 0 0.06 0.85 2.26

three risk premiums increase as the time-to-maturity increases (i.e., as T − t increases).
Clearly, the volatility of final payoff increases as time-to-maturity increases and the risk of
a liquidity shock before the final payoff increases as well. Note that at time t = T − 1, the
systemic risk premium is zero since there is no risk of liquidity shocks in the next period
as the arbitrageur is not selling the asset to anyone, but instead receiving a cash dividend
equal to the fundamental value vT . On the other hand, the fundamental risk premium is
non-zero since the value of the cash dividend is uncertain.

In Table 3.6, we compute the risk premiums when the initial wealth of the arbitrageur
is higher, wt−1 = 250. In this case, the financing constraints are more loose and the
arbitrageur is able to provide a better liquidity to the seller by purchasing a larger quantity
of the asset at a price closer to the fundamental value. Comparing the risk premiums in
Table 3.6 to those in Table 3.5, we observe that the liquidity risk premium is smaller due
to a smaller systemic risk premium. Since the financing constraints are looser, the risk of
liquidity shocks prior to the final payoff is lower. The fundamental risk premium however
doesn’t change since it depends on the volatility of the fundamental value vt, not the wealth
of the arbitrageur.
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Chapter 4

Implications for Risk Management

In Chapter 2, we provided empirical evidence on the effects of funding liquidity on arbitrage
spreads, and in Chapter 3 we illustrated the mechanism through which that happens. In
this chapter, we discuss the implications for risk management. From a risk management
perspective, it is very important to understand the dynamic nature of the covariances and
expected returns since they constitute major inputs to any portfolio construction process
or other protocols such as risk budgeting and exposure constraints at a portfolio level.

In this chapter, we take a two-step approach. First, we fit a Markov regime-switching
model and show that it identifies two regimes: 1) a “good regime” characterized by positive
returns, moderate volatilities and low correlations, and 2) a “bad regime” characterized
by negative returns, high volatilities and high correlations. We find that the FLSI index
has a strong explanatory power for the probability of being in a “bad regime”. Therefore,
a rising FLSI indicates an increasing probability of entering a regime with high volatility
and high correlations.

Second, we decompose the changes in market prices into two components: a change in
the fundamental value and a change in the liquidity discount. We find that the effects of
funding liquidity on the liquidity discount accounts for the majority of the increase in the
volatility and correlations during periods of stress.

4.1 Regime Switching

In this section, we fit a two-states Markov regime switching model on the returns of two
different asset classes represented by: 1) a currency carry trade index and 2) the S&P
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500 index. By studying two fundamentally uncorrelated asset classes, we gain insights
on the dynamic nature of correlation. We further show that the Markov model switches
between two regimes which we label “good regime” and “bad regime”. The “bad regime” is
characterized by periods of negative returns, high volatilities and high correlation. It also
captures most of the financial crises and recessions that occurred in the last two decades.
Regressing the probability of being in a “bad regime” against the FLSI index, we observe
that the factor loading is positive and significant. It indicates that “bad regimes” coincide
with periods of worsening funding liquidity.

4.1.1 Currency Carry Trade Index

A currency carry trade is a trading strategy consisting of selling low interest rate currencies
and investing the proceeds in high interest rate currencies. The low-yielding currencies
are called “funding currencies”, while the high-yielding currencies are called “investment
currencies”. The total return of a currency carry trade is composed of 1) the interest rate
differential, and 2) the change in foreign exchange rates. In theory, if a country raises
its interest rate, it attracts foreign capital leading to an immediate appreciation of its
currency. A currency depreciation should follow such that the “uncovered interest rate
parity” (UIP) holds. In practice however, money flows into the country slowly [MPP07]
and, as a result, the currency appreciates gradually. The gradual appreciation of the high-
yielding currency is exactly the opposite of what is expected in theory. This phenomenon is
known as the “forward premium puzzle”. [FT90], [Lew95] and [Eng96] conducted empirical
studies, reporting positive mean returns on carry trades. They essentially provide empirical
evidence of the “forward premium puzzle”.

Other studies have attempted to explain why carry trades are profitable on average.
[BNP09] argues that the positive average return on currency carry trades compensates
investors for “endogenous” crash risk. The carry trade is essentially a crowded trade1

[PL11] given the simplicity to construct such trade. The returns of crowded trades have
large negative skewness as leveraged investors are often forced to liquidate their positions
at the same time, creating selling pressures on market prices [Ped09].

[FG08a] argues that carry trades have positive average returns because countries of
the high-yielding currencies are more exposed to global economic disasters, i.e., the carry
trade is sensitive to “exogenous” crash risk. According to the market microstructure model
developed by [BP09], endogenous shocks are often triggered by exogenous shocks to ar-
bitrageurs’ capital, and hence, the explanations provided by [BNP09] and [FG08a] are

1A crowded trade is an “investment strategy that [is very] similar across hedge funds”.
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Table 4.1: We compute 1) the annualized mean, 2) annualized standard deviation, and
3) skewness of the carry trade index returns. We consider the period from 1999 to 2011
and we compute those statistics for two exclusive sub-periods: ‘normal’ and ‘crisis’. The
‘crisis’ sub-period covers two recessions (refer to Table A.1) as well as other periods of
financial stress listed in Table A.2 and Table A.3. Not unexpectedly, the returns of the
carry trade index have higher volatility, higher skewness and lower mean return during the
‘crisis’ sub-period.

Period # of days Mean (annual) Volatility (annual) Skewness
Normal 4, 856 days 5.78% 9.4% −0.09
Crisis 951 days −2.29% 17.07% −0.21

reinforcing. Moreover, [BH07] and [BGP07] argue that investors’ general preference for
positive skewness, leads to higher expected returns for strategies with negative skewness
such as carry trades.

The most popular carry trade consists of selecting the high-yielding Australian dollar
(AUD) and New Zealand dollar (NZD) as the “investment currencies” [BNP09] and the
low-yielding U.S. dollar (USD) as the “funding currency”. We plot the foreign exchange
rates of the AUD and NZD with respect to the USD in Figure 4.1 and Figure 4.2, re-
spectively. In Figure 4.3, we plot the currency carry trade index consisting of selling the
USD and investing the proceeds equally in AUD and NZD. The index has a base of 100
on 1989/02/28. In Figure 4.4 we plot the returns of the index. It is essentially the total
return of the carry trade: interest rate differential + changes in foreign exchange rates. In
Figure 4.5, we normalize the returns over the period from 1999 to 2011 by subtracting the
mean and dividing by the standard deviation. We observe that at the peak of the crisis
(i.e., around the Lehman Brothers bankruptcy), the carry trade incurred a record loss ex-
ceeding −8 standard deviations. Moreover, during most periods of stress losses exceeded
−2 standard deviations.

In Table 4.1, we compute 1) the annualized mean, 2) annualized standard deviation,
and 3) skewness of the carry trade index returns. We consider the period from 1999 to
2011 and we compute those statistics for two exclusive sub-periods: ‘normal’ and ‘crisis’.
The ‘crisis’ sub-period covers two recessions (refer to Table A.1) as well as other periods
of financial stress listed in Table A.2 and Table A.3. Not unexpectedly, the returns of the
carry trade index have higher volatility, higher skewness and lower mean during the ‘crisis’
sub-period.
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Figure 4.1: AUD/USD exchange rate.
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Figure 4.2: NZD/USD exchange rate.
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Figure 4.3: Currency Carry Trade Index. Long: AUD & NZD, Short: USD. It is the
cumulative total return of the carry trade starting from a base of 100 in 1989/02/28.
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Figure 4.4: Currency Carry Trade Index Returns. Long: AUD & NZD, Short: USD. The
return is essentially the total return of the carry trade: interest rate differential + changes
in foreign exchange rates.
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Figure 4.5: We normalise the time-series in Figure 4.4 over the period ranging from 1999 to
2011. During the period of stress, losses on the carry trade exceeded −8 standard deviation.
The blue and green dashed lines are the −1 and −2 standard deviations, respectively. We
observe that, during most periods of stress, losses on the carry trade exceeded −2 standard
deviations. After the periods of stress (see also Figure 4.3), losses were reversed with daily
gains exceeding +2 standard deviations. It is therefore important that arbitrageurs have
staying power to survive through the crises and participate in the recovery. Those that
had high leverage, were most likely forced to liquidate their positions at a loss and hence
couldn’t participate fully in the recovery.
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4.1.2 Regime Switching and FLSI

Next we calibrate a two-state Markov regime switching model on two time-series: 1) the
weekly returns of our currency carry trade index, and 2) the weekly returns of the S&P
500 index. Regime switching regression models date back to [Qua58]. [GQ73] introduced
a regime switching model in which the latent state variable follows a Markov chain. Such
models are called Markov switching models. In [Ham89], Hamilton proposed a numerical
technique to compute the parameters. His technique is however limited to relatively small
systems since it is computationally expensive to maximize numerically a coarse likelihood
surface with respect to many unknown parameters. In [Ham90], he introduced an alterna-
tive model to estimate the parameters. He proposed an EM algorithm for obtaining the
maximum likelihood estimates, a technique that we use in this section.

We consider a Markov switching lognormal model, similar to [Har01], where ρt = 1, 2
determines the regime in the period (t, t+ 1) and St is the index value at time t. In
particular, we have:

log
St+1

St
| ρt ∼ N (µρt ,Ωρt) (4.1)

The transition matrix P denotes the probabilities of moving regimes, that is,

pi,j = Pr [ρt+1 = j | ρt = i] i = 1, 2 and j = 1, 2 (4.2)

The following are the parameters that we need to estimate:

Θ = {µ1, µ2,Ω1,Ω2, p1,1, p2,2} (4.3)

We obtain the following estimates (applied to weekly returns, i.e, not annualized) using
the EM algorithm [Ham90]:

p1,1 = 0.96 p2,2 = 0.89

Ω1 =

[
1.08 bps 0.11 bps
0.11 bps 2.57 bps

]
Ω2 =

[
5.64 bps 4.16 bps
4.16 bps 13.20 bps

]

µ1 =

[
0.14%
0.30%

]
µ2 =

[
−0.06%
−0.23%

] (4.4)

In regime 1, the annualized mean and volatility of the currency carry trade index returns
are 7.28% and 7.49%, respectively. That compares with a mean of −3.2% and a volatility of
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17.12%, in regime 2. In regime 1, the annualized mean and volatility of the S&P 500 index
returns are 15.60% and 11.56%, respectively. That compares with a mean of −11.96%
and a volatility of 26.20%, in regime 2. The correlation coefficient between the currency
carry trade and the S&P 500 returns jumped from 0.06 in regime 1 to 0.48 in regime 2.
Compared to regime 1, returns in regime 2 have lower means, higher volatilities and higher
correlations. We therefore label regime 2 as the “bad regime”. We plot in Figure 4.6
the probability of being in the “bad regime” (i.e., regime 2). We see that during periods
of financial stress and during recessions, the probability of being in the “bad regime” is
high. In Table 4.2, we regress the probability of being in the “bad regime” (i.e., the time
series in Figure 4.6) against the Funding Liquidity Stress Index (FLSI) and PC2. Not
unexpectedly, we find that the loading coefficient of FLSI is positive and significant at the
1 percentile level, while the loading coefficient of PC2 is not significant. The adjusted R2

of the regression is high, 33.9%, indicating that “bad regimes” coincide with periods of
deteriorating funding conditions.

Figure 4.6: We fit a regime switching model to the returns of our Currency Carry Trade
Index and the S&P 500 Index. We plot the implied probability of being in regime 2 (labelled
“bad regime”). The areas in yellow and grey correspond to periods of financial crisis and
recessions, respectively. We note the high probability of being in the “bad regime” during
those periods.
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Table 4.2: We regress the probability of being in the “bad regime” against the Funding
Liquidity Stress Index (FLSI) and PC2. FLSI is significant at the 1 percentile level while
PC2 is not significant. The adjusted R2 of the regression is high, 33.9%, indicating that
“bad regimes” coincide with periods of deteriorating funding conditions.

Probability of being in
the “bad regime”

(Intercept) 0.387∗∗∗

(0.014)
FLSI 0.231∗∗∗

(0.013)
PC2 -0.015

(0.014)
R2 0.339
adj.R2 0.337
N 575

Standard errors in parentheses
∗ (p ≤ 0.1), ∗∗ (p ≤ 0.05), ∗∗∗ (p ≤ 0.01)

4.2 Liquidity Discounts and the Measurement of Risk

Next, we decompose the changes in market prices into two components: a change in the
fundamental value and a change in the liquidity discount. We show that the effects of
funding liquidity on the liquidity discount accounts for the majority of the increase in
the volatility and correlations during periods of stress. The arbitrage spreads studied in
Chapter 2 are very good examples of liquidity discounts and will be used to illustrate the
contribution of liquidity discounts to the measurement of risk of market prices.

Let pt be the market price of a security and vt its fundamental value. Fundamental
values are observable for certain types of securities while unobservable for others. For
instance, the fundamental value of a closed-end fund is its Net Asset Value (NAV), the
fundamental value of a company being acquired is the offered cash value, and the funda-
mental value of a bond is the present value of future cash flows. On the other hand, the
fundamental value of a commodity is harder to compute as it is mainly dependent on the
economic supply and demand which are hard to measure in practice. The fundamental
value of a common stock is typically computed through a dividend discount model.
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4.2.1 Decomposing the Returns of Market Prices

The market price can be written as:

pt = vt − Λt (4.5)

where Λt is the price discount from its fundamental value. We shall refer to Λt as the
liquidity discount. When Λt > 0, we say that the security trades at a discount. When
Λt < 0, we say that it trades at a premium. Let rp,t+1, rv,t+1 and rΛ,t+1 be the percentage
change (i.e., return), from t to t+ 1, of the market price, fundamental value and liquidity
discount, respectively. For instance,

rp,t+1 =
pt+1 − pt

pt
=

∆pt+1

pt
(4.6)

Using Equation (4.5) and Equation (4.6), the return of the market price can be written as:

rp,t+1 = rv,t+1 ·
vt
pt
− rΛ,t+1 ·

Λt

pt
(4.7)

= rv,t+1 · wt + rΛ,t+1 · (1− wt) (4.8)

where wt = vt
pt

. The return of the market price is therefore a weighted average of 1)

the percentile change of its fundamental value and 2) the percentile change of the liquidity
discount. These two components behave differently and dictate the behaviour of the market
price. The fundamental value can be a stochastic process reflecting the state of the economy
and/or the prospects of a firm. The liquidity discount however follows a mean-reverting
process reflecting the funding liquidity conditions. The behaviour of the liquidity discount
was illustrated by the arbitrage spreads in previous sections.

To understand Equation (4.8), suppose that the security trades at a discount. That is
pt < vt, wt = vt

pt
> 1, and (1− wt) < 0. Then, a positive change of the fundamental value

increases the price return, whereas a positive change of the discount (i.e., widening of the
spread) decreases the return.

4.2.2 Decomposing the Expected Return

From Equation (4.8), the expected return of the security at time t is:

Et [rp,t+1] = Et [rv,t+1] · wt + Et [rΛ,t+1] · (1− wt) (4.9)
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When the security trades at a discount, vt
pt

= wt > 1, the expected return is essentially a
leveraged exposure to the expected percentile change of the fundamental value, in addition
to the expected percentile change of the liquidity discount.

For illustration, we’ll consider a closed-end fund, the Western Asset High Income Fund
(ticker: HIF). On October 22nd 2008, the fund distributed a monthly dividend of $0.07 and
was trading at $4.50. That is equivalent to an annual yield of 18.67% on a publicly traded
fund of investment grade bonds. However, the value of the underlying bonds (i.e., the net
asset value of the fund) was $7.49 which implies a yield of 11.21% on the fundamental
value. An investor therefore could earn a yield of 18.67% by buying the fund at its market
price instead of buying the underlying bonds yielding only 11.21% 2. In this case, the
change in fundamental value is

rv,t+1 =
δt+1 + vt+1 − vt

vt
=
δt+1 + ∆vt+1

vt
(4.10)

where δt is the dividend distributed by the bonds at time t + 1. Filling the values of the
variables in Equation (4.9) and using Equation (4.10), we obtain the expected return of
the closed-end fund:

Et [rp,t+1] =
7.49

4.50
· Et [rv,t+1] +

(
1− 7.49

4.50

)
· Et [rΛ,t+1] (4.11)

= 1.66 · E
[
δt+1

7.49
+

∆vt+1

7.49

]
− 0.66 · Et

[
Λt+1 − 2.99

2.99

]
(4.12)

= 1.66 · 11.21% + 1.66 · E
[

∆vt+1

7.49

]
+ 0.66− 0.66 · Et

[
Λt+1

2.99

]
(4.13)

The return on the fund is composed of three components: 1) a leveraged yield, 2) a
leveraged price return on the NAV, and 3) a return associate with the future change of
the liquidity term (the last two terms of Equation (4.13)). The last term goes to zero if
the market price of the closed-end fund converges to its fundamental value (Λt+1 → 0),
which is typically the case in the long run. Hedging the changes in the fundamental
value (i.e., the second term) creates a very attractive arbitrage opportunity for long term
investors: they can earn 66% on their investment as the market price convergences to
its fundamental value and will earn an additional 1.66 × 11.21% = 18.67% each year
from dividend distributions while waiting for the price to converge. That opportunity in
particular existed in the aftermath of the bankruptcy of Lehman Brothers. In January
2009, the market price of HIF converged to its fundamental value, yielding a minimum

2The two alternatives have the same long-term risk, that is, the risk of default by the underlying bonds.
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gain of 66% on a diversified portfolio of investment grade bonds. Arbitrage opportunities
of such amplitude exist mostly during periods of stress.

4.2.3 Decomposing the Variance

The variance of rp,t+1 can be written as:

var (rp,t+1) = w2
t · var (rv,t+1) + (1− wt)2 · var (rΛ,t+1)

+ 2 · (1− wt) · wt · covar (rv,t+1, rΛ,t+1) (4.14)

When the market price is equal to the fundamental value, we have wt = 1 and as a result,
var (rp,t+1) = var (rv,t+1). However, during periods of stress, wt > 1 and the variance of the
market price depends on three components: 1) the variance of the fundamental value, 2)
the variance of the liquidity discount, and 3) the covariance between the two.

The first component, the variance of the fundamental value, is very asset specific. It
depends on the economy and the prospects of the asset. For instance, if it is the common
stock of a company, then the variance of the fundamental value depends on the cyclical
nature of the business, its balance sheet leverage, and its competitive positioning in the
industry, among other factors. The treatment of this term is beyond the scope of this work.

The second component is the variance of the liquidity discount. Since the liquidity
discount is the deviation of the market price from its fundamental value, arbitrage spreads
are very good examples. In Table 4.3, we compute the variance of the arbitrage spreads of
the following strategies: 1) Closed-End Funds (see Figure 2.14), 2) Mergers & Acquisitions
(see Figure 2.19), and 3) on-the-run/off-the-run Treasuries (see Figure 2.24). The variance
is computed, from January 2000 to June 2011, over two exclusive periods: 1) a “favourable”
period, and 2) a“non-favourable” period. The “non-favourable” period consists of all the
days when the Funding Liquidity Stress Index (FLSI) was above its median. The remaining
half of the time is the “favourable” period. In Table 4.3, we observe that the variance of each
arbitrage spread over the “non-favourable” period is many times larger than its variance
over the “favourable” period. The variance of the liquidity discount therefore contributes
significantly to the total variance of the market price during the “non-favourable” period.

The third component in Equation (4.14) is the covariance between the fundamental
value and the liquidity discount. In Table 4.4, we compute the covariance between the
fundamental value and the liquidity discount for a sample of closed-end funds3. For each

3We select randomly a couple of closed-end funds from each “investment objective” category listed in
Table 2.10. The sample obtained is representative of the wide variety of closed-end funds across various
investment objective categories.
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Table 4.3: We compute the variance of the arbitrage spreads of the following strategies:
1) Closed-End Funds (see Figure 2.14), 2) Mergers & Acquisitions (see Figure 2.19), and
3) on-the-run/off-the-run Treasuries (see Figure 2.24). The variance is computed during
“non-favourable” and “favourable” periods, from January 2000 to June 2011. We observe
that the variance of each arbitrage spread over the “non-favourable” period is many times
larger than its variance over the “favourable” period.

CEF M&A Government
Spreads Spreads Spreads

“favorable” Period 4.08 0.43 0.02
“non-favorable” Period 13.19 2.24 0.09

closed-end fund, we compute the covariance during two periods: the two months surround-
ing the bankruptcy of Lehman Brother (“stress” period) and the same two months but
two years earlier (“normal period”). As shown in Table 4.4, the covariance is significantly
negative during the “stress” period for all the closed-end funds in our sample. During the
“normal” period however, the amplitudes of the covariances are smaller and the signs vary.
We perform a t−test of the null hypothesis that the covariance observed in the “normal”
period is drawn from a normal distribution with mean zero and unknown variance, against
the alternative that the mean is not zero. We obtain a pvalue of 0.90, and therefore can
not reject the hypothesis. As a result, since both (1− wt) ·wt and covar (rv,t+1, rΛ,t+1) are
negative and have large magnitudes during periods of stress, the covariance term in Equa-
tion 4.14 contributes significantly more to the variance of market prices during periods of
stress than during “normal” periods.

4.2.4 Decomposing the Covariance

The covariance between the returns of security a and security b can be decomposed as
follows:

cov
(
rap,t, r

b
p,t

)
= wat · wbt · cov

(
rav,t, r

b
v,t

)
+ wat

(
1− wbt

)
cov
(
rav,t, r

b
Λ,t

)
(4.15)

+ (1− wat )wbt · cov
(
raΛ,t, r

b
v,t

)
+ (1− wat )

(
1− wbt

)
cov
(
raΛ,t, r

b
Λ,t

)
The first term, wat ·wbt · cov

(
rav,t, r

b
v,t

)
, is the covariance between the fundamental values

of the two securities. If both price discounts are zero, such that wat = 1 and wbt = 1, the
covariance of the market prices of the two securities is equal to the covariance of their
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Table 4.4: We compute the covariance between the fundamental value and the liquidity
discount for a representative sample of closed-end funds. For each closed-end fund, we
compute the covariance during two periods: the two months surrounding the bankruptcy of
Lehman Brother (“stress” period) and the same two months but two years earlier (“normal
period”).

“Stress” period “normal” period “Stress” period “normal” period

11/08/2008 11/08/2006 11/08/2008 11/08/2006

Ticker to 11/10/2008 to 11/10/2006 Ticker to 11/10/2008 to 11/10/2006

HIF −35.4% 6.5% EEF −23.5% 0.1%
CIK −32.7% −18.0% EOI −42.2% −4.5%
ADF −41.1% 25.1% EOS −30.0% −19.9%
KMM −23.8% 2.0% EVG −25.4% −4.3%
ERC −24.6% −4.3% GFY −32.2% 1.3%
NKT −28.2% 1.3% HIO −31.6% −11.9%
ARK −24.7% 9.5% JOC −27.4% −17%
AVK −55.2% 2.6% KHI −16.9% 28.5%
CYE −21.3% 4.2% NOX −53.3% −14.3%
NKT −20.8% 23.2% RDR −9.1% −2.2%

fundamental values. The covariance of fundamentals depends on the type of assets or the
nature of the businesses (if the securities are common stocks).

The last term, (1− wat )
(
1− wbt

)
cov
(
raΛ,t, r

b
Λ,t

)
, is the covariance between the liquidity

discounts of the two securities. This term is primarily driven by funding liquidity condi-
tions. During periods of stress, liquidity discounts become highly correlated as leveraged
investors are often forced to reduce their positions to adjust their leverage, and as a result,
liquidity discounts of the various assets held in their portfolios widen [BP09]. Funda-
mentally uncorrelated assets therefore become correlated due to the co-movement of their
liquidity discounts. For instance, the covariance between the arbitrage spreads of the Merg-
ers & Acquisitions and Closed-End Funds strategies jumps to 3.2 during “non-favourable”
periods4 compared to 0.65 during “favourable” periods (a five-fold increase!). The covari-

4Similar to the definition in Table 4.3, “Non-favourable” periods consist of the days from January 2000
to June 2010 when the Funding Liquidity Stress Index (FLSI) was above its median. The “favourable”
periods are composed of the remaining days. The paste 10 years are therefore divided into two exclusive
periods depending on whether the funding conditions are favourable or not, that is the FLSI is below or
above its median, respectively.

106



ance of the liquidity discounts is therefore a significant contributor to the covariance of
market prices when funding conditions are non-favourable.
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Chapter 5

Conclusion

“Despite the cries of newspapers to lower the interest rates, the Fed would sometimes do
much better to attend to the economy-wide leverage and leave the interest rate alone”. -
John Geanakoplos [Gea09].

Arbitrageurs are active market participants and most arbitrage is conducted with lever-
age. Funding liquidity, the ease by which arbitrageurs can borrow to fund their positions,
is a critical indicator of the health of the financial system. In Chapter 2, we studied the
effects of funding liquidity on arbitrage strategies. We provided empirical evidence to vari-
ous theoretical work on market micro-structure models, which we generalize in Chapter 3,
that attempt to explain the vulnerability of arbitrage to funding liquidity [SV97] [GV09]
[BP09]. We constructed a novel Funding Liquidity Stress Index (FLSI), with daily values,
composed of various measures of funding conditions. The measures were grouped into four
categories: 1) margin requirements on futures contracts, 2) general collateral repo spreads,
3) LIBOR-based measures, and 4) corporate credit yield spreads. Interestingly, the index
explains 78% of the idiosyncratic volatility of banks stock prices. That strong relationship
is not unexpected as the banking sector is very dependent on a healthy funding environ-
ment to roll-over its maturing debts. We also reproduced three actual arbitrage strategies:
1) closed-end funds arbitrage, 2) mergers & acquisitions arbitrage, and 3) on-the-run/off-
the-run Treasury arbitrage. We find that the FLSI index has a strong explanatory power
to the changes of arbitrage spreads. It is also the main source of contagion between them.
Next, we performed event-studies surrounding events of changing margin requirements. In
particular, we showed that margins rise after periods of increasing volatility and decreas-
ing asset prices which supports the “margin setting mechanism” in [BP09] as well as the
assumption regarding the use of “backward-looking risk measures” by market participants
in [BCG+09]. More importantly, asset prices continue to decrease after margins increase,
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providing evidence of spiralling effects as predicted by the theoretical model of [BP09].
The opposite is also true. Margins decrease after periods of rising prices and decreasing
market volatility. Our observations further support the concepts of “performance-based
arbitrage” in [SV97] and “pro-cyclicality” of financing in [Gea09].

Next, we studied the liquidity risk premium in a market micro-structure framework
where market prices are determined by the supply and demand of securities. We extend the
model developed by Brunnermeier and Pedersen [BP09] to multiple periods and generalize
their work by considering all market participants to be risk-averse. Computing the liquidity
risk premium consists of solving an optimization problem. We show that it is an instance
of “finite dynamic optimization problems” to which we derive a recursive formulation.
We use the recursion to compute numerical values of the liquidity risk premium at various
points in time. We further decompose the liquidity risk premium into two components: 1) a
fundamental risk premium and 2) a systemic risk premium. The fundamental risk premium
compensates market participants for providing liquidity in a security whose fundamental
value is volatile, while the systemic risk premium compensates them for taking positions
in a market that is vulnerable to liquidity shocks. The first component is therefore related
to the nature of the security while the second component is related to the fragility of
the market micro-structure (such as leverage of market participants and margin setting
mechanisms).

Last, we discussed the implications for risk management. In particular, we showed
that an increasing Funding Liquidity Stress Index indicates an increasing probability of
entering a regime with high volatility and high correlations. We further explained that the
liquidity component of market prices accounts for the majority of the increase in volatility
and correlations.

Liquidity discounts play a very important role in risk management. Although securities
can belong to various asset classes, they all have in common the exposure of their liquidity
discounts to the prevalent funding conditions. During non-crisis periods, the changes of
the fundamentals outweigh the changes of the liquidity discounts. Models backtested over
non-crisis periods will therefore falsely assume that fundamentals govern the behavior of
market prices at all time. As a result, the models will underestimate the skewness, co-
variance and serial correlation of market prices during periods of stress in which liquidity
discounts dominate changes in market prices. During a speech1 made on November 12,
2008, the Vice Chairman of the federal reserve stated: “. . . good economic performance
provided skewed data and bred complacency: House prices could only go up; income inter-
ruptions and problems servicing debt were likely to be short lived; financial markets would

1 http://www.federalreserve.gov/newsevents/speech/kohn20081112a.htm
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always be liquid. Models based on theory and estimated with data from the 1990s and
early 2000s fit well–too well. Complacency, in turn, contributed to the unwillingness of
many financial market participants to enhance their risk-management systems sufficiently
to take full account of the new (perhaps unknown) risks they were taking on. . . . Finally,
many market participants also had inadequate liquidity backstops, apparently because they
(wrongly) assumed that markets would be sufficiently liquid to smoothly adjust risk pro-
files to new developments in markets and the broader economy.” In his speech, the Vice
Chairman essentially blamed models calibrated over “good” periods for the lack of cap-
ital cushion in financial institutions to withstand a large systemic risk. A dynamic risk
management approach is perhaps more appropriate. For instance, risk systems could use a
financial stress indicator, similar to the Funding Liquidity Stress Index that we developed,
to assess the probability of being in a crisis (or a non-crisis) state. Models would then be
calibrated and tested over those past periods similar to the present time.

110



APPENDICES

111



Appendix A

List of Financial Events

In the United States, recessions are officially determined and announced by the National
Bureay of Economic Research. We list the dates of the last six recessions in Table A.1. A
complete list is available at http://www.nber.org/cycles.html. In the past two decades,
the United States witnessed two recessions and various periods of financial stress. We divide
those periods into two groups: 1) the 1998− 2002 crisis, and 2) the 2007− 2009 crisis. We
list the periods of financial stress corresponding to the 1998− 2002 crisis in Table A.2 and
those corresponding to the 2007−2009 crisis in Table A.3. Throughout this work, whenever
we plot a time-series, we represent recessions by grey areas and periods of financial stress
by yellow areas. Our reader can refer to Table A.2 and Table A.3 to identify the event for
any particular yellow area.

Table A.1: Official dates of recessions in the United States. Recessions are announced by
the National Bureay of Economic Research. They are represented by grey areas in the
plots throughout this work. Source: http://www.nber.org/cycles.html

Start Date End Date Duration in Months
2007-12-01 2009-06-01 18
2001-03-01 2001-11-01 8
1990-07-01 1991-03-01 8
1981-07-01 1982-11-01 16
1980-01-01 1980-07-01 6
1973-11-01 1975-03-01 16
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Table A.2: Periods of financial stress corresponding to the 1998-2002 crisis
Start Date End Date Event
2002-10-01 2002-11-01 Accounting Scandals
2001-12-01 2002-01-01 Enron Bankruptcy
2001-09-01 2001-10-01 September 11 2001
2000-04-01 2000-06-15 tech collapse
1999-10-01 1999-11-01 Y2K
1998-10-01 1998-11-01 Russia - LTCM

Table A.3: Periods of financial stress corresponding to the 2007-2009 crisis
Start Date End Date Event
2008-10-01 2008-11-01 Political debate over TARP
2008-09-01 2008-10-01 Lehman Brothers failure - AIG rescue
2008-07-01 2008-08-01 Indymac failure - Fannie and Freddie woes
2008-03-01 2008-04-01 Bear Stearns collapse
2007-11-01 2007-12-01 bank mortgage writeoffs - monoline troubles
2007-07-21 2007-08-21 BNP freezes redemptions - Bear Stearns HF losses
2007-02-15 2007-03-15 Chinese correction
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Appendix B

Margins on three Different Futures
Contracts

We plot the dollar and percentile margins on three different futures contracts: 1) the
Dow Jones index, 2) the AUD/USD foreign exchange rate, and 3) the NZD/USD foreign
exchange rate. The margins on the S&P 500 futures contract were plotted previously in
Figure 2.1 and Figure 2.2.

Figure B.1: Margin requirement (in dollars) on the Dow Jones futures contract. It is the
dollar amount required to initiate a position in the contract. Note that the futures contract
is on 10 units of the S&P 500 index.
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Figure B.2: Margin requirement (in percent) on the Dow Jones futures contract.
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Figure B.3: Margin requirement (in Dollars) on the AUD / USD FX futures contract.
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Figure B.4: Margin requirement (in percent) on the AUD / USD FX futures contract.
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Figure B.5: Margin requirement (in Dollars) on the NZD / USD FX futures contract.
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Figure B.6: Margin requirement (in percent) on the NZD / USD FX futures contract.
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Appendix C

Event-Studies (cont.)

We perform event studies on margins requirements for the NZD/USD foreign exchange
futures contract. We performed similar studies on margin requirements for the S&P 500
Index and the AUD/USD foreign exchange futures contracts in Section 2.6. There are 23
margin increases and 19 margin decreases during the period from January 2000 to June
2011. In Figure C.1 and Figure C.2, we plot the dollar margin requirement and the implied
volatility of the NZD/USD foreign exchange, respectively. Comparing those two figures,
we note that margin increases coincided with periods of high volatility. In Figure C.3, we
plot the average value of the NZD/USD implied volatility surrounding 23 margin increases.
We identify a clear trend of increasing volatility prior to a margin increase. The volatility
also stays high for almost a month after a margin increase. In Figure C.4, we show that
the margin increases following a period of declining market prices. It is interesting to note
that market prices continue to decrease, possibly due to forced selling following margin
increases. On the other hand, we show that the margin decreases following a period of
increasing market prices (see Figure C.5).
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Figure C.1: Margin requirement (in Dollar) on the NZD/USD foreign exchange futures
contract. Comparing with Figure C.2, we note that the margin increases coincided with
periods of high volatility.
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Figure C.2: We plot the implied volatility of the NZD/USD foreign exchange rate.
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Figure C.3: Event study of increasing margins. We plot the average value of the NZD/USD
implied volatility surrounding 23 margin increases. We identify a clear trend of increasing
volatility prior to a margin increase. The volatility also stays high for almost a month after
a margin increase.
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Figure C.4: Event study of increasing margins. We plot the average cumulative return of
the NZD/USD foreign exchange surrounding 23 margin increases.
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Figure C.5: Event study of decreasing margins. We plot the average cumulative return of
the NZD/USD foreign exchange surrounding 19 margin decreases.
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Appendix D

General Analytical Solution to
pT−1(IT−1)

We re-write the solution in terms of the constant parameters and time-varying state vari-
ables included in IT−1. Equation (3.73) becomes

yT−1(p, IT−1) =
vT−1 − p

γ (σ + θ |δT−1|)2 − u (D.1)

where δT−1, vT−1 ∈ IT−1and Equation (3.82) becomes

xT−1(p, IT−1) =


wT−2+xT−2(p−pT−2)

λ(σ+θ|p−pT−2|)
if p < bound1,

vT−1−p
α(σ+θ|δT−1|)2

otherwise,

−wT−2+xT−2(p−pT−2)

λ(σ+θ|p−pT−2|)
if p > bound2.

(D.2)

where

bound1 = max

{
−b1 +

√
b2

1 − 4a1c1

2a1

,
−b2 +

√
b2

2 − 4a2c2

2a2

× I
isreal(

−b2+
√

b22−4a2c2

2a2
)

}
a1 = −λθ
b1 = ασ2

TxT−2 + λ (θvT−1 + σ + θpT−2)

c1 = ασ2
T (wT−2 − xT−2pT−2)− vT−1λ (σ + θpT−2)

a2 = λθ

b2 = ασ2
TxT−2 + λ (−θvT−1 + σ − θpT−2)

c2 = ασ2
T (wT−2 − xT−2pT−2) + vT−1λ (θpT−2 − σ)
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and

bound2 = min

{
−b3 −

√
b2

3 − 4a3c3

2a3

,
−b4 −

√
b2

4 − 4a4c4

2a4

× I
isreal(

−b4−
√

b24−4a4c4

2a4
)

}
a3 = −λθ
b3 = ασ2

TxT−2 + λ (−θvT−1 + σ + θpT−2)

c3 = ασ2
T (wT−2 − xT−2pT−2) + vT−1λ (σ − θpT−2)

a4 = λθ

b4 = ασ2
TxT−2 + λ (−θvT−1 − σ − θpT−2)

c4 = ασ2
T (wT−2 − xT−2pT−2) + vT−1λ (θpT−2 + σ)

The solution to Equation (3.55) is to compute the intersections of Equations (D.1) and
(D.2) and select the one that is closest to vT−1. It is a bit complicated to express the final
step analytically. However, for most realistic cases (i.e., parameters with economic sense),
the solution is given by Algorithm (1).

Algorithm 1 Pseudo-code to solve Equation (3.55)

if bound1 ≤ vT−1 − uαγ(σ+θ|δT−1|)2
α+γ

≤ bound2 then

pT−1(IT−1)← vT−1 − uαγ(σ+θ|δT−1|)2
α+γ

else if
−b5−
√
b25−4a5c5

2a5
≤ bound1 then

pT−1(IT−1)←
−b5−
√
b25−4a5c5

2a5
else

pT−1(IT−1)←
−b6+
√
b26−4a6c6

2a6
end if

The new parameters of Algorithm (1) are:

a5 = −λθ
b5 = γσ2

TxT−2 + λ
(
−θuγσ2

T + θvT−1 − σ + θpT−2

)
c5 = γσ2

T (wT−2 − xT−2pT−2 + uλ (−σ + θpT−2)) + vT−1λ (σ − θpT−2)

a6 = −λθ
b6 = −γσ2

TxT−2 + λ
(
−θuγσ2

T + θvT−1 + σ + θpT−2

)
c6 = γσ2

T (−wT−2 + xT−2pT−2 + uλ (σ + θpT−2))− vT−1λ (σ − θpT−2)
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Appendix E

Dimension Reduction

In this appendix, we rewrite our dynamic optimization problem in such a way that (I∗,Λ, x) ∈
R6 are the only variables that enter the conditioning set in the expectation terms and are
the only relevant variables affecting the evaluations of Cs,k and Cs,h functions. That way,
we reduce the number of dimensions n from 7 to 6; we drop the two variables ps and vs
and add the variable Λs.

Define

I∗s = (δs, ws−1,Λs−1, xs−1) ∈ R4 (E.1)

For all t ≤ s ≤ T , Λs(I
∗
s ) is obtained as follows:

Λs : R4 → R
Λs(I

∗
s ) = argΛ∈R min |Λ| (E.2a)

subject to

xs(Λ, I∗s ) + ys(Λ, I∗s ) = 0 if t ≤ s < T (E.2b)

At t = T ,

ΛT (IT ) = 0 [base case] (E.3)

where

xs(Λ, I∗s ) = argx∈Ss minCs,k(I
∗
s ,Λ, x) (E.4a)

ys(Λ, I∗s ) = argy∈R minCs,h(I
∗
s ,Λ, y) (E.4b)

Ss,I∗s = {r ∈ R : |r| ≤ l(Λ(I∗s ), I
∗
s )} ∀s < T (E.4c)
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and

k(Λ, I∗s ) = e−αxs−1(δs+Λs−1−Λ) (E.5)

h(Λ, I∗s ) = e−γ(−xs−1+u)(δs+Λs−1−Λ) (E.6)

l(Λ, I∗s ) =
ws−1 + xs−1 (δs + Λs−1 − Λ)

λ (σ + θ |δs + Λs−1 − Λ|)
(E.7)

CT,k(I
∗
T ,Λ, x) = 1

C∗s,k(I
∗
s ,Λ, x) = E

[
k(Λs+1, I

∗
s+1)×min

x′
Cs+1,k(I

∗
s+1,Λs+1, x

′)

∣∣∣∣I∗s ,Λs = Λ, xs = x

]
CT,h(I

∗
T ,Λ, y) = 1

Cs,h(I
∗
s ,Λ, y) = E

[
h(Λs+1, I

∗
s+1)×min

y′
Cs+1,h(I

∗
s+1,Λs+1, y

′)

∣∣∣∣I∗s ,Λs = Λ,xs = −y
]

The evolution of the state vector can be expressed using the random function I∗s+1 =
M(I∗s ,Λs, xs) ∀s < T .

M :


δs
ws−1

Λs−1

xs−1

 ∈ R4,Λs ∈ R, xs ∈ R →


δs+1

ws−1 + xs−1 (δs + Λs−1 − Λs)
Λs

xs

 ∈ R4 (E.8)
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Appendix F

Numerical Integration

In this appendix, we compare two numerical integration methods to select the one that
suits our particular case better.

Objective

The objective is to numerically estimate the value of E [f(X)]. It is equivalent to computing
the following integration:

E [f(X)] =

∫ +∞

−∞
f(x) · hX(x) dx (F.1)

where hX(x) is the density function of X. In particular, we consider X ∼ N(µ, σ2). The
corresponding density function is

hX;µ,σ(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (F.2)

Equation (F.1) becomes

E [f(X)] =

∫ +∞

−∞
f(x) · 1

σ
√

2π
e−

(x−µ)2

2σ2 dx (F.3)
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Gauss-Hermite Quadrature Method

Gauss-Hermite quadrature method is used to approximate the value of integrals of the
form: ∫ +∞

−∞
g(x) · e−x2 dx ≈

n∑
i=1

wi · g(xi) (F.4)

where xi are the roots of the Hermite polynomial Hn(x) (i = 1, 2, 3..., n) and wi =
2n−1n!

√
pi

n2[Hn−1(xi)]
2 are the weights.

To estimate the integral in Equation (F.3) using the Gauss-Hermite quadrature method,
we need to change the variable. Let y = x−µ√

2σ
, Equation (F.3) becomes:

E [f(X)] =

∫ +∞

−∞
f(
√

2σy + µ) · 1

σ
√

2π
· e−y2

√
2σdy

=

∫ +∞

−∞
g(y) · e−y2 dy

≈
n∑
i=1

wi · g(xi) (F.5)

where

g(x) = f(
√

2σx+ mu) · 1√
π

xi are the roots of Hn(x)

wi =
2n−1n!

√
pi

n2 [Hn−1(xi)]
2 (F.6)

The Gauss-Hermite quadrature method, like any other Gauss quadrature method, will
only produce accurate results if the function g(x) can be closely approximated by a poly-
nomial function. Furthermore, the method is not appropriate for functions with disconti-
nuities. We will show later that our function g(x) is exponential and therefore can not be
approximately well with a finite order polynomial function. In certain situations, g(x) has
a point of discontinuity making it even more difficult to obtain accurate results with the
Gauss-Hermite quadrature method. The method does however yield good approximations,
but we were able to obtain more accurate results using quasi-Monte Carlo with Importance
Sampling.
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Quasi-Monte Carlo with Importance Sampling

If we take a sample of X, (x1, x2, ..., xn), and compute the mean of f(x) over the sample,
we obtain the Monte Carlo estimate of E [f(X)]:

E [f(X)] ≈ 1

n

n∑
i=1

f(xi) (F.7)

To obtain a sample (x1, x2, ..., xn) that is normally distributed, we first generate a sample
(u1, u2, ..., un) distributed uniformly in the interval (0, 1) and then compute xi = Φ(ui)
where Φ(·) is the inverse cumulative distribution function (CDF) of X.

Instead of generating the sample (u1, u2, ..., un) randomly using a random number gen-
erator, we can construct the sample using the rectangle rule where the n points are chosen
as ui = i

n+1
in the interval (0, 1). The rectangle rule is a simple low-discrepancy sequence.

The advantage of using a low-discrepancy sequence instead of a sample generated randomly
is that, as we increase the size of the sample, we obtain a fast convergence rate and we
improve the results more systematically.

If certain values of X have more impact on the function f(x) than others, sampling
poorly from the distribution of X can lead to bad estimates of E [f(X)]. One way to reduce
the estimation error is to increase the sample size. However, in certain situations, com-
puting f(x) is computationally intensive and it is therefore important to sample efficiently
from the distribution of X.

Importance Sampling can achieve high efficiency because it does not sample the random
variable from its original distribution, but uses a more appropriate sampling distribution
that samples more frequently from “important” regions. f(x) is then weighted accordingly
to correct for the use of a sampling distribution different from the original distribution. Re-
call that hX(x) is the original density function. Let q(x) be the sampling density function.
We can write E [f(X)] as follows:

E [f(X)] =

∫ +∞

−∞
f(x) · hX(x) dx

=

∫ +∞

−∞

f(x) · hX(x)

q(x)
· q(x) dx (F.8)

= Eq

[
f(x)hX(x)

q(x)

]
(F.9)
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where Eq denotes expectation with respect to the density function q. The quasi-Monte
Carlo estimator becomes

E [f(X)] ≈ 1

n

n∑
i=1

f(yi) ·
hX(yi)

q(yi)
y ∼ q(y) (F.10)

≈
n∑
i=1

wi · f(yi) (F.11)

where

wi =
hX(yi)

n · q(yi)
(F.12)

Note the similarity between Equation (F.12) and Equation (F.5). Equation (F.5) esti-
mates E [f(X)] using Gauss-Hermite quadrature of order n while Equation (F.12) estimates
E [f(X)] using quasi-Monte Carlo with Importance Sampling. The flexibility to select the
sampling distribution that suits our problem best is a major advantage of Importance
Sampling. In the next couple of sections, we compare these two methods to see which
one is more suitable to our problem. It is however very important to use the same n (i.e.,
Gauss-Hermite of order n for the first method, and a quasi-Monte Carlo with sample size
n for the second method) because we need to keep the number of function evaluations f(x)
to a minimum.

Example: Investor’s Demand Function at Time t = T−1

We compute numerically the investor’s demand function at time t = T − 1 using various
methods. The demand function is defined as follow: at each price p the investor selects
the number of shares yT−1 that he would like to hold. Since the demand function of the
investor at time T − 1 has an analytical solution, we can assess the accuracy of the various
numerical methods. At t = T − 1, the problem is simple:

yT−1(p) = argy∈R min E
[
e−0.02(y+10)(100+δT−p)

∣∣p, y] (F.13)

where
δT ∼ N (0, 5.2) (F.14)
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Table F.1: Gauss-Hermite Quadrature Numerical Integration. We compute the mean
squared difference between the analytical and numerically estimated functions.

n = 8 n = 10 n = 12 n = 16 n = 20
Mean Squared of Differences 63.04 55.98 49.65 37.76 25.43

The analytical solution is easy to derive since δT , which is normally distributed N (0, 5.2),
is the only random variable in the expectation term and we are conditioning on the other
two variables. The analytical solution is:

yT−1(p) =
100− p

0.02× 5.22
− 10 (F.15)

There are many numerical methods to estimate the expectation term. Gauss-Hermite
quadrature, presented in Section F, is one method. Quasi-Monte Carlo with Importance
Sampling, presented in Section F, is another. Since we know the analytical solution, we
can compute the deviation of the numerical estimates from yT−1. With respect to the
entire demand function yT−1(p), we proceed as follows: 1) we discretize p, 2) at each price
p, we compute the squared difference between the analytical solution and the numerical
estimate, and 3) we take the square root of the mean of those squared differences. In
particular, we discretize p in the interval [55, 145] in increments of 0.25 (i.e., 360 points in
total). We compute the deviation as follows:

Mean Squared of Differences =
360∑
i=1

(ỹi − yT−1(pi))
2 (F.16)

where ỹi is the numerical estimate of yT−1(pi).

Comparing the Two Numerical Methods

In Figure F.1, the dashed red line corresponds to the analytical solution of the demand
function. The solid lines correspond to numerical estimates of the demand function using
the Gauss-Hermite quadrature method. We estimated the demand function five times,
using different orders of the Hermite polynonial each time. As we increased the order,
going from n = 8 to n = 20, the accuracy of our numerical estimates improved.

In Figure F.2, the solid lines correspond to numerical estimates using quasi-Monte Carlo
with Importance Sampling. Each expectation is numerically estimated using a sample size
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Figure F.1: Gauss-Hermite Quadrature Numerical Integration. We compute the investor’s
demand function. At each price p, we compute the demand yT−1(p) according to Equation
(F.13). The expectation term in Equation (F.13) is numerically estimated using Gauss-
Hermite quadrature. We observe that as we increase the order of the Hermite polynomial,
going from n = 8 to n = 20, we improve the accuracy of our numerical estimates.

131



Table F.2: Importance Sampling quasi-Monte Carlo method. We compute the mean
squared difference between the analytical and numerically estimated functions.

2× 3× 4× 5× 6×
Mean Squared of Differences 71.24 54.58 37.17 13.61 0.18

of 20 observations. The various numerical estimates in Figure F.2 correspond to using
different sampling distributions. The sampling distributions are similar to the original
distribution but with a standard deviation a multiple of the original standard deviation, σ.
We consider five cases ranging from a sampling standard deviation of 2σ to 6σ. We observe
that using a sampling standard deviation of 5σ or 6σ, we can obtain very close numerical
estimates. By selecting a sampling distribution with a larger standard deviation than the
original distribution, we are able to sample better from the tails where the integrand f(x)
takes large values.

In Figure F.3, we compare the two numerical methods using in each case a sample size
of 20. That is, each requires computing1 the integrand f(x) 20 times. In particular, we
compare

1. the Gauss-Hermite quadrature of order n = 20, and

2. quasi-Monte Carlo with Importance Sampling using a sample size of n = 20 and a
sampling distribution with 5σ.

We observe that the Importance Sampling method leads to more accurate results be-
cause it samples better from the tails of the original distribution, which is important since
the integrand takes large values at the tails. Note that in certain situations in our general
problem, the integrand has a point of discontinuity. Importance Sampling can be partic-
ularly useful in that situation since we can adjust the mean of the sampling distribution
around the point of discontinuity and sample more from that area. Since the integrand
is lognormal at t = T − 1, there might be a better quadrature technique in this case.
However, we are more concerned about t < T − 1 when the integrand is not lognormal
and its distribution is unknown. Therefore a more flexible technique such as quasi-Monte
Carlo with Importance Sampling might be more appropriate.

1At times t < T − 1, computing the integrand becomes computationally intensive. We therefore need
to obtain a numerical estimate with as few function evaluations f(x) as possible.
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Figure F.2: Importance Sampling quasi-Monte Carlo method. We compute the investor’s
demand function. At each price p, we compute the demand yT−1(p) according to Equation
(F.13). The expectation term in Equation (F.13) is numerically estimated using quasi-
Monte Carlo with Importance Sampling. Each expectation is numerically estimated using
a sample size of 20 observations. The sampling distributions are similar to the original
distribution but with a standard deviation a multiple of the original standard deviation,
σ. We consider five cases ranging from a sampling standard deviation of 2σ to 6σ. We
observe that using a sampling standard deviation of 5σ or 6σ, we can obtain very close
numerical estimates.

133



50 60 70 80 90 100 110 120 130 140 150

−80

−60

−40

−20

0

20

40

60

yT−1(p)       

p

Analytical vs. Numerical Estimation (n=20)
comparing different methods

 

 
Analytical Solution
Gauss−Hermite
(5x sigma) Imp. Sampling

Figure F.3: We compare the Gauss-Hermite quadrature of order n = 20 against quasi-
Monte Carlo with Importance Sampling on a sample size of n = 20 and sampling standard
deviation of 5σ. Both methods require an equal amount of function evaluation, f(x). We
observe that the Importance Sampling method leads to more accurate results.
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