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Abstract

Biological membranes are quasi two-dimensional self-assembled structure, primarily
serving as a barrier to the leakage of cell’s contents. The main constituents of biological
membrane are various amphiphilic lipids that form bilayers in an aqueous environment.
These lipids carry acidic and/or basic functional groups that ionize in water, giving some
of them a net electrical charge. Such a lipid molecule, when integrated into the mem-
brane, experiences electrostatic forces from all other charged objects around it, including
ions, surrounding lipids, and other molecules such as cationic peptides. The electrostatic
interaction can profoundly influence the membrane, to which many phenomena with phys-
iological significance as well as biophysical interest can be ascribed.

In this thesis, we concentrate on investigating the electrostatic properties of lipid mem-
branes. First, we study how the electrostatic interaction affects their preferred structure.
To this end, we adopt a coarse-grain model that preserves the dominant characteristics
of the lipids, in which the electrostatic interaction is treated within the “renormalized”
Debye-Hückel theory. In particular, we calculate the spontaneous curvature of a phos-
pholipid monolayer, along with other associated quantities. Our results suggest that such
divalent ions as Mg2+ can stabilize HII phases of lipids (inverted hexagonal phases), which
would otherwise form lamellar phases.

Second,we investigate the competitive binding of ions and cationic peptides onto a
monolayer of lipopolysaccharide (LPS) molecules, a class of highly charged bio-molecules
found in the outer leaflet of the outer membranes of gram-negative (G-) bacteria. Cationic
anti-microbial peptides (AMPs) can selectively kill bacteria, and it is suggested that they
destabilize the LPS layer, easing their permeation across it, a process of great physiological
and clinical interest. To this end, we model the LPS layer as a collection of charged “binding
sites”, based on which we study the binding of cations (monovalent and divalent) and
cationic peptides onto the layer. Our calculations suggest that the peptides can compete
with divalent ions on the binding to the layer. It has been empirically known that since
the stability of an LPS layer relies greatly on the bridging of divalent ions, the substitution
of these ions by the peptides significantly compromises its stability. Our results offer a
quantitative basis for this observation, thus providing a possible mechanism of an important
step in the action of AMPs against G- bacteria.
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Chapter 1

Introduction

1.1 Motivation: Electrostatic Force in Molecular Bi-

ological Physics

Biological physics, an interdisciplinary science that connects the core of the two largest
categories of science—physical science and life science, has been studied for decades and is
attracting ever-growing interest. Of all the branches of biological physics, molecular biolog-
ical physics is most “physical,” because it inherited the reductionism of physics, studying
life by studying its smallest functional components: biomolecules, nucleic acids, proteins,
lipids, polysaccharides, etc. Molecular biological physicists believe that the function of
biomolecules is determined by, hence can be explained by, their structure. They attempt
to unveil how “the most elaborate machine in the universe” works by establishing such a
”structure-function relationship”.

Biomolecules such as DNA and protein are macromolecules made up with numerous
smaller components. Their size leads to flexibility, allowing components far apart along
the molecule to get near and interact with each other. Therefore, the structures they form
are not only determined by their chemical structures, but also by the intermolecular force
among the components and between the molecule and the environment. Furthermore,
smaller biomolecules such as phospholipids self-assemble into structures, which is gov-
erned by the intermolecular forces. Therefore, the interactions within biomolecules, among
biomolecules and between biomolecules and its surrounding play a central role in molecular
biological physics. Besides covalent bond, which is studied in biochemistry instead, the
interactions most frequently encountered in molecular biological physics are:

1



∙ van der Waals interaction

∙ electrostatic interaction

∙ hydrophobic interaction

∙ H (hydrogen)-bond

Needless to say, entropy is an equally important driving force. Indeed, most of the
phenomena studied in molecular biological physics are the results of balances between
energy and entropy.

In this thesis, we will focus on one type of interaction among these: electrostatic inter-
action; and focus on one type of biomolecule: lipids, including phospholipids found in all
cellular lives and lipopolysaccharide found almost exclusively in Gram-negative bacteria.
We will study: how this type of interaction will contribute to the property of this family
of biomolecules.

1.2 Biology: Membrane, Bacteria and AMP

1.2.1 Lipid bilayer as bio-membrane

A biological membrane is a crucial component of many cellular and subcellular processes.
Its primary function is compartmentalizing. For example, the plasma membrane distin-
guishes between the interior and exterior of a cell. It also serves as a substrate for proteins
to embed on. For example, ATP Synthase in the mitochondrion and ribosomes on rough
endoplasmic reticulum are both embedded on the biological membrane of respective or-
ganelles. Therefore, the study of biological membranes becomes an essential step toward
understanding many biological processes.

The primary constituents of biological membranes are various lipids, especially phos-
pholipids, not to mention membrane proteins. Over one half of the mass of cell membranes
is contributed by lipids. A typical phospholipid molecule (see Fig. 1.1) is an ester of
glycerol. Of the 3 carbon atoms of glycerol, two of them are connected with hydrocarbon
chains, each of which usually contains 10 to 20 carbon atoms. The third is connected
to a phosphate group. The phosphate group usually connects to a small molecule (such
as Choline). The hydrocarbon chains are hydrophobic, i.e., they avoids water, while the
phosphate group ionizes in water and thus becomes hydrophilic, i.e., it tends to be in
contact with water. In most cases, the small molecule attached to the phosphate group
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also ionize in water and become hydrophilic. Hence, the phospholipid is an amphiphilic
molecule, made up of a hydrophilic “headgroup” and two hydrophobic “tails.” When these
molecules are present in water at a sufficiently high concentration, they’ll self-assemble
into a bilayer (see Fig. 1.2), in which tails face inward, avoiding water, while heads face
outward, in contact with water. Some other possible constituents of biological membranes,
such as lipopolysaccharide (LPS) that would play a central role in the later part of this
thesis, may look quite different from typical phospholipids, but they’re still amphiphilic,
with hydrocarbon chains and phosphate groups.

Electrostatic property of phospholipids

The phosphate group is acidic, deprotonates in water and becomes anionic (carries a neg-
ative charge). The pKa value of the phosphate group is fairly small, so it’s safe to say
that all phosphate groups immersed in water will dissociate. However, the rest of the lipid
head may also carry groups that ionize in water. As a result, a phospholipids may either
be zwitterionic (carries both positive and negative charges and neutral overall) or anionic.
For example, in Fig. 1.1, phosphatidylcholine (PC) and phosphatidylethanolamine (PE)
are zwitterionic while phosphatidylserine (PS) is anionic.
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O O
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O
O

O-
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R1 O

O
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O O
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OH
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Figure 1.1: Typical phospholipid: PC (Phosphatidylcholine), PG (phosphatidylglycerol),
PE (Phosphatidylethanolamine) and PS (Phosphatidylserine)

1.2.2 Bacteria

Bacteria is one of the three domains of cellular life forms along with archaea and eucary-
otes [1] [2]. They are prokaryotic (without a cell nucleus) microorganisms (typically ∼ 𝜇𝑚
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Figure 1.2: A lipid bilayer formed from self-assembly, where the hydrocarbon tails are
shielded from the surrounding water molecules.

in dimension) that mostly assume shapes such as spheres (cocci), rods (bacilli) or spiral
(spirilla and spirochetes). Some bacteria are our allies, while some are our nemesis. Love
them or hate them, embrace them or fear them, one fact we have to live with is that we
can’t avoid them. In fact, human flora, the bacteria that live in peace on the surface of our
body, contains ten times as many cells as all the cells of our body [3]. Therefore, bacteria
have been studied by the human race for centuries, and will continue to be studied for the
centuries to come.

Bacteriology is so tremendous a field that any attempt of comprehensive discussion
would take a dozen pages. Therefore, we focus on the aspects that are relevant to our
study: their membranes and the electrostatic properties of these membranes.

The lipid composition of several typical bacteria can be found in Ref. [4]. As can be
seen, eukaryotic cell membranes are almost electrically neutral looking from outside, while
the outer leaflet of bacterial cell membranes carries a large fraction of charged lipids, as
detailed in the next section.

For eukaryote cells, one lipid bilayer is all that separates the inside of the cell from the
outside. For bacteria, however, there is a cell wall lying outside the plasma membrane.
The basic structures and compositions of the cell walls fall into two types, which put all
the bacteria into two categories: Gram positive (G+) and Gram-negative (G-). The most
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fundamental difference between the two categories lies in their cell walls. As can be seen in
Fig. 1.3, the cell wall of G+ bacteria largely consists of peptidoglycan, a copolymer between
amino acids and monosaccharides, which accounts for about 90% of the dry weight of Gram
positive bacteria. For G- bacteria, there is another lipid bilayer lying outside the plasmic,
or “inner”, membrane, referred to as the “outer membrane”. There is a small amount
of peptidoglycan (∼10% of the dry weight of the cell) lying between the two membranes
(periplasmic space). While the inner leaflet (lipid monolayer) of the outer membranes
consist of ordinary phospholipid, the outer leaflet that faces the environment contains a
special type of lipid called lipopolysaccharide(LPS). It’s been found that all of the lipid
content of this leaflet is LPS [5].

Figure 1.3: The cell wall of Gram positive and Gram negative bacteria (the general layout
is inspired by Ref. [6]). If the former has a thick layer of peptidoglycan, the latter has two
membranes.

1.2.3 Anti-microbial peptides

A great variety of multicellular, eukaryote organisms are known to be able to produce
short (∼ 20 amino acids) peptide molecules as part of their self-defense mechanism, which
can selectively destroy foreign prokaryote microbes while posing little or no threat to its
own cells. Many of such molecules, known as antimicrobial peptides (AMP), are promising
antimicrobial agents that could be used in the treatment of bacterial infection in human.
The greatest superiority of AMP over conventional antibiotics is their general mechanism
of action: their selective bacterial membrane perturbation. As a result, they will not
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easily induce bacterial resistance and show a broad spectrum of activity against pathogenic
bacteria [7, 8]. Therefore, various types of AMP or modified AMP are of therapeutic
value [8]

After more than two decades of worldwide research, many AMPs have been isolated and
sequenced; their structures have been determined and their mechanisms of action have been
clarified. It has long been experimentally confirmed that the mechanism of most AMPs
does not involve interaction with proteins [9] [10]. Typical AMP molecules, such as ma-
gainin II [11] [12] [13], are amphiphilic; the polar region is overall cationic (basic) due
to the presence of Lys and Arg residues [7]. A fundamental difference between the outer
membrane of prokaryotic and eukaryotic cells is that the former contains more anionic
lipid while the latter only contains a little that mostly resides on its inner leaflet. This
makes AMP molecules much easier to bind on the bacteria cells. This explains their selec-
tivity [8] [14] [15]. Upon binding, AMP molecules may undergo a conformational change,
from the unstructured form in the bulk to a specific structure that the polar residues are
arranged at one side of the molecule while the non-polar ones on the other, typically in-
cluding 𝛼-helical, 𝛽-sheet, loop or extended [16]. Thus it can fit into the amphiphilic lipid
bilayer and bind to it. When the density of AMP molecules aggregating on the membrane
reaches a certain level, they form toroidal or barrel-stave pores [17] on the outer membrane,
compromising its integrity, thus leading to bacterial killing. They can also diffuse across
the outer membrane to aim at intracellular targets [8]. The simple picture above, known as
Shai-Matsuzaki-Huang (SMH) model [7] [12] [18], forms the basis for theoretical research
of the recent years.

However, there is a cell wall lying outside each bacterium, which the AMPs have to
cope with before it has the chance to interact with the (inner) membrane. Will the cell
wall hinder the electrostatic binding of AMPs onto the inner membrane? The cell walls
of both G+ and G- bacteria happen to be negatively charged. The outer surface of the
peptidoglycan wall of G+ bacteria contains teichoic acids. As an acid, it becomes anionic
after deprotonation. As for G- bacteria, LPS is more highly charged than phospholipid.
Hence, electrostatic binding, and consequential permeation, of the cell wall are expected
to occur. In this thesis, however, we’ll focus only on G- bacteria and their LPS leaflets.

1.2.4 Lipopolysaccharide

Considering the role of LPS in this thesis, it’s beneficial to take a closer look at this family
of molecules. LPS is a class of large bio-molecules. An LPS molecule consists of 3 parts [19]:
lipid A, core oligosaccharide and O-antigen. Lipid A usually consists of a phosphorylated
glucosamine disaccharide with multiple (usually 6) hydrocarbon chains attached. The
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hydrocarbon chains form the hydrophobic part that is responsible for the integrity of the
outer membrane. Core oligosaccharide is connected to one of the glucosamine monomers
on lipid A and consists of a variety of sugars, among which are heptose (Hep) and 3-deoxy-
D-mannooctulosonic Acid (KDO). O-antigen is a linear glycan polymer (polysaccharide).
Fig. 1.4 is a schematic illustration of the structure. When LPS is released from the outer
membrane in the hunan body, strong pathophysiological effects such as sepsis, septic shock,
and multiorgan failure can be induced. Therefore, LPS are also known as endotoxins.

The major function of LPS is a permeation barrier. An LPS leaflet far more effec-
tively prevents the diffusion of most small molecules than a phospholipid leaflet. If the
outer membrane is patched with phospholipid, lipophilic substance can penetrate much
faster [5] [20] [21].

Figure 1.4: Schematic drawling of the structure of LPS (inspired by drawings of similar
molecules in Ref. [19] and Ref. [22]). Each consists of three parts: lipid A, core oligosac-
charide, and O-antigen

The structure and phase behavior of LPS layer as in G- bacteria has been studied
experimentally, mainly by neutron diffraction [24]. Both experiments (on Lipid A from E.
coli) and simulations (by energy minimization) indicates that the 6 hydrocarbon chains
are located in the nodes of a hexagonal lattice [25]. More details regarding the biochemical
and biophysical property of LPS can be found in the following excellent review articles:
Refs. [26], [27] and [28].
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Figure 1.5: Chemical structure of Lipid A (inspired by a similar drawing in Ref. [23]). Note
that each has a few negative charges.

1.3 Physics: Self-assembly and Strong Electrolyte

1.3.1 Self-assembly and packing shapes1

The formation of a lipid bilayer in aqueous solution is one example of self-assembly, i.e.,
molecules (“monomers”) spontaneously organize themselves into certain structures to min-
imize the total free energy. Many amphiphilic molecules exhibit such ability in water
because assembling helps to keep their hydrophobic parts “dry”. Obviously, restricting
molecules in an aggregation instead of in the aqueous solution (“bulk”) limits its freedom,
and has an entropic penalty, but this can be compensated by the benefit in energy. As
more molecules aggregates, it eventually comes to a point when the benefit for a molecule
to enter aggregation exactly negates the penalty, and the system equilibrates. Hence, it’s
all about minimizing the free energy by moving particles around, or equivalently, balancing
chemical potentials. This is also the main theme in numerous soft matter and biophysics
problems.

One of the most fundamental questions we usually ask is: “How does the concentration

1This part is largely based on Israelachvili’s book [29], but I’ve also learned a lot from Nelson’s book [30].
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of monomers determine the concentration of aggregates of various sizes?” This interesting
question has been discussed in [29] and [30] in detail. However, this question itself is not
the focus of this thesis. Instead, we’re going to discuss other aspects:“What are the possible
structures amphiphilic molecules can assume?” and “What factors determine the preferred
structure the monomers will choose to form?”

Packing Shape

Intuitively speaking, “packing” means stacking many units tightly in the same alignment.
For example, grasping a lot of cones in the hand (by the tip) is an example of packing,
while lipids aggregate into bilayer is another. Obviously, the shape of the object formed by
packing is determined by the shape of each unit that participates in packing (or “packing
shape”). A bunch of cones grasped by the tip look like part of a sphere, while a lipid
bilayer can form because many lipids found in biological system have cylindrical ”shape”
(This “shape” may not be identical to what it “appears”. It’s rather determined by the
intermolecular interactions between lipids). If the lipid packing shape deviates much from
cylinder, the preferred structure is no longer a bilayer. Furthermore, if the lipid packing
shape is somehow changed, the lipid aggregate can adopt a new structure. Hence, the
structural preference and phase behavior of a lipid aggregate is largely determined by the
packing shapes of its constituting lipids [31]. Typical structures and the corresponding
packing shapes are in Fig. 1.6

For typical lipids present in biological system, such as those in Fig. 1.1, conic packing
shape is quite unlikely. Their packing shape is usually cylindrical or inverted truncated
cone, i.e., they form a bilayer or an inverted hexagonal structure.

However, in a realistic biological membrane, there are almost always more than one
type of lipid present. In this case, the overall structure of the membrane will depend
on the property of each lipid species and the composition of the entire membrane. Of
course, the lipids that prefer structures other than a bilayer will not be in relaxed state,
and they’ll produce mechanical tension, tending to destabilize the membrane. It’s long
been experimentally confirmed that PC, a lipid with cylindrical packing shape, stabilizes
the bilayer structure, while cholesterol, a lipid with a fairly extreme inverted cone shape,
destabilizes it [32]. The membrane may not be a homogeneous mixture of lipids, and
demixing is quite common. Lipids of the same species form a domain to lower local energy
at the price of entropy. For example, it’s been observed that cholesterol accumulates in
high curvature region [33].
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micelle bilayer Inverse hexagonal
Figure 1.6: Structures and Packing Shapes of lipid aggregates. If double-tailed lipids prefer
to form a bilayer, single-tailed ones tend to form micelles. Under the right conditions,
inverted hexagonal (HII) structure can form.

Influence by Electrostatic Effect

The structural preferences of lipids can be modulated by a wide variety of physiologically
relevant factors such as hydrocarbon unsaturation, temperature, headgroup size, etc, to
name a few [34]. Besides these, since the charges of anionic lipids are located at their
headgroups, the electrostatic forces among the polar heads of these lipids can change their
packing shape. Actually, when physiological functionality calls for changes in the packing
shapes of lipids, electrostatics is a most frequently employed means, for at least two reasons:

1. Electrostatic interaction is controlled by tunnable parameters. In later chapters, I’ll
shown that the electrostatic free energy of a lipid aggregation depends on the fraction
of anionic lipids, and the concentration of ions in the surrounding aqueous solution.
The former can be changed by changing the pH value so that some lipids don’t
ionize. Furthermore, even a tiny amount of multivalent cations can drastically alter
the electrostatic force (typically leads to an attracting one) between lipids by bridging
between them (see Fig. 1.7) [35] [36]. All of these “environmental” parameters are
relatively easy to adjust.

2. Other factors that determine the packing shape are harder to change. These usually
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involves the inherent properties of lipids, such as chemical structure, and cannot be
freely adjusted.

Figure 1.7: Inverse Hexagonal (HII) Structure Induced by Divalent Ion (inspired by a
similar drawing in Ref. [36]). The presence of divalent cations can stabilize HII phases of
lipids, which would otherwise form lamellar phases.

It has long been found that electrostatic interaction significantly affects the structure
and phase behavior of lipid aggregations. By late 1960s, it had been observed that:

1. Bilayers composed of phosphatidylserine (PS) are unstable under conditions of asym-
metric distribution of Ca2+ or H+ [37].

2. Electrostatic interaction affects ordered-fluid phase transition, divalent ions induce a
fluid to ordered phase transition while monovalent cations make the membrane more
fluid-like [38].

3. For PS, the melting temperature increases by more than 50 K when 1 mM of Ca2+

is added to bridge the negative charges [39].

4. PA (phosphatidic acid) forms a bilayer in neutral to basic pH, but forms H2 structure
in acidic environment or when Calcium salt is added. CL (cardiolipin) also goes from
bilayer to H2 when Ca salt is added [34].
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Significance in Physiology

Although it’s been known for decades that phospholipids can form non-bilayer structures,
people tend to underestimate the significance of lipid polymorphism in a biological context
until late 1970s [40]. A realistic biological membrane is usually made up of multiple types
of lipids, and well over a hundred different molecular species of lipids have been found
in the erythrocyte membrane. The best way to explain such diversity is: they have a
wide range of polymorphic behavior which is called for by cellular lives [34]. The major
species, such as PC, have roughly cylindrical packing shape, so that a membrane mainly
consisting of them stays in a bilayer structure. However, the preferred structure of some
lipids is not a bilayer, and integrating them into a bilayer will produce a packing stress.
An appreciable proportion (30% or more) of membrane lipids either adopt non-bilayer
structure in isolation or induce such structure in mixed lipid systems[34]. Such stress can
influence the functioning of membrane-embedded protein. There are numerous examples
for this. To name a few:

1. Cell fusion and fission. These phenomena are crucial to all the cellular lives. It’s
difficult to rationalize these events if the structure of cell membranes is inviolate. In
other words, at some point in these events, part of the lipids must depart from bilayer
structure [40]. It’s long been found that Calcium ions, which strongly interact with
anionic lipids, play a vital role in these events (see Ref. [39] and references therein).

2. Interaction of proteins and peptides with membranes. On one hand, proteins and
peptides have their impact on the structure of the membrane they come into touch.
For example, inclusion of protein into a membrane induces deformation [41], and
peptides (such as AMPs) are also observed to modulate membrane curvature [42] [43].
For example, “mechano-sensitive channels” can be opened or closed by changing
the packing stress of the membrane around it, and it’s been experimentally found
that some of them can be controlled by multivalent ions [44]. The insulin receptor,
a transmembrane protein, is also modulated by the polymorphic property of the
membrane [45]. The effect of AMPs is also influenced by the tension and stability of
the membrane [46].

3. Drug delivery. In clinical science and pharmacy, people want to deliver drugs to
specific sites where they’re supposed to exert their effect, such as a cancerous tissue,
to maximize the therapeutic effect while minimizing side effects. One strategy is to
enclose the drug into liposomes, vesicles made of lipid bilayer. Some of the lipids
in the liposome are anionic/cationic. In normal tissue where the pH of body fluid
is neutral to slightly basic, the electrostatic force won’t compromise the stability of
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the liposomes. Once the liposome reaches a cancerous tissue, where the body fluid
is more acidic, the ionization of these lipids will change, and the resulting change
in electrostatic forces will destabilize the liposome, helping release the drug within.
This has been discussed in several literatures [47] [48].

1.3.2 Poisson-Boltzmann and beyond

A major challenge in the study of electrostatic interactions in biological systems, such as
bio-membranes, is that they’re usually immersed in a body fluid, which is water (aqueous
phase) that contains a variety of ions, mostly monovalent (such as proton, Na+, K+, OH−,
Cl−) or divalent (such as Mg2+ and Ca2+). For a bio-membrane, the charged lipids can
move in 2D, while the ions in the body fluid around it can move in 3D. Hence, we’re
looking at an electrostatic problem that involves mobile charges. Naturally, the charges
will distribute themselves in such a way to minimize the free energy. How will this affect
the effective force law between the charged lipids?

In an introductory-level electromagnetic course, systems with mobile charges are also
encountered, such as the outer surface of a conductor. However, such systems implicitly
adopts the “zero temperature” approximation, so the charge distribution is just about min-
imizing the electrostatic energy of the system. If we apply this to our “membrane + body
fluid” system, the (negatively) charged lipids will form a regular, hexagonal distribution to
keep a distance from each other, the cations such as Na+ will collapse onto the membrane,
while anions get as far away from the membrane as possible. However, in biological system
where the temperature is typically ≈ 300K, this approximation might be invalid. To check
this, we define the Bjerrum length, 𝑙𝑏 as below:

𝑒2

𝜀𝑙𝑏
= 𝑘𝐵𝑇 (1.1)

𝑙𝑏 =
𝑒2

𝜀𝑘𝐵𝑇
(1.2)

That is, when two elementary charges in a medium of dielectric constant 𝜀 are separated
by 𝑙𝑏, the electrostatic energy between them will be the thermal energy 𝑘𝐵𝑇 . The Bjerrum
length in water (𝜀𝑤 = 80) at 𝑇 = 300𝐾 is roughly 7Å, which is of the same order of
magnitude as the distance between charges in such systems. Besides, charged lipids and
ions usually carries a few elementary charges. Hence, in our system, the thermal energy is
comparable to the typical electrostatic energy.
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Figure 1.8: Electrostatic Interaction in Electrolyte Solution

Therefore, equilibrium in such system must reflect the balance between minimization
of energy and maximization of entropy. While the former pulls the cations towards the
membrane surface and push the anions away, the latter prefers the ions to be homoge-
neously distributed. Hence, we expect the cations to be closer, but not to “collapse,” to
the membrane. The natural question is then how to quantitatively describe its equilibrium
state, namely, the spatial distribution of charges and electrical potential?

Derivation of Poisson-Boltzmann equation2

We attempt to find a differential equation for the equilibrium distribution of ions in a
medium, typically water (the lipid charges will enter as boundary condition). For simplicity,
we assume there are only two types of ions present, a cation and an anion with valence 𝑧+
and 𝑧− respectively. Hence, we seek to determine the following three interrelated quantities
simultaneously: the electric potential 𝜓 (�⃗�) as well as the distributions of cations 𝑛+ (�⃗�) and
of anions 𝑛− (�⃗�). We set infinitely faraway to have 𝜓 = 0, where 𝑛+ = 𝑛+

0 and 𝑛− = 𝑛−
0 .

At least, we know the following statements are self-evident:

1. Coulomb’s Law always holds, i.e., the electrical potential can be described by Poisson
equation:

2This section is largely written by myself based on what I’ve learned and figured out myself, instead
of copying from any of the literatures. Hence it’s not easy to put a citation for each part. This is loosely
based on [49], but I’ve also learned from Ref. [29], [50], [51], [52], [53], and many other sources.
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∇2𝜓 (�⃗�) = −4𝜋

𝜀𝑤
𝜌 (�⃗�) =

4𝜋

𝜀𝑤

(
𝑧−𝑛− (�⃗�) + 𝑧+𝑛

+ (�⃗�)
)

(1.3)

2. The ions will obey the Boltzmann distribution, i.e., its probability of having a higher
electrostatic energy is exponentially lower:

𝑛− (�⃗�) = 𝑛−
0 ⋅ exp (−𝑒𝑧+𝜓 (�⃗�) /𝑘𝐵𝑇 ) (1.4)

𝑛+ (�⃗�) = 𝑛+
0 ⋅ exp (−𝑒𝑧+𝜓 (�⃗�) /𝑘𝐵𝑇 ) (1.5)

Combining these two facts, we arrive at a single equation of 𝜓:

∇2𝜓 (�⃗�) = −4𝜋

𝜀𝑤

[
𝑧−𝑛−

0 ⋅ exp (−𝑒𝑧+𝜓 (�⃗�) /𝑘𝐵𝑇 ) + 𝑛−
0 ⋅ exp (−𝑒𝑧+𝜓 (�⃗�) /𝑘𝐵𝑇 )

]
(1.6)

Naturally, it’s referred to as Poisson-Boltzmann (PB) equation. It is a second-order,
inhomogeneous, non-linear partial differential equation, which is generally hard to solve
analytically. Poisson-Boltzmann equation is often applied to two distinct cases with and
without added (1:1) electrolyte (e.g. NaCl). A very good discussion on the first case can
be found in Ref. [49]. I’ll focus on the second case.

PB equation for electrolyte solution and Debye-Hückel equation

Under physiological conditions, the aqueous phase in contact with the membrane always
contains some ions. In the simplest case, it contains a 1-1 electrolyte only such as NaCl
at a concentration of 𝑛0, so it contains an equal amount of Na+ and Cl−. To further
simplify the problem, we assume the aqueous is sufficiently large and acts like a reservoir
of Na+ and Cl−, so 𝑛Na

0 = 𝑛Cl
0 = 𝑛0. Also the concentration of counterions released from

the membrane is negligible comparing to 𝑛0, so we can assume there are only 𝑁𝑎+ and
𝐶𝑙− present in the aqueous phase. In this case, we usually call the ions with the opposite
charge with respect to the charged surface (e.g. Na+) “counterions,” while the other ion
as “co-ions”. Now, Eq. 1.6 becomes:

∇2𝜓 (�⃗�) =
8𝜋𝑒𝑛0

𝜀𝑤
sinh

(
𝑒𝜓 (�⃗�)

𝑘𝐵𝑇

)
(1.7)
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These salt ions will shield surface charges and as a result, 𝜓 decays faster in the presence
of added salt ions.

Now we define a quantity 𝜅 as below:

𝜅2 =
8𝜋𝑒2𝑛0

𝜀𝑤𝑘𝐵𝑇
(1.8)

With the dimensionless reduced potential Ψ = 𝑒𝜓
𝑘𝐵𝑇

, Eq. 1.7 becomes:

∇2Ψ(�⃗�) = 𝜅2 sinh (Ψ (�⃗�)) (1.9)

Dimension analysis shows that 𝜅 has the dimension of inverse length, so 𝜅−1 is called
Debye length. This length is inversely proportional to 𝑛0, which means a more dilute salt
solution has a larger Debye length.

An empirical formula for its calculation is, for aqueous solution at 𝑇 = 300𝐾,

𝜅−1 =
3.081√
𝑛0

(1.10)

where 𝜅−1 and 𝑛0 are in the unit of Å and mol/L, respectively. In a physiological environ-
ment where a typical 𝑛0 = 100𝑚𝑀 , Debye length is roughly 10 Å.

When several types of salts dissolve in water, Eq. 1.9 still holds, with the Debye length
defined as:

𝜅2 =

8𝜋𝑒2 1
2

𝑁∑
𝑗=1

𝑛𝑗0𝑍
2
𝑗

𝜀𝑤𝑘𝐵𝑇
(1.11)

where 𝑛𝑗0 is the concentration of the 𝑗th species of charged particle (cations and anions are
counted as different species) and 𝑍𝑗 is the valence of the 𝑗th species of charged particle.
For example, for the typical case considered throughout this thesis: a solution of a 1-1 salt
at the concentration of 𝑛1 and a 2-1 salt (such as MgCl2) at the concentration of 𝑛2, the
Debye length would be: 𝜅−1 = 3.081√

𝑛1+3𝑛2
.

Eq. 1.9 is still non-linear and extremely hard to solve analytically even for simple
geometries (e.g. cylindrical and spherical surface). As we can see, when Ψ is small,
sinhΨ ≈ Ψ. Hence Eq. 1.9 can be approximated as:

∇2Ψ(�⃗�) = 𝜅2Ψ(�⃗�) (1.12)

Eq. 1.12 is called linearized Poisson-Boltzmann equation or Debye-Hückel equation. In
Appendix A, we present the solutions of Eq. 1.9 and Eq. 1.12 in various cases.
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Beyond Poisson-Boltzmann theory: fluctuation and correlation

Despite the complexity of and difficulty in solving the Poisson-Boltzmann equation, it has
limitations, since it is based on a mean-field picture. That is, the actual charge distributions
are replaced by their thermal averages and stay at such averages over time. Therefore, it
fails to capture any charge-charge correlation, which can be important in some cases,
especially in the presence of multivalent counterions.

Fig. 1.9 is to illustrate how a mean-field theory can break down. In this figure, some
positive and negative point charges, carrying equal but opposite charges, are discretely
organized on a square lattice (the left panel); there will be the same numbers of positive
and negative charges if the lattice is infinitely large. That is, the average charge density
on the lattice plane is zero. A mean-field approximation is equivalent to replacing a (local)
charge distribution by the (local) average charge, which is zero in the case shown in Fig. 1.9.
However, if we pick one charge and sum up the Coulomb force exerted by all other charges,
we’d see it’s not zero, but some value that is the same for each charge (positive or negative)3.
Therefore, the electrostatic interaction energy of the plane is none-zero, and mean-field
theory gives a qualitatively wrong prediction.

Figure 1.9: Illustration of the limitation of a mean-field approach. On the left, charge
discreteness and charge non-uniformity are well preserved. All this feature will be lost if
the charges are smeared out, as in a mean-field approach (left panel).

Note that the overall neutral lattice on the left has lower energy. If we don’t restrict
the charges on the lattice sites, but allow them to move freely, positive and negative
charges will immediately start to pair with each other, and the surface will becomes more
electrically neutral locally than indicated in the left panel. However, any physical system

3This configuration plays an important role later in this thesis, and the calculation is detailed in
Appendix. D
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doesn’t always stay in the lowest free energy state, and fluctuations occur. Even if we
do not restrict the charges on the lattice, and the surface is on average neutral at every
point, some charges may still fluctuate away from the thermodynamically most favorable
position. Local non-zero charge densities rise and fall, making the energy of the surface,
averaged over time, non-zero. For instance, Casimir effect, in which the fluctuation of a
vacuum (production and annihilation of virtual photon pairs) leads to a non-zero force
between metal plates. In electrostatic systems, dipoles can be “produced” (ionized) and
“annihilated” (neutralize) in a conceptually similar way.

Just like in Casimir effect, charge fluctuation and correlation usually create attractive
forces. Intuitively speaking, by varying charge distributions while keeping the average
charge density constant, we’re making some regions more “positive” and some other regions
more “negative.” This induces attractive forces. This also explains why multivalent ions
in soft condensed matter systems, such as those we studied in this thesis, often lead to
attractive forces. A divalent cation, for example, is different from two monovalent ones in
that the two electrical charges in the former always stick together, or, less “smeared out”.
If we neutralize the former with two monovalent anions, these anions will also tend to be
spatially closer. A mean-field theory such as Poisson-Boltzmann theory cannot account for
such subtleties, and these effects can only be appreciated by accounting for the electrostatic
correlation between the charges.

Much effort has been put into quantitatively studying the effects of charge correlations
and fluctuations on charged objects immersed in an electrolyte solution, most of which are
based on a continuum model, such as the attraction between parallel membranes [54] [55].

In parallel with such an effort to account for charge correlations and fluctuations,
an attempt to go beyond Poisson-Boltzmann equation has been made. For example,
Borukhov [56] [57] introduced the finite size of ions into the classical Poisson-Boltzmann
equation. However, since these are not used in our work, we’re not going further on these
topics.

1.4 Overview of the Thesis

Following the general background in chapter 1, we first present two similar but closely-
related problems and our strategies for solving them in chapter 2 and 3; from these stud-
ies, we draw several conclusions, which are relevant in a variety of contexts: nano-bio-
technologies and the microbe-killing activity of antimicrobial peptides. We conclude this
thesis with some possible directions to work in.
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In chapter 2, we attempt to establish a model to study the structural preference of
a mixed anionic and zwitterionic phospholipid system. We will adopt from earlier works
a molecular model of phospholipids that accounts for the non-electrostatic intermolecular
interactions between them. Then, we’ll consider a mixed lipid monolayer that can be
bent into cylindrical shape, write down the free energy (including non-electrostatic and
electrostatic parts) as a function of its geometrical parameters. By minimizing the free
energy, we can determine the preferred geometry of the monolayer, which reflects the
average packing shapes of the lipids in the monolayer, and thus the structure they tend to
form and be stable in. To account for electrostatic interaction more accurately, we adopted
the viewpoint of “counterion condensation” and utilized renormalized Debye-Hückel (DH)
approach. We then account for fluctuations and charge correlations in the condensed layer,
especially when multivalent ions are present.

In chapter 3, we study the action of cationic peptides against an LPS leaflet. We
establish a model, in which the charges of LPS are distributed onto a square lattice;
ions and peptides are allowed to be bound onto them. Based on the model, we study
the binding behavior of the ions and peptides. Our approach is distinct from molecular
dynamics [22] [58] and Monte-Carlo [59] simulations, which have been used to tackle similar
problems. It allows us to calculate readily various physical quantities such as the (excess)
lateral pressure contributed by electrostatic interactions and its impact on the leaflet.
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Chapter 2

Effects of Electrostatics on Lipid
Membranes

2.1 Introduction

As discussed in the last chapter, electrostatic interactions can effectively modulate the
packing property of lipids and thus eventually their phase behavior, important aspects of
lipid aggregation. It is thus of great interest to study electrostatic modification of lipids:
their packing shape and the structures they form.

Over the last few decades, there has been much effort to unravel the intriguing role
of electrostatics in reshaping lipid membranes. For instance, in late 1980s to early 1990s,
Winterhalter et al. [60] [61] calculated a a number of membrane parameters such as the
bending rigidity and spontaneous curvature of a membrane carrying charge lipids using
the Debye-Hückel equation. Later, Chou et al. [62] tackled a similar problem by solving
the full Poisson-Boltzmann equation without suppressing dielectric discontinuities. Thus
their results are numerically more accurate. However, both Debye-Hückel and Poisson-
Boltzmann approaches rely on on mean-field approximation and have limitations. They
cannot correctly capture the effect of multivalent ions. Furthermore, in these past studies,
a membrane is viewed as a continuous, homogeneous “slab”. Thus some molecular details
of individual lipids are left out. More recently, Ha [63] [64] studied the effect of multivalent
ions on lipid bilayers based on a continuous treatment of charge fluctuation and correlation,
Li and Ha [65] attempted to determine 𝑐0 by relating it to Δ𝑎0, lipid headgroup-area
changes induced by electrostatic interactions. Lau and Pincus [66] studied the unusual
(non-analytical) softening of a membrane at low salt limit due to charge fluctuations, effects
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of which diverge logarithmically with membrane dimensions. Finally, Taheri-Araghi and
Ha [67] developed an accurate approach by combining a molecular model of individual
lipids and the Poisson-Boltzmann equation. However, this method is numerically involved.

Here we aim at developing a more analytically tractable approach to lipid membranes
that captures important lipid and charge properties of the membrane as discussed in the
work by Taheri-Araghi and Ha [67].

2.2 Theoretical Methods

2.2.1 Deformation of lipid bilayers and monolayers

Helfrich free energy

A homogeneous, relaxed membrane (bilayer or monolayer) adopts certain geometry, char-
acterized by two parameters: area 𝐴0 (optimized area) and curvature 𝑐0 (spontaneous
curvature) that are constants throughout the membrane. “Deformation” is defined as de-
viation from this relaxed state. We can expand the free energy per unit area, 𝐹 (𝐴, 𝑐) as a
power series to the leading terms. For a cylindrically bent bilayer or monolayer:

𝐹 (𝐴, 𝑐) = 𝐹 (𝐴0, 𝑐0)+
1

2

∂2𝐹

∂𝐴2
(𝐴− 𝐴0)

2+
1

2

∂2𝐹

∂𝑐2
(𝑐− 𝑐0)

2+
∂2𝐹

∂𝐴∂𝑐
(𝐴− 𝐴0) ⋅ (𝑐− 𝑐0) (2.1)

Define stretching modulus 𝜆, bending modulus 𝑘 and stretching-bending coupling co-
efficient 𝜒 as below:

𝜆 = 𝐴2
0 ⋅
∂2𝐹

∂𝐴2
, 𝑘 = 𝐴2

0 ⋅
∂2𝐹

∂𝑐2
, 𝜒 = 𝐴0 ⋅ ∂

2𝐹

∂𝐴∂𝑐
(2.2)

And rewrite Eq. 2.1 as:

𝐹 (𝐴, 𝑐) = 𝐹 (𝐴0, 𝑐0) +
1

2
𝜆

(
𝐴

𝐴0

− 1

)2

+
1

2
𝑘(𝑐− 𝑐0)

2 + 𝜒

(
𝐴

𝐴0

− 1

)
⋅ (𝑐− 𝑐0) (2.3)

The sign of curvature 𝑐 for a bilayer is defined to be the same as its “outer” monolayer.
In this chapter, monolayer bending from the polar heads to the hydrocarbon tails i.e. the

21



hydrophilic side bulges outward leads to positive 𝑐, while bending from the tails to the
heads leads to negative 𝑐 [50] [68]. When “outer” can’t be unambiguously defined, special
convention might be adopted to define the sign of 𝑐 of a bilayer.

For geometries other than cylinder, such as sphere, we have two curvatures, 𝑐1 and 𝑐2
at each point, measured on two perpendicular directions. The bending free energy will
become:

Δ𝐹𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =
1

2
𝑘(𝑐1 + 𝑐2 − 𝑐0)

2 + 𝑘𝐺𝑐1𝑐2 (2.4)

The product 𝑐1𝑐2 is called Gaussian curvature, and 𝑘𝐺 is the corresponding modulus.

This is the so-called Helfrich free energy [69]. It’s originally adopted to describe lipid
bilayers, but the elastic free energy of a lipid monolayer takes the same form. For con-
venience, we’ll use area per molecule 𝑎 and 𝑎0 in the place of 𝐴 and 𝐴0 in the equations
above to study monolayers.

Neutral surface

To discuss parameters such as 𝑎, 𝑐 and corresponding moduli, we have to specify the
surface on which are measured, or their values will be ambiguous. For example, if the
chosen surface is closer to the bulging side, we’ll arrive at a larger 𝑎 and a smaller 𝑐. For
convenience, we want to choose such a surface so that 𝜒 = 0. This surface is referred to as
the neutral surface.

On the neutral surface, stretching and bending decouples. If a membrane (or any slab
of fine thickness) is bent (without overall stretch in the tangential direction), some surfaces
are compressed while some others are stretched. However, there is one particular surface
whose area is unaffected, and this is the neutral surface.

For a symmetrical bilayer, neutral surface always coincides with the middle plane.
However, for a lipid monolayer that is inhomogeneous and asymmetrical in the transverse
direction, the neutral surface must be located by the criterion 𝜒 = 0.

Besides the neutral surface, there are other choices. Another popular choice is the
“pivoting surface”, on which the torque of all kinds of tensions in the membrane balance
with each other [70]. However, in most of the scenarios we study in this chapter, the
pivoting surface almost coincides with the neutral surface. Yet another choice is the surface
on which 𝑘𝐺 = 0, which might be different from both above [50].
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Spontaneous curvature and preferred structure

The spontaneous curvature, 𝑐0, of a lipid bilayer with two chemically symmetrical mono-
layers is always 0. However, a monolayer, in its relaxed state, is a “close” packing of the
constituent lipids. Hence, its geometry, namely 𝑐0, reflects the packing shape of individual
lipids.

From the definition of the sign of 𝑐 for a monolayer introduced in the previous section,
it’s easy to see that those lipids with large positive 𝑐0 tend to form micelle, those with
small positive 𝑐0 tend to form bilayer, while those with negative 𝑐0 tend to form inverse
hexagonal structure, as shown in Fig. 1.6. For example, the spontaneous curvature of pure
DOPE and DOPS monolayers are 1/𝑐0 = −3 nm and 1/𝑐0 = 14.4 nm, respectively [71].
More experimental data on 𝑐0 of pure phospholipid monolayers are summarized in Ref. [68].

2.2.2 Model of a lipid molecule

A Molecular-level Model for Elasticity of Lipid Aggregation

There have been many attempts to model the intermolecular interactions between lipids.
In some models, the free energy is written in terms of areas measured from various surfaces,
while in some other models the free energy takes a harmonic spring form.

May and Ben-Shaul [72] proposed a molecular-level model that falls in the former
category to study the elasticity and preferred structure of lipid aggregates. In this model,
they assumed a lipid molecule has the geometry in Fig. 2.1, and argued that the molecular
free energy can be written as 𝑓 = 𝑓ℎ+𝑓𝑖+𝑓𝑐 i.e. each term on the right-hand side accounts
for a distinct effect.

1. Steric repulsion between lipid headgroups. The corresponding term 𝑓ℎ = 𝐾/𝑎ℎ, is
inversely proportional to the headgroup area per lipid i.e. it’s repulsive.

2. Surface tension on the water-hydrocarbon interface. The corresponding term 𝑓𝑖 =
𝛾 ⋅ 𝑎𝑖 is proportional to the interfacial area per lipid i.e. it’s attractive.

3. Interaction between hydrocarbon tails. The corresponding term 𝑓𝑐 = 𝜏 ⋅ 𝑏2 is propor-
tional to the square of the tail length. The hydrocarbon chains are largely incom-
pressible i.e. it’s volume 𝜈 is almost constant. As their end-to-end lengths increases,
the cross-section of the hydrocarbon region shrinks. Hence, this term is also repulsive
in effect.
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Figure 2.1: Geometry of a lipid molecule (inspired by a similar drawing in Ref. [72]).
The area occupied by this lipid 𝑎 and curvature 𝑐 = 1/𝑅 are measured on a surface at a
distance 𝛿 from the water-hydrocarbon interface (labeled as 𝑎𝑖 in the figure). In practise,
this surface is chosen to be the neutral surface by adjusting the value of 𝛿. The meaning
of the neutral surface is discussed in section 2.2.1.

Therefore,

𝑓 = 𝐾/𝑎ℎ + 𝛾 ⋅ 𝑎𝑖 + 𝜏 ⋅ 𝑏2 (2.5)

From the geometry depicted in Fig. 2.1, it can be derived that:

𝑎𝑖 = 𝑎 (1 + 𝑐𝛿) (2.6)

𝑎ℎ = 𝑎 [1 + 𝑐 (𝛿 + 𝑙ℎ)] (2.7)

𝑏 = 𝑏𝑝

[
1 + 𝑐

(
𝑏𝑝
2
− 𝛿

)
+
𝑐2

2

(
𝑏2𝑝 − 3𝑏𝑝𝛿 + 2𝛿2

)]
, 𝑏𝑝 =

𝜈

𝑎
(2.8)

in which 𝑐 is the curvature measured on the surface at a distance 𝛿 from the wa-
ter/hydrocarbon interface. When 𝑐 = 0, each molecule assumes a cylindrical shape.
𝑎ℎ = 𝑎𝑖 = 𝑎, 𝑏 = 𝑏𝑝 = 𝜈/𝑎.

Hence, the molecular free energy is a function of area per lipid on a surface 𝑎, curvature
measured on the neutral surface 𝑐 and distance from interface to this surface 𝛿. Determine
𝛿 so that this surface coincide the neutral surface, and rewrite 𝑓 into such form:
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𝑓 (𝑎, 𝑐)

𝑎0
=
𝑓 (𝑎0, 𝑐0)

𝑎0
+

1

2
𝜆

(
𝑎

𝑎0
− 1

)2

+
1

2
𝑘(𝑐− 𝑐0)

2 (2.9)

in which 𝑎0, 𝑐0, 𝜆 and 𝑘 can all be expressed by energetic parameters and geometric
parameters, namely: 𝐾, 𝛾, 𝜏 , 𝛿 and 𝑙ℎ.

Choice of parameters

Typical values of these parameters, consistent with experimental measurements [73], are:

1. Interface repulsion 𝛾 = 0.12 𝑘𝐵𝑇/Å
2

2. Repulsion of hydrocarbon tails 𝜏 = 0.004 𝑘𝐵𝑇/Å
2

3. Total volume of hydrocarbon tails 𝜈ℎ𝑐 = 918 Å
3

4. Distance from headgroup repulsion surface to water-hydrocarbon interface 𝑟ℎ =
1.74 Å

5. Strength of steric headgroup repulsion 𝐾 = 401.38 𝑘𝐵𝑇 Å
2

Similar values are also adopted in Ref. [67] and [72].

2.2.3 Model of electrostatic interaction

Charge renormalization

Although Debye-Hückel equation is a satisfactory approximation to Poisson-Boltzmann
equation in many applications, the errors introduced by this approximation become in-
tolerably large for many realistic biophysical problems. The source of such disagreements
can be intuitively understood in the following example (inspired by Ref. [52]): since 𝑘𝐵𝑇
at 300𝐾 is just 25 meV, if the surface potential reaches 100 mV, which is not impossible,
reduced surface potential becomes Ψ = 4, and according to Eq. A.6, the concentration
of counterion near the surface, 𝑛 (0), will be 𝑒4 ≈ 55 times larger than its concentration
faraway from the surface, 𝑛0. For the typical value of 𝑛0 = 100mM, 𝑛 (0) will be 5.5 molar,
greatly exceeding the solubility of table salt in water. In other words, solving Debye-Hückel
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equation may yield unreasonably large concentration of counterions. This is expected, be-
cause the approximation sinhΨ ≈ Ψ is no longer a good one for large Ψ. However, as
shown by Eq. A.17, Ψ𝑃𝐵 behaves similarly to Ψ𝐷𝐻 at large 𝑧: decaying almost exponen-
tially. Or more precisely, Ψ𝑃𝐵 at large distance is very close to a Ψ𝐷𝐻 with 𝜎0 replaced by
another surface charge density, 𝜎𝑒𝑓𝑓 .

An intuitive interpretation of this phenomenon is 1: there is a layer of counterions
trapped or “condensed” in the close vicinity of the charged surface. This layer can be re-
garded as a 2D charge distribution with a surface charge density 𝜎1. Observed faraway from
the surface, the condensed layer almost overlap with the original charged layer, partially
neutralizing it, hence equivalent to a charged surface with an “effective” or “renormalized”
charge density, 𝜎𝑒𝑓𝑓 = 𝜎0 − 𝜎1. Outside the condensed layer, 𝜓 is small, and the potential
is well described by Debye-Hückel equation.

Hence, by considering this phenomenon, known as “counterion condensation”, we
can make predictions more accurately while still working in the much more analytically
tractable Debye-Hückel framework. This is referred to as “renormalized Debye-Hückel
approach”.

Naturally, we want to start by explicitly relating 𝜎𝑒𝑓𝑓 to known quantities. To this
end, the most straightforward method is to “match” the solution of Poisson-Boltzmann
equation to the form of the solution of Debye-Huckel equation (providing an analytical
solution is available). For a slab of dielectric constant 𝜀𝑙 immersed in electrolyte solution,
in the limit of 𝜀𝑙/𝜀𝑤𝜅𝑑→ 0, we already have Eq. A.17 and Eq. A.5, which gives [74]:

𝜎𝑒𝑓𝑓 =
𝛾𝜅

𝜋𝑙𝑏
(2.10)

in which 𝛾 is defined by Eq. A.15.

Taheri and Ha [75] considered the effect of dielectric discontinuity. In there calculation,
𝜀𝑙/𝜀𝑤𝜅𝑑 ranges from 0.005 to 0.02, and their result is quite similar to what’s given above.

Another perspective: two-state model

Another way of understanding counterion condensation is to introduce the concept of
“state”: a conterion can either be in the “condensed state” i.e. in the condensed layer,
or be in the “bulk state”, i.e. in the aqueous bulk outside the condensed layer. When

1Assume only 1-1 salt is present in the surrounding solution
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Figure 2.2: Potential predicted by D-H, P-B and renormalized D-H approaches. The
vertical axis is potential in unit of 𝑘𝐵𝑇/𝑒, the horizontal axis is the distance from surface
in unit of nm. The purple, blue and yellow curves are potentials predicted by D-H approach,
P-B approach and renormalized D-H approach, respectively. 𝜎0 = 0.2 nm−2, 𝜀𝑙/𝜀𝑤𝜅𝑑→ 0.
Predictions based on renormalized D-H approach is closer to those based on P-B approach
at reasonably large distance, especially at low 𝜅.

chemical equilibrium is reached between the two states, the chemical potential of the same
type of particles in either state must equate each other [75]:

Δ𝜇𝑖 = 𝜇𝑏𝑢𝑙𝑘𝑖 − 𝜇𝑐𝑜𝑛𝑑𝑖 = 4𝜋𝑍𝑖𝜎𝑒𝑓𝑓𝜅
−1𝑙𝐵

𝜀𝑙 + 𝜀𝑤𝜅𝑑

2𝜀𝑙 + 𝜀𝑤𝜅𝑑
+ ln

(
𝑛𝑖𝑙

𝑖
𝑐

𝜎𝑖

)
= 0 (2.11)

in which 𝑖 labels the types of ions, with valence 𝑍𝑖 respectively.

The only ambiguity here is the thickness of the condensed layer, 𝑙𝑖𝑐. In Ref. [75], it’s
given by:

𝑙𝑐 ≈
(
𝜅−2

𝜆

)(
4

exp (4)

)
(2.12)

so as to correspond with the result from matching method. However, 𝑙𝑐 diverges as
𝜅 → 0, contradicting the concept of “condensation”. This is because in the small 𝜅 limit,
Eq. 1.9 and Eq. 1.12 no longer hold. The counterions released from the ionization that
produces surface charges can’t be neglected any longer, and the system approaches “no
electrolyte added” scenario, where most counterions are in the proximity (∼ 𝜆, which is
but a few Angstroms for reasonable 𝜎0) of the charged surface.

As can be seen in Fig. 2.3:
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Figure 2.3: Charge renormalization predicted by two-state model. Only 1-1 salt is present
in the solution. The four curves, from the lowest one to the highest one, correspond to
𝜅 = 0.05 nm−1, 𝜅 = 0.1 nm−1, 𝜅 = 0.15 nm−1, 𝜅 = 0.2 nm−1, respectively.

1. At small 𝜎0 (criteria: 𝜆≫ 1), 𝜎𝑒𝑓𝑓 ≈ 𝜎0. This can be verified by expanding Eq. 2.10
to the leading order for small 𝜎0. When 𝜎0 is small, Debye-Huckel approximation
work well, and the correction from charge renormalization is minor.

2. At large 𝜎0 (criteria: 𝜆 ≪ 1), 𝜎𝑒𝑓𝑓 → 𝜅
𝜋𝑙𝑏

. In this region, 𝜎𝑒𝑓𝑓 is almost independent
of 𝜎0.

These conclusions only apply to the case when there’s only 1-1 salt present in the
solution. When multivalent ions are involved, all mean-field approaches would give quali-
tatively inaccurate predictions. Because of the strong charge correlation effect, multivalent
ions have a significant privilege in condensing, and can become the dominant constituent
of the condensed layer even even when their concentration in the bulk is low. “Charge
inversion” in which so much ions (mainly multivalent) condense onto the surface that the
sign of 𝜎𝑒𝑓𝑓 is inverted. See Ref. [74] [75] [76]. Charge inversion has been experimentally
observed by electrophoresis [77] and theoretically discussed [78].

In this chapter, we choose Na+ and Mg2+ to be the representative monovalent and
divalent cations, respectively. However, all the methodologies discussed here can be ap-
plied to other cations of the same valence, such as K+, Ca2+, or even NH+

4 . In fact, the
effects of these ions on lipid aggregates are qualitatively similar to Na+ and Mg2+, and the
quantitative difference can largely be ascribed to the differences in sizes.
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2.2.4 Location of the charged surface

In a recent paper, Ref. [67], two assumptions have been made:

∙ The lipid charges all lies on the water-hydrocarbon interface.

∙ The electrostatic energy per lipid is given by ℱ𝑊𝑆 ⋅ 𝑎ℎ/𝐴𝑊𝑆, in which ℱ𝑊𝑆/𝐴𝑊𝑆 is
the electrostatic energy per area.

The two assumptions contradicts each other. If the first assumption holds, the area on
the interface 𝑎𝑖 should be used in the place of 𝑎ℎ in the second assumption. If we want to
keep the second assumption, the lipid charges should locate at a distance away from the
interface. Either of these adjustments will make the model more self-consistent. Which
one is closer to the reality?

In a phospholipid molecule, phosphate group always contributes a negative charge −𝑒.
Therefore, an anionic lipid has either a zwitterionic headgroup or an electrically neutral
headgroup. PG and PS are the examples of the two cases, respectively. For the former
case, the lipid charge can be treated as locating on the interface; For the latter case, overall
lipid charge can locate in the aqueous phase a few Angstroms away from the interface. The
distance may or may not coincide with 𝑙ℎ, and a detailed discussion of its chemical structure
is needed.

In our calculation, charges are always assumed to be locating on the interface, and
molecular electrostatic energy is the surface electrostatic energy density (similar toℱ𝑊𝑆/𝐴𝑊𝑆

above) times 𝑎𝑖 instead of 𝑎ℎ. When the lipid charges are away from the interface, elec-
trostatic energy can be calculated with formulas in Appendix C providing we know their
distance from the interface.

2.2.5 Chemical equilibrium and free energy

Based on two-state model, we can study counterion condensation by determining the den-
sity of each species of condensed ions from chemical equilibrium, based on which we can
calculate the electrostatic free energy of the system. Other properties can naturally be
derived from free energy.
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Chemical equilibrium

In the absence of Mg2+, the chemical equilibrium is determined by the equation below:

ln (𝑛1𝑣1) = −2ℱ𝑚𝑓 (𝜎0, 𝜎1, 𝜅, 𝑐)

(𝜎0 − 𝜎1)
+ ln

(
𝜎1𝑣1/𝑙𝑐

𝑙𝑐/𝑣1 − 𝜎1𝑣1/𝑙𝑐

)
+

∂

∂𝜎1
ℱ𝑐𝑜𝑟𝑟 (𝜎0, 𝜎1, 𝜅) (2.13)

in which 𝑣1 is the volume of a Na+ ion, ℱ𝑚𝑓 is determined from the potential in Eq. A.7,
Eq. A.8 and Eq. A.9. ℱ𝑐𝑜𝑟𝑟 is given by Eq. B.1.

Similarly, in the presence of Mg2+, we have:

ln (𝑛𝑖𝑣𝑖) = −2𝑍𝑖ℱ𝑚𝑓 (𝜎0, 𝜎1, 𝜎2, 𝜅, 𝑐)

(𝜎0 − 𝜎1 − 𝜎2)
+ ln

(
𝜎𝑖𝑣𝑖/𝑙𝑐

𝑙𝑐/𝑣 − 𝜎1𝑣1/𝑙𝑐 − 𝜎2𝑣2/𝑙𝑐

)
+

∂

∂𝜎𝑖
ℱ𝑐𝑜𝑟𝑟 (𝜎0, 𝜎1, 𝜎2, 𝜅) (2.14)

in which 𝑖 = 1, 2 stand for Na+ and Ca2+ ions, respectively. 𝑣 can be chosen as, for
example, 𝑚𝑎𝑥{𝑣1, 𝑣2}, for the convenience in the calculation of free energy.

With given 𝜎0 and 𝑛1, 𝑛2, numerically solving these equations would yield 𝜎1 (as well
as 𝜎2 if Mg2+ ions are present).

Free energy

The free energy per area for given 𝜎0, 𝜎1, 𝜎2, 𝑛1 and 𝑛2 is:

𝐹 = 𝐹𝑚𝑓 + 𝐹𝑒𝑛𝑡𝑟 + 𝐹𝑐𝑜𝑟𝑟 (2.15)

𝐹𝑚𝑓 = ℱ𝑒𝑠 (2.16)

𝐹𝑒𝑛𝑡𝑟 = 𝜎1 ln

(
𝜎1𝑣1
𝑙𝑐

)
+ 𝜎2 ln

(
𝜎2𝑣2
𝑙𝑐

)
+

(
𝑙𝑐
𝑣
− 𝜎1 − 𝜎2

)
ln

(
1− 𝜎1𝑣1

𝑙𝑐
− 𝜎2𝑣2

𝑙𝑐

)
−𝜎1 ln (𝑛1𝑣1)− 𝜎2 ln (𝑛2𝑣2) (2.17)

𝐹𝑐𝑜𝑟𝑟 = ℱ𝑐𝑜𝑟𝑟 (2.18)

The total free energy per lipid is determined by combining the equation above with
Eq. 2.5:
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𝑓 = 𝐾/𝑎ℎ + 𝛾 ⋅ 𝑎𝑖 + 𝜏 ⋅ 𝑏2 + 𝐹 ⋅ 𝑎 (2.19)

in which 𝑎 = 𝑎ℎ or 𝑎 = 𝑎𝑖, depending on which surface you assume the charges to be
locating on.

2.3 Results and Discussion

2.3.1 Counterion condensation

In order to reassuringly adopt the renormalized Debye-Hückel approach in the study of
structural preference of phospholipid aggregates, we have to systematically examine coun-
terion condensation (to be specific, density 𝜎𝑖). At least 4 questions are of our interest:

1. How well does matching method and 2-state model agree with each other over a large
range of 𝜎0 and 𝜅?

2. In 2-state model, how much difference does it make to use a fixed 𝑙𝑐 in contrast of a
varying one in Eq. 2.12?

3. In the absence of Mg2+, how much difference does charge correlation make? Is the
popular viewpoint true that charge correlation is sub-dominant in the absence of
multivalent ions?

4. Will the presense of divalent Mg2+ result in charge inversion, as we expected?

In the absence of Mg2+

To begin with, we studied the case in which 𝑛2 = 0. As can be seen in Fig. 2.4:

1. Matching method and 2-state model agree with each other better at low 𝑛1 (low 𝜅)
and low 𝜎0. However, for the typical range of 𝜎0 and 𝑛1 in our problem, the agreement
is dissatisfactory.

2. As expected, results based on a varying 𝑙𝑐 coincide with those based on a fixed 𝑙𝑐 when
the 𝑙𝑐 values determined by Eq. 2.12 coincide with those values we fix at. Otherwise,
the difference is fairly large, indicating the choice of 𝑙𝑐 has an impact on the prediction
we make.
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3. Charge correlation lowers the chemical potential of the surface state and enhances
condensation, resulting in a lower 𝜎𝑒𝑓𝑓 value. Furthermore, it inverts the way 𝜎𝑒𝑓𝑓
varies with 𝑛1. As 𝑛1 increases, mean-field calculation predicts less condensed ion
and a higher 𝜎𝑒𝑓𝑓 , but correlation effect would allow more counterions to condense
and therefore a lower 𝜎𝑒𝑓𝑓 .

In the presense of Mg2+

Fig. 2.5 shows that charge inversion can’t be predicted in the mean-field limit. In fact, 𝜎𝑒𝑓𝑓
predicted in this limit doesn’t deviate much from the no-Mg2+ case. Ions in the condensed
layer mainly consist of Na+, simply because they’re of a higher concentration in the bulk.
The privilege of multivalent ion in condensing is not at all reflected. Therefore, mean-field
approach is not satisfactory in the presence of multivalent ions, and charge correlation
must be accounted for.

After accounting for charge correlation, as seen in Fig. 2.6, Mg2+ exhibit a significant
privilege in condensing, as they constitutes the majority of the condensed layer. Charge
inversion is observed for 𝑛2 ≳ 1 mM, consistent with earlier theoretical predictions [75].

2.3.2 Structural preference reflected by geometrical properties

After all these preparations, we’re eventually ready to study the structural preference of
phospholipid aggregates by constructing a lipid monolayer and calculate its spontaneous
curvature 𝑐0. To simplify the problem, we approximate the surface of the monolayer as
uniformly charged, neglecting the fact that the surface charges are carried by individual, dis-
crete lipids and lipid demixing could occur. We assume that a fraction �̄� of the constituent
lipids carry −𝑒 of charge each, while the rest are electrically neutral. Experimentally, �̄�
can be controlled through the pH value of the environment. In this section, we compare
seven cases:

1. �̄� = 10%, 20%, 30% in the absence of Mg2+.

2. �̄� = 10%, 20%, 30% in the presense of 5 mM of Mg2+.

3. �̄� = 0 i.e. (electrically) neutral.
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Figure 2.4: Counterion condensation calculated in the absence of Mg2+. Surface charge
density is consistent with a typical phospholipid monolayer on which 10 percent of the
lipids are anionic. Matching method and 2-state model agree better at low 𝑛1 and low 𝜎0,
the choice of 𝑙𝑐 makes an obvious difference in the prediction of 𝜎𝑒𝑓𝑓 , and charge correlation
enhances condensation to yield a lower 𝜎𝑒𝑓𝑓 .
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Figure 2.5: Density of condensed counterion, 𝜎1 (filled squares) and 𝜎2 (empty squares),
calculated in the mean-field limit. 𝜎0 = 0.154 nm−2 corresponding to a typical phospho-
lipid monolayer containing 10 percent of anionic lipids. Mg2+ doesn’t have a significant
advantage in the competition with Na+, and the latter still dominates in the condensed
layer. Charge inversion never occurs.
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Figure 2.6: Density of condensed counterion, 𝜎1 (filled squares) and 𝜎2 (empty squares),
with charge correlation accounted for. 𝜎0 = 0.154 nm−2. Now the privilege of Mg2+ is
exhibited as they start to dominate in the condensed layer, and charge inversion occurs at
around 𝑛2 = 1 mM.
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Optimized headgroup area

Optimized headgroup area 𝑎0 reflects the attractive/repulsive nature of the electrostatic
force. The results are presented in Fig. 2.7. As can be seen here, in the absence of Mg2+,
the electrostatic force results in an outward tension, pushing lipids apart, resulting in a
larger 𝑎0. However, Mg2+ ions bridge between the anionic lipids, leading to an inward
tension that draws lipids closer to each other. The tension becomes stronger when �̄�
(or equivalently, 𝜎0) increases, and becomes weaker when 𝑛1 (or equivalently, 𝜅) becomes
higher. This is consistent with other literatures, such as Ref. [65] and [67]. Notably, for �̄�
= 30%, with and without Mg2+ respectively, the 𝑎0 results quantitatively coincide fairly
well with the results in Ref. [67] achieved by a much more sophisticated, computationally
resource-demanding algorithm that is considered to be the most accurate result to date.
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Figure 2.7: Optimized headgroup area per lipid, 𝑎0, in the absence (unfilled squares) or the
presense of 5 mM (filled squares) of Mg2+. Without Mg2+, the electrostatic force between
the headgroups are repulsive, leading to a larger 𝑎0, while Mg2+ allow the electrostatic
force to go from repulsive to attractive, leading to a smaller 𝑎0. Higher �̄� naturally leads
to stronger electrostatic force, and at higher 𝑛1, Debye screening weakens the electrostatic
force.

Impact of the location of the neutral surface

Considering the complexity and expected inaccuracy of locating neutral surface, we’d better
take a look at how much error in 𝑐0 will result from error in the location of the neutral
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surface. In Fig. 2.8, 𝑐0 was calculated by assuming different surfaces to be the neutral
surface. Define a parameter 𝜃 = 𝛿/𝑏: 𝜃 = 0 means the “free” end of all hydrocarbon tails
lies on the surface, while 𝜃 = 1 means the surface coincides with the water-hydrocarbon
interface. As can be seen, the variation is quite significant when 𝜃 varies from 0 to 1.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

−3

θ

c 0 (
A

ng
st

ro
m

−
1 )

Figure 2.8: Influence of neutral surface location. �̄� = 30%, 𝑛1 = 10%, no Mg2+ present.
Interestingly, the maximum on the curve coincide with the calculated 𝛿 value and 𝑐0 value,
as in Fig. 2.9 and 2.10.

The neutral surface can be located accurately for an electrically neural monolayer.
Hence, the error in locating the neutral surface is dominated by the inclusion of electrostatic
force. In Fig. 2.9, we presented the 𝛿 values. As can be seen, in the absence of Mg2+,
the outward electrostatic tension brings the neutral surface farther away from the water-
hydrocarbon interface, because it enhances the 𝐾 term in Eq. 2.5; while in the presense
of Mg2+, the inward electrostatic tension brings the neutral surface closer to the water-
hydrocarbon interface. However, such effects are not pronounced, because the vertical axis
of Fig. 2.9 only spans 0.1 Å to 0.2 Å, changing 𝜃 only by 0.01. Therefore, the accuracy of
𝑐0 calculation won’t be compromised even if the error in 𝛿 were relatively larger.

Spontaneous curvature

After all these preparations, we’re finally ready to calculate 𝑐0, the quantity that reflects the
structural preference we’ve been talking all along. The results are presented in Fig. 2.10.
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Figure 2.9: Position of neutral surface. Electrostatic force only makes around 1 percent of
change in the position of neutral surface. Without Mg2+, the neutral surface shifts away
from headgroup, while the presense of Mg2+ brings it closer to the headgroup.
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Figure 2.10: Spontaneous curvature, 𝑐0, in the absence (unfilled squares) or the presense
of 5 mM (filled squares) of Mg2+. In the absence of Mg2+, the electrostatic force stabilizes
the lamellar phase (bilayer structure) by making 𝑐0 slightly positive. The presense of Mg2+

leads to a more negative 𝑐0, suggesting that Mg2+ can stabilize HII phases of lipids that
would otherwise stay in lamellar phase.
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As can be seen, for an electrically neutral monolayer, 𝑐0 is slightly negative, suggesting
an unstable tendency for a bilayer to transit to inverse-hexagonal structure. In the absence
of Mg2+, the electrostatic force invert the sign of 𝑐0, allow the lipid bilayer to stay stable.
However, at a relatively high 𝑛2, the 𝑐0 becomes even more negative, and the bilayer is more
likely to transit into, and be stable in, inverse-hexagonal structure. These are consistent
with the experimental and computational results presented in the references we mentioned
at the beginning of this chapter.
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Figure 2.11: Hydrocarbon chain length at relaxed state. The general layout of this graph
is slightly different from the graph of 𝑎0 and 𝑐0 in that the two sets of curves (in the
absence/presence of Mg2+) doesn’t lie on either side of the reference line. This might be
due to the accumulated error in the calculation, in which case it’s in fact not pronounced.

2.4 Conclusions

Now, we’ve proven that our model and our algorithm can make predictions on the elec-
trostatic impact of structural preference and phase behavior of phospholipids that are not
only qualitatively correct, but quantitatively accurate to some extent (as compared with
Ref. [67]). Considering the conciseness and computational efficiency of our model, it’s
indeed a triumph.
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Chapter 3

The Destabilization of LPS Leaflet by
Cationic Peptide

3.1 Introduction

As we have learned in section 1.2.2, LPS is the dominant, if not only, lipid constituent of
the outer leaflets of the outer membranes of Gram-negative bacteria. LPS is a polyanionic
molecule that carries several acidic (phosphate and carboxyl) groups that mainly distribute
in the lipid A and oligosaccharide core region. On first glimpse, the highly anionic nature of
LPS makes an outer leaflet highly negatively charged, and the strong repulsive electrostatic
force between the molecules will render the leaflet unstable. In physiological environment,
despite some contribution from the interaction between neighboring O-chains [79], the
dominant contributors to the stability of an LPS leaflet are the cations attracted to its
vicinity, especially divalent cations (Mg2+ and Ca2+): at least half of the negative charges
are neutralized by cations [80] that help neutralizing and bridging the LPS charges. It turns
the repulsive electrostatic forces between the LPS molecules into effectively attractive ones,
greatly enhancing their tendencies to stay together. In fact, LPS molecules strongly prefer
to stick together in an LPS-phospholipid mixed monolayer in the presense divalent ions [81].

Similar phenomena in phospholipid membranes have been verified both theoretically [63] [82]
and experimentally [39]. For an LPS leaflet, considering its higher surface charge density,
such stabilization is expected to be more pronounced. Much experimental works support
the significant role of polycationic ions in the stabilization of LPS layer. It was found in
1970s that substituting monovalent ions trapped around an LPS layer with divalent ions
has a profound impact on the aggregation state of LPS [83], and aggregates of isolated
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LPS in the presence of 10 mM of Mg2+ show no thermal melting up to 350 K [84]. More
interestingly, when some G- bacteria enter an environment that lacks divalent ions (e.g.
phagocytic vacuoles), they will modify their LPS leaflets to avoid destabilization [85]. For
example, P. denitrificans, when grown in a media in which the concentration of divalent
cations is lower than normal, produces more of the zwitterionic ornithine lipids, possibly
to substitute for LPS [86].

For many substances, the LPS leaflet is a formidable permeability barrier (see Ref. [28]
and references therein), which is why it’s evolutionarily chosen to be a first line of defense.
However, both controlled experiments and clinical observations confirm that AMPs are
fairly effective against G- bacteria such as E. coli (for example, see Ref. [87]). Questions
naturally emerge: how do AMPs cope with the LPS leaflet? What allow AMPs to per-
meate the LPS leaflet with apparent ease? In particular, what role does the electrostatic
interaction play in the permeating of the leaflet by AMPs, given that it plays a key role in
both the selective binding of AMP onto bacteria and in the stabilization of LPS leaflet?

Interestingly, recent works reveal that AMPs activate the PhoPQ system (and conse-
quently the PmrAB system) in S. enterica [88], and directly activate the PmrAB system
in P. aeruginosa [89]. It’s known that PhoPQ system is activated when the bacteria is in
low Mg2+ environment [90], and some of the genes activated by PmrAB system modify the
LPS molecules to reduce the charged groups on them [91]. It indicates that: maybe AMPs
can effectively decrease the amount of Mg2+ on it, probably by competing with them for
the chance of binding, and render it unstable. Similar assumption has also been made in
other works [92].

This work aims at proposing an approach to quantitatively investigate the interaction
between cationic peptides and the LPS leaflet as found on G- bacteria. To this end, we
established a model for the LPS layer, cations (monovalent and divalent), and cationic
peptides, formulated the interactions between them, and carried out calculations as below.
Firstly, we assumed there are monovalent ions (Na+), but no divalent ions or cationic
peptides surrounding the LPS leaflet, to verify the intuition that electrostatic interaction
tend to destabilize the leaflet in the absence of divalent ions. Secondly, we add divalent
ions into the scenario above, while still keeping peptides out of the picture, to verify the
stabilizing effect of the divalent ions. Finally, we allowed both species of ions as well as
peptides to be present in the environment, to determine the impact made by the presence
of these peptides. Stabilization and destabilization are quantitatively reflected by excessive
surface tension ΔΠ, the part of the surface tension contributed by electrostatic interaction.
However, we will only focus on whether AMPs destabilize the leaflet i.e. whether they make
the leaflet more vulnerable to permeating. We will not concern about the dynamic process
of permeating itself, or what these peptides do after going through the leaflet.
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Figure 3.1: Competitive binding between AMP and divalent ions, during which the latter
is partially substituted by the former, easing the penetration process

3.2 Theoretical Model: Establishing

LPS is a class of relatively large and complex molecules that arrange themselves on the
surface of G- bacteria in a fairly complicated way. Therefore, the first step to tackle
the problem, as before, is to establish a model that depicts the system of interest, the
LPS leaflet and the charged objects on or around it. The model shall bear sufficiently
resemblance to reality yet computationally manageable.

Before thinking of a new model, we should consider the applicability of the model we
adopted in the previous chapter in the current problem. That model accounts for the
molecular properties of phospholipids, while treating the electrostatic effects in a continu-
ous, largely smeared-out, mean-field manner that focuses more on the influence of geometry
(curvature). It is because in physiological reality, only 10% to 30% of a charged leaflet in
a plasma membrane consist of anionic lipids, and we assumed that lipid demixing is mini-
mal, that these anionic lipids are homogeneously distributed on the monolayer on average
without organizing into any particular structure. Besides, the moderate backbone charge
density makes renormalized Debye-Hückel approach suitable. However, almost 100% of
the lipids on the outer leaflet of outer membrane is LPS that is more densely charged than
phospholipids. Besides, experiments show that LPS molecules on the leaflet tend to have
well defined formation [25] [93]. Furthermore, the scenario we study here is “binding”.
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Beside being restricted in the transverse 1 direction, as in simple “counterion condensa-
tion”, a “bound” ion also have less freedom in the lateral direction. To be more specific, it
can only stay in the vicinity of a set of discrete “binding sites”, coinciding with the acidic
functional groups in our problem.

Therefore, we found it necessary to establish a new model. According to the discussion
above, we have already determined a number of features expected in this model.

1. It has to account for charge discreteness. In other words, we’d like to depict each
charged object as an individual entity, with its own charge of an integer number of
𝑒’s, maybe even with their own size and geometry, instead of working in continuous
limit as before.

2. The arrangement of the binding sites shall reflect the organized nature of the LPS
leaflet.

3. It has to put an emphasize on “binding”. The concept of “binding” bears some
resemblance with “condensing” as discussed in the previous chapter, but the latter
is merely a means of compensating the error of Debye-Hückel equation, as in the
naive renormalized Debye-Hückel approach, they’re indeed playing a leading role in
our calculation, whose pairwise interaction with other charges, especially the binding
site, should be accounted for as accurately as possible. We define “binding” as
arriving at and staying in the vicinity of a binding site due to Coulomb attraction.
To be specific, two ions are considered as “bound” as long as the Coulomb interaction
energy between them exceeds 𝑘𝐵𝑇 .

The model we eventually arrived at is detailed below. This model is inspired by a
number of previous works, especially Ref. [94] and [95]. We will start by explaining a few
aspects, among others, of the model in detail, followed by a summarized description of the
model to make it easier for the readers to follow.

Note: in the calculation we performed based on this model, we used Na+ and Mg2+

as representative monovalent and divalent ions, respectively, as we did in the last chapter.
However, we will mostly use “monovalent ions” and “divalent ions” in this section instead
of mentioning specific types of ions, because in principle, the model applies to all types of
ions of these valences.

1See Fig. 3.7 for the concept of transverse.
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3.2.1 Binding sites on a square lattice?

It’s reasonable to argue that each acidic functional group (phosphate and carboxyl) acts as a
binding site that carries one elementary charge. For the sake of computational convenience,
the best approximation is to assume that each site occupies a node on a square lattice.
However, before doing that, we have to confirm that this arrangement bears sufficient
resemblance with a biochemical realistic LPS leaflet to avoid qualitatively absurd result.

As can be seen in Fig. 3.2a, the four charges of an LPS Re molecule can be approximately
arranged onto an isosceles right triangle. Fig. 3.2b shows that a square lattice can be
covered only by these triangles. Hence, it’s indeed plausible to argue that: the charged
groups on an LPS leaflet, acting as electrostatic binding sites 2, roughly forms a square
lattice.

However, it’s by far not the only way to approximate the spatial positions of these
charged groups, and, unfortunately, not even the most accurate one. A more accurate
approximation, referred to as “minimum model”, was used in Ref. [59] and references
therein. However, we will stick to the square lattice, since it’s not too faraway from reality,
yet much simpler to work with.

3.2.2 Binding sites on the interface?

When the amphiphilic LPS molecules self-assemble into a monolayer in water, there is
clearly an interface between the hydrophilic headgroups and the hydrophobic hydrocarbon
tails, much like the case of phospholipids. Do the charged groups locate at the interface?
If not exactly, is it safe to approximate their location as such?

More sophisticated models, such as the “minimum model” [59], depict all the charged
groups slightly above the interface. However, for the convenience of mathematical treat-
ment, we assume that all the charged groups locate at the interface. In more sophisticated
future works, we’d love to model the charges to be out of the interface. Some mathematical
preparation has already been accomplished (See Appendix C).

2The term “backbone charge”, as used in the previous chapter, may also be applied occasionally to
refer to these charged groups, putting an emphasize on their electrostatic properties
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(a) Abstracting the relative locations of the charged groups. The left half is inspired
by Ref. [23]. 1111 3 3 335555 4444 22 2 26 66 677 7 7

(b) Arranging the charges on a square lattice

Figure 3.2: Aligning the charges of LPS Re on a square lattice. We abstract the positions
of the four charged groups in the lipid A of one LPS molecule along an isosceles right
triangle as depicted in (a), and tile them onto a square lattice as depicted in (b).
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3.2.3 “All anions are created equal”?

In our model, “binding” is purely electrostatic. The only relevant properties in the binding
of two objects are their respective charges an sizes 3. In this sense, an anion in the bulk
(e.g. Cl−) carries the same charge, −e, as a binding site on the LPS leaflet. We naturally
ask: if a binding site has a considerable probability to bind to a cation, shouldn’t an anion
in the bulk have a same, at least comparable, probability to bind to a same cation and
form a pair? Aren’t all monovalent anions created equal when it comes to Coulomb force?
From our common sense, if we solve some table salt in a glass of water, there would be
hardly any NaCl molecule in it i.e. little pairing/binding. Does that mean the chance for
a binding site to be bound by monovalent ions shall be comparably small? It’s reasonable
to make the hypothesis that the anions in the bulk and the binding sites on the leaflet
are somehow different. In that case, once we manage to make them as symmetrical as
possible, will the binding probability be comparable? We have to verify this to ensure the
self-consistency of our model.

Ion pairing in the bulk

Firstly, we have to admit: the chance for pairs such as Na+Cl− to form is, tiny as it should
be, non-zero. To quantitatively determine this chance, the most natural approach is to use
the concept of association constant:

𝐾𝑏 =
[𝐴𝐵]

[𝐴] [𝐵]
(3.1)

in which [𝐴] and [𝐵] are the concentration of the two species of particles the solute
dissociates into (e.g. Na+ and Cl−), while [𝐴𝐵] is the concentration of pair (e.g. Na+Cl−).
When the binding can be solely ascribed to Coulomb force, this constant is calculated
as [96] [97] [98]:

𝐾𝑏 = 4𝜋

∫ ∣𝑍𝑖𝑍−∣𝑙𝑏/2

𝑑

𝑑𝑟𝑟2 exp (∣𝑍𝑖𝑍−∣ 𝑙𝑏/𝑟) (3.2)

in which 𝑍𝑖 and 𝑍− are the valence of the 𝑖th type of the cation and the anion, respec-
tively. 𝑑 is the minimal distance between the two charges. The physical meaning of Eq. 3.2
is: two charges of opposite signs are regarded as “bound” if the Coulomb energy between

3In the following discussion, we implicitly assume that the binding sites on the LPS leaflet has the
same size as the anions in the bulk
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them exceeds thermal energy 𝑘𝐵𝑇 . To this end, a bound cation shall be in a spherical shell
centered at the anion with radius between 𝑑 and 𝑍𝑖𝑍−𝑙𝑏/2, see Fig. 3.3.

Figure 3.3: Physical meaning of Eq. 3.2. The yellow part is a cross section of the spherical
shell the cation can explore. We integrated over the yellow region in Eq. 3.2.

Eq. 3.2 can be transformed into [98]:

𝐾𝑏 = 4𝜋(𝑍𝑖𝑍−𝑙𝑏)
3

∫ 𝑍𝑖𝑍−𝑙𝑏/𝑑

2

𝑑𝑧 ⋅ 𝑧−4𝑒𝑧 (3.3)

Notice that 𝐾𝑏 is not a dimensionless constant. The integral is dimensionless, while 𝑙𝑏
has the dimension of length. Therefore, 𝐾𝑏 has the dimension of volume. However, this
is not surprising, because all the concentrations in Eq. 3.1 has the dimension of inverse
volume. If the concentrations are in the unit of particle per nm3, the unit of 𝐾𝑏 will be
nm3. However, it is the logarithm of 𝐾𝑏 that will enter the chemical potential, and we
prefer to avoid taking the logarithm of a quantity that is not dimensionless.

Take the logarithm of both sides of Eq. 3.1:

ln ([𝐴]) + ln ([𝐵]) = ln ([𝐴𝐵])− ln𝐾𝑏 (3.4)

Add 2 ln 𝜈 on both sides, in which 𝜈 is the common volume of these particles providing
that A, B and AB all have exactly the same volume, we have:
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ln ([𝐴] 𝜈) + ln ([𝐵] 𝜈) = ln ([𝐴𝐵] 𝜈)− ln (𝐾𝑏/𝜈) (3.5)

In Eq. 3.5, everything we take logarithm of is dimensionless, and the first 3 logarithms
in the equation are nothing but the ideal gas chemical potential (in unit of 𝑘𝐵𝑇 ) of the
respective particle species, and ln (𝐾𝑏/𝜈) is the energy benefit for binding reflected in
chemical potential. Of course, the “same volume” assumption is a crude one, but the
resulting error is expected to be small. Therefore, terms of the form ln (𝐾𝑏/𝜈) will enter
our chemical potential to account for binding.

To account for binding in the bulk, we assume that only the “free” cations not asso-
ciated with anions can contribute to the cation concentration in the bulk. Therefore, we
numerically solve Eq. 3.1, namely:

(𝑛𝑖 − 𝑛𝑖∗)/(𝑛𝑖∗)2 = 𝐾𝑏𝑖, 𝑖 = 1, 2 (3.6)

in which 𝑛𝑖 is the total concentration of the ith type of cation in the bulk, while 𝑛𝑖∗ is
the corresponding “effective” concentration after taking the paired ones out of the picture.
There are more subtleties when divalent cations are included, because they can bind to
either one or two anions. Entities such as MgCl− cannot be simply ignored, as they should
be treated as monovalent cations. However, 𝑛2 is almost always far smaller than 𝑛1 in our
calculation, and it’s safe to assume that (𝑛2−𝑛2∗) is far smaller than 𝑛1∗. This assumption
can be discarded in future works to improve the calculation in the high 𝑛2 limit.

To calculate the chemical potentials of the cations in the bulk, 𝜇1𝑏 and 𝜇2𝑏, we should
use the corresponding effective concentrations in the place of the original ones. Since the
effective concentration is always smaller, the chemical potentials are lowered as a result of
pairing in the bulk.

For the bound cations, the same approach can be employed. Similar to the last term
in Eq. 3.5, we have:

Δ𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔
𝑖 = − ln (𝐾𝐼𝑖/𝜈𝑖) (3.7)

However,𝐾𝐼 in Eq. 3.7 doesn’t equal to the𝐾𝑏 in Eq. 3.2, because a bound cation cannot
diffuse into the other side of the interface. Furthermore, the dielectric discontinuity at the
interface affects the strength of electrostatic interaction. Without dielectric discontinuity,
we have [98]:

𝐾𝐼 =
1

2
𝐾𝑏 (3.8)
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Make them equal, and see!

If cations can bind to either the anions in the bulk or the sites on the surface, what leads to
the drastically different (as we expect) binding probabilities? There are at least 3 obvious
factors contributing to it.

1. Dielectric discontinuity at the surface enhances the Coulomb force to be almost twice
as strong.

2. Cations cannot explore the hydrocarbon region, leading to Eq. 3.8.

3. Cations experience forces from neighboring binding sites, accounted for by the mean-
field term and the lateral correlation term.

Therefore, if we eliminate these differences respectively, namely: set 𝑑 = 0, set 𝐾𝐼 and
𝐾𝑏 equal to each other 4 and set the distance between nearest neighbor sites 𝑎 to be so
large that they’re effectively uncoupled. Calculation based on these parameters Fig. 3.4.
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Figure 3.4: Binding probability in the bulk and on the surface. Dielectric discontinuity has
been eliminated, and the sites are sufficiently sparse. The very nice coincidence between the
two curves suggests that we didn’t introduce any artificial discrimination between binding
sites on the surface and anions in the bulk.

As can be seen in Fig. 3.4, the binding probability in the bulk and on the surface match
each other very nicely. The negative charges on the surface and in the bulk are indeed

4Physically, it naturally occurs when 𝑑 = 0. However, this change have be manually made in the
computer code we used.
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treated equally (providing they has the same size), and we can be reassured that such
inconsistency has been excluded in our model.

Interaction ions

The unpaired ions interact with each other through long-range (even after screening)
Coulomb force, leading to another term in the chemical potential.

We know from elementary physical chemistry (see, e.g. the one by E. A. Moelwyn-
Hughes [99] and the one by T. Engel and P. Reid [100], also see Ref. [97]) that: for a very
dilute (< 1mM) electrolyte solution, this term in chemical potential follows Debye-Hückel
limiting law:

Δ𝜇𝑖/𝑘𝐵𝑇 = −1

2
𝑍𝑖𝑙𝑏𝜅 (3.9)

For higher concentration, the finite size effect is no longer negligible, and a better
approximation is:

Δ𝜇𝑖/𝑘𝐵𝑇 = −1

2
𝑍𝑖𝑙𝑏𝜅 ⋅ 1

1 + 𝜅𝛿𝑖
(3.10)

There are some other empirical equations, such as Davies equation, but they’re empir-
ical and phenomenological, so we prefer not to use them.

Finally, concentrations are usually given in molar, but in our calculation, the most
convenient and consistent unit is particle per nanometer cubed. So we have to do the
conversion: 1𝑚𝑜𝑙𝑎𝑟 = 0.602 nm−3.

3.2.4 Summary of the model

1. There is an infinite plate of finite thickness 𝑑, made of a material with dielectric
constant 𝜀𝑙, immersed in an aqueous electrolyte solution.

2. On one of the interfaces (referred to as “the surface” in the following context) between
the plate and the aqueous solution, there is a 2D square lattice, with lattice constant
𝑎. On each lattice site there is an electric charge (negative by default), which is fixed
there and doesn’t have any freedom to move. All these charges make up the backbone
charges. Obviously, the surface charge density for these charges is 𝜎0 = 1/𝑎2.
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3. The electrolyte solution contains a 1-1 salt (e.g. NaCl) of concentration 𝑛1 and a 2-1
salt (MgCl2) of concentration 𝑛2

5, and cationic peptides, each carries 𝑄𝑒 of positive
charge, of concentration 𝑛𝑝. For simplicity, the two salts share the same type of anion
(Cl− in the example above). The cations serve as “counterions” in the system. In
principle, backbone charges should release their own counterions to ensure electrical
neutrality, but this is neglected in our calculation.

4. In this solution (referred to as “bulk” in the following context, also referred to as
“aqueous phase” in other literatures), cations can pair with and bind to anions i.e.
being in each other’s vicinity, moving around as one entity, due to Coulomb attrac-
tion. To be specific, two ions of opposite charges are considered as “bound” as long
as the Coulomb interaction energy between them exceeds 𝑘𝐵𝑇 . The bound cations
are in chemical equilibrium with the “free” ones.

5. The cations and peptides can also bind to the backbone charges. However, since the
other side of the surface cannot be accessed by the ions, and there is a dielectric
discontinuity across the surface, the energy gained through binding with backbone
charge can be quite different from that with anions in the bulk. Besides, we emphasize
that each backbone charge can bind to at most one cation, either monovalent or
divalent, or one of the 𝑄 charges on a peptide. (In the following context, we don’t
distinguish “bind to a site” and “bind to a backbone charge (on this site)”.)

6. Water is abstracted as a continuous, homogeneous background characterized by its
dielectric constant 𝜀𝑤 = 80. Beyond this, water results in a hydration shell around
all the ions, increasing their effective radii.

7. When a cation bind to a negative charge (binding site or anion in the bulk), the small-
est possible distance between their centers is denoted as 𝛿1 for monovalent cation or
𝛿2 for divalent cation, which is roughly the sum of the radii of the charges. Obvi-
ously, we can have different 𝛿𝑖’s for binding in the bulk and on the surface, because
a backbone charge (for phospholipid and LPS, O−) may have quite different size
from an anion in the bulk (typically Cl−). In a more primitive model, we can make
the approximation that 𝛿𝑖 is the only possible distance between the bound ion pairs.
However, in a more sophisticated model, the distance is allowed to vary between 𝛿𝑖
and 𝑍𝑖/2 ⋅ 𝑙𝑏, with 𝑙𝑏 being the Bjerrum length. We also assume that 𝛿𝑖 < 𝑍𝑖/2 ⋅ 𝑙𝑏,
because otherwise no binding as defined above would occur. In my work, the latter
model is adopted for the ions, and the former model is adopted for peptides, because
ions are smaller and more mobile while peptides are more bulky and more inflexible.

5In principle, the model can be generalized to 3-1 salts e.g. GdCl3, but the lateral correlation may
have to be calculated in a drastically different way

50



8. When the discreteness and the finiteness of size of the ions have to be taken into
account, the ions are depicted as spheres with their respective radii. The interac-
tion between “free ”ions in the bulk is calculated based on Debye-Hückel limiting
law, which implicitly assumes the ionic charges are distributed on the surface of the
spheres. However, when ion pairing and binding is discussed, we assume the electrical
charge is concentrating at the center of the sphere. The apparent contradiction in
these assumptions is expected to produce negligible error (because the “free” ion in
the bulk are much farther apart).

9. In the system we study (LPS leaflet), the distances between bound ions are far
smaller than the lattice constant: 𝛿𝑖 < 𝑍𝑖/2 ⋅ 𝑙𝑏 ≪ 𝑎. Therefore, a lattice site on
which the backbone charge is bound by a monovalent/divalent ion, as seen from
other lattice sites, is electrically neutral/carrying +𝑒 charge. In other words, we
neglect the dipole moment of “backbone charge + bound ion”. Furthermore, we
assume that 𝑎 is comparable to the Debye length 𝜅 corresponding to the electrolyte
solution.

Therefore, the general scenario is as depicted in Fig. 3.5.

3.3 Theoretical Model: Mathematical Formulation

In principle, since all the charges are discrete and their position can be determined (in
classical limit), a summation of the Coulomb energy of all the charge pairs shall yield the
total electrostatic energy of the system. Since that’s obviously unrealistic, we have to make
simplifying approximations and adopt tricks to ease the pain.

Consider a square lattice of lattice constant 𝑎 that contains 𝑁0 lattice sites. Originally,
each lattice site carries one −𝑒 charge. Then, as depicted in Fig. 3.5 (except that we
don’t want peptides to be involved for now), there are 𝑁1 monovalent ions and 1

2
𝑁0 +𝑁2

divalent ions bound onto the lattice. Notice here that −1
2
𝑁0 ≤ 𝑁2 ≤ 1

2
𝑁0. When 𝑁2 < 0,

it simply means that less than half of the lattice sites are bound with divalent ions. Now,
there are 𝑁1 sites that are electrically neutral, 1

2
𝑁0 + 𝑁2 sites carrying +𝑒 charge each,

and 1
2
𝑁0 −𝑁1 −𝑁2 sites carrying −𝑒 charge each. These sites are arranged on the square

lattice in a certain configuration.

In principle, it’s always possible to decompose such a configuration into the superposi-
tion of two parts according to the scheme depicted in Fig. 3.6. In the first part (mid-left
in the figure), +𝑒 and −𝑒 charges are respectively carried by 𝑁 sites, and the remain-
ing 𝑁0 − 2𝑁 sites are neutral. Here, 𝑁 = 𝑚𝑖𝑛{1

2
𝑁0 + 𝑁2,

1
2
𝑁0 − 𝑁2} = 1

2
(𝑁0 − 2 ∣𝑁2∣).
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Figure 3.5: Schematic drawing of the binding scenario. Each lattice site carries −𝑒 of
negative charge (red sphere), and monovalent/divalent ions (blue/green spheres) in the
bulk can be attracted to the vicinity of lattice sites and be “bound”. Peptides (blue-and-
yellow helices) in the bulk can also bind to the surface, occupying a number of lattice sites
equal to its charge 𝑄.
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Therefore, the average surface charge density of this part is always zero. In the second
part (mid-right in the figure), +𝑒 ions (if 𝑁2 > 0) or −𝑒 ions (if 𝑁2 < 0) are positioned
at corresponding lattice sites, so that the superposition of these two parts leads to the
original configuration. Of course, there are more than one way to decompose a particular
configuration, but it doesn’t hinder us from carrying out the treatment below.

For the first part, we make the lattice more sparse while keeping its total area con-
stant, so the number of lattice sites changes from 𝑁0 to 2𝑁 . The new lattice constant is
𝑎/
√
1− 2 ∣𝑁2/𝑁0∣. Then, we rearrange the 2𝑁 charges on it into an alternative configu-

ration (bottom-left in the figure). This is referred to as the “initial state”. For the second
part, we simply smear it out into a uniformly charged surface. The surface charge density
is (𝑁1 + 2𝑁2) /𝑎

2.

Therefore, if we pick out one bound cation to study, all the other charges in the system
fits in the following categories.

1. Free ions in the bulk (mean-field screening);

2. The backbone charge to which it is bound (transverse correlation);

3. All the other charges in the initial state (lateral correlation);

4. Excessive cations or anions (mean-field term arising from non-zero 𝜎).

Hence, the Coulomb force on this cation is the sum of the forces exerted by all these
charges, and its Coulomb energy (or the electrostatic part of its chemical potential) is the
sum of the Coulomb energy contributed by each of these categories.

A few simplest cases are analyzed below to help the readers see how to work with the
model. To simplify our discussion, we assume that both sides of the lattice are aqueous
phase, so as to remove the complexity due to the dielectric discontinuity. Peptides are not
involved at this stage.

3.3.1 Example calculations

𝑁1 = 𝑁2 = 0

In this case, the surface is electrically neutral, and is in an “initial state” already. Only
the first 3 out of the 4 categories listed above need to be accounted for (since there’s no
excessive charge).
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(a) positive overall 𝜎0

(b) negative overall 𝜎0

Figure 3.6: Each configuration of bound charges can be approximated by the superposition
of two parts: a lattice on which positive and negative charges are alternatively arranged,
and a uniformly charged surface.
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Figure 3.7: Lateral v.s. Transverse correlation

We denote the pairing energy between a backbone charge and a divalent ion as 𝐸2,
whose exact value is not of our concern for now. As to the lateral interaction energy in the
initial state, we can take advantage of the regularity: for any site (+𝑒 or −𝑒), the nearest
neighbors carry opposite charges, and the second nearest neighbors carry same charges,
and so on. So, we can write it down as:

𝐸𝑠𝑖𝑡𝑒 = 𝑘𝐵𝑇 ⋅ 𝑙𝑏 ⋅ Σ (𝑎𝑖) (3.11)

in which Σ is the electrostatic energy of one site in an initial state of lattice constant
𝑎𝑖 due to its interaction with all other charges in the initial state. Its value is calculated
by a summation explained in detail in Appendix D.

Hence, the total electrostatic energy of this system with 𝑁0 lattice sites, among which
1
2
⋅𝑁0 are bound with divalent ions, is:

𝐸𝑖𝑛𝑖𝑡 =
1

2
⋅𝑁0 ⋅ 𝐸2 +𝑁0 ⋅ 𝑘𝐵𝑇 ⋅ 𝑙𝑏 ⋅ Σ (𝑎) (3.12)

1 excessive cation

In this case, since there is no ”other” excessive cation, we still consider only the first 3
out of the 4 categories. We’ll calculate the change of energy Δ𝐸 as compared to the
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𝑁1 = 𝑁2 = 0 case. Besides, considering 𝑁0 ≫ 1, the lattice constant of the initial state is
almost 𝑎.

We denote the pairing energy as 𝐸𝑖, 𝑖 = 1, 2 is the valence. Note that 𝐸2 = 2𝐸1 may not
hold. The contribution from other sites can be figured out as below. If the excessive cation
is monovalent, it effectively neutralize the lattice site. The lateral correlation energy for
this site will drop from 𝑘𝐵𝑇 ⋅ 𝑙𝑏 ⋅Σ to 0, changing by −𝑘𝐵𝑇 ⋅ 𝑙𝑏 ⋅Σ. If this cation is divalent,
it effectively inverse the sign of the charge on this site, and the lateral interaction energy
will also change sign, going from 𝑘𝐵𝑇 ⋅ 𝑙𝑏 ⋅ Σ to −𝑘𝐵𝑇 ⋅ 𝑙𝑏 ⋅ Σ, changing by −2𝑘𝐵𝑇 ⋅ 𝑙𝑏 ⋅ Σ.
Hence, we can easily write the change in energy (comparing to 𝐸init)as:

Δ𝐸𝑖,+1 = 𝐸𝑖 − 𝑍𝑖 ⋅ 𝑘𝐵𝑇 ⋅ 𝑙𝑏 ⋅ Σ (𝑎) (3.13)

in which 𝑖 = 1, 2 denotes for the valence of the cation.

2 excessive divalent cations

To keep our discuss concise, we assume both cations are divalent, but it’s really trivial to
generalize the idea to 2, or 𝑛, arbitrary cations. As above, the lattice constant of the initial
state is approximated to be 𝑎.

All 4 categories of charges are present in this case. However, for the effects due to
the first 3 categories, there isn’t any difference i.e. we can treat the two excessive cations
as independent. Beyond that, we’ll have to deal with the 4th category i.e. adding the
interaction between excessive cations. Because the respective positions of the two cations
can basically be anywhere, the simplest treatment will be the mean-field picture i.e. to
study one of the cations, smear out the other cation, so the interaction energy will have
the Debye-Huckel form: 𝑘𝐵𝑇 ⋅ 𝜋𝑙𝑏𝜅−1 ⋅ 𝜎2. Still, there is one restriction. Only one cation
can bind to any one of the lattice sites, so the other cation cannot be simply smeared
out over the entire surface, but the entire surface subtracting a certain region around the
cation of interest (see Fig. 3.8), leading to a correction term −𝐸ℎ𝑜𝑙𝑒. When 𝑁0 is very
large, smearing over a area of 𝑁0 ⋅ 𝑎2 or over (𝑁0 − 1) ⋅ 𝑎2 will have almost no difference,
and the restriction above can be enforced by subtracting a term 𝐸hole. The calculation of
𝐸hole is detailed in Appendix E.

Hence, the change in energy is:

Δ𝐸2,+2 = 2𝐸2 − 2𝑍2 ⋅ 𝑘𝐵𝑇 ⋅ 𝑙𝑏 ⋅ Σ (𝑎) + 𝑘𝐵𝑇 ⋅ 𝜋𝑙𝑏𝜅−1 ⋅
(

1

𝑁0 ⋅ 𝑎2
)2

− 𝐸hole (3.14)
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Figure 3.8: Since one lattice site can only be associated with one charged object at any
given time, we have to take this into account in the calculation of mean-field effects.

𝑁2 = −𝑁0/2

This case, equivalence to the absence of divalent cations, is of great interest, because similar
calculation can be found in earlier works [95]. As 𝑁2 → −𝑁0/2, 𝑎𝑖 = 𝑎/

√
1− 2 ∣𝑁2/𝑁0∣ →

∞. As the lattice becomes infinitely sparse, we expect Σ → 0. Therefore, the change in
energy is:

Δ𝐸𝑁2→−𝑁0/2 = −𝑁0/2 ⋅ 𝐸2 + 𝑘𝐵𝑇 ⋅ 𝜋𝑙𝑏𝜅−1 ⋅
(

𝑁1

𝑁0 ⋅ 𝑎2
)2

− 𝐸ℎ𝑜𝑙𝑒 (3.15)

Notice that this is different from the energy for the same scenario in Ref. [95] by a
constant only. That is, in the monovalent-only limit, our model naturally degenerate into
the model in earlier works.

3.3.2 Chemical equilibrium and free energy

Now, we are ready to write down the chemical potentials and free energy in our model
explicitly. In the following context, subscripts 𝑖 = 1, 2 denote quantities associated with
monovalent and divalent ions, respectively. 𝑍1 = 1 and 𝑍2 = 2 are their valences.
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Chemical equilibrium

The chemical potentials of particles in the bulk are:

𝜇𝑏𝑖 (𝑛𝑖) = 0.6022𝑛1 ⋅ 4
3
𝜋𝑟3𝑖 −

𝑍2
𝑖

2
𝑙𝑏

𝜅

(1 + 𝜅𝛿1)
(3.16)

𝜇𝑏𝑝 (𝑛𝑝) = 0.6022𝑛2 ⋅ 4
3
𝜋𝑣𝑝 (3.17)

in which 0.6022 nm−3 ⋅ 𝐿/mol is the conversion factor mentioned earlier. 𝑟𝑖 is the radii
of monovalent and divalent ions in the bulk, respectively. Finally, 𝑣𝑝 is the volume of a
peptide molecule.

The chemical potentials of particles binding to the surface are:

𝜇𝑠𝑖 (𝑁1, 𝑁2, 𝑁𝑝) = Δ (𝜅) 𝑙𝑏 ⋅
[
− 𝑍𝑖Σ

(
𝑎

1− 2 ∣𝑁2/𝑁0∣
)
+
𝑁1 + 2𝑁2 +𝑄𝑁𝑝

𝑎2

× (2𝜋𝑍𝑖𝜅−1 −ℳ1 (𝜅, 𝑎)
) ]− ln (𝐾𝐼,𝑖) + ln

𝑁𝑖
′

0.5𝑁0 −𝑁1 −𝑁2 −𝑄𝑁𝑝

(3.18)

𝜇𝑠𝑝 (𝑁1, 𝑁2, 𝑁𝑝) = Δ (𝜅) 𝑙𝑏 ⋅
[
−𝑄Σ

(
𝑎

1− 2 ∣𝑁2/𝑁0∣
)
+
𝑁1 + 2𝑁2 +𝑄𝑁𝑝

𝑁0𝑎2

× (2𝜋𝑄𝜅−1 −ℳ𝑝 (𝜅, 𝑎)
) ]

+Δ(𝜅) 𝑙𝑏
𝑄

𝛿𝑝
− 𝑁𝑝 ⋅ (𝑁0 −𝑄𝑁𝑝)

𝑄−1

(𝑁0 −𝑄𝑁𝑝 −𝑁1 −𝑁2)
𝑄

(3.19)

in which we’ve defined dielectric discontinuity constant Δ = 2(𝜂+𝜅𝑑)
2𝜂+𝜅𝑑

, 𝜂 = 𝜀𝑙/𝜀𝑤. The
meaning of Σ is the same as the examples above and is calculated in Appendix D. ℳ1

and ℳ𝑝 are correction integrals as depicted in Fig. 3.8 and detailed in Appendix E.

By solving the equation system below:⎧⎨⎩
𝜇𝑏1 = 𝜇𝑠1
𝜇𝑏2 = 𝜇𝑠2
𝜇𝑏𝑝 = 𝜇𝑠𝑝

(3.20)
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We can obtain a set of {𝑁1, 𝑁2, 𝑁𝑝}. However, in real calculation, it’s more convenient
to choose {𝑁1/𝑁0, 𝑁2/𝑁0, 𝑁𝑝/𝑁0} as the outputs.

If 𝑛𝑝 = 0, we set 𝑁𝑝 ≡ 0 in Eq. 3.18, and solve the first two equations in Eqs. 3.20. If
𝑛2 = 𝑛𝑝 = 0, we further set 𝑁𝑝 ≡ 0, 𝑁2 ≡ −0.5 in Eq. 3.18, and solve the first equation in
Eqs. 3.20.

Free energy

The complete form of the free energy is:

𝐹 = 𝐹𝑒𝑠 + 𝐹𝑒𝑛𝑡 + 𝐹𝑐𝑜𝑟𝑟 (3.21)

𝐹𝑒𝑠 = Δ ⋅ 𝜋𝑙𝑏𝜅−1 (𝑁1 + 2𝑁2 +𝑄𝑁𝑝)
2

𝑁2
0 ⋅ 𝑎4 (3.22)

𝐹𝑒𝑛𝑡 ⋅𝑁0𝑎
2 = 𝑁1 ln𝑁1 + (𝑁2 + 0.5) ln (𝑁2 + 0.5) +𝑁𝑝 ln𝑁𝑝

+(0.5−𝑁1 −𝑁2 −𝑄𝑁𝑝) ln (0.5−𝑁1 −𝑁2 −𝑄𝑁𝑝)

1−𝑄

𝑄
(1−𝑄𝑁𝑝) ln (1−𝑄𝑁𝑝)

−𝑁1 ⋅ 𝜇𝑏1 −𝑁2 ⋅ 𝜇𝑏2 −𝑁𝑝 ⋅ 𝜇𝑏𝑝 (3.23)

𝐹𝑐𝑜𝑟𝑟/ (Δ𝑙𝑏) =
ℳ1

2
⋅ (𝑁1 + 2𝑁2)

2

𝑁2
0 ⋅ 𝑎4 −𝑁𝑝 (𝑁0 − 0.5𝑁𝑝)ℳ𝑝 −𝑄 (𝑁1 +𝑁2 + 0.5𝑁0)ℳ1

−(𝑁0 −𝑁1 − 2𝑁2 −𝑄𝑁𝑝)

𝑁0 ⋅ 𝑎2 ⋅ Σ
(

𝑎

1− 2 ∣𝑁2/𝑁0∣
)

− [𝑁1 ⋅ ln (𝐾𝐼1/𝜈1) +𝑁2 ⋅ ln (𝐾𝐼2/𝜈2)] /
(
𝑁0 ⋅ 𝑎2

)
(3.24)

3.3.3 Choosing parameters

In this model, the parameters yet to be accurately determined are: the smallest distance
for transverse correlation 𝛿𝑖 and 𝛿𝑝, the charge 𝑄 and the volume 𝑣𝑝 of the peptide. These
parameters are taken as: 𝛿1 = 3 Å, 𝛿2 = 2.5 Å, 𝑄 = 4, 𝑣𝑝 = 2.5 nm3.
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3.4 Results and Discussion

3.4.1 Ion binding

Monovalent ion only

The simplest case that our model can study is when 𝑛2 = 0 and 𝑛𝑝 = 0 i.e. there are
only monovalent ions in the solution. Calculations based on this scenario serve as a step
stone towards more sophisticated ones. Since this scenario has been extensively studied
in previous works, checking whether our work is consistent with others’ would help us to
determine the viability of our model.

Firstly, we attempted to verify the statement of Pincus et al. that ion binding is an
extra effect due to charge discretization [94]. We set out verifying that: when backbone
charges are smeared out, discrete, pairwise ion binding shall disappear, and mean-field
effect shall dominate, and the amount of bound ions shall asymptotically approach counte-
rion condensation in continuous limit. We smear out the backbone charges by introducing
a parameter called “partition”, allowing me to modify the lattice as in Fig. 3.9.

Figure 3.9: Smearing out the backbone charges to verify the consistency with results in
continuous limit.

Note that “partition” need not to be an integer. We calculated with different partitions,
and make the plots in Fig. 3.10.

As evident in these plots, when the partition is large i.e. the charges are better smeared
out, 𝜎𝑒𝑓𝑓 approaches the one predicted in continuous limit fairly quickly.

Furthermore, enlarging 𝛿1 has similar effect. See Fig. 3.10d. However, enlarging 𝛿1 too
much won’t lead to a better match, because when 𝐸binding < 𝑙𝑏𝑀1, 𝜎𝑒𝑓𝑓 would become
significantly larger than that in continuous limit.
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Figure 3.10: Binding in the absence of divalent ions, compared to counterion condensation
in continuous limit calculated from 2-state model. In (a), (b) and (c), the backbone charges
are gradually smeared out by increasing the “partition” number, and in (d), 𝛿 is gradually
increased. In either case, the results based on our discrete model approach those calculated
in the continuous limit, demonstrating the consistency.
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Divalent ions added

In the case of 𝑛2 ∕= 0, 𝑛𝑝 = 0, we chose 3 typical values of 𝑛2 and calculated 𝜎1/𝜎0 = 𝑁1/𝑁0,
𝜎2/𝜎0 = 𝑁2/𝑁0 + 0.5 and −𝜎𝑒𝑓𝑓/𝜎0 = 𝑁1 + 2 ⋅ 𝑁2. Results for 𝑛2 = 0 are also presented
for comparison. The results are shown in Fig. 3.11.
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Figure 3.11: Surface charge density in the absence of peptides. At small 𝑛2, 𝜎2 approaches
0 and ion binding approaches the 𝑛2 = 0 limit. As 𝑛2 increases, so is 𝜎2, but overcharging
is not pronounced, consistent with experimental works e.g. Ref. [80].

Our results reveals that:

1. When 𝑛2 = 10𝜇𝑀 ≪ 𝑛1, 𝜎2 asymptotically approaches 0, and 𝜎1 approaches the
value in the monovalent-only case. Since the monovalent-only case is calculated
based on models in earlier works, it confirms that our results are consistent with
those works in the limit of 𝑛2 → 0. Interestingly, the value of 𝜎𝑒𝑓𝑓 for 𝑛2 = 10𝜇𝑀
and 𝑛2 = 0 coincide very well in a very wide range of 𝑛1 values, indicating that ion
binding in low 𝑛2 limit is dominated by mean-field effect.

2. 𝜎2 increases as 𝑛2 increases, eventually resulting in overcharging. However, there
were no overcharging when 𝑛2 = 1 mM, and even for 100 mM of Mg2+, which is
a very high concentration even in lab experiments, the overcharging is still merely
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10% - 20%. However, previous experimental works indicates that overcharging does
not occur (surface potential is still negative) even when 𝑛2 = 10 mM [80], which is
qualitatively consistent with our calculation.

Excessive lateral pressure

Firstly, we calculated the lateral pressure ΔΠ as a function of 𝑛1 for the same set of 𝑛2

values above, and present the results in Fig. 3.12.
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Figure 3.12: Excessive lateral pressure ΔΠ in the absence of peptides. Without divalent
ions, ΔΠ is always larger than 0 (outward), and it stays so when 𝑛1 ≫ 𝑛2 ≈ 0. At higher
𝑛2, ΔΠ becomes negative (inward), indicating that the divalent ions are stabilizing the
LPS leaflet.

It can be seen that:

1. In the absence of divalent ions, ΔΠ is always positive (outward), indicating the LPS
leaflet is highly unstable without the bridging effect of divalent ions.

2. In low 𝑛2 limit, ΔΠ asymptotically approaches the monovalent-only case at larger
𝑛1, which is a natural result of the ion-binding behavior discussed earlier.

3. A relatively low concentration of divalent ions would lead to a negative ΔΠ, indicating
how effective divalent ions can stabilize the LPS leaflet.
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4. As 𝑛2 goes higher, the stabilization does not get significantly better. The decrease
in ΔΠ is roughly the same when 𝑛2 change from 1 𝜇M to 10 𝜇M (101 fold) and from
10 𝜇M to 100 mM (104 fold).

5. The absolute value of ΔΠ generally decreases as 𝑛1 increases because of the screening.
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Figure 3.13: ΔΠ varies with 𝑛2. A minimum at 𝑛2 ≈ 1 mM can be seen.

3.4.2 Competitive binding

Now we move on to the central subject of our study: when 𝑛2 ∕= 0 and 𝑛𝑝 ∕= 0, does our
model predict competitive binding? Fig. 3.14 gives a confirmative answer. Note that its
vertical axis is chosen to be “Portion of occupied sites” which is 𝜎2 for divalent ions and
𝑄 ⋅ 𝜎𝑝 for peptides, instead of using 𝜎𝑝 itself 6. It clearly shows that, for all the chosen
values of 𝑛2, as 𝑛𝑝 goes up, more and more divalent ions leave the LPS leaflet as peptides
moves in. At high Mg2+ concentration of 𝑛2 = 100 mM, peptide can hardly bind to the
surface, which is consistent with the result in Ref. [92]. At lower Mg2+ concentration,
however, peptide can easily bind to the surface, and occupy 5% to 30% of the binding sites
in physiological conditions (see Fig. 3.16).

6Although there’s not much difference in a logarithm graph, we do it for the sake of consistency with
other figures
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Figure 3.14: Competitive binding between peptides (blue) and divalent ions (orange). As
𝑛𝑝 increases, more and more bound divalent ions leave the surface, being replaced by the
peptides. A higher 𝑛2 value can hinder, but not eliminate, such replacement.

0.5

0.4

0.3

0.2

0.1

0.0

F
ra

ct
io

n 
of

 o
cc

up
ie

d 
si

te
s

200150100500

[Na
+
]  (mM)

/           [AMP] = 0
/ /   [AMP] = 1µM
/ /   [AMP] = 10µM

Figure 3.15: Concentration of Na+ (dashed lines), Mg2+ (solid circles) and peptide (empty
squares) showing competitive binding. A higher 𝑛1 gives the peptides some edge in the
competition, but generally the effect is not pronounced.
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3.4.3 Excessive lateral pressure

Competitive binding has been hypnotized, even reported to have been observed, in other
works like Ref. [92] and [95], and is not too much of a big news for us. What we’d like to
see is how the binding of peptides affects the excessive lateral pressure ΔΠ that reflexes the
stability. As we can see in Fig. 3.16, at relatively low concentration of Mg2+ (𝑛2 < 1mM),
the excessive lateral pressure becomes strongly outward even with moderate 𝑛𝑝, indicating
that the LPS leaflet becomes highly unstable, easier to permeate and rupture, in the
presense of peptides. It evidently shows that cationic peptides, via competitively bind onto
the LPS layer, can destabilize it by making its constituent molecules tend to break away
from each other instead of sticking together. However, at higher 𝑛2, the divalent ions inhibit
the peptides from binding, and the lateral pressure remains negative and largely unchanged
as 𝑛𝑝 increases, consistent with the results in experimental works (e.g. Ref. [92]).
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Figure 3.16: Change in excessive lateral pressure due to the binding of peptides. At
lower 𝑛2, a little peptides in the bulk can convert the excessive lateral pressure from
inward to outward, destabilizing it. At higher 𝑛2, the LPS leaflet is more resistant to such
destabilization.
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Figure 3.17: Excessive lateral pressure in the presence of peptides. The destabilizing effect
of the peptides is shown to be quite strong, and ΔΠ can even be more positive than the
monovalent-only case.
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3.4.4 Stabilization effect of divalent ions

“Competition” is a two-way concept. On one hand, the presence of peptides forces divalent
ions to leave the LPS leaflet, making it more unstable; on the other hand, the presence
of divalent ions prevent too much peptide from binding, protecting the LPS layer and
contributing to the inhibition of AMPs. We’d love to explicitly see how increasing the
concentration of divalent ions would allow the LPS leaflet to be more resistent to the
attack of AMPs. The results are presented in Fig. 3.18.

0.8

0.6

0.4

0.2

0.0

Q
σ p 

/ σ
0 

0.1
2 3 4 5 6

1
2 3 4 5 6

10
2 3 4 5 6

100

[Mg
2+

]  (mM)

0.5

0.4

0.3

0.2

0.1

σ
2  / σ

0  

/  [AMP] = 1 µM
/  [AMP] = 5 µM
/  [AMP] = 10 µM
/  [AMP] = 20 µM

Figure 3.18: Competitive binding between peptide (empty squares) and divalent ions (filled
circles) as 𝑛2 increases. It presents what’s already evident in Fig. 3.16 and Fig. 3.17 from
another perspective. At higher 𝑛2, peptide binding is not pronounced even at fairly high
𝑛𝑝, indicating the protection, or “immunity”, against AMPs brought about by divalent
ions.

3.4.5 Effect of Q

The last subject we’re interested in is: how the value of peptide charge 𝑄 affects its
effectiveness in terms of increasing ΔΠ. As shown in Fig. 3.19, for 𝑛2 = 1 mM, which is
typical in physiological environment e.g. blood, 𝑄 ≤ 3 is hardly effective. This explains
why the Q value of most AMPs is 4 to 6.
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Some may find that Fig. 3.19 indicates “the larger Q is, the better”, which is contradic-
tory to some other works, such as Ref. [15] and [101], that indicates an optimized peptide
charge of 𝑄 = 4, above which the effectiveness of AMPs (against phospholipid membrane)
will go down. Part of the reason is that in those works, the area occupied by each peptide
on the membrane is considered as roughly fixed, while in our work, the number of binding
sites occupied by a peptide is assumed to be always equals to 𝑄.
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Figure 3.19: Impact on lateral pressure for peptides with various charges. For 𝑛2 = 1mM,
typical in physiological environment, 𝑄 ≤ 3 is hardly effective. This explain the typical
charges carried by AMPs is from 4 to 6.

3.5 Conclusions

In this work, we’ve established a coarse-grain model of the interaction between ions, cationic
peptides and a LPS leaflet, based on which we predicted competitive binding between
divalent ions and peptides, and the resulting change in lateral pressure that leads to the
destabilization of the leaflet. Our result is, at least qualitatively, consistent with the
experimental works by others.
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Chapter 4

Conclusions and Prospect of Future
Works

So far, we have presented the details of the research we’ve been doing. It’s time to give a
more conclusive summarize of our work and, more importantly, discuss what can be done
in the future based on these works.

4.1 What Has Been Done

In this thesis, we have tackled two problems: electrostatic influence on structural preference
of lipid aggregation, and the stability of LPS as affected by ions and cationic peptides.
Though we have, to some extent, solved these two problems and yielded some results, it may
not be our greatest triumph. What is more significant than solving two particular problems
is our contribution to a set of theoretical formulations and computational techniques, a
system of methodology, that can be applied to solve countless problems that shares some
features with those we’ve studied here.

By putting the two problems together and examine them, we can see the features they
share:

1. The system consist of two parts. The first part is an aggregation of amphiphilic
molecules in water, at least some of these molecules carries net charges, forming a
two-dimensional charged surface. The second part is the aqueous environment around
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it, containing charged objects i.e. ions from dissolved salts and possibly charged bio-
molecules (for convenience, we refer to them collectively as ”ions” in the following
context). The property of the system depends heavily on electrostatic interaction.

2. Most of the ions stays in the aqueous environment, effectively screens the Coulomb
force between surface charges.

3. Some of the ions condense to the vicinity of the charged surface, altering the effective
surface charge density.

4. The surface charges along with condensed ions form a 2D interacting gas/liquid/crystal,
in which correlation and fluctuation plays a crucial role in its property, and hence
the property of the entire system.

5. The hydrophobic part of the aggregation has quite different dielectric constant against
water, which affects the strength of electrostatic force.

Therefore, to summarize the works in this thesis with only one sentence, we’ve been
studying ”the electrostatic force in two-dimensional systems self-assembled from amphiphilic
molecules in water”. There are countless implements of such systems in cellular life-forms,
and countless questions can be raised regarding the physical properties of these systems.
Surely, not all of these properties can be ascribed to electrostatic interaction, but as we’ve
mentioned earlier, electrostatic interaction is more flexible, more ”tunable”, than other in-
teractions commonly involved in biological physics like van der Waals force and hydrophobic
force. It’s expected that electrostatic interaction will play a central role in many biological
and physiological phenomena. Therefore, though we’ve only studied two particular prob-
lems out of a large family of problems, the methodology we developed in the process would
contribute to the solving of them all. The methodology can be summarized as below:

1. Find a proper way to depict the charged surface.

2. Consider each species of ions in the aqueous environment as being in one of the two
states: either ”in the bulk” or ”condensed near the surface”, and assume the two
species to be in chemical equilibrium.

3. For each species of ions, analytically express the chemical potential for the two states.
The chemical potential for the condensed ions should be a function of the density of
them on the surface.
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4. Equating the chemical potential of the two state for each species, and we arrive at a
system of equations. Numerically solve the system to determine the density of each
species on the surface.

5. Calculate the free energy, which is a function of the surface ion densities just solved
for and ion concentration in the aqueous environment.

6. Calculate quantities by numerically taking derivatives of the free energy.

How good is this method comparing to other methods? A completely analytical ap-
proach is less fruitful, because the analytical solution of P-B equation, or even D-H equa-
tion, is extremely involving, even impossible, in the presence of complex geometries and
dielectric discontinuity, say nothing of charge fluctuation. Numerically solving P-B equa-
tion, as in Ref. [15] and [67], would yield more accurate result than our approach, but it’ll
consumes much more computational resources. On the other hand, ”hard-core” numerical
methods, especially Monte-Carlo and molecular dynamic simulations, are brute-force ways
to address these problems, and usually yield satisfactory result. Besides, the simulations
are done in finite systems, and the results suffers significantly from finite-size effect. To
avoid the problem, besides choosing appropriate boundary conditions, the system should
be made larger, which would greatly increase the computational cost of these simulations.
Furthermore, in previous works that address similar problems as we’ve addressed in the
thesis, such as Ref. [59] and Ref. [67], the confidence in computational power leads to
complication of the model, preserving many details of the corresponding realistic systems,
leading to a blur of the physical picture. Our method keeps a balance between two pairs
of conflicting expectations: firstly, the semi-analytical calculation analytically modeled
each of the contributing effects, and numerically avoided involving algebraic and analyti-
cal solving of equations; secondly, our modeling accounted for the most dominant factors,
producing reasonably good results while avoid over-complicating the picture.

Despite the general idea in the ways we tackle these two problems respectively is similar,
we do introduced some variation. In the first problem, we modeled the charged property of
the (mixed) phospholipid monolayer in a continuous manner, treating both the backbone
charges and the condensed ion layer as continuous, and mathematically accounted for the
fluctuation/correlation effects with continuous functions. It’s because typical phospholipid
aggregation at physiological temperature is in a more ”fluid-like” phase. On the other hand,
we considered the individual lipid molecules as discrete objects, and treated electrostatic
force as an addition to the 3 types of intermolecular forces. It’s because those 3 types
of forces, despite much less ”tunable”, determines the elastic property of the monolayer
more dominantly. In the second problem, we modeled the charged property of the LPS
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leaflet with a lattice, and utilized the concept of ”binding” in the treatment of electrostatic
effects, because the structure of an LPS leaflet at physiological temperature is much more
organized. On the other hand, we didn’t consider other biophysical properties of LPS
molecules or other intermolecular forces between them, because the elastic property of the
leaflet is less of our concern (stabilizing/destabilizing is merely reflected in ΔΠ). Therefore,
the problems we chose to attack are actually rather representative.

4.2 What To Do

In scientific research, having an idea doesn’t necessarily means having the resource to
actually carry it out. By the end of my life as a master graduate student, there are ideas
in my mind that are yet to be executed, there are questions I’m curious at that are yet
to be answered. Therefore, to conclude this thesis, I’d like to gaze beyond the horizon
along with the readers, to present a ”to-do list”, in hope that some of us will be able to
implement and verify these ideas, and further unveil the answer to the questions we raised
and answered (to some extent) in this thesis.

4.2.1 Lipid polymorphism: a more balanced model and applica-
tion to reality

Both electrostatic bending of a phospholipid bilayer and the polymorphism of phospholipid
– its capability of forming structures other than bilayer – has been studied for decades. In-
deed, the very numerically-intensive approach developed by Taheri and Ha [67] has allowed
us to perform reliable calculations to determine quantities such as spontaneous curvature.
Despite much simpler, our approach has less quantitatively predictive power than theirs.
Therefore, the first question is:

Can we make it more powerful while keep the computational cost under con-
trol?

To answer this, let’s examine some of the approximations we used again.

1. To account for charge correlation, we used the Green’s function of D-H equation for
a plane (𝑐 = 0) to approximate that for a slightly cylindrically curved surface (𝑐 ≈
0). This is hardly convincing. Although the electrical potential for the cylindrical
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geometry has long been solved (see Appendix A), the Green’s function is yet to be
explicitly presented in any literature as far as we know. Therefore, we shall solve for
it and use it in the place of planar Green’s function.

2. We ignored lipid demixing, assumed that the overall 𝜎0 distributes evenly on each of
the lipids. Were we only interested in the general bending of a monolayer/bilayer,
this would be more acceptable, because demixing is not pronounced for a PG/PS
mixed monolayer [67]. However, in order to study the distribution of local tension,
demixing must be taken into account.

3. We haven’t calculated the electrostatic influence on Gaussian curvature 𝑘𝐺 in our
work, which is certainly of interest. We can accomplish this by solving the D-H
equation with spherical boundary condition, which should take a similar form of the
solution for a finite sized ion.

By adding more sophistication into our model, the computational cost is expected to
raise to some extent. However, we shall keep it in mind that the strength of our model lies
in its modest computational cost, and we should figure out which effects and details are
most dominant in determining the polymorphic properties, and avoid spending resource
on accounting for the subdominant effects.

However much we perfect a model, it’s not much more than a toy if we don’t apply it
to study reality. Therefore, the second question should be:

How can we apply our work to realistic problems?

In the first chapter, we’ve already listed an abundance of biological, physiological and
clinical processes in which the electrostatically tuned polymorphic behaviors of lipids play
a central role. The list includes cell fusion and fission, protein-membrane and peptide-
membrane interactions, and drug delivery. Contributing to the clarifying of these problems
should be the ultimate goal.

In order to accomplish this, at least one thing can be done: to define the ”stability” of a
mixed phospholipid bilayer. If this can somehow be defined, or depicted by some quantity,
we can address problems like drug delivery. Excessive surface tension as used in Chapter
3 is not appropriate here, because an inward surface tension would make the lipids stick
closer together while making the bilayer tend to break into inverse-hexagonal structure.
LPS doesn’t have the same problem, because the polysaccharide chains would deny LPS
from forming inverse-hexagonal structure.
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4.2.2 Peptide-LPS interaction: a more realistic model and fur-
ther studies

The works presented in Chapter 3, on the other hand, is relatively new. Despite an
abundance of experimental data, computational study of the LPS leaflet, especially the
action of AMP against it, has only been carried out recently, most of which are based on
Monte-Carlo method. There’s much out there to be done. However, before going too far,
let’s ask ourselves:

How well does our model reflex the realistic scenario?

I find at least the following directions are worthy of trying out:

1. Adopt a lattice structure other than square. Although we’ve justified the square
lattice, we admit that we choose it mainly for convenience. If another structure is
proven to be more appropriate, we should happily switch to it. However, B.-Y. Ha
(in private communications) stated that the LPS leaflet is more or less fluid-like at
body temperature, so approximating the spacial distribution of charged groups by a
convenient square lattice is good enough.

2. Allow charged groups to distribute both on and out of the hydrocarbon-water in-
terface. The interface shall locate around the sugar-phosphate part of lipid A, so
the carboxyl groups on KDO, as well as other phosphate groups possibly existing
in core oligosaccharide, would be out of the interface and completely immersed in
water, affecting the strength of electrostatic interaction. At low salt concentration,
the difference could be quite pronounced.

3. Account for ionic association more accurately. For example, add the concentration
of MgCl− into the effective 𝑛1.

4. Determine the parameters in a more reliable and convincing way.

5. Depict the sizes and charge distribution of peptides in a more realistic way: the 𝑄
charges don’t necessarily lie exactly on top of 𝑄 binding sites.

After improving the model, we’d naturally ask:
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What else can we do with it?

One of the things I can think of is: to calculate the electrostatic influence on 𝑎0 value of LPS.
The molecular model used in chapter 2 can readily be migrated here. The 𝛾 value and 𝜏
value are the intrinsic properties of oil-water interface and hydrocarbon chains, respectively,
and won’t be too different from the values adopted in chapter 2. Some experimental results
are presented in Ref. [93] and [23].

Another more practical problem to tackle is the partition of AMPs between the LPS
leaflet and the cytoplasmic membrane (Fig. 4.1). According to this thesis, some AMP
molecules have to stay on the LPS leaflet to continuously destabilize it. If there’s plenty of
AMPs in the aqueous bulk of the system, this isn’t too much of an issue. However, when
there’s only a limited number of AMP molecules in the surrounding (comparing to the
number of target gram-negative bacteria), depletion may occur, and the LPS leaflets are
expected to accelerate the depletion. This may have a negative impact on the efficiency of
AMPs in killing Gram-negative bacteria. Furthermore, similar approach can be extended
to study Gram-positive bacteria, because teichoic acid molecules found on the surfaces of
their cell walls are also negatively charged. Much work has been done on how AMPs attack
the cytoplasmic membrane of bacteria, but the differences brought about by the cell wall
are yet to be systematically investigated. Based on the pioneering work presented in this
thesis, we can attempt to establish a much more integrated and realistic picture of the
mechanism of AMPs killing bacteria.

Despite all the questions we’ve managed to answer, there are many more questions out
there, many of which are exhilarating, that are calling for an answer. We’re glad that our
works have contributed a few of the many pieces of the puzzle that, once completed, will
be among the most brilliant pictures in the human history.
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How will the LPS leaflet retain the AMPs?

Figure 4.1: Partition of AMPs between the cytoplasmic membrane and the LPS leaflet.
The LPS leaflet may deplete AMP molecules surrounding a bacterium, and may enhance
its resistance to these peptides.
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Appendix A

Analytical Solution of PB Equation
and DH Equation

A.1 Solution of Debye-Hückel equation

A.1.1 Dielectric Discontinuity

The solutions of partial differential equations depend heavily on boundary conditions. In
electrostatic problems, one of the most common origin of boundary conditions is dielectric
discontinuity, which means at least two bulks of mediums with different dielectric constants
are present in the system of interest, in touch with each other and separated by an interface.

In the bio-membrane systems we studied in this thesis, the two mediums are typically
water with 𝜀 = 80 and the hydrocarbon region of the membrane with 𝜀 = 2. In this case,
𝜀𝑙/𝜀𝑤 ≈ 0. It’s easy to see that the electrostatic field in the water produced by a charge on
such an interface is around twice as strong as that produced by one completely immersed
in water.

A.1.2 Point charge

For a point charge 𝑄 immersed in aqueous solution of 1-1 salt with Debye length 𝜅−1, we
can solve Eq. 1.12 in spherical coordinate, knowing that the solution should be isotropic
i.e. a function of 𝑟 only, and find:
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Ψ(𝑟) =
𝑄

4𝜋𝜀

exp (−𝜅𝑟)
𝑟

(A.1)

That is, beside the 1/𝑟 decay of the potential, there is an extra, exponential factor that
makes the decadence much faster. This is obviously the screening effect of counterions. A
larger 𝜅 leads to a steeper decay as we expected. Interestingly, the form in A.1 is identical
to ”Yukawa potential”, Ψ (𝑟) ∝ exp (−𝑚𝑟)/𝑟, in nuclear physics, describing a interaction
carried by massive boson. Inverse Debye length 𝜅 is analog to the mass of the boson.

Eq. A.1 shows that at a distance 𝜅−1 from a point charge, the electrical potential is 1/𝑒
times the value should there be no counterion screening. Besides, a spherical shell of radius
𝜅−1 around the charge contains more counterion than shells of any other radii. These can
be seen as intuitive way of interpreting 𝜅.

For a finite-size sphere with a uniformly charged surface, Eq. A.1 can be generalized
into:

Ψ (𝑟) =
𝑄

4𝜋𝜀

exp (𝜅𝑎)

1 + 𝜅𝑎

exp (−𝜅𝑟)
𝑟

(A.2)

A.1.3 Plane: electric double layer

Solving Eq. 1.12 for an infinite plane with uniform charge density 𝜎0 coinciding with the
x-y plane gives [52]:

𝜓 (𝑧) = 𝜑 (0) 𝑒−𝜅𝑧 (A.3)

𝜓 (0) =
2𝜋𝜎0
𝜀𝜅

(A.4)

Ψ (0) = 2𝜋𝜎0𝑙𝑏𝜅
−1 (A.5)

𝑛 (𝑧) = 𝑛0𝑒
−Ψ(𝑧) (A.6)

By looking at Eq. A.4, we notice that such linear relationship between potential and
surface charge density is quite analogous to a capacitor, namely, a double-plate capacitor
with plate separation 𝜅−1.

Such system, with one layer of charge fixed on a surface plus another layer of charge in
the close affinity ( 𝜅−1) of the surface, is sometimes referred to as electric double layer [52].
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Here, we assume that both sides of the surface are surrounded by the same type of
medium. If, as in bio-membrane, the surface coincides with a dielectric discontinuity and
the medium on 𝑧 < 0 side is far smaller than on the 𝑧 > 0 side, the electrical potential (on
the 𝑧 > 0 side) will be twice higher.

A.1.4 Flat Membrane: dielectric discontinuity

Consider a flat membrane, abstracted as a slab with finite thickness 𝑑, is immersed (from
both sides) in water. One of the surfaces carries a uniform charge density 𝜎0 while the
other surface is electrically neutral. Therefore, there are two surfaces on which 𝑣𝑎𝑟𝑒𝑝𝑠𝑖𝑙𝑜𝑛
is discontinuous. The electrical potential, as produced by the charged surface in the water
it faces, is given below:

Ψ (0) = 4𝜋𝜎0𝑙𝑏𝜅
−1 ⋅ 𝜀𝑙 + 𝜀𝑤𝜅𝑑

2𝜀𝑙 + 𝜀𝑤𝜅𝑑
(A.7)

Because, when the electric field penetrates into the membrane, the electric field pointing
into the aqueous phase will become weaker (so as to keep the difference of �⃗� across the
charged surface unchanged), making the electric potential in the aqueous phase smaller.
Between 𝜀𝑙 ≪ 𝜀𝑤 and 𝜀𝑤 ≪ 𝜀𝑙, the difference is a factor of 2.

A.1.5 Cylindrical boundary

Consider a cylindrically bent membrane, whose two monolayers carries charge density 𝜎𝑎
and 𝜎𝑏, and have curvature radii 𝑎 and 𝑏 on their charged surface, and immersed in 1-1 salt
solution of inverse Debye length 𝜅𝑖 and 𝜅𝑜, respectively. Solving Debye-Huckel equation
gives [62]:

𝜓 (𝑟 < 𝑎) =
4𝜋𝜎𝑎
𝜅𝑖

⋅ 𝐼0 (𝜅𝑖𝑟)
𝐼1 (𝜅𝑖𝑎)

⋅
𝜀𝑙
𝜀𝑤

(
𝜎𝑏

𝜎𝑎𝜅𝑜𝑎
+ 1

𝜅𝑜𝑏

)
𝐾0(𝜅𝑜𝑏)
𝐾1(𝜅𝑜𝑏)

+ ln
(
𝑏
𝑎

)
𝜀𝑙
𝜀𝑤

1
𝜅𝑜𝑏

𝐾0(𝜅𝑜𝑏)
𝐾1(𝜅𝑜𝑏)

+ 𝜀𝑙
𝜀𝑤

1
𝜅𝑖𝑎

𝐼0(𝜅𝑖𝑎)
𝐼1(𝜅𝑖𝑎)

+ ln
(
𝑏
𝑎

) (A.8)

𝜓 (𝑟 > 𝑏) =
4𝜋𝜎𝑏
𝜅𝑖

⋅ 𝐾0 (𝜅𝑜𝑟)

𝐾1 (𝜅𝑜𝑎)
⋅

𝜀𝑙
𝜀𝑤

(
𝜎𝑎
𝜎𝑏𝜅𝑖𝑏

+ 1
𝜅𝑖𝑎

)
𝐼0(𝜅𝑖𝑎)
𝐼1(𝜅𝑖𝑎)

+ ln
(
𝑏
𝑎

)
𝜀𝑙
𝜀𝑤

1
𝜅𝑜𝑏

𝐾0(𝜅𝑜𝑏)
𝐾1(𝜅𝑜𝑏)

+ 𝜀𝑙
𝜀𝑤

1
𝜅𝑖𝑎

𝐼0(𝜅𝑖𝑎)
𝐼1(𝜅𝑖𝑎)

+ ln
(
𝑏
𝑎

) (A.9)

in which functions 𝐼𝑛 (𝑥) and 𝐾𝑛 (𝑥) are modified Bessel function of the first and the
second kind, respectively. Obviously, in the limit of 𝜀𝑙

𝜀𝑤𝜅𝑑
→ 0, the last factor of each
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expression drops. And in the limit when 𝑏 > 𝑎 ≫ 𝑏 − 𝑎 > 0, which resembles an almost
flat membrane, both Eq. A.8 and Eq. A.9 approaches the flat membrane case: Eq. A.7.

By writing this in terms of curvature (for 𝑐 < 0, 𝑎 = 1/𝑐 and 𝑏 = 1/𝑐 + 𝑑; for 𝑐 > 0,
𝑎 = 1/𝑐 − 𝑑 and 𝑏 = 1/𝑐), and do an integral over 𝜎 to obtain the free energy per area,
which is used in chapter 2.

We can expand the potential for small curvature 𝑐 = 2/ (𝑎+ 𝑏):

𝜓 ≈ 𝜓0 + 𝑐 ⋅ 𝜓1 + 𝑐 ⋅ 𝜓2 (A.10)

Set 𝜎𝑎 = 0, 𝑏 = 𝑎+ 𝑑, 𝜅𝑜 = 𝜅𝑖 = 𝜅, and expand 𝜓0, 𝜓1 and 𝜓2 for small 𝑥 = 𝜀𝑙/𝜀𝑤𝜅𝑑 to
the leading order, we have:

𝜓0 =
4𝜋𝜎𝑏
𝜀𝑤𝜅

(
1 +

𝑥

𝜅𝑑

)
+𝑂

(
𝑥2
)

(A.11)

𝜓1 =
2𝜋𝜎𝑏
𝜀𝑤𝜅2

[
(𝜅𝑑− 1) +

𝑥

𝜅𝑑

]
+𝑂

(
𝑥2
)

(A.12)

𝜓2 =
3𝜋𝜎𝑏
2𝜀𝑤𝜅3

+𝑂
(
𝑥2
)

(A.13)

A version without dielectric discontinuity can be found in Ref. [60], which is consistent
with here.

A.2 Solution of Poisson-Boltzmann equation

We only discuss the solution of the (full) PB equation for a uniformly charged surface
immersed in 1-1 electrolyte solution. By solving 1.12, it’s found that:

Ψ (𝑧) = 2 ln

(
1 + 𝛾𝑒−𝜅𝑧

1− 𝛾𝑒−𝜅𝑧

)
(A.14)

in which the dimensionless 𝛾 is given by

𝛾 =

√
1 + (𝜆𝜅)2 − (𝜆𝜅) (A.15)

By setting 𝑧 = 0, we find the surface potential to be
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Ψ𝑠 = −4 arctan−1 𝛾 (A.16)

At large 𝑧, by using ln (1± 𝑥) = 𝑥∓ 𝑥2, we find:

Ψ ≈ −4𝛾 exp (−𝜅𝑧) (A.17)
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Appendix B

Charge Correlation and Fluctuation
in Continuous Limit

The following results are mainly taken from Ref. [75]. The scenario is the same as described
in section A.1.4. The fluctuation-induced, correlation-associated surface free energy density
is given by:

ℱ𝑐𝑜𝑟𝑟 =
1

2

∫
𝑑2�⃗�

(2𝜋)2
{ln [1 + 𝜒𝛽𝜙 (�⃗�)]− 𝜒𝛽𝜙 (�⃗�)} (B.1)

which takes the form of an inverse Fourier transform. 𝜒 is related to the amount of
charge presented on the plane:

𝜒 = 𝜎0 + 𝜎1 + 4𝜎2 =
1

2𝜋𝑙𝑏𝜆
(B.2)

and 𝜙 describes the electrostatic interaction for charges on the interface:

𝛽𝜙 (�⃗�) =
4𝜋𝑙𝑏√

𝜅2 + 𝑞2 + 𝜂𝑞

[
1 + 𝜉 (𝜉 − 1)

𝑒−2𝑞𝑑

1− 𝜉2𝑒−2𝑞𝑑

]
(B.3)

in which:

𝜂 =
𝜀𝑙
𝜀𝑤
, 𝜉 =

𝜀𝑤
√
𝜅2 + 𝑞2 − 𝜀𝑙𝑞

𝜀𝑤
√
𝜅2 + 𝑞2 + 𝜀𝑙𝑞

(B.4)
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Appendix C

Charges in the Vicinity of a
Dielectric Discontinuity

Much results can be found in the literatures regarding the electrostatic property of two
charges both located on the interface of two mediums with different dielectric constant, or
a charged surface coinciding with such an interface [62] [75] [67]. Comparatively, less work
has been done on charges locates in the vicinity of such an interface, despite the appear-
ance of such distribution in many biophysical scenarios. For example, in the phospholipid
aggregation we studied in chapter 2, the net charge of a phospholipid molecule can locate
in its headgroup, completely immersed in water, away from the hydrophilic/ hydrophobic
boundary. For an LPS molecule, the anionic groups in the oligosaccharide part obviously
can be quite faraway from the hydrophilic/ hydrophobic boundary. In these cases, the
approximation that these charges all lie on the interface is too crude. However, we can’t
simply assume them to be completely immersed in water, because the image charges on
the other side of the interface are expected to be not negligible. Therefore, it’s necessary
to figure out to study charges away from, but in the vicinity of, a dielectric jump.

We start by considering a more general case: water and a medium with a smaller
dielectric constant than that of water are separated by an infinite plane, two point charges
locates near (or on) this plane in the water with distance 𝑧 and 𝑧′ to the plane respectively,
and salts are dissolved in water to provide the background Debye screening effect while
there’s no charges whatsoever in the other medium. For convenience, we assume the
projection of their positions on the plane is the origin and �⃗�, respectively. Keep it in mind
that �⃗� is a 2D vector.

The first thing we want to know, naturally, is the electrostatic force 𝜈𝐷𝐻 (�⃗�) between
them. According to Netz [102], this can be calculated by an inverse Fourier transform:
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𝜈𝐷𝐻 (�⃗�) =

∫
𝑑𝑝

(2𝜋)2
⋅ exp (𝑖𝑝 ⋅ �⃗�) 𝜈𝐷𝐻 (𝑧, 𝑧′, 𝑝) (C.1)

The interaction in the momentum space has been solved, reads:

𝜈𝐷𝐻 (𝑧, 𝑧′, 𝑝) =
2𝜋𝑙𝑏√
𝜅2 + 𝑝2

[
exp

(
− ∣𝑧 − 𝑧′∣

√
𝜅2 + 𝑝2

)
+

√
𝜅2 + 𝑝2 − 𝜂𝑝√
𝜅2 + 𝑝2 + 𝜂𝑝

× exp
(
− ∣𝑧 + 𝑧′∣

√
𝜅2 + 𝑝2

)]
(C.2)

where 𝜅 is the inverse Debye length in water, 𝜂 = 𝜀𝑠𝑚𝑎𝑙𝑙/𝜀𝑤𝑎𝑡𝑒𝑟 is the ratio between the
dielectric constants.

Analytically performing the inverse Fourier transform Eq. C.1 with the general image
function C.2 is not easy. For 𝜂 = 0 and 𝑧 = 𝑧′, the interaction in the position space has
been solved:

𝜈𝐷𝐻 (�⃗�, 𝑧) = 𝑙𝑏 ⋅
(
𝑒−𝜅𝑟

𝑟
+
𝑒−𝜅

√
𝑟2+4𝑧2

√
𝑟2 + 4𝑧2

)
(C.3)

For 𝑧 → ∞, Eq. C.3 becomes 𝜈𝐷𝐻 (�⃗�) = 𝑙𝑏 ⋅ 𝑒−𝜅𝑟

𝑟
, consistent with Eq. A.1. For 𝑧 = 0,

Eq. C.3 becomes 𝜈𝐷𝐻 (�⃗�) = 2𝑙𝑏 ⋅ 𝑒−𝜅𝑟

𝑟
, consistent with our common sense.

Integrating Eq. C.3 gives the surface potential produced by a uniform charged layer of
charge density 𝜎 parallel to the interface at a distance 𝑧:

𝜓 (𝑧) = 2𝜋𝑙𝑏𝜎

∫ ∞

0

𝑟𝑑𝑟 ⋅ 𝜈𝐷𝐻 (�⃗�) = 2𝜋𝑙𝑏𝜅
−1𝜎 ⋅ (1 + 𝑒−2𝜅𝑧

)
(C.4)

As to integrating the general form in Eq. C.2, we haven’t arrived at any definite con-
clusion as of yet. Anyway, we thank J. Rao from Sun Yat-sen University for his attempt
to help.
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Appendix D

Energy of Charges Alternately
Arranged on a Square Lattice

Consider an infinite square lattice of lattice constant 𝑎 on a plane, on which dwells positive
and negative point charges, each of which carries a same amount of charge (only different
in sign), that are arranged in the configuration in the left half of Fig. D.1, and the entire
system is immersed in electrolyte solution of inverse Debye length 𝜅. Since the lattice is
infinite, it’s obvious that there are a same amount of positive and negative charges, and
the entire plane is electrically neutral. However, for each charge, since the charges on its
nearest neighboring lattice sites are of an opposite sign, the overall electrostatic force it
feels is non-zero, but slightly attractive (i.e. preventing the charge from moving out of the
plane), and the electrostatic energy density of the surface is non-zero either. Here, we aim
at calculating the electrostatic energy per site on this lattice.

Figure D.1: Scheme for calculating Coulomb energy
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The right half of Fig. D.1 depicts the scheme. We put the site of interest at the center,
and establish a Cartesian coordinate system. Then, we divide the surface into 8 ”semi-
quadrants” (Fig. D.1 only shows 3 of them). It’s easy to see that each semi-quadrant
contains a same amount of sites. Furthermore, for each site in one semi-quadrant, there is
another site in any other semi-quadrant that’s of the same distance from the origin. For
example, all the sites labeled as ”21” in the figure are

√
5𝑎 away from the origin. It’s also

easy to see that sites of the same distance from the origin always carry the same kind
of charges. Therefore, we only have to consider one semi-quadrant and multiply that by
8. But before doing that, we noticed that the sites on the boundary between two semi-
quadrant are counted twice on each boundary, and 4 times over all. For example, there
are only 4 sites labeled ”20”, and only 4 sites labeled ”11”, etc.

Based on the arguments above, we can do the calculation as below:

𝐸𝑠𝑖𝑡𝑒 = 𝑘𝐵𝑇 ⋅ 𝑙𝑏 ⋅ Σ = 𝑘𝐵𝑇 ⋅ 𝑙𝑏 ⋅
∞∑
𝑖=1

𝑖∑
𝑗=1

(−1)𝑖+𝑗−1 𝑒
−𝜅𝑎

√
𝑖2+𝑗2

𝑎
√
𝑖2 + 𝑗2

⋅ 𝑘 (D.1)

in which,

𝑘 =

{
4 (𝑗 = 0, 𝑗 = 𝑖)
8 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

(D.2)

Fig. D.2 shows the (reduced) electrostatic energy per site for several 𝑎 values.
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Figure D.2: Magnitude of Σ
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Appendix E

Correction Integral in the Mean-field
term

As we’ve discussed in chapter 3 (see Fig. 3.8), a correction term is necessary to depict
that no other charged can come too close to an occupied lattice site. Now we express the
corresponding energy, 𝐸ℎ𝑜𝑙𝑒 = Δ ⋅ 𝑙𝑏 ⋅ℳ, and determine ℳ.

Figure E.1: Calculating the correction term

For an ion (monovalent and divalent alike), it’s simple. ℳ, denoted as ℳ1 in this case,
is just the overall Debye-Hückel energy between the ion and all the other point charges in
a square region of area 𝑎2 centered around it (left half of Fig. E.1). Notice that here, we
ignored the finite distance (> 𝛿𝑖) between the ion and the plane, because we didn’t consider
that in the mean-field term, either. In future works when we account for this distance in
the mean-field term, we surely need to do the same for the correction term. Therefore,
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ℳ1 (𝜅, 𝑎) =

∫ 𝑎/2

−𝑎/2
𝑑𝑥

∫ 𝑎/2

−𝑎/2
𝑑𝑦

exp
(
−𝜅√𝑥2 + 𝑦2

)
√
𝑥2 + 𝑦2

(E.1)

For a peptide, it’s a bit more tricky. As depicted in the right half of Fig. E.1, for a
peptide adopting 𝛼-helical structure, it’ll occupy 𝑄 sites in a row (𝑄 = 4 in the figure).
The ℳ here, denoted as ℳ𝑝, should be the sum of each of the discrete peptide charges
(approximated as point charge) with this region.

ℳ𝑝 (𝜅, 𝑎) =

𝑄∑
𝑖=1

∫ (𝑄−𝑖+1/2)𝑎

(−𝑖+1/2)𝑎

𝑑𝑥

∫ 𝑎/2

−𝑎/2
𝑑𝑦

exp
(
−𝜅√𝑥2 + 𝑦2

)
√
𝑥2 + 𝑦2

(E.2)

Obviously, as 𝑎→ inf, ℳ1 → 2𝜋/𝜅, ℳ𝑝 → 2𝑄𝜋/𝜅.

Notice that the ℳ here is not the same as in Ref. [95] (one half for ℳ1). This is
because that Ref. [95] assume the ions are not point charges, but uniformed smeared out
in the region. I believe that the author of it plans to depict the limited freedom for bound
ions to move around, but we’ve accounted for that in our calculation as well, in a different
way. So our ℳ is correct within our own theoretical framework.
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Appendix F

Entropic Free Energy of Bound
Peptides

As stated in section 3.2, when bound onto the lattice depicting the LPS leaflet, each ion
occupies one binding site, while each cationic lipid occupies a number of 𝑄 (Q = 4 in our
calculation) sites. It’s expected to introduce some subtlety in the calculation of entropic
part of the free energy. In some of the previous works (e.g. [95]), the peptides are treated as
if each had occupied only one binding site in the calculation of entropy. This is plausible
only when there are few peptides bound on the surface(𝜎𝑝/𝜎0 ≪ 1). However, even in
Ref. [95], 𝜎𝑝/𝜎0 could be as large as 20%. In this case, the bound ions can only pick among
20% of all the binding sites, while they were assumed to be able to access 80% of all the
binding sites. Hence, it’s necessary to deal with the issue with more caution.

Assume we have 𝑁0 binding sites, on which 𝑁1 monovalent ions, 𝑁2 divalent ions and
𝑁𝑝 peptides are bound. We want to see how many ways there are to arrange them. Let’s
arrange the peptides first. For convenience, we define one charge on the peptide to be the
”head”, and assume the orientation of the peptide is fixed. The head of the first peptide
can choose from all of the 𝑁0 sites to be bound onto, but once the head is fixed, the
remaining 𝑄− 1 charges are also determined, so there are 𝑁0 ways for this peptide to be
bound. The second peptide can choose from the remaining sites for its head to be bound,
thus it has 𝑁0 −𝑄 ways to do it. The third peptide has 𝑁0 − 2𝑄 ways to be bound, and
the 𝑛th peptide has 𝑁0 − (𝑛− 1)𝑄 ways. Of course, the peptides themselves are identical,
and swapping any two would make no difference. High school maths tells us that the total
number ways of arranging the 𝑁𝑝 peptides is:
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Ω𝑝 =
𝑁0 (𝑁0 −𝑄) (𝑁0 − 2𝑄) ⋅ ⋅ ⋅ (𝑁0 − (𝑁𝑝 − 1)𝑄)

𝑁𝑝!
(F.1)

If we introduce the concept of ”multifactorial”

𝑁 !(𝑘) =

{
1, 0 ≤ 𝑁 ≤ 𝑘 − 1, (F.2)

𝑁 ⋅ (𝑁 − 𝑘) !(𝑘), 𝑁 ≥ 𝑘. (F.2′)

Eq. F.1 can be written as:

Ω𝑝 =
𝑁0!

(𝑄)

(𝑁0 −𝑄𝑁𝑝) !(𝑄)𝑁𝑝!
(F.3)

The arranging of the ions is trivial, and we easily arrive at the total multiplicity:

Ω =
𝑁0!

(𝑄)

(𝑁0 −𝑄𝑁𝑝) !(𝑄)𝑁𝑝!
⋅ (𝑁0 −𝑄𝑁𝑝)!

𝑁1!𝑁2! (𝑁0 −𝑄𝑁𝑝 −𝑁1 −𝑁2)
(F.4)

According to several number theory textbooks, the multifactorial can be expressed as:

𝑁 !(𝑘) = 𝑘
𝑁−1
𝑘 ⋅

(
𝑁
𝑘

)
!

Γ
(
1
𝑘
+ 1
) (F.5)

Therefore,

ln
(
𝑁 !(𝑘)

)
=
𝑁 − 1

𝑘
ln 𝑘 +

𝑁

𝑘
ln
𝑁

𝑘
− ln

(
Γ

(
1

𝑘
+ 1

))
=
𝑁

𝑘
ln𝑁 + 𝐶 (𝑘) (F.6)

in which 𝐶 (𝑘) is a function of 𝑘 only and will be canceled in the derivation below.

Now we can take the logarithm of Eq. F.4:

𝐹𝑒𝑛𝑡
𝑘𝐵𝑇

= − lnΩ = −𝑁0

𝑄
ln𝑁0 +

𝑁0 −𝑄𝑁𝑝

𝑄
ln (𝑁0 −𝑄𝑁𝑝)

− (𝑁0 −𝑄𝑁𝑝) ln (𝑁0 −𝑄𝑁𝑝) +𝑁𝑝 ln𝑁𝑝 +𝑁1 ln𝑁1 +𝑁2 ln𝑁2

+(𝑁0 −𝑄𝑁𝑝 −𝑁1 −𝑁2) ln (𝑁0 −𝑄𝑁𝑝 −𝑁1 −𝑁2) (F.7)
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The second line is the trivial part, while the second and third terms of the first line are
introduce by multifactorial. The first constant term can be dropped.

The chemical potentials 𝜇𝑒𝑛𝑡𝑖 = ∂𝐹𝑒𝑛𝑡

∂𝑁𝑖
for the ions are trivial:

𝜇𝑒𝑛𝑡𝑖 =
𝑁𝑖

𝑁0 −𝑄𝑁𝑝 −𝑁1 −𝑁2

; 𝑖 = 1, 2 (F.8)

while the chemical potential for peptide is not as frequently seen, but still easy to work
out:

𝜇𝑒𝑛𝑡𝑝 =
𝑁𝑝 ⋅ (𝑁0 −𝑄𝑁𝑝)

𝑄−1

(𝑁0 −𝑄𝑁𝑝 −𝑁1 −𝑁2)
𝑄

(F.9)

Obviously, if we set 𝑄 = 1, everything shall reduce to the forms identical to those in
other works.
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