Toward Improved Understanding and
Management of Software Clones

by

Wei Wang

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2012

(© Wei Wang 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

The cloning of code is controversial as a development practice. Empirical studies on the
long-term effects of cloning on software quality and maintainability have produced mixed
results. Some studies have found that cloning has a negative impact on code readability,
bug propagation, and the presence of cloning may indicate wider problems in software
design and management. At the same time, other studies have found that cloned code is
less likely to have defects, and thus is arguably more stable, better designed, and better
maintained. These results suggest that the effect of cloning on software quality and main-
tainability may be determinable only on a case-by-case basis, and this only aggravates the
challenge of establishing a principled framework of clone management and understanding.

This thesis aims to improve the understanding and management of clones within soft-
ware systems. There are two main contributions.

First, we have conducted an empirical study on cloning in one of the major device
drivers families of the Linux kernel. Different from many previous empirical studies on
cloning, we incorporate the knowledge about the development style, and the architecture
of the subject system into our study; our findings address the evolution of clones; we have
also found that the presence of cloning is a strong predictor (87% accuracy) of one aspect
of underlying hardware similarity when compared to a vendor-based model (55% accuracy)
and a randomly chosen model (9% accuracy). The effectiveness of using the presence of
cloning to infer high-level similarity suggests a new perspective of using cloning information
to assist program comprehension, aspect mining, and software product-line engineering.

Second, we have devised a triage-oriented taxonomy of clones to aid developers in
prioritizing which kinds of clones are most likely to be problematic and require attention;
a preliminary validation of the utility of this taxonomy has been performed against a large
open source system. The cloning-based software quality assurance (QA) framework based
on our taxonomy adds a new dimension to traditional software QA processes; by exploiting
the clone detection results within a guided framework, the developer is able to evaluate
which instances of cloning are most likely to require urgent attention.

111

Acknowledgements

I would like to express my gratitude to my advisor Professor Michael Godfrey for his
generous support during the last 2 years. His guidance, advice, suggestions and humor
have made possible this research work.

I would also like to thank other two professors in the SWAG lab, Professor Ric Holt
and Professor Reid Holmes. Both have offered their time to read this thesis and offered
valuable suggestions. Professor Holt has offered his continuous suggestions about my work,
particularly about communication skills. The passion for teaching and research I found
in Professor Holmes is inspirational. I owe so much gratitude to my friend Dr. ITan Davis
who helped my brainstorm ideas and invited me into so many interesting discussions about
public affairs.

Thanks to all my peers in the SWAG lab. First I would like to thank Olga Baysal and
Sarah Nadi for offering me helps that literally enabled me to survive in the lab, Kimiisa
Oshikoji for his lunch and dinner times and his optimism, Raymond Nguyen for his support.

I have to thank the administrative staff in the school for their professional work, espe-
cially Wendy Rush and Paula Zister.

Special thanks to my parents.

v

Table of Contents

List of Tables
List of Figures

1 Introduction

1.1 Motivation
1.2 Contributions
1.3 Thesis Organization

2 An Overview of Cloning Research

2.1 Software Cloning: Definition and Detection
2.2 Evolution of Clones
2.3 Management of Clones,
2.4 Experiment Setupo

2.5 Summary

3 Clone Evolution and Management in Linux SCSI Drivers

3.1 Introduction
3.2 Methodology
3.2.1 The Subject system: the Linux SCSI drivers
3.2.2 Clone detection L

viii

ix

BN EEEEN B > N o> ST SN W N =

©

3.2.3 Results 15

3.3 Cloning and architecture 15
3.3.1 Growth of clones in size of the SCSI subsystem 15
3.3.2 Clone coverage rate of the SCSI subsystem 16
3.3.3 Discussion 17

3.4 Clone evolution 18
3.4.1 Change consistency of clones 18
3.4.2 Clone lifespan 19

3.5 Cloning as a predictor of hardware similarity 23
3.5.1 Background Lo 23
3.5.2 Methodology 25
3.5.3 Discussion 26

3.6 Clone evolution driven by driver development 27
3.6.1 Driver removals as the cause of clone removals 28
3.6.2 Introducing new clones when inserting new low-level driers 29

3.7 Proportion of routines in cloned code snippets 32

3.8 Summaryo 35

Cloning Analysis as a Part of Software Quality Assurance 36

4.1 OVverview 36

4.2 Obstacles to utilizing cloning analysis within a software quality assurance
PTOCESS © © v v v v v e e e e e e e e 37

4.3 Taxonomy of Clones for Studying Software Quality Assurance 38

4.4 The “Top-10 List” for Each Category of Cloning-related Issues 40

4.5 Case Study 47
4.5.1 Experiment designo A7
4.5.2 Experiment result oL 48

4.6 SUummary 50

vi

5 Conclusions and Future Work

5.1 Future Work

5.1.1
Appendices

References

Application of Cloning for software comprehension

vii

55
56
26

57

80

List of Tables

3.1
3.2
3.3

3.4
3.5

4.1

4.2

4.3

The number of instances of clone fragment modifications

The survival result of clone fragments in three levels of the SCSI subsystem.

Source location of a clone which has been inserted into multiple drivers in
the SCSI subsystem.

Types of routines in the lower level drivers of the SCSI driver system. . . .

Proportion of routines in respect to SLOC in the SCSI driver system.

The taxonomy, with its associated potential impact on software quality of
each category and the estimated potential benefits of address each category
in a cloning-aware software quality assurance process.

One clone class spanning multiple components in the Spring Framework
version 2.5.6.o

A clone class with long code snippets in the Spring Framework

The categorization of source files according to the architecture level of the
SCSI subsystem.

The top-10 list of clone classes that span multiple software components. . .
The top-10 list of clone classes with many members.

The top-10 list of clones with long code snippets.

Viil

21

29
33
34

41

o1
52

List of Figures

3.1

3.2

3.3

3.4

3.5

3.6

3.7
3.8

Growth in the number of Source Lines of Code (SLOC) for the SCSI sub-
system as a whole as well as for each of the three architectural levels over
all 31 snapshots, as measured by the open source tool cloc.

This UML class diagram illustrates the usual relationship between a SCSI
device, its conceptual driver, and its source files. The composition relation-
ship indicated by the solid diamond is slightly inaccurate as there are a few
.h files that are shared among multiple conceptual drivers.

Absolute clone size in LOC for each level in the SCSI subsystem (solid lines,
left y-axis), and the proportion of clones in the lower level over all clones
(dashed line, right y-axis).

The clone coverage rates over time for each of the three architectural levels
as well as the SCSI subsystem as a whole; this measures the proportion of
code that is or has been cloned.

Clone change consistency and the number of created/deleted clones for each
snapshot. The left y-axis represents the absolute number of clones and the
right y-axis represents source code size in SLOC. Clones change during the
entire evolution process we have studied. Inconsistent changes outnumber
consistent changes for all versions of the SCSI subsystem we have studied.

Kaplan-Meier survival curve for all clone fragments in the SCSI subsystem
over all the snapshots we collected

The configuration data for the Always IN-2000 device.

Accuracy of predicting bus type similarity using the cloning-based model,
the vendor name-based model, and the randomized model. The numbers
on the bars show the absolute number of pairs in that category; the y-axis
shows the percentage of each level of match.

X

12

13

16

3.9

4.1

4.2

4.3
4.4

Source code of a Type I clone that was inserted into multiple SCSI drivers.

An example of a design-level structural clone. Three clone classes that all
spanning the same three Java classes, resulting in one design-level structural

An example of a cloned source code snippet which spans multiple software
components. Lo oL e

An example of a cloned source code snippet which is long in SLOC.

An example of a cloned source code snippet which is involved in a design-
level structural clone.

30

53

Chapter 1

Introduction

1.1 Motivation

Software clones, that is, segments of source code that are highly similar to each other, are
prevalent in software systems. Clones are usually introduced by “copy & paste” actions
during software development.

Cloning is traditionally believed to be a negative sign (a bad “code smell”[20]) of over-
all software quality. Indeed, by duplicating code from one place to another, developers
increase the maintenance risks in their software projects. Do they have a thorough under-
standing of the code being duplicated? Do they have good reasons for duplication instead
of designing and writing code from scratch? Is seeking a common abstraction worthwhile?
More importantly, do they have a clear intention of how to manage the evolution of a near-
identical code fragments? Unsurprisingly, poor management of cloning has been found to
cause problems such as the propagation of bugs after duplication, introducing dead code,
and software bloat. Several empirical studies [36][8] have reported such instances in open
source systems. In addition to causing maintenance headaches, cloning also carries the risk
of infringing software licenses, sparking intellectual property disputes|[4]. However, some
other empirical studies [38][50] have found that for cloned code, the defect rate — the most
important metric of software quality — is no higher than that of the non-cloned code.

Previous cloning researchers have mainly focused on developing automated clone de-
tectors and quantitative analysis of clones in either proprietary or open-source software
systems. The conventional yet untested notion about the harmfulness of cloning is often
cited as the motivation of their research on automated clone detection. There have been a

number of successful automated clone detectors[23][41][8], all of which can perform cloning
analysis within a medium-to-large software systems.

Despite the supposed negative influence on software quality of clones, developers inten-
tionally use cloning as a software development strategy. In particular, duplicating code can
avoid development risks by reusing code from successful legacy systems [16]. This benefit
is especially valuable for critical software systems, which are least tolerant to design or
implementation mistakes. Kapser et al. [34] [35][33] further identified and summarized the
patterns of utilizing cloning as a software development strategy in industry practices.

Whether cloning is harmful to software quality remains a question that is subject to
empirical studies. And this question also influences how we manage existing clones: if
cloning is proven to have negative influence on software quality, then we should emphasize
on how to quickly remove cloning relations. There have been several tools that attempt to
integrate clone detection results and subsequent clone removal strategies within software
development environments [37][18] [49] [48]. However, little justification has been provided
about the risks and benefits of this “hunt-and-kill” strategy. To our knowledge, there are no
user studies on how these tools can actually improve the process of software maintenance,
or the quality of software systems.

In this thesis, we address two aspects of cloning research: the understanding of clones
and clone management. To advance our understanding of the role of cloning in software
development, we first present a longitudinal study of cloning in a driver subsystem within
the Linux kernel, where cloning is known to be a development strategy to overcome ex-
pensive and error-prone process of designing and writing new drivers when the underlying
hardware changes only slightly. To establish a clone management framework, we propose a
taxonomy of clones and profile clone instances by incorporating design knowledge and by
crosschecking clone detection results with other software repositories. While we have not
yet fully implemented all techniques in the proposed framework and have only conducted
a partial evaluation, the results so far seem promising.

1.2 Contributions

This thesis makes two contributions: 1. We present a case study of clones in the Linux
Small Computer System Interface (SCSI) driver system to clarify of the cause and oth-
er general features of clones in this system. 2. We proposed and partially evaluated a
framework that utilizes cloning analysis to provide suggestions about clone management.

The first contribution involves a longitudinal study of clones in the Linux SCSI driver

system. We analyzed absolute size, overall clone coverage, and average lifetime of clones
within its layered architecture. We also discovered that a cloning relationship between two
SCSI card drivers could effectively indicate high-level similarity among drivers. We further
discuss how creating and deprecating drivers can affect cloning within this system.

Our second contribution involves a taxonomy-based framework that aids developers to
manage clones. Our ultimate goal is to process the clone detection results and triage each
item in the result list within the context of the underlying software system.

1.3 Thesis Organization

Chapter 2 presents the background and related work of cloning research, including the
definition of clones and clone detection techniques. Other related research, such as software
evolution, software feature analysis are also discussed.

One case study of clones is presented in Chapter 3. We discuss general background
of our target system. Then we introduce our work on detecting clones, calculating clone-
related metrics, and establishing a clone-based model to predict functional similarity among
drivers in our target system. We further study the driving force behind the evolution of
clones in the subject system.

Chapter 4 presents a framework of utilizing clone analysis results to improve software
quality. We first introduce a taxonomy of clones and how we crosscheck cloning analysis
results with software artifacts. Within the taxonomy, each category maps to a specific type
of software quality issue. We further discuss the “top-10 list” techniques in our analysis.
To investigate the effectiveness of our method, we have performed a partial evaluation of
it on the open source Spring framework; we have also identified several bugs and other
maintenance problems in this target system.

We summarize our contributions, and suggest future research directions in Chapter 5.

Chapter 2

An Overview of Cloning Research

This chapter provides an overview of research that is relevant to this thesis. We first
provide definitions of important terms in this thesis. We then outline the major topics in
the software cloning research, including automated clone detection and clone management.
We further discuss related work in software evolution and software management.

2.1 Software Cloning: Definition and Detection

The term “software clones” may sound self-explanatory at first but the task of identify-
ing the distinguishing characteristics of this term — a prerequisite of reaching a precise
definition — has been clouded with unavoidable ambiguity. Researchers disagree on many
aspects of a precise definition, including the minimal length of a duplicated code[8][32], the
degree of similarity between clone pairs, and whether similarity in functions behind the
code should be considered as a clone. A detailed discussion on these issues can be found
in a survey on cloning analysis by Roy et al.[51].

Fortunately, a shared informal understanding on cloning has proven to be sufficient as
a working definition for the research community. A typical working definition, proposed
somewhat facetiously by Ira Baxter[8] | is:

“Code clones are snippets of code that are similar to each other according to
some definition of similarity.”

This definition outlines two important features of cloning;:

4

1. Software clones can occur not only in programs written in mainstream development
languages such as Java or Python, but also in all kinds of programming languages,
including mark-up languages, and machine languages.

2. Changes in criteria of similarity can alter the scope of software clones.

To address the problem of different degrees of textual similarity of software clones, the
research community [9] typically categorizes clones as follows:

e Type I Clones:

Type I clones have identical code fragments, ignoring differences in comments and
white space formatting.

e Type II Clones:

In addition to the differences in comments and white space formatting, Type II clones
further allow differences in identifiers and explicit constant values.

e Type III Clones:

In addition to all the allowed variances for Type II clones, Type III clones allows
“gaps” among members of a clone

If we further loosen the constraints, code fragments with identical functionalities can
be called Type VI clones or semantic clones.

The process of clone detection is often automated and typical clone detectors can dis-
cover at least Type I, IT and III clones. The output of the clone detection consists of a set
of clone classes.

Formally, a clone class C' is a set of clone fragments fi, fs, f3, ... , f, where any pair
of clone fragment (f;,f;) satisfies the definition of “is-a-clone-of” of a clone detector.

Many approaches of automated clone detections have been proposed and evaluated, in-
cluding sequence-based techniques, graph- and tree-based techniques, hashing- and metrics-
based techniques, as well as many hybrid methods. A typical clone detector usually begins
the detection process by generating an internal representation of the source code, and
then performs similarity comparison based on the internal representation. Previous case
studies[51] have shown that it is common for 15-20% of the source code base to have a
cloning relation with other code within the software system, although this depends on the
system and the particular definition of is-a-clone-of.

2.2 Evolution of Clones

As Lehman [40] noted, software systems keep evolving to meet the ever changing external
and internal driving forces. Cloned code snippets are no exception to this process.

Researchers address the problem of clone evolution from two perspectives. Several
papers have performed quantitative analysis on aggregated data including overall clone
coverage rate of a software system. For example, Livieri et al. [44] used the clone coverage
rate as a metric to study the evolution trend over 136 versions of the Linux kernel.

Besides studying the overall trend of quantitative features of clones, researchers are also
interested in tracing clone fragments and clone classes across versions. Kim et al.[37] traced
clone classes over the evolution of an open source project and measured the lifespan of such
clone classes. Gode et al.[23] integrated clone evolution analysis into a clone detection tool,
called iClones, at the clone fragment level.

In this thesis, tracing clone fragment across versions is also automated by :Clones. The
definition of clone fragments is expressed by using syntactic information including content
of the underlying source code, locations and the boundary of each clone fragment.

2.3 Management of Clones

With the untested notion of the supposed damages caused by clones to software systems,
previous research on clone management mainly focused on automatic or semi-automatic
refactoring to remove clones.

Toomim et al. [55] extended XEmacs to allow users to keep consistency among clone
members by only editing one of the clone members. Baxter et al. [8] proposed a clone
detection tool, called CloneDr, that suggested chances of elimination clones using in-line
procedures or macros, which made CloneDr applicable to systems implemented in C or
CH+.

Not until recently, researchers have begun to evaluate the benefits and risks of this
“hunt-and-kill” strategy to manage clones. As a result, recent researchers tend to pro-
vide computer-aided solutions for manual clone management instead of a fully automatic
refactoring tool. Duala-Ekoko et al. [19] implemented a descriptive language within a
development environment to help track clones over software evolution.

These solutions for clone management all suffer limitations in several aspects. First,
many solutions attempt to solve the problem based on the a few unverified assumptions.

For example, adding extensions in development environments to enforce change consistency
among clone members are driven by the assumption that all clones should have consistent
changes. However, many clones are designed in a way that each clone member of one clone
class should evolve independently. Besides these unverified assumptions, attempting to
provide a unified solution for all clone instances often ignores the cause, length, location
of individual clones. Clone management solutions with this problem inherently suffer from
problem of overgeneralization, especially when users focus on managing a specific set of
problems associated with software clones.

2.4 Experiment Setup

In this thesis, two subject systems are involved: the Linux SCSI driver system and the
Spring Framework. The SCSI driver system is written in C (with a few chunks in assembly
language) and the Spring Framework is primarily written in Java.

We use an automated clone detector, namely iClones[24], to identify and generate the
clone detection results in all experiments in this thesis.

1Clones detects clones of all three types and is capable of detecting clones in systems
written in C, Java, or Ada. Details of iClones can be found in [24]. All clone detection
results described in this thesis use 50 tokens as the minimal threshold in iClones as a
candidate of a clone fragment; this threshold is widely considered appropriate as it exclude
most accidental code duplication (for example, many “for loops” are identical with each
other with a threshold of 15 tokens), while captures most real clones.

2.5 Summary

Although the basic idea of a software clone might seem simple enough at first glance, find-
ing an acceptable common definition within the research community has proved difficult.
Researchers try to capture the essence of this term to reach a working definition upon
which we rely to develop clone detectors and exchange study results.

Regarding the ambiguity of this term, a three-level taxonomy of clone similarity is
established, from the level of exact token match to the level that allows variance of one or
more sentences among clone fragments within one clone class.

By tracking clones between consecutive snapshots of software systems, researchers can
study the genealogy of clones. The consistency of changes among clone fragments in one
clone class has been studied widely within the cloning research community.

The mainstream direction for clone management research was once to detect the clones
and simply remove the relationship of duplication. Recently, researchers began to assess
the risk introduced by this “hunt-and-kill” strategy and turned to a more conservative
approach; that is, building tools to assist developers to manage clones within the context
of each software project.

Chapter 3

Clone Evolution and Management in
Linux SCSI Drivers

3.1 Introduction

Clones are most often the result of copy-paste actions. Cloning allows developers to reuse
existing code-level designs within a new context rather than having to develop similar
solutions from scratch [57][16]. This kind of reuse is especially convenient when a complex
design space has been conquered once, and a similar space beckons.

However, the benefits of cloning come at a cost. Careless use of cloning may negatively
impact the code quality of a system, especially with respect to maintainability. Along
with desired functionality, bugs may also be migrated into the new space. And if bugs are
eventually found, the resulting fixes may not be applied to all of the clones. The more
complex the code, the harder it usually becomes to maintain these clones in parallel.

Reducing the study of code cloning to what is effectively an algorithms problem misses
much of the rich context in which cloning is performed in practice. To understand the
motivation, risks, and potential benefits of cloning requires that we study the background
of the systems being examined; it is our experience that the project history, its organi-
zational structure, the software development practices used, and the problem domain all
bear strongly on how and why cloning may be employed. Previous work along these lines
has included examining the perceived motivation and cause of cloning [16] [36], the con-
struction of taxonomies of clone patterns [34][35][33], the relationship between software
maintainability and cloning [47], and the impact of clones to software quality [52] [50].

This chapter presents a longitudinal case study of cloning as a development practice
within the SCSI (Small Computer System Interface) drivers subsystem of the Linux kernel.

Specifically, this chapter addresses five research questions:

RQ1 Do clones within the three architectural levels of the SCSI subsystem differ quanti-
tatively?

RQ2 How do clones in the SCSI subsystem evolve between versions and over time?
RQ3 Can cloning be used as an effective predictor of hardware similarity?
RQ4 Does driver insertion/removal cause clone creation/removal? If so, to what agree?

RQ5 Are device-dependent cloned code chunks more or less likely to be duplicated within
the SCSI subsystem?

To measure cloning within the various architectural levels, we consider metrics such
as absolute size of clones and clone coverage rates. To study the evolution of clones, we
examine the ratio of clones over time, the lifespan of clones, and the kinds of changes
encountered by clone classes over time. And to study the predictive power of cloning, we
built three models — one based on cloning, one based on hardware vendor, and a random
model — and evaluated how effective each was at predicting bus architecture compatibility.

There are four main contributions in this chapter:

1. We study how the software architecture of a system can affect and be affected by the
practice of cloning.

2. We present a longitudinal empirical study of cloning in a large open source system,
where cloning is known to have been used as an intentional development strategy.

3. We present a study of how studying cloning can be used as a proxy for determining
hardware feature similarity among files that implement a similar interface.

4. By studying the proportion of many types of functions being cloned, we explore the
likely motivations behind the decision to duplicate code.

10

3.2 Methodology

In this work, we have studied the subsystem of SCSI drivers of the Linux operating system.
Unlike some previous studies, we have performed an architectural analysis, and measured
the growth of the various components over time. We have also examined how cloning
has been used as a development technique over time. We now provide some background
information on the subject system, and discuss our methodology for performing these
studies.

3.2.1 The Subject system: the Linux SCSI drivers

As mentioned above, the SCSI subsystem is a major class of device drivers of the Linux op-
erating system. It provides support for peripheral devices that support the SCSI interface,
which was designed for high-performance storage devices. The source code for the SCSI
subsystem can be found in the drivers/scsi directory of the source code distribution.
SCSI support has been present in Linux since the first official release of the kernel (in
1994). Like the rest of the kernel, the SCSI drivers are open source; however, most of the
low-level drivers have been developed and then donated by the companies that developed
the SCSI cards themselves. That is, unlike much of the core of the Linux kernel, the orig-
inal development of most of the lower level driver code was performed within a company
by its full-time developers, rather than the open source community.

To perform a longitudinal study of clones in the SCSI subsystem, we analyzed the
source code of the kernel starting with version 1.0 (released in March 1994) and picking
one version every six months ending at version 2.6.32.15 (released in June 2010). In total,
we have analyzed 31 versions over the 16-year history of the Linux kernel.

One noteworthy feature of the SCSI subsystem is that it is designed and implemented
as a strict three-level architecture: the top and middle levels provide a set of unified and
consistent commands for the kernel to control various drivers, while the low-level drivers
are concrete implementations of this functionality peculiar to the specifics of the particular
hardware. Abstractly, the low-level drivers all implement the same functionality, such as
hardware initialization, I/O handling, and error checking; they interact with the rest of
the operating system only through the upper two levels.

We distinguish between “conceptual” low-level drivers and the files that implement
them as follows: A conceptual low-level driver may provide support for a number of SCSI
cards that share a similar hardware design. All drivers consist of at least two files: an
implementation file (a “.c” file) and its associated header file (a “.h” file). However,

11

450,000

400,000 |- - 4 e Entire SCSI | m i e e e e e e e e i e i it - —— -
'g Subsystem
@ 350,000 ~-- =@=—Top Level e ——— L e ...
Q
©
8 300,000 [- o e Mid Level @ [= e e e e — - PSR T 9
kS
"
2 250,000 —@®=Llowerlevel [=.=.—=.c.o.o.=
£
3
S 200,000
o
wv

150,000 ==+ = m st

100,000 =+ ==+ =m0 ==) L e i e e e s e s s = =

50,000 f=:=:=:=- O

0

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2005 2006 2007 2008 2009 2010

Time (Year)

Figure 3.1: Growth in the number of Source Lines of Code (SLOC) for the SCSI subsystem
as a whole as well as for each of the three architectural levels over all 31 snapshots, as
measured by the open source tool cloc.

sometimes a single conceptual driver will span multiple implementation files, depending on
the practices of the development team. These relationships are illustrated in Figure 3.2.
Additionally, there are some .h files that are used by multiple conceptual drivers, due to
the strong similarity between the cards.

In the most recent version (version 2.6.32.15) we studied, there are 96 conceptual drivers
comprising over 319,000 SLOC? across 549 files. If we ignore shared .h files, we find that
approximately 25% of the conceptual drivers are contained within a single source code file,
about 50% are spread across two files, and the remaining 25% are spread across more than
two files.

Since open source development allows for the reuse of existing code, it is not surpris-
ing that developers may choose to clone and then modify an existing lower level driver
files when the underlying hardware of a new card is similar to an older one for which

!Source Lines of Code (SLOC) counts all physical lines that are not entirely comprised of white space
or comments. We used the open source tool cloc to perform our measurements.

12

Conceptual Source code file

Iow-Ie_/eI L (<, .h)
SCSI driver 1 * ’
1 *
supports compiles
1
SCSI hardware SCSI Makefile

device

Figure 3.2: This UML class diagram illustrates the usual relationship between a SCSI

device, its conceptual driver, and its source files. The composition relationship indicated

by the solid diamond is slightly inaccurate as there are a few .h files that are shared among
multiple conceptual drivers.

a driver already exists. Sometimes this cloning is explicitly mentioned in comments or
documentation.

For example, consider this extract from the header comment for the Always IN-2000
card driver (file in2000.c, available in version no earlier than version 1.3.97 [1]):

I should also mention the driver written by Hamish Macdonald for the Amiga
A2091 card [...] It gives me a good initial understanding of the proper way to
run a WD33C93 chip, and I ended up stealing lots of code from 1t.

The driver for the Amiga A2091 card driver (wd33c93.c) was first included in the Linux
kernel in the version 1.3.94 (released in April, 1996), while the driver for the Always IN-2000
card first appeared in version 1.1.67 (released in November, 1994) but was later completely
rewritten by another developer in version 1.3.97. Looking at the clone analysis results, it
seems clear that the new developer for IN-2000 driver made significant use of the code for
the Amiga A2091 driver. We found 42 code snippets in in2000.c that appeared to be
“stolen from” the file wd33c93. c; these snippets comprised over a third of the code in the
new driver (838 SLOC of cloned code out of a total of 2375 SLOC in the driver).

For each file of each version, we categorized it as belonging to one of the three levels
using available evidence such as comments, documentation, static analysis results, config-

13

uration information, and build recipes.? Then for each of the 31 versions in our sample,
we measured the size of each level as well as the SCSI subsystem as a whole in SLOC.
Figure 3.1 shows the growth of the three levels and the SCSI subsystem as a whole over
time.

We can see that initially the three levels are of comparable size; in version 1.0 the
upper two levels comprise about 6200 SLOC, while the lowest level comprises about 8700
SLOC. However, over time the top two levels have shown relatively little growth while
the lowest level has grown almost 50-fold, making up about 95% of the SCSI subsystem’s
400,000 SLOC in the most recent version. Prima facie, these trends suggest that the SCSI
subsystem is well engineered: The infrastructure has remained very stable over time, while
the number of distinct “users” (concrete drivers) has shown steady and strong growth [26]

3.2.2 Clone detection

A clone detector automates the process of locating snippets of code with high similarity to
each other. For this study, we have used the token-based incremental clone detection tool
iClones from the University of Bremen [24]; its support for incremental detection made it
particularly attractive to us for doing an evolutionary study.

Essentially, :Clones takes multiple versions of a software system to be analyzed and
computes the difference between each successive pair. Only the earliest version is processed
with a conventional clone detection approach; clones in later versions are detected by
textual differencing, combined with the detection results of the previous version.

Unsurprisingly, incremental detection using textual diffs is much faster than the naive
approach of performing a clone detection across multiple versions of the full system’s source
code. Incremental detection has the additional significant benefit that it can track clone
classes across versions automatically, since this is a simple side effect of the detection
technique; to do so using the naive approach is likely to be significantly more effort and
much less accurate.

As stated in Chapter 2, we used a threshold of 50 tokens as the minimum length for
duplicated code to be considered as clones. The output of iClones detector reports a list
of clone classes and each clone class contains a set of all clone fragments sharing the same
duplicated code snippet.

2A detailed model of which file belongs to which layer can be found at Appendix A.

14

3.2.3 Results

In the following sections, we discuss the results of our study and examine each of the
research questions in turn. We examine cloning within and across architectural levels over
time, consistency of change between versions of clones, and cloning as a measure of feature
similarity for low-level drivers.

3.3 Cloning and architecture
In this section, we address the first of our research questions:

RQ1 Do clones within the three architectural levels of the SCSI subsystem differ quanti-
tatively?

We used iClones to performed a clone analysis on all 31 snapshots of the SCSI subsystem
in our data set; this data set consists of snapshots at a six-month interval starting at version
1.0 in 1994 and continuing to the present. We also mapped each file and its constituent
clones into its appropriate level within the three-level architecture of the SCSI subsystem,
as described above. We wanted to track the amount of cloned code versus non-cloned
code within each of the architectural levels. However, simply summing the LOC in each
of the clone classes would give a misleading view, as snippets from different clone classes
may physically overlap, and we did not want to count any given LOC more than once.
Consequently, for each line of code in each file, we categorized it as either “clone” or “not
a clone”, based on whether it belonged to a snippet in any clone class.

3.3.1 Growth of clones in size of the SCSI subsystem

The three solid lines in Figure 3.3 shows (along the left y-axis scale) the absolute size
of cloned code in each of the three architectural layers. It can be seen that the low-level
drivers — which comprise most of the source code in the subsystem anyway — also comprise
almost all of the cloned code in absolute terms. There are three dips in the absolute amount
of clones in the lowest level; manual examination suggests that these dips were due to a
number of deprecated drivers having been removed from the code base, rather than any
large scale refactoring effort.

15

120,000 == =t e e e s s s s s s s s — 100%
P i R N . "
- - - | 4]
Lo - 90% 5
100,000 === =:=:=-& S =
/ ® 8% °
! g
o-0 / °
> -I ’ N ~ O 00 Il 0% 3
8 80000 ~---=--- JrTmT s ,-ﬁ ----- S8 g ERRERIED L= 2
3 ~ . , \ ‘, \ ! L 60% ©

P .
2 / - ' >--o--¢ 3
H L2
T 60,000 - temmemmmemm e m o b oo o e - s0% £
k3 / ! 2
Q . -
g ¢ ’l =g LOC of clones in the top level L 40% §
(=}
B 40,000 - cmmimimimimm oo T 4 LoC of clones inthe midlevel | == S
3 , —— of clones in the mid level L 30% no.
£ ! c
- ! «= @ == LOC of clones in the lower level ~§
4 - 20% £
20000 == === m i m = W@ T 4 e £
,. - ==« Proportion of low level clone over all clones g

’_.(- 10%
’
- - .
0 - 0%

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2005 2006 2007 2008 2009 2010

Time (Year)

Figure 3.3: Absolute clone size in LOC for each level in the SCSI subsystem (solid lines,
left y-axis), and the proportion of clones in the lower level over all clones (dashed line,
right y-axis).

The dashed line in Figure 3.3 shows (along the right y-axis scale) the percentage of
clones in the system that reside in the lowest level. It can be seen that after the first four
years, 90% or more of the clones in the system reside in the lowest level. There is a mild
dip over the last few years when there was a decrease in the amount of cloned code in the
lowest level, combined with a mild increase in cloning in the other two levels.

3.3.2 Clone coverage rate of the SCSI subsystem

To get a more nuanced view of cloning within each of the architectural levels, we also
computed the clone coverage rate, which is simply the proportion of clone code versus all
code. That is, if a file (or a set of files) has a clone coverage rate of 0.2, then 20% of the
lines of code in that file belong to a snippet that is a member of one or more clone classes.

Figure 3.4 shows that in early snapshots of the SCSI subsystem the clone coverage rates
for all but the top level are relatively low; furthermore, and somewhat surprisingly, it is
the low-level drivers that have the lowest clone coverage rate in this period. Over the long
term, the top two levels have tended toward a rate of near 10%, although the top level has

16

35%

g Average
173 S —— Top Level

== Mid Level

= @ = Lower Level

20%

15%

Clone Coverage Rate

%5 —r—/(fFnxFFF—F——F"—— 777 77— 77— 77— 771
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2005 2006 2007 2008 2009 2010

Time (Year)

Figure 3.4: The clone coverage rates over time for each of the three architectural levels as
well as the SCSI subsystem as a whole; this measures the proportion of code that is or has
been cloned.

a large spike around 2000, which is immediately followed by a dip in the mid-level coverage
rate.

The overall clone coverage rate has risen from just 6.0% to a maximum of 27.2% around
1999, and then fallen to just under 20% in recent years. It can be seen that the overall
clone coverage rate closely matches that of the low-level drivers; this is because the low-
level drivers come to overwhelmingly dominate the SCSI subsystem in terms of LOC, as
Fig. 3.1 shows.

3.3.3 Discussion

We expected to see a significantly higher clone coverage rate among the low-level drivers
compared to the rest of the system, since we had previously observed strong anecdotal
evidence that cloning is used as a development strategy by SCSI driver developers [25].
We were surprised to find that, over the last several years, the clone coverage rate of the

17

low-level drivers is almost double that of the two upper levels. A non-parametric Mann-
Whitney U test revealed that the difference of the clone coverage rate results between the
lower level and rest of the system is statistically significant with a confidence interval of
over 99.99%.

Antoniol et al. studied clone ratios within and across subcomponents of the Linux
kernel [5]. They found that clones were rarely scattered across subcomponents. In our
study focusing on a single large subsystem of the Linux kernel, we also observed no clones
spanning different architectural levels. Li et al. analyzed clones in the Linux kernel using
data mining techniques, and suggested that SCSI concrete drivers for similar devices could
be one of the major sources of high clone coverage rate of the drivers top-level directory
over the rest of the Linux kernel modules [42], to some degree echoing earlier conjectures
of Godfrey et al. [25]. Our analysis — which uses an entirely different clone detection
technique from that of Li et al. — supports the hypothesis that low-level drivers contribute
most of the clones, at least in the SCSI subsystem.

3.4 Clone evolution

In this section, we address the second of our research questions:
RQ2 How do clones in the SCSI subsystem evolve between versions and over time?
After studying how the clone class evolves as a whole, we also examine the evolution of
the fragments contained by the various clone classes.
3.4.1 Change consistency of clones

e Newly created — None of the fragments of a clone class has a predecessor in the

previous system snapshot.

e Deleted — none of the fragments of a clone class has a successor in the following
system snapshot.

e Consistently changed — all fragments of a clone class change consistently from
the previous snapshot to the next.

18

4,000 450,000

mmmm Consistent Changes
3,500 +- P U PP UP PR UPPPPRPIPRPPUUPOR | SUURPP IJ 400,000
Inconsistent Changes)
------- 1] 350,000
3,000 +| pmmmm New Clones |=rmrmrmrmrmrmimimimim s s [ST s ~-f--- l . K]
Y] - AN S
" = Deleted Clones Vi 300,000 5
4} 2500 + T e T2tk RURSEIEIEIEITIEIEIEEEIEIIEIIEE SEIRIRIRtE @
5 - g
S = = = =SLOC of the System P 250,000 .ﬁ
S 2,000 £
= 3
g 200000 3
3
3
z

1,500
150,000

1,000 + 1
100,000

500 1 50,000

]]
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2005 2006 2007 2008 2009 2010

Time (Year)

Figure 3.5: Clone change consistency and the number of created/deleted clones for each

snapshot. The left y-axis represents the absolute number of clones and the right y-axis

represents source code size in SLOC. Clones change during the entire evolution process we

have studied. Inconsistent changes outnumber consistent changes for all versions of the
SCSI subsystem we have studied.

e Inconsistently changed — at least one fragment of a clone class was modified in
a way that is inconsistent with some other fragments in that clone class.

Two observations can immediately be drawn from Figure 3.5: First, inconsistently
changed clone classes always outnumber consistently changed ones for all snapshots in our
study where change was observed between versions. Second, new clones are being added
to the SCSI subsystem continually over the time. We note that the unusual rise in the
number of deleted clones instances in December 2008 (version 2.6.27.10) is due largely to
the drop in the size of the subsystem, as can be observed in the dashed line plotted against
the right y-axis.

3.4.2 Clone lifespan
To study the lifespan of code snippets of clones, we tracked all clone fragment traces over
all 31 snapshots, and then calculated the absolute age of each fragment trace. Clone

fragments traces are tracked across versions by using information such as content of source
code, location, and boundary of each clone fragment; the tracing process is automated by

19

100%

90% ~{= = =i e e e e = Whole System |

—i—Top Level

80% e ol s, = s mm s mm s s Em s Em s s Em s Em s s s s s s -
70% —d=fd =t =t i i mt—— ————— - Mid Level -
Q60% === = e e e e e =¥—Lower Level | _
o ‘
‘—;50% e -
5
S40% - .- - 1
a
30% el e . e i . ek e r e e et e ——. . —— -
20% ————————————————————————————— —

10% i O . R

0% T T T T T T F-‘_ZI:‘_.-—Z':‘ T T T T T 1
0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180
Month

Figure 3.6: Kaplan-Meier survival curve for all clone fragments in the SCSI subsystem over
all the snapshots we collected

the iClones detector. Note that a significant proportion of clone fragments have survived
over the entire period of all snapshots we collected; in particular, recently created clone
fragments are highly likely to persist in the most recent subsystem snapshot.

For example, for a clone fragment first observed at version 2.6.27.44 (released in January
2010) and still alive at the latest snapshot we collected (version 2.6.32.15, released in
June 2011), it would be unrealistic to treat this fragment as if it had lifespan of only six
months. It is also undesirable to exclude such survived clone fragments because, as shown
in Table 3.2, over 30% of all clone fragments belong to “surviving” clones. To address
this problem, we use the Kaplan-Meier estimator, where these fragments are called “right
censored observations” in the survival analysis theory. The Kaplan-Meier estimator takes
into account both censored and uncensored data instances.

Given a data-set of lifespan of clone fragments, let ¢;,2 = 1,...,I denote the ordered
failure or censoring times, let d; denote the number of clone fragments that disappear at

20

Level || Unchanged Consistent Inconsistent Consistent and | Total
Changes Changes Inconsistent
Changes
Upper | 518 161 632 65 1,376
Mid 641 87 493 19 1,240
Lower || 16,121 2,933 10,490 203 30,047
Total | 17,280 3,181 11,615 587 32,663

Table 3.1: The number of instances of clone fragment modifications

Level | Censored | Died | Total
Upper 344 | 1,951 | 2,295
Mid 682 | 1,104 | 1,786
Lower 12,898 | 34,278 | 44,121
Total 13,924 | 37,333 | 48,202

Table 3.2: The survival result of clone fragments in three levels of the SCSI subsystem.

time 4, and let n; denote the number of clone fragments (including censored fragments)
that are still alive at time 7. The survival function S(t) for the Kaplan-Meier estimator at

time ¢ is:

(3.1)

We calculated S(t) for every 6 months for all clone fragment traces; the survival rate
for each level of the SCSI subsystem is shown in Figure 3.6. Overall, we can see that clone
fragments in the top-level have a shorter lifespan than those in the mid- and lower-level.
The lifespans of clones in the latter two levels are similar to each other for clones up to
about the age of four years; after that, clones in the lower-level have a much stronger
survival rate. We note that even after 180 months, there are still a significant number of
clones in the lower-level that have survived since the very first version.

The median lifespan of all clone fragments can be calculated by solving the equation
S(t) = 0.5 or its approximate value when no survival function is available, as in our case.

21

The median lifespan of all clone fragments is 30 months, and for the top-, mid-, and
lower-level the median lifespans are 18, 30, and 30 months respectively.

As discussed above, naively calculating the actual arithmetic mean or median value of
all clone fragments, including the “right censored” (clone instances that terminated before
the last snapshot we collected) ones, will unfairly underestimate the lifespan of all clone
fragments. In our study, the naive arithmetic mean lifespan of all clone fragments is 23
months while the median is 15 months, which is much shorter than the median average
lifespan measured by the Kaplan-Meier estimator.

To study the evolution of clones in the SCSI subsystem, we examined the proportion
of different kinds of changes for each clone class of each snapshot. The clone detector in
this study, iClones, can trace clone fragment across versions by comparing the similarity,
location of clone fragments between two snapshots[23]; and this enabled us to backtrack
all clones in the latest snapshot we collected.

One might expect that the upper- and mid-level would be less volatile than the lower-
level, since changes in the higher levels might cause collateral changes to lower-level drivers.
However, we have found no empirical evidence to support this notion. The proportion of
unchanged clone fragments from the upper- and mid-level is not significantly lower than
that in the lower levels. Furthermore, the median lifespan of clone fragments in the upper-
level is even shorter than the overall median lifespan of all clone fragments.

Despite many differences in the systems being studied and other experiment config-
urations, we consider that it is useful to compare our results with findings from similar
empirical studies on clone evolution. Kim et al. maps clone classes in different releases
using location and textual comparisons [37]. They studied two systems; in the first, 37%
of all genealogies lasted 41.7 days on average, and in the second 41% genealogies lasted
11.05 days on average. We note that the lifespan for both subject systems are shorter
than observed in our system. We see two possible explanations for this. First, the systems
studied may simply have different development patterns; second, we note that we study
the lifespan of fragments while they studied the lifespan of clone classes.

Bettenburg et al. [10]reports a change consistency study on two open source projects —
Apache Mina and JEdit — and found that the average lifespan for clone class genealogies
are 4.59 releases (about 7.8 months) for Apache Mina and 9 releases (about 10.8 months)
for JEdit.

The median lifetime in the SCSI subsystem is much smaller than the clone fragment
lifespan observed in our study. It could be caused by the nature of different subject software
systems and different ways of estimating lifespan information. Gode et al. also reported
a study on the evolution of Type-I clones of a large system, Bauhaus, mainly written in

22

Ada [23][24][22]. Our findings about change consistency in the Linux SCSI subsystem
support their conclusion that inconsistent changes comprise the majority of all clone class
changes. With respect to the lifespan of clone fragments, they found the median age for
clone fragments in their subject system to be 55 weeks. However, since they consider
right censoring cases as indicating end-of-life, the median lifespan calculated using the
Kaplan-Meier estimator might be higher.

3.5 Cloning as a predictor of hardware similarity

In this section, we address the third research question:
RQ3 Can cloning be used as an effective predictor of hardware similarity?

To evaluate this question, we built three models to predict bus type architecture compat-
ibility: one based on cloning, one based on hardware vendors, and a random model. We
now describe this work.

3.5.1 Background

In previous sections, we have shown that most clones in the SCSI subsystem are contributed
by low-level drivers, and that the clone coverage rate within that architectural level is
significantly higher than in the rest of the subsystem. While the Linux operating system
supports a wide range of SCSI cards — there are over 90 “conceptual” drivers in the most
recent version — each individual driver must still implement the same API within the
three-level architecture specified by the Linux SCSI design documents. It is therefore not
surprising that a developer creating a new driver might choose to copy and paste snippets of
code from existing drivers, especially if there are commonalities in the underlying hardware,
design philosophy, or if the concrete designs share cross-cutting concerns [36].

To find out how common this is — and specifically to find out how often cloning seems
to be driven by similar hardware features rather than, say, laziness — we built a cloning-
based model within the low-level drivers to test its effectiveness as a predictor of hardware
similarity.

There are several dimensions along which one might organize a taxonomy of SCSI
cards and their drivers, such as the generation of SCSI protocol being supported or the
application domain of the device (e.g., storage device, CD-ROM drive, etc.). However,

23

config SCSI_IN2000
tristate "Always IN2000 SCSI support"
depends on ISA && SCSI
help
This is support for an ISA bus SCSI host
adapter. You'll find more
information in <file:Documentation
/scsi/in2000.txt>. If it doesn't work out of
9 the box, you may have to change the jumpers
10 for IRQ or address selection.

@ J oUW N

12 To compile this driver as a module, choose M
13 here: the module will be called in2000.

Figure 3.7: The configuration data for the Always IN-2000 device.

the availability and accuracy of information sources for many of these dimensions are
problematic, especially for older devices. To overcome this, we use the computer bus type
dependency extracted from the build configuration data (i.e., the “Kconfig” files) of the
SCSI subsystem to measure the similarity between two drivers. Specifically, the Kconfig
file shows the hard dependency of bus types for each driver (e.g., ISA, PCI, EISA) so that
users can configure the build options to ensure the driver will run properly.

The configuration data for all low-level drivers in the SCSI subsystem consists of at least
three mandatory entries: name, dependency, and help text.Figure 3.7 shows the complete
configuration for the Always IN-2000 card: Line 1 gives the name of the configuration
option, which corresponds to this driver as SCSI_IN2000, line 3 lists its required compilation
dependencies, and lines 513 give the short, descriptive message intended to help the user
understand what device support is being enabled by this option. The dependency entry
lists the other configuration options that are required to be enabled to include support for
the this card: SCSI and ISA.

There are several advantages of using the bus type dependency entry of SCSI card
drivers as the variable to compare similarity:

1. Bus type dependency information is released with the Kconfig file of the Linux kernel
to enforce correct configuration for a driver. That is, it is checked and maintained.

2. Bus type support is a fundamental feature of a hardware card, and driver developers
must conform to a set of communication protocols determined by bus type support
of the hardware. That is, it has essential semantic value to the driver.

3. Bus type dependency entries are represented as logical expressions which makes com-
parisons easier, automatable, and less error prone than natural language descriptions.

24

For these reasons, we consider using bus type dependency as the variable to compare
similarity to be a reasonable choice.?

3.5.2 Methodology

To compare bus type dependency entries, we first convert each logical expression into a
disjunctive normal form (DNF') formula. For a pair of DNF formulas, we define three levels
of matching:

e Two entries are considered to be a match if there is at least one common conjunctive
term that appears in both formulas.

e Two entries are considered to be a partial match if there is a conjunctive term in one
formula can be expressed by concatenating extra variables in one conjunctive term
in another formula.

e Two entries that are not a match or partial match are considered to be a mismatch.

For example, the DNF formula for bus type dependency for the IN-2000 card is “ISA
&& SCSI”. This formula matches the formula “(ISA && SCSI) ||(PCI && SCSI)” because
the formula for IN-2000 appears in one of the conjunctive term in the latter formula. It
is also a partial match of DNF formula “ISA && SCSI && PCI” since the latter can be
formed by concatenating extra variables onto the formula for the IN-2000. The formula
“SCSI && X86_32” is a mismatch with IN-2000 because there is no way to make a match
or a partial match. We built an automated tool to perform the matching evaluation.

After establishing a similarity metric for conceptual drivers based on bus type depen-
dency, we decided to evaluate how strong an indicator cloning is for similarity in the
underlying hardware. We built three models: one based on cloning information, one based
on hardware vendor, and a random model. We then evaluated for each pair of entries in
each model the strength of the bus type dependency match.

For the cloning-based model, we first mapped each low-level driver file to the concep-
tual driver that it implements, and then “lifted” the cloning information to the level of
conceptual drivers. That is, suppose that we found a cloning relationship between two files,

3We note that the Kconfig entries model other information, including annotations, including annota-
tions for the Linux kernel development process, such as “EXPERIMENTAL” or “BROKEN” | but we have
discarded all except the bus architecture data in our study.

25

alpha.c and bravo.c, and that alpha.c and bravo.c are part of the Delta and Foxtrot
conceptual drivers, respectively. Then we would infer a cloning relationship between Delta
and Foxtrot.

We then asked for each pair of conceptual drivers that have a cloning relationship:
What is the strength of the match of the corresponding bus type dependency formula?
For the vendor-based model, we took pairs of cards from the same hardware vendor and
evaluated the strength of the match of the corresponding bus type dependency formula.
We took the vendor information from the Kconfig entry for each conceptual driver.

Finally, we created a randomized model to test if the results of the other models are
meaningful. We generated this model by randomly selecting 100 pairs of drivers and
comparing their bus type similarity. However, not all conceptual drivers specify their bus
type information in the Kconfig file; consequently, to make the comparisons fairer we
limited ourselves only to those drivers that explicitly specified this information.

3.5.3 Discussion

As shown in Fig. 3.8, the cloning-based model has the highest accuracy rate of the three.
Out of 110 pairs of conceptual drivers that share clone code snippets with each other,
only 8 have a bus type mismatch while about 90 pairs match each other, and 12 are partial
matches. We were surprised how much stronger these results were compared to the random
model, where 76% of the pairs were a mismatch and only 9% were a match. This suggests
that the existence of a cloning relationship between two conceptual drivers is a strong
indicator of hardware similarity for bus architectures.

The cloning-based model also fared significantly better than the vendor-based model,
which we found surprising. Although the vendor-based model performed much better than
the random model, having the same vendor resulted in a bus architecture match only 54%
of the time, with about a third being mismatches. This suggests that the vendor-based
model is a good but not strong indicator of bus type compatibility.

Finally, we note that for the random model, 76% of the randomly chosen pairs were
mismatches. This suggests that bus type compatibility is a non-trivial relationship, and
that the results of the other two models are meaningful. To summarize, we have presented
strong evidence that cloning relationships are a good predictor of bus architectures in SCSI
cards in the Linux kernel operating system. We feel that this opens up broader questions
of the predictive power of cloning on other kinds of relationships, such as other kinds of
similarity in the underlying hardware or feature sets of classes of software components that
implement similar functionality; however, we do not address them here further.

26

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Figure 3.8: Accuracy of predicting bus type similarity using the cloning-based model, the
vendor name-based model, and the randomized model. The numbers on the bars show the
absolute number of pairs in that category; the y-axis shows the percentage of each level of

||||||||||

Clone-Based Model

Match

Vendor-Based Model

[Partial Match

madtch.

O Mismatch

Randomized Model

3.6 Clone evolution driven by driver development

In the previous sections, we have examined the evolution of clones by tracking clone traces
along its life cycle and calculated the lifespan of each clone trace. We have also provided
quantitative evidence regarding the absolute number of created/deleted clone fragments

for every snapshot we have collected.

Many researchers have studied the likely reason behine code duplicating in software
development yet we can only at best approximate the answers by recording software de-
velopment plus on-site interviewing to developers[36]. Source code is usually the primary
development artifact that is available for most cloning research; however, a source code
repository alone is insufficient to recover motivation and the process behind clone-related

27

activities. This study is as well constrained by this limitation. However, knowing the
development model of the SCSI drivers, particularly the facts of when each low-level driver
was inserted and removed from the system, we can study whether and how clone evolution
is influenced by the life cycle of low-level drivers.

With the source code and the version control repository, we can recover an accurate
time-line for each case of driver insertion and removal. With this time-line, we can address
the fourth research question:

RQ4 Does driver insertion/removal cause clone creation/removal? If so, to what agree?

The goal of investigating this research question is to best recover the motivation and
features behind copy-paste activity, especially from the perspective of driver developers.
This empirical study can provide new insights about copy & paste practices, especially for
driver development.

In previous sections, we have discussed the evolution of clones, including scenarios of
introducing new clone fragments, removal of clone fragments.

3.6.1 Driver removals as the cause of clone removals

We use iClones to analyze clone evolution. A clone is considered “removed” by iClones if
it cannot be traced in the following snapshot of the SCSI subsystem. In addition to the
clone chunks that have been actually removed, code chunks that have been modified may
also be considered “removed” by iClones if the clone detector cannot trace the modified
code chunk because of the changes of the modified code chunk.

In Figure 3.5, it can be observed that the number of deleted clone fragments fluctuated
dramatically — the number peaked in December 2008 (as of version 2.6.27.10) , with 3665
clone fragments being removed — while other versions have far fewer removal instances.
In order to pinpoint of cause of clone fragments removal and to find out the reason of such
fluctuation, we analyze all clone traces collected over time and study all the traces that
are found to be terminated. For a clone trace that has been reported to be terminated in
one of the versions, we ask whether the source file that contains the removed clone snippet
is also removed.

We found 3101 cases of clone removal that were directly caused by deprecating old
drivers over time, which accounts for 31.8% of all removal cases for clone fragments. Par-
ticularly, in the version 2.6.27.10, 81.2% (1790 out of 2202 instances) of all clone fragment

28

Fragment File Begin Line | End Line | Length
1 scsi/cyberstormII.c 76 o6 121
2 scsi/fastlane.c 95 120 121
3 scsi/blz1230.c 85 110 121
4 scsi/cyberstorm.c 84 109 121

Table 3.3: Source location of a clone which has been inserted into multiple drivers in the
SCSI subsystem.

removal cases are caused file-level deletion. This correlates well with the number of dep-
recated SCSI drivers in this version: there were 58 SCSI drivers being deprecated in the
same version according to the official Git notes of Linux kernel.

From the above result, we can conclude that developers for the SCSI drivers do not
often deliberately refactor clone snippets to remove them. In fact, file removal is the major
driving force of removing cloned code from the system. The sudden rise of clone removal
cases in the version 2.6.27.10 simply reflects a one-time deprecation of many old drivers.

3.6.2 Introducing new clones when inserting new low-level driers

In the previous sections, we have shown that cloning has been used to aid the development
of new low-level drivers. The most conceivable scenario of introducing new clone fragments
is duplicating code snippets from an existing driver to a new driver. However, there are a
number of alternative situations that can introduce new clones that span two or multiple
concrete drivers.

The example of driver IN2000 (refer to section 3.2.1) stands as an example. The driver
file for IN2000, in2000. c, first appeared before wd33c93. ¢ (the driver for the A2091 card).
However in2000.c borrowed 42 code snippets from wd33c93.c when the file in2000.c was
refactored.

To assist discussion, one instance of such clone is shown in Figure 3.9.

The same piece of code snippet is inserted into four concrete drivers: “cyberstormlIl”,
“fastlane”, “blz1230” and “cyberstorm”.

This cloned code snippet permits the motherboard to detect the underlying SCSI device
and then register it within the Linux kernel. Because of the commonality of design within

29

if (eregs->esp cfgl != (ESP_CONFIGl PENABLE | 7))
return 0; /* Bail out if address did not hold data

esp = esp allocate(tpnt, (void *) esp dev);

/* Do command transfer with programmed I/O */

esp->do_pio cmds = 1;

/* Required functions */
esp->dma_bytes sent = &dma bytes sent;
esp->dma_can_transfer = &dma_can_transfer;
esp->dma_dump state = &dma dump state;
esp->dma_init read = &dma init read;
esp->dma_init write = &dma init write;
esp->dma ints off = &dma ints off;
esp->dma_ints on = &dma_ ints on;
esp->dma_irq p = &dma irqg p;
esp->dma_ports_p = &dma_ports_p;

esp->dma_setup = &dma_setup;

/* Optional functions */
esp->dma barrier = 0;
esp->dma_drain = 0;
esp->dma_invalidate = 0;

esp->dma_irqg entry = 0

*/

Figure 3.9: Source code of a Type I clone that was inserted into multiple SCSI drivers.

the 4 drivers, a similar approach to implement SCSI card detection in drivers can be simply
reused by copying & pasting, without any minor customization within the new source code

destination.

We first study the number of low-level driver files that are involved in clones with other
low-level driver files. This question is important because it shows how often a new low-
level driver reuses code snippets from other drivers. Note that we are looking at the file
level instead of driver level. That is because one header file can be potentially shared by
multiple drivers (however such header files usually do not have duplication with other files);
as a result, identifying the ownership of header files is difficult. Moreover, most low-level

30

files have a one-to-one relationship with the corresponding conceptual driver (as shown in
Figure 3.2).

To study this question, we process the detection results generated by the iClones de-
tector. We examined each file containing code for a low-level driver, and then determined
whether it ever contained clones in other low-level files associated with other drivers.

There are 786 files with distinct file names that ever appear as low-level driver files
within the SCSI system, of which we found 443 files to be associated with clones. To answer
the question about clones spanning multiple drivers, there are 301 files that contain clones
with other low-level driver files. In other words, every time a developer writes a new low-
level SCSI file (one file represents one driver in most cases), she has a chance of 38% (301
files over 786 files) of duplicating code snippets from another concrete driver file within the
SCSI subsystem. This fact again supports the notion that SCSI driver developers often
use cloning as a development strategy to write new drivers.

Another important scenario of introducing new clones is to when one code snippet
is inserted into several different files at the same time. In this scenario, developers would
introduce clones — mainly by inserting code snippets with same content — to several driver
files. Because we analyze snapshots of the SCSI system at a six-month interval, any new
clones that are introduced within the six-month window could be potentially considered
as positive cases even if they are not introduced at the precisely same time. However, we
consider that the six-month window provides a reasonable granularity to approximate the
fact of this scenario.

To study this scenario, we tuned the iClones detector to report clone classes that only
contain newly created clone fragments at one snapshot. After tuning the iClones detector,
we have also calculated the number of files that contain such clones over the entire history of
the SCSI subsystem to show the prevalence of such phenomena within the SCSI subsystem.

We found there are 3624 clone classes that belong to this scenario over time and 297
files out of 433 files contains clones under this scenario. It shows how often developers
introduce clones in the scenario where developers of SCSI drivers copy & paste one piece of
code snippet to implement functions that are common spanning multiple drivers. Another
interesting phenomenon is that every major peak for new clone fragment shown in Figure
3.5 correlates well with peaks observed in this scenario. Top three instances of such peak
of newly created clone fragments all contain a large number of files under this scenario.
This suggests copy-and-paste single code fragment into multiple drivers is an important
contributing force of sudden rise of newly created clone fragments for many snapshots.

31

3.7 Proportion of routines in cloned code snippets

Concrete device drivers serve to support SCSI cards by invoking predefined interfaces
provided by the upper levels in the SCSI subsystem. Therefore most SCSI driver developers
follow a well-structured programming paradigm to write their own drivers — such as device
initialization, port mapping with firmware and I/O related operations. Some kinds of
source code, such as port mapping, are more device specific while others are independent
of device specifications. Recall that we have established a cloning-based model which can
effectively predict bus type similarity between two SCSI drivers. A follow-up question is:

RQ5 Are device-dependent cloned code chunks more or less likely to be duplicated within
the SCSI subsystem?

In this section, we examine the proportion of clones within the SCSI lower level drivers.
We first propose taxonomy of source code in SCSI drivers according to the official devel-
opment guide for SCSI drivers; we further examine the percentage of the proportion of
each category for clones that span SCSI drivers (referred as diff-driver clones later in this
thesis). We also report the same percentage data for clones that exist only within one
driver (same-driver clones).

We categorize source code into 6 major categories:

e initialization routine
e device open/close routine
e function building routine
e sense code-related routine
e configuration routine

e others routines

The dimension of this taxonomy is established according to the official development
guide of SCSI drivers [2] [13]. The taxonomy attempts to capture fundamental features of
essential components required to write a fully-functioning driver from the perspective of
developers. This taxonomy also allows for manual triage by identifying a set of syntactic
signatures of each category.

32

Category H Feature

Initialization Routines Invoking specific methods from upper
levels to enable initialization

Device Open/Close Routines || Invoking device open/clones implemen-
tations from upper levels

Function Building Routines Functions other than initialization and
device open/close, usually error han-
dling.

Sensor/Port-related Operation || Reading and writing data from ports
or sensors-related arrays that describes
the status of SCSI cards

Configuration Routines Reading and writing data from ports or
sensors-related arrays of the underlying

SCSI cards
Other Routines Code snippets that cannot be put into

any other categories above.

Table 3.4: Types of routines in the lower level drivers of the SCSI driver system.

For example, initialization routines must contain method invocations from upper ar-
chitectural levels concerning device initialization with a specific interruption handler. For
device open/close routines, they must also invoke generic device open/close interfaces from
upper levels. Sensor code-related routines must access and read data from ports or sensors
of the underlying SCSI cards. Configuration routines bear the feature of long code snippets
about accessing predefined C structures that determines the status of the driver. Function
building routines include important functions except — such as error handling functions
or showing device status to users — are categorized as function building routines.

In our manual triage process, we also use possible comments around the clone fragment
to quickly determine the purpose of every code snippets. With these features identified
from the clone snippets, most clone fragments can fit into one of the category. With
the above signatures, we can also minimize the involvement of subjective factors when
classifying. There are still a small percentage of clone fragments that are hard to put into

33

Initializa{ Device Function| Sensor/ | Config- | Others | Sum

tion Open/ Build- Port- uration

Rou- close ing related

tines Rou- Rou- Opera-

tines tines tion

Diff-driver | 13 14 36 25 6(6.3%) | 1(1.0%) | 95
clones (13.7%) | (14.7%) | (37.9%) | (26.0%)
Same- 13 37 89 32 45 15 231
driver (5.6%) (16.0%) | (38.5%) | (13.9%) | (19.5%) | (6.5%)
clones

Table 3.5: Proportion of routines in respect to SLOC in the SCSI driver system.

any of the categories and we list them as others in our taxonomy. Description of typical
routines can be found in the official guide [2] [13] of SCSI driver programming in the Linux
kernel.

In our study, we sample 20% of diff-driver clones and 5% of the clone classes from
same-driver clones. After collecting samples from both groups, we ask what category fits
best for the cloned area in each clone class. Given that the categories under our taxonomy
are mutually exclusive, one clone class is only assigned to belong to only one category.

The result is shown in Table 3.5. It can be observed from the Table 3.5 that function
building routines take up the largest proportion for both categories. With two groups under
comparison, one noticeable distinction is that the proportion of initialization routines in
the same-driver group is smaller than in the diff-driver group. The possible explanation
is that a single driver may not need multiple initialization routines within itself while
duplicating initialization routines from an old driver to a new one can assist writing quick
driver development if the new driver shares similar initialization process with the old one. A
similar reason is also applicable to the phenomena that less port-related operation routines
are cloned when comparing same-driver group to diff-driver group.

Another observation based on this experiment is that diff-driver clones contain more
code snippets that are hardware-dependent, such as device initialization, open/close routine
and sensor /port-mapping operations. Results of this experiment also support the notion
that functional-level similarity among hardware drivers is the major force that caused
developers to copy & paste code snippets from one concrete driver to other drivers.

34

3.8 Summary

In this chapter, we describe a longitudinal study of the SCSI driver system in the Linux
Kernel. We found that both the absolute number and coverage rate of clones among lower
level drivers are significantly higher than among files in the upper two architectural level.

We observed many more inconsistent changes than consistent changes across clone
classes over time. We also found that a spike in deleted clones was usually accompanied
by a spike in new clones, suggesting that significant refactoring was occurring whenever
old drivers were deprecated. And we found that new clones were continually being added
to the system, even in the absence of observed refactoring.

We further used the Kaplan-Meier Estimator to study lifespan of all clones and found
that the median lifespan of all clones is approximately 30 months.

We found that if two conceptual drivers had a cloning relationship, then there was an
82% chance that they had compatible bus architectures. This was a much better predictor
of compatibility than having the same vendor or being chosen randomly; consequently,
we conclude that cloning can sometimes be used as a predictor of hardware similarity.
Of course, we have performed only one study measuring one possible dimension from one
domain, so much work remains to be done to address the broader questions implied by
RQ3.

We further examine two another research problems: clone evolution from the perspec-
tive of design and what kinds of code snippets contribute most clones in lower level drivers.
By tuning clone detector and crosschecking clone detection result at file-level evolution, we
conclude that a fair proportion of clones are removed simply because the driver file that
the driver is deleted as deprecated drivers.

We also establish taxonomy of cloned code along the dimension of functionalities that
are instrumental to support a driver. It shows that the most hardware-dependent kind of
code are sensor/port-related routines contribute more percentage of clones to diff-driver
classes than same-driver classes while other code routines, such as configuration routines,
reports higher proportion in same-driver clones.

35

Chapter 4

Cloning Analysis as a Part of
Software Quality Assurance

4.1 Overview

Software quality can be affected by many activities of software developers, and copying &
pasting source code is certainly one of them. Cloning was once widely believed to have
negative effects on the overall software quality. However, recent empirical studies on this
topic have provided some contradictory evidence[10][50]. Furthermore, cloning is a software
development strategy that allows reuse of valuable software design and implementation,
and recent studies have provided evidence that cloning can be used in a principled way as

a design tool [34][35][33][16].

In this chapter, we present a preliminary study that propose a framework that utilizes
cloning analysis as part of software quality assurance (QA). The ultimate goal of this
framework is to help a QA team to effectively address cloning-related quality issues. We
first identify the key challenges in using cloning analysis; then we discuss how a new
taxonomy of clones can reduce the candidate set of QA-related clone classes. A preliminary
experiment on a large open-source system reveals several quality problems in this software.

We start our study by identifying the obstacles to utilizing cloning analysis to improve
software quality. Our proposed framework crosschecks the cloning analysis results with
other software artifacts, such as bug repositories. The result of crosschecking highlights
a subset of clone detection result so that QA teams can focus on clones that rank highly
according to specific “interestingness” criteria.

36

We note that the work described in this chapter is at a early stage. We have 1. proposed
a framework of utilizing cloning analysis for software QA, 2. implemented part of it, and
3. performed a preliminary study using it on a large open source system. Our work has
also a few external limitations, especially the lack of metrics for a QA framework, which
prevent us from comparing our framework from existing approaches. In this chapter, we
list the findings by applying our framework to a large open-source software, to explore the
feasibility of our framework.

4.2 Obstacles to utilizing cloning analysis within a
software quality assurance process

As an non-mainstream way of design and implementing software functions, duplicating code
snippets carries many risks with respect to software quality. The presumed harmfulness of
cloning has also been used to motivate many cloning research projects, which often promise
that a better understanding of cloning would will aid in mitigating the harmfulness of
cloning. However, to our knowledge, cloning analysis has not proven to effectively improve
software quality for conventional industry practice. We believe the possible reasons include:

1. Lengthy cloning detection reports

A typical software system usually contains a large amount of clone classes which
takes up 15%—20% of the entire code base, regardless of what systems are being
analyzed [51]. As a result, processing a clone report demands unrealistic resources
from a software team. The fact that most clone detection reports are unranked and
unstructured only makes cloning detection report even less useful for software quality
assurance.

2. Low sensitivity of cloning as an indicator of software quality issues

Clones might be a symptom of sloppy software design, but the ratio of “problematic
clones” is low, in terms of bugs[50]. As a result, the overall clone detection results
may be insensitive to many of the software quality problems.

3. Uncertain and illusive benefits of clone management

Many aspects of software quality issues, such as maintainability, lack accurate and
broadly accepted metrics. As a consequence, the effectiveness of addressing clone-
related issues also suffers from the difficulty of measuring changes in software quality
by addressing clone-related issues.

37

Due to the limitation of cloning analysis for software QA, an effective software quality
assurance solution cannot be achieved solely through cloning analysis. Cloning analysis
can at best complement other QA methods. However, cloning has proven to be caused
or associated with a wide range of software quality issues, including bug propagation,
license infringement; and these quality issues may have multiple copies due to the nature
of cloning.

4.3 Taxonomy of Clones for Studying Software Qual-
ity Assurance

Software quality is the degree of conformance of one software system to software product
specification [53] [17]. Functional requirements of a software system — usually specified
by a software product specification — can be measured by the failure rate of running
test cases against the software system. Non-functional requirements (NFRs) of a software
product — such as usability, understandability or robustness — can be difficult to state
unambiguously, let alone the establishment of measurements[56].

A number of metrics have been established to measure NFRs of a wide range of software
systems. For instance, cyclomatic complexity of source code is often employed as a metric of
overall code quality, yet arguably this metric suffers from the limitation of only addressing
problems that are associated with overly complicated control flows.

Cloning analysis has been applied to assess software quality in previous research, mainly
focusing on software defects rate (defects per software repository unit) in clone snippets.
Monden et al. [47] evaluated qualitative evidence of the impact of clones to software defect
rate and revision frequency, concluding that software modules containing clones with long
snippets (200 SLOC as the minimal threshold as “long snippets”) can cause problems in
software reliability (measured by the defect rate) and maintainability (measured by the
revision frequency). Li et al.[42][41] concentrated on bugs that are caused by renaming of
identifiers in duplicated clones.

Despite many important facts and insights provided by previous research, most related
papers address only a limited range of software quality features affected by cloning. The
number of software defects — found in various phases of testing — is the primary metric
of quality assurance. However, it is difficult to correlate some NFRs with quantitative
measurements. For example, there is no generally accepted metric for software extensibility,
which is a key attribute for virtually all software systems. Consequently, most of previous
research on software quality does not capture the whole picture of software quality by just

38

studying the correlation of defect rates with bugs that have been found. However, cloning
imposes a wide range of software quality issues, including:

1. Bug propagation

Bugs in the cloned code are propagated to all instances of its siblings as clone frag-
ments in the same clone class.

2. Introducing new bugs

Besides bug propagation, cloning could create new bugs even if the clone code is
correct in its original location, especially for code snippets with complicated control
flow structures, or subtle environmental assumptions.

3. Program comprehension difficulties

In cloned code chunks, naming conventions, comment styles, and context of the cloned
code might be incompatible to that of the surrounding code of the cloned code area,
which often negatively affect readability; that is, even if no new bugs are introduced,
cloning can inhibit comprehension.

4. License infringement

If cloning occurs across systems with incompatible licences, copyright and other le-
gal disputes may arise [4]. Some techniques [15], [43] that are applicable to clone
detection has been used to find license infringement cases.

We propose a comprehensive approach of using cloning analysis to assess and then im-
prove software quality. Our approach addresses a wide range of quality problems, including
software defects, software maintainability headaches, architectural design flaws, and soft-
ware license infringement. Furthermore, our proposed framework can also aid in software
quality assurance by assessing the cost-effectiveness of addressing each problem under our
approach.

To allow focusing on specific software issues, we categorize clone classes along the
dimension of categories of other software artifacts to generate the list of clones. There are
four kinds of data sources in our study: lexical analysis results, other program analysis
techniques (advanced static source code analysis), revision data, and bug repository data.
The taxonomy is built based on the four data sources for our analysis.

In Table 4.1, we list all categories, sub-categories, the potential impact on software
quality of each sub-category, and the benefit to address each sub-category.

39

4.4 The “Top-10 List” for Each Category of Cloning-
related Issues

Table 4.1 shows a list of categories and subcategories concerning quality issues that may be
affected by the presence of clones in software projects. The list is based on existing works of
code clone research, our project experience and feedback from our industry collaborators.
Researchers, developers, and maintainers can each use this checklist on software projects
to help identify cloning-related software quality issues.

Table 4.1 explains the potential risks each subcategory causes in projects as we perceive
them to be. The analysis process can be automated for all subcategories. Subcategories
are not mutually exclusive; for example, it is possible for a clone class with the same
authorship to fit in several categories listed in the table.

Even after the clone detection results are broken down by each subcategory, our method
is still burdened by potentially long list within each subcategory. To address this issue,
we generate the top-10 list of each subcategory by ranking one or more key factors of the
underlying subcategory.

The technique of “top-10 list” has already been used in software risk management by
Boehm[12]. Boehm listed the top 10 primary sources of software risks so that software
managers can focus on these risks rather than blindly allocate resources on all risks. The
strategy behind the “top-10 list” — highlighting the most critical entities to generate a pri-
oritized task list — can also be applied to discover most error-prone software subsystems.
Hassan et al.[28] used heuristics to predict the top 10 error-prone subsystems in large soft-
ware systems so that project managers can allocate testing resources more appropriately.

In this chapter, the “top-10 list” of each subcategory also allows task prioritization by
highlighting the most critical instances under each subcategory. For example, the top-10
list of the sub-category “clones spanning different subsystems” can be generated by ranking
the number of subsystems each clone class spans. By doing this, the top-10 list of each
sub-category includes clone classes that capture the most prominent features of spanning
different subsystems thus concentrate the maintenance attention on highly hopeful cases
rather than focusing on rest potentially low priority clone instances.

40

oded)xou UO ponuruod
SUIOOUO0D SUIIYNI-SSOID
[e1UL30J ‘quouodurod
9IeM)JOS STNOLIBA SSOIOR SIoquIoW AuRU
MO M uonjejuowo[dwt oreyq | yym souor) (71
uorjeis
- 9poo I193je suold I0I
-I9 {ROIR POUO[D 9} pue)s joddrus opod Suof
WNTpoN A -1opun Any 0y oI | YaM souoiy “(9)1
JNSOI SISATRUR [ROT
wo)SAS SOUO[D [RINJONI)S | -XO] PUR 9POD 9DINOS
MO s MS 243 Jo uSisep [eeasy | [oAd] uBlse (P)T | uo A[e[os peseqg (T)
jurod juowosocxduur SouO0[D
WINIPOTA 2 uStsop enjuejod ogeoipuf | o[y o[oypy (9)T
sor} SOUO[D UOIY}
MO M -tunjioddo Sunojoejey | -ouny ooy ()T
SUI9)SAS
S[00) UOI}09)0P QUO | -qNS JUSISPIp Suru
MO 2 IMOYIM puy 0} MO | -ueds souor) ‘(e)]
panosd 42190
-wr fo “¥oan
nfouaq | u012939p figa
a3y |pogpwoinyy | -ppnb aupmifos uo govduif UOLLIPLL) $700[13.40 PN

"ssooold voureInsse Ajpenb oremijos oreme-guIuo B Ul A10801eD D SSOIPPR JO Sjjouaq [e1juajod pojetr)so
o[} pue A103803eD Yoo Jo Ajenb oremijos uo joedur [erpuojod pojeIdosse s YIm ‘Awouoxe) oy, (T o[qRL

41

oded)xou UO ponuIUOd

Jpaxyun
urewal joA 8nq (oures)
oY} UIRJUOD OS[e dUO[D | SIN(Jo sosned Jul ryep AI0}1s0dal
UYSIg A oY} JO SIdqWIBW IoYj0 O(] | -UIRJu0d seuo[’(®)y | Snq armbay (§)
SOUO[D JO ADU)SIS
-U0D UOIIN[OAD UIRJUTeU
MOT M 0} SUOPING ®IJXd dsNR)) | SoUO[o[1Je[0A (9)€
soguryd
ouoid | JUAISISHOOUT M
WNIPSA M I01I0 puR SN [RIJUIO] | SOUO) (q)¢
Ioyne aures o) Aq
asnqe SUTUO[D [RIUS) | PIONPOIIUL dI8 SUOTD
-od pue siodoeAop uIR) | 9UO JO SIdQUIDUL [[® rIRD
MO M -100 JO o[A3s yuowdoeAa(] | Yorym souo[) ‘(®)¢ | UOIsiARI oxmbay (¢)
9poo peap
MO X opoo snoundg | Ut seuo[) (qQ)g
sisATeue
[edIXa] ueYy) I9Yj0
segueyo souo[o | sonbruyooy sisATeur
MO D¢ [eI9)R[0d soxmba1 | reIoye[[o)) ‘(e)g | urergoid sexmboy(g)
UI9)SAS
urewr oY} pue 9pod
Ayred parpy Suruued
USIH rerpred | soyorolq 9SUSDI[9IRM)JOS | -S SOUO[) (91
panoid 219D
-wy - fo i
1fousaq | yovoiddp fige
fipaspy |pagpwoinyy | -jpnb aipmifos uo povduif UOLLIPLL) $700[17.4D paNbIY

42

panoid 42190
-wr - fo -[¥oan
1fouaq | yovoisddp fige
fipaspry |pagpwonyy | -jpnb aupmyfos uo govduif UOLLIYLL) | $70D[17.4D Painbay]

43

N

J

N .y,

1

A.clonel() clone #1

C.cloneil()

N N NN NS NN N BN B RN NN BN BN B
W N N N | SN SN R S NN BN S
-_—— .

B.clone2()
-—
|
[} A.clone3() C.clone3() : clone #3
1

-

-
-y,

A.clone2()

C.clone2()

1
1
1
1 clone #2
1
]

C.java

Figure 4.1: An example of a design-level structural clone. Three clone classes that all
spanning the same three Java classes, resulting in one design-level structural clone.

In the Table 4.1, we summarize how we divide clones into each subcategory. We list all
categories of clones, which is based on the software artifacts required for analysis. We have
also include the estimated benefit of resolving the underlying issues in each subcategory.
Clearly, some categories represent design flaws of a system while other categories may only
indicate features of a system. For example, as shown in Table 4.1, some items such as
“clones spanning different components” are intended to reveal design decisions rather than
uncover imminent software flaws. By studying clones under these subcategories, software
maintainers can collect the design information behind them to aid further decision making
process about software maintenance in the relevant software entities. Other items with
higher potential harmfulness — such as clones containing causes of bugs — are generally
the ones that requires higher attention to quickly resolve them.

The four categories and each subcategory under these are explained in detail below:

1. Based solely on source code and lexical analysis

This category uses only lexical analysis to generate clones of each sub-category.

(a) Clones spanning different subsystems

A clone class under this subcategory contains clone fragments that spans differ-
ent subsystems inside the subject software.

44

(b) Whole function clones

A clone class under this subcategory contains at least one clone fragment that
covers one or more function boundary in source code.

(c) Whole file clones

A clone class under this subcategory contains at least one clone fragment that
covers the entire source file.

(d) Design-level structural clones

This sub-category describes a pattern of certain combination of multiple clone
classes, where these multiple clone classes covers the same set of source files.
One example of design-level structural clone is shown in Figure 4.1. To support
the cloned code snippet about “clonel” in three files, developers are forced
to duplicate other two supporting functions “clone2()” and “clone3()” to all
files. These high-level clones may reveal dependencies between clone classes
that impose more maintenance headaches than a single clone class.

We transform the problem of automated detection of design-level structural
clones into a frequent itemset generation problem[54]. In data mining, frequent
itemset generation address the challenge of association among objects. For in-
stance, in online shopping, retailers use the frequent itemset generation to detect
“buy-together” relationships in transactions so that recommendations can be
made for customers that buy one of the items in a “buy-together” relationship.
Likewise, in cloning, a clone class is a “transaction” which contains filenames
associated with a clone member and if a fixed pattern of filenames appears mul-
tiple times in clone classes, the frequent itemset generator reports all relevant
clone classes as a design-level structural clone.

(e) Clones with long code snippets

A clone class under this subcategory contains clone fragments with code snippets
longer than a threshold (usually in LOC or SLOC).

(f) Clones with many members

A clone class under this subcategory contains more than k clone fragments, for
some user-specified value of k; we used the value k=3 in our study.

(g) Clones with third party code
A clone class under this category spans the subject system and third party code.

2. Requires program analysis techniques other than lexical analysis

45

(a) Collateral clones
Similar with design-level structural clones, collateral clones describes a com-
bination of clones where a clone fragment of clone class A invokes a function
defined in a clone fragment of clone class B. Detecting collateral clones require
call graph analysis.

(b) Clones in dead code

A clone class under this category contains dead code in at least one of its clone
fragment. Copying-and-pasting may result in certain control path inaccessible
in the new area.

3. Requires revision data

(a) Clones of which all members of a clone class are introduced by the
same author

(b) Clones with inconsistent changes
A clone class under this category contains at least two clone fragments which
had inconsistent changes. Clones with inconsistent changes often implies clone
management risks.

(c) Volatile clones

Volatile clones refer to clone code chunks that has been changed for an excessive
amount of times

4. Require bug repository data
Clones containing causes of bugs

A clone class under this category contain causes of bugs can be found in at least one
snapshots of the subject software system.

The overall process of utilizing cloning analysis for software QA can be decomposed into
three phases: 1. select the single subcategory and crosscheck the clone detection report
with the required repository; 2. rank the result and select the top 10 instances 3. study
the clones in the “top-10 list” for the QA process.

46

public Object invoke (Object proxy, Method method, Object[] args) throws
Throwable {

// Invocation on ConnectionProxy interface coming in...

if (method.getName () .equals ("equals")) {
// Only considered as equal when proxies are identical.
return (proxy == args[0] ? Boolean.TRUE : Boolean.FALSE) ;
}
else if (method.getName ().equals ("hashCode")) {
// Use hashCode of Connection proxy.

return new Integer (System.identityHashCode (proxy)) ;

Figure 4.2: An example of a cloned source code snippet which spans multiple software
components.

4.5 Case Study

4.5.1 Experiment design

After discussing the details of the taxonomy of clones to aid clone management, we conduct
an experiment to evaluate it. We are still in the preliminary phase of this study, so that
the experiment represents a proof-of-concept, rather than a complete evaluation.

There are a few external limitations in this experiment. The most important one is
the lack of measurement of the effectiveness of our approach. As discussed in Section 4.2,
few metrics are available to evaluate our tool. Therefore, we can only list the number of
offenders of each subcategory found by our framework, and discuss lessons we have learnt
by studying instances of offenders.

Due to this limitation, the goal of this study is to explore the feasibility of our approach;
instead of proving whether our approach is superior to other QA methods.

The Spring Framework is the subject system of this experiment. In essence, the Spring
Framework provides package solution for enterprise application development. It employs
many features to allow fast changes and provide easy implementation of dependency injec-
tion. The Spring Framework contains multiple modules, among which are server schedul-
ing, code instrumentation, web services and interfaces to mainstream database systems.

We collected 13 snapshots of the Spring Framework (from version 1.0 to 2.5.6) and
used iClones to detect clones and its evolution information of the 13 snapshots. Then
we follow the procedures of our framework to, to perform an exploratory study of the

47

effectiveness of our proposed framework. Despite many desirable features of the Spring
Framework as a subject system, this open source system still lacks a few necessary resources
for analysis of several subcategories under our framework: the bug repository of Spring is
poorly structured thus cannot be crosschecked with the clone detection results. The source
distribution of the Spring Framework also does not contain code for any of the third-party
libraries that it uses, so we have ignored these for now.Therefore, we do not study clones
under this subcategory that requires bug repository or source code from the third party.

The full details of our study on the Spring Framework can be found in the Appendices.
In this chapter, we discuss instances that are typical under some categories to demonstrate
the likely kind of results that our approaches would yield.

In this subsection, we describe the result of our findings of partially applying the pro-
posed framework on the Spring Enterprise System. In this chapter, we only discuss in-
stances under each subcategory, and the detailed location of our findings is described in
Appendix B. Result of each category is shown in a simple template:

Subcategory

Name of the subcategory. Describes the name of the subcategory and its numbering
in Table 4.1.

Process of extraction. Describes the procedure of finding clones under each subcat-
egory.

QA-related findings. Describes one instance of the result.

In the framework, we have examined the result of subcategory 1(a),1(d),1(e), and 1(f).

4.5.2 Experiment result

Clones spanning different subsystem (Subcategory 1(a))
Process of extraction:

We chose the last snapshot (version 2.5.6) that was collected from the repository. To
find out such clones, we compare the location of every clone fragment in one clone class, if
there are more than two directories, we categorize it into this class.

48

QA-related findings:

In the last version, there are in total 65 such clone class instances in this category. To
assist discussion, we show a typical clone class under from category; the source code of
this clone class is shown in Figure 4.2, and the location of all clone fragments of this clone
class is listed in Table 4.2.

This clone class is a Type I clone (exact match) that span 15 files in 4 components. In
the source code shown in Figure 4.2, the duplicated area concerns delegating commands by
implementing the same interface by matching the name of the object (“method”) against
two special instances (“equals” and “hashcode”). What follows the cloned code is the
source code that implements functions that are specific to each file.

It has been long believed that clones may indicate high-level similarity or even cross-
cutting concerns, especially when the clone class spans multiple software components[14].
By studying this code, new programmers can have immediate understanding of the purpose
of the interface and two typical cases (“equals” and “hashcode”) that are used spanning
the Spring Framework. We can also identify patterns of implementing of the interface and
potentially crosscutting concerns for better design.

Design level structural (Subcategory 1(d))
Process of extraction:

As discussed above, design-level structural clones are identified by applying the frequent
item-set mining technique, that is, finding the clone classes that all contain clones from
the same set of source files.

QA-related findings:

Let us look an example of 4 clone classes (see Figure 4.4), involving only two files:
RmiClientInterceptor. java and JndiClinetInterceptor.java. Both files implement
the same interface “MethodInterceptor”, which describes an aspect-oriented program-
ming (AOP) style method, invoking all necessary methods to support remote connection,
with stub of either RMI or JNDI. Both files provide the concrete implementation of the
method defined in the interface “MethodInterceptor”, Object doInvoke(MethodInvocation
invocation, Remote stub).

A method named “prepare()” initializes the stub so it is ready to process and ensure
the correct startup necessary.

All four methods in this example share design between two files, and the method
invoke () calls the method getStub (), which makes the duplication of the method getStub ()
a must if developers are to reuse the method invoke () by copying & pasting. As described

49

in the table, the so-called “structural clones” may be harder to maintain than a simple
clone.

Clones with long code snippet (Subcategory 1(e))
Process of extraction:

We identify the top-10 clone classes under this category by ranking all clone classes
according to the Source Lines of Code (SLOC) of the clone fragments of each clone class.

QA-related findings:

Figure 4.3 shows a member of a clone class whose members are relatively long. The
location of the code is listed in Table 4.3. The code snippet of each member of the clone class
is 42 LOC long. Within the code snippet, there are seven control flow statements, in which
three control flow statements are nested with each other. At first glance, it is worrisome
that such a complex piece of code has been copied multiple times: Did the developers
fully understand all of the logic? Were there any non-obvious contextual constraints in
the original? Answering these questions would require project-specific knowledge that is
usually available in a QA process.

Clones with many members (Subcategory 1(f))
Process of extraction:

To identify clones under this category, we select clone classes that contains more than
k clone fragments (k=3 in this study).

QA-related findings:

The clone fragment shown in Figure 4.2 is an example under this category. This clone
class contains 15 clone fragments. If changes are required within the code, identifying all
copies of the code scattering over the system escalates software maintenance effort, not to
mention examining and prescribing an appropriate solution for each member of this clone
class.

4.6 Summary

In this chapter, we present an approach of using software clone detection results for soft-
ware quality assurance. Raw clone detection report — which is processed to highlight

20

Location of clone fragment

Start Line : End Line

src/org/springframework /jdbc/datasource/Transac- 177:188
tionAwareDataSourceProxy.java

src/org/springframework /orm/jpa/Abstract Entity- 418:427
ManagerFactoryBean.java

src/org/springframework /orm/jdo/Transaction- 146:157
AwarePersistenceManagerFactoryProxy.java

src/org/springframework /orm/jdo/Transaction- 192:203
AwarePersistenceManagerFactoryProxy.java

src/org/springframework /jca/cci/connection/ Transaction- 129:140
AwareConnectionFactoryProxy.java

src/org/springframework /jdbc/datasource/Lazy- 275:289
ConnectionDataSourceProxy.java

src/org/springframework /jca/cci/connection/Single- 1275:1286
ConnectionFactory.java

src/org/springframework /orm /toplink /Abstract- 131:142
SessionFactory.java

src/org/springframework /orm/toplink / Abstract- 179:190
SessionFactory.java

src/org/springframework /jdbc/datasource/Single- 314:325
ConnectionDataSource.java

src/org/springframework /orm/jpa/JpaTemplate.java 386:397
src/org/springframework/orm/jdo/JdoTemplate.java 588:599
src/org/springframework /jms/connection/Single- 473:482
ConnectionFactory.java

src/org/springframework /jms/connection/Transaction- 293:304

AwareConnectionFactoryProxy.java

2.5.6.

ol

Table 4.2: One clone class spanning multiple components in the Spring Framework version

the problem each clone reflects — often shows poor sensitivity as an indicator for many
problems in software quality, yet cloning is associated with a specific sets of problems for
software. In this study, we propose a two-pronged approach: first, we narrowing down the
candidate set for each software quality problem by adopting a taxonomy-based framework
for software QA; second, we combining cloning detection results with other related software
artifacts to raise the sensitivity of clones to specific quality problems.

Location of clone fragment Start Line : End Line

src/org/springframework /beans/factory/ 188 : 230
support/ConstructorResolver.java
src/org/springframework /beans /factory / 366 : 408

support/ConstructorResolver.java

Table 4.3: A clone class with long code snippets in the Spring Framework

Our framework proposes a taxonomy-based approach to investigate how cloning affects
software quality. Extra software repositories, such as software design documents, source
code repositories, and bug tracking system, are integrated with clone detection results
to pinpointing the software problem reflected by each clone. For every category in the
taxonomy, we also list the possible solution to it, and the estimated benefit if we solve it.

To perform a preliminary investigation into the likely effectiveness of our framework
as a software QA method, we use the Spring Enterprise Framework and its associated
change history as the subject system. We first identify clones under each subcategory and
then list the “top-10 offenders” of each sub-category. Several software quality problems,
including poor code styles, unnecessary dependency have been reported and discussed in
this chapter. Instances under many subcategories have been discussed in this chapter.
All these instances provide design knowledge (mostly domain similarity) in the Spring
Framework and some of them directly reveal quality problems in the system. With the
knowledge provided from our framework, a QA team can integrate out proposed framework
into existing QA techniques and further utilize the domain knowledge of their underlying
software system to improve the QA process.

o2

if (resolvedValues != null) {
// Try to resolve arguments for current constructor.
try f
args = createArgumentArray (
beanName, mbd, resolvedValues, bw, paramTypes, candidate,

autowiring); }
catch (UnsatisfiedDependencyException ex) {
if (this.beanFactory.logger.isTraceEnabled()) {
this.beanFactory.logger.trace (
"Ignoring constructor [" + candidate + "] of bean '" +
beanName + "': " + ex);
}
if (i == candidates.length - 1 && constructorToUse == null) {
if (causes != null) {
for (Iterator it = causes.iterator(); it.hasNext();) {
this.beanFactory.onSuppressedException ((Exception)
it.next()):
}
}
throw ex;
}
else {
// Swallow and try next constructor.
if (causes == null) {
causes = new LinkedList();
}
causes.add(ex) ;
continue;
}
}
}
else {
// Explicit arguments given -> arguments length must match exactly.
if (paramTypes.length != explicitArgs.length) {
continue;

}

args = new ArgumentsHolder (explicitArgs);

int typeDiffWeight = args.getTypeDifferenceWeight (paramTypes) ;
// Choose this constructor if it represents the closest match.

Figure 4.3: An example of a cloned source code snippet which is long in SLOC.

53

protected Object doInvoke (MethodInvocation invocation, Remote stub) throws
Throwable {
if (stub instanceof RmiInvocationHandler) ({
// RMI invoker
try {
return doInvoke (invocation, (RmiInvocationHandler) stub);
}
catch (RemoteException ex) {
throw RmiClientInterceptorUtils.convertRmiAccessException (
invocation.getMethod (), ex, isConnectFailure (ex), getServiceUrl());
}
catch (InvocationTargetException ex) ({
Throwable exToThrow = ex.getTargetException();
RemoteInvocationUtils.fillInClientStackTraceIfPossible (exToThrow) ;
throw exToThrow;
}

catch (Throwable ex) {

throw new RemotelInvocationFailureException ("Invocation of method [" +
invocation.getMethod () +
"] failed in RMI service [" + getServiceUrl() + "1", ex);
}
}
else {
// traditional RMI stub
try {
return RmiClientInterceptorUtils.invokeRemoteMethod (invocation,
stub) ;
}
catch (InvocationTargetException ex) {
Throwable targetEx = ex.getTargetException();
if (targetEx instanceof RemoteException) {
RemoteException rex = (RemoteException) targetEx;
throw RmiClientInterceptorUtils.convertRmiAccessException (
invocation.getMethod(), rex, isConnectFailure (rex),
getServiceUrl());
}
else {

throw targetEx;

Figure 4.4: An example of a cloned source code snippet which is involved in a design-level
structural clone.

54

Chapter 5

Conclusions and Future Work

In this thesis, we have presented two studies on cloning to advance the understanding and
management of software clones.

Our first study is a longitudinal study of clones in the SCSI driver system of the Linux
kernel. After deciding the architecture layer of each source file, we have studied four
aspects of clones of the SCSI driver system: the clone ratio of each architecture layer, the
evolution of clones, the effectiveness of cloning as a predictor of high-level similarity, and
the driving force of clone evolution of this subject system. We have analyzed the absolute
size and the proportion of clones over time, found that the clone coverage rate of the
concrete driver layer is significantly higher than that of the interface layers, suggesting the
use of cloning as a development strategy to reuse design among concrete SCSI drivers. We
have also successfully established a model that used the presence of cloning relationship
between drivers to predict the functional similarity between them. The cloning-based model
had strong predictive power in guessing the underlying hardware bus architecture of the
card; the presence of cloning is a superior predictor, compared with a random selection or
sharing the same manufacturer. This suggests that cloning may sometimes be an indicator
of features similarity within a problem domain. This discovery opens up broader questions
of how to use the presence of cloning to predict and understand domain similarity in many
dimensions within software systems. By studying clone evolution in the analytical level
of single driver, we conclude that inserting and deprecating low-level drivers, rather than
other ways of refactoring, is the major cause of clone evolution.

The second study of this thesis presents a clone-based framework for software quality
assurance. Duplication of code can lead to a specific set of problems in software quality
yet the sensitivity of clones in diagnosing most of the quality problems is prohibitively

95

low, according to study results[50] and our experience. To solve this problem, we first
establish taxonomy of clones. The taxonomy is established based upon the additional
software artifact that is combined in the analysis; they are: syntactical analysis result-
s, bug repositories, version control systems, and software documentation. Each category
may have several subcategories which maps to one specific type of software quality issue,
allowing users to tailor the clone-based QA framework. Second, by crosschecking clone
detection reports with other software artifacts, our proposed framework filters out “unin-
teresting” clones for one category so that the sensitivity of clones under every category is
raised. Third, we use the “top-10 list” technique to make a short list of hopeful candi-
dates of problematic clones. Each category reflects software problems with different degree
of severity, from the most severe (clones that are likely bugs) to benign ones(clones that
only suggest similar design). We performed a preliminary study of our framework on the
Spring Enterprise Framework. Our study result is encouraging: each sub-category contains
expected software quality issues.

5.1 Future Work

5.1.1 Application of Cloning for software comprehension

Our study in Section 3.5 shows that among Linux SCSI drivers, the presence of cloning
between two drivers is a strong indicator of compatible bus type architectures in the re-
spective SCSI cards. We feel that this opens up several research questions about the use
of cloning as an indicator of similarity of aspects of the underlying problem domain, and
of the development processes employed. Does cloning indicate that there is an emergent
cross-cutting concern that is highly similar in its implementation across products? Are
some “aspects” of the problem domain — such as hardware or user-visible features —
more likely to involve cloning than others? If so, why? Are these aspects maintained in
parallel over time, or are they prone to inconsistent maintenance? Further study across
other systems and problem domains can help to shed light on these questions.

Our taxonomy presented in Chapter 4 is a work in progress. Our ultimate goal is to
provide a means of using cloning analysis results as part of an overall QA process. However,
our evaluation of the taxonomy and its use is partial and preliminary: only some of the
criteria have been implemented, and our study on the Spring framework as a target system
represents a proof-of-concept rather than a detailed empirical finding. As future work, we
intend to fully implement the taxonomy, and to study the results of applying it on several

o6

target systems. In particular, we seek to understand which taxonomy elements provide the
best diagnostic value in evaluating software quality and development risk.

57

APPENDIX A

Source Files Categorization within
The Three-Level Architecture of the
SCSI Subsystem

Appendix A demonstrate the full result of categorization of the source files according to its
architectural level in the SCSI subsystem (version 2.6.32.15). The categorization is based
upon associated artifacts of the source files, including comments, documentation, static
analysis results, configuration setups, and build recipes.

o8

oded)xou UO ponuIuOd

U Atd—9897180s
0'SJSASTIS0S
[TRUIONUT SBS ISDS
0" YUI[JOU I8DS
O RTP (I TISOS
9" 1011971808
O UIRIISOS
D Yse)Sses /sesq
o Ayd-ses /sesqI|
o dws ysoyses /sesq
- dump-ses/sesq
D eyRTSeS /sesqI
- dog1sost
D°DRPI P ISOS /IO PURI[-9IIADD
D B[R P ISOS / ID[PURTY 9IIADD

2°qI[989 1808
O T10SAST1SOS
0001d7 1808
D" 9[NPOU SIS
RESUIESE
O OJUIAOPTISOS
I RERT
D"1S0Y 18057 SBS /SeSq
[[RUIOJUT SeS /SesqI]
o Iopuedxo-ses /sesqI]
o-dump-ses/sesq
2 doy71s0sIq1
o-dog7 18081
o ms~dy YpTIS0s/ Io[pURY-0dIAOD

D P ISOS / I[pURY 9IADD

D'JT 93971808
D' UBISTISOS
U Arxd-1sos
[SUI330[1808
913901 1898
0°8NqoOPT18OS
21898
> 110d-ses /sesqI]
D" jIur ses /sesq
D" JULADSES /SesqI]
" I9A0DSIP~Ses /sesqT
2 ISosIqT]
9'81807
O DU P ISDS / IO PURY-0dIADD
J'S)URISUOD

[0A9T PIN
IS 298 IS
018 0°8s U ps
o'ps [SS0 99850

[oAorT oddn

waysfisqns 150G Yy Jo 193] 24n3921Yy240 3y} 03 bupL09D $9)1f 9241008 [0 U0YDZLL06ID)) Y],

WYSASANS [SDS) JO [OAS] 9INPT 91} 0F SUIPIOIIR SA[If 92INOS JO UOIYRZII0ZYed Y], (T 9[qR],

29

oded)xou UO ponuIuOd

9°001d"XXX) 0TR /P[O~XXX) TR
[N TS0S /XXX 0T
[qrore /xxx/ore
D" [OUIAS UISROTR /WISBOTR /XXX) o1
D" wIseIIR /WISROIR /XXX) 0TR
2 10d XXX OTR /XXX) OTR
D WISO™XXX) DTR /XXX) o1
[9X0g6 XXX/ 0TR /XXX OTR
9001d XX /0TR /XXX) OTR
0" 10d WSO XX /OTR /XXX) Ol
[OUI[UT XX /0T /XXX) OTe
D WS0™()1,),),0TR /XXX) o1
2OvLTRYR
Uxgareye
oes/preree
d°yIRU/preioee
o dnsuron /preroee

XXX/ 0T /P[O7XXX) 0T®
[onenb /xxxyore
D qI[ore /XXX oTe
[JRULIOJSUT WISBOTR /TSLOTR /XXX) o1
0°001d"XXX) 01R /XXX OTR
2 Tod WSO XXX/ 01R /XXX OTR
[9UI[UT XXX/ 0TR /XXX Ol
D' 9XD¢ 6 XXX),0TR /XXX) OTR
[od XX6/01R /XXX OTR
[WSO"XX(,0TR /XXX) OTR
2"9I007XX(), 0TR /XXX) OTR
2011101 /XXX) oTR
qepareye
I’ XgGTeyR
O°X1/preioee
D")Iul]/ preoee
D" IUTIITOD / Preloee

[93RSSoUI 808 /XXX) 0T
[uren /Xxx) ote
[[OQUIAS UISBOTR /WISBOTR /XXX) OTR
[wseole /wseore /Xxx) ore
[10d XXX 0TR /XXX) 0T
[WSO~ XXX TR /XXX OTR
D"9I007XXX),0R /XXX OTR
['XXX/),0TR /XXX 0TR
o 1od XX)01 /XXX OTR
D" UWISO™XX(0TR /XXX 0T
[XX(0TR /XXX) TR
qovLreqe
2CyaTeyR
o sAsueape
031/ preroee
o-dnsodp/preroee
" [110WWOD / preroee

['preioee/preiee D eqUoRR /preIoeeR 2'1000%®
q'000¢® 2°000¢® q'160c®
2'160¢® qagnoore 2'Mgnoore

q00L2€S 2°00L9€G [XXXX-ME
O XXXX-ME ' XXXG-ME O XXXG-ME
y'suorpdogs 9" IOPUIA~IS 93001718
SESEIS O JIpps O RIS JTRMTISOS

[sjopadA)1s0s
o1dsTjr0dsueI) 1sos
['TeuIojur of j1odsuer) 1sos

[reurojur dis-jrodsuri) 1sos
o ses r0dsueI)Isos
0°0J 110dsSuRI}ISOS

o-das qr0dsueI) 1808
O°180ST J10dsuRI} 189S
U tde jrodsueiy1sos

[9A9TT ToMOT]

wayslisqns 1§0HS Yy Jo 1909) 94N32991Y04D Y} 03 burpL0dD $2)1f 2041008 [0 U01DZLL0HID)) Y],

oged snoraord wWoIy ponuruod

60

oded)xou UO ponuruOd

o dxoyejq/ejq
0*q10d[s0)eJ(| /R]q
[atd-udoyeyq /eyq
2"91007®]q /RJ(q
[atdpeqreoeyq /eyq
080" peyq/ejq
[yeduwmoo wr peyq /eyq
o"Sumypeyq /eyq
o"Iyyepejq/ejq
D B aq /1808170 (

[180ST9q /18081 q
D°'SpuIdTaq /180SIZa(
omn(Ledye
2"08CGYDON Leye
>-onenb /uLre
[ononbgsur /urre
2'gTgse]/wre
O T euRWND /ULIR
D" 1SOSTLIODR /TLIR
[IswIe /Isuore
[bos xxpgore /xxpEore
'SP XXGOTR /XXF/GOTR
' Jop~SoI XX Gore /XX 601e
D")TUT XXFGOTR /XX GOTR
[dump-xxygore /xxpEore
XX GOTR /XXFEOTR
[958eSSOUI T8S / P[O™XXX /0T

O Jrrsoyeyq /ey
0807 eJq /eYq
o wrdoyeyq /eyq
9900 RJ(/RIq
[powa1y”peyq/ejq
oydrpeyq/ejq
W pejq/ejq
[AIpTpeIq /ey
opeyq/eyq
[UTRTIaq /TS0SIZa(|
D'180ST79q /189S1ga |
94 /18081gaq
1808 LIRYR
1808 /uLIe
9 0aYemod /urre
oonenbgsur /urre
X009 /uLTR
D" ISOsoXIR /ULTR
D"RqU ISTIDIR / ISTUDIR
0" JUI) XX EOTR [XXFEOTR
o'bos xxpEo1R /XXFEOTR
9°(IS XXJEOTR /XX GOTR
[B2 XXJ(OTR /XXFGOTR
[IM XXF60TR /XXFEOTR
o dump-xxpgore /XxpEore
2" PIOTXXX/OTR
9bas~xxx /018 /PIOTXXX) OTR

9"110d-so5e)q /e]q
o y10doy ey /R)q
>°8nqepsoejq /eyq
[SOIDRUI WIOT (DRI /RJq
- peyq/eyq
oIyurpejyq /ejq
o peyq/ejq
[1yepeyq /ey
[Judur-aq /189S1gaq
D ureur 9 /1s9SIZa(
['SPUIdDq /1508179q
qmnpLgdie
9°IS0S LIRYR
[onenb /urre
9"yRO /ULIR
9] gsey/ure
D" euRWND /ULIR
[1SOSTLIOOR /TLIR
D" I3)e ISWOIR / ISUDIR
D" YSRY XX FOTR /XXFGOTR
['SPS™XXJEOTR /XX EOTR
[SBSTXXJGOTR /XX GOTe
D"8oI XXFEOTR /XXOTR
O I XX GOTR /XX EoTR
D" ADPTXXGOTR /XX EOTR
[Ioouanboes /pro-xxx) ore
[801 XXX 0Te /P[O"XXX /0T

[0A9TT I0MOT]

wapslisqns 1G0HS Y} Jo 1909) 94N32991Y04D Y} 03 buLpL0dD §2)1f 224N08 JO U01DZLL0HID)) Y],

o3ed snorserd WOy ponuruod

61

oded jxou UO ponuruod

rar0dd yq,/yq /epnput/ejq
qra0drgq,/yq/epuout/ejq
[dxogq/yq /epnput/ejq
[8o1307q /yq /opnpout/eyq
100q°4q,/gq/opnpout/ejq
[oAs eI /opnpout/ejq
[ejq/opnpout/exq
[110d[uee-Ry(/Uuse /opnoul /ejq
[110dyje-uee ej(/usr /opnoul /ejq
[uor-e](q /Uoe /opniout /ejq
jusoy/eyq
U 110d-s03/e]q
[dxoysoj/e1q
oLIqRy$o] /ey
o uydog /ejq
O prmoy/exq
amdpnUeyq/epq
[atrd-pownay-ejq /ejq
[atxd-3d3sejq /ejq
o 110drejq /ejq
o yr0deyq /eyq
D-a[upour-eyq /ejq
oompour 301 ejq /ejq
o uoreyq /ejq
D°0Jo01Rq /R]q
U aud-nyureyq /eyq
0"~ M ejq/eJq

q410d-yq/yq /epnput/ejq
9001 §q /yq /opnpout /ejq
utdoygq /yq /epnpout /eyq
9907 /yq /opurout /ejq
q'gq/gq/epnpout/ejq
ugdoyeyq /opnput/ejq
[1odr uee-eyq /use /opnpout /ejq
[WUy uoe-el(/Use /opnout /ejq
[}Ipne-use-e]q /uoe /opnioul/eyq
DTwpy/eyq
[pouII) "0y /eI
U sur sy /exq
qunydoy sog /ejq
e soj /ey
o wrdog /ejq
D-oLIqe] /eIq
o ueq/exq
0" Toury eyq /eyq
0°8d3s eyq /eyq
atadeyq/epq
[ourso-ejq/ejq
aud-sdreyq /fejq
o"3o[eyq/eyq
o'b ojooreyq /ejq
00T e/
o"Tyur-eyq /eyq
U Aud-Suimyeyq /eyq

usdryq/yq/epuput/eyq
201 §q,/gq/epnput/ejq
[oLqey Y] /g /opnput/eyq
891097y /yq /opnpout/ejq
[IOy eJq /opuiout /ey
y utdoyeyq /epnout /ejq
[110d-uee ejq /use /epnpoul/ejq
[00T uoe-Rj(/Usr /opnoul /ejq
[103depe-uoe-ejq /usr /opnoul /ejq
[110da~soy/e)q
[y10dI o3 /ey
[0d[sog /eyq
[wrdoysog/eyq
'sa3/exq
[pImqoy,/exq
> qey/e)q
OTIS) RYq /eyq
oS eyq /eyq
y atrd-jrodreq /ejq
U atrd-q10d-ejq /ejq
U atd-senpourejq /ejq
orsdyeyq/ejq
DIy Ryq /eyq
{2g001-eq/ejq
od0re)q /RYq
090" M eJq /exq
- dxoyeyq /eyq

[9ADT I0MOT]

wapslisqns [G0HS Y3 Jo 1909) 94N32931Y04D Y} 03 bULpL0dD §2)1f 2041008 [0 U01DZLL0HID)) Y],

o3ed snorserd woay ponuruod

62

aded)xou UO ponurUOd

o-3o1d /ejq
osui/ejq
o dooy/ejq
U mjod /[ooojord /epnpout /ejq
y-doj/[000301d /opnyout /eyq
U AIpm-Sorejq/3or/epnput/eyq
'soJ- 801 ejq /301 /epnout/ejq
[0d[sy ejq /sof /opnpout /exq
[OLIqRy s} ejq /0] /opnyoul /ejq
[110daqpyrejq /qag/opnput/eyq
od-qoyejq/qoy/epnput/ejq
r110daTspopejq /spop /epnpout/ejq
U sadAy sjop-ejq /spop/opnpout/eyq
snyeys sjopTelq /spop /opnput/ejq
[rodd-spopejq /spop /opnpout /ejq
 wd-spoprejq /sjop /opupout /ejq
rarodspopeyq/spop /opnpout/ejq
y-ojdrsjepejq /sjep /epnpout/eyq
[Teo) W sfopTeyq /sjop /opnpout /eyq
[0diy97spopejq/sjop /opniout /ejq
100q SpopTe)q /sjop/opniout/ejq
U uoRTsJopeIq /sjop /opnpout /eyq
'2137e)q /80 /opuput/eyq
[3ord-ejq/so/epniout /ejq
['3ngepejq/so/epnpout/ejq
U sjop-paodyge /syeisd /eud /opnyout /ejq
[POWDI) RUDR](/RUD /opn[oul /ejq

osu/ejq
y-atrd-p10dy/eyq
'sadA) /T000301d /opniour /eyq
[Ty /1o00301d /opupout /ejq
[05/ 1000301d /opnour /ejq
[xnui[-3o[ejq /307 /opniout /ejq
[0da~soy-eq /sof /opniout /eyq
{[TPy sy ejq| /soj fopuiout/eyq
e oy ejq /soy/opuiout /fejq
'JA"qoy ey /3 /opnpout/eyq
U wdoy-qayeyq /qog /opniout/eyq
[JATSJopTRIq/sjop /opniout/ejq
[I0Suas) sjop-ejq /sjop /epnpout /ejq
[10dasjopTeyq /spop /opnput/ejq
[od-spop-eyq /sjop /opupout/ejq
qod sjpTeyq/spop /epnput/ejq
' P1 SJOPeJq/sjop /opnut/eq
['0Jo0T sJopejq /sjop /epniout /ejq
[UOWIOD W Sjop-ejq /sjop /opn[oul /ejq
[OALIPTSJOP-eIq /sjop /opnpout/eyq
[IneTspopeyq /sjop /opuiout /eyq
[1oydepe-spop-eyq /sjop /opuiout/ejq
s eyq /so /epnput/eyq
[jred-eyq/so/epnput/eiq
[wunsyooyo-e)q /so /opniout /ejq
y-110d-eyq /110d /eud /opnpout /eyq
qJn yq/gq/epnpaut/eyq

> ugu/eyq
o 1de-y10d]/e)q
['180s /T000301d /epnpout /ejq
y-ds oy /[000901d /opnyout /ejq
[30/1000%301d /opnyout /ejq
U TRy S0 ejq/ 3o /opnpout /eyq
y-110drsojejq /soy/epnyout /ejq
y wtdoj-sojejq /soj /epniout /ejq
{['sojejq|/so /opniout /eyq
[0da oy ejq /oy /opnpout/ejq
U q2y7egq/qoy/opnpout /eyq
([UOISIoA~SJopR]q /sJop /opnoul /ejq
U uyspopTejq/sjop /opniout /ejq
{'sob spopejq /spop /opnpout/ejq
qwod-spopejq /spop /opnput /ejq
[Sjurspopejq /sjop /opnpout /ejq
[Wy sfopejq /sjop /opnpout /fejq
00T sJop ey /sjop /epnyoul /ejq
[udoy sjopTejq/sjop /opnpout/ejq
[[9907sjop~eJq /spop /opnpout/ejq
U YIpueTsjopejq /spop /opnpout /ejq
omTeYq /89 /opuput/eyq
U b eyq/so/epnpour/ejq
[3o[ejq/s0/epnyout /ejq
[sjop-10dAyd /syeysd /eun /opniout /ejq
[9007 (| /090 /eud /opnpour /ejq
r0daryq/yq/epnpout/ejq

[9A9TT TOoMOT]

wayshisqns 190G Yy Jo 1909] 94N39231404D Y} 03 burpL0dn $971f 204008 [0 U01DZIL0HID)) Y],

oded snorsord wogy ponuruod

63

oded)xou UO ponuruOd

>*bm-orua /oruy
U broma /orug
[OTU-DIUA /DTy
[PUIDASD-OTUA /D1Ujf
yAdoo~bo orua /oty
["osop-joua-bi/oruy
D"seI oTuy /otTuy
[ooy /oty
oty /org
[osepjeue-bo /oruy
9'sour pj
2°900J([1] /000]
1sos~dse
o-ord ejea
qIp
yndp
qspoppso/1dp
ogrndp/idp
2 XGEEIP
' PRORO T1EqSXD /164 5XD
DJIUr 1Eq3XD /16 FXD
'1648X0 /1648XD
o180 sng
2 ISOST IgXU(| /TgXuq
[TgXuq /1gxuq
9110dA /eIq
°s1937110d1 /]

['S1RIS™OIUA /OTU]
o-broma /otuy
[IUT O1uA /oTuy
[AOp OTUA /O1Uj
[bo-otua /oruy
D°18087O1UY /01U
o urewr-oruy /oruy
9°soJ oty /oty
y-ordog /oty
y-osep-bo /oty
[urewop;y
200] /000]
0'18057dso
[OLIOUOS)8
2°0p
yojursAs/qdp
y-ssydp/adp
IprerEX™p
[npd1eqsxo /16 8xo
D" pROJJO-1eq3XD /16q8XD
[dpp1eqaxo /16q3x0
s8ip)
201307 Sng
0" JIUr IgXu(| /15X
[ISYTSOSTXX) G /TgXuq
o1dea/eyq
o1deq10di/ejq

['1808701UA /01Uj
['90I10SeI DIUA /OTU]
D" IJUT DIUA /OTUy
D" ADPOIUA /OTUJ
5-bo~otmua /oruy
['sorotuy /oty
0"IsT oty /oruy
o°sIyye-oruy /orug
[0sep oxe~bo /otuy
Qrjurodyse[q
> urewop;
9900 /000
yordejes
2"e)ed
o'ogrdp
qnpso/ydp
q0oriydp/adp
U'XG6E°P
o npd-1eq8xo/1¢q38xo
D" 180ST 1e(q3X0 /16q8XD
o dppT1eq38x0 /18q38x0
9°1808()()()99TIAQ
o°sJsAsTIgxuq /1gXuq
O A IgXUq /1gXUq
[SIURISTOD ISIST XX .G /TgXU(|
o uds /eyq

o110d1/e]q

[0A9TT I0MOT]

wapslisqns 1G0HS Y} Jo 1909) 94N32991Y04D Y} 03 buLpL0dD §2)1f 224N08 JO U01DZLL0HID)) Y],

o3ed snorserd WOy ponuruod

64

oded)xou UO ponuruOd

' XOqUI~preledou / preregour
['sJop~xoqui/ preregaouw
o dse orwr
y-yroda-oyd/oyd]
s o3dy/o5dr
[1s0s03d /o5d]
quopdy/oyd
- 8swgorojdy/ojd]
- aogdy/opdy
rostpoydy/oydy
5-30705d[/o3d]
0°8sqojdy/o3d]

o dasqrp
orouIRIyO] /oyq
090819793 /25qT[
o-dsozzel
rady
J"oTjIut
it
°1s0sA~RdI /1808 AT
[ISOSAWIQT /TSOSATIT
D°DJAWIQL/TSOSATIQT
odondy
2'08EGYDON 3
yooxd yyps
qIps
yAdoobm-otua /otuy

D XOquI~preredaur/preregow
['1SOS ORW
RO SRLL
>-y10da~03d] /o3d]
q1sTo3dy/o3d]
0'180s70)d] \ o3d]

o et oydy /o3d]
o-qrur-oydy/o5dy
o-ostpequoyd/oyd]
[sysnqop oydy/o3dy
[uy1070)d] \ o3dp
o-1yye-oydy/o5dy
o-y10dI 0 /03q1]
o-doy oy /o5qIT
0"28TP~0 /0§qI]
sdr
o adi
1'000¢ut
d It
D" ISOSA™SOLIOST /ISOSATIT
D" TSOSATI([T /ISOSATI(T
BREAYIIIe]
oo (REGYIN S
' 11dAS
oooxd)p3
2IpP3

>*Adoo~bm-otua /otuy

[[}001 preregow /preresour
D'ISOS™ORW
D PEogGoR
[uotstoa~oyd[/o3d]
o 1ps~oydy/23d
o ostpyroduroydy /o3dy
o xoquu-oydy /o3d]
U pangogdy/opd]
o sfe-oyd] /o3d]

o sysnqep-oydy/oydy
U yedwoo-oydy /o3d]
q-o3dy/o3dy
orga0d[2 /o3q
DX /o)1
2°00.L18%]
o-sdr
yronrut
2°000gut
- d1sora /1sosamuqr
D"18)SATIT/ISOSATUT
[2AtqI /Ts0s AT
-dondy
T'086GUON 3
2 11dAS
11201 IP3
[0sep~joue-bm /oruy
[-ba-omua /oruy

[0A9TT I0MOT]

wapslisqns 1G0HS Y} Jo 1909) 94N32991Y04D Y} 03 buLpL0dD §2)1f 224N08 JO U01DZLL0HID)) Y],

o3ed snorserd WOy ponuruod

65

oded)xou UO ponuruOd

osype[b /xxxgerb
U 8qpe[b/xxxgeb
q'08¢TeIb
yedd
o prerowd
o-odessour dsu /erouod
' so-dsu /eround
9"9100~Urewopy /eowod
grsed
[10030P 1SS0
['8nqop - pso/pso
gedsu
202,00 9DN
' XXQO¢GIOU
T O08ETHON
D°SBS™ AU /SRSAUI
[sdIyo- A /sesau
[XXJQ~ AU/ SeSAUT
' LyTomatd
o yIsos-sesgjdu /sesgjdu
o (30 sesgydua /sesgydm
o-oseq sesgidu/sesgydu
yses gidu /1dw /sesgjdu
yur gidu /1dur/sesgydu
[ysouwr
O preregowa
D°ses”preregou /preresout

['1q3aopelb /xxxgeb
2'8qpe[b/xxxgeR[b
2°08¢TeIb
oedd
2807 ()0GogGUIAS /erotod
yordsu/emnund
o°so~dsu /eowod
o"quisTxggreye/enuod
ogrsed
O p[pso/pso
qrorgedsu
ogedsu
T00Ld 9ON
9" XXQOECIOU
208CGHON
D°)IUT AT /SRSATI
[XX6 AU /SeSAW
D" XX|Q” AU/ SeSAUT
9") TomwAl
[3nqop-sesgidur /sesgidur
>"8yuoo-sesgidu /sesgidu
yodAy-grdw /1dur/sesgydu
U prergidu/idur/sesgidu
- Syuo-grdur /1du /sesgydu
DSt
[TOwwos-e3aul / preresou
[T preresou /preregoumt

[Jope[b/xxxgeb
o-1yye-elb /xxxgzeb
owoxgsd
[premowd
> qugs-or3ob /erownd
o-8nqop-dsu /eruod
o°qnys-urewopy/eowod
091007 XgGTRyR /ewDd
ysuorydo-isso
9" I0YRT)TUT PSO /PSO
o'8nqep gedsu
1'02LD YON
2°00Ld YON
2"BY0TPESTHON

['SeS™ AU /SRSAT
['SJop™AUL/SeSAUI
O XXPG AU/ SeSAUT
9°'IS0S"XQ [OUWIATL
o y10dsuery-sesgydu /sesgydu
[30-sesgydu /sesgydu
[oseqsesgjdu /sesgydm
[1009 gidw /1dw /sesgjdu
yoorgidur /idur /sesgydu
y giduw /1du /sesgydu
[preresoum
['ses preresdout /preregout
O WU preresout /preregour

[0A9TT I0MOT]

wapslisqns 1G0HS Y} Jo 1909) 94N32991Y04D Y} 03 buLpL0dD §2)1f 224N08 JO U01DZLL0HID)) Y],

o3ed snorserd WOy ponuruod

66

2°000LPM
[103SRIN
[WISOSUI)
'8¢ T
[OSTU TAS /7~ XXQOEGUIAS
o pdIy WAS /7 XXQ0gGUIAS
[ZM] WAS /7 XXQOEGUIAS
0" M WAS /7 XXQOEGUIAS
[9THOECUAS
O OWIATISOS CUNS
208EGHON €uns
2'0TLOEG Tus
D°sse[oprel
'80Fsejorsorb
[uotstoA~f[b /xxxjeb
o ureIAu b /xxxperb
o qoor b /xxxpeb
[1qr8-pIb/xxxperb
q8qpp[b/xxxperb
o dnseb /xxxgeb
o prur-erb /xxxgerb
> qoorerb/xxxgerb
o83 e[b /xxxgeb

T E6°EEPM
9 I0)seIyn
O TIISOSUI)}

[WRIAT WAS /7~ XXQIEGUIAS
D"DO[[RWI WAS /7~ XXQIEGUIAS
[oN[3 WAS /7 XXQIEGUIAS
[TM] WAS /7 XXQOEGUIAS
['SJop WAS /g XXQOEGUIAS
2'9THIEGUAS
['1S0S-guns
o-dso~xguns
20T WIS
' 1ydordorb
2'Q0Fseyo1sorh
280 b /xxxperb
o xqur b /xxxpeb
rourur b /xxxpeb
U my b /xxxjerb
28qp b/ xxxFRID
[s3uryjeseb /xxxgeb
o xquierb /xxxgerb
y-ourur erb /xxxgeb

198 e[b/xxxgeb

J'uoez
2 EGIEEPM
IJpevIn
q'8cI13
O WIRIAUTAS /7~ XXQOEGUIAS
[pdiy wAs /g~ XXgOEGUIAS
D"ON[8 WAS /7 XXQIEGUIAS
[MJ WAS /7 XXQOEGUIAS
[XXQOEGUIAS /7~ XXQOEGUIAS
o dse uns
J'180S gUNS
9'X998
D' CEPMISS
o 19dotsorb
o'sejor3oh
[ureiau b /xxxypeb
o 1sT b /xxxjeb
o qmur b /xxxgpeb
qJopyIb/xxxperb
[uotsiea~e[b /xxxgeb
osoe[b /xxxgeb
o-asrelb /xxxgeb
o qmurerb /xxxgerb
U myeb /xxxgerb

[0A9TT I0MOT]

wapslisqns 1G0HS Y} Jo 1909) 94N32991Y04D Y} 03 buLpL0dD §2)1f 224N08 JO U01DZLL0HID)) Y],

o3ed snorserd WOy ponuruod

67

APPENDIX B

Results of Clones under Each

“Interestingness” Criterion

Tables of software quality issue under each subcategory in the clone-aware framework dis-
cussed in Chapter 4. The intention of this appendix is to show the effectiveness of our
framework while avoid disrupting reading the main content. Information listed in this ap-
pendix also serves to encourage open discussion of methods of our framework. All locations
listed in the following table are based on the source code of the Spring Framework version
2.5.6 provided by SpringSource.org|[3].

Table 2: The top-10 list of clone classes that span multiple software components.

Clone Class

Type
Class

of Clone

Location of Source

Start Line : End Line

src/org/springframework /jdbc/ 177:188
datasource/Transaction Aware-

DataSourceProxy.java

src/org/springframework 418:427

Jorm/jpa/AbstractEntity-
ManagerFactoryBean.java

continued on next page

Type I Clone

68

continued from previous page

Clone Class

Type
Class

of Clone

Location of Source

Start Line : End Line

src/org/springframework
Jorm/jdo/TransactionAware-
PersistenceManagerFactoryProxy.java,

146:157

src/org/springframework
/orm/jdo/Transaction-
AwarePersistence-
ManagerFactoryProxy.java

192:203

src/org/springframework
/jca/cci/connection/Transaction-
AwareConnection-FactoryProxy.java

129:140

src/org/springframework
/jdbc/datasource/LazyConnection-
DataSourceProxy.java

275:289

src/org/springframework
/jca/cci/connection/Single-
ConnectionFactory.java

1275:1286

src/org/springframework
Jorm/toplink/Abstract-
SessionFactory.java

131:142

src/org/springframework
/orm/toplink /Abstract-
SessionFactory.java

179:190

src/org/springframework
/jdbc/datasource/Single-
ConnectionDataSource.java

314:325

src/org/springframework /orm/jpa/
JpaTemplate.java

386:397

src/org/springframework /orm/jdo/
JdoTemplate.java

288:599

src/org /springframework
/jms/connection /Single-

ConnectionFactory.java

473:482

continued on next page

69

continued from previous page

Clone Class

Type of Clone
Class

Location of Source

Start Line : End Line

src/org/springframework
/jms/connection/Transaction-
AwareConnectionFactoryProxy.java

293:304

Type I Clone

src/org/springframework
Jorm/jpa/support/OpenEntity-
ManagerInViewlInterceptor.java

71:78

src/org/springframework
/orm /hibernate3/support/Open-
SessionInViewlInterceptor.java

144:151

src/org/springframework /
orm/jdo/support/OpenPersistence-
ManagerInViewlInterceptor.java

93:100

Type I Clone

src/org/springframework /
orm/hibernate3/support/Blob-
SerializableType.java

148:162

src/org/springframework/
orm/ibatis/support/Blob-
SerializableTypeHandler.java

67:81

Type II Clone

src/org/springframework /orm/
jdo/Jdo-TransactionManager.java

314:339

src/org/springframework /orm /
jpa/JpaTransactionManager.java

330:355

Type I Clone

src/org/springframework /ejb/
access/ SimpleRemoteSlsbInvokerIn-
terceptor.java

101:108

src/org/springframework /remoting/
rmi/RmiClientInterceptor.java

362:369

Type I Clone

src/org/springframework /aop/config/

SpringConfigured-
BeanDefinitionParser.java

53:58

continued on next page

70

continued from previous page

Clone Class | Type of Clone | Location of Source Start Line : End Line
Class
src/org/springframework /context / 46:53
config/SpringConfigured-
BeanDefinitionParser.java

71

Table 3: The top-10 list of clone classes with many members.

Clone Class

Type
Class

of Clone

Location of Source

Start Line : End Line

src/org/springframework/
jdbc/datasource/Transaction-
AwareDataSourceProxy.java

177:188

src/org/springframework /
orm/jpa/AbstractEntity-
ManagerFactoryBean.java

418:427

src/org/springframework /
orm/jdo/Transaction AwarePersis-
tenceManagerFactoryProxy.java

146:157

src/org/springframework/
orm/jdo/TransactionAware-
PersistenceManager-
FactoryProxy.java

192:203

src/org/springframework /
jeca/cci/connection/Transaction-
AwareConnectionFactoryProxy.java

129:140

src/org/springframework /
jdbc/datasource/Lazy-
ConnectionDataSourceProxy.java

275:289

src/org/springframework/
jea/cci/connection/Single-
ConnectionFactory.java

227:236

src/org/springframework /orm /
hibernate3/Hibernate-
Template.java

1275:1286

continued on next page

72

continued from previous page

Clone Class

Type of Clone
Class

Location of Source

Start Line : End Line

Type I Clone

src/org/springframework /
orm/toplink/Abstract-
SessionFactory.java

131:142

src/org/springframework /
orm/toplink/Abstract-
SessionFactory.java

179:190

src/org/springframework/
jdbc/datasource/Single-
ConnectionDataSource.java

314:325

src/org/springframework /orm/jpa/
JpaTemplate.java

386:397

src/org/springframework /orm/jdo/
JdoTemplate.java

588:599

src/org/springframework /
jms/connection/Single-
ConnectionFactory.java

473:482

src/org/springframework/
jms/connection/Transaction-
AwareConnectionFactoryProxy.java

293:304

Type III Clone

src/org/springframework /orm/ hi-
bernate3/HibernateTemplate.java

921:933

src/org/springframework /
orm/hibernate3/Hibernate-
Template.java

947:959

src/org/springframework/
orm/hibernate3/Hibernate-
Template.java

988 : 1000

src/org/springframework /
orm/hibernate3/Hibernate-
Template.java

1015 :1027

continued on next page

73

continued from previous page

Clone Class

Type of Clone
Class

Location of Source

Start Line : End Line

src/org/springframework/ 273:277
context/support/Reloadable-
ResourceBundleMessageSource.java

3 Type III Clone | src/org/springframework/ 301:305
context /support/Reloadable-
ResourceBundleMessageSource.java
src/org/springframework/ 333:337
context /support /Reloadable-
ResourceBundleMessageSource.java
src/org/springframework /util/Object- 560:576
Utils.java
src/org/springframework /util/Object- 591:608
Utils.java
src/org/springframework /util/Object- 623:639
Utils.java

4 Type I Clone src/org/springframework /util/Object- 654:670
Utils.java
src/org/springframework /util/Object- 685 : 702
Utils.java
src/org/springframework /util/Object- 717 734
Utils.java
src/org/springframework /util/Object- 749 : 765
Utils.java
src/org/springframework /util/Object- 780:796
Utils.java
src/org/springframework /util/Object- 811:827
Utils.java
src/org/springframework /beans/ 248:256

factory /annotation/
AutowiredAnnotationBean-

PostProcessor.java

continued on next page

74

continued from previous page

Clone Class

Type of Clone

Class

Location of Source

Start Line : End Line

Type II Clone

src/org/springframework /
orm/jpa/support /Persistence-
AnnotationBeanPostProcessor.java

316:324

src/org/springframework /
context /annotation/Common-
AnnotationBeanPostProcessor.java

297:305

Type I Clone

src/org/springframework /
jms/listener /serversession /
ServerSessionMessage-
ListenerContainer102.java

83:90

src/org/springframework / jm-

s/core/JmsTemplatel02.java

177:184

src/org/springframework /
jms/listener/SimpleMessage-
ListenerContainer102.java

29:66

src/org/springframework /
jms/listener /DefaultMessage-
ListenerContainer102.java

77:84

Type I Clone

src/org/springframework /
jdbc/support /incrementer /SqlServer-
MaxValuelncrementer.java

76:91

src/org/springframework/
be/support /incrementer /
MaxValuelncrementer.java

jd-
Sybase-

76 : 91

src/org/springframework /
jdbc/support /incrementer /HsqlMax-
Valuelncrementer.java

87 : 102

src/org/springframework /
be/support /incrementer /
MaxValuelncrementer.java

jd-
Derby-

129 : 144

continued on next page

75

continued from previous page

Clone Class

Type
Class

of Clone

Location of Source

Start Line : End Line

76

Table 4: The top-10 list of clones with long code snippets.

Clone Class | SLOC | Type of Clone | Location of Source Start Line
Class End Line

src/org/springframework/ bean- 188 : 230
s/factory/support/ ConstructorRe-
solver.java

1 42 Type II Clone src/org/springframework / bean- 366 : 408
s/factory /support/ ConstructorRe-
solver.java

src/org/springframework / 76 : 117
jdbe/support/incrementer /SqlServer-
MaxValuelncrementer.java

src/org/springframework/ 76 : 117
jdbc/support /incrementer /Sybase-
MaxValuelncrementer.java

2 41 Type III Clone | src/org/springframework/ 87 : 128
jdbe/support /incrementer /HsqlMax-
Valuelncrementer.java

src/org/springframework /jd- 129 : 170
be/support/incrementer/ Derby-
MaxValuelncrementer.java

src/org/springframework / 87 : 128
jdbc/support/incrementer /HsqlMax-
Valuelncrementer.java

3 41 Type III Clone | src/org/springframework/ jd- 129 : 170
be/support/incrementer/ Derby-
MaxValuelncrementer.java

src/org/springframework/ 506 : 543
context/support/Abstract-
ApplicationContext.java

continued on next page

7

continued from previous page

Clone Class

SLOC

Type of Clone
Class

Location of Source

Start Line
End Line

4

37

Type II Clone

src/org/springframework /
context/support/Abstract-
ApplicationContext.java

269 :

606

32

Type III Clone

src/org/springframework /
orm/hibernate3/Hibernate-
Template.java

1278 -

1310

src/org/springframework / jd-
be/core/JdbcTemplate.java

1277 :

1306

src/org/springframework/ or-
m/jdo/JdoTemplate.java

591 :

619

28

Type II Clone

src/org/springframework/
core/NestedChecked-Exception.java

105 :

133

src/org/springframework /
core/NestedRuntime-
Exception.java

106 :

134

29

Type II Clone

src/org/springframework /
web/jst/el/WebApplication-
ContextFacesELResolver.java

70 :

99

src/org/springframework /
web/jsf/el/WebApplication-

ContextFacesELResolver.java

106 :

135

27

Type I Clone

src/org/springframework/ schedul-
ing /backportconcurrent/ Thread-
PoolTaskExecutor.java

71 :

98

src/org/springframework /
scheduling/concurrent/ Thread-
PoolTaskExecutor.java

69 :

96

src/org/springframework /
orm/hibernate3/Hibernate-
Template.java

1275 :

1299

continued on next page

78

continued from previous page

Clone Class | SLOC | Type of Clone | Location of Source Start Line
Class End Line
9 24 | Type I Clone src/org/springframework/ or- 588 : 611
m/jdo/JdoTemplate.java
src/org/springframework / u- 270 : 291
til/AntPathMatcher.java
10 21 | Type III Clone | src/org/springframework/ u- 291 : 313

til/AntPathMatcher.java

79

References

[5]

(6]

Always in2000 driver linux kernel source code. http://www.cs.fsu.edu/~baker/
devices/lxr/http/source/linux/drivers/scsi/in2000.c.

The linux scsi programming howto. accessed in November, 2011. http://tldp.org/
HOWTO/archived/SCSI-Programming-HOWTO/.

Springsource.org. accessed in November, 2011. http://www.springsource.org.

Google says oracle seeking 2 billion in android dispute. accessed
in October, 2011. http://www.businessweek.com/news/2011-09-21/
google-says-oracle-seeking-2-billion-in-android-dispute.html.

G. Antoniol, U. Villano, E. Merlo, and M. Di Penta. Analyzing cloning evolution in
the linux kernel. Information and Software Technology, 44(13):755 — 765, 2002.

Brenda S. Baker. On finding duplication and near-duplication in large software system.
In Proceedings of the Second Working Conference on Reverse Engineering (WCRE
'95), pages 86-95, Toronto, Ontario, Canada, July 1995. IEEE Computer Society.

Hamid Abdul Basit and Stan Jarzabek. A data mining approach for detecting higher-
level clones in software. IEEE Transactions on Software Engineering, 35:497-514,
2009.

Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, , and Lorraine
Bier. Clone detection using abstract syntax trees. In Proceedings of the International
Conference on Software Maintenance (ICSM), Washington, DC, USA, 1998. IEEE
Computer Society.

Stefen Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke, and Ettore Merlo.
Comparison and evaluation of clone detection tools. IEEE Transactions on Software
Engineering, 33:577-591, 2007.

30

[10]

[11]

[12]

[13]

[14]

[15]

Nicolas Bettenburg, Weyi Shang, Walid Ibrahim, Bram Adams, Ying Zou, and
Ahmed E. Hassan. An empirical study on inconsistent changes to code clones at
release level. In Proceedings of the 2009 16th Working Conference on Reverse En-
gineering, WCRE ’09, pages 8594, Washington, DC, USA, 2009. IEEE Computer
Society.

Andrew Binstock. In praise of small code. accessed in November, 2011. http://www.
informationweek.com/news/development/architecture-design/231000038.

Barry W. Boehm. Software risk managment: principles and practices. IEEE Software,
8 (1):32-41, 1991.

James Bottemley. Scsi interfaces guide. accessed in November, 2011. http://www.
kernel.org/doc/htmldocs/scsi.html.

Magiel Bruntink, Student Member, Ieee Computer Society, Arie Van Deursen, Rem-
co Van Engelen, and Tom Tourw. On the use of clone detection for identifying cross-
cutting concern code. IEEE Transactions on Software Engineering, 31:804-818, 2005.

Xin Chen, Brent Francia, Ming Li, Brian Mckinnon, and Amit Seker. Shared in-
formation and program plagiarism detection. IEEE TRANS. INFORMORMATION
THEORY, 50:1545-1551.

James R. Cordy. Comprehending reality — practical barriers to industrial adoption of
software maintenance automation. International Conference on Program Comprehen-
ston, 0:196, 2003.

Philip B. Crosby. Quality is Free. McGraw-Hill, 1979.

Michiel de Wit, Andy Zaidman, and Arie van Deursen. Managing code clones using
dynamic change tracking and resolution. In Proceedings of 25th IEEE Internation-
al Conference on Software Maintenance, Edmonton, Canada, 2009. IEEE Computer
Society.

Ekwa Duala-Ekoko and Martin P. Robillard. Clone region descriptors: Representing
and tracking duplication in source code. In ACM Transactions on Software Engineer-
ing and Methodology, 20(1), pages 1-31. ACM, June 2010.

Martin Fowler. Refactoring - Improving the Design of Ezisting Code. Addison-Wesley,
1990.

81

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

David Garlan and Mary Shaw. An introduction to software architecture. In Advances
in Software Engineering and Knowledge Engineering, pages 1-39, 1993.

Nils Gde and Rainer Koschke. Studying clone evolution using incremental clone detec-
tion. Journal of Software Maintenance and Fvolution: Research and Practice, 2010.

Nils Gode. Evolution of type-1 clones. In Proceedings of the 2009 Ninth IEEE Inter-
national Working Conference on Source Code Analysis and Manipulation, SCAM 09,
pages 77-86, Washington, DC, USA, 2009. IEEE Computer Society.

Nils Gode and Rainer Koschke. Incremental clone detection. In Proceedings of the
2009 Furopean Conference on Software Maintenance and Reengineering, pages 219—
228, Washington, DC, USA, 2009. IEEE Computer Society.

Michael Godfrey, Davor Svetinovic, and Qiang Tu. Evolution, growth, and cloning
in the linux: A case study. In 2000 CASCON workshop on ’Detecting deplicated the
near duplicated structures in large software systems: methods and applications’, 2000.
http://plg.uwaterloo.ca/~migod/papers/2000/cascon00-linuxcloning.pdf.

Michael W. Godfrey and Qiang Tu. Evolution in open source software: A case study.

In Proceedings of the International Conference on Software Maintenance, pages 131—
142.

David R. Harris, Howard B. Reubenstein, and Alexander S. Yeh. Reverse engineer-
ing to the architectural level. In Proceedings of the 17th international conference on
Software engineering, ICSE ’95, pages 186-195, New York, NY, USA, 1995. ACM.

Ahmed E. Hassan and Richard C. Holt. The top ten list: Dynamic fault prediction. In
Proceedings of the 21st International Conference on Software Maintenance, Budapest,
Hungary, Sept. 2005. IEEE Computer Society.

J Howard Johnson. Identifying redundancy in source code using fingerprints. In
Proceeding of the 1993 Conference of the Centre for Advanced Studies Conference
(CASCON’93), pages 171-183, Toronto, Canada, October, 1993.

J Howard Johnson. Navigating the textual redundancy web in legacy source. In Pro-
ceedings of the 1996 Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON’96), pages 7-16, Toronto, Canada, October 1996.

John Johnson. Substring matching for clone detection and change tracking. In Proceed-
ings of the 10th International Conference on Software Maintenance, pages 120-126,
Victoria, British Columbia, September 1994. IEEE Computer Society.

82

[32]

[37]

[38]

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: A multilinguistic
token-based code clone detection system for large scale source code. In Transactions
on Software Engineering, pages Vol. 28(7): 654— 674. IEEE Computer Society, July
2002.

Cory Kapser. Toward an Understanding of Software Code Cloning as a Development
Practice. PhD thesis, School of Computer Science, University of Waterloo, 2009.

Cory Kapser and Michael W. Godfrey. “cloning considered harmful” considered harm-
ful. In Proceedings of the 13th Working Conference on Reverse Engineering, pages
19-28, Washington, DC, USA, 2006. IEEE Computer Society.

Cory J. Kapser and Michael W. Godfrey. “cloning considered harmful” considered
harmful: patterns of cloning in software. Empirical Software Engineering, 13:645-692,
December 2008.

Miryung Kim, Lawrence Bergman, Tessa Lau, and David Notkin. An ethnographic
study of copy and paste programming practices in oopl. In Proceedings of the 200/ In-
ternational Symposium on Empirical Software Engineering, pages 83-92, Washington,
DC, USA, 2004. IEEE Computer Society.

Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. An empirical study
of code clone genealogies. In Proceedings of the 10th European software engineering
conference held jointly with 15th ACM SIGSOFT international symposium on Foun-
dations of software engineering, ESEC/FSE-13, pages 187-196, New York, NY, USA,
2005. ACM.

Denis Kozlov, Jussi Koskinen, Markku Sakkinen, and Jouni Markkula. Exploratory
analysis of the relations between code cloning and open source software quality. In
Proceedings of the 2010 Seventh International Conference on the Quality of Informa-
tion and Communications Technology (QUATIC ’10), Washington DC, USA, 2010.
IEEE Computer Society.

Jens Krinke. A study of consistent and inconsistent changes to code clones. In Pro-
ceedings of the 14th Working Conference on Reverse FEngineering, pages 170-178,
Washington, DC, USA, 2007. IEEE Computer Society.

M.M. Lehman, J.F. Ramil, P.D. Wernick, D.E. Perry, and W.M. Turski. Metrics
and laws of software evolution — the nineties view. In Proceedings of the Fourth
International Software Metrics Symposium, Albuquerque, New Mexico, United States,
1997. IEEE Computer Society.

83

[41]

[42]

[43]

[46]

[47]

[48]

[49]

Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. Cp-miner: a tool for
finding copy-paste and related bugs in operating system code. In Proceedings of the 6th
conference on Symposium on Opearting Systems Design € Implementation - Volume

6, Berkeley, CA, USA, 2004. USENIX Association.

Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. Cp-miner: Finding copy-
paste and related bugs in large-scale software code. IEEFE Transactions on Software
Engineering, 32:176-192, 2006.

Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. Gplag: Detection of software
plagiarism by program dependence graph analysis. In In the Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD06, pages 872-881. ACM Press, 2006.

Simone Livieri, Yoshiki Higo, Makoto Matsushita, , and Katsuro Inoue. Analysis of the
linux kernel evolution using code clone coverage. In Proceedings of the Fourth Interna-
tional Workshop on Mining Software Repositories, MSR ’07, pages 22-31, Washington,
DC, USA, 2007. IEEE Computer Society.

Simone Livieri, Yoshiki Higo, Makoto Matsushita, , and Katsuro Inoue. Analysis of
the linux kernel evolution using code clone coverage. In Proceedings of the Fourth In-
ternational Workshop on Mining Software Repositories, Washington, DC, USA, 2007.
IEEE Computer Society.

Jean Mayrand, Claude Leblanc, and Ettore Merlo. Experiment on the automatic
detection of function clones in a software system using metrics. In Proceedings of the
12th International Conference on Software Maintenance (ICSM’96), pages 244-253,
Monterey, CA, USA, November 1996. IEEE Computer Society.

Akito Monden, Daikai Nakae, Toshihiro Kamiya, Shin-ichi Sato, and Ken-ichi Mat-
sumoto. Software quality analysis by code clones in industrial legacy software. In
Proceedings of the 8th International Symposium on Software Metrics, METRICS 02,
Washington, DC, USA, 2002. IEEE Computer Society.

Tung Thanh Nguyen, H.A. Nguyen, N.H. Pham, J.M. Al-Kofahi, and T.N. N-
guyen. Cleman: Comprehensive clone group evolution management. In Proceedings of
the 23rd IEEE/ACM International Conference on Automated Software Engineering,
L’Aquila, ITtaly, 2008. IEEE Computer Society.

Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and
Tien N. Nguyen. Clone-aware configuration management. In Proceedings of the 24th

84

[50]

[51]

[52]

[53]
[54]

[55]

[56]

[57]

IEEE/ACM International Conference on Automated Software Engineering, Auckland,
New Zealand, 2009. IEEE Computer Society.

Foyzur Rahman, Christian Bird, and Premkumar Devanbu. Clones: What s that
Smell? In Proceedings of the Seventh Working Conference on Mining Software Repos-
itories. IEEE Computer Society, 2010.

Chanchal Kumar Roy and James R. Cordy. A survey on software clone detection
research. SCHOOL OF COMPUTING TR 2007-54, 115, 2007.

Gehan M.K. Selim, Liliane Barbour, Weiyi Shang, Bram Adams, Ahmed E. Hassan,
and Ying Zou. Studying the impact of clones on software defects. Working Conference
on Reverse Engineering, 0:13-21, 2010.

Ian Sommerville. Software Engineering. 9th edition. Addison-Wesley, 2011.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining.
Addison-Wesley, 2006.

Michael Toomim, Andrew Begel, and Susan L. Graham. Managing duplicated code
with linked editing. In Proceedings of the 2004 IEEE Symposium on Visual Languages
- Human Centric Computing (VLHCC °04), pages 173-180, Washington, DC, USA,
2004. IEEE Computer Society.

Axel van Lamsweerde. Requirements engineering: from craft to discipline. In Proceed-
ings of the 16th ACM SIGSOFT International Symposium on Foundations of software
engineering, SIGSOFT *08/FSE-16, pages 238-249, New York, NY, USA, 2008. ACM.

Wei Wang and Michael W. Godfrey. A study of cloning in the linux scsi drivers. In Pro-
ceedings of the 11th Working Conference on Source Code Analysis and Manipulation,
Williamsburg, Virgina, United States, September 2011. IEEE Computer Society.

85

