
LP-based Approximation Algorithms
for the Capacitated Facility Location

Problem.

by

Marco David Blanco Sandoval

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2012

c© Marco David Blanco Sandoval 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The capacitated facility location problem is a well known problem in combinatorial
optimization and operations research. In it, we are given a set of clients and a set of
possible facility locations. Each client has a certain demand that needs to be satisfied from
open facilities, without exceeding their capacity. Whenever we open a facility we incur in a
corresponding opening cost. Whenever demand is served, we incur in an assignment cost;
depending on the distance the demand travels. The goal is to open a set of facilities that
satisfy all demands while minimizing the total opening and assignment costs.

In this thesis, we present two novel LP-based approximation algorithms for the capac-
itated facility location problem.

The first algorithm is based on LP-rounding techniques, and is designed for the spe-
cial case of the capacitated facility location problem where capacities are uniform and
assignment costs are given by a tree metric.

The second algorithm follows a primal-dual approach, and works for the general case.

For both algorithms, we obtain an approximation guarantee that is linear on the size
of the problem. To the best of our knowledge, there are no LP-based algorithms known,
for the type of instances that we focus on, that achieve a better performance.

iii

Acknowledgements

I would first like to thank my supervisor Ricardo Fukasawa, for making my stay in this
university possible, for all the time he dedicated to me, and for all his valuable comments
and ideas.

I also thank Jochen Könemann, who collaborated with us through most of the research
that led to this thesis. His final comments as a reader were very useful.

I am equally thankful to Zac Friggstad, who joined our research team later and con-
tributed with some great ideas for the design and analysis of the algorithm in Chapter
4.

Finally, I thank the second reader, Chaitanya Swamy, for his valuable comments.

iv

Table of Contents

1 Introduction and Preliminaries 1

1.1 Basic Concepts . 1

1.2 The Capacitated Facility Location Problem 4

1.2.1 Review of Previous Results . 6

1.3 Motivation . 7

1.4 Outline and Results . 8

2 An LP-Rounding Algorithm for the Multi-Item Lot-Sizing Problem with
Uniform Capacities 9

2.1 The Problem . 10

2.1.1 Complexity . 10

2.1.2 Formulation . 11

2.2 Strengthening the Formulation . 11

2.2.1 Flow-Cover Inequalities . 12

2.3 The Algorithm . 14

2.3.1 The Random-Shift Procedure . 15

2.3.2 The Median Assignment Procedure 16

2.4 Analysis . 19

2.5 Derandomization and On-the-Fly Algorithm 25

v

3 An LP-Rounding Algorithm for the Capacitated Facility Location Prob-
lem with Uniform Capacities 27

3.1 The Problem . 27

3.2 The Algorithm . 28

3.3 Analysis . 34

3.4 Tightness of the Analysis. 40

3.5 Approximation Factor . 41

3.6 Solving the LP . 42

3.7 Separation . 44

3.8 Comments . 45

3.9 Generalization to Multi-Commodity Capacitated Facility Location with Mono-
tone Costs on Trees . 46

4 A Primal-Dual Algorithm for the Capacitated Facility Location Problem 48

4.1 The Single-Demand Case . 48

4.1.1 The Problem . 49

4.1.2 Formulation . 49

4.1.3 The Algorithm . 51

4.1.4 Analysis . 52

4.2 The General Case . 54

4.2.1 Formulation . 54

4.2.2 The Algorithm . 55

4.2.3 Analysis . 57

4.2.4 Tightness of the Analysis . 62

5 Conclusions 64

APPENDICES 66

vi

A Complexity 67

A.1 Complexity of the Multi-Item Capacitated Lot-Sizing Problem 67

A.2 Complexity of the Multi-Commodity Capacitated Facility Location Problem
with Monotonous Costs on Trees . 69

B Separation of Flow-Cover Inequalities 70

References 75

vii

Chapter 1

Introduction and Preliminaries

In this chapter, we start by recalling some basic definitions and results in optimization
and linear programming. Thus, this first section can be safely skipped by a reader who is
familiar with these topics. Then, we introduce the capacitated facility location problem,
and give a short review of the background in finding approximation algorithms for it. We
conclude by explaining the motivation for choosing this topic, and describing the outline
of this thesis.

1.1 Basic Concepts

Let us consider a feasible, bounded mixed integer program (MIP) of the following general
form:

(PI)

min cTx

s.t Ax ≥ b

x ∈ Zr × Rn−r

x ≥ 0,

where A ∈ Qm×n, b ∈ Qm, c ∈ Q+ and 0 ≤ r ≤ n. Let z∗ be its optimal value. Note that
by nonnegativity of c and x, we have z∗ ≥ 0. This will later be important when we analyze
the performance of our algorithms.

Let (P) be the relaxation we obtain by removing the integrality constraints on x. That
is,

1

(P)

min cTx

s.t Ax ≥ b

x ∈ Rn

x ≥ 0.

Let z∗P be the its optimal value. Since (P) is a relaxation of (PI), which is a minimization
problem, we know that z∗P ≤ z∗. By the assumption on c made above, we have that z∗P is
also nonnegative.

The dual of (P) is defined as

(D)

max bTy

s.t yTA ≤ c

y ∈ Rm

y ≥ 0, .

Let z∗D be its optimal value. The property given by the following theorem is called weak
duality, and is a very important and classic result in linear programming.

Theorem 1.1.1 Let (P), (D), z∗P and z∗D be as above. Then,

z∗D ≤ z∗P .

One of the many uses of weak duality is in the design and analysis of primal-dual algorithms,
as we shall see in Chapter 4. The proof of this theorem is omitted, it can be found in almost
any linear programming book.

We define the (multiplicative) integrality gap of the problem as max
(P)∈I

{ z
∗

z∗P
}, where I is

the set of instances of the problem. By weak duality, this is at most
z∗

z∗D
. Let us see why

the integrality gap is important to us.

We say an algorithm (which takes (PI) as input) has an approximation guarantee of α
(we also say it is an α-approximation algorithm) if it runs on polynomial time and outputs
a feasible solution (for PI) of value z such that z ≤ αz∗. Here, α may depend on the
size of the input, but we omit that from the notation. If α is independent of the instance

2

and its size, we call it a constant factor approximation algorithm. As the name says, LP-
based approximation algorithms are algorithms that use linear programming techniques
in their design and/or analysis. These concepts are of particular importance to our work,
because we will describe and analyze LP-based approximation algorithms in the three main
chapters.

By the relation between z∗ and z∗P noticed above, if an algorithm gives us a feasible
solution of value z such that z ≤ αz∗P , we know that it is an α-approximation algorithm.
By weak duality, an algorithm satisfying z ≤ αz∗D is also an α-approximation algorithm. In
general, LP-based approximation algorithms prove the approximation guarantee by using
one or both of these properties. Clearly, the approximation guarantee of such an LP-based
algorithm cannot be smaller than the integrality gap of the problem. In particular, if the
integrality gap of a relaxation is unbounded, a constant factor approximation on these
lines is not possible. As we will see, this property is what makes it so difficult to find good
LP-based approximation algorithms for the capacitated facility location problem.

In this work, we will focus on two types of LP-based approximation algorithms. The first
type are LP-rounding algorithms. These take an optimal (or just feasible) solution to an
LP relaxation and round it to a feasible solution to the original problem. The algorithms
we describe in Chapters 2 and 3 belong to this category. The second type are primal-
dual algorithms. These iteratively construct pairs of feasible dual solutions and infeasible
primal solutions. As the algorithm progresses, the cost of each solution increases; and
the algorithm stops when the primal solution becomes feasible. An advantage of primal-
dual algorithms over LP-rounding algorithms is that they do not require to solve the LP
relaxation. In particular, even if the LP cannot be solved in polynomial time because of the
number of constraints is too large, one may still design an efficient primal-dual algorithm.
We will work with primal-dual algorithms in Chapter 4, and we will make use of this
property.

A disadvantage of the relaxations we will introduce in the following chapters is that they
have an exponential number of constraints, which makes them hard to solve to optimality.
However, we can make use of the equivalence between separation and optimization over
polyhedra, which is another classical result in mathematical optimization. For that, we
make the following definitions,

Let K ∈ Rn be a rational, bounded polyhedron; and let c ∈ Qn.

The optimization problem corresponding to c and K is the following:

• Find y ∈ K maximizing {cTx|x ∈ K} or show K = ∅.

The separation problem corresponding to K is the following:

3

• Given x̄ ∈ Rn, is x̄ ∈ K? If not, find α ∈ Rn, β ∈ R such that αT x̄ > β and αTx ≤ β
for every x ∈ K.

The next theorem is due to Grötschel, Lovász and Schrijver, and can be found in [7].
The theorem is valid for more general sets K, but this simpler version suffices for us.

Theorem 1.1.2 Given c and K as above, the separation problem can be solved in polyno-
mial time if and only if the optimization problem can be solved in polynomial time.

As mentioned above, the importance of this result for us is that if the separation
problem corresponding to an LP can be solved efficiently (as will be the case in Chapters 2
and 3) for every point in Rn, then the LP can be solved to optimality in polynomial time,
even if the number of constraints is exponential.

1.2 The Capacitated Facility Location Problem

We are now ready to introduce the capacitated facility location problem, which is the main
problem we will focus on in this work. It is defined as follows:

Consider a set of facilities F and a set of clients C. Each facility i has an opening cost
fi, and a capacity ui. Every client j has a demand dj that needs to be satisfied from open
facilities. The cost of transporting a unit of product from facility i to client j is given by
cij. A facility cannot operate unless its opening cost is paid, and once it is open, it cannot
exceed its capacity. The goal is to satisfy all demands while minimizing the total cost.

We will assume that demands are splittable. This means that a single facility can be
served by several clients.

This problem is of a great importance to operations research, since it can be used to
model a huge number of real-life problems, ranging from telecommunications to mail deliv-
ery or supply chain management. Besides that, it is also of great interest in combinatorial
optimization, and there are still several open questions concerning it.

As with most optimization problems, there are several variants of this problem that
have been considered in the literature. In general, we will work with metric assignment
costs and hard capacities. By this, we mean that the facilities and clients are points in
a metric space with distances given by the assignment costs; and that we can open each
facility at most once (as opposed to the soft capacities case, where we are allowed to open
several copies of each facility).

4

So, unless otherwise specified, we will make these assumptions throughout the text,
and we will refer to the problem as CFL.

We can easily formulate this program as an MIP. For every i ∈ F , j ∈ C, let xij denote
the fraction of the demand dj satisfied from facility i; and let yi equal 1 when facility i is
open, and 0 otherwise. Then, the formulation is the following:

(MIP-CFL)

min
∑
i∈F

fiyi +
∑
i∈F

∑
j∈C

djxij

s.t
∑
i∈F

xij ≥ 1 for every j ∈ C, (1.1)∑
j∈C

djxij ≤ uiyi for every i ∈ F , (1.2)

yi ≤ 1 for every i ∈ F ,
yi ≥ 0 for every i ∈ F ,
xij ≥ 0 for every i ∈ F , j ∈ C,
yi ∈ Z for every i ∈ F .

Here, constraints (1.1) tell us that all demands must be satisfied. Constraints (1.2) say
that the total amount of demand served by a facility i cannot exceed its capacity.

In the literature, the formulation of this problem often includes the following set of
constraints as well:

xij ≤ yi for every i ∈ F , j ∈ C.

These constraints say that a facility cannot serve demand unless it is open. They are
trivially implied by (1.2) for feasible points. One reason why it makes sense to include
them is that they are essential in the formulation of the uncapacitated facility location
problem. Another reason is that they are not redundant after removing the integrality
constraint. However, they are not necessary for our analysis, so we will ignore them.

Throughout the work, we will refer to the LP obtained by relaxing the integrality
constraints of (MIP-CFL) as the natural LP relaxation of (MIP-CFL). This convention is
useful because later we will consider more sophisticated relaxations and we will compare
them to this one. As we will see now, the natural LP relaxation of the capacitated facility
location problem has an arbitrarily large integrality gap, which is why we will need to close
that gap by considering stronger relaxations. In fact, as the example will show, the gap
remains even if we add the constraints xi ≥ yi.

5

Consider an instance with two facilities and one client. Let f1 = M , f2 = 0, u1 = M ,
u2 = M , d1 = M + 1 and c11 = c21 = 0. In other words, one facility can be built for free
while the other is very expensive; and each one has a little less capacity than necessary
to satisfy the whole demand. Clearly, all feasible solutions (in particular the optimal
solutions) open both facilities, so the optimal solution has cost M . On the other hand, the
optimal solution of the natural LP relaxation is the following: y1 = 1

M
, y2 = 1, x11 = 1

M+1
,

x21 = M
M+1

. That is, we open the free facility completely and the expensive one partially,
just enough to satisfy the demand. This solution has cost 1. So, the integrality gap of the
problem is at least M

1
= M . We can make M arbitrarily large, so the integrality gap of the

natural LP relaxation of (MIP-CFL) is unbounded. Since we know that the integrality gap
is a lower bound on the approximation guarantee of any LP-based algorithm, this tells us
that it is impossible to get a constant factor approximation algorithm based on the natural
relaxation of (MIP-CFL).

1.2.1 Review of Previous Results

CFL is a generalization of the facility location problem (where all facilities have an infinite
capacity), which has been extensively studied. The facility location problem is not only
NP-hard; it is known that, unless each problem in NP can be solved in O(nO(log logn)) time,
then we cannot find an approximation algorithm for the facility location problem with a
guarantee better than 1.463. This can be done via a reduction from the unweighted set
cover problem. The original proof is due to Guha and Khuller ([8]), it can also be found
in [20].

Since facility location is a particular case of CFL, this hardness result is also valid for
the problem we will study.

The first constant factor approximation for the metric CFL problem with hard capaci-
ties was given by Korupolu et al. ([11]) in 1998, for the special case of uniform capacities
(which we will also consider, in Chapters 2 and 3). This was improved in 1999 to a guar-
antee of 5.83 by Chudak & Williamson in [4], for the same special case. The state of the
art for uniform capacities is a 3-approximation by Aggarval et al., in [2].

The first such algorithm for the case of non-uniform capacities was given in 2001 by
Pál et al. ([15]). This was subsequently improved by Mahdian and Pál ([14]) and then by
Zhang et al. ([21]) in 2004, to match the 5.83 guarantee of the uniform capacities case.
This is currently the best guarantee known.

All the results mentioned above are based on local search algorithms. The only efficient
LP-based algorithm known for this problem is due to Levi, Shmoys and Swamy ([13]). This

6

algorithm uses LP-rounding and clustering techniques and gives a 5-approximation for the
case of uniform opening costs. This last assumption is very important for the analysis of
their algorithm, since they use the natural LP relaxation of (MIP-CFL), which (as we have
seen) has an unbounded integrality gap in the more general case.

1.3 Motivation

As mentioned before, all known approximation algorithms for the general case are based on
local search. It is thus natural to wonder whether a constant factor LP-based approxima-
tion algorithm can be found for the general case. Beside the desire to satisfy this curiosity,
LP-based algorithms have some advantages over local search algorithms.

One of these advantages is that LP-based algorithms are in general easy to implement
(although they may have long running times). The second is that, while local search
algorithms offer an a priori approximation guarantee, the guarantee given by LP-based
algorithms is a fortiori. Let us elaborate on this:

Given a local search α-approximation algorithm for a minimization problem, let z be
the value returned. If z∗ is the optimal value, the only thing we know is z∗ ≤ z ≤ αz∗; but
since in general we do not know the value z∗, there is no way of knowing where z lies in
the interval [z∗, αz∗].

On the other hand, suppose an LP-based α-approximation algorithm for the same
problem outputs a solution with value z̄. In general, we can find the optimal value of the
LP relaxation easily, suppose in this case it is z∗LP . We know z∗LP ≤ z∗ ≤ z̄ ≤ αz∗LP ≤ αz∗.

Now, we can easily compute β =
z̄

z∗LP
≤ α; and by the chain of inequalities above, we can

say that the algorithm actually gives us a β-approximation for this instance.

This does not necessarily mean that the LP-based algorithm will have a better per-
formance than the local search algorithm; but we have a better performance measure for
it.

Finding this constant factor LP-based algorithm (or even an LP relaxation with a
bounded integrality gap) is one of the most prominent open problems in the field of ap-
proximation algorithms (see the open problems section in [20]).

Because the integrality gap of the standard LP relaxation of the problem is unbounded,
the only way of obtaining an LP-based constant factor approximation algorithm must
be closing this gap through strengthening the LP relaxation with valid inequalities for
(MIP-CFL).

7

This work was mostly motivated by the algorithm that Levi, Lodi and Sviridenko
presented in [12]. In this paper, which we will review in detail in Chapter 2, the authors
design an LP-rounding algorithm for the lot-sizing problem that gives a 2-approximation.
As we will see, this problem is very closely related to CFL, and it even shares the problem
of having a bad integrality gap.

The question of whether the techniques used in that paper could be adapted to CFL is
what inspired this research.

1.4 Outline and Results

In Chapter 2, we define the multi-item lot-sizing problem with uniform capacities, and we
present in detail the results in [12], by Retsef Levi, Andrea Lodi and Maxim Sviridenko;
where the authors give a 2-approximate LP-rounding algorithm for this problem. This
algorithm uses a family of inequalities, known as flow-cover, to obtain an LP relaxation
with a bounded integrality gap; and is one of the main inspirations behind our work.

In Chapter 3, we consider the problem of facility location with uniform capacities and
assignment costs corresponding to a tree metric, and generalize the techniques of Levi
et al. to obtain an approximation algorithm for this special case. Our approximation
guarantee is constant when the number of leaves of the tree (or the number of facilities)
is upper-bounded by a constant. We show that the same algorithm is valid for a slightly
more general framework, which we can prove to be strongly NP-hard.

In Chapter 4, we start by presenting a result by Tim Carnes and David Shmoys ([3]),
where they give a primal-dual algorithm for the single-client capacitated facility location
problem, which is based on a different type of flow-cover inequalities. Then, we generalize
these techniques and obtain a primal-dual approximation algorithm for the capacitated
facility location problem. The approximation guarantee of this algorithm is constant if the
number of clients is upper-bounded by a constant.

Then, in Chapter 5 we present the conclusions to our work.

Finally, in the Appendix, we prove some basic results that are needed for Chapters 2
and 3 but are not included in these chapters. More specifically, we prove that flow-cover
inequalities can be separated in polynomial time under some conditions; and we prove
NP-hardness of the multi-item lot-sizing problem.

8

Chapter 2

An LP-Rounding Algorithm for the
Multi-Item Lot-Sizing Problem with
Uniform Capacities

The first approach we take to find approximation algorithms for the CFL problem is
inspired on [12]. In this paper, the authors develop an LP-rounding algorithm for the
multi-item lot-sizing problem with uniform capacities. As we will see, this problem is
very similar to CFL. It also shares the issue of having a natural LP formulation with an
unbounded integrality gap, which is why the result in the paper is so important. To solve
this issue, the authors strengthen the natural LP relaxation by adding a set of inequalities
called flow-cover to it.

In this chapter, we will present the results in [12]. First, we will introduce the problem
and review its computational complexity. Next, we define flow-cover inequalities, and
show how certain subsets of them can be separated in polynomial time. Then, we describe
a randomized algorithm based on the strengthened LP relaxation we obtain by adding
these inequalities. Finally, we present the analysis of the algorithm to show it gives a
2-approximation guarantee. We also shortly describe a derandomization of the algorithm
and an on the fly variant of it.

9

2.1 The Problem

The problem we will study is the following. We consider N types of items, and a set of T
time periods. For every item of type i and every time period t, there is a demand dit ∈ R+

of such items that needs to be satisfied in the given period (we will call (i, t) a demand
point). At the beginning of every period s, we may choose to pay a fixed ordering cost
fs ∈ R+, that will allow us to “open” the order corresponding to that period. Each order
has an associated capacity us ≥ 0; that is, the maximum number of items we can produce
in that time period if we open the order (we incur in no extra cost for ordering items,
just for opening the order). This capacity bounds the total number of items ordered at
this time point, regardless of their type. If we order an item in some period s, we may
choose to use it to satisfy a demand in the same period s, or hold it to satisfy a demand
later in time. However, by doing that we incur in a holding cost. The cost for holding
a unit of item i from period s to period t (with s < t) is cist ∈ R+ (if we use an item
to satisfy a demand right in the moment it was ordered, we pay no holding cost). As in
capacitated facility location, we will assume that demand points can be served by several
orders. The objective is to satisfy all the demands at a minimal cost. After describing the
LP-formulation, we will give a small example.

In this chapter, we will focus on the case of uniform capacities (That is, us = u for
every s) and monotone holding costs (cist is non-increasing in s for fixed i, t). So, when we
refer to the lot-sizing problem, we will mean this special case.

The following notation conventions will be useful. Let s, t ∈ Z+ with s ≤ t. Since we
will be dealing with discrete time events, by [s, t] we mean {s, s+ 1, . . . , t− 1, t}, by (s, t]
we mean {s+ 1, . . . , t− 1, t}, and similarly for other intervals in R.

2.1.1 Complexity

Just like for CFL, several variants of this problem (uniform vs. non-uniform capac-
ities/costs/demands, single-item vs. multi-item, monotone vs. linear vs. concave vs.
general holding costs, etc.) have been studied in the literature, and in general they belong
to different complexity classes.

Just to mention some examples, the case with a single item (N = 1) and non-uniform
capacities is weakly NP-hard, but there exists a FPTAS for it (see [9]). The single-item
case with uniform capacities can be solved in polynomial time (See [5]).

However, the variant we will be working on; i.e., multi-item lot-sizing with uniform
capacities; is strongly NP-hard. The proof of this is given in Appendix A.

10

2.1.2 Formulation

A natural MIP formulation for the multi-item lot-sizing problem with uniform capacities
is the following:

(MIP-LS)

min
T∑
s=1

fsys +
N∑
i=1

T∑
t=1

dit

t∑
s=1

cistx
i
st

s.t
∑
s≤t

xist = 1 ∀i = 1, . . . , N ; t = 1, . . . T, (2.1)

N∑
i=1

∑
t≥s

ditx
i
st ≤ uys ∀s = 1, . . . , T, (2.2)

xist ≥ 0 ∀i = 1, . . . , N ; s, t = 1, . . . , T ; s ≤ t,

ys ∈ {0, 1} ∀s = 1, . . . , T.

Here, the variables ys are indicator variables whose value is 1 if we open an order in
period s and 0 otherwise. xist is the fraction of the demand dit that is satisfied by an order
placed in period s. That is, ditx

i
st is the amount of demand of item i in period t served

from order s. We define xist only for s ≤ t. We sometimes include s ≤ t in the restrictions
to emphasize that we can only serve demand forward in time, but this is not necessary.

As we can see, this formulation is almost identical to (MIP-CFL).

Similarly to what happens with CFL, the natural LP relaxation of this MIP has an
unbounded integrality gap. The example that shows this is essentially the same one we
presented in the introduction. That is, let M > 1, and consider an instance with T = 2,
N = 1, d1

1 = 0, d1
2 = M + 1, u = M , f1 = 0, f2 = M , c1

12 = 0. The reasoning is then
analogous to what we did in the introduction.

2.2 Strengthening the Formulation

Knowing that the formulation described above is weak, the goal is to find inequalities that
are valid for the integer solutions but cut off unwanted fractional solutions. We will do
that by using inequalites called flow-covers.

11

2.2.1 Flow-Cover Inequalities

Before stating the inequalities, we make the following definitions. Given a subset of demand
points A ⊆ {(i, t)|i = 1, . . . , N ; t = 1, . . . , T}, we define

D(A) =
∑

(i,t)∈A

dit,

`A = dD(A)/ue,
RA = D(A)− (`A − 1)u,

rA = RA/u.

These parameters will later be key in the analysis of the algorithm. Intuitively, D(A) is
the total demand of the demand points in A. `A is the minimum number of orders we need
to open to satisfy the demand in A. RA is the demand in A we still have to satisfy if we
open one less order than strictly necessary and completely use the open orders. Note that
0 < RA ≤ u, making 0 < rA ≤ 1.

Proposition 2.2.1 Let A be a set of demand points and F a set of orders. The following
inequality is valid for all feasible points of (MIP-LS).

D(A)−
∑

(i,t)∈A

∑
s∈F

ditx
i
st ≥ RA

(
`A −

∑
s∈F

ys

)
. (2.3)

Proof: The authors of [12] prove the validity of (2.3) by showing it can be derived
from an MIR (Mixed Integer Rounding) inequality. Here, we will give a simpler and more
intuitive proof.

Let us reformulate inequality (2.3) as follows.

∑
s∈F

ys ≥ `A −
∑

(i,t)∈A
∑

s/∈F ditx
i
st

RA

.

Here, we used the definition of D(A) and constraint (2.1).

Let (x, y) be a feasible point. If
∑

s∈F ys ≥ `A, then the inequality is trivially satisfied.
Otherwise, we have

∑
s∈F ys = `A − k, for some k ∈ {1, . . . , `A}. This means that there

are exactly `A− k open orders in F . Therefore, these orders are serving at most (`A− k)u
units of demand. Since we need a total of (`A − 1)u + RA units to satisfy all the demand

12

in A (by definition of RA), then at least u(k − 1) + RA of them will have to come from
orders outside F .

That is, ∑
(i,t)∈A

∑
s/∈F

ditx
i
st ≥ u(k − 1) +RA ≥ RA(k − 1) +RA = RAk.

Thus,

−k ≥ −
∑

(i,t)∈A
∑

s/∈F ditx
i
st

RA

,

and adding `A on both sides, the inequality we want follows.

From this proof, we get the following observation, which will be useful to prove sepa-
ration:

Lemma 2.2.2 Let (x, y) be a fractional solution to the LP relaxation of (MIP-LS) that
violates a flow-cover inequality for some sets A and F . Then,

`A − 1 <
∑
s∈F

ys < `A. (2.4)

Proof: In the previous proposition, we proved that if y is feasible for (MIP-LS) and
does not satisfy (2.4), then it satisfies the flow-cover inequality. Here, we will see that
fractional solutions of the natural LP relaxation of (MIP-LS) that do not satisfy (2.4), do
satisfy the flow-cover inequality. The proof is analogous to the previous one. We only need
to check that the integrality of the ys variables or k is not needed in the argument.

As before, if
∑

s∈F ys ≥ `A, then the inequality is clearly satisfied. Now, if
∑

s∈F ys ≤
`A− k (where k ≥ 1 but not necessarily an integer), we can no longer argue that there are
`A − k open orders in F . However, we know that the total capacity available is at most
u(`A − k), and the rest follows as before.

To the best of our knowledge (and to the best of the knowledge of the authors of [12] as
well), the complexity of separating flow-cover inequalities is unknown. However, the next
theorem (of which the proof will be given in Appendix B) gives a partial result, which will
be enough for our purposes.

Theorem 2.2.3 For a fixed set of orders F , the inequalities (2.3) can be separated in time
O(NT 2).

13

The importance of this theorem is that if we choose a polynomial (in T) number of
sets of orders and add all the corresponding flow-cover inequalities to the LP relaxation,
by the equivalence of separation and optimization stated in the introduction, we are going
to be able to solve the LP in polynomial time, even though the number of constraints is
exponential.

Keeping this in mind, let I := {[s, t] : 1 ≤ s ≤ t ≤ T} be the collection of sets of orders
corresponding to intervals {s, s+ 1, . . . , t− 1, t}, and let C(A) be the set of covers of A for
every A. Let us consider the following LP:

(LP-LS)

min
T∑
s=1

fsys +
N∑
i=1

T∑
s=1

T∑
t=s

cistditx
i
st

s.t
∑
s≤t

xist ≥ 1 ∀i = 1, . . . , N ; t = 1, . . . T

N∑
i=1

∑
t≥s

ditx
i
st ≤ uys ∀s = 1, . . . , T,

D(A)−
∑

(i,t)∈A

∑
s∈F

ditx
i
st ≥ RA

(
`A −

∑
s∈F

ys

)
∀F ∈ I, A s.t. F ∈ C(A).

xist ≥ 0 ∀i = 1, . . . , N,

0 ≤ ys ≤ 1 ∀s = 1, . . . , T.

That is, we look at the LP relaxation we had before and add all flow-cover inequalities
corresponding to sets of orders in I. Note that |I| = O(T 2). Thus, by Theorem 2.2.3, this
new LP relaxation can be solved in polynomial time.

2.3 The Algorithm

In this section, we describe the algorithm. First we solve (LP-LS). Let (x̂, ŷ) be an optimal
solution. We will round (x̂, ŷ) to a feasible solution (x̃, ỹ) of (MIP-LS).

The algorithm runs in two phases. In the first phase (called random-shift procedure),
we round ŷ, and in the second phase (median assignment procedure) we round x̂.

14

2.3.1 The Random-Shift Procedure

In this phase, we just focus on ŷ = (ŷ1, . . . , ŷT), and describe how to derive from this
fractional vector an integral solution that represents a suitable choice of periods in which
orders will be placed.

For every s, let ys := min{2ŷs, 1}. Let W =
⌈∑T

s=1 ys

⌉
, and α a random number chosen

uniformly in (0, 1]. For every period r ∈ {1, . . . , T}, there is either none or exactly one
number of the form w + α in the interval (

∑r−1
s=1 ys,

∑r
s=1 ys], with w ∈ {0, 1, . . . ,W}. Let

r1, . . . , rQ be the orders such that there is such a point in the corresponding interval, and
such that r1 < r2 < · · · < rQ. We call them the opened orders. We define ỹrm = 1 for every
m = 1, . . . , Q, and ỹs = 0 for every other component of ỹ.

To make the algorithm clear, let us look at an example.
Say we we get ŷ = (0.2, 0.4, 0.9, 0.5, 0.1, 0.15) as an optimal solution to (LP-LS). Then,
by definition, ȳ = (0.4, 0.8, 1, 1, 0.2, 0.3). Now, if α = 0.3, for example, the algorithm is
going to output ỹ = (1, 0, 1, 1, 1, 0). That is, orders 1, 3, 4 and 5 are opened, orders 2 and
6 are kept closed. On the other hand, if α = 0.9, we get ỹ = (0, 1, 1, 1, 0, 0). We can see it
graphically in Figure 2.1 and Figure 2.2, respectively.

0.4 1.2 2.2 3.2 3.4 3.70

0.3

ȳ2ȳ1 ȳ3 ȳ4 ȳ5 ȳ6

1.3 2.3 3.3

Figure 2.1: Random-shift procedure for ŷ = (0.2, 0.4, 0.9, 0.5, 0.1, 0.15) with α = 0.3. The
intervals that contain a point of the form w + α (with w ∈ Z) correspond to ȳ1, ȳ3, ȳ4 and ȳ5.

The following lemma gives us a bound on the cost incurred by this rounding.

Lemma 2.3.1 The total expected ordering cost of the solution obtained by the random-shift
procedure is at most 2

∑T
s=1 ŷsfs.

Proof: Clearly, the probability of placing an order in period s is exactly ys, which by
definition is at most 2ŷs. Let K be the ordering cost of the rounded solution. We have:

E(K) =
T∑
s=1

P(ỹs = 1)fs =
T∑
s=1

ȳsfs ≤
T∑
s=1

2ŷsfs = 2
T∑
s=1

ŷsfs.

15

0.40 1.2 2.2 3.2 3.4 3.7

2.9

ȳ2ȳ1 ȳ3 ȳ4 ȳ5 ȳ6

0.9 1.9

Figure 2.2: Random-shift procedure for ŷ = (0.2, 0.4, 0.9, 0.5, 0.1, 0.15) with α = 0.9. The
intervals that contain a point of the form w + α (with w ∈ Z) correspond to ȳ2, ȳ3 and ȳ4.

This randomized rounding technique is very similar to the standard randomized round-
ing used, for example, in the well known randomized approximation algorithm for the set
cover problem (see [19], section 14.2). While the basic idea is that we open an order s
with probability 2ŷs (or 1 if this number exceeds 1), the main difference here is that the
events {order s is opened} are not independent. As seen above, this is not a problem when
dealing with the objective function, thanks to the linearity of expectation.
On the other hand, this will result in a very powerful tool as we will see below. Intuitively,
by doing this kind of rounding, we are making sure that if there is a group of consecutive
orders whose ŷ-values are not necessarily large but add up to something “large” (for ex-
ample 1/2), then with high probability (or probability 1 if the sum exceeds 1/2) we are
going to open at least one order from the group. Thus we make sure that for every demand
point, with probability 1 there is an open order “not too far away” from it that can serve
it. These notions will be formalized in the analysis of the algorithm.

2.3.2 The Median Assignment Procedure

In the second phase of the algorithm, we will work with the fixed set of open orders obtained
in the first phase. We will construct x̃ such that (x̃, ỹ) is a feasible solution and we will
prove that the total holding cost of this new solution is at most twice the total holding
cost paid by the fractional solution x̂ (more precisely, we will first construct a “solution”
whose cost is clearly bounded, and then we will prove it is feasible). Along with Lemma
2.3.1, this will imply a 2-approximation.

We construct x̃ as follows.

Let (i, t) be a demand point, and let s1 < · · · < sG be the (possibly) fractional orders
that serve this demand point in the optimal LP solution (x̂, ŷ), that is, x̂isg ,t > 0 for every

16

g = 1, . . . , G, and
∑G

g=1 x̂
i
sg ,t = 1. Let sM be the median order of (i, t), that is, the latest

point in time such that at least half of the demand dit is satisfied from orders within [sM , t].
Formally, M = max{m :

∑G
g=m x̂

i
sg ,t ≥ 0.5}. Now, we define the flow requirement of (i, t)

that is due to sg as

zisg ,t :=


2x̂isg ,tdit for g = 1, . . . ,M − 1,

1−
∑M−1

q=1 2x̂isq ,t for g = M,

0 for g = M + 1, . . . , G.

Next, we will construct a feasible assignment such that for every demand point (i, t) and
for every order sg, at least zisg ,t units of dit are satisfied from orders within the interval

[sg, t]. If we can find such an assignment for zisg ,t, we say that the flow requirement zisg ,t is
satisfied. In Figure 2.3, we can see an example of the flow requirements of some demand
point (i, t). As we can see, they add up to 10 = dit. We will find an assignment such that
the open facilities in the interval [s1, t] serve at least 3 units of item i to the demand point
(i, t); the open facilities in the interval [s2, t] serve at least two units of demand to (i, t)
(not counting the demand considered for the previous flow requirement), etc. When doing
this, it is important to note that every unit of demand served is associated to a unique
flow-requirement. This is in order to ensure that the total demand served when satisfying
the flow-requirements is dit.

Intuitively, what we do is the following. Let us imagine for a moment that we are not
aiming at a 2-approximation but that we want an exact algorithm. We look at a fixed
demand point (i, t) and an order sg that serves it in the optimal LP solution. By the
monotonicity of the holding costs, we know that if we are able to find an assignment such
that the demand served by sg is now served by the newly opened orders located in time
between sg and t and do the same for every demand point and every order that serves
it, we will find a feasible solution that pays at most the same total holding cost as the LP
solution.

However, this assignment may not always be possible. Thus, we will relax this condition
a little. We look at a fixed demand point (i, t) and all the orders that serve it in the LP
solution. Let us say the orders are partitioned in two sets, S1 and S2, such that each set
serves half of the demand dit and the orders in S2 are all located later in time than the
orders in S1. We will “move” the demand from the orders in S2 to the orders in S1, so that
now for every order sg ∈ S1 we want to satisfy twice the demand it was originally serving,
from newly opened orders located between sg and t. We ignore the orders in S2.

The definition of zisg ,t and the monotonicity of the holding costs imply that the total

17

zis4t

1.5 1 0.5 2 3 2 dit = 10

s1 s2 s3 s4 s5 s6

4

1

2

3 zis1t

zis2t

zis3t

Figure 2.3: This is an example of flow requirements. The numbers by the curved arrows are
ditx

i
st. The positive flow requirements of (i, t) are zis1t, z

i
s2t, z

i
s3t, z

i
s4t, and they are represented by

the numbers above the intervals.

holding cost incurred by the solution x̃ we just found is at most 2
G∑
g=1

x̂isg ,tc
i
sg ,tdit. That is,

at most twice the optimal cost incurred by x̂.

Thus, if we are able to complete this assignment (called the Median Assignment) suc-
cessfully, we will automatically obtain a feasible solution that will give us the desired
approximation guarantee.

Now, we will describe the median assignment procedure.

We will define an order ≺ on the set of positive flow requirements according to the
following rules. Let zi1sg1 ,t1 , z

i2
sg2 ,t2

be two positive flow requirements.

• If sg1 < sg2 , then zi1sg1 ,t1 ≺ zi2sg2 ,t2

18

• If sg1 = sg2 and t1 < t2, then zi1sg1 ,t1 ≺ zi2sg2 ,t2

• If sg1 = sg2 and t1 = t2 and i1 < i2, then zi1sg1 ,t1 ≺ zi2sg2 ,t2 .

Recall that {r1, r2, . . . , rQ} is the set of open orders obtained in the first phase of the
algorithm, and let z1, . . . , zJ be all flow requirements in increasing order (the notation zj
is not consistent with what we had before, but it makes the description of the algorithm
much easier).

Once we have that, the median assignment procedure is very easy. We describe it
formally in Algorithm 1.

Algorithm 1 Median Assignment

Initialize x̃is,t = 0 for every i, s, t.
for j = J to 1 do

(Say zj = zis,t)
for q = Q to 1 do
if s ≤ rq ≤ t then

Serve demand from rq to zis,t until either all the capacity of rq is used or the flow
requirement zis,t is satisfied.
Update zis,t and x̃irq ,t accordingly.

end if
end for

end for
output x̃.

We can see an example in Figure 2.4. In each step, we look at the largest (with respect
to ≺) flow requirement that is not satisfied yet, and we serve it greedily from the available
open orders from right to left.

2.4 Analysis

We will prove that after termination of the median assignment procedure, all the flow
requirements are satisfied. This will immediately lead to the randomized 2-approximation.

We will start by making a small observation that will be very useful throughout the
whole analysis. Recall that (x̂, ŷ) is the optimal LP solution. By construction of the

19

0

0

5

0

0

0

0

58

2

0

8

0

0

2

4

2

1

4

8

5

2

15

2

1

r2 r3 r4

u = 10

r1

Figure 2.4: A sample run of the median assignment procedure. The flow requirements are in
decreasing order (downwards), and are represented by the numbers above the intervals. Each
interval corresponds to the two time periods that determine the corresponding flow-requirement.
The red numbers next to the dotted lines correspond to how much demand is served from the
corresponding facility to the corresponding client.

random-shift procedure, if for some interval [s, t] the total number of fractionally open
facilities in this optimal LP solution is at least (`−1) ∈ Z, then the algorithm will open at
least that many orders in the same interval. That is, if

∑t
v=s ŷv ≥ (`− 1) and ` is integer,

then
t∑

v=s

ỹv ≥ `− 1. (2.5)

In fact, this observation can be made a little stronger.

Lemma 2.4.1 Let 1 ≤ s ≤ t ≤ T. Let
∑t

v=s ŷv = (`− 1) + β, where ` ∈ Z and 0 < β ≤ 1.
Then, if β ≥ 0.5, the number of orders opened in the first phase of the algorithm is at least
`. That is,

∑t
v=s ỹv ≥ `.

Proof: By construction of the random-shift procedure, the number of open orders is at
least

⌊∑t
v=s yv

⌋
. Thus, it will suffice to prove

∑t
v=s yv ≥ `.

Let O be the set of periods v ∈ {s, . . . , t} such that ŷv ≥ 0.5. Again by construction

of the random-shift procedure, this means yv =

{
1 if v ∈ O
2ŷv if v ∈ [s, t]\O . That is, v ∈ O

20

implies yv = 1, and thus ỹv = 1. So, if |O| ≥ `, there will be at least ` open orders and we
are done.

Suppose then that |O| ≤ `− 1. By all the above,

t∑
v=s

yv =
∑
v∈O

yv +
∑

v∈[s,t]\O

yv = |O|+ 2
∑

v∈[s,t]\O

ŷv = |O|+ 2

(
t∑

v=s

ŷv −
∑
v∈O

ŷv

)

= |O|+ 2

(
(`− 1) + β −

∑
v∈O

ŷv

)
≥ |O|+ 2 ((`− 1) + 0.5− |O|)

= 2(`− 1)− |O|+ 1 = `+ (`− 1− |O|) ≥ `.

In the first inequality we used
∑

v∈O ŷv ≤
∑

v∈O 1 = |O| and β ≥ 0.5. In the second
inequality, we used |O| ≤ `− 1. This completes the proof.

Lemma 2.4.2 After termination of the median assignment procedure, all the positive flow
requirements are satisfied.

Proof: Let us assume for contradiction that there exists a flow requirement ziτ,t̄ that
is never satisfied. We consider the instant when the algorithm terminates the iteration
corresponding to that flow requirement. That is, the moment when we realize that the flow
requirement ziτ,t̄ will not be satisfied, even if we go on with the algorithm. By construction of
the algorithm, all the open orders in the interval [τ, t̄] are fully used by the current solution
(x̃, ỹ). In other words,

∑N
i=1

∑T
v=r x̃

i
r,vdiv = u for every open order r in the interval [τ, t̄].

Let r̄ be the earliest open order in the interval (t̄, T] that still has free capacity (under
(x̃, ỹ)), or T + 1 if no such order exists.

Let F be the set of all orders in the interval [τ, r̄), regardless if they are open or not.
Let A be the set of demand points (i, t) with t ∈ [τ, r̄) that have positive flow requirements
that are due within [τ, t]. That is, A = {(i, t) : t ∈ [τ, r̄),

∑t
s=τ z

i
st > 0}. In Figure 2.5 we

can see an example.

From this point on, we will focus on the sets F and A and derive a contradiction using
the corresponding flow-cover inequality. One of the key observations we will need is the
following. Since the order r̄ still has free capacity; by construction of the median assignment
procedureit follows that all the positive flow requirements that are due within [r̄, T] are
fully satisfied by orders in that interval. This means that no open order rq < r̄ is serving
demands points in the interval [r̄, T]. That is, x̃ist = 0 for every t ≥ r̄, s < r̄. Thus, all
the capacity from the open orders in the interval [τ, r̄) is fully used to serve demand points

21

2 2

1

4

8

5

1

15

2

0

0

5

0

0

0

0

58

2

0

8

0

0

2

4

r2

A = { }

F = { }

r4 = r̄r3

u = 10

r1

Figure 2.5: In this example, the second-to-last flow requirement is not satisfied by the algorithm.
We define F and A as described. As we can see, all the capacity of open orders in F (that is,
r1, r2 and r3) is being used to satisfy demand only in A.

(i, t) with t ∈ [τ, r̄). Furthermore, let (i, t) be a demand point with t ∈ [τ, r̄) and (i, t) /∈ A.
By the definition of the order ≺, all positive flow requirements of (i, t) are smaller than
the flow requirements that define A, and by construction of the Median Assignment, these
flow requirements have not been considered yet. Thus, all the capacity of open orders in
F is being fully used to serve demand points in A.

By the assumption we are making, all this capacity is not enough to satisfy all the flow
requirements of demand points in A that are due within the interval F . That is,∑

v∈F

ỹvu <
∑

(i,t)∈A

∑
v∈F

ziv,t. (2.6)

Now, using the same notation we introduced before defining the flow-cover inequalities,
we express the total demand over A as D(A) = (`A−1)u+RA, with `A ∈ Z and 0 < RA ≤ u.
Similarly, we express the total capacity of the fractionally open orders over F in the optimal
LP solution as

∑
v∈F ŷvu = (`− 1)u+R, with ` ∈ Z and 0 < R ≤ u.

The rest of the proof is structured as follows: First we prove ` ≤ `A, then R/u < 0.5 and
then ` = `A. After that, we use these facts to derive a contradiction from the flow-cover
inequality corresponding to F and A.

22

The intuition behind this is the following. We know that the fractional solution opens
enough capacity in F to serve A. The random-shift procedure ensures that the capacity in
F in the rounded solution is also enough to satisfy this demand. That is, there are as many
open facilities in F as are needed. In other words, ` = `A. Since we are assuming that the
median assignment procedure could not be completed, this will give us a contradiction.

` ≤ `A is true because

(`− 1)u ≤
∑
v∈F

ỹvu <
∑

(i,t)∈A

∑
v∈F

ziv,t ≤ D(A) ≤ `Au.

The first inequality follows from the definition of `, the fact that F is a set of facilities in
an interval, and from inequality (2.5). The second inequality comes from inequality (2.6).
The last two follow from the definitions of the flow requirements and of `A, respectively.
Since ` and `A are integers, `− 1 < `A implies ` ≤ `A.

Next, we prove R/u < 0.5.
Suppose R/u ≥ 0.5. By definition of ` and R, we have that

∑
v∈F ŷv ≥ (`− 1) + 0.5. From

Lemma 2.4.1, the random-shift procedure opens at least ` orders in F . In other words,∑
v∈F ỹvu ≥ `u. We have the following chain of inequalities, which contradicts (2.6).∑

v∈F

∑
(i,t)∈A

ziv,t ≤
∑
v∈F

∑
(i,t)∈A

x̂iv,tdit ≤
∑
v∈F

ŷvu = (`− 1)u+R ≤ `u ≤
∑
v∈F

ỹvu.

The first inequality follows from the definition of flow requirements, the second from
the capacity restrictions (2.2) in the LP. The last inequality is the observation we just
made above. Thus, R/u < 0.5.

Now, we prove ` = `A. Suppose `A − 1 ≥ `.
The following observation is very important. Let (i, t) ∈ A. By definition of A, (i, t) has
positive flow requirements over F . Again by definition, F is an interval, and by definition
of flow requirements, more than half of the demand of (i, t) is satisfied from within F in
the optimal LP solution (if it were not so, all flow requirements of (i, t) over F would be
zero). That is,

∑
v∈F x̂

i
v,t > 0.5. Thus, we have

∑
v∈F

ziv,t = 2dit

(∑
v∈F

x̂iv,t − 0.5

)
.

The −0.5 corresponds to the flow requirements that are zero, all of which are within the
interval F .

23

Adding over all demand points in A:

∑
(i,t)∈A

∑
v∈F

ziv,t = 2

 ∑
(i,t)∈A

∑
v∈F

x̂iv,tdit − 0.5D(A)

 ≤ 2

(∑
v∈F

ŷvu− 0.5D(A)

)
= 2(`− 1)u+ 2R− (`A − 1)u−RA ≤ 2(`− 1)u+ u− `u+ 0

= (2`− 2 + 1− `)u = (`− 1)u ≤
∑
v∈F

ỹvu.

The first inequality follows from the LP restrictions (2.2). The second inequality comes
from the assumptions `A− 1 ≥ ` and 2R < u, as well as from the trivial fact RA ≥ 0. The
last inequality comes from (2.5).
Again, this contradicts (2.6), so we can conclude ` = `A.

Thus, let us assume R/u < 0.5 and `A = `. By definition of ` and R, we know that
the LP opened (fractionally) a total of (`− 1) +R > `− 1 orders in F . This means there
are at least ` orders in F , and thus |F | ≥ ` = `A. So, by definition, F is a cover of A.
Furthermore, F is the set of all orders in an interval; that is, it is of the form [s, t]. Thus,
we know that the corresponding flow-cover inequality is valid for (MIP-LS) and is thus
included in the restrictions of (LP-LS). Thus, the fractional solution (x̂, ŷ) must satisfy it:

D(A)−
∑

(i,t)∈A

∑
v∈F

x̂iv,tdit ≥ RA

(
`A −

∑
v∈F

ŷv

)
= RA(`A − (`− 1)−R/u)

= RA(1−R/u) ≥ 0.5RA.

Here, we used the flow-cover inequality, the definition of L and R, and the facts we proved
above.

Thus, we have 2(D(A)−
∑

(i,t)∈A
∑

v∈F x̂
i
v,tdit) ≥ RA. Reformulating,

2

 ∑
(i,t)∈A

∑
v∈F

x̂iv,tdit − 0.5D(A)

 ≤ D(A)−RA.

But in the proof of ` = `A we saw that the left hand side is equal to
∑

(i,t)∈A
∑

v∈F z
i
v,t,

and we know the right hand side is equal to (`A − 1)u by definition of RA.
So, using this and inequality (2.5) once more,∑

(i,t)∈A

∑
v∈F

ziv,t ≤ (`A − 1)u = (`− 1)u ≤
∑
v∈F

ỹvu.

24

Again, this contradicts (2.6), and so we are done.

We can now state the main theorem:

Theorem 2.4.3 The random-shift with median assignment procedure is a randomized 2-
approximation algorithm for the multi-item lot-sizing problem with uniform capacities.

Proof: Because the median assignment procedure completed the assignment successfully
and by definition of flow requirements, we have

N∑
i=1

T∑
s=1

T∑
t=s

cistditx̃
i
st ≤

N∑
i=1

T∑
s=1

T∑
t=s

cistz
i
st ≤ 2

N∑
i=1

T∑
s=1

T∑
t=s

cistditx̂
i
st.

Let OPTLP be the optimal LP value, and let Z be the objective value of the rounded
solution. By Lemma 2.3.1 and by the inequality above, we have

E[Z] = E

[
T∑
s=1

fsỹs +
N∑
i=1

T∑
s=1

T∑
t=s

cistditx̃
i
st

]
≤ 2

T∑
s=1

fsŷs+2
N∑
i=1

T∑
s=1

T∑
t=s

cistditx̂
i
st = 2·OPTLP .

One should note that the expected value is needed to bound the ordering costs, but
not the holding costs. The beauty of the algorithm is that no matter what the outcome of
the first phase is, the second phase is guaranteed to find a not too expensive assignment
of orders.

2.5 Derandomization and On-the-Fly Algorithm

The algorithm can be easily derandomized, by noting that even though α has an infinite
number of possible values, the possible outputs of the first phase are polynomial. In fact,
there are O(T) different sets of orders that could be chosen by the random-shift procedure.
So, one can consider all these sets of orders, and the cheapest is guaranteed to be bounded
by 2

∑t
s=1 ŷs. Then, we can keep that set of open orders and proceed to the second phase.

Thus, we get a deterministic 2-approximation.

Another way of approaching the problem is through an on-the-fly variant. The on-
the-fly algorithm consists in not adding all constraints corresponding to I at once to the
LP formulation, and instead trying to solve the median assignment. If the assignment is
possible, we are done. Otherwise, we have found a violated flow-cover inequality (as seen in

25

the proof of correctness of the algorithm), which we add to the restrictions, and we repeat
the process until the median assignment is possible. Clearly, every such step (that is,
running the median assignment procedure to find a violated inequality) takes polynomial
time. However, we may have to repeat that procedure an exponential number of times.
The advantage of this variant is that it is much easier to implement, but for theoretical
purposes it offers no significant advantages.

Finally, we can also note that the description and analysis of the median assignment
procedure is necessary to prove that the orders that were opened by the random-shift
procedure are enough to guarantee a good solution. However, once we know that, we could
simply describe the algorithm as follows:

1. Solve the strengthened LP relaxation, let (x̂, ŷ) be an optimal solution.

2. Run the random-shift procedure, let ỹ be its output.

3. Solve the induced transportation problem. That is, fix y = ỹ in (MIP-LS) (this will
give us an LP with variables x) and solve it to obtain x̃. By all the analysis above,
we know that this resulting problem will always be feasible and will give us a good
approximation, so (x̃, ỹ) is a randomized 2-approximation.

This way of stating the algorithm is much simpler than the original, and it should in
general be more effective than the median assignment procedurewhen implementing it; but
it is not obvious how to prove the 2-approximation guarantee (or a better guarantee) for
it.

One can note that the 2 in the approximation guarantee comes from the definition
of both the random-shift procedure (where we multiply the y-values by 2) and from the
median assignment procedure(where we double the demand that the longest intervals need
to serve). The choice of the number 2 seems rather arbitrary. In the next chapter, when
we generalize these ideas, we will see that 2 is the best possible ratio.

26

Chapter 3

An LP-Rounding Algorithm for the
Capacitated Facility Location
Problem with Uniform Capacities

In this chapter, we adapt to CFL with uniform capacities the ideas used in the previous
chapter. We will first work with a special case of the problem in which the assignment costs
are given by a tree metric. Adapting Levi et al.’s algorithm to the even more particular
case where the tree is a path is very easy. Generalizing to trees is not straightforward, and
requires several new ideas.

Our main result in this section is an approximation algorithm for this problem that has
a constant factor approximation guarantee if the number of leaves of the tree is bounded.
At the end of the chapter, we show how the same algorithm works for a slightly more
general case, which we know is NP hard. We also very briefly discuss how we can use
the techniques of probabilistic embedding of metric spaces on tree metrics to obtain an
approximation algorithm for general CFL.

3.1 The Problem

Consider the following special case of the capacitated facility location problem. Let F be a
set of facilities with uniform capacities u and C a set of clients, each client j with a demand
dj. Let T = (F ∪ C, E) be a tree and c : E → R+. For any two vertices u and v, let
c(u, v) (or cuv, we use both indistinctly) denote the tree distance from u to v (that is, the

27

sum of the weights of the edges on the unique u, v-path in T). The assignment costs are
determined by this distance. Let l be the number of leaves of this tree.

The following proposition allows us to simplify the problem.

Proposition 3.1.1 Without loss of generality, we may assume that all leaves of T are
facilities.

Proof: Let T ′ be the smallest subgraph of T that is also a tree and contains all facilities
as vertices. Clearly, all leaves of T ′ are facilities. Let u be a vertex of T\T ′ corresponding
to a client j, and suppose there is no facility at u. Let v be the unique closest vertex
to u in T ′. Consider a modified problem where the client j is now located at v instead
of u. Clearly, there is a bijection between all solutions to the original problem and all
solutions to the new problem, and the objective values differ by a constant (namely, the
cost of sending dj units of demand from v to u). We can add this constant to the objective
function of the new problem, so that the objective values of equivalent solutions of both
problems are the same. So, if we do the same thing for all clients not in T ′ and solve the
resulting problem, we get a solution of the same cost in the original problem.

It is clear that this assumption can be made in terms of the optimal value. However,
it is less clear why this still holds in an approximation setting. Using the notation from
above, suppose that the original problem has an optimal value z+c, where c is the constant
arising from connecting every client in T\T ′ to the closest node in T ′. After we modify
the instance to make all leaves contain facilities, the new objective value is z′. Suppose we
can find an approximate solution to this new problem of value z̄ ≤ αz′. Clearly, z′ = z, so
we have z̄ ≤ αz. Modifying the approximate solution to serve clients outside of T ′, we get
a solution of cost z̄ + c ≤ αz + c ≤ α(z + c). So, we obtained an α-approximation for the
original problem.

For two vertices u and v of the tree, let p(u, v) denote the set of vertices on the unique
u, v-path. Let us consider the following set:

S = {F ⊆ F|p(i1, i2) ∩ F ⊆ F ∀i1, i2 ∈ F}.
That is, S is the family of sets of facilities corresponding to connected subgraphs (or
subtrees) of T . The sets in S generalize intervals of facilities from the line case.

3.2 The Algorithm

In this section, we give an LP-rounding algorithm that is strongly inspired on the algorithm
described and analyzed in Chapter 2. It is not a generalization in the strictest sense of

28

the word, because CFL does not generalize the lot-sizing problem. However, the algorithm
(and analysis) of the case when the tree is just a path is almost identical to Levi et al’s
algorithm. Therefore, there will be a lot of similarities as well with the more general case
we will present.

Our algorithm also relies on the use of flow-cover inequalities. In the previous chapter,
we proved the validity of these for the lot-sizing problem. They are equally valid for CFL
with uniform capacities, and the proof is identical, so it will be omitted. As in the previous
chapter, let us define D(A) =

∑
j∈A dj, `A = dD(A)/ue and RA = D(A)− (`A − 1)u. So,

the flow-cover inequality corresponding to sets F ⊆ F , A ⊆ C is the following:

D(A)−
∑
j∈A

∑
i∈F

xi,jdj ≥ RA

(
LA −

∑
i∈F

yi

)
.

Using these inequalities, we obtain the following relaxation (notice that we include only
flow-cover inequalities corresponding to sets of facilities in S

(LP-CFL)

min
∑
i∈F

fiyi +
∑
i∈F

∑
j∈C

djxij

s.t
∑
i∈F

xij ≥ 1 for every j ∈ C, (3.1)∑
j∈C

djxij ≤ uyi for every i ∈ F , (3.2)

D(A)−
∑
j∈A

∑
i∈F

xi,jdj ≥ RA

(
LA −

∑
i∈F

yi

)
for every A ⊆ C, F ∈ S,

yi ≤ 1 for every i ∈ F ,
yi ≥ 0 for every i ∈ F ,
xij ≥ 0 for every i ∈ F , j ∈ C,

The algorithm we will present is divided in two phases as before:

Extended Random-Shift Procedure:

1. Solve (LP-CFL), and let (x̂, ŷ) be an optimal solution found.1

1In Section 3.6 we will see under what conditions we can do this efficiently.

29

2. Partition F into sets from S such that for every set B in the partition, the smallest
connected subgraph of T that contains all vertices corresponding to facilities in B is
a path, and all facilities in this path belong to B. Intuitively, we decompose the tree
into paths that may intersect at client-vertices but not at facility-vertices. Let p be
the cardinality of the partition. (Note: We can always find a trivial partition of size
l− 1. On the other hand, for every partition we have p ≥ l

2
, since a path can contain

at most two leaves. We can not always have p = `/2, for example if ` is odd.). We
can see an example in Figure 3.1

Figure 3.1: In this instance, squares represent facilities and circles represent clients. A possible
partition of the facilities into paths is shown. This partition gives us p = 5.

3. Run Levi et al.’s random-shift procedure on each of these paths using the factor p+1
instead of 2, and open the selected facilities. That is, for every i ∈ F , define ȳi =
min{(p+ 1)ŷi, 1}, and then round as before, opening each facility i with probability
ȳi. For every i ∈ F , let ỹi = 1 if i is open, ỹi = 0 otherwise.

Extended Median Assignment: Let us first define flow requirements in a similar
fashion to those in the previous chapter. Because in this chapter we are not aiming at a
2-approximation, we will use p+ 1 and not 2 in the definition.2

2The factor p + 1 already appeared in the definition of the extended random-shift algorithm. We will
justify the choice of that number in Section 3.5.

30

For every client j, let let i1, . . . , im be all facilities in F that fractionally serve j in the
LP solution, labeled such that c(i1, j) ≤ c(i2, j) ≤ · · · ≤ c(im, j). Let M (both the facilities
i1, . . . , im and M are in fact dependent on j, but we omit j from the notation for clarity
of exposition) be the smallest index such that

∑M
g=1 xig ,j ≥

p
p+1

. We call iM the median

facility (We are abusing the word median here, since we no longer look for the facility “in
the middle”. However, we will keep using that name for simplicity). For every g, the flow
requirement of j from ig is defined as

zig ,j :=


(p+ 1)x̂ig ,jdj for g = M + 1, . . . ,m,
(1−

∑m
q=M+1(p+ 1)x̂iq ,j)dj for g = M,

0 for g = 1, . . . ,M − 1.

By this definition, we have
∑

i∈F zij = dj for every client j. That is, we decompose each
demand dj into several flow requirements zij, which we will require to be satisfied from
facilities within the ball centered at j with radius c(i, j). Let Fij be the set of facilities in
this ball. We will call Fij a cluster centered around j. An example is shown in Figure 3.2.
Note that, by the monotonicity of the assignment costs, Fij ∈ S (that it, Fij is the set of
facilities in a subtree). We will use the notation Fij when we want to emphasize the client
and facility that determine this cluster. If this is not important, we will usually write F ′

or F s for some s.

Above, we mentioned the notion of “satisfying” flow requirements. Here we will for-
malize that notion, which is in fact analogous to that in Chapter 2. Suppose that in
the final solution, we have some i ∈ F , j ∈ C such that x̃ij > 0. Let F 1, F 2, . . . , F t

be all clusters centered around j that contain i. A decomposition of x̃ij is a set of
variables x̃ij(F

1), . . . , x̃ij(F
t) such that for every s ∈ 1, . . . , t we have x̃ij(F

s) ≥ 0 and∑t
s=1 x̃ij(F

s) = x̃ij. Given i, j, a (not necessarily feasible) solution (x̃, ỹ) and a de-
composition of x̃i′j for every i′ ∈ Fij, we say the flow requirement zij is satisfied if
zij =

∑
i′∈Fij x̃i′j(Fij). We say that facility i′ serves a demand x̃i′j(Fij) to flow require-

ment Fij. To avoid unnecessary notation, we will simply use expressions like “we serve
demand from i′ to flow requirement Fij” meaning that we increase the variable x̃i′j(Fij).

In the first part of the algorithm, we obtained an integral vector ỹ. In the extended
median assignment procedure, we will construct a demand assignment x̃ such that not
only (x̃, ỹ) is feasible, but x̃ satisfies all flow requirements. That is, we can partition all
components of x̃ such that all flow requirements are satisfied. We will achieve this by
iteratively increasing the variables x̃ij(F

s).

We are now ready to state the procedure:

1. Initialize x̃ = 0. Define flow requirements for every client as described above.

31

20

3
4

dj = 60
15

1 17 4

1

2

2

3

1

1

2

1

1
1

1

1

i1

i2

i3

i5
i4

j j 22

4

1

2

2

3

1

1

2

1

1
1

1

1

i3

i5
i4

i6

zi3j = 12
zi4j = 18
zi5j = 6
zi6j = 24

i6

22

Figure 3.2: On the left, we see a possible assignment of demands to client j, represented
by the red arrows. On the right, we can see the values of the nonnegative flow requirements
corresponding to j and their respective clusters (assuming p = 5). Here, i3 is the median facility.

2. Serve the flow requirements from the open facilities greedily, in any order, until each
flow requirement either is satisfied or cannot be satisfied because all facilities in its
cluster are fully used (in this case, we say the flow requirement is frustrated). Update
x̃ accordingly. If all flow requirements are satisfied, stop.

3. Otherwise, choose an arbitrary frustrated flow requirement, and transfer capacity to
it from other facilities (we will define this notion of transferring capacity shortly)
until it is satisfied. Update x̃. Repeat for all frustrated flow requirements.

Now, we define the process of capacity transferring. Given a cluster F 0 corresponding
to a frustrated flow requirement, for every facility i′ ∈ F\F 0 we say i′ is connected to F 0

if there exist clusters F 1, . . . , F q ∈ S and facilities i0, i1, . . . , iq = i′ ∈ F such that the
following conditions hold:

• For every j < q, ij ∈ F j∩F j+1 and ij serves a positive demand to the flow requirement
corresponding to F j+1

• iq ∈ F q.

32

3 2 60 0 0 1

i0

F 0 F 1 F 2 F 3

i1 i3i2

Figure 3.3: Here, we can see that i0 serves F 1, i1 serves F 2 and i2 serves F 3. The numbers
below the facilities represent the current available capacity. According to our definition, i3 is
connected to F 0.

Figure 3.3 shows an example.

We define the connected component of F 0 as F 0 ∪ {i ∈ F|i is connected to F 0}. Note
that by the definition above, all facilities in F 1 ∪ · · · ∪ F q are connected to F 0. Since we
also have F j ∩ F j+1 6= ∅ for j = 0, . . . , q − 1, this means that the connected component of
F 0 is in S.

Consider the following procedure:

If there exists a facility with free capacity connected to F 0, let us call it i′ = iq. Also, let
the sets F j and facilities ij be as above. We use the free capacity of iq to replace (possibly
a fraction of) the demand served to F q by the facilities in F q−1 ∩ F q that serve F q (this
set is non empty, since it contains iq−1). These facilities now have some free capacity, we
use it to serve F q−1 while freeing capacity in facilities in F q−2 ∩F q−1, and so on. We move
along the chain of clusters and repeat this procedure until we reach F 0. This procedure
is illustrated in Figure 3.4 If this facility does not exist, we terminate the algorithm and
declare that the extended median assignment got stuck.

2 1 51 0 0 0

1 11
F 2 F 3

i1 i2 i3i0

F 1F 0

Figure 3.4: Continuing with the previous example, we notice that i3 is connected to F 0 and
has 1 unit of capacity available. We update the demand assignments as shown and thus transfer
the unit of free capacity to i0. Now, we can use it to serve demand to F 0.

At this point, at least one facility in F 0 will have a positive amount of free capacity,
which we can use to further serve the corresponding flow requirement. Note that if this

33

procedure lets us free more capacity in F 0 than needed, we can always regulate it to
free exactly the amount of capacity we need, and this is what we will do. This way, all
facilities use as much capacity as they were using before, except for i′. Furthermore, all
flow requirements that were being satisfied are still satisfied. We refer to this procedure as
transferring capacity from i′ to F 0.

The motivation for doing this is simple, even if a flow requirement is frustrated, we
can use capacity available at neighbouring facilities to help satisfy it. Furthermore, if the
extended median assignment gets stuck, we can obtain a set of facilities F and a set of
clients A such that open facilities in F serve only clients in A but do not have enough
capacity to satisfy the flow requirements corresponding to clients in A and facilities in F .
If a flow requirement is still frustrated after transferring as much capacity as possible, we
know that all facilities connected to it are using their full capacity, and as we will see, this
will yield sets A and F with the properties we seek.

3.3 Analysis

The following two lemmas prove the approximation guarantee of the algorithm.

Lemma 3.3.1 The total expected opening cost of the solution obtained by the extended
random-shift procedure is at most (p+ 1)

∑
i∈F ŷifi.

Proof: The probability of opening facility i is exactly yi, which by definition is at most
(p+ 1)ŷi. Let K be the opening cost of the rounded solution. We have:

E(K) =
∑
i∈F

P(ỹi = 1)fi =
∑
i∈F

ȳifi ≤
∑
i∈F

(p+ 1)ŷifi = (p+ 1)
∑
i∈F

ŷifi.

Lemma 3.3.2 If the extended median assignment procedure is completed, the total assign-
ment cost of the solution obtained by it is at most (p+ 1)

∑
i∈F
∑

j∈C c(i, j)djx̂ij.

Proof:

Since for every i ∈ F , j ∈ C we satisfy the flow requirement zij from facilities with
distance at most c(i, j) from j, we have∑

i∈F

c(i, j)djx̃ij ≤
∑
i∈F

c(i, j)zij.

34

So, ∑
i∈F

∑
j∈C

c(i, j)djx̃ij ≤
∑
i∈F

∑
j∈C

c(i, j)zij ≤
∑
i∈F

∑
j∈C

(p+ 1)c(i, j)djx̂ij.

The last inequality follows from the definition of flow requirements.

Thus, to prove the approximation guarantee, all we need to do is prove that the extended
median assignment procedure can be completed successfully. We do that in the following
theorem.

Theorem 3.3.3 The extended median assignment procedure terminates successfully. That
is, together with the extended random-shift procedure, it gives us a randomized (p + 1)-
approximation to the capacitated facility location problem with uniform capacities on trees.

Before we prove the theorem, we need the following two lemmas, which are inspired by
Lemma 2.4.1.

Lemma 3.3.4 Consider i1, . . . , im consecutive facilities along a path, on which we run the
random-shift procedure. If ŷi1 + · · ·+ ŷim = `+ r, with r ≥ 1

p+1
, then ȳi1 + · · ·+ ȳim ≥ `+ 1.

Proof: Let O = {s|ŷis ≥ 1
p+1
}. By construction of the random-shift procedure, we

have

yi =

{
1 if i ∈ O
(p+ 1)ŷi if i /∈ O . Clearly, if |O| ≥ `+ 1, we are done.

So, assume |O| ≤ `.

m∑
s=1

ȳis =
∑
s∈O

ȳis +
∑
s/∈O

ȳis = |O|+ (p+ 1)

(
m∑
i=1

ŷis −
∑
s∈O

ŷis

)

= |O|+ (p+ 1)

(
`+ r −

∑
s∈O

ŷis

)
= |O|+ (p+ 1)`+ (p+ 1)r − (p+ 1)

∑
s∈O

ŷis

≥ |O|+ (p+ 1)`+ 1− (p+ 1)|O| = `+ 1 + `p− |O|p
= `+ 1 + (`−O)p ≥ `+ 1.

In the first inequality we used r ≥ 1
p+1

and ȳi ≤ 1 for every i. In the second one, we used

|O| ≤ `.

Lemma 3.3.5 For every F ∈ S, let
∑

i∈F ŷi = L + R, with L ∈ Z, R ∈ (0, 1]. The
following are true:

35

(a)
∑

i∈F ỹi ≥ L

(b) If R ≥ p
p+1

, then
∑

i∈F ỹi ≥ L+ 1.

Proof: Let P1, P2, . . . , Pp be the partition of the facilities in F induced by the original
partition of the tree (some of the Pj may be empty). If p = 1, we know the result is true
by the previous lemma, so let us assume p > 1.

For every j = 1, . . . , p, let us write
∑

i∈Pj ŷi = `j + rj, with `j ∈ Z, rj ∈ [0, 1). Without
loss of generality, say r1 ≥ r2 ≥ . . . rp.

Clearly,

L+R =
∑
i∈F

ŷi =

p∑
j=1

`j +

p∑
j=1

rj.

Let k = L−
∑p

j=1 `j =
∑p

j=1 rj − R. If we prove that there exist at least k paths Pj such
that

∑
i∈Pj ȳi ≥ `j + 1, we are done; because by observation (2.5), in each of these paths

there will be at least `j + 1 facilities with ỹi = 1, so
∑

i∈F ỹi ≥
∑p

j=1 `j + k = L. By

Lemma 3.3.4, if we prove that r1, . . . , rk ≥ 1
p+1

(note that if k = 0 we are done, so we

may assume without loss of generality that k ≥ 1), we are done. In fact, we will prove
something slightly stronger: r1, . . . , rk ≥ 1

p
.

To prove this, suppose otherwise. Then, rj <
1
p

for every j = k, . . . , p. Adding all these
inequalities, we obtain

rk + · · ·+ rp < (p− k + 1)
1

p
≤ 1. (3.3)

We also know rj < 1 for every j = 1, . . . , k − 1. This implies

r1 + · · ·+ rk−1 < k − 1. (3.4)

Adding (3.3) and (3.4), we get
∑p

j=1 rj < k − 1 + 1 = k =
∑p

j=1 rj − R, which is a
contradiction.

This proves (a).

Similarly, for (b) we can notice that if
∑p

j=1 rj ≥ k + p
p+1

, then r1, . . . , rk+1 ≥ 1
p+1

,
which implies the result using Lemma 3.3.4 again. If this was not the case, we would have

rk+1 + · · ·+ rp < (p− k)
1

p+ 1
=

p

p+ 1
− k

p+ 1
=
p− k
p+ 1

<
p

p+ 1

36

and
r1 + · · ·+ rk < k.

Adding both inequalities, we obtain
∑p

j=1 rj < k+ p
p+1

, which is again a contradiction. So,
the result follows.

As in the previous chapter, the proof of the main theorem is achieved by assuming that
the extended median assignment procedure cannot be completed, and identifying sets F
and A that violate a flow-cover inequality. We construct and analyze these sets next.

If the extended median assignment procedure gets stuck when trying to satisfy the flow
requirement corresponding to cluster F 0, define F as the connected component of F 0, and
A as the set of clients currently being served by a facility in F . Sets A and F satisfy the
following properties:

(i) For every i ∈ F , j /∈ A, we have x̃ij = 0. That is, F serves demand only to clients in
A.

(ii) ∑
i∈F

ỹiu <
∑
j∈A

∑
i∈F

zi,j (3.5)

(Recall that (x̂, ŷ) is the initial fractional solution and (x̃, ỹ) is the solution obtained when
the extended median assignment procedure gets stuck.)

(i) follows immediately from the definition of A. (ii) is also easy, since by construction
of the extended median assignment procedure (specifically, by definition of the capacity
transferring process), if the procedure gets stuck, then we know that all facilities in F are
using their full capacity. By (i), they use it only to serve clients in A and it is not enough
to satisfy the demand in A, so the inequality follows.

As we can see, sets A and F satisfy the same properties as the equivalent sets in the
previous chapter. These properties will be key in the proof of the main theorem.

Intuitively, this is saying that before rounding, there was enough capacity in F to satisfy
all the flow requirements corresponding to F and A , but after rounding that is no longer
true. However, Lemma 3.3.5 tells us that the capacity available in F before and after
rounding is roughly the same. From there, we will derive the contradiction.

We are finally able to prove the main theorem. As we will see, the proof is very similar
to that by Levi et al.

37

Proof of Theorem 3.3.3: Suppose for contradiction that the extended median
assignment procedure gets stuck. Let F and A be the sets defined above.

Let us recall that, by definition, D(A) = (LA−1)u+RA, with LA ∈ Z and 0 < RA ≤ u.
Similarly, we express the total capacity of the fractionally open facilities over F in the
optimal LP solution as

∑
i∈F ŷiu = (L− 1)u+R, with L ∈ Z and 0 < R ≤ u.

The rest of the proof is structured as follows: First we prove L ≤ LA, then R/u < 0.5
and then L = LA. After that, we use these facts to derive a contradiction from the
flow-cover inequality corresponding to F and A.

Lemma 3.3.6 L ≤ LA

Proof:
(L− 1)u ≤

∑
i∈F

ỹiu <
∑
j∈A

∑
i∈F

zi,j ≤ D(A) ≤ LAu.

The first inequality follows from the definition of L and from Property (a). The second
inequality comes from inequality (3.5). The last two follow from the definitions of flow
requirements and of LA, respectively. Since L and LA are integers, L − 1 < LA implies
L ≤ LA.

Lemma 3.3.7 R/u < p
p+1

.

Proof: Suppose R/u ≥ p
p+1

. By definition of L and R, we have that
∑

i∈F ŷi ≥ (L −
1) + p

p+1
. From Property (b) of Lemma 3.3.5, the extended random-shift procedure opens

at least L facilities in F . In other words,
∑

i∈F ỹiu ≥ Lu. We have the following chain of
inequalities, which contradicts (3.5).∑

i∈F

∑
j∈A

zi,j ≤
∑
i∈F

∑
j∈A

x̂i,jdj ≤
∑
i∈F

ŷiu = (L− 1)u+R ≤ Lu ≤
∑
i∈F

ỹiu.

The first inequality follows from the definition of flow requirements, the second from the
capacity constraints 3.2. The last inequality is the observation we just made above.
Thus, R/u < p

p+1
.

Lemma 3.3.8 L = LA.

Proof: By Lemma 3.3.6, we can suppose for contradiction that LA − 1 ≥ L.
The following observation is very important. Let j ∈ A. By definition of A, j has at least
one positive flow requirement whose corresponding cluster is a subset of F . By definition

38

of flow requirements, more than a fraction of p
p+1

of the demand of j is satisfied from within

F in the optimal LP solution (if it were not so, all flow requirements of j over F would be
zero). That is,

∑
i∈F x̂i,j >

p
p+1

. Thus, we have

∑
i∈F

zi,j = (p+ 1)dj

(∑
i∈F

x̂i,j −
p

p+ 1

)
. (3.6)

The − p
p+1

corresponds to the flow requirements that are zero, all of which are within the
interval F .
Adding over all clients in A:

∑
j∈A

∑
i∈F

zi,j = (p+ 1)

(∑
j∈A

∑
i∈F

x̂i,jdj −
p

p+ 1
D(A)

)
≤ (p+ 1)

(∑
i∈F

ŷiu−
p

p+ 1
D(A)

)
= (p+ 1)(L− 1)u+ (p+ 1)R− p(LA − 1)u− pRA

≤ (p+ 1)(L− 1)u+ pu− pLu+ 0 = ((p+ 1)L− (p+ 1) + p− pL)u

= (L− 1)u ≤
∑
i∈F

ỹiu.

The first inequality follows from the capacity constraints (3.2). The second inequality
comes from the assumptions LA−1 ≥ L and (p+1)R < pu (Lemma 3.3.7), as well as from
the trivial fact RA ≥ 0. The last inequality comes from Property (a).
Again, this contradicts (3.5), so we can conclude L = LA.

Thus, let us assume R/u < p
p+1

and LA = L. By definition of L and R, we know that

the LP opened (fractionally) a total of (L− 1) +R/u > L− 1 facilities in F . This means
there are at least L facilities in F , and thus |F | ≥ L = LA. Thus, by definition, F is a
cover of A. Furthermore, F ∈ S. So, we know that the corresponding flow-cover inequality
is valid for (MIP-CFL) and is thus included in the restrictions of (LP-CFL). That is, the
fractional solution (x̂, ŷ) must satisfy it:

D(A)−
∑
j∈A

∑
i∈F

x̂i,jdj ≥ RA

(
LA −

∑
i∈F

ŷi

)
= RA(LA − (L− 1)−R/u)

= RA(1−R/u) ≥ 1

p+ 1
RA.

Here, we used the flow-cover inequality, the definition of L and R, and the facts we proved
above.

39

Thus, we have (p+ 1)(D(A)−
∑

j∈A
∑

i∈F x̂i,jdj) ≥ RA. Reformulating,

(p+ 1)

(∑
j∈A

∑
i∈F

x̂i,jdj −
p

p+ 1
D(A)

)
≤ D(A)−RA.

By (3.6), the left hand side is equal to
∑

j∈A
∑

i∈F zi,j, and we know the right hand side is
equal to (LA − 1)u by definition of RA.
So, using this and Property (a) once more,∑

j∈A

∑
i∈F

zi,j ≤ (LA − 1)u = (L− 1)u ≤
∑
i∈F

ỹiu.

Again, this contradicts (3.5), and so we are done.

3.4 Tightness of the Analysis.

First, we prove that the analysis of the algorithm is tight. Let us consider the following
instance:

Let T be a star with 2p leaves. On every leaf, there is a facility with capacity one, in the
center of the star there is a client with demand 1. The opening costs are all one, and the
costs on the edges are all zero. Clearly, any optimal solution to the problem opens exactly
one facility. It is also clear that we can express the solution y = (1

p+1
, . . . , 1

p+1
, 0, . . . , 0), x =

(1
p+1

, . . . , 1
p+1

, 0, . . . , 0) (where the first p + 1 entries are
1

p+ 1
and the rest are 0 for both

x and y) as a convex combination of p+ 1 optimal solutions. So, it is an optimal solution
to the LP relaxation. Furthermore, since every optimal solution satisfies the flow-cover
inequalities, so does this fractional solution.

The number of paths into which we can partition the facilities is at least p. Mul-
tiplying the fractional values by p + 1, we obtain ȳ = (1, . . . , 1, 0, . . . , 0), and therefore
ỹ = (1, . . . , 1, 0, . . . , 0). The value of this solution is p + 1-times the optimal value, so our
analysis is tight.

Furthermore, let us examine the same instance, with the difference that the demand
now is 2 instead of 1. In this case, any optimal solution opens exactly two facilities.
Similarly to what we had before, the fractional solution y = (1

p
, . . . , 1

p
), x = (1

p
, . . . , 1

p
) is a

convex combination of all optimal solutions for the MIP.

40

The whole idea of the algorithm is based on rounding such that the properties of Lemma
3.3.5 are satisfied, in particular Property (a). We will now show that if we satisfy Property
(a), it is impossible to find an approximation algorithm with an approximation guarantee
less than O(p) following these ideas.

Suppose that there is an approximation algorithm with an approximation guarantee of
k, where k is asymptotically less than O(p). We look at the last instance described, and
let p → ∞. Since the optimal solution opens 2 facilities, the algorithm opens at most 2k
facilities. Since 2k is asymptotically smaller than p, for p large enough we have 2k < p. So,
there are at least p facilities that were not opened by the algorithm. Since the fractional

value of each of these facilities (before rounding) is
1

p
, their total weight is at least 1. So, by

Property (a), there should be at least one open facility in this group in the final solution,
since there is a subtree that contains only these facilities. This contradicts their choice.

So, if we want Lemma 3.3.5 to hold (independently of whether we partition into paths or
use a different rounding technique), the best we can hope for is an approximation guarantee
of O(p).

In fact, the argument above also shows that if the multiplicative factor we use is smaller
than or equal to p, we run into a problem. Thus, p+ 1 is the best possible approximation
guarantee for any algorithm that satisfies Lemma 3.3.5.

This is to be expected, since Lemma 3.3.5 is rather strong. In fact, it does not even
hold for rounding algorithms for uncapacitated facility location. So, if we want to make
use of the lemma, we will need to focus on a restricted class of structures.

3.5 Approximation Factor

In this section, we will briefly describe how we come up with the p + 1 approximation
factor. Several details are intentionally omitted, since the procedure we follow is exactly
the same that we used in the analyses of the algorithms in this and the previous chapter.

There are two places where that number comes into play when computing the objective
value. The first and most obvious one is in the extended random-shift procedure. The
second one is in the definition of flow requirements. Intuitively, if we use a larger factor
in the extended random-shift procedure we open more facilities in smaller neighborhoods,
and that means that the median facility in the definition of flow requirements can be closer
to the client defining it.

41

Using the same notation as in the description of the algorithm, suppose we define flow
requirements as

zig ,j :=


1

1−ε x̂ig ,jdj for g = M + 1, . . . ,m,

(1−
∑m

q=M+1
1

1−ε x̂iq ,j)dj for g = M,

0 for g = 1, . . . ,M − 1,

where c(i1, j) ≤ c(i2, j) ≤ · · · ≤ c(im, j) and M is the smallest index such that
∑M

g=1 xig ,j ≥
ε. This gives an approximation guarantee of at least 1

1−ε .

A careful reading of our analysis will reveal that the only part where we actually use this
value is in the proof of Lemma 3.3.8. More particularly, where we see that

∑
j∈A
∑

i∈F zi,j ≤
(L − 1)u. If we substitute p + 1 for 1

1−ε and p
p+1

for ε and follow the same steps, we get∑
j∈A
∑

i∈F zi,j ≤ `u− 1
1−ε(u−R).

If we want this to be upper-bounded by (` − 1)u, we need R
u
< ε. We want to obtain

this inequality from Lemma 3.3.7. It is not hard to see that for this to be true, we need to
use a multiplicative factor of p

ε
in the extended random-shift procedure.

This means that the opening costs give us an approximation of p
ε

and the assignment
costs give an approximation of 1

1−ε . Setting these two values equal yields ε = p
p+1

, which

corresponds to a (p+ 1)-approximation.

3.6 Solving the LP

The starting point of our algorithm is an optimal solution to the LP relaxation that con-
tains all flow-cover inequalities corresponding to subtrees. Here, we will see under what
conditions we can do this effectively.

Our approach here is analog to the one used in the previous chapter. By the work of Levi
et al.; we know that for a fixed F , flow-cover inequalities can be separated in polynomial
time by solving a separation MIP (In the Appendix, we prove this only in context of the
lot-sizing problem; but the proof for CFL is exactly the same). In the line case, there is
a polynomial (in the number of facilities) number of intervals, which allows us to add all
flow-cover inequalities corresponding to intervals of facilities to the LP relaxation and solve
it efficiently.

However, in more general trees, |S| is not necessarily polynomial in the number of
facilities, or even leaves (let us recall that S is the set of subtrees).

42

Consider for example a star of n leaves, with a facility on each leaf, and none in the
center. Clearly, any subset of facilities is in S, which means |S| = 2n.

However, we have the following result:3

Lemma 3.6.1 Let T be a tree with l leaves and n vertices of degree 2. The number of
connected subgraphs of T is at most polynomial on n and exponential in l.

Proof: It is a well known result in graph theory (the proof of this is a very simple
exercise) that a tree with l leaves has at most l − 2 vertices with degree three or more.
Thus, it has at most 2l − 2 vertices of degree different than 2. Let S denote this set, and
let N denote the set of vertices of degree 2. So, |S| ≤ 2l − 2 and |N | = n.

Now, given S1 ⊆ S, we say S1 determines a subtree if there exists a subtree T1 with
vertices V1 such that S ∩ V1 = S1. Given some S1, we would like to know how many
subtrees does S1 determine. We also make a slight abuse of notation and define the convex
hull of a vertex subset S ′ as the set of vertices in the smallest subtree determined by S ′.

First, all the vertices in N contained in the convex hull of S1 must clearly belong to any
subtree determined by S1. Let us call the subtree obtained by taking this convex hull the
core subtree of S1. Now, it is not hard to see that any edge that has a vertex in this core
subtree and a vertex outside it, satisfies that the vertex in the core subtree actually belongs
to S1. We move along the path determined by this edge away from the subtree until right
before we find a vertex in S. We call the path determined by all the visited vertices a
branch. Clearly, all vertices in this branch belong to N . Also, if we want to extend the
core subtree along this direction, we can take at most as many vertices as the branch has,
because if we include a vertex in S, then S1 will no longer determine the resulting subtree.
Trivially, the branch has at most n vertices, so there are at most n ways of extending the
core subtree along this direction. Also trivially, there exist at most l branches, so we have
at most nl ways of extending the core subtree into another subtree that is also determined
by S1.

Now, there are 22l−2 subsets of S, and every subtree is determined by one of these
subsets. Combining the two arguments, this gives us an upper bound of 22l−2nl on the
total number of subtrees, which is what we wanted.

The upper bound given in the proof is very loose, but it is enough for our purposes.
That is, if we impose an upper bound on the number of leaves (or facilities), our algorithm

3At this point, it is useful to notice that we can assume without loss of generality that all facilities are
located on vertices of degree 1 or 2 (since otherwise we can move them along an edge by ε and this gives
us only a slightly larger approximation guarantee).

43

gives us a constant factor approximation and we can solve the extended LP in polynomial
time.

3.7 Separation

The weakness of the previous algorithm is that to have a guarantee of a polynomial time
running time, we need the number of leaves to be bounded. However, even if this is not the
case, there is a way of going around this issue by using the ellipsoid method. Indeed, it is
known that given a polynomial time separation oracle, an LP with an exponential number
of constraints can be solved in polynomial time using the ellipsoid method (See [7]).

Here, we will use the following separation oracle:

0. Let (x̂, ŷ) ∈ R|F|+|F|·|C|.

1. Check validity of the constraints of the natural relaxation of (MIP-CFL) individually.
If there is a violated inequality, output it and stop. Otherwise, go to 2.

2. Run the extended random-shift and extended median assignment procedures. If it
gets stuck, output the corresponding violated flow-cover inequality. Otherwise, (x̂, ŷ)
is feasible.

We should note that the solution returned by running the ellipsoid method with this
separation oracle does not necessarily satisfy all flow-cover inequalities corresponding to
subtrees. That is, we use the ellipsoid method to solve an LP of which we do not know
all its constraints in advance. Yet, since the extended median assignment procedure can
be completed for the returned solution; the final iteration of the separation oracle actually
gives us a rounded solution that is feasible for (MIP-CFL) and has cost at most (p+1)OPT .

So, we only need to prove that the separation oracle can be solved in polynomial time.
Since the natural LP relaxation has a polynomial number of constraints, we do not need
to worry about step 1.

Next, we show that we for a solution of the natural LP relaxation, we can identify
a violated flow-cover inequality (if there exists one) in polynomial time by running our
algorithm. Using the notation introduced in Section 3.2 above, let F 0 be a cluster cor-
responding to a frustrated flow requirement. The algorithm iteratively transfers capacity
from open facilities to F 0 until the flow requirement is satisfied. By the way the algorithm
is constructed, it is clear that in every iteration (except for the last one, when the flow

44

requirement is finally satisfied) either the facility from which we are transferring capacity
gets saturated (which means it uses all its capacity) or it does not. If it does not get
saturated, it means that in the process it got disconnected from F 0.

In any case, either one facility that previously had free capacity gets saturated, or
the connected component corresponding to F 0 gets smaller. Since the algorithm always
transfers capacity towards F 0 and not away from it, we know the connected component
never grows. So, since the size of the connected component is linear in the number of
facilities and clients, and the number of facilities with free capacity is also linear, the
separation oracle can be solved in polynomial time.

We can note that if we follow this approach, we do not need the separation result for
flow-cover inequalities that we prove in the Appendix.

As we can see, this approach is very similar to the on-the-fly variant defined in the
previous chapter. The main difference is that the on-the-fly algorithm does not necessarily
rely on the ellipsoid method to solve the LP in each iteration, and so could be more efficient
in practice, but has no big theoretical value.

3.8 Comments

• We can note that we are not simply decomposing the problem into p smaller problems
and then merging the solutions. We use the decomposition only in the first part of
the algorithm, and then for the analysis of the second part. Each of these paths does
not necessarily induce a feasible problem. For example, it might be the case that all
clients are on one path and that path contains only one facility, such that just that
facility does not have enough capacity to satisfy the whole demand.

• As we may recall, the algorithm relies on partitioning the tree into paths that may
intersect at client-vertices but not at facility-vertices. Clearly, the addition of this
last constraint increases the minimum number of paths in a feasible partition. A good
example is a star graph with a facility on each vertex and an even number of leaves,
`. If we were allowed to use the central vertex in several paths, we could partition
the graph into `/2 paths. However, the restriction on facility-vertices does not let us
partition into less than ` − 1 paths, thus doubling the approximation guarantee. If
we assume that there are no facilities at vertices of degree 3 or more, we do not have
this problem. We can in fact safely assume that, because given a facility on a vertex
of degree 3 or more, we can move it along any incident edge by some distance ε > 0.
For ε small enough, the effect on the optimal value is negligible.

45

• It is known that finite metrics can be probabilistically approximated by tree metrics
with a distortion of at mostO(log(n)), where n is the number of elements in the metric
space (See [20], pp. 211-216). In our case, this gives us a randomized O(|F| log(|F ∪
C|))-approximation for the problem on general metric spaces. It is an interesting
result in the sense that it tells us that if we want to find an instance that has a bad
integrality gap after adding the flow-cover inequalities, we need a large number of
facilities and/or a really large number of clients.

3.9 Generalization to Multi-Commodity Capacitated

Facility Location with Monotone Costs on Trees

As a final comment, we show in this section that the results of the chapter can be extended
to a more general framework.

Let us consider the following generalization of the problem we have been working on.

First, we will assume that there is a given set of N items, that each client j has a
demand dij of item i, and that each facility can serve at most a total of u units of demand,
regardless of the types of items. That is, we consider the multi-commodity variant, just
like we did in Chapter 2 (the convention is to say multi-commodity facility location instead
of multi-item facility location).

Second, we substitute the linear assignment costs by monotonous costs. By this, we
mean the following. c is such that if facility i2 lies on the unique path between facility i1
and client j, then for every item k we have cki2j ≤ cki1j.

We will call this problem the multi-commodity capacitated facility location problem with
monotonous costs on trees, and we abbreviate it as MCCFL.

There has been some progress in the literature on different variants of multi-commodity
uncapacitated facility location (see [16], [17] or [18]), but to the best of our knowledge, this
specific problem has not been studied, not even for metric assignment costs or non-uniform
capacities.

It is not hard to see that the algorithm can be very easily adapted to this more general
problem, and that the analysis holds as well. Just as we did for the lot-sizing problem,
where we previously defined a flow requirement corresponding to a client and a facility,
now we define N flow requirements, one for every item.

The extended random-shift procedure can be carried out just as before, since it does
not depend on the assignment costs or the types of items. Of course, when reassigning the

46

demands, we consider chains whose clusters all correspond to the same item type. And
clearly, by the monotonicity of the assignment costs, if we can satisfy all flow requirements,
then we have the same approximation guarantee as before. This is the only part of the proof
where we use the properties of the assignment costs. Proving that the flow requirements
can be satisfied is done exactly as we did.

So, we have

Theorem 3.9.1 The extended random-shift with extended median assignment procedure
gives a randomized (p+ 1)-approximation to MCCFL.

Furthermore, we can prove NP-hardness of this problem just like we did for the lot-
sizing problem (while we do not know the complexity of the problem with a single item
and tree metric costs). For the details, see Section A.2 in the Appendix.

47

Chapter 4

A Primal-Dual Algorithm for the
Capacitated Facility Location
Problem

In this chapter, we will start by working with a special case of the capacitated facility
location problem, present an algorithm designed for it by Carnes and Shmoys; and then
move on to the general problem and present our generalization.

We will take a similar approach to the problem as in the previous chapters. We will
also strengthen the LP to reduce the integrality gap, but we will use a different type of
inequalities. Also, instead of rounding a solution of the LP relaxation, we will present a
primal-dual algorithm.

In this chapter, we define F , C, fi, cij, dj and ui for i ∈ F , j ∈ C, as in the introduction.
Note that, as opposed to what we did in Chapter 3, we do not assume uniformity of the
capacities here.

4.1 The Single-Demand Case

This section is an overview of one of the results in [3], which we will generalize in the next
section.

48

4.1.1 The Problem

We will first focus on the single-demand case of the CFL problem. That is, we will assume
that there is only one client in C, let d be its demand. As seen in the introduction, this
variant of the problem also suffers from an unbounded integrality gap.

The problem is also NP-hard, because it generalizes the minimum knapsack problem
(by setting the assignment costs to zero), which is well known to be NP-hard.

4.1.2 Formulation

Let us start by introducing the flow-cover inequalities we will use in this chapter. Although
they share the name and are similar in nature to the ones used in the previous chapters,
they are also significantly different. To avoid confusions, when we refer to flow-cover
inequalities in this chapter, we will mean only those we are about to present.

We first give the MIP formulation of this simplified problem:

(MIP-SD)

min
∑
i∈F

fiyi +
∑
i∈F

dcixi

s.t
∑
i∈F

xi = 1 (4.1)

dxi ≤ uiyi for every i ∈ F (4.2)

xi ≥ 0 for every i ∈ F
yi ∈ {0, 1} for every i ∈ F .

Given a set A ⊆ F , let d(A) = max{0, d −
∑

i∈A ui}. That is, d(A) is the remaining
demand after we have completely used all the capacity of the facilities in A.

We also define ui(A) = min{ui, d(A)} for every i /∈ A. This is called the effective (or
residual) capacity of facility i. That is, by how much i can contribute to satisfy the demand
given that the facilities in A are already serving the client with all their capacity.

Furthermore, let P = {(F1, F2, A)|F1, F2, A partition F}.

Now we are ready to state the flow-cover inequality corresponding to (F1, F2, A) ∈ P :∑
i∈F1

dxi +
∑
i∈F2

ui(A)yi ≥ d(A). (4.3)

49

Let us understand why this inequality is true intuitively. We know A,F1 and F2 are a
partition of F . Suppose facilities in A are all open and fully used to satisfy the demand.
Then, the remaining demand must be satisfied from facilities in F1 and F2. The first term
is the amount of demand served from F1, and the second term is the total effective capacity
in F2, which upper-bounds the demand served from F2. We will prove this in detail below.

For us, the importance of this inequality lies in its use of effective capacities, because
that will allow us to close the integrality gap. For example, the instance seen in the
introduction that shows an unbounded integrality gap of the natural LP relaxation does
not satisfy this flow-cover inequality. Intuitively, in that solution we are opening only a
small fraction of the expensive facility because its capacity is large and that small fraction
of the large capacity is enough to satisfy the remaining demand (after opening the other
facility). However, the effective capacity of that facility is small, so the solution violates
inequality (4.3).

Proposition 4.1.1 Inequalities (4.3) are valid for all feasible points of (MIP-SD).

Proof: The validity of (MIP-SD) is not hard to see. Given some partition (F1, F2, A),
we are interested in how much demand is required from F1 and F2. Let x be a feasible
solution. By definition, the demand remaining after the facilities in A are used is at most
d(A). So,

d(A) ≤
∑
i/∈A

dxi =
∑
i∈F1

dxi +
∑
i∈F2

dxi.

At this point, we could use restriction (4.2) applied to the second sum to get a weaker
version of the inequality. However, we can do better. Since both the capacity of a facility
i ∈ F2 and the remaining demand d(A) are upper bounds on the size of the demand served
from i to the client, by definition of ui(A) we can decrease the right hand side coefficient
in (4.2) to obtain dxi ≤ ui(A)yi. Substituting above, the result follows.

These inequalities are in fact very strong; as they imply restrictions (4.1) and (4.2)
of (MIP-SD) for feasible and optimal solutions of (MIP-SD), respectively. Indeed, by
substituting (F1, F2, A) = (F , ∅, ∅) and dividing by d, we get (4.1). Similarly, setting
(F1, F2, A) = (F\{i}, {i}, ∅), and using equality (4.1), we get restriction (4.2). We are not
going to use these facts in our work, but they are still interesting observations.

By Proposition 4.1.1, we can say that the following is a relaxation of (MIP-SD).

50

(LP-SD)

min
∑
i∈F

fiyi +
∑
i∈F

dcixi

s.t
∑
i∈F1

dxi +
∑
i∈F2

ui(A)yi ≥ d(A) for every (F1, F2, A) ∈ P (4.4)

xi, yi ≥ 0 for every i ∈ F

Note that we are not including the restrictions used before. Since our goal is a primal-
dual algorithm, we would like to keep the LP as simple as possible, and (LP-SD) is strong
enough for a 2-approximation.

The dual problem looks as follows:

(D-SD)

min
∑

(F1,F2,A)∈P

d(A)v(F1, F2, A)

s.t
∑

(F1,F2,A)∈P:
i∈F1

v(F1, F2, A) ≤ ci for every i ∈ F (4.5)

∑
(F1,F2,A)∈P:

i∈F2

ui(A)v(F1, F2, A) ≤ fi for every i ∈ F (4.6)

v(F1, F2, A) ≥ 0 for every (F1, F2, A) ∈ P

It will be useful to notice that for a fixed i ∈ F and fixed (F1, F2, A) ∈ P , either
v(F1, F2, A) appears in constraint (4.5) corresponding to i (if i ∈ F1), or it appears in
constraint (4.6) corresponding to i (if i ∈ F2), or it does not appear in either (if i ∈ A).

4.1.3 The Algorithm

Here we describe the algorithm given by Carnes and Shmoys in [3].

We initialize all primal and dual variables to zero, and define the sets F1 = F , F2 = ∅,
A = ∅. Throughout the algorithm, we increase the dual variable corresponding to the
current sets F1, F2, A until a dual constraint becomes tight. If it is a constraint of type
(4.5), corresponding to facility i, then that means that until this point, facility i belonged
to set F1 (because in constraint (4.5) we sum only over dual variables with i ∈ F1). In
this case, we move i from F1 to F2. If the tight constraint is of type (4.6) corresponding

51

to facility i, then it means that at this point i belongs to F2; and we move it from F2 to
A. In this way, we make sure that if, for a given i ∈ F , both constraints are tight at some
point, then the first one to become tight was (4.5).

When a facility is moved to A, we open it and serve demand from it greedily. When
d(A) becomes 0, we stop.

We summarize it in Algorithm 2 below.

Algorithm 2

Initialize x, y, v := 0, F1 := F , F2, A := ∅.
while d(A) > 0 do

Increase v(F1, F2, A) until a dual constraint goes tight and prevents it from growing
more.
if this constraint is of type (4.5) corresponding to i ∈ F , then
F1 := F1\{i}, F2 := F2 ∪ {i}

else
yi := 1, xi := ui(A)/d
F2 := F2\{i}, A := A ∪ {i}

end if
end while
return x, y, v.

4.1.4 Analysis

Before starting the formal analysis, let us give an intuitive interpretation of the algorithm.

For every facility i, the right hand side of constraint (4.5) is the assignment cost cor-
responding to that facility, and the right hand side of constraint (4.6) is its opening cost.
So, in the spirit of the classical primal-dual algorithm for uncapacitated facility location by
Jain and Vazirani (see [10]), we can picture the v variables as “money” that the client pays
to have its demand satisfied. For a facility to serve it, the facility needs to be connected to
the client and it also needs to be open. In the algorithm, the client starts simultaneously
paying the connection costs to all facilities. As soon as one of them becomes connected,
the client starts paying towards its opening cost (this is represented by moving i from F1

to F2), while it keeps paying for the connection costs of facilities that are not yet con-
nected. Once the opening cost has been paid for, we open the facility and use as much of
its capacity as possible. The coefficient ui(A) in constraint (4.6) intuitively means that if a

52

facility has a large effective capacity, then it is more attractive to the client than facilities
with less effective capacity. So, the amount of money per unit of opening cost that the
client needs to pay is smaller for facilities with larger effective capacity (We can think of
the ui(A) coefficients as “discounts” corresponding to that facility. The more useful the
facility, the bigger the discount.). This interpretation is not necessary for the analysis, but
it helps understand the reasoning behind the algorithm. It will be especially useful for the
analysis of the algorithm in the next section.

The fact that we open a facility only if its two corresponding constraints are met at
equality will help us in the analysis, through the use of complementary slackness.

Theorem 4.1.2 Algorithm 2 gives a 2-approximation for the single demand capacitated
facility location problem.

Proof: Let zP and zD represent respectively the values of the primal and dual solutions
returned by the algorithm. We will prove that zP ≤ 2zD, this clearly implies the result.

Let S be the set of facilities with yi = 1, and let ` be the last facility opened. By
definition of `, and by the greedy nature of the algorithm, all facilities in S\{`} use their
full capacity to satisfy the demand of the client. So, for any (F1, F2, A) ∈ P , we have∑

i∈F2∩S\{`}

ui +
∑

i∈F1∩S\{`}

dxi ≤
∑

i∈F2∩S\{`}

ui +
∑

i∈F1∩S\{`}

ui ≤ d(A).

Adding this and the trivial inequality u`(A) ≤ d(A), we get∑
i∈F2∩S

ui +
∑

i∈F1∩S

dxi ≤ 2d(A), (4.7)

since no matter if ` belongs to F1 or F2, its corresponding term is upper-bounded by u`(A).

Now we are ready to prove the approximation guarantee.

zP =
∑
i∈S

fi +
∑
i∈S

cidxi

=
∑
i∈S

∑
(F1,F2,A)∈P:

i∈F2

ui(A)v(F1, F2, A) +
∑
i∈S

dxi
∑

(F1,F2,A)∈P:
i∈F1

v(F1, F2, A)

=
∑

(F1,F2,A)∈P

v(F1, F2, A)

(∑
i∈F2∩S

ui(A) +
∑

i∈F1∩S

dxi

)
≤ 2d(A).

53

Here, we used the fact that we open a facility only if its corresponding constraints are both
tight, then we changed the order of summation, and finally we used (4.7).

4.2 The General Case

In this section, we will generalize the previous algorithm for the case of an arbitrary number
of clients.

4.2.1 Formulation

Let F , C and P be defined as before. The flow-cover inequalities we will use in this section
depend not only on a partition of F but also on a subset of C. To this end, we define, for
A ⊆ F and B ⊆ C,

d(A,B) = max{0,
∑
j∈B

dj −
∑
i∈A

ui}.

That is, d(A,B) represents the demand remaining in B after all facilities in A have
been fully used to satisfy it.

Similarly, let ui(A,B) = min{ui, d(A,B)} for every i ∈ F , A ⊆ F and B ⊆ C.

The following proposition proves the validity of the generalized flow-cover inequalities
that we will use:1

Proposition 4.2.1 For every (F1, F2, A) ∈ P , B ⊆ C, the following is valid for (MIP-CFL):∑
i∈F1

∑
j∈B

djxij +
∑
i∈F2

ui(A,B)yi ≥ d(A,B). (4.8)

The proof is completely analogous to that of (4.1.1), and will be omitted.

Thus, the LP relaxation we will work with is

1Actually, these inequalities were used by Carnes and Shmoys in a primal-dual algorithm for the lot-
sizing problem, which is the main result of [3].

54

(LP-CFL2)

min
∑
i∈F

fiyi +
∑
i∈F

∑
j∈C

cijdjxij

s.t.
∑
i∈F1

∑
j∈B

djxij +
∑
i∈F2

ui(A,B)yi ≥ d(A,B) ∀(F1, F2, A) ∈ P , B ⊆ C

x, y ≥ 0.

Before writing the dual problem, we will make a small abuse of notation to simplify
reading, and abbreviate∑
(F1,F2,A)∈P,

B⊆C

as
∑
v

. Similarly,
∑
v:i∈F1,
j∈B

stands for
∑

(F1,F2,A)∈P,B⊆C:
i∈F1,j∈B

, etc.

Using these conventions, the dual of (LP-CFL2) is

(D-CFL)

max
∑
v

d(A,B)v(F1, F2, A,B)

s.t.
∑
v:i∈F1,
j∈B

v(F1, F2, A,B) ≤ cij for every i ∈ F , j ∈ C (4.9)

∑
v:i∈F2

ui(A,B)v(F1, F2, A,B) ≤ fi for every i ∈ F (4.10)

v ≥ 0.

4.2.2 The Algorithm

Our generalization to the algorithm of Carnes and Shmoys is the following:

We initialize all v variables to zero. Throughout the algorithm, we say that facility i
and client j are connected if the corresponding constraint (4.9) is tight, and we say that
facility i is open if the corresponding constraint (4.10) is tight.

At every point in the algorithm, the set of clients is partitioned into sets Bk. Initially,
the sets Bk are all singletons {j}. As the algorithm progresses, we will iteratively merge
these sets while keeping a partition of C. At every moment, for every set Bk we consider
a triple (F k

1 , F
k
2 , A

k) ∈ P ; where F k
1 is the set of facilities that are not connected to any

55

client in Bk, Ak is the set of facilities that are open and connected to at least one client
in Bk, and F k

2 is the rest of the facilities. It is useful to remember that the set Bk and
the current primal and dual solutions completely determine the sets F k

1 , F
k
2 and Ak. As

we will see in more detail later, for every Bk, Ak is a set of open facilities that serve only
clients in Bk. So, very roughly speaking, we will start constructing solutions locally, and
gradually, as these solutions intersect, we will merge them to obtain more global solutions.
Of course, initially we have F k

1 = F , F k
2 = Ak = ∅ for every k.

We increase all variables v(F k
1 , F

k
2 , A

k, Bk) simultaneously until a dual constraint goes
tight. When that happens, we update F k

1 , F
k
2 and Ak. If at some point a facility is

connected to two clients, we merge their corresponding sets Bk1 and Bk2 to form Bk, and
compute F k

1 , F
k
2 , A

k as described above.

At all times, we serve demand greedily from facilities in Ak to clients in Bk for every
k. Even if at some point we have for some k that d(Ak, Bk) = 0, we do not freeze the
corresponding dual variable (If we do it and reactivate it when Bk is merged to some other
set that still has unsatisfied demand, the result is the same, but not freezing it makes
the analysis easier). That is, we continue increasing the dual variables corresponding to
the currently active sets Bk until d(Ak, Bk) = 0 for every k, at which point we stop the
algorithm and output all open facilities and assignments as determined by the algorithm.
We summarize this in Algorithm 3. To clarify the procedure, we define a set K which
contains the indices of the currently active sets Bk. Of course, initially we have K = C,
but as the algorithm progresses, we merge sets Bk and the size of K decreases. We also
define F2(i) = {k ∈ K|i ∈ F k

2 } for every i ∈ F .

Note that if we have d(Ak, Bk) = 0 and we keep increasing the dual variable corre-
sponding to that Bk, new facilities may be connected to this set, but no new facilities will
be opened (unless they have cost 0), because ui(A

k, Bk) ≤ d(Ak, Bk) = 0 for every i /∈ Ak.
We can notice that if |C| = 1, the algorithm described above is precisely the one in the

first section of this chapter.

It is not hard to understand the intuition behind this algorithm. Given a set of clients
Bk, we know that the facilities that get connected first to Bk are the closest ones; and of
those that are connected, the ones that have the largest effective capacity (relative to that
cluster) are opened first. So, for every cluster we keep a set Ak of open facilities that are
“the best” for it, and we assign its demand to them. Once a facility is connected to two
clusters, it makes sense to merge them, because both are paying simultaneously to open
that facility. If we merge, we do not have to worry later about how to split the capacity of
a facility if it was opened by several clusters. Of course, not merging could also lead to a
good approximation algorithm, but we could not find a way to make that work.

56

Algorithm 3

Initialize x, y, v := 0, F k
1 := F , F k

2 := ∅, Ak := ∅, Bk := {k} for every k ∈ C, K := C.
while ∃k′ ∈ K such that d(Ak

′
, Bk′) > 0 do

For every k ∈ K, increase v(F k
1 , F

k
2 , A

k, Bk) until a dual constraint goes tight.
Update F k

1 , F
k
2 and Ak for every k ∈ K.

for i ∈ F do
if |F2(i)| ≥ 2 then
Bk̄ :=

⋃
k∈F2(i) B

k (for some index k̄ /∈ K).

Update F k̄
1 , F

k̄
2 and Ak̄.

K := (K\F2(i)) ∪ {k̄}.
end if

end for
For every k ∈ K, i ∈ Ak, let yi := 1. Serve demand greedily from the free capacity in
Ak to clients in Bk and update x.

end while
return x, y, v.

4.2.3 Analysis

When the algorithm terminates, each of the sets Bk active at that moment determines
a cluster of clients and facilities connected to these clients, such that the clusters are
pairwise disjoint and the open facilities in every cluster provide for all the demand that
the clients in the same cluster need, and do not serve clients in any other cluster. First,
we will analyze these clusters separately. We will upper bound each cluster’s cost using
only the dual variables corresponding to it. Then, we will put the pieces together for a
2n-approximation.

We will start by making some observations on the running of the algorithm. Since
we raise the dual variables simultaneously and do not stop increasing until the algorithm
terminates, it is clear that for every j, k ∈ C, we have∑

v:j∈B,
k/∈B

v(F1, F2, A,B) =
∑
v:k∈B,
j /∈B

v(F1, F2, A,B). (4.11)

We can interpret this number as the “time” it takes for the sets B containing j and k to
merge.

Let j, k ∈ C and i ∈ F . Furthermore, assume that after termination of the algorithm, i
is open and connected to both j and k. Without loss of generality, assume cij ≤ cik. Since

57

the connection costs are paid at unit rate, the clusters corresponding to j and k merge
precisely at time cik, and this time is precisely the number on both sides of (4.11). So,

Observation 4.2.2 If after termination of the algorithm facility i is connected to clients
j and k, then

{v(F1, F2, A,B) > 0 : i ∈ F1; j, k ∈ B} = ∅.

The following lemma is crucial for the analysis. Let us note that, since all facilities and
clients are points in a metric space, the distance between clients is well defined.

Lemma 4.2.3 Let j and k be two clients in the same cluster. If there is a facility connected
to both, then,

cjk ≤ 2
∑
v:j∈B,
k/∈B

v(F1, F2, A,B) = 2
∑
v:k∈B,
j /∈B

v(F1, F2, A,B).

Proof: Let i be the first facility that is connected to both j and k. Without loss of
generality, assume cij ≤ cik. As we remarked above, cik is equal to the number on both
sides of (4.11). So,

cjk ≤ cij + cik ≤ 2cik = 2
∑
v:k∈B,
j /∈B

v(F1, F2, A,B) = 2
∑
v:j∈B,
k/∈B

v(F1, F2, A,B).

This lets us prove a more general result.

Lemma 4.2.4 Let j and k be two clients in the same cluster, not necessarily connected to
the same facility. Let n be the number of clients in C. Then,

cjk ≤ (2n− 2)
∑
v:j∈B,
k/∈B

v(F1, F2, A,B) = (2n− 2)
∑
v:k∈B,
j /∈B

v(F1, F2, A,B)

Proof: Since j and k belong to the same set B, there is a chain of clients j =
j0, j1, . . . , jm = k such that any 2 consecutive clients have a facility connected to both.
Thus, Lemma 4.2.3 applies to all these pairs. Applying it inductively, and using m ≤ n,
we get the desired result.

The intuition is that if j is being served by a facility i that is connected only to k, then
this lemma allows us to bound cjk by something in terms of dual variables corresponding

58

only to j, so that k does not have to pay for the distance the demand travels from j to k.
cik can be easily bounded using the dual, and this will allow us to prove the main theorem.

One of the main difficulties of the CFL problem is that if we open facilities and do not
use all their capacity, we are “wasting” that capacity. In our case, however, the greedy
nature of the algorithm guarantees that in every cluster, there will be at most one open
facility that does not use all its capacity. To avoid unnecessary notation, let us assume for
the moment that all open facilities and clients belong to a single cluster.

Let ` be the last facility opened. By our assumption, this is the only facility that may
not be serving up to its full capacity. In the spirit of [3], we will first give a trivial upper
bound on the cost incurred by opening it.

Lemma 4.2.5
f` ≤

∑
v:`∈F2

d(A,B)v(F1, F2, A,B)

Proof:
f` =

∑
v:`∈F2

u`(A,B)v(F1, F2, A,B) ≤
∑
v:`∈F2

d(A,B)v(F1, F2, A,B).

Considering this facility separately from the others will let us do the following:

Observation 4.2.6 For v(F1, F2, A,B) > 0 and i ∈ F2\{`}, we have ui(A,B) ≤
∑

j∈C djxij.

Since i is using its full capacity, the validity of this observation is very easy to check.

Let S be the set of open facilities after termination of the algorithm. For every k ∈ C, we
define Sk as the set of open facilities that were connected to k before they were connected
to any other client. Let us also assume that the sets Sk are pairwise disjoint (If they
are not, we arbitrarily make them small enough that they become disjoint, while keeping⋃
k Sk = S). Thus, they partition S.

The next observation is clear from the definitions.

Observation 4.2.7 Let v(F1, F2, A,B) > 0, k /∈ B. Then, Sk ⊆ F1. This implies Sk =
Sk\A and F2 ∩ Sk = ∅.

All we need now to prove our main theorem is the following:

59

Proposition 4.2.8∑
i∈S\{`}

fi +
∑
i∈S

∑
j∈C

djxijcij ≤ (2n− 1)
∑
v

v(F1, F2, A,B)d(A,B).

Proof:∑
i∈S\{`}

fi +
∑
i∈S

∑
j∈C

djxijcij =
∑
i∈S

[
fi +

∑
j∈C

djxijcij

]
− f`

=
∑
k∈C

∑
i∈Sk

[
fi +

∑
j∈C

djxijcij

]
− f` ≤

∑
k∈C

∑
i∈Sk

[
fi +

∑
j∈C

djxij(cik + cjk)
]
− f`

≤
∑
k∈C

∑
i∈Sk

[∑
v:i∈F2\{`}

ui(A,B)v(F1, F2, A,B)

+
∑
j∈C

djxij

(∑
v:i∈F1,
k∈B

v(F1, F2, A,B) + (2n− 2)
∑
v:j∈B,
k/∈B

v(F1, F2, A,B)
)]

≤
∑
k∈C

∑
i∈Sk

[∑
v:i∈F2

v(F1, F2, A,B)
∑
j∈C

djxij

+
∑
j∈C

djxij

(∑
v:i∈F1,
k∈B

v(F1, F2, A,B) + (2n− 2)
∑
v:j∈B,
k/∈B

v(F1, F2, A,B)
)]

≤
∑
k∈C

∑
i∈Sk

∑
j∈C

djxij

(∑
v:i∈F2

v(F1, F2, A,B) +
∑
v:i∈F1,
k∈B

v(F1, F2, A,B)

+(2n− 2)
∑
v:j∈B,
k/∈B

v(F1, F2, A,B)
)

For the second inequality, we used the facts that all considered facilities are open, and that
i is connected to k; as well as Lemma 4.2.4. For the third inequality, we use Observation
4.2.6, and the trivial inequality 0 ≤

∑
j∈C djx`j. Then, we reverse the order of summation.

At this point, we would like the coefficient of djxij to be in terms of only dual variables
with j ∈ B. To this end, we will first notice that by Observation 4.2.7, i ∈ F2 ∩ Sk implies

60

k ∈ B. Thus, the following is true for i ∈ Sk:∑
v:i∈F2

v(F1, F2, A,B) +
∑
v:i∈F1
k∈B

v(F1, F2, A,B) =
∑
v:i∈F2
k∈B

v(F1, F2, A,B) +
∑
v:i∈F1
k∈B

v(F1, F2, A,B)

=
∑
v:i/∈A
k∈B

v(F1, F2, A,B)

=
∑
v:i/∈A
k∈B
j /∈B

v(F1, F2, A,B) +
∑
v:i/∈A
j,k∈B

v(F1, F2, A,B)

≤
∑
v:k/∈B
j∈B

v(F1, F2, A,B) +
∑
v:i/∈A
j,k∈B

v(F1, F2, A,B),

where for the last inequality we used (4.11).

So, the original expression is at most∑
k∈C

∑
i∈Sk

∑
j∈C

djxij

(∑
v:i/∈A,
j,k∈B

v(F1, F2, A,B) + (2n− 1)
∑
v:j∈B,
k/∈B

v(F1, F2, A,B)
)
.

Interchanging the order of summation:∑
v

v(F1, F2, A,B)
∑
j∈B

(∑
k∈B

∑
i∈Sk\A

djxij + (2n− 1)
∑
k/∈B

∑
i∈Sk

djxij

)
=

∑
v

v(F1, F2, A,B)
∑
j∈B

(∑
k∈B

∑
i∈Sk\A

djxij + (2n− 1)
∑
k/∈B

∑
i∈Sk\A

djxij

)
=

∑
v

v(F1, F2, A,B)
∑
j∈B

(∑
i∈S\A

djxij + (2n− 2)
∑
k/∈B

∑
i∈Sk\A

djxij

)
≤

∑
v

v(F1, F2, A,B)
∑
j∈B

(∑
i∈S\A

djxij + (2n− 2)
∑
i∈S\A

djxij

)
≤

∑
v

v(F1, F2, A,B)
∑
j∈B

(2n− 1)
∑
i∈S\A

djxij

≤ (2n− 1)
∑
v

v(F1, F2, A,B)d(A,B).

For the first inequality, we used Observation 4.2.7.

61

Together with the bound from Lemma 4.2.5, we get that the total primal cost of this

cluster (let us call it cluster Cm) is at most 2n
∑
v∈Vm

v(F1, F2, A,B), where Vm is the set of

positive dual variables with F2 ∪ A ∪B ⊆ Cm.

Clearly, every positive dual variable appears in the bound of exactly one cluster. We
are finally ready to prove our main theorem:

Theorem 4.2.9 The primal-dual algorithm described gives a 2n-approximation for the
capacitated facility location problem.

Proof: Let zP be the objective primal value of the solution obtained, and zD the corre-
sponding dual value. Using Lemma 4.2.5 and Proposition 4.2.8, we get

zP =
∑
m

∑
i∈S∩Cm

[
fi +

∑
j∈Cm

djxij

]
≤
∑
m

2n
∑
v∈Vm

v(F1, F2, A,B)d(A,B)

= 2n
∑
v

v(F1, F2, A,B)d(A,B) = 2nzD.

4.2.4 Tightness of the Analysis

Finally, we prove that our analysis of the algorithm is tight. Consider an instance with n
facilities and n clients, such that d1 = un = D, d2 = · · · = dn = u1 = · · · = un−1 = 1.
All opening costs are zero, and the underlying tree is a path of 2n vertices. One of the
leaves has j1, and the other one has in. All other clients and facilities are located on the
remaining vertices in alternating order. The edge incident to j1 has weight 1 + ε for some
ε > 0, all other edges have weight 1. We can see this graphically in Figure 4.1.

1

u2 = 1 un−1 = 1 un = D
dn−1 = 1

1+ε 1 1 1 1 1

dn = 1d3 = 1d2 = 1d1 = D
u1 = 1

Figure 4.1: This instance proves tightness of the analysis. As before, squares represent facilities
and circles represent clients.

Clearly, after time 1, facility im gets connected to client jm+1 for every m = 1, . . . , n−1;
and facility im gets connected to client jm for every m = 2, . . . , n. So, facilities i1, . . . , in

62

and clients j2, . . . , jn immediately form a big cluster. Since opening costs are zero, all these
facilities are opened. Since we did not specify any tie-breaking rules for assigning demand
within a cluster, let us assume that demand is assigned in such a way that facility im always
serves only client jm, for m = 1, . . . , n − 1. After this point, the demand of all clients in
the cluster is satisfied and all facilities in the cluster, except for in, are using their full
capacity. ε/2 units of time later, client j1 gets connected to the big cluster. Immediately,
its demand is satisfied by in and the algorithm terminates.

It is easy to check that the primal value of this solution is (as ε→ 0) zP = D(2n− 1) +
n−1. However, the value of the final dual solution is zD = D+n−1. If we set D = n, this

gives us a gap of
zP
zD

=
2n2 − 1

2n− 1
= Θ(n), which proves that the analysis is asymptotically

tight. Intuitively, this happens because in the last iteration of the algorithm, client j1 is
only connected to facility i1 (which is roughly at distance 1), but it gets served by facility
in, which is roughly at distance 2n− 1.

Several attempts were made to modify the algorithm, but we could not break the Θ(n)
barrier.

Curiously, the approximation itself is not bad, since the optimal solution of the instance
can be proved to be zOPT = D(2n−1)−n+1. So, the algorithm is only giving us a bad dual
solution, but a somewhat good primal solution. However, to prove a better approximation
guarantee for this algorithm, we would need a proof that does not compare the primal
value only to the dual value.

Based on these observations and on personal experience, we can say that this is a topic
with a lot of potential for future research.

63

Chapter 5

Conclusions

In this thesis, we presented two original approximation algorithms for the capacitated
facility location problem.

The first one is based on the algorithm described in [12], and is based on rounding
the solution to an LP relaxation strengthened by flow-cover inequalities. It gives a 2p-
approximation for the capacitated facility location problem with uniform capacities and
tree-metric assignment costs, where p is the number of paths into which we decompose the
tree during the running of the algorithm. Since it is trivial to find a decomposition into
` − 1 paths, where ` is the number of leaves in the tree, this gives us an approximation
guarantee of O(`). We can also assume without loss of generality that every leaf contains a
facility, so the approximation is O(|F|). In particular, if an upper bound on the number of
facilities (or leaves) is given, this is a constant factor approximation algorithm. In this case,
we also know that we can run it in polynomial time without using the ellipsoid method.
If the number of leaves is not bounded, we can still run the algorithm in polynomial time,
by using the ellipsoid method to solve the LP.

The second algorithm we present is a generalization of the primal-dual scheme of Carnes
and Shmoys introduced in [3], and is based on an LP with only flow-cover inequalities (of
a different type as the ones used before) in the restrictions. Their algorithm gives a 2-
approximation for the single-client capacitated facility location problem (with arbitrary
capacities), ours gives a 2n-approximation for the general CFL problem; where n is the
number of clients. Again, if the number of clients is bounded, this gives a constant factor
approximation.

While it is not common to see approximation algorithms in the literature with an
approximation guarantee that is linear on the size of the problem, the importance of these

64

results is that they show that flow-cover inequalities do close the integrality gap of the
natural relaxation, at least to some extent. Indeed, the standard example that shows that
the natural relaxation has an arbitrarily large integrality gap uses only one client and two
facilities, as we saw in the introduction. Our results tell us that to find instances that show
an arbitrarily large integrality gap of the relaxation used in Chapter 3, we would need to
use an arbitrarily large number of facilities on leaves of the tree; while to do the same
thing for the relaxation of Chapter 4, we would have to use an arbitrarily large number of
clients.

We conjecture that flow-cover inequalities (of either type) are strong enough to give an
LP relaxation with a bounded integrality gap. In particular, we have not been able to find
instances that prove an integrality gap greater than 2. However, as seen in Chapters 3 and
4, the techniques we used are not enough to prove a constant approximation guarantee,
and this calls for new ideas.

65

APPENDICES

66

Appendix A

Complexity

A.1 Complexity of the Multi-Item Capacitated Lot-

Sizing Problem

NP-hardness of the multi-item lot-sizing problem with uniform capacities can be proved
by doing a reduction from the well known strongly NP-hard problem 3-PARTITION.1 In
the 3-PARTITION problem, we are given a set P of 3m jobs of integer sizes p1, . . . , p3m

such that B/4 < pi < B/2 for every i = 1, . . . , 3m and for some positive integer B. The
problem consists in partitioning the set of jobs into m groups, S1, . . . , Sm containing 3 jobs
each, such that

∑
i∈Sj pi = B for every j = 1, . . . ,m.

Theorem A.1.1 The capacitated multi-item lot-sizing problem with uniform capacities is
strongly NP-hard.

Proof: Given an instance of 3-PARTITION, let us construct the following instance of
capacitated multi-item lot-sizing.

Every job i corresponds to an item i in the lot-sizing problem. Let S = {Ps ⊆ P :
|Ps| = 3 and

∑
i∈Ps pi = B}. We will consider a time horizon of T = |S| + 1 periods.

The last period has a demand of 1 for every item (that is, di(T+1) = 1 for every i), all
other demands are zero. Furthermore, we assume that every order has a capacity u = 3.
Next, we need to define the holding costs. By the way we defined T , we can assume that
every time period s corresponds to a set Ps ∈ S, except for the last one. So, for every

1A proof of this result can be found in the classical book by Garey and Johnson, [6]

67

i, s, t we define the holding costs cist =

{
2(t− s) if i ∈ Ps
2(t− s) + 1 otherwise

. These holding costs are

clearly monotonous and non-negative. Intuitively, we can interpret the additive factor 1
as a “penalty” that an item has to pay if it is not being ordered at a time corresponding
to a set Ps containing it (or, alternatively, we can think that if it is ordered at time s
with i ∈ Ps, the item gets a “discount”). We define the opening costs as fs = 6s for
s ∈ {1, . . . , T −1}, and fT = M , for some very large number M . By doing this, we prevent
order T from being opened in an optimal solution.

Any solution to the 3-PARTITION problem induces a natural solution to this lot-
sizing problem instance. That is, for every set Ps in the solution (let us say this solution is
Ps1 , Ps2 , . . . , Psm), we open the corresponding order, serve the 3 corresponding items and
hold them until time T . Clearly, this satisfies all demands and does not violate the capacity
constraints. The value of this solution is

m∑
j=1

fsj +
∑
i∈Psj

cisjT

 =
m∑
j=1

(6sj + 3 · 2(T − sj))

=
m∑
j=1

(6sj + 3 · 2(T − sj)) =
m∑
j=1

6T = 6mT.

These last lines should clarify the reason for choosing these seemingly arbitrary ordering
and holding costs; we choose them as necessary to make the quantity above not depend on
the partition of jobs (as long as it is feasible).

Next, we will prove that 6mT is a lower bound on the value of all feasible solutions
for the lot-sizing problem, and that the only solutions that attain this value correspond to
feasible partitions.

Let us consider a feasible solution to the lot-sizing problem. First of all, it is not hard
to see that if this solution opens k > m orders, we can always close the first k −m orders
and reassign to the open slots in the remaining m orders the demand they were serving; all
of this without increasing the cost. This is so because of the way we defined the holding
costs (even if an item is getting the “discount”, this discount is of size 1, and by delaying
the time at which it is ordered, we save at least 2), and because there are exactly 3m items
and each order has a capacity of 3.

So, let us assume without loss of generality that the solution we are considering opens
exactly m orders.

Following a procedure analogous to the one above, we get that the value of such a
solution is 6mT + n, where n is the number of “misplaced” items. That is, items that we

68

order at a time that does not correspond to a set Ps containing this item. By the definition
of holding costs above, each of these items pays a penalty of 1.

From this discussion, it is clear that the objective value is 6mT if there are no misplaced
items, and 6mT +n > 6mT if there are n > 0 misplaced items. And clearly, every solution
with no misplaced items corresponds to a valid partition; so we are done. Note that
solutions having misplaced items can still correspond to a valid partition, but this does
not matter for our purposes.

A.2 Complexity of the Multi-Commodity Capacitated

Facility Location Problem with Monotonous Costs

on Trees

To finish this section, we prove NP-hardness for MCCFL, as defined in Section 3.9. In fact,
the problem is strongly NP-hard even when the underlying structure is a path instead of
a tree.

Theorem A.2.1 MCCFL is strongly NP-hard.

Proof: Again, we will reduce the 3-PARTITION problem to MCCFL, and the
construction is almost identical to the previous one. There are only some details we need
to take care of.

Define S and T exactly as before. Consider a path of T + 1 vertices, with a client on
one of the extremes and facilities in all remaining vertices. Suppose all edges have a length
of one. The client has a demand of one unit of every item, and all facilities have capacity
3. The opening costs are also the same as before. For every item k, facility i (and for the
unique client j), we define the assignment cost ckij as twice the length of the i, j-path if
k ∈ Pi, and that quantity plus one otherwise. The rest of the proof follows just like that
of Theorem A.1.1.

Note that the proof for lot-sizing could so easily be adapted to MCCFL because the
only non-trivial demand point in the constructed instance is the last time period.

Actually, we could have done a more direct reduction. It is not hard to see that MCCFL
encodes capacitated multi-item lot-sizing, since our definition of monotonous costs allows
us to keep the “left-to-right” assignment costs as in the original lot-sizing instance, and
make all “right-to-left” costs be prohibitively high.

69

Appendix B

Separation of Flow-Cover Inequalities

Here, we prove that certain subsets of flow-cover inequalities can be separated in polyno-
mial time. This proof (with some small differences) appears in [12], and is based on a proof
of an analogue statement for a slightly different type of inequalities by Aardal (See [1]).

We will denote the set of facilities as F to emphasize that it is fixed.

Proof of Theorem 2.2.3:
Recalling the definition of rA and D(A), the flow-cover inequality (2.3) can be rewritten
as ∑

(i,t)∈A

dit
u

(
1−

∑
s∈F

xist

)
≥ rA

(
`A −

∑
s∈F

ys

)
. (B.1)

The separation problem for a solution (x̂, ŷ) of the LP is

min
N∑
i=1

T∑
t=1

dit
u

(
1−

∑
s∈F

x̂ist

)
zit − rA

(
`A −

∑
s∈F

ŷs

)

s.t.
N∑
i=1

T∑
t=1

dit
u
zit = (`A − 1) + rA, (B.2)

zit ∈ {0, 1} for i = 1, . . . , N ; t = 1, . . . , T,

rA ∈ (0, 1],

`A ∈ Z+.

That is, an inequality of type (B.1) will be violated if and only if the optimal value of the
separation problem is negative. This is not hard to see: If there is a solution (z, rA, `A) to

70

the problem above that yields a negative value, let A = {(i, t)|zit = 1}. Constraint (B.2)
ensures that the numbers rA and `A are consistent with this choice of A, and the fact
that the objective value is negative says that (B.1) is violated. Similarly, if for some A we
know that (B.1) is violated, we can define z, rA and `A accordingly and that will give us
a negative value.

The objective function in the separation MIP is non-linear. Our next goal is to find a
simpler equivalent formulation.

To simplify the notation, we will abbreviate
∑
s∈F

x̂ist as X i
t and

∑
s∈F ŷs as Y .

At this point, we can make several observations.

Observation B.1.2 If (B.1) is violated, then rA < 1.

Proof: Suppose the separation MIP returns a solution (z, rA, `A) with rA = 1. Then (after

defining A as the support of z, as explained before), equation (B.2) becomes
∑

(i,t)∈A

dit
u

= `A.

Capacity constraint (2.2) implies

∑
(i,t)∈A

dit
u

(−X i
t) ≥

N∑
i=1

T∑
t=1

dit
u

(−X i
t) ≥ −Y.

Adding both inequalities, we obtain

N∑
i=1

T∑
t=1

dit
u

(1−X i
t) ≥ `A − Y,

which is precisely inequality (B.1) (recall rA = 1).

So, the flow-cover inequality given by any such solution will be satisfied.

Thus, we can safely substitute the second-to-last constraint in the separation MIP (that
is, rA ∈ (0, 1]) by rA ∈ (0, 1).

Using this and constraint (B.2), we obtain

`A − 1 = b`A − 1 + rAc <
N∑
i=1

T∑
t=1

dit
u
zit < d`A − 1 + rAe = `A.

71

Note that these two inequalities are equivalent to (B.2). Indeed, rA can be trivially obtained
from any solution satisfying them.

Furthermore, by Lemma 2.2.2 we have bY c = `A − 1 and dY e = `A.

All of this allows us to substitute rA and `A away from the constraints. We will next
do the same thing for the objective function.

This is easily accomplished by using `A = dY e and rA =
N∑
i=1

T∑
t=1

dit
u
zit − (`A − 1) =

N∑
i=1

T∑
t=1

dit
u
zit − bY c. Here, we used (B.2) and dY e − bY c = 1.

Using all of this, the new separation problem is the following IP:

min
N∑
i=1

T∑
t=1

dit
u
zit
(
−X i

t − bY c+ Y
)

+ (dY e − Y) bY c

s.t.
N∑
i=1

T∑
t=1

dit
u
zit < dY e ,

N∑
i=1

T∑
t=1

dit
u
zit > bY c ,

zit ∈ {0, 1} for i = 1, . . . , N ; t = 1, . . . , T.

Now, we can note that the second additive term in the objective function is a non-
negative constant, so we need to care mostly about the first term.

Surprisingly, this IP can be solved by the following really simple greedy algorithm:

(i) Let Ã = {(i, t) : −X i
t − bY c+ Y < 0; i = 1, . . . , N ; t = 1, . . . , T}.

(ii) Let zit = 1 if (i, t) ∈ Ã, and 0 otherwise.

(iii) If z is feasible in the MIP above and its objective value is negative, then F and Ã
define a violated inequality of the kind (B.1). Otherwise, no such violated inequality
exists.

72

In other words, if we choose only those demand points whose inclusion in Ã makes the
objective value smaller; then the resulting solution is feasible.

It is clear that this algorithm runs in time O(NT). We only need to prove the feasibility
of the solution found by it.

Clearly, the objective value corresponding to Ã (that is, the value given by z, the
characteristic vector of Ã) is a lower bound on the value of every feasible solution to the
separation IP, no matter if z is feasible or not. If Ã is feasible and it has a negative value,
then there is clearly a violated inequality. So, to prove the correctness of the algorithm
(and thus, to complete the proof of the theorem), all we need to do is prove that if one
of the restrictions of the IP is not satisfied, then the corresponding objective value is
non-negative.

Suppose
∑

(i,t)∈Ã

dit
u
≥ dY e. That is, the first constraint of the IP is violated.

The corresponding objective value is∑
(i,t)∈Ã

dit
u

(−X i
t − bY c+ Y) + (dY e − Y)bY c

≥ −
∑

(i,t)∈Ã

dit
u
X i
t + dY e(−bY c+ Y) + (dY e − Y)bY c

≥ −
∑

(i,t)∈Ã

dit
u
X i
t + Y (dY e − bY c)

= −
∑

(i,t)∈Ã

dit
u
X i
t + Y

≥ 0.

For the last inequality, we used capacity constraints (2.2).

73

Similarly, if
∑

(i,t)∈Ã

dit
u
≤ bY c, the objective value is

∑
(i,t)∈Ã

dit
u

(−X i
t − bY c+ Y) + (dY e − Y)bY c

≥
∑

(i,t)∈Ã

dit
u

(−X i
t − bY c+ Y) + (dY e − Y)

∑
(i,t)∈Ã

dit
u

=
∑

(i,t)∈Ã

dit
u

(−X i
t − bY c+ bY c)

=
∑

(i,t)∈Ã

dit
u

(1−X i
t)

≥ 0.

The last inequality follows by constraint (2.1).

74

References

[1] Karen Aardal. Capacitated facility location: Separation algorithms and computational
experience. Mathematical Programming, 81:149–175, 1998. 10.1007/BF01581103.

[2] Ankit Aggarwal, L. Anand, Manisha Bansal, Naveen Garg, Neelima Gupta, Shub-
ham Gupta, and Surabhi Jain. A 3-approximation for facility location with uniform
capacities. In Friedrich Eisenbrand and F. Shepherd, editors, Integer Programming
and Combinatorial Optimization, volume 6080 of Lecture Notes in Computer Science,
pages 149–162. Springer Berlin / Heidelberg, 2010.

[3] Tim Carnes and David B. Shmoys. primal-dual schema for capacitated covering prob-
lems. In IPCO, pages 288–302, 2008.

[4] Fabián Chudak and David Williamson. Improved approximation algorithms for ca-
pacitated facility location problems. In Integer Programming and Combinatorial Opti-
mization, volume 1610 of Lecture Notes in Computer Science, pages 99–113. Springer
Berlin / Heidelberg, 1999.

[5] Michael Florian, Jan K. Lenstra, and Alexander H. G. Rinnooy Kan. Deterministic
production planning: Algorithms and complexity. Management Science, 26(7):pp.
669–679, 1980.

[6] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[7] Martin Grötschel, Lászlo Lovász, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer,
1988.

[8] Sudipto Guha and Samir Khuller. Greedy strikes back: improved facility location
algorithms. In Proceedings of the ninth annual ACM-SIAM symposium on Discrete

75

algorithms, SODA ’98, pages 649–657, Philadelphia, PA, USA, 1998. Society for In-
dustrial and Applied Mathematics.

[9] Stan P. M. Van Hoesel and Albert P. M. Wagelmans. Fully polynomial approximation
schemes for single-item capacitated economic lot-sizing problems. Math. Oper. Res.,
26:339–357, May 2001.

[10] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility loca-
tion and k-median problems using the primal-dual schema and lagrangian relaxation.
J. ACM, 48:274–296, March 2001.

[11] Madhukar R. Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman. Analysis of a
local search heuristic for facility location problems. In Proceedings of the ninth annual
ACM-SIAM symposium on Discrete algorithms, SODA ’98, pages 1–10, Philadelphia,
PA, USA, 1998. Society for Industrial and Applied Mathematics.

[12] Retsef Levi, Andrea Lodi, and Maxim Sviridenko. Approximation algorithms for the
capacitated multi-item lot-sizing problem via flow-cover inequalities. Math. Oper.
Res., 33(2):461–474, 2008.

[13] Retsef Levi, David Shmoys, and Chaitanya Swamy. Lp-based approximation algo-
rithms for capacitated facility location. In Daniel Bienstock and George Nemhauser,
editors, Integer Programming and Combinatorial Optimization, volume 3064 of Lecture
Notes in Computer Science, pages 21–27. Springer Berlin / Heidelberg, 2004.

[14] Mohammad Mahdian and Martin Pál. Universal facility location. In Giuseppe Di
Battista and Uri Zwick, editors, Algorithms - ESA 2003, volume 2832 of Lecture
Notes in Computer Science, pages 409–421. Springer Berlin / Heidelberg, 2003.

[15] Martin Pál, Éva Tardos, and Tom Wexler. Facility location with nonuniform hard
capacities. In Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Sym-
posium on, pages 329–338, oct. 2001.

[16] Ramamoorthi Ravi and Amitabh Sinha. Approximation algorithms for multicommod-
ity facility location problems. SIAM J. Discrete Math., 24(2):538–551, 2010.

[17] David B. Shmoys, Chaitanya Swamy, and Retsef Levi. Facility location with service
installation costs. In SODA, pages 1088–1097, 2004.

[18] Zoya Svitkina and Éva Tardos. Facility location with hierarchical facility costs. ACM
Transactions on Algorithms, 6(2), 2010.

76

[19] Vijay V. Vazirani. Approximation algorithms. Springer, 2001.

[20] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

[21] Jiawei Zhang, Bo Chen, and Yinyu Ye. A multiexchange local search algorithm for the
capacitated facility location problem. Mathematics of Operations Research, 30(2):pp.
389–403, 2005.

77

	Introduction and Preliminaries
	Basic Concepts
	The Capacitated Facility Location Problem
	Review of Previous Results

	Motivation
	Outline and Results

	An LP-Rounding Algorithm for the Multi-Item Lot-Sizing Problem with Uniform Capacities
	The Problem
	Complexity
	Formulation

	Strengthening the Formulation
	Flow-Cover Inequalities

	The Algorithm
	The Random-Shift Procedure
	The Median Assignment Procedure

	Analysis
	Derandomization and On-the-Fly Algorithm

	An LP-Rounding Algorithm for the Capacitated Facility Location Problem with Uniform Capacities
	The Problem
	The Algorithm
	Analysis
	Tightness of the Analysis.
	Approximation Factor
	Solving the LP
	Separation
	Comments
	Generalization to Multi-Commodity Capacitated Facility Location with Monotone Costs on Trees

	A Primal-Dual Algorithm for the Capacitated Facility Location Problem
	The Single-Demand Case
	The Problem
	Formulation
	The Algorithm
	Analysis

	The General Case
	Formulation
	The Algorithm
	Analysis
	Tightness of the Analysis

	Conclusions
	APPENDICES
	Complexity
	Complexity of the Multi-Item Capacitated Lot-Sizing Problem
	Complexity of the Multi-Commodity Capacitated Facility Location Problem with Monotonous Costs on Trees

	Separation of Flow-Cover Inequalities
	References

