
   

 

 

 

Design Optimization and Combustion Simulation of Two 

Gaseous and Liquid-Fired Combustors 
 

 

 

by 

 

 

 

Sina Hajitaheri 
 

 

 

 

A thesis 

presented to the University of Waterloo 

in fulfilment of the 

thesis requirement for the degree of 

Master of Applied Science 

in 

Mechanical Engineering 

 

 

 

 

 

 

 

Waterloo, Ontario, Canada, 2012 

 

 

 

 

© Sina Hajitaheri 2012 
  



ii 

 

Author’s Declaration 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 

  



iii 

 

Abstract 

The growing effect of combustion pollutant emission on the environment and increasing 

petroleum prices are driving development of design methodologies for clean and efficient 

industrial combustion technologies. The design optimization methodology employs numerical 

algorithms to find the optimal solution of a design problem by converting it into a multivariate 

minimization problem. This is done by defining a vector of design parameters that specifies the 

design configuration, and an objective function that quantifies the performance of the design, 

usually so the optimal design outcome minimizes the objective function. A numerical algorithm 

is then employed to find the design parameters that minimize the objective function; these 

parameters thus specify the optimal design. However this technique is used in several other fields 

of research, its application to industrial combustion is fairly new. 

In the present study, a statistical optimization method called response surface 

methodology is connected to a CFD solver to find the highest combustion efficiency by changing 

the inlet air swirl number and burner quarl angle in a furnace. OpenFOAM is used to model the 

steady-state combustion of natural gas in the 300 KW BERL combustor. The main barrier to 

applying optimization in the design of industrial combustion equipment is the substantial 

computational effort needed to carry out the CFD simulation every time the objective function 

needs to be evaluated. This is intensified by the stiffness of the coupled governing partial 

differential equations, which can cause instability and divergent simulations. The present study 

addresses both of these issues by initializing the flow field for each objective function evaluation 

with the numerical results of the previously converged point. This modification dramatically 

reduced computation time.  



iv 

 

The combustion of diesel spray in the GenTex 50M process heater is investigated in the 

next part of this thesis. Experimental and numerical studies were carried out for both the cold 

spray and the diesel combustion where the numerical results satisfactorily predicted the 

observations. The simulation results show that, when carrying out a parametric design of a liquid 

fuel-fired combustor it is necessary to consider the effect of design parameters on the spray 

aerodynamic characteristics and size distribution, the air/spray interactions, and the size of the 

recirculation zones.  



v 

 

Acknowledgements 

I would like to thank my supervisors, Prof. Kyle Daun, and Prof. John Wright for all of 

their help and support in my Masters research. Their guidance during the research meetings is 

appreciable as well as their collaboration and care in my studies. Besides, I thank my committee 

members, Prof. Fraser and Prof. Peterson, for reviewing my thesis and providing helpful 

suggestions.    

I am also thankful to David Burr and Adam Horsman, my fellow graduate students. They 

were supportive and listening, while offering advice when I face difficulties in my research. 

They also provided much needed break in the office, such as Sporcle games and sword fights. 

Moreover, I am obliged to many of my friends for all the memorable moments we made 

together. I greatly value their friendship and deeply appreciate their belief in me. 

I am truly grateful to my wonderful brother Saeed, and my treasurable sisters Sahar and 

Setareh for their kindness, understanding, and support throughout my Masters research. Their 

help and encouragement taught me many valuable life lessons. I wish them the loveliness of 

dawn, the splendour of stars, and the essence of happiness. 

Above all, I owe sincere and earnest gratitude to my beloved parents. Despite the distance 

separating us, I always felt their presence during my journey. They have been my eternal heroes 

who provide me love, joy, and happiness in my life. I am honoured to dedicate this thesis to my 

elegant parents. 

 

 

 



vi 

 

Table of Contents 

Author’s Declaration ....................................................................................................................... ii 

Abstract .......................................................................................................................................... iii 

Acknowledgements ......................................................................................................................... v 

Table of Contents ........................................................................................................................... vi 

List of Figures .............................................................................................................................. viii 

List of Tables ................................................................................................................................. ix 

Chapter 1 Introduction and Literature Review ...................................................................... 1 

1.1 Motivation and Objective of the Thesis ................................................................ 1 

1.2 Outline of the Thesis ............................................................................................. 3 

1.3 Working Environment ........................................................................................... 4 

1.4 Literature Survey on the Optimization in Combustion Studies ............................ 5 

1.5 Summary ............................................................................................................. 10 

Chapter 2 Combustion Modeling ......................................................................................... 11 

2.1 Introduction ......................................................................................................... 11 

2.2 Combustion of Gaseous Fuels ............................................................................. 12 

2.2.1 Governing Equations ..................................................................................... 13 

2.2.2 Turbulence-Chemistry Interactions ............................................................... 14 

2.2.3 Radiation Heat Transfer Modeling ................................................................ 16 

2.2.4 Chemistry Solver ........................................................................................... 19 

2.2.5 CFD Solver Implementation ......................................................................... 20 

2.2.6 Boundary Conditions..................................................................................... 21 

2.3 Combustion of Liquid Fuel Sprays ..................................................................... 22 

2.3.1 Governing equations of the gas phase ........................................................... 23 

2.3.2 Turbulent Spray ............................................................................................. 25 

2.3.3 Chemical Kinetics ......................................................................................... 25 

2.3.4 Turbulent Combustion Model ....................................................................... 27 

2.3.5 Radiation Heat Transfer ................................................................................ 27 

2.3.6 Governing equations of the liquid phase ....................................................... 28 

2.3.7 CFD Solver Implementation ......................................................................... 35 

2.3.8 Boundary Conditions..................................................................................... 37 

Chapter 3 Optimization Method .......................................................................................... 38 

3.1 Introduction ......................................................................................................... 38 

3.2 Concept of Optimization ..................................................................................... 38 



vii 

 

3.3 Optimization Search Approach ........................................................................... 39 

3.3.1 Newton’s Method .......................................................................................... 40 

3.3.2 Steepest Descent Direction............................................................................ 43 

3.3.3 Integrated method .......................................................................................... 43 

3.4 Response Surface Methodology .......................................................................... 44 

3.4.1 Model Region Design.................................................................................... 46 

3.4.2 Generating the Response Surface Function .................................................. 48 

3.4.3 Calculation of Search Direction .................................................................... 50 

3.4.4 Next Optimization Iteration .......................................................................... 51 

3.4.5 Effect of Constraints on RSM ....................................................................... 52 

Chapter 4 Results and Discussion ........................................................................................ 55 

4.1 Introduction ......................................................................................................... 55 

4.2 Design Optimization of the BERL Furnace ........................................................ 55 

4.2.1 CFD Validation ............................................................................................. 57 

4.2.2 Optimization Implementation ....................................................................... 59 

4.3 Measurements and Modeling of Diesel Combustion in a Cylindrical Industrial 

Process Heater ..................................................................................................... 63 

4.3.1 Cold Spray Measurements and Injector Characteristics ............................... 63 

4.3.2 GenTex Process Heater and Temperature Measurements............................. 66 

4.3.3 Validation of Spray Injection Tests at NRC.................................................. 69 

4.3.4 Simulation of Combustion inside the Process Heater ................................... 74 

4.4 Optimization of the Performance of the GenTex Process Heater ....................... 80 

Chapter 5 Conclusions and Future Work ............................................................................. 82 

5.1 Major Conclusions .............................................................................................. 82 

5.1.1 Optimization of the BERL Furnace .............................................................. 82 

5.1.2 Modeling the GenTex Diesel-Fired Process Heater ...................................... 83 

5.2 Suggestions for Future Work .............................................................................. 84 

5.2.1 Optimization of BERL Furnace by Improving the Radiation Model............ 85 

5.2.2 Multi-Objective Optimization of the BERL Furnace .................................... 85 

5.2.3 Surrogate-Based Model Optimization of the GenTex 50M Process Heater . 86 

5.2.4 Application of Metaheuristic Optimization Algorithms ............................... 87 

5.2.5 Studying Other Design Variables and Objective Functions.......................... 88 

5.2.6 Parallel Processing in the Simulation of the GenTex Process Heater ........... 89 

Appendix A:   CHEMKIN file ...................................................................................................... 98 

Appendix B:   RSM Computer Code .......................................................................................... 104 



viii 

 

List of Figures 

Figure 2.1: Geometry corresponding to the radiative transfer equation, Eq. (2.11) ..................... 17 
Figure 2.2: Experimental apparatus for determining flame emissivity [4] ................................... 19 

Figure 2.3: The flowchart of the CFD solver used to model the gaseous fuel combustion .......... 21 
Figure 2.4: Schematic of the boundary conditions used for the BERL furnace ........................... 22 
Figure 2.5: Collision modeling using Trajectory method ............................................................. 34 
Figure 2.6: The flowchart of the CFD solver used to model the liquid fuel combustion [65] ..... 36 
Figure 3.1: Model region definition .............................................................................................. 47 

Figure 3.2: Sample points arrangement and the corresponding F(x) ............................................ 47 
Figure 3.3: Fitting response surface using second-order least squares regression ....................... 49 
Figure 3.4: Calculating search direction and step length .............................................................. 51 
Figure 3.5: Updating design parameters ....................................................................................... 52 

Figure 3.6: Correction of model region intersecting a constraint ................................................. 53 
Figure 3.7: Change to model region when x

k
 is on a constraint ................................................... 54 

Figure 4.1: BERL burner geometry and design ............................................................................ 56 
Figure 4.2: Radial profiles of velocity, temperature, and CO2 mole fraction at 0.027m 

downstream of the burner throat ................................................................................................... 58 
Figure 4.3: Radial profiles of velocity, temperature, and CO2 mole fraction at 0.343m 

downstream of the burner throat ................................................................................................... 59 

Figure 4.4: Optimization steps followed by the RSM algorithm .................................................. 62 
Figure 4.5: The multi-hole injector (units are in inches) [74]....................................................... 64 

Figure 4.6: The spray cone alignment versus the LDS laser beam ............................................... 66 
Figure 4.7: 50M heater sketch (top figure) [78] and the innermost layer (bottom picture) .......... 67 
Figure 4.8: Burner configuration [78] ........................................................................................... 68 

Figure 4.9: K-type thermocouple probe inserted from a hole at the end-side of the heater ......... 68 
Figure 4.10: Variation of spread parameter, n, with respect to the experimental data, D32 and D10

....................................................................................................................................................... 70 
Figure 4.11: Rosin-Rammler distribution versus experimental data ............................................ 72 

Figure 4.12: Distribution of numerical and experimental arithmetic mean diameter of spray at 

various axial locations................................................................................................................... 73 
Figure 4.13: Spray distribution with droplets velocity magnitudes (m/sec) ................................. 74 

Figure 4.14: Velocity vectors of the combusting gases inside the heater ..................................... 75 
Figure 4.15: Fuel spray distribution .............................................................................................. 76 
Figure 4.16: Comparison of numerical and experimental temperature profile along the centerline

....................................................................................................................................................... 78 
Figure 4.17: Temperature contours (units are in Kelvin) ............................................................. 79 

Figure 4.18: Effect of recirculation zones on the shape of temperature distributions (temperature 

in kelvin) ....................................................................................................................................... 80 

 

  

file:///C:/Users/Sina/Desktop/hajitaheriKD3.docx%23_Toc324826477
file:///C:/Users/Sina/Desktop/hajitaheriKD3.docx%23_Toc324826491


ix 

 

List of Tables 

Table 2.1: Rosin-Rammler constants ............................................................................................ 31 
Table 4.1: Burner inlet condition .................................................................................................. 57 

Table 4.2: GenTex burner inlet conditions ................................................................................... 68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

 

We think too much and feel too 

little. More than machinery we 

need humanity. More than 

cleverness, we need kindness 

and gentleness. Without these 

qualities, life will be violent 

and all will be lost. 

“The Great Dictator” 

Charles Chaplin 



   

 

1 

 

Chapter 1                           

Introduction and Literature Review 

 

1.1 Motivation and Objective of the Thesis 

The development of industrial burners, boilers, and furnaces with higher performance, 

(particularly higher efficiency, and lower pollutant emissions) is typically the main goal in the 

design of combustion equipment. Improving the present day performance in industrial 

combustion devices will require significant advancement in the knowledge of the physics and 

chemistry underlying combustion. In addition, more organized and efficient tools, such as 

numerical simulation methods should be applied on the design process to enhance the 

performance of the new combustion equipment. 

Compared to the conventional experimental techniques and analytical methods, 

numerical modeling has been mostly selected as a faster, cheaper and more convenient tool. 

Additionally, owing to considerable improvement in computational performance and calculation 

speed in this past recent decade, it is possible to perform a comprehensive computer simulation 

using numerical methods and mathematical models for many complex industrial problems. 

However, some discrepancies are expected due to the assumptions made to make combustion 

simulations computationally tractable. Moreover, the numerical schemes used in these problems 

may encounter numerical instability and divergence. Hence, in order to overcome simulation 

difficulties and to speed up the simulation, it is necessary to implement a methodology which 

could meticulously address all these issues. 



   

 

2 

 

This thesis aims to demonstrate how CFD technology can be used to simulate and 

optimize two different combustion chambers: a laboratory-scale methane-fired furnace; and a 

diesel process heater. To do so, a series of mathematical models have been used to represent the 

fluid flow, gas phase combustion, turbulent reacting flow, two-phase flow, and spray combustion 

in these two combustion systems.  

In the first part of the thesis, a statistical optimization study called response surface 

modeling (RSM) [1] is coupled to OpenFOAM [2] to maximize fuel conversion efficiency of the 

BERL natural gas (methane)-fired furnace [3] by changing the inlet air swirl number and burner 

quarl angle. The main barrier to implementing optimization in the design of industrial 

combustion equipment is the calculation time needed to carry out the full CFD simulation for 

each objective function evaluation. This is exacerbated by the stiffness of the coupled partial 

differential equations (momentum, energy, radiation, and chemical kinetics), which can lead to 

instability and divergent simulations. Since the optimization algorithm must evaluate the 

objective function without user intervention, divergence is often avoided through excessive 

under-relaxation, which further adds to the computational effort needed to evaluate the final 

design objective and overall design time. The present study shows how these issues can be 

addressed by initializing the flow field for each objective function evaluation with the numerical 

results of the previously converged point. 

The second part of the thesis presents a more complicated combustion problem where the 

diesel oil combustion flow in the GenTex process heater [4] is studied numerically and 

experimentally. Since many complex phenomena occur in a typical liquid fuel combustion 

problem, insight provided by numerical simulations is invaluable for understanding the burner 

functionality, and where the designer should focus when seeking to improve the design 



   

 

3 

 

performance. At the end, methods to optimize the capabilities of the process heater using a 

design optimization technique are proposed. 

 

1.2 Outline of the Thesis 

This thesis contains five chapters. Chapter 1 presents a review of the literature regarding 

the design optimization in combustion problems. The combustion models used in the current 

simulation for the gaseous and liquid fuel combustion chambers are described in the next 

chapter. This includes the governing equations, turbulence-chemistry interactions, CFD solvers, 

injection condition, turbulent spray, and the boundary conditions.  

Chapter 3 explains the optimization algorithm used in this research. First, a description of 

the design optimization including basic gradient-based methods is given. Then, the major 

framework of the optimization algorithm used in the current research, the Response Surface 

Modeling (RSM) method, is explained in detail for multivariate problems and the related 

challenges are discussed further in the chapter.  

The implementation of the combustion models and the optimization algorithm are 

presented in Chapter 4. The results obtained from the design optimization of the BERL burner 

and the numerical simulation and experimental study of the reacting flow in the GenTex diesel 

oil process heater are comprehensively studied in this chapter. Finally, the concluding results are 

summarized in Chapter 5, along with the recommendations for future work regarding the 

developments on the current optimization algorithm and the suggestions for implementing new 

optimizing methods.  

 



   

 

4 

 

1.3 Working Environment 

This thesis work was carried out using the computational continuum mechanics source 

code called OpenFOAM [2]. OpenFOAM is an object-oriented C++ library which is used to 

build executable code, called “applications”. The applications are divided into two groups; 

“solvers” that are each created to solve a particular problem in continuum mechanics mostly by 

using computational fluid dynamics, and “utilities” that are created to perform tasks that involve 

data operation. This source code is comprised of numerous solvers and utilities which can solve 

many types of problems as described in Ref. [5]. OpenFOAM’s interfaces to the pre-processing 

and post-processing environments are also its utilities which ensure consistent data handling 

across all environments. 

One of the advantages of this source code is that the solvers and utilities can be modified 

and updated by the users who understand the original method, the physics of the problem and the 

knowledge of computer programming techniques. Accordingly, the user is able to derive and 

define desired solvers and functions specific to the problem at hand. On the other hand, the main 

disadvantage is that the computer-programmed codes are not commented, and there is no 

comprehensive documentation for many of its functional solvers of OpenFOAM. In addition, 

adding a new computer code requires the user to do a lot of configuration work with little 

support.  

The solvers used in the current research are extended by the user to consider the swirling 

inlet air, axisymmetrical geometries, fuel ignition, different chemical solvers, steady-state 

simulation, radiation heat transfer, etc. Then, the solvers are connected to an optimization 

algorithm with an interface module written in C++ as presented in Appendix B. 



   

 

5 

 

1.4 Literature Survey on the Optimization in Combustion Studies 

This chapter presents the literature related to the current research. This review shows that 

there have been very few applications of design optimization to solve industrial combustion 

problems. 

Many studies have conducted experiments to heuristically improve the design of 

combustion equipment, usually through univariate parametric studies [6-10]. While the majority 

of these studies claim that their efforts have found an “optimal” solution, since the majority of 

these procedures consist of a series of univariate parametric studies, which do not guarantee 

optimality (optimality conditions are explained in Ref. [11]). Accordingly, the obtained results 

could be only considered as an improved solution. Although these works are not oriented in the 

design optimization field, however, they generally give the optimization designer/programmer 

some insight into choosing an appropriate optimization technique. 

Several other studies combined the experimental apparatus and numerical calculations in 

order to optimize objective(s) in a combustion problem [12-16]. In these studies, an on-site 

automatic analyzer which is programmed based on an optimization technique (mostly 

evolutionary algorithms, e.g. genetic algorithm and neural network), is used. Using this analyzer, 

some input variables of the combustion equipment, e.g. inlet conditions, are changed in order to 

enhance the performance of certain output data, e.g. pollutant contents. For certain input 

variables, the combustion device is run and the output data are collected. The on-site automatic 

analyzer then analyzes the output data and makes the necessary changes to the input variables 

with the aim of enhancing the output data. The combustion equipment is then rerun and the 

output data are measured. Again, the new input variables are specified by the analyzer based on 



   

 

6 

 

the collected output data. The procedure is repeated continuously until the best output data are 

measured from the combustion equipment. Although in these works, the controllers are fed by 

experimental data, several of them are also compatible with CFD simulations. For instance, Chu 

et al. [16] presents a constrained optimization algorithm using an artificial neural network with 

the given experimental data as an input, with the aim of minimizing NOx and CO emissions 

while maximizing the thermal efficiency in a coal-fired boiler. The overall algorithm can be 

changed into an automatic fully numerical optimization by only replacing the experimental tests 

with CFD simulations. The other example of this approach is the work presented by Buche et al. 

[17] who studied the automatic optimization of the spatial distribution of fuel injection rates in a 

gas turbine burner. Buche et al. [17] employed an evolutionary optimization algorithm and an 

automated interface to modify the parameters in the experimental setup for the fuel injection as 

well as for the post-processing. The evolutionary algorithm worked for multiple objectives using 

a Pareto front. It also considered the effect of noise in the objective function. The design 

parameters comprised of eight analogue valves for controlling the fuel distribution, and the 

evaluation tool used was an experimental test-rig for a gas turbine burner. The emissions and the 

pulsation of the burner were taken as the two objectives for the evolutionary algorithm. Their 

results showed that the implemented algorithm was successfully converged to a Pareto front and 

their analysis of the resulting parameters clarified the relevant physical processes. 

The costs coming from the implementation of experimental apparatus are usually very 

high, in addition to the expenses due to performing many on-site tests, let alone that sometimes 

the devices might not be available or difficult to access. Given the high costs of carrying out 

experiments and since the state-of-the-art in combustion modeling is advancing rapidly, both in 

terms of accuracy and computational efficiency, there is a pressing need to develop model-based 



   

 

7 

 

optimization techniques for industrial combustion. This technique works by coupling a numerical 

model of the system to a numerical minimization algorithm; the system state is defined by a 

vector of design parameters, x, and the design performance is quantified by an objective 

function, F(x). This transforms the design problem into one of multivariate minimization, which 

can be solved numerically to find the vector x* that minimizes F(x). These design parameters 

thus specify optimal design outcome. Numerical optimization techniques are ubiquitous in other 

engineering disciplines, however studies in the field of CFD simulation has been very limited to 

date, where these studies are mostly associated with aerodynamic and heat transfer problems [18-

22]. In particular, Thévenin and Janiga [23] assert that the application of optimization to 

industrial combustion is a “fairly new field of research”.  

One of the very early works in this field was done by Aizenbud and Band [24]. They 

defined a simple model for an internal combustion engine in order to achieve the highest 

efficiency by changing different engine parameters such as compression ratio. Their results 

cannot be considered reliable as they hadn't considered several important operating parameters in 

their calculations, however their effort was a relatively new venture into the optimization in the 

field of industrial combustion.  

The first sophisticated study in the combustion-oriented model-based optimization area 

was presented by Smith et al. [25]. In this research, a local optimization technique called 

response surface methodology (RSM) is incorporated to a CFD solver with the objective of 

maximizing the highest cold gas efficiency of a premixed and a diffusion type injectors through 

manipulating injectors inlet conditions. Afterward, their studies were continued by investigating 

the 3-D constrained optimization of combustion efficiency of a simulated pulverized coal 

combustor. The results appear to be reasonable, although there was no verification by any 



   

 

8 

 

experimental data. In general, their work can be recognized as a relatively comprehensive 

optimization study in which this study investigates the optimization application scheme along 

with the CFD solver in some details, however there are still some uncertainties and lack of 

physical interpretation to their final results.  

Correa and Smith [26] compared two different optimization schemes: a parallel direct 

search method and a quasi-Newton method, the aim of obtaining a specified velocity profile at 

the outlet of a square pipe using the inlet flow rate as the design parameter. They concluded that 

quasi-Newton method is a more efficient technique, so they used to carry out a more 

comprehensive optimization of coil outlet temperature in an ethylene furnace. Their results show 

a very high improvement in the objective function value. At the next step, the burner was split 

into four different zones in order to improve the outlet temperature; nevertheless this effort didn’t 

result in any considerable improvement. 

Thévenin et al. [27] applied the simplex optimization method to obtain a homogeneous 

temperature profile at a certain cross-section from the injector of a laminar burner. The only 

design variable in this single-objective problem was the fuel/air ratio at the primary and 

secondary inlet. Subsequently, Janiga and Thévenin [28] studied a problem with the same 

geometry and design variable, however this time they compared their results obtained from the 

simplex method those obtained with a genetic algorithm (GA). In addition, in the recent research, 

the main objective was set to be the reduction of CO emission. It was concluded that the genetic 

algorithm improves the objective function more than simplex method, however the GA was also 

more time-consuming. 



   

 

9 

 

Catalano et al. [29] suggested a comprehensive gradient-based optimization procedure for 

black-box simulation codes. They implemented their method to optimize a duct-burner in 

combined-cycle and cogenerative plants. First, they used a commercial CFD code to simulate a 

new enhanced-mixing duct-burner. They validated the code results versus the experimental data. 

Then, they applied a gradient-based optimization procedure called “progressive optimization”, 

and incorporated it in the CFD codes. This method is very efficient, since the convergence of the 

flow solution and of the optimization process occurs simultaneously. At the next step, the 

proposed optimization method was used to solve two optimization problems involving a duct-

burner. The goal of the first application was to minimize the outlet temperature gradient, while 

the second application aimed to reduce the near-wall temperatures and to shorten the flame. 

Moreover, they discussed some criteria that should be considered in design optimization 

schemes, although these criteria had been ignored in previous studies. 

Motsamai et al. [30] presented a technique for design optimization of a liquid fuel 

combustor. Similar to the previous works mentioned earlier, they combined an automatic design 

optimization technique with a CFD solver, in this case the Fluent commercial software. The 

objective was to minimize the combustor exit temperature profile through changing the 

combustor parameters. They used the dynamic-Q optimization algorithm [31] since this method 

was specifically designed for constrained problems where the objective and constraint functions 

are expensive to evaluate. The optimization technique resulted in a more uniform combustor exit 

temperature profile compared to the original case. 

 



   

 

10 

 

1.5 Summary 

Rising fuel costs and the increasing impact of combustion pollutants on the environment 

make development of design methodologies for efficient and clean industrial combustion 

technologies a priority. In this regard, many studies have used experiments and numerical 

simulations to heuristically improve the design of combustion devices. A more sophisticated 

approach is model-based optimization, but its application to industrial combustion equipment has 

been limited to date due to the computational expense of combustion simulations and the 

numerical stiffness of governing equations [23]. In the next few chapters this thesis will show 

how the performance of a methane-fired furnace can be improved through multivariable model-

based optimization. 

 



   

 

11 

 

Chapter 2                              

Combustion Modeling 

 

2.1 Introduction 

This chapter presents the combustion models used in the current research. The methods 

used to model the combustion of methane in a laboratory-scale furnace, as well as the 

combustion inside a diesel-fired process heater are given in the present chapter. The working 

fuels in these combustion chambers are in two different phases which behave distinctively, and 

consequently the chapter is divided into two main sections; a) combustion modeling of gaseous 

fuels and b) combustion modeling of liquid fuels. In gaseous fuel combustion chambers, when 

the fuel is inserted into the chamber (normally through a burner), it mixes with an oxidant gas 

(usually air) and then the fuel receives the heat required to initiate combustion through an igniter. 

In liquid fuel combustion chambers, the fuel is introduced through an injector. The droplets of 

the fuel spray evaporate and then react with air. While the whole procedure in gaseous 

combustion systems deals with various complex concepts such as chemical kinetics, turbulence-

chemistry interactions, and high temperature gradients, the combustion of liquid fuel sprays is 

significantly more complicated due to the many two-phase flow phenomena, e.g. atomization, 

evaporation, collision, break-up, and numerous other gas-liquid interactions, which requires the 

implementation of several precise and comprehensive models. In addition, since the governing 

equations should also be solved for the dispersed phase, these nonlinear equations are much 



   

 

12 

 

stiffer and the computational time is considerably higher compared to the combustion modeling 

of gaseous fuels which asks for more considerations on the simulation.  

Each section of this chapter is followed by the governing equations and the necessary 

boundary and initial conditions along with the corresponding numerical algorithm. Also, 

properties, correlations, and submodels pertaining to the gas phase and liquid phase are discussed 

in the related subsections. 

 

2.2 Combustion of Gaseous Fuels 

In the past two decades the use of CFD codes for modeling the reacting flow in boilers, 

heaters, and combustion chambers has become a helpful tool to predict the performance of these 

combustion devices and has gained increased acceptance by the scientific and industrial 

communities. Modeling helps engineers to optimize the operating conditions, reduce pollutant 

emissions, investigate the negative points of the equipment, evaluate their measurements and 

improve the design of new combustion devices. Many of the combustion chambers involve 

natural gas, since it is readily available.  

Since several complex phenomena such as mixing, radiative heat transfer, chemical 

kinetics, and turbulence occur during the combustion process, a rational approach with 

appropriate submodels should be used in order to obtain a reasonable prediction. In this section 

the modeling approach to simulate the combustion of methane in the BERL furnace is defined. 

 



   

 

13 

 

2.2.1 Governing Equations 

In a homogenous Newtonian fluid flow, mathematical modeling is done by solving a set 

of equations governing the transport of mass, momentum, energy, and chemical species, along 

with the state equations of the fluidic system. In addition, since the flows in most industrial 

combustion applications are turbulent, the conservation equations should be written in time-

averaged or spatial forms, which need to be closed by using additional turbulent models. The set 

of governing differential equations consist of conservation of mass,  

  0
t





 


v  (2.1) 

conservation of species 

 
   i

i eff i i

Y
Y Y r

t


  


    


v  (2.2) 

conservation of momentum 

 
 eff P

t


  


    



v
vv g  (2.3) 

and conservation of energy 

 
   eff T r

h
h h h

t t

 
 

 
     

 
v q  (2.4) 

where v , Y, h, P, and  are the velocity vector, mass fraction, enthalpy, pressure, and the flow 

density respectively, andqr is the radiative source term provided by the P1 model (see Section 

2.2.3).  

Turbulence is simulated using the RNG k-ε model. The tensor eff  is the summation of 

the viscous and the turbulent stresses. In the same way, the effective thermal diffusivity and 



   

 

14 

 

dynamic viscosity are approximated as the summation of viscous and turbulent components, eff 

=  + t and eff =  + t, respectively. The turbulent viscosity, t, is calculated by 

2
2   

1t

C k  


 

 
 
 
 

  (2.5) 

The constant C is equal to 0.0845. The solver assumes that the Lewis number for each of the 

species is equal to unity. The RNG k- model includes transport equations for k and 

  t
k

k

D k
k G

Dt

 
 



  
       

   

 (2.6) 

and 

  2
*

1 2
t

k

k

D
C G C

Dt k k
 

   
  



  
       

   

 (2.7) 

respectively, where Gk is the turbulent kinetic energy production rate caused by average velocity 

gradients.  

 3

0*

2 2 3

1

1

C
C C



 

  




 


 (2.8) 

where Sk and S, the strain tensor, is equal to2SijSij
1/2

. The remaining RNG modeling 

parameters are k0.7194, 0.7194, C11.42, C21.68, 0.012, and o4.38 [32]. 

 

2.2.2 Turbulence-Chemistry Interactions 

Modeling a combustion process requires a turbulence-chemistry interaction model that 

can consider different types of turbulent and chemical time scales, varying from dispersed and 

slow chemical reactions to turbulent and fast chemical reactions. In addition, the model must 

account for both premixed and diffusion flames as well as partially premixed combustion. The 



   

 

15 

 

local stirred reactor model satisfies these conditions. Although this model doesn’t calculate the 

molecular fluxes directly, it considers their effects by including the Kolmogorov scale mixing in 

the interaction and turbulent motion of the reacting regions. The Chalmers PaSR (Partially 

Stirred Reactor) model [33], used in the current simulation, was originally derived from this 

approach.  

The PaSR model is based on the theory that real flames are much thinner than any 

computational cell, thus assuming that an entire cell is a perfect reactor would severely 

overestimate the burning rate. Therefore, in the PaSR model, the cells are divided into a reacting 

zone and a non-reacting zone. The reacting zone is treated like a perfectly-stirred reactor, in 

which all present species are homogeneously mixed. After reactions occur, the species are 

assumed to be mixed due to turbulence for the mixing time, mixt , and the subsequent 

concentration gives the final concentration in the entire cell. The interaction among all the cells 

takes place by exchange with the mean. For the mean value we have 

(1 ) N R

i i iY Y Y     (2.9) 

where κ is the reactive volume fraction of the cell available for chemical processes, and the 

superscripts R and N account for the reacting and the nonreacting volume, respectively.  

For a steady state problem the relative sizes of the zones of the computational cell 

forming the reactor and the rest of the cell, are governed by the flow time scale, turbulent mixing 

time and residence. Hence, the reaction rate of the i
th

 species is scaled by the reactive volume 

fraction, κ [34] as follows: 

f c

f c mix

t t

t t t





 
 (2.10) 



   

 

16 

 

where   ,   , and      are the time scales of flow, chemical kinetics, and turbulent mixing, 

respectively. The way of finding the time scales is explained in Ref. [34].  

The Chalmers PaSR turbulent combustion model is then coupled with a two-step 

chemical reaction mechanism [35] employing CHEMKIN thermophysical data (see Appendix 

A). 

 

2.2.3 Radiation Heat Transfer Modeling 

Most flames/fires in combustion equipment, such as boilers, gas turbines, internal 

combustion engines, etc., involve high temperatures. Therefore, thermal radiation potentially 

plays a very important role in the overall combustion physics of flames, such as the one in the 

BERL burner.  

Thermal radiation in a participating medium is expressed by the radiative transfer 

equation (RTE) [36], 

 
            

 
    

,

4

,
,

 , ' , , ' '
4

s b

s

dI u
a u u I u a u I T u

du

u
I u u d



    



 









  
                     

  
       

r s
r r r s r r

r
r s r s s

 (2.11) 

where dI[r(u), s]/u is the rate of increase in spectral intensity at a location r(u) along a ray in the 

direction of the unit vector s,  is the spectral absorption coefficient, s is the scattering 

coefficient, IbTru is the local blackbody intensity, and [r(u), s, s] is the scattering phase 

function which defines the fraction of intensity scattered from the sdirection into the s direction. 

The geometry corresponding to Eq. (2.11) is shown in Figure 2.1. 



   

 

17 

 

 

Figure 2.1: Geometry corresponding to the radiative transfer equation, Eq. (2.11)  

 

In principle the spectral intensity can be found at all wavelengths, directions, and 

locations in the medium by solving the RTE with boundary conditions. The total intensity I(r, s) 

would be found by integrating the spectral intensity over all wavelengths, and the components of 

a radiative flux vector, qr, could then be found by  

   ,

4

,r nq I d


 r r s s n  (2.12) 

where n is the unit vector corresponding to the n
th

 component of qr. Finally, the radiative source 

term is equal to the negative of the divergence of the radiative flux vector,  

   rad rq q r r  (2.13) 

which appears in the energy equation used to solve for the temperature of the combustion gases. 

Using the process explained above results in a complete solution for the radiation heat 

transfer; it is not a practical way of studying radiation in many real-world problems, however, 

since it is extremely computationally expensive.  

Accordingly, OpenFOAM simplifies the radiation subproblem by assuming that the 

participating medium is a homogeneous grey gas, meaning that the radiative properties are 

uniform with respect to wavelength and isotropic over the problem domain. In some combustion 

r(u)

x

yz

s

I[r(u),s]

u

s 

[r(u), s, s] 



   

 

18 

 

simulations this treatment would be grossly inaccurate due to the highly spectral nature of gas 

radiation, and the large spatial variation in gas composition. In the current problem this 

approximation is reasonable because the turbulent flow produces a well-mixed gas, and radiation 

is dominated by soot particles that emit radiation approximately uniformly over the wavelength 

band important to thermal radiation. As a first approximation, it is also reasonable to neglect 

scattering, since s << a over the wavelengths of interest [37]. (Scattering becomes important 

in the presence of larger particles, e.g. cenospheres typical of heavy-oil droplet combustion.)  

With these assumptions Eq. (2.11) simplifies to an ordinary differential equation 

  
        ,

,
, , b

dI u
aI u a u I T u

du
            

r s
r s r s r  (2.14) 

which are solved using the P1 method [38].   

To carry out this solution, it is necessary to specify the total absorption coefficient, a, 

which for a luminous flame depends on the size and concentration of particles present in the 

flame. Since these attributes are unknown for the current burner, we estimate a from optically-

determined emissivities reported in the literature for similar liquid fuel flames [39]; a typical 

experimental apparatus for measuring flame is shown in Figure 2.2. Flame emissivity is related to 

the absorption coefficient by  

 
 4

1 expdetect detect
flame e

flameb flame

I I
aL

TI T


 
      (2.15) 

where Le is the detection path length through the flame,  = 5.6710
-8

 W/(m
2
K

4
) is the Stefan-

Boltzmann constant, and Tflame is the flame temperature, usually determined by multi-wavelength 

pyrometry. This expression can be obtained by solving Eq. (2.14) along the detection path 

length, assuming the incident intensity is zero. Rearranging Eq. (2.15) results in 



   

 

19 

 

1
ln(1 )flame

e

a
L

   (2.16) 

 

 

Figure 2.2: Experimental apparatus for determining flame emissivity [4] 
 

 

2.2.4 Chemistry Solver 

Many chemical reactions take place in a typical combustion process. For any reaction 

which occurs, the reaction rate constant, k , is calculated by the Arrhenius equation, 

exp actE
k AT

RT

  
  

 
 (2.17) 

where A is frequency (steric) factor, α is the temperature exponential constant, and actE is the 

activation energy for that specific reaction.  

Based on the reaction mechanism that occurs during the combustion process the source 

term for species i can be defined as: 

     
1 1 1

.

f b
ij ij

s sr N NN
f b f bi

i ij ij j i j i

j i i

W
r k X k X

 

 
   

  
     

    

    (2.18) 

Le 

I0 = 0 Id 

x 



   

 

20 

 

where Nr,  , and Xi represent the number of reactions, stoichiometric coefficients, and species 

molar fraction respectively, while notations j, f, and b correspond to the reaction number, 

reactants, and products respectively. 

This equation is formulated for every species included in the chemical mechanism, as 

well as for every reaction, resulting in an equation system consisting of Nr × Ns equations. As can 

be seen from the above equation, it is a system of ordinary differential equations (ODEs), which 

can be solved using an ODE solver, using sequential method presented by [40], or by an Euler-

Implicit approach or to solve the equations using an ODE solver [41]. In the current research, the 

Euler-Implicit method is used due to its robustness in solving various stiff differential equations. 

 

2.2.5 CFD Solver Implementation 

As mentioned before, OpenFOAM [2], a finite-volume based CFD open source code, is 

employed to solve the time-averaged Eulerian equations for the conservation of mass, 

momentum, species mass fraction, and enthalpy along with the transport equations for k and ε for 

the gas phase. The solver implemented in the current work is mainly written based on the 

original solver called “reactingFoam”. Since it is a transient chemical reaction solver, some 

modifications are necessary to be made to change it into a steady-state solver. By coupling of the 

chemistry to the flow time, using the SIMPLE algorithm for P-U coupling [42], and stabilization 

of the solution by the reduction of κ (if old new

i iY Y is too big), the steady-state solver is created 

from “reactingFoam”. Here, the general algorithm in order to run the steady-state solver is shown 

in Figure 2.3 which continues until it reaches specific convergence criterion. 



   

 

21 

 

 

Figure 2.3: The flowchart of the CFD solver used to model the gaseous fuel combustion 

  

2.2.6 Boundary Conditions 

The BERL furnace is vertically fired and considered to have an axisymmetric cylindrical 

geometry. The exhaust gas exits the conical hood through a cylindrical duct. Dirichlet boundary 

conditions are applied at the inlet of the chamber, excluding the pressure where is found using 

zero gradients along the flow direction. At the outlet, the atmospheric pressure is fixed, while for 

other variables, by being sufficiently away from the turbulent region, the boundary conditions 

  

Yes 

End 

Start 

Calculation of the chemistry based on the 

flow, turbulent and chemical timescales 

Calculation of the density 

Computation of the velocity/pressure field 

Reading species and provide them for the 

chemistry solver 

Calculation of the temperature from the 

chemical reactions using energy equation 

including the radiation source term 

Calculation of the pressure and velocity 

fields using SIMPLE pressure correction 

algorithm 

Correcting the turbulence/pressure effects 

Updating the density value from the 
temperature 

Converged

? 

Next 

iteration 

No 



   

 

22 

 

are satisfied assuming zero gradients along the length of the furnace, except for the velocity 

which is calculated by satisfying the law of continuity. The wall function method [43] is 

employed to model the flow near the wall. On the walls, the velocity is set to zero, and the 

experimental data from [3] are put as wall temperature distribution, while the rest of the problem 

parameters, e.g. species mass fraction, are considered to be zero gradient along the furnace 

diameter. The boundary conditions applied on the furnace are sketched in Figure 2.4. Detailed 

geometry of the furnace as well as the inlet conditions are given in Section 4.2. 

 

 

 

 

 

 

 

Figure 2.4: Schematic of the boundary conditions used for the BERL furnace 

 

2.3 Combustion of Liquid Fuel Sprays 

Many industrial processes involve multi-phase flow, phase transformation and complex 

chemical reactions linked with heat transfer. This is particularly true of the power generation and 

processing industries. Combustion of liquid fuels is one of the largest sources of energy 

production. Accordingly, studying the behaviour of reacting flow inside fuel oil combustors is 

Inlet air 

Inlet fuel 

Inlet conditions: 

  

 Known fixed values for other variables 

Outlet conditions: 

 Known fixed value for P  

  for other variables 

 
x 

r 

Axisymmetric line 

 

Wall conditions: 

 Known fixed value for T 

   

  for other variables 

 



   

 

23 

 

one of most important fields of combustion modeling. This is the main reason that combustion of 

diesel fuel inside the GenTex process heater is studied here.  

In a typical liquid fuel combustion problem many complex phenomena take place such as 

evaporation, collision, break-up, and several other gas-liquid interactions. Therefore, having a 

deep understanding of these multi-phase processes is necessary to deliver well-validated 

simulation results.  

Accordingly, an unsteady Eulerian-Lagrangian approach is implemented in order to 

model the spray-gas phase interactions inside the GenTex process heater. Since modeling the 

near-nozzle flow using only Eulerian cells is complicated and time-consuming, in the present 

work the spray is modelled in Lagrangian coordinates. Several sub-models are used to model the 

different physical phenomena occurring at the spray droplets. These sub-models are described 

following the current chapter. 

 

2.3.1 Governing equations of the gas phase 

The Eulerian coordinate system is used to discretize the governing equations of the gas 

phase. The conservation of mass for a gaseous system including Ns different species can be 

written as 

  mpS
t





 


v  (2.19) 

The evaporation source term, mpS , is calculated from the evaporation model (see Section 

2.3.6.1). 



   

 

24 

 

Conservation of species requires that each species is transported by diffusion and 

advection or is formed or consumed by chemical reactions. Thus, the, the conservation equation 

for the i
th

 species is 

 
   i

i eff i i yp

Y
Y Y r S

t


  


     


v  (2.20) 

where iY  is the mass fraction and
 ir  is the reaction rate for species i. The value of ir  is found 

from Eq. (2.18) and the reactive volume fraction,  , is defined in section 2.3.4. ypS  represents 

the spray mass fraction source term.
 

The Lagrangian particles bring a modification to the momentum equation as well. By 

making the Reynolds Average Navier-Stokes assumption the momentum-force balance is 

 
 eff ppP S

t


  


     



v
vv g  (2.21) 

where ppS  is the spray momentum source term.  

Similarly, conservation of energy is 

 
   eff T r ep

h
h h h S

t t

 
 

 
      

 
v q  (2.22) 

where v , Y, h, P, and  are the velocity vector, mass fraction, enthalpy, pressure, and the flow 

density respectively, qr  is the radiative source term provided by the P1 model, and epS  is the 

spray energy source term. As with gas-phase combustion, turbulence is modelled using the RNG 

k-ε model. 



   

 

25 

 

2.3.2 Turbulent Spray 

The gas turbulence equations, Eqs. (2.6) and (2.7), must be modified to account for 

turbulence-droplet interaction. One way to do this would be to use a source term in the governing 

equations as mentioned in the previous section, however there are some other ways to model the 

effect of the droplets. The method which is used in the current simulation is to confine the 

turbulent length scale to the diameter of the orifice in the grids which contain the droplets. 

Actually, the spray is defined as a group of parcels, as a consequence, all of the cells that have 

parcels in them will be the representative of this group and since in the usual spray combustion 

problems many of the cells contain the parcels, determining the jet diameter at every time-step 

would be very expensive. Thus, as an alternative, the orifice diameter is fixed. First, the length 

scale of the turbulence is defined as: 

3 2

tl C k   (2.23) 

Next, a limit is forced on ε, 

3 2

tC k l   (2.24) 

where, here, tl  is set to the nozzle diameter. Since the diesel sprays have fairly high momentum 

they influence the gas flow and increase the gas momentum. Therefore, based on this, the length 

scale of the turbulence is imposed by the fuel spray and consequently by the orifice diameter. 

 

2.3.3 Chemical Kinetics 

After the fuel droplets evaporate (see Section 2.3.6.1), the fuel mixes and reacts with the 

air in the gas phase. Diesel fuel includes many different species but it is normally modeled by a 



   

 

26 

 

single species which shows the closest behaviour to the diesel. In most studies “n-heptane” is 

used to represent diesel fuel [44].  

Based on the reaction mechanism which occurs during the combustion process the source 

term for each species is determined in the same way described in Section 2.2.4. Solving a 

detailed chemical mechanism will make the governing equations stiff and also since these 

equations must be solved for every time-step the calculation time would be very large.  

One of the reasons of the numerical stiffness is that the chemical reactions in combustion 

have small timescales which normally do not meet with flow timescales [43]. Therefore, solving 

an additional transport equation for each chemical species would strictly limit the simulation. In 

addition to the first reason, unresolved turbulence-chemistry interactions due to the fluctuations 

of scalar fields are substantial [45]. In the current study, these interactions are modelled by the 

Favre averaged transport equation [46] where the average reaction rate is highly nonlinear, hence 

the average rate cannot be calculated using the average quantities it depends on [47]. In fact, the 

only condition that the average rate could be set equal to the related average quantities is when 

the Damkohler number (indication of the relative magnitude of gas diffusional and surface 

kinetic resistance) is very small, meaning that the reaction timescales are much greater than 

turbulent timescales; however, since the current studied furnace is a diffusion-limited 

combustion problem (large Damkohler number), this condition doesn’t hold and the reaction rate 

is highly nonlinear [48]. As a consequence, in the current simulation, only a two-step reduced 

mechanism is used to model the chemical mechanism. 



   

 

27 

 

2.3.4 Turbulent Combustion Model 

Similar to the BERL burner combustion, the Chalmers PaSR (Partially Stirred Reactor) 

model is used to model the turbulence/chemistry interactions, but since here the problem is 

unsteady-state, the reactive volume fraction is defined differently. It is, in fact, presumed that the 

reaction rate is controlled by the turbulent mixing time and the residence time [33]. The reaction 

rate term for species i is approximated as ir  from Eq. (2.20) and  , the reactive volume 

fraction, is calculated as: 

c

c mix

t

t t
 


 (2.25) 

where  ct  is the chemical timescale, and mixt  is the turbulence timescale which is calculated as:  

mix mix

k
t C


  (2.26) 

where Cmix = 0.03. Other variations and detailed a description of the Partially-Stirred model can 

be found in Refs. [43, 49]. 

 

2.3.5 Radiation Heat Transfer 

A previous analysis on a GenTex process heater estimated that radiation heat transfer 

accounts for approximately 80% of the heat transferred from the hot combustion gases to the 

inner surface of the inner coil [50]. The combustion of fuel oils results in the formation of soot 

and char particles. In the hot region of the combustor, soot and other particulates along with the 

fuel oil droplets (which are relatively large in size) absorb heat from the combustion gases and 

emit the heat to the surrounding surfaces, resulting in significant temperature reduction of the 

combustion gases. In other words, radiation heat transfer from the hot combustion gases to the 



   

 

28 

 

surrounding cold surfaces acts like a volumetric heat sink, which reduces the temperature of the 

combustion gases sometimes by as much as 500°C [51]. It is therefore imperative to include 

radiation heat transfer in the CFD model of the GenTex burner. 

Here again, since the flame is luminous, and because fuel and air are well-mixed, the 

participating medium could be treated as a homogeneous grey gas. Once more, the P1 model is 

implemented to solve RTE. Since the radiative properties of the gas mixture are unknown for the 

current burner, similar to the BERL burner, the total absorption coefficient, a, is estimated from 

optically-determined emissivities reported in the literature. Results from [52] show flame 

emissivities that vary with height along the flame, but typically 0.3 ≤ ɛ ≤ 0.5 for Le  0.1 m, 

which is consistent with other published values for similar flames [53, 54]. Therefore, 

substituting these emissivity values in Eq. (2.16) gives 4 m
-1

 ≤ a ≤ 7 m
-1

, where the value of a = 

5 m
-1

 is used in the current research. 

 

2.3.6 Governing equations of the liquid phase  

2.3.6.1 Evaporation Model 

The evaporation rate of the droplet is assumed to follow the D
2
-law [55] where it is 

assumed that the square of the droplet diameter, D, decays linearly with time 

2 2

0  evap eD D C t   (2.27) 

where Cevap is a constant found from 

,0 ,

,0

4 ln 1
1

v vv AB
evap

p v

X XD
C Sh

X






 

     

 (2.28) 

where DAB is binary diffusion coefficient, Sh is Sherwood number and Xv stands for the molar 

fraction of the fuel vapor. The subscripts 0 and   represent location on the droplet surface and 



   

 

29 

 

in the ambient gas, respectively. The Sherwood number is calculated using the Ranz-Marshall 

correlation, 

1 2 1 32 0.6ReSh Sc   (2.29) 

Therefore, using the D
2
 assumption gives the droplet evaporation rate 

2

2

p p

p

e

dm mdD
D

dt dt t


    (2.30) 

where mp is the droplet’s mass. The lifetime of droplet, te, is then calculated as 

2

,0 ,

,0

6  ln 1
1

p

e

v v

AB v

v

D
t

X X
D Sh

X



 


 
   

 
(2.31) 

The relaxation time, et , is introduced to characterise the evolution of the particle size. It is 

important to know that if we use an explicit method, the time-step (a function of the relaxation 

timescale) must not be larger than the relaxation time, otherwise the mass will become negative. 

On the other hand, if an implicit method is used, the method would be unconditionally stable.  

 

2.3.6.2 Spray Momentum Equation 

The motion of a Lagrangian particle, moving in the Eulerian cells, is  

 
3 1

4

p g

D p p

p

u
C u U u U g

t D






    


 (2.32) 

where CD, and D are the drag coefficient and droplet’s diameter respectively. The right-hand side 

terms represent the effect of drag force and gravity respectively. Also, it should be mentioned 

that the effect of temporal variation of droplet mass on drag coefficient has been neglected. 

 



   

 

30 

 

2.3.6.3 Spray Heat Transfer Equation 

The heat transfer model is based on the convective heat transfer of a particle with a 

uniform temperature. Also a modification is made to consider the latent heat transfer because of 

the mass transfer due to evaporation  

 
 

1 1

1 v pp c
g p heat

p e

h TdT D Nu
T T f

dt m c c t

 
    (2.33) 

This modification is in the factor heatf  which is 

,

,

1

p v

c

p v p

c
heat c m

D Nu

c m

D Nu
f

e
 

 






 
 
 
 

 
(2.34) 

The first term of Eq. (2.33) stands for the heat transfer to the liquid, and the second part 

represents latent heat coming from mass transfer. Since the evaporation of a droplet also 

transfers heat to the surrounding gas, the heat transfer model also uses the evaporation relaxation 

time. For more details see [56]. 

 

2.3.6.4 Particle Tracking 

Tracking the particles is the most fundamental action in Lagrangian simulation. In the 

current study, the Face-to-Face approach (F2F) [57] is used for tracking the parcels. In this 

approach, the parcel is moved towards its path until it reaches the boundary of the current cell or 

for the entire time step if the parcel stays in the same cell. When the parcel reaches the face of a 

cell, the code calculates the source term due to this trip inside the cell and exchanges it with the 

Eulerian grid, then the parcel continues the trip for the remaining part of the time-step. This 

procedure is repeated at every new cell until the droplet is totally evaporated or exits the problem 



   

 

31 

 

domain. The benefit of this method is that the parcel exchanges mass, momentum and energy 

with every cell that it passes through for any value of time-step. Accordingly, this approach 

brings more accuracy and better stability conditions compared to the methods that only consider 

the parcel’s path without considering the number of cells that it passes where, in this case, the 

parcel could move far away from the previous point by passing through several cells. In addition, 

the F2F method doesn’t need any search algorithm to find the parcels, which saves considerable 

amount of computational time.  

 

2.3.6.5 Injection Model 

A multi-hole injector is used to spray the diesel fuel. This injector contains 6 orifices 

which are spread circumferentially. The details of the injector configuration are given in Section 

4.3.1. Here, the Rosin-Rammler probability density function (PDF) is used to model the spray 

size distribution. The parameters for the model are obtained as shown in Section 4.3.3 and are 

summarized in Table 2.1. 

Table 2.1: Rosin-Rammler constants 

Model Parameter Value 

D (µm) 25.857 

n (Spread parameter) 1.362 

 

The spray exiting each of the orifices is shaped like a solid-cone, thus the injection model 

used in the Lagrangian spray simulations is set to be a solid-cone spray. The apex angle of the 

spray cone is measured to be equal to 45°. In order to find the angle between the set spray 

direction and the direction of the injected droplet, the spray angle is multiplied by a random 



   

 

32 

 

number between 0 and 1. Consequently, the obtained angle defines the injection direction of a 

droplet into the domain. 

By applying the Bernoulli equation [58] across the nozzle of the injector, the velocity of 

the injected parcel is found; however due to the friction across the nozzle (no-friction is one of 

the conditions that holds the Bernoulli equation), the final velocity value is multiplied by the 

discharge coefficient, Cd, in order to consider the effect of friction on the reduction of the 

velocity of the flow leaving the nozzle. Cd <1 depends on the type and size of the nozzle. As a 

result, the velocity of the injected parcel, which is based on the injection pressure and the 

pressure in the domain, is calculated as 

 2inj d inj ambu C p p    (2.35) 

where Pinj is the injection pressure of the fuel at the tip of the nozzle, Pamb is the average pressure 

in the computational domain which is updated at each injection, and ρ is the density of the 

injected droplets.  

 

2.3.6.6 Breakup Model 

The breakup model used is the Kelvin-Helmholtz-Rayleigh-Taylor (KHRT) model. This 

model is one of the most widely used models in Lagrangian spray simulations today [59, 60], and 

was chosen for its proven performance with diesel fuel [61]. The KHRT model includes two 

modes of breakup: Kelvin-Helmholtz breakup which accounts for unstable waves growing on the 

liquid jet due to the differences in velocity between the gas and liquid; and Rayleigh-Taylor 

breakup which accounts for waves growing on the droplets' surface due to acceleration normal to 

the droplet-gas interface [60]. Studies performed on a round liquid jet has given a fastest growing 

wave with a wavelength KH  and a growth rate KH as follows: 



   

 

33 

 

 

1 2 0.7

0.6
1.67

(1 0.45 )(1 0.4 )
9.02

1 0.865
KH

r Oh Ta

We

 
 


 (2.36) 

 

 
  

3 2

30.6

0.34 0.38

1 1 1.4
KH

p

We

rOh Ta






 

 
 (2.37) 

 

The critical droplet radius rc, is defined as the radius of the droplet which will be made 

when the liquid jet is broken. It is assumed to depend linearly to the KH and the stripping rate. 

Also, the controlling factor for break-up rate, KHt , is assumed to be a function of the growth rate, 

, KH , wave-length, KH , and the droplet radius, r, 

0c KHr B   (2.38) 

 

13.726
KH

KH KH

B r
t 

 
 (2.39) 

The values of the constants with detailed descriptions are available in Ref. [49]. 

Rayleigh-Taylor breakup is governed by how quickly disturbances grow on the surface of 

the droplet. For real droplets these disturbances are created from the droplets' trailing edges [62]. 

If these disturbances are assumed to be linear, the frequency of the fastest growing wave, and the 

corresponding wavelength, will be respectively equal to 

 
 

3 2

2

3 3

t l g

RT

l g

g  

  


 


 (2.40) 

 

 
3

2RT RT

t l g

C
g




 
 


 (2.41) 

where RTC  is a modelling parameter. If this wavelength of the fastest growing wave is smaller 

than the diameter of the droplet diameter and the perturbations are allowed to grow for a period 



   

 

34 

 

of time, the droplet will be immediately converted into a parcel with smaller size. For more 

detailed information see Ref. [63]. 

 

2.3.6.7 Drag Model 

The drag coefficient is defined using the following relation 

1 3

24 4
Re 1000

Re Re

0.44 Re 1000

p

p p

D

p

C


 


 




 (2.42) 

The current open source [2] also offers the possibility of changes in drag due to 

oscillations of the droplet surface. These oscillations are the instability waves which eventually 

result in droplet breakup. The breakup model will be used to calculate the oscillations and the 

resulting drag will be added to the drag described above. Thus the modification will be: 

 ,mod , lim1 min( , )D ified D D distortC C C y y   (2.43) 

where ,D distortC  and limy  are constants based on the phenomenon of spray injection and fuel 

properties, and y is the relative deviation from the equator of the droplet if it was spherical. 

 

2.3.6.8 Collision 

The Trajectory model is picked in the current simulation to model collisions among the 

droplets. In this model, the direction of the droplets is taken into account (see Figure 2.5).  

 

 

 
 

Figure 2.5: Collision modeling using Trajectory method 

 



   

 

35 

 

In addition, the Trajectory model checks if a collision is possible within the current time 

step (see Eq. (2.44)), meaning that the parcels need to be close enough to collide. Hence, the 

distance between the parcels must be smaller than the maximal distance defined by the product 

of relative velocity between the parcels and the time-step. This gives the following criterion 

max min
2 1

2
align

d d
u t x x


     (2.44) 

where 

2 1

2 1

.align rel

x x
u u

x x





 (2.45) 

This confirms that the parcels can reach each other within the given numerical timestep. 

The other important criterion that should be considered is whether or not the parcels reach the 

intersection at the same time. Therefore, the algorithm needs to determine the times where the 

parcels reach the intersection. According to this criterion and by using Eqs. (2.44) and (2.45), the 

probability for a collision is found as [64] 

 

      
1 21 2

1 2 1, 1 2, 2

2

max 2,  

space

time

C

C t t t

collision

new new

d d
e

d d x t x t

  
 
  
  
 

 (2.46) 

where Cspace and Ctime are the model constants that control the collision rate in time and space, 

and t1 and t2 are the times that the parcels reach the intersection. More details of collision 

modeling are given in Ref. [64]. 

2.3.7 CFD Solver Implementation 

The solver implemented in the current work is mainly written based on the original 

unsteady liquid fuel combustion solver called “dieselFoam”. The general algorithm in order to 

run “dieselFoam” is shown in Figure 2.6. 



   

 

36 

 

Figure 2.6: The flowchart of the CFD solver used to model the liquid fuel combustion [65] 
 

Yes 

Yes 

End 

Start 

Initialize solution fields and advance in time 

Calculation of additional variables 

 

Computation of the velocity/pressure field 

using momentum equation 

Solving the volume fractions of species and 

provide them for the chemistry solver 

Calculation of the temperature from the 

chemical reactions using energy equation 

including the radiation source term 

Calculation of the pressure and velocity 
fields using PISO pressure correction 

algorithm 

Solving mass fractions 

Calculation of full coupled particles 

Coefficient loop 

criteria satisfied? 

Iteration 
within the 

timestep 

No 

Maximum time 

reached? 

Advance 

in time 

No 



   

 

37 

 

2.3.8 Boundary Conditions 

The GenTex process heater is a cylindrical horizontally fired combustor. It consists of 

three layers of water coils, i.e. innermost, intermediate and outermost, as the combustion gases 

pass through them and heat the water inside the coils. The details of the heater configuration are 

given in Section 4.3.2. For the current study, the reacting flow inside the innermost layer is 

modelled as shown in Figure 4.7. The type of the boundary conditions applied on the GenTex 

heater was the same as the BERL furnace as explained in Section 2.2.6. The operating conditions 

of the process heater are summarized in Table 4.2. 

 

 

 



   

 

38 

 

Chapter 3                                         

Optimization Method 

 

3.1 Introduction 

The optimization method used in the current study is explained in the present chapter. 

First, a brief description of the design optimization is given, then two principal gradient-based 

methods are studied and integrated in order to be employed as a part of the optimization 

procedure. The major framework of the optimization algorithm used in the current research is 

established through the Response Surface Methodology (RSM) method. Finally, this chapter 

gives the details of using RSM in multivariate problems along with the challenges of this 

technique. The advantages of Response Surface Methodology over conventional methods for the 

current problem are also mentioned in the context. 

 

3.2 Concept of Optimization 

Many problems aim to minimize or maximize a mathematical function which is made of 

one or more variables, and is subjected to certain constraints. These comprise a class of problems 

called optimization problems. Many actual and theoretical problems can be modelled in this 

general structure. 

The term optimization is usually used to replace the terms minimization or maximization. 

The mathematical function to be optimized is known as the objective function, which usually 



   

 

39 

 

depends on several variables. An objective function can be a function of a single variable for 

simple problems; however a single-variable function may not be able to satisfy some 

optimization problems. Indeed, many practical optimization problems involve more than one 

variable and require multivariate optimization. Optimization problems are typically classified 

based on the types of the objective function (single or composite), the problem boundary 

(unconstrained or constrained), the variable types (continuous or discrete), and the function 

behaviour (linear or nonlinear). 

As mentioned before, the objective of this research is to demonstrate how model-based 

optimization methodology can be applied to design industrial combustion equipment. As noted 

above, this technique transforms the design problem into a multivariate minimization problem by 

defining a vector x of design parameters which specify the design, and an objective function, 

F(x), which quantifies the final design quality. It is also possible to impose inequality constraints 

on the design parameters having the form c(x) ≤ 0. The objective, then, is to solve 

    * arg min . . 0F s t x x c x  (3.1) 

 

3.3 Optimization Search Approach 

The numerical optimization of general nonlinear multivariate objective functions requires 

efficient and robust techniques. Efficiency is important because these problems are solved by 

iteration, involving many function evaluations. If the cost of evaluating every F(x) is high for a 

typical optimization problem, therefore trial and error (method of manipulating the variables 

with no specific rule in order to sort through possibilities which may result in a better outcome) 

would not be practical for more than one independent variable. Robustness (the ability to reliably 

achieve a solution) is a key point as well, because a general nonlinear function is unpredictable 



   

 

40 

 

in its behaviour; there may be a relative maximum or minimum, saddle points, regions of 

convexity, concavity, and so on. In some regions the optimization algorithm may progress very 

gradually toward the optimum point, demanding excessive computer time.  

Gradient-based minimization works by generating a search direction, p
k
, and a step size, 

k
, at each iteration. The design parameters are then updated by  

k+1 k k k+αx x p  (3.2) 

A good search direction should reduce (for minimization) the objective function so that if 

x
k
 is the current point and x

k+1
 is the new point, 

k+1 k( ) ( )F Fx x  (3.3) 

Such a direction is called a descent direction only when it satisfies the following requirement at 

any point, 

k k( )  0F . x p  (3.4) 

where 
k( )F x  is the gradient of the objective function containing the first order objective 

function variation with respect to the unknowns in x. There are several methods for finding the 

search direction, p
k
, but for this research, a model combined of Newton’s method and steepest 

descent direction is implemented as a part of the optimization coding. 

 

3.3.1 Newton’s Method 

Newton’s method uses a quadratic approximation to a function at the current point. For 

each optimization iteration, a quadratic function fit is applied and its minimum is found. This 

process continues until the optimization procedure converges to an optimal solution. The original 



   

 

41 

 

form of Newton’s method is derived by finding the vector p
k
 that generates the largest possible 

drop in objective function. Therefore, the new step is found as  

k+1 k k+x x p  (3.5) 

A Taylor series expansion of the objective function, F(x), at the (k+1)
th

 point provides 

k+1 k k T k+1 k k+1 k T k k+1 k1
( ) ( ) ( ) ( ) ( ) ( )( ) H.O.T.

2
F F F H      x x x x x x x x x x  (3.6) 

where H.O.T. stands for the higher order terms, and 
k 2 k( ) ( )H Fx x  is the Hessian matrix of 

the objective function (the matrix of second partial derivatives with respect to x at x
k
).  

As mentioned before, Newton's method is used to make the quadratic approximation of 

k( )F x  which means it approximates the function with the first three terms on the right hand side 

of Eq. (3.6) employing second-order information about 
k( )F x  obtained from the Hessian 

matrix. So, based on this matrix, the curvature of 
k( )F x  is taken into account in identifying a 

search direction. 

The minimum of the quadratic approximation of 
k( )F x  in Eq. (3.6) is obtained by 

differentiating it with respect to the x
k
 and equating the resulting expression to zero which yields 

1
k+1 k k k( ) ( )H F



     x x x x  (3.7) 

where 
1

k( )H


  x  is the inverse of the Hessian matrix. By comparing Eqs. (3.5) and (3.7) the 

vector of search direction is found 

1
k k k( ) ( )F



    p H x x  (3.8) 



   

 

42 

 

If 
k( )F x is actually quadratic, Newton’s method will find the minimum of 

k( )F x  in a 

single step. This is actually the condition considered in the current research. 

Note that in order to evaluate p
k
 in Eq. (3.7), a matrix inversion is not necessary. Its 

precursor can be taken, and the following set of linear equations can be solved for p
k
, 

k k k( ) ( )H F x p x  (3.9) 

In the current study, LU decomposition is used to find the inverse of the Hessian matrix, since 

this algorithm is very efficient for solving multiple linear equations compared to other direct 

methods [66]. 

 

3.3.1.1 Benefits and Limitations of Newton’s Method  

Although real objective functions are more complex than a second-order function, most 

of them can be modelled correctly as quadratic when they are sufficiently close to the minimum 

point, consequently, within the region of the minimum, Newton’s method usually brings rapid 

convergence, and is generally regarded as a highly efficient minimization algorithm for problems 

in which F(x) is continuous and not noisy [11].  

On the other hand, there is a known flaw in finding the minimum point using this method. 

Since the search direction in Newton’s method is obtained from setting the gradient of the 

objective function equal to zero, the point found is a local extreme point which is not necessarily 

the minimum. If the Hessian of the matrix is not positive definite (matrix H is positive definite if 

T k( ) 0H p x p  for all 0p ), the extreme point could be a maximum point or a saddle point 

which, in this case, Newton’s method will take you to a wrong direction resulting in the increase 



   

 

43 

 

of the value of the objective function of the new point compared to the current point. To resolve 

this problem, Newton’s method needs to be modified. 

 

3.3.2 Steepest Descent Direction 

When Eq. (3.2) does not hold or the Hessian matrix is not positive definite, the step 

determined by Newton’s method is an ascent step and should be replaced by an alternative 

method. Steepest descent is the method used for the current study under this condition. In this 

method, the search direction is defined as the negative of the gradient of the function (steepest 

descent) 

k k( )F p x  (3.10) 

The gradient shows the ascent direction and therefore the negative value of it gives the descent 

direction required for minimization. It is assumed that the value of 
k( )F x  continuously 

decreases. 

 

3.3.3 Integrated method  

Convergence speed and global convergence are two important characteristics of search 

algorithms. Sometimes these two characteristics conflict with each other, their effects should be 

carefully considered before picking an algorithm for a specific problem. For instance, the global 

convergence of the steepest descent method is ideal, but this algorithm is very slow. On the other 

hand, the original Newton iteration usually converges rapidly when it is close enough to the 

solution, but sometimes its steps may not even be descent directions especially when they are not 

close enough to the solution. Therefore, the challenge here is to create algorithms that 



   

 

44 

 

incorporate both these characteristics. Accordingly, for the current research when Newton’s 

method moves in the wrong direction, the steepest descent is used. This condition could happen 

at the early search steps as the steps are not close enough to the solution. 

 

3.3.3.1 Negative Points of the Integrated Method 

If the objective function were known, the values of the first and second order derivatives 

in Eqs. (3.8) and (3.10), for calculating p
k
, could simply be solved analytically. However, since 

the function for the current research is unknown, the derivatives must be solved numerically 

through finite differencing. In order to make a finite difference calculation, two or three function 

evaluations are required for each variable for every derivative(s) at each optimization step. Since 

two design variables are studied in the current research and the objective function calculation is 

expensive for the studied cases, this method can be very time consuming. Therefore, employing 

a method which is more time efficient with a higher robustness is necessary for the current study. 

This is the reason that a new approach called Response Surface Methodology (RSM) is used 

here, however, as a part of the RSM model, the integrated method is also used only when it is 

required to find a minimum of an analytical function. 

 

3.4 Response Surface Methodology 

Response surface methodology (RSM) [1] is a statistical-mathematical technique used for 

finding the optimum of expensive, noisy and complex objective functions. RSM is applied 

mostly in industrial problems where there are several design variables influencing a certain 

design quality (objective function). 



   

 

45 

 

The original RSM was developed to optimize physical experiments in a stochastic way. 

In this method, instead of minimizing F(x) directly, RSM works by minimizing a sequence of 

second-order approximating functions, ( )F x , fit to objective functions sampled over a subspace, 


k
, of the feasible region that surrounds the current set of design parameters, x

k
. In simpler 

words, the solution starts with selecting a design space based on the design parameters, x
k
. From 

this design space, RSM defines a number of sample points in the search space (model region) in 

order to characterize the sensitivity of the objective functions to the design parameters. Then a 

polynomial regression function is fit to the response function value corresponding to each of the 

sample points. These regressions produce a polynomial surface which represents the objective 

function behaviour inside the model region. Given that the regression functions are simple low-

order polynomials, they are solved very quickly using the integrated method explained in Section 

3.3.3. Since the surface function approximates the real objective function, the minimum found 

won’t necessarily be the minimum of the real function, therefore based on this point a new model 

region is defined and the procedure is repeated until the results are satisfactory within a 

reasonable tolerance (convergence is defined as the norm of the difference between the new 

point and the current point drops below an empirical threshold value). The RSM algorithm used 

in the current research is implemented from the previous work presented by Horsman [67]. In the 

present study, the CFD solvers explained in Chapter 2 are connected to this RSM algorithm with 

an interface module written in C++ (see Appendix B). 

There are several advantages to this approach. One of the major benefits of this technique 

is that it reduces the number of simulations run with the CFD solver to a reasonable number and 

this significantly decreases the computation time. The other benefit is that since the response 



   

 

46 

 

surface is calculated as an analytical function, the gradient and the Hessian matrices can be found 

at once which avoids time-consuming numerical computation. 

The following subsections describe the specific type of RSM method used in this 

research where selecting the model region, fitting, creating the surface from the regressors, and 

minimizing the objective function are explained in detail. The explanations are for an objective 

function with two design variables, however this method works for more variables as well. 

 

3.4.1 Model Region Design 

There are many practical situations where the designers should select ranges for the 

design variables. This is the region of interest and is called the feasible region where in a two-

dimensional (two design variables) design optimization problem it can be shown as a rectangular 

region. The model region, which contains the sample points, should obviously be defined inside 

this feasible region. Several practical arrangements are available in the literature) [1] for 

selecting the sample points within the model region, the face-centered central composite design 

(FCCCD) method is the arrangement used in the current study [68]. Theoretically, in order to 

model a 2D optimization problem, having the information of six different sample points is 

enough for generating a quadratic function. However, in order to find a surface function which 

can model the real function better, more sample points are taken inside the model region. For the 

current case, three more points giving the total of nine interpolating points are picked. In addition 

to transferring more information from F(x) to ( )F x , implementing more sample points also 

helps to reduce the possible noises in the function. As shown in Figure 3.1, the current point, x
k
, 

is located exactly in the centre of the model region. The concept and nature of the problem are 

the factors should be considered by the designer in order to specify the initial size of this region. 



   

 

47 

 

The designer should always keep in mind that the model region should be defined in a way that 

the procedure results in a stable and time-efficient manner. 

 

Figure 3.1: Model region definition 

The rest of the points are placed uniformly on the boundary of the region. The right side of 

Figure 3.2 shows how the sample points are spread out throughout the domain of the model 

region. As can be seen, the rectangular model region is defined with the dimension of 2γ1×2γ2 

which shows that the sample points are arranged equally at a distance of γ1 and γ2 along the x1 

and x2 directions, respectively. 

 

Figure 3.2: Sample points arrangement and the corresponding F(x) 



   

 

48 

 

3.4.2 Generating the Response Surface Function  

When the sample points are selected, the CFD solver is run for each of the samples 

meaning that nine CFD simulations are performed per optimization iteration. The function value 

for an arbitrary model region is shown on the left side of Figure 3.2. One of the challenges of 

RSM is to approximate the unknown function based on the known points. This is usually done 

with a low-order polynomial over a well-designed model region. For many types of objective 

functions, either a first-order or a second-order polynomial is employed [1]. The first-order 

approximation is often reasonable when the model region is small and/or where the true 

objective function, F(x), has a little curvature. This model is also called a “main effects model” 

since it only shows the main effects of the independent variables. However, in most cases, the 

curvature of F(x) is strong enough make the first-order assumption inaccurate. Under this 

condition a second-order model function is required. In general, the second-order regression 

model is shown, 

k k k-1 k
2

0

1 1 1 1

( , ) = j j jj j ij i j

j j i j i

F     
    

    x x x x x  (3.11) 

where the β’s are the set of regression coefficients. Since the current study applies to two 

independent variables, Eq. (3.11) can be written as 

2 2

0 1 1 2 2 11 1 22 2 12 1 2( , ) =F           x x x x x x x  (3.12) 

The corresponding coefficients for Eq. (3.12) are calculated by the method of “least 

squares” where the best fit is found by minimizing the sum of the squares of the deviation 

between the real function and the response surface, 

2

2
argmin ( ) ( , )* F F  x x  (3.13) 



   

 

49 

 

The second-order model is widely used in RSM since it is very flexible. This model, in 

fact, is able to engage a wide range of different functional forms, thus it often works well as an 

approximator to the real function. In addition, it is easy to estimate the values of β’s for the 

second-order model using least squares. Implementation of higher-order polynomials would 

require more sample points: for example, fifteen points are required to provide a third-order fit 

and this would significantly increase the computational time yet it may not deliver more precise 

results. Figure 3.3 shows a typical second-order least squares regression function fit to nine 

sample points.  

Since for this regression function the gradient and Hessian matrices can be calculated 

analytically, the minimum point can also be found analytically. This is a considerable advantage 

over the integrated method which takes a relatively large time to find the minimum yet this 

method deals with possible numerical errors and instability issues (see section 3.3.3.1).  

 

Figure 3.3: Fitting response surface using second-order least squares regression 

 



   

 

50 

 

3.4.3 Calculation of Search Direction 

After finding the second-order surface function, it is easy to pinpoint the minimum of the 

surface function using the integrated method comprised of Newton’s method and the steepest 

descent direction (see Section 3.3.3). Since the surface is a quadratic function, Newton’s method 

finds the stationary point in a single step, but if this point is not a local minimum this method is 

replaced with the steepest descent. However, as the designated surface function is only valid 

inside the model region, the minimum point found outside the boundaries of the model region 

cannot be accepted. This means that the model region might constrain the answers given by the 

integrated method; therefore it is necessary to calculate the step length in Eq. (3.2). According to 

this methodology, there are three possible conditions to calculate α
k
: (i) if Newton’s method 

calculates a descent direction and x
k
+p

k
 lies within the model region, then α

k 
=1; (ii) if Newton’s 

method calculates a descent direction and x
k
+p

k
 lies outside the model region, then α

k
 is chosen 

to project x
k
+α

k
p

k
 onto 

k
; and (iii) if the stationary point found by Eq. (3.7) is an ascent 

direction then p
k
 follows the steepest descent direction and α

k
 is chosen to project x

k
+α

k
p

k
 onto 


k
. 

Figure 3.4 shows how the search direction is found for an arbitrary surface function in a 

model region. For the surface function shown in this figure, Newton’s method finds the 

minimum outside the model region, thus the step length, α
k
, is determined by projecting the 

direction of the Newton’s step to the edge of the model region where in this case condition (i) 

holds. 



   

 

51 

 

 

Figure 3.4: Calculating search direction and step length 

 

3.4.4 Next Optimization Iteration 

When the value of the step length, α
k
, is found, Eq. (3.2) is used to determine the new 

point, x
k+1

, and the value of the corresponding real objective function, F(x
k
). Optimization is 

terminated once the norm of the difference between the new point and the current point, 

k+1 kx x , drops below an empirical threshold value; otherwise the program generates a new 

model region, centered on x
k+1

, as shown in Figure 3.5, and proceeds until convergence is 

obtained. 

Depending on the location of the new point, there are two possible conditions to design 

the new model region: (i) if the new point is located on the boundary of the model region, then 

the size of the model region remains unchanged and it is shifted to be centered on the new point; 

and (ii) if the new point is inside the model region, the model region is reduced in size by a 

factor of two in each dimension and then centered on the new point. The reason of shrinking the 

region is that there is a good possibility that the optimum point, x
*
, lies within the existing 



   

 

52 

 

region; so, in this case, the model region is shrunk in order to focus more on the area of interest 

to make sure it is on the right track to find the optimum point. 

 

Figure 3.5: Updating design parameters 

 

3.4.5 Effect of Constraints on RSM 

Since most practical optimization problems are constrained, meaning that they are 

reliable only within a feasible region, some modifications are required to the RSM algorithm. 

Corrections on the size and location of the model region, and, in some cases, a modified search 

along the feasible boundary are the major required adaptations caused by the constrained RSM. 

These modifications are specifically devised by Horsman [67] and are presented in the next two 

subsections. 

 

3.4.5.1 Resizing and Relocation of Model Region  

There are two conditions that might require the model region be resized or relocated 

during the constrained optimization procedure: 



   

 

53 

 

i) If the distance of x
k
 to the boundary of the constrained region is shorter than γ1 or γ2, 

which means that a part of the standard model region will go outside the feasible region, 

the sample points which are stepped out of the constrained region are shifted so that they 

are located on the edge of the region, as shown in Figure 3.6. As a result, by shrinking the 

model region, all function evaluations are performed inside the feasible region. 

 

 

 

 

 

 

 

Figure 3.6: Correction of model region intersecting a constraint 

ii) If the search calculation appoints x
k
 to be exactly on the boundary of the feasible 

region, the model region should shrink. Under this condition, where the edge of the 

model region and the constrained region are aligned, the model region is reduced in size 

in all the directions by the factor of two, as shown in Figure 3.7. In fact, having the 

current point on the constraint means that the minimum point lies outside the feasible 

region, but since the real objective function is only approximated by a low-order 

regression function, the model region shrinks around the point to improve the accuracy of 

the model function. By focusing more on that area through shrinking the model region 

and then calculating a new search direction and step length, it can be determined whether 

the minimum is outside the feasible region.  

x
k
 

Feasible Region 

Model Region 

x
k
 



   

 

54 

 

 

 

 

 

 

 

 

Figure 3.7: Change to model region when x
k
 is on a constraint 

 

3.4.5.2  Finding the Minimum on a Constraint 

If condition (ii) explained in Section 3.4.5.1 occurs, a method called the Generalized 

Reduced Gradient is used in order to reduce the dimensionality of the problem by one through 

treating the inequality constraint of the boundary as an equality constraint [69]. By doing so, 

further improvements can be found by searching along the boundary of the feasible region to 

find the minimum, and after that the algorithm switches back to its original dimensionality, 

shrinks the model region and follows a new search step. This optimization process along the 

boundary continues until the convergence condition is met or the search direction steps back into 

the feasible region [70].  

 

x
k
 

Feasible Region 

Model Region 

x
k
 



   

 

55 

 

Chapter 4                                   

Results and Discussion 

 

4.1 Introduction 

The methods explained in Chapters 2 and 3 were implemented to simulate two different 

combustion chambers. The results are explained in the current chapter. First, the CFD simulation 

of the BERL burner is studied and validated with the experimental data. Then, the RSM two-

dimensional optimization algorithm is applied with the goal of enhancing the fuel utilization. The 

technique’s capability to find the optimal solution is studied further in this chapter. In a separate 

study, the two-phase combustion flow in the GenTex diesel oil process heater was studied 

numerically and experimentally, and the effects of physical phenomena on the performance of 

the process heater are discussed. 

 

4.2 Design Optimization of the BERL Furnace 

The objective of this research is to demonstrate how the model-based optimization 

methodology can be applied to design industrial combustion equipment. We have chosen to 

optimize the design of the 300 kW BERL furnace [3] shown in Figure 4.1, since the burner is 

well-characterized and has been used to validate other CFD studies [71, 72]. The furnace is 

vertically fired and the exhaust gas exits the conical hood through a cylindrical duct. Fuel is 

injected through 24 circumferential holes, and combustion air is swirled through swirl blocks and 



   

 

56 

 

blown through an annular zone. Neither flue gas recirculation nor natural gas staging are used in 

this burner. Temperature distributions on the walls are given in Ref. [3]. The burner inlet 

conditions are summarized in Table 4.1.   

The goal of the current study is to optimize the fuel utilization, which is equivalent to 

maximizing the mass flux of CO2 along the exit plane of the furnace. Since by convention the 

objective function is defined so its minimum corresponds to the optimal design, we define the 

objective function, F(x),  

   
2CO totalF Y m  xx  (4.1) 

 

Figure 4.1: BERL burner geometry and design 

 

The design parameters include the quarl angle, x1, which is between 0° and 30°, and the 

swirl number, x2, which is allowed to vary between 0.1 and 0.8. In practice the swirl number can 

be changed by altering the swirl vane angle.   

x1 

x2
 
= swirl 

number 

fu
e
l 

fuel holes 

quarl angle 

a
ir

 

a
ir

 Meas. location 

Furnace exit (used to 
calculate F(x)) 



   

 

57 

 

Table 4.1: Burner inlet condition 
Problem parameter Inlet swirling air Inlet fuel 

Mass flow rate       ⁄  436.2 22.7 

Temperature (    312.15 308.15 

Swirl Number 0.56 0 

Turbulent intensity 17% 5% 

Turbulent kinetic energy (    ⁄  61.29 94.21 

Turbulent dissipation rate (    ⁄ ) 1.479      2.385      

  

4.2.1 CFD Validation 

Before implementing the optimization algorithm, it is necessary to accurately model the 

combustion inside the furnace. The physical domain of the furnace was treated as axisymmetric 

and discretized into 37×195 elements. (A grid independence study was carried out to ensure this 

level of refinement was sufficient.)  The fuel injection holes were modelled as a single annular 

slot in a manner that preserves the mass flow rate and momentum of methane entering the 

furnace. 

The CFD simulation is validated against the experimental data reported in Ref. [3]. A 

selection of results obtained at 0.027 m downstream from the burner throat is shown in Figure 

4.2. The predicted axial velocity, temperature, and CO2 mole fraction show reasonable 

agreement with the experiment implying accurate predictions of the flow and the concentration 

fields. Negative values for axial velocity indicate that there is an internal recirculation zone in 

front of the fuel gun due to the sudden expansion and swirl velocity of air exiting the quarl. This 

zone entrains most of the fuel exiting the gun, resulting in a very high reaction rate; this produces 

a higher temperature and higher concentration of product gases compared to the other parts of 

the furnace, as reflected by the CO2 concentration and temperature profiles in Figure 4.2. 

 



   

 

58 

 

  

 

 

 

Figure 4.2: Radial profiles of velocity, temperature, and CO2 mole fraction at 0.027m 

downstream of the burner throat 

 

Similar results were obtained for 0.343 m downstream form the burner exit as shown in 

Figure 4.3. Figures 4.2 and 4.3 indicate that the largest discrepancy between the model and 

experimental results is in the reaction zone. This is likely due to the two-step reduced mechanism 

and PaSR model, which overestimate the reaction rates. The other sources of error are the 

underprediction in the turbulent viscosity of the RNG k-ε, the approximation of constant 

radiative properties in the radiation model, and the modeling of the fuel inlet holes as an annular 

slot. 

r (m)

A
x

ia
l
V

e
lo

c
it

y
(m

/s
)

0 0.1 0.2 0.3 0.4 0.5
-20

-10

0

10

20

30

40

Current Study

Exp. (Sayre et al)

Radial Profile of Axial Velocity at x = 0.027m

r (m)

T
a

n
g

e
n

ti
a

l
V

e
lo

c
it

y
(m

/s
)

0 0.1 0.2 0.3 0.4 0.5
0

3

6

9

12

15

Current Study

Exp. (Sayre et al)

Radial Profile of Tangential Velocity at x = 0.27m

r (m)

T
e

m
p

e
ra

tu
re

('
K

)

0 0.1 0.2 0.3 0.4 0.5
300

600

900

1200

1500

1800

2100

2400

Current Study

Exp. (Sayre et al)

Radial Profile of Temperature at x = 0.027m

r (m)

C
O

2
(m

o
le

fr
a

c
ti

o
n

)

0 0.1 0.2 0.3 0.4 0.5
0

0.04

0.08

0.12

0.16

Current Study

Exp. (Sayre et al)

Radial Profile of CO2 mole fraction at x = 0.27m



   

 

59 

 

  

  
Figure 4.3: Radial profiles of velocity, temperature, and CO2 mole fraction at 0.343m 

downstream of the burner throat 

 

4.2.2 Optimization Implementation 

Once the CFD solver satisfactorily predicts the reacting flow inside the furnace, it 

connects to the RSM algorithm with the interface module written in C++ (see Appendix B). The 

initial design configuration is chosen to be x
0
 = [20°, 0.6727]

T
. Figure 4.4 shows the steps 

followed by the RSM algorithm to maximize the CO2 mass generation. Sampled points used to 

construct the response surface are shown in circles while the larger circles represent the optimum 

point found at the corresponding iteration. Note that the contours shown in this figure correspond 

to the response surface, and not the true objective function. In the first iteration, Eq. (3.2) 

r (m)

A
x

ia
l
V

e
lo

c
it

y
(m

/s
)

0 0.1 0.2 0.3 0.4 0.5
-3

0

3

6

9

12

15

18

21

24

Current Study

Exp. (Sayre et al)

Radial Profile of Axial Velocity at x = 0.343m

r (m)

T
a

n
g

e
n

ti
a

l
V

e
lo

c
it

y
(m

/s
)

0 0.1 0.2 0.3 0.4 0.5
0

3

6

9

12

15

Current Study

Exp. (Sayre et al)

Radial Profile of Tangential Velocity at x = 0.343m

r (m)

T
e

m
p

e
ra

tu
re

('
K

)

0 0.1 0.2 0.3 0.4 0.5
300

600

900

1200

1500

1800

2100

2400

Current Study

Exp. (Sayre et al)

Radial Profile of Temperature at x = 0.343m

r (m)

C
O

2
(m

o
le

fr
a

c
ti

o
n

)

0 0.1 0.2 0.3 0.4 0.5
0

0.04

0.08

0.12

0.16

Current Study

Exp. (Sayre et al)

Radial Profile of CO2 mole fraction at x = 0.343m



   

 

60 

 

produces a new set of points, x
1
, located on the model region boundary showing that the extreme 

point is outside the model region and since the calculated extreme point gives an ascent 

direction, the model region keeps its size and takes the steepest descent direction to the point 

(condition (iii) from Section 3.4.3). 

Since the upper points of the next model region would lie outside of the feasible region, 

the model region is shrunk so that the new model region is bounded by the upper bound 

constraint of x2. The second optimization iteration follows condition (iii) resulting in point on the 

boundary. This means that the minimum point is located outside the feasible region, but since the 

real objective function is only approximated by a low-order regression function, the model 

region shrinks around the point to improve the accuracy of the model function. The next point 

falls in the feasible region following condition (i) (explained in Section 3.4.3) and the model 

region steps back to the inside of the feasible region. For the next iterations, condition (i) takes 

place which makes the model shrink around the point and recalculate to make sure the real 

optimum point is inside the model region. 

At the final iteration, a small region is left which determines the value of the objective 

function slightly lower than the earlier point, thus the optimization is terminated offering the 

previous point as the optimum solution; x*23.2149, 0.5098]
T
 with the CO2 mass generation 

of 52.6976 kg/hr. The value of the objective function for the original case was calculated as 

51.3128 kg/hr which reveals that the original burner could be modified to improve its 

performance. 

One of the main impediments to model-based optimization of industrial combustion 

equipment is the overall calculation time. Since each optimization step requires multiple 



   

 

61 

 

evaluations of F(x) to calculate p
k
, and sometimes α

k
, many CFD simulations are executed 

during optimization, a number that increases geometrically with the number of design 

parameters. Furthermore, due to its long running time the procedure must be carried out 

automatically without user interaction; this is especially challenging since, due to inherent 

numerical stiffness of the governing equations, CFD simulations of combustion are especially 

prone to divergence. 

To overcome these challenges, at each iteration the field variables (velocity, temperature, 

species, etc.) are initialized using the results of the previous iteration, mapped to the adjusted 

geometry. This dramatically reduces the computational time needed to converge the solutions, 

since the CFD algorithm starts with small residuals due only to the (relatively small) change in 

furnace geometry across iterations. In addition, since each CFD simulation is initialized from a 

physically realistic solution, the chance of divergence becomes much lower; this allows the user 

to employ higher values of under-relaxation factors, resulting in even faster convergence. By 

doing so the number of the iterations needed to converge the governing equations for each 

evaluation of F(x) is generally reduced to below 1000 (except for the first simulation), resulting 

in a total calculation time for this problem of about 10 hours running on a single core computer. 



   

 

62 

 

 

X1 (Quarl Angle)

X
2

(S
w

ir
l
N

o
)

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
F

52.4984

52.4309

52.3635

52.296

52.2286

52.1611

52.0937

52.0262

51.9587

51.8913

51.8238

X* = (20.0653, 0.8)
F(x) = 52.4191 kg/hr

X1 (Quarl Angle)

X
2

(S
w

ir
l
N

o
)

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
F

52.6867

52.6752

52.6638

52.6523

52.6409

52.6294

52.6179

52.6065

52.595

52.5836

52.5721

X* = (23.2149, 0.5098)
F(x) = 52.6976 kg/hr

X1 (Quarl Angle)

X
2

(S
w

ir
l
N

o
)

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
F

52.1061

51.9459

51.7857

51.6255

51.4653

51.3051

51.1448

50.9846

50.8244

50.6642

50.504

X* = (20, 0.6727)
F(x) = 52.2535 kg/hr

X1 (Quarl Angle)

X
2

(S
w

ir
l
N

o
)

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
F

52.487

52.4635

52.44

52.4165

52.393

52.3695

52.346

52.3225

52.299

52.2755

52.252

X* = (21.5274, 0.6)
F(x) = 52.5005 kg/hr

X1 (Quarl Angle)

X
2

(S
w

ir
l
N

o
)

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
F

52.6066

52.5832

52.5598

52.5364

52.513

52.4896

52.4662

52.4428

52.4194

52.396

52.3726

X* = (23.6304, 0.5315)
F(x) = 52.6071 kg/hr

Step 1 

Step 3 Step 4 

Step 2 

Step 5 

 

 

Figure 4.4: Optimization steps followed by the RSM algorithm 



 

63 

 

4.3 Measurements and Modeling of Diesel Combustion in a Cylindrical Industrial 

Process Heater 

In this section the combustion of diesel spray in the GenTex 50M process heater is 

studied. The process heater belongs to GenTex Oilfield Manufacturing Inc. located in Red Deer, 

Alberta. Since the numerical results of liquid fuel combustion are very sensitive to the fuel spray 

distribution coming out of the injector [73], collecting sufficient information on the behaviour of 

the spray was necessary. Thus, the spray distribution of the operating injector was studied 

numerically and experimentally at National Research Council of Canada (NRC). Next, the 

temperature distribution along the centerline of the process heater was measured in order to 

validate the simulation of the combustion field. Numerical simulations for both the cold spray 

and the diesel combustion were then carried out and results agreed with the experimental data. 

 

4.3.1 Cold Spray Measurements and Injector Characteristics 

The diesel fuel is introduced into the burner through a Y-type multi-hole injector. As 

shown in Figure 4.5, the injector contains 6 orifices which are spread circumferentially. The 

atomizing air is blown from the middle hole and entrains the fuel which is being injected through 

the six circumferentially located fuel channels surrounding it.  

The measurements were performed only for one orifice of the injector while the other 

orifices were sealed because observations showed each of the orifices produce an almost 

identical solid-cone spray. Accordingly, instead of making the measurements for the entire area 

of the spray which requires a large testing area and takes an extensive time for testing, only the 

flow from one orifice was studied. 



 

64 

 

 

 

 

Figure 4.5: The multi-hole injector (units are in inches) [74] 

 

The technique applied to analyze the droplet sizes is Laser Diffraction Spectrometry 

(LDS). The instrument used in the current study is a Sympatec HELOS/KR, which combines a 

laser-based optical transmitter, an optical receiver, an electronic signal processor and software 

for capturing and analyzing data. This device provides a laser beam with thickness of 2 inches 

and measures droplets from 0.1 µm to 8750 µm in diameter. The diffraction of the laser light 

results from the interaction of the light with the droplets and this interaction can be described 

mathematically using Mie theory [75]. The measured diffraction signals are due to contributions 

from all droplet size classes, so the droplet size distribution must be involved using inverse 

 

 



 

65 

 

analysis. The measurement precision is typically ±1% deviation with respect to the standard 

metre [76].  

Due to the NRC safety rules, instead of a real fuel which is flammable, water is studied as 

the working fluid. Water is discharged through a pump rated at 80 psi with the volumetric flow 

rate of 41 gallons per hour. As it passes through a nozzle, it produces a distinctive solid-cone 

spray pattern. As soon as the droplets confront the laser beam of the LDS system, the equipment 

measures the size distribution of the droplets as well as the Sauter mean diameter (D32) and the 

arithmetic mean diameter (D10). The Sauter mean diameter (SMD) is defined as the diameter of a 

sphere which has the same volume/surface area ratio of the real droplet. SMD is typically 

defined as  

3 2SMD v sd d  (4.2) 

where 

s pd A   (4.3) 

 

 
1 3

6v pd V   (4.4) 

where Ap and Vp are the surface area and volume of the particle, respectively. ds and dv are called 

surface diameter and volume diameter and are usually measured directly by other means without 

the knowledge of Ap or Vp. The Sauter mean diameter for a group of n particles, D32, is calculated 

as  

3

,

1
32

2

,

1

n

v i

i

n

s i

i

d

D

d









 (4.5) 

The arithmetic mean diameter, D10, is the average of the sizes of each of the droplets, 



 

66 

 

10

1

1 n

i

i

D d
n 

   (4.6) 

The nozzle was set up in a vertical position and the measurements were conducted at five 

axial locations, beginning at 101.6 mm and continuing to 228.6, 304.8, 457.2, and 635.0 mm 

downstream of the spray nozzle. The measuring distance and the position of the laser beam and 

the spray cone are shown in Figure 4.6. These distances correspond to 63.5, 142.8, 190.5, 285.7 

and 396.8 in terms of distances non-dimensionalized by the nominal nozzle diameter which is 

1.6 mm [77]. 

 

Figure 4.6: The spray cone alignment versus the LDS laser beam 

 

4.3.2 GenTex Process Heater and Temperature Measurements 

The 50M GenTex process heater is 0.928 m in outside diameter and 2.040 m in length of 

the casing with a total thermal input of 5 Mbtu/hr. It consists of three layers of water coils as are 

shown in Figure 4.7. The combustion gases pass through the innermost, intermediate and 

Vertical Direction

Horizontal Direction

Spray Nozzle

M
ea

su
ri

n
g 

D
is

ta
n

ce



 

67 

 

outermost passages adjacent to water coils and heats water inside the coils. Figure 4.8 shows the 

burner used in the heater being studied. The burner consists of the multi-hole injector located at 

the center, a tangential vane swirler with a vane angle of 22º, and a firepot made from a 

perforated drum. The fuel is pumped to the burner and a blower feeds the air to a swirler and the 

perforated base in order to create recirculation zones required for stabilizing the flame. Ignition 

occurs a short distance from the injector. The hot combustion gases heat the water by convection 

and radiation with the water coils, and finally leaves the process heater through a stack. The 

operating conditions of the process heater are given in Table 4.2. 

 

 

Figure 4.7: 50M heater sketch (top figure) [78] and the innermost layer (bottom picture) 
 



 

68 

 

 

 

Figure 4.8: Burner configuration [78] 
 

 

Table 4.2: GenTex burner inlet conditions 

Air/fuel ratio 23.535 

Volumetric flow rate of air (m
3
/sec) 1.0146 

Swirl number 0.85 

Vane angle 22º 

Temperature of fuel and air (ºC) 25 

 

The temperature of the combustion gases inside the innermost zone was measured using a 

K-type thermocouple (see Figure 4.9). The specific thermocouple has an aluminum head and a 

grounded junction to protect the effect of radiation heat transfer on the metal wires. The 

protection tube with a 0.5 inch diameter covers the metal wires which are configured in a four-

bore rounded 3 inch long insulator and are parallel-welded. 

 

Figure 4.9: K-type thermocouple probe inserted from a hole at the end-side of the heater 



 

69 

 

4.3.3 Validation of Spray Injection Tests at NRC 

There are many known droplet size distribution functions such as normal, log-normal, 

root-normal, Nukiyama-Tanasawa, and Rosin-Rammler. For the majority of the simulations, 

initial droplet sizes at the injector location were chosen from prescribed probability density 

function using the Rosin-Rammler distribution, f(D),  

1

( ) exp

nn

n

nD D
f D

D D

   
   

   

 (4.7) 

where n is the spread parameter, and D  is the characteristic droplet size. The Rosin-Rammler 

cumulative distribution function, CDF, is then 

0

( ) 1 exp

nD
D

CDF f D dD
D

  
     

   
  (4.8) 

However, it should be noted that the parcel size distribution is different from the particle size 

distribution described by Eq. (4.8). Indeed, there is a factor of D
3
 difference between the size 

distribution PDF of individual particles and modeled parcels of particles; 

3( ) ( )parcel particlef D D f D . The reason is that the submodel parameter, PPP (number of particles 

per parcel), is based on a fixed mass per parcel which weights the droplet distribution by a factor 

proportional to 1/D
3
. Accordingly, in order to obtain the desired particle size distribution, the 

scaled parcel distribution must be implemented in the spray model which brings the following 

parcel distribution [79], 

0

1
( )

D

parcelCDF f D dD
N

   (4.9) 

where 



 

70 

 

1
3( ) exp

n
n

parcel n

nD D
f D D

D D

   
   
   

 (4.10) 

and N is a normalization factor, which is calculated as follows 

3

0

3
( ) 1parcelN f D dD D

n


 

    
 

  (4.11) 

where Г is the Gamma function. Thus based on the above relations and by performing certain 

calculations, the arithmetic and Sauter mean diameter are respectively calculated as 

10

1
1D D

n

 
   

 
 (4.12) 

 

32

3
1

2
1

n
D D

n

 
  
 
 

  
 

 (4.13) 

By using Eqs. (4.12) and (4.13) the variation of D32/D10 versus the spread parameter, n, is 

shown in Figure 4.10. Accordingly, by using, D32, and D10, which are obtained experimentally, 

the value of n can be found from Figure 4.10 and subsequently the value of D  can be specified. 

 

Figure 4.10: Variation of spread parameter, n, with 

respect to the experimental data, D32 and D10 

D
32

/D
10

S
p

re
a

d
P

a
ra

m
e

te
r,

n

1 1.5 2 2.5 3
1

2

3

4

5

6

7

8

9

10



 

71 

 

Very close to the nozzle, since the break-up of the main jet takes place with a complex 

unstable behavior and also as the optical thickness is considerably high, measuring the spray 

distribution is not accurate using the current equipment. Therefore, the experimental studies at 

NRC for a vertical nozzle test were brought to the closest reliable location at 4 inches 

downstream of the tip of the injector. Correspondingly, the experiments at this location provided 

the values of 32 48.29 D m  and 10 23.69 D m . The Rosin-Rammler parameters were 

obtained from Eqs. (4.12) and (4.13) and are presented in Table 2.1.  

In order to test the capability of this Rosin-Rammler function, it was compared with the 

experimentally derived size distribution of a spray as shown in Figure 4.11. The experimental 

size distribution of the spray was acquired from a single orifice with the injection pressure of 50 

psi at the distance of 4 inches downstream of the tip of the nozzle, and was compared with the 

corresponding Rosin-Rammler function. Although, there are some discrepancies for small 

droplets, the Rosin-Rammler function is generally a good fit to the data. The histogram doesn’t 

show the droplets with the size of smaller than 18 µm, a limitation of the lens used in the LDS 

device where it is able to detect only the sizes of the droplets which are above 18 µm. 

Due to the symmetry of the injector, the simulation was performed on only one wedge 

with the angle of 60 degrees corresponding to one injection orifice. The total run-time is set to be 

1 second and the Cartesian grid size of 66×116×11 was applied on the wedge with length and 

radius of 4 and 6 inches respectively. The working fluid is water, and the water spray initial 

condition is defined using the data (Table 2.1) obtained from the Rosin-Rammler relation 

described earlier. 



 

72 

 

 

Figure 4.11: Rosin-Rammler distribution versus experimental data 

 

Several experiments were performed at NRC’s Sands and Oil Laboratory on the size 

distribution of the droplets [77] and compared with the simulation results. Figure 4.12 shows the 

experimental and numerical arithmetic mean diameter distribution of the spray, D10, along the 

centerline of the innermost coil of the heater. The numerical curve follows reasonably the 

experimental data. As can be seen, the droplet size doesn’t greatly change which means that the 

effect of evaporation is not very high especially at upstream locations. While evaporation does 

not play a major role at upstream locations, its effect cannot be neglected. Although the 

evaporation takes place weakly in room temperature indeed, still some part of the droplets 

masses are transferred to the environment due to considerable convective heat transfer rate 

between the air and the spray as a result of high velocity of the droplets. Also, since an increase 

in the mean diameter is observed, it can be concluded that the role of coalescence is not 

negligible either. 

0 30 60 90 120 150 180 
0 

3 

6 

9 

12 

15 
f(

D
) 

%
 

D (µm) 

Exp. Hitogram 

Rosin-Rammler  



 

73 

 

 

Figure 4.12: Distribution of numerical and experimental arithmetic mean diameter of spray 

at various axial locations 

 

Figure 4.13 shows the spray distribution with their velocity magnitudes inside the 

computational domain. A gradation of droplets sizes in the radius of each of the cones is 

observed which is due to the different dynamic behaviour of small and large droplets. 

Principally, the reason is that large droplets are dispersed by the spray initial cone angle and 

subsequent interactions with turbulent fluctuations in the entrained air, while smaller droplets are 

generally brought to the spray centerline by aerodynamic drag interactions with the entrained air. 

From Figure 4.12 and Figure 4.13, it can be observed that the droplet size distribution 

becomes more uniform further downstream because most flow mechanisms (e.g. turbulent 

mixing and coalescence) become spatially uniform. 

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
ri

th
m

a
ti

c 
M

ea
n

 D
ia

m
et

er
, 

D
1
0
, 
(µ

m
) 

Distance from the tip of the injector (m) 

OpenFOAM
Exp



 

74 

 

 

Figure 4.13: Spray distribution with droplets velocity magnitudes (m/sec) 

 

4.3.4 Simulation of Combustion inside the Process Heater 

In this section, the results of the simulation of reacting flow in the GenTex diesel fired 

cylindrical process heater are presented. The calculations were performed on a finite-difference 

grid of 70×19×11 nodes. 1500 parcels were defined to represent the spray coming out of the 

injector. It was assumed that the droplets evaporate first (evaporation process) and then oxidizes 

(burning process). The unsteady solver simulation converged to steady-state condition less than 

1.0 second after the injection of the spray. 

The presence of air coming through the perforated drum was neglected. Inlet air 

conditions are thoroughly studied and presented by Ref. [4] and summarized in Table 4.2 along 

with other inlet conditions.  



 

75 

 

Figure 4.14 shows the predicted velocity vectors of the flow inside the innermost region. 

As expected, it indicates two features of swirling flow; central recirculation zones oriented in 

front of the burner and wall-bounded vortices formed in the corner of the heater. Near the burner, 

due to the geometry conditions and also the inlet flow conditions such as highly-swirling inlet 

air, the flow moves toward the wall [53]. Therefore, this motion makes the central recirculation 

zone larger (resulting in a low fully development rate) and the corner vortex smaller, which helps 

the flame become stable. If no recirculation zone were created in front of the burner, no fuel 

would be trapped in the near burner region and the flame would quench. Moving further 

downstream, the recirculation region gets thinner and the flow continuously gets closer to the 

fully-developed condition, all of the flow in the same direction. 

 

Figure 4.14: Velocity vectors of the combusting gases inside the heater 

 

Figure 4.15 indicates how the fuel has been spread through the domain. To avoid 

confusion the spray distribution of only one orifice is shown here. It can be observed that the 

majority of droplets disappear when they intersect the air flow coming from the swirlers. 

Observations from Figure 4.17 support this idea, which results in the combustion zone being 

very close to the interaction of the droplet and swirling air.  



 

76 

 

Only a minority of droplets persist further into the domain. These are normally larger 

droplets with high momentum which can pass the spray/air intersection area and follow the air 

flow path with a relatively high speed (as shown in Figure 4.15) and get closer to the walls. The 

presence of a small number of droplets near the walls is normally not a considerable concern, but 

if this amount increases, it will spread the flame from the center which might cause corrosion of 

the coils, pollutant formation, incomplete combustion and consequently lower combustion 

efficiency. The spray aerodynamic characteristics and the air/spray interactions play the major 

role in this phenomenon. Therefore, these factors should be taken into account in cases of shape 

designing the injector, and computing air/fuel ratio and swirling/axial velocities. 

 

Figure 4.15: Fuel spray distribution 

 

The results of the current numerical simulation were validated against the previously-

described experimental results. Figure 4.16 shows the temperature distribution of the combustion 

gases along the centerline of the heater. The numerical and experimental results are in satisfying 

agreement. As can be realized, in a very short distance from the tip of the nozzle, the temperature 

is not high which shows that most of the evaporation and combustion hasn’t taken place yet. The 



 

77 

 

sudden rise in the temperature indicates where, axially, combustion takes place and the 

simulation satisfactorily predicts this location. In the downstream direction, the temperature 

changes smoothly with little variation along the centerline. This comes as a consequence of the 

relatively uniform heat transfer of the combustion gases owing to the large size recirculation 

zones. In this case, the flow transfers heat uniformly to the walls as a result of flow recirculation 

inside this area. This result shows the importance of the swirling velocity and the burner/heater 

geometry on the uniformity of heat transfer inside the process heater. 

As mentioned in Chapter 2, since combustion problems deal with high temperatures, the 

radiation heat transfer plays a major role on the total phenomena [80]. While the 

absorption/emission coefficients of the gas varies inside the heater, in modeling the radiation for 

the current fuel oil combustion problem, it is assumed that the radiative properties of the species 

are constant regardless of the species concentration and the flow temperature. This assumption 

causes the temperature to be over-predicted in some areas such as along the centerline as shown 

in Figure 4.16, and under-predicted in others. The reason is that, in reality, the areas with higher 

temperature such as the flame should have a higher absorption/emission values which means 

they radiate more energy to the surrounding compared to the predicted values. Therefore, the 

actual temperature of these areas should be lower than the numerical results. Moreover, the 

uncertainty of the temperature values obtained from the k-type thermocouple rises in high 

temperatures; however this should result in a very slight change in the experimental data. 

Other causes of the difference between the numerical and experimental results can be 

identified. These include neglecting the soot formation, implementation of reduced chemical 

mechanisms instead of considering the fully-complex chemical reactions, experimental errors in 



 

78 

 

measuring the droplet size distribution caused by both the apparatus and the operators, and using 

a water spray distribution instead of a diesel fuel distribution. 

 

Figure 4.16: Comparison of numerical and experimental temperature profile 

along the centerline 

 

The calculated temperature contours of the flow are illustrated in Figure 4.17. As the fuel 

is injected with an angle with respect to the centerline and it mixes and reacts with the air 

followed by the main flow path on the recirculation zone, the flame doesn’t take place along the 

centerline (off-centre flame). Accordingly, most of the combusting gases go to the recirculation 

zone resulting in the temperature rise in that area. 

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.5 1 1.5 2

T
em

p
er

a
tu

re
 (

K
) 

Axial Distance from the tip of the nozzle (m) 

Modeling
Experiment



 

79 

 

The size of the recirculation zone has a great effect on the performance of the process 

heater. If it is too small, all the fuel vapour is not able to enter the recirculation zone which 

causes lower efficiency and more incomplete combustion. On the other hand, if the recirculation 

zone is too large, the flame gets closer to the walls causing corrosion and a lower mixing rate. 

While the current off-centre flame has brought reasonable efficiency for the present heater [4], 

the optimal size of the recirculation zone could be still studied to enhance the heat transfer to the 

coils. 

 

 Figure 4.17: Temperature contours (units are in Kelvin) 

 

Figure 4.18 reveals the influence of recirculation regions on the temperature distribution 

and the flame shape (In this figure the arrows do not represent the magnitude of the velocity 

vectors, but only show the direction of the flow). It can be observed from the figure that the 

major hot combustion gas diffuses to the recirculation zone and makes this area a relatively 

uniform hot region, while the area near the walls remain fairly cold.  



 

80 

 

Four basic standard types of diffusion flames are defined and categorized based on their 

applications by the IFRF flame classifications [81]. From Figure 4.18, the corresponding flame 

type can be recognized. Based on the IFRF definition of flame types, the current flame best fits 

the “flame type-1” category because the swirl velocity of inlet air is in a medium range and the 

fuel jet penetrates partially or fully into the recirculation zone, while the most of the combustion 

process occurs within this recirculation zone. This type of flame seems to be appropriate for the 

current process heater since, based on its geometry, the other types would bring too short or too 

long flames making them intense or unstable which will yield lower efficiency and higher 

pollutant content. 

 

Figure 4.18: Effect of recirculation zones on the shape of temperature distributions 

(temperature in kelvin) 

 

4.4 Optimization of the Performance of the GenTex Process Heater 

Although the studies on the current heater illustrate its good performance, it is believed 

that still a number of modifications could be made to improve the performance, e.g. uniform heat 



 

81 

 

transfer to the coils. The relevant design parameters and the optimization objective function, 

along with the prescribed optimization method, are briefly explained in the next chapter and 

offered as a suitable extension to the current work.  



 

82 

 

Chapter 5                           

Conclusions and Future Work 

 

5.1 Major Conclusions 

In this section, a summary of the major outcomes of the current research along with the 

challenges in the modeling and the advantages over the other methods are presented for each of 

the combustion design problems. 

 

5.1.1 Optimization of the BERL Furnace 

This thesis showed how model-based design optimization, in this case based on response 

surface methodology, can be applied to optimize the design of a natural-gas fired furnace. As the 

first step, the CFD model satisfactorily predicted details of the reacting flow inside the furnace. 

The model was then linked to the response surface optimization algorithm with the interface 

module written in C++. The objective of this optimization problem was to maximize the 

conversion of fuel to carbon dioxide, by changing the quarl angle and swirl number.  

The initial design configuration of the furnace was chosen to have the quarl angle of 20° 

and swirl number of 0.67 with CO2 mass generation of 51.313 kg/hr whereas the optimization 

method offered the optimum solution equal to  23.2° and 0.51 for quarl angle and swirl number 

respectively. The value of the objective function for the optimal solution resulted in 52.698 kg/hr 

CO2 production, leading to an improvement in fuel utilization. 



 

83 

 

As expressed in the context of this thesis, a major challenge of model-based design 

optimization lies in the computationally-intense nature of CFD combustion simulations, and 

unexpected divergence caused by the stiffness of the governing equations. Initializing the field 

variables of each CFD evaluation using values from the previous design iteration avoided 

divergence and greatly reduced the overall computation time. The number of iterations needed to 

converge the governing equations for each objective function evaluation was generally reduced 

to below 1000, resulting in a total calculation time of 10 hours and 18 minutes running on a 

single core computer. 

All of the mentioned advantages together lead to a suitable algorithm for combustion 

equipment, which is also computationally inexpensive compared to the other methods. 

Furthermore, this algorithm is not restricted to the furnace studied here only; it indeed can be 

simply extended to many other types of combustion devices. 

 

5.1.2 Modeling the GenTex Diesel-Fired Process Heater 

The combustion of diesel spray in the GenTex 50M process heater was studied in the 

next part of this thesis. At the first step, the injection spray pattern was characterized 

experimentally using laser diffraction spectrometry. Then the temperature distribution along the 

centerline of the heater was measured and compared with the results of combustion modeling. 

Numerical simulations were carried out for both the cold spray and the diesel combustion and the 

outcome was in good agreement with the experimental data. 

It was shown how several two-phase phenomena, e.g. evaporation, turbulent mixing and 

coalescence influence the droplet size distribution throughout the spray field, consequently 



 

84 

 

indicating the importance of the geometry and shape of the injector on the overall performance 

of the process heater.   

The other important parameter affecting the performance of the process heater was found 

to be the size of the central recirculation zone. If it is too small, all the fuel vapour is not able to 

enter the recirculation zone which causes lower efficiency and incomplete combustion, while if 

the recirculation zone is too large, the flame gets closer to the walls causing corrosion and a 

lower mixing rate. This result showed the importance of the swirling velocity and the 

burner/heater geometry on the uniformity of heat transfer inside the process heater. 

On the whole, it was concluded that in a successful parametric design of a liquid fuel-

fired combustor it is necessary to consider the effect of design parameters on the spray 

aerodynamic characteristics and size distribution, the air/spray interactions, and the size of the 

recirculation zones.  

While the present study illustrated good functionality of the process heater in question, it 

is presumed that it would be worthwhile to study some of the other capabilities of this heater 

using the model-based optimization algorithm explained in Section 5.2.3. 

 

5.2 Suggestions for Future Work 

Although the optimization presented in this thesis represents a step toward model-based 

optimization, in order to reach the final step, an optimization scheme widely-applicable to 

complex industrial combustion problems, significant research is still needed. This section 

suggests some research directions that could provide for the next steps. 



 

85 

 

5.2.1 Optimization of BERL Furnace by Improving the Radiation Model 

As mentioned in Section 2.3.5, the radiant properties of the combusting gas inside the 

BERL furnace domain are approximated as uniform, while the property values actually change 

throughout the domain. In order to make precise radiative transfer calculations in 

absorbing/emitting gases such as the BERL furnace, it is recommended that the Full Spectrum 

Correlated-k Distribution (FSCK) model [82] be added to the current radiation library. The 

FSCK distributions are collected from pre-determined narrow band k-distributions with the aim 

of reducing the computation time. Using this method decreases the CPU time considerably 

compared to the narrow band methods [82]. 

By modifying the radiation model, it would be possible to investigate other objectives 

such as, the effect of heat transfers on the walls. Since the radiation heat transfer mode plays a 

major role in the temperature distribution of the walls, seeking the most uniform radiant heat 

load on the walls using the FSCK model could be the next goal in further optimizing the furnace. 

 

5.2.2 Multi-Objective Optimization of the BERL Furnace 

In the current work, the optimization of a single-objective function was studied; while the 

combination of several objectives, e.g. minimizing NOx or CO while producing a uniform outlet 

temperature distribution, could be investigated as a further step. To model the multi-objective 

optimization of the BERL furnace two major methods are offered to enhance the current RSM 

model: the PRESS weighted objective function; and a Pareto front analysis. 



 

86 

 

5.2.2.1 PRESS Weighted (PWS)  

In this approach, a weighted average of objective functions combines information from 

multiple individual objective functions using a weighting scheme [83]. There are several 

weighting techniques available in Ref. [83]. On occasion, based on the nature of the problem, it 

is also possible to heuristically define the weights of each of the objective functions. 

 

5.2.2.2 Pareto Front 

In this method, Pareto-optimal solutions combine the set of objectives that are not 

dominated by any other objective. The set of Pareto-optimal solutions are then used to create a 

Pareto front [84] which represents all optimal combinations of the objectives when their relative 

importance is unknown. In a two-objective problem, for instance, the Pareto front delivers a 

single line in a two dimensional geometry where the optimum point could be recognized simply 

by the user/designer. 

 

5.2.3 Surrogate-Based Model Optimization of the GenTex 50M Process Heater 

Surrogate-based modeling [85, 86] is a robust method for finding an optimal solution in 

optimization problems which involve complex objective functions and a large number of design 

variables. This model combines different minimization techniques, e.g. polynomial response 

surface [85], Kriging [86], radial-basis neural network [87], and PRESS weighted surrogates 

[86]. At the first step of the optimization procedure, each of the minimization models are solved 

for some different sample points and then the error assessment (difference between the value of 

the actual and the approximated objective functions) for each of the minimization models is 

made. Then the error values are compared to each other and one best method is selected. Since 



 

87 

 

the best method, in most of minimization problems, is problem-dependant, using this step helps 

to choose the most accurate method for optimization. 

In the next step, a global sensitivity analysis [88] is performed on the selected method 

with the purpose of recognizing the relative effect of design variables on the objective functions. 

By doing so, some design variables which have weak effects on the total performance of the 

objective function are removed, consequently resulting in a reduction of the dimension of the 

design space. Finally, the multi-objective optimization problem is solved for the effective design 

variables using the Pareto Front technique. This provides a set of optimal solutions, from which 

the designer identifies the most desirable one. 

 

5.2.4 Application of Metaheuristic Optimization Algorithms  

Design optimization studies associated with non-gradient methods which use 

metaheuristic algorithms, e.g. simulated annealing and genetic algorithms [39] are rapidly 

growing.  

Compared to gradient-based methods, simulated annealing is a stronger method to find 

the optimal solution when the objective function has multiple local minima [89], but it is 

computationally more expensive since it needs many more analysis evaluations to converge.  

Genetic algorithms are a set of algorithms that are derived from Darwin’s theory of 

natural selection. The framework of genetic algorithms as search and optimization tools is 

described in details in Ref. [90]. Contrary to gradient-based methods, genetic algorithms search 

from a population of points, not a single point at a time, and they use objective function 

information, not derivatives. In addition, they are written based on a probabilistic approach, 



 

88 

 

unlike the gradient-based methods which are deterministic [90]. This method is especially 

suitable when the objective function is multi-modal, i.e. large numbers of local minima, where 

gradient-based methods are unlikely able to find an optimal point satisfactorily. 

As noted above, gradient-based and metaheuristic methods operate completely 

differently, having their own advantages and disadvantages. In the current study, it is not clear 

which of the two approaches is more efficient. Implementation of a metaheuristic method, e.g. 

genetic algorithm, to extend the current case studies, in order to compare the capabilities, and 

suitability of each of the methods in typical combustion problems, would be a useful exercise. 

 

5.2.5 Studying Other Design Variables and Objective Functions 

Another way to enhance the performance of the combustion chambers described in this 

thesis is to investigate the effect of several other design variables. New design parameters that 

could be studied are air/fuel ratio, confinement ratio (the combustor diameter divided by burner 

throat diameter), inlet air temperature, number of injector holes, wall temperature distribution, 

amount and the location of the secondary inlet air, fuel staging, fuel flow rate, burner quarl shape 

(by mapping a B-spline to the boundary of the quarl), and heat flux input to the combustor. Each 

of these variables could change the aerodynamics of the flow, coupling between temperature and 

turbulent kinetics, and/or Damkohler number of the flow, consequently affecting most of the 

prescribed objective functions. Accordingly, all of these parameters have the potential to bring 

added improvements to the combustors; however in order to avoid the enlargement in dimension 

of the design space, global sensitivity analysis should be performed as explained in Section 5.2.3.   



 

89 

 

In addition to the design variables, several other objectives could be investigated for 

enhancing the performance of the combustors. Since, in the recent decades, emissions reduction 

in combustion-related industrial equipment is one of the major priorities to mitigate global 

warming, and environmental pollution, objectives such as minimizing CO and NOx in 

combustion chambers has become of great importance. A comprehensive table of detailed 

chemical reactions along with powerful solvers for modeling chemical kinetics will lead to a 

reasonable CO estimation; however current NOx models still have some discrepancies with 

respect to measurements. In addition, using complex chemical mechanisms greatly increases the 

computational time, requiring faster CPUs or parallel processors. Other objectives that could be 

studied are uniform radiant heat load on the combustor walls, uniform temperature distribution at 

some point in the furnace, percent of complete combustion, overall variation of temperature or 

heat flux. In a certain optimization problem, each of these objectives could be studied separately 

(single-objective) or could accompany other objectives (multi-objective) as defined in Section 

5.2.2. Studying multi-objective optimization is of greater value to the industrial combustion 

community than single-objective optimization as the multi-objective approach satisfies several 

goals at one time in the practical design of the combustion equipment.  

 

5.2.6 Parallel Processing in the Simulation of the GenTex Process Heater  

In the optimization procedure of the BERL furnace, since the flow field for each 

objective function evaluation was initialized with the numerical results of the previously 

converged point, parallel processing doesn’t decrease the calculation time appreciably. However 

as the GenTex process heater was modelled by an unsteady CFD simulation that is required to 

solve the problem for each point from the initial time, parallel processing could significantly 



 

90 

 

reduce the computation time. The response surface methodology is amenable to parallelization, 

as each objective function evaluation used to construct the response surface is carried out 

independently. Accordingly, each of the function evaluations could be tasked to a separate 

processor to speed computational, however OpenFOAM has the ability of parallel processing on 

its own. By reducing the calculation time more complex problems with more details could be 

solved, e.g. multi-objective optimization with detailed chemical mechanisms in complex 

geometries. 



 

91 

 

References 

 

[1]  R. H. Myers, D. C. Montgomery and C. M. Anderson-Cook, Response Surface 

Methodology, 3rd ed., Wiley, 2009.  

[2]  OpenFOAM, "the Open Source CFD Toolbox," 2008. [Online]. Available: 

http://www.openfoam.com/. [Accessed Version 1.5]. 

[3]  A. Sayre, N. Lallemant, J. Dugue and R. Weber, "Scaling Characteristics of Aerodynamics 

and Low NOx Properties of Industrial Natural Gas Burners. The Scaling 400 StudyPart IV: 

The 300 kW BERL Test Results," International Flame Research Foundation, 1994. 

[4]  K. J. Daun, S. Hajitaheri and J. L. Wright, "Numerical Simulation of the GenTex 50M 

Heater," 2011. 

[5]  OpenFOAM, "User Guide," 2008. [Online]. Available: 

http://foam.sourceforge.net/docs/Guides-a4/UserGuide.pdf. 

[6]  C. Pianese and G. Rizzo, "Interactive Optimization of Internal Combustion Engine Tests by 

means of Sequential Experimental Design," in ASME ESDA 96, Montpellier, France, Jul. 

1996.  

[7]  K. Nakakita, T. Kondoh, K. Ohsawa, T. Takahashi and S. Watanabe, "Optimization of Pilot 

Injection Pattern and its Effect on Diesel Combustion with High Pressure Injection," JSME 

International Journal, pp. 966-973, 1994.  

[8]  J. P. Bingue, A. V. Saveliev and L. A. Kennedy, "Optimization of Hydrogen Production by 

Filtration Combustion of Methane by Oxygen Enrichment and Depletion," International 

Journal of Hydrogen Energy, vol. 29(13), pp. 1365-1370, 2004.  

[9]  F. Hasselriis, "Optimization of Combustion Conditions to Minimize Dioxin Emissions," 

Waste Management & Research, vol. 5, p. 311–326, 1987.  

[10]  G. J. Hesselmann, "Optimization of Combustion by Fuel Testing in a NOx Reduction Test 

Facility," Fuel, vol. 76(13), pp. 1269-1275, 1997.  

[11]  J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., New York: Springer, 2006.  

[12]  M. Sinoda, R. Tanaka and N. Arai, "Optimization of Heat Transfer Performances of a Heat-

Recirculating Ceramic Burner during Methane/Air and Low-Calorific-Fuel/Air 



 

92 

 

Combustion," Energy Conversion and Management, vol. 43, pp. 1479-1491, 2002.  

[13]  D. Buche, P. Stoll, R. Dornberger and P. Koumoutsakos, "Multi-objective Evolutionary 

Algorithm for the Optimization of Noisy Combustion Processes," IEEE Transactions on 

Systems, Management, and Cybernetics, vol. 32(4), Nov. 2002.  

[14]  C. O. Pascherelt, B. Schuermans and D. Büche, "Combustion Process Optimization Using 

Evolutionary Algorithm," in Proceedings of ASME Turbo Expo, Jun. 2003.  

[15]  N. Hansen, A. S. P. Niederberger, L. Guzzella and P. Koumoutsakos, "A Method for 

Handling Uncertainty in Evolutionary Optimization with an Application to Feedback 

Control of Combustion," in IEEE Transactions on Evolutionary Computation, Feb. 2009.  

[16]  J. Z. Chu, S. S. Shieh, S. S. Jang, C. I. Chien, H. P. Wan and H. H. Ko, "Constrained 

Optimization of Combustion in a Simulated Coal-Fired Boiler using Artificial Neural 

Network Model and Information Analysis," Fuel, vol. 82, pp. 693-703, 2003.  

[17]  D. Büche, P. Stoll and P. Koumoutsakos, "An Evolutionary Algorithm for Multi-objective 

Optimization of Combustion Processes," Center for Turbulence Research Annual Research 

Briefs, pp. 231-239, 2001.  

[18]  J. I. Madsen, W. Shyvy and R. T. Haftka, "Response Surface Techniques for Diffuser Shape 

Optimization," AIAA Journal, vol. 38(9), pp. 1512-1518, 2000.  

[19]  S. Y. Han and J. S. Maeng, "Shape Optimization of Cut-off in a Multi-Blade Fan/Scroll 

System Using Neural Network," International Journal of Heat and Mass Transfer, vol. 

46(15), pp. 2833-2839, 2003.  

[20]  C. H. Cheng and M. H. Chang, "Shape Design for a Cylinder with Uniform Temperature 

Distribution on the Outer Surface by Inverse Heat Transfer Method," International Journal 

of Heat and Mass Transfer, vol. 46(1), pp. 101-111, 2003.  

[21]  G. Fabbri, "Effect of Viscous Dissipation on the Optimization of the Heat Transfer in 

Internally Finned Tubes," International Journal of Heat and Mass Transfer, Vols. 47(14-

16), pp. 3003-3015, 2004.  

[22]  G. Katsaros, F. Campos, D. Kyriazis and T. Varvarigou, "CFD Automatic Optimization 

using OpenFOAM in Grid Environments," in OpenFOAM Intl. Conf., London, U.K., Nov. 

2007.  

[23]  D. Thévenin and G. Janiga, Optimization and Computational Fluid Dynamics, Berlin: 

Springer, 2008.  

[24]  B. M. Aizenbud and Y. B. Band, "Optimization of a Model Internal Combustion Engine," 



 

93 

 

Journal of Applied Physics, vol. 53(3), pp. 1277-1282, 1982.  

[25]  P. J. Smith, W. A. Sowa and P. O. Hedman, "Furnace Design Using Comprehensive 

Combustion Models," Combustion and Flame, vol. 79, pp. 111-121, 1990.  

[26]  C. D. Correa and P. J. Smith, "Optimization of Ehtylene Furnace Operations," in 1998 

AiChe Annual General Meeting, Miami Beach, 1998.  

[27]  D. Thévenin, K. Zähringer and G. Janiga, "Automatic Optimization of Two-Dimensional 

Burners," in Proceedings of the European Combustion Meeting ECM05, Louvain-la-Neuve, 

Belgium, 2005.  

[28]  G. Janiga and D. Thévenin, "Reducing the CO Emissions in a Laminar Burner using 

Different Numerical Optimization Methods," Journal of Power and Energy, vol. 221(5), p. 

647–655, 2007.  

[29]  L. A. Catalano, A. Dadone, D. Manodoro and A. Saponaro, "Efficient Design Optimization 

of Duct-Burners for Combined-Cycle and Cogenerative Plants," Engineering Optimization 

38, pp. 801-820, 2006.  

[30]  O. S. Motsamai, j. A. Visser and R. M. Morris, "Multi-Disciplinary Design Optimization of 

a Combustor," Engineering Optimization , vol. 40, no. 2, pp. 137-156, 2008.  

[31]  J. A. Snyman and A. M. Hay, "The Dynamic-Q Optimization Method: an Alternative to 

SQP?," International Journal of Computers and Mathematics with Applications, vol. 44, pp. 

1589-1598, 2002.  

[32]  V. Yakhot, S. Orszag, S. Thangam, T. Gatski and C. Speziale, "Development of Turbulence 

Models for Shear Flows by a Double Expansion Technique," Physics of Fluids A, vol. 4, no. 

7, pp. 1510-1520, 1992.  

[33]  J. Chomiak and A. Karlsson, "Flame Liftoff in Diesel Sprays," in Twenty-Sixth Symposium 

(International) on Combustion, The Combustion Institute, Pittsburg, Naples, Italy, 1996.  

[34]  V. I. Golovitchev, N. Nordin, R. Jarnicki and J. Chomiak, "3-D Diesel Spray Simulations 

Using a New Detailed Chemistry Turbulent Combustion Model," in CEC/SAE Spring Fuels 

& Lubricants Meeting & Exposition, Paris, June 19-22, 2000.  

[35]  C. K. Westbrook and F. L. Dryer, "Simplified Reaction Mechanisms for the Oxidation of 

Hydrocarbon Fuels in Flames," Combustion Science and Technology, vol. 27, pp. 31-43, 

1981.  

[36]  R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 4 ed., New York: Taylor & 

Francis Inc., 2002.  



 

94 

 

[37]  N. W. Bressloff, J. B. Moss and P. Rubini, "The Differential Total Absorptivity Solution to 

the Radiative Transfer Equation for Mixtures of Combustion Gases and Soot," Numerical 

Heat Transfer, Part B : Fundamentals, vol. 31, no. 1, pp. 43-60, 1997.  

[38]  M. F. Modest, Radiative Heat Transfer, New York: Academic Press, 2003, pp. 465-492. 

[39]  C. E. J. Baukal, V. Y. Gershtein and X. Li, Computational Fluid Dynamics in Industrial 

Combustion, USA: CRC Press, 2001.  

[40]  M. S. Day and J. B. Bell, "Numerical Simulation of Laminar Reacting Flows with Complex 

Chemistry," Combust. Theory Modelling, vol. 4, no. 4, pp. 535-556, 2000.  

[41]  "ODE System Solvers," [Online]. Available: http://www.openfoam.com/features/ODE-

solvers.php. 

[42]  F. J. H. and Peric M., Computational Methods for Fluid Dynamics, third ed., Springer-

Verlag, 2001.  

[43]  D. Veynante and L. Vervisch, "Turbulent Combustion Modeling," Progress in Energy and 

Combustion Science, pp. 193-266, 2002.  

[44]  Y. Zhang and A. L. Boehman, "Autoignition of Binary Fuel Blends of n-Heptane and C7 

Esters in a Motored Engine," Combustion and Flame, vol. 159, no. 4, pp. 1619-1630, 2011.  

[45]  W. P. Jones and S. Navarro-Martinez, "Numerical Study of n-Heptane Auto-ignition Using 

LES-PDF Methods," Flow, Turbulence and Combustion, vol. 83, no. 3, pp. 407-423, 2009.  

[46]  S. R. Turns, An Introduction to Combustion: Concepts and Applications, New York: 

McGraw-Hill, 1996.  

[47]  K. N. C. Bray, "Turbulent Transport in Flames," Proceedings: Mathematical and Physical 

Sciences, vol. 451, pp. 231-256, 1995.  

[48]  R. W. Bilger, "Turbulent Diffusion Flames," Annual Review of Fluid Mechanics, vol. 21, 

pp. 101-135, 1989.  

[49]  J. A. J. Karlsson, Modeling Auto-Ignition, Flame Propagation and Combustion in Non-

stationary Turbulent Sprays, Goteborg: Chalmers University of Technology, 1995.  

[50]  K. J. Daun, "Heat Transfer Analysis of the GenTex 70M Process Heater," Prepared for: John 

Person, Tangent Engineering Design Services, 2009. 

[51]  C. E. J. Baukal, Heat Transfer in Industrial Combustion, Boca Raton FL: CRC Press, 2000, 

p. 106. 



 

95 

 

[52]  M. Maesawa, Y. Tanaka, Y. Ogisu and Y. Tsukamoto, "Radiation from the Tuminous 

Flames of Liquid Fuel Jets in a Combustion Chamber," in Twelfth Symposium 

(International) on Combustion, Pittsburgh, PA, 1969.  

[53]  A. Stambuleanu, Flame Combustion Processes in Industry, Tunbridge Wells, UK: Abacus 

Press, 1976, p. 311. 

[54]  J. M. Beér and C. R. Howarth, "Radiation from Flames in Furnaces," in Twelfth Symposium 

(International) on Combustion, Pittsburgh, PA, 1969.  

[55]  D. B. Spalding, Combustion and Mass Transfer, Elsevier, 1978.  

[56]  C. Crowe, M. Sommerfeld and Y. Tsuji, Multiphase Flows with Droplets and Particles, 

CRC Press LLC, 1998.  

[57]  G. B. Macpherson, N. Nordin and H. G. Weller, "Particle Tracking in Unstructured, 

Arbitrary Polyhedral Meshes for Use in CFD and Molecular Dynamics," Communications in 

Numerical Methods in Engineering, 2008.  

[58]  F. M. White, Fluid Mechanics, McGraw Hill, 2010.  

[59]  S. W. Park, H. J. Kim and C. S. Lee, "Investigation of Atomization Characteristics and 

Prediction Accuracy of Hybrid Models for High-Speed Diesel Fuel Sprays," SAE Paper 

2003-01-1045, 2003.  

[60]  R. Rotondi, G. Bella, C. Grimaldi and L. Postrioti, "Atomization of High-Pressure Diesel 

Spray: Experimental Validation of a New Breakup Model," SAE paper 2001-01-1070, 2001.  

[61]  J. Lee and S. Goto, "Comparison of Spray Characteristics in Butane and Diesel Fuels by 

Numerical Analysis," SAE Technical Paper 2000-01-2941, 2000.  

[62]  D. Fuster, G. Agbaglah, C. Josserand, S. Popinet and S. Zaleski, "Numerical Simulation of 

Droplets, Bubbles and Waves: State of the Art," Fluid Dynamics Research, vol. 41, 2009.  

[63]  R. Reitz, "Modeling Atomization Processes in High-Pressure Vaporizing Sprays," 

Atomization and Spray Technology, pp. 309-337, 1987.  

[64]  N. Nordin, "Complex Chemistry Modeling of Diesel Spray," Chalmers University of 

Technology, Goteborg., 2001. 

[65]  R. Patil, "Numerical Simulation of Quenching Process in Coal Gasification," Friedrich-

Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, 2009. 

[66]  C. Mordasini, "Practical Numerical Training UKNum," [Online]. Available: 



 

96 

 

http://www.mpia-hd.mpg.de/~mordasini/UKNUM/Lecture_07.pdf. [Accessed 14 4 2012]. 

[67]  A. P. Horsman, "Design Optimization of a Porous Radiant Burner," University of Waterloo, 

Waterloo, 2010. 

[68]  "NIST/SEMATECH e-Handbook of Statistical Methods," 2010. [Online]. Available: 

http://www.itl.nist.gov/div898/handbook/. 

[69]  P. E. Gill, W. Murray and M. H. Wright, Practical Optimization, London: Academic Press, 

1986.  

[70]  A. P. Horsman and K. J. Daun, "Design Optimization of a Porous Radiant Burner," in 

Combustion Institute Canadian Section, Ottawa, Canada, May 9-12, 2010.  

[71]  K. C. Kaufman and W. A. Fiveland, "Validation of Industrial Gas Burner Models using In-

furnace Laboratory Measurements," in Proceedings of the AFRC Fall International 

Symposium, Monterey, CA, Oct. 15-18, 1995.  

[72]  J. P. Jessee and W. A. Fiveland, "A Non-Orthogonal Combustion Model for Natural Gas 

Flames," in Proceedings of the Third International Conference on Combustion Technologies 

for a clean Environment, Lisbon, Portugal, July 3-6, 1995.  

[73]  A. Saario, A. Rebola, P. Coelho, M. Costa and A. Oksanen, "Heavy Fuel Oil Combustion in 

a Cylindrical Laboratory Furnace: Measurements and Modeling," Fuel, pp. 359-369, 2005.  

[74]  J. Abbott, "As-Built Nozzle/Atomizer Review and Updates to 200M Prototype Nozzle 

Design," Tangent Design Engineering Ltd., Calgary, AB, Dec 24th 2010. 

[75]  M. Kerker, Scattering of Light and Other Electromagnetic Radiation, New York: Academic 

Press, 1969.  

[76]  "Sympatec GmbH System-Partikel-Technik," [Online]. Available: 

http://www.sympatec.com. 

[77]  D. Kirpalani, S. Hashemi and F. Toll, "Spray Measurements for ThermoGen Heater 50M Y-

Type Atomizer," ICPET/ITPCE, National Research of Canada (NRC/CNRC), Ottawa, May 

2011. 

[78]  Tangent Design Engineering Ltd, "50M Heater Solidworks Edrawing," Tangent Design 

Engineering Ltd., Calgary, AB, 2010. 

[79]  S. S. Yoon, "Droplet Distributions at the Liquid Core of a Turbulent Spray," Physics of 

Fluids, vol. 17, no. 3, pp. 035103-035103-24, 2005.  



 

97 

 

[80]  N. H. Afgan and J. M. Beer, Heat Transfer in Flames, Washington, D.C.: John Wiley & 

Sons, 1974.  

[81]  R. Weber, A. A. F. Peters, P. P. Breithaupt and B. M. Visser, "Mathematical Modeling of 

Swirling Flames of Pulverized Coal: What can Combustion Engineers Expect from 

Modeling?," Journal of Fluid Engineering, pp. 289-297, 1995.  

[82]  M. Modest, "The Full-Spectrum Correlated-k Distribution for Thermal Radiation from 

Molecular Gas-Particulate Mixtures," Journal of heat transfer, vol. 124, no. 1, pp. 30-38, 

2002.  

[83]  T. Goel, R. Haftka, W. Shyy and N. Queipo, "Ensemble of Surrogates," Structural 

Multidisciplinary Optimization, vol. 33, pp. 199-216, 2007.  

[84]  W. Shyy, N. V. Queipo, R. T. Haftka, T. Goel, R. Vaidyanathan and P. K. Tucker, 

"Surrogate-Based Analysis and Optimization," Progress in Aerospace Sciences, vol. 41, pp. 

1-28, 2005.  

[85]  Y. C. Cho, W. Du, G. Amit, W. Shyy, A. M. Sastry and C. C. Tseng, "Surrogate-Based 

Modeling and Dimension-Reduction Techniques for Thermo-Fluid & Energy Systems," in 

Invited talk in ASME/JSME 8th Thermal Engineering Joint Conference, Honolulu, Hawaii, 

Mar. 2011.  

[86]  Y. C. Cho, W. Du, G. Amit, W. Shyy, A. M. Sastry and C. C. Tseng, "Surrogate-based 

Modeling and Multi-Objective Optimization Techniques for Thermo-Fluid & Energy 

Systems," in Second International Conference on Computational Methods for Thermal 

Problems, Dalian, China, Sept. 5-7, 2011.  

[87]  T. Goel, D. Dorney, R. Haftka and W. Shyy, "Improving the Hydrodynamic Performance of 

Diffuser Vanes via Shape Optimization," Computers & Fluids, vol. 37, pp. 705-723, 2008.  

[88]  I. Sobol, "Sensitivity Estimates for non-Linear Mathematical Models," Mathematical 

Modelling and Computational Experiments, vol. 1, pp. 407-414, 1993.  

[89]  S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi., "Optimization by Simulated Annealing," 

Science, New Series, vol. 220, pp. 671-680, 1983.  

[90]  D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Boston, 

MA, USA: Addison Wesley, 1989.  

[91]  G. Smith, D. Golden, M. Frenklach, N. Moriarty, B. Eiteneer, M. Goldenberg, C. Bowman, 

R. Hanson, S. Song, W. Gardiner, V. Lissianski and Z. Qin, "GRI-Mech Version 3.0 

Thermodynamics," 7/30/99. 

 



 

98 

 

 

 

 

 

 

 

 

Appendix A:   CHEMKIN file 

 

 

 

 

 

 

 

 



 

99 

 

The chemistry solver in OpenFOAM is able to model all elementary or global reactions. 

The chemistry reader is written in the Chemkin file format. The mechanism used for the BERL 

furnace is a two-step reaction which deals with only CH4, O2, H2O, CO, CO2 species. The 

Chemkin file allows building reaction schemes and thermophysical properties for species which 

are not contained within the OpenFOAM's typical libraries, without any need to adapting the 

original solver; OpenFOAM includes a library that defines the thermophysical and transport 

properties for all the common species, so therefore only the reactions need to be defined by the 

user. 

The Chemkin file comprises the elements that comprise the reactants and products, (H, N, 

etc.), the reactant and product species, the chemical reaction, and the Arrhenius equation 

constants (see Eq. (2.17)). The Arrhenius equation is derived for laminar reactions, while the 

current problem involves with turbulent combustion. In this case, the reaction rates are governed 

by the slower phenomenon, whether it is chemistry or turbulent mixing as explained in Section 

2.2.2. The Chemkin file used for the case is as follows: 

!<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>!      

!  2-step reaction mechanisms         !      

!<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>!      

ELEMENTS 

H   O    C   N 

END 

SPECIE  

O2  H2O  CO  CO2  N2  CH4 

END 

REACTIONS JOULES/MOLE 

 2CH4 + 3O2 => 2CO + 4H2O 5.012E11   0   2e5 

 FORD / CH4 0.7 / 

 FORD / O2  0.8 / 

 

 2CO + O2 <=> 2CO2  2.239E12   0  1.7e5 

 FORD / CO 1.0 / 

 FORD / O2  0.25 / 

END 



 

100 

 

Thermophysical data are provided to the Chemkin linker within a separate file. These 

properties are derived based on the NASA data-bases for enthalpy, specific heat, and entropy for 

each chemical species [91]. The thermophysical properties file is typically named "therm.dat" 

which generally contains the polynomial coefficients representing thermodynamic properties of a 

selection of molecules. A typical “therm.dat” in OpenFOAM is shown here; 

THERMO 

   300.000  1000.000  5000.000 

! GRI-Mech Version 3.0 Thermodynamics released 7/30/99 

! NASA Polynomial format for CHEMKIN-II 

! see README file for disclaimer 

O                 L 1/90O   1               G   200.000  3500.000  1000.000    1 

 2.56942078E+00-8.59741137E-05 4.19484589E-08-1.00177799E-11 1.22833691E-15    2 

 2.92175791E+04 4.78433864E+00 3.16826710E+00-3.27931884E-03 6.64306396E-06    3 

-6.12806624E-09 2.11265971E-12 2.91222592E+04 2.05193346E+00                   4 

O2                TPIS89O   2               G   200.000  3500.000  1000.000    1 

 3.28253784E+00 1.48308754E-03-7.57966669E-07 2.09470555E-10-2.16717794E-14    2 

-1.08845772E+03 5.45323129E+00 3.78245636E+00-2.99673416E-03 9.84730201E-06    3 

-9.68129509E-09 3.24372837E-12-1.06394356E+03 3.65767573E+00                   4 

H                 L 7/88H   1               G   200.000  3500.000  1000.000    1 

 2.50000001E+00-2.30842973E-11 1.61561948E-14-4.73515235E-18 4.98197357E-22    2 

 2.54736599E+04-4.46682914E-01 2.50000000E+00 7.05332819E-13-1.99591964E-15    3 

 2.30081632E-18-9.27732332E-22 2.54736599E+04-4.46682853E-01                   4 

H2                TPIS78H   2               G   200.000  3500.000  1000.000    1 

 3.33727920E+00-4.94024731E-05 4.99456778E-07-1.79566394E-10 2.00255376E-14    2 

-9.50158922E+02-3.20502331E+00 2.34433112E+00 7.98052075E-03-1.94781510E-05    3 

 2.01572094E-08-7.37611761E-12-9.17935173E+02 6.83010238E-01                   4 

OH                RUS 78O   1H   1          G   200.000  3500.000  1000.000    1 

 3.09288767E+00 5.48429716E-04 1.26505228E-07-8.79461556E-11 1.17412376E-14    2 

 3.85865700E+03 4.47669610E+00 3.99201543E+00-2.40131752E-03 4.61793841E-06    3 

-3.88113333E-09 1.36411470E-12 3.61508056E+03-1.03925458E-01                   4 

H2O               L 8/89H   2O   1          G   200.000  3500.000  1000.000    1 

 3.03399249E+00 2.17691804E-03-1.64072518E-07-9.70419870E-11 1.68200992E-14    2 

-3.00042971E+04 4.96677010E+00 4.19864056E+00-2.03643410E-03 6.52040211E-06    3 

-5.48797062E-09 1.77197817E-12-3.02937267E+04-8.49032208E-01                   4 

HO2               L 5/89H   1O   2          G   200.000  3500.000  1000.000    1 

 4.01721090E+00 2.23982013E-03-6.33658150E-07 1.14246370E-10-1.07908535E-14    2 

 1.11856713E+02 3.78510215E+00 4.30179801E+00-4.74912051E-03 2.11582891E-05    3 

-2.42763894E-08 9.29225124E-12 2.94808040E+02 3.71666245E+00                   4 

H2O2              L 7/88H   2O   2          G   200.000  3500.000  1000.000    1 

 4.16500285E+00 4.90831694E-03-1.90139225E-06 3.71185986E-10-2.87908305E-14    2 

-1.78617877E+04 2.91615662E+00 4.27611269E+00-5.42822417E-04 1.67335701E-05    3 

-2.15770813E-08 8.62454363E-12-1.77025821E+04 3.43505074E+00                   4 

C                 L11/88C   1               G   200.000  3500.000  1000.000    1 

 2.49266888E+00 4.79889284E-05-7.24335020E-08 3.74291029E-11-4.87277893E-15    2 

 8.54512953E+04 4.80150373E+00 2.55423955E+00-3.21537724E-04 7.33792245E-07    3 

-7.32234889E-10 2.66521446E-13 8.54438832E+04 4.53130848E+00                   4 

CH                TPIS79C   1H   1          G   200.000  3500.000  1000.000    1 

 2.87846473E+00 9.70913681E-04 1.44445655E-07-1.30687849E-10 1.76079383E-14    2 

 7.10124364E+04 5.48497999E+00 3.48981665E+00 3.23835541E-04-1.68899065E-06    3 

 3.16217327E-09-1.40609067E-12 7.07972934E+04 2.08401108E+00                   4 

CH2               L S/93C   1H   2          G   200.000  3500.000  1000.000    1 

 2.87410113E+00 3.65639292E-03-1.40894597E-06 2.60179549E-10-1.87727567E-14    2 

 4.62636040E+04 6.17119324E+00 3.76267867E+00 9.68872143E-04 2.79489841E-06    3 

-3.85091153E-09 1.68741719E-12 4.60040401E+04 1.56253185E+00                   4 

CH2(S)            L S/93C   1H   2          G   200.000  3500.000  1000.000    1 

 2.29203842E+00 4.65588637E-03-2.01191947E-06 4.17906000E-10-3.39716365E-14    2 

 5.09259997E+04 8.62650169E+00 4.19860411E+00-2.36661419E-03 8.23296220E-06    3 

-6.68815981E-09 1.94314737E-12 5.04968163E+04-7.69118967E-01                   4 

CH3               L11/89C   1H   3          G   200.000  3500.000  1000.000    1 

 2.28571772E+00 7.23990037E-03-2.98714348E-06 5.95684644E-10-4.67154394E-14    2 



 

101 

 

 1.67755843E+04 8.48007179E+00 3.67359040E+00 2.01095175E-03 5.73021856E-06    3 

-6.87117425E-09 2.54385734E-12 1.64449988E+04 1.60456433E+00                   4 

CH4               L 8/88C   1H   4          G   200.000  3500.000  1000.000    1 

 7.48514950E-02 1.33909467E-02-5.73285809E-06 1.22292535E-09-1.01815230E-13    2 

-9.46834459E+03 1.84373180E+01 5.14987613E+00-1.36709788E-02 4.91800599E-05    3 

-4.84743026E-08 1.66693956E-11-1.02466476E+04-4.64130376E+00                   4 

CO                TPIS79C   1O   1          G   200.000  3500.000  1000.000    1 

 2.71518561E+00 2.06252743E-03-9.98825771E-07 2.30053008E-10-2.03647716E-14    2 

-1.41518724E+04 7.81868772E+00 3.57953347E+00-6.10353680E-04 1.01681433E-06    3 

 9.07005884E-10-9.04424499E-13-1.43440860E+04 3.50840928E+00                   4 

CO2               L 7/88C   1O   2          G   200.000  3500.000  1000.000    1 

 3.85746029E+00 4.41437026E-03-2.21481404E-06 5.23490188E-10-4.72084164E-14    2 

-4.87591660E+04 2.27163806E+00 2.35677352E+00 8.98459677E-03-7.12356269E-06    3 

 2.45919022E-09-1.43699548E-13-4.83719697E+04 9.90105222E+00                   4 

HCO               L12/89H   1C   1O   1     G   200.000  3500.000  1000.000    1 

 2.77217438E+00 4.95695526E-03-2.48445613E-06 5.89161778E-10-5.33508711E-14    2 

 4.01191815E+03 9.79834492E+00 4.22118584E+00-3.24392532E-03 1.37799446E-05    3 

-1.33144093E-08 4.33768865E-12 3.83956496E+03 3.39437243E+00                   4 

CH2O              L 8/88H   2C   1O   1     G   200.000  3500.000  1000.000    1 

 1.76069008E+00 9.20000082E-03-4.42258813E-06 1.00641212E-09-8.83855640E-14    2 

-1.39958323E+04 1.36563230E+01 4.79372315E+00-9.90833369E-03 3.73220008E-05    3 

-3.79285261E-08 1.31772652E-11-1.43089567E+04 6.02812900E-01                   4 

CH2OH             GUNL93C   1H   3O   1     G   200.000  3500.000  1000.000    1 

 3.69266569E+00 8.64576797E-03-3.75101120E-06 7.87234636E-10-6.48554201E-14    2 

-3.24250627E+03 5.81043215E+00 3.86388918E+00 5.59672304E-03 5.93271791E-06    3 

-1.04532012E-08 4.36967278E-12-3.19391367E+03 5.47302243E+00                   4 

CH3O              121686C   1H   3O   1     G   300.00   3000.00   1000.000    1 

 0.03770799E+02 0.07871497E-01-0.02656384E-04 0.03944431E-08-0.02112616E-12    2 

 0.12783252E+03 0.02929575E+02 0.02106204E+02 0.07216595E-01 0.05338472E-04    3 

-0.07377636E-07 0.02075610E-10 0.09786011E+04 0.13152177E+02                   4 

CH3OH             L 8/88C   1H   4O   1     G   200.000  3500.000  1000.000    1 

 1.78970791E+00 1.40938292E-02-6.36500835E-06 1.38171085E-09-1.17060220E-13    2 

-2.53748747E+04 1.45023623E+01 5.71539582E+00-1.52309129E-02 6.52441155E-05    3 

-7.10806889E-08 2.61352698E-11-2.56427656E+04-1.50409823E+00                   4 

C2H               L 1/91C   2H   1          G   200.000  3500.000  1000.000    1 

 3.16780652E+00 4.75221902E-03-1.83787077E-06 3.04190252E-10-1.77232770E-14    2 

 6.71210650E+04 6.63589475E+00 2.88965733E+00 1.34099611E-02-2.84769501E-05    3 

 2.94791045E-08-1.09331511E-11 6.68393932E+04 6.22296438E+00                   4 

C2H2              L 1/91C   2H   2          G   200.000  3500.000  1000.000    1 

 4.14756964E+00 5.96166664E-03-2.37294852E-06 4.67412171E-10-3.61235213E-14    2 

 2.59359992E+04-1.23028121E+00 8.08681094E-01 2.33615629E-02-3.55171815E-05    3 

 2.80152437E-08-8.50072974E-12 2.64289807E+04 1.39397051E+01                   4 

C2H3              L 2/92C   2H   3          G   200.000  3500.000  1000.000    1 

 3.01672400E+00 1.03302292E-02-4.68082349E-06 1.01763288E-09-8.62607041E-14    2 

 3.46128739E+04 7.78732378E+00 3.21246645E+00 1.51479162E-03 2.59209412E-05    3 

-3.57657847E-08 1.47150873E-11 3.48598468E+04 8.51054025E+00                   4 

C2H4              L 1/91C   2H   4          G   200.000  3500.000  1000.000    1 

 2.03611116E+00 1.46454151E-02-6.71077915E-06 1.47222923E-09-1.25706061E-13    2 

 4.93988614E+03 1.03053693E+01 3.95920148E+00-7.57052247E-03 5.70990292E-05    3 

-6.91588753E-08 2.69884373E-11 5.08977593E+03 4.09733096E+00                   4 

C2H5              L12/92C   2H   5          G   200.000  3500.000  1000.000    1 

 1.95465642E+00 1.73972722E-02-7.98206668E-06 1.75217689E-09-1.49641576E-13    2 

 1.28575200E+04 1.34624343E+01 4.30646568E+00-4.18658892E-03 4.97142807E-05    3 

-5.99126606E-08 2.30509004E-11 1.28416265E+04 4.70720924E+00                   4 

C2H6              L 8/88C   2H   6          G   200.000  3500.000  1000.000    1 

 1.07188150E+00 2.16852677E-02-1.00256067E-05 2.21412001E-09-1.90002890E-13    2 

-1.14263932E+04 1.51156107E+01 4.29142492E+00-5.50154270E-03 5.99438288E-05    3 

-7.08466285E-08 2.68685771E-11-1.15222055E+04 2.66682316E+00                   4 

CH2CO             L 5/90C   2H   2O   1     G   200.000  3500.000  1000.000    1 

 4.51129732E+00 9.00359745E-03-4.16939635E-06 9.23345882E-10-7.94838201E-14    2 

-7.55105311E+03 6.32247205E-01 2.13583630E+00 1.81188721E-02-1.73947474E-05    3 

 9.34397568E-09-2.01457615E-12-7.04291804E+03 1.22156480E+01                   4 

HCCO              SRIC91H   1C   2O   1     G   300.00   4000.00   1000.000    1 

 0.56282058E+01 0.40853401E-02-0.15934547E-05 0.28626052E-09-0.19407832E-13    2 

 0.19327215E+05-0.39302595E+01 0.22517214E+01 0.17655021E-01-0.23729101E-04    3 

 0.17275759E-07-0.50664811E-11 0.20059449E+05 0.12490417E+02                   4 

HCCOH              SRI91C   2O   1H   2     G   300.000  5000.000  1000.000    1 

 0.59238291E+01 0.67923600E-02-0.25658564E-05 0.44987841E-09-0.29940101E-13    2 

 0.72646260E+04-0.76017742E+01 0.12423733E+01 0.31072201E-01-0.50866864E-04    3 

 0.43137131E-07-0.14014594E-10 0.80316143E+04 0.13874319E+02                   4 

H2CN               41687H   2C   1N   1     G   300.00   4000.000  1000.000    1 



 

102 

 

 0.52097030E+01 0.29692911E-02-0.28555891E-06-0.16355500E-09 0.30432589E-13    2 

 0.27677109E+05-0.44444780E+01 0.28516610E+01 0.56952331E-02 0.10711400E-05    3 

-0.16226120E-08-0.23511081E-12 0.28637820E+05 0.89927511E+01                   4 

HCN               GRI/98H   1C   1N   1     G   200.000  6000.000  1000.000    1 

 0.38022392E+01 0.31464228E-02-0.10632185E-05 0.16619757E-09-0.97997570E-14    2 

 0.14407292E+05 0.15754601E+01 0.22589886E+01 0.10051170E-01-0.13351763E-04    3 

 0.10092349E-07-0.30089028E-11 0.14712633E+05 0.89164419E+01                   4 

HNO               And93 H   1N   1O   1     G   200.000  6000.000  1000.000    1 

 0.29792509E+01 0.34944059E-02-0.78549778E-06 0.57479594E-10-0.19335916E-15    2 

 0.11750582E+05 0.86063728E+01 0.45334916E+01-0.56696171E-02 0.18473207E-04    3 

-0.17137094E-07 0.55454573E-11 0.11548297E+05 0.17498417E+01                   4 

N                 L 6/88N   1               G   200.000  6000.000  1000.000    1 

 0.24159429E+01 0.17489065E-03-0.11902369E-06 0.30226245E-10-0.20360982E-14    2 

 0.56133773E+05 0.46496096E+01 0.25000000E+01 0.00000000E+00 0.00000000E+00    3 

 0.00000000E+00 0.00000000E+00 0.56104637E+05 0.41939087E+01                   4 

NNH               T07/93N   2H   1          G   200.000  6000.000  1000.000    1 

 0.37667544E+01 0.28915082E-02-0.10416620E-05 0.16842594E-09-0.10091896E-13    2 

 0.28650697E+05 0.44705067E+01 0.43446927E+01-0.48497072E-02 0.20059459E-04    3 

-0.21726464E-07 0.79469539E-11 0.28791973E+05 0.29779410E+01                   4 

N2O               L 7/88N   2O   1          G   200.000  6000.000  1000.000    1 

 0.48230729E+01 0.26270251E-02-0.95850874E-06 0.16000712E-09-0.97752303E-14    2 

 0.80734048E+04-0.22017207E+01 0.22571502E+01 0.11304728E-01-0.13671319E-04    3 

 0.96819806E-08-0.29307182E-11 0.87417744E+04 0.10757992E+02                   4 

NH                And94 N   1H   1          G   200.000  6000.000  1000.000    1 

 0.27836928E+01 0.13298430E-02-0.42478047E-06 0.78348501E-10-0.55044470E-14    2 

 0.42120848E+05 0.57407799E+01 0.34929085E+01 0.31179198E-03-0.14890484E-05    3 

 0.24816442E-08-0.10356967E-11 0.41880629E+05 0.18483278E+01                   4 

NH2               And89 N   1H   2          G   200.000  6000.000  1000.000    1 

 0.28347421E+01 0.32073082E-02-0.93390804E-06 0.13702953E-09-0.79206144E-14    2 

 0.22171957E+05 0.65204163E+01 0.42040029E+01-0.21061385E-02 0.71068348E-05    3 

-0.56115197E-08 0.16440717E-11 0.21885910E+05-0.14184248E+00                   4 

NH3               J 6/77N   1H   3          G   200.000  6000.000  1000.000    1 

 0.26344521E+01 0.56662560E-02-0.17278676E-05 0.23867161E-09-0.12578786E-13    2 

-0.65446958E+04 0.65662928E+01 0.42860274E+01-0.46605230E-02 0.21718513E-04    3 

-0.22808887E-07 0.82638046E-11-0.67417285E+04-0.62537277E+00                   4 

NO                RUS 78N   1O   1          G   200.000  6000.000  1000.000    1 

 0.32606056E+01 0.11911043E-02-0.42917048E-06 0.69457669E-10-0.40336099E-14    2 

 0.99209746E+04 0.63693027E+01 0.42184763E+01-0.46389760E-02 0.11041022E-04    3 

-0.93361354E-08 0.28035770E-11 0.98446230E+04 0.22808464E+01                   4 

NO2               L 7/88N   1O   2          G   200.000  6000.000  1000.000    1 

 0.48847542E+01 0.21723956E-02-0.82806906E-06 0.15747510E-09-0.10510895E-13    2 

 0.23164983E+04-0.11741695E+00 0.39440312E+01-0.15854290E-02 0.16657812E-04    3 

-0.20475426E-07 0.78350564E-11 0.28966179E+04 0.63119917E+01                   4 

HCNO              BDEA94H   1N   1C   1O   1G   300.000  5000.000  1382.000    1 

 6.59860456E+00 3.02778626E-03-1.07704346E-06 1.71666528E-10-1.01439391E-14    2 

 1.79661339E+04-1.03306599E+01 2.64727989E+00 1.27505342E-02-1.04794236E-05    3 

 4.41432836E-09-7.57521466E-13 1.92990252E+04 1.07332972E+01                   4 

HOCN              BDEA94H   1N   1C   1O   1G   300.000  5000.000  1368.000    1 

 5.89784885E+00 3.16789393E-03-1.11801064E-06 1.77243144E-10-1.04339177E-14    2 

-3.70653331E+03-6.18167825E+00 3.78604952E+00 6.88667922E-03-3.21487864E-06    3 

 5.17195767E-10 1.19360788E-14-2.82698400E+03 5.63292162E+00                   4 

HNCO              BDEA94H   1N   1C   1O   1G   300.000  5000.000  1478.000    1 

 6.22395134E+00 3.17864004E-03-1.09378755E-06 1.70735163E-10-9.95021955E-15    2 

-1.66599344E+04-8.38224741E+00 3.63096317E+00 7.30282357E-03-2.28050003E-06    3 

-6.61271298E-10 3.62235752E-13-1.55873636E+04 6.19457727E+00                   4 

NCO               EA 93 N   1C   1O   1     G   200.000  6000.000  1000.000    1 

 0.51521845E+01 0.23051761E-02-0.88033153E-06 0.14789098E-09-0.90977996E-14    2 

 0.14004123E+05-0.25442660E+01 0.28269308E+01 0.88051688E-02-0.83866134E-05    3 

 0.48016964E-08-0.13313595E-11 0.14682477E+05 0.95504646E+01                   4 

CN                HBH92 C   1N   1          G   200.000  6000.000  1000.000    1 

 0.37459805E+01 0.43450775E-04 0.29705984E-06-0.68651806E-10 0.44134173E-14    2 

 0.51536188E+05 0.27867601E+01 0.36129351E+01-0.95551327E-03 0.21442977E-05    3 

-0.31516323E-09-0.46430356E-12 0.51708340E+05 0.39804995E+01                   4 

HCNN              SRI/94C   1N   2H   1     G   300.000  5000.000  1000.000    1 

 0.58946362E+01 0.39895959E-02-0.15982380E-05 0.29249395E-09-0.20094686E-13    2 

 0.53452941E+05-0.51030502E+01 0.25243194E+01 0.15960619E-01-0.18816354E-04    3 

 0.12125540E-07-0.32357378E-11 0.54261984E+05 0.11675870E+02                   4 

N2                121286N   2               G   300.000  5000.000  1000.000    1 

 0.02926640E+02 0.14879768E-02-0.05684760E-05 0.10097038E-09-0.06753351E-13    2 

-0.09227977E+04 0.05980528E+02 0.03298677E+02 0.14082404E-02-0.03963222E-04    3 

 0.05641515E-07-0.02444854E-10-0.10208999E+04 0.03950372E+02                   4 



 

103 

 

AR                120186AR  1               G   300.000  5000.000  1000.000    1 

 0.02500000E+02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00    2 

-0.07453750E+04 0.04366000E+02 0.02500000E+02 0.00000000E+00 0.00000000E+00    3 

 0.00000000E+00 0.00000000E+00-0.07453750E+04 0.04366000E+02                   4 

C3H8              L 4/85C   3H   8          G   300.000  5000.000  1000.000    1 

 0.75341368E+01 0.18872239E-01-0.62718491E-05 0.91475649E-09-0.47838069E-13    2 

-0.16467516E+05-0.17892349E+02 0.93355381E+00 0.26424579E-01 0.61059727E-05    3 

-0.21977499E-07 0.95149253E-11-0.13958520E+05 0.19201691E+02                   4 

C3H7              L 9/84C   3H   7          G   300.000  5000.000  1000.000    1 

 0.77026987E+01 0.16044203E-01-0.52833220E-05 0.76298590E-09-0.39392284E-13    2 

 0.82984336E+04-0.15480180E+02 0.10515518E+01 0.25991980E-01 0.23800540E-05    3 

-0.19609569E-07 0.93732470E-11 0.10631863E+05 0.21122559E+02                   4 

CH3CHO            L 8/88C   2H   4O   1     G   200.000  6000.000  1000.000    1 

 0.54041108E+01 0.11723059E-01-0.42263137E-05 0.68372451E-09-0.40984863E-13    2 

-0.22593122E+05-0.34807917E+01 0.47294595E+01-0.31932858E-02 0.47534921E-04    3 

-0.57458611E-07 0.21931112E-10-0.21572878E+05 0.41030159E+01                   4 

CH2CHO            SAND86O   1H   3C   2     G   300.000  5000.000  1000.000    1 

 0.05975670E+02 0.08130591E-01-0.02743624E-04 0.04070304E-08-0.02176017E-12    2 

 0.04903218E+04-0.05045251E+02 0.03409062E+02 0.10738574E-01 0.01891492E-04    3 

-0.07158583E-07 0.02867385E-10 0.15214766E+04 0.09558290E+02                   4 

END 

 

 

 

 

 

 

 

 

 

 

 

 



 

104 

 

 

 

 

 

 

 

 

Appendix B:   RSM Computer Code 

  



 

105 

 

This appendix provides the RSM optimization code used in the current study. The code is 

written in C++ under Linux and it contains algorithms, libraries, and functions used in the RSM 

technique. Also, it displays how RSM connects to OpenFOAM to call the necessary CFD 

solvers, libraries, or dictionaries. 

  
#include <iostream> 

#include <vector> 

#include <fstream> 

#include <time.h> 

#include <stdio.h> //Sina 

#include <cmath> //Sina 

#include <math.h> //Sina 

#include <stdlib.h> //Sina 

#include <unistd.h> //Sina 

#include <iomanip> //Sina 

#include <string> //Sina 

#include <omp.h> //Sina 

#include <cstring> //Sina 

#include <string.h> //Sina 

 

using std::cout; //Sina 

using std::endl; //Sina 

//#include <fstream.h> //Sina 

//#include <vectorop.h> //Sina 

//#include <string> //Sina 

//#include <cstdlib> //Sina 

//#include <Cantera.h> 

//#include <onedim.h> 

//#include <IdealGasMix.h> 

//#include <equilibrium.h> 

//#include <transport.h> 

 

using namespace std; 

//using namespace Cantera; 

 

double Combust(vector<double> vars); 

int RSM(); 

int RSM2D(); 

double GRGM(vector<double> &x0, double f0, double alpha, double lcon, double rcon, int dim); 

double norm(vector<double> x); 

double inprod(vector<double>x, vector<double>y); 

vector<double> Mv(double **M,vector<double> v,double row, double col); 

double **MM(double **M1, double **M2, unsigned int a, double b, unsigned int c);// Sina "double 

a" and "double c" --> "unsigned int a" and "unsigned int c" 

vector<double> LUSolve(double **M,vector<double> v); 

double sum(vector<double> x); 

double newfun(vector<double> x, vector<double> b, double &g, double &H); 

double newfun2D(vector<double> x, vector<double> b, vector<double> &grad, double **&Hess); 

double fun2(double x, int maxIter); 

double fun2D(double x,double y, int maxIter); 

double **MT(double **M, unsigned int n, unsigned int p); // Sina "double n" and "double p" --> 

"unsigned int n" and "unsigned int p" 

double max(double x, double y); 

double min(double x, double y); 

int sign(double x); 

double f; 

double fnew; 

int CFDiter(int no, int maxIter); //Sina 

double readUnoSwirl (); //Sina 

vector<double> g; 

vector<double> gnew; 



 

106 

 

vector<double> xnew; 

int IDvariable;  //Sina 

int maxIter; //Sina 

 

int main() 

{ 

 //Setup Timer 

 time_t start; 

 time_t end; 

 double duration; 

 time (&start); 

/* 

//********Sina******** (it had been better defined as a seperate function) 

//Checking the number of the private processors 

  int argc;  

  char *argv[256]; 

  int id, nthreads; 

  #pragma omp parallel private(id)  

  { 

    id = omp_get_thread_num(); 

    printf("Hello Sina from thread %d\n", id); 

    #pragma omp barrier 

    if ( id == 0 ) { 

      nthreads = omp_get_num_threads(); 

    printf("There are %d threads\n\n",nthreads); 

    } 

  } 

//******************** 

*/ 

 //int dude=RSM(); //***** 

 int dude=RSM2D(); //***** 

 

 //End Timer 

 time (&end); 

 duration = difftime (end,start)/3600.0; 

 cout<< "duration = " << duration <<" hours"<< endl ; 

 

 //system("PAUSE"); Sina 

 return(0); 

} 

 

int RSM() 

{ 

 vector<double> x0(1); 

 vector<double> xprev(1);  

 

 float fi; //Sina 

 cout << endl; 

 printf ("Enter the initial point in the model region: "); 

 scanf ("%f",&fi); // Sina Maximum Point***** 

 x0[0]=fi; 

 cout<<"x0[0]:  " <<fi<<endl; //Sina 

 cout << endl; 

 

 printf ("Choose the Design Variable: "); 

 cout << endl; 

 printf ("1 = Quarl Angle "); 

 cout << endl; 

 printf ("2 = Swirl Number "); 

 cout << endl; 

 scanf ("%d",&IDvariable); 

 cout << endl; 

 

 //x0[0]=20;  

 xprev[0]=x0[0];  

 //Selecting starting points 

 vector<double> points(5); //***** 

 points[0]=0.36; //Sina //***** 

 points[1]=0.46; 

 points[2]=0.56; 

 points[3]=0.66; 



 

107 

 

 points[4]=0.76; 

 double alpha=(points[4]-points[0])/4.0; //***** 

 //Initialize quantities 

 double length=points.size(); 

 vector<double> f(length); 

 double diff1=10000; 

 double diff2=10000; 

 int minloc=0; //***** 

 int maxloc=4; //***** 

 double lcon=0.1;  //Left Constraint ***** 

 double rcon=0.8;   //Right Constraint ***** 

 int count=0;        //Added to control number of shrinks 

 double error; 

 int no = 0; //Number of Optimization iteration 

 int maxIter; 

 int maxCFD(); 

 

 maxIter = maxCFD(); 

 

 f[0]=fun2(points[0], maxIter); //objective function evaluation for 1-D case ***** 

 cout<<endl<<"Point = " <<points[0]<<"     "<<"Function = " <<f[0]<<endl<<endl; 

 

 system("cp -r constant iterations/");// Sina 

 system("cp -r system/controlDict iterations/system");// Sina 

 system("cp -r system/fvSchemes iterations/system");// Sina 

 system("cp -r system/fvSolution iterations/system");// Sina 

 system("cp -r 0 iterations/");// Sina 

 

 //Loop until the model and function have same value or the model points solution is the 

same 

 while (/*(diff1>0.0001) & */(diff2>0.02)) // ***** I believe diff1 is not necessary Sina, 

for angle diff2 could be "1" 

 { 

  for (int i=1;i<length;i++) //i should be equal to 1  Sina 

  { 

   f[i]=fun2(points[i], maxIter); 

   cout<<endl<<endl<<points[i]<<"   "<<f[i]<<endl<<endl; 

  } 

   

  //Perform Least Squares fit 

  //double n=length; //Sina 

  unsigned int n = length; //Sina 

  int k=1; //This is equal to the number of variables; ***** 

  //double p=2*k+1;  //Number of regressor variable.  Need to change for higher 

order.  Sina ***** 

  unsigned int p=2*k+1;  //Sina 

 

  double **X; 

  X=new double* [n]; 

  for (int i=0;i<n;i++) 

  { 

   *(X+i)=new double[p]; 

  } 

 

  for (int i=0;i<n;i++) 

  { 

   for (int c=0;c<k;c++) 

   { 

    X[i][c]=1; 

    X[i][c+1]=points[i]; 

    X[i][c+k+1]=pow(points[i],2); 

   } 

  } 

  double **Xt; 

  Xt=new double* [p]; 

  for (int i=0;i<p;i++) 

  { 

   *(Xt+i)=new double[n]; 

  } 

  Xt=MT(X,n,p); 

 



 

108 

 

  double **A; 

  A=new double* [p]; 

  for (int i=0;i<p;i++) 

  { 

   *(A+i)=new double[p]; 

  } 

  A=MM(Xt,X,p,n,p); 

  vector<double> c(p); 

  c=Mv(Xt,f,p,n); 

 

  vector<double> b(p); 

  b=LUSolve(A,c); 

  //Perform Newtons Method 

  double g; 

  double H; 

  double fmin=newfun(x0,b,g,H); 

  if (H<0) 

  { 

   double g1; 

   double H1; 

   vector<double> p(1); 

   p[0]=points[minloc]; 

   double b1=newfun(p,b,g1,H1); 

   double g2; 

   double H2; 

   p[0]=points[maxloc]; 

   double b2=newfun(p,b,g2,H2); 

   if (b1<=b2) 

   { 

    fmin=b1; 

    x0[0]=points[minloc]; 

   } 

   else 

   { 

    fmin=b2; 

    x0[0]=points[maxloc]; 

   } 

  } 

  else 

  { 

   double d=-g/H; 

   double temp;  //Added to stop solver from going beyond model range. 

   temp=x0[0]+d; 

   if (temp<points[minloc]) 

   { 

    x0[0]=points[minloc]; 

   } 

   else if (temp>points[maxloc]) 

   { 

    x0[0]=points[maxloc]; 

   } 

   else 

   { 

    x0[0]=x0[0]+d; 

    if (count<3) 

    { 

     alpha=alpha/2;//Shrinks if convex and inside box 

     count=count+1; 

    } 

    else 

    { 

     xprev[0]=x0[0]; 

    } 

   } 

   fmin=newfun(x0,b,g,H); 

  } 

  //cout<<"Next Step:  "<<x0[0]<<endl<<endl; //Sina***** 

  double fnew=fun2(x0[0], maxIter); 

 

  int ignore=0; 

  if (fnew>f[0]) 



 

109 

 

  { 

   x0[0]=points[0]; 

   fnew=f[0]; 

   xprev[0]=x0[0]; 

   ignore=1; 

  } 

 

   

  //Error Stuff 

  if (ignore==0) 

  { 

   vector<double> xm(p); 

   xm[0]=1; 

   xm[1]=x0[0]; 

   xm[2]=pow(x0[0],2); 

   vector<double> yhat(n); 

   yhat=Mv(X,b,n,p); 

   vector<double> fsurf(n); 

   for (int i=0;i<n;i++) 

   { 

    vector<double> node(1); 

    node[0]=points[0]; 

    fsurf[i]=pow((f[i]-yhat[i]),2)/(n-p); 

   } 

   double temp=sum(fsurf); 

   double s=sqrt(temp); 

   vector<double> error1(p); 

   error1=LUSolve(A,xm); 

   error=inprod(xm,error1); 

   error=s*2.919986*sqrt(error);  //The number is for 90% confidence from 

students t 

  } 

 

  cout<<endl<<endl<<"Next Point: "<<x0[0]<<"  Objective Function: 

"<<fnew<<endl<<endl; 

 

//--------------Sina  Copying CFD results due to the last iteration into Opt. iteration folder---

------------- 

 

  char optIt [50], cfdIt [50], cfdIt2 [50], copyCons [50] ; 

  char copySys1 [50], copySys2 [50], copySys3 [50], copyZero [50]; 

  int iter,ndTime; 

  no = no+1; 

 

  sprintf(optIt,"mkdir -p iterations/0%d", no); 

  system (optIt); 

  iter = CFDiter(no, maxIter); 

 

  sprintf(cfdIt,"cp -r %d iterations/0%d/", iter, no); 

  system (cfdIt); 

  sprintf(cfdIt2,"cp -r %d iterations/0%d/", iter, no+1); 

  system (cfdIt2); 

  sprintf(copyCons,"cp -r constant iterations/0%d/", no); 

  system (copyCons); 

  sprintf(copySys1,"cp -r system/controlDict iterations/0%d/system/", no); 

  system (copySys1); 

  sprintf(copySys2,"cp -r system/fvSchemes iterations/0%d/system/", no); 

  system (copySys2); 

  sprintf(copySys3,"cp -r system/fvSolution iterations/0%d/system/", no); 

  system (copySys3); 

  sprintf(copyZero,"cp -r 0 iterations/0%d", no); 

  system (copyZero); 

//-----------------------------------------------------------------------------------------------

------------- 

 

 

  //Update loop ending parameters 

  diff1=sqrt(pow((fnew-fmin)/fnew,2)); 

  vector<double> xtemp(1);   

  xtemp[0]=x0[0]-xprev[0];   

  xprev[0]=x0[0];   



 

110 

 

  diff2=norm(xtemp);   

  cout<<"Difference between the last two O. F.:  " <<diff1<<endl; 

  cout<<"Difference between the last two points:   "<<diff2<<endl; 

   

  f[0]=fnew; 

  //Update points 

  points[0]=x0[0]; 

  if (x0[0]<(lcon+2*alpha)) 

  { 

   if (x0[0]<=(lcon+alpha)) 

   { 

    if (x0[0]<=lcon) 

    { 

     if (count<3) 

     { 

      alpha=alpha/2;//Shrink if on min edge 

      count=count+1; 

     } 

     points[0]=lcon; 

     points[1]=points[0]+alpha; 

     points[2]=points[1]+alpha; 

     points[3]=points[2]+alpha; 

     points[4]=points[3]+alpha; 

     minloc=0; 

     maxloc=4; 

    } 

    else 

    { 

     points[1]=lcon; 

     points[2]=points[0]+alpha; 

     points[3]=points[2]+alpha; 

     points[4]=points[3]+alpha; 

     minloc=1; 

     maxloc=4; 

    } 

   } 

   else 

   { 

    points[1]=lcon; 

    points[2]=points[0]-alpha; 

    points[3]=points[0]+alpha; 

    points[4]=points[3]+alpha; 

    minloc=1; 

    maxloc=4; 

   }    

  } 

  else if (x0[0]>(rcon-2*alpha)) 

  { 

   if (x0[0]>=(rcon-alpha)) 

   { 

    if (x0[0]>=rcon) 

    { 

     if (count<3) 

     { 

      alpha=alpha/2;//Shrink if on max edge 

      count=count+1; 

     } 

     points[0]=rcon; 

     points[1]=points[0]-alpha; 

     points[2]=points[1]-alpha; 

     points[3]=points[2]-alpha; 

     points[4]=points[3]-alpha; 

     minloc=4; 

     maxloc=0; 

    } 

    else 

    { 

     points[1]=rcon; 

     points[2]=points[0]-alpha; 

     points[3]=points[2]-alpha; 

     points[4]=points[3]-alpha; 



 

111 

 

     minloc=4; 

     maxloc=1; 

    } 

   } 

   else 

   { 

    points[1]=rcon; 

    points[2]=points[0]+alpha; 

    points[3]=points[0]-alpha; 

    points[4]=points[3]-alpha; 

    minloc=4; 

    maxloc=1; 

   } 

  } 

  else 

  { 

   points[1]=points[0]-alpha; 

   points[2]=points[1]-alpha; 

   points[3]=points[0]+alpha; 

   points[4]=points[3]+alpha; 

   minloc=2; 

   maxloc=4; 

  } 

 } 

 cout<<"x*="<<x0[0]<<" with fmax="<<f[0]<<" +/-"<<error<<endl; 

 return(0); 

} 

 

 

//***********************************************************************************************

************ 

//***********************************************************************************************

************ 

//***********************************************************************************************

************ 

 

 

int RSM2D() 

{ 

 vector<double> x0(2); 

 vector<double> xprev(2); 

 

 float fi0; //Sina 

 float fi1; //Sina 

 cout << endl; 

 printf ("Enter the initial point for Quarl Angle: "); 

 scanf ("%f",&fi0); // Sina ***** 

 

 cout << endl; 

 printf ("Enter the initial point for Swirl Number: "); 

 scanf ("%f",&fi1); // Sina ***** 

 cout << endl; 

 

 x0[0]=fi0; //Sina 

 x0[1]=fi1; //Sina 

 

 //x0[0]=0.0; //*****Sina 1.445 

 //x0[1]=0.0; //*****Sina 0.88 

 xprev[0]=x0[0]; 

 xprev[1]=x0[1]; //Sina ***** "-" --> "=" 

  cout<<"xprev[0]:  " <<xprev[0]<<endl; //Sina 

  cout<<"xprev[1]:  " <<xprev[1]<<endl; //Sina 

 //Selecting starting points 

 double **points; 

 points=new double* [9]; 

 for (int i=0;i<9;i++) 

 { 

  *(points+i)=new double[2]; 

 } 

 points[0][0]=5.0607; //*****Sina 1.37 

 points[1][0]=5.0607; //*****Sina 1.37 



 

112 

 

 points[2][0]=5.0607; //*****Sina 1.37 

 points[3][0]=10.0607; //*****Sina 1.445 

 points[4][0]=10.0607; //*****Sina 1.445 

 points[5][0]=10.0607; //*****Sina 1.445 

 points[6][0]=15.0607; //*****Sina 1.52 

 points[7][0]=15.0607; //*****Sina 1.52 

 points[8][0]=15.0607; //*****Sina 1.52 

 

 points[0][1]=0.5; //*****Sina .87 

 points[1][1]=0.7; //*****Sina .88 

 points[2][1]=0.8; //*****Sina .89 

 points[3][1]=0.5; //*****Sina .87 

 points[4][1]=0.7; //*****Sina .88 

 points[5][1]=0.8; //*****Sina .89 

 points[6][1]=0.5; //*****Sina .87 

 points[7][1]=0.7; //*****Sina .88 

 points[8][1]=0.8; //*****Sina .89  

 

 double alpha1=sqrt(pow((points[3][0]-points[0][0]),2)); //*****Sina 0.075  ? 

 double alpha2=sqrt(pow((points[1][1]-points[0][1]),2)); //*****Sina 0.01   ? 

   

 //Initialize quantities 

 double length=9; 

 vector<double> f(length); 

 double diff1=10000; 

 double diff2=10000; 

 double diff2x=10000; 

 double diff2y=10000; 

 double lcon=  2; //*****Sina 0.69 

 double rcon= 30; //*****Sina 1.52 

 double bcon=0.1; //*****Sina 0.865 

 double tcon=0.8; //*****Sina 0.95 

 double error; 

 int flagl=0; 

 int flagr=0; 

 int flagb=0; 

 int flagt=0; 

 int count1=0; 

 int count2=0; 

 int nshrinks=4; 

 int noshrinkh=0; 

 int noshrinkv=0; 

 int start=0; 

 

 int no = 0; //Number of Optimization iteration Sina 

 int maxIter; //Sina 

 int maxCFD(); //Sina 

 

 maxIter = maxCFD(); //Sina 

 

 cout<< "approaching for the start point, (x,y) = " << points[0][0] << " , " << 

points[0][1] << endl;  //Sina 

 f[0]=fun2D(points[0][0],points[0][1], maxIter); 

 

 cout<<endl<<"Point = " <<points[0][0]<<" , "<<points[0][1]<<"     "<<"Function = " 

<<f[0]<<endl<<endl; 

 system("cp -r constant iterations/");// Sina 

 system("cp -r system/controlDict iterations/system");// Sina 

 system("cp -r system/fvSchemes iterations/system");// Sina 

 system("cp -r system/fvSolution iterations/system");// Sina 

 system("cp -r 0 iterations/");// Sina 

 

 //Loop until the model points solution is the same 

 while (/*(diff1>0.0001) & (diff2>0.001)*/ (diff2x>1) || (diff2y>0.02)) //*****Sina 

 { 

  for (int i=1;i<length;i++) 

  { 

   cout<< "approaching the point; (x,y) = " << points[i][0] << " , " << 

points[i][1] << endl;  //Sina 

   f[i]=fun2D(points[i][0],points[i][1], maxIter); 



 

113 

 

   cout<<endl<<"Point = "<<points[i][0]<<" , "<<points[i][1]<<"     

"<<"Function = "<<f[i]<<endl<<endl; 

  } 

  //Perform Least Squares fit 

  //double n=length; //Sina 

  unsigned int n = length; 

  int k=2; 

  //double p=2*k+2; //Sina ??? 

  unsigned int p=2*k+2; //Sina 

 

  double **X; 

  X=new double* [n]; 

  for (int i=0;i<n;i++) 

  { 

   *(X+i)=new double[p]; 

  } 

 

  for (int i=0;i<n;i++) 

  { 

   X[i][0]=1; 

   for (int c=0;c<k;c++) 

   { 

    X[i][c+1]=points[i][c]; 

    X[i][c+k+1]=pow(points[i][c],2); 

   } 

   for (int c=0;c<k-1;c++) 

   { 

    for (int j=c;j<k;j++) 

    { 

     X[i][c+2*k+1]=points[i][c]*points[i][j]; 

    } 

   } 

  } 

 

  double **Xt; 

  Xt=new double* [p]; 

  for (int i=0;i<p;i++) 

  { 

   *(Xt+i)=new double[n]; 

  } 

  Xt=MT(X,n,p); 

 

  double **A; 

  A=new double* [p]; 

  for (int i=0;i<p;i++) 

  { 

   *(A+i)=new double[p]; 

  } 

  A=MM(Xt,X,p,n,p); 

  vector<double> c(p); 

  c=Mv(Xt,f,p,n); 

 

  vector<double> b(p); 

  b=LUSolve(A,c); 

  //Perform Newtons Method 

  vector<double> grad(2); 

  double **Hess; 

  Hess=new double* [2]; 

  for (int i=0;i<2;i++) 

  { 

   *(Hess+i)=new double[2]; 

  } 

  double fmin=newfun2D(x0,b,grad,Hess); 

  vector<double> d(2); 

  vector<double> gneg(2); 

  gneg[0]=-grad[0]; 

  gneg[1]=-grad[1]; 

  double **Hes; 

  Hes=new double* [2]; 

  for (int i=0;i<2;i++) 

  { 



 

114 

 

   *(Hes+i)=new double[2]; 

  } 

  Hes[0][0]=Hess[0][0]; 

  Hes[0][1]=Hess[0][1]; 

  Hes[1][0]=Hess[1][0]; 

  Hes[1][1]=Hess[1][1]; 

  d=LUSolve(Hes,gneg); 

 

  //New code added to deal with indefinite Hessians.  Gaurentees descent. 

  double LS=inprod(gneg,d); 

  if (LS<0) 

  { 

   vector<double> dprime(2); 

   dprime[0]=sqrt(pow(gneg[0],2)); 

   dprime[1]=sqrt(pow(gneg[1],2)); 

   double alpha1prime=min(alpha1,min(rcon-x0[0],x0[0]-lcon)); 

   double alpha2prime=min(alpha2,min(tcon-x0[1],x0[1]-bcon)); 

 

   if ((alpha1prime==rcon-x0[0])&(sign(gneg[0])==-1))    

   { 

    alpha1prime=alpha1; 

   } 

   else if ((alpha1prime==x0[0]-lcon)&(sign(gneg[0])==1)) 

   { 

    alpha1prime=alpha1; 

   } 

   if ((alpha2prime==tcon-x0[1])&(sign(gneg[1])==-1)) 

   { 

    alpha2prime=alpha2; 

   } 

   else if ((alpha2prime==x0[1]-bcon)&(sign(gneg[1])==1)) 

   { 

    alpha2prime=alpha2; 

   } 

 

   vector<double> dnew(2); 

   double gamma1=atan(alpha2prime/alpha1prime); 

   double gamma2=atan(dprime[1]/dprime[0]); 

   if (gamma2>=gamma1) 

   { 

    dnew[0]=dprime[0]*alpha2prime/dprime[1]; 

    dnew[1]=alpha2prime; 

    d[0]=sign(gneg[0])*dnew[0]; 

    d[1]=sign(gneg[1])*dnew[1]; 

   } 

   else 

   { 

    dnew[0]=alpha1prime; 

    dnew[1]=dprime[1]*alpha1prime/dprime[0]; 

    d[0]=sign(gneg[0])*dnew[0]; 

    d[1]=sign(gneg[1])*dnew[1]; 

   } 

  } 

  else 

  { 

   vector<double> dprime(2); 

   dprime[0]=sqrt(pow(d[0],2)); 

   dprime[1]=sqrt(pow(d[1],2)); 

   double alpha1prime=min(alpha1,min(rcon-x0[0],x0[0]-lcon)); 

   double alpha2prime=min(alpha2,min(tcon-x0[1],x0[1]-bcon)); 

    

   if ((alpha1prime==rcon-x0[0])&(sign(d[0])==-1)) 

   { 

    alpha1prime=alpha1; 

   } 

   else if ((alpha1prime==x0[0]-lcon)&(sign(d[0])==1)) 

   { 

    alpha1prime=alpha1; 

   } 

   if ((alpha2prime==tcon-x0[1])&(sign(d[1])==-1)) 

   { 



 

115 

 

    alpha2prime=alpha2; 

   } 

   else if ((alpha2prime==x0[1]-bcon)&(sign(d[1])==1)) 

   { 

    alpha2prime=alpha2; 

   } 

 

   vector<double> dnew(2); 

   if ((dprime[0]>alpha1prime)|(dprime[1]>alpha2prime)) 

   { 

    double gamma1=atan(alpha2prime/alpha1prime); 

    double gamma2=atan(dprime[1]/dprime[0]); 

    if (gamma2>=gamma1) 

    { 

     dnew[0]=dprime[0]*alpha2prime/dprime[1]; 

     dnew[1]=alpha2prime; 

     d[0]=sign(d[0])*dnew[0]; 

     d[1]=sign(d[1])*dnew[1]; 

    } 

    else 

    { 

     dnew[0]=alpha1prime; 

     dnew[1]=dprime[1]*alpha1prime/dprime[0]; 

     d[0]=sign(d[0])*dnew[0]; 

     d[1]=sign(d[1])*dnew[1]; 

    } 

   } 

   else 

   { 

    if (count1<nshrinks) 

    { 

     if (count2<nshrinks) 

     { 

      alpha1=alpha1/2; 

      alpha2=alpha2/2; 

      count1=count1+1; 

      count2=count2+1; 

     } 

     else 

     { 

      alpha1=alpha1/2; 

      count1=count1+1; 

     } 

    } 

    else if (count2<nshrinks) 

    { 

     alpha2/alpha2/2; 

     count2=count2+1; 

    } 

    else 

    { 

     xprev[0]=x0[0]; 

     xprev[1]=x0[1]; 

    } 

   } 

  } 

  //Update point 

  x0[0]=x0[0]+d[0]; 

  x0[1]=x0[1]+d[1]; 

  fmin=newfun2D(x0,b,grad,Hess); 

  double fnew=fun2D(x0[0],x0[1], maxIter); 

  cout<<endl<<endl<<x0[0]<<"   "<<x0[1]<<"   "<<fnew<<endl<<endl; 

 

  //If new point is worse than previous stop 

  int ignore=0; 

  if (fnew>f[0]) 

  { 

   if (start==1) 

   { 

    x0[0]=points[0][0]; 

    x0[1]=points[0][1]; 



 

116 

 

    fnew=f[0]; 

    flagt=0; 

    flagb=0; 

    flagl=0; 

    flagr=0; 

    xprev[0]=x0[0]; 

    xprev[1]=x0[1]; 

    diff2=0; 

    diff2x=0; //Sina 

    diff2y=0; //Sina 

    ignore=1; 

   } 

   else 

   { 

    start=1; 

   } 

  } 

 

  //Error Calc 

  if (ignore==0) 

  { 

   vector<double> xm(p); 

   xm[0]=1; 

   xm[1]=x0[0]; 

   xm[2]=x0[1]; 

   xm[3]=pow(x0[0],2); 

   xm[4]=pow(x0[1],2); 

   xm[5]=x0[0]*x0[1]; 

   vector<double> yhat(n); 

   yhat=Mv(X,b,n,p); 

   vector<double> fsurf(n); 

   for (int i=0;i<n;i++) 

   { 

    fsurf[i]=pow((f[i]-yhat[i]),2)/(n-p); 

   } 

   double temp=sum(fsurf); 

   double s=sqrt(temp); 

   vector<double> error1(p); 

   error1=LUSolve(A,xm); 

   error=inprod(xm,error1); 

   error=s*2.919986*sqrt(error);  //The number is for 90% confidence from 

students t 

  } 

 

  cout<<endl<<endl<<"Next Point: "<<x0[0]<<" , "<<x0[1]<<"  Objective Function: 

"<<fnew<<endl<<endl; 

 

//--------------Sina  Copying CFD results due to the last iteration into Opt. iteration folder---

------------- 

 

  char optIt [50], cfdIt [50], cfdIt2 [50], copyCons [50] ; 

  char copySys1 [50], copySys2 [50], copySys3 [50], copyZero [50]; 

  int iter,ndTime; 

  no = no+1; 

 

  sprintf(optIt,"mkdir -p iterations/0%d", no); 

  system (optIt); 

  iter = CFDiter(no, maxIter); 

 

  sprintf(cfdIt,"cp -r %d iterations/0%d/", iter, no); 

  system (cfdIt); 

  sprintf(cfdIt2,"cp -r %d iterations/0%d/", iter, no+1); 

  system (cfdIt2); 

  sprintf(copyCons,"cp -r constant iterations/0%d/", no); 

  system (copyCons); 

  sprintf(copySys1,"cp -r system/controlDict iterations/0%d/system/", no); 

  system (copySys1); 

  sprintf(copySys2,"cp -r system/fvSchemes iterations/0%d/system/", no); 

  system (copySys2); 

  sprintf(copySys3,"cp -r system/fvSolution iterations/0%d/system/", no); 

  system (copySys3); 



 

117 

 

  sprintf(copyZero,"cp -r 0 iterations/0%d", no); 

  system (copyZero); 

//-----------------------------------------------------------------------------------------------

------------- 

 

 

  //Update loop ending parameters 

  diff1=sqrt(pow((fnew-fmin)/fnew,2)); 

  vector<double> xtemp(2);   

  xtemp[0]=x0[0]-xprev[0];   

  xtemp[1]=x0[1]-xprev[1]; 

  cout<<"x0[0]:  " <<x0[0]<<endl;  //Sina 

  cout<<"x0[1]:  " <<x0[1]<<endl;  //Sina 

  cout<<"xprev[0]:  " <<xprev[0]<<endl; //Sina 

  cout<<"xprev[1]:  " <<xprev[1]<<endl; //Sina 

  xprev[0]=x0[0];  

  xprev[1]=x0[1]; 

  diff2=norm(xtemp);  

  diff2x = sqrt(pow(xtemp[0],2)); //Sina 

  diff2y = sqrt(pow(xtemp[1],2)); //Sina 

 

 

  cout<<"Difference between the last two O. F.:  " <<diff1<<endl; 

  cout<<"Difference between the last two points of X:   "<<diff2x<<endl; 

  cout<<"Difference between the last two points of Y:   "<<diff2y<<endl; 

  cout<<"diff2 (norm of dX and dY:   "<<diff2<<endl; 

 

  //Check if GRGM needs to be used 

  if (diff2<0.0001) 

  { 

   if ((flagl==1)|(flagr==1)) 

   { 

    fnew=GRGM(x0,fnew,alpha2,bcon,tcon,1); 

    if (count2<nshrinks) 

    { 

     count2=count2+1; 

     alpha2=alpha2/2; 

     if (noshrinkh==0) 

     { 

      alpha1=alpha1*2; 

      noshrinkh=1; 

     } 

    } 

    else 

    { 

     xprev[0]=x0[0]; 

     xprev[1]=x0[1]; 

    } 

   } 

   else if ((flagb==1)|(flagt==1)) 

   { 

    fnew=GRGM(x0,fnew,alpha1,lcon,rcon,0); 

    if (count1<nshrinks) 

    { 

     count1=count1+1; 

     alpha1=alpha1/2; 

     if (noshrinkv==0) 

     { 

      alpha2=alpha2*2; 

      noshrinkv=1; 

     } 

    } 

    else 

    { 

     xprev[0]=x0[0]; 

     xprev[1]=x0[1]; 

    } 

   } 

   xtemp[0]=x0[0]-xprev[0];   

   xtemp[1]=x0[1]-xprev[1]; 

   xprev[0]=x0[0];  



 

118 

 

   xprev[1]=x0[1]; 

   diff2=norm(xtemp);   

   cout<<diff1<<"   "<<diff2<<endl; 

   //system("PAUSE"); 

  } 

 

  f[0]=fnew; 

  //Update points 

  points[0][0]=x0[0]; 

  points[0][1]=x0[1]; 

 

  if (x0[0]<(lcon+alpha1)) 

  { 

   if (x0[0]<=lcon) 

   { 

    if (count1<nshrinks) 

    { 

     alpha1=alpha1/2;//Shrink if on left edge. 

     count1=count1+1; 

     flagl=1; 

    } 

    else 

    { 

     flagl=0; 

    } 

    points[0][0]=lcon; 

    points[1][0]=lcon; 

    points[2][0]=lcon; 

    points[3][0]=points[0][0]+alpha1; 

    points[4][0]=points[0][0]+alpha1; 

    points[5][0]=points[0][0]+alpha1; 

    points[6][0]=points[3][0]+alpha1; 

    points[7][0]=points[3][0]+alpha1; 

    points[8][0]=points[3][0]+alpha1; 

    flagr=0; 

    flagb=0; 

    flagt=0; 

   } 

   else 

   { 

    points[1][0]=points[0][0]; 

    points[2][0]=points[0][0]; 

    points[3][0]=lcon; 

    points[4][0]=lcon; 

    points[5][0]=lcon; 

    points[6][0]=points[0][0]+alpha1; 

    points[7][0]=points[0][0]+alpha1; 

    points[8][0]=points[0][0]+alpha1; 

    flagl=0; 

    flagr=0; 

    flagb=0; 

    flagt=0; 

    noshrinkh=0; 

   } 

  }    

  else if (x0[0]>(rcon-alpha1)) 

  { 

   if (x0[0]>=rcon) 

   { 

    if (count1<nshrinks) 

    { 

     alpha1=alpha1/2;//Shrink if on right edge. 

     count1=count1+1; 

     flagr=1; 

    } 

    else 

    { 

     flagr=0; 

    } 

    points[0][0]=rcon; 

    points[1][0]=rcon; 



 

119 

 

    points[2][0]=rcon; 

    points[3][0]=points[0][0]-alpha1; 

    points[4][0]=points[0][0]-alpha1; 

    points[5][0]=points[0][0]-alpha1; 

    points[6][0]=points[3][0]-alpha1; 

    points[7][0]=points[3][0]-alpha1; 

    points[8][0]=points[3][0]-alpha1; 

    flagl=0; 

    flagb=0; 

    flagt=0; 

   } 

   else 

   { 

    points[1][0]=points[0][0]; 

    points[2][0]=points[0][0]; 

    points[3][0]=rcon; 

    points[4][0]=rcon; 

    points[5][0]=rcon; 

    points[6][0]=points[0][0]-alpha1; 

    points[7][0]=points[0][0]-alpha1; 

    points[8][0]=points[0][0]-alpha1; 

    flagl=0; 

    flagr=0; 

    flagb=0; 

    flagt=0; 

    noshrinkh=0; 

   } 

  } 

  else 

  { 

   points[1][0]=points[0][0]; 

   points[2][0]=points[0][0]; 

   points[3][0]=points[0][0]+alpha1; 

   points[4][0]=points[0][0]+alpha1; 

   points[5][0]=points[0][0]+alpha1; 

   points[6][0]=points[0][0]-alpha1; 

   points[7][0]=points[0][0]-alpha1; 

   points[8][0]=points[0][0]-alpha1; 

   flagl=0; 

   flagr=0; 

   flagb=0; 

   flagt=0; 

   noshrinkh=0; 

  } 

 

  if (x0[1]<(bcon+alpha2)) 

  { 

   if (x0[1]<=bcon) 

   { 

    if (count2<nshrinks) 

    { 

     alpha2=alpha2/2;//Shrink if on bottom edge. 

     count2=count2+1; 

     flagb=1; 

    } 

    else 

    { 

     flagb=0; 

    } 

    points[0][1]=bcon; 

    points[1][1]=points[0][1]+alpha2; 

    points[2][1]=points[1][1]+alpha2; 

    points[3][1]=bcon; 

    points[4][1]=points[0][1]+alpha2; 

    points[5][1]=points[1][1]+alpha2; 

    points[6][1]=bcon; 

    points[7][1]=points[0][1]+alpha2; 

    points[8][1]=points[1][1]+alpha2; 

    flagl=0; 

    flagr=0; 

    flagt=0; 



 

120 

 

   } 

   else 

   { 

    points[1][1]=points[0][1]+alpha2; 

    points[2][1]=bcon; 

    points[3][1]=points[0][1]; 

    points[4][1]=points[0][1]+alpha2; 

    points[5][1]=bcon; 

    points[6][1]=points[0][1]; 

    points[7][1]=points[0][1]+alpha2; 

    points[8][1]=bcon; 

    flagl=0; 

    flagr=0; 

    flagb=0; 

    flagt=0; 

    noshrinkv=0; 

   } 

  }    

  else if (x0[1]>(tcon-alpha2)) 

  { 

   if (x0[1]>=tcon) 

   { 

    if (count2<nshrinks) 

    { 

     alpha2=alpha2/2;//Shrink if on top edge. 

     count2=count2+1; 

     flagt=1; 

    } 

    else 

    { 

     flagt=0; 

    } 

    points[0][1]=tcon; 

    points[1][1]=points[0][1]-alpha2; 

    points[2][1]=points[1][1]-alpha2; 

    points[3][1]=tcon; 

    points[4][1]=points[0][1]-alpha2; 

    points[5][1]=points[1][1]-alpha2; 

    points[6][1]=tcon; 

    points[7][1]=points[0][1]-alpha2; 

    points[8][1]=points[1][1]-alpha2; 

    flagl=0; 

    flagr=0; 

    flagb=0; 

   } 

   else 

   { 

    points[1][1]=points[0][1]-alpha2; 

    points[2][1]=tcon; 

    points[3][1]=points[0][1]; 

    points[4][1]=points[0][1]-alpha2; 

    points[5][1]=tcon; 

    points[6][1]=points[0][1]; 

    points[7][1]=points[0][1]-alpha2; 

    points[8][1]=tcon; 

    flagl=0; 

    flagr=0; 

    flagb=0; 

    flagt=0; 

    noshrinkv=0; 

   } 

  } 

  else 

  { 

   points[1][1]=points[0][1]+alpha2; 

   points[2][1]=points[0][1]-alpha2; 

   points[3][1]=points[0][1]; 

   points[4][1]=points[0][1]+alpha2; 

   points[5][1]=points[0][1]-alpha2; 

   points[6][1]=points[0][1]; 

   points[7][1]=points[0][1]+alpha2; 



 

121 

 

   points[8][1]=points[0][1]-alpha2; 

   flagl=0; 

   flagr=0; 

   flagb=0; 

   flagt=0; 

   noshrinkv=0; 

  } 

 } 

 cout<<"x*=("<<x0[0]<<","<<x0[1]<<") with fmax="<<f[0]<<"+/-"<<error<<endl; 

 return(0); 

} 

 

double GRGM(vector<double> &x0, double f0, double alpha, double lcon, double rcon, int dim) 

{ 

 //Selecting starting points 

 alpha=alpha/2; 

 int stop=0; 

 double minloc; 

 double maxloc; 

 int adim; 

 if (dim==1) 

 { 

  adim=0; 

 } 

 else 

 { 

  adim=1; 

 } 

 vector<double> points(5); 

 points[0]=x0[dim]; 

 

 //checks which piece of the x vector we are altering and then chooses points 

 if (x0[dim]<(lcon+2*alpha)) 

 { 

  if (x0[dim]<=(lcon+alpha)) 

  { 

   if (x0[dim]<=lcon) 

   { 

    stop=1; 

   } 

   else 

   { 

    points[1]=lcon; 

    points[2]=points[0]+alpha; 

    points[3]=points[2]+alpha; 

    points[4]=points[3]+alpha; 

    minloc=1; 

    maxloc=4; 

   } 

  } 

  else 

  { 

   points[1]=lcon; 

   points[2]=points[0]-alpha; 

   points[3]=points[0]+alpha; 

   points[4]=points[3]+alpha; 

   minloc=1; 

   maxloc=4; 

  }    

 } 

 else if (x0[dim]>(rcon-2*alpha)) 

 { 

  if (x0[dim]>=(rcon-alpha)) 

  { 

   if (x0[dim]>=rcon) 

   { 

    stop=1; 

   } 

   else 

   { 

    points[1]=rcon; 



 

122 

 

    points[2]=points[0]-alpha; 

    points[3]=points[2]-alpha; 

    points[4]=points[3]-alpha; 

    minloc=4; 

    maxloc=1; 

   } 

  } 

  else 

  { 

   points[1]=rcon; 

   points[2]=points[0]+alpha; 

   points[3]=points[0]-alpha; 

   points[4]=points[3]-alpha; 

   minloc=4; 

   maxloc=1; 

  } 

 } 

 else 

 { 

  points[1]=points[0]-alpha; 

  points[2]=points[1]-alpha; 

  points[3]=points[0]+alpha; 

  points[4]=points[3]+alpha; 

  minloc=2; 

  maxloc=4; 

 } 

 

 //Initialize quantities 

 double length=points.size(); 

 double fnew; 

 vector<double> f(length); 

 f[0]=f0; 

 //Loop until the model and function have same value or the model points solution is the 

same 

 while (stop==0) 

 { 

  for (int i=1;i<length;i++) 

  { 

   if (adim==0) 

   { 

    f[i]=fun2D(x0[adim],points[i], maxIter); 

   } 

   else 

   { 

    f[i]=fun2D(points[i],x0[adim], maxIter); 

   } 

  } 

  //Perform Least Squares fit 

  //double n=length; //Sina 

  unsigned int n=length; //Sina 

  int k=1; //This is equal to the number of variables; 

  //double p=2*k+1;  //Number of regressor variable.  Need to change for higher 

order. 

  unsigned int p=2*k+1; 

 

  double **X; 

  X=new double* [n]; 

  for (int i=0;i<n;i++) 

  { 

   *(X+i)=new double[p]; 

  } 

 

  for (int i=0;i<n;i++) 

  { 

   //Need to add here for higher dimensions 

   for (int c=0;c<k;c++) 

   { 

    X[i][c]=1; 

    X[i][c+1]=points[i]; 

    X[i][c+k+1]=pow(points[i],2); 

   } 



 

123 

 

  } 

  double **Xt; 

  Xt=new double* [p]; 

  for (int i=0;i<p;i++) 

  { 

   *(Xt+i)=new double[n]; 

  } 

  Xt=MT(X,n,p); 

 

  double **A; 

  A=new double* [p]; 

  for (int i=0;i<p;i++) 

  { 

   *(A+i)=new double[p]; 

  } 

  A=MM(Xt,X,p,n,p); 

  vector<double> c(p); 

  c=Mv(Xt,f,p,n); 

 

  vector<double> b(p); 

  b=LUSolve(A,c); 

  //Perform Newtons Method 

  double g; 

  double H; 

  double fmin=newfun(x0,b,g,H); 

  if (H<0) 

  { 

   double g1; 

   double H1; 

   vector<double> p(1); 

   p[0]=points[minloc]; 

   double b1=newfun(p,b,g1,H1); 

   double g2; 

   double H2; 

   p[0]=points[maxloc]; 

   double b2=newfun(p,b,g2,H2); 

   if (b1<=b2) 

   { 

    fmin=b1; 

    x0[dim]=points[minloc]; 

   } 

   else 

   { 

    fmin=b2; 

    x0[dim]=points[maxloc]; 

   } 

  } 

  else 

  { 

   double d=-g/H; 

   double temp;  //Added to stop solver from going beyond model range. 

   temp=x0[dim]+d; 

   if (temp<points[minloc]) 

   { 

    x0[dim]=points[minloc]; 

   } 

   else if (temp>points[maxloc]) 

   { 

    x0[dim]=points[maxloc]; 

   } 

   else 

   { 

    x0[dim]=x0[dim]+d; 

    stop=1; 

   } 

  } 

  if (adim==0) 

  { 

   fnew=fun2D(x0[adim],x0[dim], maxIter); 

  } 

  else 



 

124 

 

  { 

   fnew=fun2D(x0[dim],x0[adim], maxIter); 

  } 

  cout<<endl<<endl<<x0[dim]<<"   "<<fnew<<endl<<endl; 

  //system("PAUSE"); 

  if (fnew>f[0]) 

  { 

   x0[dim]=points[0]; 

   fnew=f[0]; 

   stop=1; 

  } 

 

  f[0]=fnew; 

  //Update points 

  points[0]=x0[dim]; 

  //Added consraints back in and generalized April 14, 2010 

  if (x0[dim]<(lcon+2*alpha)) 

  { 

   if (x0[dim]<=(lcon+alpha)) 

   { 

    if (x0[dim]<=lcon) 

    { 

     stop=1; 

    } 

    else 

    { 

     points[1]=lcon; 

     points[2]=points[0]+alpha; 

     points[3]=points[2]+alpha; 

     points[4]=points[3]+alpha; 

     minloc=1; 

     maxloc=4; 

    } 

   } 

   else 

   { 

    points[1]=lcon; 

    points[2]=points[0]-alpha; 

    points[3]=points[0]+alpha; 

    points[4]=points[3]+alpha; 

    minloc=1; 

    maxloc=4; 

   }    

  } 

  else if (x0[dim]>(rcon-2*alpha)) 

  { 

   if (x0[dim]>=(rcon-alpha)) 

   { 

    if (x0[dim]>=rcon) 

    { 

     stop=1; 

    } 

    else 

    { 

     points[1]=rcon; 

     points[2]=points[0]-alpha; 

     points[3]=points[2]-alpha; 

     points[4]=points[3]-alpha; 

     minloc=4; 

     maxloc=1; 

    } 

   } 

   else 

   { 

    points[1]=rcon; 

    points[2]=points[0]+alpha; 

    points[3]=points[0]-alpha; 

    points[4]=points[3]-alpha; 

    minloc=4; 

    maxloc=1; 

   } 



 

125 

 

  } 

  else 

  { 

   points[1]=points[0]-alpha; 

   points[2]=points[1]-alpha; 

   points[3]=points[0]+alpha; 

   points[4]=points[3]+alpha; 

   minloc=2; 

   maxloc=4; 

  } 

 } 

 return(fnew); 

} 

double norm(vector<double> x) 

//finds norms of vectors 

{ 

 double length=x.size(); 

 double sum=0; 

 for (int i=0;i<length;i++) 

 { 

  sum+=x[i]*x[i]; 

 } 

 double norm=sqrt(sum); 

 return(norm); 

} 

 

double inprod(vector<double>x, vector<double>y) 

//inner product of vectors 

{ 

 double length=x.size(); 

 double ans=0; 

 for(int i=0;i<length;i++) 

 { 

  ans+=x[i]*y[i]; 

 } 

 return(ans); 

} 

 

vector<double> Mv(double **M,vector<double> v,double row, double col) 

//matrix times a vector 

{ 

 vector<double> ans(row,0); 

 for(int i=0;i<row;i++) 

 { 

  for(int j=0;j<col;j++) 

  { 

   ans[i]=ans[i]+M[i][j]*v[j]; 

  } 

 } 

 return(ans); 

} 

 

double **MM(double **M1, double **M2, unsigned int a, double b, unsigned int c)// Sina "double a" 

and "double c" --> "unsigned int a" and "unsigned int c" 

//matrix times matrix 

{ 

 //unsigned int a; //Sina 

 double **ans; 

 ans=new double* [a]; 

 for(int i=0;i<a;i++) 

 { 

  *(ans+i)=new double[c]; 

 } 

 for(int i=0;i<a;i++) 

 { 

  for(int j=0;j<c;j++) 

  { 

   ans[i][j]=0; 

  } 

 } 

 for(int k=0;k<a;k++) 



 

126 

 

 { 

  for(int i=0;i<c;i++) 

  { 

   for(int j=0;j<b;j++) 

   { 

    ans[k][i]=ans[k][i]+M1[k][j]*M2[j][i]; 

   } 

  } 

 } 

 return(ans); 

} 

 

vector<double> LUSolve(double **M,vector<double> v) 

//LU decomposion solver 

{ 

 int length=v.size(); 

 for(int i=0;i<length-1;i++) 

 { 

  for(int j=i+1;j<length;j++) 

  { 

   double m=M[j][i]/M[i][i]; 

   M[j][i]=0; 

   for(int k=i+1;k<length;k++) 

   { 

    M[j][k]=M[j][k]-m*M[i][k]; 

   } 

   M[j][i]=m; 

  } 

 } 

 for(int i=1;i<length;i++) 

 { 

  for (int j=0;j<i;j++) 

  { 

   v[i]=v[i]-M[i][j]*v[j]; 

  } 

 } 

 v[length-1]=v[length-1]/M[length-1][length-1]; 

 for (int i=0;i<length-1;i++)  

 { 

  for (int j=length-1-i;j<length;j++) 

  { 

   v[length-2-i]=v[length-2-i]-M[length-2-i][j]*v[j]; 

  } 

  v[length-2-i]=v[length-2-i]/M[length-2-i][length-2-i]; 

 } 

 return(v); 

} 

double sum(vector<double> x) 

//add vector components 

{ 

 double add=0; 

 double length=x.size(); 

 for (int i=0;i<length;i++) 

 { 

  add+=x[i]; 

 } 

 return (add); 

} 

 

//----------Sina------------- 

 int maxCFD() 

 { 

 int maxIter; 

 printf ("Enter the max. CFD iterations per solution: "); 

 scanf ("%d",&maxIter); 

 cout << endl; 

 return(maxIter); 

 } 

//--------------------------- 

 

 



 

127 

 

//-------Sina  Reading the startTime, endTime, and writeInterval for the next simulation in 

"controlDict" file --- 

double readStartT () 

{ 

   FILE * stFile; 

  

   char itstring1 [300]; 

   char itstring2 [9]; 

   char itstring4[] = "startTime       "; 

   int startTime; 

 

  stFile = fopen ("system/controlDict","r+"); 

  if (stFile==NULL) perror ("Error opening controlDict file"); 

  else 

  { 

    while (!feof(stFile)) { 

 fgets (itstring1 , 17 , stFile); 

 

 if (strcmp (itstring1,itstring4) != 0) {  

  fgets (itstring1 , 17 , stFile); 

 

  if (strcmp (itstring1,itstring4) != 0) { fgets (itstring1 , 300 , stFile);} 

  else { 

  fgets (itstring2 , 7 , stFile); 

  startTime = atoi (itstring2); 

  cout <<" startTime before next run  = " <<startTime<<endl; 

  } 

 } 

 ////fgets (itstring2 , 300 , itFile); Don't use this line it ruins everything! 

      } 

  } 

fclose (stFile); 

return(startTime); 

} 

//----------------- 

 

//-------Sina   Reading the last CFD iteration from "log" file ------ 

 

int CFDiter(int no, int maxIter) 

{ 

  FILE * itFile; 

 

   char itstring1 [300]; 

   char itstring2 [8]; 

   char itstring3[] = "Time = "; 

   int iter; 

 

  itFile = fopen ("log","rb"); 

  if (itFile==NULL) perror ("Error opening log file"); 

  else 

  { 

    while (!feof(itFile)) { 

 fgets (itstring1 , 8 , itFile); 

 

 if (strcmp (itstring1,itstring3) != 0) {  

  fgets (itstring1 , 8 , itFile); 

 

  if (strcmp (itstring1,itstring3) != 0) { fgets (itstring1 , 300 , itFile);} 

  else { 

  //cout << itstring1 << endl; 

  //cout << itstring2 << endl; 

  fgets (itstring2 , 8 , itFile); 

  } 

   

 } 

 ////fgets (itstring2 , 300 , itFile); Don't use this line it ruins everything! 

      } 

  iter = atoi (itstring2); 

  cout << "The Last Iteration = " << iter << endl; 

  //getchar(); 

    fclose (itFile); 



 

128 

 

  } 

  return (iter); 

} 

 

//-------Sina  Writing the startTime, endTime, and writeInterval for the next simulation in 

"controlDict" file --- 

double updateInitial (int iter, int maxIter) 

{ 

   FILE * itFile; 

   int ndTime; 

 

   char itstring1 [300]; 

   char itstring2 [8]; 

   char itstring3[] = "endTime         "; 

   char itstring4[] = "startTime       "; 

   char itstring5[] = "writeInterval   "; 

 

 //int mm = 8;  //Max. iteration per solution 

  ndTime = iter + maxIter; //Sina ***** 

  cout <<" maxIter = " <<maxIter; 

  //getchar(); 

 

  itFile = fopen ("system/controlDict","r+"); 

  if (itFile==NULL) perror ("Error opening controlDict file"); 

  else 

  { 

    while (!feof(itFile)) { 

 fgets (itstring1 , 17 , itFile); 

 

 if (strcmp (itstring1,itstring4) != 0) {  

  fgets (itstring1 , 17 , itFile); 

 

  if (strcmp (itstring1,itstring4) != 0) { fgets (itstring1 , 300 , itFile);} 

  else { 

  //cout << itstring1 << endl; 

  //cout << itstring2 << endl; 

  sprintf (itstring2, "%d", iter); 

  cout <<" startTime = " <<iter; 

  //char itstring2 []="13"; 

  fputs (itstring2 , itFile); 

 

  } 

   

 } 

 ////fgets (itstring2 , 300 , itFile); Don't use this line it ruins everything! 

      } 

 

    fclose (itFile); 

  } 

 

  itFile = fopen ("system/controlDict","r+"); 

  if (itFile==NULL) perror ("Error opening controlDict file"); 

  else 

  { 

    while (!feof(itFile)) { 

 fgets (itstring1 , 17 , itFile); 

 

 if (strcmp (itstring1,itstring3) != 0) {  

  fgets (itstring1 , 17 , itFile); 

 

  if (strcmp (itstring1,itstring3) != 0) { fgets (itstring1 , 300 , itFile);} 

  else { 

  //cout << itstring1 << endl; 

  //cout << itstring2 << endl; 

 

  sprintf (itstring2, "%d", ndTime); 

  cout <<" endTime = " <<ndTime<<endl; 

  //char itstring2 []="13"; 

  fputs (itstring2 , itFile); 

 

  } 



 

129 

 

   

 } 

 ////fgets (itstring2 , 300 , itFile); Don't use this line it ruins everything! 

      } 

 

 

    fclose (itFile); 

  } 

 

  itFile = fopen ("system/controlDict","r+"); 

  if (itFile==NULL) perror ("Error opening controlDict file"); 

  else 

  { 

    while (!feof(itFile)) { 

 fgets (itstring1 , 17 , itFile); 

 

 if (strcmp (itstring1,itstring5) != 0) {  

  fgets (itstring1 , 17 , itFile); 

 

  if (strcmp (itstring1,itstring5) != 0) { fgets (itstring1 , 300 , itFile);} 

  else { 

  //cout << itstring1 << endl; 

  //cout << itstring2 << endl; 

  sprintf (itstring2, "%d", ndTime); 

  cout <<" writeInterval = " <<ndTime<<endl; 

  //char itstring2 []="13"; 

  fputs (itstring2 , itFile); 

 

  } 

   

 } 

 ////fgets (itstring2 , 300 , itFile); Don't use this line it ruins everything! 

      } 

 

    fclose (itFile); 

  } 

//getchar(); 

 

/* 

  FILE * cntDict; 

  cntDict = fopen ( "system/controlDict" , "r+" ); 

  if (cntDict==NULL) perror ("Error opening controlDict file.\n "); 

  int ij; 

  char buff1[300]; 

  char buff2[]=";"; 

  char buff3[50]; 

  char buff4[50]; 

 

       for (ij=1; ij<=28; ij++) { 

   fgets (buff1 , 300 , cntDict); 

  } 

  fgets (buff1 , 17 , cntDict); 

  sprintf (buff3, "%d", iter); 

  fputs ( buff3 , cntDict ); 

  //fputs ( buff2 , cntDict ); 

 

  fgets (buff1 , 300 , cntDict); 

  fgets (buff1 , 300 , cntDict); 

  fgets (buff1 , 300 , cntDict); 

 

  int maxIter = 5; 

  ndTime = iter + maxIter; //Sina ***** 

  sprintf (buff3, "%d", ndTime); 

  cout <<" endTime = " <<ndTime; 

 

  fgets (buff1 , 17 , cntDict); 

  fputs (buff3 , cntDict ); 

  //fputs ( buff2 , cntDict ); 

  getchar(); 

   

  fclose(cntDict); 



 

130 

 

*/ 

 

return (0); 

} 

//---------------------------------- 

//-------Sina  reading Ux (inlet air axial velocity) from "UnoSwirl" file--- 

double readUnoSwirl () 

{ 

   FILE * UFile; 

   double Ux; 

   int i; 

   char itstring1 [300]; 

   char itstring2 [9]; 

 

  UFile = fopen ("0/noSwirl/U","r+"); 

  if (UFile==NULL) perror ("Error opening U file from noSwirl directory"); 

  else 

  { 

    for (i=1; i<=26; i++) { 

 fgets (itstring1 , 300 , UFile); 

    } 

 fgets (itstring1 , 34 , UFile); 

 fgets (itstring2 , 7 , UFile); 

 Ux = atof (itstring2); 

    fclose (UFile); 

  } 

return(Ux); 

} 

//------------------------ 

 

//-------Sina  Writing the new angular veolicty of inlet air on "swirlAndRotationProperties" 

file--- 

double writeOmega (double omega) 

{ 

   FILE * omegaFile; 

   int i; 

   char itstring1 [300]; 

   char itstring2 [14]; 

 

  omegaFile = fopen ("constant/swirlAndRotationProperties","r+"); 

  if (omegaFile==NULL) perror ("Error opening swirlAndRotationProperties file"); 

  else 

  { 

    for (i=1; i<=20; i++) { 

 fgets (itstring1 , 300 , omegaFile); 

    } 

 fgets (itstring1 , 44 , omegaFile); 

 

 sprintf (itstring2, "%7.3f", omega); 

 fputs (itstring2 , omegaFile); 

 //getchar(); 

    fclose (omegaFile); 

  } 

return(0); 

} 

//------------------------ 

 

//---------- 

double newfun(vector<double> x, vector<double> b, double &g, double &H) 

//1-D model function 

{ 

 double val=b[0]+b[1]*x[0]+b[2]*pow(x[0],2); 

 g=b[1]+2*b[2]*x[0]; 

 H=2*b[2]; 

 return(val); 

} 

double newfun2D(vector<double> x, vector<double> b, vector<double> &grad, double **&Hess) 

//2-D model function 

{ 

 double val=b[0]+b[1]*x[0]+b[2]*x[1]+b[3]*pow(x[0],2)+b[4]*pow(x[1],2)+b[5]*x[0]*x[1]; 

 grad[0]=b[1]+2*b[3]*x[0]+b[5]*x[1]; 



 

131 

 

 grad[1]=b[2]+2*b[4]*x[1]+b[5]*x[0]; 

 Hess[0][0]=2*b[3]; 

 Hess[0][1]=b[5]; 

 Hess[1][0]=b[5]; 

 Hess[1][1]=2*b[4]; 

 return(val); 

} 

 

//--------INPUT for 1D Optimization-------- ***** 

double fun2 (double x, int maxIter) 

//combustion function evaluation for 1-D case 

{ 

 //x: Quarl angle or swirl number, eff= ? 

cout << "IDvariable =" << IDvariable <<endl; 

//----------SINA------------------ 

 

// Changing the vertices locations based on the given Quarl angle 

      const int linesize = 256; 

      char bufferY[linesize], bufferYp[linesize], bufferZ[linesize], bufferZp[linesize]; 

      FILE* outfile; 

 char cc; 

 int nn = 0; 

 double y, yPositive, z, zPositive, pi, xrad, x1=39.44; //***** 

      //ifstream infile("constant/polyMesh/blockMeshDict", ios::in); 

 //ofstream outfile ("1000/CO2", ios::out); 

 

//------ x = quarl angle------------ 

if (IDvariable==1) { 

 outfile = fopen ( "constant/polyMesh/blockMeshDict" , "r+" ); 

 pi=4*atan(1); 

 xrad=x*pi/180; 

   y = (x1*tan(xrad)+57.86)*cos(2.5*pi/180); 

   yPositive = y; 

   z = (-1)*(x1*tan(xrad)+57.86)*sin(2.5*pi/180); 

   zPositive = (-1)*z;  

  sprintf (bufferY, "%6.2f", y); 

  sprintf (bufferYp,"%6.2f", yPositive); 

  sprintf (bufferZ, "%6.2f", z); 

  sprintf (bufferZp,"%5.2f", zPositive); 

 

 

  if (outfile==NULL) perror ("Error opening blockMeshDict file "); 

  if (outfile!=NULL) 

  { 

    do { 

      cc = fgetc (outfile); 

 

      if (cc == '/') { 

        cc = fgetc (outfile); 

        if (cc == '/') { 

         cc = fgetc (outfile); 

         if (cc == '1') { 

          cc = fgetc (outfile); 

          if (cc == '4') { 

           cc = fgetc (outfile); 

 nn++; 

 fseek ( outfile , 12 , SEEK_CUR ); 

 fputs ( bufferY , outfile );  //fputs(const char*, FILE*) 

 //fseek ( outfile , 1 , SEEK_CUR ); 

 fputs ( bufferZ , outfile ); 

 }}}} 

    } while (cc != EOF && nn != 1 ); //***** 

 

    do { 

      cc = fgetc (outfile); 

      if (cc == '/') { 

        cc = fgetc (outfile); 

        if (cc == '/') { 

         cc = fgetc (outfile); 

         if (cc == '4') { 

          cc = fgetc (outfile); 



 

132 

 

          if (cc == '6') { 

           cc = fgetc (outfile); 

 nn++; 

 fseek ( outfile , 12 , SEEK_CUR ); 

 fputs ( bufferYp , outfile );  //fputs(const char*, FILE*) 

 //fseek ( outfile , 1 , SEEK_CUR ); 

 fputs ( bufferZp , outfile ); 

 

 }}}} 

    } while (cc != EOF && nn != 2 ); //***** 

 

  } 

 

 cout << "The number of the changed points in blockMeshDict are: " << nn << endl; 

 fclose (outfile); 

 

 

 system("/home/administrator/OpenFOAM/OpenFOAM-

1.5/applications/bin/linuxGccDPOpt/blockMesh >logBlockMesh"); 

} 

//--------------------------------- 

 

 

//--------- x = Swirl Number------- 

//read ux, omega; 

double s1, s2, Utheta, Ux, omega; 

char copy [50]; 

int startTime; 

 

if (IDvariable==2) { 

s1 = x; 

Ux = readUnoSwirl (); 

cout << "Axial velocity of Air = " << Ux << endl; 

//getchar(); 

 

s2 = (sqrt(1+4*0.795*pow(s1,2))-1)/(2*0.795*s1); 

Utheta = (1.5/1.0406)*Ux*s2; 

omega = Utheta/(20.97)*482.069; 

cout << "Angular velocity = " << omega << endl; 

writeOmega (omega); 

//getchar(); 

 

startTime = readStartT (); 

 

//system("cp -r 0/noSwirl/U 0/U"); 

sprintf(copy,"cp -r 0/noSwirl/U %d/U", startTime); 

system (copy); 

system("addSwirlAndRotation >log2"); 

} 

 

system("/home/administrator/OpenFOAM/administrator-

1.5/applications/bin/linuxGccDPOpt/alternateSteadyReactingFoam >log"); 

//--------------------------------- 

 

 //create a folder for each optimization iteration iteration 1, iteration 2, and so on. 

 

 

//------Reading the latest CFD iteration from "log" file ------- 

 int iter, no; 

 iter = CFDiter(no, maxIter); 

 cout << "iter =" << iter << endl; 

//------------------------------------------ 

 

//--------------Sina  updating the startTime, endTime, and writeInterval for the next simulation 

in "controlDict" file --- 

 //double updateInitial (int iter, int maxIter); 

 updateInitial (iter, maxIter); 

//-------------------O.F.= Max CO2 concentration-------------- 

 

 char unzip [50]; 

 char buff [50]; 



 

133 

 

 char myLine[16]; 

 int i; 

 fstream eghra; 

 char * pEnd; 

 double d1, d2=0.0, averageCO2; 

 int noPoints; 

 double eff; 

 

 if (iter!=0) { 

 sprintf(unzip,"gunzip -c %d/CO2.gz > %d/CO2", iter, iter); 

 //s = printf ("%s",iteration); 

 system (unzip); 

 } 

 sprintf(buff,"%d/CO2", iter); 

 

 eghra.open(buff); 

 if(eghra.fail()) { 

  cout<<"Could not open CO2.\n"; 

 } 

 

      for (i=1; i<=20; i++) { 

  eghra.getline(myLine,256,'\n'); //  get ( char* s, streamsize n, char delim ); 

 } 

 eghra.getline(myLine,256,'\n'); 

 noPoints = atof ( myLine ); 

 //cout << "noPoints =" << noPoints<< endl; 

 

 eghra.getline(myLine,256,'\n'); 

      for (i=1; i<=noPoints; i++) { 

 

  eghra.getline(myLine,256,'\n'); //  get ( char* s, streamsize n, char delim ); 

 

     //if(eghra) cout << myLine << endl; 

 

//  d1 = strtod (myLine,&pEnd); 

//  d2 = strtod (pEnd,NULL); 

 d1 = atof ( myLine ); 

 d2 = d1 + d2; 

 } 

 

 averageCO2 = d2/(double (noPoints)) ; 

 cout << endl << "Average of CO2 Concentrtion = " << averageCO2 << endl << endl; 

 eghra.close(); 

 //getchar(); 

 

 eff=(1-averageCO2); 

//----------------------------------------------------------------- 

 

//-------------------O.F.= Lowest Flame Temperature---------------- 

 sprintf(unzip,"gunzip -c %d/T.gz >%d/T", iter, iter); 

 system(unzip); 

 fstream readT; 

 char myLine2[16]; 

 int j; 

 

 sprintf(buff,"%d/T", iter); 

 readT.open(buff); 

 

 //cout << "iter =" << iter << endl; 

 //getchar(); 

 

 if(readT.fail()) { 

  cout<<"Could not open T.\n"; 

 } 

 

      for (j=1; j<=22; j++) { 

  readT.getline(myLine2,256,'\n'); //  get ( char* s, streamsize n, char delim ); 

 } 

 double T1, T2=0.0; 

      for (j=1; j<=noPoints; j++) { 

 



 

134 

 

  readT.getline(myLine2,256,'\n'); //  get ( char* s, streamsize n, char delim ); 

 

//  d1 = strtod (myLine2,&pEnd); 

//  d2 = strtod (pEnd,NULL); 

 T1 = atof ( myLine2 ); 

 //cout << "T1 = " << T1 << endl << endl; 

 if (T2<=T1) {T2=T1;} 

 

 } 

 cout << "Lowest Max Flame Temperature = " << T2 << endl << endl; 

 

 readT.close(); 

 

//------------------------------------------------------------ 

 

 eff = (1-averageCO2); //***** 

 //eff = T2; 

 return (eff); //Sina  Objective Function 

} 

 

//----------------------------------------- 

 

/*---Sina----- 

double fun2(double x) 

//combustion function evaluation for 1-D case 

{ 

 vector<double> vars(1); 

 vars[0]=x/1000;          //Divide by 1000 for pore diameter 

 double eff=-Combust(vars); //Added negative for maximization. 

 return(eff); 

} 

*/ 

//------------ 

 

double fun2D(double Vx, double Vy, int maxIter) 

//combustion function evaluation for 2-D case 

{ 

 //double eff=100*pow((y-pow(x,2)),2)+pow((1-x),2);  //Rosenbrock Sina 

  

/*//-----Sina----- 

 vector<double> vars(2); //vars = variables 

 vars[0]=x/1000; 

 vars[1]=y; 

 double eff=-Combust(vars); //Sina 

//-------------- 

*/ 

 

 //Vx: Quarl angle and Vy:swirl number, eff= ? 

//----------SINA------------------ 

 

// Changing the vertices locations based on the given Quarl angle 

      const int linesize = 256; 

      char bufferY[linesize], bufferYp[linesize], bufferZ[linesize], bufferZp[linesize]; 

      FILE* outfile; 

 char cc; 

 int nn = 0; 

 double y, yPositive, z, zPositive, pi, xrad, x1=39.44; //***** 

      //ifstream infile("constant/polyMesh/blockMeshDict", ios::in); 

 //ofstream outfile ("1000/CO2", ios::out); 

 

//------ Vx = quarl angle------------ 

 outfile = fopen ( "constant/polyMesh/blockMeshDict" , "r+" ); 

 pi=4*atan(1); 

 xrad=Vx*pi/180; 

 

 

   y = (x1*tan(xrad)+57.86)*cos(2.5*pi/180); 

   yPositive = y; 

   z = (-1)*(x1*tan(xrad)+57.86)*sin(2.5*pi/180); 

   zPositive = (-1)*z;  

 



 

135 

 

  sprintf (bufferY, "%6.2f", y); 

  sprintf (bufferYp,"%6.2f", yPositive); 

  sprintf (bufferZ, "%6.2f", z); 

  sprintf (bufferZp,"%5.2f", zPositive); 

 

 

  if (outfile==NULL) perror ("Error opening blockMeshDict file "); 

  if (outfile!=NULL) 

  { 

    do { 

      cc = fgetc (outfile); 

 

      if (cc == '/') { 

        cc = fgetc (outfile); 

        if (cc == '/') { 

         cc = fgetc (outfile); 

         if (cc == '1') { 

          cc = fgetc (outfile); 

          if (cc == '4') { 

           cc = fgetc (outfile); 

 nn++; 

 fseek ( outfile , 12 , SEEK_CUR ); 

 fputs ( bufferY , outfile );  //fputs(const char*, FILE*) 

 //fseek ( outfile , 1 , SEEK_CUR ); 

 fputs ( bufferZ , outfile ); 

 }}}} 

    } while (cc != EOF && nn != 1 ); //***** 

 

    do { 

      cc = fgetc (outfile); 

      if (cc == '/') { 

        cc = fgetc (outfile); 

        if (cc == '/') { 

         cc = fgetc (outfile); 

         if (cc == '4') { 

          cc = fgetc (outfile); 

          if (cc == '6') { 

           cc = fgetc (outfile); 

 nn++; 

 fseek ( outfile , 12 , SEEK_CUR ); 

 fputs ( bufferYp , outfile );  //fputs(const char*, FILE*) 

 //fseek ( outfile , 1 , SEEK_CUR ); 

 fputs ( bufferZp , outfile ); 

 

 }}}} 

    } while (cc != EOF && nn != 2 ); //***** 

 

  } 

 

 cout << "The number of the changed points in blockMeshDict are: " << nn << endl; 

 fclose (outfile); 

 

 

 system("/home/administrator/OpenFOAM/OpenFOAM-

1.5/applications/bin/linuxGccDPOpt/blockMesh >logBlockMesh"); 

//--------------------------------- 

 

 

//--------- Vy = Swirl Number------- 

//read ux, omega; 

double s1, s2, Utheta, Ux, omega; 

char copy [50]; 

int startTime; 

 

s1 = Vy; 

Ux = readUnoSwirl (); 

cout << "Axial velocity of Air = " << Ux << endl; 

//getchar(); 

 

s2 = (sqrt(1+4*0.795*pow(s1,2))-1)/(2*0.795*s1); 

Utheta = (1.5/1.0406)*Ux*s2; 



 

136 

 

omega = Utheta/(20.97)*482.069; 

cout << "Angular velocity = " << omega << endl; 

writeOmega (omega); 

//getchar(); 

 

startTime = readStartT (); 

 

//system("cp -r 0/noSwirl/U 0/U"); 

sprintf(copy,"cp -r 0/noSwirl/U %d/U", startTime); 

system (copy); 

system("addSwirlAndRotation >log2"); 

 

system("/home/administrator/OpenFOAM/administrator-

1.5/applications/bin/linuxGccDPOpt/alternateSteadyReactingFoam >log"); 

//--------------------------------- 

 

 

//------Reading the latest CFD iteration from "log" file ------- 

 int iter, no; 

 iter = CFDiter(no, maxIter); 

 cout << "iter =" << iter << endl; 

//------------------------------------------ 

 

//--------------Sina  updating the startTime, endTime, and writeInterval for the next simulation 

in "controlDict" file --- 

 //double updateInitial (int iter, int maxIter); 

 updateInitial (iter, maxIter); 

//-------------------O.F.= Max CO2 concentration-------------- 

 

 char unzip [50]; 

 char buff [50]; 

 char myLine[16]; 

 int i; 

 fstream eghra; 

 char * pEnd; 

 double d1, d2=0.0, averageCO2; 

 int noPoints; 

 double eff; 

 

 if (iter!=0) { 

 sprintf(unzip,"gunzip -c %d/CO2.gz > %d/CO2", iter, iter); 

 //s = printf ("%s",iteration); 

 system (unzip); 

 } 

 sprintf(buff,"%d/CO2", iter); 

 

 eghra.open(buff); 

 if(eghra.fail()) { 

  cout<<"Could not open CO2.\n"; 

 } 

 

      for (i=1; i<=20; i++) { 

  eghra.getline(myLine,256,'\n'); //  get ( char* s, streamsize n, char delim ); 

 } 

 eghra.getline(myLine,256,'\n'); 

 noPoints = atof ( myLine ); 

 //cout << "noPoints =" << noPoints<< endl; 

 

 eghra.getline(myLine,256,'\n'); 

      for (i=1; i<=noPoints; i++) { 

 

  eghra.getline(myLine,256,'\n'); //  get ( char* s, streamsize n, char delim ); 

 

     //if(eghra) cout << myLine << endl; 

 

//  d1 = strtod (myLine,&pEnd); 

//  d2 = strtod (pEnd,NULL); 

 d1 = atof ( myLine ); 

 d2 = d1 + d2; 

 } 

 



 

137 

 

 averageCO2 = d2/(double (noPoints)) ; 

 cout << endl << "Average of CO2 Concentrtion = " << averageCO2 << endl << endl; 

 eghra.close(); 

 //getchar(); 

 

 eff=(1-averageCO2); 

//----------------------------------------------------------------- 

 

//-------------------O.F.= Lowest Flame Temperature---------------- 

 sprintf(unzip,"gunzip -c %d/T.gz >%d/T", iter, iter); 

 system(unzip); 

 fstream readT; 

 char myLine2[16]; 

 int j; 

 

 sprintf(buff,"%d/T", iter); 

 readT.open(buff); 

 

 //cout << "iter =" << iter << endl; 

 //getchar(); 

 

 if(readT.fail()) { 

  cout<<"Could not open T.\n"; 

 } 

 

      for (j=1; j<=22; j++) { 

  readT.getline(myLine2,256,'\n'); //  get ( char* s, streamsize n, char delim ); 

 } 

 double T1, T2=0.0; 

      for (j=1; j<=noPoints; j++) { 

 

  readT.getline(myLine2,256,'\n'); //  get ( char* s, streamsize n, char delim ); 

 

//  d1 = strtod (myLine2,&pEnd); 

//  d2 = strtod (pEnd,NULL); 

 T1 = atof ( myLine2 ); 

 //cout << "T1 = " << T1 << endl << endl; 

 if (T2<=T1) {T2=T1;} 

 

 } 

 cout << "Lowest Max Flame Temperature = " << T2 << endl << endl; 

 

 readT.close(); 

 

//------------------------------------------------------------ 

 

 eff = (1-averageCO2); //***** 

 //eff = averageCO2; //Sina 

 //eff = T2; 

 return (eff); //Sina  Objective Function 

 

} 

 

double **MT(double **M, unsigned int n, unsigned int p) // Sina "double n" and "double p" --> 

"unsigned int n" and "unsigned int p" 

//matrix times its transpose 

{ 

 double **ans; 

 ans=new double* [p]; 

 for(int i=0;i<p;i++) 

 { 

  *(ans+i)=new double[n]; 

 } 

 for (int i=0;i<p;i++) 

 { 

  for (int j=0;j<n;j++) 

  { 

   ans[i][j]=M[j][i]; 

  } 

 } 

 return(ans); 



 

138 

 

} 

double max(double x, double y) 

//max of two numbers 

{ 

 double temp1=sqrt(pow(x,2)); 

 double temp2=sqrt(pow(y,2)); 

 double ans; 

 if (temp1>=temp2) 

 { 

  ans=temp1; 

 } 

 else 

 { 

  ans=temp2; 

 } 

 return(ans); 

} 

double min(double x, double y) 

//min of two numbers 

{ 

 double temp1=sqrt(pow(x,2)); 

 double temp2=sqrt(pow(y,2)); 

 double ans; 

 if (temp1<=temp2) 

 { 

  ans=temp1; 

 } 

 else 

 { 

  ans=temp2; 

 } 

 return(ans); 

} 

int sign(double x) 

//sign of a number 

{ 

 int ans; 

 if (x>=0) 

 { 

  ans=1; 

 } 

 else 

 { 

  ans=-1; 

 } 

 return(ans); 

} 

 

 


