
 
 

 

Quantitative Design Decision Method: 

Performance-Based Design Utilizing A 

Risk Analysis Framework 

 
by 
 
 

Melinda E. Hurd 
 
 
 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Applied Science 

in 

Mechanical Engineering 

 

 

Waterloo, Ontario, Canada, 2012 

© Melinda E. Hurd 2012



 

 
 

  



iii 
 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any 

required final revisions, as accepted by my examiners. 

 
 
I understand that my thesis may be made electronically available to the public.



 

 
 

  



v 
 

Abstract 
The model building and fire codes in Canada permit prescriptive-based design and performance-

based design approaches. Within this regulatory framework, prescriptive-based designs are attributed 

objective and functional statements to qualify the level of fire protection and life safety required. 

Performance-based designs, or alternative solutions to prescriptive-based designs, must be demonstrated 

to achieve at least an equivalent level of performance as the prescriptive requirement based on evaluation 

of each associated objective and functional statement. Due to the qualitative performance descriptions 

available, the current system for developing and reviewing alternative solutions is vulnerable to the 

acceptance of over-designed or under-designed life safety and fire protection measures in buildings.  

The objective of this thesis is to establish a method to compare the performance of alternative 

solutions with prescriptive design requirements on a quantitative basis. This thesis generates eight 

objectives for a fire risk analysis tool to address the challenges identified in the building regulatory 

industry. Based on review of existing techniques, a new fire risk analysis framework is developed. The 

Quantitative Design Decision (QDD) method, integrates risk analysis with quantitative decision 

assessment techniques to facilitate application-specific quantification of performance objectives and to 

aid evaluation of performance-based designs. The method utilizes an iterative three-stage structure. 

To demonstrate the application of the QDD method, a case-study simulation has been conducted. 

The case-study provides an evaluation of alternative designs to the prescriptive requirements for 

explosion-relief ventilation in rooms housing flammable vapour producing operations. The case study 

supports the conclusion that QDD achieves the eight objectives set out in this thesis. For validation, the 

QDD method must be applied to a wider variety of practical design challenges and it is recommended that 

the results be considered in conjunction with live fire test data to verify key aspects of the performance 

decisions generated. Future work should include evaluation of Delphi technique application in the Design 

Decision Stage of the QDD method. It is proposed that the method developed can be extended for use as a 

general performance-based design tool.
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Chapter 1  

INTRODUCTION 

The Canadian objective-based building design regulatory system permits performance-based 

alternative solutions to be proposed in lieu of solutions based solely on prescriptive design requirements. 

A design challenge faced within the performance-based building industry is that the building and fire 

codes, while allowing alternative solutions, do not specify methods of quantifying alternative design 

performance and accounting for the uncertainty inherent in fire behaviour and in fire science prediction 

methods. As such, the development and review of alternative solutions rely on the experience and 

expertise of the designer and regulator to quantify performance within a building regulatory system 

historically based in prescriptive design methods. This chapter describes the development of building 

design standards, including prescriptive-based and performance-based building codes. Both 

internationally recognized standards and codes developed within Canada are considered as frames of 

reference for identifying challenges currently existing within the performance-based, alternative solution 

design industry.  

In addition, it is determined that fire risk analysis tools, among other fire science techniques 

available, are used with increasing frequency within the design industry to establish the performance of an 

alternative solution. Through this review, criteria are identified in this chapter with the objective of 

selecting or generating a fire risk analysis tool to support the development of an alternative solution to a 

prescriptive design challenge. 
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Following this chapter, Chapter 2 of this thesis provides a literature review of methods of developing 

alternative solutions using performance-based design. The chapter focuses on the three types of fire risk 

analysis methods available and evaluates which may suit the industry challenge established in Chapter 1. 

The new Quantitative Design Decision (QDD) fire risk analysis method developed in this thesis is then 

presented in Chapter 3 and a case study demonstrating the application of the method to a practical design 

challenge is described in Chapter 4. The design challenge considered in the case study involves explosion 

prevention and protection design approaches. Chapter 5 of this thesis provides an analysis of QDD to 

establish if the case study demonstrates that it can achieve the objectives developed in this thesis for a fire 

risk analysis method and its limitations. Future work to extend the potential applications of the method 

and to validate and verify design decision results are discussed in Chapter 6. 

1.1 Building Design Standards  

Design standards for the built environment identify the minimum requirements for fire protection 

and life safety in buildings. The first documented building standard dates back to the Babylonian King, 

Hammurabi, who decreed that if a building falls and kills its owner than the man who constructed the 

building should be killed [Rasbash 1984]. Modern building codes provide guidance for building designers 

and regulatory authorities and focus on design objectives, methods and performance criteria. Design 

standards can generally be classified as either prescriptive-based or performance-based codes. 

Prescriptive-based codes provide specific design attributes that must be provided in a building; such 

as specifying the required rise and run dimensions for a stairway. In contrast, performance-based codes 

are developed to permit performance-based design which is defined as: 

“an engineering approach to fire protection design based on (1) agreed upon 
fire safety goals and objectives, (2) deterministic and/or probabilistic 
analysis of fire scenarios, and (3) quantitative assessment of design 
alternatives against the fire safety goals and objectives using accepted 
engineering tools, methodologies and performance criteria” [NFPA & SFPE 
2007].  
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The development of design standards in the previous century initially began with prescriptive 

requirements and has progressed towards performance-based codes in the past 40 years. 

One of the first building codes recognized in North America was the 1927 Uniform Building Code 

(UBC). This standard was prescriptive and identified requirements for the fire-resistance of building 

construction based on building occupancy, height and area using the then recently developed fire testing 

endurance ratings in the American Society of Testing and Materials Standard C19 published in 1918 

[Goode 2004]. The current edition of the original standard, ASTM E119, “Standard Test Methods for Fire 

Tests of Building Construction and Materials” is virtually unchanged [ASTM 2011]. The UBC’s 

prescriptive concept for building fire-resistance was not numerically justified in the publication and has 

since been carried throughout modern prescriptive codes. It is considered that the rationale for the original 

prescriptive requirements may have been based on the findings of a survey conducted in 1913 by 

Woolson of fire chiefs from large cities around the United States [Fitzgerald 1991]. The UBC recognized 

the concept of an equivalency, which permitted designers to use alternative materials or construction that 

were considered to provide for equal or greater public safety or resistance to fire [Goode 2004]. This 

standard, uniquely, also incorporated a component of modern day performance-based requirements 

wherein it recognized that: 

 “any system or method of construction to be used shall admit of a rational 
analysis in accordance with well established principles and mechanics” 
[ICBO 1927]. 

Notably, the first edition of the UBC did not specifically identify a suitable level of risk or mandate 

comprehensive fire analysis. The UBC’s prescriptive framework has been maintained in current codes 

and standards that regulate fire safety, but do not mandate the engineering of fire safe designs [Fitzgerald 

1991]. In this fashion, modern building codes differ from the traditional design approaches of other 

engineering disciplines, such as mechanical, structural and electrical. These other disciplines utilize 

standards that assume that qualified engineering professionals will take responsibility for their designs 

and calculations methods and, therefore, the standards identify performance requirements only. The 
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prescriptive building codes and fire codes, in contrast, are written in a fashion that does not necessarily 

require input from a fire safety professional or mandate a fire safety analysis. 

The development and modification of prescriptive-based codes have frequently been triggered by 

catastrophic fire events or by the availability of new technologies. Changes are made in the codes to 

reflect shifting risk perception in society and to accommodate more rigorous social mandates [Wolski et 

al. 2000,  Hall & Cote 1997]. Fischhoff and coworkers describe this trial and error approach to 

prescriptive code development as ‘bootstrapping’ [Fischhoff et al. 1981]. The prescriptive codes provide 

design criteria to maintain the minimum risk tolerated in society so as to provide a basis for evaluating the 

acceptability of new designs and new building criteria. As such, as new risks or technologies are 

recognized in society, adjustments are made in the prescriptive regulations [Wolski et al. 2000]. The 

‘bootstrapping’ process however, has numerous disadvantages. This retrospective approach considers 

only those fires which have a low probability and high consequence (i.e. catastrophic) that occurred in the 

past and does not provide protection against fire events that could, but have not necessarily yet, occurred 

[Hurley & Rosenbaum 2008]. The prescriptive codes are also perceived to restrict or stifle innovation 

since the rapid development of modern architecture and materials moves more quickly than regular code 

revision cycles, which often take many years to recognize ‘new’ design approaches [Croce et al. 2008]. 

The movement towards the development and use of performance-based codes began in the 1970s 

and was conducted to overcome the shortcomings identified in the prescriptive-based code framework. 

Performance-based codes are inherently more flexible with respect to design options for non-traditional 

structures such as large stadiums, shopping centres and industrial processing facilities. The origins of 

performance-based design approaches are in the fields of fire science and fire protection engineering 

which differ significantly, in the context of developing a building design strategy, from the 

‘bootstrapping’ approach common in prescriptive code development.   

Performance-based codes have been developed around the world with the first editions published in 

the 1980s and 1990s in the United States, New Zealand, Australia, the United Kingdom and throughout 

the Nordic countries. In large part, these performance-based codes maintain the recognition of older 
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prescriptive-based requirements as a guideline to achieve compliance with the new performance-based 

requirements or objectives [Bukowski & Babrauskas 1994]. This phasing-in framework is described by 

Fitzgerald as a means to permit the current design practice (i.e. prescriptive) to remain, while allowing 

performance-based systems to be developed by knowledgeable professionals so as to integrate new 

technologies and materials [Fitzgerald 1991]. Bukowski and Babruaskas provide detailed descriptions of 

the various performance-based codes adopted around the world [Bukowski & Babrauskas 1994]. In 

general, the objectives of performance-based codes focus on the prevention of losses, the safety of 

individuals and the prevention of social hurt and concern [Rasbash 1984]. These objectives are consistent 

throughout the performance-based codes adopted internationally and are intended to reduce the likelihood 

and consequence of fire events in all building types. 

The advantage of performance-based codes is that new buildings can incorporate innovative design 

features and functions. As importantly, fire science and fire protection engineering principles are 

promoted in an industry that historically has not relied extensively on such knowledge [Hurley & 

Rosenbaum 2008]. The adoption of performance-based codes identifies the value of fire protection 

engineers in the building design process and provides a bridge between the academic study of fire and the 

practical application of fire safety principles in building design. The primary disadvantage associated with 

the application of performance-based codes is that a greater level of expertise is necessary both in the 

designer and in the Authority Having Jurisdiction (AHJ) – which differs significantly from that required 

in the prescriptive-based regulatory model [Croce et al. 2008]. In many countries, including Canada, the 

training programs and qualification systems for designers and for authorities is not commensurate with 

the expertise that is required to develop and evaluate complex performance-based designs. Additionally, 

performance-based designs are, by nature case-specific, which may complicate future opportunities to 

change the use or operation of a building developed utilizing this design technique. 
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1.2 Canadian Model Building and Fire Codes 

The focus of this thesis is the National Model Codes in Canada, specifically the National Building 

Code of Canada  (NBCC) [CCBFC 2010a] and the National Fire Code of Canada (NFCC) [CCBFC 

2010b] as they pertain to building design requirements. As such, a brief summary of the development of 

these codes and their current composition is described. It should be recognized that the challenges 

identified in the Canadian building regulatory system are also present on an international scale where 

performance-based codes are utilized. 

The NBCC and NFCC are classified as model codes. They are not legal regulations unless they have 

been adopted by a province or territory. The codes are therefore intended only to identify the minimum 

set of measures required to achieve the necessary level of life safety and fire protection in the built 

environment. In general, the NBCC applies to new construction, renovation or demolition of a building 

and the NFCC applies to maintenance and use of a building and to activities involving hazardous 

substances or operations. The first NBCC was published in Canada in 1941 and the first NFCC was 

published in 1963 by the National Research Council of Canada. Responsibility for development of the 

code was then, and remains the Canadian Commission on Building and Fire Codes. Subsequent editions 

of the NBCC were published in 1953, 1960, 1965, 1970, 1975, 1977, 1980, 1985, 1990, 1995, 2005 and 

2010. Similarly, the subsequent editions of the NFCC were published in 1975, 1977, 1980, 1985, 1990, 

1995, 2005 and 2010. The 10 year gap between the 1995 and 2005 editions of the codes was a result of 

the effort to develop the model code to recognize and permit performance-based designs [CCBFC 2010a, 

CCBFC 2010b]. The 2005 editions were the first objective-based building codes in Canada and this 

format is maintained in the recent 2010 publication.   

The evolution the codes to an objective-based format integrates the first principle of performance-

based design as defined in the SFPE Engineering Guide to Performance-Based Fire Protection: to identify 

agreed upon fire safety goals and objectives [NFPA & SFPE 2007]. The objectives of the NBCC include 

safety, health, accessibility and fire/structural protection [CCBFC 2010a] and the objectives of the NFCC 
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include safety, health and fire protection of buildings or facilities [CCBFC 2010b]. The codes have been 

developed such that for every acceptable solution (i.e. prescriptive requirement) there is a specific set of 

associated objectives and functional statements. Objectives identify the overall goals of a code 

requirement, while functional statements describe conditions required to satisfy the objectives. Both the 

objectives and functional statements identified in the model codes are qualitative and conceptual. 

When designing a room or building utilizing the prescriptive requirements of the NBCC or NFCC, 

the design requirements are provided and the method of achieving the level of required fire protection and 

life safety is clearly identified. For example, NFCC Sentence 4.2.9.1.(1) prescribes a two hour fire-

resistance rating for flammable liquids storage rooms containing more than 1,500 L of storage [CCBFC 

2010b]. This is a prescriptive requirement since a fire separation is mandated its fire-resistance rating is 

specified. The design approach taken to achieve the prescriptive rating is at the discretion of the designer.  

This prescriptive requirement is associated with the objective of limiting the probability that, as a 

result of the design related to the hazard associated with flammable liquid storage, neither persons within 

the building nor the building itself will be exposed to an unacceptable risk of injury or damage due to fire 

that is caused by fire or explosion impacting areas beyond the point of origin [CCBFC 2010b]. The 

functional statement for the requirement is F03 which is associated with the intent to retard the effects of 

fire on areas beyond its point of origin [CCBFC 2010b]. The detailed objectives and functional statements 

associated with NFCC Sentence 4.2.9.1.(1) are OS1.2-F03 and OP1.2-F03 as follows: 

 “OS1.2-F03 – An objective of this Code is to limit the probability that as a 
result of:  

 activities related to the construction, use or demolition of the 
building or facility, 

 the condition of specific elements of the building or facility 
 the design or construction of specific elements of the facility related 

to certain hazards, or 
 inadequate built-in protection measures for the current or intended 

use of the building, 

a person in or adjacent to the building or facility will be exposed to an 
unacceptable risk of injury due to fire. The risks of injury due to fire 
addressed in this Code are those caused by fire or explosion impacting areas 
beyond its point of origin. The function of the prescriptive design is to retard 
the effects of fire on areas beyond its point or origin” [CCBFC 2010b]. 
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“OP1.3-F02 – An objective of this Code is to limit the probability that as a 
result of 

 activities related to the construction, use or demolition of the 
building or facility, 

 the condition of specific elements of the building or facility 
 the design or construction of specific elements of the facility related 

to certain hazards, or 
 inadequate built-in protection measures for the current or intended 

use of the building, 

the building or facility will be exposed to an unacceptable risk of damage 
due to fire. The risks of damage due to fire addressed in this Code are those 
caused by fire or explosion impacting areas beyond its point of origin. The 
function of the prescriptive design is to retard the effects of fire on areas 
beyond its point or origin” [CCBFC 2010b]. 
 

Therefore, the prescriptive requirement for a two hr fire separation in NFCC Sentence 4.2.9.1.(1) is 

intended to limit a fire originating within the room from spreading throughout the remainder of the 

building.   

The Canadian model codes are developed within a framework similar to that of international codes. 

As described by Fitzgerald, this is because the historical prescriptive-based requirements remain available 

to designers and an additional option exists to conduct a performance-based design as an alternative 

[Fitzgerald 1991]. To achieve compliance with the NBCC or NFCC a design must comply with either the 

acceptable solutions (prescriptive requirements) identified or must use an alternative solution that is 

approved by the AHJ. Any alternative solution must achieve at least the minimum level of performance 

required by an acceptable solution, as defined by its associated objectives and functional statements. 

1.3 Challenges in Performance-Based Designs and Alternative Solutions  

As identified in the above description of prescriptive-based codes, there is often recognition within 

these regulations for design substitutions. Depending on the jurisdiction, such substitutions may be 

classified as a variance, equivalency or an alternative solution. Prior to the objective-based format of the 

NBCC and NFCC, designers could propose equivalencies to specific code requirements. Now such 

proposals are classified as alternative solutions. These regulatory devices permit designers to substitute a 
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performance-based design as a replacement for compliance with a prescriptive requirement. The 

following section describes alternative solution requirements and identifies the challenges faced by 

designers and authorities in quantifying design objectives, demonstrating design performance and 

accounting for uncertainty. The challenges identified are applicable to alternative designs within the 

prescriptive-based regulatory industry and are a factor in a comprehensive performance-based design 

process. The current methods used in industry to address the challenges are also identified. 

It is first necessary to distinguish between performance-based codes and performance-based design. 

The codes provide a regulatory framework to design and accept building solutions while the methodology 

of rationalizing a life safety and fire protection system is considered performance-based design. While the 

codes are relatively recent, the practice of performance-based design has been permitted within the 

regulatory system in North America since the 1927 UBC, which recognized equivalencies. In Canada, 

alternative solutions are permitted if the alternative design can be demonstrated to achieve at least an 

equivalent level of life safety and fire protection as a prescriptive-based design requirement utilizing the 

associated objective and functional statements. Prior to the 2005 edition of the Canadian model codes, 

equivalencies were permitted pending AHJ review and approval. Often, alternative solutions will be used 

where a unique architectural feature or construction material is desired and is not recognized or permitted 

within the prescriptive requirements of the code. Similar practices exist in New Zealand, Japan, Australia 

and the United States, where the current fire risk in buildings as established by prescriptive designs are 

used as the basis for performance-based benchmarking [Bukowski & Babrauskas 1994]. This approach 

relies on the theory that society accepts the current level of risk associated with a building design, and that 

an alternative design must not create a greater risk than that already accepted [Bukowski 2006]. The 

method of benchmarking designs instead of providing specific quantitative risk objectives eliminates the 

reliance on individual judgements of fire risk and risk to society [Fixen 2003]. This provides a fairly 

routine mechanism, at least in principle, for the regulation of performance-based design approaches. 

The existing framework for performance-based design approaches and alternative solutions, 

however, inherently faces a number of significant challenges. These challenges occur because the method 
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of demonstrating alternative solution performance is not regulated; the performance objectives are 

qualitative; the origins of prescriptive and performance-based codes are in conflict: and, fire science and 

fire protection engineering are constantly evolving and naturally contain uncertainty. 

 The mechanism for alternative solutions is recognized in the existing codes; however, the means of 

demonstrating the required equivalent level of performance is not frequently specified. Typically, 

alternative solutions have been developed using logical arguments, industry precedence-setting examples 

or by using fire test data [Bukowski & Babrauskas 1994]. Such practices rely on the experience and 

expertise of the designers and the regulatory officials to determine the acceptability of the method utilized 

to demonstrate performance. As the complexity of building designs increase, the opportunities to use 

logical arguments and case-specific examples to justify a design performance, decrease. Furthermore, the 

performance of a specific design alternative is often difficult to establish through test data generated from 

scaled live fire testing, computational fire modeling or fire science literature. Such investigations may be 

time or cost prohibitive in the context of a single alterative solution project. The data available in the 

literature may also not be suited to the restrictions of the design case under consideration. Under such 

circumstances, fire risk analysis tools are used increasingly to demonstrate design performance since such 

tools are generally adaptable to specific design challenges and are relatively cost and time effective.  

In addition to the challenge of determining an appropriate method to demonstrate the performance of 

a design, it is difficult to compare different design options since the objectives that must be achieved are 

typically qualitative in nature and vague in codes. Bukowski found that the level of detail given in 

performance objectives is often insufficient, in consideration of using available risk assessment methods 

to demonstrate performance [Bukowski 2006]. However, as described by Rasbash, the process of 

quantifying fire safety objectives is challenging and unique, since fire behaviour, the reliability of fire 

prevention and protection methods and the behaviour of people during fire events are difficult to describe 

[Rasbash 1984]. Currently, there is insufficient data available to effectively quantify fire protection and 

life safety performance objectives within a comprehensive performance-based code. Such an undertaking 

would be extensive since the codes are developed to regulate the entire built environment and it is 
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anticipated that such quantifications would vary based on building occupancy, size, location and use. The 

units of quantification would also require significant consideration and evaluation. Whereas many risk 

quantification systems rely on monetary units, the specification of the monetary value of human life is a 

contentious attribute for a model code to adopt. On this basis, the practice of benchmarking prescriptive 

designs for performance-based alternatives is the recognized means of achieving compliance for 

alternative solutions. 

The third contributing factor that creates a challenge in performance-based alternative solution 

approaches is that the prescriptive-codes have been developed using an entirely different framework than 

performance-based tools. As described earlier, prescriptive codes are developed based on catastrophic 

events or technological innovation. These codes provide requirements for individual protection 

components but are not based on a systematic approach to fire safety that is driven by fire science 

principles, as performance-based tools are. The application of performance-based design within the 

prescriptive requirement framework is challenging because the requirements in each system are derived 

from vastly different backgrounds. While an alternative solution may be specific to a single fire protection 

component, such as sprinklers, for example, the performance-based approach to design must account for 

all protection and prevention systems and provide a holistic evaluation of hazard and risk for a room or an 

entire building. This type of evaluation may identify shortcomings in other prescriptive requirements 

applicable to the building, thereby generating a conflict for both designers and authorities in establishing 

the minimum requirement of design. The consideration of the approach to fire protection and life safety in 

a building as individual components versus interactive systems is a fundamental difference between 

performance-based and prescriptive design approaches. 

The fourth significant challenge faced within alternative solutions and performance-based design is 

the randomness of fire events and the resulting uncertainty associated with approximations and models 

used to predict the effects of fire. Uncertainty is associated with qualitative design approaches and 

performance comparisons due to the subjective nature of qualitative analysis. Therefore, in demonstrating 

the performance of an alternative design solution this uncertainty must be evaluated and a measurement 
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assigned so that the robustness of the design decision (i.e. to approve or reject an alternative solution) is 

clear. The robustness of a design decision indicates how ‘sure’ the designer or AHJ is that the predicted 

performance is correct given the uncertainty associated with the design assumptions made.  

1.4 Analysis 

Based on the description of building design regulations, and alternative solutions in particular, the 

following analysis summarizes the challenges within the building regulatory system in Canada and 

internationally. The challenges identified pertain specifically to fire protection designs and the 

development of alternative solutions to prescriptive-based requirements. The major challenge identified is 

ensuring a uniform and consistent application of performance objectives and the subsequent impact on the 

quality of building designs. 

The task of quantifying the objective and functional statements associated with prescriptive 

requirements so as to direct performance-based design is overwhelming. There is also insufficient data 

available to support such an endeavour with respect to providing meaningful accuracy with acceptable 

certainty. As such, designers and authorities are challenged to develop and evaluate performance-based 

designs based on qualitative objectives and benchmarked prescriptive designs. To further muddy the 

design waters, there is an abundance of fire risk analysis methods (see further discussion in Chapter 2), 

fire testing methods and computational modeling techniques available with every passing year; however, 

none are explicitly recognized in the Canadian codes as suitable means through which to demonstrate the 

performance of an alternative solution. The performance-based design framework is constructed in the 

codes, but the specification of methods and techniques required to utilize the framework is absent. 

Due to the ambiguous nature of the performance-based design codes, engineers, architects and 

designers must rely on their experience and the experience of the regulatory authorities to establish and 

evaluate the suitability of design alternatives to prescriptive requirements of codes. This experience may 

be in traditional building design or in academic fire science; however, for such a system to function 

effectively both the designer and the authority must have the same knowledge base from which to draw. 
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A requirement that, in practice, is unlikely at this time. The alternative design must also be compared with 

a prescriptive design on an exclusively qualitative basis, since performance objectives are of a qualitative 

nature. The reliance on experience and qualitative comparisons is often inconsistent between different 

designers and different jurisdictions. Furthermore, while every design requiring an alternative solution is 

unique and developed to address specific hazards and conditions, there should be a reasonable level of 

approval consistency of an alternative solution to a specific prescriptive design requirement across 

various jurisdictions. Unfortunately, this may not be realised in practical design settings because of the 

reliance on individual experience and qualitative comparisons in assessing the various design options. 

The disadvantages of inconsistent alternative solution designs and approvals is that the process 

generates a high potential for the over-design or under-design of life safety and fire protection measures 

in ‘new’ buildings utilizing modern architecture, materials or operations. When alternative solutions are 

accepted on a qualitative comparison basis instead of a quantitative comparison basis, the uncertainty 

inherent in fire development and propagation in a building can be significantly underestimated or 

overestimated. Since the codes provide a minimum standard of building design, alternative solutions, by 

definition, must only maintain that minimum. 

The over-design of building systems results in high costs to an owner and sets an industry precedent 

that exceeds the minimum standard. Over-design is often implemented to account for the uncertainty 

associated with the performance of an alternative design approach, to provide a ‘safety factor’ without 

any performance-based reasoning or justification with the intent of ensuring that a design decision is 

robust. This practice can be costly for building owners and operators or can impose significant inspection, 

testing and maintenance obligations. While overachieving fire protection performance measures is 

considered by most to be beneficial, when such measures become cost-prohibitive it is imperative that the 

minimum requirement be clearly specified and understood. Unless desired by the owner for their own 

purposes (i.e. insurance stipulations), an alternative solution is not be required to exceed the standard 

minimum. In contrast, alternative solutions justified by overestimations of fire protection and life safety 

system performance are considered to be under-designed, in comparison with the prescriptive requirement 
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counterpart. Approvals of such alternative solutions are obviously undesirable, and by definition conflict 

with the intent of the codes.  

1.5 Closure 

The recent development of performance-based building design codes internationally is considered to 

foster innovation in the building industry, but also creates new challenges for designers and authorities. In 

Canada, and throughout the world, alternative solutions are a recognized mechanism by which engineered 

fire protection design can be utilized to replace a prescriptive-based code requirement. However, the 

methods to demonstrate and quantify alternative design performance and to account for the uncertainty 

inherent in fire behaviour at present are not specified in the codes. Current practices rely on designer and 

regulator experience and expertise which can result in over-design or under-design of new buildings and 

protection systems.  

To address the challenges recognized in the performance-based regulatory system, specifically with 

alternative solution development, the objective of this thesis is to establish a method to quantify design 

performance, to address uncertainty associated with real fire events and to generate robust design 

decisions. In particular, a method or methods by which to quantitatively evaluate and compare the 

performance of a prescriptive design to a performance-based design must be identified or developed to 

replace the current reliance on subjective comparison of designs based on qualitative performance 

objectives found in building and fire codes. 

 In this thesis, fire risk analysis techniques will be investigated as the basis for the development of a 

method to address the challenge identified for performance-based designs in the alternative solution 

framework in Canada. Based on the foregoing discussion, any such method must adhere to the following 

four objectives: 

 Utilize prescriptive-based design as a benchmark to develop alternative design options, 

 Utilize prediction and evaluation techniques that are relatively simple to apply and understand, to 
bridge any gaps in the experience between authorities and the designers, 
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 Accommodate typical project timelines and resources by using fire risk and hazard analysis 
techniques that are not onerous in terms of time or monetary resources; and, 

 Provide uncertainty analysis and robustness evaluation for each alternative solution. 

These will form the foundation for development of the QDD method, a new fire risk analysis method that 

has been developed in this thesis. 
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Chapter 2  

LITERATURE REVIEW 

The purpose of this chapter is to establish fire risk analysis techniques that are best suited to 

estimating the performance of an alternative solution design in comparison to a prescriptive design 

requirement. Guidance tools available for selecting and evaluating performance-based designs utilizing 

risk analysis techniques, such as NFPA 551 and the SFPE Engineering Guide, are reviewed to identify 

critical components needed in a method to achieve the requirements of an alternative solution proposal. 

Methods of identifying appropriate data for use in fire risk analyses, focusing particularly on surveying 

methods, are described. The merits of qualitative, semi-quantitative and quantitative assessment methods 

are also evaluated. The literature review provides the basis for the development of a fire risk analysis 

method to address the design challenge and thesis objectives identified in Chapter 1. 

2.1 Industry Guidelines  

Fire risk analysis methods became increasingly utilized in the mid 1990s to develop fire and life 

safety solutions [NFPA 551 2010]. This practice was conducted without an acceptance framework within 

the regulatory environment or a set of rules by which to evaluate the application or results of a particular 

method. There exists a vast array of fire risk analysis methods available to fire protection engineers 
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including qualitative, semi-quantitative and quantitative techniques and a variety of means by which to 

collect and apply data. To assist both designers and AHJ in determining the best application of these 

methods, guidelines for the review of fire risk analyses have been developed by fire protection 

associations and government organizations. The guidelines have been developed to provide guidance to 

designers, practitioners and AHJ when applying and evaluating these methods within the building design 

industry. 

Guidance documents for the development of performance-based designs utilizing fire risk analysis 

tools available to designers and AHJ include standards such as NFPA 551, the SFPE Engineering Guide: 

Fire Risk Assessment (SFPE Engineering Guide), British Standard Institute BS 7974 and the International 

Standard Organization’s Technical Specification ISO-TS 16732: Fire Safety Engineering – Guidance on 

Fire Risk Assessment [Meacham et al. 2008]. The evaluation in this section focuses specifically on NFPA 

551 and the SFPE Engineering Guide because the organizations developing those documents are widely 

recognized in North America and are therefore most likely to be recognized by Canadian building 

regulatory authorities. Since these guidelines are provided to assist in the application and evaluation of 

different design methods they provide criteria for the development of these tools and may be used to 

establish the requirements for an alternative solution submission. The standards are generally intended to 

guide the review process and do not specify which fire risk analysis techniques must be used for specific 

alternative solution proposals.  

The guidance documents identify different types of methods available, both to direct designers in 

appropriate method selection and to assist AHJ in reviewing the application of a method to a fire 

protection engineering challenge. The guidance provided in NFPA 551, in particular, is distinctive from 

the approaches adopted in other guidelines, standards and handbooks, as well as from literature on fire 

risk method categorization and case studies prepared by, for example, Tixier and coworkers, Hall and 

Sekizawa and Kelly and Weckman [Tixier et al. 2002, Hall & Sekizawa 1991, Kelly & Weckman 1993]. 

NFPA 551 is unique within the available guidance documents because it identifies methods that the AHJ 

is expected to be familiar, but does not recommend or restrict the use of any one specific method in the 
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alternative design process. In that respect, NFPA 551 was developed specifically to provide guidance to 

AHJ for evaluating alternative solutions based on conclusions generated by fire risk assessment methods.  

In addition to recognizing various fire risk analysis tools, current guidance documents identify 

specific criteria and submission components required for a complete evaluation of an alternative design 

solution. These items may not otherwise be mandatory components of a fire risk or hazard assessment or 

analysis technique. For instance, in an alternative solution prepared by a fire protection engineer, 

important attributes that must be addressed in the submission include acceptable documentation, 

evaluation of uncertainty and involvement of stakeholders, specifically the AHJ in the design and analysis 

process. The sources of data used in a fire risk analysis also must be justified as reliable, relevant and 

meaningful. These elements are discussed in the following sections since they are expected to be 

developed in a comprehensive alternative solution proposal to a prescriptive code requirement in 

combination with an appropriate fire risk analysis.   

2.1.1 Documentation 

NFPA 551 and the SFPE Engineering Guide direct fire protection engineers to prepare engineering 

design briefs or project reports to document the fire risk or hazard evaluation process conducted and the 

results of the exercise in the context of the design problem. The recommended document practices 

identified in both standards are largely similar with respect to report content. The objective of the 

documentation is to communicate the hazards and/or risks and the assessment process to the stakeholders, 

including the AHJ, as the basis for review and general comprehension [SFPE 2006]. The Canadian model 

codes provide requirements for alternative solution proposal documents in Division C; however, these 

requirements are prescriptive and do not provide the detail and rationale found in the guidance documents 

[SFPE 2006, NFPA 551 2010]. An alternative solution proposal report, describing the method and 

conclusions, must be developed in consideration of the requirements of the Canadian model code 

requirements. NFPA 551 specifically states that: 
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 “…the form of the documentation should meet the needs of the authority 
having jurisdiction within the context of applicable laws and regulations” 
[NFPA 551 2010]. 

Generally, if fire risk analysis documents are prepared as described in the guidance standards then the 

alternative solution proposal report should achieve compliance with the requirements of the NBCC and 

NFCC for submission. 

Based on the documentation submitted, the AHJ must consider the assumptions and limitations of 

the method and project when evaluating the suitability of the developed alternative solution. Furthermore, 

the specification of the assumptions and limitations of the method and of the analysis facilitates the 

management of change in the building subsequent to approval, with respect to the findings of the 

performance-based design approach conducted [SFPE 2006, NFPA 551 2010]. The specification of the 

acceptance criteria used in the fire risk analysis frames the evaluation conducted since these components 

form the basis for the acceptance of an alternative solution. The objectives attributed to prescriptive code 

requirements are often qualitative; whereas the performance criteria identified in alternative solution 

should be quantitative. As such, the assumptions made in quantifying the qualitative performance 

objectives must also be clearly described in the documentation prepared to support the fire risk analysis 

conducted. 

To expedite design approval, the SFPE Engineering Guide identifies that it can be useful to develop 

a preliminary ‘concept’ report that describes the fire risk analysis framework and methodology as 

applicable to the design challenge to facilitate discussions with the AHJ at the onset of the project [SFPE 

2006]. This document can be used to obtain an agreement in principle from the AHJ to support the 

proposed methodology. By approaching the AHJ during the early stages of the project with the 

documented approach, it reduces the likelihood that significant changes in the method or the design will 

be necessary later in the project [SFPE 2006]. 

  



21 
 

2.1.2 Uncertainty Evaluation 

As was identified in Chapter 1, an uncertainty evaluation is considered a necessary component of 

any alternative solution that is supported by a fire risk analysis. This conclusion is reflected in the key 

requirements outlined in the guidance documents under consideration [SFPE 2006, NFPA 551 2010]. 

Uncertainty, within the context of fire protection engineering is associated with the lack complete 

knowledge pertaining to the behaviour of fire and the performance of fire protection and prevention 

systems in the practical world. In terms of models and calculations, uncertainty is related to the reliability 

associated with predicting the performance attributed to fire scenarios. In terms of the practical world, it is 

related to randomness of events. Uncertainty may be categorized as either aleatory or epistemic. Aleatory 

uncertainty is associated with randomness of events, for example, how a fire event is initiated [Notarianni 

& Parry 2008]. Epistemic uncertainty is related to the approximations introduced in a model due to 

limitations in computational methods or background scientific knowledge. Generally, epistemic 

uncertainty can be quantified to some extent in the context of a fire risk assessment, but due to the 

unpredictable nature of real fire events, it is very challenging to quantify aleatory uncertainty. 

In the field of fire protection engineering and design, it is not feasible to attempt to remove 

uncertainty from an evaluation entirely. The body of fire science knowledge is incomplete and fire 

behaviour is inherently random in practical settings. As such, designers are required to make design 

decisions when some level of uncertainty is involved. It is necessary to analyze the significance of the 

epistemic uncertainty inherent to the process since the appropriateness of the design decision is reflected 

in the reliability of the model and data utilized [Notarianni & Parry 2008]. In the analysis process, a 

means of evaluating and documenting uncertainty and rationalizing a design decision is required to 

confirm that the results of a fire risk analysis generate a robust conclusion that is reliable within 

measurable sensitivity.  

The codes and fire risk analysis methods do not typically prescribe a means of determining design 

decision robustness or of quantifying the uncertainty associated with the conclusions generated. As such, 
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it is the responsibility of the designer to address the uncertainty inherent in a fire risk analysis and in the 

data utilized to support the evaluation. NFPA 551 and the SFPE Engineering Guide each identify the 

importance of describing and, if possible, quantifying the impact of uncertainty and variability on a fire 

risk assessment conducted in support of design decisions [SFPE 2006, NFPA 551 2010]. The documents 

identify that sensitivity analyses or uncertainty analyses must be conducted for complex assessments to 

identify the potential impact and significance of uncertainty on the results [SFPE 2006, NFPA 551 2010]. 

The guidance documents require that the effects of the uncertainty in the method and the variability in the 

assumptions and data utilized be analyzed in the calculation of risks and that this uncertainty be 

documented. It is intended that the evaluation of uncertainties will substantiate the reliability and 

robustness of the conclusions of a fire risk assessment. The outcome of a sensitivity or uncertainty 

analysis may be the justification for use of safety factors or may better define the safety margins inherent 

in the design [SFPE 2006]. By evaluating the uncertainty associated with each stage of a fire risk analysis, 

the robustness of the output design decision can be determined.  

2.1.3 Stakeholder Input 

A significant component of a fire risk analysis is stakeholder involvement. A fire risk analysis for an 

alternative solution should not be conducted in isolation. As defined by NFPA 551, stakeholders are any 

individual, group or organization that might affect, be affected by, or perceive itself to be affected by, a 

risk [NFPA 551 2010]. In the context of fire protection engineering and alternative solution development, 

stakeholders usually include at least the designer, the owner and operators of a facility and the AHJ. Other 

stakeholders may include: emergency responders, tenants, insurers, neighbours, local community groups, 

investors and the construction team; having a financial, safety or regulatory interest in the scope of work 

[NFPA 551 2010].   

The reason that stakeholders must be involved in the fire risk analysis process is to ensure that design 

decisions and assumptions are robust and defendable from a range of different perspectives. The inclusion 

of stakeholders in the design process ensures that varied stakeholder values are considered such that a 
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design decision can be made to satisfy as many stakeholders as is possible. Typical stakeholder values 

may include protection of people such as building occupants, employees, public and emergency 

responders; protection of property, such as a building, equipment, building systems or components; 

protection of the environment from effects of fire or hazardous materials; and protection of an 

organization’s mission such as business continuity, information assets, and reputation. 

The role for the AHJ in the fire risk assessment process is particularly significant. The AHJ 

represents the authority that is responsible for enforcing the requirements of a code or standard. It is their 

responsibility to ensure that any approved alternative solutions have demonstrated a performance that is at 

least equivalent to the respective prescriptive requirement. They must also ensure that a rigorous and 

comprehensive evaluation of the fire risk has been conducted. This role does not, however, necessitate 

that the AHJ remain in isolation during an alternative design project.  

NFPA 551 suggests that the AHJ participate in problem definition, selection of acceptance criteria, 

method of review selection, the detailed review process and the final approval of a design as an 

alternative solution to a prescriptive requirement [NFPA 551 2010]. When the AHJ is involved at the 

outset of an alternative solution design project, opportunities to reduce review time, benefit from their 

experience and engage in thoughtful discussion of code interpretations and challenges are available. A 

brief meeting of the owner and the designer with the AHJ at the onset of an alternative solution project 

permits the facility and design challenge to be introduced. By presenting the problem at the initial stages, 

the AHJ has time, well before the review of a solution formally begins, to consider the challenge; research 

industry approaches; and to raise questions to the design team, or to higher regulatory bodies, if 

necessary. Not only does this introduction encourage on-going communication throughout the project, it 

also should help to streamline the formal review. In the practical application of alternative solutions, time 

is always acting against the owners. Streamlining review time and conducting efficient design is critical. 

The practice of involving AHJ in fire risk analysis is at the discretion of both the designer to initiate 

meetings, and the AHJ to accept meeting requests. In the Canadian system, a meeting with the AHJ is not 

mandatory prior to alternative solution submission. 
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Surveying techniques are frequently used to gather pertinent information from fire protection and life 

safety experts and stakeholders in fire risk analyses. This is one method of including stakeholders in the 

project. Various methods of surveying experts and stakeholders are recognized in industry including 

panels of experts in the form of committees and nominal groups [Donegan 2008]. Committees function 

with a chair and members, group debates and majority voting to establish risks associated with various 

fire events. The drawback of a committee format is that majority votes often do not reflect a group 

consensus in that strong personalities within the committee may dominate the debate process [Donegan 

2008]. Nominal groups, in contrast, are formed by experts or stakeholders wherein member’s positions 

are developed and circulated outside of the group setting with the various positions later pooled into a 

final consensus point of view.  

The Delphi method of paneling experts is one type of nominal group survey technique that Linstone 

and Turoff described as:  

“a method for structuring a group communication process so that the 
process is effective in allowing a group of individuals, as a whole, to deal 
with a complex problem” [Linstone & Turoff 1975].  

In a traditional Delphi method, the members never meet and information is transmitted from and to a 

group controller. Each member has an opportunity to cast a vote or score. These scores are then compiled 

such that a group opinion is derived. In each subsequent round of voting, members are provided with 

feedback which includes the group’s overall opinion score in comparison to their previous individual 

score to assist in re-voting. In this fashion the method promotes group consensus without permitting 

dominating personalities to direct individual opinions. Such a method may provide useful when applying 

fire risk analysis techniques where the input from multiple stakeholders having different priorities and 

values is desired. 

Delphi methods are best suited to the development of subjective statements by a group and when it is 

necessary to avoid the pitfalls of group dynamics due to group size, group personalities or politics 

[Linstone & Turoff 1975]. A limitation of this method historically has been that it is time consuming to 

coordinate and that the role of the group controller is significant. With the advent of improved computer 
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technology and information networks, this drawback may be alleviated using a web-based program to 

survey and provide feedback to participants in real-time.  

The Delphi method may also be limited in its application to fire risk analysis in that a group can 

achieve stability before it reaches consensus [Donegan 2008]. Consensus, in the context of stakeholder 

involvement, is critical when generating risk perceptions and opinions for use in a fire risk analysis. Since 

the AHJ stakeholders represent society at large and the owner of a facility represents individual priorities, 

consensus must be established to some extent if the objectives of a fire risk analysis are to be established 

and evaluated. While the use of subjective opinions of stakeholders or experts may be considered a ‘step-

backwards’ from accurate risk quantification, data such as that which might be obtained from Delphi 

analysis is fairly simple to derive and may be extremely useful when ranking fire safety strategies [Zhao 

et al. 2004].  

 In summary, when applied in the context of alternative solution design, fire risk analysis must be 

supplemented by thorough documentation; must specifically evaluate methods and assumptions, as well 

as uncertainty in the techniques and data used; and must be conducted in cooperation with project 

stakeholders, specifically the AHJ to achieve consensus where possible. Utilizing the guidance available 

in NFPA 551 and the SFPE Engineering Guide, a designer is directed towards the suitable application of 

a fire risk assessment method and the development of a comprehensive alternative solution report. The 

guidance documents also assist AHJ in evaluating such applications. 

2.2 Fire Hazard and Fire Risk Assessment and Analysis Techniques  

Numerous fire hazard, and fire risk assessment, evaluation and analysis techniques are available to 

assist designers and AHJ in predicting and measuring the performance of fire protection and life safety 

designs. This section discusses the benefits, limitations and opportunities within this area of study, and 

focuses specifically on application of risk assessment within the alternative solution framework of 

prescriptive building and fire codes. Definitions of terms and types of tools available to designers and 
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AHJ which pertain to the development and evaluation of alternative solutions are described. Methods 

considered include qualitative, semi-quantitative and quantitative hazard and risk techniques.  

The terms fire risk assessment, fire hazard analysis and combinations therein are used 

interchangeably throughout the building design industry. A generally accepted definition for the term 

‘hazard’ is a “chemical, physical condition or situation that has the potential for causing damage to 

people, property or the environment” [Watts & Hall 2008]. In contrast, the term ‘risk’ is defined as: 

“the probability distribution of events and associated consequences as the 
potential for the realization of unwanted, adverse consequences to human 
life, health, property or the environment” [Watts & Hall 2008].  

Essentially, a hazard represents the potential for an unwanted outcome, and a risk represents the 

product of the probability of occurrence of that unwanted event and its severity. The definition of each 

term is significant in the context of the evaluation of assessment and analysis tools for use in the support 

of the development of an alternative solution.   

An assessment tool, as defined in the SFPE Handbook, is distinctive from an analysis, an evaluation 

or an identification tool. An assessment is “the process of establishing information regarding acceptable 

levels of risk” while an evaluation is “the judgement of the significances and acceptability of risk” and is 

considered one component of an assessment [Watts & Hall 2008]. Van Duijne and coworkers specify that 

a risk assessment should answer three questions: what can go wrong?, how likely is it to happen?, and if it 

does happen what are the consequences?; such that a risk assessment is comprised of three distinct phases 

(1) hazard/risk identification, (2) risk estimation and (3) risk evaluation [van Duijne et al. 2008]. The term 

‘analysis’ is defined as an “examination of negative consequences and the process of quantification of 

probabilities and expected outcomes”, and is considered to include assessments, evaluations and risk 

management approaches [Watts & Hall 2008]. The terms analysis, assessment and evaluation are also 

frequently used to refer to a thorough investigation of a topic. For the purposes of this investigation, the 

terminology proposed in the SFPE Handbook will be maintained and a comprehensive tool that quantifies 

the likelihood and consequence of each event will be described as a fire analysis.  
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A fire hazard analysis, as defined by Hall and Sekizawa, is a method to establish and describe a 

single fire situation while a fire risk analysis addresses all relevant fire situations [Hall & Sekizawa 1991]. 

Another distinction between risk analyses and hazard analyses is that risk analyses use probabilistic 

evaluations to determine consequences [Bukowski 2006]. The term fire risk assessment is used in NFPA 

551 to refer to all fire risk analysis, fire hazard analysis, hazard analysis and fire hazard assessment 

methods which characterize risks associated with fires, their probability and potential consequences 

[NFPA 551 2010]. For the purposes of this investigation, risk and hazard techniques are distinguished by 

the use of probabilistic evaluation as described by Bukowski. Furthermore, a fire risk analysis is classified 

as a methodology by which multiple probabilistic fire event outcomes are considered. 

The following provides a brief overview of some methods for hazard and risk assessment and 

analysis that are available within the fire protection industry. The following sections provide descriptions 

of qualitative, semi-quantitative and quantitative techniques. 

2.2.1 Qualitative Tools  

Tools used to identify and evaluate hazards associated with potential fire events that do not quantify 

either outcome - event likelihood or event consequence - are classified as qualitative methods. As 

identified in NFPA 551, Section 5.2, such methods are typically used in conjunction with other tools 

when conducting a fire hazard or risk analysis [NFPA 551 2010]. Common qualitative tools, include the 

What-If Analysis, hazard checklists and logic trees such as the Fire Safety Concepts Tree (FSCT) [NFPA 

551 2010]. While these tools cannot be used exclusively to support the development of an alternative 

solution, they represent potentially valuable screening tools for designers. 

The What-If Analysis method is an unstructured brainstorming technique which aims to identify the 

intended function and potential failure modes of a designed system using the phrase “what if ‘X’ 

happens”. The results of such investigations may be a narrative; however, it will not include any ranking 

or quantification of hazards [NFPA 551 2010]. Checklists, in contrast, provide specific lists of questions 

or items to assist in the identification of known hazards or code deficiencies, i.e. door hardware is 
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installed to manufacturer’s specifications [NFPA 551 2010]. Checklist tools should be used with caution, 

since by definition they are specific to a particular hazard or design system and have restricted 

application. These methods of qualitative fire hazard assessment assist in identifying potential hazards 

within a building or fire protection system but do not provide a means to numerically quantify 

performance. They are limited by the experience of the practitioner of a What-If-Analysis to generate 

appropriate questions or by the scope of the checklist system developed. These methods are not based on 

fire science principles and do not facilitate a comprehensive systems approach to the qualitative 

evaluation of hazards. 

As an alternative to What-If-Analyses and checklists, the FSCT is a qualitative logic tree developed 

to identify strategies for achieving specific fire safety objectives. The logic tree illustrates the relationship 

between numerous components which contribute to overall fire safety to demonstrate how different 

design approaches may achieve the same fire safety objectives. The tree utilizes logic gates – AND or OR 

– to distinguish between fire safety objectives and design paths, as described by Rasbash and coauthors 

[Rasbash et al.2004a]. The FSCT is a recognized qualitative fire analysis tool to by which to evaluate 

various fire safety strategies [NFPA 551 2010], and in 1987 it was identified as the most frequently used 

fire safety system analysis method to address non-traditional fire safety design challenges and develop 

code equivalencies [Richardson 1987]. 

NFPA 550 specifies the structure, application and limitations of the FSCT [NFPA 550 2007]. This 

guide provides a detailed description of each component of the logic tree. The complete FSCT is provided 

in Appendix A for reference, where (●) represents an AND gate and (+) represents an OR gate. The 

FSCT was published originally in 1974 by the NFPA Committee on Systems Concepts for Fire Protection 

in Structures [NFPA 1974]; however, it was not until 1985 that the first edition of NFPA 550 was 

published by the NFPA technical Committee on Systems Concepts for Fire Protection in Structures 

[NFPA 550 1986]. The FSCT was unique within the fire protection industry since it was developed 

originally to assist with design decisions for high-rise structures [NFPA 550 1986]. The tree was 

distinctive from traditional fault trees available at the time, which also utilized logic gates, since the 
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decision paths were constructed to lead to a fire objective success rather than failure. It does not, however, 

lend itself well to attributing specific likelihood probabilities to the various paths in the analysis. The 

current 2012 edition of the standard continues provide a success-based comprehensive fire safety 

framework. 

The applications of the FSCT include the analysis of codes or standards and the development of 

performance-based designs [NFPA 550 2007, Richardson 1987]. The FSCT is recognized as a valuable 

design tool since it provides an overall framework under which common fire safety objectives can be 

systematically correlated to specific design components. The tool addresses building design components 

such as, construction, combustibility of contents, protection devices and occupant procedures [NFPA 551 

2010]. The FSCT provides a comprehensive illustration of the interrelationships between fire safety 

strategies and a logical path for evaluating achievement of fire safety objectives.   

This framework is useful to designers since the logic gate component of the FSCT identifies overall 

system redundancies and shortcomings. From a design perspective, for example, an OR logic gate in the 

FSCT implies that only one of many methods of prevention or protection are required to achieve a fire 

safety objective. This strength, however, also leads to a limitation of the FSCT in that an OR gate also 

implies that perfect achievement of any one method is sufficient to achieve the full fire safety objective. 

This approach is not realistic in practice; since no fire protection system is considered to achieve 100% 

reliability. Such limitations are easily overcome since multiple OR logic gate paths can be implemented in 

a final design to achieve the desired fire safety objectives. 

One application of the FSCT methodology includes a qualitative assessment a fire safety design 

approach to determine where improvements are necessary [NFPA 550 2007]. However, Hall and 

Sekizawa identify that the FSCT may be utilized as a quantitative tool where probabilities for each event 

are estimated using laboratory results, historical data or expert opinion [Hall & Sekizawa 1991]. This 

method is described as a tool for use by architects, building managers or fire protection engineers to 

establish the probability of success of a fire protection system based on pre-defined objectives [Hall & 

Sekizawa 1991]. While the application of probabilities to establish the likelihood of success of meeting an 
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objective are recognized within the fire risk assessment industry, the method was not developed to be 

used in a quantitative format, as is clearly described in NFPA 550. 

A major strength and unique attribute of the FSCT, within the category of qualitative tools, are its 

built in tutorial properties and its applicability as an equivalency guide to performance-based design 

[NFPA 550 2007]. The tree provides a simplistic means to communicate fire safety requirements that are 

incorporated into codes and standards – this tutorial function greatly assists designers in explaining design 

approaches to stakeholders. In addition, the FSCT is illustrative and easily expressed to persons who do 

not possess extensive fire protection or fire science knowledge. Furthermore, the FSCT has been 

developed specifically to assist in the design of equivalencies, such as those necessary to support 

alternative solutions; since OR gates effectively identify alternative means to achieve the same fire safety 

objective.  

The FSCT is not without limitations, however [NFPA 550 2007]. In particular, the tool does not suit 

multi-objective design challenges and it does not address the lateral interactions between logic branches 

in complex fire protection systems [NFPA 550 2007]. Furthermore, the method cannot take into 

consideration the chronological sequence of fire scenarios and, as described in NFPA 550, it is only 

qualitative. Nonetheless, the FSCT holds much promise when applied as a screening tool in a larger fire 

analysis. Limitations in its ability to deal with multiple design objectives do not apply in the case of 

comparison of an alternative design to a single prescriptive code requirement where the requirement is 

related to simple fire safety objectives. When used only as a screening tool,  limitations in its ability to 

address lateral design interactions are also less relevant since only design alternatives that represent 

equivalencies to the benchmarked prescriptive design are considered. Nonetheless, a comprehensive fire 

risk analysis method is required to provide a truly quantitative analysis which considers specific fire 

scenario events in terms of their likelihood and consequence. As such, a qualitative fire hazard assessment 

tool such as FSCT cannot be used exclusively to predict the performance of an alternative solution; on the 

other hand, the FSCT provides a systematic, logic-based evaluation of the design components required 

within an objective-based design framework. 
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2.2.2 Semi-Quantitative Tools  

Semi-quantitative tools are those that describe either the likelihood or the consequence of a risk 

quantitatively. The other component is then generally described qualitatively. Deterministic enclosure 

models, actuarial and loss statistical models and network models such as event trees are common semi-

quantitative methods [NFPA 551 2010]. Enclosure models are typically classified as semi-quantitative 

consequence methods, network models are classified as semi-quantitative likelihood methods and 

actuarial or loss models are represented in both categories depending on the nature of the data utilized to 

evaluate loss. 

Enclosure models are used to quantify consequences of a fire scenario and are predominantly 

conducted using fire science correlations represented by computational fire models. The complexity of 

fire models has increased with the recent advances in computer technology such that numerous fire 

modeling software programs are readily available each having specific applications and limitations 

[Friedman 1992]. In 2003, Olenick and Carpenter surveyed the fire modeling programs available to fire 

protection engineers. This survey was an update to the efforts of Friedman, and catalogued 168 modeling 

programs related to fire and smoke phenomenon [Friedman 1992, Olenick & Carpenter 2003]. While fire 

modeling tools are useful when describing specific fire hazard events, this investigation focuses on 

identifying fire risk assessment methods that are resource efficient and transparent. Fire modeling 

techniques are often times complex, time consuming and costly to verify and validate when applied in the 

context of single case alternative solutions to complex building design challenges. 

Actuarial and loss statistical models may be used to evaluate the probability or likelihood of single or 

multiple fire scenarios or may be used to predict the loss associated with a specific event outcome. These 

methods utilize statistical data based on historical losses. In the United States the FEMA/USFA National 

Fire Incident Reporting System (NFIRS), NFPA’s Fire Incident Data Organization (FIDO) database and 

Survey of Fire Departments represent databases of documented losses to support statistical models 

[NFPA 551 2010]. These resources represent years of fire loss details; however, the data is not necessarily 
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consistently reported and is specific to each fire event. It must be applied with caution if supporting 

performance-based design solutions. 

Network models provide graphical representations of information. Depending on the nature of the 

information under evaluation, the network will be shaped to connect associated nodes. A tree network is 

one in which two nodes are only connected by a single path [NFPA 551 2010]. Event trees are tree 

network models which quantify the likelihood of a fire scenario. Event trees sequentially quantify event 

probabilities and utilize qualified consequences to describe risk. Event trees are described as “the simplest 

and one of the most powerful probability models” [NFPA 551 2010]. A generic event tree is illustrated in 

Figure 2.1, and its components are discussed in this section. 

 

Figure 2.1 Illustration of an Event Tree [Ericson 2005] 

Event trees are useful tools to identify and screen fire scenarios [Hadjisophocleous & Mehaffey 

2008]. As described in Chapter 12 of the Hazard Analysis Techniques for System Safety, the purpose of 

event tree analysis studies is to evaluate the consequences of every fire scenario outcome generated from 

a single initiating event within a single design strategy [Ericson 2005]. It is believed that event trees were 

originally developed in 1974 during the nuclear power plant safety study titled WASH-1400 [Ericson 

2005]. These trees were generated to simplify the traditional fault tree analysis methods, which utilized 

more complicated multi-branch event sequences instead of the binary decision format now adopted in 
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event trees [Ericson 2005]. Fault tree analysis techniques are illustrative network models and focus on 

establishing the cause of an event instead of the possible outcomes from an event. Fault tree analyses 

utilize logic gates, similar to the FSCT, and are a ‘reverse thinking’ tool to establish the cause of a fire 

event [Meacham et al. 2008]. In comparison to available network models, the event tree approach is 

considered to assist in generating fire scenario events in a simple and thorough fashion.    

Ericson identifies specific terminology to describe event trees including the accident scenario, 

initiating event and pivot events, which are identified in Figure 2.1 [Ericson 2005]. The accident scenario 

represents one chain of events starting from the initiating event, and containing each pivot event through 

to generation of an accident outcome [Ericson 2005]. The initiating event is the first failure that starts the 

multiple accident scenarios. Rausand and Høyland emphasize that the initiating event should be the first 

significant deviation that could lead to the accident outcomes [Rausand & Høyland 2004]. Additional 

events may be associated with the initiating event, to better describe and capture all possible outcomes of 

the full accident scenario. For example, an additional event may relate to wind direction at the time of the 

initiating event, but may not necessarily reflect or relate to a specific design component [Rausand & 

Høyland2004]. Pivot events follow the initiating event and accident events, and represent design barriers 

that are evaluated to either successfully operate as intended or which fail to successfully operate as 

intended [Ericson 2005]. These barriers represent the design components intended to mitigate a fire or 

explosion event. Generally, pivot events are binary in character.  

The quantification component of an event tree is in the assignment of probabilities to each pivot 

event and/or the accident scenario consequences. To quantify accident consequences, a decision making 

models may be required. If the consequences are described qualitatively, the descriptions will generally 

range between undesirable and desirable 

As identified by Bukowski, hazard assessments conducted to demonstrate performance-based 

designs should represent the principal fire events threats, which frequently result from multiple failures 

[Bukowski 2006]. The event tree represents a simple model by which the multiple accident scenarios 

generated by an initiating event can be sequentially evaluated and considered. This tool is an illustrative 
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means to convey technical fire protection information pertaining to a proposed design and its possible 

modes of operation. The event tree is also a model that can be utilized early in the development stages of 

a design project since it relies largely on conceptual design information [Ericson 2005]. These attributes 

position event tree analysis well for application to alternative solution designs.   

Limitations of event trees relate to the skill of the user, the restriction of outcomes to a single 

initiating event and the qualitative nature of outcome descriptions. As such, it is important that event trees 

be applied by a knowledgeable fire protection engineer who is familiar with both the prescriptive-based 

and performance-based design approaches under consideration, as well as event tree development and 

analysis techniques. Since event tree outcomes are associated with a single initiating event, the probability 

of similar outcomes occurring because of a different initiating event are not represented in outcome 

probabilities generated [Rasbash et al. 2004b]. This limitation reflects the importance of initiative event 

selection and evaluation by a knowledgeable designer. Additionally, since event trees are semi-

quantitative, to compare the performance of design alternatives it is required that the consequences of the 

fire scenarios be evaluated on a quantitative basis. Quantitative consequence comparisons are necessary in 

a fire risk analysis method to assist the designers and the AHJ in making informed alternative solution 

design decisions.  Event trees assist in describing the performance of fire safety designs; however, they do 

not direct the design process nor do they generate quantitative design decisions. 

2.2.3 Quantitative Tools  

Quantitative tools provide a numerical evaluation of both the likelihood and consequences related to 

a fire scenario or series of fire scenarios so as to assign quantitative values to the risk. Quantitative tools 

may include both subjectively derived and objectively derived risk values. A challenge inherent to 

quantitative tools is the identification of fire event likelihood and fire event consequence in numerical 

terms. Event likelihood is often more easily described using equipment failure rates or historical trends; 

however, the quantification of fire consequences is often difficult to ascertain with certainty without using 

complex and case-specific enclosure models such as those described in Section 2.2.2. Fire events and 
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their outcomes are uncertain with respect to the likely magnitude of damage caused to property and to 

human life. Fire risk analysis tools that generate quantitative results must therefore rely on decision 

making techniques for uncertain or risky conditions. 

Risk-based decisions are those made using comparisons of statistically derived risk [Donegan 2008]. 

These decisions often utilize a single comparison parameter (i.e. total cost) and allow comparisons to be 

made between different alternatives under various conditions. For example, the cost of upgrading a 

sprinkler system and the losses expected based on statistical fire size would represent a risk-based 

decision. If the probability distribution for the fire size is not available or cannot be determined, the 

decision becomes uncertain and assumptions must be made to generate design decisions. Simple decision 

making methods will consider a single comparative parameter; however, in fire risk analysis objectives 

related to multiple outcomes must be considered. These can include economic, environmental, political, 

physiological and societal priorities. In this instance, multi-objective decision making tools utilizing 

utility principles and weighting factors are useful in evaluating the fire risks associated with various fire 

protection systems or life safety system designs. These types of tools are often integrated in quantitative 

fire risk analysis methods, both as objective or subjective tools. 

Objective quantitative tools include statistical models developed using historical population and fire 

or explosion incident data. These tools are often extremely industry specific; for example, fire hazard and 

risk assessment tools were initially used in the 1960’s in the nuclear industry, chemical processing 

industry and in structural building design [Rasbash 1984]. These early methods were based on frequency 

and consequence distributions created from historical data specific to each industry and used to 

benchmark acceptable risks to individuals and to society in consideration of the hazards of that specific 

industry. For example, within the chemical processing industry, correlations between manmade fatality 

hazards and natural disaster fatality statistics have been used to define an acceptable level of risk or the 

permitted annual fatality distribution associated with a chemical plant within a population. These types of 

investigations rely on population data and have been shown to indicate that higher fatality risks are 

generally better accepted in rural areas versus urban areas [Rasbash 1984].  
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Within the context of building design, such tools have been utilized historically to establish load 

bearing building component failure rates and their necessary safety factors. Industry specific quantitative 

methods which rely on statistical loss data and population details continue to be developed. For example, 

methods have recently been developed to analyze risk in such specific applications as oil and gas floating 

production storage offloading facilities [Suardin et al. 2009] and the transportation of dangerous goods 

through urban environments [Fabiano et al. 2002]. Due to the specific nature of these types of tools and 

the reliance on current statistical data, such objective quantitative risk analysis methods are limited in 

application to specific industries and regional populations. Similarly, evacuation models developed 

specifically for building design evaluations of exiting and movement are valuable in specific application 

but cannot generally be applied across all types of performance-based design analyses.  

As an alternative to objective quantitative models, subjective risk valuation tools include the 

application of risk indices and risk matrix tools, fuzzy logic or economic theories to fire science, wherein 

numerical values are utilized to quantify risks. These methods are developed to assist in making decisions 

under uncertainty. The quantification of risk derived using these methods is subjective in nature and 

cannot be compared directly with risk results calculated using alternative methods. Van Duijne and 

coworkers identify that methods such as ordinal ranking used to describe risk are a suitable approach if 

the estimation of risk is described and an unambiguous system for ranking likelihood and consequence is 

provided [van Duijne et al. 2008]. The evaluation of event consequences required in quantitative fire risk 

analysis tools relies on consideration of the affect of economic, environmental, political, physiological 

and societal values in assessing the consequences associated with an event outcome [Suddle 2008].  

Risk indices and matrices are identified as qualitative tools in NFPA 551; however, the tools are 

classified as quantitative tools in the SFPE Handbook. In brief, the tools utilize scoring systems or 

graphical representations to evaluate hazards. The scoring systems are compared with a base ‘acceptable’ 

risk level while graphical representations in the form of a risk decision matrix can be used to compare the 

risk associated with the performance of different designs. The tools are quantitative to the extent that 

numerical values are calculated to represent the risk associated with a design or event. Tools available to 
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assist in the ranking of risks or weighting of risk perceptions include safety factors and risk adjustment 

factors [Wolski 2000] and the analytical hierarchy process [Zhao et al. 2004].  

The principles of risk matrices and risk ranking or indexing form the basis for many quantitative risk 

evaluation techniques when used in conjunction with fuzzy logic algorithms and safety factors. The use of 

linguistic variables to describe complex or ill-defined systems, such as fire development and human 

behaviour, can be translated into mathematical relationships which may then be manipulated to represent 

risk [Zadeh 1973]. These principles are utilized in set-pair analysis and fuzzy logic theory [Zhou 2010] 

and in computational programs such as Progrid [Bowman 2005]. These methods also utilize risk matrices 

to represent and subjectively evaluate the risk associated with complex systems. Using fuzzy logic 

factors, uncertainty in a complex system may be integrated into risk estimations. In Progrid, language 

ladders are developed to convert physical observations to numerical equivalents and to quantify risk and 

performance [Bowman 2005]. In general, such methods use language indicators to assign quantitative 

equivalents to risk in order to provide a means of ranking, weighing and comparing attributes of complex 

systems within a contrived scale to value or measure the perceived risk associated with a fire event 

[Bowman 2005]. When applied appropriately, these methods are fairly flexible in analyzing generic 

situations and can effectively identify and account for uncertainty in those analyses.  

Economic principles are also frequently utilized in the quantification of consequences and loss due to 

fire. These include the application of cost-benefit analysis, decision analysis and utility theory, described 

in detail by Ramachandran [Ramachandran 1998]. The assignment of monetary equivalents to quantify 

the non-monetary costs and consequences of accident scenarios, such as injury or death, is frequently 

relied on in the insurance industry and within the legal system in cost-benefit analyses. This practice 

includes assigning a monetary value to a human life based on various factors such as gross output, life 

insurance policies, previous court awards and ‘willingness to pay’ theories [Ramachandran & Hall 2008]. 

The practice of assigning a cost to human fatality or injury, while it may be computationally effective 

within the context of a fire risk analysis method, is controversial and difficult to defend such that all 

stakeholders are satisfied.  
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Utility theory offers an alternative to monetary equivalents by using decision-making rules to 

account for the uncertainty associated with outcomes of fire events. Based in economics, this theory 

considers the preferences of people when making decisions under uncertainty as well as their aversion to 

risk [Ramachandran 1998]. The utility theory is based on the principle of maximizing expected utility as 

the basis for a decision. This approach describes the consequences of an event in terms of the preference 

for an outcome and its probability. Utility represents the preference for uncertain outcomes in relation to 

each other, in other words, how good or bad they are perceived to be [Johansson 2003]. This method 

allows the consequences from fire events to be compared directly to one another. Expected utility 

represents the expected value of a function of event probability and outcome utility and can be used to 

consider non-linear aspects of event consequences such as risk aversion [Hall & Sekizawa 1991]. In 

isolation, the utility theory does not represent a fire risk analysis technique; however, if combined with 

other risk assessment techniques then applications in fire risk analysis are available, as is represented by 

the Super Soft Decision Theory (SSDT).  

The SSDT methodology has been developed to address fire protection engineering problems that 

have high epistemic uncertainty by utilizing the principles of maximization of expected utility, Bayesian 

decision theory and extended decision analysis [Johansson & Malmñas 2004]. SSDT utilizes probabilistic 

evaluations that are derived from event trees, a semi-quantitative fire risk assessment technique as 

described in the previous section. Utilizing extended decision analysis, SSDT forms user-described 

probability distributions to evaluate design options instead of precise event likelihood values. The SSDT 

method relies on maximum, minimum and most likely expected utility values to compare design 

performance. The combination of these components in SSDT permits the robustness of design decisions 

to be considered since a range of expected performance is attributed to each design alternative. The 

influence on the estimated design performance of a change in event likelihood and consequence utility 

can also be measured. 

The user-described probability distributions derived are based on relatively vague assessments of 

event likelihood and consequence utility [Johansson & Malmñas 2004]. To conduct SSDT, a decision 
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frame must be established to assign event likelihood and consequence utility values to convert qualitative 

statements into their respective quantitative values [Johansson & Malmñas 2004]. A specific 

methodology for this process is not prescribed for SSDT applications; and, numerous methods of 

developing a decision frame are available to designers, including simplistic group consensus surveying 

tools through complex mathematical relations based in economic theory. A limitation of the SSDT 

method is that the decision frame development process may be time consuming and complicated, and that 

it may be difficult to obtain group consensus in practical design scenarios depending on the type of 

method used. However, since SSDT relies on a range of probabilities associated with specific events there 

is an opportunity to represent multiple values proposed by different stakeholders for a single variable 

which facilitates group consensus. 

The SSDT method does not quantify how much better or worse the performance of a design 

alternative is in comparison to another; instead it identifies that one is likely better or that one is likely 

worse. Within the fire protection engineering industry, however, it would be considered extremely 

difficult to quantify with great certainty the performance of a design solution under all possible fire 

scenarios. As such, SSDT reduces an alternative solution design challenge to manageable and meaningful 

design performance comparisons.  

In the context of the fire protection design industry, the SSDT method is limited to quantifying the 

expected performance of a pre-conceived design for direct comparison. The method directs users to a 

decision regarding the most preferable design option and facilitates sensitivity and robustness evaluation. 

The method does not direct the fire protection system design development process nor does it describe the 

performance of a design approach.  

2.3 Analysis  

The investigation described in Section 2.2 identifies numerous qualitative, semi-quantitative and 

quantitative fire risk and hazard assessment tools available to designers for rationalizing, developing and 

evaluating alternative solution designs. Each method, and type of method, has inherent weaknesses and 
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strengths. In general, qualitative methods, such as the FSCT, are useful in describing and identifying the 

types of hazards which could occur. Semi-quantitative methods, such as event trees, can be used to 

describe the risk associated with proposed designs in terms of sequential quantified events and their 

qualitative outcomes. Quantitative tools available in industry include both objective and subjective tools, 

the latter being considered the more flexible in terms of application across a range of performance-based 

design challenges. These tools assist designers in ascribing quantitative values to evaluate risks and 

provide methods for making decisions under uncertainty, such as SSDT.  

The evaluation conducted has demonstrated that a one-size-fits-all fire risk analysis technique is not 

available for alternative solution designs and performance-based design comparisons; however, numerous 

valuable tools are available to assist designers in each of the three stages of the fire risk analysis process. 

As described by van Duijne and coworkers, a comprehensive fire risk analysis tool is comprised of three 

distinct phases: hazard/risk identification, risk estimation and risk evaluation [van Duijne et al. 2008]. 

Utilizing the investigation of qualitative, semi-quantitative and quantitative tools available, a fire risk 

analysis methodology may be developed to support performance-based alternative solutions by 

incorporating components of each of the three types of tools. Such a method would combine existing 

techniques of fire risk and hazard assessment to capitalize on the strengths of the individual techniques 

while compensating for weaknesses. 

It is proposed in this thesis to combine existing methods of fire risk and hazard assessment into a 

quantitative design decision methodology for fire risk analysis that will aid both designers and authorities 

in developing and evaluating alternative solutions to prescriptive code requirements. To be classified as a 

fire risk analysis method, the new tool must provide a quantitative evaluation of both fire scenario 

likelihood and consequence and must consider all significant fire events when evaluating overall risk. 

Based on the evaluation in Section 2.2 and the three-phase criteria described by van Duijne and 

coworkers, the new quantitative design decision methodology should combine qualitative, semi-

quantitative and quantitative tools to capitalize on the strengths and to compensate for the weaknesses 

inherent to each technique [van Duijne et al. 2008]. Furthermore, as specified in the guidance documents 
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described in Section 2.1, stakeholder input, effective documentation and uncertainty evaluations must be 

represented in the method [SFPE 2006,  NFPA 551 2010]. 

2.4 Conclusions 

A single fire risk analysis method is not available that can address the breadth of performance-based 

design challenges identified in Chapter 1 and that can provide a quantitative design comparison between 

alternative solutions and prescriptive-based designs. Therefore, in this thesis, it is proposed that a new fire 

risk analysis method be developed to achieve the following criteria: 

 Represent performance of comparison designs in a manner which addresses the contributions of 
all significant fire events to overall fire risks. 

 Provide quantitative evaluation of consequence and likelihood associated with design 
performance. 

 Account for uncertainty associated with design outputs in relation to input parameters and 
assumptions to evaluate the robustness of design decisions. 

 Involve stakeholders (owners and AHJ) and to achieve consensus regarding design priorities and 
risks throughout the design process. 

 Combine qualitative, semi-quantitative and quantitative fire assessment methods. 

The method must also consider the documentation requirements identified in Section 2.1 of this chapter. 

Furthermore, the method developed must also incorporate the objectives described in Chapter 1 as 

follows: 

 Utilize prescriptive-based design as a benchmark to develop alternative design options. 

 Utilize prediction and evaluation techniques that are relatively simple to apply and understand, to 
bridge any gaps in the experience between authorities and the designers.  

 Accommodate typical project timelines and resources by using fire risk and hazard analysis 
techniques that are not onerous in terms of time or monetary resources.  

 Provide uncertainty analysis and robustness evaluation for each alternative solution. 

The above method criteria form the basis for the development of a new fire risk analysis method. 

Considering that the objectives pertaining to uncertainty and design decision robustness may be combined 

as ‘Account for uncertainty associated with design outputs in relation to input parameters and 
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assumptions to evaluate the robustness of design decisions’; then a list of eight objectives for the new 

method has been established. 

2.5 Summary 

Fire risk analysis methods pertaining to the development of performance-based alternative solutions 

are numerous and diverse. The evaluation conducted in this chapter has determined that no one method is 

best-suited to address the design challenge identified in Chapter 1 of this thesis. Utilizing guidance 

documents and, in consideration of a review of qualitative, semi-quantitative and quantitative techniques, 

the components of a fire risk analysis method have been identified. Utilizing the conclusions of Chapter 1 

and the findings described herein, eight objectives have been defined to guide the development of a new 

quantitative design decision methodology. It is intended that the new tool incorporate available risk and 

hazard evaluation and assessment techniques to build a comprehensive fire risk analysis method. 
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Chapter 3  

QUANTITATIVE DESIGN 

DECISION METHOD 

This chapter provides a description of the Quantitative Design Decision (QDD) method, a new fire 

risk analysis method that has been developed in this research work. The intended application and 

limitations of the method, when utilized to evaluate alternative solutions to designs specified via 

prescriptive code requirements, is described in this chapter. The QDD method consists of three stages:  

Design Stage, Fire Scenario Stage and Decision Evaluation Stage. Each stage is first described, then the 

function and operation of each stage are outlined, and finally the application of the new QDD method 

within a performance-based design context is discussed. The design process stages in which the method is 

to be utilized and the team of stakeholders required to conduct the method are also defined. A case study 

is provided in Chapter 4 to demonstrate the applicability of the new QDD method to a typical design 

challenge. 

3.1 Application of Method 

The QDD method has been developed utilizing the evaluation of fire risk and hazard assessment and 

analysis techniques and guidance documents considered in Chapter 2, as well as taking into consideration 
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the challenges recognized within the performance-based building regulatory system in Canada outlined in 

Chapter 1. The eight objectives established to direct the development of the method, as summarized at the 

end of Chapter 2, are:   

1. Utilize prescriptive-based design as a benchmark to develop alternative design options. 

2. Utilize prediction and evaluation techniques that are relatively simple to apply and understand, to 
bridge any gaps in the experience between authorities and the designers.  

3. Accommodate typical project timelines and resources by using fire risk and hazard analysis 
techniques that are not onerous in terms of time or monetary resources.  

4. Represent performance of comparison designs in a manner which addresses the contributions of 
all significant fire events to overall fire risks. 

5. Provide quantitative evaluation of consequence and likelihood associated with design 
performance. 

6. Account for uncertainty associated with design outputs in relation to input parameters and 
assumptions to evaluate the robustness of design decisions. 

7. Involve stakeholders (owners and AHJ) and to achieve consensus regarding design priorities and 
risks throughout the design process. 

8. Combine qualitative, semi-quantitative and quantitative fire assessment methods. 

The purpose of the new method is to demonstrate quantitatively and with reliability indices the 

performance of an alternative solution through comparisons with a prescriptive-based design and the use 

of fire science principles in combination with stakeholder input. As such, the method is intended to 

supplement the development of an alternative solution by a fire protection engineer and to assist in the 

selection of quantitative and rationalized performance-based design decisions. 

The QDD method is intended for use by fire protection engineers (designers) who are familiar with 

fire science principles, risk assessment methods and the alternative solution approvals framework of the 

region in which the building is, or will be, located. As such, the method must be applied by persons that 

understand the intended operation of the subject space and its associated life safety or fire hazards. An 

understanding of fire science is required to categorize protection and prevention approaches with 

accuracy and to identify realistic fire scenarios and events. It is expected that the techniques utilized in the 

method will be familiar to the designer. For example, it is expected that the designer is familiar with 

common risk evaluation and analysis techniques and fire protection principles, such as event trees for 
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example. It is expected that the designer will understand the intended use and pitfalls of such methods and 

apply them in a thoughtful and thorough manner. Therefore, the focus of this thesis is not on teaching 

designers how to use the underlying fire protection design methods, but is instead focused on directing 

professionals with respect to how to use certain tools to achieve a desired outcome in the context of a 

performance-based design.  

While the primary user of the QDD method is intended to be the designer, a team of stakeholders 

must be assembled to apply each stage of the process. The primary stakeholders include: the owner(s) 

and/or operator(s) (owner) of the building or facility requiring an alternative solution and the AHJ who 

have responsibility for approval or rejection of the alternative solution. Additional stakeholders may 

include the insurer of a facility, staff of a facility, public interest groups, system manufacturers or 

designers, mechanical or electrical specialists, etc. These must be determined as the scope and breadth of 

the design dictates. For effective use of the method, all stakeholders must be educated in the function and 

intent of the fire risk analysis process and the QDD method to the extent necessary to ensure that their 

input and contributions are relevant and the decision outputs are understood. In addition, the stakeholders 

must be present throughout the application of the method to the development of the alternative solution. 

In summary, the QDD method has been developed as a method by which to compare design 

alternatives having uncertain performance within commonly accepted fire scenarios. The method can be 

utilized to guide development of alternative solutions that necessitate quantitative performance 

comparisons to prescriptive code requirements. The method is intended to be applied by a team, led by a 

design engineer and involving a group of stakeholders, including at least the owner and the AHJ. 

3.2 QDD Method Description  

The QDD method is an organized decision-making process by which alternative building or system 

designs may be compared and evaluated. It involves of a series of fire hazard and risk assessment and 

analysis techniques that are applied in consideration of the fire protection and life safety objectives 

established by the stakeholders and the prescriptive code, as depicted in Figure 3.1 below. The QDD 
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method utilizes an iterative three-stage structure: Design Stage, Fire Scenario Stage and Decision 

Evaluation Stage. Following Figure 3.1, a brief overview of the method is provided, and each stage is 

described in detail in the subsequent subsections. 

 

Figure 3.1 Quantitative Design Decision (QDD) Method Outlines 

The Design Stage utilizes the Fire Safety Concepts Tree (FSCT) framework to illustrate qualitatively 

the prescriptive design requirements, including the related objectives and functional statements, 

applicable to a building or room. This process enables design shortcomings or incompatibilities to be 

identified and various approaches to alternative designs to be established. The NFPA 550 FSCT 
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framework facilitates systematic and comprehensive fire protection and prevention design. This first stage 

of QDD assists stakeholders in identifying design components that can be developed into performance-

based alternative solutions; that are otherwise not easily compared, quantified or interchanged within the 

context of prescriptive design practice. The performance-based design generated from this stage requires 

further evaluation to assign quantitative performance measures with confidence. 

The second stage of QDD is the Fire Scenario Stage. An event tree framework is used to establish 

the performance of the prescriptive-based design and the performance-based design alternative identified 

in Stage 1. Event trees provide a means to illustrate the sequence of events that could develop once an 

event that could initiate a fire or explosion takes place. The development of the event trees includes the 

selection of a common initiating event, the identification of qualitative system pivot event probability 

variables and the description of the accident scenario outcomes variables. The event trees are then utilized 

in Stage 3 to calculate the risks associated with the performance of each design under consideration.   

Stage 3 of the QDD method is the Decision Evaluation Stage. This stage of the method applies Super 

Soft Decision Theory (SSDT) to the event trees developed in Stage 2 to compare quantitatively the 

established risk and uncertainty associated with each proposed design. Important components of this stage 

are the identification of uncertainty associated with the probability of pivot events and establishing the 

utility of each accident scenario outcome. Stage 3 relies on coordinated and systematic input from 

numerous stakeholders, including at a minimum, the designer, the owner and the AHJ. It is proposed that 

surveying methods such as a Delphi technique be applied to establish unknown variables with input from 

stakeholders.  

The application of QDD method addresses the uncertainty typically encountered when quantifying 

performance of fire protection or prevention systems. In Stage 3, the application of SSDT enables the 

robustness of the decision to be evaluated. At the end of this stage, an alternative design is either justified 

through quantitative comparison with the prescriptive solution performance criteria (design decision with 

certainty) or is rejected (design decision with uncertainty or inconclusive design decision). Upon 

rejection, the iterative design process framework is adopted the variables established in Stage 3 are 
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revisited and if necessary, Stage 1 or Stage 2, or both, are revisited to refine the performance-based design 

or to identify alternative design approaches. 

3.2.1 Stage 1: Design Stage  

The first stage of the QDD method is the Design Stage. This stage represents the first of the three 

phases of risk assessment proposed by van Duijne and coworkers by providing a comprehensive fire 

hazard identification or an inventory to describe what could go wrong in a building that could lead to the 

requirement to mitigate or control a fire [van Duijne et al. 2008]. In this stage, the objective is to identify 

potential design paths that are expected to achieve the same fire safety objectives as the benchmark 

defined by any existing prescriptive requirement(s) using a qualitative fire hazard assessment technique. 

Once identified, design alternatives can be evaluated to assist in the development of an alternative 

solution. This stage, therefore, must first provide a method through which the prescriptive design 

approach is described within a logical and systematic performance-based framework. From this 

framework, alternative design approaches which could best suit stakeholder values and achieve the 

objectives and functional requirements of the alternative solution must be identified. This first stage is 

used to identify design paths to be followed for the development of an alternative solution. This 

alternative solution will then be evaluated quantitatively using the subsequent stages in QDD.  

When designing a complex room or space, a number of prescriptive requirements may be provided 

in a code or standard. They may specify a range of specific construction components such as wall 

assembly materials, fire detection systems, automatic suppression systems and allowed distances to 

protected exits, for example. The development of a design using the prescriptive code solution comes 

about from achieving compliance for each design component independently, rather than through a 

comprehensive analysis of the contribution of various design components in relation to the  progression of 

fire risks (as described in Chapter 1). In this fashion, the prescriptive design approach does not often 

direct designers to alternative design options. In order to address the fact that prescriptive-based 

requirements are developed utilizing a different rationale from performance-based codes, while still 
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allowing prescriptive code solutions to form benchmarks for new designs, a flexible objective-based and 

comparative framework must be utilized.  

The NFPA 550 FSCT framework is one such framework. It facilitates systematic and comprehensive 

comparisons of fire protection and prevention designs and can be used to illustrate a prescriptive design 

approach. In particular, the application of the FSCT, as described in NFPA 550 and provided in Appendix 

A, assists the designer in identifying alternative design options that achieve the same fire safety objectives 

as a given prescriptive design. The FSCT provides a logical, systems-based approach to achieving fire 

safety objectives in contrast to solely meeting prescriptive requirements as described in NFPA 550: 

“… rather than considering each feature of fire safety separately, the FSCT 
examines all of them and demonstrates how they influence the achievement of 
fire safety goals and objectives” [NFPA 550 2007].  

In addition, since the objective and functional statements associated with prescriptive designs in the 

NBCC often parallel the FSCT fire safety objectives, prescriptive design approaches can be described and 

illustrated using the FSCT. 

The FSCT is a logic tree developed to identify strategies for achieving fire safety objectives. As 

previously described in Section 2.2.1, this tree utilizes logic gates – AND and OR – to distinguish 

between design paths that accomplish particular fire safety objectives. When a prescriptive design is 

described using the FSCT, shortcomings are identified as situations where AND paths or OR paths are not 

sufficiently addressed. This is represented either by exclusion of a necessary path or by incomplete 

consideration of all requirements of an AND gate. Redundancies are identified where numerous OR paths 

are represented in the design. Multiple OR paths are frequently used to account for the fact that 100% 

reliability or 100% success  of any one prevention or protection approach is often unrealistic in practice. 

Permitting a single OR path in a design presents a vulnerability in the approach, since if any feature of the 

system on that path fails, the entire path fails. As such, redundancies are often perceived to benefit a 

design. The extent to which redundancies are necessary and/or valuable to a group of stakeholders 

depends on the stakeholders’ values as well as their perception of the cost versus performance 

relationship. 
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The following provides an example of fitting a prescriptive-based design requirement within the 

FSCT framework. As described in Chapter 1, NFCC Sentence 4.2.9.1.(1) specifies a two hr fire-resistance 

rating for fire separations between flammable liquids storage rooms and the remainder of a building 

[CCBFC 2010b]. The objectives and functional statements attributed to this sentence relate to limiting the 

spread of a fire originating within the room throughout the remainder of the building. In the FSCT, this 

prescriptive requirement would be represented on the ‘Manage Fire Impact’ - ‘Manage Fire’ - ‘Control 

Fire by Construction’ branch which mandates that the movement of fire be controlled and that the 

structural stability of the construction be maintained via an AND gate, as identified in bold in the 

simplified FSCT in Figure 3.2 below, where (●) represents an AND gate and (+) represents an OR gate. 

 To control the movement of fire either containment or venting is permitted via an OR gate. The fire 

separation, by definition in the NBCC which is referenced by the NFCC, is an assembly constructed to 

prevent the passage of fire (i.e. contain the fire) [CCBFC 2010a]. In accordance with the NBCC, the fire-

resistance rating of the assembly must be determined in accordance with CAN/ULC-S101, “Fire 

Endurance Tests of Building Construction and Materials”, and its supporting construction generally must 

have an equivalent fire-resistance rating. As such, a fire separation defined by the NBCC achieves the 

‘Control Fire by Construction’ branch of the FSCT shown in Figure 3.2.   

Alternatives to achieving compliance with the ‘Control Fire by Construction’ branch of the FSCT 

include the redundant ‘Suppress Fire’ and ‘Control Combustion Process’ branches of the ‘Manage Fire’ 

OR gate. Fire suppression may be achieved by manual or automatic suppression and the combustion 

reaction may be controlled by controlling the environment or the fuel. These redundant OR paths may be 

utilized to develop alternative solutions to the prescriptive requirement of NFCC Sentence 4.2.9.1.(1). 

Furthermore, the ‘Manage Fire’ OR gate, is located within the ‘Manage Fire Impact’ branch and is 

redundant to the ‘Manage Exposed’ OR gate. In theory, alternative designs may also be derived from the 

‘Mange Exposed’ path to achieve the same fire safety objectives as would be satisfied by the prescriptive 

requirement. The branches of the ‘Manage Exposed’ path have not been identified in Figure 3.2, for 

simplicity.   
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Figure 3.2 Simplified FSCT Demonstration of NFCC Sentence 4.2.9.1.(1)  

 As demonstrated above, once a prescriptive code solution is cast in the FSCT logic framework, a 

series of potential alternative design paths can be identified where a prescriptive requirement is located on 

an OR path and where an alternative OR path designs represents a feasible solution. At this point, the 

available alternative design paths to achieving a set of fire safety objectives associated with the 

prescriptive design are identified through the integration of the prescriptive design in the FSCT.  

In the first stage of the QDD method, a designer can develop a performance-based design alternative 

based on the paths identified within the FSCT framework. QDD provides a means to identify how to 

select a design path, but is not intended to replace engineering methods of designing a solution. The 

methods used to develop and assess design path options identified in the FSCT framework are numerous 

and may include consideration of other recognized standards, results provided in fire testing or fire 

science literature, or the application of other design precedents recognized by the AHJ. The best design 

and analysis approaches will vary from case to case and must be evaluated by the stakeholders to assess 

the feasibility and relative effectiveness of implementation. For example, additional criteria such as 
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physical restrictions, cost restrictions or liability acceptance might be considered in determining the final 

set of acceptable alternative design solutions.   

It is important to acknowledge that there may be design alternatives in a particular path in the FSCT 

which cannot be achieved using current technology. For example, from the FSCT framework established 

above for NFCC Sentence 4.2.9.1.(1), the alternative of controlling the environment to achieve 

compliance within the ‘Control Combustion Process’ branch, which is redundant to the ‘Control Fire by 

Construction’ prescriptive-based branch, may not be practical in an occupied building. To achieve 

compliance with this branch, it would be necessary to modify the occupied environment such that 

combustion could not be sustained should a fire be ignited. Such an approach might be achieved through 

reducing the oxygen concentration of the environment. This condition represents not only a serious design 

challenge, but also a safety challenge for occupants. In these circumstances, either a different alternative 

design path must be specified using an OR gate, or the technology or method required to achieve the 

required fire safety design must be developed.  

Alternative design paths, those which may be considered for alternative solution development, are 

identified at the conclusion of Stage 1 when all of the AND gates and all of the OR gates, as deemed 

necessary by the stakeholders, have been selected to achieve the same fire safety objectives as the 

prescriptive requirement. At this point, the fire safety design developed from these alternative design 

paths is qualitatively demonstrated to meet all necessary fire safety objectives via the FSCT framework. 

The QDD method may be concluded at this stage if a solution is readily available for immediate 

consideration and is already deemed acceptable to the AHJ. Such a solution would not require further 

demonstration of its performance and the design process would not indicate that that solution required the 

development of new technology. For all other cases the performance of the alternative solutions(s) 

developed from the alternative design paths identified in Stage 1 should be evaluated quantitatively. For 

this purpose, Stage 2 and Stage 3 of QDD are applied, as is described in the following sections. 

  



53 
 

3.2.2 Stage 2: Fire Scenario Stage 

The second stage of the QDD method is the Fire Scenario Stage. This stage provides a framework 

that can be used to evaluate the performance of a selected alternative design generated in Stage 1 by 

considering all potential fire events with respect to their likelihood and consequences. To demonstrate the 

performance of an alternative solution, the design alternative must be compared with the benchmark 

prescriptive-based design. As such, an illustrative comparison of the performance of each design must be 

developed such that the event probability and event consequence are identified. In Stage 2 of the QDD 

method, a semi-quantitative fire hazard assessment framework is developed to assist in the quantification 

of design performance through the representation of all significant fire events. 

As a first step event trees having common initiating events are created to describe the performance of 

the prescriptive-based design and the alternative designs generated in Stage 1 of QDD. The focus is on 

generating significant fire events beginning with an initiating event and associated with each design under 

comparison. These event trees then form the basis for quantitative analysis of the various alternative 

design options in Stage 3. As described in Section 2.2.2, an event tree establishes a binary decision tree to 

identify all possible outcomes resulting from an initiating event [Ericson 2005]. This stage is largely 

executed by the designer who is familiar with the operation of the intended design, fire science principles 

and fire protection engineering concepts. 

The initiating event is an event that could result in a fire or explosion if unmitigated. It is, by 

definition, the first significant deviation that could occur [Rausand & Høyland 2004]. From the initiating 

event, the accident scenario includes the sequential failure or success of each barrier to fire that is 

incorporated into the prescriptive-based or performance-based design. Fire barriers are identified within 

the tree based on the sequence in which they would be activated and can include active fire protection 

systems such as detection or suppression systems and passive fire protection systems such as fire 

separations. Each accident scenario represents a specific sequence of barrier operations, with each 

operation classified as either a success (operates as intended in design conception) or as a failure (does 
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not operate as intended in design conception). The operation of each barrier is identified as a pivotal event 

in the event tree. The probability of each sequential pivotal event determines the overall probability of the 

outcome for each accident scenario. Figure 2.1 in Chapter 2 illustrates a generic event tree. 

The development of event trees related to the designs under consideration establishes the possible 

accident scenarios which may occur given a common initiating event. The initiating event must be 

selected to represent the type of conditions that the design is intending to mitigate. For example, if the 

design is developed to mitigate a fire or explosion resulting from an accumulation of flammable gas in a 

cylinder storage room, an initiating event would be the unintended release of flammable gas from the 

container(s). The initiating event is not the cause of the accident; instead it is a consequence of an 

accident that was anticipated in the design. It is associated with the first significant accident that could 

occur and lead to the fire or explosion that is to be mitigated. Whether the initiating event of flammable 

gas leaking from a container is a result of human error or improper maintenance, the sequential pivotal 

events in the event tree that are defined to represent the response of the designed system to that event are 

not necessarily altered. Thus the selection of the proper initiating event(s) will ensure that the prescriptive 

and alternative design event trees are representative of the system’s intended operation and effective 

performance. 

While the initiating event is associated with a single accident, common knowledge dictates that the 

type of accident will affect the scale of the consequences of that accident. As such, additional events that 

follow the initiating event and that precede the pivotal events related to any design barriers should also be 

incorporated into an event tree. These additional events qualify the accident and would include the size of 

the gas leak and whether the gas ignited in the above described scenario. These additional events function 

as pivotal events in that they have binary components in the event tree. However, rather than relating to 

the alternative design, these events describe the nature of the accident and ensure that the principal threats 

are considered. This is important when comparing design alternatives, since it is not the best-case 

scenario that is generally of greatest comparative value. Most often, it is the consequences of the worst 
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case scenarios that have the greatest impact on design decisions; therefore, such components must be 

incorporated into the event trees developed.   

It is also important to identify all barriers specific to each design option when developing the event 

trees. The number of barriers or obstacles integrated into a design to mitigate fire determines the 

complexity and size of an event tree, and effectively, the number of pivotal events represented. The 

pivotal events developed for the alternative design event tree and the prescriptive design event tree will be 

different and should represent all the barrier components incorporated into each design, including both 

passive and active systems. Each barrier must be described by a negative statement (it does not operate as 

intended) and a positive statement (it does operate as intended). These barriers should not include human 

involvement or intervention, or fire department response, unless such components are specific to the 

designed system. Generally, fire department response to a fire event should be considered to be the same 

when comparing alternative design approaches and the prescriptive design, unless the inclusion of fire 

department response is critical to the control of a fire event in the prescriptive requirement. 

The outcome of an accident scenario is reached when all of the barriers representing the design are 

exhausted. The accident scenario outcomes are described in terms of the desired fire safety objectives as 

identified in the FSCT and the performance-based requirements associated with a prescriptive design. For 

example, the outcomes of the above gas leak scenario would be related to a fire occurring or not occurring 

or an explosion occurring or not occurring. They should also represent the range, in terms of the order of 

magnitude, of this outcome (i.e. an uncontrolled explosion through to a controlled fire). If the initiating 

events have been correctly identified, the outcomes of the prescriptive design event tree and the 

alternative design event tree should be the same (i.e. fire and explosion); however, the magnitude of the 

outcomes will likely vary to some extent. Any outcomes should also reflect the shared objectives of the 

designs under consideration.  

The focus of the event trees developed in this stage is on the generation of fire scenarios to describe 

the performance of the designed systems and is not on quantification of that design performance. In Stage 

2, through the creation of the event trees, the pivot events (including additional events) and the accident 
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scenario outcomes are identified and described qualitatively with respect to their common performance 

objectives. The quantification of event likelihood and consequence is conducted in Stage 3 utilizing 

stakeholder input.   

3.2.3 Stage 3: Decision Evaluation Stage  

The final stage of QDD is the Decision Evaluation Stage. In this stage, it is necessary to quantify the 

event scenarios established in Stage 2 to allow direct quantitative comparison of the performance of the 

prescriptive-based and performance-based designs. This stage engages the stakeholders to quantify each 

event probability and accident scenario outcome (consequence) subjectively in order to take into 

consideration their different values, such as an allowable extent of equipment damage, potential for loss 

of life or impact of business interruption. This may be accomplished using surveying techniques, but in 

the end the results must facilitate a decision to accept or reject the alternative solution design based on 

quantified performance comparison with the required prescriptive design. For this reason, this stage must 

also provide a means to measure and account for uncertainty in the design and design decision.  

The QDD method, as presented here, incorporates a simplified Delphi technique as a means to 

survey stakeholders and uses SSDT as a means to quantify design performance and provide a reliable 

decision frame that accounts for performance uncertainty. SSDT is proposed as the basis for this analysis 

as it is considered well suited to problems in which decisions have a high degree of epistemic uncertainty, 

such as found in fire protection system design challenges [Johansson & Malmnäs 2006]. Using this theory 

with stakeholder input, the objective is to generate a robust design decision, with a level of certainty that 

suits all stakeholders, as to whether the alternative design solution will perform to provide at least an 

equivalent level of fire protection and life safety as the comparative prescriptive design solution.   

To apply the SSDT methodology to the design challenge, particular information must be obtained 

from the stakeholders to generate the data necessary to compare the performance of each design option. 

The following provides guidance for the collection of data and the analysis required to apply the SSDT 

methodology in the framework of the proposed QDD method. 
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The development of the event trees in Stage 2 provides a qualitative description of the pivot events 

for each accident scenario, as well as the scenario outcomes. To compare design performance 

quantitatively, probability and consequence of each accident scenario must be established. The 

determination of the probability of pivot events represents a significant challenge within the fire 

protection industry since it is often difficult to establish event probabilities with a certainty sufficient to 

support a design decision. In this stage of QDD, the principles of SSDT are used to account for the 

uncertainty associated with the probability of successful component performance, or component 

reliability. Stakeholders establish three probability values for each pivot event in the event trees: 

maximum, minimum and most likely probability. The maximum probability and minimum probability 

associated with a pivot event are self-explanatory. The most likely probability is not necessarily the 

average probability, but is the probability expected to occur under most circumstances. This value is often 

best established based on the performance history of a component as identified through reliability data or 

via the manufacturer’s specifications. The most likely probability is a variation on the average considered 

by Johansson and Malmnäs and by Chu and Sun [Johansson & Malmnäs 2006, Chu & Sun 2008]. These 

values are then utilized in SSDT to evaluate the maximum expected performance; the minimum expected 

performance; and, the most likely expected performance of each design under consideration. 

With respect to pivot event probability, input from stakeholders having experience with the intended 

operation of a particular component and the field-performance of the component in practical installations 

is necessary. Data from fire safety literature, fire incident reports and other sources may be available to 

assist in the selection of values for the probability of operation for certain mechanical components; 

however, consideration of additional factors such as system maintenance or normal-down-time is also 

necessary. Additionally, while the owner may not have specific knowledge relating to the performance of 

a particular system component such as a sprinkler head, it is critical that the owner understand the impact 

that regular maintenance and inspection will have on its reliability, and therefore on the overall 

performance of the system. During this stage of the design process then, if values of probability are used 

that take into account regular maintenance and inspection routines, the owner must commit to a system of 
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maintenance, testing and inspection for each design component. This will assist in the establishment of 

more realistic values for performance probability and system reliability.   

In Stage 3, the stakeholders must also establish estimates for the consequences associated with each 

outcome using comparative evaluations of the perceived effects of an accident scenario ranked according 

to stakeholder values and priorities. The method of determining event consequence is challenging. The 

parameter may be based on specific fire performance data, as in the case study presented by Chu and Sun 

in which a calculation of the number of people at risk in each accident scenario is used to assign a utility 

value to that scenario [Chu & Sun 2008]. This approach requires that detailed fire scenario analysis be 

conducted and also prioritizes ‘risk to people’ as of primary value to the stakeholder. Alternatively, in 

their work, Johansson and Malmnäs consider the consequences based on anticipated monetary losses 

instead of the ‘risk to people’ [Johansson & Malmnäs 2004]. From these two examples, it is clear that the 

consequences established for each accident scenario, and their relative ranking in terms of magnitude, 

must consider all stakeholder priorities and concerns. Stakeholder principles that should be considered in 

establishing consequences include, but may not be limited to: injury/loss of life, cost of damage to 

equipment or property, cost of damage to public, cost of business interruption or downtime, time and cost 

associated with repair/replacement, impact on the environment and impact on corporate image. 

Stakeholders may choose to utilize a single principle or a weighted combination of principles to quantify 

the consequences of each outcome in a manner that best represents their interests. 

The probabilities assigned to each pivot event and the level of consequence assigned to each 

outcome in the above analysis impacts the calculated values of expected utility, representing the expected 

value of risk associated with the design and in turn, the results of any design decisions. The identification 

of pivot event probability values and accident scenario utility relies on coordinated and systematic input 

from numerous stakeholders including the designer, the owner of the facility, the AHJ and perhaps the 

installers and/or manufacturer’s of the designed components. The inclusion or exclusion of other 

stakeholders such as insurance representatives will be at the discretion of the designer and will be case-

specific. If the basis for design decisions established during this stage of QDD cannot be validated by 
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industry consensus, the resulting decisions cannot be justified. Consequently, the assignment of variables 

must be conducted in a systematic, rigorous and transparent manner to ensure that results are meaningful 

and valuable.   

In Stage 3 a Delphi technique is proposed to survey stakeholders regarding event probability and 

consequence determination. As described in Section 2.1.3, the Delphi technique is a group survey and 

consensus seeking method that allows numerous experts or stakeholders to anonymously refine a group 

opinion. The value of the Delphi technique in the current context is that the survey method is iterative and 

utilizes controlled feedback from experts. The application of the technique within the QDD method would 

involve an expert panel (i.e. stakeholders). The QDD method promotes iterative re-evaluation to 

determine if modification of the design or changes to operational practices by the owner should be applied 

to achieve greater certainty in the final risk estimate. 

In applying SSDT to the event trees generated in Stage 2, the probability and consequence values 

determined by the stakeholders are evaluated using the following equations and variable parameters. The 

expected value of risk or the expected utility, E(U,P), associated with a design is calculated as shown in 

Equation 3.1 as the summation of all of the possible risks attributed to a design event tree , where ௜ܲ is the 

probability of outcome i occurring, and ௜ܷ is the utility associated with the occurrence of outcome i. The 

utility attributed to an accident scenario outcome is considered independently of the probability of the 

pivot events and is different from expected utility which is associated with the overall value of risk 

associated with the design approach. 

,ࢁሺࡱ   ሻࡼ ൌ 	∑ ሺ࢏ࡼ
࢔
ୀ૚࢏ .  ሻ       (3.1)࢏ࢁ

The frequency of an accident scenario is established through the identification of pivot event 

probability by the stakeholders and often correlates to the reliability of a specific design component. The 

probability of successful component operation at each pivot event is represented by variable (px), and the 

probability of operational failure of the component is represented by the relationship (1-px), where ‘x' 

represents each pivot event. Pi represents the product of pivot event probabilities associated with a single 

outcome.   
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In the QDD method, outcome utility values are assigned to a given outcome according to the 

following scale. A value of -1 represents the worst-case consequence and a value of 0 represents the best 

case outcome. Intermediate values are assigned through case specific analysis and stakeholder values. 

This approach is largely consistent with the case studies presented by Johansson and Malmnäs and by 

Chu and Sun [Johansson & Malmnäs 2006, Chu & Sun 2008]. In taking this approach to utility values, a 

design is considered more desirable as the expected value of risk decreases in magnitude. When 

evaluating the expected utility difference, described below, a positive result will demonstrate a preference 

for the alternative solution design.    

The application of SSDT in QDD utilizes the evaluation of maximum, minimum and most likely 

pivot probabilities and outcome utility in order to establish expected overall utility differences between 

the prescriptive design and the alternative solution design. The values of the differences are then used to 

determine if the alternative design is at least as good as, if not better than, the prescriptive design. 

Expected overall utility difference in this application is associated with the difference in the expected 

value of risk attributed to each design. The difference in maximum, minimum and most likely expected 

overall utility are described in Equations 3.2, 3.3, and 3.4, where ‘1’ represents the alternative design and 

‘2’ represents the prescriptive design variables.  

࢔࢏ࡹ   ൌ ,ࢁ૚ሺࡱ൫	࢔࢏ࡹ ሻ൯ࡼ െ ,ࢁ૛ሺࡱ൫	࢔࢏ࡹ	  ሻ൯     (3.2)ࡼ

࢞ࢇࡹ   ൌ ,ࢁ૚ሺࡱ൫	࢞ࢇࡹ ሻ൯ࡼ െ࢞ࢇࡹ	൫ࡱ૛ሺࢁ,  ሻ൯     (3.3)ࡼ

ࡸࡹ   ൌ ,ࢁ૚ሺࡱ൫	ࡸࡹ ሻ൯ࡼ െ ,ࢁ૛ሺࡱ൫	ࡸࡹ	  ሻ൯     (3.4)ࡼ

To calculate Min, in Equation 3.2 above the minimum probability values established are used to 

calculated the expected risk associated with each design approach. Similarly, the maximum probability 

value and most likely probability value are used to calculate Max and ML, respectively using Equations 

3.5, 3.6 and 3.7.  

,ࢁሺࡱሺ	࢔࢏ࡹ   ሻሻࡼ ൌ ∑ሺ	ࢁ,ࡼ࢔࢏ࡹ ሺ࢏ࡼ
࢔
ୀ૚࢏ .  ሻሻ     (3.5)࢏ࢁ

,ࢁሺࡱሺ	࢞ࢇࡹ   ሻሻࡼ ൌ ∑ሺ	ࢁ,ࡼ࢞ࢇࡹ ሺ࢏ࡼ
࢔
ୀ૚࢏ .  ሻሻ     (3.6)࢏ࢁ
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,ࢁሺࡱሺ	ࡸࡹ   ሻࡼ ൌ ∑ሺ	ࢁ,ࡼࡸࡹ ሺ࢏ࡼ
࢔
ୀ૚࢏ .  ሻሻ      (3.7)࢏ࢁ

Therefore, in Stage 3 of QDD, the expected utility difference between the design alternatives and the 

maximum, minimum and most likely expected utility values are calculated to quantify the risk associated 

with the prescriptive-based and performance-based designs. These values are subjectively established by 

the stakeholders, but directly attributed to the pivot event probabilities and the accident scenario 

consequences.  

3.2.4 Results and Analysis 

The decision resulting from the application of SSDT in Stage 3 of the QDD method is either that the 

alternative solution is suitable or that the design, and/or the estimated performance of its components, 

requires re-evaluation based on a comparison of the predicted performance of the prescriptive-based and 

the performance-based design solutions. As indicated in Section 3.2.3, the results of the expected utility 

differences are determined using Equations 3.2 through 3.4 and values of maximum, minimum and most 

likely expected risk values are determined using Equations 3.5 through 3.7. This section outlines how the 

results of these calculations are applied in SSDT  to establish if the alternative design under consideration 

is at least as good as, if not better than, the corresponding prescriptive design.   

In this stage of SSDT analysis, the above calculated results are reviewed considering two criteria: 

their sign, either positive or negative; and, any overlap in their values. Depending on the results, one of 

three decisions will be generated: (1) decision with certainty, (2) decision with uncertainty; or, (3) 

inconclusive decision. Note that the terminology ‘decision with certainty’ is intended to reflect scenarios 

in which the design decision in clear; however, it is not intended to infer that the performance of the 

selected design has been demonstrated with 100% certainty. These three possibilities are illustrated 

schematically in Figures 3.2, 3.3 and 3.4, respectively, with each illustration representing (a) a preference 

for the alternative design, or (b) a preference for the prescriptive design, where possible. The symbols in 

the figures represent the values of maximum and minimum values of expected risk value, with 

magnitudes as given on the x-axis, for the alternative solution (squares) and the prescriptive design 
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(diamonds) respectively, while the line between them indicates the range. In these plots all values are 

negative. Only maximum and minimum expected utility are represented for general demonstration 

purposes. 

 

 (a)                             (b)  

Figure 3.3 Generic Illustrations of Results: Design Decision with Certainty 

 

(a)                             (b) 

Figure 3.4 Generic Illustrations of Results: Design Decision with Uncertainty 
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 (a)                            (b) 

Figure 3.5 Generic Illustrations of Results: Inconclusive Design Decision 

In conducting the analysis, the first step is to establish if a design decision can be made based on the 

results of Equations 3.2 through 3.4. The second step is to evaluate the robustness, or certainty, of the 

design decision. A design decision is established if all of the results of Equations 3.2 through 3.4 have the 

same sign (positive or negative). As a result of the approach taken to assigning utility, a design is 

considered more desirable as the magnitude of its expected risk value decreases. Therefore, if the all of 

the results of Equations 3.2 through 3.4 are negative, then the alternative solution is determined to be 

undesirable (Figures 3.3(b) and 3.4(b)). If the results are all positive, then the performance of the 

alternative solution is considered better than that of the prescriptive design (Figure 3.3.(a) and 3.4.(a)). 

Both circumstances described above generate a design decision; however, the robustness of the decision 

requires evaluation. The design decision is considered robust when there is no overlap in the range of 

values between the minimum and maximum expected risk value for the compared designs (Equations 3.5 

through 3.7), as would be the case in Figures 3.3(a) and 3.3(b). The robustness of the decision is not 

certain if there is overlap, as depicted in Figures 3.4(a) and 3.4(b), since if both designs performed 

between their best and worst predicted risk, the best design solution is not immediately clear.  

If the results of Equations 3.2 through 3.4 have different signs, the design decision is considered 

inconclusive, as depicted in Figures 3.5(a) and 3.5(b).Such results imply that there is not sufficient 

‐0.1 ‐0.08 ‐0.06 ‐0.04 ‐0.02 0 ‐0.1 ‐0.08 ‐0.06 ‐0.04 ‐0.02 0

Expected Utility (-0.1 Worst, 0 Best) 



64 
 

sensitivity in the analysis to determine which design solution will perform better. In this respect, it is 

similar to the results of a decision with uncertainty (Figures 3.4(a) and 3.4(b)). In the event of an 

inconclusive or uncertain design decision, the designer can return to the values of the pivot event 

variables identified in Stage 3 to determine whether improvements in equipment inspection, testing and 

maintenance procedures or to different device selections will improve the performance of the alternative 

solution design approach. The sensitivity of the expected risk value to a specific pivot event probability 

assists in focusing on issues such as the cost-benefit of certain protection systems, system efficiency, 

system maintenance or other stakeholder values including overall cost or business interruption. By 

refining values of the maximum, minimum and most likely pivot event probabilities, the alternative 

solution performance may become comparable to that of the prescriptive design, generating a decision 

with certainty. In the event that the design decision remains inconclusive upon repeated iterations of Stage 

3, the design may select to revisit and modify the design details established for the alternative solution in 

Stage 1 and Stage 2 of the QDD method. 

It is not anticipated that outcome utility values determined by the stakeholders will be modified in 

progressive rounds of evaluation of the competing design solutions. The comfort of the stakeholders with 

the overall consequences of an accident scenario should not be affected by revising pivot event 

probabilities associated with the performance of design components. It is important that the Delphi 

technique, or a similar surveying method, be utilized in the re-evaluation rounds to ensure that consensus 

is reached in a reliable and informed manner. Detailed documentation of variables using qualitative 

statements and a clear description of the logic used in selection of their values during the first round of 

iterations of the method is critical as it assists in later evaluation of, and possible modifications to, any 

parameter values. 

Through the above-described iterative process, QDD allows for the re-evaluation of pivot event 

probabilities and the overall design approach developed for the alternative solution when the robustness 

of the design decision is established to be inadequate or when the design decision established in the first 

assessment is uncertain. For the next, and any subsequent iterations of the process, the maximum, 
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minimum and most likely pivot event probabilities can be refined, the design approach can be modified 

and the decisions re-evaluated. On this basis, it is suggested that conservative values for pivot event 

probability and outcome utility be chosen for both designs in the first round of Stage 3. If necessary, these 

ranges can be reduced using stakeholder input in following evaluation rounds. This must be done, 

however, maintaining the principles and methods of justification used in the first iteration of the 

evaluations. As an example, an increase in a px value for an active system design component of the 

alternative solution may be justified by improving its inspection, monitoring, testing and maintenance 

program. If this approach is adopted, the owner must commit to the necessary improved practices, 

including self-regulation and maintenance of fire protection systems. In other situations, the same 

improvement might be derived when device components are replaced with alternatives that have better 

reliability or performance statistics. Understanding of the sensitivity of the expected risk value on the 

probability of a specific pivot event assists in focusing the design discussion on issues such as the cost-

benefit of certain protection systems, system efficiency, system maintenance or other stakeholder values 

such as overall cost or business interruption. 

The analysis described in this subsection is repeated until a design decision can be made with 

certainty or until it is apparent that a design decision cannot be made with certainty. In the event that the 

design decision remains inconclusive upon repeated iterations, one of two outcomes is possible. Either the 

sensitivity of the analysis will be considered insufficient for a justified conclusion to be drawn or the 

performance of the designs will be considered equivalent. It will be the responsibility of the AHJ to 

determine if the alternative solution may be considered equivalent in performance to that of the 

prescriptive requirements based on the results of the SSDT calculations. Under the codes, the 

performance of the alterative solution is only required to be demonstrated as equivalent to the 

prescriptive-based design. It is feasible that the outcome of QDD will demonstrate equivalent 

performance without establishing with confidence that the performance-based design is better than the 

prescriptive-based design.    
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It is noted that the above iterative process can also be conducted in the opposite fashion. If it is 

established that the alternative solution design exceeds the performance of the prescriptive-based design 

as depicted in Figure 3.3(a), the iterative analysis can be conducted to bring the design performance of the 

alternative closer to that of the prescriptive design. In this way, QDD can identify if design approaches 

exceed the minimum code requirements and to what extent, with respect to expected performance.  

In summary, the results from Stage 3 of the proposed QDD method provide a framework under 

which to conduct an iterative and systematic evaluation of the expected performance of an alternative 

design versus a prescriptive design using SSDT. It is suggested that a Delphi technique be utilized to 

establish critical performance indicators including pivot event probability and outcome utility. The QDD 

method accounts for the uncertainty associated with the selection of variables by considering maximum, 

minimum and most likely pivot event probability and evaluating expected utility difference based on 

SSDT. The results of the analysis can be utilized to demonstrate whether an alternative design achieves at 

least an equivalent level of performance as the prescriptive design and also allows for iterative re-

evaluation of the design criteria and analysis of the results, should that be necessary.   

3.3 Summary 

The QDD method has been developed in consideration of the eight objectives established in Chapter 

2 of this thesis. Utilizing the FSCT, event trees and SSDT this method provides means of quantifying and 

comparing the performance of a prescriptive design and a performance-based design by way of three 

distinct stages: Design Stage, Fire Scenario Stage and Decision Evaluation Stage. The method also 

provides means to measure the uncertainty in various design parameters and to evaluate the robustness of 

the final design decision. The three-stage fire risk analysis method is demonstrated in Chapter 4 and an 

analysis of the method, with respect to the achievement of the eight objectives established, is provided in 

Chapter 5 of this thesis.
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Chapter 4  

CASE STUDY 

DEMONSTRATION 

This chapter provides a case study in which the QDD method, as described in Chapter 3, is applied 

to a typical design challenge. The aim is to apply the method to identify potential approaches to an 

alternative design solution and, once a design is selected, to quantify the uncertainty associated with the 

performance of that design decision. The case study is a theoretical demonstration of the method, applied 

to a design challenge in an existing industrial facility. Since the owner cannot achieve the prescriptive 

requirements of the NFCC, an alternative solution must be developed and justified. Therefore, the 

objective of this case study is to demonstrate the application of QDD to a typical compliance challenge as 

well as to facilitate use of the QDD method by a variety of end users for future case studies and designs.   

4.1 Case Study Details 

The case study outlined in this Chapter is intended to demonstrate the application of QDD to a 

practical design challenge. It is based on the development of an alternative solution for a hypothetical 

non-compliance scenario such as one that might be encountered in the industrial sector. The case study 

and its evaluation are not intended to reflect a specific facility, owner or the opinions of any referenced 
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stakeholders. However, as described, the case study is considered representative of a typical design 

challenge that the QDD method has been developed to address.  

Based on a typical situation encountered in the industrial sector, the case study considers a facility in 

which Class IB flammable liquids (those having a flash point of less than 22.8ºC and a boiling point 

greater than 37.8 ºC as defined in the NFCC [CCBFC 2010b]) are dispensed in a room. The facility under 

evaluation, Industrial Facility ABC, is an existing establishment that has been operating in Canada for 

approximately 15 years and is regulated by the NFCC. The facility conducts manufacturing processes 

which rely on the use of Class IB flammable liquids. A component of the facility operations includes an 

existing flammable liquids dispensing room in which Class IB flammable liquids are manually blended 

and mixed in open containers. The room is located centrally within the building, adjacent to the 

manufacturing floor area. It is not located on the building perimeter. The dispensing room is located 

within a high-ceilinged (6 m) portion of the large production building, but is constructed to have a ceiling 

height that is approximately 2.5 m.  

Industrial Facility ABC has recently been audited by the local fire department (AHJ). It was 

determined that the existing dispensing room does not comply with the requirements of the NFCC. 

Specifically the room does not comply with NFCC Sentence 4.2.9.5.(1). In accordance with this sentence, 

where Class IB flammable liquids are dispensed or are handled in open containers within a storage room, 

the room is required to be designed to prevent critical structural and mechanical damage in the event of an 

internal explosion [CCBFC 2010b]. The codes specify compliance with NFPA 68, “Standard on 

Explosion Protection by Deflagration Venting” (NFPA 68) [NFPA 68 2007], to prevent critical structural 

and mechanical damage [CCBFC 2010a].  

Generally, compliance with NFPA 68 mandates that explosion relief panels be provided to release 

the pressure wave and fire ball created during a deflagration event and that the room be constructed of 

damage-limiting construction to withstand the pressure generated during the deflagration [NFPA 68 

2007]. Explosion relief panels are required to release a deflagration outside of the building, and are 

generally intended to be located on an exterior wall. The existing dispensing room is not provided with 
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damage limiting construction or explosion relief panels, and therefore does not comply with NFPA 68 or 

NFCC Sentence 4.2.9.5.(1). Furthermore, installation of explosion panels is not practical in the dispensing 

room given that it is not located on an exterior wall.  

The facility owner has been advised that the dispensing room must be brought into compliance (i.e. 

dispensing operations ceased) or that an engineer must be engaged to develop a compliance approach 

within 4 months time. If in 4 months time compliance has not been achieved or an engineer has not been 

engaged to develop a compliance approach, the owner will be subject to criminal charges under the Fire 

Protection and Prevention Act of Ontario [CCBFC 2010b].  

The owner has evaluated methods of achieving compliance with the prescriptive requirements of the 

NFCC. Compliance methods considered included moving the dispensing operations within the building to 

a new room renovated to achieve compliance with the code, moving the dispensing operations to a new 

dedicated building designed to achieve compliance with the code, changing the operations to remove the 

dispensing component or replacing the materials dispensed with non-flammable liquids. The first two 

methods of compliance were determined to be cost-prohibitive and all would result in significant business 

interruption or reductions in product quality. The owner has established that achieving compliance with 

the prescriptive requirement of the NFCC, as described above, is not feasible. Therefore, the owner has 

chosen to engage an engineer (designer) to investigate alternative solution options to achieve compliance 

with the requirements of the NFCC. The investigation will establish if an alternative design can be 

developed that is suitable to meet business objectives, can be implemented within the physical restrictions 

of the existing facility and can achieve an equivalent performance to the prescriptive requirement of 

NFCC Sentence 4.2.9.5.(1). 

4.2 Application of QDD Method 

The QDD method is applied to the case study scenario to evaluate alternative design approaches to 

achieving compliance with NFCC Sentence 4.2.9.5.(1). This section provides a detailed description of the 

application of Stages 1 through 3 of QDD with respect to development of an alternative solution for the 



70 
 

owner of Industrial Facility ABC. The case study represents a feasibility investigation to establish if an 

alternative solution can be developed to suit the owner’s objectives and if its performance can be 

demonstrated as achieving at least an equivalent level of fire protection and life safety performance as the 

prescriptive design defined under NFCC. The prescriptive requirement of the NFCC is clearly 

distinguished and the associated objectives and functional statements can be utilized. Further, the 

prescriptive requirement relates to a single fire protection objective – explosion protection. As such, the 

use of the FSCT in Stage 1 of the QDD method is well suited to this design challenge. The components of 

a compliant prescriptive design are simple and limited in number (i.e. explosion relief panel and damage-

limiting construction) so are well suited to the Event Tree development in Stage 2 of QDD. Since non-

compliance was identified through an audit process, the AHJ is already involved in the project and their 

involvement in the design process, specifically in the identification of variables in Stage 3 of the QDD 

method, is feasible. For the purposes of the case study, as defined, the theoretical stakeholders include the 

designer (engineer), the owner and the AHJ. The present investigation does not consider input from other 

stakeholders, such as the insurers of Industrial Facility ABC. Such concerns were considered to fall 

outside the scope of the present work, but could certainly be included in any expanded applications of the 

QDD method to real fire safety design challenges.  

4.2.1 Design Stage  

Stage 1 of the QDD method involves using the FSCT to identify alternative design paths that can 

potentially achieve the fire safety objectives of the prescriptive solution. This stage requires that the 

objectives and functional statements of the prescriptive requirement be evaluated and that the prescriptive 

design be defined within the FSCT framework. Upon integration of the design within the FSCT, possible 

alternative design paths are identified and considered for development as an alternative solution(s). 

The case, as outlined above, identifies that compliance with NFCC Sentence 4.2.9.5.(1) cannot be 

achieved. For this reason, an alternative design approach is desired. NFCC Sentence 4.2.9.5.(1) mandates 

compliance with NFPA 68 to prevent critical structural and mechanical damage resulting from an internal 
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explosion [CCBFC 2010b]. T he detailed objectives and functional statements associated with NFCC 

Sentence 4.2.9.5.(1) are OS1.3-F02, OP1.3-F02 and OP3.1-F02 as follows: 

“OS1.3-F02 – An objective of this Code is to limit the probability that as a 
result of:  

 activities related to the construction, use or demolition of the 
building or facility, 

 the condition of specific elements of the building or facility 
 the design or construction of specific elements of the facility related 

to certain hazards, or 
 inadequate built-in protection measures for the current or intended 

use of the building, 

a person in or adjacent to the building or facility will be exposed to an 
unacceptable risk of injury due to fire. The risks of injury due to fire 
addressed in this Code are those caused by the collapse of physical elements 
due to a fire or explosion. The function of the prescriptive design is to limit 
the severity and effects of a fire or explosion” [CCBFC 2010b]. 
 
“OP1.3-F02 – An objective of this Code is to limit the probability that as a 
result of 

 activities related to the construction, use or demolition of the 
building or facility, 

 the condition of specific elements of the building or facility 
 the design or construction of specific elements of the facility related 

to certain hazards, or 
 inadequate built-in protection measures for the current or intended 

use of the building, 

the building or facility will be exposed to an unacceptable risk of damage 
due to fire. The risks of damage due to fire addressed in this Code are those 
caused by the collapse of physical elements due to a fire or explosion. The 
function of the prescriptive design is to limit the severity and effects of a fire 
or explosion” [CCBFC 2010b]. 
 
“OP3.1-F02 – An objective of this Code is to limit the probability that as a 
result of 

 activities related to the construction, use or demolition of the 
building or facility, 

 the condition of specific elements of the building or facility 
 the design or construction of specific elements of the facility related 

to certain hazards, or 
 inadequate built-in protection measures for the current or intended 

use of the building, 

adjacent buildings or facilities will be exposed to an unacceptable risk of 
damage due to fire. The risks of damage due to fire addressed in this Code 
are those caused by fire or explosion impacting areas beyond the building or 
facility of origin. The function of the prescriptive design is to limit the 
severity and effects of a fire or explosion” [CCBFC 2010b]. 
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It can be seen from these statements that the OS objectives are related to protecting people from risk of 

injury while the OP objectives are related to protection of the building and adjacent areas from risk of 

damage due to fire [CCBFC 2010b]. Functional statement F02 is related to limiting the severity and the 

effects of a fire or explosion [CCBFC 2010b]. 

Based on the objectives and functional statements associated with this prescriptive requirement, the 

design approach is integrated into the framework of the FSCT. While the focus of the investigation is on a 

specific requirement applicable to the dispensing operations (i.e. explosion protection), it is necessary that 

the entire design for the room be considered during application of the FSCT to ensure that design 

deficiencies, redundancies and/or opportunities for alternative design development are identified and 

considered in the evaluation. As such, all design requirements necessary to achieve compliance with 

NFCC Subsection 4.2.9. for storage and dispensing rooms are considered in this stage of the analysis. 

Integration of the design requirements into the FSCT framework should be conducted by the designer, 

who is familiar with the facility, the various design components, the NFCC and FSCT principles. The 

completed illustration of FSCT to the present case is provided in Figure 4.1 and discussed further in the 

following paragraphs. Figure 4.1 is simplified to identify only those branches pertaining to the evaluation 

of the prescriptive design. The prescriptive requirement requiring an alternative solution is identified in 

bold bordered branches. The entire FSCT is provided in Appendix A for reference. 
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Figure 4.1 Fire Safety Concepts Tree Simplified for NFCC Subsection 4.2.9. Prescriptive Design  
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The design path in which the code-compliant explosion protection system fits within the FSCT 

framework is the ‘Manage Fire Impact’ - ‘Manage Fire’ - ‘Control Fire by Construction’ branch. The 

damage-limiting construction and the explosion relief vents used in the compliant design achieve the 

objectives of this design path. The design path is consistent with the objectives and functional statements 

associated with the prescriptive requirements with respect to limiting the impact of a fire or explosion on 

the building occupants, structure and adjacencies, in particular impacts that could result from a collapse of 

physical building elements or from explosions impacting beyond their point of origin. Location of the 

compliant design solution within the ‘Manage Fire’ branch of the FSCT implies that a fire or explosion 

does occur, but that measures are provided to protect the occupants and the building (and/or adjacent 

buildings) from the impacts of that fire or explosion. One important attribute of the prescribed explosion 

protection system is that staff located within the dispensing room at the time of an explosion will likely be 

injured or fatally wounded. This component of the performance of the explosion protection system is not 

considered consistent with OS1.3-F02 associated with the prescriptive requirement relating to the 

protection of persons. However, as identified in the ‘Manage Fire Impact’ - ‘Manage Exposed’ - ‘Limit 

Amount Exposed’ branch of the FSCT, the explosion protection approach does provide protection for the 

majority of the building occupants and since few staff are required in a dispensing room it must be 

assumed that the probability of risk is considered suitable within the context of the NFCC. 

Upon integration of the prescriptive design into the FSCT framework, alternative design paths are 

identified and evaluated for development of the final alternative solution. A systematic evaluation of each 

branch of the FSCT, starting at the prescriptive design branch location, considers different methods to 

achieve the desired objectives. In the present analysis, the direct alternatives (i.e. OR gate alternatives) 

within the ‘Manage Fire’ branch include ‘Control Combustion Process’ and ‘Suppress Fire’ ( Figure A.3 

in Appendix A). It is not feasible to modify the properties of the fuel or the oxygen content within the 

dispensing room to comply with the ‘Control Combustion Process’ branch. The operations in the 

dispensing room involve manual blending of flammable liquids. As such, the fuel cannot be removed and 

a low oxygen environment would not be appropriate for the personnel. Similarly, implementation of an 
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explosion suppression system that would comply with the ‘Suppress Fire’ branch is not feasible. Due to 

the volume of the room and the time necessary for the system to respond to and suppress an explosion, 

such systems would be extremely costly and could involve greater demands on water supply than is 

available to the facility. While neither of the two options within the ‘Manage Fire’ branch is desirable 

with respect to protection of staff within the dispensing room, they do not necessarily represent a different 

level of performance from the explosion vents mandated in the prescriptive design with respect to safety 

of personnel, as discussed above.  

Having assessed the ‘Manage Fire’ alternatives, the analysis proceeds to alternative options under 

the ‘Manage Fire Impact’ branch (Figure A.1 in Appendix A). One alternative involves application of the 

‘Manage Exposed’ branch which is presented as an OR gate alternative to ‘Mange Fire’. Since 

significantly limiting or safeguarding exposures is not considered to be reasonable as a direct alternative 

to explosion protection, none of the alternatives within the ‘Mange Fire Impact’ branch of the FSCT is 

considered an appropriate path to follow in development of the alternative design solution.   

At this stage in the discussion, it should be noted that the FSCT identifies both prevention and 

protection approaches to achieving fire safety objectives. These are included through the use of an OR 

gate directly stemming from the fire safety objectives, though in reality most design approaches would 

provide both protection and prevention systems to varying degrees. Nonetheless, given that no direct 

alternative solution is found via the ‘Manage Fire’ branch, alternatives within the ‘Prevent Fire Ignition’ 

branch are next evaluated to determine possible alternative design paths and solutions.  

Within the ‘Prevent Fire Ignition’ branches of the FSCT, each of the OR/AND gate options of 

‘Control Heat-Energy Source(s)’, ‘Control Source-Fuel Interactions’ or ‘Control Fuel’ can be evaluated 

(Figure A.2 in Appendix A). Evaluation of the ‘Control Heat-Energy Source(s)’option suggests that even 

if all electrical devices were removed from the dispensing room, so as to remove potential ignition 

sources; a transient ignition source (e.g. cigarette) could still be introduced to the room by human error. 

As such, this branch is not considered completely reliable from a performance perspective. Provision of 

both a fire separation and spill containment within the dispensing room, are requirements under NFCC 
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Section 4.2.9. These design requirements already implemented in the dispensing room address two of the 

three AND gate branches of ‘Control Source-Fuel Interactions’. The fire separation satisfies ‘Control 

Heat-Energy Source Transport’ by reducing the likelihood of fire propagation into the compartment, 

which might result in ignition of the flammable liquids. The spill containment system satisfies ‘Control 

Fuel Transport’ by decreasing the possibility for a fluid spill to migrate out of the compartment and ignite 

via an unprotected ignition source. Since these design components are already required and cannot be 

significantly improved upon, they do not represent an alternative solution to the prescriptive code 

requirement. The ‘Control Heat-Energy Transfer Process’ component of the ‘Control  Source-Fuel 

Interactions’ branch is not considered here, as it is not a common, nor viable, strategy for use in  

dispensing rooms [NFPA 550 2007].   

The final design path available within the ‘Prevent Fire Ignition’ branch is the ‘Control Fuel’ 

branch. This involves either elimination of fuel, which is not feasible in the present situation, or control of 

fuel ignitability. Fuel ignitability may be controlled either through tailoring the fuel properties or 

controlling the environment. The flammable properties of the fuel (Class IB liquid) cannot be altered 

without changing the liquid in use. The owner has already identified that this is not a desirable option. 

Environmental control can be accomplished by reduction of the oxygen content in the room, an option 

already considered and discarded due to its impact on the personnel in the dispensing room. Alternately, 

the environment can be controlled through provision of continuous mechanical ventilation. The 

ventilation system would need to be designed to provide continuous supply and exhaust so as to capture 

and remove any flammable vapours released into the room during dispensing operations. It must be noted 

that the continuous mechanical ventilation system required under the NFCC prescriptive design is not 

designed to provide a level of protection equivalent to that necessary for an explosion prevention system. 

However, modifications and additions to the existing ventilation system that currently complies with the 

NFCC may create an explosion prevention system as an alternative design solution to the prescriptive-

based explosion protection system.   
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To proceed with analysis of this alternative, the designer must consult existing guidelines for the 

design of explosion prevention systems. These are found in NFPA 69, “Standard on Explosion Prevention 

Systems” (NFPA 69) [NFPA 69 2008]. The life safety objectives of an explosion prevention system are 

to: prevent structural failure of the enclosure; to minimize injury to personnel in adjacent areas outside of 

the enclosure; and, to avoid injury to personnel [NFPA 69 2008]. The property protection objectives of 

NFPA 69 are: to limit damage of the protected enclosure; and, to avoid ignition of, or damage to, adjacent 

property [NFPA 69 2008]. These objectives are all well aligned with those under consideration in the 

present situation. NFPA 69 permits the use of either performance-based design or prescriptive-based 

design approaches and recognizes numerous means to prevent deflagration events. The design approach 

best suited to Industrial Facility ABC is to undertake a prescriptive design to reduce the concentration of 

fuel to below its flammability limit, as described in NFPA 69 Chapter 8 [NFPA 69 2008]. Such an 

explosion prevention system relies on maintaining the concentration of flammable vapours in the room at 

a level below 25% of the lowest Lower Explosive Limit (LEL) using a mechanical ventilation system to 

dilute the environment in the room through addition of fresh air. In this way, the prevention system 

continuously removes any flammable vapours that might accumulate within the room such that an 

explosive concentration is not developed and ignited. Such systems are typically designed utilizing 

combustible gas detector(s) interlocked with dedicated ventilation systems having high exhaust rates.  

This explosion prevention approach, should it be adopted, inherently provides a level of protection to 

the occupants of the room since, when operating as designed, it is intended to prevent the occurrence of 

the explosion rather than to provide protection against the impacts of an explosion. Qualitatively at least, 

this approach provides life safety benefits to the owner even in comparison with the prescriptive-based 

design. It is also consistent with the owner’s objectives, since the implementation of a detection and 

ventilation system is considerably less costly than any reconfiguration of the facility, equipment and/or 

operations and does not require that existing processes or practices be altered significantly. 

Finally, the objectives of an explosion prevention system, as described in NFPA 69, are consistent 

with the objectives and functional statements associated with NFCC Sentence 4.2.9.5.(1) and the 
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framework of the FSCT. As such, an explosion prevention system, designed according to NFPA 69, is 

proposed for further development and quantitative performance evaluation in Stages 2 and 3 of the QDD 

method. This alternative approach will be assessed in comparison to the NFCC prescriptive requirement 

for explosion venting designed in conformance with NFPA 68. 

4.2.2 Fire Scenario Stage 

Stage 2 of the QDD method involves the development of event trees to describe the performance of 

the prescriptive design requirement(s) for comparison with the performance of the alternative design 

path(s) generated in Stage 1. The event trees summarize the potential accident scenarios which could 

result from a common initiating event. In this stage, the components of each proposed design are 

identified and a common initiating event is selected. The aim is to develop event trees that are 

representative of all possible significant accident scenarios for each design. After identification of the 

scenarios, the pivot events and accident consequences are qualified for later quantification in Stage 3 of 

the QDD method. The outcome of Stage 2 is comprehensive and comparable event trees for the 

prescriptive design and any alternative design paths.  

To develop the event trees both initiating event(s) and pivot event(s) must be identified for each 

design approach. To do so, it is also necessary to develop and evaluate the intended function of each 

system based on detailed design concepts. Event trees will be developed for the explosion protection 

design specified by NFCC Sentence 4.2.9.5.(1) and developed in accordance with NFPA 68, as well as 

for the proposed alternative explosion prevention design based on NFPA 69. The outcomes associated 

with each accident scenario are also qualified to establish a context in which to assess the anticipated 

performance. The final illustrated event trees for both of these design options are provided in Figure 4.2 

later in this section and their development is discussed in more detail in the following paragraphs. 

The prescriptive design is based on the provision of damage-limiting construction to contain a 

deflagration within the dispensing room and explosion-relief vents to control the release of any pressure 

wave and fire ball that could be generated in the event of an explosion in the dispensing room. These two 
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principle components of the designed system must operate properly to mitigate an explosion event. In 

contrast, the alternative solution design is based on an explosion prevention approach and relies on two 

different principle components from the prescriptive design. These are the provision of combustible gas 

detection to monitor the enclosure environment and to identify hazardous accumulations of flammable 

vapours and an interlocked mechanical ventilation system to remove the vapours from the enclosure 

before an explosive concentration develops. While not considered performance components of the 

alternative solution design, upon detection of hazardous accumulations of vapours in the dispensing room, 

the fire alarm system in the building will go into evacuation mode and visual and audible alarms will be 

activated in the dispensing room to alert occupants to the developing hazard. Each of the two design 

components associated with the prescriptive-based design and the alternative solution design are 

represented by separate pivot events in each respective design event tree shown in Figure 4.2 later in this 

section.   

It is important that the designer consider the attributes of each proposed design approach and 

qualitatively compare the required function of each component of each design before the development of 

event trees, and throughout all stages of the design process. For example, the prescriptive design relies on 

passive fire protection systems while the alternative design relies entirely on active fire protection 

systems. Generally, passive systems are more reliable than active systems during normal upset conditions 

such as a power outage since the systems do not rely on electrical power to maintain their performance. 

As such, the designer would have to include a specification that emergency power be supplied to the 

components of the explosion prevention system to improve the overall system reliability in the event that 

power is lost, so as to be qualitatively comparable in performance to the prescriptive-based passive 

protection system. Since the provision of emergency power is an integral aspect of the design which 

directly influences the reliability of the design components, it is not identified as a pivot event. Instead 

consideration of the reliability of design components will be incorporated into the evaluation of variable 

values conducted in Stage3. 



80 
 

The initiating event selected for the event trees is a spill of flammable liquids within the dispensing 

room. Container sizes located in the dispensing room are considered to be small (under 25 L) or large (up 

to 170 L). Therefore, an additional pivot event is defined to identify the relative size of the spill as being 

either small or large. Addition of these types of components to an event tree assists in establishing the 

qualitative nature of each accident scenario and its possible outcome(s).    

The event trees developed assume that if liquid is spilled in the dispensing room that an ignition 

source is available. Under this assumption, an explosion is considered to occur 100% of the time, unless 

flammable vapours are detected and removed before an explosive concentration is generated (i.e. 

performance-based design approach operating as intended). This approach considers that the explosion 

protection and prevention systems are designed to address the risk of an explosion instead of the risk 

associated with a flammable liquid pool fire. As such, only explosion outcomes are evaluated. Since the 

likelihood of a transient ignition source in the room is independent of the design approach adopted, the 

inclusion of this probability in the event tree analysis is considered redundant. Additionally, outcomes 

with 0% probability (i.e. no ignition) have been excluded for simplicity.   

The event tree considers that if an explosion occurs, the explosion event must first be contained 

within the room (e.g. no open doors) and that the explosion venting system must then operate properly to 

vent the pressure wave and fireball. It is assumed that the dispensing room fire separations are maintained 

in accordance with the NFCC and that the explosion venting has been sized correctly, in accordance with 

NFPA 68, to safely release an explosion from the building. 

The event tree developed for the alternative design solution assumes that if the mechanical 

ventilation system operates as intended, then it is sized sufficiently to remove a developing hazard before 

an explosive concentration can accumulate and encounter a transient ignition source. This assumption is 

practical since the ventilation system will be sized to address the largest reasonable spill generated from 

the largest container in the room,  assuming that no liquid is drained or has leaked from the enclosure 

during the spill, and since the system will be served by emergency power. 
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The pivot events for the event trees associated with both designs are summarized in Table 4.1. The 

probability variables associated with each pivot event represent the operation of each system component. 

A statement is provided in the Table to describe each of the probability variables qualitatively.   

Table 4.1 Pivot Event Probability Variables and Descriptions 

px Description 

p(Large) 
Probability that a large container is involved in the flammable 
liquids spill.  

p(Enclosure) 
Probability that the damage-limiting enclosure contains the 
deflagration within the enclosure. 

p(Relief) 
Probability that explosion relief vents operate to release pressure 
wave and fire ball as designed. 

p(Detect) 
Probability that combustible gas detection detects a developing 
accumulation of vapours as designed. 

p(Vent) 
Probability that emergency ventilation system removes flammable 
vapours before an explosive concentration is generated. 

 

Once the design approaches are represented as event trees, the outcome of each accident scenario 

should be evaluated and qualitatively described. The utility value for each outcome is assigned in Stage 3 

of the QDD method. Through qualitatively describing each accident scenario outcome at this Stage in the 

method, the designer confirms that the identified outcomes are representative of those expected as they 

relate to the fire/explosion hazard associated with each design approach. The designer also confirms that 

each design approach functions to achieve the objectives and functional statements defined for the 

prescriptive requirement and that the performances are comparable. Qualitative descriptions of the 

accident scenario outcomes established for this design are listed in Table 4.2 below.  

Table 4.2 Qualitative Descriptions of Accident Scenario Outcomes 

Outcome 

Classification 
Description 

1 Uncontrolled explosion impacts beyond compartment 

2 
Uncontrolled explosion and early warning is provided 
to occupants  

3 Uncontrolled explosion contained in compartment 

4 Controlled explosion  

5 No explosion 
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In Table 4.2, outcome classifications distinguish between explosion events where early warning is 

provided to occupants. Early warning reflects an explosion event occurring in the alternative solution 

design wherein the explosion prevention system has failed to exhaust flammable vapours and an 

explosion occurs; however, the activation of combustible gas detection has initiated audible and visual 

alarms and the building fire alarm system to evacuate occupants. Early warning systems are intended to 

limit the number of building occupants involved or injured in the event of an explosion. Outcome 

classifications also distinguish between explosions that impact beyond the compartment and those that are 

contained within the compartment. These conditions reflect the inherent safety of the damage limiting 

construction of the explosion protection design, which in the event of a minor failure (i.e. open door) will 

still provide much more protection to building occupants than a normal fire separation which is provided 

in the alternative solution design for the dispensing room.  

It is noted that the subsequent consequences of the event tree outcomes in terms of potential spread 

of fire in the building or additional explosions are not considered in this evaluation. The prediction of 

subsequent fire or explosion events is complex and does not necessarily reflect directly on the 

performance of each designed system in terms of its objectives and functionality in the context of the 

codes. 

Figure 4.2 below identifies the event trees for the prescriptive-based design and the alternative 

solution design as described in this section. The event trees identify the initiating event, the additional 

event that describes the accident scenario (i.e. spill size) and the pivot events for each design approach. 

The outcomes are listed using the qualitative outcome classifications identified in Table 4.2. 
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Initiating 
Event 

Large 
Spill 

Enclosure 
Containment 

Explosion 
Relief 

Outcome 
 

Initiating 
Event 

Large 
Spill 

Gas 
Detection 

Ventilation Outcome 

   Yes UG  (4) Yes UA  (5) 
Yes p(Relief) Yes p(Vent) 

p(Enclosure) No UH  (3) p(Detect) No UB  (2) 

Yes 1-p(Relief) Yes 1-p(Vent) 

p(Large) p(Large) 

No UI  (1) No UC  (1) 

1-p(Enclosure) 1-p(Detect) 

Spill Spill 

Yes UJ  (4) Yes UD  (5) 

Yes p(Relief) Yes p(Vent) 

p(Enclosure) No UK   (3) p(Detect) No UE  (2) 

No 1-p(Relief) No 1-p(Vent) 

1-p(Large) 1-p(Large) 

No UL  (1) No UF  (1) 

1-p(Enclosure) 1-p(Detect) 

   (a)         (b) 

Figure 4.2 Event Trees for Prescriptive Design (a) and Alternative Solution Design (b)  

The product of Stage 2 of the QDD method is the generation of the event trees (Figure 4.2), the 

identification of pivot event probability variables (Table 4.1) and the qualification of accident scenario 

outcomes (Table 4.2). These outputs form the basis for further development and quantification of the 

overall fire safety system design in Stage 3 of the analysis. The summary tables provide context for the 

event trees developed and, when properly formulated, outline the assumptions made in Stage 2 of the 

QDD method. 

4.2.3 Decision Evaluation Stage 

The third stage of the QDD method involves applying SSDT to the event trees generated in Stage 2 

and comparing the expected utility associated with each proposed design to that found for the prescriptive 

design solution. The minimum, maximum and most likely pivot event probability variables and the 

outcome utility variables are quantified by the stakeholders as input for the application of SSDT. The 

outcome of Stage 3 is comparable expected risk value ranges for the prescriptive design and any 

alternative design(s). The robustness of the analysis is also considered when making a final design 
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decision as another metric by which to establish if the alternative design achieves a performance level at 

least equivalent to that of the prescriptive design or if the alternative design requires modification in order 

to meet the required level of performance. 

To conduct SSDT, the maximum, minimum and most likely values of the variable px and Ui must be 

determined by a group of stakeholders. This process, spearheaded by the design engineer, involves 

coordinating the stakeholder group to ensure that all members understand the function of the QDD 

method and the intended operation and failure modes of each component of the design approaches under 

review. The stakeholders typically include the designer, owner and the AHJ. While it is recommended in 

Chapter 3 that a low bias, consensus seeking technique such as the Delphi technique be used; since the 

case study is limited to a theoretical demonstration of the application of QDD to an alternative design 

challenge, the Delphi technique was not applied.  

At this point also, it should be emphasized that both the choice of variables to represent a design and 

their determined values are unique to the particular design scenario under evaluation. Therefore, the set of 

variables and values used here should not to be used in applications of the QDD method to other 

situations. In this respect, each application of the method will generate different probability and utility 

values based on the intended function of a proposed design and its application within a practical fire 

safety context. The selection of values for each variable is also dependent on the stakeholder group 

involved in a particular design analysis and their values in terms of life safety, property loss and business 

interruption. As such, results from one application of QDD cannot be directly compared to results from a 

different case study. On the other hand, the values determined within a given case study and therefore the 

results of SSDT as applied to that particular case are comparable since the context of variable selection, 

assignment of values and stakeholder input are consistent across all the design options considered in a 

single application of the QDD method. 

The variables identified in the case study are listed in Table 4.1 and Table 4.2 and are illustrated in 

Figure 4.2 above. Values for pivot event probability and outcome utility variables, are discussed in the 

remainder of this section and are summarized in Tables 4.3 and 4.4, respectively.   
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Table 4.3 Pivot Event Probabilities Selected  

Pivot Event 
Probability 

Variable 
Description Min

Most 
Likely

Max Comments 

p(Large) 
Probability that a large container is 
involved in the flammable liquids 
spill  

0.30 0.30 0.30 Containers in the 
room are 30% 
large and 70% 
small. 1- p(Large) 

Probability that a small container is 
involved in the flammable liquids 
spill 

0.70 0.70 0.70 

p(Detect) 

Probability that a combustible gas 
detector detects a developing 
accumulation of vapours as 
designed. 

0.70 0.89 0.95 

The design 
includes an audible 
alarm to sound if 
detection device 
fails, system is 
served by 
emergency power 
and is inspected 
every 3 months. 

1- p(Detect) 

Probability that a combustible gas 
detector does not detect a 
developing accumulation of 
vapours as designed. 

0.30 0.11 0.05 

p(Vent) 

Probability that emergency 
ventilation system removes 
flammable vapours before an 
explosive concentration is 
generated. 

0.55 0.95 0.99 

The design 
includes an audible 
alarm to sound if 
detection device 
fails, system is 
served by 
emergency power 
and is inspected 
every 3 months. 

1-p(Vent) 

Probability that emergency 
ventilation system does not remove 
flammable vapours before an 
explosive concentration is 
generated. 

0.45 0.05 0.01 

p(Enclosure) 
Probability that the damage-
limiting enclosure contains the 
deflagration within the enclosure. 

0.75 0.81 0.90 
Annual inspection 
of fire separations 
in accordance with 
NFCC. Client 
notes habit of 
holding door open 
during use for 
convenience. 

1-p(Enclosure) 

Probability that the damage-
limiting enclosure does not contain 
the deflagration within the 
enclosure. 

0.25 0.19 0.10 

p(Relief) 
Probability that explosion relief 
vents operate to release pressure 
wave and fire ball as designed. 

0.50 0.95 0.99 Annual inspections 
of explosion vents 
and calibration in 
accordance with 
NFPA 68.  1-p(Relief) 

Probability that explosion relief 
vents do not operate to release 
pressure wave and fire ball as 
designed. 

0.50 0.05 0.01 
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To establish p(Large), a survey of the containers used in the dispensing room was considered. This 

survey indicated that 30% of the containers holding flammable materials are large, while 70% of them are 

small. Based on the assumptions that there was equal chance of a large or a small container being 

involved in an accident scenario, that the spilled container was full and that all of the liquid spilled, the 

maximum, minimum and most likely probabilities of a large container being involved in a flammable 

liquid spill was taken as equal to the percentage of large containers in the room (i.e. 30%). The 

probabilities of a small container being involved is therefore assigned the value of (1 – 0.3) or 70% for 

each of these cases.  

To establish the remaining pivot event probabilities, the reliability data for sprinkler, smoke and fire 

separations published by Bukowski and coworkers [Bukowski et al. 1999] was used as a starting. Due to 

limitations in the scope of literature data available, assumptions were made to apply the data within the 

context of the case study designs as described in this section. Where inspection, monitoring or regular 

practices were perceived to improve the reliability of benchmark industry components the minimum 

probability was increased by 5%. Conversely, where practices were perceived to reduce system 

performance, minimum probability was decreased by 5%. 

To establish p(Detect), the design components of the alternative solution and industry reliability data 

was considered. Since data for specific types of fire safety system components was not readily available 

in literature, generic component reliability was utilized. Smoke detector data was substituted for 

combustible gas detection reliability since these systems each rely on environment monitoring of 

chemicals/particulate. As described by Bukowski and coworkers, smoke detectors have a maximum, most 

likely and minimum reliability of 95%, 89% and 65% respectively [Bukowski et al. 1999].   

In accordance with NFPA 69, an audible alarm is required to sound if a combustible gas detector is 

not in operation (through electrical contact monitoring) [NFPA 69 2008]. This monitoring component of 

the system provides factor of certainty that detector will be in good working order during normal 

conditions. The combustible gas detectors are also served by emergency power as part of the design of the 

alternative solution, improving the overall reliability of the devices in the event of power loss. In 
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accordance with NFPA 69, inspections of the detectors are required to be conducted at 3 month intervals 

[NFPA 69 2008]. These components improve the maximum reliability which may be attributed to the 

combustible gas detectors and exceeds the measures typically provided for smoke detectors. These 

factors, in combination with industry reliability data for smoke detectors, directed the selection of the 

minimum, maximum and most likely successful probability for the combustible gas detectors identified in 

Table 4.3. 

To establish p(Vent), the design components of the alternative solution and industry reliability data was 

considered. Since data was not readily available to describe performance reliability of mechanical 

exhaust, generic sprinkler protection system data was used to guide the selection of p(Vent). Sprinkler 

systems were identified as having maximum, most likely and minimum reliability of 95%, 90% and 80% 

respectively [Bukowski et al. 1999]. Based on good practice, and as described in NFPA 69 and the 

NFCC, an audible alarm will sound if the emergency ventilation system components, such as a fan, are 

not in operation (through electrical contact monitoring). This monitoring component of the alternative 

solution provides greater certainty that the system will be in good working order during normal operating 

conditions. Additionally, the ventilation system is served by emergency power as part of the design of the 

alternative solution, improving the overall reliability of the devices in the event of power loss. In 

accordance with NFPA 69, inspections of the explosion prevention ventilation system are required to be 

conducted at 3 month intervals [NFPA 69 2008]. These components improve the maximum reliability 

which may be attributed to the ventilation system and exceeds the measures typically provided for 

sprinkler systems. These factors, in combination with industry reliability data for sprinkler systems, 

directed the selection of the minimum, maximum and most likely successful probability for the 

ventilation systems identified in Table 4.3. 

To establish p(Enclosure), the design components of the prescriptive-design and industry reliability data 

was considered. Masonry construction reliability data was used to guide selection of enclosure reliability 

probability since damage limiting construction is typically reinforced concrete. Masonry construction, as 

described by Bukowski and coworkers, has a maximum and minimum reliability of 90% and 80% 
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respectively [Bukowski et al. 1999]. In conformance with the NFCC, fire separations including the 

damage limiting construction enclosure of the dispensing room, are required to be inspected  and doors 

tested to ensure that self-closing devices and latches are operating correctly annually [CCBFC 2010b]. 

These inspections should identify if deficiencies in the enclosure exist that could compromise its 

performance in the event of an explosion. The owner identified a practice of propping doors open in the 

dispensing room to facilitate staff movement in the building despite the fact that this practice is prohibited 

by the NFCC. This practice, in addition to the annual inspection frequency and industry reliability data for 

masonry construction, directed the selection of the minimum, maximum and most likely successful 

probability for the damage limiting construction enclosure indentified in Table 4.3. 

To establish p(Relief), the design components of the prescriptive-design and industry reliability data 

was considered. Since data was not readily available to describe performance reliability explosion venting 

systems, generic sprinkler protection system data was used to guide the selection of variables. Sprinkler 

systems were identified as having maximum, most likely and minimum reliability of 95%, 90% and 80% 

respectively [Bukowski et al. 1999].  In conformance with the NFPA 68, explosion relief vents are 

required to be inspected and calibrated  annually to ensure that release latches are operating correctly 

[NFPA 68 2007]. These inspections should identify if deficiencies in the installation and maintenance of 

the explosion relief vent which could compromise the venting performance in the event of an explosion. 

Consideration of performance reliability also included examining the effect of one explosion vent panel 

failing to operate correctly, while the remaining panels operate to relieve an explosion. Generally, under 

such conditions an explosion would be vented; however, under less control. This, in combination with the 

inspection requirements of NFPA and industry reliability data for sprinkler systems, directed the selection 

of the minimum, maximum and most likely successful probability for the damage limiting construction 

enclosure identified in Table 4.3. 

To establish utility values, the outcome classifications identified in Table 4.2 and in Figure 4.2 were 

considered. The best outcome (explosion successfully prevented) is assigned a utility value of 0 and the 

worst outcome (uncontrolled explosion occurs) is assigned a utility value of -1. The remaining outcomes 
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are assigned utility values based on the aversion to risk, as described in Table 4.4. Early warning of an 

explosion was prioritized above moderate control of an explosion event. While damage to the building 

would be greater in the event of an explosion prevention system failure, since damage limiting 

construction is not provided, the early warning to staff was seen as having a greater value than building 

protection since it would to reduce injuries or fatalities to building occupants. As such, an explosion 

occurring, regardless of the success of the protection system, was considered less desirable than an 

explosion being successfully prevented since an explosion would inevitably cause damage to the 

dispensing rooms, could injury staff and could lead to business interruption. A lower aversion to the risk 

associated with an explosion resulting from the spill of a small container was identified versus a large 

container, since it was considered that a smaller spill would produce less vapours and consequently, 

would result in a less powerful explosion event. 
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Table 4.4 Outcome Utility Selected 

Outcome 
Variable 

Description 
Utility 
Value 

UA Best scenario – explosion prevented. 0.00 

UB 

Early warning of explosion permits occupants to exit 
prior to explosion. Explosion damage is significant to 
building and occupants since a large volume of vapour 
is released in spill. No enclosure protection provided. 

-0.75 

UC Worst scenario – explosion not prevented. -1.00 

UD Best scenario – explosion prevented. 0.00 

UE 

Early warning of explosion hazard permits occupants 
to exit prior to explosion. Explosion damage is 
moderate to building and occupants since a small 
volume of vapour is released in spill. No enclosure 
protection provided. 

-0.50 

UF Worst scenario - explosion not prevented. -1.00 

UG 

Best scenario – explosion event is controlled. 
Outcome is less desirable than explosion prevention 
success since an explosion has occurred. Explosion 
damage is limited to the dispensing room.  

-0.10 

UH 

Explosion occurs – explosion vents fail to release 
explosion in a controlled fashion but enclosure 
provides a measure of explosion containment. 
Explosion damage is moderate to building and 
occupants. Explosion damage is moderate since a 
large volume of vapour is released in spill. 

-0.90 

UI 
Explosion occurs – enclosure fails to contain 
explosion. Explosion damage is significant to building 
and occupants. 

-1.00 

UJ 

Best scenario – explosion event is controlled. 
Outcome is less desirable than explosion prevention 
success since an explosion has occurred. Explosion 
damage is limited to the dispensing room.  

-0.10 

UK 

Explosion occurs – explosion vents fail to release 
explosion in a controlled fashion but enclosure 
provides a measure of explosion containment. 
Explosion damage is minimal to building and 
occupants. Explosion damage is minimal since a small 
volume of vapour is released in spill. 

-0.85 

UL 
Explosion occurs – enclosure fails to contain 
explosion. Explosion damage is moderate to building 
and occupants. 

-0.90 
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Tables 4.3 and 4.4 developed in Stage 3 of the QDD method form the basis for the application of 

SSDT. The summary tables quantify the variables for the event trees developed in Stage 2. The 

assumptions made in assigning quantitative parameters are justified utilizing industry reliability data, 

specific design monitoring and inspection requirements and stakeholder values. 

4.2.4 Results and Analysis 

Utilizing Equations 3.2 through 3.7, defined in Section 3.2.3, the pivot event probabilities and 

outcome utilities listed in Tables 4.3 and 4.4 are used to establish the expected maximum, minimum and 

most likely expected risk value for each design approach. From this, the maximum, minimum and most 

likely expected utility differences can also be established. The of the expected utility for each design 

approach are represented in Figure 4.3 and the respective values for the utility differences (Max, ML and 

Min) are listed in Table 4.5.  

 

Figure 4.3 Expected Utility for Explosion Prevention Design and Explosion Protection Design 
Approaches  

‐0.700 ‐0.600 ‐0.500 ‐0.400 ‐0.300 ‐0.200 ‐0.100 0.000
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Explosion 
Protection



92 
 

Table 4.5 Expected Utility Difference, (1) Explosion Prevention System (alternative solution), (2) 
Explosion Protection Design (prescriptive requirement) 

Expected Utility Difference 

Min(E1(U,P))-Min(E2(U,P)) 0.113 

ML(E1(U,P))-ML(E2(U,P)) 0.153 

Max(E1(U,P))-Max(E2(U,P)) 0.134 

 

The application of SSDT to the alternative dispensing room fire safety system designs indicates that 

a design decision can be made, but with a degree of uncertainty. The values of the expected utility 

differences are all positive, indicating that the alternative design solution is generally considered to 

perform better than the prescriptive design, as identified in Table 4.5. However, uncertainty is associated 

with the results because of the overlap between the values of the expected utilities of the two designs, as 

illustrated in Figure 4.3. The results show that most of the time the alternative solution design is likely to 

perform at least as well as, or better than, the prescriptive design; however, there is a possibility that the 

prescriptive-based design operating at its best could out-perform the performance-based design operating 

at its worst.   

At this stage in application of the QDD method to a real design situation, the stakeholders would 

again be brought together to evaluate the results. It would be acknowledged that there is uncertainty 

associated with the design decision and then a decision made as to whether further analysis or refinement 

of the design would be needed. In this case, a key discussion would focus around whether the 

performance of the alternative solution design was sufficiently demonstrated to achieve or exceed the 

performance of the prescriptive design solution. Since the most likely anticipated performance of the 

alternative design (ML(E1(U,P))) exceeds the best performance of the prescriptive-based design 

(Max(E2(U,P))), it might be considered that the alternative design was at least equivalent in achieving the 

objectives and functional statements associated with NFCC Sentence 4.2.9.5.(1) and that further design 

analysis was not necessary. At this stage, the alternative solution could be documented and submitted to 

the AHJ for review and would include an account of the data collected, summaries of stakeholder input 
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and the analysis process conducted. On the other hand, if the stakeholders concluded that the uncertainty 

inherent in making the design decision was too great, modifications to the pivot event probability 

variables and/or outcome utility would be necessary. In a practical application of the method, many 

avenues to resolve the uncertainty, for instance opportunities to increase scheduled maintenance practices, 

could be investigated. Furthermore, the data utilized to guide pivot event probability selection could be 

expanded. 

4.3 Conclusions of Case Study 

The application of QDD to the compliance challenge presented at Industrial Facility ABC resulted in 

the demonstration that the alternative solution, consisting of an explosion prevention system designed in 

compliance with NFPA 69 could be shown, with some uncertainty, to achieve at least an equivalent level 

of performance as the benchmark explosion protection solution designed in compliance with NFPA 68 as 

required in NFCC Sentence 4.2.9.5.(1). In Stage 1, the QDD method established that both design 

approaches achieved the same objective and functional statements as those established in the NFCC for 

the prescriptive requirement. In Stage 2, the performance of each design was illustrated using comparable 

event trees to identify the fire hazard(s) associated with a spill of flammable liquids and to qualify the 

possible significant outcome events. The performance of the design approaches were quantified and 

compared in Stage 3 using the principles of SSDT to establish the desired design solution. The robustness 

of the design decision was evaluated and could be deemed to satisfy the performance priorities described.  

4.4 Summary  

The case study considered the requirements for explosion protection in a flammable liquid 

dispensing room in Canada as regulated by the NFCC. The case study demonstrates the three-stage 

application of the QDD method developed in Chapter 3 as applied to a theoretical industry-based case 

study. The case study developed an alternative solution to NFCC Sentence 4.2.9.5.(1) utilizing NFPA 69 

as the basis for an explosion prevention system. The alternative solution design and its performance were 
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quantitatively compared to the prescriptive design utilizing QDD which incorporates the FSCT, event 

trees and SSDT. The conclusion of the case study was that the alternative design was demonstrated to 

perform at least as well as the prescriptive design within a range of uncertainty. In closure, it should be re-

iterated that the results of this case study, as presented, cannot be applied to similar cases due to the 

theoretical and demonstrative nature of the investigation described and the subjective stakeholder values 

represented in the above discussion.
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Chapter 5  

QDD METHOD ANALYSIS 

The QDD method, a new fire risk analysis method that has been developed in this research work, is 

outlined and described in Chapter 3 and a demonstrative case study is presented in Chapter 4 of this 

thesis. This chapter includes a discussion of the QDD method in consideration of the eight objectives 

established in Chapter 2 with the purpose of discerning its valuable attributes and its inherent limitations 

as a tool for use in assessing performance-based alternative designs. Through describing the limitations of 

the QDD method and identifying opportunities for its modification, applicability of this approach to 

practical design challenges is established. 

5.1 Evaluation of QDD Method 

In Chapter 2, eight objectives are established that formed the basis for the development of the QDD 

method as follows: 

1. Utilize prescriptive-based design as a benchmark to develop alternative design options. 

2. Utilize prediction and evaluation techniques that are relatively simple to apply and understand, to 
bridge any gaps in the experience between authorities and the designers.  

3. Accommodate typical project timelines and resources by using fire risk and hazard analysis 
techniques that are not onerous in terms of time or monetary resources.  

4. Represent performance of comparison designs in a manner which addresses the contributions of 
all significant fire events to overall fire risks. 



96 
 

5. Provide quantitative evaluation of consequence and likelihood associated with design 
performance. 

6. Account for uncertainty associated with design outputs in relation to input parameters and 
assumptions to evaluate the robustness of design decisions. 

7. Involve stakeholders (owners and AHJ) and to achieve consensus regarding design priorities and 
risks throughout the design process. 

8. Combine qualitative, semi-quantitative and quantitative fire assessment methods. 

To evaluate the success of the QDD method in achieving the above objectives, a simulated case study is 

described in Chapter 4. Utilizing observations and results from the case study, the performance of each 

stage of the QDD method and the method’s overall performance as a comprehensive fire risk analysis 

technique is evaluated in this section. In addition to the eight objectives, the QDD method is also 

evaluated in consideration of the documentation requirements identified in Chapter 2. 

5.1.1 Objective 1 

The FSCT used in Stage 1 is recognized in NFPA 551 as a means to qualitatively analyze overall fire 

protection design and to identify gaps and areas of design redundancy. In the QDD method, this tool is 

utilized to assist in directing the development of the alternative solution to the prescriptive-based design 

benchmark. The FSCT proves to be a flexible tool by which to establish suitable design alternatives that 

will achieve the fire safety objectives of the prescriptive-design under consideration. The use of the FSCT 

in the QDD method achieves objective 1, to utilize prescriptive-based design as a benchmark to develop 

alternative design options. 

Through application of the FSCT, alternative OR gate design paths that may be developed into 

alternative solutions are identified. In the Industrial Facility ABC case study, the objective and functional 

statements associated with the prescriptive design requirement for NFCC Sentence 4.2.9.5.(1) were 

established and the appropriate branch of the FSCT identified to represent the performance objectives of 

the code. A systematic evaluation of design alternatives was conducted; to identify which ‘redundant’ 

design alternatives on the FSCT could be developed for analysis in Stages 2 and 3 of the QDD method. It 

should be noted that, as was the situation in the case study, some of the alternative design options 
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available to the owner might be filtered before the FSCT is applied. For example in the case discussed, 

the option of relocating or removing the dispensing operations was considered prior to considering the 

pursuit of an alternative solution.  

Certain stakeholder values, such as business continuity in the event of fire, are not often recognized 

in building codes or fire code performance objectives or functional statements. Instead the code 

statements have a primary focus on preserving life safety. QDD is vulnerable to similar limitation as there 

is no formal basis for the inclusion of these other objectives until Stage 3 of the method. This limitation of 

the codes supports the inclusion of the owner in Stage 1 of QDD to voice values or design priorities that 

may exceed the qualitative objectives and functional statements provided in the codes.  

5.1.2 Objectives 2 and 3 

Each stage of QDD has an illustrative component to simplify communication of the complex and 

technical fire safety challenges to all stakeholders. The methods used have been selected based on their 

function, but also in consideration of objectives 2 and 3 above – to utilize simple and easy-to understand, 

illustrative techniques that are not onerously demanding of time or money. The FSCT, event tree and 

SSDT methods utilized are technically valuable and provide relatively simplistic illustrations of complex 

fire safety objectives, possible design performance scenarios and quantitative performance comparisons. 

The case study demonstrates the integration of complex prescriptive requirements in the FSCT’s 

comprehensive objective-based framework (see Figure 4.3). The sequential nature of event trees 

generated in the case study aligns with the sequential operation of both the explosion prevention and 

explosion protection designs being assessed. While not designed or intended for use as an illustrative tool, 

the results of SSDT are easily depicted in a graphical format which facilitates effective comparison of the 

performance-based and prescriptive-based designs. 

The techniques utilized in QDD are all relatively cost and time effective. Application of the QDD 

method does not rely on extensive data generation or analysis, on fire modeling or on fire testing, all of 

which can be costly and time consuming approaches depending on the nature of the design challenge 
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under consideration. The case study demonstrates an application of QDD within the time-frame expected 

for development and evaluation of a standard alternative design solution, which usually does not exceed 

one month for the design concept development portion. It is of note that the case study did not 

demonstrate the application of the Delphi technique for surveying of stakeholders in Stage 3, as such the 

time necessary to conduct such surveying methods has not been evaluated in detail. 

5.1.3 Objective 4 

The fourth objective, to represent performance of comparison designs to address the risk contribution 

of all significant fire events, is achieved in Stage 2 of the QDD method. The event trees generated in this 

stage describe the performance of each design under consideration in terms of accident scenarios and 

outcomes. Each event tree includes specific design components such as active and passive fire protection 

systems. The event tree model represents the significant fire events that could reasonably occur, given a 

selected initiating event. If the initiating events are appropriately selected, then during the performance 

analysis those event trees will facilitate consideration of the risk of all significant fires associated with the 

design. This method again provides a very flexible framework since it allows consideration of a diverse 

range of outcomes – significant consequences and minor consequences – to represent all potential 

performance sequences. 

In the case study, event trees were generated to represent the prescriptive design approach, utilizing 

an NFPA 68 explosion protection design, and the alternative performance-based explosion prevention 

design based on NFPA 69. To develop the event trees the designer needed familiarity with each of the 

NFPA design standards and the intended function of each component of the designed systems. Through 

this knowledge, the event trees were generated by systematically representing component failure or 

success. The sequential contribution of the failure or success of each design component allowed all 

possible fire events, as generated from the selected initiating event, to be integrated into the analysis 

process. 
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5.1.4 Objectives 5 and 6 

Stage 3 of the QDD method utilizes SSDT to achieve objectives 5 and 6 which relate to quantitative 

evaluation of consequence and likelihood, uncertainty analysis, and evaluation of design decision 

robustness. SSDT is applied to establish the expected utility for each design approach. The results of 

SSDT are evaluated to establish if a design decision can be made and furthermore to determine the 

uncertainty associated with the quantification of the performance of each design under study. In the QDD 

method simulated through the case study, quantitative pivot event probability and event utilities are 

established. The reliance on utility values instead of quantitative definition of particular consequences, 

such as monetary losses, allows for subjective quantification of accident scenario outcomes that are 

meaningful to everyone in the stakeholder group. Further, it avoids the challenges associated with 

objective quantification of likelihood and consequence of fire events that are described in Section 2.2.3. 

The QDD approach, then, provides an adaptable framework through which to addresses objective 5 

above. 

SSDT allows for the expected utility of each design approach to be compared within a range of 

maximum and minimum expected risk values, while also considering the most likely perceived risk level. 

This approach enables the uncertainty associated with selected values for each of the variables to be 

quantified and compared directly. With the information available from the SSDT results, a design 

decision may be determined either with certainty or with uncertainty. Through application of SSDT in 

Stage 3 of the case study, the alternative explosion prevention design solution was determined to perform 

at least as well as the explosion protection approach prescribed in the NFCC; however, there was 

uncertainty associated with the design decision due to the overlap in the expected utility calculated. It was 

described in the case study how this uncertainty could either lead to a second iteration of the QDD 

method or alternately to the conclusion that the performance of the explosion prevention alternative 

solution was sufficiently demonstrated to achieve or exceed the fire safety objectives associated with the 

prescriptive design.  
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5.1.5 Objective 7 

The QDD method as currently outlined identifies the owner and AHJ as primary stakeholders and 

relies on their contributions throughout the application of the method. Input from these and other 

stakeholders is also specifically required in Stage 3. For this it is proposed to engage a surveying 

technique, such as the Delphi method, to obtain stakeholders input when establishing the critical variables 

and values of those variables required to conduct the comparison of quantitative performance of two 

competing design solutions. These functions directly address objective 7, to involve stakeholders (owners 

and AHJ) and to achieve consensus regarding design priorities and risks throughout the design process.  

While inclusion of the AHJ is considered a necessity to achieve the objectives of the QDD method, 

there is also a need to maintain the roll of the AHJ as the independent reviewer of the alternative solution 

proposed. In preliminary discussions with the AHJ at the onset of a design project where the QDD 

method was to be applied, the limits of their involvement in, and influence on, the conclusions generated 

will need to be explicitly defined and documented. An alternative to inclusion of AHJ personnel in the 

survey component of the QDD method, if it is deemed necessary to restrict AHJ input in the design 

development of the alternative solution, would be to meet with the AHJ to present the variables and their 

values as chosen by the remaining stakeholders and to ask for AHJ consideration of these as the primary 

variables on which a design decision should be based. By presenting the variables for AHJ comment 

during the design process, the AHJ have an opportunity to see the QDD method at work and to 

understand the assessment methods utilized without directly influencing the design. This inclusion in the 

process will also allow the AHJ an opportunity to voice concerns and to develop a level of comfort with 

the process while maintaining the integrity of their role within the regulatory framework.  

In Stage 3 of the QDD method, the stakeholders are involved in the design process to quantify 

measures of utility for each type of accident scenario, taking into consideration their values such as the 

allowable extent of equipment damage, potential for loss of life or impact of business interruption. 

Stakeholder input is used to define quantitatively the maximum, minimum and most likely values of pivot 
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event likelihood. In its full application to a practical design situation, it is proposed that the a surveying 

method such as the Delphi technique be utilized to establish both the pivot event probabilities and utility 

values for each outcome. The identification of pivot event probability values and accident scenario utility 

relies on coordinated and systematic input from numerous stakeholders including the designer, the owner 

of the facility, the AHJ and the installers and/or manufacturers of the various components used in the 

design. The anonymous nature the Delphi technique reduces the influence of individuals on the group and 

the repetitious convergence approach promotes group consensus. The inclusion or exclusion of other 

stakeholders, such as insurance representatives, will be at the discretion of the designer and the owner and 

will have to be determined on a case-specific basis.  

The application of QDD is intended to involve of both the owner and AHJ in the fire risk analysis 

process. This approach ensures that both parties are familiar with the design approach, its performance 

and its likely failure methods. Furthermore, it promotes a rigorous design decision developed through 

consensus based variable selections. However, the case study did not employ the suggested group of 

stakeholders to gather input since this was not practical in the context of a theoretical demonstration of 

the overall methodology. While the case study is representative of the application of the method by an 

individual, this is not the intended QDD process. The assignment of variables in Stage 3 must be 

conducted in a systematic, rigorous and transparent manner to ensure that results of QDD are meaningful 

and valuable. If the basis for design decisions established cannot be validated by industry and stakeholder 

consensus, the resulting decisions cannot be justified.  

5.1.6 Objective 8 

The three-stage QDD approach integrates recognized fire science, risk evaluation and critical 

decision making techniques including qualitative, semi-quantitative and quantitative methods to achieve 

objective 8 above. The iterative design improvement component of the method further allows the designer 

to evaluate the performance of the design alternative and to modify it repetitiously until a design is 
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excluded or a final design having the desired performance is achieved. In this way, the method also 

promotes systematic and quantifiable decision making within the performance-based design context.  

The sequence of the QDD method optimizes the strength of each of the hazard and risk assessment 

techniques used by taking valuable information generated from each stage as the necessary input for the 

following stage. The limits of the FSCT, for example, are that the method is non-sequential and 

qualitative while the strength of the technique is the generation of a rationalized design path. This output 

is valuable when applied in development of the event tree, a method which does not provide for any 

design rationalization and instead is utilized to sequentially represent a series of fire scenarios for a pre-

selected design. By using the same initiating event for the event trees developed for both the prescriptive-

based design and the alternative design, the performance of each design may be directly compared in 

Stage 3. In this final stage, the data generated through development of the event trees is then subjectively 

quantified and cast in a better format for informed decision-making using SSDT. Since the prescriptive 

design and the alternative design are conceptually developed in Stage 1 to achieve the same fire safety 

objectives through their input into the FSCT, the consequences of the accident scenarios and/or design 

failures are comparable in this final stage of the analysis. 

5.1.7 Documentation 

While not identified as an objective of the QDD method, the need for thorough documentation of the 

development of an alternative design solution and of any subsequent fire risk analysis process employed 

to evaluate its performance was outlined in Chapter 2. Such documentation of assumptions, methodology 

and results is a critical component of a successful fire risk analysis and alternative solution, as described 

in NFPA 551, the SFPE Engineering Guide and the requirements of the NBCC and NFCC [NFPA 551 

2010, SFPE 2006, NBCC 2010 & NFCC 2010]. For this, all assumptions made during the application of 

the QDD method must be documented, each variable must be qualitatively described and any decisions 

made regarding selection of pivot event probability and outcome utilities must be rigorously documented 

and justified. In consideration of the subjective nature of the quantitative fire risk analysis methodology 
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utilized in the QDD method, it is also necessary to describe and rationalize any assumptions in order to 

communicate effectively the basis for the final design decision. Furthermore, a well executed 

documentation of the method permits, as necessary, peer review of both the process and the final 

alternative design solution.  

5.1.8 Closure 

Based on an analysis of the case study, QDD is considered to achieve the eight objectives established 

in this thesis, in addition to supporting the requirements for documentation identified in Chapter 2, and is 

also well suited to undertake the design challenge posed in the dispensing room scenario. In the case 

study the prescriptive requirements could be integrated into the FSCT and alternative design approaches 

that were suitable to the owner could be developed using recognized standards and known technology. 

The event trees generated comparable fire scenario outcomes which were then quantified using SSDT and 

could be evaluated by a group of stakeholders to establish a final design decision.  

5.2 Limitations of QDD Method 

Application of the initial version of the QDD method to the case study presented here has several 

limitations and allows identification of areas which require additional attention, either to facilitate the use 

QDD or to improve its reliability. The case study described in Chapter 4 does not attempt to demonstrate 

application of an iterative re-evaluation that could be conducted in Stage 3 if the uncertainty of the design 

decision is considerable. This process is documented in Section 3.2.4 but how it would be applied in a 

real situation should be assessed further in support of future and more complex applications of the QDD 

method.  

Stakeholder input was not actually obtained in Stage 3 of the QDD method since the case study 

developed in this investigation was a theoretical demonstration of the method. It is proposed that a 

surveying method be used to achieve consensus when selecting critical variables to describe the risk and 

uncertainty associated with the expected utility. The Delphi technique has been suggested; however, this 
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has not been demonstrated or tested in a field application of QDD. A full-scale case study application of 

the QDD method was not conducted as resources for such an undertaking were beyond the scope of the 

thesis; however, the theoretical case study provides a basis to support further examination, optimization 

and application of the method in practical design challenges. To demonstrate the robustness and reliability 

of the QDD method for practical applications, field case studies must be conducted and documented for 

evaluation and comparison with current industry practice and/or use of other design and evaluation 

methods. The impact of human dynamics and group behaviour within the design process, and specifically 

when trying to achieve group consensus on variable values to input into SSDT, requires additional 

research and investigation.  

The case study demonstrates the type of data that is necessary to conduct QDD, specifically the need 

for pivot event probabilities and outcome utility values. The selection of utility and probability variables 

for input into Stage 3 is subject to the limitations of the specific design challenge under study. The 

resources available to the owners and the designer, as well as the nature of the probability values required 

will dictate the level of detail required to establish component reliability, for example. At a minimum, the 

variable and value selection process should take into consideration the input from numerous experts and 

establish consensus; however, it is understood that many, if not most, design projects will not have access 

to multiple experts for each design component or that resources in terms of time and money may not be 

sufficient to conduct a complete evaluation of each probability range and outcome utility. It is expected 

that the process of establishing variable values in Stage 3 would be significantly simplified if a collection 

of reliable performance probabilities were available for consideration. A table of standardized ‘expert-

generated’ values for basic fire safety system design components would facilitate the selection process. If 

data were readily available for the maximum, minimum and most-likely probability categories, then these 

values could be discussed with the stakeholders as a starting point during consensus surveys. This data 

may be tabulated for sprinklers or detection systems through industry sources or based on historical loss 

data. It is expected that the maximum and most-likely probabilities might be relatively consistent between 

various design applications and that minimum probabilities would be generated based on the level and 
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programs of maintenance defined by the owner. Of course, caution would be required when utilizing 

standardized probability tables to ensure that the values selected are meaningful to the design under 

consideration. In all cases, it would still be necessary for them to be verified by stakeholders as part of the 

QDD application process. 

5.3  Conclusions 

The case study presented in Chapter 4 demonstrates the intended application of the Quantitative 

Design Decision (QDD) method, a new fire risk analysis method that has been developed in this research 

work. This application has been evaluated to confirm that the eight objectives determined in Chapter 2 

have been achieved in the development of the method, with some limitations in the case study conducted. 

The findings of this evaluation, in relation to the objectives developed, are as follows: 

1. The Fire Safety Concepts Tree (FSCT) in Stage 1 of the QDD method is an effective hazard 

assessment framework by which to direct the development and selection of alternative design 

approaches to prescriptive-based design benchmarks. Using the AND and OR logic gates in the 

FSCT, alternative design approaches are qualitatively demonstrated to achieve the objectives and 

functional statements of the codes. 

2. The FSCT and event tree techniques utilized in the QDD method and the graphical representation 

of results of the Super Soft Decision Theory (SSDT) proposed all provide means of illustrating 

complex fire science principles and mathematical relationships in formats that are easily 

communicated to stakeholders. The ease-of-understanding attribute of these illustrative formats 

promote user understanding and effective documentation for Authority Having Jurisdiction (AHJ) 

review.  

3. The techniques utilized in the QDD method are not demanding of either monetary or temporal 

resources, in comparison to traditional fire safety design investigations using computational or 
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field modeling of fire events. The case study demonstrates the application of the method within 

the restrictions of typical project timelines and resources. 

4. The event trees generated in Stage 2 of the QDD method identify the contributions of all 

significant fire events resulting from a shared initiating event for both the prescriptive-based and 

performance-based design approaches. The evaluation of all significant fire events necessary to 

classify QDD as a fire risk analysis method. 

5. Stakeholder input is used in Stage 3 of the QDD method to quantify pivot event probability and 

outcome utility variables generated in the Stage 2 event trees for the prescriptive-based and 

performance-based designs. Using Super Soft Decision Theory (SSDT) and applying expected 

utility criteria, the risk of fire associated with each design option is calculated. Quantitative 

evaluations of both fire scenario likelihood and consequence is required to classify QDD as a fire 

risk analysis method. 

6. SSDT provides a method of quantifying the uncertainty associated with the calculated expected 

utility so as to establish if the design decision generated is robust. Stakeholders establish 

minimum, most likely and maximum pivot event probability variables to calculate the range of 

expected risk associated with each design. The iterative application of Stage 3 of the QDD 

method permits input variables to be re-evaluated and modified such that the sensitivity of the fire 

risk analysis to individual parameters can be established. 

7. The QDD method involves stakeholders, primarily the owners and the AHJ throughout the fire 

risk analysis process. A surveying method to collect expert and stakeholder opinions for inclusion 

in the method has not been demonstrated. However, a group surveying and consensus seeking 

method that allows numerous stakeholders to contribute to the decision process, such as the 

Delphi technique, is recommended. Consensus is necessary to establish in the QDD method to 

ensure that its results are meaningful, valuable and representative of good engineering practice. 
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8. The combination of the qualitative FSCT, semi-quantitative event trees and quantitative SSDT in 

the QDD method is demonstrated to promote the strength of each individual tool. In combination, 

these tools generate a comprehensive fire risk analysis technique that is tailored for assessment of 

performance-based design challenges. 

The evaluation found that the documentation requirements for alternative solutions relying on fire 

risk analysis techniques could be generated from the information necessary for conducting the QDD 

method.  

The limitations of the case study centred on the fact that it was a theoretical demonstration of the 

method and therefore the Delphi or other surveying technique were not employed to obtain stakeholder 

input during Stage 3 of the design evaluation. To demonstrate the robustness and reliability of the QDD 

method in practical applications, field case studies must be conducted and documented for evaluation and 

comparison. The impact of human dynamics and group behaviour within the design process, and 

specifically when achieving group consensus on SSDT variables, requires greater investigation. 

Evaluation of the case study identified that the application of the QDD method, specifically the 

quantification of probability and consequence variables, is restricted by the resources available to the 

design project. It is proposed that these limitations may be overcome by the development and use of 

standardized probability tables for design system components. While such tables are available for certain 

parts, such as sprinklers, a consistent, reliable and industry-wide accepted source of performance data for 

numerous fire protection system components would be valuable for application of QDD or other similar 

methods.  

Based on the analysis conducted, the QDD method is considered well suited to the design challenges 

identified in Chapter 1; however, it is still necessary that designers carefully consider their particular 

challenge to determine the best fire risk analysis methodology to apply in a given situation. This thesis 

concludes that the QDD method will be a valuable asset to designers developing alternative solutions to 

prescriptive code requirements in the objective-based format for building design utilized in Canada.
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Chapter 6  

FUTURE WORK 

The QDD method was designed to develop alternative designs by using a prescriptive-based design 

as a benchmark. There are, however, broad applications for QDD in the performance-based design 

industry which have not been demonstrated in this thesis. Such applications include FSCT directed 

designs and extending the application of the method beyond a single design feature or prescriptive 

requirement. The investigation of alternative applications and the verification and validation of the QDD 

method applied as designed are suggested for future work. 

The FSCT in Stage 1 is used to fit prescriptive designs into an objective-based framework. Instead of 

a prescriptive design, the initial application of QDD could be related to a single fire safety objective. For 

example, in the ‘Manage Fire Impact’ - ‘Manage Fire’ branch of the FSCT there are three distinct 

redundant approaches which could be developed to achieve the same fire safety objectives. This branch 

can be used as a starting point to direct the design of three alternative approaches to achieving the same 

performance objective which could then be carried forward through the QDD method for quantitative 

comparison in the same type of fire risk analysis and critical decision making framework.  

This approach to using the FSCT to direct the design process, theoretically, could be administered to 

all fire performance objectives to develop a comprehensive design for a room, floor area or building 

instead of limiting the application to a single prescriptive requirement. The design approaches developed 

using the FSCT could be compared to various prescriptive designs mandated by codes. The subsequent 
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application of Stage 2 and 3 of the QDD method would quantify the difference in the performance of the 

comprehensive designs. Such application would generate extensive and complex event trees in Stage 2; 

however, theoretically the QDD method could certainly be utilized for such performance comparisons. 

The application and potentially further development of the QDD method as a comprehensive 

performance-based design fire risk analysis methodology garners future consideration. 

Applications of QDD to practical design challenges will provide the data required to validate the fire 

risk analysis methodology. To evaluate the sensitivity of the method to subjective influence, case studies 

should be conducted and documented where different design teams develop alternative solutions using the 

QDD method for the same prescriptive code requirement. Future investigations should also apply the 

Delphi technique in gathering stakeholder input as suggested in Stage 3. Consideration of alternative 

surveying methods and their impact on design decision robustness may also prove necessary. Such 

investigations should consider the simplicity of the surveying method and the relative resource demands 

to ensure that the QDD method maintains the intended performance objectives. 

An interesting opportunity through which to verify the results of the QDD method would be through 

a comparison with live fire test data generated for the respective prescriptive and performance-based 

designs. Such an investigation could be used to determine if the results of a fire risk analysis that 

concludes that one design is at least as good as, or better than, another would be substantiated by 

performance demonstrated under actual fire conditions. 
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Appendix A 

Fire Safety Concepts Tree  

NFPA 550 specifies the structure, application and limitations of the Fire Safety Concepts Tree 

(FSCT) [NFPA 550 2007]. This guide provides a detailed description of each component of the logic tree. 

The following four figures are provided in, or are based on , those figures available in NFPA 550 and 

represent the entire FSCT [NFPA 550 2007]. The logic decision paths in the FSCT are constructed to lead 

to a fire objective success rather than failure. The FSCT provides a comprehensive illustration of the 

interrelationships between fire safety strategies and a logical path for evaluating achievement of fire 

safety objectives.  The symbol (●) represents an AND gate and the symbol (+) represents an OR gate. 

 

Figure A.1 Top Gates of Fire Safety Concepts Tree [NFPA 550 2007] 
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Figure A.2 “Prevent Fire Ignition” Branch of Fire Safety Concepts Tree [NFPA 550 2007] 

 

Figure A.3 “Manage Fire” Branch of Fire Safety Concepts Tree [NFPA 550 2007] 
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Figure A.4 “Manage Exposed” Branch of Fire Safety Concepts Tree [NFPA 550 2007] 


