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Abstract

The number of solar panels deployed worldwide has rapidly increased. Solar panels

are often placed in areas not easily accessible. It is also difficult for panel owners to be

aware of their operating condition. Many environmental factors have negative effects on

the efficiency of solar panels. To reduce the power lost caused by environmental factors, it

is necessary to detect and classify the anomalous events occurring on the surface of solar

panels.

This thesis designs and studies a device to continuously measure the voltage output of

solar panels and to transmit the time series data back to a personal computer using wireless

communication. A program was developed to store and model this time series data. It

also detected the existence of anomalies and classified the anomalies by modeling the data.

In total, ten types of anomalies were considered. These anomaly types include temporary

shading, permanent shading, fallen leaves, accumulating snow and melting snow among

others. Previous time series anomaly detection algorithms do not perform well for real-life

situations and are only capable of dealing with at most four different types of anomalies.

In this work, a general mathematical model is proposed to give better performance in real-

life test cases and to cover more than four types of anomalies. We note that the models

can be generalized to detect and to classify anomalies for general time series data which

is not necessarily generated from solar panels. We compared several techniques to detect

and to classify anomalies including the auto-regressive integrated moving average model

(ARIMA), neural networks, support vector machines and k-nearest-neighbors classification.

We found that anomaly classification using the k-nearest-neighbors classification was able

to accurately detect and classify 97% of the anomalies in our test set. The devices and

algorithms have been tested with two small 12-volt solar panels.
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Chapter 1

Introduction

The goal of this thesis project is to assist solar panel owners to be aware of the status of

their panels. The project applies computer science and statistics techniques to design a

system that provides feedback to solar panel owners when anomalous events take place.

After anomalies take place on the surface of solar panels, if panel owners are informed of

the types of the anomalies in time, then they can remove the anomalies to avoid further

energy loss. Previous solar anomaly detection research has depended on designing specific

hardware devices, such as micro-inverters, that are integrated with solar panels. Their

generality is limited because they can only be used with solar panels supporting that

specific hardware. The system can be used for most existing solar panels as long as their

voltage outputs are measurable; therefore, it results in a more general approach. It is also

cost efficient, because it does not modify the solar panel and all computation is done using

low-cost microprocessors and personal computers (PC).

1.1 Solar energy

Solar energy technologies have long been used in the areas of solar heating, solar photo-

voltaics, solar thermal electricity, and solar architecture. Energy shortages and increasing

energy prices are two of the most urgent problems we face today. One desirable solution

to the energy shortage problem is renewable energy, and solar energy is one of the cleanest

and most efficient energy sources. Solar panels are among the most common methods of
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harvesting solar energy from solar radiation, which accounts for a large portion of available

renewable energy.

At the end of 2011, the photovoltaics (PV) capacity world-wide was 67.4 GW, with

a yearly growth of 69.8% in 2011[32][4]. Solar panels are widely implemented in solar

lighting, solar thermal and solar power generation areas. Currently, most solar panel

products available cannot detect or classify solar anomaly events.

1.2 Environmental influence on solar energy systems

The basic unit of a solar energy system is a solar cell which converts solar radiance energy

to electric energy using photovoltaic effect. Connecting to each other via hidden wires,

solar cells are assembled together to form a solar panel. Solar panels in a solar energy

system are connected via connectors, among which the MC4 connector is most common.

The efficiency of solar panels are affected by many environmental factors like clouds,

dust, shadow, and temperature. The solar panel performance can also be influenced by

artificially environmental factors like evaporation of pollution from different factories. Edge

shadow, which is a special type of shadow intensively occurs in the edge of tilted panels,

causes an energy loss of up to 10 − 20%[24]. Dust on the panels can lead to as much as

40% degradation in the peak power output of panels[5].

1.3 Challenges

Solar panels can be classified according to their mounting systems. Household solar panels

are mounted mostly on roofs and it is difficult to obtain access to roof-based solar panels.

Commercial solar generation systems include thousands of solar panels, making it difficult

to identify which solar panel is not working well among thousands of panels. Solar panel

owners want to make sure that solar panels are working well without continuous manual

checking. Instead of the sensing approach studied in this thesis, an alternative simple

approach would be to install cameras to monitor solar panels. However, monitoring these

cameras still requires manual effort. Therefore, the design goal of our work is to assist solar

2



panel owners to be aware of whether the solar panels are functioning properly. It acts as

a virtual assistant to provide feedback to them.
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Chapter 2

Measuring System

An overview of our system is shown in Figure 2.1. It obtains continuous voltage mea-

surements from solar panels, and then transmits the data to the personal computers in a

format of time series. The anomaly detection and classification algorithm running on the

personal computer is trained by the time series data. Afterwards, the personal computer

provides panel owners with feedback about the time and types of detected anomalies. For

most solar panels, changes in external environmental factors are immediately reflected in

the solar panel voltage output. This chapter describes the measuring system we built to

obtain and transmit sensed data from a solar energy system.
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Figure 2.1: Model overview

2.1 Sensor placement

We discuss how we place our sensors in an existing solar energy system. Solar energy

generation systems are formed by solar panel arrays, in which each solar panel has one male

connector and one female connector. The male connector of one solar panel is connected

to the female connector of the next solar panel. We have designed our sensor to easily

integrate into this system. Eventually, we replace junctions with one-to-two adaptors so

that the sensor can be placed in parallel to the panel. Each sensor has only male connectors

and we need to introduce two M-to-2F adaptors per panel. Figure 2.2 shows the schematic

view of the system connections.
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Figure 2.2: Panel connection layout

2.2 Sensor board

2.2.1 Sensor board design overview

The sensor board and the microprocessor program were designed by Alan Kaplan, an

external consultant of this project. My contribution is debugging the periodic sleep mode of

the board and fixing two hardware bugs. The major parts of the sensor board include a 8-bit

flip switch, an ampere measuring amplifier, a voltage measuring amplifier, a radio-frequency

module, an MSP430 microprocessor, and other auxiliary circuitry. The microprocessor

controls the entire sensor board; it reads measured values from the amplifiers and returns

the values to the base board through the radio-frequency module. For a solar array which is

composed of n solar panels, n sensor boards are needed and at least one of them should be

able to measure current. In order to reduce the cost of manufacture, the ampere measuring

amplifiers are removed on boards measuring only voltages.
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Figure 2.3 shows a real picture of the designed board.

Figure 2.3: Detailed board

2.2.2 Connection between sensor boards and solar panels

Figure 2.4 shows the detailed connections between sensor boards and the solar panels:

• BAT+ and BAT- are used for powering the board by connecting to an external 6-volt

battery

• MV is connected to the positive side of the solar panel

• For the board which measures both current and voltages, RS+ and RS- are connected

to the main line of solar panel in series. RS+ is connected to the return side (low

voltage) of the solar cell load, which is also the low side of the inverter that is

connected across the string of solar cells. For the board which measures voltages

only, the RS+ pin and RS- pin are not used
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• BAT- and RS- on all boards both connects via a separate wire to the negative side

of the battery. The negative side of the solar panel, together with BAT- and RS-,

is connected to the battery negative, which also acts as the analog ground and the

digital ground of the board.

The working power current in a solar panel can be high, varying from zero to 500mA,

so a one-million-ohm power resistor is needed to reduce the ampere value at the sensor

board. With a clock frequency of about 902 − 928 MHz, the board can afford relatively

complex computation.

Figure 2.4: Circuitry layout

2.2.3 Auxiliary circuitry

Protection

The board is intended to resist power surges caused by lightning strikes because solar

panels are deployed on the roofs of high buildings. The Zinc Oxide Nonlinear (ZNR)

module resists lightning strikes. Moreover, a thick plastic box holds the entire circuit

board for protecting the circuits from rain, wind and other types of damage.
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Board identification (I.D.) switch

The 8-bit flip switch identifies each board. The measuring system can support up to 256

sensors that work concurrently. Each board has a serial number which is read from the eight

position switch and the serial numbers are used for determining which board is configured

to measure the current.

2.2.4 Sensing circuits

The voltage amplifier is chosen to be the AD8615 instrumentation amplifier on the board.

It converts analog voltage values into digital values that can be used by the microprocessor.

The voltage computation process is identical for the two types of boards (boards measuring

voltage only and boards measuring voltage plus current), because they have identical volt-

age measuring circuitry and software, and they only differ at the ampere instrumentation

amplifier and its associated components.

The connections and functionalities of the pins on AD8615 are listed as follows:

• Pin1 is the output pin of the amp, which should be 1/31 of the measured voltage

• Pin2 is analog ground and the negative supply for AD8615; it connects to BAT- via

a resistor of around 0.2 ∼ 0.3 ohms

• Pin3 is a positive supply which is approximately 3.3 volts

• Pin5 is an power supply pin (VCC), which is 3.3 volts

• Pin6 is a reference voltage which should be 2.50 volts with respect to analog ground

• Pin7, labeled as “Vref”, is the offset voltage

The resistor divider applied to the measured voltage consists of two resistors of 10k ohms

and 300k ohms. The dividing ratio is computed as 10k/(10k+300k) = 1/31. For example,

if the measured value is 10 volts, then Pin1 on AD8615 is 10/31 volts or approximately

0.32 volts. The voltages of the resistor divider should be 10 volts at one end and 0.32

volts at the other end with respect to the analog ground. R7 and R8 forms another pair of
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resistor divider with R7 being 100k ohms and R8 being 33k ohms. The offset voltage for

both voltage instrumentation and ampere instrumentation should be quite close to 0.8175

volts nominally. The value of 0.8175 comes from the pair of resistor divider and Vref, is

computed as 3.3 ∗ 33k/(100k + 33k) = 0.8187 ≈ 0.8175 volts.

Similar to the voltage amplifier, the ampere amplifier is designed to convert the analog

ampere values into digital values used by the microprocessor program. The offset voltage

pin of the instrumentation amp should also be guaranteed to be close to 0.8175 volts

nominally; otherwise, the R7/R8 voltage divider has an incorrect resistor and the ampere

measurement will be off.

2.2.5 Microprocessor

The MSP430 microprocessor is designed and programmed to receive synchronization signals

from the personal computer and to return measured values periodically. The micropro-

cessor is in charge of switching the antenna off when no data is to be transmitted in the

measuring network. To program the microprocessor, the source code is first compiled in

the PC, and then into the microprocessor via an “MSP430 USB debug interface” and a

J-tag connector. The program is stored into the main memory. The total RAM size on the

chip is 2048 bytes, of which 340 bytes are used for global variables, which comprises 16%

of the total. The main flash ROM has 61, 184 bytes, 22% of which are used for program

codes.

Microprocessor programming

The processors are programmed in C. The voltage level of the microprocessor is mapped

to the values of C variables. The time between each clock tick is fixed as 1/32 seconds

and the corresponding variable of “timer” in the main program can be referred directly to

record the current timing counter. The timer is mainly used for turning the antenna on or

off.

C-style pseudo code running in the microprocessor

Please refer to Appendix A
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2.2.6 Wireless module

Zigbee radio-frequency (RF) modules provide the communication part of the sensor board.

A Zigbee RF module, embedded in the sensor board, has 20 pins on it and five of them

are used in the board design; they are a data out pin, a data in pin, a reset pin and two

power pins.

The Zigbee modules are pre-programmed to communicate with others in a Zigbee pro-

tocol, which belongs to a family of high-level communication protocols. Zigbee is designed

to achieve low data rate, long battery life, and secure networking. The protocol is designed

basing on an IEEE 802 standard for personal area network with a design goal to provide

small, low-cost and low-power digital radio communication. The maximum rate for the

ZigBee protocol is 250 kbps, which makes Zigbee a good choice for periodic or intermittent

data transfer[35]. The measuring frequency in this work is once per minute and it is far

lower than 250 kbps.

Radio frequency module specification

The valid communication range for the Zigbee RF modules on sensor boards and base

boards is about 45 meters indoors and 1, 500 meters outdoors. The communication range

is sufficiently long for most solar panel installations. The modules on the boards are XBee-

PRO 900 RF Modules and they are designed to support the unique needs of low-cost

sensor networks running at low-power levels. The key features for the RF modules are as

follows[2]:

• Maximum RF data rate of 156 kbps

• Low power consumption; the typical voltage is 3.3 volts, and the sleep current is 60

uA

• The module configuration can be modified in real time

• Software provided to test and configure the RF module; each module can be config-

ured by modifying 100 parameters

11



Data interface

In each module, the functionalities are divided into different layers: the lowest is baseband

layer, then the MAC layer, the security layer, data transfer layer, and finally the serial

interface layer. The microprocessor program and the PC program that controls the base

board both run at the highest serial interface layer.

Data that is represented as the format of an asynchronous serial signal enters the module

through the DIN pin. Received data is detected at the DOUT pin of the radio module. The

signal line should be idle high when no data is being transmitted. Each data byte consists

of 10 bits in the serial data line. Each data byte is formed in order by a combination of a

start bit, eight data bits, and a stop bit. The eight data bits, representing numbers from

0 to 255, are in the order of the least significant bit coming first and the most significant

bit coming last. The start bit is low while the stop bit is high. For example, to send the

data “0x0a”, the bits sent are as follows: 0 (the start bit) 0,1,0,1,0,0,0,0,1 (the stop bit).

According to our testing, the board supports a maximum of 300 data segments trans-

mitted every second. Each data segment is composed of about 2 to 10 data bytes. When

the gap between two consecutive data segments is too small, there is a high probability

that the consecutive segments are mixed. If the gap between two pieces of data segments

is less than 10 milliseconds, then the success ratio for transmitting the data is greatly

reduced. Therefore, to make sure that the intermittent data are successfully transmitted,

a large enough gap should exist between two consecutive segments of data.

2.3 Base board

The base board, attached to the PC, communicates with the sensor. The base board and

the sensor board each contain a peer Zigbee RF module. The RF module on the base

board is mounted on a development kit and the development kit communicates with PC

via a RS-232 wire or a USB wire. The PC runs a C++ software program that controls the

Zigbee RF module on the base board by sending and receiving commands or data via COM

ports. The main task of the software is to periodically send out commands to synchronize

all the sensor boards, then receive and gather data from distributed sensor boards. The

personal computer runs the Microsoft Windows operating system.
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Both the base board and the sensor need to carefully control the timing with which

data is sent to or received from the communication modules. Timing control is relatively

easier to implement on the sensor board than on the base board because no other process

or thread is running on the sensor board. On the PC that controls the base board, there

are other tasks or processes that are running concurrently and disturb the accuracy of the

timing control. The timing control on the PC uses the Windows API called ”QueryPer-

formanceFrequency”. This API call is built on a high-resolution performance counter that

counts in milliseconds. We considered two other methods to control the timing in Win-

dows system API. The first method was using the “sleep()” function, the second was to

inquire about the system time frequently. “QueryPerformanceFrequency” performs better

than the other two methods in terms of timing accuracy. The required error tolerance of

the timing control is set to about 2 milliseconds and only “QueryPerformanceFrequency”

can satisfy this requirement. Note that if the timing error tolerance were to be increased,

then the antenna would have to be on for longer in each cycle, and thus results in greater

battery consumption. For example, if the error tolerance were increased to 3 milliseconds

from 2 milliseconds, then the power consumption would increase by 1%.

Software was developed on the PC to convert the data, whose format cannot be used

by the anomaly detection and classification program directly, into “csv” format. The csv

file is read by the Matlab program.

2.4 Communication Protocol

2.4.1 Point-to-multipoint topology

To avoid data interference, the sensing systems deployed for two different solar energy

system should be running at two different channels. Each sensing system with a different

channel from nearby sensing systems forms a measuring subnetwork. Modules within each

subnetwork share a unique communication tunnel and modules across different subnetworks

do not interfere with each other. In each measuring subnetwork, there are multiple sensor

boards, only one base board and one personal computer.

In current solar panel sensor deployment, all RF modules form a point-to-multipoint

communication network. The module on the base board broadcasts its command to the
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entire network while modules on the sensor boards send their messages only to the base

board. In fact, the system contains several subnetworks and each subnetwork is labeled

with a unique network I.D..

2.4.2 Controlling the Zigbee module

The XBeePro Zigbee modules support two types of interface: a transparent interface and

an API interface. We selected the transparent interface because it is easier to work with.

The communication module can be in one of four modes of operation when being controlled

using the transparent interface: transmit mode, receive mode, command mode, and sleep

mode.

The module only transfers data when the module is not in the command mode; if it

is in the command mode, then data sent to it are regarded as commands. To enter the

command mode, the program sends a particular string pattern to the module following a

predefined strict timing pattern. Please refer to Appendix C for details on how to switch

between command mode and data mode.

Sleep mode forces the radio frequency (RF) module to be in a state of low power

consumption. There are different ways in which the module enters and leaves the sleep

mode. The sleeping and waking pattern is controlled by the variable “sleep mode (SM)” in

the module configuration. When SM=0, the module will never fall asleep. SM= 0 forces

the module to remain awake all the time. The second choice is asynchronous pin sleep

mode (SM=1), in which the module sleeps and wakes according to the state of the sleep

pin RQ. Third, in the asynchronous cyclic sleep mode (SM=2), the module wakes up after

a preset time and does not check the sleep pin. Fourth, in the asynchronous cyclic sleep

mode (SM=3), a pin wake up choice is included. The module does not process any data

when sleeping.

Please refer to appendix D for verifying the sleep mode.

2.4.3 Low-power synchronization

As the battery capacity is limited, one of the most important design principles is to re-

duce the electrical energy consumption as much as possible. There are two major power
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consumption resources, of which the first is the microprocessor that should be powered on

continuously and the second resource is the antenna. We now discuss how the antenna

resource can be conserved.

Recall that the data transfer rate is one data byte transferred every minute. Therefore,

the power consumption can be reduced by turning on the antenna only when there is

data ready. To save more battery, the design goal is to set the length of interval of the

window during which the antenna is on to be as small as possible, yet not small enough to

destabilize the data transmission. The board is running at a baud rate of 9600 bps, making

the time to send each bit 1/9600 second. Therefore, it takes 10/9600 ∗ 1000 = 1.04167

milliseconds to send each byte, which consists of 10 bits.

We found in our experiment that the time taken to send a data segment was between

2 and 10 milliseconds and the time taken to stabilize the antenna before it was ready

to transmit was at least 10 milliseconds. It takes approximately another 15 ms for the

radio to turn on and stabilize. Therefore, the microprocessor has to control the board

antenna so that it would wake up at least 10 milliseconds before the data transmission.

The board antenna must keep awake until the board finishes transmitting the last bit of a

data segment. After data are transmitted, the sensor will wait for another 40 milliseconds

before it enters the sleep mode. Different sizes of sending and receiving windows have been

tested to find the possibly minimal window interval length.

Note that, the program on the sensor will not attempt to sleep until the board finishes

establishing synchronization, which takes at least three minutes under no transmission er-

rors. The synchronization protocol requires that sensor board receives two synchronization

tokens whose interval is exactly 60 seconds before the sensor board starts to send measured

values back to the base board. One-token synchronization protocol is an alternative pro-

tocol while two-token synchronization provides higher synchronized timing accuracy after

synchronization has been established.
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Figure 2.5: Time lines of synchronization

Figure 2.5 illustrates the controlling time table. An example of a successful transmission

is shown as follows:

before 0 ms : The sensor board and the base board are both powered on and stay idle; SM=0 on

the sensor board

0ms : The base board starts to send the first command token of ‘0xff\n’ to the sensor

board

2ms : The sensor board finishes receiving the first token

60, 000ms : The base board starts to send the second command token of ‘0xff\n’ to the sensor

board

60, 002ms : The sensor board finishes receiving the second token

60, 003ms : The sensor board starts to enter the command mode

60, 013ms : The sensor board enters the command mode
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119, 970ms : The sensor board enters asynchronous cyclic sleep mode (SM=2) and enters the

periodical sleep mode

119, 975ms : The sensor board exits the command mode and enters the data mode

120, 000ms : The base board sends another command token of ‘0xff\n’ to the sensor board and

the sensor board starts to receive it

120, 002ms : The sensor board finishes receiving the token

120, 003ms : The sensor board sends a data segment containing the measured value

120, 013ms : The sensor board finishes sending and starts to wait for the next data transmission

task; the base board finishes receiving the measured data

120, 053ms : No data has been transferred for 40 milliseconds, therefore, the sensor board falls

asleep by turning down the antenna

179, 970ms : The module on the sensor board wakes up after a predefined amount of time and

starts to wait for the next command token

180, 000ms : The base board sends a command token to the sensor board

180, 013ms : The sensor board receives the token, then sends another measured value back to

the base board

180, 053ms : The sensor board enters the sleep status again

· · · : · · ·

A synchronization failure occurs when one node fails to receive the anticipated synchro-

nization signal within the desired interval. A failure may occur if the sensor board is in the

sleep mode while the base board is sending command token to the sensor board. In case of

a synchronization error or a timeout event, it is necessary to re-establish synchronization.

To do so, the sensor board pauses the measuring process, then continuously attempts to

enter the command mode and set SM=0. After the board sets SM=0, it is programmed to

restart the measuring process until its receives another two command tokens from the base

board. When SM=0, the antenna remains on all the time, and the sensor will not miss

any following command token from the base board, thus reestablishing synchronization.
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2.4.4 Battery life analysis

The battery chosen has a capacity of 6 volts and 4.5 Ah. The device has a working current

of 2 mA when the antenna is off for 99.83% of one cycle and 60 mA when the antenna is

on for 0.16% of one cycle. As the antenna accounts for most of the energy consumed, the

energy consumed every minute is 6 ∗ 60 ∗ 10−3 ∗ 0.16% + 6 ∗ 2 ∗ 10−3 ∗ 99.83% while the

total energy stored in one battery is 6 ∗ 4.5VAh. Therefore, the total number of charged

days for the battery is represented as follows:

6 ∗ 4.5 ∗ 60

6 ∗ 60 ∗ 10−3 ∗ 0.16% + 6 ∗ 2 ∗ 10−3 ∗ 99.83%
= 129026.1(mins) = 89.6(days)

Then, one device can work for three months without recharging or replacing its battery.

Another possible approach is to charge the battery using the power from solar panels.

However, the approach is not feasible for some solar panels, because it requires modifying

the panel structures, and the censor board can only run with a 6-volt power supply.

2.4.5 Measured value

Rather than constituting an instant measurement, the measured voltage value sent by the

sensor board is an average value of many measured voltages during a cycle. The average

value can be computed without initializing a large buffer to store all past measurements.

Supposing the average of all past measurement is x̄′ and the number of past measurement

is n, then given a new measurement of x, the new average value can be computed as

x̄ = x̄′∗n+x
n+1 . To reduce the rounding error, the formula is revised to be:

x̄ =
n

n+ 1
x̄′ +

x

n+ 1

The above method is also used to measure the variance of the measured voltage by

maintaining a running sum of the squared measured values.
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2.5 Debugging and refit

2.5.1 Debugging methods

The method for testing data transmission is to use an oscilloscope to monitor the output

pins of the communication module. Instead of a normal oscilloscope, which is not sufficient

to accomplish the testing, a digital storage oscilloscope that supports storing waveforms

is required. The waveforms are first recorded and stored, then the stored waveforms are

analyzed and compared with the desired waveforms. The storage oscilloscope, set to be

triggered by “low”, is used to also measure the accurate timing for data transmission.

When the main procedure was tested, a binary search approach was employed to de-

termine the position where the potential error occurs. In the binary search approach, the

suspected error zone is reduced by half after each stage. An ordinary program can be de-

bugged by printing information onto the screen or onto the terminal. The microprocessor

program can also be debugged by “printing”, where “printing” means sending messages

from the sensor board back to the base board. When testing synchronization problems,

the base board will not get any message back for more than 1 and less than 3 minutes.

Therefore, a shorter cycle was tested at first to save debugging time.

Hardware debugging is difficult even for hardware specialists because of the difficulty

of obtaining debugging information. We gained some debugging experience during the

long process of finding the two critical bugs in the hardware. The first was a version

error and the second was a resistor error. If the versions of two modules do not match,

then information transmitted between the two boards is incorrect. The version error bug is

found by doubting about and investigating every step of data transmission. The “printing”

method could not be used for the first bug because the transmission between the sensor

board and the base board could not be established due to the bug. We could only use

oscilloscopes to monitor the DIN and DOUT pins on the RF modules and modify the RF

configuration. Therefore, it took nearly one month to fix the first bug. The second bug

was found by using a multimeter to measure the voltages of the resistors and pins on the

board.
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2.5.2 Increase the measuring capacity of the boards

The measuring capacity of the boards can be increased with slight modifications in terms

of maximum measured voltage tolerance, measuring frequency, and data transmission fre-

quency.

To obtain the ability to measure greater voltages, two device configurations must be

changed. The conversion ratio of the resistor divider must be further reduced. The original

ratio of the divider R3/R11 is 1/31, which makes an input voltage of 70 volts reduced to

about 2.3 volts. Supposing that the maximum voltage to be measured is increased to 300

volts, then 300 volts needs to be reduced to around 2.5 volts, requiring the new dividing

ratio to be about 1/120. Therefore the 33k resistor of R3 should be changed to 1.25 million

ohms and R11 can remain 10k ohms, making the new dividing ratio 10k/(1250k + 10k) =

1/126. The software should be changed to reflect the different division as well.

At a higher voltage, a higher power resistor should be maintained to allow larger

resistor heat dissipation. The power consumption for 35 volts is computed as follows:

U2/R = 35 × 35/310, 000 ≈ 1/30 watts. The regular small resistors can safely dissipate

approximately 1/4 watts. If the system volt is 600 volts, then the divider resistor should

be changed to 2.6 million ohms and the power would be 360k/2.6m ≥ 1/8 watt. Then a

resistor that can dissipate at least 1/2 watt, 1 watt preferably, should be employed instead.

Even though a 1/4 watt resistor will not explode, it will suffer some accuracy loss due to

different temperatures on the 2.6m-ohm resistor and the 10k-ohm resistor. To maximize

the accuracy, the resistor family for both should be the same, or similar, so that their

temperature coefficients match.

The second type of modification is to increase the board sampling frequency. The

master clock of the board is formed by crystals and capacitors; for example, the current

configuration is a 4MHZ parallel resonant crystal of 20pf, plus two capacitors of 39pf. A

modification in the crystal or capacitor configuration results in a different master clock

rate.

2.5.3 Extensibility of boards and measuring capacity

Even though the sensor is designed for normal solar panels, the boards can be used for

other purposes. We found that the sensor board can be used for other measurements.
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In particular, we used the board for a project in the Civil Engineering department at

University of Waterloo to measure the acceleration of a bridge when people walked over it.

The board could be modified to measure the acceleration by converting the acceleration

sensor reading into voltage values. The voltage meter measured the voltage value and then

transmitted the voltage values back to the base board.
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Chapter 3

Anomaly detection

A time series is a sequence of data points that are typically measured at successive time

instants. We study time series that are generated with uniformly equal time intervals.

Time series data, unlike other data structures, is naturally represented using the temporal

ordering of measured time. Resembling spatial data analysis, data entries close to each

other along the time series are more relevant to each other than elements that are further

apart.

Although there are many ways to investigate time series data, this work targets anoma-

lous time series analysis. We attempt to determine the existence of anomalous events and

classify them based on the assumption that time series affected by sudden or gradual events

will appear differently from unaffected time series. One of the goals of the analysis is to

find out the occurrence time of the anomalies and how anomalies affect the solar panels.

Intuitively, the effects of the anomalies can be removed to obtain the original time series

if the anomaly time, the amplitude, the type of the anomaly is known.

3.1 Algorithm preference

3.1.1 Markov model

A Markov model is a potential approach for anomaly detection. There are two types of

Markov models: the general Markov model and the hidden Markov model. For either type,
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a Markov model assumes that the system can be modeled as a Markov process. A hidden

Markov process contains discrete hidden states while a general Markov process contains

discrete observable states. Unfortunately, neither model seems appropriate.

Suppose there are two Markov states, which are “anomalous” and “normal”. A solar

panel will be in the state of “anomalous” most of time due to persistent anomalies such

as dust, and two states will not be sufficient to represent the number of anomaly types.

On the other hand, supposing there is one state for each anomaly type, then it is difficult

to compute the transition probability of transferring from one state to another. In this

problem configuration, it is difficult to find a suitable set of state variables. Therefore, a

state-free approach is preferred. Moreover, anomaly detection algorithms in the areas of

time series analysis has been more intensively studied than that of the Markov model.

3.1.2 Time series analysis

Time series data are often affected by unexpected intervention factors that are regarded as

anomaly formats. The anomaly format detection problem is to identify the locations and

the category of the anomaly formats in the time series.

The anomaly format detection problem was first proposed in 1972[20]. The foundation

for time series anomaly detection is the intervention model, which was first introduced by

Box and Tiao in 1975[8] and was designed to accommodate anomaly effects. Many im-

proved algorithms followed in the next 20 years. Significant proposals include Hillmer and

Steven in 1984[22], Tsay in 1986[36], Tsay in 1988[37], Chang, Tiao and Chen in 1988[14],

Chen and Liu in 1993[15], Sanchez et al. in 2003[25] . Later algorithms performed better

in the model parameter estimation efficiency under anomalies and in anomaly detection

accuracy under masking effects.

Two types of anomalies, as well as the first iterative algorithm for detecting anomalies,

are presented in “Estimation of time series parameters in the presense of outliers” by Chang,

Tiao and Chen in 1988: innovational anomalies and additive anomalies. An algorithm to

distinguish an additive anomaly from an innovational anomaly was also proposed. The

overall detection algorithm consists of two stages; the first is anomaly-detection stage and

the second is parameter estimation stage[14].

In the paper “Joint Estimation of Model Parameters and Outlier Effects in Time Series”
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by Chen and Liu in 1993[15], a more advanced iterative algorithm for detecting anomalies

and two more anomaly types were introduced. The model parameters were estimated

based on less contaminated model parameter estimations; the anomaly effects and affected

model parameters were estimated jointly and multiple regression is used for anomaly effect

estimations[15].

3.1.3 Drawback with previous algorithms

Previous researchers proposed four anomaly formats and previous algorithms only detect

at most four types of anomalies, as far as we are able to determine. However, in practice,

the number of anomaly types is greater than four. For example, if an anomaly is of an

exponentially dropping anomaly, then previous algorithms would detect the algorithm with

very high accuracy while if the anomaly is actually a gradually dropping anomaly, then they

would not offer sufficient detection and classification accuracy. We address these issues in

our work. Previous research is summarized in Chapter 3.2, 3.3 and 3.6; our modifications

are introduced in Chapter 3.5 and 3.7.

The terminology of “anomaly format” introduced in Chapter 3 is different from “anomaly

type” in Chapter 4. “Anomaly format” is equivalent to “outlier” that is studied in previous

research and there are exactly four different anomaly formats in total. On the contrary,

the number of anomaly types can be much greater than four. Anomaly formats, which

are determined by time series analysis in Chapter 3, are the bases of the computation

of anomaly type classification. A time series that is classified as one anomaly type may

contain several anomaly formats.

3.2 Time series model fitting

The mathematical basis for our work is the autoregressive integrated moving average model

(ARIMA), defined by[9]:

ϕ(B)zt = φ(B)∇dzt = θ(B)at

In the above equation,
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Bq: the letter of B denotes a backward operator commonly used in time series, meaning

that Bzt = zt−1; B
q means the B operator applied q times

φ(B): the autoregressive operator where p denotes the order; φ(B) = 1 − φ1B − φ2B −
· · · − φpBp

∇d: ∇d = (1−B)d, the differentiating factor where d is the order

ϕ(B) = φ(B)∇d: the generalized autoregressive operator where p+ d is the order

θ(B): moving average operator that is assumed to be invertible and where q is the order.

θ(B) = 1−θ1B−θ2B−· · ·−θqBq. The proposed algorithm assumes that this moving

average operator is invertible

at: a white noise process with zero mean and unit variance. Entries in the process are

independent from each other

zt: the originally observed values

3.3 Anomaly major formats and estimation

The following model is considered to describe a time series subject to the influence of an

anomaly:

Yt = At + zt (3.1)

As the formula is derived from the intervention model, an anomaly is represented as an

intervention. In the above formula, zt describes an ARIMA time series without any inter-

vention; At is used to describe the intervention effect due to anomalies; Yt is the actually

observed time series. At is the core part to be studied in the intervention model because

At contains the information about the anomaly[8].

The combined equation for the intervention term is At = ωRtP
(T )
t assuming T is the

time when the anomaly happens. As stated in the formula, At is composed of three parts:

first, the amplitude denoted as ω, second, the regression part denoted as Rt, third, the

occurrence function which indicates the start and the end of the anomaly. The occurrence

function can be either a step function whose formula is
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S
(T )
t =

{
0 if t < T

1 if t ≥ T

or a pulse function whose formula is

P
(T )
t =

{
0 if t 6= T

1 if t = T

Only the second occurrence function type is considered in this work because it is easier

to manipulate and the two types are equivalent if the integrated order is adjusted. It can

be proved that[10]

(1−B)S
(T )
t = P

(T )
t

The intervention models can be expressed in four different major formats according to

different representations of Rt[14][15]. These are

• Rt = 1, additive anomaly (AA), such as a recording typo at a particular time

• Rt = θ(B)
∇dφ(B)

, innovational anomaly (IA), such as an anomalous event that has

effects on all the observations after the anomaly time

• Rt = 1
(1−B) , level shift anomaly (LS)

• Rt = 1
1−δB , temporary change (TC)

Assuming that the accumulated effects of multiple anomalies can be achieved by adding

all individual effects together and that the anomalies are taking place at time points of

T1, T2, · · · , Tk, the multiple-anomaly model can be written as the following form,

Yt =
k∑
j=1

ωjRj(B)P
(Tj)
t + zt

k = 1 when there is only one anomaly. Assuming that anomaly type is an innovational

anomaly (IA) and the anomaly time is T , the equation reduces to

Y IA
t = ω

θ(B)

φ(B)∇d
P

(T )
t + zt = ω

θ(B)

ϕ(B)
P

(T )
t +

θ(B)

ϕ(B)
at (3.2)
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Then, zt is defined by zt = θ(B)
φ(B)(1−B)d

= θ(B)
ϕ(B)at under the assumption that zt fits

the ARIMA model of order (p, d, q) where p is the order of φ(B), d is the order of (1−B)d,

p+ d is the order of ϕ(B), q is the order of θ(B).

The rest three formats can be defined similarly as

• the additive anomaly (AA),

Y AA
t = ωP

(T )
t + zt = ωP

(T )
t +

θ(B)

ϕ(B)
at

• the level shift anomaly (LS),

Y LS
t = ω

1

1−B
P

(T )
t +

θ(B)

ϕ(B)
at

• the temporary change (TC),

Y TC
t = ω

1

1− δB
P

(T )
t +

θ(B)

ϕ(B)
at

When δ = 0, the temporary change anomaly Y TC
t reduces to the additive anomaly

Y AA
t ; and when δ = 1, Y TC

t reduces to the level shift anomaly Y LS
t . Therefore, an extra

constraint of 0 < δ < 1 should be applied to the definition formula for the temporary

change anomaly.

The additive anomaly only affects the observation at the time T while in the innova-

tional anomaly model, the pulse at time T affects all the succeeding time points. Suppose

that ψ(B) = θ(B)
ϕ(B) , then for all the time points later than T , Yt = ωψi + zt where

t = T + i ≥ T . The effect of an innovational anomaly can either decay gradually to 0 or

remain at a certain level for a long time.

For convenience of analysis, π(B) is introduced as the inverse of ψ(B)[9], then

π(B) =
φ(B)∇d(B)

θ(B)
= 1− Σ∞i=1πiB

i = 1− π1B − π2B − π3B − · · · (3.3)

π(B) is valid only if θ−1(B) is invertible; otherwise, the coefficients of π(B) would be

unbounded and π(B) would be insignificant. If π(B) is multiplied to both sides of the
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anomaly equation(3.1), then the original time series zt reduces to at, a white noise process.

In summary, the original anomaly function Yt = ωR(B)P
(T )
t + zt is updated to

π(B)Yt = ωπ(B)R(B)P
(T )
t + π(B)zt = ωπ(B)R(B)P

(T )
t + at

et = π(B)Yt is called the residual. Given that an anomaly takes place, the effects will

spread to the residual as they spread to the original series, the residual is employed as the

core factor to detect or classify anomalies as it contains significant information. Different

residual equations for the four different major types are as follows,

• IA: et = ωP
(T )
t + at

• AA: et = ωπ(B)P
(T )
t + at

• LS: et = ω π(B)
1−BP

(T )
t + at

• TC: et = ω π(B)
1−δBP

(T )
t + at

which equation can be simplified to et = ωxt + at if xt denotes π(B)R(B)P
(T )
t [15].

Commonly for four major formats, xt = 0 when t < T and xt = 1 when t = T . They differ

in the time points later than T , therefore for k ≥ 1,

• IA: xT+k = 0

• AA: xT+k = −πk

• LS: xT+k = δk −
∑k−1

j=1 δ
k−jπj − πk

• TC: xT+k = 1−
∑k

j=1 πj

xt contains the features of the anomaly, thus by checking x1, x2, · · · , xn, it is determined

which anomaly format occurs, when it starts, whether it will end and how much the

anomaly affects the actually observed time series[15]. In the equation of

et = ωxt + at, (3.4)
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if et is taken as the output, xt as the input, ω as the gradient, and at as the bias, then this

equation fits into a standard linear regression function. Therefore the common maximum

likelihood estimation of the four formats for ω is

ŵ =

∑n
t=1 etxt∑n
t=1 x

2
t

For innovational anomalies, the least square estimator of the anomaly magnitude of ω

is eT and the variance of the estimator is σ2
a. The estimator for the additive anomaly can

also be written as

ˆωAA =
eT −

∑n−T
i=1 πieT+i∑n−T
i=1 π2

i

The amplitude estimations for ŵ at the last time point of the time series are equal for

four different major anomaly formats. As a result, it is impossible to determine the format

of an anomaly taking place at the end of a series[15].

From [14], a common approach to determine the anomaly time and anomaly format

is to consider the likelihood ratio of four different anomaly types at different time points.

The likelihood ratio is obtained by comparing the likelihood of the anomaly’s occurrence

and that of nothing taking place. Logically, the condition of ω 6= 0 is equivalent to that

an anomaly happens while the condition of ω = 0 is equivalent to situations that nothing

happens.

In the following, λ(T ) denotes the likelihood ratio of anomaly happening at time T ,

norm is defined by norm(x1 · · · xn, 2) = (
∑n

t=1 xt)
1/2, and the standard deviation is esti-

mated by σa =
∑n

t=1 e
2
t

n [14][37]. From standard statistics,

• IA:

λ(T ) =
ω(T )

σa
=
eT
σa

• AA:

λ(T ) =
norm(x1 · · ·xn, 2) · ω(T )

σa
=

ˆωAA
σa

• LS:

λ(T ) =
norm(x1 · · ·xn, 2) · ω(T )

σa
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• TC:

λ(T ) =
norm(x1 · · ·xn, 2) · ω(T )

σa

The entire anomaly estimation procedure is based on the subproblem of how to de-

termine the likelihood ratio of an anomaly given fixed time and anomaly format. For a

fixed time point, the anomaly format providing highest likelihood ratio is chosen as the

dominating format at that time point. Afterwards, the time point with highest likelihood

ratio provided by its dominating format is chosen as the final anomaly happening time.

3.4 Overview of the jointly iterative procedure for

anomaly detection

The goal of the iterative procedure is to detect one anomaly in each iteration and the

iteration is terminated when an obvious anomaly can no longer be found. In each iteration,

the algorithm identifies an anomaly which is most likely to have occurred and associates

it with one category.

The pseudo code for single anomaly detection is:

1. At the first stage of the procedure, the ARIMA model is estimated to obtain θ(B),

φ(B), (1−∇)d and ϕ(B) assuming no anomaly

2. Compute π(B) as π(B) =
φ(B)(1−∇)d

θ(B)

3. For each anomaly time t in the interval of [1, n], the residual et is computed for

each major anomaly format with the estimated ARIMA model parameters and the

actually observed time series of Yt. The residuals are then employed to estimate the

amplitude of ω for each major format. The estimated ω, the estimated σ and the

estimated xt are then used to estimate the likelihood ratio λ of each major anomaly

format at t[37][14]

4. The algorithm continues to select a time T with the greatest βT as a potential anomaly

time point. βT , introduced in Chapter 3.5, is defined by incorporating a support

vector machine classifier
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5. Use low order approximation (introduced in Chapter 3.7) to approximate ψ(B), which

is the inverse of π(B), and compute the effect of the anomaly using ψ(B) and the

residuals. The effect of the detected anomaly is removed to obtain an updated time

series

The iterative multiple anomaly detection algorithm is based on the single anomaly

detection. Its pseudo code is:

1. Run the single anomaly detection algorithm for multiple times to obtain a set of

detected anomaly formats. Each detected anomaly format has a determined format

category (IA, AA, LS or TC), a determined character vector of x from Chapter 3.3

and a determined anomaly time step

2. Apply multiple regression (introduced in Chapter 3.6) to determine the amplitude

for each detected anomaly[15]

For the joint estimation of time series anomalies, please refer to Appendix B for the

Matlab-style code in more detail. The code in the appendix involves model parameter

re-estimation for reducing the influence of detected anomalies on the ARIMA parameters.

3.5 Anomaly format identification

We use a support vector machine (SVM), which is intensively used in the classification

and regression model, for anomaly format identification. In a support vector machine,

each item is located uniquely in Rn. The support vector machine finds a hyperplane that

separates clusters in the input data as much as possible[6]. The distance between each

item and the separating hyperplane shows how far it lies from the edge of the category.

The simplest support vector machine can be made by drawing a line on a piece of paper

and declaring that all the points above the line to be in the first category and all the points

below the line to be in the second category. The points forming the border of two categories

are called support vectors. In a two-class support vector machine classification problem,

each data item is classified according to the value of y(x) = wTφ(x). Let the training data

set comprise N input vectors x1, x2, · · · , xN and N target values t1, t2, · · · , tN . ti ∈ [−1, 1].
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Assuming that the training data is linearly separated in space and a hyperplane is defined

by y(x) = 0, there will be some choices of parameters w and b such that the function

values y(x) are greater than zero for points having tn = 1 and less than zero for points

having tn = −1. The perpendicular distance of a point x from the hyperplane is |y(x)|||w|| . The

margin is defined as the perpendicular distance to the closest point xn from the data set.

The maximum margin solution is found by solving the following equations[11]:

arg maxw,b{1/||w|| minn[tn(wTφ(xn) + b]}

For the kernel version support vector machine, the classification equation for the test

data can be denoted as follows:

c =
∑
i

wik(si, x) + b (3.5)

where all wi are weights of support vectors, k is the kernel function, si are a set of support

vectors, x is the input vector whose category we wish to determine, and b is the bias[17]. If

c ≥ 0, then the data belongs to the first category; otherwise c < 0, and the data belongs to

the second category. In the case of −1 < c < 1, even though c is categorized, the absolute

value of c is so small that the categorization is unconvincing.

The simplest linear kernel functions were employed at first but we found that these failed

to categorize the data well. Therefore, the radial basis function, given by r = ‖x1 − x2‖
and φ(r) = e−(εr)

2
was later used instead. φ(x) transforms the original data into a new

feature-space. This function has much better performance.

Due to the design goal of detecting multiple simultaneous or concurrent anomalies,

a multiple-class support vector machine, instead of a two-class support vector machine,

is needed. However, the design of multiple-class support vector machines still remains

an open problem. An alternative approach is to apply several two-class support vector

machines one after the other to simulate a multiple-class support vector machine. A set of

two-class support vector machines with all the possible pairs of categories is needed during

the computation. The category which wins most of the competition rounds is selected to

be the final category[18]. Alternatively, all the absolute values of c in all pairs of support

vector machines are summed up.

Specifically, we define a metric βt value as:

βt = λt + Ct (3.6)

32



where λt is the likelihood ratio and Ct =
∑

1≤i,j≤4 |c
(i,j)
t |. c

(i,j)
t is from formula (3.5)

where (i, j) denotes the support vector machine that operates format i and j. The larger

the value of c(i,j), the more easily the anomaly format can be classified. βt hence describes

how easily an anomaly at time t can be classified or how close an anomaly at time t is to

a known anomaly format. If βt is great, then it can judged that the anomaly at time t is

nearly a known anomaly, while if βt is small, then it can be judged that the anomaly at

time t cannot be easily classified. Suppose there are two anomalies of format A and format

B happening with the same likelihood ratio, whereas the first anomaly format is closer to

a standard anomaly than to the second anomaly. The algorithm will then prefer the first

anomaly format in the computation process.

The key idea is that anomaly detection and anomaly identification are merged and

conducted simultaneously. Fortuitously, the support vector machine functions and related

classification functions are already supported by the Bioinformatics Toolbox in Matlab.

3.6 Multiple Regression

To solve the problem of the interference between neighboring anomalies, multiple regression

is used to jointly estimate the amplitudes of multiple anomalies. Suppose that there are k

concurrent anomalies so that every observation is affected by k anomalies simultaneously;

therefore, every single time point in the residual series is also affected by the k anomalies.

Each anomaly format has a characteristic vector determined by the anomaly type and by

the anomaly time point. xi is the characteristic vector for the i-th anomaly. The residual at

time t can be written as π(B)Yt = et = ω1x
1
t +ω2x

2
t +· · ·+ωkxkt and xi = [xi1, x

i
2, x

i
3, · · · , xin],

where n is the length of the time series. In summary, an equation set can be obtained as

follows:

e1 = ω1x
1
1 + ω2x

2
1 + ω3x

3
1 + ω4x

4
1 + · · ·+ ωkx

k
1 + a1 (3.7)

e2 = ω1x
1
2 + ω2x

2
2 + ω3x

3
2 + ω4x

4
2 + · · ·+ ωkx

k
2 + a2 (3.8)

· · · (3.9)

en = ω1x
1
n + ω2x

2
n + ω3x

3
n + ω4x

4
n + · · ·+ ωkx

k
n + an (3.10)

The equation set above has two dimensions of n and k; n is also the dimension of
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training data. The effect of the anomaly at every time point in the time series is obtained

by linearly accumulating all effects of individual anomalies.

We assume that the residual arises from the time series as well as a white noise term.

The assumption of Gaussian noise is that, given x, the distribution of e is unimodal,

where e is the factor of the residuals from the time series. As shown by et = ωTx + at,

where at is a Gaussian white noise process with zero mean and variance of σ, the residual

value is given by a linear deterministic function plus a noise. Consequently, it leads to a

Bayesian equations of p(e|x, ω, σ) = N(e|ωTx, σ−1) where e is a general residual point. In

case of a squared loss function, the optimal fit for a multiple regression is given by the

conditional mean of the target variable. If a Gaussian conditional distribution is assumed,

then the conditional mean would be E[e|x] =
∫
ep(e|x)dt = y(x, ω). In this multiple

regression model, the data points are drawn independently from the distribution. As they

are independent, the likelihood function of the residual is obtained as follows:

p(e|X,ω, σ) =
n∏
j=1

N(rj|ωT )

Since univariate Gaussian has been thoroughly studied, it is straightforward to take

the logarithm of the previous equations to obtain the likelihood function:

ln p(e|ω, σ) =
n∑
j=1

lnN(ej|ωx, σ) =
n · lnσ

2
− n · ln(2π)

2
− σE(ω)

The sum of squares loss error function is defined as ED(ω) =

∑n
j=1 ej−ωx2

2 . Our goal is

to compute ω and σ to maximize the likelihood function. The gradient of the log likelihood

function is:

∆ ln p(e|ω, σ) =
n∑
j=1

en − ωxxT

ω can be estimated by setting the above gradient to zero:

0 =
n∑
j=1

ejx
T
j − ω(

n∑
j=1

xxT )

As a consequence, the maximum likelihood estimation of the ω is ωML = (ΦTΦ)−1ΦTe[6], in

which the matrix of (ΦTΦ)−1ΦT is called the Moore-Penrose pseudo-inverse matrix[33][21].
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Moreover, the maximum likelihood estimation of the noise is calculated as[6]:

1

σ
=

∑n
j=1 (ej − ωMLx)2

n

Once the list of the anomaly formats and the ARIMA model parameters have been

determined, the residual vector [e1, e2, · · · , en] and the matrix of [xij(1 ≤ i ≤ k, 1 ≤ j ≤ n)]

are both determined as well. Therefore, the amplitude of these anomaly formats can be

calculated using the multiple regression technique directly.

One of the assumptions of linear multiple regression is that each data entry is indepen-

dent of the others. However, the assumption does not necessarily hold in our work, where

neighboring residuals are highly correlated. The alternative approach is to attempt a mul-

tiple non-linear regression model. The previous kernel is y(x,w) = w0 +w1x1 + · · ·+wDxD
while the revised kernel is y(x,w) = w0φ0(x) + w1φ1(x) + · · · + wDφD(x), where φi(x) =

(xi + xi+1)/2(1 ≤ i < n) and φn(x) = xn. The new kernel applies the average value be-

tween two consecutive entries and thus correlates the neighboring values more deeply than

the previous one. The multiple regression is later used for approximating the higher order

polynomials using lower order polynomials.

3.7 Low order approximation

A model with higher order better fits the original time series. However, as indicated by

stability testing, the use of a higher order model introduces a greater chance of instability

in Chapter 3.7.1, which means a lesser chance for the inverse to be convergent. Low order

approximation is needed for removing the effect of one anomaly at the end of each anomaly

detection iteration. The effect of one anomaly is computed by multiplying ψ(B) to the

residual e. When the ARIMA model order is greater than two, ψ(B) is always instable

and needs to be approximated by a lagging polynomial of lower order.

It is time-consuming to compute ψ(B), the inverse of π(B). Consequently, a lower

order approximation algorithm is recommended to approximate the lagging polynomials

with higher order. The challenge is using 1+ψ1B+ψ2B+ψ3B+ · · ·+ψmB to approximate

1+ψ1B+ψ2B+ · · ·+ψkB, where m < k, when the higher order equations and the training

data for lower order equations are known:
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(1 + ψ1B + ψ2B + · · ·+ ψkB)z1 = (1 + ψ′1B + ψ′2B + ψ′3B + · · ·+ ψ′mB)z1(3.11)

(1 + ψ1B + ψ2B + · · ·+ ψkB)z2 = (1 + ψ′1B + ψ′2B + ψ′3B + · · ·+ ψ′mB)z2(3.12)

· · · (3.13)

(1 + ψ1B + ψ2B + · · ·+ ψkB)zn = (1 + ψ′1B + ψ′2B + ψ′3B + · · ·+ ψ′mB)zn(3.14)

The left side in the equation set is of higher order while the right side is of lower order.

The values on the left are known numbers and [z1, z2, · · · , zn] is also known. The problem

can be solved by approximating [ψ′1, ψ
′
2, · · · , ψ′m] using multiple regression. In brief, the

multiple regression model is the key to solve the problem of an instable polynomial.

3.7.1 Stability testing

Stability testing incorporates a small numerical tolerance and the stability condition re-

quires that the absolute values of all roots of the characteristic polynomials are less than 1

minus the small numerical tolerance. Polynomials with a degree of zero are always stable.

Table 3.1 shows the relationship between polynomial orders and their probabilities of being

stable. The lagging polynomials are in the format of 1 − φ1B − φ2B − · · · − φnB where

n is the polynomial order and ‖φi‖ < 1 and φi are randomly generated between 0 and

1 excluding 1. The polynomials are guaranteed to be stable with orders less than 3 and

remain unstable with higher probability when the orders are increasing.
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Table 3.1: Stability statistics

order percentage (%)

1 100

2 100

3 70.4

4 62.5

5 42.2

6 31.9

7 19.2

8 15.5

9 7.7

10 5.6

11 3.3

12 1.7

13 0.6

14 0.3

15 0.8
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Chapter 4

Anomaly classification

The time series zt generated from the solar panels are pre-processed using the techniques

in Chapter 4.2 at first. The anomaly detection algorithm proposed in Chapter 3 is then

used to detect all anomaly formats contained in the pre-processed time series. One piece of

classification data is assembled by concatenating the pre-processed time series, the charac-

teristic vector for zt, and the anomaly effect for zt. The characteristic vector for the entire

time series zt is computed as the sum of characteristic vectors for all detected anomaly

formats and the anomaly effect for zt is computed as the sum of anomaly effects of all

detected anomaly formats. Afterwards, the classification algorithms described in Chapter

4.3 are used to classify the assembled data.

4.1 Anomaly types

Figure 4.1 to Figure 4.10 illustrates the graphs of the ten types of anomalies considered in

the project in order. Each type of anomaly is shown in one row, where the left graph illus-

trates the originally measured values and the right graph illustrates the revised graph after

the data pre-processing operation described in Chapter 4.2. The ten types of anomalies

are described as follows:

1. Permanent shadow: Shadow occurs on the solar panel surface and lasts until the end

of the observation
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Figure 4.1: Anomaly Type 1

2. Brief shadow: Shadow occurs on the solar panel surface and disappears before the

end of the observation

Figure 4.2: Anomaly Type 2

3. Leaves accumulating: Large leaves falls on the panel surface one by one and they

remain on the surface to the end.
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Figure 4.3: Anomaly Type 3

4. Clouds: Moving clouds shade the panel surface, causing a maximum of 20% voltage

drop. The effects of the shadow increase gradually and then decrease gradually.

Figure 4.4: Anomaly Type 4

5. Dust or snow: Dust or snow accumulates on the panel surface gradually, causing a

steady and slow drop of the solar panel energy output
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Figure 4.5: Anomaly Type 5

6. Leaves falling down and going away: Large leaves fall upon the panel surface, and

are then blown away after staying on the surface for a certain amount of time. There

are more than one batch of leaves falling down and flying away

Figure 4.6: Anomaly Type 6

7. Long and gradual shadow: Shadow occurs on the panel surface and last for a sufficient

amount of time before it disappears
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Figure 4.7: Anomaly Type 7

8. Birds: This type of anomaly assumes a large bird suddenly lands on the solar panel,

stands for a while and then flies away. It does not necessarily have to be a bird because

the program can only be aware of the shadow effects rather than the appearance of

the object

Figure 4.8: Anomaly Type 8

9. Shadow disappears: Opposed to the permanent shadow, the shadow exists from the

beginning and disappear suddenly before the end

42



Figure 4.9: Anomaly Type 9

10. Snow melts down: Snow has been accumulated by the beginning and melts down

gradually since then

Figure 4.10: Anomaly Type 10

4.2 Data pre-processing

Data pre-processing is the first step to remove shifting factors and scaling factors before

data is ready for anomaly detection and anomaly classification. An anomaly can take place
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at any time point along the time series. The data pre-processing involves reconstructing

the time series fragment so that the anomaly time point is placed in the center of the new

fragment.

4.2.1 Range scaling

The measured voltage from a sensor can be from a large range of values. It is difficult

to create a database which covers all these scenarios. For example, the small solar panels

tested in Chapter 5 generate voltages as low as 2.5 volts while the large solar panels on

the roof of a building generate voltages as high as 45 volts. A linear regression approach is

employed to rescale the input time series by calculating the center point of the time series

and then shifting or scaling the time series to a standard form.

To create a standard time series anomaly database, similar to a canonical signature

for an anomaly type, all the anomalies are rescaled to be from a standard solar panel

whose average voltage output is 25 volts, whose low point energy output is 10 volts and

whose high point energy output is 40 volts. All the original time series are transformed as

needed so that the time series appears to be generated from a standard solar panel. The

simplest approach is to first compute the maximum value and minimum value in a time

series segment and then scale the time series according to the ratio between its range of

the high point to the low point and the close interval of [10, 40]. However, in the presence

of some flawed observations in the time series segment, the approach does not perform well

enough because the minimum or maximum would be influenced by the flawed observation.

Therefore, when spikes and measuring errors are present in the time series, the improved

approach is to apply linear regression to fit the time series.

After the linear approximation equation is estimated, the low and high point values in

the time series can be approximated by the low and high points in the linear equation.

The high point and the low point estimated from linear regression can be later revised by

the maximum and minimum of the time series using weights.

4.2.2 Centroid point computation

For ease of classification, we would like to have the anomaly centered in the time series. It

is easy to compute the time step that corresponds to the centroid of the time series values.
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If zi is the time series values, the centroid is given by∑
i i · zi∑
i zi

(4.1)

If the time series contains only one anomaly, then the centroid point is assumed to be the

anomaly time point.

4.3 Classification Algorithms

Given a rescaled and centered anomaly, we now wish to classify it according to the under-

lying physical phenomena. Many different classification algorithms are well known in the

literature. We implemented several of these classifying algorithms and compared in terms

of their performance. There are some common characteristics among different classification

metrics. The input for these training examples are vectors in a multidimensional feature

space. For every classification problem, the dimensionality of the input and the output is

also fixed because the dimensionality must fit the problem specification.

4.3.1 k-nearest-neighbors algorithm

The k-nearest-neighbors algorithm, considered to be the simplest algorithms of all machine

learning algorithms, classifies an object according to its closest neighbors in the training

example space. The class assigned to the object is the majority class among the k nearest

neighbors of the class. In the simplest case where k = 1, the class assigned to the object is

the class of the nearest neighbor of the object. The k-nearest neighbor algorithm can also

be used for regression and for computing the decision boundary of different classes. The

distance metrics of different vectors can be of Euclidean distance or of Hamming distance.

With different choices of the value k, the k-nearest neighbor algorithm offers different

performance. As the value of k becomes larger, the model can tolerate more noise while

as the value of k gets smaller, the model becomes more sensitive to noise.
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4.3.2 Neural networks

A neural network, as an efficient pattern classification algorithm, is a mathematical method

which simulates a network or circuitry of biological neurons[23]. The basic components of

a neural network are artificial neurons and nodes. In a real biological system, neurons are

connected and related in functionalities. A group of neurons can act together to implement

some specific functionality. An artificial neural network, which is used for abstraction of

large networks, tries to represent a highly complex real biological nervous system using a

simple linear system. In terms of training neural networks, error back-propagation is an

efficient training technique[6].

4.3.3 Convolutional neural network

Convolutional neural networks (CNN)have been widely used for handwritten digit recognition[28].

Convolutional neural networks involve a basic unit called a feature map plane that is used

for analyzing the connectivity patterns between different layers of neurons. A feature map

first applies a linear filter to the original input, then adds a bias term and a non-linear func-

tion to the input. In the feature map, each unit takes points only from a specific subregion

of the original input. Each feature map has a matrix of adjustable weight parameters plus

one adjustable bias parameter that forms a linear transformation with other parameters.

The training procedure for convolutional neural networks is also back-propagation[6].

A feature of convolutional neural networks is that it is robust to simple transformations

and it meets the requirement of classifying input correctly regardless of translations, scaling,

and shifting[31]. Normally shifting should be small; however, if the shifting is great, a better

algorithm to deal with a great shifting would be needed. The simplest approach to solve

this problem would be to train the learning machine with sufficient data. Nevertheless,

it is difficult to generate one test case in this problem configuration considering that each

case takes several minutes to create. Another characteristic of this problem configuration

is that the measured voltage values are represented in time series format, and the order of

data entries is important; therefore, information is hidden in the ordering of time series.

There are some techniques which attempt to detect common local connections between

nearby data points. Most of them belong to the category of local feature extraction, a
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computer vision technique that exploits local properties in small subregions of the im-

ages. A hierarchical neural network can be built based on local feature extraction. In the

hierarchical network model, local features processed in the beginning are used for later

processing. A neural network is always composed of an input layer, a hidden layer, and an

output layer, while the more complex convolution neural network employed in this work is

designed to detect variabilities in the input vector.
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Chapter 5

Evaluation

We manually created training data and stored the data in a database described in Chapter

5.1. The algorithm from Chapter 3 is evaluated in Chapter 5.2 in terms of its ability to

detect the existence of anomalies. The classification algorithm proposed in Chapter 4 is

evaluated in Chapter 5.3 about its performance of classifying the detected anomalies.

5.1 Test database

A database that contains 260 artificial anomaly cases has been constructed and all the

anomalies are manually created. In reality, an anomaly event may last for several hours,

costing many manual efforts and much waiting time to create. Moreover, some anomalous

events are not easy to observe, for example, snow only occurs in the winter and leaves only

fall in the autumn. As the designed sampling rate is once every minute, a real anomaly

event of five hours may cover 300 measured values. The anomalies in the database are cre-

ated with a modified sampling rate of 60 Hz; therefore, a five-minute simulated case in the

database can represent a five-hour real case. In the database, each base anomaly test case

has been extended to create more anomaly cases by shifting, scaling and transformation.
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5.2 Anomaly detection evaluation

The anomaly detection algorithm is evaluated in terms of Type I errors and Type II errors

that are usually used in statistics.

A hypotheses is an assertion which can be proven false under a certain set of observed

data and the null hypothesis is typically a general or default assertion. A Type I error is

counted when a true null hypothesis is incorrectly rejected, while a Type II error is counted

when a false null hypothesis is not rejected.

In this work, a default null hypothesis is defined when no anomaly is occurring. There-

fore, a Type II error occurs when an anomaly is actually taking place and it is not detected,

because at that time the null hypothesis is false and the algorithm fails to reject it. Type I

errors, which are also false positives, occur when there are no anomalies, but the algorithm

returns anomalies. If there were no anomalies and the algorithm did not generate any,

then it was called true negative; if there were anomalies and they were detected, then it

was called true positive.

Tabularised relations between truth and falseness of the null hypothesis and the outcome

of the test is shown at 5.1.

Table 5.1: Error types

null hypothesis is true null hypothesis is false

no anomaly in fact there are anomalies in fact

anomaly detected Type I error, false positive Correct outcome, true positive

no anomaly detected Correct outcome, true negative Type II error, false negative

5.2.1 Anomalous input

Figure 5.1 shows a time series that contains two anomalies obtained from a solar panel

deployed outdoors. The variation on the residual time series is obvious after the first round

of anomaly detection, while the residuals become more smooth after ten rounds.
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Figure 5.1: Anomalous residuals

The anomaly detection algorithm is evaluated by the time series input which contains

anomalies from the database. A true positive is counted if the algorithm successfully

detects the anomaly; otherwise, a false negative is counted. The anomaly contained in the

time series is randomly selected among ten types of anomalies and the anomaly time is

uniformly distributed between the beginning and the end of the time series.

Table 5.2 shows the evaluation results.

Table 5.2: Anomalous input detection

threshold 1 round 5 rounds 10 rounds

0.1 65.3 / 1.5 71.0 / 3.8 84.8 / 2.5

0.5 61.9 / 1.2 73.7 / 2.4 92.3 / 2.8

1.5 58.1 / 2.7 85.2 / 2.1 95.4 / 3.1

3 47.3 / 0.9 84.1 / 1.8 89.3 / 2.8

5 35.2 / 1.2 79.9 / 1.0 91.2 / 2.1
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Every entry in the Table 5.2 shows a pair of values in the form of a/b, where a denotes

the probability in percentage that the algorithm successfully detects the existence of the

anomaly and b denotes the number of wrong detections. “Threshold” in the table represents

the threshold value of β in the detection algorithm while “round” denotes the number of

maximum rounds run in the iterative anomaly detection algorithm. There is a tradeoff

between a and b because seen from the results, b increases as a increases most of times.

When the threshold decreases, the amount of anomalies detected by the algorithm also

tends to decrease; however, the amount of wrong detections, as seen from the value of b

decreases as well.

5.2.2 Non-anomalous input

Given a non-anomalous input time series, if the algorithm detects something, then a false

positive (Type I error) is counted, otherwise, a positive negative is counted. Table 5.3

shows the evaluation results of the algorithm with different parameters of “round” and

“threshold”.

Table 5.3: Non-anomalous input detection

threshold 1 round 5 rounds 10 rounds

0.1 30.1 34.6 35.0

0.5 10.2 14.8 17.1

1.5 4.7 5.6 7.3

3 2.3 4.1 5.6

5 1.9 2.3 2.5

The entries in Table 5.3 denote the probability in percentage that the algorithm returns

any anomaly. Since there is no anomaly created in the original time series, the anticipated

value in the table is 0, and the less, the better. As seen from the data, the number of

rounds does not significantly influence the detection performance. The reason is that the

first round of detection result dominates the final detection result, and if the algorithm does

not detect any anomaly in the first round, then the algorithm will probably not detect more

anomalies in next rounds. When the threshold is set under 0.5, the algorithm is regarded so
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sensitive to the anomalies that with a probability of more than 10%, it returns an anomaly

for an anomaly-free time series.

5.3 Comparison between different classification algo-

rithms

A comparison between different classification algorithms is presented. Different algorithms

are evaluated in terms of their training errors and testing errors.

The anomaly database is formed by ten sub-databases, the i-th of which contains all

cases with the anomaly type of i. In each sub-database all cases are sequentially numbered

starting from 0. The evaluation of each classification algorithm includes ten test rounds,

and in each round, about 90 percent cases from the database are chosen as the training

data and the remaining 10 percent cases as the testing data. Particularly, in the i-th

round, all the cases with a label number of x%10 = i are chosen as the testing data and

the remaining is chosen as the training data. The training errors and test errors are the

averages from the ten test rounds.

Referring to the anomaly detection evaluation results above, the “round” parameter

is set to 5 and the “threshold” parameter is set to 1.5 to achieve the relatively best de-

tection results for the later anomaly classification stage. The algorithms considered are

k-nearest-neighbors (k = 1, 3, 5), support vector machines (Gaussian kernel and degree-4

polynomials), linear regressions, neural networks and convolutional neural networks. Table

5.4 shows the evaluation results of all classification algorithms considered.
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Table 5.4: Anomaly classification

algorithms training error (%) test error (%)

k-nearest neighbors (k = 1) 2.1 2.7

k-nearest neighbors (k = 3) 5.7 4.1

k-nearest neighbors (k = 5) 6.0 5.8

support vector machine (Guassian) 3.2 15.3

support vector machine (deg-4 poly) 1.6 35.8

linear regression 7.5 22.9

neural network 4.8 17.2

convolutional neural network 5.9 18.3

The best testing correctness ratio obtained is 97.3% from k-nearest-neighbors with

k = 1. The classification performance decreases slightly when k increases; a reasonable

explanation is that the number of cases is relatively small, being less than 1000; therefore,

when k increases, the probability that a test case reaches to other types also increases.

The support vector machine with a polynomial kernel and the linear regression does not

perform well because the dimension of the test cases is large that the polynomial kernel

cannot capture the complexity. It is believed that if the number of cases in the database

increases, all the classification algorithms will perform better and converge to a correctness

ratio of at least 95%. However, as it is not easy to create one case, all the classification

algorithms are only considered in terms of their performance when the number of test cases

is relatively small.
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Chapter 6

Conclusion

A general and extensible framework to detect and classify anomalies is built in this work.

Previous researchers focuses on cases of detecting anomalies in theory. Anomalies are

unfortunately not obvious to detect in real applications; thus, an extensible approach is

proposed to solve the problem. The performance of the algorithm is relatively more robust

under different problem configurations. The framework can be generalized to objects which

can be abstracted in a time series format; the stock price series is a possible real application

case to be analyzed. A general anomaly detection framework is summarized as follows,

1. Organize the training data and the test data, then store the training data and the

test data numerically

2. Represent the observed values in the time series format.

3. Apply the time series anomaly detection algorithm and append the detected anomaly

format data to the end of the original data segment

4. Train the classifier with all the training data and assign each test data with a category

label

5. Classify detailed anomalies
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6.1 Similar problems

The proposed algorithm can be applied to the handwritten digit recognition problem whose

core principle is to obtain the features from the bitmap of digits and then to classify the

digit according to the relevance between its feature and the features in the database. The

handwritten digit recognition problem has been thoroughly analyzed and an open public

test database called MNIST which contains 60, 000 test cases has been published[29]. The

digits from the MNIST database are all size-normalized and centered in a fixed-size image.

The database is known for its generality and convenience for testing machine learning

techniques and pattern recognition methods as the data has already been well preprocessed

and formatted.

At least 99 different classification methods, ranging from the simplest linear classifier

to the relatively more complex neural network with multiple layers, are posted. Except

for the simplest method of one-layer linear classifiers whose test error rate is 12%, most

classification methods achieve a test error rate of under 5% and around half of them

achieved a test error of under 1.5%. However, to achieve a test correctness rate of 99%, a

sufficient amount of training data should be applied to train the classification model. The

proposed classification algorithm can be extended to this problem by classifying original

digits and their detected anomaly format data together.

6.2 Future work

6.2.1 Multivariate time series analysis

Detection and classification of anomalies for single time series has been described and the

research scope can be extended to multivariate time series that are inversely based on

univariate time series analysis. Multivariate time series analysis, representing a process

where multiple time series are observed simultaneously over time, involves univariate time

series as components of vectors. In multivariate time series analysis, two aspects should be

considered; first, the properties of individual time series, and second, the relationships and

correlations between different time series. A multivariate time series is assembled under the

assumption that different time series would interfere with each other both simultaneously
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and across the time axis. The general equation for multivariate time series analysis is[10]:

Φ(B)Zt = Ψ(B)Xt,

where the vector of Zt is obtained by assembling observations from multiple streaming data

source with each data source contributing to one dimension in the multivariate data set.

6.2.2 Streaming databases

The data obtained from solar panel sensors is currently stored in a format of plain text

and in a regular database. Streaming databases that are more complex and offers bet-

ter performance are planned to store the data. Examples of streaming database include

Auroa[3], TelegraphCQ[27][12], PSoup[12][13] and Datacell[30]. As designed for processing

constantly changing workloads, streaming databases support data retrieval more efficiently

and should be considered when the number of data sensors deployed on solar panels reaches

a certain level. The streaming database technology to be applied is intended for data se-

curity, data integrity, convenience, and standardization of data management.

6.2.3 CUDA

The compute unified device architecture (CUDA), developed by Nvidia, is designed for

parallel computing and graphics processing and it provides a Matlab programming inter-

face to the computing engine in Nvidia graphics processing units (GPU)[1]. The parallel

throughput architecture in GPU can be used for executing concurrent float-point number

computation, for example, in the Hessian computation of convolutional neural networks.

The algorithm efficiency revised by the CUDA technique is expected to increase around 10

times[34].

6.2.4 Autoregressive conditional heteroskedasticity model

Autoregressive conditional heteroskedasticity model (ARCH) is a model proposed in the

financial industry[19]. Unlike the ARIMA model, the basic assumption of the ARCH model

is that current variance is a function of the actual sizes of the error terms of previous time
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periods[7]. The ARCH models originate from the financial time series market where the

volatility of the financial time series is always changing. Judging from the definition, the

ARCH model should cover more complexity than the ARIMA model does.

6.2.5 Seasonal model

Seasonal fluctuation in data is taken under consideration, as well as daily solar voltage

observations. Weather conditions are reliant on time of day, as is solar voltage output. The

solar voltage output in the time series analysis is seasonal. The model for the seasonal time

series is divided into four parts, which are the trend component, the cyclical component,

the seasonal component, and an irregular component[26]. The seasonal model is supposed

to better model seasonal anomalies.
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Appendix A

Pseudo code running in

microprocessor

main ( )

{
enable i n t e r r u p t ;

sn = senso r board id ;

s e t up the i n t e r n a l hardware ;

sync :

d i s a b l e i n t e r r u p t ;

// r c v l i n e==1 when there i s data to read in the r e c e i v i n g b u f f e r

// r c v l i n e==0 otherwi se

r c v l i n e = 0 ;

enable i n t e r r u p t ;

whi l e ( ! r c v l i n e ) ;

read from r e c e i v i n g b u f f e r ;

s t o r e the r e c e i v e d bytes in ‘ rcvbuf ’ ;

i f ( rcvbuf [ 0 ] == 0 x f f )

t imer = 0 ; // t imer i s a c l o ck counter o f 32HZ

e l s e

{
t imer = 0 ;

59



whi le ( t imer < 65 ∗ HZ) //HZ i s de f ined to be 32

{
pause ( 1 2 5 0 ) ; // guard time be f o r e ‘+++’

p u t s t r i n g ( ‘+++ ’);

pause ( 1 2 5 0 ) ; // guard time a f t e r ‘+++’

// s e t the parameter o f SM as 0

p u t s t r i n g ( ‘ATSM0\ r ’ ) ;

// e x i t command mode

p u t s t r i n g ( ‘ATCN\ r ’ ) ;

}
t imer = 0 ;

whi l e ( t imer < HZ) ;

goto sync ;

}

pause ( 1 2 5 0 ) ;

p u t s t r i n g ( ‘+++ ’);

pause ( 1 2 5 0 ) ;

whi l e ( t imer < 60 ∗ HZ − 1)

p u t s t r i n g ( ‘ATSM2\ r ’ ) ; // s e t SM=2

p u t s t r i n g ( ‘ATCN\ r ’ ) ; // e x i t command mode

// wait f o r a minute f o r the next command token

whi l e ( t imer <= (HZ ∗ 60) − 2 ) ;

d i s a b l e i n t e r r u p t ;

r c v l i n e = 0 ;

enable i n t e r r u p t ;

whi l e ( ! r c v l i n e ) ;

i f ( buf [ 0 ] == 0 x f f && timer < (HZ ∗ 60 + 2))

synchron i za t i on f i n i s h e d ;

e l s e

goto sync ;

loop :
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g e t v o l t a g e ( ) ; // to measure the s o l a r panel vo l t age

measure the batte ry l e v e l ;

determine whether to measure the cur rent accord ing to sn ;

format a s t r i n g which i n c l u d e s sn , measured vo l tage value ,

ampere value and batte ry value ;

whi l e ( t imer < (60 ∗ HZ) − 2 ) ) ;

d i s a b l e i n t e r r u p t ;

r c v l i n e = 0 ;

enable i n t e r r u p t ;

whi l e ( ! r c v l i n e && timer <= 60 ∗ HZ + 2)

// to r e c e i v e the command token from the base board

g e t l i n e ( ) ;

i f ( t imer > ( (60 ∗ HZ) + 2) | | buf [ 0 ] != 0 x f f )

{
t imer = 0 ;

whi l e ( t imer < 65 ∗ HZ)

{
pause ( 1 2 5 0 ) ;

p u t s t r i n g ( ‘+++ ’);

pause ( 1 2 5 0 ) ;

p u t s t r i n g ( ‘ATSM0\ r ’ ) ;

p u t s t r i n g ( ‘ATCN\ r ’ ) ;

}
t imer = 0 ;

whi l e ( t imer < 5 ∗ HZ) ;

goto sync ;

}
t imer = 0 ;

goto loop ;

}
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Appendix B

Matlab pseudo code for jointly

anomaly detection

The pseudo code is listed as follows[15]:

s e r i e s = o r i g i n a l s e r i e s ;

// Stage 1 :

// I n i t i a l parameter e s t imat i on and anomaly d e t e c t i o n

set<anomaly> anomaly sets

f o r ( s t a g e 1 i t e r a t i o n = 1 ; ; s t a g e 1 i t e r a t i o n ++)

{
// s e r i e s == o r i g i n a l s e r i e s in the f i r s t i t e r a t i o n ,

compute the maximum l i k e l i h o o d e s t imate s o f s e r i e s ;

get the r e s i d u a l s o f s e r i e s ;

// Inner loop o f d e t e c t i o n f o r f i x e d model parameter e s t imat i on

whi l e ( t rue )

{
f o r t = 1 : n

compute tau ( t ) ;

i f (max( tau ( 1 : n ) ) > C)

{
the re i s an anomaly o f type tp at time t ;

anomaly sets . i n s e r t ( anomaly ( tp , t ) ) ;
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remove the anomaly e f f e c t from the r e s i d u a l ;

}
e l s e

break ; //no anomaly

}
i f c ount o f anoma l i e s == 0

{
i f s t a g e 1 i t e r a t i o n == 1

stop , the observed s e r i e s i s f r e e from anomaly e f f e c t s ;

e l s e

{
//We obtained anomal ies in prev ious loop ,

//no a d d i t i o n a l anomaly in cur rent loop

break ; // go to the next s tage

}
}
e l s e

{
//we get an anomaly now ,

// ad jus t the s e r i e s and re−es t imate the s e r i e s again

s e r i e s =

s e r i e s − a n o m a l y e f f e c t s d e t e c t e d i n c u r r e n t r o u n d ;

}
}

// Stage 2 :

// Jo int e s t imat i on o f anomaly e f f e c t s and model parameters

m = anomaly sets . s i z e ( ) ;

apply the most r e c ent model parameters upon the o r i g i n a l s e r i e s ;

whi l e ( t rue )

{
whi le ( t rue )

{
use mu l t ip l e r e g r e s s i o n model

to es t imate the ampl itudes w1 , w2 , . . . ,wm;

compute tau1 , tau2 , . . . , taum
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i f ( min ( tau ( 1 :m) ) < C)

d e l e t e m; m −−;

e l s e

break ;

}
//we get m anomal ies

obta in the adjusted s e r i e s us ing anomal ies 1 , 2 , 3 , . . . ,m;

e s t imate the adjusted s e r i e s with maximum l i k e l i h o o d ;

i f ( the d i s t anc e o f standard e r r o r from prev ious es t imate i s

l e s s than \ e p s i l o n )

break ;

}

// Stage 3 :

// Detect ion o f anomal ies based on the f i n a l parameter e s t imate s

anomaly sets . c l e a r ( ) ;

parameter model = most r e c ent parameter model e s t imat i on ;

f i l t e r the o r i g i n a l s e r i e s ;

f o r ( s t a g e 1 i t e r a t i o n = 1 ; ; s t a g e 1 i t e r a t i o n ++)

{
// s e r i e s == o r i g i n a l s e r i e s in the f i r s t i t e r a t i o n ,

//compute the maximum l i k e l i h o o d e s t imate s o f s e r i e s ;

get the r e s i d u a l s o f s e r i e s ;

// Inner loop o f anomaly d e t e c t i o n

// f o r f i x e d model parameter e s t imat i on

whi l e ( t rue )

{
f o r t = 1 : n

compute tau ( t ) ;

i f (max( tau ( 1 : n ) ) > C)

{
the re i s an anomaly o f type tp at time t ;

anomaly sets . i n s e r t ( anomaly ( tp , t ) ) ;

remove the anomaly e f f e c t from the r e s i d u a l ;

}
e l s e
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break ; //no anomaly

}
bool sk ip = f a l s e ;

i f c ount o f anoma l i e s == 0

{
i f s t a g e 1 i t e r a t i o n == 1

stop , the observed s e r i e s i s f r e e from anomaly e f f e c t s ;

e l s e

{
// get anomal ies in prev ious loop

//no a d d i t i o n a l anomaly in cur rent loop

sk ip = true ;

break ; // go to the next s tage

}
}
e l s e

{
//we obta ined an anomaly now ,

// so we have to ad jus t the s e r i e s

//and re−es t imate the s e r i e s again .

s e r i e s =

s e r i e s − a n o m a l y e f f e c t s d e t e c t e d i n c u r r e n t r o u n d ;

}
i f sk ip

break ;

}
whi le ( t rue )

{
use mu l t ip l e r e g r e s s i o n model

to es t imate the ampl itudes w1 , w2 , . . . ,wm;

compute tau1 , tau2 , . . . , taum ;

i f ( min ( tau ( 1 :m) ) < C)

d e l e t e m; m −−;

e l s e

break ;

}

65



Appendix C

Switching between command mode

and data mode

To enter the command mode, the microprocessor has to send to the module a string of

“+++”. Before and after sending the data, the microprocessor must not send any other

data to the module. The requirement of the length of the silent period before and after

the “+++” string can be configured separately. If no data has been sent to the module

since the module enters the command mode for a certain period of time, the module will

exit the command mode automatically. If the microprocessor wants to force the module

out of the command mode, then the microprocessor can send a string of “ATCN” directly

to the module.
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Appendix D

Verifying the sleep mode

The current sleep mode of the module can be verified in two ways. First, detect Pin 13

on the Xbee module, which sees low when the module is trying to sleep. 3.3 volts is high

while 2.88 volts might be due to a floating level. If a resistor of between 10k and 100k

ohms is attached from this pin to the ground, and the signal drops to near 0 volt then it is

a floating level; on the other hand, if it remains high then it is a real output. The second

way is to monitor the consumption current. If the module is set up correctly, then the

battery feed to the board is between 2 and 3 mA when sleeping and around 60 mA when

not sleeping.
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