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Abstract

Success for many businesses depends on their information software systems. Keeping these
systems operational is critical, as failure in these systems is costly. Such systems are in
many cases sophisticated, distributed and dynamically composed.

To ensure high availability and correct operation, it is essential that failures be detected
promptly, their causes diagnosed and remedial actions taken. Although automated recovery
approaches exists for specific problem domains, the problem-resolution process is in many
cases manual and painstaking. Computer support personnel put a great deal of effort into
resolving the reported failures. The growing size and complexity of these systems creates
the need to automate this process.

The primary focus of our research is on automated fault diagnosis and recovery using
discrete monitoring data such as log files and notifications. Our goal is to quickly pinpoint
the root-cause of a failure. Our contributions are:

• Modelling discrete monitoring data for automated analysis,
• Automatically leveraging common symptoms of failures from historic monitoring data

using such models to pinpoint faults, and
• Providing a model for decision-making under uncertainty such that appropriate re-

covery actions are chosen.

Failures in such systems are caused by software defects, human error, hardware failures,
environmental conditions and malicious behaviour. Our primary focus in this thesis is on
software defects and misconfiguration.
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Chapter 1

Introduction and Motivation

On April 21st, 2011 several web services of Amazon were unavailable for hours in the midst
of a busy week. Their infrastructure did provide facilities to prepare for a widespread
outage. However, due to Amazon’s relatively high service availability compared to other
providers, many users opted out of additional high availability services and were not well
prepared for the outage. Several companies that rely on Amazon’s services were affected,
because they could not provide service either [79]. According to Amazon, their backend
system is complex and the failure was caused by a configuration error [6]. This is only
one example of how information software systems deemed highly available can fail and
contribute to losses of revenue.

The success of many businesses depends on their information software systems (ISSes).
These systems have high availability requirements, and failure in these systems can lead to
loss of revenue, customer dissatisfaction, and may even have legal consequences. Failures
in such systems manifest themselves as error pages, unavailable systems, poor performance
and unexpected behaviour. In 80% of the cases they are caused by operator error or
software bugs [102].

Detecting errors and diagnosing their causes in such systems is usually done by mon-
itoring the system. The goal of monitoring is to observe system changes that occur over
time. To do so, most ISSes have different interfaces that can be enabled to obtain data
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Figure 1.1: Workflow for diagnosing causes of failure

such as log files, application traces, and resource-usage metrics for that purpose [82].

In Figure 1.1 we show an example workflow of the steps through which failures are re-
solved in ISSes. Operators apply filters, best-practices, and hand-coded rules to monitoring
data in an attempt to locate symptoms of failure. Upon failure verification, operators at-
tempt to locate the fault that caused the failure. This process is currently painstaking,
automation is limited and success is highly dependent on the operators’ skills [98]. The
recovery actions available to the operators are mostly limited to hard- and software re-
configuration, system restarts, and reimaging or reinstalling subsystems. This is because
the source code of most legacy (i.e., existing) software systems is unavailable to operators,
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and it is not their responsibility to debug the software themselves. If the cause of a fail-
ure could not be located or the type of fault does not allow a recovery by the operator,
operators usually engage vendor support. Technical support has access to the source code
and historic problem-management records. Many failures in ISSes are caused by recurrent
faults, such that past instances of the same fault have caused failures of the same system
or at a different customer site. Furthermore, the analysis process is in general manual as
well. Upon locating the root-cause, technical support can recommend a recovery action to
the operators (e.g., to install a fix-pack) or engage the development team (e.g., to provide
a fix-pack for a validated software bug).

Due to the size and complexity of current ISSes, there is too much monitoring data
for humans to manually evaluate and understand [71]. As these systems grow in complex-
ity, size and dynamicity, the number of system administrators required, and the level of
qualification for these people will increase. According to projections of the U.S. Bureau
of Labour Statistics, the number of employed network and computer administrators will
increase from 2006 to 2016 by 27%, from 309000 to 393000 and the number of employed
computer-support specialists will grow by 13%, from 552000 to 624000 [138].

Most components of ISSes generate some form of discrete monitoring data, such as log
files, for tracking the system history. These files provide valuable information for fault
localization for operators and support staff, as shown by the following example.

1.1 Motivating Example

The operator: A system administrator receives an email from a user of the company’s
intranet website yesterday. The system administrator starts her investigation by visiting
the website that provides an interface to the service. The service is still functioning in-
correctly, as the corresponding website only loads once for every 10 requests. The system
administrator obtains the rotation of the log file that corresponds to the time frame when
the user experienced the failure. She uses grep [54] to look for known error codes, such as
400, 401, 403, 500 and 503 that constitute to common manifestations of failure on web
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servers. Upon discovery of a 503 log record that contains a cryptic error message, she
enters it into a popular search engine to get more hints about faults and possible remedial
actions. After reviewing a few posts of fellow system administrators, who investigated the
same manifestation of failure in the past, she is convinced that the error originates from an
application server that provides service to the web server. She resumes her investigation
by looking at the transaction log file of the proprietary application server and discovers
several Java stack traces in that time period. Upon entry into a search engine, she finds
no results for the particular stack traces, except for a generic description for the error code
that precedes the stack trace:
ERROR1234: EJB * threw an unexpected exception, as follows *

The Enterprise Java Bean appears to map to a proprietary plug-in of the application-server
vendor. Having no access to the proprietary source code, she cannot locate the root-cause
or perform any remedial action. She finally decides to call the technical support of the
application-server vendor, since the service is also an integral part of the company’s internal
accounting system.

Technical support: A customer support person gets called by the system administrator.
At first, the system administrator is guided through a list of questions by the support
person to validate that all possible remedial actions were performed and that the problem
is actually a software defect on the vendor side. The support person opens a problem-
management record (PMR), refers the administrator to actual technical support, and asks
her to provide the log and configuration files of the system. A few hours later, the PMR is
reviewed by a technical-support person. The support person quickly locates the stack traces
that the system administrator found and searches the confidential PMR database for similar
cases so that redundant work is avoided. After contacting some of her fellow developers, she
is convinced that the discovered problem is new. She continues her investigation by setting
up a system in a lab environment that is similar to the customer’s system and confirms
the failure. She documents each step in a problem-description report for development
staff. Development staff react and provide a fix-pack for the problem within two days.
The customer-support person provides the fix-pack to the customer and closes the PMR,
appending a textual description of the root-cause and the remedial action. The system
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administrator applies the fix-pack and the service now appears to run stably.

In the above example the original failure was actually detected by a user. Today, several
tools are available that can aid in error detection and can be configured using expert
knowledge to send emails when “severe error” records appear in log files. Unfortunately,
because expert knowledge of the system is required, and the semantics of severity are in
general unclear and defined by software developers [98], this feature is often not used,
which makes rule-based analysis non-trivial. Furthermore, those rules may not sustain
changes to the configuration of the monitored system, and thus may need to be constantly
reviewed [130]. The reader is also referred to Quan [105] for additional scenarios of technical
support workflows.

Since the software in use is possibly widely deployed, occurrence of the failure may not
be limited to that incident. Since the support technician clearly documented symptoms
and the final resolution (i.e., install the fix-pack), subsequent instances of that problem
will benefit from the previous work. Research shows that many of the failures reported are
actually caused by highly recurrent faults [102]. However, one of the major problems that
is also shown in the above example is the lack of operational context in the monitoring
data. The operator cannot identify the root-cause just by evaluating the log files. The
exhibited exceptions could also be caused by other problems. Different software defects
may have identical manifestations in the log data. We refer to this problem as perceptual
aliasing.

In order to build an end-to-end process for fault diagnosis and recovery, these challenges
need to be addressed. In this thesis we will provide a comprehensive model for automated
processing of log files, even if the structure of the individual plain-text records is uncertain
(see Chapter 5). Currently deriving rules for identifying symptoms of particular faults is
a costly manual process. In Chapter 6 we describe our approach to automatically mine
such rules from labelled monitoring samples (i.e., as they could be obtained from PMRs).
To address the problem of perceptual aliasing, we have designed a model for decision
making that integrates probes and recovery actions to validate a fault hypothesis and
select appropriate recovery actions (see Chapter 7).
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1.2 Scope of Work

Information software systems can offer several monitoring interfaces, including performance
metrics, event logs, and interfaces to collect trace information. Our work exclusively fo-
cuses on diagnosing faults from discrete monitoring data such as system logs or logged
event information. These monitoring interfaces are present across a variety of legacy ISSes
and are commonly used by human investigators to diagnose faults. Because we focus on
diagnosing faults, we assume the availability of reliable external error detection, such that
our diagnostic approaches are applied to an ISSes in which a fault is highly suspected. We
assume that side-effects of recovery are fully known and that system probes are designed
in a way to have no significant impact on the system state.

Our focus is on diagnosing faults that require intervention. Such faults are permanent
in the sense that intervention is needed to resolve the faults. Faults are not expected to
resolve themselves over time. Further, the faults of interest in this dissertation are assumed
to be recurrent, such that the same fault caused a failure in the past on the same or a
similar system and that historic data of these occurences exists.

The reader should note that our aim is to make as few assumptions as possible about
the structure and behaviour of the monitored system and the structure of the obtained
monitoring data so that the proposed approaches are widely applicable.

1.3 Thesis Contributions

In this thesis, we make following contributions:

• A model for diagnosing recurrent faults from discrete monitoring data of ISSes,
• A comprehensive, low-cost approach to process log files for machine learning,
• A decision-making model to validate fault hypotheses and to recover from validated

faults.

The state-of-the art research in log file analysis usually requires the availability of exten-
sive expert knowledge, well-structured logging formats or the ability of special attributes
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(i.e., correlators, consistent parameters etc.) to perform error detection and fault diag-
nosis. While this information may be available in some cases (e.g., Liang et al. [75, 76]),
this work focuses on records of log files that contain unstructured time-stamped plain-text
messages. Since the structure and content of log records are usually determined during
the development phase of a software system error messages such as core dumps and stack
traces are usually logged directly. This feature usually invalidates the assumption that all
log records are structured. In addition the error information that was of interest during the
development phase of the software system and is logged may not provide any useful clues
to the operator as to the cause of the error. Our work adapts to the available structure
of the log records. This thesis provides a solution that obviates the need for such expert
knowledge. In particular, we do not require any explicit information about the structure of
the log records, the presence of special attributes or the availability of expert knowledge of
the system-development phase. However, we do require historic samples of faults in order
to attribute their recurrence.

Furthermore, the operational context exposed in discrete monitoring data is very lim-
ited. Therefore, in many cases the information to be mined directly from the log file is
not sufficient to accurately identify the fault that caused an error and then launch auto-
mated recovery actions. Also, existing research in self-recovery does not explicitly consider
symptoms of particular faults to choose recovery actions. Instead, existing approaches use
a cost-model to schedule a generic set of recovery actions to recover from errors. Such
models work only for stateless software components. Furthermore, these models do not
scale well when more recovery actions are added. Instead, we provide a decision model that
takes into account the diagnosis of recurrent faults. Since this diagnosis may be uncer-
tain and not accurately identify the cause of a failure, our decision model can incorporate
probes to validate the alleged cause of a failure. Once a fault is accurately identified, our
model allows scheduling of appropriate recovery actions to recover the system.
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1.4 Thesis Organization

This thesis is organized as follows:

• Chapter 2 introduces terms and definitions that are used frequently throughout this
document. These terms focus on system organization, fault-tolerance techniques,
text-mining and discrete decision-making processes.
• Chapter 3 provides an overview of related work and summarizes the shortcomings

of previous work.
• Chapter 4 describes the problem of interest in this thesis and outlines our approach.

We outline how input data is handled and how symptoms of faults are learned and
subsequently diagnosed. Because this diagnosis is uncertain, we also provide an
overview of a decision-making process that proactively increases the certainty of a
diagnosis.
• Chapter 5 describes our model of monitoring data that is used throughout the

following chapters.
• Chapter 6 describes the symptom extraction of recurrent faults and their subsequent

diagnosis from discrete monitoring data.
• Chapter 7 describes a proactive fault-diagnosis model that is based on the symptom

diagnosis and a discrete decision-making process to increase the certainty of the
diagnosis. This step should be seen as optional to the rest of the approach and is
only applicable in special circumstances.
• Chapter 8 shows our experimental evaluation, focusing on the model of monitoring

data and learning symptoms of recurrent faults.
• Chapter 9 concludes this thesis. We discuss our findings and outline future work in

the area of fault diagnosis and diagnosis-based system recovery.
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Chapter 2

Background

In this Chapter we describe background and related work of this thesis. This chapter is
organized as follows. In Section 2.1 we introduce key terms of dependable computing. In
Section 2.2 we outline causes of failure. In order to detect errors and diagnose faults in
ISSes, they need to be monitored. We describe monitoring in Section 2.3. We discuss
text-mining approaches that are integral to approach to model discrete monitoring data
and symptoms of recurrent faults in Section 2.4. Finally, we describe the concept of
the Partially Observable Markov Decision Process (POMDP) that we use for proactive
diagnosis in Section 2.5.

2.1 Terms and Definitions

The following terms are used in the field of dependable computing. This taxonomy of
terms comes from the definitions given by Avizienis et al. [10] and Salfner et al. [119].

• System: A system consists of subsystems that provide a common service. It usually
interacts with its environment. The interface between the system and its environment
is referred to as the system boundary.
• Subsystem: A subsystem is a system that is contained within a larger system.
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• Component: A component is a subsystem that is not broken down into smaller
entities. Note that the granularity of the component definition is adjustable. We
state the granularity of the component definition where required.
• Service: The service is the behaviour of the system that is perceived by its users.
• Users: Users are other systems that receive service from the provider. The interface to

the user is called the user interface. A system provides correct service if it implements
its prescribed function. Providing service is called service delivery.
• Dependability: Dependability is the ability of a system to avoid failures that occur

beyond acceptability.

We focus our research on the threats to dependability, which encompass failures, errors
and faults. The relationship between failure, error and fault is shown in Figure 2.1. The
Figure was adapted from Avizienis.

• Failure: A failure is an event in which the system does not deliver correct service;
that is, the system does not provide its prescribed functionality to its users.
• Error: An error is part of the total state of the system that may lead to a failure.

Errors also include input errors. The process of errors causing subsequent errors is
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referred to as error propagation.
• Fault: A fault is the alleged cause of an error. Faults can be internal or external. A

fault is called active if it causes an error; otherwise it is referred to as dormant.
• Symptom: An external manifestation of failure is called a symptom.

From our perspective, the monitoring interface is not considered as the user interface.
As such, we perform error detection not failure detection at the level of the monitoring
data. Unexpected changes in the monitoring data identify errors that could likely indicate a
component failure. When a component failure is validated, some of the monitoring records
may become part of the symptom of that failure.

To illustrate some of the concepts introduced so far let us revisit the example from
Section 1.1. The fault in the system is a software defect that needs to be fixed by the
development team. The failure is the transition to incorrect service such that the user
cannot use the service on the intranet. This incorrect service of the system is also validated
by the system administrator. The error codes in the web-server log file as well as the stack
traces in the application-server log file are symptoms of that failure.

According to Avizienis et al., the four measures to reach dependability are as follows:

1. Fault prevention prevents the introduction and the occurrence of faults.
2. Fault removal encompasses the reduction of the number and severity of faults.
3. Fault forecasting covers estimating present number, future incidence and potential

consequences of faults.
4. Fault tolerance avoids service failures in the presence of faults.

The first measure is used during the development phase of the system. The second
measure can be applied during the development and the production phase of the system.
During the production phase, fault removal is part of corrective or preventive maintenance.
The third measure is accomplished by evaluating the system behaviour during the stages
of its life-cycle by estimating fault occurrences and activations. Our research is situated in
the area of the fourth measure. Figure 2.2 shows the fault-tolerance techniques proposed
by Avizienis et al.
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Figure 2.2: Fault-tolerance techniques

In order to achieve fault tolerance, the presence of an error needs to be identified first
through error detection. This step is followed by recovery, which transforms the state
containing errors into a state without detected errors.

Error detection can be divided into concurrent and preemptive detection. The former
takes place during the normal service delivery and the latter takes place when the service
delivery is suspended. Error handling eliminates errors from the system state; this is
achieved through one of roll back, which brings the system back into a state saved prior
to error occurrence; roll forward, which skips to a new state without detected errors; and
compensation, which makes systematic use of redundancy in the system to mask errors.

Fault handling comprises diagnosis, isolation, reconfiguration, and reinitialization. Di-
agnosis identifies and records the cause of an error. Isolation excludes the faulty component
from participation in service delivery. Reconfiguration switches in redundant components
or distributes the tasks among non-failed components. Reinitialization checks, updates
and records the new system configuration (i.e., without detected errors).
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2.2 Causes of Failure in Information Software Systems

Amazon’s example [6] has shown that even highly dependable systems can fail. In this
section we describe possible causes of failures of ISSes. The major causes of failure of ISSes
are scheduled maintenance, software bugs, hardware defects, environmental conditions,
operator error and malicious behaviour [14]. The focus of this thesis is on detecting and
diagnosing the causes of non-malicious software- (see Section 2.2.1) and misconfiguration-
related failures (see Section 2.2.2).

2.2.1 Software-Related Problems

Various studies have shown that software may still contain a number of bugs after rigor-
ous testing (e.g., Gibbs [37] and Oberg [94]). Bugs can be classified into two categories:
Bohrbugs and Heisenbugs. Bohrbugs describe a phenomenon that can be easily reproduced
and is likely input dependent. Their frequency usually decreases as software systems ma-
ture; however, they may be introduced during updates. Heisenbugs are usually caused
by faults that were activated earlier in the execution, such as buffer-overrun bugs. For
example, if a buffer is overrun and data is written in an adjacent data structure, it will not
have an effect on the execution until the adjacent data structure is accessed. Heisenbugs
are therefore sensitive to the order of execution. Furthermore, they can be input indepen-
dent. A failure may occur or not occur even when the program is executed with the same
input. Ironically, attempts to debug such failures may inject errors. New programming
languages such as Java [41] and C# [56] that enforce strict type checking and application
frameworks such as .Net [87], CORBA [95], and J2EE [133] that enforce several reliability
constraints can reduce the number of bugs introduced during the software-development
process. However, even these tools are not able to completely avoid software-reliability
issues [14].

13



2.2.2 Configuration Errors

Many of the failures that are experienced in distributed ISSes are related to configuration
mistakes, as exemplified by Amazon [6]. Due to the complexity of the system it is hard
to maintain a model of how the system is configured at any point in time, what impact a
configuration change has on the system, and what components are currently being changed;
therefore, upgrading, extending, modifying or applying patches to the system is currently a
painstaking task and is heavily dependent on operator skill; however, as shown by Pertet et
al. [102], humans can err. Mistakes during the reconfiguration process can have catastrophic
consequences.

2.2.3 Summary

In this section we discussed primary causes of failure in ISSes. The primary focus of this
thesis is to diagnose causes of non-malicious recurrent failures in ISSes. Such failures usually
stem from software-related problems that we discussed in Section 2.2.1 and configuration
problems that we described in Section 2.2.2.

2.3 Monitoring Information Software Systems

The focus of our work is to analyze monitoring data obtained from information software
systems for error detection and fault diagnosis. Monitoring is the dynamic extraction of
information about processes and its presentation to users in a useful manner for debugging,
testing, performance evaluation, and management activities: Quality of Service (QoS)
management, configuration management, accounting management, and specifically fault
management [67,71].

We describe monitoring in the context of system management in Section 2.3.1. In
Section 2.3.2 we describe the types and properties of common ISS-monitoring interfaces.
In Section 2.3.3 we describe discrete monitoring data in detail as it is the primary focus of
this thesis.
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2.3.1 System Management

A common paradigm used to describe system management of ISSes is the MAPE model [71]
shown in Figure 2.3. MAPE stands for Monitor, Analyze, Plan and Execute. MAPE
models the system as individual elements that are subsystems or components of the system.

Monitoring is a passive processes that is needed to obtain information about an element
in order to make management decisions. The analysis encompasses extracting the relevant
information, specifically for error detection and fault diagnosis. These steps result in the
planning of decisions that are executed as control actions to the element. Such decisions
involve testing and correcting faults. In the next section we describe the types monitoring
interfaces that are exposed by ISSes.

2.3.2 Monitoring Interfaces

In practice many components of the system produce monitoring data. As ISSes are usually
composed of many components and are distributed and dynamic, analyzing the data is non-
trivial and creates the following challenges (see Joyce et al. [67] and Mansouri-Samani [82]):
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• Concurrency,
• Communication delays between components of a distributed system,
• Non-deterministic, asynchronous behaviour,
• Dynamic changes,
• The probe effect, and
• Collecting, communicating, and storing monitoring data.

In addition to the technical challenges pointed out by related work, our experience
shows that monitoring data lacks sufficient context to reason about the state of the system
reliably. In particular the type, format and content of monitoring data are decided during
the development phase of a software system mostly by software developers. In many
instances the assumed operational context of monitoring records may differ from the actual
context. In some cases the software developer takes no consideration about the operator
and includes debugging information, such as stack traces and core dumps, in the monitoring
records. While such information may be valuable for the developer, it provides little use
to the operator, as she may not have access to the source code of the application or the
means to debug and remove the fault.

Figure 2.4, adapted from Munawar et al. [90], shows an example of a system that
exposes different monitoring-data formats. It comprises an e-commerce application that
is running on top of a J2EE web server, stores its business data in a relational database
system and provides a service interface using an Hypertext Transfer Protocol (HTTP)
server (see RFC2616 [32]).

Many users will access the system at the same time. This means that the applica-
tion will spawn multiple threads on the application server that process the users’ requests
concurrently; therefore, the monitoring data generated for each request is generated con-
currently. The application server, web server, and database server may run on different
physical machines in the network. The application may even be distributed across differ-
ent application servers. Communication delays between those servers will also manifest
themselves in the generated monitoring data. Application servers could be added to or
removed from the system, which also leads to a dynamic creation of monitoring data. All
monitoring interfaces have an impact on the performance of the system. The overhead of
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Figure 2.4: An example of different monitoring interfaces exposed by an information soft-
ware system

17



monitoring is usually specified as part of the system’s service. However, some monitoring
interfaces, such as application traces, could cause a unexpected performance degradation
that disturbs the system’s service. This is referred to as the probe effect. The monitor-
ing data of the individual components must be collected, communicated, and stored for
analysis.

Each of the software components shown in Figure 2.4, offer different types of monitor-
ing interfaces which in turn generate data of different natures (e.g., nominal or ordinal,
see Stevens [131]). Also these interfaces provide different system coverage and varying
level of detail. For example application traces, such as Application Response-time Mea-
surement (ARM) [65], obtained from the web application provide detailed information to
the method level, but only cover the methods of the individual application. Resource us-
age metrics, such as provided by the Windows Management Instrumentation (WMI) [88],
provide a wide coverage of the operating system and the running processes, but only very
coarse data about the processes themselves.

The different monitoring interfaces can be categorized into discrete or continuous moni-
toring data. Discrete monitoring data corresponds to monitoring data that is generated at
discrete points in time, such as log records in log files and application traces. Continuous
monitoring data can be requested at all points in time, such as resource usage metrics.
Our focus is on analyzing unstructured and structured discrete monitoring data that, we
describe in the next section.

2.3.3 Discrete Monitoring Data

Discrete monitoring data is generated by the monitored component at discrete points in
time. We refer to one atomic item of discrete monitoring data as a monitoring record.
We assume any type of discrete monitoring data as a sequence of time-stamped records,
considering the timestamp to be part of the record itself.

In the context of ISSes, we categorize discrete monitoring data into unstructured-,
structured- and transactional monitoring data; see Table 2.1 for details. This distinction
is based on what we can assume about the individual records.
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Description Discrete Monitoring Data
Unstructured Structured Transactional

Timestamp yes yes yes
Description yes yes optional
Multiple and

consistent no yes yes
attributes

strictly no no yes
sequential

Table 2.1: Categories of discrete monitoring data

We refer to our most general class of discrete monitoring data as unstructured mon-
itoring data. Monitoring records of this class are only composed of a timestamp and a
plain-text attribute. Although instances of the plain-text attribute might contain individ-
ual parameters and attributes, the structure is not consistent across all monitoring records.
Examples of that type of monitoring data are Linux kernel ring buffer log files [78].

We refer to monitoring data that exposes multiple attributes that are consistent across
the individual monitoring records to as structured monitoring data. Examples of such
attributes are message identifiers, process names, component names and session identifiers.
The reader should note that log-normalization technologies, such as the common-base-event
format (CBE) [96], the WSDM Event Format (WEF) [93], and the Common Information
Model (CIM) [29], attempt to transform unstructured monitoring records into a structured
format. Those technologies assign the content of the plain-text attribute to a fixed and
consistent set of attributes. In many cases, however, the source monitoring data is not rich
enough to make an assignment, such that external data or expert knowledge is necessary to
assign them. Examples of that type of monitoring data are BSD Syslogs [80] and Apache
access log files [7]. In Apache access log files, the address of the requestor, the requested
operation, the status code and the size of the returned object are consistent attributes
across the majority of monitoring records. The BSD Syslog interface is usually configured
to include the hostname, the process/module that created an event, the uptime of the
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system and the description of the event.

Fault diagnosis using structured and unstructured discrete monitoring data is challeng-
ing in particular, because individual monitoring records do not generally contain sufficient
operational context, small changes to the monitored system can generate a majority of the
monitoring records and faults can have ambiguous manifestations in the monitoring data.
A fault-localization technique also has to cope with inconsistent record types [98].

We refer to structured monitoring data as transactional monitoring data if it allows
serializing individual monitoring records into an unambiguous sequence. This is done
using a correlator attribute that enables correlating multiple records into a transaction. In
many cases response time and component information is included to track the path and
response time of individual transactions. Examples of this type are ARM and monitoring
records obtained from IBM Tivoli Composite Application Manager (ITCAM) [51]. Usually
enabling such detailed monitoring incurs high overhead in the system and is, as such, not
the focus of this thesis.

2.3.4 Summary

In this section we discussed relevant concepts of monitoring software systems in general and
ISSes in particular. Monitoring is a crucial part of system management, as we described
in Section 2.3.1. We discussed various sources of monitoring data and their properties
in Section 2.3.2. Because the primary focus of this work is on discrete monitoring data,
we described it in Section 2.3.3 in detail. Although we included structured-discrete- and
transactional monitoring data in the descriptions the primary focus of this thesis is on
analyzing unstructured discrete monitoring data.

2.4 Text Mining

Our work focuses on analyzing unstructured records of discrete monitoring data. We
need to utilize text-mining approaches to turn discrete monitoring data into a feature
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Figure 2.5: Conceptual workflow of relevant text-mining tasks

representation that can be easily processed. In this section we describe the tasks of text
mining relevant to this thesis.

Text mining is a process to derive information from text. The process involves structur-
ing, filtering, and devising patterns from the structured data. Tasks include text clustering,
text summarisation, and topic detection. While the application areas of text mining are
usually opaque, we use text mining for text clustering and supervised document classifica-
tion. Figure 2.5 shows the conceptual workflow of the text-mining tasks that are relevant
to us in order to model and classify discrete monitoring data. We describe the applications
of the concepts discussed in this section to our work in detail in the Chapters 5 and 6, and
describe related background to the individual tasks in the following sections.

The reader should note that the area of text mining also covers semantic approaches,
such as topic modelling that models the underlying semantics of a text data set. These
approaches are mostly unsupervised in establishing the semantics of the data set. Because
our focus is on diagnosing recurrent faults and we assume the existence of labelled samples,
unsupervised approaches are not in the scope of this thesis. The reader is referred to
Hervé et al. [1], Dumais [30] and Blei et al. [15] for more information on this area of text
mining.
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2.4.1 Text Filtering

The filtering stage of text processing is a pre-processing step that removes observations
from the input data that contain noise, missing data, or features that are deemed not
relevant for the following steps of the analysis [13]. If no additional information is available
the input data to this step is a set of documents that are represented as variable-length
strings of characters. In order to apply meaningful filtering approaches the documents are
structured. This structuring process varies by application area. For example, applications
in web mining structure documents representing websites into collection of words. This is
done by splitting the string that represents the document by a known set of delimiters.
We refer to all string fragments that are not considered to be delimiters as tokens. Tokens
that are deemed noise or deemed irrelevant are excluded from that representation.

Depending on the application area, the sequence of tokens is preserved or a bag-of-
words model (i.e., the sequence of tokens is ignored, see Witten et al. [144]) is used. Other
proposals include the use of q-grams [31]) or weighted relative frequencies of tokens [120].
For our application area we assume that the input data consists of individual records, we
split the document first into records and then split the records into individual tokens, while
preserving the order of these tokens and marking removed tokens with a place-holder. The
output of this step is a sequence of tokens for each monitoring record.

2.4.2 Text Clustering

Once the data is structured in a representation that suits further processing, text clustering
is applied in order to identify similarities in the data set. The general problem of clustering
is to find a partition of data points such that all data points in one cluster are similar to
each other. Traditional clustering algorithms use a distance function to assess the similarity
of two points. Another class of algorithms is density based; the aim is to discover dense
regions in the data set without the direct use of a distance function [140].

Traditional clustering methods used include k-means clusters that clusters the data set
into k clusters, and hierarchical clustering, such as single-linkage clustering that seeks to

22



build a hierarchy of clusters. The complexity of k-means clustering is NP-complete [5] and
the complexity of hierarchical methods is quadratic [124] with respect to the number of
data-elements. Distance functions that are often used for text-clustering algorithms are
derivatives of the Levenshtein distance [72].

Traditional clustering methods depend on a representation of points that have many
categorical attributes, such as the vector-space model [120]. In natural-language processing
this model is typically sparse such that not every attribute is present in each document. In
addition, such a representation is often high dimension for natural language, and thus many
traditional methods that were designed for low dimension clustering tasks fail to detect
natural clusters [140]. For high dimensional data density-based approaches developed.
These approaches first identify a seed of low-dimensional subspaces and gradually increase
the dimensionality and verify if the cluster candidates from the low dimension subspaces are
still valid clusters in a higher dimensionality. Examples of these type of algorithms include
Vaarandi’s algorithm [140], CLIQUE [4], MAFIA [38], CACTUS [35] and PROCLUS [3].

The reader should note that the data point representation largely depends on the text-
mining objective. For example, web-search applications that aim to detect similarities
between websites use a vector-space model [120] of the entire web documents to cluster the
web sites by similarity. Our objective for this step is to detect and recognize patterns of the
discrete monitoring records. Hence, we cluster the records rather than entire documents
in order to perform pattern recognition on the clusters of records in the next step. For our
approach, the output of this step is clusters of sequences of tokens.

2.4.3 Pattern Recognition

The general objective of pattern recognition is to assign a label to given input data. Our
specific objective is to find patterns within the text clusters that were derived in the
previous step. We refer to this step as encoding. Note that in the steps discussed so far
we assumed that the sequence of elements was preserved. The objective of this step is to
identify the longest-common subsequence (LCS) that describes each cluster, and thus the
individual monitoring records of the input data.
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A LCS of a set of sequences of tokens is the longest sequence of tokens that is a
subsequence of all sequences of the set. The LCS problem is NP-complete [81] and is also
shown to be difficult to approximate [63]. One of the traditional algorithms to solve the
LCS is the Wagner-Fischer algorithm [12] that has a complexity of O(mk), where m is the
length of the longest sequence of the input set and k is the number of sequences in the
input set. The actual running time of this algorithm is not affected by other parameters of
the input data, for example, similarities of the input sequences. A more recent proposal to
approach the LCS-problem was proposed by Melchiar et al. [85]. Although the complexity
of their proposal is still NP-complete, in general the running-time of their algorithm is
heavily influenced by the properties of the input data and their memory complexity is
better than the Wagner-Fisher algorithm. The factors that influence the running time are
shown in Formula 2.1.

O

(
|A|
(

m∑
i=1

|Si|+m
∑
a∈A

Πm
i=1|Si|a

))
(2.1)

The parameter |A| denotes the size of the alphabet of all tokens of the input sequences.
The value of m is the number of sequences of the input data, |Si| is the length (i.e., in
terms of tokens) of the sequence Si and |Si|a is the number of times the token a repeats
within Si.

The proposal by Melchiar et al. constructs the LCS of tokens for each sequence following
these steps:

1. For each sequence in the cluster, construct a Directed Acyclic Subsequence Graph
(DASG) that accepts all sub-sequences of tokens of that sequence (see Croucher-
more et al. [27]).

2. Intersect all DASGs of the input data to form a Common Subsequence Automation
(CSA) that accepts all common subsequences of the input elements (see Tronícek [137]).

3. Assign negative weights to each edge of the CSA and apply Dijkstra’s algorithm [28]
to find one solution for the LCS (see Melichar et al. [85]).

We illustrate the steps in Figure 2.6 for a set of two sequences. The alphabet consists of
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Input: {(Server, service, down), (Err, server, service, down)}

Server service down

Server service downErr

Construct
common 
Sub-sequence
automata

Server service down
Intersect
automata

Use Djikstra to find longest path in intersection

Output: (Server, service, down)

Figure 2.6: Illustration of LCS algorithm by Melchiar et al.

{ Err, Server, service, down }; therefore |A| = 4. The length of the sequences are |S1| = 3

and |S2| = 4. Since no tokens are repeated inside the sequences |Si|a = 1 for each sequence i
and each token a. Because there are two sequences in the example, m = 2.

The reader should note that LCSs can be used to form a vector-space model [120] of
the documents of the input data. If the input documents have labels, this representation
can then be used to apply supervised learning and classification techniques that we discuss
in the next section.
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2.4.4 Text Classification

The final step that is relevant to this thesis is knowledge representation. Given a set of
labelled documents that are now represented as documents having processable features,
we need to find a representation of the knowledge that associates the labels with the doc-
uments such that new samples can be classified with a high confidence. Such knowledge is
represented as a trained classifier that was previously trained from a set of labelled sam-
ples. Possible representations of such a trained classifier include decision trees, classification
rules, probabilistic representations, and instance-based representations.

Decision trees consist of nodes that represent testing particular features of the input
data. Leaf nodes assign a class label to all instances that reach the leaf. To classify an
instance, it is routed down the tree according to the values of the attributes tested. For
example, let the features of a set of text documents be represented as each document
containing a subset of words of the entire corpus of words of the sample. The inner nodes
of the learned tree are then represented as tests for the presence of particular words. In
order to classify a document, it is routed through the inner nodes according to the words
that it contains. The leaf node is then the assigned class label [144].

Classification rules are an alternative to decision trees. The rules consist of a set of
conjunctions of tests that are applied to an instance to reach a conclusion about a class label
of an instance. Classification rules can be directly inferred from decision-tree classifiers by
creating a conjunction of nodes for each leaf (i.e., class label) to the root of the tree [144].

Probabilistic representations model the classifier as a probability distribution. This
distribution assigns a probability for every class label to an instance. A popular example is
used in document classification, where the labels are topics. For each instance the classifier
assigns a probability for that instance to belong to individual topics [144].

Instance-based representations consist of a set of instances that have been memorized.
To classify a new instance, the training set is search for an instance that most strongly
represents the new one. In order to assign a class label to the new instance, the class label
of the found training candidate is used [144].
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Of relevance to our work are decision-tree classifiers. Since many log-reconciliation tools
operate using rule-based representations to identify monitoring records [11,97,98,103,136]
that are relevant for system management, focusing on this type of classifier allows us to
integrate the classifier we learned into such existing tools. We have selected the C4.5
classifier [106] for this purpose. C4.5 recursively subdivides the instances of the training
set to generate tests for relevant attributes. These tests represent the nodes. In order to
decide which attribute to test for at the top level, the algorithm calculates the information
gain for applying each test. The test that produces the highest information gain with
respect to the training sample is chosen. This process is repeated recursively for the two
partitions of the training set that remain after applying the test. The recursion terminates
when there are no more attributes to test for, or the partition is pure (i.e., all instances
only belong to one particular class label).

This type of naïve recursion, however, produces complex decision trees that tend to
over fit the data [106]; therefore, C4.5 implements post-pruning techniques, including sub-
tree raising, sub-tree replacement, and reduced-error pruning, that attempt to simplify the
classifier after it was learned. The reader is referred to Quinlan [106] for the details of these
techniques. The pruning heuristic relevant to us is reduced-error pruning. This heuristic
attempts to simplify the learned tree by replacing sub-trees with leaf nodes. The decision
to prune a sub-tree is based on an error estimate that is measured from the partition of
instances that matches the sub-tree. Given a confidence, c, one can estimate the confidence
limits, z, such that:

Pr

(
f − q√

q(1− q)/N

)
= c (2.2)

where N is the number of instances matching the sub-tree and f is the observed error
rate (i.e., the ratio of instances not having the most frequent class label) and q is the upper
confidence limit. Using that confidence limit, a pessimistic error estimate for each sub-tree
can be computed as shown in the following equation.

e =
f + z2

2N
+ z
√

f
N
− f2

N
+ z2

4N2

1 + z2

N

(2.3)
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If the error estimate, e, in the top node of a sub-tree is smaller than the error estimates of
the child nodes, the sub-tree is replaced with a leaf node that has the most prevalent label
of the instances matching that sub-tree [144]. The computational complexity of creating
the C4.5 tree is O(mn log n), where m is the number of attributes and n is the number of
instances of the training set. The complexity of pruning is O(n) [144].

An alternative to decision-tree classifiers are probabilistic classifiers such as the Naïve
Bayes classifier [144]. The classifier uses a probabilistic measure to express the likelihood
of an instance D belonging to a particular class. The naïve model assumes independence
of the features contained in the feature vector; as such, the classification problem can be
expressed as follows. Let C := {c1, c2, . . . , cl} be the set of classes, and vi ∈ V the set of
features that are associated with the samples.

Pr(ci|D) =
1

Z
Pr(ci)

m∏
j=1

Pr(vj|ci) (2.4)

Prior knowledge that is modelled as the disribution Pr(ci) and the independent probability
distributions Pr(vj|ci) for the features of each sample D ∈ D can be estimated by the
relative frequencies from a labelled sample set. Z is a normalizing constant.

The reader should note that the classification approaches discussed are not limited
to the area of text mining and are also commonly used to classify samples with numeric
attributes. The most important task of text mining is the data representation as features
that is performed in the previous steps.

2.4.5 Summary

In this section we described the relevant background needed in text mining to comprehend
the methods that we use in order to model unstructured monitoring data (see Chapter 5)
and learning and identifying symptoms of recurrent faults (see Chapter 6). The reader
is referred to Chapter 8 for a discussion of performance measures relevant to the classi-
fication. We describe quality and performance measures for the classification as needed.
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We acknowledge that this overview of text-mining tasks and approaches only represents a
narrow subset the field of text mining that is relevant to this thesis.

2.5 Partially Observable Markov Decision Processes

In this thesis we propose an approach to recovery-driven monitoring that can incorporate
knowledge of recurrent faults (i.e., their prevalence and symptoms), as well as relationships
among the individual recovery actions. Our proposal leverages a model of a Partially
Observable Markov Decision Process (POMDP) [69, 125] to accomplish this task. In this
section we briefly describe POMDPs. A POMDP models a sequential discrete decision
process of an agent with its environment. The POMDP is a tuple of (S,A,O,T,Ω,R):
S is the finite set of states of the environment that are hidden from the agent, A is the
finite set of actions available to an agent to influence the environment, O is the set of
all observations that can be emitted after an action has been performed, T models the
transition probabilities of the environments’ states, Ω models the observation probabilities,
and R models the rewards.

The environment is modelled by a set of states S that are hidden to the agent. An
action a ∈ A taken by the agent causes the environment to transition into a new state
s′ ∈ S from s ∈ S with probability T(s′|s, a) and exposes an observation o ∈ O with prob-
ability Ω(o|s, a) to the agent. Finally, the agent receives a deterministic reward R(a, s) for
committing the action and the process repeats. Since the current state of the environment
is hidden from the agent, the agent maintains a so-called belief state, b, a probability
distribution over states of the environment at any point in time. After committing a ∈ A
and observing o ∈ O, the given belief state b is updated as shown below [125].

bo
a(s

′) = νΩ(o|s′, a)
∑
s∈S

T(s′|s, a)b(s)

ν =
1

Pr(o|b, a)
(2.5)

Pr(o|b, a) =
∑
s′∈S

Ω(o|s′, a)
∑
s∈S

T(s′|s, a)b(s)
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T and Ω are assumed to be first-order stationary random processes and R is assumed to
be deterministic. Astrom [9] has shown that under these assumptions the belief state is
a sufficient statistic for all previous actions of the agent and referred to as being Marko-
vian [125]. Since the belief state is Markovian, the optimal policy can be obtained by
solving the optimal value function V(b) over the decision horizon. This function returns
the optimal action a ∈ A for any given belief state b. Note that the notation used in
Equation 2.6 is a simplified from Kaelbing et al. [69]. The value function is linear and
scalar. It assigns value for individual belief states; such that, V(b) =

∑
s∈S b(s)V(s).

V(b) = max
a∈A

[
R(b, a) + γ

∑
o∈O

Ω(o|b, a)V(bo
a)

]
(2.6)

The parameter γ controls the influence of future rewards. Values close to zero of γ causes
the agents optimal policy to be opportunistic; a value close to one maximizes expected
future rewards. The value function for an infinite decision horizon is stationary [126]. Cas-
sandra et al. [21] propose an efficient algorithm to approximate V for the infinite decision
horizon. In order to implement a feedback loop, the model only makes an observation after
an action has been performed and, therefore, only considers state changes in response to
agent actions. This property implies that the controller has to have full controllability over
the system, such that no other event than the controller actions can change the system
state.

2.6 Summary

In this chapter we described the background relevant to this thesis. We introduced key
concepts and terms in Section 2.1, outlined causes of failure in Section 2.2 and discussed
the concepts of monitoring ISSes in Section 2.3.

An integral part of our contribution is the model of discrete monitoring data discussed
in Chapter 5 as well as the learning and identification of symptoms of recurrent faults
discussed in Chapter 6. Both of these contributions rest firmly on advances in text min-
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ing that we described in Section 2.4. Further, we described the concept of the Partially
Observable Markov Decision Process (POMDP) that we use to model system recovery in
Section 2.5.

Having introduced the basic concepts of dependable computing, as well as algorithms
that we use for our approach, we discuss related work in the next Chapter.
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Chapter 3

Related Work

The concepts described in the previous chapters are generic and not all tolerance techniques
apply to our problem domain of Information Software Systems. Furthermore our work
focuses on learning recurrent faults from discrete monitoring data. In this section we
survey related approaches that use discrete monitoring data.

The primary motivation to use discrete monitoring data such as log files is their avail-
ability in most existing ISSes. Most legacy ISSes log status changes into some form of
discrete monitoring data by default. Therefore, this type of monitoring of ISSes does not
create additional overhead to the running system. However, processing, transmitting, and
storing discrete monitoring data incurs overhead depending on where the data is collected
and processed. A principal drawback of relying on such monitoring interfaces is that the
context of any form of error detection and diagnosis is limited to whatever the developers
decided to log. Therefore the coverage of that interface may be limited and the context of
the monitoring records during operations may not correspond to the assumed context of
those records during the development phase of the system [98].

A lot of work as been done in the area of error detection and failure prediction using
logs. Error detection is necessary to assess the operational status of a system. If the system
is deemed erroneous, diagnosis and recovery are attempted. Although discrete monitoring
interfaces may only provide a limited coverage of the overall system state, machine-learning
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methods can be devised relatively easily that approximate the overall behaviour of the
system and identify potential errors using anomaly detection or failure prediction. From
our perspective using such interfaces as the only source for error detection may not provide
enough coverage to reason about the overall health of the system, precisely because the
state coverage of these interfaces is limited.

In order to contribute to the research community, our focus is primarily on fault diagno-
sis, as such we assume the existence of a reliable error-detection mechanism that indicates
that the system has failed when the diagnosis takes place. This error detection is not
restricted to log analysis, but could also be based on continuous-monitoring interfaces such
as metric monitoring [62, 91] or monitoring based on other interfaces and, possibly, active
probes [40,55].

From our perspective the number of contributions that focus on fault diagnosis using
discrete monitoring data is limited. This may be due to the issue of limited operational
context. Many proposals we encountered rely on structured discrete monitoring data to
leverage special attributes, such as component identifiers, that may aid fault localization
only. Fault localization approaches attempt to localize the component that experienced
the fault but usually do not attempt to attribute the type of failure.

We have chosen a different and novel approach to fault diagnosis by focusing on diag-
nosing recurrent faults from discrete monitoring data. Research has shown that failures
experienced by ISSes are often caused by recurrent faults. Learning from previous instances
of a fault may provide more context to the diagnosis of that fault. Our experience with
IBM has shown that this reasoning is consistent with the work of support personnel. Our
aim is to automate this process by analyzing discrete monitoring data that is available at
low system overhead.

Although error detection using discrete monitoring data is out of scope for our approach
we survey a selection of approaches in Section 3.2 to provide the reader with context of
existing work and explain why these approaches are not relevant to our proposal.

In Section 3.3 we describe approaches to fault diagnosis. We distinguish these ap-
proaches by the type of discrete monitoring data used (see Section 2.3.3). In this section
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we also briefly survey approaches that use structured discrete and transactional monitoring
data that are not directly relevant to our proposal because our focus is on unstructured
monitoring data. We highlight the respective differences where needed. Our objective is
to make only minimal assumptions about the structure of the monitoring data.

Since our approach also entails automated system recovery, we survey related ap-
proaches in Section 3.4. Existing research on automated system recovery focuses on
applying corrective maintenance actions that may involve isolation, reconfiguration, or
reinitialization of system components.

3.1 Modelling Monitoring Data

In this section we describe relevant approaches to model unstructured monitoring data.
Modelling unstructured monitoring data entails two principal problems:

1. How are individual samples of monitoring data (e.g., separate log files) consisting of
those records modelled.

2. How are the individual discrete records modelled.

The first issue depends on the objective of the modelling and constraints imposed by the
monitoring interface. As we will show in Section 3.2, many approaches that use structured
and unstructured monitoring data for error detection typically model separate samples as
sequences of monitoring records. The monitored systems are typically single threaded, or
the record format contains thread identifiers that allow a sequencing of individual records.
The reader should note that our approach to unstructured monitoring data does not assume
the availability of additional attributes. We do not consider the records in a strict sequence,
but rather consider the mixture of records over fixed-time periods. A related approach
that follows the same objectives is Vaarandi [140]. The approach is used to summarize the
behaviour of the system and ignores the ordering of records. The output is a summary of
patterns that describe the records of the sample.

The second objective depends on the structure of the monitoring records itself. The
objective of record modelling is to assign a nominal type to each of the records. Many
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approaches in error detection as well as fault diagnosis assume the availability of special
attributes in the records. Therefore the application of such approaches is limited to mon-
itoring interfaces that actually expose these attributes. We consider such approaches to
fall in the class of structured monitoring data. The type of the record is determined by
the value of one or more attributes that are consistent across all log records.

Unstructured approaches model the monitoring records as time-stamped base strings
with varying parameter attributes. Typically the records are time-stamped when they are
logged by the component and then forwarded to the monitoring interface. It could, however,
also be the case that the monitoring facility performs the time-stamping of records. In large
monitoring infrastructures where an event is passed through several components before it
is logged and time-stamped this may create a clock skew; such that the event receives
a significantly different timestamp from its actual occurrence. This issue can also cause
events to be recorded in a different order than their creation. The problem of clock skew
needs to be closely investigated by approaches that model discrete monitoring data as a
sequence of records.

The type of a record is determined by the base string that formed the record. The
following records may have been the result of the base string Server %i service %i down.
All records belonging to the same base string are considered to be of the same type.

Server 1 service 4 down

Server 2 service 5 down

Server 3 service 6 down

Such base strings can, in certain cases, be inferred automatically from the source code
of the application. For example, Xu et al. [146] propose an approach that extracts the
record-types of console logs from the source code of applications. Because we do not
assume the availability of the application source code their approach is not relevant to this
thesis. Other approaches [86, 134] entail the use of grammar-inference techniques to learn
a grammar of dominant record types and flag outliers as anomalies.

Closest to our proposal are the works by Fu et al. [34], Jiang et al. [64] and Vaarandi [140].
All of these approaches employ text mining (see Section 2.4) to approximate the base strings
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Figure 3.1: Conceptual comparison of unstructured log modelling approaches

of monitoring records. A conceptual comparison of these approaches is shown in Figure 3.1.
All approaches first tokenize the individual monitoring records and filter out tokens accord-
ing to predefined rules. All of these proposals model the features of log files as base strings
and parameters of individual log messages. Conceptually all proposals employ clustering
algorithms to cluster the monitoring records into clusters of similar log records. Fu et
al. decided to use single-linkage clustering using a special variant of the Levenshtein dis-
tance. Since single-linkage clustering requires the use of a cut-off threshold for the distance
measure, they propose a heuristic to determine it automatically. In order to determine
the cut-off threshold they cluster the entire data set first using 2-means clustering and
then using the inter-cluster distance as cut-off threshold for the single-linkage clustering.
The reader is reminded of the discussion of Section 2.4 that both of these algorithms have
quadratic complexity. As we will show later, the approach by Fu et al. incurs substantial
overhead. Surprisingly, the authors did not state the size of their input data set.
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Jiang et al. use a custom density-based clustering algorithm that has linear complexity.
Instead of using a distance measure, their approach defines a number of instances (by
default 10) of similar filtered log records that occur to be considered as a cluster. The
output of this algorithm is a set of clusters of filtered log records. Each cluster approximates
a certain record type.

Vaarandi proposed a very effective algorithm to summarize individual log files. The
objective of the original algorithm was to reduce the amount of data a support person
has to evaluate in order to assess the monitored-system’s behaviour. It is a density-based
clustering algorithm that infers frequent patterns from log files. Vaarandi’s density-based
clustering algorithm has linear complexity with respect to the number of filtered records.
The algorithm has two sensitivity parameters as tunable parameters. The user can con-
figure the sensitivity toward frequent tokens and also the number of similar filtered log
records to occur to be considered as a cluster. The unique property of Vaarandi’s algo-
rithm is the representation of clusters as regions of density. Instead of representing each
cluster as a selection of similar filtered records, the algorithm provides a tuple of tokens
and spaces as cluster. A record matches that particular type when its tokens appear at the
same positions as the tokens of the cluster. Spaces are used as a place holder to match any
token. Because the algorithm considers the tokens at absolute positions, it is very sensitive
to the choice of delimiters that are used to convert the raw unstructured records into their
filtered representation.

3.2 Error Detection

Fu et al. [34] leverage unstructured log files to perform error detection. They model the
features of log files as base strings and parameters of individual log messages. They use
a finite-state machine model to model the sequence of monitoring records. If an outlier
occurs (i.e., a log record is seen that cannot be matched by a transition), their model flags
it as anomaly.

Salfner [118] applies a modified Hidden Markov Model (HMM) (see Rabiner [107]) to
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pre-processed log files in order to detect errors and identify different failure modes. The
author’s method takes annotated samples of log files that contain the time and duration
of the failure and trains an HMM according to the sequence of observed events. Salfner
uses spatial-temporal filtering similar to Oliner et al. [98] in order to limit the amount of
training data taken into account. They evaluate their model on log files obtained from
telecommunication networks. In order to perform record-type approximation they apply
Levenshtein-distance-based clustering to cluster similar monitoring records into particular
failures. Log files obtained from telecommunication, unlike log files from ISSes, are rich
in structure and the logged events are well chosen and described. Therefore, the logged
events preceding a failure in that context are highly correlated with failure. ISSes log
files, for example application server log files, are written to by many concurrent processes.
The log-file records are not necessarily restricted or well chosen. The log file may contain
several monitoring records that precede a failure but are totally unrelated. Since Salfner’s
log model requires the use of special attributes and expert knowledge, we do not consider
that model relevant for this thesis.

Furthermore, most of the model parameters of Salfner’s approach, such as the number
of states of the HMM and the threshold for the Levenshtein distance are expert-chosen.
Therefore, they need to be hand-picked for different types of log files.

Yamanishi et al. [147] propose a generative HMM-mixture model for Syslogs. They
model Syslogs as being generated by concurrent sessions. Each session corresponds to
one hidden Markov model. They propose a training algorithm based on the Expectation-
Maximation (EM) algorithm (see Hastie et al. [43]) to train their model from historic data.
They assign an anomaly score to individual observed sequences that is based on the inverse
log-likelihood for the sequence to occur (i.e., unlikely sequences of events are flagged as
being abnormal). The authors do not provide an exact definition for the term “session”
and do not describe how the session labels were established for the training data or how
the threshold for attributing abnormal sequences was chosen. In addition, their dynamic
model selection algorithm described in the paper appears to maximize the likelihood for an
observed sequence for an individual HMM of the mixture. In other words, each sequence
of events is assumed to have come from an individual HMM. Therefore the accuracy and
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robustness of their approach is highly sensitive to concurrent sessions in the log file. This
issue is not directly addressed by the authors. In order to consider the events in sequence
they have to rely on special attributes that identify sessions. Since our objective is the
analysis of unstructured monitoring data, that model is not relevant to us.

More work has been done in the domain of intrusion detection systems to diagnose root
causes of potentially malicious failures. Julish [68] describes a method similar to that of
Hellerstein et al. [45], and attempts to cluster similar manifestations of malicious failures
by identifying episodes of events that appear to correspond to a particular failure. His
input data is structured and obtained from intrusion detection systems. Since our focus
is on diagnosing non-malicious faults, and the monitoring data obtained from information
software systems is inherently different from intrusion-detection systems, his methods are
not directly applicable.

3.3 Fault Diagnosis Using Log Data

In this section we describe selected approaches in fault diagnosis that use various forms of
discrete monitoring data. Our focus is recurrent fault diagnosis using unstructured mon-
itoring data. However, in order to provide the reader with context in this research area,
we also survey approaches that use structured monitoring data. We begin by describing
approaches that use unstructured monitoring data in Section 3.3.1, approaches using struc-
tured monitoring data in Section 3.3.2 and approaches using transactional monitoring data
in Section 3.3.3.

3.3.1 Unstructured Monitoring Data

Xu et al. [146] propose a method for error detection and fault localization for unstructured
console log files. Their method consists of two stages. They first perform source-code anal-
ysis in order to approximate different classes of monitoring records and their parameters.
After that, they employ Principal Component Analysis (PCA) (see Joliffe [66]) in order to
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detect errors. Their proposed approach only works post-mortem, requires a large amount
of monitoring data to yield significant outcomes, and assumes the availability of the source
code.

Vaarandi [140] analyzes several clustering techniques for high-dimension data to ap-
proximate record types from samples of discrete monitoring records. Vaarandi’s objective
is to summarize the dominant behaviour of a system by analyzing the log files. This sum-
mary is than reconciled by the operators of the system to detect and diagnose potential
problems. While Vaarandi’s objective was primarily data summarisation, its low running
time makes it very attractive for log clustering. We use Vaarandi as part of our approach
for that particular task.

Peng et al. [101] attempt record-type categorization using a Naïve Bayes classifier and
require labelled samples. Furthermore, they need to incorporate temporal dependencies in
order to yield acceptable record-type prediction accuracy. Their evaluation only takes into
account eight different record types. Stearley [128] also attempts record-type categorization
using the Teiresias algorithm, but the paper indicates that Teiresias incurs a very high
overhead and is, therefore, not considered relevant for our approach.

Oliner et al. [97] focus on fault detection using unstructured monitoring data from
supercomputer logs. They split the monitoring data obtained into so-called node hours, in
which each node hour contains one hour of monitoring data from a particular machine of
the supercomputer. They propose an entropy-based scoring function that assigns a higher
score to words that are only contained in a small subset of node hours. In more recent work
of Stearley and Oliner [129], they also take into account the size in bytes of each node hour.
This technique can also be applied online by analyzing the events of the last hour of the
monitored system. The technique is straightforward and does not require a structured log
file. Unfortunately, the authors do not elaborate how heterogeneous workloads and varying
configurations of particular nodes affect the diagnostic accuracy. As such we expect this
technique only works in environments that have replication and homogeneous workloads
and configurations. Such a configuration would allow the peer comparison proposed by the
authors. Furthermore, it requires excessive filtering and data transformations before it can
be applied.

40



3.3.2 Structured Monitoring Data

Bodik et al. [16] propose a dynamic model-based visualization of Apache log files. They
identify failed requests based on HTTP status codes [32]. Their focus is limited to the
web logs. They correlate failed requests with individual web pages and employ Pearson’s
χ2-two-sample test [92] to localize web pages that show a significant failure rate. Their
approach is limited to fault localization and does not maintain a history of previously
localized faults to improve the prediction accuracy over time.

Hellerstein et al. [45] propose a model for creating correlation rules applied to events
and evaluate their approach using SNMP [42] events to identify actionable patterns, in-
cluding symptoms of failure, in a distributed system. They describe pattern-discovery
methods for events to identify temporally correlated events. Specifically they seek to iden-
tify event-bursts, partially periodic patterns and mutually dependent patterns. The dis-
covered patterns are encoded as Event-Relationship-Networks (ERNs) [135] and presented
to an expert audience for review. Specifically, they propose a grouping algorithm over
multi-attribute events to reduce the complexity of the following pattern-discovery meth-
ods. The set of attributes that is used for the grouping needs to be chosen by an expert.
Furthermore, this approach requires expert attribution for each discovered pattern. Their
described pattern-discovery methods require an expert to set one or more parameters. In
addition, expert knowledge is needed to attribute the type of the discovered patterns. The
author does not make any claims whether he discovers failures or other patterns.

Li et al. [73,74] describe another method for grouping monitoring records exposing mul-
tiple attributes. They identify groups similar to Hellerstein et al. [45] and then mine those
groups for temporal dependencies in order to leverage patterns from log files for system
management, including problem detection. They group individual monitoring records by
their state or situation and component attribute and then seek to identify pair-wise de-
pendencies among those groups. Although they claim that they perform text mining, their
method only relies on the use of CBEs [96], which transforms the raw text-log files into
a format that exposes multiple attributes. Their method has tight configuration require-
ments, requiring log files (or CBE adapters) that at least expose a timestamp, component,

41



and state or situation attributes. Furthermore, they seek to merge log files from multiple
components within a system and, as such, require synchronized clocks of these compo-
nents or post-fact synchronization. The biggest shortcoming of the method proposed by
Liet al. from the perspective of fault diagnosis is that each discovered pattern needs to be
manually attributed as faulty or not. They provide no elaboration on how, for example,
novelty detection in that context could be used to spot potential failures or configuration
changes.

Furthermore, Li et al. [74] describe an incremental improvement that incorporates the
method described by Li et al. [73] into a systems-management tool. They use their previous
method to identify errors from network traffic. The traffic is visualized in a management
console as a histogram, as well as the time-line of statistical measures, such as the Shannon
entropy (see Shannon [123]), defined over this distribution. The past samples for measures
are gathered from historical data stored in a database. A system administrator using
that tool can set thresholds over these measures that are then used to identify errors. In
addition to the weaknesses of the approach by Li et al. [73], the thresholds set may not
accurately identify the fault. Furthermore, the Shannon entropy may be hard to interpret
by a system administrator.

Liang et al. [75] propose a method for error detection and localization for structured
discrete monitoring data. They survey a collection of logs obtained from the BlueGene/L
supercomputer. The log format of this system is structured and events expose individual
fields, including time, type, severity, component and location. Assuming that events cor-
responding to faults occur in bursts, they propose a spatial-temporal filtering scheme to
limit the number of events emitted by different components. They only consider moni-
toring records of failure or fatal severity. In more recent work [76], the authors describe
how to predict failures of individual components based on the filtering scheme, but their
focus is mainly on predicting failures caused by hardware faults and environmental faults
that can be fit to stable distributions. Oliner et al. [98] propose a static rule-based method
similar to the ones proposed by Liang [75,76] for error detection and fault localization for
structured monitoring data. They survey a collection of logs obtained from five different
supercomputers, describe existing fault-diagnosis mechanisms based on system alerts, and
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propose improvements. Their study only surveys monitoring records that expose explicit
attributes, such as severity (e.g., fatal, failure, severe, error, warning and info) and source
component. They conclude that existing fault diagnosis is done manually by system admin-
istrators who tag offending records through log view tools. Individual events are filtered
by their severity and by correspondence to a failure manually encoded as a regular expres-
sion. Unfortunately, the approaches described by Liang et al. [75,76] and Oliner et al. [98]
require an event format that exposes at least the attributes timestamp, severity and source
component, but many structured monitoring records generated by different ISSes compo-
nents do not expose any or only a subset of these attributes. In addition, by applying
spatial-temporal filtering multiple independent faults activated in a particular component
within a short time frame may be impossible to detect. Furthermore, their methods focus
on detecting and diagnosing hardware and environmental-related failures that are an issue
in the field of supercomputers but only account for a small fraction of failures experienced
by ISSes and cannot, from our perspective, be used directly to diagnose failures caused by
misconfiguration or software bugs.

Sabato et al. [115] propose a ranking scheme for individual monitoring records to aid
in error detection and fault diagnosis. Their method operates on structured monitoring
data that can be easily associated with record types. Using a large baseline sample of
log files they establish a cumulative distribution function for the occurrence of individual
record types in a log file. Record types with lower occurrence probability are ranked higher
than record types with high occurrence probability. In order to limit the effect of workload
changes on their approach, they group the baseline into log files that have similar use cases.
The biggest disadvantage of their method is a large number of training samples they need
in order to establish a valid cumulative distribution function of record types. Further-
more, minor configuration changes or upgrades could invalidate the previously established
baseline and, hence, the CDF. This issue could lead to concept-drift in a realistic setting.

Sahoo et al. [116,117] analyze several machine-learning and pattern-discovery methods
in order to predict critical events and system performance from collected resource usage
metrics and system log files from supercomputers. They analyze the statistical proper-
ties of failures in distributed computer systems and conclude that only a small fraction of
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monitoring records correspond to symptoms of failures, stochastic failure and error pro-
cesses exhibit strong auto-correlation and possibly periodic behaviour. Furthermore, they
find that failures are not uniformly distributed among different machines and that a small
number of machines experience most failures. Furthermore, they compare the performance
of rule-based methods with Bayesian networks [43] in predicting critical events. In their
model, however, critical events translate to exceptional conditions that need to be specified
or attributed manually. In contrast to other studies they propose this technique for life-
monitoring and show that it is possible to predict some (hand-picked) events with a high
accuracy using time series analysis over a fixed sliding window. However, their model does
not solely rely on discrete monitoring information. They gather resource usage metrics of
the system and integrate them into their prediction model. Based on the collected perfor-
mance metric samples and the log files, they create a joint monitoring record that includes
CPU utilization, record type and the inter-arrival time. This format is very particular and
can only be applied in that setting.

More recent work by Liang et al. [77], based on the outcomes of Sahoo et al. [116,117],
attempts to predict failures using the monitoring data from the past hours from su-
percomputer remote-serviceability-logs (RAS). They compare several supervised learning
techniques, including support vector machines (SVM) (see Witten et al. [144]) and RIP-
PER (see Cohen [25]). Their method requires a distributed system that exposes failure
rates that can be fit to a stationary distribution. Furthermore, their method requires a
monitoring format that includes a severity attribute. Their training set uses the severity
attribute to identify fatal events, although, the work done by Oliner et al. [98] has shown
that the semantics of the severity attribute are limited. Some events marked as fatal do
not necessarily correspond to failures and some events marked as being informational could
indeed correspond to actual failures.

Chieslak et al. [24] seek to analyse the root cause of failed jobs in the context of grid-
computing. They assume knowledge of whether a job has failed and then employ C4.5
decision trees [106] over the logged properties of the job to aid in fault diagnosis for the
failed jobs. The tree leaves correspond to failed or successful jobs and the edges to values of
particular properties known for the jobs. Although they do not explicitly state monitoring
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as source for this data, the properties could be inferred from structured system logs that
store the return codes of individual jobs.

Huang et al. [49] propose a data-stream system to analyze the health of a database
system. They place monitoring probes into the database software to gather event data.
In contrast to all approaches we discussed so far the event are stored in memory for rapid
processing. As it is our objective to not introduce additional probes into the system such
approaches are not of relevance to us.

Kavulya et al. [70, 143] describe techniques to model the behaviour of telecommunica-
tion log files in order to diagnose chronics (i.e., system failures that do not trigger error
detection) and events of interest to system management. In their model chronics are system
failures that to not necessarily get detected by conventional error detection approaches.
Chronics are often transient. Although the outcomes of this approach are promising the
authors depend on very detailed system log files that expose consistent attributes such
as component identifiers, caller identifiers and defect codes. The application of their ap-
proach, therefore, appears to be limited to telecommunication systems that expose this set
of attributes. Because our objective is to make as little assumptions as possible about the
nature of the input data we do not consider this work relevant to this thesis.

3.3.3 Transactional Monitoring Data

Maruyama et al. [83] propose a model-based method to localize faults by comparing
function-call traces obtained from presumably fault-free executions of programs against
traces that were obtained from cases where a fault is present. By comparing the traces
they seek to highlight functions that are frequently called during normal execution but ab-
sent when failure is present and functions that are predominantly invoked when a failure is
present. They propose a scheme that groups different consecutive function executions into
execution blocks. Their model, however, requires a specific instrumentation of the code
that is not present in most legacy systems and not available from ARM [65]. Furthermore,
monitoring at the level of detail that the authors require incurs performance overhead. In
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addition their proposed approach only covers fail-stop cases of jobs that have a limited
run-time. It is hardly applicable to ISSes that are running continuously.

Sandeep et al. [121] propose a model-based approach for structured monitoring data
that attempts to diagnose performance problems in network-attached storage environ-
ments (NAS). They analyze historic performance logs of the NAS software that expose
resource usage metrics in order to classify and predict the workload experienced by the
NAS. Although they claim that they perform error detection, their system requires expert
knowledge of when a new failure occurred. After the cause of a failure is attributed they
identify the workload when the environment was deemed fault-free (i.e., before the fault)
and identify those counters that violate the hypothesis of the identified workload after
the fault has happened. Their approach is limited because it requires labelled samples of
historic workloads and a particular format of log files that exposes resource usage metrics.
Their analysis focuses on a single NAS instance and they do not address how to cope with
clustered NAS instances that would be present in general distributed system environments.
Fault diagnosis in a replicated environment would require manual error detection.

Chen et al. [23] propose a dynamic model-based approach to locate faults using trans-
actional monitoring data. They instrument J2EE applications to trace individual requests
through the software components that are used for web applications. They inspect the
HTTP traffic in order to identify failed requests from HTTP status codes [32]. For each
request they identify the component types that the request passed through. After many
failed requests have been identified they highlight the components that show the strongest
correlation with failed requests. Their approach is accurate in locating the root cause in
the intended use environment, but requires the extraction of the entire transaction path.
We have shown [91] that extracting the complete path information from individual mon-
itoring records can create an analysis challenge because in such systems the individual
components are invoked by different requests concurrently and individual traversals can be
logged out of order. In addition, monitoring interfaces are sometimes unable to log failed
requests, so the fault coverage may be limited in a practical scenario. Furthermore, the
authors need a large amount of data in order to locate the cause accurately. Furthermore,
Chen et al. [22] propose an approach that automatically infers rules identifying faults for
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transactional monitoring data. They focus their evaluation on fault diagnosis within the
eBay monitoring infrastructure. The infrastructure monitors the flow of web transactions
across different application servers. The records are harvested at a central location. Each
monitoring record can be associated with a particular user transaction. From the monitor-
ing records it is also possible to infer the start and stop of a transaction. Furthermore, the
records expose the attributes request type, request name, host name, pool name, version,
timestamp and status of the request. The authors build a multi-layer decision tree classifier
over the attributes of the monitoring records. The individual nodes correspond to partic-
ular attribute values and leaves correspond to failed or successful requests. When pruning
the successive branches of the tree, the tree shows attribute values for failed requests that
aid in further root-cause analysis. The authors assume that they can accurately determine
the outcome of a request as failed or succeeded, which works in their setup because the
monitoring format explicitly exposes a request status attribute.

Gao et al. [36] propose a codebook-based approach for transactional monitoring data.
They attempt to construct a set of transactions that covers all monitored components.
Assuming that a transaction would fail whenever a component that is traversed by the
transaction fails, they attempt to isolate the intersection of components of failed trans-
actions and attribute them as root-causes. In order to cope with the NP-completeness
of an optimal codebook solution, they propose two heuristic approximations. One of the
main drawbacks of codebook-based approaches, in general, is that they usually provide
good system coverage but a relatively poor state coverage. A failure in a system may only
be caused if certain parameters are set. In addition, this method can only diagnose total
failures. For example response-time degradation will be hard to catch with a codebook.

Brodie et al. [17] and Modani et al. [89] developed models to diagnose recurrent faults
by indexing and matching call stacks. Call stacks provide very detailed information about
the software system such as the sequential invocation of functions and system calls within
the monitored software. Continuously monitoring such traces incurs substantial overhead
therefore they are usually generated when the system has failed. In order to be able
to process such data the structure of these call-stacks needs to be known. We do not
consider the approaches relevant to our proposal because it requires us to make additional
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assumptions about the availability and the structure of such stack traces, but their findings
are in so far relevant to our proposals because the authors show that a majority of system
failures is caused by recurrent faults.

3.4 Proactive System Recovery

In the past decade the vision of autonomic computing [71] gained attention, promising
self-managing data-centres that minimize human intervention and, therefore, operating
cost. The proposed dimensions of self-management are self-configuration, self-optimization,
self-protection, and self-healing. The self-healing dimension consists of automating error
detection, root-cause analysis, system recovery and retest.

The application of the autonomic-computing paradigm mandates a system model that
includes autonomic elements that are managed using autonomic agents in accordance with
predefined policies. An autonomic manager continuously monitors the state of the managed
element and its environment. The monitoring data is analyzed to develop and execute plans
to manage the element in accordance with predefined policies. For example, an autonomic
agent could monitor the log files of a managed web server to detect and diagnose a failure.
Using the available information, the agent would match the diagnosis against known fix-
packs and install the appropriate fix-pack or alert a system administrator. Unfortunately,
the operational context (i.e., the expected system behaviour) logged by many forms of
monitoring, such as log files, is too limited to diagnose causes of failure with acceptable
confidence [98]. Therefore other proposals [18,40,55] focus on recovering the system rather
than on accurately diagnosing the cause of a failure. We denote this domain as recovery-
driven monitoring. Recovery-driven monitoring, in contrast to self-healing, only relies on
accurate and prompt failure detection and not on an extensive root-cause analysis [18].
Implementations of this paradigm reach from design-for-reboot [19, 20] to policy-driven
system recovery [40, 55]. Isard [55] proposes a model that comprises recovery agents for
elements of the software system. His model defines the states as healthy, failure, and
probation; and contains a small set of recovery actions. Upon error detection, using a
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watchdog, an agent is placed into a failure state and a recovery action is attempted; after
that, the agent transitions into a probation state. It remains in this state for a period
of time. If within that period no other error is detected by the watchdog, the element is
placed into the healthy state. If, however, an error occurs inside the probation state, the
agent is placed into the failure state again and another recovery action is chosen. According
to the author, the choice of the recovery action depends on the history of previous recovery
actions and the cost of the recovery action. From our perspective this model does not scale
with the number of possible recovery actions. Assume, for example, a system fails and
can only be recovered by a costly recovery action. Until this recovery action is chosen a
long trial of other recovery actions will be performed. Furthermore, symptoms of known
faults, which could be obtained from support databases of software vendors and tested
against monitoring interfaces exposed by the system, are not considered. Furthermore, the
recovery actions performed are modelled to be independent of each other. In many cases,
recovery actions may be subsumed by other recovery actions. For example a complete
system reboot subsumes any micro-reboots of its components. When deriving an optimal
recovery policy such relationships should be taken into consideration.

3.5 Shortcomings of Prior Log Analysis Work

In this section we summarize the shortcomings of prior work in the area of fault diagnosis
using discrete monitoring that are relevant to our work. At this point we want to reit-
erate our objective to make only minimal assumptions about the monitored system and
the structure of the monitoring data. Furthermore the monitoring interfaces we consider
relevant do not involve additional system probes or monitoring data other than discrete
monitoring data.

Many approaches to system modelling require knowledge of the system
structure: In related work to our research, many existing approaches do require knowl-
edge about the system structure to locate a fault. These approaches assume the availability
to compensate for the lack of operational context in the monitoring data. Unfortunately,
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data about the system structure may be invalid, outdated, or incomplete. In addition
collecting such data through reverse engineering maintaining it creates additional system
management overhead. We want to avoid introducing additional system management over-
head.

Our solution approach, however, only requires a mechanism to identify components
from the monitoring data. Several log formats, such system log files, already capture
component identifiers. In other cases, log files are only written by individual components
and hence the component association is implied. Unfortunately, a log-modelling technique
needs to be aware of such attributes to take advantage of that correlation.

Meta-data needed for log-file analysis: Existing work relies on the presence of
special attributes, for example to identify services and sub-components from the stream
of monitoring data. While the log format may be well defined for some services under
normal operation, established logging formats are frequently violated to include error data
(e.g., stack traces and core dumps) if the system fails. Such approaches may characterize
the behaviour of a system under normal operation and may flag an error; unfortunately,
they cannot process exceptional log records and, hence, are not suitable to fingerprint such
behaviour accurately.

Models derived from log files do not scale well with the amount of log data
collected: Existing work on log-file processing, with the exception of Vaarandi [140],
usually requires a small data set to return results in acceptable time. Such approaches
operate against well-defined logging interfaces that impose rigid constraints on what events
are logged and in which format. Therefore, the amount of log data to process is usually
small compared to our scenario.

Existing bias on manifestations of failure: Some approaches already formulate
a bias on how failures manifest in the monitoring data. Such assumptions include, for
example, periodicity of events or bursty event generation. While existing work on hard-
ware failures in supercomputers [98] or chronic events in telecommunication logs [70, 143]
has shown that some of these assumptions may be valid, our experience shows that such
assumed patterns may not be valid for software defects.
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Fault diagnosis approaches still require manual effort: Most of the existing
approaches we surveyed on error detection and fault diagnosis may flag an error or a likely
root-cause respectively, but do not steer recovery based on these findings. Yet most of
them claim a reduction on manual diagnosis effort. We believe that by combining recovery
and diagnosis we could reduce manual effort even more. Even if an automated recovery
attempt fails it provides a more in-depth insight into the system behaviour than current
approaches that rely only on the analysis of monitoring data.

Automated system recovery does not take into account symptoms of recur-
rent faults that could be obtained by log analysis: We are not aware of existing
work that considers symptoms of recurrent faults to steer automated system-recovery ef-
forts. Most approaches we have surveyed employ a rule-based cost model that acts upon
failed or succeeded recovery attempts, without taking into consideration monitoring inter-
faces of the system. Whenever a recovery attempt fails a recovery action that is equally
or more expensive is chosen. We believe since those actions are aimed at recovering from
highly recurrent faults, the approach can benefit by taking into consideration log-file anal-
ysis for recurrent fault detection. That could enable recovery actions to be scheduled more
efficiently.

3.6 Summary

In this chapter we discussed several approaches to modelling unstructured monitoring
data, error detection and fault diagnosis using discrete monitoring data. Furthermore we
surveyed related proactive system recovery approaches. At this point we want to remind
the reader that our primary objective is to do recurrent fault diagnosis using unstructured
discrete monitoring data. We acknowledge the existence of other approaches that use other
types of monitoring data (for example, [49, 91]), but they are not relevant to this thesis
because they require expert knowledge about the system structure, the monitoring format,
the source code of the application, or additional probes being introduced into the system.

One of the main contributions of this thesis is a model for unstructured monitoring
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data. We discussed the concepts of log modelling and surveyed related approaches.

After having introduced log modelling, we surveyed error detection techniques to ex-
emplify how such log models are used to reason about system health. While our focus is
exclusively on fault diagnosis this section provides some insights to where related log mod-
els, in particular [34,64], are used. In contrast to fault diagnosis, error detection only yields
a binary outcome, whether the system is experiencing and error or not. Such approaches
do not attempt to attribute the root-cause of a problem.

After that we surveyed approaches in fault diagnosis. Based on our investigation, the
majority of proposals require knowledge of external models or the existence of particular
attributes in the monitoring data. While our focus remains unstructured monitoring data,
we included selected approaches that use structured and transactional monitoring data to
provide the reader with a broader context of the area and highlight limiting assumptions
that related work makes.

Since discrete monitoring interfaces only provide a limited coverage of the operational
state of the system a diagnosis that is only based on discrete monitoring interfaces may
not be accurate. This limitation motivated us to investigate approaches that attempt to
recover the system having only limited insight into the actual system state.

Finally, we summarize issues of related proposals that provide the motivation for our
problem statement in the next chapter.
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Chapter 4

Problem Definition

In this Chapter we provide a more precise problem definition and highlight our solution
approach. We address the problem of complex software monitoring. Our primary objective
is the use of discrete monitoring data obtained from existing monitoring interfaces to
diagnose recurrent faults.

We assume that our approach is applied to a system that has already failed, or where
failure is assumed to be very likely; as such, we do not address the problem of error
detection.

As we already described in the background and related work sections, using existing
discrete monitoring interfaces as samples are readily available. Furthermore, as our ex-
perience with IBM and research by other authors [45, 70, 143] has shown it enables the
post-mortem diagnosis of faults that did not previously trigger error detection because the
data was already generated previously.

Furthermore by not introducing any additional probes into the system, our approach
can be oblivious to expert knowledge of the system implementation. By focusing on un-
structured monitoring data our approach can be oblivious to the structure of the monitoring
data.

Obviating the need to make assumptions about the system structure and the structure

53



of the monitoring data and the need to place additional probes in the monitored system,
reduces the management burden on the operator of the system.

While reducing the management overhead of the operator, making such simplifications
reduces the contextual information available to the operator when attempting to diagnose
the cause of a system failure. We therefore focus on diagnosing faults that were shown to
be highly recurrent [17]; in some instances up to 90 % of the reported problem cases were
caused recurrent faults [89]. Using the lessons learned from resolving previous instances of
recurrent faults provides detailed context to the resolution of a fault when it is diagnosed
again.

Furthermore, as we described in the background section, data from discrete monitoring
interfaces may only provide a limited state coverage of the system. As a result several
faults may not be diagnosed from such monitoring interfaces, or semantically different
faults may have identical manifestations in the monitoring data. We address this problem
by proposing a probabilistic decision process that can be used to improve the diagnosis of
such cases. The reader should note that this step is optional in our approach, and many
cases do not need to be resolved in such a manner if the diagnosis is accurate.

In order to address the problem of recurrent-fault diagnosis our approach addresses the
following sub-problems:

1. Modelling of discrete monitoring data,
2. Learning and diagnosing symptoms of recurrent faults from discrete monitoring data,

and
3. Proactive recovery from perceptually aliased recurrent faults.

In the following sections we describe these problems and our solution approach to these
problems in detail.

4.1 Modelling of Discrete Monitoring Data

The first problem that needs to be addressed in order to diagnose recurrent faults from
discrete monitoring is that of modelling the discrete monitoring data for automated pro-
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cessing. In order to model the monitoring data we leverage approaches from text mining
that scale well in the face of huge amounts of discrete monitoring data.

Our principal focus is on analyzing unstructured discrete monitoring data such as log
files. As we described in Section 3.1, the process of modelling log files entails the two
conceptual steps:

1. Modelling samples of discrete monitoring data and
2. Modelling records of discrete monitoring data.

Since our objective is to diagnose symptoms of recurrent faults, we assume that the data
for analysis is available as individual samples that contain sequences of monitoring records.
Such samples can be log files that have been collected from faulty systems. Because these
samples may vary substantially in size and time-span, we use windowing to select an area
of interest within these sequences. Because we assume error detection that has a high
confidence, we select such areas of interest as window of set time-span around the time the
error was first detected. We refer to this time-span as window of interest and denote that
parameter as w.

Furthermore, because our focus is on diagnosing recurrent faults we assume the exis-
tence of historic labelled training data. These labels can be derived from PMRs or other
sources of data that provide context to the historic fault when it was first discovered. We
want to emphasize at this point that we do not require individual records to be labelled,
we only assume that we have a distinct label for each historic window if interest. These
labels form the set of possible recurrent fault states F of the system that are a subset of
the set of all possible system states S.

Since our objective is to make further assumptions as to the internal structure of the
system, we do not model the monitoring records within the windows of interest to be
in sequence. Instead we use a frequency-based representation of the record types that
expresses each window of interest as mixture of different monitoring record types.

Our primary focus is on analyzing unstructured monitoring data, therefore we need to
infer the structure of the monitoring records automatically. Since we assume no particular
structure of the monitoring records other than a timestamp and a plain-text portion,
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we use text-mining approaches to approximate the set of possible record types as base
strings (see Section 3.1). As a result we obtain a vector-space model of labelled historic
windows of interest that consist of a mixture of possible base strings. This model is used
to identify symptoms of recurrent faults based on the labels and the set of base strings.

4.2 Diagnosing Symptoms of Recurrent Faults from Dis-

crete Monitoring Data

Having a vector-space representation of the samples of the historic monitoring data enables
us to use classifiers to identify symptoms of recurrent faults inside the sample. In order
to have a discrete representation of symptoms of recurrent faults we have chosen to use
decision-tree classifiers. Using the C4.5 [106] classifier we can accurately associate sets of
record types with particular recurrent faults.

We refer to the set of record types that maps to a particular recurrent fault as a
symptom. The set of symptoms is denoted as O. The reader should note that because of
the limited state coverage of the discrete monitoring interface there may not be a bijective
mapping of O to F. As a result a symptom may identify multiple faults, faults may have
symptoms that contain no record types (i.e., they have no manifestation in the historic
samples), or symptoms of more different faults may have a non-empty intersection of record
types. We refer to such issue as perceptual aliasing. When the association of historic faults
is significantly aliased, other approaches are needed in order to perform fault diagnosis
confidently.

4.3 Proactive Recovery of Perceptually Aliased Faults

As we described in the previous section, a core problem of analyzing monitoring data from
one type of monitoring interfaces only is that the coverage of the system state may be
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limited. As we described in the previous section this may lead to significant perceptual
aliasing.

Related work [40, 55] in the area of system recovery appears to be oblivious to the
possibility of diagnosing recurrent faults and instead only relies on error detection. We
believe that although the mapping from the set of observations O (i.e., symptoms) to the
set of recurrent faults F may not be ideal, establishing that mapping to reason about
possible recovery actions is useful. As research by Oliner et al. [98] and our experience
at IBM has shown, if faults are manifested as symptoms in discrete monitoring data they
tend to have significant and very distinct manifestations.

We want to remind the reader at this point, that we believe that the semantics of faults
are particular to the observer. Different users of the system have different objectives for
evaluating the monitoring data. For example, during the development phase of a system
the information of logs are primarily used by developers for debugging and testing purposes.
The objectives of the developer include localizing sections of code that triggered particular
core dump. As such it is in the interest of the developer to localize problems at the source
code level. The semantics of faults for the developer are based on issues that are introduced
at the level of the source code of the application.

On the other hand the operator of a system that is composed of mostly proprietary
software components is usually oblivious to such monitoring information because she has
no access to the source code. From her perspective the semantics of faults are defined from
an operational perspective for example, which software components cause failures in the
system or which hardware component has failed. The level of detail required for identifying
software bugs is limited to identifying fix-packs that need to be installed to turn the system
back into an operational state.

We want to emphasize that because the semantics of fault diagnosis and recovery are
from the perspective of the observer, the set of faults F the set of system states S, and
consequently the set of observations O (i.e., symptoms), also depend on the observer. In
order to minimize the overhead on different observers, we want to develop a model that
can automatically infer symptoms of recurrent faults O and a mapping from symptoms O
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to faults F for different observers. Consequently, different observers may have different
severities of perceptual aliasing. We see our solution to this problem using a probabilistic
decision process as an optional tool that can be used by users of a system that experience
a significant degree of perceptual aliasing to refine the diagnosis of recurrent faults made
by a classifier that was trained against discrete monitoring data.

4.4 Model Assumptions

Our proposed solution operates within the following assumptions:

1. Prompt and reliable error detection is handled by an external process.
2. Non-recurrent faults are exceptional; hence the set F only describes highly recurrent

faults.
3. Faults are mutually exclusive.
4. The set F is finite and known.
5. Active faults are persistent until explicitly recovered.
6. Every active fault can be recovered with a finite sequence of recovery actions.
7. Effects on the system state by recovery actions are stochastic.

The first assumption is a necessary restriction of scope for this thesis. Most distributed
systems define a set of service-level objectives, to describe the normal operation of the sys-
tem. By monitoring these service-level objectives correct system operation can be assessed.

The second assumption is based on the observation that many faults are highly recur-
rent. The third and fourth assumptions are needed to limit the scope of the diagnosis. For
example, if the states describe individual components that have independently failed in a
computer system, we assume that all those components that can fail are known beforehand.
When fault diagnosis is limited to identifying failed system components, we also speak of
fault localization.

The subsequent assumptions are used in Chapter 7. The fifth and sixth assumptions
assure that we have full controllability of the system state while the system is failed. Full
controllability can be attained by modelling human intervention as part of the recovery
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actions. For example, catastrophic system failures can always be resolved by manually
decommissioning the system itself. The seventh assumption is made because successful
outcomes of recovery actions cannot be always guaranteed.

4.5 Solution Approach

Having described the core problems to address when diagnosing recurrent faults from
discrete monitoring data, we provide an overview of our solution approach in this section.
Our approach to diagnosing recurrent faults makes two main contributions. Our first
contribution diagnoses failures from recurrent faults from log files. The second contribution
refines a perceptually aliased diagnosis using proactive recover approaches. We show the
stages of the first contribution in Figure 4.1 and the conceptual overview of the second
contribution in Figure 4.2.

We apply the sequence of operations shown in Fig. 4.1 to approximate the base strings
and, based on that, learn symptoms of recurrent faults from historic labelled log files. As we
discussed in the previous sections labels can be defined from different observer perspectives
and may include failed component, type of failure or recommended remedial action. The
approach to log files has three phases.

In the first phase we model the structure of the individual samples of discrete monitoring
data. The output of this phase is the set of approximated record types from the historic
sample. We describe our approach to modelling samples of discrete monitoring data in
Chapter 5.

Based on the learned record types and the labelled samples of historic faults we train
a decision-tree classifier to predict faults in samples of discrete monitoring data in the
second phase. Furthermore, because we use a model that represents the samples of discrete
monitoring data as mixture of record types we can infer discrete symptoms of recurrent
faults from the historic samples. Such symptoms model each fault as the presence or
absence of particular monitoring record types over a fixed window of interest. We describe
that approach in the first part of Chapter 6.
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Figure 4.1: Overview: diagnosing recurrent faults from discrete monitoring data
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Figure 4.2: Overview: proactive system recovery

After the classifier is trained and a rule-base to identify symptoms of recurrent faults is
established, we predict failures of recurrent faults in new samples using the classifier. We
want to remind the reader that at this stage we assume the availability of reliable error
detection such that the sample to be analyzed is coming from a system that has likely
failed. We describe this approach in the second part of Chapter 6.

Since the state coverage of system that is described by the historic samples of the dis-
crete monitoring data is limited certain fault classes may be aliased. In cases where this
perceptual aliasing places a big burden on the system management, proactive approaches
can be used to improve the diagnosis and recover from the failure. While automated recov-
ery approaches have gained recent attention [40,55], they do not incorporate symptoms of
recurrent faults [109]. In order to improve a diagnosis made by the approach shown in Fig-
ure 4.1, we propose a probabilistic decision model based on Partially Observable Markov
Decision Processes (POMDP). The overview of this approach is shown in Figure 4.2.

The approach entails error detection and proactive recovery. Error detection is used
to start the recovery process and check if attempted recovery succeeded. In our work
we assume the existence of an external reliable error detection mechanism that indicates
whether the monitored ISS is working or not. When our ISS experiences an error, we
transition it into the broken state. Whenever a recovery action is attempted, we transition
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the ISS into the Probation state for a fixed period of time and use error detection to check
if the recovery succeeded.

Upon initial error detection, we attempt fault diagnosis based on the approach described
previously to validate the cause of the error. Whenever an attempted recovery fails (i.e., as
indicated by the error detection), we rerun fault diagnosis to update our belief about the
fault. This process is similar to hypothesis testing; given a hypothesis from the log analysis
approach about a likely recurrent fault, the recovery approach validates or rejects the
hypothesis. Upon rejection a new hypothesis is selected among the remaining candidates.
Although so far we conceptually described our approach for the whole ISS scope, it is
actually applied to individual serviceable components of the ISS. The granularity of the
components depends on the granularity of the error detection and monitoring data. We
describe this approach in detail in Chapter 7.

4.6 Summary

In this chapter we described the core problems our thesis addresses. Those problems are the
modelling of unstructured discrete monitoring data, the diagnosis of recurrent faults based
on that model, and the proactive recovery from perceptually aliased faults. Our solution
approach consists of two contributions that address these problems. The proactive recovery
can be seen as an optional step that can be applied in the face of significantly aliased faults.

The main contribution is our model of unstructured discrete monitoring data that we
discuss in Chapter 5. We discuss recurrent fault diagnosis, without closing the feedback
loop, in Chapter 6. We describe proactive approaches that integrate with the fault diagnosis
in Chapter 7.
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Chapter 5

Modelling of Monitoring Data

It is crucial for the automated analysis of log files to develop an appropriate system model.
As log files record the state changes of a server over time [82], we use them to reason about
the state of the system. Unfortunately, automatically reasoning about the system state is
non-trivial and requires a model of the monitoring data to establish that reasoning. In this
chapter we present the first phase of our approach. We show the conceptual overview in
Figure 5.1.

In order to develop a model from the monitoring data, two main problems have to be
addressed:

1. Modelling the occurrence of monitoring records over time and
2. Modelling the structure of monitoring records itself.

Addressing the first problem largely depends on the nature of the monitored system as
well as the objective of the log analysis. As we described in Section 3.1, many approaches
to error detection model the monitoring samples as a sequence of records over time. Many
approaches to fault diagnosis model samples of monitoring data using different models that
can express the mixture of monitoring records over a finite period of time. Such models,
for example, include vector-space models [120] and association rules [45]. A key issue for
this modelling step is to deal with the problem of time-skew. Timestamps associated with
the individual log records may not reflect the true order of the occurrence of the events.
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Figure 5.1: Modelling of Monitoring Data

We describe our approach to modelling the occurrence of monitoring records over time in
Section 5.1.

Addressing the second problem depends on the nature of the monitoring data itself.
The objective of this task is to associate individual records of the monitoring data with log
record types. For structured monitoring data such types are sometimes directly logged by
the system itself [53] and are typically defined during the development stage of application
software. However, in most cases such type information is not directly available at the
monitoring interface and needs to be approximated. The workflow shown in Figure 5.1
comprises our approach to approximate such types from unstructured monitoring data.
We describe our approach to record type approximation in Section 5.2. Our primary focus
is on modelling unstructured monitoring data.

5.1 Modelling Discrete Monitoring Data over Time

In this section we describe how we model discrete monitoring data over time. Our objective
for this model is to obtain a representation of the records that can be used by classifiers
as part of text mining that introduced in Section 2.4. As part of this model we structure
a data set of discrete monitoring model into the following entities.

• Individual samples (e.g., instances of individual log files) and
• Record types that are contained in each sample.
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Consistent with related work in text mining, we denote each sample in the data set as D ∈
D. Each instance of this set could be an instance of a log file.

Each record within the samples is of a specific type. Let w ∈W denote elements of the
alphabet of record types. For structured monitoring data such types are usually derived
from special attributes contained inside the records and for unstructured monitoring data
such types are typically modelled as base strings of the log records (see Section 3.1).
The individual record types, w ∈W, need to be known apriori, specified, or approximated
from the available samples. In the following sections we describe ways to approximate the
record types from the available data.

In any case we assume the log records to consist of the following structure. Each
element, r = (t, w), is composed of a timestamp, t ∈ T, and a record type, w ∈ W. A
sample of the set of all monitoring samples D is accurately represented by the following
expression:

D := {r1, r2, . . . , rn} ∀D ∈ D (5.1)

For example, for unstructured monitoring data we assume that the records are logged as
a set of time-stamped base strings. Each of the samples D ∈ D can be of variable length.
The individual records may be subject to time skew; such that, the order of records does
not correspond to the true order of occurrence.

In the next chapter we discuss transformations to extract the relevant record-types from
this representation and use it for identifying symptoms of recurrent faults. The rest of this
chapter describes the modelling of individual record types.

5.2 Record-Type Identification

After having described how we model samples of discrete monitoring data we describe
our approach to the components of these samples in detail in this section. We model
each sample as a set of time-stamped record types. Such types are written by software
developers who may not have the overview of the operational context of the application once
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it is deployed. The semantics of log records emitted during the operation of the application
may be different from the development environment. For example, an event deemed critical
at the development phase may only be deemed informational during operation. Also, an
event deemed informational may indicate a serious problem during the operation of an
application.

Furthermore, a software system today may be composed of many different components
such that a software developer may be unable to attribute potential causes of failure at
the time of development of an application. Therefore many applications seem to log the
occurrence of an error rather than attributing the cause of it. In some cases causes of errors
are logged that are useful for the software developer to locate potential software bugs (stack
traces and core dumps). Such log records are, however, not useful to the operator since she
usually does not have the means to debug the source code of the software. Since log files
log the activity (state changes) of an application over time, minor changes may generate a
substantial amount of logging data that needs to be analyzed. Neither the number of log
records over time nor the distribution of log records may be sufficient to reason about the
magnitude of the state change of the application [97,98].

In addition the source code of the application may not be accessible or log normalization
may change the format of the records, making it impossible to model all possible log records
that could be emitted during operation upfront.

Structured and unstructured monitoring data expose timestamps. Unstructured moni-
toring data exposes only a single additional plain-text attribute and structured monitoring
data exposes multiple attributes.

Attributes can be of different scales of measurement. We adopt Steven’s model [131] to
characterize scales. Attributes can be on a nominal, ordinal, interval, or ratio measurement
scale. A special case, from our perspective, of a nominal scale is plain-text.

We model record types as a distribution over the values of a subset of available attributes
of monitoring records. In order to derive distinct record types, the range of values of
selected attributes needs to be quantized.

• Nominal attributes are implicitly quantized. Individual values are used directly.
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Server myserver1 service XYZ down
Server myserver1 service ABC down
Server myserver1 service 123 down

Figure 5.2: Example log records

• Values of ordinal, interval and ratio attributes are mapped onto equidistant intervals.
• Plain-text attributes are clustered into classes of string similarity.

We assume that unstructured monitoring data primarily consists of records that have a
timestamp attribute and only one additional plain-text attribute. We consider structured
monitoring data that contains records that have an explicit type attribute or where the
types can be easily inferred from the scales of measurement not as part of our evaluation.
The focus of the next section is to describe how to approximate types from plain-text
attributes.

5.3 Modelling Unstructured Monitoring Records

We model unstructured monitoring records as consisting of a base string and potential pa-
rameter values. The example log records in Figure 5.2 are instances that could be derived
from the base string Server %s service %s down. We do not assume any knowledge of
such base strings; instead, we approximate these base strings. This assumption is rea-
sonable, because source code for proprietary software components is usually unavailable.
Furthermore, many layered architectures have events passed through several layers of mon-
itoring and potentially log them in a different form than that specified in the source code.
Moreover, error handling may log unpredictable defects that cannot be modelled easily.

We approximate the base strings from the historic data. Sequences of these base strings
are used to fingerprint the behaviour of each log file. We represent each approximated base
string as the longest common subsequence of tokens from similar monitoring records.

Our approach to model the record types consists of several independent tasks that can
be done in parallel. In Figure 5.3 we show the independent tasks of our approach.
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Figure 5.3: Parallel tasks of unstructured monitoring record modelling

The inputs to our model are samples of records of unstructured monitoring data. For
example, a sample could correspond to a log file that is stored in a PMR database. At
the first stage each sample is filtered independently. That filtering entails breaking the
plain-text blocks up into tokens and filtering out tokens that are not of relevance to the
record type modelling; for example, filtering out tokens that consist entirely of numeric
characters or timestamps. The output of the filtering step is a set of token sequences, each
sequence, contains the tokens of the corresponding plain-text record. The filtering tasks
can be parallelised in two dimensions. The first dimension entails the parallel filtering
of individual samples (e.g., log files). Each filtering task can be parallelised further to
transform individual monitoring records into sequences of tokens.

The second step uses a density-based clustering algorithm to cluster similar sequences
of the individual samples into regions. This task can be parallelised at the level of filtered
samples. The outputs are so called regions of density. A region is a sequence of tokens
that frequently occurs in the individual sample. We use a modified version of Vaarandi’s
algorithm [140] for this task and describe this step in detail in Section 5.3.1.

The third step entails a further refinement of the regions using single-linkage clustering.
A big drawback of Vaarandi’s algorithm is that it requires tokens of the sequences to be
considered at absolute positions. This makes the algorithm very sensitive to the choice of
delimiters that are used to break the unstructured records into tokens. The objective of
this step is to aggregate similar regions into clusters. While there have been approaches
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to parallelise single-linkage clustering for specific applications [99], we regard it outside of
the scope of this thesis to evaluate the options in detail and regard it part of our future
work. We describe this step in detail in Section 5.3.2.

The outcomes of the third step are clusters that contain sets of similar regions. Be-
cause a set representation of such regions may create additional overhead when matching
it against discrete monitoring data, we encode each cluster as the longest-common sub-
sequence of tokens of the contained regions. This step can be parallelised to the level of
encoding individual clusters. We describe this step in detail in Section 5.3.3.

In addition to parallelism, the objective of this task structure is to chain tasks by
increasing complexity. Each task reduces the input size of the following tasks to make our
approach scalable to large data sets of discrete monitoring data.

5.3.1 Mining Frequent Regions of Monitoring Records

We modified Vaarandi’s algorithm [140] to approximate the record types of individual log
files. Vaarandi proposed a very effective density-based clustering algorithm that infers
frequent patterns from individual log files, referred to as regions. A region is a set of
tokens with their absolute positions in monitoring records. Its basic element, one token at
a particular position, is referred to as a one-region. We modify the original algorithm using
relative, instead of absolute, scales and heuristic approximations of some of its parameters.

The algorithm operates in two steps. In the first step it approximates frequent tokens in
the data set. In the second step those frequent tokens are matched against the monitoring
records, again to form regions. Of those regions the patterns are retained that occur above
a set threshold. Unfortunately, the approximation of frequent tokens and the selection of
regions to retain are parameterised, leaving it to the operator to specify these parameters
on an absolute scale. Vaarandi, however, gives no heuristic or formal model for their
specification. We supply heuristics in the remainder of this section.

The algorithm begins by mining frequent one-regions. Each monitoring record of the
data is split into tokens according to a defined set of delimiters. The frequency of all tokens
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of the data is measured to estimate frequent one-regions. Because measuring the frequency
of all possible tokens is prohibitive, since the alphabet size is usually large compared to the
frequency of tokens, Vaarandi uses a hash table of tokens to minimize the memory overhead.
The number of buckets, k, is a user parameter. The non-empty buckets in that table are
used to form the elements of the alphabet. From our perspective, the hash table should
only grow on a logarithmic scale when a higher sensitivity s is needed. This sensitivity
parameter controls how many similar instances of tokens are needed to establish a frequent
token. Let bs be the anticipated bucket size of the hash table. Based on examples [140]
and our own observations, we propose the use of bs = 50. The following equation shows
how the number of bins for that hash table is approximated using p and bs:

k = − bs
log10(s)

(5.2)

Consider the log records in Figure 5.2 for illustration. The following one-regions are
obtained by applying Vaarandi’s algorithm, if the sensitivity is s = 10%: (Server, 1),
(myserver1, 2), (service, 3), (down, 5).

In the next step the input log file is processed again. Each log record is matched against
the set of one-regions. All one-regions matching the log record are retained, forming a so-
called cluster candidate. All cluster candidates that occur more than s × Nc times are
retained, where Nc is the total number of cluster candidates. For the previous example
this would result in the candidate: (Server, 1), (myserver1, 2) (service, 3), (down, 5).

Note that we apply Vaarandi’s algorithm independently to each monitoring sample. The
objective is to minimize the impact of large frequency shifts of individual records. Some
samples may contain a large number of occurrences of error messages and be substantially
larger than smaller files that only contain a few occurrences. Our objective is to reduce the
input size to the following steps of the record type approximation as much as possible. For
that step to be effective we have to establish a lower-bound limit for s. Since s corresponds,
approximately, to the relative frequency of a particular record type to occur to be a region,
s should have a lower-bound limit to not consider all individual plain-text instances as
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independent regions. We propose the following heuristic.

min(s) =
1

median (|Di| ∀Di ∈ D)
(5.3)

The smallest value that can be chosen for p should be limited by the inverse of the median
length of historic samples. Note that we use |Di| to denote the length, as the number of
monitoring records, for the monitoring sample Di.

The major advantages of this approach compared to existing work [34] are as follows:

• The absolute positions of the tokens are retained, making the application of string
similarity measures against the regions more accurate.
• Region composition occurs in linear time with just three passes over the input data 1.

Fu et al. [34] use pair-wise string clustering using the weighted edit distance. Not only
is the edit distance O(l2) with respect to the length of the input strings l, but nominal
clustering incurs a complexity of O(N2) with respect to the number of data points N as
well. Memon [86] proposed an approach that uses grammar inference techniques to infer a
grammar for the log-records. It has been shown [39] that the problem of grammar inference
is NP-hard in general. In order to apply grammar inference other preliminary steps need to
be taken to minimize the input size. Such steps may introduce additional expert knowledge
requirements that we want to avoid. In addition grammar-inference techniques have high
data dependencies and are hard to scale in a parallel environment.

5.3.2 Clustering Frequent Regions

Transforming the monitoring records into regions reduces the number of data points. Un-
fortunately, we cannot use such regions directly as features because, as we have shown [111],
the regions may still contain static parameters (e.g., hostnames, IP addresses) or param-
eters that occurred in more than s × Nc instances of particular log records. Applying

1Region composition is referred to as “clustering raw log keys” in Fu et al. and regions are referred to
as “initial groups” by the authors.
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Vaarandi’s approach to individual log files avoids a bias towards extracting patterns from
relatively long log files over smaller size log files.

We mitigate this problem by clustering the extracted patterns using a variant of the
Levenshtein distance [72] as follows:

Ln(x1, x2) = 1− L(x1, x2)

max(|x1|, |x2|)
(5.4)

The function L(x1, x2) computes the edit distance in terms of different tokens between the
regions x1 and x2. The notation |x1| represents the number of tokens in the region x1.
It allows quantifying the maximum allowable variation of two regions, x1 and x2, on a
normalized scale. If a position in one region is not allocated in the other, we do not count
this as a difference, favouring the most general region.

We cluster the regions using complete-linkage clustering with a threshold of t against
the metric shown in Equation 5.4. We initialize the clustering by accepting all unique
regions as individual clusters and then iteratively merge individual clusters until the pair-
wise distance to all elements in the cluster is less than or equal to t. The clustering
threshold (t) can be defined automatically using the approach proposed by Fu et al. [34].
For records sharing the same base string, the inner class distance is usually small compared
to different base strings. We can apply 2-means clustering to the data set. The distance
between the two groups would approximate the inter-class distance. The outcome of this
step is clusters of similar regions.

5.3.3 Encoding Region Clusters as Patterns

Although using the region clusters as features yields high classification accuracy for recur-
rent faults [111], maintaining the clusters of regions as record types is impractical. We
encode the clusters as patterns that enable efficient matching against log files and ease the
work of human investigators, because they only have to review individual patterns instead
of region clusters.

72



Assuming all regions within individual clusters are derived from the same base string,
they share a longest common subsequence (LCS) of tokens (see Section 2.4.3). In our
view the LCS is a compact representation of strings that can also be easily converted to
POSIX regular expressions to provide backward compatibility with existing rule-based log
file analysis tools.

Through the use of our previous clustering step we ensure that the strings are similar
and vary by only a few parameters depending on the clustering threshold (t) of the previous
step. Since the regions within one cluster vary only by a few static parameters we expect
the alphabet size to be approximately proportional to maximum length of the strings inside
the cluster.

We adopt the proposal by Melchiar et al. [85] to create an LCS for each cluster (see Sec-
tion 2.4.3). Our application of Melchiars approach for each cluster is based on the following
three steps:

• For each region inside the cluster construct a DASG,
• Intersect all DASGs to create a CSA that accepts all sequences of tokens common to

the regions of the cluster and
• Find the longest path using Dijkstra’s algorithm to obtain a LCS solution.

The output of this step is a LCS of tokens for each cluster of the previous step. The
approach is consistent with the example shown in Figure 2.6.

The decision to use this algorithm instead of traditional approaches like the Wagner-
Fisher algorithm [142] is due to the better memory and time-complexity of the proposal by
Melchiar et al. [85]. The reader is reminded of the issue that we are operating against many
regions inside the individual clusters. Typical application areas of the traditional algorithm
only consider binary comparisons (i.e., two strings), for example diff [33] and are as such
perceived to be of quadratic complexity. In other words, the problem is bound to at most
two stings, while in our case the problem is bound by the number of regions inside a cluster.
Applying the general form of Wagner-Fischer [142] results in the complexity that is shown
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below.

O

(
m

m∏
i=1

|Si|
)

The parameterm identifies the size of the cluster (i.e., number of regions). The notation |Si|
denotes the length of each region (i.e., number of tokens). Assuming the length of all regions
is equal the Wagner-Fischer solution has an exponential running time with respect to that
length only. Other parameters such as the alphabet size (i.e., the set of unique tokens
for each cluster) or the similarity of the regions have no influence on this algorithm. As
such the algorithm in general may yield prohibitive computational overhead if the cluster
consists of a large number of sequences.

By comparison, the running time of the proposal by Melchiar depends on other pa-
rameters too. Based on Equation 2.1, these properties lead to an efficient running-time
of Melchiar’s algorithm. Given a cluster that has an alphabet A of tokens and assum-
ing the optimal case, where the cluster comprises m equal regions S that have no re-
peated tokens (i.e., |A| = |S|), the time complexity of the algorithm will be proportional
to O(|S|(m|S|+m)) = O(m|S|2). Equation 2.1 shows that the algorithm scales geometri-
cally with an increased alphabet size. Our observation indicates that individual log records
are relatively short and their base strings contain only a few or no repetitions of tokens, so
this is not a limiting factor for our approach. We also want to highlight that we process
tokens instead of individual characters, thus the input size to the algorithm is kept small.
Furthermore, the quantities that influence the running time can be measured directly to
avoid extreme cases or to apply approximate algorithms (see [46, 57,63]).

The outcome of this step is one common subsequence of tokens for each cluster. De-
pending on the nature of the input data, more than one cluster can have a common
subsequence and some clusters do not have a common subsequence. We only retain unique
subsequences of a length greater than one. This set now establishes the set of approximated
record types W. We use the notation W for the set of record types that are semantically
equivalent with the set of words in text-mining problems.
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Server myserver1 service XYZ down
Server myserver2 service ABC down
Server myserver3 service 123 down
Err Server myserver4 service 1 down
Err Server myserver5 service 2 down

Figure 5.4: Example plain-text messages

{(Server, 1), (Err, 1), (Server, 2), (myserver1, 2), (myserver2, 2),
(myserver3, 2), (myserver4, 3), (myserver5, 3), (service, 3),
(service, 4), (XYZ, 4), (ABC, 4), (123, 4), (1, 5), (2, 5),
(down, 5), (down, 6)}

Figure 5.5: Example one-regions

5.4 Example of Record Approximation

In this section we show an end-to-end example of the application of our approach to record
approximation. Suppose we obtained the plain-text messages shown in Figure 5.4. In the
first step of the record approximation we use Vaarandi’s algorithm to mine the regions of
that sample. In the first stage of Vaarandi’s algorithm we would obtain the one-regions
shown in Figure 5.5. Based on the configuration of s rare items are discarded from this set.
Without the loss of generality let us assume that only the one-regions shown in Figure 5.6
remain.

In the next stage Vaarandi’s algorithm matches the set shown in Figure 5.6 against the
unstructured monitoring records in order to form the regions. Based on the configuration
of s frequent regions are retained. Based on the example this would yield the regions shown
in Figure 5.7. Note that * is a placeholder for an unmatched token.

As shown in Figure 5.7, the use of absolute positions to express the density of tokens
makes the approach very sensitive to the choice of delimiters and preliminary filters. Since
our objective is to provide a robust solution, we cluster the outcomes of Vaarandi’s algo-
rithm again using a linkage-based clusterer that uses the Levenshtein distance to consider
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{(Server, 1), (Err, 1), (Server, 2),
(service, 3), (service, 4),
(down, 5), (down, 6)}

Figure 5.6: Filtered example one-regions

Server, *, service, *, down
Err, Server, *, service, *, down

Figure 5.7: Filtered example regions

similarities with respect to shifting positions as well. As a result all elements of Figure 5.7
are clustered in a single cluster, based on the configuration of the parameter t. While in
this example we only have to consider two elements inside this cluster, in general there
may be many more elements inside these clusters. Therefore we use the LCS algorithm
proposed by Melchiar to encode each cluster as a sequence of tokens. For the sequences
shown in Figure 5.7 that would result in the LCS: Server, service, down.

5.5 Summary

In this section we have shown our approach to building models directly from discrete moni-
toring data. We provided an efficient and low-overhead solution to modelling unstructured
monitoring records that only expose a plain-text attribute and a timestamp. We presented
a method to establish types of records as longest common subsequences. This representa-
tion offers an intuitive and compact way to model features of a log file that can be easily
understood by support operators. Furthermore, this model enables computing measures
to estimate the overhead of the feature extraction. These routines can be used adaptively
to enable approximate algorithms in place of the proposed exact algorithm if the overhead
is deemed prohibitive. We are proposing a compact feature representation of log files of
ISSes. Furthermore, this approach can be applied to any plain-text log file without relying
on the presence of a rich set of additional attributes in the record types. Finally, we have
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described that the individual tasks of the modelling process expose only a small amount
of data dependencies, such that most of the tasks of the modelling process can be imple-
mented in parallel to improve the scalability of the approach. We are not aware of other
solutions to the problem of modelling unstructured monitoring data that expose such a
high degree of task parallelism.

In the next chapter we will show how to use this model for extracting symptoms of
recurrent faults from collections of labelled log files.
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Chapter 6

Extracting Symptoms of Recurrent
Faults

In this chapter we describe our approach to symptom extraction. The approach uses text
mining and is based on the data model described in the previous chapter. The conceptual
workflow of this part of our approach is shown in Figure 6.1.

The approach entails two phases: learning and observation. The inputs to the learning
phase are the approximated record types that we discussed in the previous chapter. In
addition, we need a set of labelled samples of discrete monitoring data that we can use for
the supervised learning of faults. The historic samples only contain monitoring records and
a label per sample that identifies the recurrent faults. Our approach does not rely on any
further annotation of the samples. These samples are converted into a vector-space model
using the model of the records described in the previous chapter. This vector-space model
is then used for supervised learning. The output of the learning stage is a trained decision
tree classifier that can classify samples where a fault is highly suspected. We describe the
vector-space model in detail in Section 6.1 and the learning of the symptoms in Section 6.2.

In the second phase this classifier is used to classify monitoring samples of the system
where a failure is highly suspected. In this phase we convert the sample into a vector-space
representation using the model that was described in the previous chapter. This vector
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is classified by the trained classifier to attribute likely recurrent faults. We describe this
phase in Chapter 6.3.

6.1 Vector-Space Representation of Samples

In the previous chapter we introduced a model of discrete monitoring data that expresses
each sample, D ∈ D, as a set of discrete monitoring record. Each monitoring record
r = (t, w) consists of a timestamp and a record type w ∈ W. The previous chapter was
concerned with the establishment of W and in this section we describe how to transform
this model into a representation that can be fed into a classifier.

As we described previously, the samples, D ∈ D, can vary in size and duration. More-
over, the period where the fault was active may differ from the period of the sample. From
our experience the duration of monitoring data that can be collected when a fault is sus-
pected in the system largely exceeds the duration of many active faults. In addition, the
timestamps that are associated with the individual log records may not accurately reflect
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the time at which the logged event occurred. In addition, the timestamps may not accu-
rately identify the order of the events. Without the use of special attributes, such as a
sequence counter, the order cannot be assumed to be accurate in general. We previously
described this issue as time skew. Our design objective is to find a robust model that is
oblivious to this problem and selects a reasonable period of monitoring data to learn and
identify the symptom of the fault. We denote this model as the function B that applies a
data transformation to each sample D ∈ D and show the transformation in Figure 6.2.

We assume the existence of reliable error detection. The error can be flagged as being
active by an indicator function over time that we show in Figure 6.2. The monitoring
records that are of interest to the symptom learning are those that immediately precede
or succeed the system failure (i.e., error indication becomes high). Since ISSes comprise
many components, it may take some time until the error of an active fault is propagated
to the system’s service interface. As such, the records preceding the error indication are
as important as the ones succeeding the indication. For that selection we define a window
of interest of w seconds that spans across the indicated time of failure tf . Unless stated
otherwise the window is symmetric around tf such that w = 2(tf−ts) = 2(te−tf ). Because
the records inside the window are selected based on their timestamp the window size needs
to be large enough to minimize the effect of time skew. Depending on the system usage
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and assumed system reliability the window size may vary. For example for discovering
actionable events in network management related work [45] have chosen w on the order of
minutes; related work [97, 129] in supercomputers have chosen w on the order of hours to
investigate potential faults manually.

In order to be oblivious to the event order, we only consider the types of records, w ∈W,
that occurred in this time period, instead of the events itself. If a record type occurs
multiple times it is only counted once. Counting the type only once has the objective to
treat faults that are only indicated by a few record types equal to faults that are manifested
as bursts of monitoring records in the data. In addition, this model is less prone to over-
fitting to workload shifts that could vary the frequency of individual record types within w
for different instances of the same recurrent fault. The reader should note that because of
the preliminary filtering, the use of Vaarandi’s algorithm and the LCS encoding, the set
of record types may be relatively small and not every record in the original monitoring
sample will be associated with a record type.

B(D) = 〈. . . , wi ∈ D, . . .〉 (6.1)

In summary, B(D) creates a vector of bits of all record types in W for each sample. The bit
is set to true when the record type has been observed in the sample over the period w the
bit is set to false when the record type did not occur. We denote this indicator function
as shown in Equation 6.1. Samples of the training set also have a corresponding fault
label f ∈ F. Using the indicator function B the samples of the training set are converted
into a set of bit-vectors that form the vector-space model. Each sample that is to be
classified in the second phase is also converted into a bit-vector first.

6.2 Symptom Learning

During the learning phase we take vector-space model that was described in the previous
section and train a classifier to predict fault labels of new samples. That vector-space classi-
fication can be used to train various types of classifiers. While probabilistic classifiers, such
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Sample Record type Fault
w1 w2 w3

B(D1) X X f1
B(D2) X f2
B(D3) X f3
B(D4) X f4

Table 6.1: Example vector-space representation of fault sample

as Naïve Bayes, can be used to produce a ranking of likely faults, we focus our evaluation of
our approach on decision-tree classifiers and use C4.5 [106] in particular (see Section 2.4.3).

As we described previously, decision-tree classifiers generate tests for individual at-
tributes of the training set. In our case the attributes correspond to the presence or
absence of particular record types over w. Because these attributes are binary the test will
only consist of the presence or absence of a particular record type. These tests form the
inner nodes of the learned decision tree and the leaf nodes correspond to the fault labels.

This representation is attractive because identification rules for particular faults can be
relatively easy inferred from the tree. Each path from a leaf node to the root corresponds
to a particular symptom. A symptom of a particular recurrent fault thus corresponds to
a set of record-types that need to occur or be absent within the period w to identify the
fault. Each path corresponds to a symptom for the fault label and maps to an element in
the set of symptoms O.

Let us illustrate the approach with an example. We show the vector-space model of
a data set that consists of four samples, four faults and three different record types in
Table 6.1.

Each of the samples of the input set has been converted to into its vector representation.
For the record types an X denotes the containment of the record type within w for that
particular sample. It is absent otherwise. The set of recurrent faults consists of four
faults F = {f1, f2, f3, f4}. A decision tree that describes the data is shown in Figure 6.3.

The fault labels form the leafs of the decision tree and the test for the presence of
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Figure 6.3: Example of a decision tree

particular attributes form the inner nodes. The path from each leaf to the root expresses
a symptom for that particular fault. For example Fault f1 is identified by the occurrence
of w3 and w1 over the period w in a sample.

As we described in Section 2.4.4, C4.5 establishes the structure of decision trees re-
cursively according to the information gain of particular tests. It also contains several
heuristics, such as reduced-error pruning to minimize over-fitting. In our experience sam-
ples of discrete monitoring data are characterized by a larger number of record types.
Figure 6.3 only serves as a conceptual illustration.

In addition to training a C4.5 decision-tree classifier that produces discrete symptoms,
one can also train probabilistic classifiers such as the Naïve Bayes classifier [144]. The
trained classifier assigns likelihood to each fault label for the sample. The label of maximum
likelihood can be used to flag a recurrent fault in the sample. It has been shown [48] that
Naïve Bayes and C4.5 have a similar classification performance. As such we do not consider
Naïve Bayes as part of our evaluation.
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6.3 Symptom Identification

Once a failure is validated by external error detection, we seek to identify recurrent faults
that seem associated with the observed failure. If the fault that triggered a failure is
recurrent, we may be able to fast-track resolution by retrieving information about past
actions to restore the failed component.

Having the trained decision-tree classifier that we described in the previous section, a
fault can be quickly identified from the vector-space representation of the new sample. We
want to remind the reader that many popular log-reconciliation tools such as Logsurfer [136]
and IBM Log and Trace Analyzer [145] allow for the incorporation of identification rules.
For example, Logsurfer accepts rules consisting of Regular Expressions [100] to attribute
potential problems in the log data. The rules that can be inferred from the decision tree
can easily be back into these tools by formulating features (i.e., LCS representation that
was described in Chapter 5) as Regular Expression.

Furthermore, if a probabilistic classifier such as Naïve Bayes is trained the recurrent
faults can be assigned as ranking of likely faults. We generate a ranking based on the
likelihood that the sample D belongs to a particular fault. When applying Naïve Bayes
the set of recurrent faults F needs to be mapped to C and the vector-space model of the
record-types needs to be mapped to V (see Section 2.4.4). We report the suspected faults
in a list ordered by rank and include the likelihood of each suspected fault as an anomaly
score. This enables a human investigator to quickly validate the diagnosis or find out if
the sample was falsely attributed.

In the absence of probe and recovery action this model may provide useful information
about the alleged fault. During prototype demonstration being able to rank likely recurrent
faults in the data set was perceived positively by a professional audience.
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6.4 Summary

In a practical problem-determination scenario a human investigator usually has access to
log files from the system in a healthy state. Knowing which elements of the corpus are
only present in the healthy state greatly improves the accuracy and sensitivity of machine
learning approaches over the case where only features from the abnormal states are used.
In this work we focus on failures that have a clear manifestation in monitoring samples
rather than failures that do not generate records at all. In particular, failures that are
performance-related can be detected and diagnosed by other means as we have shown in
our prior work [91].

In this chapter we have described methods to learn fault symptoms from log files using
semi-supervised learning. Specifically, we used a Naïve Bayes model to classify faults
and we employed decision trees to learn discrete symptoms to identify faults. We have
assumed that the log files are processed such that they only contain data for the time
window wherein a suspected failure occurred. In practice, log files vary in size and time-
span covered. The files may also contain manifestations of multiple independent faults. It
is therefore imperative to limit the scope of the analysis. If service identification is possible
in the monitoring data, the health of services can be obtained on an individual basis.
Limiting the time window of the diagnosis limits the likelihood of multiple independent
faults as well.

The methods presented in this chapter can be integrated into the tooling employed by
support personnel to perform root-cause analysis. We do not attempt to fully automate
root-cause analysis; some aspects of this process are still manual. For instance, a support
operator still needs to decide upon a labelling scheme for the purpose of classification. It
is possible to present the operator with an interactive rule-generation workbench, which
suggests labelling schemes that will improve results. Such a feature would guide a human
operator in choosing a scheme that minimizes ambiguity and yet aids diagnosis by assigning
meaningful fault labels.

85



Chapter 7

Proactive Fault Diagnosis and Recovery

A challenge when diagnosing the cause of a failure is the lack of operational context. Diag-
nosing recurrent faults as described in Chapter 6 may cause perceptual aliasing (see Sec-
tion 4.2). Different faults can have identical manifestations or faults may have no mani-
festation in log data at all.

The approach we discussed so far diagnoses the problem by evaluating log data. We
did not use additional probes to evaluate the state of the system. In this chapter we extend
the approach to mitigate perceptual aliasing. In addition to probes that should not change
the system state, this model also allows self-recovery by including actions that change the
system state. We construct our model on top of a Partially Observable Markov Decision
Process (see Section 2.5). A POMDP allows decision making under uncertainty. In our case
the diagnosis of a fault can be uncertain because its manifestation is perceptually aliased.
In order to integrate probing, diagnosis and recovery, we need to expand the definition of a
fault. In our model a fault is associated with a particular recovery action. In this context,
we do not seek to provide a diagnosis for non-recoverable problems.

The approach discussed in this chapter should be seen as optional to the steps discussed
so far. In order for automated recovery to be applicable, very limiting assumptions need
to be made about the monitored system. While the approach to diagnosing symptoms
of recurrent faults discussed up to now may suit many different application areas, the
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extension discussed in this chapter may only be applicable to a sub set of these systems.
In Section 7.1 we introduce extensions to our system model and provide an example of the
approach in Section 7.2.

7.1 System Model

In Figure 7.1a we show the basic modes of our proposed controller. We model the system
to be in three modes of operation. It can be operational, broken or in probation. A system
is assumed to be running in the operational mode. If an error is detected while the system
is operational, optional fault diagnosis mechanisms are invoked, the controller enters the
broken mode and the recovery starts (see Figure 7.1b). The recovery spans the modes
broken, and probation. In the broken mode we select a recovery action with respect to
cost and, optionally, the observed manifestation of a failure (i.e., symptom). The recovery
action is applied and the system enters the probation mode for an amount of time that
is specified for individual recovery actions. The system remains in probation until it is
declared recovered.

The set of controller modes bear similarity to Isard [55] and Goldszmidt [40]. Our
proposal differs in the workflow (see Figure 7.1b) for choosing an optimal recovery action
and the specification of recovery actions, probation, optional symptoms, and expected
faults. In the following sections we describe how we specify these artefacts and map them
to POMDP parameters. The mapping of model parameters to POMDP artefacts is shown
in Table 7.1. In the next sections we describe these mappings in detail and, furthermore,
describe the termination (i.e., how the system is declared recovered) for the controller in
Section 7.1.6 and how optimal control is achieved with this mapping in Section 7.1.5.

7.1.1 Modelling Faults

In our model a fault is an unobservable system state that causes the system to fail. We
assume the set of faults to be finite and fixed (but not necessarily known). We furthermore
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POMDP Model Model Parameter Without Model Parameter With
Artefact Symptoms Symptoms

Initial Belief Uniform distribution Initialized from fault
State b0 symptom and, optionally,

fault prevalence
Set of hidden One state per recovery action One state per known fault
system states S and fault-free state f∅ and fault-free state f∅
Set of A state for error observed oe A state for each possible
observations and a state for no error symptom and a state for
O observed o∅ no error observed o∅
Set of actions An action for each recovery same
A and probe action
Transition Expected success rate of recovery Expected success rate of
function action, assuming the system is recovery action for given
T broken in a way, such that, faults

the particular recovery action is applicable
Observation Deterministic observation if Observation probabilities
function Ω a recovery action succeeded o∅ for symptoms of known

or failed oe faults and successful
recovery o∅

Table 7.1: Mapping of POMDP parameters to self-recovery parameters
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assume that we have complete control over the states, such that we can always recover
from any fault (see Chapter 4). This assumption can be implemented in an actual recovery
controller by incorporating a super recovery action (for example calling a system adminis-
trator) that at least subsumes all faults that cannot be handled by other recovery actions
of the model. Under these assumptions, we consider two modelling avenues: First, the set
of potential faults that a system can experience is unknown. Second, the set of potential
faults is known. The first avenue suits distributed ISSes, in which potential faults are not
known. Since we assume that we have complete control, although the individual faults
are unknown, we assign a fault state fi ∈ S for each recovery action ai ∈ A. In other
words we assume the existence of a potential fault, for which a specified recovery action
is applicable. The second avenue suits systems where the set of faults is known. In that
case the set of potential faults f ∈ S is directly included in the POMDP set of states. For
example consider a multi-tier system, in which individual components can only crash. The
proposed recovery actions are individual component reboots. Note that since our model
can handle partial observability only a limited number of components need to be moni-
tored to reason about which component to reboot. The recovery actions should consider
potential component dependencies. As we described previously the POMDP approach
needs an accurate system model (i.e., effects of actions) but can operate under partial ob-
servability (i.e., limited state coverage by monitoring). From our perspective production
systems that suit this requirement are usually weak-coupled distributed systems comprising
stateless components.

In Section 7.1.4 we describe how to incorporate symptoms of recurrent faults and fault
prevalence in detail.

7.1.2 Modelling Recovery and Probe Actions

In our model actions are specified by a conditional success probability, a set of conditional
observations and their cost. We distinguish probe and recovery actions.

Recovery actions directly influence the system state. We specify a conditional proba-
bility of success pi for each hidden fault state fi ∈ F for which the recovery action ai ∈ A is
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applicable. This probability is directly included in the transition function T(f∅|fi, ai) := pi.
Assuming the recovery action has no side-effects (i.e., causing other faults), the probabil-
ity of failure (1 − pi) is assigned for T(fi|fi, ai) := (1 − pi). If we presume independent
recovery actions, for all other states f ∈ (S − {fi}) the action ai has no effect, such that
T(f |f, ai) := 1. In Section 7.1.3 we relax this assumption to model recovery actions that
subsume other recovery actions and are applicable to multiple faults. After the recovery
action has been committed we transition the system to probation mode and monitor the
system for errors (in the case of unknown faults) or symptoms of particular faults. The con-
ditional probabilities for the anticipated observations are directly modelled in the POMDP
observation function. For now, we only model the observations error oe, the empty observa-
tion o∅ (see Section 7.1.6). We model their occurrence directly in the POMDP observation
function, such that:

Ω(o∅|fi, ai) > Ω(oe|fi, ai)
Ω(oe|f, ai) = 1 ∀f ∈ (S− {fi})

The specified cost (i.e., negative reward) of the recovery action is proportional to the
anticipated duration of the probation period, such that the longer the duration of the
anticipated probation period, the more expensive the action becomes.

A probe action p does not change the current system state but results in an observation
that depends on the current system state, such that T(f |f, p) := 1 ∀f ∈ S. We include
probe actions in the set of POMDP actions A. For each probe pi ∈ A we define one
observation, oif , that represents the failure of probe pi ∈ A and at least one observation,
ois1, . . . , oisn, that correspond to successful probe outcomes. These are the only observations
to be made after a probe has been issued; such that:∑

o∈{oif ,ois1,...,oisn}

Ω(o|f, pi) = 1 ∀f ∈ S

In other words after a probe has been issued, we only monitor the outcomes of the probe
action in the probation mode. The cost is modelled similarly to recovery actions.
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7.1.3 Subsumed Recovery Actions

In the previous section we only considered recovery actions that were applicable for one
individual fault. In this section we consider the special case that recovery actions are
applicable to multiple faults. Since the observations and the state transitions are expressed
as conditional probabilities over the hidden states in POMDPs, the actions that apply to
multiple faults can be easily modelled by simply specifying the conditional probabilities of
state transitions for each fault and an action. Likewise, the expected observations can be
specified. In general, to apply an action a ∈ A to a subset of fault states f1, f2, . . . , fm ∈ S
the assumed success rates for each covered fault need to be specified as:

T(f∅|fi, a)∀fi ∈ {f1, f2, . . . , fm}

7.1.4 Incorporating Symptoms of Known Faults

Symptoms are obtained from the fault diagnosis that is performed after the initial error
detection and before the recovery workflow executes. This fault diagnosis is executed again
with error detection in the probation mode. In order to incorporate symptoms of recurrent
faults, the model introduced in Section 7.1.2 needs to be extended. Instead of modelling
an error observation, oe ∈ O, and an empty observation o∅, we model each symptom
as an individual observation, o ∈ O, in addition to the empty observation o∅, such that
the set of observations for the underlying POMDP is O = {o1, o2, . . . , o∅}. In addition,
the observation probabilities need to be adjusted to reflect the expected symptoms for
individual faults in Ω. Such observation probabilities can be obtained by analyzing historic
monitoring data, as we have shown in previous work [60, 112, 113], or by incorporating
expert knowledge. The reader should note that each action only generates one observation
at a time, but individual faults can be identified by multiple symptoms. Furthermore,
one symptom can map to multiple faults. The association of a particular symptom o to a
particular fault is done by setting Ω(o|f) to a non-zero value.

The initial belief state b of a POMDP represents the distribution of the state the system
is in. We can use the specification of Ω directly to initialize the belief state of the POMDP
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to select the optimal recovery action for the diagnosis b, as follows:

b = {Ω(o|f1),Ω(o|f2), . . .}

The reader should note that this initialization also holds for symptoms of ambiguous
faults. So if an extracted symptom identifies a set of faults this will directly map into the
initialization of the belief state.

7.1.5 Achieving Optimal Control

A POMDP is a discrete-control paradigm. In each control step the POMDP selects an
optimal recovery action based on the belief state, then applies the recovery action and
waits for the observation emitted by controlled system. In our case, the observations are
received by error detection or fault diagnosis that is performed in the probation mode.
Once an observation is made the observation is used to update the belief state and to
select the next recovery action. In order to select the optimal recovery action, a POMDP
maximizes the expected rewards received (e.g., negative cost) over an infinite horizon, as
shown by the term in Equation 7.1. The variables rt describe the rewards received at each
time step t that arise from the specification of R [69].

E

[
∞∑
t=0

γtrt

]
(7.1)

Although our recovery model is designed to terminate after a finite number of steps, using
the POMDP model for the finite horizon problem is undesirable because the steps to
recovery, k, are not known in advance. We therefore chose to maximize the rewards over
an infinite horizon to satisfy Equation 7.1. In order to make the sum finite, POMDP
models include a discount factor, 0 ≤ γ < 1. The discount factor can be interpreted as
probability for termination; such that a decision to terminate the run is made at each step
with probability 1 − γ. The larger the value of γ the more importance is put on future
rewards. A low value makes the agent opportunistic (it would only consider immediate
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rewards) [69].

In the context of self-recovery the value of γ should be chosen with respect to the
number of estimated recovery actions to be applied. If, for example, fault diagnosis is very
accurate; such that particular observations occur with a high probability for particular
faults, γ should be chosen closer to 0. If, on the other hand, the number of recovery
actions is extensive and the observability of the system is very limited, γ should be chosen
closer to 1. This is the case when the system has many failure modes that result in
ambiguous symptoms [113] (i.e., one observation for many fault types).

Value Function and Policies

The behaviour of the agent is referred to as policy π. A policy is a mapping from a belief
state to an action, π : b→ A. The expected total rewards received by applying a policy are
referred to as value of the policy [69]. In order to achieve optimal control, we want to derive
an optimal policy for every initial belief state of the controller. It was shown by Howard [47]
that there exists such a policy that is optimal for every state. Because of that property, the
policy does not need to be derived explicitly; instead, we can compute maximum expected
reward of each belief state b = (b(s1),b(s2), . . .) as shown in Equation 2.6.

Because the function is non-analytical, Kaelbing et al. [69] describe how this value
function can be solved to select an optimal action for every belief state. Sondik [125, 126]
has shown that this value is convex and piece-wise linear for the finite case. For the finite
case there exists a geometric interpretation such that each action spans a hyper-plane over
the coordinates of the belief space. The height of the hyper-plane at a given belief state
corresponds to the expected maximal reward that can be achieved in all future states after
committing the action associated with the hyper-plane. Optimal control is achieved by
selecting the action that is associated with the highest hyper-plane for the current belief
state. Cassandra et al. [21] propose an efficient algorithm to approximate the infinite-
horizon value function as a set of hyper-planes from the POMDP model parameters and
show how the highest hyper-plane is selected for a given belief state. The top-most region
of a hyper-plane is referred to as witness region. We use their algorithm in our model to
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approximate the value function over the infinite horizon and to select the optimal recovery
action.

The computation of V depends on the choice of γ. For computing an infinite-horizon
value function, the parameter γ should be chosen fairly close to 1, otherwise some antici-
pated actions may have empty witness regions and will never be invoked. This seems to be
the case if corresponding recovery actions incur a high cost, but are necessary to transform
the system into a state of higher value in the future. Although the general interpretation of
γ reflects the probability of termination, in the infinite case choosing γ too low may yield
unexpected effects on the control policy. At the time this document is written we are not
aware of a model or heuristic approach to set a value for γ to ensure that required actions,
such as “declare-recovered” are invoked. In a practical implementation of this controller
we would specify γ and then adaptively increase it until all required recovery actions have
non-empty witness regions.

Belief Updates

As we have described in Section 7.1, after a recovery or probe action has been committed an
observation is given to the controller either through error detection or fault diagnosis. This
observation gives the controller information about the current system state that it uses to
update its belief about the current system state (i.e., probability of individual faults and
the probability of the non-fault state). Using the POMDP parameters this belief update
is performed as shown by Equations 2.5.

7.1.6 Terminating the Recovery Process

To terminate the recovery process we need to make a fault free system the optimal solution
for the POMDP in a finite number of steps. We do this by adding a POMDP non-fault
state f∅ ∈ S. All recovery actions attempt to transform the system into this non-fault state.
Therefore, the controller also maintains another dimension for the probability of being in
the non-fault state in its belief state b(f∅). This dimension is equivalent to the confidence
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of the controller being in the non-fault state and a threshold thereof can be leveraged as
the termination condition, such that the controller declares the system recovered as soon
as b(f∅) ≥ 1− α with α being the significance level of being recovered.

We also include an empty observation in our model that is most likely to be emitted in
the non-fault state for any action committed, as follows:

o∅ = argmaxo∈OΩ(o|f∅, ai)∀ai ∈ A

This assures that as soon as the controlled system reaches a non-fault state and does no
longer emit any errors, the confidence of the controller about the system being recovered
is strictly monotonically increasing. Furthermore, as described in Section 7.1.2, we impose
restrictions to make the reward for successful recovery actions maximal, such that the
derived optimal policy always tries to reach the non-fault state over an infinite number of
steps (see Section 7.1.5).

Termination under External Influences

The termination criteria and process described in the previous section only hold if we
strictly assume that external influences do not have an effect on the current system state.
For example, termination is not guaranteed if the internal system state changes due to
a non-agent influence. In practice an ongoing recovery-process can be disturbed by an
independent transient fault or a recovery action causes another fault that was not accounted
for in the specification of T. A solution to enforce termination is to limit the total number k
of recovery attempts. If the system has not recovered within k attempts, apply a super-
recovery action, for example calling a system administrator. Another option to account for
external influences that cause the system state to change within the set of known system
states S is to smooth the specified probability distributions of T and Ω to prevent the
specification of impossible observations and state transitions for recovery actions. In any
case state changes caused by external influences are outside our model.
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7.2 Motivational Example

In order to highlight the benefits of our model we simulate a hypothetical system to demon-
strate the ease of use of the model. In particular, we want to show how the controller
parameters are expressed as POMDP parameters. Furthermore, we want to show how this
mapping is used to compute the value function and, thus, implicitly the optimal policy.
Third, we want to analyze the effect of uncertain error detectors and false positives in the
error detection on the time to recovery.

7.2.1 Simulated System Parameters

We have chosen to simulate an instance of an image of a virtual machine. The virtual
machine is running on a data-centre node that provides a cloud service. Our controller acts
as a data-centre infrastructure service and has to fix broken instances of virtual machines.
We treat the instance as black-box and only monitor the performance metrics that are
exposed to the hypervisor.

Assume that a Service-Level-Objective (SLO) (see Sturm et al. [132]) has been defined
against the metrics to perform error detection. An SLO violation indicates a broken system
with a confidence of cd = 0.75 (i.e., the fraction of SLO violations that actually identify a
broken system).

In order to validate the unreliable error detection, we include a probe action that can
be performed by the controller. If the probe fails, the system is most likely broken. If the
probe succeeds, the initial error detection is most likely a false positive. We model the
estimated confidence in the probe as cp = 0.99. The approximate duration of a successful
probe cycle is tp = 10s. The reader should note that it is assumed that a probe action
does not influence the probed system.

In order to recover the broken instance, we reboot the broken instance. The confidence
in a successful reboot for a broken system is expressed as cr = 0.95 and the time until the
instance is assumed to have booted is expressed as tr = 120s.
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We also introduce a do-nothing action a∅ that has the duration of error detection t∅ = 2s

and does not change the system state.

The reader should note that we only use the system states broken and operational
to consider one particular fault; therefore, the belief state of the controller has only two
dependent components and can be easily visualized.

7.2.2 Mapping Model Parameters to POMDP Parameters

First we allocate the states, recovery actions and observations. Since we only consider
error detection with probing and not fault diagnosis the POMDP states are as shown in
Equation 7.2. The set of POMDP actions is equivalent to the set of controller actions
of the previous section and shown in Equation 7.3. The set of observations is shown in
Equation 7.4. As described in Section 7.1.2, for each probe action we introduce a success
and a failure observation.

S = {operational, broken} (7.2)

A = {nothing, probe, reboot} (7.3)

O = {no error, error, probe fail, probe success} (7.4)

We show the allocation of T in Table 7.2a. As described before, probe actions do not
influence the system state, nor does a∅. As such their transitions are initialized to 1.0 for
remaining in the state. In the specification we implicitly assume that a reboot has no side
effects, such that a reboot from an operational state always yields an operational state. If
the system is broken we use the cr to specify the transition probabilities. The allocation of
Ω is shown in Table 7.2b. For any action, except probes, error detection is performed. As
such the observation probabilities are initialized to the confidence of the error detection.
For probes only the outcomes of the probe are relevant to reason about the current system
state.

The reader is reminded that that Ω has to provide probabilities for the total enumer-
ation of possible observations for a given action and a given state. The transitionfunction
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a = nothing s′ = operational s′ = broken
∑

s = operational 1.0 0.0 1.0
s = broken 0.0 1.0 1.0

a = probe s′ = operational s′ = broken
s = operational 1.0 0.0 1.0
s = broken 0.0 1.0 1.0

a = reboot s′ = operational s′ = broken
s = operational 1.0 0.0 1.0
s = broken cr = 0.95 1.0− cr = 0.05 1.0

(a) Transition function T; s current state; s′ target state

a = nothing o = no error o = error o = probe_ok o = probe_fail
∑

s = operational cd = 0.75 1.0− cd = 0.25 0.0 0.0 1.0
s = broken 1.0− cd = 0.25 cd = 0.75 0.0 0.0 1.0

a = probe o = no error o = error o = probe_ok o = probe_fail
s = operational 0.0 0.0 cp = 0.99 1.0− cp = 0.01 1.0
s = broken 0.0 0.0 1.0− cp = 0.01 cp = 0.99 1.0

a = reboot o = no error o = error o = probe_ok o = probe_fail
s = operational cd = 0.75 1.0− cd = 0.25 0.0 0.0 1.0
s = broken 1.0− cd = 0.25 cd = 0.75 0.0 0.0 1.0

(b) Observation function Ω; s state; o anticipated observation

Action Reward Reward
operational broken

nothing −t∅ = −2 −min{t∅, tp, tr}
probe −tp = −10 −tp
reboot −tr = −120 −tr

(c) Reward function R

Table 7.2: Overview of selected POMDP parameters
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T has to provide probabilities for the total enumeration of target states for a given action
and a given system state. We highlight these consistency constraints by showing the row
sums in the respected tables in Table 7.2.

The POMDP function is a complement of the costs of the actions. In order to express
the times as rewards we invert them. Furthermore, the POMDP reward function does
not accept units; therefore, we normalize the parameters by one second. In general all
rewards should be expressed on the same scale of measurement. Furthermore, to bias the
do-nothing action for the broken state, we initialize the reward to the maximum cost that
is modelled. The allocation of R is shown in Table 7.2c.

The initial belief state can be initialized uniformly. However, since we assume the same
error detection is used to start the recovery process we can use the confidence cd as follows:
We assume we have a 25% chance of a false positive. Therefore, the initial belief dimension
for being broken is initialized to b(broken) = 0.75 and the belief dimension for actually
being operational to the false positive rate, b(operational) = 0.25. This allocation is an
analogy to initializing the belief state with a prevalence of known faults.

7.2.3 Computing the Value Function

To compute the value function we have chosen γ = 0.95. We approximate the value
function over an infinite horizon to accommodate a Bellman error (see Cassandra et al. [21])
of eb = 0.05. The hyper-planes of the derived value function are shown in Figure 7.2. With
these parameters the action reboot has a witness region for a belief of being broken of
about P (broken) = (0.95 − 1.0]. The action probe has a witness region of P (broken) =

[0.07− 0.95]. The action do nothing has a witness region of P (broken) = [0.0− 0.07).

7.2.4 Simulating Faults

The main focus of this chapter is the proposed recovery model; therefore, we restrict our
evaluation to the recovery workflow. For that reason the only simulation artefact is the
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Figure 7.2: Hyper-planes of the value function

True Positives 7557 False Positives 2443
(error detection) (error detection)
False Negatives 172 True Negatives 9827
(termination) (termination)

Table 7.3: Distribution of initial and final recovery outcomes

simulation of false-positive error detection. We use Bernoulli trials with a probability of
Pb = 0.75 to simulate a broken system. We model the effects of actions on the simulated
system as a Markov chain using the same parameters as for the controller, such that the
observations and state transitions follow the same distribution. We simulate 10000 runs
of the recovery controller. Our objective is to analyze the behaviour of the controller in
general and for false positives in particular (i.e., the recovery was started on an operational
system). We observe the distribution of initial situations and false negatives (i.e., the recov-
ery workflow was terminated prematurely on a broken system) that is shown in Table 7.3.

The distribution of total steps to recovery is shown in Figure 7.3a. In the majority of
cases the controller terminates after just two steps. This fraction is mostly represented by
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true-positive invocations of the recovery workflow. Since the initial belief state lies within
the witness region of the probe action a probe is committed to validate the system state.
For a true positive, initialization most likely resulted in a failed probe. The resulting belief
update then put the controller in a state where the reboot was applicable. If the confidence
of the controller in the recovery was high enough, the controller was terminated. Putting
this observation into perspective with the false negative rate, one can see that the number
of false negatives almost directly matches the confidence threshold on the recovery.

The distribution of chosen actions is shown in Figure 7.3b. Since the specification
of the recovery action results in a value function where probe has the largest witness
region (see Figure 7.2) and the initial belief state falls into this witness region it is the
most dominantly applied action. Since the witness region of “do nothing” is so close to the
recovery confidence, it is never invoked.

The overall distribution of recovery cost is shown in Figure 7.3c. The distribution of
recovery costs is sparse. Most failures are recovered within 120-130 seconds, which usually
maps to the application of one reboot cycle and a few probes. In false positive cases the
system state was validated with a few probes and no reboot was applied. This is shown
by the far left peak close to zero. In some cases the reboot failed then system had to be
rebooted multiple times, which is shown by outliers on the right side of the spectrum.

7.3 Summary

The methods for self-recovery surveyed in Chapter 3.4 do not include a comprehensive
approach that integrates probing, diagnosis and recovery. In this chapter, we propose
an approach to modelling proactive fault diagnosis and recovery. This model allows the
specification of recovery and probe actions, which specifications integrate with fault diag-
nosis. Even in the context of uncertain fault diagnosis, controllers based on our model are
able to recover from failure. Our model allows a very flexible specification of recovery and
probe actions. Based on those specifications our model automatically computes an optimal
policy for the information that can be obtained from the monitoring data of the system.
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(a) Distribution of steps to termination (b) Distribution of actions

(c) Distribution of total recovery cost

Figure 7.3: Evaluation results

103



Our proposal is the first to integrate diagnosis of recurrent faults, fault prevalence and the
specification of probe actions.

We show through the use of simulation how an optimal policy can be inferred from a
specification of recovery actions.

Although we believe that POMDP is a very powerful model to automate the operation
of software systems, the paradigm may be simplified [110]. Many of the POMDP param-
eters are intuitively given (i.e., A and S) or can be estimated from historic data, such
as fault prevalence (i.e., b0) and the mapping of symptoms to faults (i.e., Ω). However,
data to accurately specify T as well as R is hard to obtain. An accurate specification of
these parameters strongly relies on expert knowledge. We [110] have evaluated preliminary
reinforcement learning strategies for T and R that are based on delayed-cost observations.
The assumption of total controllability is another limiting factor for the applicability of
this model. In practice, faults may be transient or the system state may change without
controller intervention. This model should only be applied to systems where this assump-
tion with respect to the actions is reasonable and, as such, be seen as an addition to
the approach that was discussed in the previous chapters that suits a broader range of
applications.
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Chapter 8

Evaluation

In this section we evaluate our approach to modelling log files, extracting symptoms of
recurring faults and proactive diagnosis and recovery. Our evaluation methodology com-
prises controlled fault injection and real data acquisition experiments to obtain monitoring
data from faults and simulation to evaluate self-recovery approaches.

We evaluate proactive recovery approaches by combining the diagnosis from the realistic
fault injection experiments with simulated recovery. This simulation environment provides
us with direct control of the effects and side-effects of the recovery and probe actions,
enabling reproducibility of the experiments.

Furthermore, because the fault-injection experiments may appear synthetic we have
also chosen to evaluate our log model and symptom extraction using a large data set that
was obtained from a supercomputer.

We first describe our experiment set up and then evaluate all aspects of our approach
in detail. For each aspect we describe the detailed evaluation objectives and the method-
ology to attain and quantify each objective. We evaluate our approach with respect to its
diagnostic performance and scalability with other state of the art proposals in this area.
We compare our proposal against related work with respect to the following objectives:

1. Scalability with respect to input data: How scalable is the approach with respect to
the size of the raw monitoring data that is modelled?
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2. Quality of features for symptom extraction:
(a) How rich are the generated features of the raw input data?
(b) How descriptive are the generated features with respect to the attributed faults?
(c) Is the set minimal to identify recurrent faults?

We describe our experimental setup for the fault injection in Section 8.1. We describe
the evaluation objectives and outcomes for each aspect of our approach in the individual
sections. In Section 8.2 we evaluate our model of monitoring data against existing work [34,
64,140]. In Section 8.3 we evaluate our approach to learning symptoms of recurrent faults.
In Section 8.4 we evaluate proactive approaches to fault diagnosis. Finally in Section 8.5
we summarize the evaluation of our approach.

8.1 Experiment Set-Up

Our approach to experimentation is two-fold.

First, we evaluate our approach using a multi-tier test-bed that emulates a stock-trading
system. We reused Munawar’s test-bed [91] that injects a variety of faults into the system
that we activate at defined points in time during the experiment. The principal advantage
of this approach is the full controllability of experiment parameters that interest us. We
control directly the types of faults injected, the duration of an active fault, observation
when an error is present, and ground truth of the injected fault. This also includes injecting
faults that are hard to diagnose or cannot be diagnosed at all from the monitored interfaces
of the system. The details of this set-up are explained in Section 8.1.1.

Second, in order to ensure that our fault injection experiments are valid we also evaluate
our system against real log data that was obtained from the BlueGene/L supercomputer
that is deployed at the Lawrence Livermore National Laboratory (LLNL). This data spans
approximately six months. Individual log records that are classified as alerts (i.e., they de-
mand the attention of a system administrator) are tagged with pre-defined alert types. We
use these alert annotations to model recurrent faults and extract the relevant monitoring
data. We describe the related experiment set-up in Section 8.1.2.
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Load
Generator

Monitoring
Engine
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Injector

Application
Server

(WAS 6.0)

Database
(DB2 UDB 8.2)

Host 1:
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Intel Xeon 2.8 GHz
with 1 GB RAM.
OS: Linux (CentOS 3)

Host 2:
Dual Core
Intel Pentium D 3.2 GHz
with 3.5 GB RAM.
OS: Windows Server 2003

Host 3:
Intel Pentium IV 2.4 GHz
with 1 GB RAM.
OS: Linux (CentOS 4)

Figure 8.1: Evaluation testbed

8.1.1 Set-Up of Fault-Injection Experiments

The testbed used for fault-injection experiments is shown in Figure 8.1. It consists of a
DB2 UDB 8.2 database server [50], a WebSphere 6 Application Server [52], a workload
generator, and a fault-injection module. All components are connected using a gigabit
Ethernet switch. The experiments are purposefully designed such that the network does
not become a bottleneck. We execute the Trade6 benchmark [26] that emulates a stock-
trading system on the application server. The stock data and accounting information is
stored in the DB2 instance. We expose Trade6 to a steady workload, inject one fault per
experiment into the system, and collect the WebSphere Application server trace-log file at
the end of each experiment.
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Workload Generation

Our objective is to emulate the system in operation; therefore, we expose the Trade6
application that is running on WebSphere to a random workload. Our custom workload
generator implements a closed-loop workload to avoid overload of the system. We execute
the workload generator on a separate machine specifically dedicated to that purpose. The
random workloads are implemented by Trade6. Trade6 exposes a scenario interface that
generates a random usage pattern of buy, sell, and user authentication client transactions
when invoked. Our closed-loop workload generator invokes that interface to emulate the
system in operation.

Data Acquisition and Transformation

After each experiment completion we move the WebSphere trace-log file [53] from the
WebSphere machine off-site for further analysis. Each experiment, therefore, starts off with
an empty trace-log file, and the trace-log file only spans the duration of each experiment.

The trace-log file is a plain-text log-file that monitors the individual transactions of
the applications running on WebSphere. Each log record consists of a timestamp, thread-
id, and various attributes that enable the identification of the component that issued
the record. The reader should note, however, that this scheme is not consistently applied.
From our observation, stack traces, exceptions, and data logged by other sources of recovery
code are often logged verbatim into the file. Being able to process such data is crucial to
modelling log data for diagnosing faults.

Because our objective is to evaluate our approach for modelling unstructured log data,
we remove the timestamp and thread-ID attributes from the trace-log file and treat all
other attributes as part of the plain-text message. For evaluating the fault injection data
we consider the experiment duration equivalent to the window of interest (see Section 6.1).

Because several steps of our approach as well as related work rely on the tokenization of
each log record, we split the plain-text message of each record by all non-word characters
(i.e., regular expression \W). Furthermore, we filter out all tokens that entirely consist of
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Window of Interest 60 mins
Delimiters non-word characters

\W
Ignored tokens non-word characters

(\W+|[0-9a-fA-F]+)
Removed attributes timestamp

thread-ID

Table 8.1: Data acquisition and transformation parameters for fault-injection experiments

non-word characters (i.e., regular expression \W+) and numeric tokens (i.e., regular expres-
sion [0-9a-fA-F]+).

All data transformations are our own implementations using the standard library of
the Python programming language [104]. We summarize the data acquisition and trans-
formation parameters in Table 8.1.

Experiment Timing and Injected Faults

Our experiment duration is 60 minutes. After a warm-up-period of 45 minutes, in which
the closed-loop workload generation is active, we inject one particular fault of the fault
types shown in Table 8.2 into a component of Trade6, the application server, and the
database. We repeat each experiment 5 times and consider the collected log data as
individual samples.

The fault types busy, exception, null, remjsp, and sleep are injected into various com-
ponents. The injection of one fault into one particular component corresponds to one
experiment. These faults emulate reoccurring software defects and operator errors. The
faults auth and threadpool emulate operator error. The fault dblock emulates conflicting
access or an inappropriately sized database instance.

The reader should note that the components were chosen arbitrarily. Specifically we
inject faults also into components that do not log any events in the trace-log. Because of
the limited system coverage of log files, a lot of faults occurring in real systems do not have
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clear manifestations in the log files or are confused with other faults [98].

8.1.2 Set-Up of BlueGene/L Experiments

In this section we describe the set-up of our BlueGene/L experiments. In order to eval-
uate our approach, we have obtained system logs from the IBM BlueGene/L installation
at Lawrence Livermore National Labs (LLNL); these logs were previously annotated by
Oliner et al. [98]. The logs contain all monitoring records that have been generated by the
system over a period of 215 days. Oliner et al. normalized the data and annotated records
that would be of interest to system administrators as alerts.

BlueGene/L Architecture

The BlueGene/L architecture comprises up to 65,536 processors. In Figure 8.2 we show
an overview of the packaging of the architecture. The processors of the architecture are
configured as a 64× 32× 32 torus. Up to 16 node cards can be installed on a node board.
Up to 32 node boards are stored in a rack. A BlueGene/L installation can scale up to
64 racks [2]. For each rack there are two service nodes that perform the monitoring. The
ASICs on each node card store errors locally until they are polled by the service nodes using
a polling frequency of about one millisecond. The service nodes then relay the monitoring
records to a centralized DB2 database. This database includes hardware and software
errors from all monitored nodes of the installation [2]. The set that we obtained consists
of a single file that includes the records of all nodes that occurred over the period of six
months.

Data-Set Description

The data we are using is the same as used by Oliner et al. [98] who obtained the records
from the centralized DB2 database, and tagged and normalized them. Examples of the log
records are shown in Figure 8.3. Since new alert types have been discovered after its [98]

110



Fault name Emulated Behaviour
Fault Type

auth Operator WebSphere JDBC
authentication failed

busy Performance Randomly trigger busy
loops in Trade6

connpool Operator Set database connection
pool size to 1

exception Software Bug Randomly trigger exceptions
in Trade6

null Software Bug Randomly return NULL
from selected methods in Trade6

remjsp Operator Remove components from Trade6,
including Java Server pages

sleep Performance Randomly trigger injected
Thread.sleep in
selected methods of Trade6.

threadpool Operator Set WAS threadpool size
to 1.

dblock Performance Randomly trigger
table locks in DB2

Table 8.2: Injected fault types
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Figure 8.2: Conceptual overview of BlueGene/L architecture
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- 1117838570 2005.06.03 R02-M1-N0-C:J12-U11 2005-06-03-15.42.50
R02-M1-N0-C:J12-U11 RAS KERNEL INFO
instruction cache parity error corrected;

R_DDR_EXC 1117846777 2005.06.03 R16-M1-N2-C:J17-U01 2005-06-03-17.59.37
R16-M1-N2-C:J17-U01 RAS KERNEL INFO
ddr: excessive soft failures, consider replacing the card

Figure 8.3: Example of normalized BlueGene/L log records

publication we updated the tags using the Tagger tool [127]. We have used the Tagger
tool published on that website to annotate the original data set. Our evaluation is based
on the updated data set. Each record has the following order of attributes.

• Alert type: A tag that identifies the type of alert, − indicating no alert.
• Normalized timestamp: The raw log timestamp converted to an UNIX timestamp

(i.e., number of seconds since the epoch).
• Normalized source: The component or subsystem that emitted the log record.
• Raw timestamp: The timestamp of the record in the native format.
• Raw component: The component identifier in the native format.
• Message: The message associated with the record. The message may include severity

or other specific attributes.

An overview of the properties of the data set is shown in Table 8.3. Compared to other
supercomputer logs the BlueGene/L data set has a relatively small logging rate [98]. The
number of different components that appear in the data set is larger than the maximum
number of processors. This is due to other components, for example, the service nodes
that also appear in the data set.

The number of alerts is relatively high, if each individual alert actually requires the
attention of the system administrator. It is our understanding that many of the alerts
are not independent, and possibly map to the same fault. For example, an error on a
compute node may cause several flags to be enabled on an ASIC simultaneously. Such
flags then generate multiple monitoring records (see Adiga et al. [2]). Unfortunately,
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Property Value
Size of data set: 708 MB
Duration: 215 days
Number of records: 4747963
Number of alerts: 348698 (7.34 %)
Number of filtered alerts: 1915
Number of alert types: 43
Number of components: 69251
Average size of record: 156 bytes
Logging rate : 40.0 bytes/second

Table 8.3: Properties of BlueGene/L data set

Oliner et al. [98] do not provide any direct comments if such errors were independent alert
types or not; instead, they propose a filtering algorithm to filter out possibly dependent
alerts. We describe the aspects of the filtering in detail in the next section. It should be
noted, however, that this filtering reduces the number of alerts substantially, down to 1915
filtered alerts (on average 8.90 filtered alerts per day). The reader should note that our
initial assessment of the data set differs in terms of total size, size-related metrics, and
number of alert types from Oliner et al. because we updated it using the Tagger tool.

Approximating Failures, Recurrent Faults, and the Window of Interest from
Alerts

Our objective is the classification of recurrent faults. Unfortunately, the data provided by
Oliner et al. does not provide direct indications of failures or faults; therefore, we have to
provide a mapping from alerts to failures and to recurrent faults.

To highlight the importance of this mapping, let us briefly review our definitions from
Section 2.1. A fault is the cause of a system failure. A system has failed when it can no
longer provide adequate service to its users. If two or more system failures are caused by
the same fault then this fault is said to be recurrent. According to Oliner et al. [98] these
alerts are monitoring records that merit the attention of a system administrator. Despite
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Input: Sequence of alerts A = ((a1, t1), . . . , (ai, ti), . . . , (aN , tN))
Output: Sequence of filtered alerts A′ = ((a′1, t

′
1), . . . , (a

′
i, t

′
i), . . .)

Set l← 0
for i← 1 . . . N do

if ti − l > T then
clear (X)

end
l← ti
if ai ∈ X ∧ ti −X[ai] < T then

X[ai]← ti
else

X[ai]← ti
output ((ai, ti))

end
end

Algorithm 1: Alert filtering algorithm

having 43 different alert types, many of the alerts appear to be correlated with other alerts
in the system and do not indicate independent failures.

In order to reduce the burden on system administrators, Oliner et al. proposed a
temporal-spatial filtering algorithm to reduce the number of alerts generated by the logs;
see Algorithm 1 for details. This algorithm takes the raw sequence of alerts and outputs a
sequence of filtered alerts. Each alert is identified by an alert type ai and a timestamp ti.
The vector X maintains the timestamps of the alert types last seen by a particular com-
ponent within the time period T . The variable l is updated to the timestamp of the last
alert seen. We followed the suggestion by Oliner et al. to set the period T to five seconds.
An alert message is considered redundant if any source reported the alert type within the
last T seconds.

We implemented this algorithm in Python based on the description of Oliner et al.
Applying this algorithm reduces the number of alerts by 99.45%, to 1915 alerts (see Ta-
ble 8.3). We assume that these filtered alerts approximate the failures that occurred during
the lifetime of the data set. We use the alert type of the filtered alert to attribute the fault
that caused the failure.
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Figure 8.4: Window of interest and attributing fault type

Furthermore, these filtered alerts only indicate a point in time when the system has
failed and do not indicate a duration of the failure. In order to select log records that need
to be analyzed we define a window of interest of duration w around the filtered alert. All log
records in that window are taken into account to model the features of the corresponding
fault. The log records inside this window include alerts as well as non-alerts. We vary w
between 600 and 3600 seconds. If in that window we encounter multiple filtered alerts we
use the last alert in that window as the fault label. Therefore each window approximates an
independent system failure. The label is used to model the ground-truth fault label for the
symptom learning and classification. We illustrate that windowing concept in Figure 8.4.
Table 8.4 show the types of alerts and their occurrence in the data set. We also show
the regular expression used by Tagger that was used to attribute the alert type. From
the table it can be seen that the number of possibly independent occurrences is reduced
substantially for very frequent and software-related alerts. The consistency between the
filtered and non-filtered alerts of hardware defects may be due to such events following
stable long-run frequencies.

In Figure 8.5 we show the total number of approximated independent failures with
respect to the window size w. It can be seen that the total number of failures gradually
decreases with an increased window size. The heuristic filtering algorithm provided by
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Number of alerts
Alert Type No Filtering Regular expression

filtering
KERNDTLB 152734 101 data TLB error interrupt
KERNSTOR 63491 8 FATAL data storage interrupt
APPSEV 49651 232 ciod:.*Link has been severed
KERNMNTF 31531 255 Lustre mount FAILED :
KERNTERM 23338 99 rts: kernel terminated for reason
KERNREC 6145 9 Error receiving packet on tree network
APPREAD 5983 17 ciod: failed to read message prefix on control stream
KERNRTSP 3983 293 rts panic! - stopping execution
APPRES 2370 18 Connection reset by peer
APPUNAV 2048 3 Resource temporarily unavailable
APPTO 1991 6 Connection timed out
KERNMICRO 1503 8 FATAL.*Microloader Assertion
APPOUT 816 4 failed: Input/output error
KERNMNT 720 9 Error: unable to mount filesystem
APPBUSY 512 1 Device or resource busy
KERNMC 342 326 KERNEL FATAL.*machine check (interrupt|register:)
APPCHILD 320 3 No child processes
KERNSOCK 209 39 KERNEL FATAL.*socket closed
R_DDR_STR 197 196 ddr: Unable to steer.*consider replacing the card
KERNPOW 192 12 FATAL Power deactivated:
LINKIAP 166 83 MidplaneSwitchController.*iap failed:
APPALLOC 144 2 Cannot allocate memory
KERNSERV 94 6 A service action may be required
R_DDR_EXC 41 41 ddr: excessive soft failures, consider replacing the card
MASABNORM 37 37 exited abnormally due to signal: (Aborted|Segmentation fault)
LINKDISC 24 12 MidplaneSwitchController.*port disconnected:
KERNPAN 18 15 KERNEL FATAL kernel panic
KERNCON 16 16 TIMEOUT connection lost to
LINKPAP 14 7 LINKCARD FATAL MidplaneSwitchController.*pap failed
KERNNOETH 14 13 KERNEL FATAL no ethernet link
MONPOW 12 12 FAILURE.*power module
MASNORM 10 10 BGLMASTER.*exited normally with exit code 1
APPTORUS 10 5 uncorrectable torus error
KERNPROG 5 5 KERNEL FATAL program interrupt$
KERNFLOAT 3 2 KERNEL FATAL floating point unavailable interrupt
KERNRTSA 3 2 KERNEL FATAL rts assertion failed
MMCS 3 2 MMCS FATAL L3 major internal error
MONNULL 2 2 MONITOR FAILURE While inserting monitor
LINKBLL 2 1 LINKCARD FATAL MidplaneSwitchController.*bll_clear_port failed
MONILL 1 1 MONITOR FAILURE monitor caught java.lang.IllegalStateException:

while executing CONTROL Operation caught java.io.EOFException
and is stopping

KERNTLBE 1 1 KERNEL FATAL instruction TLB error interrupt
KERNEXT 1 1 KERNEL FATAL external input interrupt.*tree header with no

target waiting
KERNBIT 1 1 KERNEL FATAL ddr: redundant bit steering failed

Table 8.4: Alert types and the corresponding expressions for identification
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Figure 8.5: Relationship between failures and window size

Oliner et al. [98] may not filter out all dependent alerts. Given that the average inter-arrival
time between filtered alerts is 4850 seconds, we may possibly mask independent failures
for large values of w. Since the window size w has a significant impact on the number of
independent failures for the BlueGene/L data set we will recognize it and evaluate it as a
tunable parameter in the following sections.

Data Transformations

We apply similar data transformations to the BlueGene/L monitoring data that we apply
to the data of our fault-injection experiments. These transformations are summarized in
Table 8.5.

To reduce the size of the input data and exclusively focus on modelling unstructured
monitoring data we remove the alert, normalized timestamp, normalized source, raw times-
tamp, and raw component attributes from the monitoring data and consider the message
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Window of Interest w 600s - 3600s
Delimiters non-word characters

\W
Ignored tokens non-word characters

\W+
Removed attributes alert type

normalized timestamp
normalized source
raw timestamp
raw component

Table 8.5: Data transformation parameters for BlueGene/L experiments

attribute exclusively. For further processing, we limit our evaluation to log messages that
comprise the windows surrounding the filtered alerts using the filtering approach we de-
scribed in the previous section.

For tokenization of each record, we split the plain-text message of each record by all
non-word characters, filter out all tokens that entirely consist of non-word characters and
mark the positions accordingly. This step is consistent with corresponding transformation
set-up step used for the fault-injection experiments.

8.1.3 Experiment Set-Up Summary

We have described the experiment set-up to acquire samples of monitoring data. Further,
we have described how to attribute ground truth labels that are used for symptom learning
and classification.

It should be noted that the number of components, the topology, and the usage pattern
of these two systems are vastly different. We purposefully selected such different set-ups to
highlight the widespread applicability of our approach. As a result individual experiment
parameters are not directly comparable across the fault-injection experiments and the
BlueGene/L experiments. As we will summarise in Section 8.5, however, the conclusions
drawn are consistent regardless of the application area.
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The reader should note that that we evaluate the proactive diagnosis and recovery
approach using simulation based on the outcomes of the log model evaluation of the fault-
injection experiments. The reader is referred to Section 8.4 for details of the experiment
description.

8.2 Log Model

In this section we evaluate our log model against other proposals in the field. We want
to emphasise again that our focus is on modelling log files only from the log data itself,
we only allow for minimal dependencies on expert knowledge about the system. Hence we
chose to compare our approach only against approaches that make the same assumption,
such as Fu et al. [34], Jiang et al. [64], and Vaarandi [140].

Our primary objective is to assess the scalability of our approach and compare it with
other proposals in the field. In this section we focus our evaluation on the BlueGene/L data
set (see Section 8.1.2). The reader should note that the findings from the BlueGene/L data
set discussed in this section are consistent with what we observe from the fault injection
experiments. We include a brief evaluation of the fault injection data in Section 8.2.6,
which supports this claim. We will compare the BlueGene/L data set and the fault injection
experiments in more detail in the sections that address symptom learning and identification.

As quantitative measures we have chosen to evaluate our proposal with respect to the
following metrics:

• The time it takes to process a selection of records,
• The total number of features generated for windows of interest, and
• The number of features generated from a single sample of a defined size.

Because some of the approaches conceptually use the similar components to our pro-
posal we will also evaluate the steps of these approaches in detail. We show the conceptual
steps of each approach in our comparison again in Figure 8.6. The reader is referred to
Chapter 3 for the detailed comparison of approaches. All approaches conceptually com-
prise of four types of forward processing steps. First the raw log data is filtered in an
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attempt to remove volatile elements such as dynamic parameters from the individual log
records. In our evaluation we apply the same filtering step to all approaches (see Tables 8.1
and 8.5). The outcomes of this step are discussed in Section 8.2.2. Our approach and the
approaches proposed by Vaarandi [140] and Jiang et al. [64] contain a density-based clus-
tering step that merges similar records into clusters. Many algorithms of this class expose
linear complexity with respect to the number of input features (see Chapter 3). We dis-
cuss the results for the applicable approaches in Section 8.2.3. Because the nature of the
density-based clustering approaches is very coarse with respect to producing meaningful
features the approach by Jiang [64] uses a linkage-based clustering algorithm. In our ap-
proach we chose to combine the benefits of density-based clustering and linkage clustering.
The outcomes of this step are discussed in Section 8.2.4. Finally because the outcomes of
any clustering approach are clusters of multiple elements that need to be matched against
the input data, we chose to encode our clusters for more efficient matching of features.
We evaluate this step in Section 8.2.5. In Section 8.2.7 we summarize the results of the
individual steps and provide an end-to-end comparison of our and related approaches.

8.2.1 Record Selection

In this section we describe the selection of records relevant to the performance evaluation.
We use two approaches to select data for evaluation. The rationale behind this is to analyse
selected aspects of our log model in more detail. We visualize the different objectives in
Figure 8.7. First, we select all windows that are associated with failures using the approach
illustrated in Figure 8.4 for varying window sizes. This selection is used to evaluate the
overall performance of our approach. We use the same sample in Section 8.3 to evaluate the
symptom extraction. The objective of this sample is to evaluate our data across parallel
tasks. We filter each sample independently then cluster the filtered records and apply the
remaining steps of our approach.

Figure 8.8 shows the number of failure-relevant records and the size of failure-relevant
records with respect to the window size. It can be seen that the number of records as well
as the size of the relevant records scales approximately linear with an increased window
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size. Given the approximated failure rate (see Section 8.1.2), window sizes larger than an
hour could potentially mask independent failures.

Second, we sample randomly from the BlueGene/L data set. This sample is used
to evaluate the filtering and clustering steps in more detail and compare those with the
performance of related work [34,64] that do not expose parallelism.

The sample has a total of 4,747,963 records that consume 708 MB of storage. These
records include log records that constitute to normal behaviour and alerts. We select
between 250, 000 and 2, 000, 000 randomly selected records with displacement. For each
number of selected records we generate 10 samples. Figure 8.9 shows the average sizes and
their 95 %-confidence interval for each selection. It can be seen that the size of the samples
is fairly consistent with very little variation.

In the following sections we evaluate both data sets side-by side.

8.2.2 Filtering of Raw Logs

Given the samples described in the previous section, we analyze the impact of preliminary
filtering in this section. This filtering step removes noise from the log-records that are
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Figure 8.9: Size of random record selection
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introduced by volatile parameter values. In order to allow a fair comparison of our work to
the related approaches we apply the same filtering step to all approaches in comparison.

In this step we tokenize each log record, remove selected attributes and tokens as
shown in Table 8.5 and Table 8.1. We show the running time, the number of generated
filtered records for the random record selection in Figure 8.10a and for the failure data
in Figure 8.10b. The reader should note that we display the standard deviation for the
random samples because the data allows for variation (i.e., 10 samples per number of
records). As these results show the execution time only has little variation for this step
of the process. Because the failure data does not allow for variation of the input data,
we do add variation by repeating the filtering process 10 times for each window size. The
reader should note that the latter figure is indexed by the window size w and not by the
number of records. This allows us to carry the execution times forward and summarize the
outcomes with respect to our model parameter w. To obtain the mapping from window
size w to the number of records, the reader is referred to Figure 8.10.

Figure 8.10b displays the cumulative execution time of all filtering tasks of the failure
data. In Figure 8.10c we show the distribution of the execution times of the individual
filtering tasks. As we have described in Section 5.3 the filtering is stateless and can be
done independently for each window. The median execution time is 0.01s, which is the
minimum resolution of the UNIX time command and may indicate that most of the samples
are processed faster than indicated. This filtering step yields a set of unique patterns that
describe the raw records of the input data as sequences of string tokens. The number of
these unique data elements is shown in Figure 8.11. It can be seen that this filtering step
identifies a relatively small number of unique features with respect to the input data. It
may appear surprising to the reader, but in our experience system logs are only described
by relatively small number of base-strings that vary in the parameters. In addition to
dumps, corrupted log records have been removed from the BlueGene/L data set by the
publishers [98] to allow processing. We do not show a confidence interval in Figure 8.11b
because the input data does not allow for variation.

Of further interest to us is what the characteristics of the filtered log messages are. In
order to show how the complexity of the features evolves over the processing steps, we show
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Figure 8.10: Execution times for filtering raw logs
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Figure 8.11: Number of unique filtered records

the number of tokens per log record in Figure 8.12. As expected varying the scope of the
log records in consideration has little impact on the distribution. It is interesting to note
that individual log records can have up to 120 tokens per line and that the failure sample
has slightly larger number of tokens per record. This may be due to log records that are
emitted from recovery code tend to be more verbose than status information emitted under
normal operation. The reader should note that the number of randomly selected samples
and the total number of records covered by different window sizes is of the same order of
magnitude. However, in order to highlight the scalability of our proposal we use use only a
single filtering task to process random samples, while the all individual windows of interest
from the failure data are processed in parallel. As such the input size to the filtering task
is much larger for the random samples than the input size for the windows of the failure
data.

The reader is also reminded of Figure 8.8 that shows the relationship of the window
size and the size. The larger number of tokens in the failure data appears to be an artefact
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(a) Random samples (b) Failure data

Figure 8.12: Complexity of filtered records

that is related to the sample size.

Furthermore, we determine the minimum value of the sensitivity parameter s of Vaarandi’s
algorithm for our evaluation according to the heuristic proposed in Equation 5.3. We show
the distribution of the filtered records for each window size of the failure sample in Fig-
ure 8.13. The medians are 71, 105, 134, 167, and 254 for the window sizes 600s, 1200s,
1800s, 2400s, and 3600s respectively. For example, for the 3600s window the minimum
sensitivity for Vaarandi should be chosen at s = 0.004. That value of s would extract most
records from samples as independent regions that have an equal amount or less filtered
records than the median. For the failure data as well as the random selection of records
we have chosen to evaluate s ∈ [0.0078, 0.2500].

The reader should note that our implementation is pipeline based. The raw logs are
read from a gzip compressed stream using gzip -d -c and then piped into our filtering
program implemented in Python [104]. The outputs (i.e., the filtered records) are piped
into a file that resides on disk. Given the relatively small size (50-300MB) of the input
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Figure 8.13: Failure data: Length of filtered samples

data, we do not expect disk-IO to be a bottleneck. The measurements were obtained by
running the implementation on an Intel Core i7-2600K (i.e., has 4 cores) system clocked
at 3.40 GHz that is running Ubuntu Linux 11.10 and has 16 GB RAM. The measurements
were obtained using the real run-time as obtained by the BASH time command. The
system was only running our single-threaded filtering program and was otherwise idle.

8.2.3 Density-Based Clustering

After having described preliminary filtering, we compare the running times and number
of generated clusters for our and all the related approaches that contain a density based-
clustering step. Specifically Vaarandi [140] and Jiang et al. [64] use density-based clustering
techniques to describe the clusters. The reader should note that the clusters that are
generated at this stage generate the final feature-set for Vaarandi [140] and Jiang et al. [64].
Our approach leverages Vaarandi [140] too but refines the created features in later stages in
an effort to have a smaller feature-set of features that can be efficiently matched; therefore,
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we limit our comparison here to Jiang et al. and Vaarandi in this step. Our approach
reuses the data generated by Vaarandi in this step in the later stages.

We implemented the approaches of Vaarandi [140] and Jiang et al. [64] based on the
authors’ descriptions in Python [104]. We modified Vaarandi’s proposal such that we can
express the sensitivity of the algorithm with respect to the input size. Vaarandi’s proposal
stated the number of log records needed to form a region as absolute parameter while we
express this measure with respect to the input size (see Chapter 5.3.1). In our observation
Vaarandi’s algorithm is very sensitive to the size of the input data. Being able to express the
parameters with respect to the input data makes the approach more robust.For evaluating
the proposal by Jiang et al. [64] we chose to use the parameter values stated in their paper.

We apply this clustering step on the data to the filtered samples generated in the
previous step. Figure 8.14 shows the execution times of Vaarandi and Figure 8.15 shows
the execution times of Jiang et al. The number of features is shown in Figure 8.16 for
Vaarandi and in Figure 8.17 for Jiang et al. The complexity of the features, as in the
number of tokens per feature, is shown in Figures 8.18, 8.19 and 8.20.

As described in Section 3.1, Vaarandi’s algorithm has a linear complexity. This feature
is consistent with the execution time of the random sample shown in Figure 8.14a. The
same applies to the algorithm by Jiang et al. For the evaluation of our further steps we
set the sensitivity of Vaarandi’s algorithm at s = 0.0078. We included that figure for
comparison in Figure 8.15a. The execution times of Jiang et al. are of the same order
of magnitude as Vaarandi; however, Jiang et al. appears to have a steeper slope than
Vaarandi. This may be due to additional indexing overhead that is required for Jiang et
al., because this approach retains the features as clusters, while Vaarandi’s features can
be expressed as single region. Interestingly the cumulative execution time of Vaarandi’s
algorithm decreases with an increased window size. The choice of s not only controls the
sensitivity with respect to the records, but also the sensitivity with respect to the tokens.
Closer analysis revealed that this appears to be an artefact of our implementation of the
heuristic filter (see Equation 5.2) that indexes tokens faster for smaller values of s.

The number of features for Jiang et al. seems to be fairly consistent at about 130
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Figure 8.14: Execution times for different sensitivities of Vaarandi’s algorithm
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Figure 8.15: Execution times of Jiang et al. and Vaarandi
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Figure 8.16: Number of features for different sensitivities of Vaarandi’s algorithm
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Figure 8.17: Number of features of Jiang et al. and Vaarandi

features. It can be seen that the approach by Vaarandi is very sensitive to the choice of s.
A coarse sensitivity of about 1

4
only yields one or no features. These are features that are

present in almost all log records. In the case of the BlueGene/L data set these features
are KERNEL.*FATAL* for the failure data set and RAS.*KERNEL.* that are very frequent in
the respective data sets. A small value of s also increases the risk of over-fitting because
then almost every log-record is allowed as part of the features. We included various values
of Vaarandi in the comparison. It should be noted that Vaarandi is very sensitive to the
size of the log file. Because we set the lower limit of s according to the failure data, it only
extracts a small number of features when used against a large selection of random records.
Due to assumption that the behaviour of a system can be characterized by the record types
over a fixed time period, our modelling approach extracts coarser features from windows
that have a large number of records. As shown [45, 98], error messages tend to occur in
bursts. In order not to over-fit individual records of bursts we normalize the sensitivity of
the algorithm to the size of the sample. Since in this case the records were chosen entirely
at random and did not contain any significant bursts.
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Figure 8.18: Average trend of the complexity of features of Vaarandi
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Figure 8.19: Complexity of features of Vaarandi
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Figure 8.20: Complexity of features of Jiang et al.

Although the number of features of Jiang et al. and Vaarandi are of about the same order
of magnitude for our parameter selection for the failure data, the complexity of features
greatly varies. Since Jiang et al. retain the individual features as clusters of patterns, the
clusters are comprised of many more tokens than Vaarandi, which can express any cluster
as finite sequence of tokens as regions of density. The high complexity of the features
of Jiang et al. may be an indication that the approach is prone to over-fitting. The
corresponding complexity figures are shown in Figure 8.19 for Vaarandi and Figure 8.20
for Jiang et al. The average trend over the entire parameter space is shown for Vaarandi in
Figure 8.18. It can be seen that the complexity of Vaarandi remains relatively stationary
for a fixed choice of s and is not directly impacted by the size of the input set. This insight
was our primary motivation to modify Vaarandi’s proposal to use a sensitivity measure
that can be expressed in relation to the input size. The parameter s should be chosen
such that the number of features generated as well as the complexity of the features is
sufficient. Given the low complexity and hence low overhead of the algorithm that choice
can be easily made by an expert using a full-parameter sweep across the input data and
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evaluating figures such as Figure 8.18 and Figure 8.16. In the case of the random sample
it can be seen that a threshold s > 0.0625 does not extract any regions and, as such,
the complexity figures are missing too. When choosing s too large there is a risk that
large samples of monitoring data that do not contain repeated error messages or bursts
of messages will be missed by the feature extraction. The running time of this step is
relatively short, such that, that it is possible to evaluate a possible range of parameter
for s larger than the minimum proposed in Equation 5.3. We will show in Section 8.3
that the cost of performing a cross-validation of a classifier can also be done in acceptable
running time to evaluate the impact of s on the classification performance.

8.2.4 Linkage Clustering

After having described how density-based clustering is used to reduce the feature-space of
the filtered records for the respective approaches, we compare related work to our approach
that uses linkage-clustering. The primary conceptual difference between density clustering
approaches and linkage clustering is that linkage-clustering approaches rely on a one-to-
one comparison of the individual elements. Density-based approaches select a seed item
and grow these seed items into clusters with more input data being compared to that
seed; therefore, density-based approaches expose a lower complexity than linkage-clustering
approaches as we described in Chapter 2.4. Unfortunately, simplifications need to be made
to represent and compare these seeds against the input data. A one-to-one comparison of
all elements of the input data allows for more detail during the comparison at the cost of
a higher complexity.

In this section we compare our approach to Fu et al. [34]. Being aware of the increased
complexity of linkage-clustering approaches, we perform this step after performing a first
round of density-based clustering using Vaarandi’s algorithm [140]. Fu et al. use linkage
clustering as only measure to aggregate the input data into features. As we show in this
section this decision puts a significant burden on the scalability of their approach. Our
approach and the approach by Fu et al. need to establish a threshold t for the clustering of
the input-data. Our approach as well as their proposal use derivatives of the Levenshtein
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distance [72] as distance function. Fu et al. propose a normalized variant that aims to
follow a sigmoid pattern [34]. In our approach we simply compute the Levenshtein distance
between two elements and normalize it by the length of the largest element. The reader
should note that we do not compare the input data character by character, but instead
compare the input data token by token using the Levenshtein distance.

Furthermore, because the computation of the Levenshtein distance has quadratic com-
plexity with respect to input data we heuristically optimise our implementation. Assuming
that the distance matrix of the input data is sparse and not many elements can be merged
into clusters, it is prudent to minimize the computation overhead for items that will not be
merged. Because we normalize the Levenshtein distance by the length of the two elements
that are compared, a simple comparison of the lengths is needed to decide whether the
Levenshtein distance needs to be computed in the first place. If the lengths vary by more
than the threshold t we label the elements are too far apart, and the distance is not com-
puted. This heuristic optimization substantially reduces the execution of our approach.
Unfortunately, Fu et al. do not offer any optimizations to their distance metric. Even our
close evaluation of their work did not offer us any hints how to heuristically predict the
outcome of their distance metric efficiently and optimize their approach. It is our impres-
sion that the authors did not consider the input size as problem of their approach. Because
Python [104] is an interpreted language we decided to implement the distance metric by
Fu et al. in C and import the function as a native code module in the Python interpreter.
In our implementation all string tokens are converted to their integer hash value, and then
the distance computation is carried out on the array of hashes of the tokens. While these
implementation details cannot optimize the complexity of the Levenshtein algorithm, they
substantially reduce the execution time of the implementation.

In Figure 8.21 we show the execution times of our approach for the failure sample and
selected window sizes. The execution times decrease with an increased window size and
an increased sensitivity s because the input size was reduced in such a way in the previous
step. Furthermore, it can be seen that the execution time increases with increases in t.
Increased values of t cause more elements to be merged into the individual cluster, which
increases the running time of the clustering algorithm. These outcomes also highlight the
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Figure 8.21: Failure data: Execution times of single-linkage clustering (our approach)
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Figure 8.22: Execution times of Fu et al. using reduced input size

importance of the heuristic to limit s to reduce the burden of this step of our approach.

The inputs to this clustering step are the outcomes of Vaarandi’s algorithm. We at-
tempted to run Fu et al. against the failure set as well as the randomly selected records.
Unfortunately, our implementation did not complete in time. In order to highlight the
overhead of the algorithm, we ran the algorithm against 1000 to 10000 randomly selected
records from the filtered data set. The outcomes are shown in Figure 8.22. For this artifi-
cial workload we repeat each execution 10 times to add variation. Besides being sensitive
to the number of input elements, the algorithm also appears to be sensitive to similarity
properties of the input data. The more clusters that need to be merged the more overhead
is created. A symptom of this property is seen in the steps of the execution time for an
increasing number of records. It should be noted that this random selection used for Fu et
al. is equivalent to only approximately 0.05 % to 0.4 % of the filtered records that are
processed by our approach. It also may seem unfair to the reader to compare the two
approaches with different input data sets, but the reader is reminded that the proposal
by Fu et al. by design operates against the filtered samples. The reader is referred to
Section 8.2.7 for an end-to-end comparison of the approaches.
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With respect to our proposal it can be seen that although the complexity of linkage
clustering is high, by effectively reducing the input size by applying density clustering
and filtering first, the overhead of this step is very small. As described in Chapter 3.1,
our approach heuristically estimates the threshold t for the linkage-clustering. The 95 %
confidence interval for that parameter is t = 0.43 ± 0.01 for the failure data set for all
selected window sizes. As follows we use t = 0.4 unless stated otherwise.

Because Fu et al. did not return adequate results for the complete set of randomly
selected log records and the failure data set, we limit the evaluation of the derived features
to our proposal. The number of features is shown in Figure 8.23 for selected window sizes.
The complexity of the Features for a selection is shown in Figure 8.24.

The number of features extracted does not vary a lot with respect to the window size.
We believe that this step merges similar regions that are created by Vaarandi’s algorithm
for various window sizes. While Vaarandi is more sensitive to the choice of w the clustering
step evens out outliers created in the previous step.

The spread of the complexity of the features tends to decline consistently when more
data is taken into account. This is a side-effect of our implementation of Vaarandi that
was discussed in the previous section. Because the sensitivity of our implementation is
adjusted for the input-size the features become more coarse when more data is taken into
account.

In summary, linkage-clustering incurs substantial overhead. Therefore our approach
aims to reduce the input size of the features to this step as much as possible. We have
shown that after applying the filtering steps the overhead generated by this step is min-
imal. The related work by Fu et al. that applies this step directly to the filtered log
records (see Section 8.2.2) suffers from prohibitively high overhead. We have shown with
a very small sample set how overhead affects the scalability of this approach.
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Figure 8.23: Failure data: Number of features of single-linkage clustering (our approach)
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Figure 8.24: Failure data: Complexity of single-linkage clustering (our approach, w = 1200,
t = 0.4)

8.2.5 Encoding of Clusters

After having described how the individual features are derived from the unstructured log
records, we describe in this section how the features are encoded. When comparing Fig-
ure 8.24 and Figure 8.23, it can be seen that the derived number of features is relatively
small but the features still expose a high complexity. After having clustered the outcomes
of Vaarandi’s algorithm, the features of the single-linkage clusters are individual similar
regions.

From a user perspective these features are hard to understand and matching the clusters
against raw log records may be expensive, because every element of the cluster needs to be
evaluated. In order to reduce the complexity of the clusters we encode each cluster using
its longest-common subsequence. Because the elements of the clusters are very similar
the cluster can be approximated in place by its longest-common subsequences (LCS). As
discussed in Chapter 2.4.3, the LCS problem is in general NP-complete with respect to the
size of the clusters. Hence we moved this step to the end of our processing pipeline. Given
the small number of clusters that remain from the previous step the overhead is actually
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expected to be small, which is confirmed by the results shown in Figure 8.25. Encoding
more but smaller clusters (i.e., a low value of t) surprisingly has a bigger impact than
encoding a small number of large clusters. We believe the assumptions made with respect
to the properties of our LCS approach are confirmed, such that the similar nature of the
elements inside the cluster reduces the processing time substantially, compared to naïve
approaches [142] that do not exploit properties, such as similarity from the input data. The
reader should note that the encoding is performed sequentially for the individual clusters
in our implementation. We believe a parallel implementation as proposed in Section 5.2
may reduce the execution time even further. We regard that aspect as part of future work.

The number of encoded clusters, shown in Figure 8.26 is consistent with the number of
clusters shown in Figure 8.23 as we expected. The reader should note that our implementa-
tion of the LCS includes heuristic optimizations. We do not compute the LCS for clusters
in which all elements have less than or equal to two tokens. Such clusters are split up and
each cluster element is regarded as a separate sequence. We also ignore any remaining
cluster that has an LCS of less than two elements. This optimization is geared towards
avoiding side-effects of the Levenshtein distance used in the previous step. Because our
implementation normalizes the absolute value of the Levenshtein distance by the longest
string in comparison, a short length can cause major distortions because for small numbers
the steps of the quantization become larger.

The complexity figures reflect that our objective to reduce the complexity of the clusters
is fulfilled. In comparison with Figure 8.24, the complexity of the encoded clusters in
Figure 8.27 shows that the number of tokens per feature have been reduced substantially.
This encoding step makes the features coarser than related work or the outcomes of previous
steps, but also reduces the potential that our approach may be prone to over-fitting. We
will evaluate in the following sections how the features derived during these steps perform
for symptom learning and symptom matching.
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Figure 8.25: Failure data: Execution times of encoding clusters
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Figure 8.26: Failure data: Number of encoded clusters
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Figure 8.27: Failure data: Complexity of encoded clusters (w = 1200, t = 0.4)

8.2.6 Fault-Injection Data-Set

In this section we describe the results from the fault-injection experiments. The data of this
sample consist of 315 log files, each of which is associated with a single fault label out of nine
possible recurrent faults. The reader should note that one objective for the fault injection
experiments is to show how our approach performs in the context of perceptual aliasing.
Therefore, we injected faults into the test-bed that are known to have no manifestation
in the log files collected. Furthermore, the information that is recorded by WebSphere is
much more verbose as such the data set is larger in size, approximately 40GB, than the
BlueGene/L data set and contains a richer set of features. Preliminary filtering returned
55858 distinct records and took 519s in total.

The distribution of the number of filtered log records per file is shown in Figure 8.28a
and the number of features with respect to the threshold on the Levenshtein distance t
and the sensitivity of Vaarandi’s algorithm s is shown in Figure 8.28b. Each of these files
spans 60 minutes, which is equivalent to the chosen window size w = 3600s.

The median of the file length is 3182 lines. Using the heuristic, shown in equation 5.3,
the parameter s should be limited to be at minimum s = 0.0003. That value would extract
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Figure 8.28: Fault-injection: The distribution of file lengths and the number of features

most records from files that have an equal amount or less filtered records than the median
as independent regions of Vaarandi’s algorithm. For the remainder of the evaluation, we
have chosen to evaluate s ∈ [0.0005, 0.0625].

The number of regions obtained using Vaarandi’s algorithm and the number of clusters
obtained using the single-linkage approach are shown in Figure 8.29.

It can be seen that the number of elements to process gradually decreases in each step.
So the objective of reducing the input-size of the increasingly more expensive processing
stages is attained. It can also be seen that the steepest decline in the number of features
is near the self-imposed limit on s that we introduced in Equation 5.3, as shown in Fig-
ure 8.29a. For the fault injection sample the threshold for the single-linkage clustering
results in t = 0.450± 0.003 with a confidence of 0.95.

The execution times for the individual steps are shown in Figure 8.30. The reader
should note that execution times for the filtering and Vaarandi’s algorithms are sums of
the execution times for applying the respective transformation to the individual files. The
execution is stateless and could occur in parallel. For example, in a distributed monitoring
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Figure 8.29: Fault-injection: The distribution of file lengths and the number of features

solution the filtering and Vaarandi’s algorithm could be applied directly on the monitored
node on regular intervals (i.e., of the size w). As shown this would substantially reduce
the amount of monitoring data to be transmitted for further fault-diagnosis. The median
execution time for the filtering is 0.11s and the cumulative execution time was 519.14s.
The median execution time for Vaarandi’s algorithm is 0.08s for all evaluated variations
of s.

In Figure 8.31 we show the execution times of the clustering and the encoding step.
Selecting the unique outcomes of the Vaarandi step is part of the execution time of the
clustering step. The overhead of the clustering increases substantially closer to smaller
values of s because more clusters are created. This should highlight the importance of
the heuristic limit proposed in Equation 5.3. The influence of s is similar in the encoding
step as well. Higher values of s result in more clusters that need to be encoded. As
the threshold t increases the size of the individual clusters increases, which increases the
overhead on the clustering algorithm. However, the increase in t reduces the number of
clusters that need to be encoded reducing the execution time of the encoding.
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Figure 8.30: Fault-injection: Execution times of filtering and Vaarandi’s algorithm
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Figure 8.31: Fault-injection: Execution times of clustering and encoding
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Fu et al. Jiang et al. Vaarandi (s = 0.125) & Our Appr.
Filtered records 4854 (t = 22s)
Density clusters N/A 132 (t = 28s) 80 (t = 29s)
Linkage-clusters ∅ N/A 54 (t = 0.09s)
Encoded features N/A N/A 53 (t = 0.01s)
Total features ∅ 132 (t = 50s) 53 (t = 51.1s)

Table 8.6: BlueGene/L: End-to-end comparison of log modelling approaches

The number of features that have been extracted for Jiang et al. using this data set
was 117. The execution time of their approach was 480s. The reader should note that this
approach executes against all log files of the sample at once and does not offer the option
of parallel execution. We have used the same filtered samples as input to Jiang et al. that
we used for Vaarandi’s algorithm.

8.2.7 Discussion and End-to-End Comparison of Log Modelling

In the previous sections we analyzed the properties of our approach to modelling log files.
We have shown that our approach scales sufficiently well with respect to the number of
raw log data to model. In particular we have shown that despite having individual steps
that have a high algorithmic complexity, we can process large amounts of data because we
pipelined the steps with increasing complexity.

We also compared the steps of our processing pipeline conceptually to other approaches.
In Table 8.6 we summarize the outcomes again for the failure sample of w = 3600 for the
individual approaches. In particular the comparison with Fu et al. [34] was disappointing.
Although the authors developed a model that may derive meaningful features for logs, the
approach incurs prohibitive overhead when faced with a large input-sample, like the data
that we obtained from the BlueGene/L data set. We have exemplified in Figure 8.22 how
their approach scales for a very small selection of log-records from our sample.

The reader should note that the execution times displayed in Table 8.6 refers to the
aggregate execution time of the individual steps and provides a pessimistic estimate. The
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reader should note that in practice that the filtering and the density clustering can be
executed in a parallel pipeline. Only the linkage-clustering depends on having the complete
set of density clusters. Furthermore, the encoding step can be parallelised as well. The
encoding only depends on individual clusters and does not need the entire set of clusters
to be present at the same time.

The observations made for the BlueGene/L data set are consistent with the observation
we made for the fault-injection data set. We have decided to use real data of the Blue-
Gene/L data set to evaluate the properties of our approach in detail rather than limiting
the evaluation to injected faults. The reader should note that the fault-injection data set
is larger, approx. 40GB (approximately 57 times bigger than the BlueGene data set) and
the preliminary filtering yields 55858 distinct data points. That is due to stack traces and
other forms of recovery code log into the trace-log file. The reader should note that the size
varies from experiment to experiment substantially. Some injected faults did not trigger
any recovery code that logs into the file, while others create substantial bursts of logging
activity.

In following sections we will refer to the outcomes of the log modelling evaluation and
use them to learn symptoms of recurrent faults.

8.3 Learning Symptoms of Recurrent Faults

In this section we describe our evaluation of our model with respect to symptoms of re-
current faults. After having evaluated the extraction of features from the log files in
Section 8.2, we evaluate the learning of symptoms of recurrent faults in this section.

Our primary objective is the evaluation of the quality of the features with respect
to the classification of recurrent faults classification. We furthermore want to analyze,
if our or related approaches are prone to over-fitting. Our evaluation methodology is to
use 10-fold cross-validation. For classification we use Weka C4.5 classifier [139] using the
default parameters. In order to measure the classification performance we have chosen the
following metrics for our evaluation:
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1. The classification error across all classes,
2. The redistribution error across all classes,
3. The precision,
4. The recall, and
5. The f-measure.

We will first describe the evaluation methodology of this in detail and then present
actual measures in the following sections.

8.3.1 Methodology

Our methodology is to evaluate the classification performance using cross-validation. Cross-
validation is a form of holdout classification that divides the initial sample is divided into
k-folds that contain approximately n/k samples that are randomly selected with displace-
ment of the original n samples. See Figure 8.32 for illustration. Once the folds are es-
tablished, k − 1 folds are used as the training set and 1 fold as the holdout to assess the
performance of the classifier. The process is repeated over k steps. In each step a different
fold is selected as the holdout. After k steps, the union of individual holdouts comprises
the original sample.

A classifier is trained with the k − 1 folds of the training set, then this classifier is
used to classify the holdout samples. The metrics for the classification performance are
measured from the holdout and the training set. After having described the evaluation
methodology, we describe the quantitative performance measures and their interpretation.
First we begin by introducing basic classification measures.

True positive (TP), true negative (FN), false positives (FP), and false negatives (FN),
are the four different possible outcomes of a single prediction. In a single-class prediction
these four outcomes are the only outcomes as shown in Table 8.7.

In the next section we take this illustration and define meaningful classification perfor-
mance metrics.
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Figure 8.32: The concept of cross-validation

Predicted class
Yes No

Actual Yes TP FN
class No FP TN

Table 8.7: Illustration of outcomes: true positive, false negative, false positive, and true
negative
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Predicted class
C1 . . . Cn

Actual C1 TP(C1) . . .FN(C1)

class . . .
... . . . ...

Cn FP(C1) . . . TN(C1)

Table 8.8: Confusion matrix with respect to outcomes

Confusion Matrix and Related Performance Measures

In a multi-class scenario (i.e., more than two predicted outcomes) the concept illustrated
in Table 8.7 is generalized to represent aggregates of outcomes of a classification. These
outcomes can be represented as a matrix, with one dimension representing the ground-truth
class labels of outcomes and another dimension representing the outcome attributed by the
classifier. This concept is illustrated in Table 8.8. Each matrix element at position (i, j)

represents the number of outcomes of all classified samples that have the true class Cj that
have been classified as the class Ci. If a total number of l classes exist and the classified
outcomes are recorded as the confusion matrix M, the true positives, false negatives, false
positives, and true negatives can be computed as shown in Equations 8.2 for each class Ci.
Table 8.8 illustrates the computation for C1.

TP(Ci) = M(i, i) (8.1)

FN(Ci) =
l∑

k=0∧k 6=i

M(k, i)

FP(Ci) =
l∑

k=0∧k 6=i

M(i, k)

TN(Ci) =
l∑

k=0∧k 6=i

l∑
j=0∧j 6=i

M(j, k) (8.2)

These basic counters form the key building blocks for classification performance metrics
we are using in our evaluation. We use precision (Prec(Ci)), recall (Rec(Ci)), and F-

155



measure (FM(Ci)) for each individual class Ci. The metrics are derived in Equations 8.3.

Prec(Ci) =
TP(Ci)

TP(Ci) + FP(Ci)

Rec(Ci) =
TP(Ci)

TP(Ci) + FN(Ci)

FM(Ci) = 2 · Prec(Ci) · Rec(Ci)

Prec(Ci) + Rec(Ci)
(8.3)

(8.4)

Because all of the above metrics only yield meaningful results with respect to individual
classes we need to derive metrics to measure the performance of a multi-class model as a
whole. It is common practice to produce weighted-averages of the class-specific measures
previously stated. We illustrate this for recall as follows. In essence average recall (Rec) is
the sum of the recall metrics of the individual classes that are weighted by the number of
true occurrences in that class.

Rec =
l∑

i=1

#(Ci)

l
Rec(Ci)

#(Ci) =
l∑

k=0

M(k, i) = TP(Ci) + FN(Ci)

Furthermore, a generic metric for the performance of a classification performance is the
classification error CE.

The classification error is the ratio of all outcomes outside the central diagonal of
the confusion matrix to all outcomes. Since the elements on the central diagonal of the
confusion matrix represent the true positives of the individual classes this metric can be
computed by inversion as shown in Equation 8.5.

CE = 1−
∑l

i=0 TP (Ci)∑l
i=0

∑l
j=0 M(i, j)

(8.5)
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Figure 8.33: Redistribution- and classification error assessment

Classification and Redistribution

Now after having introduced performance metrics for the classification we describe how
the classifier is trained and how outcomes are selected. Only deriving performance metrics
from the holdout classification limits the evaluation to the trained classifier with respect
to new data. In order to identify and highlight issues that may be associated with the
classifier itself we also classify the training set and retain a separate set of performance
metrics. In particular, when comparing how the trained classifier classifies the training set
to how the classifier classifies the holdout one can assess if the trained classifier tends to over
fit the data. A heuristic that captures this behaviour is the comparison of redistribution
and classification error, shown in Figure 8.33. The reader should note that classification
and redistribution refers to the same metric, shown in Equation 8.5, but the metric is
derived from different data sets. If the redistribution error is significantly lower than
the classification error, which means that the trained classifier is better at classifying
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known samples, it is a symptom of over-fitting. The reader should note that assessing an
over-fitting model is not absolute; instead, it is necessary to compare a model to other
models [44]. In our case our model and related work use the same type of classifier but
tend vary in the types of features used. While Hawkins was primarily concerned with the
complexity of the classifier (as in the number of tunable parameters of the classifier) our
evaluation varies in the number if input features available. We expect our approach to be
less prone to over-fitting than related work because we can cope with a relatively small set
of simple features.

Summary

So far we have described our evaluation methodology and related performance metrics.
Instead of just assessing the predictive performance using standard measures such as recall,
precision, and F-measure, we also compare our approach with respect to assessing the
impact of over-fitting. In the next two sections we show how these metrics are derived from
the BlueGene/L sample, our fault injection experiments and how our approach compares
to related proposals.

8.3.2 Classification Performance

We now compare the performance of our approach to the proposals by Vaarandi [140],
Fu [34], and Jiang [64]. We first present our results obtained from the BlueGene/L data
and then show the performance of the fault injection experiments.

BlueGene/L Data-Set

The data used for this step is the data evaluated in Section 8.2.5 for our approach with vari-
able window sizes, the data evaluated in Section 8.2.3 for Jiang et al. [64] and Vaarandi [140].
We have established to use s = 0.002 for the density-based clustering and t = 0.4 for the
threshold of the linkage-clustering. In this section we evaluate the approaches across a
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(f) F-measure w = 3600

Figure 8.34: BlueGene/L: Aggregate classification performance (our approach)

range of these parameters and show that the heuristics we described previously are ade-
quate. The Figures 8.34 shows the weighted average recall, precision, and F-measure of
the classification for selected window sizes using our approach.

The precision and recall appear to be relatively insensitive to s for small values of t.
It shows that the classification performance remains high, despite a reduction in the com-
plexity and the number of features (see Section 8.2). While the classification performance
is relatively stable across the parameter space the reader is reminded of the evaluation of
the log model in Section 8.2.5, in which we show for the same data set that increased values
for t and s substantially reduce the number of features.
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The automatically determined value of t = 0.43±0.01 (see Section 8.2.4) lies within an
acceptable range of recall and precision for s ≤ 0.125, confirming that our heuristic returns
adequate values. Because the data model can be used to set up cross-validation experiments
quickly due to its low overhead, we believe a feedback loop from the performance metrics
of the cross-validation to the data model can be established to determine s heuristically as
well. We regard that problem as part of our future work.

Now we compare the outcomes of our approach to the proposals by Jiang et al. [64]
and Vaarandi [140]. We have show the results for Jiang et al. for various window sizes in
Table 8.9. Compared to our approach the proposal by Jiang et al. has a similar classification
performance. For s = 0.125 and t = 0.4 we can achieve approximately the same recall
and precision for w >= 1200s using less features. For w = 600s our approach uses 85
features and has a recall of 0.921, a precision of 0.909 and an f-measure of 0.913, clearly
outperforming the proposal by Jiang et al. It should further be noted that our features are
much smaller and less complex than those of their proposal (see Section 8.2.3).

Window size in s 600 1200 1800 2400 3600
Features 32 129 132 132 132
Precision 0.586 0.848 0.83 0.813 0.75
Recall 0.661 0.868 0.852 0.834 0.787
F-measure 0.598 0.855 0.838 0.821 0.762
Classification error 0.33 0.13 0.15 0.16 0.21
Redistribution error 0.30 0.07 0.08 0.09 0.11

Table 8.9: Classification performance (Jiang et al. )

The results for Vaarandi’s algorithm are shown in Figure 8.35. It should be noted by the
reader that these are interim results of our approach because we made Vaarandi’s algorithm
part of our feature extraction. The results are in-line with those seen in Figure 8.34 for small
values of t. However, our approach requires fewer features to attain the same classification
performance.
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Figure 8.35: BlueGene/L: Aggregate classification performance (Vaarandi’s algorithm)
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Fault Injection

In this section we evaluate our approach using the data analyzed in Section 8.2.6. The
samples of the data set are individually labelled using the labels shown in Table 8.2. We
compare our approach against the proposals by Jiang et al. and Vaarandi. Figure 8.36
shows the weighted average recall, precision, and F-measure of the classification of our
approach.

Throughout the chosen parameter space (i.e., s and t) our approach maintains a high
classification performance. Precision, recall and, consequently, the f-measure are at about
0.70. For extreme values of t the measures start to drop. As shown in the chosen parameter
space results in a large number of features in relation to the number of class labels. We
expect that our approach might be over-fitting the training-set for most of those configu-
rations. We analyze this problem in detail in Section 8.3.3.

Based on the features that have been extracted by Jiang et al., we obtained an aggregate
precision of 0.685, a recall of 0.594, and an f-measure of 0.596. Their model extracted a
total of 117 features. By comparison with our results, by choosing s = 0.0625 and the
heuristic estimate t = 0.43 we can achieve 0.727 precision, 0.616 recall, and 0.61 f-measure
with just 45 features that have a substantially smaller complexity than those extracted by
Jiang et al.

The results for Vaarandi’s algorithm are shown in Figure 8.37. It should be noted
by the reader that these are interim results of our approach because we made Vaarandi’s
algorithm part of our feature extraction. The observations made in the figures are therefore
almost identical to those seen in Figure 8.36 for small values of t. Although Vaarandi’s
algorithm expectantly has a similar classification performance as our approach it depends
on a larger set of features to attain that performance.

8.3.3 Over-Fitting

After having described the classification performance for the holdout classification, we show
our results with respect to the possibility of over-fitting.
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Figure 8.36: Fault-injection: Aggregate classification performance (our approach)
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Figure 8.37: Fault-injection: Aggregate classification performance (Vaarandi’s algorithm)
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BlueGene/L Data-Set

In Figure 8.38 we show the classification and redistribution error for our approach for
selected window sizes. It can be seen that both measures increases with larger values of s
and t, which results in fewer features being available for the classification. However, since
there is little deviation among those two errors there is little evidence that the approach
is over-fitting [44].

In Table 8.9 we already included the results of Jiang et al. for different window sizes.
Although there is a small divergence between the classification and redistribution error, it
is from our perspective not enough to attribute significant over-fitting as well. It should be
noted that the error metrics of their approach tend to be higher than ours for s ≤ 0.125.

In Figure 8.39 we show the classification and redistribution error of Vaarandi for selected
window sizes. For the BlueGene/L data set the approach shows no symptoms of over-
fitting. The distribution and classification error are almost identical. We attribute it to
the data set that consists of relatively small (i.e., number of monitoring records) individual
samples.

Fault Injection

As we described in Section 8.3.2 our approach may be prone to over-fitting compared to
related approaches. For small values of t and s we extract a large number of features that
are used by the classification. We show the classification and redistribution error of our
approach in Figure 8.40.

The reader should note that the classification error is not normalized by the number of
instances as the performance measures described in the last section. It can be seen that
the classification error increases substantially as the number of features decreases, however
the classification error is in-line with the redistribution error. As a result our approach
does not exhibit severe symptoms of over-fitting [44].

Based on the features that have been extracted by Jiang et al., we obtained a classifi-
cation error of 0.40 and a redistribution error of 0.35. Compared to our previous selection
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Figure 8.38: BlueGene/L: Classification and redistribution error (our approach)
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Figure 8.39: BlueGene/L: Classification and redistribution error (Vaarandi’s algorithm)
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Figure 8.40: Fault-injection: Classification and redistribution error (our approach)

of s = 0.0625 and t = 0.43 we obtain a classification error of 0.38 and a redistribution error
of 0.35. While our approach shows a smaller ratio of redistribution and classification error
than the approach by Jiang et al., we believe it is not significant to regard our approach
as less over-fitting in general.

The results for Vaarandi’s algorithm are shown in Figure 8.41. The ratio of classification
and redistribution error does not indicate a significant degree of over-fitting. Compared to
our approach Vaarandi’s algorithm has a larger gap between those two measures than our
proposal because of the very large feature set. That was a motivation to refine his proposal
and develop the subsequent stages of our approach. As a result our approach can achieve
the same classification performance with a much smaller feature set.

8.3.4 Summary

In this section we analyzed the classification performance of our log model with respect to
extracting symptom signatures using the C4.5 classifier and matching them against folds
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Figure 8.41: Fault-injection: Classification and redistribution error (Vaarandi’s algorithm)

from a cross-validation.

As expected the classification performance is very sensitive to the parameters of the
log. We have demonstrated that the heuristic approximation of t results in acceptable
classification performance metrics. We consider it as part of our future work to develop a
reliable estimate of s that may be based in-part on the classification performance metrics
as well.

Since our and related approaches extract a relatively large feature set to model the
individual samples we also analyzed our approach and related work with respect to over-
fitting. Using traditional means [44] we cannot establish that our approach is significantly
over-fitting or performing better in that regard than related work. To our surprise the
metrics derived from the related approaches are of about the same order of magnitude as
the over-fitting metrics derived from our approach. This is a surprise because the data
model we propose extracts fewer and less complicated features than related work as we
have shown in the previous section.

In the next section we show how a confusion matrix derived from the evaluation in
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Section 8.3.2 can be used to create a recovery controller. For the fault-injection experiments
we have deliberately chosen to inject faults that cannot be accurately detected using log
files. For the BlueGene/2 data set the attribution of failure is inherently tied to the
monitoring data, as such we think that the high classification metrics may only apply
when we assume full visibility of state of the supercomputer from the log files.

8.4 Proactive Fault Diagnosis and Recovery

Having evaluated the performance of fault classification, we want to evaluate proactive
approaches that are built on-top of the classification in this section. As the focus of this
work is the evaluation of the discrete controller, we favour an evaluation environment,
in which we have full control over all system parameters. Therefore, we evaluate the
performance of the controller using discrete event simulation. As described in Chapter 7
this approach mey become unstable if these assumptions are not met.

8.4.1 Simulated System

In order to simulate a realistic environment we will obtain the simulation parameters,
namely fault prevalence and the characteristics of symptoms of failure from fault-injection
experiments conducted for unstructured data (see Section 8.3.2). The confusion matrix is
shown in Table 8.10 and forms the basis for specifying the system parameters Ω and O.

Since our previous evaluation did not consider recovery we seed a simulation with this
confusion matrix. We assume an error detection confidence of pe = 0.99. We mock up
recovery actions with their anticipated cost and success rate. We consider the recovery
actions shown in Table 8.11.

8.4.2 Impact of Wrong System Specification

Our first objective is the analysis of the impact of system drift. We compare the drift
scenarios against a simulation of optimal system specification. The differentiating measure
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a b c d e f g h i classified as
5 0 0 0 0 0 0 0 0 a = auth
0 53 0 0 1 0 6 0 0 b = busy
1 0 4 0 0 0 0 0 0 c = connpool
0 0 0 54 0 5 0 1 0 d = exception
0 3 0 8 38 0 11 0 0 e = null
0 5 0 0 0 30 0 0 0 f = remjsp
1 10 0 0 1 0 48 0 0 g = sleep
0 5 0 0 0 0 0 0 0 h = threadpool
0 17 0 0 0 0 0 0 8 i = undetectable/

dblock

Table 8.10: Example confusion matrix

is the total time to recovery (i.e., the sum of the time of the individual recovery actions).
We consider four scenarios of a wrong system specification:

1. Ignoring the fault prevalence (avg. TTR = 129s),
2. Overestimating the confidence of recovery actions (avg. TTR = 146s),
3. Assuming deterministic observations (avg. TTR = 121s), and
4. The combination of the above (avg. TTR = 155s).

For each case we compute the POMDP and compute parameters based on the incorrect
specification (see Chapter 7) and simulate it against the correct system specification. For
the first case we initialize the belief state uniformly. Hence the first recovery action will
not be chosen in accordance of the fault prevalence. In this configuration we expect the

Action Success Rate Cost Faults
NOOP pe = 0.99 2 s ∅

WAS Reboot 0.9 120 s busy, sleep
WAS Reconfigure 0.9 30 s auth, connpool, thdpool
J2EE Reinstall 0.9 30 s exception, null, remjsp
DB2 Reboot 0.9 100 s dblock

Table 8.11: Properties of simulated recovery actions
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controller to optimize the recovery times of rare faults at the cost of prolonged recovery
times for common faults. In the second case we set the simulated recovery success rates
to 0.7 instead of 0.9 and specify a confidence of 0.9. This drift will make the controller
more opportunistic in choosing the recovery actions. As a result it will wrongly assume
the system to have recovered and hence prolong the recovery process. For the third case
we assume deterministic observations and initialize the observation function as a diagonal
matrix. This is expected to slow down the recovery process of aliased faults (i.e., faults that
have multiple symptoms) because only one observation per fault will trigger the correct
recovery action. Finally we consider a combination of all drift scenarios. The comparison
of the total time to recovery is shown above. The average time-to-recovery for the optimal
case in which we know all system parameters yields 121s.

Overestimating recovery action confidence has the biggest impact on our system. The
results for deterministic observations are potentially caused by the system simulation of
aliased faults. Since a new observation based on Ω is generated at every simulation step the
observations for aliased faults may fluctuate, and thus still produce the right observation
that triggers a recovery over a finite number of steps. The reader should note that all faults
could be recovered using the system specification in a finite amount of time.

8.5 Summary

In this chapter we have evaluated all aspects of the approach proposed in this thesis. We
have demonstrated that the system model proposed for log files can be used to classify
faults effectively using unstructured monitoring data. We evaluated our proposal against
related work. We have shown that our approach performs as expected on data obtained
from fault-injection experiments as well as failure data obtained from large distributed
systems in the field.

For the model of discrete data proposed in Chapter 5 we have shown that it scales well
against related proposals in the field. We were able to model and classify up to 40GB of
raw log data (i.e., fault-injection data set) in a matter of minutes on a single machine. By
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evaluating aspects of the model at the task-level we also highlighted areas that can improve
the scalability of the approach even further because of the high degree of parallelism our
model exposes. These claims were validated for the fault-injection data set as well as the
BlueGene/L data set.

We have also shown that the features derived from the log-model can be used to extract
and identify symptoms of recurrent faults from the fault-injection data set as well as the
BlueGene/L data set. We can achieve the same (i.e., compared to Vaarandi [140]) or better
(i.e., compared to Jiang et al. [64]) classification performance than related approaches in
the field with a smaller number of features. The degree of over-fitting is in-line with other
proposals [140].

For the fault-injection experiments that expose a high degree of perceptual aliasing, we
have set up a simulated recovery controller to demonstrate the applicability of the proactive
recovery approach proposed in Chapter 7. Under the assumption of full-controllability and
full knowledge of side effects of recovery actions, we have shown that a system can be
recovered in the presence of an uncertain fault-diagnosis. Minor misconceptions about
fault prevalence and recovery actions do not have a major impact on the stability of the
recovery process but can prolong the time to recovery. Although the simulated recovery
looks promising, it requires in-depth system knowledge to work accurately. In practice
faults may be transient or the system state may change due to conditions outside of the
scope of the recovery model. In such scenarios the controller is likely to under perform. In
addition, the knowledge of the transition function T as well as the observation function Ω

is often incomplete. We published a study [110] of decision learning addressing some of
these drawbacks. The recovery approach should be viewed as optional addition to the
other aspects of this thesis that can be used to mitigate the problem of perceptual aliasing
in selected scenarios.

The reader should note that this thesis focuses on modelling discrete monitoring data
and fault diagnosis based on that model. To that extend we have validated our claims.
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Chapter 9

Discussion and Future Work

In this chapter we discuss our approach and the lessons learned from the evaluation. In
this thesis we do not claim that log file analysis or the proactive approaches presented are
suitable for all systems and faults.

In this thesis we have addressed the diagnosis of failures in information software systems
using discrete monitoring data. Our focus is the diagnosis of recurrent faults as they
account for a high percentage of the reported defects. So far the diagnosis of failures
in these systems is still a manual, laborious process that provides limited support for
automation. In this thesis we are offering a model that learns symptoms of recurrent faults
automatically and is able to identify these symptoms. We also proposed an approach to
recover from perceptually aliased faults when certain conditions are met.

We have shown in our evaluation that a range of common problems can be automatically
diagnosed with no manual intervention. We validated the approach using extensive fault-
injection experiments and real log data obtained from the BlueGene/L supercomputer. We
have shown that we can learn and identify symptoms of recurrent faults for both data sets.
We have also shown that our model for discrete monitoring data scales well compared to
related work [34,64,140] and, unlike related work, exposes a high degree of parallelism.

For perceptually aliased faults, we have shown that we have shown through the use of
simulation that we can construct a recovery process from the symptoms if the system is
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fully controllable and the effects of the recovery actions are known.

In the next sections we describe various areas of improvement as part of future work.

9.1 Log Analysis Is Not Optimal for Error Detection

When we outlined the scope of this thesis in Section 1.2, we clearly assumed the presence
of reliable error detection. Unfortunately, log data contains discrete events that usually
reflect state changes of components of the system. Therefore, performance defects that
have a slow build-up such as memory leaks, resource exhaustion and congestion are hard
to detect promptly by analysing log data. These faults only trigger events and potentially
log data when individual components have already entered a permanent state of failure.
For example a memory leak in a JVM eventually triggers allocation failures that may be
logged as exceptions in the log data.

In order to attain the assumption of reliable error detection, we propose to follow
best practices and define service level objectives (SLO) for critical interfaces of the system
(see Sturm et al. [132]). In production systems reliable error detection is essential to detect
a state of failure automatically. In related work [58,59,61] we investigate several approaches
to anomaly detection based on management and performance metrics that do not require
explicit statements of SLOs.

9.2 Rare and Subtle Faults Are Hard to Diagnose

As we described in Section 2.3, discrete monitoring interfaces in general have a limited
system coverage, which may limit the fault coverage too. Means to improve the fault
coverage include the use of other monitoring interfaces such as trace information, perfor-
mance metrics and proactive approaches. We have shown in related work [58, 59, 61] that
a management-metric-based diagnosis approach can detect and diagnose a range of per-
formance defects. Furthermore, we have shown that trace information can also be used to
diagnose a range of subtle performance problems reliably [91,108].
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As we described in Chapter 7, faults having no manifestation in monitoring data could
be seen as a special case of perceptual aliasing. One approach to cope with this scenario
is to combine a set of dedicated probes that validate such faults with the discussed self-
recovery model. In contrast to existing configuration and system audits, such probes may
then be enabled adaptively to minimize the overhead for the system.

Our approach relies on historic monitoring data that contains samples of manifestations
of faults. In order to establish a symptom of a fault we need a certain number of samples.
We limited our scope (see Section 1.2) to recurrent faults.

We have shown that insufficient samples may make faults perceptually aliased. Using
the proactive approach discussed in Chapter 7 one could dedicate probes for such faults,
but this may increase processing overhead for rare faults. Based on analysis of PMR data
such rare faults reported to IBM support usually result in manually encoded symptoms.
Due to the rarity of such events we believe it is still viable to use a manual process for it.
Moreover the rules extracted from the C4.5 decision tree generated as part of the approach
described in Chapter 6 can be used to supplement such manual rules with automatically
generated rules for frequent recurrent faults.

9.3 Diagnosing the Time When the Fault Became Ac-

tive

An open problem in our, and all existing approaches we are aware of, is that it is hard
to diagnose the actual time that a fault occurred. As described in Section 2.1, a fault
becomes active when it creates an error and this error may propagate through several
internal interfaces of the system before it becomes noticeable at a service interface of the
system. Usually error detection is achieved through monitoring SLOs that are defined
against an external service interface. When the error is detected at the service interface,
the corresponding fault may have already been active for a prolonged period of time.
Examples include resource exhaustion and performance defects. For example, a memory
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leak may be active for a significant time-period before the service interface experiences an
error.

In order to cope with that problem one needs to have an estimate of the time-period
when the fault becomes active. The fault may manifest itself in the monitoring data long
before an error is detected. To cope with that problem, our diagnosis takes into account a
diagnosis of a fixed-time window before and after an error is detected. However, choosing
the size of that time window is still a parameter that needs to be configured by expert
knowledge, as such information is hard to mine from historic data. Even if such data
would be available the period from fault activation to initial error detection may hardly be
consistent or match a known distribution. As part of future work, we believe our approach
can be substantially improved if a mechanism for timely error reporting is found and used
to determine the size of the window of interest.

Another challenge to our current approach is time skew. If the window size is chosen
relatively small, such that the association of log records to the window becomes uncer-
tain (i.e., w is within the confidence bounds of the error caused by time skew) the distri-
bution of record types inside this window is near random and likely misses events that are
associated to the actual failure.

9.4 Fully Parallel and Distributed Implementation of

the Data Model

In Section 5.3 we outlined the parallel aspects of the monitoring record modelling. Our
current implementation parallelises the filtering and density-clustering task as separate
processes in a single machine. We believe the approach can be parallelised such that the
individual tasks can execute on separate machines. Furthermore, one bottleneck is the
parallel implementation of the single-linkage clustering. Olson [99] has shown preliminary
approaches that parallelise hierarchical clustering for specific applications. We believe that
an in-depth survey of the area of parallel clustering algorithms may reveal opportunities
to parallelise this task as well.
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Given a parallel implementation of our approach, it is suitable for monitoring dis-
tributed systems. The individual tasks can be spread across the distributed system to
improve the scalability of the approach. For example, the filtering and density-based
clustering could be performed at the monitored nodes and as such reduce the overhead
of monitoring data that needs to be transmitted for further diagnosis once an error is de-
tected. Furthermore, tasks that exhibit higher overhead can be implemented in distributed
data-analysis frameworks, such as Hadoop [8] to improve the scalability of our approach.

The reader should note that we are not aware of other log-analysis approaches that
exhibit the same high degree of parallelism that our approach exposes.

9.5 Optimized Parameter Tuning

The log model we introduced in Section 5.3 exhibits two free parameters. While we have a
heuristic to determine the clustering threshold t, we do not have effective means to deter-
mine an upper-bound value for the parameter s. The sensitivity s controls the sensitivity
towards the number of tokens and monitoring records to be considered as cluster candidate
for Vaarandi’s algorithm. While we have proposed a lower bound for this parameter, we
do not yet have means to estimate an upper bound for modelling monitoring samples for
symptom extraction. We believe by feeding back outcomes of a cross-validation of a classi-
fier on a representative sample set, one can formulate the estimation of s as an optimization
problem. We regard that problem as part of our future work.

9.6 Other Application Areas of the Data Model

One of the core contributions of this thesis is the log model proposed in Chapter 5. Al-
though our objective is fault diagnosis, it may also serve other application areas. As part
of future work, we believe it can also be adapted to intrusion detection and actionable
event discovery.
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Recent work by Vaarandi [141] has shown that his initial algorithm [140] can be adapted
to structured monitoring data to detect intrusions. Because we extended his proposal, we
also believe our approach could be adapted to this context.

Hellerstein et al. [45] have shown how burst-detection algorithms and frequent item-set
mining can be used to discover actionable patterns from structured monitoring data. As
part of future work, we believe our log model could also be adapted to that application
area.

9.7 Side Effects of Recovery and Probe Actions

The proactive approach discussed in Chapter 7 assumes that side effects of probe and
recovery actions are known in advance. However, it is possible that a recovery action
applied to the system may cause unforeseen side-effects. To address that, we diagnose
symptoms of recurrent faults again, whenever a probe or recovery action was attempted
and failed. That way our proactive approach is able to cope with side-effects that match
known faults.

Unfortunately, if the side effects of recovery actions do not match known faults the
proactive recovery process may become unstable. Therefore, we terminate the recovery
process after many failed automatic recovery attempts. Current operator practice is to
manually investigate the cause of such failures. Even in that context our recovery process
can be beneficial, since we can log the trail of attempted recovery and recovery actions and
provide the operator with context.

9.8 Diagnosing Previously Unseen Faults

We assumed that our model can learn, and subsequently diagnose, recurrent faults from
historic monitoring data. If a new fault is discovered that does not match the signature of
any previously learned fault our approach will fail to diagnose it. In order to include such
new faults in our model, we need to first obtain a sufficient number of samples and relearn.
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Depending on the nature of the fault, this may cause significant overhead. If the
fault has a manifestation that cannot be matched by existing record types, the record
types themselves need to be relearned (see Chapter 5). If the fault does not map to an
existing fault label (i.e., different component or different type of fault) then the decision-tree
classifier that reflects symptoms of recurrent faults needs to be relearned (see Chapter 6)
and the proactive model recomputed (see Chapter 7). If the discovery of the new fault
changes the prevalence of recurrent faults significantly or requires new probe- or recovery
actions, the proactive model also need to be recomputed also.

So far we have not addressed the problem of novelty detection and attribution. As
part of future work, we believe the area of active learning, for example the approach by
Rubens [114], may provide useful approaches to cope with that challenge of sample novelty
detection of samples. In addition the approximated record types may also need to be
updated with new samples. Other approaches that use grammar-inference techniques,
such as Memon [86], can be integrated to detect the occurrence of new record types and
trigger model relearning.

9.9 Adapting to Concept Drift and Online Learning

The model presented in Chapter 7 assumes that properties such as the types of faults,
fault prevalence, effects (including side-effects) of recovery and probe actions are known.
Unfortunately, data to establish these properties may be difficult to obtain or turn out to
be invalid. In previous work [110] we analyzed the impact of certain types of concept drift.
So far the approaches evaluated fail to account for invalid or drifting specifications about
perceptually aliased faults. POMDP-learning approaches [84, 122] may be an avenue for
future research to cope with learning perceptually aliased faults.
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9.10 Recovery under Partial Controllability

The model we described in Chapter 7 assumes full controllability of the system to attempt
recovery. Because the state coverage by most system interfaces is limited, that assumption
can only be made for a small set of systems or a coarse set of recovery actions, such as full
reboot. In order to expand possible application areas of the model we need to extend the
model to function under partial controllability too.

As part of future work, we believe that the area of expert systems may provide some
suitable approaches to expand the model. The approach we discussed in Chapter 7 may
operate automatically for all system states in which full controllability is guaranteed and
may provide expert advice to a manual investigator, which recovery attempts to make
next, for cases in which full controllability cannot be asserted.

9.11 Incorporating Reliable Error Detection

In this thesis we assumed the presence of reliable error detection. However, in order to
deploy the discussed approach in the field, reliable error detection must be developed and
integrated into the suite. The fault coverage will also be determined by the quality of
the error detection. We have shown [91, 108] for tracing, it is possible for diagnosis to
be sensitive to a variety of subtle faults, but error detection may require further tuning.
Integrating the approach with tracing the scope of limitation 9.3 will be easier to assess
for specific systems.

9.12 Incorporating Dependency Models

So far our approach viewed the system as a set of independent components. However, fault
propagation depends on the structure of the system. The diagnostic accuracy, especially
for perceptually aliased faults, may be improved by incorporating knowledge of the system
structure. In this thesis we did not make explicit assumptions about the system structure
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as such data may be invalid, outdated or simply not available. In related work [62] we have
shown how incorporating system structure can improve the diagnostic accuracy of metric-
based fault diagnosis. We believe that such models may also improve the performance of
the approach described in this thesis.
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