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Abstract

For a given graph, G, the crossing number crk(G) denotes the minimum number of
edge crossings when a graph is drawn on an orientable surface of genus k. The sequence
cr0(G), cr1(G), ... is said to be the crossing sequence of a G. An equivalent definition exists
for non-orientable surfaces.

In 1983, Jozef Širáň proved that for every decreasing, convex sequence of non-negative
integers, there is a graph G such that this sequence is the crossing sequence of G. This
main result of this thesis proves the existence of a graph with non-convex crossing sequence
of arbitrary length.
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Chapter 1

Introduction

One of the most famous results in Topological Graph Theory is Kuratowski’s Theorem,
which characterizes the set of graphs that can be drawn on the plane with no edge crossings.
The theorem states that a graph is planar if and only if none of its subgraphs is a subdivision
of K5 or K3,3.

A drawing of a graph on a surface Σ is a mapping of the vertices of G to distinct
points on the surface and the edges to simple curves. For each edge {u, v} ∈ E, the points
corresponding to u and v will be the endpoints of the curve corresponding to {u, v}. We
specify that at most two curves can cross at a single point and that no curve can intersect
a vertex except at its endpoints.

If a graph G is not planar, then two natural questions arise: what is the crossing number
of G and what is the genus of G? Both of these questions have been well studied and, in
general, are hard problems to solve.

A crossing is an intersection of two edges that is not a vertex. The crossing number
of a graph, cr(G), is the minimum number of crossings over all possible drawings on the
plane. The first problem in the field was posed by Turán in 1944 and remains open. The
problem is to determine the crossing number of the complete bipartite graph, cr(Km,n).

A closed surface is characterized topologically by its orientability and its genus. For an
orientable surface, the genus is simply the number of handles on the surface. If the surface
is non-orientable, then the genus is the number of crosscaps.

Given a drawing of a graph on the plane with a crossing, one can introduce either a
handle or a crosscap to the surface in order to remove the crossing. The result is a drawing
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on a surface of genus 1 with one fewer crossing. This process can be repeated until the
graph is embedded in a surface, meaning that it is drawn with no crossings.

The genus of the graph is smallest positive integer g such that the graph can be embed-
ded on the surface of genus g. A graph has an orientable and non-orientable genus. The
orientable and non-orientable genus are not necessarily equal and both are at most cr(G).

Despite these questions having been well studied, it is interesting that very little work
has been done on the natural combination of the two: crossing numbers on more general
surfaces. The kth orientable crossing number of a graph is defined to be the minimum
number of crossings over all possible drawings of G on the orientable surface of genus k
and is denoted crk(G). There is an analogous definition for non-orientable surfaces and is
denoted c̃rk(G).

The orientable crossing sequence of a graph is defined to be the sequence cr0(G),
cr1(G), . . . ,crg(G) = 0, where g is the genus of G. The non-orientable case is also de-
fined in the same fashion. We will generally refer to the orientable version simply as the
crossing sequence unless otherwise specified.

As we described above, we can remove at least one crossing by adding a single handle
or crosscap to the surface. Therefore, we see that the crossing sequence is a finite sequence
of positive integers strictly decreasing to zero.

To date, there have only been 3 major results in the field of crossing sequences. The
first was by Širáň [6] in 1983. He introduced the notion of the crossing sequence and showed
that for any convex sequence there is a graph with that sequence as its crossing sequence.
A decreasing sequence a0, a1, . . . is convex if and only if aj−1 − aj ≥ aj − aj+1, for any j.
He conjectured that every crossing sequence is convex. If true, this conjecture would have
completely characterized the set of crossing sequences.

In 2001, Archdeacon, Bonnington, and Širáň [1] found a counter example to Širáň’s
conjecture. For any positive integers a > b, they proved the existence of a graph with
non-orientable crossing sequence a, b, 0. In particular, when a−b < b, this sequence is non-
convex. Additionally, they found a counter-example for the orientable case which also had
length 3. However, this example lacked the full generality of its non-orientable counterpart.

Finally, in 2011, DeVos, Mohar, and Šámal [3] proved a similar result for the orientable
case. Given two positive integers a > b, they proved the existence of a graph with orientable
crossing sequence a, b, 0.

The main result of this paper proves the existence of a graph with non-convex crossing
sequence of arbitrary length. In particular, given any N ∈ N and ε > 0, there exists a
graph such that (crn−1 − crn)/(crn − crn+1) < ε for some n ≥ N .
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In Chapter 2, we will describe several techniques and gadgets which will allow for
easier analysis of the crossing number. Chapter 3 provides several lemmas, including the
first result of this thesis, that will used extensively in our analysis. Chapter 4 contains a
thorough review of the previous results described above. Finally, in Chapter 5, we describe
our graphs Gn,k and prove our main result:

Theorem 1.0.1. Let n be a positive integer and k ≥ 10 be an even positive integer. Then
there exists a graph G that has crossing sequence given by:

cr0(G) = 2n2k2

cr2g−1(G) = [nk − (g − 1)k − 1]nk for 1 ≤ g ≤ n
cr2g(G) = [nk − (g − 1)k − 2]nk for 1 ≤ g ≤ n

cr2n+1(G) = 0

Note that, for 1 ≤ g < n,

cr2g−1(Gn,k)− cr2g(Gn,k) = nk
cr2g(Gn,k)− cr2g+1(Gn,k) = nk(k − 1) .

In particular, for such g, the three term sequence cr2g−1(Gn,k), cr2g(Gn,k), cr2g+1(Gn,k) is
not convex.
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Chapter 2

Techniques and Gadgets

2.1 Cutting a Surface

Much of our analysis of Gn,k will center around the homotopy classes of our surface. For
completeness, we recall the definition of homotopy.

Let c1 and c2 be continuous maps from X to Y . We say that c1 and c2 are homotopic
if there exists a continuous map H : [0, 1] × X → Y such that H(0, x) = c1(x) and
H(1, x) = c2(x) for every x ∈ X.

In particular, we will often focus on the homotopy of cycles in the graph. We say a
cycle is contractible if it is homotopic to a point. On the plane, every cycle is contractible.
If a cycle can not be continuously deformed to a point, we say it is non-contractible.

A separating cycle divides the surface into two disjoint regions, one on each side of the
curve. Every contractible curve is separating, but the converse is not true. Similarly, a
non-separating curve does not divide the surface. Such a curve must be non-contractible.
Figure 2.1 gives an example of two non-contractible curves.

Suppose we have drawing D of a graph G on a given surface Σ of genus g. Suppose
G contains a cycle C that contains no crossings and is non-contractible in D. Cutting Σ
along C leaves a new surface Σ′ with two holes, each bounded by a copy of C. We will call
these copies C1 and C2. Cap each of the holes with a disc. There are two cases.

Case I (C is Non-Separating) If C is non-separating, Σ′ is now a closed surface with
genus g − 1. Since C was uncrossed in D, the drawing extends to a drawing D′ in
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Outline Background and Motivation Gadgets and Methods The Graphs Gn,k

Cutting and Capping (continued)

C is non-separating: C is separating:

Andrew McConvey Highly Non-Convex Crossing Sequences
Figure 2.1: Two non-contractible curves. The curve on the left is non-separating and the
curve on the right is separating.

Σ′. In this drawing, there are two copies of C and every edge and vertex in G \C is
found exactly once.

Suppose C ′ is another cycle in G and assume that it is not self-crossing in D. If C ′ is
disjoint from C, then it is drawn as a closed curve in D′. However, if it is not disjoint
from C, this may not be the case.

The case that C and C ′ intersect at just one point s is an important one in this
thesis. If this point is not a tangent point in D (i.e. C ′ crosses C), then C ′ will not
be a simple closed curve in D′. Since there are two copies of C in D′, each of these
contains a copy of the point s, which we will call s1 and s2 respectively. In D′, the
cycle C ′ appears as an arc on Σ′ with end points s1 and s2.

More generally, we can distinguish the two sides of the curve C in our original draw-
ing. Any edge incident to one side of the curve in D, say the left, will be incident to
C1 in D′. Any edge incident to the other side of the curve in D, now the right, will
be incident to C2 in D′.

Case II (C is Separating) If C is a separating curve, cutting and capping Σ along C
leaves two disjoint surfaces, Σ1 and Σ2 with genus g1 and g2, respectively. Note that
g = g1 + g2.

The drawing D induces drawings of two subgraphs of G, namely G1 := G∩Σ1 in Σ1

and G2 := G ∩ Σ2 in Σ2. Note that G1 ∪G2 = G and G1 ∩G2 = C.

Let C1 be the copy of C in G1 and C2 the copy of C in G2. The cycles C1 and C2 each
bound a disc which is also a face on Σ1 and Σ2 respectively. Since C was uncrossed
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in D every remaining edge and vertex must be drawn on exactly one of Σ1 or Σ2.

As in the non-separating case, we can distinguish the two sides of the curve C in our
original drawing. If an edge e was incident to one side of the curve in D, say the left,
it will be found in G1 and incident to C1. This also implies that e will be contained
on the surface Σ1. Any edge incident to the other side of the curve in D, now the
right, will be incident to C2 and be drawn on Σ2. No edge could be on both Σ1 and
Σ2 because that would imply that it was in both regions of Σ that were bounded by
C.

Outline Background and Motivation Gadgets and Methods The Graphs Gn,k

Cutting and Capping (continued)

C is non-separating: C is separating:

Andrew McConvey Highly Non-Convex Crossing Sequences

Figure 2.2: The surfaces of Figure 2.1 after cutting and capping.

We will call this process “cutting and capping” along C. It is particularly useful because
the non-contractibility of C implies each new surface that is created has genus strictly less
than g. This will allow us to use induction on the genus of the surface.

2.2 Weighted Edges

Weighted edges are often used in crossing numbers to dictate which edges can and cannot
be crossed. Suppose we have a graph in which an edge e has weight we ∈ N. If edges e
and e′ cross in a drawing of G, we say that the weight of the crossing is we · we′ .

The weighted crossing number wcrg(G) of a graph G is defined to be the minimum sum
of weighted crossings in any drawing of the graph in the surface of genus g.

It is shown in [1] that, for any weighted graph G′ with positive integer weights, there
is an unweighted graph G with wcrg(G

′) = crg(G), for all g ≥ 0. Given such a weighted
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graph G′, we will describe a recursive process to find the unweighted graph G with the
same crossing number.

Let e ∈ E(G′) be an edge such that we > 1. Define a new weighted graph G′′ by
replacing e with we parallel edges of weight 1. Clearly G′′ has fewer edges of weight greater
than 1 and we will show that wcrg(G

′′) = wcrg(G
′)

Consider an optimal weighted drawing D′ of G′ on a surface of genus g. Obtain the
drawing D′′ of G′′ by removing the curve associated to edge e from D′ and replacing it
with we parallel curves, all drawn near to each other in the surface. Each of these edges
has weight one.

Since each parallel edge in D′′ crosses the exact same weighted edges as e in D′, the
weighted crossing number of D′′ must the same as the weighted crossing number of D′. In
particular, we know that wcrg(G

′) ≥ wcrg(G
′′).

Now suppose we have an optimal drawing of G′′ on a surface of genus g. Take the
parallel edge that contributes the least to the weighted crossing number. This drawing can
be modified so that all we of the edges run alongside this minimal edge without increasing
the crossing number of the drawing.

Replacing these now parallel edges with one edge of weight we gives a drawing of G′

with the same weighted crossing number. So wcrg(G
′′) ≥ wcrg(G

′) and, from the previous
paragraph, equality must hold. Note that this is true for any genus g.

So given a weighted graph G′, we have found a new graph G′′ with the same weighted
crossing number and fewer edges with weight greater than 1. The process can be repeated
until we have a weighted graph G′′ in which all edges have weight 1 and wcrg(G

′′) =
wcrg(G

′).

From G′′, we wish to obtain a simple graph G. First, we subdivide any parallel edges
and note that this does not affect the weighted crossing number. Now, G′′ is a weighted
graph with no parallel edges and each edge has weight one. Let G be the simple, unweighted
graph with vertex set and edge set equivalent to the vertex set and edge set of G′′. Since
each edge in G′′ has weight 1, it is clear that crg(G) = wcrg(G

′′) = wcrg(G
′).

Lastly, we introduce the similar concept of thick edges. A thick edge is simply an edge
with infinite weight. The weighted crossing number is finite if and only if the subgraph of
G consisting of all the thick edges is planar. In this case, thick edges can be treated simply
as weighted edges with weight greater than cr0(G).
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2.3 Rigid Vertices

Suppose there is a graph with vertex v and incident to edges e1, e2, . . . , en. If, in the given
drawing and proceeding clockwise from e1, we find the order of the incident edges to be
e1, e2, . . . , en, then we say that the (clockwise) rotation of v is π(v) := e1, . . . , en. We may
similarly define the counter-clockwise rotation.

Rigid vertices were used by DeVos et al. [3] as a means to prescribe the rotations of a
vertex. For completeness, we will include their discussion here. A rigid vertex is a vertex
v whose incident edges have a local cyclic rotation πv, prescribed up to inversion. This
means, in any drawing of the graph, either the clockwise rotation or the counter-clockwise
rotation of v is given by π(v).

We show that for any graph with rigid vertices with crossing number crg, there exists
a graph without rigid vertices with the same crossing number.

Suppose G is a connected graph with rigid vertex v. We will create the new graph
G′ by replacing v with a copy of graph Vn,deg(v). Suppose the prescribed rotation of v is
e1, e2, . . . , edeg(v). To obtain G′ from G, subdivide each ei n times, creating new vertices
vi,1, vi,2, . . . , vi,n, in order from v. Then add thick cycles (i.e cycles with thick edges) cj :=
v1,j, v2,j, . . . , vdeg(v),j, v1,j, for each j ∈ {1, 2, . . . , n}. We will show that, when n ≥ 3g + 2,
crg(G) = crg(G

′).

v

Figure 2.3: A drawing of Vn,deg(v) (here n = 5 and deg(v) = 4).

Suppose we have an optimal drawing of G on a surface of genus g. Because v is rigid,
we can replace v with a drawing of Vn,deg(v) by the process described above. Since all new
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edges can be placed within an ε-neighborhood of v, the process will add no more crossings.
Therefore, crg(G) ≥ crg(G

′).

If there is an optimal drawing of G′ such that Vn,deg(v) is drawn as in Figure 2.3 (i.e. with
the thick cycles ci of Vn,deg(v) contractible and nested), then we can replace Vn,deg(v) with a
rigid vertex v without introducing additional crossings. In this case, crg(G) ≤ crg(G

′) and
our proof is complete.

Suppose we have an optimal drawing D of G′. Following the argument of DeVos et al.,
we will show that there is another optimal drawing D′ of G′ so that Vn,deg(v) is drawn as
in Figure 2.3. Consider the n disjoint cycles c1, . . . , cn and note that no thick cycle can be
crossed.

Two of the ci’s are Contractible Suppose ci and cj are contractible with i < j in D.
Let Ci be the disc bounded by ci. Note that there are exactly two connected com-
ponents of G′ \ ci, one containing cj and the other containing v.

Since ci is thick, each component must be completely contained in a face bounded by
ci and, since Ci is a disc, we can assume that at least one component of the graph is
contained in the other face. The component containing v is planar, so we conclude
that it is contained in Ci and that the other component is contained in the other
face.

Now, we can redraw all the cycles ck to be in an ε-neighborhood of ci, so that each
Ck is contained in Ck+1. Drawing the cycles in this way introduces no new crossings
to the graph and creates a drawing of Vn,deg(v) as in Figure 2.3.

No two of the ci’s are Contractible There can be at most 3g−3 disjoint, non-contractible,
pairwise non-homotopic cycles on the surface of genus g [4, Prop. 4.2.6]. Since
n ≥ 3g + 2, there must exist two homotopic cycles ci and cj with i < j < n.

Since ci and cj are thick, each component of G′ \ (ci∪ cj) must be contained in a face
bounded by ci ∪ cj. Let K be the connected component containing cn. Each other
connected component is planar and can either be drawn in the cylinder bounded
by ci and cj or within a ε-neighborhood of ci. Thus, we can assume that K is not
contained in the cylinder bounded by ci and cj. Moreover, K is incident to only one
side of cj.

Cut and cap along cj. If cj was separating, then consider the new surface Σ1 with
genus g1 < g containing K ∪ cj. If cj was non-separating, then the new surface Σ′

has genus g − 1. Delete the copy of cj not incident to K and all vertices and edges
in G′ \ (K ∪ cj). In both cases, we are left with a drawing of K ∪ cj with no more
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crossings on a surface of strictly smaller genus. Moreover, in this new drawing, cj is
contractible and uncrossed.

Since Vj,deg(v) = G′ \K is planar, it can be embedded in the disc bounded by cj. We
must also redraw the cycles cj+1, . . . , cn alongside cj. If we do so, we obtain a drawing
of G′ in Σ′ with no more crossings than the original drawing. Since the genus of Σ′

is strictly smaller than g, this contradicts the optimality of D, so no such drawing
could exist.

We can therefore conclude that crg(G) = crg(G
′). So for any graph G with rigid vertices,

there exists a graph with no rigid vertex and the same crossing sequence.

Note that the proof would still hold if we replaced G with a weighted graph with rigid
vertices and instead show that there exists a new weighted graph with no rigid vertex and
the same weighted crossing sequence.
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Chapter 3

Disjoint Cycles and Bouquets

In this section, we introduce two theorems which we will use to analyze the crossing
sequence of our graph. The various cycles contained in our graph will often help us to
obtain a bound on the crossing number. The two theorems limit the ways in which the
cycles can be drawn on a surface.

3.1 Disjoint Cycles

The following theorem gives one relatively simple, but very useful property of disjoint
curves on orientable surfaces. Note that two curves are disjoint on a surface if they do not
intersect.

Theorem 3.1.1. Let Σ be an orientable surface of genus g, and let C be a set of pairwise
disjoint simple closed curves in Σ such that |C| > g. Then some subset of curves in C
separates Σ.

Theorem 3.1.1 is a fundamental property of orientable surfaces and some sources (e.g.
[5]) even define the genus as the maximum number of disjoint closed curves that can be
drawn without separating the surface. We provide a short proof using the cutting and
capping technique.

Proof. If Σ is a sphere, then every curve in C is contractible, and hence separating. Since
C contains at least one such curve, we are done. For the case when g ≥ 1, we proceed by
induction.
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Pick a curve, c1 ∈ C. If c1 is separating, we are done. Otherwise, cut and cap along it
to obtain a surface Σ′ of genus g − 1.

Now C \ {c1} is a set of at least g pairwise disjoint simple closed curves in Σ′. By the
induction hypothesis, some subset C ⊆ C \ {c1} separates Σ′.

If the two copies of c1 are in the same component of Σ \
⋃

c′∈C c
′, then C separates Σ.

Otherwise, C ∪ {c1} separates Σ.

3.2 The RBG-Bouquet

When we consider a drawing of the graph Gn,k in some surface, we will need to show that,
for paths that produce crossings, there are only limited possibilities for how these paths
can be drawn. Our next result, the first new result of this thesis, describes in sufficient
detail these limitations.

A bouquet is a graph with a single vertex. Note that every edge in a bouquet is a loop.
Suppose we have a bouquet with the vertex s and ` non-contractible loops. These ` loops
are partitioned into 3 classes, R := r1, . . . , ri, G := g1, . . . , gj, and B := b1, . . . , bk. Each of
the ` loops is incident to s exactly twice and the rotation of the loops about s is prescribed.

In the first half of the rotation, we see the elements of R followed by the elements of
G∪B. Within each their individual class, the elements of R are ascending and the elements
of B and G are each descending.

Next, in the second half of the rotation, we see the elements of B ∪ R followed by G.
This time, within their respective classes the elements of R and B are each ascending and
the elements of G are descending. The rotation is therefore R → B ∪ G → B ∪ R → G.
Such an embedded bouquet is an RBG-bouquet.

We will see that bouquets with this type of rotation can often be created by contracting
a path to a point. A small example of the rotation can be seen in Figure 3.1.

It will often be the case that if two paths are homotopic in a drawing of Gn,k, then
they must contain a crossing. By bounding the number of non-homotopic paths, we will
be able to find a bound for the crossing number of the graph.

Theorem 3.2.1. Suppose an RBG-bouquet with vertex s and ` loops is embedded with
no crossings in the sphere with g handles. If all loops are non-contractible and pairwise
non-homotopic, then ` ≤ 3g.
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Figure 3.1: Bouquet

If we constrain the rotation of the bouquet even further, then we are able to find a
tighter bound. In particular, if all the loops are in B, the following corollary can be proved
without significantly modifying the argument.

Corollary 3.2.2. Suppose an RBG-bouquet with ` loops is embedded with no crossings in
the sphere with g handles. If R ∪ G = ∅ and all loops are non-contractible and pairwise
non-homotopic, then ` ≤ 3g − 2.
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We will prove the theorem by induction on the genus g of the surface. We will cut and
cap along a given loop and show that almost all of the loops remain non-contractible and
pairwise non-homotopic in the new surface. The rotation of s will determine which loop is
cut.

Proof. Base Case

Suppose g = 1. Assume there are four non-contractible, non-homotopic loops e1, e2, e3
and e4 on the torus.

First note that two cycles are disjoint in a drawing of G are disjoint if they have no
common points on the surface. Now, restrict the embedding to just two loops, ei and ej
where i, j ∈ {1, 2, 3, 4}. If the rotation of these loops is ei, ej, ej, ei, then ej is homotopic to
a cycle disjoint from ei. Since disjoint, non-homotopic, non-contractible cycles on the torus
must cross [4, Prop. 4.2.6], the loops ei and ej must cross, a contradiction. We conclude
that the rotation must be ei, ej, ei, ej for any choice of i, j. Moreover, we can assume the
rotation of all four loops is e1, e2, e3, e4, e1, e2, e3, e4.

Cut and cap along e1. From the rotation we know that e1 was non-separating, so we
are left with the sphere Σ′ with two copies e1 and e′1 of e1, containing the copies s and s′,
respectively, of s.

The other loops become simple curves with endpoints s and s′ in Σ′ and any two will
separate the sphere into two faces. Consider the faces created by e2 and e3. Each face must
contain exactly one of e1 or e′1, as otherwise the two curves would have been homotopic in
the original surface.

The loop e4 must be contained in one of the two regions bounded by e2 and e3 and
divide the region into two sub-faces. One of the sub-faces is bounded by e2 and e4 and a
second bounded by e3 and e4. Each sub-face must also contain a copy of e1, as otherwise
e4 would have been homotopic to either e2 or e3 in Σ. This cannot occur since there is
only one copy of e1 in the original face.

We conclude that on the torus, there are at most 3 non-contractible, non-homotopic
loops in the bouquet and the lemma holds.

The inductive step has two major cases, which depend on the rotation of s.

In the first major case, B 6= ∅ and the ends of b1 are consecutive in the
rotation of s.

We will cut and cap along b1, the first loop in B.
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Case 1 Suppose b1 is separating. Cutting and capping along b1 creates two surfaces, each
of genus at most g−1. Due to the rotation of s, one surface Σ′ contains all remaining
loops.

None of the remaining loops can be contractible in Σ′ as otherwise it would be either
contractible in Σ or homotopic to b1. If two loops are homotopic in Σ′, then they
bound a cylinder that contains the disc bounded by b1. If there were two such pairs,
then one pair would have been homotopic in Σ.

So after cutting and capping along b1 and possibly removing one loop from a newly
homotopic pair, we have a bouquet with ` − 2 loops on a surface of genus at most
g − 1. By induction, we have ` ≤ 3g − 1 ≤ 3g.

Case 2 Suppose b1 is non-separating. We will separate this case into two subcases.

Subcase (i) Suppose g = 2. Cutting and capping along b1 yields a torus, Σ′. Recall
that there are two copies of b1 on Σ′. One of the two, which we will continue to
call b1, is still incident to all the other loops of the bouquet. The other copy of
b1, which we will denote b′1, is elsewhere on the surface.

Suppose first that two of the remaining loops, e1 and e2, are homotopic on Σ′

but were not homotopic on Σ. Together, they bound two faces on Σ′, each of
which is a cylinder; one cylinder is found to the right of e1 and the other is found
to the left e1. Since e1 and e2 were not homotopic in Σ, each of these cylinders
must contain one of b1 and b′1. Clearly, e1 and e2 can be the only curves with
this property.

Additionally, there may be a loop e3 that is contractible in Σ′. Then the disc
that it bounds in Σ′ must contain both b1 and b′1. To see this, observe that if it
contained neither it would have been contractible in Σ and if it contained only
one it would have been homotopic to b1.

The existence of e3 and the existence of e1 and e2 are mutually exclusive as
otherwise e3 must cross the boundary of the cylinder bounded by e1 and e2.
Removing the newly contractible or one of the homotopic loops, we now have
a bouquet with ` − 2 non-contractible, non-homotopic loops on the torus. By
induction, ` ≤ 5 ≤ 3g − 1.

Subcase (ii) Suppose g ≥ 3. In this case, cutting and capping yields a surface Σ′

of genus g − 1. As in subcase (i), there are 2 copies of b1 on Σ′, each bounding
a disc. One of these copies, which we continue to call b1, is still attached to the
bouquet. The other copy, which we call b′1, appears elsewhere on the surface.
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Suppose that there are two curves e1 and e2 which are homotopic in Σ′ but were
not homotopic on Σ. The cylinder that they bound must contain either the disc
bounded by b1 or the disc bounded by b′1. There are two subcases. The first is if
this cylinder contains both of the discs and the second is if the cylinder contains
exactly one.

Subcase (ii.a) Suppose the cylinder bounded by e1 and e2 contains both b1
and b′1. Clearly e1 and e2 must be the only two such curves, since any other
curve with this property must have originally been homotopic to one of
them in the original surface.
Suppose there is a third curve e3 that is contractible in Σ′ but was not in Σ.
Then the disc it bounds in Σ′ must contain both b1 and b′1. If it contained
neither it would have been contractible in Σ and if it contained just one it
would have been homotopic to b1. Clearly, only one such loop can exist.
Further suppose there is a loop e′3 which is now homotopic to e1 and e2, but
was homotopic to neither in Σ. Then, the cylinder bounded by e1 and e′3
must contain either b1 or b′1, but not both as otherwise e′3 would have been
homotopic to either e1 or e2 in Σ. Similarly, the cylinder bounded by e2
and e′3 must contain the other of b1 and b′1. Again, only one such e′3 could
exist.
The existence of e3 and e′3 are mutually exclusive, as the disc bounded by e3
would have to be in distinct cylinders having disjoint interiors. Therefore,
there are at least `−3 non-homotopic, non-contractible loops in the bouquet
on Σ′

Subcase (ii.b) We can assume no two loops bound a cylinder containing both
b1 and b′1, as that case was discussed in (ii.a). Suppose the cylinder bounded
by e1 and e2 contains b1 and not b′1; the other choice is treated in a com-
pletely analogous manner. No other curve can be in such a cylinder con-
taining b1 without being homotopic to either e1 or e2 in Σ.
As in our discussion of the double torus, any loop that is contractible in Σ′

but not in Σ must contain both b1 and b′1. Suppose e3 is such a contractible
curve.
Any cylinder that separates b1 from b′1 must have its boundary curves within
the disc bounded by e3. This implies that the boundary curves are con-
tractible in Σ, a contradiction.
We conclude that e1 and e2 may be newly homotopic in Σ′, and there may
be other newly homotopic curves whose cylinder bound b′1, but these are
the only such examples. Therefore, after cutting and capping along b1 and
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removing one loop from two possible newly homotopic pairs, there are at
least `− 3 non-homotopic, non-contractible loops in the bouquet on Σ′.

In both subcases, we have a bouquet of at least `−3 loops on a surface of genus
g − 1. By the induction hypothesis, ` ≤ 3g, completing the proof.

Corollary 3.2.2: If R ∪G = ∅, then ` ≤ 3g − 2

In this special case, we know s has the rotation b1, . . . , b`, b`, . . . , b1. On the torus, there
can only be one loop. If there were two, then b2 would be homotopic to a cycle disjoint
from b1 and must cross b1 [4, Prop. 4.2.6]. So when g = 1, ` ≤ 1 = 3g − 2.

The induction step follows exactly as in Cases 1 and 2 above. However, each time we
invoke the induction step, we do so with the hypothesis that ` ≤ 3g− 2. We can conclude
that when R ∪G = ∅, ` ≤ 3g − 2.

In the second major case, the ends of b1 are not consecutive.

We now choose the loop along which we will cut and cap. If B = ∅, the choice of either
r1 or g1 is arbitrary. If B 6= ∅, at least one of r1 and g1 must be found between the two
ends of b1. We will assume that r1 is such a loop, although the case for g1 is completely
symmetric, by considering the inverse rotation in which G becomes R.

If r1 is the only loop, then we are trivially done, so we may assume it is not the only
one. Due to the rotation of s, we know that for any other loop x, the ends of r1 and x
occur in the order r1, x, r1, x. This implies that every loop is non-separating.

Cutting and capping along r1 will create a surface Σ′ of genus g − 1, with two copies
of r1 and two copies of s. Let these two copies be r1 and r′1, containing the point s and s′,
respectively. Since in the original surface, for each loop x, r1 and x had rotation r1, x, r1, x,
each loop now has one end in each copy of s.

Additionally, the original rotation of s can be partitioned into two “halves”, with the
first half r1, y2, . . . , y`, where y` is either b1, g1, or r` (the last case implies all loops are in
R). The second half has rotation r1, z2, . . . , z` with z2 either r2, b1, or g1.

If z2 is r2, then after cutting along r1, we will contract r2. Otherwise, we will contract
along y` which is either b1 or g1.

If r2 is contracted, then it must have immediately followed r1 in both halves of the
rotation. Contracting r2 will create a new bouquet with rotation y3, . . . , y` in the first half
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Figure 3.2: The vertices s and s′ after cutting along r1 and before contracting r2

and z3, . . . , z` in the second half. Figure 3.2 shows the bouquet after cutting along r1 and
before contracting r2.

If g1 is contracted, then g1 must be the last loop in both halves of the rotation, so the
rotation of the new bouquet is y2, . . . , y`−1 in the first half and z2, . . . , z`−1 in the second
half. This is symmetric to the case of contracting r2.

Finally, if b1 is contracted, then b1 was the final loop in the first half of the rotation
and immediately followed r1 in the second half. Contracting b1 will create a new bouquet
with rotation y2, . . . , y`−1 in the first half and z3, . . . , z` in the send half. Figure 3.3 shows
the bouquet after cutting r1 and before contracting b1.

In any case, we are left with a bouquet with `− 2 loops with the appropriate rotation.
We need only determine if there are any newly contractible or newly homotopic loops.

Suppose there are two loops x and y that are newly homotopic. Then they must bound
a cylinder in the surface Σ′. Moreover, this cylinder must contain at least one of r1 and
r′1, as otherwise x and y would have been homotopic in Σ.

Let z be the loop that was contracted to re-establish the bouquet. Before contracting
z, x ∪ z and y ∪ z must have bounded the cylinder containing either r1 or r′1. Due to the
location of r1 and r′1 in the rotation, the cylinder contains neither or both of r1 and r′1. So
after contracting z, the cylinder bounded by x and y must contain both r1 and r′1.

Clearly, x and y can be the only such newly homotopic loops. If there are no newly
contractible loops, deleting y creates a bouquet on Σ′ with every loop non-contractible and
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Figure 3.3: The vertices s and s′ after cutting along r1 and before contracting b1

pairwise non-homotopic. Since we cut and capped along r1, then contracted another loop,
and deleted y, this bouquet has `− 3 loops. By induction, ` ≤ 3g.

We now examine the possibilities when the new bouquet contains newly contractible
loops. Since a disc bounded by a newly contractible loop must contain exactly one of r1
or r′1, the newly contractible loops must be contained in the cylinder bounded by x and y.

Case 1 Suppose that r2 is the contracted loop. If a loop u is newly contractible, then
before contraction of r2, the cycle formed by r2u must have bounded a disc. Due to
the rotation of s, this disc must contain exactly one of r1 or r′1. Moreover, if v is a
second such loop, the disc bounded by r2v must be disjoint from the disc bounded
by r2u and contain exactly one of r1 and r′2.

Subcase (i) Suppose no two loops are newly homotopic. If there is only one newly
contractible loop, then after cutting r1, contracting r2, and removing the con-
tractible loop, we have a bouquet with ` − 3 non-contractible, non-homotopic
loops in a surface of genus g − 1. By induction, ` ≤ 3g.

Otherwise, suppose that u and v are both newly contractible loops. The order
of r2, u, and v in the first half of the rotation must be r2, u, v and must be r2, v, u
in the second half. If this were not true, then v would cross the disc bounded
by r2 and u. Any remaining loops must be between u and v in the first half
of the rotation and between v and u in the second half, as any other position
would imply the loop is in the disc bounded by r2v or r2u.
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In particular, any loop between u and v in the first half of the rotation and
between v and u the second half must be in B. So, after cutting along r1,
contracting along r2, and removing u and v, we are left with a drawing with
`−4 loops on the surface of g−1 in which all loops are in B. By Corollary 3.2.2
when R ∪G = ∅, `− 4 ≤ 3(g − 1)− 2. So ` ≤ 3g − 1.

Subcase (ii) Suppose x and y are newly homotopic loops. Since x and y are homo-
topic and uncrossed, the rotation of x and y must be x, y, y, x. We will assume
that x precedes y in the first half of the rotation and y precedes x in the second
half.

Let u be a newly contractible loop. The ends of u must be consecutive in Σ′

and u must bound a disc containing r1 or r′1. Since the cylinder bounded by x
and y contains both r1 and r′1, the cylinder must contain u. Moreover, if v is a
second newly contractible loop, it must also be in this cylinder.

We now wish to count the number of loops contained in the cylinder. Recall
that r2 was the loop contracted to reestablish the bouquet, so x∪ r2 and y ∪ r2
bounded the cylinder before the contraction of r2. We will consider the loops
before the contraction of r2.

Any loop contained in the cylinder has one end in s and one end in s′. We will
suppose that a loop starts in s and ends in s′. It must start in s either between
x and r2 or between y and r1. It must end in s′ either between r′1 and x or
between r2 and y.

If a loop has an end between x and r2 at s or between x and r′1 at s′, that is
equivalent to that loop being incident to the side of the cylinder bounded by
x ∪ r2. Similarly, if a loop has an end between y and r1 at s or between r2 and
y at s′, this is equivalent to that end being incident to the side of the cylinder
bounded by y ∪ r2.
Consider two loops z and z′ that each have one end in x ∪ r2 and one end in
y ∪ r2. After contracting r2, these two loops start at the same point on the side
of the cylinder bounded by x and end at the same point on the side bounded
by y . There can be at most 2 non-homotopic arcs in the cylinder with one end
each boundary cycle, so z and z′ can be the only such loops.

Now consider the order of loops incident to the side of the cylinder bounded by
x ∪ r2. Beginning with x at s, we see all loops between x and r2 at s (that is
x = yi, yi−1, . . . , y2 = r2), followed by all loops between r′1 and x at s′ (that is
r1 = z`, . . . , zi′ = x).

Similarly, if we look at the loops incident to y ∪ r2, beginning with y at s, we
see all loops between y and r1 at s (that is y = yj, . . . , y`), followed by all loops
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between r2 and y at s′ (that is r2 = z2, . . . , zj′ = y). Moreover, since the rotation
of x and y is x, y, y, x, we have that i < j and j′ < i′.

If z precedes z′ in both of x∪ r2 and y ∪ r2, then the columns are homotopic in
the cylinder. So z must precede z′ in one of the cycles, and z′ must precede z
in the other. This means that in the original rotation, the rotation of z and z′

was z, z′, z, z′.

Now we can consider when a loop u has both ends in x ∪ r2 or both ends in
y ∪ r2. In the case where both ends are in x ∪ r2, then the loop can either be
homotopic to r2 or homotopic to x. If u is homotopic to x in the cylinder, then
it was homotopic to x in the original surface, a contradiction.

If the loop is homotopic to r2, then it become contractible after contracting r2
and the disc it bounds contains r′1. There can only be one such loop and it must
have ends y3 and z` in the original rotation.

There can be another such loop v which has both ends incident to y ∪ r2. The
loop v must also be homotopic to r2 in the cylinder and the disc it bounds must
contain r1. So in the original rotation, the ends of v are y` and z3.

Suppose u, v, z, and z′ are all loops in the cylinder. Then, the rotation of
these four loops must have been u, z, z′v, v, z, z′, u in the original rotation of s.
However, this is incompatible with rotation of an RBG-bouquet. To see this,
observe that u and v have rotation u, v, v, u at s. So any columns between u
and v in both halves of the rotation must be in B. In particular, if z and z′ are
such loops, they must have rotation z, z′, z′, z. We conclude that there at most
3 loops in the cylinder.

Now consider all the loops not contained in the cylinder. Due to the rotation
of s, they must all be in B. Suppose we cut the cylinder off the surface and
fill x and y with discs. The new surface has genus g − 2. This surgery cannot
have resulted in any additional contractible loops because the disc bounded by
a contractible loop must contain x and y. This is prohibited by the rotation.

If two loops are newly homotopic, then the cylinder they bound contains x or y.
Due to the rotation, if the cylinder contains one of x or y, it must also contain
the other. Clearly there is only one such pair.

So, after removing the possible homotopic loop, we have a bouquet of non-
contractible, pairwise non-homotopic loops, with each loop in B. By Corol-
lary 3.2.2, there are at most 3(g− 2)− 2 loops. Including the loop made homo-
topic by removing the cylinder bounded by x and y, there are at most 3g − 7
loops in the region bounded by x and y.
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In total, there are at most 3 loops in the cylinder bounded by x and y, at most
3g−7 loops in the other region, x and y on the boundary, r1 which was originally
cut, and r2 which we contracted. We conclude that ` ≤ (3g−7)+3+2+2 ≤ 3g.

Case 2 Suppose g1 is the contracted loop. The argument is similar to the one used in Case
1. The only small difference is in Subcase (i) when the rotation of g1, x, and y in the
first half of the rotation is x, y, g1 and in the second half is y, x, g1. The discs bounded
by g1x and g1y must still separate the surface in the same way and the result follows.

Case 3 Suppose b1 is the contracted loop. If a loop u is newly contractible, then before
contraction of b1, the cycle formed by b1u must have bounded a disc. Due to the
rotation of s, this disc must contain either both of r1 and r′1 or neither. If it contains
neither, then u was homotopic to b1 in Σ. If the disc contains both, then u must be
the only such loop.

If there are no newly homotopic loops, after cutting and capping along r1, contracting
b1, and removing the newly contractible loop u, we are left with `−3 non-contractible,
non-homotopic loops on a surface of genus g − 1. By induction, ` − 3 ≤ 3g and we
are done.

If x and y are newly homotopic, then we can proceed by an argument similar to
Subcase (ii) above. There is a slight difference in the argument when analyzing the
number of loops in the cylinder bounded by x and y. We see that a loop with both
ends in the same side of the cylinder must be contractible and contain both r1 and
r′1, so there can only be one such loop. Otherwise, the argument is similar and that
there at most 3 loops in the cylinder.

Considering the 3 loops in cylinder bounded by x and y, two on the boundary, and
at most 3g − 7 loops in the other region, r1 and b1, we see that ` ≤ 3g.
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Chapter 4

Previous Results

In this section, we review the previous work done on crossing sequences. This includes:

(a) Širáň’s original paper, in which he introduced crossing sequences and proved that
every convex sequence is a crossing sequence;

(b) the paper of Archdeacon et al., which disproves Širáň’s conjecture that every crossing
is convex by showing that any sequence a, b, 0 is realized as a non-orientable crossing
sequence; and

(c) the paper of DeVos et al., showing that every sequence a, b, 0 is realized as an ori-
entable crossing sequence.

4.1 Širáň’s Attempt at Characterization

In 1983, Širáň introduced the crossing function of a graph, the function that would later
be known as the crossing sequence. It was Širáň’s goal to characterize the set of sequences
that could be the crossing sequences of some graph. He noted, as we have stated above,
that any crossing sequence must be a finite sequence of non-negative integers that strictly
decreases to zero. After looking at several small examples, he noted that all the graphs he
had studied had convex crossing sequences.

Definition 4.1.1. A sequence, a0, a1, a2, . . . , is convex if, for every i ∈ N,

ai−1 − ai ≥ ai − ai+1
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The main result of his paper is that convexity is a sufficient condition for a sequence
being the crossing sequence of some graph.

Theorem 4.1.2. Let a0, a1, . . . , an be a convex sequence of integers such that:

(i) an = 0

(ii) for 1 ≤ i ≤ n, ai−1 > ai.

Then there exists a graph G with a0, a1, . . . , an as its crossing sequence.

The proof of this theorem uses a key result of graph embeddings which was proved by
Battle et al. in 1962 [2]. Recall that the genus of a graph, denoted γ(G), is the smallest
integer g such that the graph can be embedded in a surface of genus g. A block of G is
either a cut-edge or a maximal two-vertex-connected subgraph of G . The theorem given
by Battle et al. states that the genus of a graph is additive over the genus of its blocks.

Theorem 4.1.3. Suppose G is a connected graph containing k blocks B1, . . . , Bk such that
E(G) is partitioned in to E(B1), . . . , E(Bk) . Then, γ(G) =

∑k
i=1 γ(Bi) .

We now turn to the proof of Širáň’s theorem.

Proof. Let a0, a1, . . . , an be a convex sequence with the properties (i) and (ii). Define
a second sequence b1, b2, . . . , bn, where bi := ai−1 − ai. By property (ii) and convexity,
b1 ≥ b2 ≥ . . . ≥ bn > 0. We now construct the graph G, and will show that the weighted
crossing sequence of G is a0, a1, . . . , an.

We begin with n copies of K3,3. For 1 ≤ i ≤ n, let the ith copy of K3,3 have one edge of
weight 1 and let the remaining edges have weight bi. For each copy of K3,3, pick one vertex
that is incident to an edge of weight one and identify these vertices into one vertex, which
we will call v. This produces a connected graph G, with a single cut-vertex v, and each of
the original copies of K3,3’s is a block of G. Since the genus of K3,3 is one, Theorem 4.1.3
implies that G has genus n.

Now, for any 0 ≤ k ≤ n−1, we wish to show that wcrk(G) ≥ ak. We define G(b1, . . . , bj)
to be the subgraph of G that contains the j copies of K3,3 with edge weights b1, b2, . . . , bj.
Since this subgraph has genus j, when j ≤ k, it can be embedded in the surface of genus
k. When j > k, it is clear that there must be at least j − k crossings. We will show that
the weighted crossing number of this subgraph is bk+1 + · · ·+ bj.
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First, suppose j = k + 1. Then by Theorem 4.1.3, any drawing of G(b1, . . . , bj) on a
surface of genus k must have a least one crossing. Moreover, two edges of weight 1 could
not cross each other in any optimal drawing of G, since they would both be incident to
vertex v and the drawing would not be optimal. So one of the other edges must be crossed.
Therefore, the weighted crossing number is at least bk+1.

Now, suppose that k+ 1 < j ≤ n. Our induction hypothesis is that any drawing of the
subgraph G(b1, . . . , bj−1) contains (j− 1)− k crossings and the weight of these crossings is
at least bk+1 + · · ·+ bj−1.

Choose an optimal drawing D of G(b1, . . . bj). By the induction hypothesis, D restricted
to G(b1, . . . , bj−1) contains at j − 1− k crossings with total weight bk+1 + · · · + bj−1. But
G(b1, . . . , bj) has genus j and therefore must contain at least j − k crossings. Thus, there
is at least one crossing additional crossing that is not given in the induction hypothesis.
As above, this cannot be a crossing of two edges of weight one, and so it must have weight
at least bj. So the weighted crossing number of G(b1, . . . , bj) is at least bk+1 + · · ·+ bj.

When j = n, G = G(b1, . . . , bn) and the weighted crossing number of G is at least
bk+1 + · · · + bn. The reverse inequality is clear, as each block can be drawn with one
crossing on the plane and each handle can save one weighted crossing. So we see that
wcrk(G) = bk+1 + · · ·+ bn = ak.

Širáň was unable to show that convexity was also a necessary condition for a sequence to
be a crossing sequence. However, he was unable to find a counterexample and observations
on “small graphs” left him to conclude the paper with the following conjecture:

Conjecture 4.1.4. The crossing sequence of an arbitrary graph is convex.

This conjecture has been the motivation to almost all recent results in the area of
crossing sequences.

4.2 A Non-Convex Crossing Sequence

The conjecture remained open for over 15 years, until a counterexample was finally found
by Archdeacon, Bonnington and Širáň [1]. They were able to provide examples of graphs
with non-convex crossing sequences in both the orientable and non-orientable case. Their
paper was also the first to address the relative non-convexity of a sequence. In particular,
since a sequence is non-convex it must contain a non-convex jump, that is some i such that
ai−1 − ai < ai − ai+1. When this occurs, the ratio
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ai−1 − ai
ai − ai+1

gives some measure of the non-convexity of the jump. Presumably for ease of analysis,
Archdeacon et al. worked with graphs that could be embedded in the double torus (or
alternatively the Klein Bottle). Therefore, the goal was to show that for any ε > 0, there
exists a graph G such that

cr0(G)− cr1(G)

cr1(G)− cr2(G)
< ε

In the orientable case, this full generality was not reached. Their result proves the
existence of a graph in which the number of crossings saved by adding the second handle
approaches five times the amount saved by the first handle.

Their result for the case of non-orientable crossing sequences is more impressive. Al-
though still limited to sequences of length three, they were able to show the following:

Theorem 4.2.1. For any positive integers a > b > 0, there exists a graph with non-
orientable crossing sequence a, b, 0.

We will first describe their graph and then prove that it has the desired properties. We
begin by fixing an arbitrary integer n ≥ 2 and q ≥ 2n + 5. The graph is the Cartesian
product C2n+2�Pq along with n + 1 additional edges. Let the path Pq contain vertices
{1, . . . , q} and the cycle C2n+2 contain the vertices `, then t1, . . . , tn, followed by r and
lastly bn, . . . , b1. One way to picture the cycle is as a rectangle with the vertices labelled
with an `, t, r, and b on the left, top, right and bottom sides of the rectangle respectively.

We add n additional edges {(ti, 1), (bi, 1)}, for each 1 ≤ i ≤ n. The last edge is
{(`, 1), (r, 1)}.

Each of the edges in the Cartesian product of C2n+2 �Pq is thick and hence is uncrossed.
The edge from (t1, 1) to (b1, 1) has weight a0 and the remaining n edges have weight 1.

Lemma 4.2.2. c̃r0(G) = a0 + (n− 1)

Proof. Consider a drawing of G on the plane in which no thick edge is crossed. As we
see in Figure 4.1, such a drawing must exist. Moreover, this picture shows that c̃r0(G) ≤
a0 + (n− 1)
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(bn, 1)

(tn, 1)(tn−1, 1)

(bn−1, 1)(bn−2, 1)

(tn−2, 1)

(b3, 1)

(t3, 1)

(b2, 1)

(t2, 1)

(b1, 1)

(t1, 1)

(r, 1)(`, q) (`, 1) (r, q)

Figure 4.1: The graph described by Archdeacon, Bonnington, and Širáň.

Consider an optimal drawing of G. The cycles C2n+2 � 1 and C2n+2� 2 separate the
surface into three faces, each a disc. F1 is bounded only by C2n+2� 1, F2 is bounded only
by C2n+2� 2, and F3 is bounded by both curves.

Consider the edges {(`, 1), (`, 2)}, {(t1, 1), (t1, 2)}, {(r, 1), (r, 2)}, and {(b1, 1), (b1, 2)}.
Each is uncrossed and these must be contained in F3.

If {(`, 1), (r, 1)} is contained in F3, it must cross {(t1, 1), (t1, 2)}, {(b1, 1), (b1, 2)}, C2n+2� 2,
or Cn+2 � 1. But this would result in {(`, 1), (r, 1)} crossing a thick edge, so in any optimal
drawing {(`, 1), (r, 1)} is in F1. Similarly, for any j ∈ {1, . . . n}, if {(tj, 1), (bj, 1)} is in
F3, it must cross {(`, 1), (`, 2)} or {(r, 1), (r, 2)}. So each such edge must also be in F1, as
otherwise a thick edge would be crossed.

For any j, if {(`, 1), (r, 1)} is drawn on a disc with {(tj, 1), (bj, 1)}, then the two edges
must cross. So the crossing number is at least the sum of the weights of the edges, a0 +
(n− 1).

Lemma 4.2.3. c̃r1(G) = n− 1

Proof. Figure 4.1 shows G drawn on the plane. If a crosscap is used to locally remove
the crossing between the edges {(`, 1), (r, 1)} and {(t1, 1), (b1, 1)}, the crossing number is
reduced to n− 1. So c̃r1(G) ≤ n− 1.

Now assume that we have an optimal drawing of G in the projective plane. Consider
the disjoint cycles C2n+2� j, for j = 1, 2, . . . , q. Since disjoint non-contractible cycles in
the projective plane must cross each other, at least q − 1 of them must be contractible.
Since q ≥ 2n+ 5, there must be at least 2n+ 4 uncrossed, non-contractible cycles labelled
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C2n+2 � i1, . . . C2n+2� i2n+4 where i1 < · · · < i2n+4. We wish to show that at least n+ 2 of
these cycles are nested.

In order to prove this, we will need to consider an additional cycle. Let B denote the
path (t1`b1 . . . bn−1) in the cycle C2n+2, while T is the disjoint path (t2 . . . tnrbn). For any
j, k ∈ {1, 2, . . . q}, T � j and T � k can be connected on either end by subpaths of the
paths t2�Pq and bn�Pq to form a cycle Tj,k. Likewise, B� j and B� k are contained in
a cycle Bj,k. Tj,k and Bj,k are disjoint, so at least one is contractible.

Let j, k ∈ {1, 2, . . . 2n+ 4} and let Dj and Dk be the discs bounded by the contractible
cycles C2n+2� ij and C2n+2� ik, respectively. If no two of the cycles Dj are disjoint, then
we have all the cycles C2n+2,i � ij are nested, as required. Therefore, we may assume j and
k are such that Dj and Dk are disjoint.

Since Tij ,ik and Bij ,ik are disjoint cycles and thick, one must be contractible. We assume
that Tij ,ik is contractible, although the argument is symmetric for Bij ,ik . Let DT be the
disc bounded by Tij ,ik .

(tn, ik)

(tn, ik)

(bn, ik)

(tn, ij)

(bn, ij)

(bn, ik)

(tn−1, ik)

(tn−1, ik)

(bn−1, ik)

(tn−1, ij)

(bn−1, ij)

(bn−1, ik)

(bn−2, ik)

The Disc Dj

(bn−2, ij)

(tn−2, ij)

(tn−2, ik)

(bn−2, ik)

(tn−2, ik)

(t3, ik)

The Disc DT

The Disc Dk

(t3, ij)

(b3, ij)

(t3, ik)

(b3, ik)

(b3, ik)

(b2, ij)

(t2, ij)

(b2, ik)

(t2, ik)

(b2, ik)

(t2, ik)

(t1, ik)

(b1, ik)

(t1, ik)

(b1, ij)

(t1, ij)

(b1, ik)

(`, ij)

(`, ik) (r, ik)

(r, ik)(`, ik) (r, ij)

(tn, ij)

(bn, ij)(bn−1, ij)

(tn−1, ij)

(bn−2, ij)

(tn−2, ij)(t3, ij)

(b3, ij)(b2, ij)

(t2, ij)(t1, ij)

(b1, ij)

(`, ij) (r, ij)

Figure 4.2: The discs Dk, Dj, and DT . Here Dj and Dk are nested.

Case 1 Suppose Dj ⊆ DT but Dk * DT . This is equivalent to saying that the path B� ij
is found in DT but the path B� ik is not. The points (r, ij) and (r, ik) do not share
a face. In this case, the path r�Pq must cross a thick edge and the drawing is not
optimal.
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Case 2 Suppose Dk ⊆ DT but Dj * DT . As in Case 1, the points (r, ij) and (r, ik) do
not share a face, so the path r�Pq must cross a thick cycle. So, the drawing is not
optimal.

Case 3 Suppose (Dj ∪Dk) ⊆ DT or (Dj ∪Dk)∩DT = ∅. Then, the vertices (`, ij), (r, ij),
(`, ik) and (r, ik) do not share a common face.

Consider some cycle C2n+2� im with j < m < k. For each of these 4 vertices, there
exists a path, with interior disjoint from (Tij ,ik) ∪ (C2n+2 � ij) ∪ (C2n+2� ik), from
the vertex to the cycle C2n+2 � im. If such an m exists, then this path must cross a
thick edge and the drawing is not optimal. Therefore j and k must be consecutive.

After embedding the cycles (Tij ,ik)∪(C2n+2 � ij)∪(C2n+2� ik), the vertices (`, ij) and
(r, ij) share exactly one face, Dj. We conclude that the cycle C2n+2 � im is contained
in Dj for all im < ij.

Similarly, the vertices (`, ik) and (r, ik) share exactly one face, Dk. So, the cycle
C2n+2 � im′ is contained in Dk for all im′ > ik. Since there are 2n + 4 contractible
cycles either j ≥ n+ 1 or k ≤ n+ 2. We will assume j ≥ n+ 2, though the proof is
symmetric for the other choice.

Consider some m < j; the disc Dm is contained in Dj. There are paths from (t1, im)
to (t1, ij) and from (b1, im) to (b1, ij). These paths must separate the region Dj \Dm

and, in particular, the vertices (`, im) and (r, im) share only one face, Dm.

Now, consider the subpath of `�Pq between (`, im) and (`, im−1). It is internally
disjoint from all the edges described in the previous paragraph and does not cross
them. The same is true for the path between (r, im) and (r, im−1), so if (`, im−1) and
(r, im−1) lie on the same face, this face must be Dm.

But this is clearly true since (`, im−1) and (r, im−1) are both contained in C2n+2 � im−1,
a thick cycle disjoint from the cycles previously embedded. So, the cycle C2n+2� im−1
is contained in Dm, for any 1 ≤ m ≤ j. So the cycles C2n+2 � im are nested for
1 ≤ m ≤ j.

Since the cycles are nested, we can conclude that the path `�Pq must cross each
C2n+2 � ij at the point (`, ij).

For each of the n+ 2 nested contractible cycles C2n+2 � i0, . . . , C2n+2� in+1, we define
a new cycle Lj. This cycle consists of the unique path of C2n+2 � ij from (tj, ij) to (bj, ij)
containing (`, ij) and the unique path from (bj, ij) to (tj, ij) that contains no edge in
C(2n+1)� ik for any k. Note that the set of cycles {Lj}nj=1 is pairwise disjoint.
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Figure 4.3: The cycles L3 and T .

Define one additional cycle T consisting of the path in C2n+2 � in+1 from (`, in+1) to
(r, in+1) containing (t1, in+1) together with the paths `�Pq, {(`, 1), (r, 1)}, and r�Pq. Fig-
ure 4.3 shows a drawing of these cycles.

Suppose that Li is contractible. Then, Li intersects the cycle T at exactly one point
and because the Dij are nested the cycles are not tangent to each other. Therefore, Lj and
T cross at a vertex intersection. Since Li is contractible, it must cross T somewhere else
as well.

Alternatively, if Li is non-contractible, it need not cross T . However, if Lj is also non-
contractible, then Li and Lj are disjoint non-contractible cycles in the projective plane and
must cross.

We conclude that at least n− 1 of the Lj’s are crossed, and the crossing number is at
least n− 1.

Using these two lemmas, we will now prove Theorem 4.2.1.

Proof of Theorem 4.2.1. Figure 4.4 provides an embedding of G on the Klein bottle, so
c̃r2(G) = 0. From Lemma 4.2.2, we have that c̃r0(G) = a0 + (n−1) and Lemma 4.2.3 gives
us that c̃r1(G) = n− 1.

So the crossing sequence of G is a0 + (n − 1), n − 1, 0. Given any positive integers
a > b > 0, we can define n := b + 1 and a0 := a − b. Then the crossing sequence of G is
a, b, 0.

In particular, the sequence a, b, 0 can be arbitrarily non-convex. If b = a − 1, then we
see that
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Figure 4.4: The graph G embedded in the Klein Bottle.

c̃r0(G)− c̃r1(G)

c̃r1(G)− c̃r2(G)
=
a− (a− 1)

(a− 1)− 0
=

1

a− 1

Obviously, for any ε, there is a choice of a such that 1
a−1 < ε, meaning that this graph

can contain an arbitrarily large non-convex jump. Although they were unable to prove
it, Archdeacon et al. believed that this result was the same for the orientable case. In
fact, their conjecture on the characterization of crossing sequences disregards convexity all
together.

Conjecture 4.2.4. Any sequence of integers that strictly decrease to zero, is the crossing
sequence of some graph. It is also the non-orientable crossing sequence of a (different)
graph.

The article by DeVos et al. and this thesis are attempts to better understand this
conjecture.

4.3 Arbitrary Crossing Sequences of Length Three

In 2011, DeVos, Mohar, and Šámal were able to prove the result that had eluded Archdea-
con et al [3]. Theorem 4.3.1 provides the main result of their paper.

Theorem 4.3.1. For any positive integers a > b, there exists a graph H with crossing
sequence a, b, 0.
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We describe the graph Hn where n ≥ 3. Let T and B be cycles (t0, . . . , tn+1) and
(b0, . . . , bn+1), respectively, of length n + 2. The vertices t0 and b0 are joined by a path of
length 3 and the vertices tn+1 and bn+1 are as well. These paths are called the left path L
containing points `1 and `2 and the right path R containing points r1 and r2, respectively.
All of these edges are thick.

We will often refer to the thick edges as the frame. In any optimal drawing on a surface,
it is clear that the frame must be embedded, as otherwise the crossing number is infinite.
The largest cycle in the frame is of length 2n + 8 and contains every edge except tn+1t0
and bn+1b0. We will denote this cycle by S and refer to it often.

For each 1 ≤ i ≤ n, there is a column ci which is a path from ti to bi of length 2. Let
mi be the midpoint of column ci. A column ci is even if i is even and is odd if i is odd.
Finally, the odd row Ro is the path from `1 to r1 containing (in the natural order) the
midpoint of each odd column. The even row Re is the path from `2 to r2 containing (in
the natural order) the midpoint of each even column.

We specify that the vertices located at the intersection of a row and column are rigid
vertices. The rotation is prescribed so that the row and column cross at the given vertex.
In particular, the row is not merely tangent to the column. Figure 4.5 provides a drawing
of the graph Hn.

r1

bn+1

tn+1

r2
mn

bn

tn

mn−1

tn−1

bn−1

t4

b4

m4

t3

b3

m3

b2

t2

m2

b1

t1

m1

b0

t0

`2

`1

Figure 4.5: The graph Hn introduced by DeVos, Mohar, and Šámal.

For our discussion of the columns of Hn, we will often need to discuss their homotopy.
In order to do so, we introduce a slightly modified definition of homotopy.

Two columns ci and cj, with i < j, are homotopic if the cycle contained in {ti . . . tj} ∪
{bi . . . bj} ∪ ci ∪ cj bounds a closed disc. A column ci is contractible if the cycle contained
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in {t0 . . . ti}∪{b0 . . . bi}∪L∪ ci or the cycle contained in {ti . . . tn+1}∪{bi . . . bn+1}∪R∪ ci
bounds a closed disc.

This definition is similar to the standard definition of homotopy and, in particular, any
two homotopic columns are also homotopic in the traditional sense. However, the converse
is not necessarily true. For example, two contractible columns need not be homotopic, as
there are up to two distinct homotopy classes for contractible columns.

The following lemma establishes that the homotopy types of the columns will often be
enough to guarantee crossings. The lemma supposes an optimal drawing of Hn. In order
for this to be meaningful, we note that Figure 4.5 shows a drawing in Hn with n crossings.
So crg(Hn) ≤ n.

Lemma 4.3.2. Suppose Hn is drawn optimally on a surface Σ. If there are j ≥ 2 consec-
utive columns, ci, ci+1 . . . , ci+j−1 that are pairwise homotopic, then these columns contain
at least j crossings.

Proof. Suppose j = 2. Since ci and ci+1 are homotopic, they bound a disc. Since there is
path from L to R disjoint from the cycle bounded by ci and ci+1 and consisting of thick
edges, either L and R are both inside this disc or both outside.

Each row has a vertex in the boundary of the this disc. The rotation of this vertex is
prescribed in such a way that the row must cross the boundary of the disc at the vertex.
Therefore, it must cross the boundary of the disc at another point. Thus, both rows cross
the boundary of the disc, as required.

Suppose j = 3 and that ci, ci+1, and ci+2 are consecutive homotopic columns. As above,
each row must cross the boundary of the disc bounded by ci and ci+1.

If ci+1 is not contained in the disc bounded by ci and ci+2, then it must cross the
boundary of this disc twice, yielding two additional crossings. Otherwise, ci+1 is contained
in the disc bounded by ci and ci+3. In this case, the row that contains the vertex in c2
must cross this disc twice. This yields at least 3 crossings in total, as needed.

Suppose now that j ≥ 4 and let ci, . . . , ci+j−1 be consecutive homotopic columns. By
induction, ci, . . . , cj−3 contains j − 2 crossings. Additionally, each row crosses the disc
bounded by ci+j−2 and ci+j−1, completing the proof.

With this lemma, we can now begin the proof of Theorem 4.3.1 by determining the
crossing numbers on the sphere and the double torus.

Lemma 4.3.3. cr0(Hn) = n.
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Proof. We begin by embedding S on the sphere. This separates the sphere into two discs,
D1 and D2. If the edges tn+1t0 and bn+1b0 are not contained in the same disc, then each
column must cross the frame and the crossing number is infinite.

We will assume that they are both in D2. All the columns, and therefore both rows,
must be in D1. Each column separates D1 into two regions, with L and R on the boundary
of opposite regions. Thus, each even column must be crossed by the odd row and each odd
column must be crossed by the odd row. The crossing number is at least n. Figure 4.5
shows that equality must hold.

Lemma 4.3.4. cr2(Hn) = 0.

Proof. Begin by drawing S on the sphere. As in Lemma 4.3.3, this separates the sphere
into two discs, D1 and D2. We will draw all the odd columns and Ro in D1 without
crossings, and do the same for the even columns and Re in D2. We can then use the new
handles to draw each of tn+1t0 and bn+1b0, leaving us with an embedding on the double
torus.

Unfortunately, determining the crossing number of Hn on the torus is much more
complicated and relies heavily on analyzing how the thick edges are embedded.

Lemma 4.3.5. If n = 3 or n ≥ 5, then cr1(Hn) = n− 1.

The proof offered by DeVos et al. first specifies the ways in which the frame can be
embedding in an optimal drawing and proceeds to attack each case individually. We will
follow their method of proof and look at possible embeddings of the thick edges of Hn. To
do so, we first introduce several properties of the embedding.

Claim 4.3.6. Suppose the cycle T (or B) is contractible in an optimal drawing of Hn on
the torus and bounds a disc D. Then, for each i, the column ci is disjoint from D.

Proof. Suppose T is contractible and bounds a disc D. If the cycle B is in D, then each
column and therefore each row is also in D. Since each row is in D, the left and right paths
much also be in D, so we have a planar drawing of Hn and there at least n crossings.

We now suppose B is not in D. The column ci has exactly one endpoint in T . Since
T is thick and uncrossed, if ci was not disjoint from D it would cross the boundary of the
disc. This results in an infinite crossing number and the drawing is not optimal, so the
column must be disjoint from D.

In particular, each column must be incident to the cycle T on the side opposite from
the ends of the edge tn+1t0. The proof is similar if B is contractible.
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Claim 4.3.7. Suppose the cycle T (or B) is homotopic to S in an optimal drawing of Hn

on the torus. Then, together S and T (or B) bound a disc D and each row and column is
disjoint from D.

Proof. Suppose T and S are homotopic. So tn+1t0 and L ∪ (B \ bn+1b0) ∪ R form a cycle
that bounds a disc D.

If the path t0t1 . . . tn+1 is contained in D, then each columns and each row is contained
in D. The cycle B can be drawn as a contractible cycle to obtain a planar drawing of Hn

with no additional crossings. Such a drawing has at least n crossings, so we can assume
that the path t0t1 . . . tn+1 is not contained in D.

For each i, ci is incident to cycle exactly once. If the column ci were not disjoint from
D, it would cross the boundary of the disc, yielding an infinite crossing number.

Since each column is disjoint from D, if Re is not disjoint from D it must cross the
boundary. The same is true for Ro. We conclude that each row and column is disjoint
from D.

In particular, each column is incident to B on the boundary of D. Since the column is
disjoint from D, we know that the column must be incident to B on the opposite side of
S as tn+1y0.

Using the above claims, we can now classify the many possibilities for the drawing of
Hn on the torus. In particular, we will classify how the frame can be embedded.

S is Contractible S separates the torus into two faces, D1, a disc, and D2. If the interior
of Hn is completely drawn in D1, then each column is crossed, resulting in n crossings.
From Lemma 4.3.3, cr1(Hn) ≤ n− 1, so the interior cannot be contained in D1.

If tn+1t0 and bn+1b0 are both in D2, then T and B are disjoint cycles in D2. If either
is contractible, then the interior of Hn is in D1, a contradiction, so we may assume
both are non-contractible. Cutting and capping along T leaves a new surface Σ′

homeomorphic to the sphere. In Σ′, B is contractible. Thus, the interior of the Hn

must have been drawn in D1. This is a contradiction, so tn+1t0 or bn+1b0 must be
drawn in D1.

Suppose exactly one of tn+1t0 and bn+1b0 is drawn in D1. We will suppose it is bn+1b0,
but the argument for the other choice is symmetric. Since B is contractible, the entire
interior of the graph must be drawn in D2. In this case, tn+1t0 can be redrawn in
D1 with no additional crossings. So for any optimal drawing with the exactly one of
tn+1t0 and bn+1b0 drawn in D2, there is an optimal drawing with both drawn in D1.
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Therefore, we only need to consider drawing with the both those edges drawn in D1.
Drawings with the frame embedded in this way will be Type A.

S is Non-Contractible

Case 1 Suppose the ends of tn+1t0 and bn+1b0 are all incident to the same side of S.
If both T and B are contractible, we will call the drawing Type B.

Since the ends of bn+1b0 are incident to the same side of S, ifB is non-contractible
it must be homotopic to S. By Claim 4.3.7, S ∪ B must separate the surface
and one region of this separation is a disc. This disc contains both ends of T ,
so T must be contractible. When the frame is embedded in this way, we will
say it is a Type C embedding.

Alternatively, if we have the symmetric case where T is not contractible, we call
the embedding Type C′.

Case 2 Suppose tn+1t0 has both ends incident to one side of S and bn+1b0 has both
ends incident to the other. Let tn+1t0 be incident to the side S1 and bn+1b0
incident to the side S2.

If T is contractible, each column must be incident to T on the side S2, by
Claim 4.3.6. If T is non-contractible, each column must be incident to B on
the side S2, by Claim 4.3.7. Similarly, if B is contractible, each column must
be incident to B on the side S1. If B is non-contractible, each column must be
incident to T on the side S1.

From this, we conclude that T and B are either both contractible or both non-
contractible. If both are non-contractible, then one of the discs discussed in
Claim 4.3.7 will not be disjoint from the rows and the drawing is not optimal.
If both are contractible, the embedding will be called Type D.

Case 3 Suppose bn+1b0 has ends incident to the same side of S and tn+1t0 has ends
incident to opposite sides of S. Let B be incident to the side S1. If B is non-
contractible, consider the disc described in Claim 4.3.7. The edge tn+1t0 must
have one end in this and hence disc cross B. In this case the drawing is not
optimal, so B must be contractible.

The embedding is Type E if tn+1t0 is incident to side S1 at t0 and is Type E′ if
it is incident to S1 at tn+1.

Case 4 Suppose tn+1t0 has ends incident to the same side of S and bn+1b0 has ends
incident to opposite sides of S. This is symmetric to Case 3, so T must be
contractible. The embedding is Type E′′ if bn+1b0 is incident to side S1 at b0 and
is Type E′′′ if it is incident to S1 at bn+1.
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Case 5 Suppose both tn+1t0 and bn+1b0 have ends incident to opposite sides of S. In
this case, T and B must both be non-contractible and, since they are uncrossed,
homotopic. Since S is homotopic, `1 and r1 lie in different cylinders and hence
Re must cross T ∪B.

Figure 4.6 shows the possible embeddings of thick edges in the torus, with outer rect-
angle representing the tours. For the drawings (B), (C), (C′), (D), (E), (E′), (E′′), and
(E′′′), the horizontal (identified) edge of the rectangle is the non-contractible cycle S.

From the previous discussion, we see that if we can establish a minimum number of
crossings for each of the 9 cases discussed above, then the crossing number will be at least
that minimum. We now proceed to show that for every possibility, there are at least n− 1
crossings.

Proposition 4.3.8. If D is a Type A drawing of Hn on the torus, then there are at least
n− 1 crossings in D.

Proof. In a Type A drawing, S is contractible. Contract it to a point s. The columns form
a bouquet with rotation as described in Theorem 3.2.1, with each loop in B.

If a column is contractible, it is crossed by a row. Therefore, in order for the drawing
to contain less than n crossings, at least one column must be non-contractible. Suppose ci
is non-contractible.

Consider any other non-contractible column cj. Due to the rotation of the bouquet,
cj is homotopic to a non-contractible cycle, disjoint from ci. On the torus, disjoint non-
contractible cycles are either homotopic or they cross [4, Prop. 4.2.6]. So ci and cj are
either homotopic or cross.

Suppose there are p contractible columns, q non-contractible columns not homotopic
to ci, and r columns homotopic to ci. Clearly, p+ q+ r = n− 1, since they account for all
columns except ci.

Each contractible column is crossed by a row, so these p columns contribute at least p
crossings. Each non-contractible column not homotopic to ci crosses ci, and hence these q
columns contribute at least q crossings.

If r = 0, we are done, so suppose r ≥ 1, consider the homotopic columns cj0 , . . . , cjr . If
they are consecutive, then by Lemma 4.3.2, these r + 1 columns contribute at least r + 1
crossings.

If these columns are not consecutive then cj0 and cjr bound a cylinder containing a
column not homotopic to either. This column must cross the boundary of the cylinder
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Figure 4.6: Possible embeddings of the thick edges of Hn on the torus.

twice, and one of these crossings is previously unaccounted for. So either cj0 or cjr is
crossed and we can remove it to get a drawing with one fewer crossing and one fewer
column homotopic to ci. By induction, the r + 1 columns contain at least r crossings.

So, the r columns contribute at least r crossings. So the crossing number is at least
p+ q + r = n− 1.

Proposition 4.3.9. If D is a Type B drawing of Hn on the torus with n 6= 4, then there
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are at least n− 1 crossings in D.

Proof. Contract the edges of {t0 . . . tn+1} ∪ L ∪ {b0 . . . bn+1} to a point s. The columns
c1, . . . , cn and the path R form a bouquet with n+ 1 loops.

Since drawing is Type B, we know that the path R is non-contractible and, since it is
thick, uncrossed. Due to the rotation of s, if any column is non-contractible, it is homotopic
to a cycle disjoint from R. Since disjoint non-contractible cycles on the torus either cross
or are homotopic, any non-contractible column must be homotopic to R.

Adopting the notation of DeVos et al., we label a column ` if it is contractible and label
it r if it is homotopic to R. We proceed by induction. The base cases are n = 3 and n = 6.

For n = 3, we wish to show that there are at least 2 crossings. If c2 is contractible
and c1 is non-contractible, c1 and c2 cross twice. If both c1 and c2 are contractible, then
together they bound a disc. Each row has a vertex in the boundary of the this disc. The
rotation of this vertex is prescribed in such a way that the row must cross the boundary of
the disc at the vertex. Therefore, it must cross the boundary of the disc at another point.
This is true for each row, yielding two crossings.

The argument is analogous if instead c2 is homotopic to R; in this case we consider c3
rather than c1.

For n = 6, let j be the smallest integer such that cj is labelled r. If no such column
exists, then all are contractible and there are at least 5 crossings. Every for every k > j,
either ck is marked r as well or ck crosses cj twice. If j ≥ 3, then the columns c1, . . . cj−1
contain j − 1 crossings.

Case 1 Suppose j ≤ 2. Consider the columns cj+1, . . . , c6. At most 2 are labelled ` and
each of these cross cj twice. If there are exactly 2, then these must be cj+1 and cj+2,
as otherwise there would be more than 5 crossings. But in this case, cj+3 and cj+4

must be homotopic and contribute 2 crossings, leaving at least 5 in total.

If there are no columns marked `, then c2, . . . , c6 are all homotopic and contain 5
crossings.

If only one of cj+1, . . . c6 is labelled `, then 4 of c2, c3, c4, c5, c6 are labelled r. If
c4 is labelled `, then c2 and c3 are homotopic and c5 and c6 are homotopic. By
Lemma 4.3.2, each pair contributes 2 crossings. When added to the two crossings
from the column labelled `, we see there are at least 5 crossings.

If c4 is not labelled `, then either c2, c3, c4 or c4, c5, c6 is a set of 3 consecutive columns
all labelled r. By Lemma 4.3.2, one of these sets must contribute at least 3 crossings.
The two additional crossings from the column labelled ` give at least 5 crossings.
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Case 2 Suppose j = 3. The columns c1 and c2 must be homotopic and contribute 2
crossings. Since each column labelled ` crosses c3 twice, there are at least 5 crossings
if more than one of c4, c5 and c6 are labelled `.

If none of c4, c5, c6 are labelled `, they are homotopic and together contribute three
crossings. If exactly one of c4, c5, c6 is marked `, then it is crossed twice and either c4
is homotopic to c3 or c5 is homotopic to c6. In either case there are 4 crossings from
the final 4 columns.

Case 3 Suppose j = 4 or j = 5. c1, c2, and c3 are all homotopic and contribute 3 crossings.
Either cj+1 is labelled ` and crosses cj twice or cj+1 is homotopic to cj and each row
must cross one of the two. In either case there are 5 crossings.

Case 4 Suppose j = 6. In this case, c1, . . . , c5 are all contractible and contain 5 crossings.

Now suppose n = 5 or n ≥ 7, we will attempt to find two consecutive columns that
together contain two crossings. If such columns exist, we can remove them and obtain a
drawing of Hn−2 two fewer crossings. The result then follows by induction. Let j be the
smallest number such that cj is marked r.

If such a j doesn’t exist, then all the columns are contractible and by Lemma 4.3.2
contain n crossings.

If j = 1, then either c2 is labelled ` and crosses c1 twice or c2 is also marked r and is
homotopic to c1. In this case, Lemma 4.3.2 shows that c1 and c2 contain two crossings.
We can remove c1 and c2 and proceed by induction.

If j = 2 and all remaining columns are labelled r, then c2, . . . , cn are homotopic and
contain n− 1 crossings, and we are done. Otherwise, let ci be be the first column after cj
to be marked `. It crosses ci−1 twice, so we can remove both ci−1 and ci and proceed by
induction.

If j ≥ 3 then two columns c1 and c2 must be labelled ` and therefore homotopic. Then
c1 and c2 contain two crossings, so we can remove them and proceed by induction.

Proposition 4.3.10. If D is a Type C drawing of Hn on the torus, then there are at least
n− 1 crossings in D.

Proof. In this type of drawing, both rows must be incident to the same side of S, namely
the side not incident with tn+1t0 and bn+1b0. Since the drawing is minimal, the cycle
contained in R ∪ L ∪ Re ∪ Ro cannot bound a disc, as otherwise each column would cross
the cycle.
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So either the cycle contained in {t0, . . . , tn+1} ∪ R ∪ L ∪ Re bounds a disc or the the
cycle contain in {t0, . . . , tn+1} ∪ R ∪ L ∪ Ro bounds a disc. In the former case, each odd
column must cross the disc and in the latter, each even column must cross the disc. We
will assume the latter case and look for additional crossings containing the odd columns,
although the other case is similar.

Since the rows are incident to the same side of S, any column that is contractible must
be crossed by a row. In particular, all such odd columns are crossed.

Any remaining odd columns are incident to opposite sides of S. Suppose ci and ck
are such odd columns, with i < k. If they are homotopic, then the two columns cross
and, along with the path bi, . . . , bk, separate the surface into three regions. If they are not
homotopic, then the cycle formed by {bi, . . . bk}∪ ck∪{tk, . . . , tn+1, t0, . . . , ti}∪ ci separates
the surface.

In either case, there must exist an even column cj between ci and ck. The column has
endpoints to different faces of the separation described in the previous paragraph. The
column cj must cross the boundary of the region bounded by ci and ck. Hence cj crosses
at least one of ci and ck.

Moreover, if there are p odd columns incident to opposite ends of S, then there must
be p− 1 crossings between odd and even columns. We can conclude that there are at least
n− 1 crossings.

Note that the proof for when Hn is a Type C′ drawing follows a symmetric argument.

Proposition 4.3.11. If D is a Type D drawing of Hn on the torus, then there are at least
n− 1 crossings in D.

Proof. Cut along S to obtain a sphere with two holes. These holes are bounded by two
copies of S, which we will call S1 and S2.

We can suppose bn+1b0 is incident to S1 and tn+1t0 is incident to S2. Every column
must be incident to T at S1 and incident to B at S2

Assume that t0, . . . , tn+1 are in clockwise order in S1. Then, since the original surface
was orientable, b0, . . . , bn+1 must be also be ordered in clockwise direction in S2.

This proof will be by induction. Suppose n = 3. It must be shown that there are at
least 2 crossings.

Suppose c1 and c2 cross. Then the edge t1t2 on S1 together with the portion of c1 and
c2 above the crossing point must bound a disc. Similarly, the edge b1b2 together with the
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portions of c1 and c2 below the crossing point bound a disjoint disc. The row Re crosses
the boundary of one of these discs at a vertex and must cross it at a different point. The
same is true for Ro. Hence there are two crossings.

Similarly, if c2 and c3 cross, there must also be at least two crossings. We can now
suppose that c2 crosses neither c1 nor c3.

If c1 and c3 cross, then there is a disc bounded by t1t2t3 in S1 and the portions of c1
and c3 up to the crossing point. This disc contains exactly one end of c2 and, hence, c2
must cross c1 or c3.

c1

c3

S1 S2

`1

`1

r1

r1

r2

`2

`2

r2
bn+1

tn+1

tn+1bn+1
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Figure 4.7: A drawing of the uncrossed columns c1 and cn in a Type D drawing of Hn,
after cutting the torus along S.

Alternatively, if c1 and c3 do not cross, then the cycle ({t1t2t3} ∩ S1) ∪ c1 ∪ {(S2 \
{t1t2t3}) ∪ c3 separates the surface. Each edge of this separation contains exactly one end
of c2. We conclude that c2 must cross c1 or c3 and that there are at least 2 crossings.

Now, let n ≥ 4. If c1 or cn is crossed, then we can delete it and the result holds by
induction.

Suppose neither c1 nor cn is crossed. In particular, they do not cross each other. Due
to the orientation of the S1 and S2, the cycle ({t1t2t3} ∩ S1) ∪ c1 ∪ {(S2 \ {t1t2t3}) ∪ c3
separates the surface. However, each region contains exactly one end of the column c2. So
c2 must cross either c1 or cn, a contradiction.

Therefore, either c1 or cn is crossed and the proof is complete by induction.

Proposition 4.3.12. If D is a Type E drawing of Hn on the torus, then there are at least
n− 1 crossings in D.

Proof. Again we proceed by induction. Note first that all columns are incident to B on
the same side of S. As before a column may be contractible or non-contractible. However,
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because of the caps, any two contractible columns are homotopic. Likewise, any two non-
contractible columns are homotopic. Additionally, because of the rotation, if two columns
are non-contractible, they cross each other.

Let n = 3. By Lemma 4.3.2, if c1 and c2 are homotopic, there are at least two crossings.
Similarly, if c2 and c3 are homotopic, there are also at least two crossings. So either c2 is
the only contractible loop or c2 is the only non-contractible loop.

If c2 is contractible, then c1 must be non-contractible and it crosses the boundary of
the disc bounded by c2. Additionally, c3 must also be homotopic and therefore cross c1.
So there at least two crossings.

So we may suppose c2 is non-contractible. In this case c3 is contractible and must cross
c2. Now, one end of Re must be contained in the region bound by tn+1t0 and c2. If Re has
both ends in the same side of S, it must cross c3. If it has both ends in the opposite sides
of S then, together with S and tn+1t0, it separates the surface. In particular, Ro must have
one end in each region of this separation and contribute one crossing.

We conclude that when n = 3, there are at least 2 crossings.

Now, let n ≥ 4. Suppose first that cn is non-contractible. If it is crossed, we can remove
it and obtain the result by induction. If it is uncrossed, then the remaining n− 1 columns
must be contractible. By Lemma 4.3.2, these columns must contribute n− 1 crossings.

Alternatively, suppose cn is contractible. Then, cn together with S bounds a disc
containing at least one end of c1, . . . , cn−1. If one of the remaining loops is non-cotnractible,
it must cross cn. So we can remove cn, have a drawing with one fewer column, one fewer
crossing and be done by induction. If all the columns are contractible, by Lemma 4.3.2
they must contribute at least n crossings.

The proofs for when the drawing of Hn is Type E′,E′′, or E′′′ follow a symmetric
argument. Through Propositions 4.3.8, 4.3.9, 4.3.10, 4.3.11, and 4.3.12, we see that the
crossing number of Hn on the torus is at least n− 1, for appropriate n. This is enough to
prove Lemma 4.3.5.

Moreover, Lemma 4.3.3, Lemma 4.3.5, and Lemma 4.3.4 show that the crossing se-
quence of Hn is n, n− 1, 0 for n 6= 4.

To achieve the full generality of Theorem 4.3.1, observe that the proof of Lemma 4.3.3
is stronger than just showing the crossing number is n. It also shows that every column in
Hn is crossed by a row.
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Suppose we define a weighted graph Hn,k to be equivalent to Hn except the column c2
has weight k for k ∈ N. All thick edges in Hn are thick in Hn,k and the remaining columns
and rows have weight 1.

The planar crossing number of Hn,k is k + n− 1. The toroidal crossing number is still
n − 1 and Hn,k embeds in the double torus. For given integers a > b ≥ 2 with b 6= 3, let
n := b+ 1 and k := a− b. The crossing sequence of Hn,k is a, b, 0.

In particular, If b = 1, any crossing sequence a, 1, 0 is convex and, by Theorem 4.1.2,
there exists a graph with crossing sequence a, 1, 0. Moreover, if b = 3, the sequence a, 3, 0
is convex for any a ≥ 6. So all that remains to be shown is a graph with crossing sequence
5, 3, 0 and a graph with crossing sequence 4, 3, 0.

Devos et al. introduce a new graph H+
3 for these two sequences. Begin with the graph

H3. Subdivide the edges {`2, b0}, {m1, b1}, {m3, b3}, and {r2, b4}. We add an additional
row, R3 containing the four new points obtained through these subdivisions.

For ease of notation, we now refer to the original odd row as R1 and the original even
row as R2. The vertex at the intersection of row Ri and column cj is mi,j. The new vertices
in columns c1 and c3 are rigid, with the rotation such that the row and column are not
tangent. Figure 4.8 shows a drawing if H+

3 .

The proofs that cr0(H
+
3 ) = 4 and cr(H+

3 ) = 0 follow very closely to Lemma 4.3.3 and
Lemma 4.3.4, respectively. The case for the torus makes use of Lemma 4.3.5 for H3, but
requires some additional insight.

Claim 4.3.13. The crossing sequence of H+
3 is 4, 3, 0.

Proof. Consider an optimal drawing of H+
3 on the plane. The cycle S separates the surface

into two discs and one of these discs contains the edge t4t0. The other disc must then
contain c1, c2, and c3 and, hence, R1, R2, and R3.

Due the rotation of vertices in S, c2 must cross R1 and R3, while R2 must cross c1 and
c3. So the crossing number is at least 4. Moreover, c1 is crossed at least once. Figure 4.8
shows a drawing on the plane with 4 crossings, so equality must hold.

Note that the subgraph H+
3 \ ({t0, t4} ∪ {b0b4}) is planar. Given a drawing of this

subgraph on the sphere, two handles can be added to the surface so that {t0t4} and {b0b4}
can be drawn without introducing any crossings. This gives and embedding of H+

3 on the
double torus.

Now, consider an optimal drawing of H+
3 on the torus. If R1 is crossed, remove it to

obtain a drawing that is isomorphic to a subdivision of H3. This subdivision contains at
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Figure 4.8: The new graph H+
3

least 2 crossings by Lemma 4.3.5. So the original graph contained at least 3 crossings. A
similar argument can be made if R3 is crossed.

We will now assume that neither R1 nor R3 is crossed and show that no such optimal
drawing can exist.

Case 1 Suppose S is contractible Let D be the disc bounded by S. If the cycle T is
contractible and t0t4 is not contained in D, then each row and column is contained
in D and there are at least 3 crossings. Then same can be said if B is contractible.

If both T and B are not contractible, they must be homotopic. Since S is contractible,
L and R are contained in the same cylinder bounded by T and B. So the interior
must be contained in this cylinder, and hence contained in the disc bounded by S.
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As before, when each row and column is contained in the disc bounded by S, there
are at least 3 crossings.

So if there is an optimal drawing of H+
3 on the torus with T non-contractible, then

B must be contractible. Moreover, if B is non-contractible then b4b0 must be drawn
in D. Since B is uncrossed every column, and hence every row, must not be drawn
in D. Then, t4t0 can be redrawn in D with no additional crossings.

So if there is an optimal drawing of H+
3 on the torus with T non-contractible, there

must be an optimal drawing with both t4t0 and b4b0 drawn in D.

Consider such a drawing. Let the cycle Rc
1 be the cycle formed by R1 together with

the path `1t0 . . . t4r1. Similarly, let Rc
3 be the cycle formed by R3 together with the

path `3b0 . . . b4r3. Note that if Rc
1 is crossed, then R1 is crossed since all other edges

in Rc
1 are thick. If Rc

3 is crossed, then R3 is crossed.

If either Rc
1 or Rc

3 is contractible, then c2 must cross this cycle. However, we assumed
R1 and R3 are uncrossed. If Rc

1 and Rc
3 are non-contractible, then they must be

homotopic as otherwise each would be crossed.

If Rc
1 and Rc

3 are homotopic, they separate the torus into two cylinders. One cylinder
must contain all thick edges in H+

3 and hence the ends of R2. The other cylinder
contains the ends of all the columns, in particular c2. Since c2 and R2 intersect, one
of these must cross either R1 or R3. Hence, we can not have an optimal drawing with
S contractible and R1 and R3 uncrossed.

Case 2 Suppose S is non-contractible We will examine this case in two possible sub cases
depending on the ends of the row R2.

Subcase (i) Suppose the ends of R2 are incident to the same side of S. Either R2

together with `1t0 . . . t4r1 bounds a disc or R2 together with `3b0 . . . b4r3 bounds
a disc. We will suppose it is the former, although the argument is symmetric
for the other case. This implies that t0t4 cannot have ends in opposite sides of
S, as otherwise it would cross R2.

Now R1 must have both ends on the same side of S, as otherwise it would cross
R2. If the ends of R1 are on the same side as R2, then R1 and R2 are homotopic
and each column must cross the region bounded by them. We assume that R1

has ends incident to side of S opposite of R1. Now, there are two in R1 ∪ S
containing R1, one must bound a disc. We will examine each of these two
possibilities.
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Suppose R1 together with the path t0 · · · t4 bounds a disc If t4t0 has ends in the
same side of S as R2, then c2 crosses R1. If the ends of t4t0 are in the opposite
side, then c1 must cross R1. In either case, R1 is crossed.

Alternatively, suppose R1 together with the path `2`3b0 . . . b4r3r2 bounds a disc.
So b4b0 cannot have ends in opposite sides of S.

If b4b0 has ends in the same side of S as R1, then c1 crosses R1. So b4b0 has ends
in the opposite side of S as R1. If B is non-contractible, then either it crosses
R2 or (S \ B) ∪ {b0, b4} is a thick cycle which bounds a disc containing R2. So
either R2 or c2 must cross a thick edge. If B is contractible, then c2 must cross
R1. We conclude that either R1 or R3 is crossed.

Subcase (ii) Suppose the ends of R2 are incident to opposite sides of S. S and R2

must be non-contractible and not homotopic.

If R1 has ends on the same side of S, then it is contractible. Moreover, if R1

is contractible, then t4t0 must have ends on the same side of S and must be
contractible as well. If R1 and t4t0 are incident to the same side of S, then c1
must cross R1. If R1 and t4t0 are incident to opposite sides of S, then c2 must
cross R1. Similarly, if R3 is contractible, it must be crossed.

So we can assume that R1 and R3 are non-contractible and each have one end
on each side of S. If we contract the path t4 . . . t0Rb0 . . . b4 to a point, we
obtain a bouquet with four non-contractible loops. The rotation of this bouquet
is R1, R2, R3, L,R1, R2, R3, L. By Theorem 3.2.1, two of these loops must be
homotopic and due to the rotation the two homotopic loops must cross. Since
L is thick and not crossed, either R1 or R3 is crossed.

We can conclude that R1 or R3 must be crossed in any optimal drawing of H+
3 and

hence, the toroidal crossing number is 3.

The above claim proves the existence of a graph with crossing sequence (4, 3, 0). More-
over, the proof stipulates that every column is crossed on the torus. If we give column c1
a weight of 2, we see that the crossing sequence becomes (5, 3, 0). Thus, we have shown
that for any a > b > 0, there exists a graph H with crossing sequence (a, b, 0).
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Chapter 5

The Graphs Gn,k

Theorem 1.0.1 proves the existence of a graph with an arbitrarily long, non-convex crossing
sequence by specifying the sequence of a graph Gn,k. In particular, for any suitable n and
k, the genus of Gn,k is 2n+ 1 and the ratio of 2 consecutive jumps in the crossing sequence
is 1/(k − 1). This chapter is devoted to describing the graph Gn,k and finding its crossing
sequence.

5.1 Description of Gn,k

To describe the graph Gn,k, let k and n be positive integers, with k ≥ 10 even. Given n
and k, let s be an arbitrary but fixed integer with s ≥ (3(2n+ 1) + 2)n + 1.

Let T 0 be the graph obtained from a path of length s, replacing each edge with s
parallel edges. The vertices in T 0 contain s edge disjoint paths of length s. We will label
these paths T 0

1 , . . . , T
0
s .

The vertices of T 0 are rigid and we will later use these parallel edges to prescribe the
rotation of the vertices. Since the rotations are only prescribed up to inversion, a vertex
must be incident to at least 4 edges in order for the rotation to be useful. However, in
most other contexts it will suffice to consider T 0 simply a single path, and we will prove
that this simplification does not affect the crossing number.

We similarly define s parallel paths B0
1 , . . . , B

0
s . Each of these parallel paths is also

thick. We will often consider these paths as a single path B0 of length s.
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Now we define new paths T 1, . . . , T 2n, each edge of which has weight (nk)2, and such
that T j has length s if j is even and T j has length k if j is odd. Let T be the concatenation
of paths T 0, T 1, . . . , T 2n. The path T is the Top Path and has length nk + (n+ 1)s.

Similarly, define the paths B1, . . . , B2n, each edge of which has weight (nk)2, and such
that Bj has length s if j is even and Bj has length k if j is odd. Let the Bottom Path B
be the concatenation of paths B0, B1, . . . , B2n, also of length .

Let the rigid vertex r be adjacent to the last vertex of both T and B. This new path
of length 2 from T to B is the Right Path, denoted R and has weight (nk)2 nk + (n+ 1)s.

Now introduce a second rigid vertex `, adjacent to the first vertex of T and B. Let
L1, . . . , Ls be parallel paths of length 2, each containing `, and having the first vertex of
both T and B as endpoints. Every edge of these parallel paths is also thick.

As with T 0 and B0, we will use the parallel edges to fix the rotation of `, but in most
cases it will suffice to treat the parallel paths as a single path L, called the Left Path.

Note that TLBR forms a cycle which we will call the interior cycle. Each edge in the
interior cycle has weight at least (nk)2.

Next, we introduce n · k paths of length 2. The i, j-column cij is a path of length two
between jth vertex of T 2i−1 and the jth vertex of B2i−1 for each 1 ≤ i ≤ n. Each column
has weight nk.

We will often discuss the columns as if they are ordered from left to right. We say
column cij > ci

′

j′ iff i > i′ or i = i′ and j > j′.

In addition to the columns we define two rows, an Even Row Re and an Odd Row Ro,
each of weight 1. Both are paths of length nk

2
with endpoints ` and r. The path Re is

from ` to r with interior vertices consisting of the midpoints of the columns cij, for all even
j. The vertices are naturally ordered, as in T . Likewise, Ro is the path from ` to r with
interior vertices consisting of the midpoints of the columns cij, for all odd j. Again, the
vertices of Ro are found in the natural order. Every vertex in Re and Ro (including ` and
r) are rigid vertices. We will often refer to the rows and columns together as the interior
of the graph.

We note here that parity of k ensures that two consecutive columns are not incident to
the same row. In fact, this is the only reason to dictate an even k. The proof for odd k
is unchanged, however the description of the graph must be slightly altered to ensure that
consecutive columns are not incident to the same row.

Finally, take (3n+2) separate s×s grids with thick edges. Concatenate 2n+1 of these
grids by identifying the last column of one grid and the first column of the next. Attach
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Figure 5.1: The interior of Gn,k along with the interior cycle

the remaining n+ 1 grids evenly by identifying the top row of the grids with s consecutive
vertices in the bottom row of concatenated grids. These result, as shown in Figure 5.2, is
a gridlike structure resembling a dense “caterpillar” graph.

Figure 5.2: And example of the grid incident to the path T . (Here n = 4 and s = 5.)

The “base” of this gridlike structure contains n + 1 sets of s + 1 points. These points
are identified with the points on the paths T 0, T 2, . . . , T 2n.

Construct a symmetric gridlike structure for the Bottom Path. The “base” again con-
tains (n+1) sets of s points which are identified with the points on the pathsB0, B2, . . . , B2n.
Figure 5.3 shows a drawing of the interior cycle with the gridlike structures.

To complete the description of the graph, we must describe the rotation of the rigid
vertices. For each path cij, the rotation of the interior vertex is such that the column and
incident row cross (and are not simply tangent to) one another.

At the vertex r, the two rows are incident to r on opposite sides of the path R.

At the vertex `, the edges of L1, . . . , Ls incident to T are found in the natural order
followed by those incident to B in the reverse order. Both rows must now also be consec-
utive and are the only two edges between edges in L1. In particular, the rows are incident
to the same side of L. The rotations of ` and r are preserved in Figure 5.1.

Now we only need to consider the rotation of T 0 and B0. Consider a planar embedding
of the graph obtained by removing the rows from Gn,k. The rotations of T 0 and B0 in Gnk

are the same as rotations that result from such an embedding.
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Figure 5.3: A drawing of Gn,k without the interior. (Here s = 5.)
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Figure 5.4: The paths T 0, L, and B0 with the prescribed rotations.

5.1.1 Treating the Grids as Paths

The first application of Theorem 3.2.1 is in what we call the caps. In our description
of the graph, we have dense gridlike structures, attached to the interior cycle at regular
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intervals. However, these grids are rather difficult to work with. Lemma 5.1.2 allows for
much simpler treatment of these grids. To do this, we first must provide a bound for the
crossing number on the torus.

Lemma 5.1.1. wcr1(Gn,k) < (nk)2.

Proof. If we combine Figures 5.1 and 5.3, we obtain a drawing on the plane with 2(nk)2

crossings. However, we see that one edge crosses both the last even column and the frame.
By using one handle to reroute the this edge, we obtain a drawing of Gn,k in the torus with
fewer than (nk)2 crossings.

This bound on the toroidal crossing number will be used in the following lemma, since
it ensures that the only crossings must include a row.

Lemma 5.1.2. For any optimal drawing of Gn,k on a surface of genus 1 ≤ g ≤ 2n + 1,
there exists another drawing of Gn,k on the surface of genus g with no additional crossings
such that:

(i) no edges in the grids are crossed; and

(ii) each edge in the grid incident to the interior cycle is incident to the same side of the
interior cycle.

Proof. Consider an optimal drawing of Gn,k. We first wish to show that we need only
consider drawings in which the parallel edges of T 0, B0, and L are drawn as parallel arcs.

Consider two consecutive vertices u and v along the path T 0∪L∪B0. The two vertices
are connected by s edges, which we will call e1, . . . , es, with ei ∈ T 0

i . Moreover, the edges
must be incident to both u and v in the natural order.

Contract es. The remaining s − 1 edges form a RBG-bouquet and since s − 1 ≥ 3g,
by Theorem 3.2.1 at least two edges are homotopic or one is contractible. If two edges
are homotopic, they were homotopic before contracting es. If an edge is contractible, then
it was homotopic to es. So before contracting s, there were two edges e and e′ that were
homotopic. The edges e and e′ must bound a disc in Σ.

Recall that the rotations of u and v can only be prescribed up to inversion. Assume
that e1, . . . , es are found in the natural order in the clockwise rotation of u. If e1, . . . , es are
also in the natural order in the clockwise rotation of v, then each edge would have exactly
one end in the disc bounded by e and e′. So e1, . . . , es must meet v in the reverse order.
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Since e and e′ are uncrossed, we can redraw the remaining edges e1, . . . , es in a small
neighborhood of e and e′, while preserving the rotation and not increasing the crossing
number.

So, given any optimal drawing, there is another optimal drawing in which the parallel
paths of T 0, B0 and L are drawn as parallel arcs. Moreover, since the grids are incident to
T 0 and B0 between the edges of T 0

1 and B0
1 , the grids must be incident to the same side of

the path T 0 ∪ L ∪ B0. We now need only consider optimal drawings in which the parallel
edges are drawn in this way.

Define the path λij to be the path that begins at the jth vertex at the base of the
gridlike structure (i.e. the jth vertex of T 0). The path travels up s+ (s− j) vertices, over
s · (2i+ 1)− 2j vertices, and then down s+ (s− j), ending at the (s− j)th vertex of T 2i.

Figure 5.5: The paths λ21, . . . , λ
2
s.

For each i, the set of paths {λi1, . . . , λis} forms a set of nested “arches” over a portion
of the path T . Figure 5.5 shows an example of these paths. For a given j and any i1, i2,
λi1j ∩ λ

i2
j is non-empty.

Since the edges of the grids are thick, we know that none of them can be crossed, as
otherwise the crossing number is not minimal.

We start by looking at the paths λ11, . . . , λ
1
s. Suppose we are walking along the path

T . Each λ1j will meet the path T twice. The first time we meet the path is along T 0. We
know the grids are incident to the same side of T 0, which we assume is the left.

A path is said to be in D1 if we find its ends on different sides of T , first to the left and
then to the right. We say a path is in S1 if we find it to the left on both occasions.

Let us now contract T to a point, so each path λ1j becomes a loop incident to the
point T . Note that the rotation of D1 and S1 is exactly as required for Lemma 3.2.1.
Therefore, there can be at most 3g pairwise non-homotopic, non-contractible paths in
S1 ∪ D1. Including 2 possible contractible loops, there is at most 3g + 2 non-homotopic
loops in this bouquet.
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Since s ≥ (3(2n + 1) + 2)n + 1 ≥ (3g + 2)n + 1, the bouquet must contain at least
(3g + 2)n + 1 loops. Moreover, since none of the paths is crossed, the rotation prohibits
any path from D1 from being homotopic to another path.

Therefore, S1 must contain a set S ′1 of at least (3g+2)n−1+1 pairwise homotopic paths.
Define the set Λ1 ⊂ N by j ∈ Λ1 if and only if λ1j ∈ S ′1.

For each 1 < i ≤ n, we say a given path λij is in Si if its endpoints are incident to the
same side of T and recursively define the set Λi.

Let Λi to be those indices j for which j ∈ Λi−1 and λij ∈ Si. Note that Λ1 ⊇ Λ2 ⊇ · · · ⊇
Λn. We know that |Λ1| ≥ (3g + 2)n−1 + 1. We wish to show that |Λi| ≥ (3g + 2)n−i + 1,
for each i = 1, 2, . . . n.

By induction, |Λi−1| ≥ (3g+ 2)n−(i−1) + 1. Let m = (3g+ 2)n−(i−1) and let j1, j2, . . . , jm
be any m elements of Λi−1. By contracting T to a point and applying Theorem 3.2.1, we
see that the m loops arising from λij1 , . . . , λ

i
jm have at most 3g + 2 homotopy types.

By the pigeonhole principle, at least one homotopy class has size (3g + 2)n−i + 1.
Since the paths are uncrossed, homotopic paths can not have ends on opposite sides of T .
Therefore, the corresponding columns must be in Λi, as required.

In particular this tells us that Λn 6= ∅. Let j ∈ Λn. Then, j ∈ Λi, for each 1 ≤ i ≤ n.
By drawing the entire grid-like structure near λ1j ∪ · · · ∪ λnj , we can modify our drawing of
Gn,k so for each ` 6= j, the path λi` is homotopic to λij.

Since no λij is crossed, this gives a drawing of Gn,k with no additional crossings. More-
over, each edge in the grid incident to T is incident to the same side of T , as required.

The argument is symmetric for the grids attached to the Bottom Path B. Since the
edges of the grid are incident to the same side T 0LB0, we can conclude that this new
optimal drawing has all edges of the grid incident to the interior cycle are incident to the
same side of the interior cycle.

Lemma 5.1.2 shows that we only need to consider drawings where the set of paths
{λi1, . . . , λis} are homotopic, for any 1 ≤ i ≤ n. Equivalently, our gridlike structure has
n “arches”, and the homotopy of these arches defines the homotopy of the rest of the
structure.

For the grid attached to the Top Path, let αi be the innermost path around the ith

arch, so in particular it joins the end of T 2i−2 with the beginning of T 2i. For the bottom
grid, let βi be the innermost path around the ith arch, joining the end of B2i−2 with the
beginning of B2i. Figure 5.6 shows the paths α1, . . . , αn.
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α4α3α2α1

Figure 5.6: A drawing of the caps α1, . . . , αn.

We will call the paths αi and βi the caps. The cap αi along with the path T 2i−1 forms
a cycle which we will call the ith upper cap cycle, denoted 4i. Similarly the cycle formed
by βi and Bi is a lower cap cycle, denoted 5i. Finally, the paths L and R together with
the paths αi, βi, T

2i and B2i, for 0 ≤ i ≤ n, form a cycle, which we will call the exterior
cycle. Together, the interior and exterior cycles form the frame.

Figure 5.7 shows a complete drawing of the graph Gn,k. We assume that the remainder
to the grid like structures are drawn close to the cap paths αi and βi.

r
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B2i−2 B2n−2

T 2n−2T 2i−2
T 2

B2

B0

`

T 0

β1 βi βn

αi αnα1

Figure 5.7: The graph Gn,k.

5.2 Using Homotopy to Analyze Gn,k

In general, we will be using the standard definitions of homotopy when we talk about the
cycles and paths in our graph. However, in our discussion of the homotopy of the columns
of Gn,k, we will use the same definition that we saw in the discussion of the paper of DeVos
et al. We restate it here.

Two columns, cij > ci
′

j′ , are homotopic if the cycle contained in T ∪B ∪ cij ∪ ci
′

j′ bounds

a closed disc. (In this case, we will simply say cij and ci
′

j′ bound a disc.)
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A column, cij is contractible if the cycle contained in T ∪B∪L∪cij or the cycle contained
in T ∪ B ∪ R ∪ cij bounds a closed disc. We will call cij left contractible former case and
right contractible in the latter.

As in the paper of DeVos et al., we will need that if any set of j consecutive columns
are homotopic, then they must contain at least j crossings. The statement of the following
lemma is analogous to Lemma 4.3.2 and only requires small adjustments to the proof.

Lemma 5.2.1. Suppose Gn,k is drawn optimally on a surface Σ. If there are j ≥ 2
consecutive columns, c1, . . . , cj that are pairwise homotopic, then these columns are crossed
by the two rows at least j times in total.

Proof. Suppose j = 2. Since c1 and c2 are homotopic, they bound a disc. By Lemma 5.1.2,
the exterior cycle must be disjoint from the disc bounded by c1 and c2, as otherwise the
crossing number would be at least (nk)3. Therefore, ` and r are either both inside this
disc or both outside.

Each row has a vertex in the boundary of the this disc bounded by c1 and c2. The
rotation of this vertex is prescribed in such a way that the row must cross the boundary of
the disc at the vertex. Therefore, it must cross the boundary of the disc at another point.
Thus, both rows cross the boundary of the disc, as required.

Suppose j = 3 and that c1, c2, and c3 are consecutive homotopic columns. Then c2 is
contained in the disc bounded by c1 and c3. Then the row that contains the vertex in c2
must cross c1 ∪ c3 twice. The other row must cross c1 ∪ c2 and we are done.

Suppose now that j ≥ 4 and let c1, . . . , cj be consecutive homotopic columns. By
induction, c1, . . . , cj−2 contains j − 2 crossings. Additionally, each row crosses the disc
bounded by cj−1 and cj, completing the proof.

A further application of Theorem 3.2.1 is to count the homotopy types of the columns.
Once the number of homotopy types is bounded, we will be able to use Lemma 5.2.1 to
obtain a lower bound on the number of crossings.

We will see in Lemma 5.4.4 that there are two ways to save crossings in our graph. The
first is to make both caps in a pair non-contractible. If this is the case for a given drawing,
we say that {4i,5i} is an active pair. If a pair of caps {4i,5i} is not active, we call it an
inactive pair. Generally, if 4i is in an active pair, all the columns under 4i are uncrossed.

The second way to save crossings is by maximizing the homotopy classes of the columns.
The following lemma provides an upper bound for the number of homotopy types for a
given surface.
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Theorem 5.2.2. Suppose we have a drawing Gn,k on a surface of genus g in which `
columns are all under inactive pairs, pairwise non-homotopic, and do not cross the frame.
Then, ` ≤ 3g + 1.

Proof. As we walk along the path TLB, we will meet each of the ` columns exactly twice.
Assuming, without loss of generality, that we find the path αn to our right, there are three
possible scenarios in which we can meet any given column, which we will think of as a
partition of the columns.

We say that a column is in R if we find find it to our right the first time we meet it
and to our left the second time. We say that a column is in B if we find find it to our left
the first time we meet it and also to our left the second time. We say that a column is in
G if we find find it to our left the first time we meet it and to our right the second time.

Let us define r1, . . . , ri to be the columns in R where rm = cm1
m2

precedes rn = cn1
n2

iff
m1 < n1 or m1 = n1 and m2 < n2. We similarly define g1, . . . , gj and b1, . . . , bk to be the
sets of columns in G and B, respectively.

Now let us contract the path TLB to a point, s. We are left with a bouquet with `
loops in a particular rotation. This rotation is the same as required by Theorem 3.2.1.
Then, taking into account the possibility of a contractible column, ` ≤ 3g + 1.

This bound is important because if two consecutive columns are homotopic, then by
Lemma 5.2.1 they contribute at least two crossings.

The last step before we analyze the crossing number of our graph on surfaces of higher
genus is to limit the ways in which the interior cycle and caps can be drawn on the surface.
We will use the following propositions several times in our analysis.

Proposition 5.2.3. Let g ≥ 1 and D be an optimal drawing of Gn,k on the surface of
genus g. Then, the interior cycle is non-separating in D.

Proof. Suppose the interior cycle is separating in some drawing of Gn,k. Then the interior
cycle separates the surface into 2 regions. Due to the rotation of ` and r, one row must be
incident to ` in one region and incident to r in the other region. This row must cross the
boundary interior cycle, so the drawing has at least (nk)2 crossings. By Lemma 5.1.1, this
drawing is not optimal.

Proposition 5.2.4. Let g ≥ 1 and D be an optimal drawing of Gn,k on the surface of
genus g. Then, the interior cycle is not homotopic to any non-contractible cap in D.
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Proof. From Proposition 5.2.3, we know that the interior cycle is non-contractible in D.
Suppose αi is a non-contractible cap. If it is homotopic to the interior cycle, then together
the two curves bound a disc D. The vertices ` and r are on the boundary of this disc.

Due to the rotation of ` and r, one row must be incident to exactly one of ` or r in D.
This row must cross the boundary of D, so the drawing has at least (nk)2 crossings. By
Lemma 5.1.1, D is not optimal, a contradiction.

Finally, our analysis will eventually reduce to the case of the double torus. While
Theorem 5.2.2 provides a bound for the number of homotopy types on the double torus,
we are able to find a tighter bound on the number of crossings.

Lemma 5.2.5. Suppose we have an optimal drawing Gn,k on the double torus in which all
columns are all under inactive pairs. Then there are at least nk − 2 crossings of columns.

Proof. In the double torus, by Proposition 5.2.3 we have that the interior cycle must be
non-separating. Moreover, since each edge in the interior cycle has eight at least (nk)2, we
know from Lemma 5.1.1 that the cycle is uncrossed.

Case 1 All caps are contractible. In this case, the interior cycle must be homotopic to the
exterior cycle. If we cut and cap along the exterior cycle, then there are two copies
of the exterior cycle in the torus, each bounding a disc. Since the interior cycle is
homotopic to the exterior cycle, it must also bound a disc in the torus.

Since the interior cycle is uncrossed and, by Lemma 5.1.2(i), the exterior cycle is
as well, the interior of Gn,k is drawn outside this disc in an optimal drawing. In
particular, both ends of each column are incident to the same side of the interior
cycle. We will contract the interior cycle and let the columns form a bouquet on the
torus.

We know that the rotation of the columns must now be c1, c2, . . . , cnk in the first
half and cnk, . . . , c2, c1 in the second half. By Corollary 3.2.2 there can only be one
non-contractible loop on the torus in such a bouquet. If there is a non-contractible
loop, let it be ci.

The remaining columns must be either left or right contractible. Suppose cj is left
contractible. Then, for all k ≤ j, the disc bounded by cj contains both ends of the
column ck. Since two columns cannot cross each other, ck must be left contractible as
well. Similarly, if cj′ is right contractible, then ck′ is right contractible, for all k′ ≥ j′.

Let j be the largest integer such that cj is left contractible. If j ≤ 1, then c3 is
right contractible (c2 may be right contractible or non-contractible). So c3, . . . cnk are
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nk−2 consecutive homotopic columns and contain nk−2 crossings by Lemma 5.2.1.
If j ≥ nk− 2, then c1, . . . , cnk−2 are homotopic and likewise contain nk− 2 crossings.

If 2 ≤ j ≤ nk − 3, then c1, . . . , cj are left contractible and cj+2, . . . , cnk are right
contractible. By Lemma 5.2.1, the left contractible columns contribute j crossings
and the right contractible columns contribute nk− j − 1 for a total of nk− 1. So we
see that the columns are crossed at least nk − 2 times.

Case 2 Some cap is non-contractible. In this case, we first note that the non-contractible
cannot be separating. If it were separating, the remainder of the interior cycle must
be drawn in one region, since the cap is uncrossed in any optimal drawing. Then
the remaining caps and the interior of the graph are drawn in the same region as the
interior cycle. If we replace the empty face bounded by the original cap with a disc,
we obtain a drawing with the same number of crossings but in a surface of smaller
genus. This contradicts the optimality of the drawing.

So the non-contractible cap must be non-separating. Moreover, if it were homotopic
to the interior cycle, the cap together with the interior cycle would bound a disc.
Due to the rotation of r and `, one row would have exactly one end inside this disc
and would cross the frame.

Assuming that the non-contractible cap is 4i, let us cut along it. Since the interior
cycle was not homotopic to 4i, it must be non-contractible in the new surface. Cut
along the interior cycle as well. We are left with a sphere with four holes, but it is
important to note that we know the boundaries of these discs.

One hole, h1 is bounded by 4i, with the points of T i appearing in clockwise order.

A second disc h2 is bounded by the interior cycle. Since Σ was an orientable surface,
the two faces containing T i after cutting and capping will have the vertices of T i

appearing in opposite directions. So the vertices of T i appear in counter-clockwise
order around h2. The vertices of Bi must then appear in clockwise order.

The final holes h3 and h4 are bounded by 4i and the interior cycle, respectively.
However, since these two cycles are not disjoint, the boundary of these holes intersect
at the path T i.

Since all the caps are incident to the same side of the interior cycle, all other caps are
incident to the interior cycle on the boundary of h4. So the exterior cycle bounds a
region containing the holes h3 and h4. This means that all columns either have both
ends incident to h2 or one end in h1 and one in h2.

Suppose there are at least two columns having one end on the boundary of h1 and
one end on the boundary of h2. Then they necessarily separate the sphere. Since the
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other copy of the interior cycle (namely the boundary of h4) is contained in a region
bounded by the exterior cycle, these two columns together with the exterior cycle
separate the double torus.

Each row intersects one of the two columns at exactly one vertex. Due to the pre-
scribed rotation, it crosses the boundary of the separation at this vertex. Since `
and r are in the same region of this separation, each row must therefore cross the
boundary at another point. So, these two columns are crossed by each row.

Moreover, since the directions of T i in h1 and Bi in h2 are the same, the columns
must be consecutive. In particular, there can not be more than two of them, so every
other column has both ends in h2.

Each column with both ends in h2 must be either left or right contractible in the
double torus. As we stated in Case 1, if a column is left contractible, then all
preceding columns are left contractible. If a column is right contractible, then all
successive columns are right contractible.

If every column has both ends in the boundary of h2, then every column is either left
or right contractible. By Lemma 5.2.1, there are at least nk − 1 crossings, achieved
when one of the contractible homotopy classes contains a single column.

If exactly one column has one end in the boundary of h1 and the other in the boundary
of h2, then there are at least nk − 2 crossings. Again, this is achieved when one of
the contractible homotopy classes contains 1 column. The other class now contains
nk − 2 columns and, by Lemma 5.2.1, they are crossed nk − 2 times.

Finally, if two columns have one in h1 and the other end in h2, then they are crossed
by each row. The remaining nk − 2 columns must contain nk − 3 crossings, again
achieved when one column is in its own homotopy class and the remaining nk − 3
columns are in the other. In total, this scenario contains nk − 1 crossings.

Thus, it is optimal to have only one such column with one end in h1 and the other
in h2 and there are at least nk − 2 crossings.

5.3 Crossing Number on the Sphere and Torus

Before we get into a more general case, we begin by determining cr0(Gn,k) and cr1(Gn,k).

Lemma 5.3.1. wcr0(Gn,k) = 2n2k2
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Proof. Figure 5.7 gives a drawing in the plane with exactly 2n2k2 crossings.

Consider an optimal drawing D of Gn,k in the sphere. The interior cycle must separate
the sphere into two discs, d1 and d2. Since ` and r have fixed rotation, one of the rows
must cross the interior cycle. This contributes n2k2 to the crossing number.

Recall that each edge in the interior cycle has weight at least (nk)2 and each column
has weight nk. No column can cross the interior cycle, as otherwise the crossing number
would be at least (nk)3. Suppose a column cij is in d1. Since 4i and 5i are thick and
uncrossed, they must both be in d2. Then, ci1, . . . , c

i
k must all be in d1.

So for each i, the columns ci1, . . . , c
i
k are homotopic and, by Lemma 5.2.1, are crossed k

times by the rows. So the nk columns combined are crossed nk times. Since each column
has weight nk, these contribute (nk)2 to the crossing number. Therefore, the crossing
number is at least 2(nk)2 and equality holds.

αi αn

β1 βi βn

α1

Figure 5.8: Drawing on torus with n2k2 − nk crossings

Lemma 5.3.2. wcr1(Gn,k) = n2k2 − nk.

Proof. Figure 5.8 provides us with an upper bound of cr1(Gn,k) ≤ n2k2 − nk.

To bound from below, we begin by noting that the frame cannot be crossed, as otherwise
there would be at least (nk)2 crossings. The prescribed rotations at ` and r imply that the
interior cycle must be non-separating.

If a cap 4i is non-contractible, then we can contract the path T 2i−1, so that 4i and
the interior cycle form a bouquet of non-contractible loops on the torus. Since the ends of
the caps are incident to the same side of the interior cycle, they must be consecutive after
contracting T 2i−1. By Corollary 3.2.2, we see that these two loops must be homotopic.

If a cap is homotopic to the interior cycle then together, since the two cycles share a
path, they bound a disc in the torus. Due to the rotation of ` and r, one row would have
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exactly one end that enters the interior of this disc. This row would cross the boundary of
the disc and contribute at least (nk)2 crossings. Since the drawing was optimal, no such
non-contractible cap can exist.

Now, we can cut and cap along the exterior cycle; this will not separate the interior
cycle. By Lemma 5.1.2(i), we see that the columns are now drawn on the sphere and
must be either left or right contractible. In particular, the first j columns must be left
contractible and last nk − j columns must be right contractible.

Lemma 5.2.1 implies that there are at least nk−1 crossings of columns, where equality
can only hold if j = 1 or nk−1. Since each column has weight nk, we conclude cr1(Gn,k) =
n2k2 − nk.

5.4 Gn,k on Surfaces of Higher Genus

We now turn our attention to the drawing of Gn,k on a surface of arbitrary genus. To do
this, we separate into cases when the genus is even or odd. We will then find upper and
lower bounds for the crossing number in each case.

r`

Figure 5.9: An embedding of the interior of Gn,k on the torus

Lemma 5.4.1. Gn,k embeds in the surface of genus 2n+ 1.

Proof. As demonstrated by Figure 5.9, the interior of the graph embeds in the torus.

Consider the subgraph of Gn,k consisting of the interior and j caps and assume the
subgraph is embedded on the surface of genus j + 1. We will show that we can embed a
subgraph consisting of the interior and j + 1 caps on the surface of genus j + 2.

Suppose the cap path αi is not in our subgraph embedded in the surface of genus j+ 1.
The argument for βi is symmetric. Let fi be a face with boundary containing the path
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T 2i−1 and f ′i be a face containing the path T 2i+1. If we attach a handle with an end in f1
and f ′1, then the cap αi can be drawn without introducing any more crossings. This yields
an embedding of the interior and j + 1 caps on the surface of genus j + 2.

By induction, we conclude that there is an embedding of the interior will all 2n caps
on the surface of genus 2n + 1. We now only need to specify how to draw the remainder
of the gridlike structure.

First consider the top gridlike structure. For λ11, . . . , λ
1
s, draw each path alongside α1.

Now suppose we have drawn λi−11 , . . . , λi−1s . We draw the remaining portion of λi1, . . . , λ
i
s

alongside αi. This specifies the full grid. We can embed the opposite grid like structure in
a similar way to obtain an embedding of Gn,k in the surface of genus 2n+ 1.

Lemma 5.4.2. Let 1 ≤ g ≤ n, then:

(a) wcr2g−1(Gn,k) ≤ [nk − (g − 1)k − 1]nk; and

(b) wcr2g(Gn,k) ≤ [nk − (g − 1)k − 2]nk

3

4 2

2g − 3 1

2g − 1

1

22g − 2

2g − 1

α1

β1 βi

αi

Figure 5.10: A drawing of Gn,k on a surface of genus 2g − 1

Proof. For the case of 2g− 1, this upper bound is realized in Figure 5.10. The first 2g− 2
handles are used to make g − 1 active pairs. The final handle is used to make the interior
cycle non-contractible.

To achieve the bound for the surface of genus 2g − 1, begin with the drawing on the
surface of genus 2g− 1 in Figure 5.10. Note that every crossing is a row (of weight 1) on a
column (of weight nk). In particular, the row Re crosses at least one column. Choose one
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such crossing. We can introduce a handle to locally remove this crossing. The result is a
drawing of Gn,k on the surface of genus 2g with [nk − (g − 1)k − 2]nk crossings.

Before we prove that this bound is tight, we would like to limit the types of drawings
of Gn,k that we must consider. The following lemma shows that we need only consider
drawings of Gn,k in which no subset of the non-contractible cap cycles separate the surface.

Lemma 5.4.3. Let D be an optimal drawing of Gn,k on a surface of genus 1 ≤ g ≤ 2n.
Then there exists another optimal drawing D′ of Gn,k on a surface Σ of genus g such that
no subset of non-contractible cap cycles separates Σ.

Proof. We first note that every edge in a cap cycle has weight at least (nk)2 and is uncrossed
in the optimal drawing of Gn,k. Let C be a smallest subset of non-contractible cap cycles
that separates the surface. Consider the component of Gn,k \ C containing `. Since C is
uncrossed, this component must be contained in the same region of Σ \ C. Moreover, this
component contains all of Gn,k except for C and the paths T 2i and B2j, for 4i,4i+1 ∈ C
and 5j,5j+1 ∈ C respectively.

Consecutively cut and cap along each curve in C. By the minimality of C, the first
|C| − 1 curves are non-separating, so cutting them yields a surface of genus g − |C| + 1.
Cutting the final curve yields two surfaces Σ1 and Σ2 of genus g1 and g2 respectively, with
g1 + g2 = g − |C|+ 1.

For each curve c ∈ C, there is a copy of c drawn in Σ1 and Σ2, with both copies of c
contractible.

We will assume that Σ1 contains `, and thus must contain all of Gn,k with the possible
exception of the paths T 2i and B2j, for 4i,4i+1 ∈ C and 5j,5j+1 ∈ C respectively.
However, there can be at most |C| such paths. Let T2i be one such path that is not drawn
in Σ1.

Add a handle to Σ1 with one end in a face with boundary containing the end of the path
T 2i−1 and other end in a face with boundary containing the beginning of the path T 2i+1.
Then, the path T 2i can be drawn in Σ1 (with an additional handle) without introducing
any new crossings.

This can be repeated for every such path T 2i or B2j until we are left with a complete
drawing of Gn,k in Σ1 with at most |C| − 1 additional handles. Since g1 ≤ g − |C| + 1, we
see that the new drawing is on a surface of genus no greater than g. Since the original
drawing was optimal, we must have equality.
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So we now having an optimal drawing of Gn,k in the surface of genus g with each cap
in c now contractible. We can repeat this process until no subset of non-contractible cap
cycles separates the surface.

The following lemmas will complete our analysis of the crossing numbers of Gn,k.

Lemma 5.4.4. If 1 ≤ g ≤ n, then:

(a) wcr2g−1(Gn,k) = [nk − (g − 1)k − 1]nk; and

(b) wcr2g(Gn,k) = [nk − (g − 1)k − 2]nk

Proof. Consider an optimal drawing of Gn,k on a surface of genus g′ ≥ 1 and suppose that
there are a active pairs. (Here g′ will be 2g or 2g − 1, but at the moment we do not wish
to consider the parity of the genus).

By Lemma 5.4.3, these 2a caps do not separate the surface. Successively cut and cap
along each of the caps to obtain a surface of genus g′−2a. If this new surface is the sphere,
then the interior cycle separates the surface and all columns must be drawn in one disc. By
Lemma 5.2.1, the columns are crossed at least nk times. If this were the case, the drawing
is not optimal. We conclude that the new surface is not the sphere, so g′ − 2a > 0. In
particular, note that a ≤ g − 1.

Let X(g′, n) be the minimum number of crossings when Gn,k is drawn on the surface of
genus g′ with no active pairs. Since there are no active pairs, if two columns ci and ck are
homotopic, with i < j < k, cj must have at least one end in the disc bounded by ci and
ck. Since columns do not cross, cj must also be homotopic to ci and ck.

So if there are j ≥ 2 homotopic columns, they must be consecutive and, by Lemma 5.2.1,
must be crossed by the rows j times. By Theorem 5.2.2, there are at most 3g′+1 homotopy
classes on the surface of genus g′. So at least nk−3g′ columns are not in singleton homotopy
classes. We see that X(g′, n) ≥ nk[nk − 3g′].

Again, we consider an optimal drawing of Gn,k with a active pairs. We cut along each
cap in an active pair. For each active pair {4i,5i}, we will assume all columns ci1, . . . , c

i
k

are uncrossed and remove them from the drawing. Further, we contract T 2i−1, T 2i, B2i−1,
and B2i. Finally, remove the appropriate edges of the grid like structures so that we are
left with a drawing of Gn−a,k on the surface of genus g′ − 2a.

The drawing of Gn−a,k has no active pairs and, consequently, at least X(g′− 2a, n− a)
crossings. Therefore, so does the original drawing of Gn,k with a active pairs.
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It is clear that wcrg′(Gn,k) ≥ min0≤a≤g−1X(g′ − 2a, n − a). Since k ≥ 6, we see that
the minimum of X(g′− 2a, n− a) occurs when a is large. Further, we know 1 ≤ a ≤ g− 1.
When a = g − 1, the remaining surface is either the torus or double torus. In either case,
we have a tighter bound for the crossing number. We look at these two cases separately
and then compare it to the general bound obtained from X(g′− 2a, n−a) when a = g− 2.

Case 1 Suppose the original genus is 2g. If a = g − 1, then after cutting and capping,
we are left with a drawing of Gn−g+1,k on the double torus. By Lemma 5.2.5, we see
that the crossing number is at least [nk − (g − 1)k − 2]nk

We see that X(2g− 2a, n− a) ≥ nk[nk− (g− 2)k− 12], so wcr2g(Gn,k) ≥ min{[nk−
(g− 1)k− 2]nk, [nk− (g− 2)k− 12]nk}. Since k ≥ 10, wcr2g ≤ [nk− (g− 1)k− 2]nk
and by Lemma 5.4.2(a) equality holds.

Case 2 Suppose the original genus is 2g − 1. If a = g − 1, after cutting and capping, we
are left with a drawing of Gn−g+1,k on the torus. By Lemma 5.3.2, we see that the
crossing number is at least [nk − (g − 1)k − 1]nk.

We see that X(2g−1−2a, n−a) ≥ nk[nk−(g−2)k−9], so wcr2g(Gn,k) ≥ min{[nk−
(g−1)k−1]nk, [nk−(g−2)k−9]nk}. Since k ≥ 10, wcr2g(Gn,k) ≤ [nk−(g−1)k−1]nk
and by Lemma 5.4.2(b) equality holds.

Lemma 5.3.1 (g = 0), Lemma 5.4.2 (1 ≤ g ≤ 2n), and Lemma 5.4.1 (g = 2n + 1) give
the entire crossing sequence for Gn,k, summarized in the following statement.

Theorem 5.4.5. Let n be a positive integer and k ≥ 10 be an even positive integer. Then,
the crossing sequence for Gn,k is given by:

wcr0(Gn.k) = 2n2k2

wcr2g−1(Gn,k) = [nk − (g − 1)k − 1]nk for 1 ≤ g ≤ n
wcr2g(Gn,k) = [nk − (g − 1)k − 2]nk for 1 ≤ g ≤ n

wcr2n+1(Gn.k) = 0

From the discussion of special graphs in Section 2.2 and Section 2.3, there must exist
a simple graph with the same (unweighted) crossing sequence, proving the main result,
Theorem 1.0.1.

Theorem 5.4.5 gives the entire crossing sequence of Gn,k. Some interesting properties
of the sequence include:

69



(a) a non-convex jump can occur arbitrarily late in the sequence;

(b) this late non-convex jump can be arbitrarily large; and

(c) there can be arbitrarily many non-convex jumps.
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Chapter 6

Conclusion

The main result of this paper proves the existence of a graph with an arbitrarily long non-
convex crossing sequence. In particular, the convex jumps occur throughout the sequence,
so for any N ∈ N, there exists an n ≥ N such that crn−1 − crn < crn − crn+1. Moreover,
for any such n, the size of this non-convex jump remains arbitrarily large.

In [1], Archdeacon et al. make following conjecture:

Conjecture 6.0.6. Any strictly decreasing sequence of non-negative integers is the crossing
sequence of some graph.

Though our result provides further evidence towards this conjecture, progress must
still be made in order to achieve a full proof. In particular, our graph was the first known
example to contain multiple non-convex jumps. However, the non-convex jumps remained
constant in size throughout the length of the sequence. One goal for future research would
be to prove the existence of a crossing sequence with multiple non-convex jumps in which
the sizes of the jumps increase.

Additionally, the non-convex jumps in the crossing sequence of Gn,k are spaced evenly
throughout the sequence. Another possible direction for research would be to create a
family of graphs where the non-convex jumps in the crossing sequence can be controlled
through a parameter of the graph. One strategy to achieve this result may be to relax any
restriction regarding the relative size of the non-convex jumps.
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