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Abstract 

A crucial step in eukaryotic cell proliferation is the initiation of DNA replication, a 

tightly regulated process mediated by a multitude of protein factors. In Saccharomyces 

cerevisiae, this occurs as a result of the concerted action of an assembly of proteins acting 

at origins of replication, known as the pre-replicative complex (pre-RC). While many of 

the mechanisms pertaining to the functions of these proteins and the associations amongst 

them have been explored experimentally, mathematical models are needed to effectively 

explore the network’s dynamic behaviour.  

An ordinary differential equation (ODE)-based model of the protein-protein 

interaction network describing DNA replication initiation was constructed. The model 

was validated against quantified levels of protein factors determined in vivo and from the 

literature over a range of cell cycle timepoints. The model behaviour conforms to 

perturbation trials previously reported in the literature and accurately predicts the results 

of knockdown experiments performed herein. Furthermore, the DNA replication model 

was successfully incorporated into an established model of the entire yeast cell cycle, 

thus providing a comprehensive description of these processes. 

 A screen for novel DNA damage response proteins was investigated using a 

unique proteomics approach that uses chromatin fractionation samples to enrich for 

factors bound to the DNA. This form of sub-cellular fractionation was combined with 

differential-in-gel-electrophoresis (DIGE) to detect and quantify low abundance 

chromatin proteins in the budding yeast proteome. The method was applied to analyze the 

effect of the DNA damaging agent methyl methanesulfonate (MMS) on levels of 

chromatin-associated proteins. Up-regulation of several previously characterized DNA 
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damage checkpoint-regulated proteins, such as Rnr4, Rpa1 and Rpa2, was observed. In 

addition, several novel DNA damage responsive proteins were identified and assessed for 

genotoxic sensitivity. A strain in which the expression of the Ran-GTPase binding 

protein Yrb1 was reduced was found to be hypersensitive to genotoxic stress, pointing to 

a role for this nuclear import-associated protein in DNA damage response. 

 The model presented in this thesis provides a tool for exploring the biochemical 

network of DNA replication. This is germane to the exploration of new cancer 

therapeutics considering the link between this disease (and others) and errors in proper 

cell cycle regulation. The high functional conservation between cell cycle mechanisms in 

humans and yeast allows predictive analyses of the model to be extrapolated towards 

understanding aberrant human cell proliferation. Importantly, the model is useful in 

identifying potential targets for cancer treatment and provides insights into developing 

highly specific anti-cancer drugs. Finally, the characterization of factors in the proteomic 

screen opens the door to further investigation of the roles of potential DNA damage 

response proteins.  
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1.1 Yeast as a model organism 

1.1.1 Introduction to Budding Yeast 

The budding yeast, Saccharomyces cerevisiae (also known as baker’s yeast) is a 

unicellular eukaryote belonging to a larger group of yeasts classified under the kingdom 

Fungi. In total, the 1500 identified yeast species account for 1% of all fungi (Kurtzman 

and Piškur, 2006). These encompass two distinct phyla: Ascomycota and Basidiomycota. 

The former includes budding yeast as well as the fission yeast, Schizosaccharomyces 

pombe, also used as a model organism in molecular biology. Perhaps the most commonly 

known feature of S. cerevisiae is its implication in the processes of fermentation. The 

common names, “baker’s” and “brewer’s” yeast are derived from its age-old 

implementation in bread- and winemaking, respectively. Once thought to be non-living, 

yeast was shown by Louis Pasteur (1860) to indeed be a living catalyst in the process of 

alcoholic fermentation. In fact, budding yeast is widely believed to be one of the first 

species to be domesticated for human use, having been found in 4,000-year-old 

archeological ruins of ancient Egyptian primitive bakeries and featured in even older 

hieroglyphs. Found ubiquitously in nature, yeast can be found in diverse environments 

from the skin of grapes to soil and even in the digestive systems of insects (Sláviková and 

Vadkertiová, 2003). Yeast survive on organic compounds (chemoorganotrophs), not 

requiring any light source. Multiple carbon sources are used for aerobic growth, such as 

glucose, maltose and trehalose while galactose and fructose are preferred under anaerobic 

conditions. Substrate-specific growth preferences are, however strain-specific. 
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  It should be noted that while the designation, Saccharomyces cerevisiae is a 

blanket term for the numerous laboratory stocks of strains of the genus Saccharomyces, it 

generally refers to stocks originating from the interbred stains of Øjvind Winge and Carl 

Lindegren. These contain genetic elements from numerous species such as S. bayanus 

and S. carlbergensis among others, however for the sake of uniformity they are referred 

to en masse as S. cerevisiae, making a distinction between more distantly related 

Saccharomyces species (Lindegren, 1949; Mortimer, 1986). Laboratory strains are, as 

expected genetically distinct from true wild-type strains occurring in nature. Those used 

in molecular studies have been interbred to generate desired properties such as 

auxotrophies and the elimination of extraneous molecular pathways that might only be 

relevant to survival in the wild. Thus the most common lab strains are those derived from 

previously mutagenized wild-type stains. These include the haploid strain S288C, which 

was shown to have as a principle progenitor strain, EM93. This contributes to 

approximately 88% of the gene pool of S288C, the original strain from which all strains 

used in this thesis are derived (Mortimer and Johnston, 1986). 

 The description of S. cerevisiae as “budding yeast” is attributed to the visual 

observation of its vegetative cell division. When environmental conditions are suitable, a 

mother cell may enter a mitotic cell cycle wherein it produces an ellipsoidal daughter cell 

that emerges from a point on its surface as a “bud”. The daughter cell produced 

dissociates from the mother and is at this stage smaller in size, requiring an increase in 

growth in order to serve as a mother cell itself in a subsequent and separate mitotic 

duplication (Herskowitz, 1988). In contrast, the fission yeast S. pombe increases in size 
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and divides into two equal daughter cells. Budding yeast may enter a quiescent G0 phase 

where it may temporarily or permanently exit the division cycle. 

 Although cell size varies across strains and growth medium, a typical diploid 

budding yeast cell is ellipsoid in shape with a 5 X 6 µm dimension. Haploid cells are 

spheroid with a typical dimension of 4 µm in diameter (Mortimer, 1958). A major 

difference in the budding pattern of haploid cells versus diploid cells is that the former 

form buds adjacent to the previous bud while the later have subsequent buds emerge at 

the opposite pole (Friefelder, 1960). Bud scars are formed on the cell wall after each 

division with each mother cell averaging 20-30 buds over its lifetime (Sherman, 1991). 

Budding yeast shares the majority of structural and functional cellular components of 

higher eukaryotes such as a nucleus, cytosol, mitochondrion, endoplasmic reticulum, 

Golgi apparatus and associated secretory vesicles. Where more complex eukaryotes 

possess lysosomes, yeast maintains a vacuole as well as a rigid cell wall comprising 15 to 

25% of the dry mass of the cell. This envelope, with a width between 100-200 nm 

provides shape and support to the internal components of the cell. The chitinous cell wall 

also ensures an optimal osmotic balance with the cell exterior, acts as a barrier against 

physical stress and serves as a scaffold for various glycoproteins with specialized 

functions (Klis et al., 2006). A 7 nm thick plasma membrane acts as a semi-permeable 

lipid bilayer to control the osmotic nature and selectivity of the cell. A number of 

metabolic enzymes reside in the periplasmic space between the cell wall and membrane 

aiding to rid the cell of unwanted and/or toxic bi-products. The cell wall can be removed 

via treatment with lytic enzymes such as zymolyase and lyticase (see “chromatin 

fractionation” under Materials and Methods). This produces a spheroplast, which renders 
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the cell competent for effective sub-cellular fractionation (discussed in Walker, 1998). 

Another distinguishing feature of yeast versus higher eukayotes is the retention of the 

nuclear membrane during mitosis. Rather than dissolving, it pinches off producing a 

daughter nucleus, which travels to the emerging bud (future daughter cell). 

 

1.1.2 The Genetics of Yeast and its Molecular Engineering 

The 2001 Nobel Prize in physiology for medicine was awarded to Leland H. Hartwell, 

Tim Hunt and Sir Paul M. Nurse for their work in elucidating the regulatory mechanisms 

of the eukaryotic cell cycle. These meritorious efforts were performed in the yeasts S. 

cerevisiae and Schizosaccharomyces pombe in addition to Xenopus leavis. Importantly, 

Hartwell’s genetic studies of budding yeast, mutants of genes controlling the cell cycle 

and its checkpoints were isolated, thus highlighting the roles of their products in cell 

cycle control (Hartwell et al., 1970). The haploid genome of Saccharomyces cerevisiae 

comprises sixteen chromosomes. These have been extensively studied from both a 

morphological perspective as well as in great genetic detail. In 1996, the entire yeast 

genome was sequenced (Goffeau et al., 2006) and reported as consisting of roughly 

12,052 kb of chromosomal DNA including a mitochondrial complement of 78,520 bp.  

Researchers found 6183 open reading frames (ORFs) exceeding 100 amino acids with 

just over 5800 expected to specify genes encoding functional proteins. As a comparison, 

while the total size of the genome is 3.5-fold that of E. coli, it only codes for roughly 1.5 

times the number of gene products. The majority of S. cerevisiae strains possess 2-µm 

circular plasmids that exist solely for the purpose of self-propagation (such strains are 

designated cir+). They encode four ORFs and three cis-acting sequences, which permit 
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them to maintain high copy levels (~60) and to segregate into daughter cells during cell 

division (Falcon et al., 2005). Interspersed throughout the genome of budding yeast are 

viral-like retrotransposons called Ty elements. They are often found to have been inserted 

at genomic loci known as transpositional “hot spots” where they are most likely to be 

transcribed, without disrupting the fitness of the host cell. The enzymatic machinery that 

carries out their integration is postulated to interact with transcription factors and 

nucleosomes within silent chromatin. This feature is thought to ensure their ability to be 

maintained and propagated within the genome (Boeke et al., 1985). One feature of the 

yeast genome is its highly compact nature, with 72% of the total sequence corresponding 

to genes, in contrast to ~2% in humans (International Mouse Genome Sequencing 

Consortium).  

 Despite these stark differences in organization, yeast and higher eukaryotes 

(including humans) share high levels of structural and functional protein homology. The 

conservation of important genes is high: as an example, budding yeast actin and tubulin 

have an average of 78% amino acid sequence homology with their human counterparts. 

Homologous proteins for secretory pathways, heat-shock proteins, transcription factors, 

G-proteins as well as oncogenes exist between yeast and human, rendering the findings of 

fundamental yeast research amenable to relevant interpretation in the human context. 

Apart from the minor cellular differences between budding yeast and higher 

eukaryotes, the fundamental processes that drive metabolism, cell proliferation, division 

and growth are largely conserved. Given the relative size, cost and ease of maintenance 

of S. cerevisiae, it serves as a versatile model organism: Haploid strains typically grow 

rapidly in rich medium with a doubling time of 90 minutes in log phase. In synthetic 
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medium, used to select for auxotrophic markers, doubling time is increased to 

approximately 140 minutes. Other facets of yeast culturing include dispersed cell growth 

and the ease with which mutants can be isolated via replica plating and large-scale mutant 

library screening.  Commonly referred to as the “E. coli of Eukarya”, S. cerevisiae’s 

genetic tractability lends itself to facile manipulation of its genome. Technological 

advances in molecular biology such as PCR and DNA transformation techniques have 

been particularly useful in the genetic engineering of yeast. Plasmids can be introduced 

either with the intention of being maintained as extra-chromosomal replicating entities or 

for the purpose of integrative recombination. Because such integration occurs exclusively 

via homologous recombination in yeast, its characteristically high rate of gene conversion 

allows the insertion of exogenous DNA sequences into specified genetic loci. Both 

synthetic and naturally derived oligonucleotides can be transformed into yeast. This 

DNA, even partially containing segments homologous to a genomic target can thus be 

used to direct its recombination into the genome. Thus gene replacement and deletion can 

be achieved much more simply in yeast compared to most other organisms. Disruption of 

genes either by complete knockout or by the insertion of a mutant version allows 

investigations of their impact in vivo. These findings can be applied to homologous genes 

in higher eukaryotes and allow an efficient method of predicting resulting phenotypes 

(Jelier et al., 2011). PCR-based mutagenesis allows for quick and efficient alteration of 

specific genes to create known or yet uncharacterized alleles enabling the study of the 

resultant phenotypes. Such molecular techniques are made more appealing given the non-

pathogenic nature of S. cerevisiae, which in 2001 was granted the status of generally 

regarded as safe (GRAS) by the U.S. Food and Drug Administration. The low cost and 
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ready availability of this microorganism makes it an invaluable tool in the fundamental 

study of eukaryotic systems. 

The same techniques that facilitate the study of budding yeast biology allow the 

extrapolation of such examinations to the level of mammalian biology. Because function 

is so highly conserved in major pathways between budding yeast and humans, 

experiments can be carried out in S. cerevisiae to circumvent certain obstacles facing 

efficient genetic manipulation of mammalian cells. While the human genome (but not 

that of many other eukaryotes) is sequenced, the challenge of deciphering it remains. This 

involves elucidating the functions of uncharacterized genes, gene networks as well as 

non-coding sequences. The human genome contains high levels of these non-coding 

regions including introns (25% compared to 3.8% in S. cerevisiae), which complicates 

the isolation and cloning of genes. Gene replacement is also made more laborious and 

although transgenic techniques are widely used, they suffer from an inability to be site-

specific (Li and Bradley, 2011). The growth time and cost of harvesting mammalian cells 

are disadvantageous to dissecting their genetic makeup. The ability to study the budding 

yeast homologs or to introduce mammalian genes directly into yeast for their functional 

characterization often obviates the need for resource-intensive experiments (Gietz and 

Wooda, 2002; Wach et al., 1994).  

Another advantage of the high conservation between humans and yeast is the 

ability to perform high-throughput examinations of the entire yeast transcriptome under 

varying environmental conditions (Brown and Botstein, 1999; Cho et al., 1998; DeRisi et 

al., 1997; Marc et al., 2001). While human cDNA libraries exist for various cell lines 

including cancerous ones, technical challenges in human transcriptome analyses stem 
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from a much larger scale of coverage. The design of probes and the isolation of sample 

DNA from mammalian cells under varying conditions for this purpose is more 

demanding. Additionally, the presence of non-coding RNAs and the diversity of 

transcripts between cell types increase the difficulty in creating highly resolved 

expression data that can detect low abundance transcripts (Mercer et al., 2011). The 

smaller genome of yeast allows a more rarefied environment within which to query target 

orthologs across Eukarya. Considering the analysis of the yeast genome itself, a library of 

single gene knockout strains for each of the 6,000 genes has been used to characterize 

functions of individual coding loci and has shown that at least 5,000 identified genes are 

non-essential (Giaever et al., 2002; Winzeler et al., 1999). 

 The wide availability of tagging modules enables the integration of sequences 

encoding epitope tags at the C- or N-terminal ends of genes of interest (Longtine et al., 

1998). The resultant fusion proteins can be used to facilitate detection due to the 

incorporation of a tag for which high affinity antibodies directed towards it are available. 

This is particularly useful if the protein of interest is of low abundance in the cell or in the 

absence of a corresponding commercially available antibody (as was the case in 

experiments described in chapter 3). Commonly used epitope tags fitting this description 

are the HA- (human influenza hemagglutinin, Field et al., 1988) and Myc- (derived from 

the c-Myc proto-oncogene, described in Munro and Pelham, 1984) tags. The FLAG-tag is 

unique in that it is a synthetically-derived epitope, designed and generated before a 

corresponding monoclonal antibody was raised to it (Einhauer, 2001; Hopp et al, 1988). 

Features of its design such as sequence length and composition (aromatic amino acids 

flanked by charged residues) optimize its surface exposure to maximize antigenic 



 10 

properties. In addition, its hydrophilicity reduces interference with the native protein such 

that it is amenable to use in Western blotting and immunoprecipitation with similar 

efficiency to the naturally optimal Myc and HA tags. Protein A and polyhistidine (HIS) 

tags are often used to purify proteins via sepharose or nickel-coated columns, 

respectively. Tandem affinity purification (TAP) tags allow for multi-step purification in 

order to isolate protein complexes. The canonical TAP tag consists of a Protein A tag and 

a calmodulin binding peptide (CBP) separated by a TEV protease cleavage site. Initial 

binding of the exposed Protein A to an IgG matrix purifies protein complexes loosely 

associated with the tagged protein of interest. Upon elution, washing and cleavage of the 

TEV site, a second round of purification ensues as the now-exposed CBP binds to 

calmodulin-coated beads. This two-step purification enhances the specificity of 

associated proteins and purity of the complex isolated.  The tagging of multiple proteins 

in a given strain with mutually exclusive peptides permits the investigation of protein-

protein interactions via co-immunoprecipitation (reviewed in Knop et al., 1999) and the 

simultaneous observation of their behaviour. Finally, in situ visualization of proteins can 

be carried out via the use of fluorescent tags (e.g., green fluorescent protein, GFP from 

Aequorea victoria). Since their early inception in observing the localization of proteins 

via microscopy, increasing numbers fluorophores have been developed. These have been 

optimized for techniques such as fluorescence resonance energy transfer (FRET), which 

allows the in vivo quantification of protein-protein interactions (Sheff and Thorn, 2004). 

The expression of a gene of interest can be controlled via the implementation of 

various promoter systems. By replacing the endogenous promoter with one of the well-

characterized regulatory sequences described below, transcript and protein levels can be 
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regulated as desired. The GAL1 promoter is activated by a 365-bp UAS that is galactose-

inducible and glucose-repressible. A downstream-fused gene can thus be constitutively 

expressed in the presence of galactose or shut off to observe the resultant phenotype in 

the presence of glucose. More precise control of gene expression can be exerted with the 

use of the tetO-regulatable promoter system wherein genes under its control are 

expressed constitutively unless inhibited by the antibiotic tetracycline or its analog, 

doxycycline (Belli et al., 1998). The concentration of these repressors can be titrated to 

obtain a precise level of gene transcription. Another method of experimentally controlling 

gene expression is the use of temperature sensitive (Ts- or ts) strains which typically 

possess an allele of a particular gene mutated such that its protein product is destabilized 

at elevated temperatures. Shifting to such conditions at a desired point in the experiment 

would effectively inhibit the accumulation of the functional form of the corresponding 

protein, either by destabilizing it or by inactivating it through aberrant conformation. 

The yeast two-hybrid assay is used to determine the degree of interaction between 

a given pair of proteins using an efficient reporter-based system (Uetz, 2002). This 

scheme involves the expression of two fusion proteins, one containing a transcriptional 

activation domain, the other a motif that binds to the regulatory sequence of a genomic 

reporter. If the proteins of interest interact, activation of the reporter will occur 

proportionate to the degree of interaction, providing a coarse but useful assay. While this 

can be implemented for yeast proteins, exogenous genes and their products can also be 

examined, rendering the yeast cell a veritable living test tube.  

The capacity for yeast to express exogenous genes can be exploited on a large 

scale through the expression of recombinant genes for commercial use. Because yeast can 
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grow at high densities in controlled medium, it is engineered to produce a variety of 

heterologous proteins for industrial and biopharmaceutical uses. While budding yeast is 

capable of these demands, the methanotropic yeast, Pichia pastoris is most amenable to 

such applications (Cregg et al., 2009). Prokaryotes lack the post-translational 

modification machinery necessary for proper eukaryotic protein processing. The 

eukaryotic post-translational modifications and pathways to secrete mature protein are, 

however largely conserved in yeast. This provides an optimal background for expressing 

proteins from more complex organisms on a large scale (reviewed in Cereghino et al., 

2000 and Guthrie and Fink, 2002).  

For the purposes of clarity in specifying the strains and relevant manipulations 

used, a discussion of genetic nomenclature is appropriate. Given that there have been no 

alterations to the mitochondrial genome in this body of work, consideration will be 

limited to chromosomal genes. A gene or locus is specified by three italicized letters 

followed by a number, e.g., ARG2. Dominant alleles are presented in uppercase, while 

recessive alleles are written in lowercase, e.g., arg2. A given allele will be specified by 

the appropriate locus followed by a number designated to it, e.g., arg2-9. Wild-type 

alleles are simply assigned a superscript “plus” symbol as in ARG2+. Deletion of an entire 

gene is indicated by a delta, e.g., arg2Δ, while a partial deletion will specify the amino 

acids removed from the wild-type sequence starting from the first residue, e.g., arg2Δ1-

40. In the case of a gene insertion, the code for such gene follows the locus into which the 

gene has been inserted, separated by the symbol “::”. In the case of arg2::LEU2, the 

LEU2 gene (dominant) has replaced the previously recessive (now non-functional) ARG2 
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locus. Proteins are presented as the product of a given gene, thus usually bearing the 

same locus name, however in “sentence case”, e.g. Arg2 (Sherman, 1991).  

 

1.1.3 The Life Cycle of S. cerevisiae 

1.1.3.1 Reproduction and Mating Type Switching 

Budding yeast has two mating types characterized by one of two alleles (a or α) present 

at the MAT locus on chromosome III. Each cell type maintains its identity through the 

selective transcription of genes. The identity of the MAT locus allele governs the 

regulation of these genes and thus designates the cell as being of either a- or α-type in 

haploids. Each cell type expresses a unique signalling receptor and peptide mating 

pheromone (e.g., MATα cells secrete α-factor). Cells of opposing mating type respond to 

each other’s pheromone by activating a signalling pathway that causes the cell to assume 

a pear shaped morphology including a cell membrane projection referred to as a 

“shmoo”.  Nuclei from each haploid cell migrate towards one another along the shmoo, 

finally fusing to create a MATα/MATa diploid (reviewed in Tkacz and MacKay, 1979). 

Mating type switching is well-studied phenomenon in epigenetics and its central feature 

is the interchangeability of genetic elements at the MAT locus. Every haploid genome 

possesses two silent regions on either side of the MAT locus. At any given time, this 

central region will encode and express the genes specifying one of the two cell types, 

e.g., the MATα locus programs α-specific gene expression. The silent loci, HML and 

HMR encode either the α or a alleles, respectively of the MAT locus. An important 

concept in understanding the life cycle of budding yeast is the differentiation between 

two types of fungal life cycles: homothallism and heterothallism. Homothallic strains are 
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competent for mating type switching and contain a functional copy of the HO 

endonuclease. This enzyme cuts at a specific site within the mating-type locus creating a 

double strand break. This is resolved in such a way that the original MAT cassette is 

replaced by the opposite allele. In such a manner, the information encoding the cell type 

to be converted to is copied into the active MAT locus where it will be expressed. The 

formation of an α/a diploid inhibits HO. Heterothallic cells possess a defective HO gene, 

ho which eliminates the possibility of a mating type switch.  

Homothallic haploid cells are capable of producing diploid progeny without the 

initial requirement of a cell of the opposite mating type. They accomplish this by 

producing both α and a haploids during mitotic divisions. These daughter cells can 

subsequently mate with each other generating a MATα/MATa diploid. The ability of a 

homothallic cell to produce both cell types arises from its aforementioned capacity to 

change its cell type. A homothallic MATa cell thus switches to MATα type producing α-

type daughters though mitosis. These may then mate with a-type daughters produced in 

previous or subsequent divisions. Heterothallic haploid cells can only produce cells of the 

same mating type via mitosis. Thus, in order to create an α/a diploid, they must mate with 

cells derived from separate spores of the opposing cell type. When MATα/MATa diploids 

generated via either method are exposed to an environment deprived of both nitrogen and 

carbon, meiotic division occurs. Nutrient supply is provided by a poor quality carbon 

source (e.g., acetate). Starvation of the cell initiates sporulation by forcing it into G1 

phase. The ensuing meiotic cycle produces four haploid spores encapsulated within a 

protective sac known as an ascus. When environmental conditions are favourable, the 
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ascus disintegrates releasing the spores (reviewed in Herskowitz, 1988). The processes 

described above are illustrated in Figure 1.1. 

The majority of laboratory strains are heterothallic and generally MATa type. This 

prevents the spontaneous generation of diploids as well as renders them sensitive to α-

factor, which arrests these cells in late G1 phase. This is useful for experiments in which 

cell synchronization is desired, described below. 
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Figure 1.1. Life cycle of Saccharomyces cerevisiae. Haploid cells are able to mate with 
other haploid cells of the opposite mating type. This is brought about by a pheromone-
induced signal transduction cascade specific to each cell type, either a or α. Both haploid 
and diploid cells are capable of mitotic cell division. Mating of haploids produces a 
diploid zygote while meiotic division of a diploid gives rise to four haploid cells 
contained within a protective sac, known as an ascus. When environmental conditions are 
suitable, it degrades, releasing the haploid spores, each entering its own cell cycle and 
potential mating pathway. Adapted from Herskowitz, 1988. 
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1.1.3.2 Synchronization of Yeast Cultures 

Because the yield of protein or DNA from an individual cell is practically insufficient for 

gathering meaningful experimental data, large cultures of yeast (at concentrations 

typically between 5 X 106 to 2 X 107 cells/ml) are used to analyse a population average. 

In many cases, to obtain information pertaining to a stage-specific property, the vast 

majority of cells in these populations must be at the same point in the cell cycle. This 

enables the study of yeast populations as if they were behaving as a single cell. Various 

techniques of cell synchronization are used to achieve this goal. 

For individual experiments, the question arises concerning the appropriate method 

of synchronization. Several factors are typically considered: 1) What is the closest arrest 

point available to the cell cycle range being investigated? Once confirmation of a 

successful arrest is made, the culture is “released” as needed, resuming its progression 

through the cell cycle. All cells in the culture will thus be at the same cell cycle stage. 2) 

The methods by which cells are synchronized can cause significant alterations to 

physiological conditions in the cell, such as the activation of mating or developmental 

pathways, stress response or generation of artefacts that may confound the analysis (Cho 

et al., 1998; Spellman et al., 1998; Wyrick et al., 1999). Depending on the process being 

examined, it is best to choose the synchronization routine that limits these unwanted 

products to deduce meaningful conclusions. Additionally, where applicable, more than 

one synchronization routine can be used. This is useful as some synchronization routines 

as more effective for a given purpose, thus combining them yields additive benefits. Also, 

since cells lose synchrony throughout the course of the cell cycle, imposing synchrony 
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via different regimes at well chosen intervals increases the duration that synchrony will 

be effectively maintained. Some widely used methods are described below. 

 

α-Factor Arrest and Release 

As previously discussed, when MATa cells are exposed to the mating pheromone α-

factor, they initiate a mating pathway that halts cell cycle progression and eventual 

mitotic division. This is exploited by experimenters wishing to arrest cells at a point in 

the cell cycle just prior to when the commitment to division has been made. This point is 

referred to as START and occurs in late in the phase immediately preceding that in which 

genome duplication occurs. For studying the events leading up to and occurring during 

this replicative phase, arresting cells just prior to DNA synthesis is ideal. The addition of 

α-factor to a yeast culture results in such a block by 1) Inducing a mating response 

preventing DNA synthesis and 2) Inhibiting Cln-Cdc28, which promotes passage past 

START (Cross, 1995). While all wild-type strains may be used in this protocol, those 

lacking the BAR1 gene (coding for an α-factor-degrading protease) are more easily 

arrested (Ciejek and Thorner, 1979; MacKay et al., 1988). One advantage, however to 

using BAR1+ strains is that they can more readily be released from the pheromone-

induced block. In these strains, the α-factor block will be transient due to active 

degradation of the peptide, thus it must be replenished for a prolonged arrest. Cells are 

released from the late-G1 block by thoroughly washing with water to remove α-factor 

from the medium. Once re-suspended in the appropriate fresh growth medium, cells will 

resume the cell cycle and soon enter S-phase. Additionally the protease XIV (also known 
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as Pronase E) derived from Streptomyces griseus, when added degrades any remnants of 

Bar1 protein, thus increasing the efficacy of the release (Breeden, 1997). 

 

Nocodazole & Hydroxyurea 

These organic compounds are added to culture medium, bringing about specific cellular 

responses and are implemented in a block/release fashion. Nocodazole is a microtubule 

depolymerizer, detrimental to the formation of the mitotic spindle. It thus arrests cells at 

the G2/M boundary (Futcher, 1993; Jacobs et al., 1988). Hydroxyurea (HU) is a 

ribonucleotide reductase inhibitor, effectively depleting the cell’s nucleotide pool. This 

halts DNA synthesis due to an insufficient amount of nucleotides available to be 

incorporated into nascent strands. Cells treated with HU arrest in mid S-phase (Elledge et 

al., 1993; Futcher, 1999). The effects of these drugs can be removed by comprehensive 

washing with water after which cells resume progression through the cell cycle. 

 

Centrifugal Elutriation 

Because cell size is intimately correlated with cell cycle position, cells can be isolated 

based on this parameter to obtain those progressing through the same cell cycle stage. G1 

cells can be collected by exposing a culture to centrifugal forces in a chamber, whereby a 

sedimentation gradient is created based on size (Johnston and Johnson, 1997; Oehlen et 

al., 1996). Smaller cells, i.e. those in G1 are forced towards a collection site. A distinction 

between α-factor arrested G1 cells and those obtained via elutriation is that the latter will 

be at an earlier point in G1 and will thus be smaller. They require more time to reach the 

critical size required to pass START, but have been minimally altered in their 
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transcriptional program as in the case with α-factor and nocodazole. Only the physical 

stresses imposed by this protocol act as potential detriments to maintenance of normal 

cell shape and function.  An advantage of this procedure is that cells need not have 

specialized genetic requirements such as a MATa genotype or specific mutations 

(discussed below). Some strains do not respond well to block and release protocols, while 

elutriation is uniformly efficient. While the majority of elutriation protocols are designed 

to isolate G1 cells, the basis of this isolation is cell size, which corresponds directly with 

cell cycle stage. Hence elutriation can be used to collect cells from other cell cycle points 

assuming uniform cell morphology at the specified stage. 

 

Cell Cycle Mutants 

Cell cycle progression is dependent on the normal functioning of a vast number of 

previously identified protein factors. Mutant alleles of the corresponding genes can be 

used to arrest the cell at the point at which the factor in question plays a critical role. 

Understanding of the cell cycle was founded in the work that highlighted the Cdc (cell 

division cycle) proteins as drivers of this process (Hartwell et al., 1970). Several mutant 

alleles have been routinely used to block the cell at well-defined landmarks; the cdc28-13 

allele arrests cells in G1 while cdc15-2 causes a telophase arrest. These are both ts 

mutants; hence cells will be arrested when shifted to a restrictive temperature at which 

the protein is destabilized. When cell are shifted back to a permissive temperature, de 

novo synthesis of the now stable protein allows a synchronous release. An intermediate 

temperature (semi-permissive) can be used to investigate subtle phenotypes of the 

mutation (Fitch et al., 1992; Kovacech et al., 1996; Surana et al., 1993). The mutant 
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alleles of the essential replication kinase Cdc7, cdc7-1 and cdc7-4 compromise its 

function, arresting cells just prior to entry into the replicative phase of the cell cycle (S 

phase, Bousset and Diffley, 1998; Njagi and Kilbey, 1982). In these ts mutants, the 

structure of Cdc7 is destabilized at an elevated temperature (37°C). Another method of 

imposing cell cycle arrest is to deplete cells of a critical cell cycle protein. This is 

accomplished by placing the appropriate gene under the control of either an inducible 

(e.g., GAL1) or repressible (e.g., MET3) promoter. In the case of the former, the gene will 

only be expressed in galactose medium. Gene shutoff in glucose medium is remarkably 

tight. It should be noted, however that genes are generally overexpressed under control of 

the GAL1 promoter and if the protein being employed is detrimental to the cell in excess, 

it cannot be used in such a regimen. In this case, the more temperate expression levels 

generated by the MET3 promoter would be more suitable. It is so-named for its ability to 

be repressed by methionine (Guthrie and Fink, 2002).  

To monitor synchrony, simple phase contrast microscopy distinguishes cell 

morphologies pertinent to a given cell cycle stage. Cells that have recently progressed 

from G1 to S phase will exhibit a small bud, while cells emerging from mitosis will take 

on a dumbbell shape due to the similar, but not equal size of the mother and daughter 

cells immediately prior to cytokinesis. If cells in a culture maintain similar size ratios of 

mother to bud/daughter, one can assume they remain synchronized. With the 

complementary use of fluorescence activated cell sorting (FACS) analysis to determine 

DNA content, cell synchrony can more precisely be confirmed (Futcher, 1993; Haase and 

Lew, 1997). The use of in situ immunofluorescence can aid in the observation of mitotic 

spindles and structures related to passage through M phase (Kilmartin and Adams, 1984). 
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1.2 The Cell Cycle 

 

1.2.1 Overview 

The evolution of a coordinated and ordered molecular system underlies cell propagation. 

Its function is to duplicate the genome and subsequently segregate the copies precisely 

into two genetically identical cells. The first observation of this phenomenon was made 

early in the nineteenth century by Tomas Schleiden and Theodor Schwann, distilled to 

“cells arise from pre-existing cells” (Schwann, 1839). For any cell to produce identical 

progeny it must enter into a life cycle whereby a facsimile of its complement of DNA, 

mostly arranged into one or more chromosomes is made through the process of DNA 

replication. The pair of genetic blueprints produced is equally divided between two 

resultant cells, representing the mitotic life cycle. Bacterial genomes typically consist of 

one circular chromosome, which is replicated and segregated into two identical cells by 

binary fission. In prokaryotes, chromosome duplication and cell division must occur in 

that order, but there is no clear division of the cell cycle into discrete functional stages. 

Eukaryotes have a more complex cell cycle divided into four distinct phases. The 

eukaryotic nucleus encapsulates the genome, which is only duplicated during one of these 

cell cycle stages (S phase).  

The discrete phases of the cell cycle are delineated by their roles and ultimately 

by the underlying molecular mechanisms being carried during them, each fulfilling a 

particular function culminating in cell division.  The four phases of the eukaryotic cell 

cycle are: G1, S, G2 and M, in that order, discussed in detail below (Figure 1.2). The bulk 

of the cell cycle is spent growing and synthesizing new DNA in anticipation of cell 
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division. This preparatory stage is known as interphase and comprises G1, S and G2 

phases. Mitosis (M phase) involves the careful coordination of molecular scaffolds to 

separate the newly duplicated DNA into two cells, which eventually divide via 

cytokinesis. The entire four-phase cell cycle is crucial as each one sets the stage for the 

next consistent with a “dependent pathway model” (Hartwell, 1974). Yeast cells undergo 

a virtually identical cell cycle to more complex or higher eukaryotes save for some key 

differences. Yeast chromosomes are divided in a closed mitosis wherein the nucleus 

remains intact rather than disintegrating until the following G1 phase (reviewed in Heath, 

1980). The yeast genome contains numerous well-defined and highly conserved 

sequences that specify potential start sites of DNA replication. This is in contrast to 

metazoans and even fission yeast where such sites, known as origins of replication are 

determined stochastically (reviewed in Méchali, 2010). Nevertheless, the major features 

are conserved and using yeast as a model for cell cycle studies has yielded great advances 

in understanding the process at a molecular level.  

In order to maintain the fidelity of the replicative cycle, multiple ordered 

regulatory switch-like mechanisms have evolved. These link distinct cellular events 

ensuring that the cell progresses through each phase only after having performed critical 

functions in proper sequence (e.g., mitosis must come after replication of the 

chromosomes). External factors influence the control of the cell cycle, allowing it to 

respond appropriately by increasing the rate of certain processes or by halting the cell 

cycle until the proper conditions arise. A brief discussion of the four main phases of the 

yeast cell cycle follows. 
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Figure 1.2. Cell cycle of Saccharomyces cerevisiae. Representation of the four cell cycle 
stages of a mitotic cycle. Once a G1 cell passes START, it is irrevocably committed to 
DNA synthesis and cell division. Included in this schematic are the various stages of 
nuclear duplication and segregation, shown in magenta. Adapted from Herskowitz, 1988. 
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Figure 1.2. Cell Cycle of Saccharomyces cerevisiae. Representation of the 
four cell cycle stages of a mitotic cycle. Once a G1 cell passes START, it is 
irrevocably committed to DNA synthesis and cell division. Included in this 
schematic are the various stages of nuclear duplication and segregation, shown 
in magenta. Adapted from Herskowitz, 1988. 
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1.2.2 The Four Cell Cycle Stages 

 
G1 phase 

Because the two most notable features of the cell cycle are DNA synthesis and mitosis, 

the periods of growth between them are known as “gap” phases. The first such phase is 

hence known as Gap1 or G1. Yeast cells engaged in the mitotic cell cycle, i.e. those that 

are not in a quiescent G0 state are primarily found to exist in G1 phase. This division of 

time spent between phases, however varies amongst eukaryotes as well as between cell 

types (e.g., early embryonic cell cycles lack gap phases altogether). New daughter cells, 

once separated from mother cells begin in G1 during which they increase in size and 

prepare for entry into S-phase.  

Cells starved for a particular nutrient will arrest at a point after mitosis, but before 

bud emergence and DNA synthesis (Williamson and Scopes, 1960). Mutant analysis of a 

group of cell division cycle (Cdc) genes by Hartwell (1974) suggested that cells remain in 

G1 until the sufficient accumulation of nutrients and factors necessary for duplication of 

the genome occurs. This actually represents exit from the division cycle into the non-

proliferating G0 state. Once conditions favouring DNA replication and cell division arise, 

cells re-enter the cell cycle at G1, thus it can be thought to represent the beginning of the 

cell cycle. An extended generation or doubling time of cells in a population is intimately 

correlated with the preponderance of unbudded cells (Beck and von Meyenburg, 1968). 

This suggests that such unbudded cells (in G1) have not yet reached a threshold amount 

of energy or molecular entities crucial for commencing the budding program and DNA 

synthesis (Kuenzi and Fiechter, 1969). While this may appear similar to exit from the 

cycle and entry into a G0 state, it actually represents a prolonged G1 as the cells continue 
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to grow. The ability of budding yeast cells to respond to extracellular stimuli such as the 

quality of their growth medium has been widely documented (reviewed in Johnston et al., 

1979). Thus important molecular mechanisms exist linking cell growth, size and duration 

of G1 phase. As previously mentioned, the crucial point at which the cell commits to 

entering a replicative cycle is known as START. Beyond this point, the mating response 

is inhibited and a cell treated with the appropriate mating pheromone (MATa with α-

factor) will undergo the steps of DNA synthesis and cell division before re-entering a 

new G1 and arresting prior to START.  

Cells synchronize growth and division such that the replicative cycle commences 

only after a threshold size has been reached (Mitchison, 1971). Molecular switches thus 

exist to impose this coordinated function (reviewed in Wells, 2002). One example is the 

mutual antagonism between the cyclin, Cln3 and the cyclin dependent inhibitor (CKI), 

Far1. Cln3 in association with the kinase Cdc28 activates transcription factors (MBF and 

SBF) that promote entry into the replicative stage of the cell cycle (De Bruin et al, 2004). 

Far1 inhibition of Cln3-Cdc28 is initially dominant such that cells are held in G1. Cln3 

accumulates linearly with cells growth, resulting in a shift in the balance between the 

reciprocal inactivation. At an appropriate size, Cln3 overcomes its inhibitor and “flips the 

switch” towards entry into S-phase (Fu et al., 2003; reviewed in Alberghina et al., 2004). 

Other similar switches exist in G1 (as well at other cell cycle junctures) acting to 

maximize the coherence between cell size, entry into S phase and division. These are, of 

course, subject to external factors. Thus in nutrient-rich environments, cells assume larger 

G1 sizes before budding to maintain cell size homeostasis and vice-versa (Fantes and 

Nurse, 1977). 
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Many of the Cdc mutants from budding and fission yeast observed by Hartwell 

(1974) and Nurse (Nasmyth and Nurse, 1981; Nurse et al., 1976), respectively, elucidated 

a series of switches that determined the transition from G1 to S-phase. In large part, these 

consisted of kinase-dependent reactions acting on a complex of proteins assembled in 

early G1, creating a trigger for the initiation of DNA replication. It is with this emphasis 

that we consider the events occurring in G1 phase, namely the establishment of a pre-

replicative complex (pre-RC). Discussed in detail in the following section, pre-RC 

assembly involves the equipping of origins of replication for eventual “firing” once the 

essential signals present themselves. Firing of the first origin marks the transition from G1 

to S phase of the cell cycle. 

 

S phase 

Once the switches maintaining a G1 state are flipped by the activity of multiple Cdc28-

dependent steps, the cell enters a stage in which its genome is duplicated. The synthesis 

of new strands of DNA is what gives this cell cycle stage its name. Beginning at origins 

of replication, the DNA double helix is unwound by a protein complex known as the 

helicase. The nucleotide sequence of the unwound single-stranded DNA is copied by a 

group of enzymes known as polymerases, each one performing a specific and crucial 

function. In order to prevent unwound DNA from re-annealing to its complementary 

strand, it is coated with the single strand DNA-binding protein, RPA (Wold, 1997). 

Because initiation almost always starts between the two ends of a chromosome 

and because it is initiated bidirectionally, a structure known as a replication bubble is 

produced. This bubble increases in size as the two replication forks travel in opposing 
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directions. Considering one half of this bubble, a single replication fork travels towards 

one end of the chromosome. Although sites specifying replication origins are scattered 

throughout the genome, some remain dormant or are not fired before an already 

established fork passes though them, thus passively replicating them. DNA synthesis in 

yeast is semiconservative and semidiscontinuous. The former refers to the annealing of 

one nascent strand to one of the parental strands, creating two nascent-parental strand 

combinations for each section of the double helix being replicated.  The 

semidiscontinuous nature of replication describes the manner in which replication occurs 

in only one direction, i.e. 5’ to 3’, referring to the polarity of DNA (Figure 1.3). A 

nucleotide is added to the 3’ hydroxyl group at the end of a growing chain, creating a 

phosphodiester bond with its complementary base pair on the template. Before a 

nucleotide can be added to a nascent DNA strand, an initial primer sequence must be 

created and annealed to the region of the parental DNA at which replication will 

commence. The DNA polymerase α-primase complex synthesizes a short RNA-based 

primer complementary to a sequence on the parental strand. Polymerase pol-α extends 

this primer into a short stretch of DNA, which is then recognized by polymerase δ or ε, 

displacing pol-α. In order for either pol-δ or pol-ε to scan the template strand, actively 

replicating it, there is a requirement for a sliding clamp known as the proliferating cell 

nuclear antigen (PCNA) to tether it to the DNA. As is the case with many DNA clamps 

including the helicase, they require a loading mechanism. The eukaryotic PCNA clamp 

loader is RF-C. The double helix conformation of DNA is such that two complementary 

strands are anti-parallel, i.e. the 5’ end of one is the 3’ end of the other. Thus, as shown in 

Figure 1.3, when a replication fork is created, the two parental strands generated at a fork 
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will have opposing polarity. This is an important consideration, since as previously 

mentioned, polymerases will only replicate processively in a 5’ à 3’ direction. Thus, 

only one of the exposed template strands can be replicated continuously, in the same 

direction as the moving replication fork. The newly synthesized DNA copied off this 

strand grows uninterrupted as the parental strand is unwound and is known as the leading 

strand. Once the primer synthesized at the 3’ end of the parental strand is recognized by 

pol-ε, the leading strand is replicated by processively by it. Because the other template 

strand has a 5’ à 3’ polarity as it is unwound, the polymerase (pol-δ in this case) cannot 

replicate it processively towards the start of the fork. Instead, as this parental strand is 

unwound, synthesis of the nascent strand must wait until a substantial length of the 

template is exposed. For this reason, the newly synthesized strand is known as the 

lagging strand. Primers are synthesized as new template DNA becomes available and as 

in the case of the leading strand, are recognized by the appropriate polymerase. Along 

with PCNA, the pol-δ slides along the short stretch of template DNA, away from the 

replication fork, replicating it in the correct 5’ à 3’ manner until it reaches the start of 

the adjacent primer. The short semidiscontinuous stretches of lagging strand DNA are 

known as Okazaki fragments. Pol-δ’s exonuclease activity removes the multiple primers 

on the lagging strand and the Okazaki fragments are joined by DNA ligase.  
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Figure 1.3. Activities at a DNA replication fork. When DNA is unwound at a 
replication fork, it creates two parental template strands. Due to the anti-parallel nature of 
the double helix, each of these strands will be in opposing orientations. Because DNA 
polymerase can only synthesize DNA in a 5’ to 3’ direction, only one of the nascent 
strands can be replicated processively as a continuous stretch (leading strand). The other 
parental strand will be replicated discontinuously as short stretches called Okazaki 
fragments. These fragments are later ligated to form a continuous strand of DNA. 
Adapted from ch. 20 of Weaver, 1999.  
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Figure 1.3. Activities at a DNA Replication Fork. When DNA is unwound at 
a replication fork, it creates two parental template strands. Due to the anti-
parallel nature of the double helix, each of these strands will be in opposing 
orientations. Because DNA polymerase can only synthesize DNA in a 5’ to 3’ 
direction, only one of the nascent strands can be replicated processively as a 
continuous stretch (leading strand). The other parental strand will be replicated 
discontinuously as short stretches called Okazaki fragments. These fragments 
are later ligated to form a continuous strand of DNA. Adapted from ch. 20 of 
Weaver, 1999.  
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As each fork traverses the chromosome, the unwinding activity of DNA helicase 

builds up torsional strain in the double helix as a result of its rotation. Topoisomerases 

relieve the strain in supercoiled DNA by creating temporary nicks. In addition to 

allowing replication to proceed undeterred, this helps to avoid the entanglement of double 

stranded DNA ahead of the helicase and the newly synthesized double helix (Dickerson, 

1983; Garg and Burgers, 2005; Weaver, 1999). 

In order for a cell to duplicate its genome with high fidelity and create a flawless 

genetic copy, it must reduce the potential errors in base pair matching during replication. 

This is apart from the threat of spontaneous mutation and must be highly surveyed to 

avoid lasting errors in the DNA sequence. Deleterious mutations in the genome would 

ostensibly be passed down to future generations and might encode lethal alleles or 

proteins of compromised function. The maintenance of replication fidelity in 

multicellular organisms is paramount to avoiding cancerous mutations or those associated 

with developmental or neurodegenerative disorders. Yeast polymerases are believed to 

pair the wrong nucleotide once every 104-106 base pairs. To correct for this error, they 

possess proofreading mechanisms to limit misincorporated base pairs. Pol-δ and pol-ε 

both have 3’ exonuclease activity that removes 90% – 99.99% of erroneous base pair 

mismatches (Kunkel, 2004). Over and above this, the cell possesses post-replication 

repair pathways such as mismatch repair (MMR) and base-excision repair (BER) which 

when combined greatly reduce the potential for deleterious mutations during replication 

(Nickoloff, 1998; Scheuerman and Echols, 1984). MMR has been estimated to correct 

between 97% – 99.8% of mismatches (McElhinny et al., 2010), while BER improves the 

fidelity of replication by 2-3 fold resulting in an overall error frequency of approximately 
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10-9 (Kunkel, 2004). At the replication fork, the polymerases acting on either strand form 

a coordinated unit with each other and with accessory proteins. Collectively this is known 

as the replisome.  

 

G2 phase 

Once chromosomes are replicated and cells, by this definition exit S-phase, the cell 

continues to grow in size. It must, however be sure to prevent chromosomal segregation 

(in the following M-phase) as long as unreplicated chromosomes or DNA damage 

artefacts remain. If these are found to be lacking, the cell passes quickly through G2. Thus 

this stage serves as a gap (as in Gap 2 phase) between S and M phases. The two nuclei 

generated in S-phase part within the mother during G2, with one of them migrating to the 

bud (Kormanec et al., 1991). Because spindle formation occurs in S-phase, there is 

significant overlap between the period of DNA synthesis and chromosomal segregation 

arguing for a practically insignificant G2 phase is budding yeast (Nurse, 1985). 

 

M phase (Mitosis) 

The chromosomes having being duplicated in S-phase are ready for equal segregation 

between mother and daughter cell. As a result of replication two identical copies of each 

chromosome (sister chromatids) are generated and are initially connected via a structure 

known as the centromere. Before progressing, cellular surveillance mechanisms verify 

that replication has been correctly executed, or that errors have been dealt with. Once 

these checkpoint conditions are satisfied, the mitotic phase is devoted to the separation of 

sister chromatids and their localization to opposite poles. At the centromere, each 
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chromatid possesses a point of attachment for microtubules called a kinetochore. In yeast, 

the microtubule-organizing centre is known as the spindle pole body (SPB). Because the 

nuclear membrane remains intact in the mitotic cell cycle of yeast (a “closed mitosis”), 

the SPB remains embedded within the nucleus. Since the commitment to cell division 

occurs at START, the SPB duplicates as early as this point in G1 in anticipation of its role 

in mitosis. Thus, two SPBs migrate to opposing poles of the nucleus as early as S-phase 

and establish a network of interdigitating microtubules. The bipolar spindle created as a 

result assumes an active role in mitosis, acting as a scaffold whose function is to align 

and separate sister chromatids equally between mother and daughter cells (Nasmyth, 

1995). This is essential to ensuring that each cell has exactly one copy of the genome.  

The events of mitosis are divided themselves, into four stages: prophase, metaphase, 

anaphase and telophase. 

In prophase, chromatin becomes more organized and condenses into 

chromosomes, visible under a light microscope. Kinetochores of each sister chromatid 

are bound by opposing microtubules during the early stages of metaphase. Some 

microtubules of the spindle do not bind to the chromatids; rather they associate with their 

polar counterpart from the opposing SPB. At this point the spindle becomes distinct and 

ATP-dependent molecular motors associated with the microtubules direct the pulling 

apart of sister chromatid kinetochores by the two polar SPBs. Tension is created along 

the mitotic spindle causing the chromosomes to become aligned along the metaphase 

plane, equidistant from either pole. During this stage, any unattached kinetochores signal 

that proper alignment has not occurred. This invokes a molecular cascade known as the 

mitotic spindle checkpoint, which blocks progression into anaphase.  
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Chromatids are held together at their kinetochores by ring-like structures known 

as cohesins (Nasmyth and Haering, 2005). Given the proper signal (see “anaphase-

promoting complex” in section 1.2.3) cohesins are cleaved by the protease separase, 

triggering sister chromatid disjunction (Uhlmann et al., 2000). Marking the start of 

anaphase, the non-kinetochore bound microtubules extend creating a force that pushes 

each SPB to the opposite end of the now-elongated and budded cell (Segal and Bloom, 

2001). The now freed sister chromatids, attached to microtubules of opposing SPBs are 

pulled apart and towards different poles. The mother and the daughter cell/bud thus 

receive an exact complement of the genome.  At the end of M phase (telophase) the 

spindle disintegrates and the nucleus splits into two nuclei, one remaining in the mother 

cell and the other migrating to the daughter (Winey et al., 2001). Finally, chromosomes 

relax into uncondensed chromatin.  

The final step in cell division is the actual separation of the common plasma 

membrane between mother and daughter cell, called cytokinesis. It is essential that 

chromosomes are correctly segregated between the two cells to avoid aneuploidy or 

polyploidy. Early in G1, a group of GTP-binding proteins known as septins form a 

cytoskeletal framework for establishing the asymmetric division (daughter cells are 

smaller than their mothers; Chang and Peter, 2003). At the onset of bud emergence, the 

septins form a ring around the bud neck to provide structure and to establish a diffusion 

barrier between the two cells. This imparts a polarity to the growing budded cell 

demarcating two separate cellular compartments (reviewed in Caudron and Barral, 2009). 

Another feature of the bud neck is a contractile actomyosin ring, which through 
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ingression creates a cleavage furrow, separating the membranes of mother and daughter 

(reviewed in Glotzer, 2005).  

 

1.2.3 Regulatory Mechanisms and Cell Cycle Control 

Fundamental to the proper chronological execution of these phases is a family of proteins 

called cyclins, so named for their cyclical fluctuations in expression, which ultimately 

dictate the activation of key cellular modifiers. They work in conjunction with specific 

kinases forming active complexes that stimulate crucial events. In S. cerevisiae, the N-

type cyclins (Clns) are the first to act with Cln3 being expressed early in G1, as 

mentioned earlier. Like all other budding yeast cyclins, Cln3 is a regulatory subunit of a 

major kinase that regulates the cell cycle, Cdc28 (Lew and Kornbluth, 1996; Nasmyth, 

1993 and 1996). Cdc28 is thus known as a cyclin-dependent kinase (CDK) although this 

abbreviation generally refers to its active form (a cyclin-Cdc28 complex). In order to 

transition from G1 to S phase, the attainment of various protein concentration thresholds 

must be met. This represents one of the molecular switches that coordinate cell growth 

and division, previously discussed. Early in G1, Cln3 concentration increases with cell 

mass. Cln3 and the protein Far1 are mutually antagonistic, however as cell growth 

proceeds, Cln3 levels eventually surpass a threshold (Henchoz et al., 1997). The resulting 

level of active Cln3-Cdc28 promotes the expression of G1 transcription factors. This 

leads to the accumulation of cyclins Cln1 and Cln2 and sets the stage for S phase entry 

(Alberghina et al., 2004; Cosma et al., 2001; Dirick and Nasymth, 1991; Tyers et al., 

1993). A second molecular switch involves the transcription and expression of the B-type 

cyclins (Clbs), Clb5 and Clb6, which also form individual complexes with Cdc28. 
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Transcriptional activation of CLB5, CLB6 as well as of CLN1 and CLN2 is mediated by 

transcription factors MBF (Mbp1-Swi6) and SBF (Swi4-Swi6), they themselves being 

expressed through Cln3-Cdc28 activity (Hadwiger et al., 1989; reviewed by Koch and 

Nasmyth, 1994).  

Clns are essential for promoting exit from G1 by activating Cdc28 and by 

inhibiting the CDK inhibitor (CKI), Sic1 (Calzada et al., 2001). The accumulation of 

Cln1 and Cln2 to threshold concentrations defines the exact point at which the cell makes 

the irreversible decision to divide, i.e., START (Dirick et al., 1995). The activated Clb5-

Cdc28 complex is tasked with triggering the initiation of DNA replication (reviewed in 

Nasmyth, 1996). Clb6-Cdc28 has an overlapping role and while Clb6 shares functional 

homology with Clb5, cells lacking Clb5 cannot initiate replication as efficiently as Clb6Δ 

cells (Schwob and Nasmyth, 1993; Schwob et al., 1994). CLB3 and CLB4 transcripts 

appear near the start of S-phase and are present until late anaphase (Fitch et al., 1992). 

While their protein products are able to partially replace the roles of Clb5 and Clb6 in 

initiation, they are mainly associated with triggering the formation of the mitotic spindle 

(Richardson et al., 1992). Clb1 and Clb2 are required for entry into mitosis, however 

Clb2 alone is sufficient (Surana et al., 1991). Its activity is necessary throughout M phase 

as it orchestrates the transition from metaphase to anaphase via the degradation of Pds1 

and phosphorylation of components of the anaphase promoting complex or APC (Rahal 

and Amon, 2008). One outcome of these activities is the promotion of sister chromatid 

disjunction as cohesin is cleaved in the absence of Pds1. The fluctuating levels of cyclins 

over the course of the cell cycle are depicted in Figure 1.4. 
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The APC is an E3 ubiquitin ligase charged with targeting numerous cell cycle 

proteins for degradation, Clb2 being among them (Irniger et al., 1995). Its two cofactors, 

Cdh1 and Cdc20 regulate its target specificity. APCCdc20 is activated by Clb2 (Shirayama, 

1998), while APCCdh1 formation is inhibited by it (Zachariae, 1998). Cdc14 phosphatase 

reverses inhibition of APCCdh1, which plays an important role in establishing the G1 state 

(Azzam et al., 2004; Jaspersen, 1999; Zachariae, 1998; Zachariae and Nasmyth, 1999). 

Pds1 binds Esp1, a protein that binds to and cleaves cohesin. The destruction of Pds1 by 

APCCdc20 removes the former’s inhibition of Esp1, which is then able to perform its role 

in cleaving cohesin (Ciosk et al., 1998; Schwab et al., 1997; Visintin et al, 1997). As 

discussed before, this results in the separation of sister chromatids and an exit from 

mitosis (Uhlmann et al., 1999). A main characteristic of the regulatory coordination of 

cell cycle activities by CDK is its mutual antagonism with CKIs and APC isoforms.  

Whereas APC destroys the regulatory cyclins, CDK inactivates the APC via 

phosphorylation. Clb2-Cdc28 and Clb5-Cdc28 phosphorylate and inactivate Cdh1 

(Zachariae et al., 1998). APCCdh1 reciprocally contributes to Clb2 degradation amongst 

other mitotic cyclins (Burton et al., 2001; Hendrickson et al., 2001; Pfleger and 

Kirschner, 2000; Schwab et al., 2001). Inactivation of Cdh1 allows the accumulation of 

Clb2, which turns off MBF- and SBF-dependent transcription and creates an active 

APCCdc20 complex. Representing a feedback loop, APCCdc20 ubiquitinates both Clb2 and 

Clb5, targeting them for destruction (Glotzer et al., 1991; Irniger & Nasmyth 1997; 

Shirayama et al., 1999). This is significant as the levels of cyclins that promote mitosis 

(Clb2) and that inhibit G1 proteins (Clb5) are reduced towards the end of M phase, 

promoting a G1-stable state for the ensuing cell cycle.  
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Figure 1.4. Fluctuations in cyclin levels mediate ordered passage through the cell 
cycle. Cln3 levels increase in early G1 leading to the transcription of Cln1 and Cln2 (G1 
cyclins). This overcomes a threshold that allows the accumulation of Clb5 and Clb6, 
which are responsible for entry into S phase (S cyclins). Clb3 and Clb4 promote spindle 
assembly while Clb1 and Clb2 contribute to passage into and through mitosis (G2/M 
cyclins). Adapted from Nasmyth, 1996. 
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Through the Cell Cycle. Cln3 levels increase in early G1 leading to the 
transcription of Cln1 and Cln2 (G1 cyclins). This overcomes a threshold that 
allows the accumulation of Clb5 and Clb6 which are responsible for entry into 
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Clb2 contribute to passage into and through mitosis (G2/M cyclins). Adapted 
from Nasmyth, 1996. 
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1.2.4 Cell Cycle Checkpoints 

The timely and thorough replication of the genome as well the separation of mother and 

daughter cells with identical genetic information, are processes careful overseen by the 

cell’s regulatory machinery. Checkpoints represent a network of surveillance mechanisms 

present at various junctures throughout the cell cycle. If damage to the DNA is detected 

at these points in the cell cycle, repair mechanisms are brought into action to restore 

genomic integrity and to ensure that mutations are not propagated to the next generation 

(reviewed in Elledge, 1996 and Hartwell and Weinert, 1989). DNA damage can occur by 

naturally occurring errors in replication or by exogenous insults. Robust checkpoint 

mechanisms halt cell cycle progression until adequate repair can take place. Multiple 

protein factors have been well characterized to be chiefly responsible for ensuring the 

repair of DNA and the stabilization of stalled replication forks, depending on the nature 

of the checkpoint arrest (Nyberg et al., 2002). Although the checkpoint programs are 

functionally conserved in budding yeast, fission yeast as well as higher eukaryotes, this 

section will focus on the checkpoint functions of Saccharomyces cerevisiae. 

The two main types of DNA damage are double-strand breaks (DSBs) and the 

more common single-strand breaks (SSBs). Left untreated, they lead to genomic 

instability and errors in completing replication and/or mitosis (reviewed in Cann and 

Hicks, 2007 and Ismail et al., 2005). This includes the segregation of damaged 

chromosomes with a faulty genetic blueprint. Checkpoints are invoked when DNA 

damage is sensed. Their function is to halt the cell cycle, promote repair and aid in 

recovery once the damage has been successfully dealt with (reviewed in Harrison and 

Haber, 2006). A host of protein factors mediate checkpoint responses, categorized as 
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sensors, transducers and effectors. Sensors, aptly named, detect damage, relay the signal 

via transducer-mediated signal cascades to effectors, which are usually kinases that 

activate or inactivate downstream targets (reviewed in Kolodner et al., 2002). 

Endogenous cellular processes such as oxidation (in the form of reactive oxygen 

species), alkylation of base pairs and hydrolysis can themselves cause damage to the 

DNA. Extrinsic insults in the form of ultraviolet (UV) light, ionizing radiation (IR) and 

alkylating agents are potent genotoxic threats (reviewed in Hakem, 2008). Exposure to 

these as well as chemical agents such as bleomycin can cause single-stranded as well as 

double-stranded breaks in the DNA. SSBs often result in replication fork collapse and 

generation of a double-strand break. Genotoxic agents such as methyl methanesulfonate 

(MMS), phleomycin and campothecin exclusively produce DSBs, which are processed by 

several mechanisms including non-homologous end joining (NHEJ) and homologous 

recombination (Chu, 1997; reviewed in Borde and Cobb, 2009). Because each successive 

event in the cell cycle in dependent on the completion of a previous step, a system to 

monitor the successful execution of these steps, ensuring fidelity of the genome at various 

points exists. Three temporally separated checkpoints are invoked at disparate points 

during the cell cycle, giving rise to the G1/S, intra-S and G2/M DNA damage checkpoints.  

Due to the G1/S checkpoint response, cell cycle arrest occurs before entry into S 

phase if damage is detected in G1, even past START. An elaborate coordination of 

checkpoint factors occurs as a result, with many of the same proteins charged with 

repairing damaged DNA during S phase in response to unreplicated DNA and production 

of lesions, representing the intra-S phase checkpoint (Longhese et al., 1998, Zegerman 

and Diffley, 2010). Finally, before segregation of the chromosomes, genomic integrity is 



 42 

once again verified at the G2/M checkpoint. A second S-phase specific checkpoint is 

activated when the process of DNA replication is impeded by lesions, stalled forks or 

other physical perturbations to the normal structure of the DNA or to the replication 

machinery. This is called the DNA replication checkpoint (Lopes et al., 2001). Lastly, 

before cell division, the spindle assembly checkpoint arrests the cells if chromosomes 

have not been properly segregated (Visintin et al., 1999). 

  In order to study these checkpoints, various genotoxic agents are used to 

precipitate DNA damage for experimental purposes. Amongst the most well known and 

employed for studying these processes are hydroxyurea (HU), a ribonucleotide reductase 

inhibitor and MMS, mentioned above. The former reduces the pool of nucleotides 

causing fork stalling (discussed in Koç and Wheeler, 2004), while MMS induces DNA 

lesions, which may be further exacerbated when left unrepaired (Lundin et al., 2005). 

These threats are corrected by the repair mechanisms described below.  

 

DNA Damage Checkpoints 

The two main sensors at the apex of the G1 and intra-S DNA damage checkpoints are 

Mec1 and Tel1 (ATM and ATR in higher eukaryotes). Mec1 has a predominant role in 

sensing damage and relaying the checkpoint signal downstream (Friedel et al., 2009; 

Navadgi-Patil and Burgers, 2009). In the event of DNA damage, single-stranded (ss) 

DNA is generated as a result of an SSBs or DSBs. The recruitment of the ssDNA-binding 

protein RPA to coat these lesions follows, a process mediated by its interaction with 

Ddc2. Mec1 is regulated by Ddc2, and recruited to sites of DNA damage through the 

Ddc2-RPA association (Rouse and Jackson, 2002; Zou and Elledge, 2003).  
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The 9-1-1 checkpoint clamp (Ddc1-Mec3-Rad17, so named after the mammalian 

homologues Rad9-Rad1-Hus1) is loaded onto sites of DNA damage where it recruits 

additional repair factors. This is promoted by the phosphorylation of Ddc1 by Mec1, 

which also phosphorylates RPA and histone H2A. Although a target of Mec1, the 9-1-1 

clamp is an activator of Mec1, as is the adaptor protein Dpb11 (Majka et al., 2006; 

Mordes et al., 2009; Navadgi-Patil and Burgers 2008, 2009 and 2011). DNA damage 

induces phosphorylation of Ddc1, which only then associates with Dpb11 (Furuya et al., 

2004; Puddu et al., 2008). Mec1 is auto-activating in that the Ddc1-Dpb11 interaction it 

stimulates strengthens its own recruitment to the chromatin. H2A phosphorylation 

occurring as a result then promotes recruitment of the mediator protein Rad9 

(Giannattasio et al., 2005; Huyen et al., 2004; Nakamura et al., 2004).  

Rad9 has been shown to be alternatively recruited by a complex formed by 9-1-1 

and Dbp11, an interaction dependent on phosphorylation of Rad9 by CDK (Furuya et al., 

2004; Pfander and Diffley, 2011; Puddu et al., 2008). In either case, activation of Rad9 

by Mec1 ensues, attracting the Rad53 kinase, which binds to Rad9 phosphorylated 

residues through its characteristic FHA domains (Schwartz et al., 2002). Through its 

Rad9 association, Mec1 phosphorylates Rad53, activating it (Gilbert et al, 2001; 

Sweeney et al., 2005; Usui et al., 2009). As a key checkpoint effector, active Rad53 is 

then localized to its multiple downstream substrates. These interactions are depicted in 

Figure 1.5. 
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Figure 1.5. Schematic of the factors involved in the checkpoint response. Ddc2 and 
Dpb11 activate the sensor kinase Mec1. This results in Mec1 phosphorylation of Ddc1 of 
the 9-1-1 complex, histone H2A and Rad9. Mec1 is localized to damaged chromatin via 
the interaction between Ddc2 and RPA, which binds to single stranded DNA created as a 
result of damage. Dbp11 and the active 9-1-1 complex interact to strengthen the activity 
of Mec1 at sites of DNA damage as well as to recruit Rad9 via a CDK-dependent 
mechanism. Rad9 then recruits the Rad53 kinase, subsequently phosphorylated by Mec1. 
Rad53 when activated is capable of auto-activation, enhancing the checkpoint response. 
Downstream targets in this pathway such as Rad9 and Rad53 are also activated by 
another sensor kinase, Tel1, however the intermediary steps involved in activating these 
targets is not shown. Interactions are shown in solid black arrows (mutual recruitment by 
double-ended arrows), while orange arrows indicate phosphorylation. Circles marker by 
“P”s represent phosphorylation of the corresponding protein. Adapted from Pfander and 
Diffley (2011). 
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MEC1 mutants show defects in cell cycle arrest and response to DNA damage. Initial 

studies demonstrated that the tel1Δ mutant does not confer sensitivity to DNA damage or 

inhibition of DNA replication, however mec1tel1 double mutants showed a more dire 

phenotype than mec1 mutants alone (Morrow et al., 1995; Sanchez et al., 1996; Weinert 

et al., 1994). Later investigations implicated Tel1 as having a more prominent role in 

regulating damage at telomeres, however like Mec1, its deletion resulted in gross 

chromosomal rearrangements suggesting that the two kinases are in fact functionally 

redundant for at least some forms of DNA damage (Craven et al., 2002; Myung et al., 

2001). Although Tel1 acts in a parallel pathway to Mec1, activating similar effectors such 

as Rad9 and Rad53, it does not require activation by Ddc1 or Dpb11. Rather, its 

activation and ability to orchestrate DNA damage repair is contingent upon its association 

with a complex comprised of the factors Mre11, Rad50 and Xrs2 (Giannattasio et al., 

2002; Nakada et al., 2003).  

At the G2/M checkpoint, similar mechanisms are invoked although additional 

proteins have been implicated. A general model posits that Rad9 and Rad24 detect DNA 

damage with the signal being transduced to Mec1 and consequently the effector kinases 

Rad53 and Dun1. Pds1, an anaphase-metaphase regulator implicated in the mitotic 

spindle checkpoint is similarly activated by Mec1. Cells are prevented from entering 

mitosis until DNA damage is repaired. The repair mechanisms at this checkpoint are 

similar to those of the G1/S and intra-S checkpoints, however involve two parallel 

pathways – a Rad53/Dun1 pathway where each kinase has an equal contribution towards 

the G2/M arrest and a pathway solely involving Pds1 (reviewed in Gardner et al., 1999). 
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DNA Replication Checkpoint 

The DNA replication checkpoint is similar to the DNA damage checkpoint in the 

commonality of factors comprising the pathway. Nevertheless some differences exist 

such as the identity of the Mec1-activating factor. Whereas Rad9 performs this function 

in the DNA damage pathway, Mrc1, a replication fork member activates Mec1 at stalled 

replication forks (Alcasabas et al., 2001). This highlights another key difference between 

the two mechanisms – repair during replication takes place at initiated forks that have 

stalled.  The fact that Mrc1 moves with the fork precludes the requirement for its 

localization to sites of damage (Katou et al., 2003; Osborn and Elledge, 2003). While the 

Mec1 activators Ddc1 and Dpb11 can perform the same function as they do in DNA 

damage repair, it has been suggested that they are not essential for Mec1 activation at 

stalled forks (Navadgi-Patil and Burgers, 2009; Puddu et al., 2011). Berens and Toczyski 

(2012) demonstrated that Mec1 is able to phosphorylate Rad53 in the absence of the 

activating factors Ddc1 and Dpb11. Mrc1, in high concentrations at stalled forks is also 

phosphorylated by Mec1 (independent of Dpb11 and Ddc1), further promoting Rad53 

association. This represents positive feedback as Rad53 accumulation promotes 

additional activation of Mrc1 by Mec1. 

Active Rad53 exerts its checkpoint function in a number of ways. Genes encoding 

DNA repair proteins are transcribed at a greater rate. This occurs primarily through the 

inhibition of the gene suppressor Crt1 by Rad53, Mec1 and Dun1 (Huang et al., 1998). 

The firing pattern of the numerous origins of replication is temporally divided into three 

categories – early-, middle- and late-firing. The inhibition of late-origin firing in cells 

exposed to DNA-damaging agents has been well documented (Santocanale and Diffley, 
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1998; Shirahige et al., 1998; Tercero and Diffley, 2001). The rate of fork progression is 

reduced in response to DNA damage (Paulovich and Hartwell, 1995), however this may 

be an indirect result of structural damage impeding the fork as opposed to a direct 

checkpoint-induced slowdown. A rationale for late-origin inhibition by the checkpoint is 

the potential repository of intact, unfired and competent origins, should stalled forks 

collapse (Santocanale and Diffley, 1998). The mechanism for origin-firing inhibition has 

been elucidated by Zegerman and Diffley (2010) who showed that Rad53 targets the 

replication proteins Dbf4 and Sld3. Hypersensitivty to genotoxic stress is observed in 

Dbf4 mutants and those of the kinase it regulates, Cdc7 (Pasero et al. 1999 and 2003; 

reviewed in Sclafani 2000). Sld3 phosphorylation renders it unable to interact with its 

replisome partners, Cdc45 and Dpb11.  

The DNA replication checkpoint thus performs its role by slowing late origin 

firing, reducing the rate of fork progression and mediating repair gene transcription. Its 

most critical function, however is postulated to be the stabilization of replication forks 

through Mec1 and Rad53 activity (Branzei and Foiani, 2009; Lopes et al., 2001; 

Paulovich and Hartwell, 1995) and their subsequent restart upon damage repair, mediated 

by Rad53 and the Dbf4-dependent kinase complex, DDK (Jones et al., 2010; Szyjka et 

al., 2008; Varrin et al., 2005). A recent study by de Piccoli et al. (2012) challenges the 

inference that the checkpoint kinases Rad53 and Mec1 stabilize forks by maintaining 

integrity of the replisome (the assembly of proteins that unwinds and replicates DNA at 

replication forks). Their roles in fork stability remain to be elucidated. 

An S. pombe model suggests that upon fork arrest, the helicase activity of the Mcm2-7 

complex is uncoupled from its role in further DNA replication such that it creates a small 
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amount of ssDNA. RPA binds this, triggering the localization of Rad53 via the 

mechanisms previously described. Phosphorylation of Mcm2-7 occurs contributing to 

one of several fork stabilization mechanisms (Forsburg, 2008).  

Resumption of replication occurs after the DNA damage has been repaired. This 

fork recovery is essential for genomic stability and successful completion of S phase 

(reviewed in Tourrière and Pasero, 2007). Replication fork stalling also occurs in an 

unperturbed S phase (Deshpande and Newlon, 1996) and a role for Dbf4 in replication 

fork restart may aid cells in overcoming intrinsic as well as extrinsic damage (Varrin et 

al., 2005). As discussed, during an S phase checkpoint, Rad53 phosphorylates Dbf4, 

removing it from chromatin (Pasero et al., 2003; Weinreich and Stillman, 1999; 

Zegerman and Diffley, 2010). This is dependent on a physical interaction between Rad53 

and the N-motif of Dbf4 (Duncker et al., 2002). A Dbf4 C-terminus mutant showed 

sensitivity to long-term exposure to MMS and HU concomitant with a weakened 

interaction with Mcm2 (Jones et al., 2010). No effect on viability was observed, however 

when exposed to short term doses of the genotoxic agents raising the possibility that Dbf4 

plays a role in fork restart via its interaction with Rad53 and Mcm2. This might occur by 

resumption of its role in initiation, via DDK phosphorylation of Mcm2-7 or other targets, 

identified in vitro such as Cdc45 and pol α (Nougarède, Della Sera et al., 2000; 

Weinreich and Stillman, 1999). Other hallmarks of the checkpoint, such as the 

phosphorylation of histone H2A may increase accessibility of factors to chromatin to aid 

in fork restart (Cobb et al., 2005).  
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Spindle Assembly Checkpoint 

The mitotic spindle assembly checkpoint is invoked by improper or lack of attachment of 

chromosomes to the spindle. The checkpoint protein Mad2 inactivates APCCdc20 

preventing the cell from premature mitotic exit (Hwang et al., 1998; reviewed in Amon, 

1999). Correct chromosome alignment ensures proper spindle attachment, which triggers 

the exit from the nucleolus of the phosphatase Cdc14, normally sequestered by a 

competitive inhibitor and regulator of anaphase, Net1. This release is promoted by active 

APCCdc20, representing its function in the exit from mitosis (Jaspersen et al., 1999; Shou 

et al., 1999; Visintin et al., 1999). APCCdc20 stimulates the Tem1 GTPase-dependent 

activation of Cdc15 kinase, which in turn precipitates the release of Cdc14 via Net1 

phosphorylation (Rock and Amon, 2011; Visintin et al., 2003). Cdc14 acts on targets 

such as Esp1 (discussed earlier), marking the end of the mitotic exit network (MEN).  

The G1-specific transcription factor Swi5 is kept inactivated by Clb2-dependent 

phosphorylation (Nasmyth et al., 1990). Once Clb2 levels have been reduced and Cdc14 

levels rise via the mechanisms described above, Swi5 and Cdh1 are active, CDKs are 

inhibited and CKIs are allowed to accumulate creating conditions ripe for a new G1-phase 

(Visintin et al., 1998). 

 

 

 

 

 

 



 50 

1.3 DNA Replication 

1.3.1 Overview 

A highly complex regulatory system controls passage from START through S phase, cell 

division and eventually sets the stage for a new G1 phase. Once cells commit to division, 

passing the “point of no return”, i.e. START, an ordered set of molecular events is 

initiated to accomplish the following: 

1) Identification of genomic loci from which replication forks will arise, known as origins 

of replication 

2) Establishment of a multi-protein molecular machine tasked with loading the DNA 

helicase at origins 

3) Activating the helicase, thus promoting unwinding of the DNA 

4) Facilitating the action of DNA polymerases, which travel with replication forks with 

associated factors to faithfully replicate the entire genome 

5) Preventing these steps from recurring until the next G1 phase in order to avoid copying 

the DNA more than once (thus maintaining one copy of the genome per cell) 

The details of this cellular program are described below. 
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1.3.2 Origins and the pre-Replicative Complex 

In eukaryotes, a functionally-conserved heterohexameric protein complex, ORC (Origin 

Recognition Complex), acts as a selector for origins of DNA replication (Dutta and Bell, 

1997; Bell and Stillman, 1992; Li and Herskowitz, 1993; Aparicio et al., 1997 and 

Tanaka et al., 1997). While this selection process is poorly understood in higher 

eukaryotes, budding yeast ORC acts in a highly DNA-sequence-specific manner. Regions 

known as autonomously replicating sequences (ARSs) are target sites for the binding of 

this complex. Each contains a highly conserved 11 bp ARS consensus sequence (ACS or 

A-element) distinguishing budding yeast from other eukaryotes in that its origins are 

highly sequence-specific. The ARS acts as the binding site for ORC, which associates 

with chromatin throughout the cell cycle (Aparicio et al., 1997; Liang and Stillman, 

1997). ORC bound to origins serves as a scaffold for the association of a number of 

additional replication factors, culminating in the formation of the pre-replicative complex 

or pre-RC (Figure 1.6). Although only Orc1-5 are essential for DNA binding (Lee and 

Bell, 1997), Orc6 is essential for cell viability (Li and Herskowitz, 1993) and plays a role 

in maintaining the pre-RC in late G1 (Chen et al., 2007; Semple et al., 2006).  The protein 

encoded by the CDC6 gene is also essential and is required for initiation via its crucial 

role in loading the heterohexameric MCM (minichromosome maintenance) complex onto 

origin DNA (Aparicio et al., 1997; Bowers et al., 2004 and Speck et al., 2005).  

The six subunits, Mcm2-7 form an active complex that acts as the replicative 

helicase (Labib and Diffley, 2001; Tye and Sawyer, 2000). Formed in the cytoplasm, the 

complex is co-transported to the nucleus with Cdt1 and is recruited to the pre-RC 

(Nishitani et al., 2000; Tanaka and Diffley, 2002; Wu et al., 2012). This is promoted by a 
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direct interaction between Orc6 and Cdt1, representing the essential function of Orc6 

(Chen et al., 2007).  

In relatively high abundance, only a fraction of Mcm2-7 complexes are recruited 

to origins (Donovan et al., 1997; Liang and Stillman 1997; Mendez and Stillman, 2000) 

and an even more restricted subset participate in replication forks (Edwards et al., 2002; 

Gambus et al. 2006; Ge et al., 2007). While approximately twenty MCM complexes are 

recruited per origin, between two to four are tightly “loaded” to subsequently unwind the 

DNA bidirectionally and provide access to the DNA polymerases. The establishment of a 

pre-RC with loaded Mcm2-7 complexes at an origin designates it as being “licensed” for 

initiation (Bell and Dutta, 2002).  
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Figure 1.6. Assembly of the pre-replicative complex in G1 phase. ORC binds to origin 
sequences and promotes the association of Cdc6. Heptamers of Cdt1·Mcm2-7 bind via 
the interaction between Cdt1 and Orc6. Mcm2-7 complexes are reiteratively loaded 
through multiple ATP hydrolysis driven steps leading to the displacement of Cdt1. The 
association versus tight loading of the Mcm2-7 complex is depicted. Once a head to head 
loading of two MCM complexes occurs, the origin is said to be licensed. The factors 
comprising this structure, i.e., ORC, Cdc6 and Mcm2-7 constitute the pre-replicative 
complex (pre-RC). Sld3 and Cdc45 associate with early but not late licensed origins. 
Adapted from Sclafani and Holzen, 2007. 
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Early examinations of helicase and DNA stoichiometry suggested that four MCM 

complexes are loaded at each origin (Bowers et al., 2004). Further studies, however 

established the commonly accepted view that two hexamers are loaded onto origins in 

opposing orientations and this constituted the necessary and sufficient quantity of 

helicase to initiate replication at an origin (Ervin et al., 2009; Remus et al., 2009). 

Loading implies encirclement of DNA and a robust association resistant to salt washing, 

which removes loosely bound proteins, including Cdc6 and ORC (Donovan et al., 1997; 

Edwards et al., 2002; Rowles et al., 1999). The loading step itself requires a stepwise 

ATP-hydrolysis dependent mechanism involving Cdc6 and ORC. Randell et al. (2006) 

showed that ATP hydrolysis by Cdc6 directs tight association of the first MCM complex 

to origins, presumably by displacing Cdt1 and stabilizing the helicase on the DNA. A 

second ATP hydrolysis-driven step is mediated by ORC and is required for the tight 

loading of the second MCM hexamer. This has been described as a dynamic process as 

Cdt1 tethered to origins cannot load multiple MCM complexes. Its displacement from 

and ostensibly its re-association with the pre-RC machinery at multiple origins are 

requisite for continued reiterative MCM loading in late G1 (Chen et al., 2007). This 

dynamic requirement for pre-RC factors after initial MCM loading extends to other pre-

RC factors (Semple et al, 2006; Aparicio et al., 1997, Gibson et al., 2006). 

Cdc6 and Orc1 exhibit extremely high amino acid sequence similarity and are 

both members of the AAA+ family of proteins, as are Orc4, Orc5 and all of the Mcm2-7 

subunits. Comparable groups of interacting proteins, such as those involved in the 

association of the PCNA ring or the bacterial DNA helicase C with DNA (the RFC and γ 

complexes, respectively) are likened to a clamp-loading mechanism (Davey et al., 2002; 
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Neuwald et al., 1999). Common possession of highly conserved ATP-binding (Walker A) 

and ATP-hydrolysis (Walker B) domains bestow clamp loaders with the ability to act as 

molecular architects, altering the conformations and structures of larger molecules. 

Activation of one or more AAA+ proteins in such a complex often leads to ATP-

hydrolysis in an adjacent member, e.g., Orc1 acts through an Orc4 arginine finger 

(Bowers et al., 2004). The ORC-Cdc6 dynamo is thought to act in this sense, as a clamp 

loader. Its primary role is the opening of MCM rings and their positioning such that they 

may subsequently close, encircling origin DNA (reviewed in Sclafani and Holzen, 2007 

and Stillman, 2005). 

 

1.3.3 Initiation of DNA Replication 

As previously described, at the core of the switch-like regulation of the cell are cyclins. 

G1 cyclins modulate cell sizing and promote expression of S phase cyclins. The S phase 

B-cyclins, Clb5 and Clb6 activate the Cdc28 kinase for a role in replication initiation 

(Figure 1.7). While both of these Clbs are implicated in the steps that trigger origin firing 

and its control, they have functionally overlapping roles. While Clb6-Cdc28 is able to 

initiate replication in the absence of Clb5, it requires all Clns and results in a prolonged 

S-phase due to inefficient firing of late origins. Conversely, a cln1Δcln2Δcln3Δ mutant 

overexpressing Clb5 is capable of proper and timely replication initiation (Nasmyth, 

1996; Schwob and Nasmyth, 1993). As discussed, because Cdc28 must be associated 

with one of many cyclins to form an active complex, it is commonly referred to as Cdk1 

or simply CDK (cyclin-dependent kinase) in its active form. When this notation is used, it 
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generally (and exclusively in this thesis) refers to the kinase bound to its regulatory cyclin 

subunit. 

While there exist roughly 12,000 potential ORC-binding sites in the budding yeast 

genome, only about 332 of these act consistently as active origins (Nieduszynski et al., 

2006; Pessoa-Brandao and Sclafani, 2004; Raghuraman et al., 2001; Yakubi et al., 2002). 

Origins are classified as being early-, middle- and late-firing according to their temporal 

pattern of activation. One interesting characteristic of the replication process is that pre-

RCs are set up at all of the 300-500 predicted origins (by sequence) by the end of late G1 

(Raghuraman et al., 2001; Yakubi et al., 2002). The firing of a particular origin, however 

is dependent upon the association of another group of proteins consisting of Cdc45, Sld2, 

Sld3, Dpb11 and the GINS complex. This is engendered by the phosphorylation of Sld2 

and Sld3 by Clb5-Cdc28, which promotes their interaction with the tandem BRCT repeat 

protein, Dpb11 (Tak et al., 2006; Tanaka et al., 2007; Zegerman and Diffley, 2007). This 

represents the essential role of CDK in DNA replication initiation. Phosphorylated Sld2 

and Sld3 along with Dpb11 associate with the GINS (Go Ichi Ni San) complex as well as 

Cdc45 (Labib and Gambus, 2007; Takayama et al., 2003). As a result, a trimeric complex 

formed by Cdc45, Mcm2-7 and GINS, known as CMG is stabilized at pre-RCs, which 

are now referred to as pre-initiation complexes (pre-ICs). Upon origin firing, CMG 

travels with the replication fork, unwinding the double helix ahead of it and activating 

DNA polymerase, pol ε (Pacek et al., 2006; Ilves et al., 2010; Gambus et al., 2006). This 

is illustrated in Figure 1.7. 

The formation and activation of primed origins also depends on the Dbf4-

dependent kinase complex, Dbf4-Cdc7. DDK phosphorylates members of the MCM 
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complex, triggering DNA unwinding. While levels of Cdc7 remain constant throughout 

the cell cycle, its regulatory subunit, Dbf4 fluctuates such that it peaks at the G1/S 

boundary, creating an active DDK (Cheng et al., 1999; Nougarède et al., 2000). While 

both Mcm4 and Mcm6 phosphorylation is DDK-dependent, Mcm4 is thought to be the 

essential target of DDK. Mcm4 possesses a domain that inhibits helicase activation. (Cho 

et al., 2006; Francis et al., 2009; Hardy et al., 1997; Lei et al., 1997; Masai and Arai, 

2002; Masai et al., 2006; Sheu and Stillman 2006 and 2010). Thus the essential role of 

DDK is to phosphorylate residues in this domain, alleviating inhibition of the helicase. 
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Figure 1.7. Initiation of DNA replication. The activation of the Dbf4-dependent kinase 
(DDK) and the cyclin-dependent kinase (CDK) result in the phosphorylation of their 
essential susbstrates (depicted by circles marked with “P”s). This leads to the association 
of a complex comprising Sld2, Sld3, Dpb11 and GINS. Phosphorylation of MCM 
subunits causes a conformation change leading to the stable formation of a Cdc45-Mcm2-
7-GINS complex. This stabilizes DNA polymerase ε at the origin. Two replication forks 
are established which move outward, away from one another, the GINS complex 
migrating with each one as polymerase synthesizes nascent strands of DNA. Sld2, Sld3 
and Dbp11 do not migrate with the replication fork and are displaced from the fired 
origin. Adapted from Labib, 2010. 
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Of the 300-500 origins that fire per cell per cell cycle, only a subset fire at the 

G1/S transition, with some remaining dormant. The mechanisms that regulate the 

temporal activation pattern are of great interest and a positive correlation between 

trancriptionally-active regions and those containing early-firing origins has been 

observed (Diller and Raghuraman, 2004). The opposite is true for late origins. 

Additionally, the accessibility of the chromatin at a given origin has been suggested to be 

a major determinant of its timing profile (Friedman et al., 1996; Mechali, 2010). An 

example of this is the modification of chromatin structure by inhibiting deactylation and 

thus rendering the DNA accessible to the replication machinery. This induces typically 

late origins to fire prematurely (Aparicio et al., 2004; Vogelauer et al., 2002). The pattern 

of origin firing appears to be established in late M or early G1 phase (Dimitrova and 

Gilbert, 1999; Raghuraman et al., 1997; Wu and Gilbert, 1996).  

Sld3, Sld7 and Cdc45 associate with early origins in G1 (Figure 1.6), before CDK 

levels rise (Heller et al., 2011; Kamimura et al., 2001; Nougarède, 2000; Muramatsu et 

al., 2010; Tanaka et al., 2011). Once cells enter S-phase, the recruitment of limiting DDK 

to origins and the CDK-dependent association of CMG promote sequential origin firing. 

This is thought to specify their temporal firing pattern (Bousset and Diffley, 1998; 

Donaldson et al., 1998; Patel et al., 2008; Labib, 2010). Unlike CMG, Sld2, Sld3, Sld7 

and Dpb11 no not travel with the replication fork as shown in Figure 1.7 (Kanemaki and 

Labib, 2006; Masumoto et al., 2000; Tanaka et al., 2011). 
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1.3.4 Inhibition of Rereplication 

In order to maintain genomic stability and prevent over- or under-replication of the 

genome, the cell has evolved mechanisms to ensure that DNA replication occurs exactly 

once per cell cycle. This is paramount to avoid loss of cell viability and/or genome 

integrity (Green and Li, 2005). Once an origin fires, a new pre-RC cannot be established 

until the next cell cycle due to the inhibitory effects of S-CDKs, which peak during S 

phase and remain high until the middle of mitosis. It is in this respect that CDKs possess 

a somewhat dichotomous role in regulating cell cycle dynamics. As described above, they 

are essential for activation of origins, but are equally implicated in the block to  

re-replication. The mechanisms that block re-replication act by preventing helicase 

loading outside of G1 (Arias and Walter, 2007). This amounts to antagonizing pre-RC 

assembly once CDK levels are sufficiently high, i.e. just after passage into S phase.  

Dutta and Bell (1997) showed Cdc6 to be a substrate for CDK phosphorylation. This 

leads to targeting of the protein by the SCFcdc4 complex to the proteasome, by which it is 

degraded (Drury et al., 1997; Elsasser et al., 1999). Interestingly, Cdc6 is, in turn, able to 

inhibit certain CDKs, thus providing a mechanism by which overexpression of the former 

can lead to defects in other processes in which CDKs are implicated such as exit from 

mitosis (Bueno and Russell, 1992 and reviewed in Honey and Futcher, 2007).  

Orc2 and Orc6 are phosphorylated in vivo by CDKs (Green et al., 2006; Nguyen 

et al., 2001; Tanny et al., 2006; Vas et al., 2001). Orc6 is directly bound by Clb5-Cdc28 

at an “RXL” motif near its N-terminus (Wilmes et al., 2004). Chen and Bell (2011) 

showed the phosphorylation of ORC by CDK inhibited helicase loading in vitro. Because 

Orc6 is required to recruit Cdt1 (and hence Mcm2-7) to origins (Chen et al., 2007), 
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abrogating this interaction results in the replication defect. Two Cdt1 binding sites were 

found on Orc6, one N-terminal and the other C-terminal (Chen et al., 2007). A model 

proposed by the work presented in Chen and Bell (2011) and Takara and Bell (2011) 

posits that the MCM double hexamer loaded at origins is a product of recruiting two 

Cdt1�Mcm2-7 heptamers by single Orc6. Because Orc2 mutants only show rereplication 

defects when combined with one or both Orc6 mutations, it is believed that Orc6 is the 

primary target of CDK inhibition.  

Mcm2-7 localization to the nucleus during G1 is fundamentally important for 

constructing the replisome. An integral component of replication forks, the helicase 

moves with a given fork, allowing processive DNA replication by the polymerases. Once 

it has completed its role and is released from the DNA, it is exported from the nucleus via 

a CDK-dependent mechanism (Labib et al., 1999; Nguyen et al., 2000 and Tanaka and 

Diffley, 2002). This was shown to be brought about through the phosphorylation of the 

nuclear export signal of Mcm3 (Wu et al., 2012). The cell thus possesses several 

redundant mechanisms to ensure the prevention of rereplication since each of these CDK-

inhibited factors is required for initiation (Green and Li, 2005; Nguyen et al., 2001).  
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1.4 Biological Systems Modeling 

 

1.4.1 Overview 

“Any darn fool can make something complex; it takes a genius to make something 

simple.” 

― Pete Seeger 

 

The study of biological systems strives to present a coherent and intuitive picture of a 

given element, be it the digestive pathway in humans or the neural networks of the sea 

urchin. A major tactic, as practiced through textbook learning is the simplification of the 

given biological process into its central constituent parts and its overall function. The 

metabolites in a pathway, the flux of macromolecules through a cascade and the 

relationship between the components produce a “cartoon” version which suffices in 

conveying the necessary information to objectively understand the system. As proposed 

by Tyson et al. (2002), such models provide a relatively qualitative comprehension 

without testing the rigor and fidelity of the observations claimed. Molecular biology 

provides us with experimentally-derived theories defining the mechanistic involvement 

of system components. The representative diagrams produced as a result of this process 

do not quantitatively examine the process in question from a holistic perspective. 

Discrete information about a system is systematically collected and used to construct a 

testable working model that investigates the claims made by pre-existing biological data. 

Thus, we can look to modeling of a biological entity for two reasons: 1) For a more 

comprehensive understanding of the fundamental pathways, circuitry and molecular 
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activities that govern its function and 2) To exploit this information with the aim of re-

engineering it and/or utilizing its discrete mechanisms as components in a synthetic 

system. 

With the advent of high-throughput techniques for analysing protein-protein 

interactions (e.g. Yeast-two hybrid assay; Ito et al., 2001; Uetz, 2002) and genome-scale 

“interactomes” (Tyers and Mann 2003), the modeling concept of networks has emerged. 

S. cerevisiae, through its ease of molecular manipulation has produced a plethora of 

studies establishing such protein interaction networks. The combination of deletion 

mutant (Winzeler et al., 1999) and protein overexpression (Sopko et al., 2006) strain 

collections with sensitivity profiling (Parsons et al., 2006) and synthetic lethality screens 

(Tong et al., 2001) has led to great efforts in defining protein networks of apparent 

functional relevance (Uetz et al., 2000; reviewed in Kuroda et al., 2006). Techniques 

such as 2D gel electrophoresis and its unique manipulation, 2D-Differential In Gel 

Electrophoresis (2D-DIGE, Tong et al, 2001) allow the high throughput analysis of 

protein data. This has led to significant advances in exploring the proteomic space of 

multiple organisms (e.g. ch. 4 of Alzate, 2009; Cheng et al., 2010; Duncan and 

McConkey, 1982) and specifically in yeast systems biology (e.g., Hu et al., 2003; Perrot 

et al., 1999; Wildgruber et al., 2002). Sub-cellular fractionation and purified sample 

analysis using 2D-DIGE allows the identification of key network players through their 

response to varied cellular environments (El-Bayoumy et al., 2012; Scaife et al., 2010). 

Chapter 4 addresses novel findings contributing to the understanding of the S. cerevisiae 

response to genotoxic stress utilizing a unique combination of cellular fractionation and 

2D-DIGE. 
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The systematic cataloguing of cellular and subcellular molecules typically results 

in the production of a “graph”, representing groups of proteins or genes, which cluster 

together, presumably signifying functional modules. The results from multiple organisms 

often produce interacting clusters each representing disparate functional units of 

hierarchical nature (Ravasz et al., 2002). For the identification of cellular functional 

groups, which might represent a metabolic or signalling pathway, an interaction graph is 

by nature static. In contrast, most processes within a cell that we wish to investigate are 

dynamic, in that their functions are not limited in time and space, thus interaction graphs 

fail to grasp the system’s function in a realistic manner. The regulatory mechanisms that 

dynamically alter binding partners, affinities and spatial distributions render the modeling 

of static graphs inadequate. Instead, mathematical modeling applied to systems which 

have described their components in terms of dynamic function, better convey the 

underlying behaviour. Much like in an electronic circuit that has individual elements 

performing specific but inter-related roles, so too does a “biological circuit”. Feedback 

and regulation, key aspects to both platforms are crucially integrated into this view of 

modeling a cell or groups of cells (Sauro and Kholodenko, 2004). Amalgamating the 

concepts of network graphing and dynamic biological “circuits” produces a more useful 

model for investigating the properties of a biological system (discussed in Palumbo et al. 

2010). 

 While understanding the significance of connectivity amongst interacting factors 

is crucial, identifying yet unknown cellular mechanisms, completing the picture is of 

equal importance.  
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1.4.2 Modeling the Cell 

The cell is an incredibly complex machine equipped with elaborate tools and a regulatory 

framework that promotes its viability and propagation. A vast influx of external stimuli 

arrives at the cell membrane, being processed and transduced to the inner nuclear control 

centre. Also numerous are the internal signals relaying information pertaining to protein 

levels, energy allocation, the monitoring of genomic fidelity, and a virtually endless 

checklist of cellular functions to regulate. Primarily, the cell enacts its program by 

carefully modulating the level of gene expression, protein degradation, macromolecule 

localization, catalytic activations and signal transduction cascades among the many 

processes that are carried out. As articulated by Bray (1995), the requirement of a cell to 

process such vast amounts of information falls under the purview of intricate gene and 

protein networks. Tyson et al. (2002) point to seminal statements regarding the 

perspective of theoretical molecular cell biology (Hartwell et al., 1999), stating that the 

study of this field must reflect two objectives: 1) that complex biochemical pathways be 

accurately described and simulated with highly predictive capabilities and 2) that this 

exploration be based on the determination of how protein-mediated regulatory networks 

control cell function. This is cogent to discussion of the cell cycle given the high degree 

of regulation required and the processes by which protein-based switch-like mechanisms 

permit this. 
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1.4.3 ODE-based modeling 

This topic has been thoroughly discussed in works by Tyson et al. (1996, 2000 and 2001). 

Essentially, a rudimentary circuit describing a set of molecular reactions is converted into 

a series of rate equations. This is interchangeably called a network and is not to be 

confused with an interaction graph. These may be written using Mass Action equations or 

in cases where the interaction involves non-linear kinetics, Michealis-Menten laws, 

Goldbeter-Koshland switches or Hill functions may be used. The choice of equation 

structure depends on understanding the nature and details of the reaction. It is usually 

best to choose the most parsimonious description that doesn’t exclude essential details.  

The changing state, generally over time, of a given variable in the network is described 

by a differential equation. It is classified as an ordinary differential equation (ODE) as the 

dependent variable and its derivatives are written as a function of the single independent 

variable, in this example, time. The set of ODEs thus represent the dynamic network and 

the behaviour of the system is observed by solving them. Of equal importance are the 

structure of the reaction network and the parameters governing the rates of these 

reactions. Specification of parameters may be through direct assignment in cases where 

some a priori knowledge about a particular kinetic reaction is known (e.g. half-life of a 

protein). In other cases parameters are estimated through algorithms that fit the ODE 

solutions to experimental data (exemplified by Sugimoto et al., 2005). Often referred to 

as in silico modeling, the set of ODEs are solved computationally by non-linear 

integrators using assigned parameter values and specified starting conditions. The result 

is a depiction of how each variable (or species) changes over time.  
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Assuming time to be the independent variable, for any given instant, the 

differential equations dictate the state of the system (for our purposes, the concentration 

of a protein species). Each species occupies one dimension in an n-dimensional space, 

where n = total number of species. Considering a single species that navigates through 

this multi-dimensional space, its state is determined by the rate reactions. For each 

incremental advancement in time, the differential equations inform the velocity with 

which the state of the species will change. If the concentrations of a set of proteins over a 

given amount of time cause their rate of change to be zero, the system has achieved a 

stable state. If a change in direction of a given species state (change in concentration) 

causes disruption of global behaviour, the state is unstable. Oscillatory mechanisms in a 

dynamic system often exist, as is the case with the cell cycle, whose regulation is based 

on oscillating concentrations of cyclins. ODE-based models evolve where necessary: they 

serve as an initial analytical tool to survey the mechanistic description of a biological 

process. Provided it fits the experimental constraints, the model can be provisionally 

accepted. Otherwise, further analysis of the mathematical model construction and 

parameter value determination ensues. In some cases, the model may depict an accepted 

understanding of a process accurately, but there remain inconsistencies with experimental 

observations. The model then sheds light on a potentially misconstrued aspect of the 

“cartoon” model. 

Systems involving well-characterized mechanisms consisting of a complex 

biochemical network have largely been studied using an ODE-based approach. This 

reflects the adaptability and robustness of the models produced as modifications to 

parameters and network structure are accomplished with ease. Refinement of the system 
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is produced through adjustment of the reaction network and/or parameter values (de, 

Jong, 2002; Kitano, 2002). While the field of cell cycle modeling has benefitted greatly 

from ODE-based systems, metabolic pathways (Ideker et al., 2001), genetic regulatory 

pathways (Cao et al., 2012; Elowitz and Leibler, 2000; Wang et al., 2011), MAP kinase 

signalling (Orton et al., 2005) and apoptotic pathways (Ryu et al., 2008) are among the 

many other systems that have been explored using this method. 

 

For the purposes of the model described in this dissertation, the modified form of the 

balance equation for representing the complete set of ODEs in this thesis is given by: 

dXi

dt
= Fi (X1,X2,...,XN ) = (vir

+

r=1

M

∑ − vir
− )Rr (X1,X2,...,XN ;kr ), i =1,...,N.

                   
(1) 

, where the non-linear functions  describe the i-th state variable’s change 

in concentration in terms of the differential between its coefficients of production ( ) 

and consumption ( ). The rate reactions (R) are dependent on the substrate 

concentrations and on any kinetic constant natively associated with the reaction (kr).  
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1.4.4 Existing Cell Cycle Models 

Although ODE-based approaches to modeling cellular processes have existed for more 

than four decades (Kauffman and Wille, 1975, reviewed in ch. 10 of Goldbeter, 1996), 

the dearth of molecular data on which to base such models limited their ability to inform 

us about the system. Nevertheless some of the later-to-be-discovered hallmarks of cell 

cycle biology, namely the cyclical nature of its regulatory pathways and proteins were 

represented. A series of studies exploring the oscillatory mechanisms controlling early 

embryonic development in Xenopus laevis incorporated knowledge of biochemical and 

mechanistic features (Hyver and Le Guyader, 1990; Goldbeter, 1991; Norel and Agur, 

1991; Tyson, 1991). It was discovered that the maturation-promoting factor (MPF) 

guides cells towards mitosis, but is inhibited by a CDK. MPF is activated by cyclin and 

its accumulation leads to the degradation of the same cyclin. MPF levels then decrease in 

a CDK-dependent manner, allowing cyclin levels to rise. This produces the oscillatory 

program underlying the characteristic feedback function of the cell cycle. In these studies, 

the concepts of thresholds and time delays in cell cycle control were elucidated. These 

models were improved by introducing a greater number of variables and feedback loops 

(Srividhya and Gopinathan, 2006). The demonstration of a time delay-dependent 

checkpoint arising through an APC-MPF relationship was made, foreshadowing later, 

more complex examinations of this phenomenon. More recently, the switches and 

oscillators that act in modular motifs have been described in a model by Francis and 

Fertig (2012). 

Another discrete feature of the cell cycle is the coupling of cell size and division. 

This was found to be dependent on the shuttling of proteins between the nucleus and 
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cytoplasm that formed a threshold-dependent switch mechanism (Yang et al., 2006). An 

internal clock controls the critical size of the cell at the time of division, regulating the 

G1/S transition. The modulation of this critical size in response to external conditions has 

been modelled (Alarcón and Tindall, 2007; Barberis and Klipp, 2007). Experimental data 

was used to calibrate a model of osmotic shock response in yeast and was able to predict 

the outcomes of different types of perturbations to this system (Klipp et al., 2005). While 

this is not strictly an example of cell cycle modeling, it serves as an example of where 

experimental data informs the model. This is an important strategy in developing a model 

that accurately depicts real-cell conditions and that can predict network behaviour with 

more confidence. 

Chen et al., (2000) provided the initial framework for a comprehensive cell cycle 

model of S. cerevisiae. In this description, the oscillatory character of the cell cycle is 

again highlighted; the cell exists in two stable states – G1 and S/M, each self-enforcing. 

This is postulated to be a function of the dichotomous role of CDKs. While S-cyclins 

activate DNA replication, they inhibit rereplication. Similarly, Clb-dependant activation 

of the APC (leading to passage through Mitosis) results in an active complex that 

destroys Clbs (and thus CDK activity). To construct this model, experimental data from 

the literature was used to specify biochemical constants such as the rates of proteolysis, 

gene expression as well as to determine stoichiometric ratios between interacting 

partners. Ultimately, this data was limited and could not uniformly describe the 

relationships between different modules of the cell cycle. Gene deletion and expression 

level mutants were used to refine the model. The concentrations of nine species 

representing CDKs, CKIs, cell mass and factors involved in budding and spindle 
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formation were followed over the course of the cell cycle. While this model is predictive 

and can account for the biochemically-determined behaviour of the system, a quantitative 

description of its components is missing. 

The seminal work of Chen et al. (2000) is used as the backdrop for a model that 

explores two distinct oscillatory mechanisms driving the cell cycle: replication and 

morphogenesis (Cross, 2003). While it treats them as abstract units, the processes are 

described as being dependent on the cyclical nature of cyclins and consequently the 

active form of Cdc28. Replication is promoted by CDK activity while morphogenesis is 

inhibited by it. Thus a single oscillation of CDK concentration moves cells from 

replication to division and back again though the use of a feedback oscillator and a 

relaxation oscillator, independent of one another. The differential equations used to create 

the model describe discrete modules of the cell cycle. Cross, as in Klipp et al. (2005) uses 

experimental observations to set some parameter values, an exercise that minimizes the 

hypothetical nature of its conclusions about the cell cycle.  

The Chen et al. (2000) model was subsequently appended with an extensive 

description of the M to G1 transition, i.e., the exit from mitosis (Chen et al., 2004). Like 

the original model, a great deal of experimental data was used to infer interaction details 

of key cell cycle contributors. The result was the construction of a robust description of 

the various discontinuous modules that together represent the entire cell cycle. A great 

number of cell cycle mutants (>100) described in the literature were simulated by their 

model and in the majority of cases, good agreement was found. Additionally, by 

revealing instances where disagreement occurred or where there was missing information 

in the literature, Chen et al. (2004) shed light on aspects of the budding yeast cell cycle 
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that must be further addressed, both experimentally and in silico. Again, the quantitation 

of cell cycle factors was lacking, an issue addressed in a further improvement (Barik et 

al., 2010). The levels of key regulatory proteins such as cyclins were integrated, 

producing a dynamic picture of the cell cycle in more concrete terms. Nevertheless the 

module of DNA replication was not explored beyond its consideration as a “black box”, 

without much detail about the process so fundamental to cell proliferation. 

Quantitative models of replication presented by Spiesser et al. (2009), de Moura 

et al. (2010) and Yang et al. (2010) investigate the temporal regulation of genome 

replication. These models investigate how chromosomes are duplicated with only a 

subset of potential origins firing and with the literature-suggested differences in origin 

efficiencies. All three models take into consideration (but incorporate to varying degrees) 

certain characteristics of origins as described by the experiments of Raghuraman et al. 

(2001) and Yakubi et al., (2001): a) origin spacing along the chromosome, b) length of 

the chromosome to be replicated, c) the probability of an origin firing in a given cell 

cycle (efficiency), d) observed firing times for various origins from population averages 

and e) the rate of fork progression. The model of Spiesser et al. uses a Boolean approach 

to reconstitute the temporal firing pattern observed in Raghuraman et al. by assuming that 

the firing program is fixed and deterministic. It was highlighted that only certain 

combinations of fired origins were able to match the experimental data.  

De Moura et al. (2010) and Yang et al. (2010) propose that origin firing most 

likely has a stochastic component. While origin sequences in yeast are highly conserved, 

in higher eukaryotes such as humans and Xenopus and even in fission yeast, replication 

origins are determined by largely random factors. This being the case, the temporal firing 
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program would be expected to be more heterogeneous on a single cell level than 

population averaged experiments imply. The authors give evidence to suggest that origin 

firing may be stochastic in budding yeast as well, as evidenced by the highly variable 

pattern of origin firing on chromosome VI. Both models propose that there is a mix of 

deterministic origin firing with a certain level of stochasticity such that some origins have 

a high probability of firing early (irrespective of the effects of being passively replicated) 

and some have a high probability of firing late, but that the probability distributions of 

firing can overlap. Because population averaged studies cannot distinguish between an 

inefficient early origin and an efficient late origin, it is possible that experimental data 

does not provide a good indication of the levels of stochastic firing. Ultimately if origins 

fire completely stochastically, there lies the risk of having large stretches of unreplicated 

DNA between fired origins (e.g., if they cluster together), referred to as the “random gap” 

problem. Alternatively if the temporal pattern is completely deterministic, cells to not 

have a buffer against perturbations, where one or more high-efficiency origins might not 

fire, leading to incomplete or delayed replication. Yang et al. propose a mechanism to 

reconcile the deterministic and stochastic models of origin firing – origins have an 

intrinsic probability of firing in a given cell cycle. This probability, however increases as 

S phase progresses such that an origin that has not yet fired late in S phase has an 

increased probability of firing compared to earlier on in S phase. 

In order to justify an increasing probability of origin firing through S phase, Yang 

et al. (2010) suggest that the abundance of a limiting factor of DNA replication might 

increase relative to the proportion of unreplicated DNA. They also propose that a 

mechanism for imparting efficiency to origins might be the differential accumulation of 
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MCM complexes at an origin prior to firing. Hence, origins that attract more MCMs 

during early to late G1 would have a greater probability of firing upon entry into S phase.  

The models of Chen et al. (2000, 2004) provided a strong foundation for building 

on the representation of the budding yeast cell cycle. The description of DNA replication 

and its regulation throughout the cell cycle however, remained abstract. The model of 

Brümmer et al. (2010) specifically explores the network of DNA replication initiation. 

While many replication factors are quantitatively modeled, their approach involves fitting 

to chromosomal duplication data, an indirect and less faithful measurement of the factors 

being modeled. Additionally, parameter values were tightly restricted to satisfy 

constraints loosely hypothesized to generate an artificially optimal outcome. Modeling 

DNA replication by directly using data for the key factors involved has not been 

previously attempted. 
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1.5 Project Goals 

 

The proteins that interact in order to initiate DNA replication in S. cerevisiae have been 

well studied in terms of their molecular functions. Mathematical modeling of the 

biochemical details of this network allows a dynamic understanding of its behavior. This 

is useful in being able to predict the inherent characteristics of the model such as kinetic 

rates and relative sensitivities to individual factors. It is also useful for making 

predictions about perturbations to the native state of the system. Existing cell cycle 

models have either abstracted the network of DNA replication initiation in their 

description of the global process or have focused on the temporal dynamics of origin 

firing. The replication initiation model of Brümmer et al. (2010) does include the protein 

factors that comprise the initiation of DNA replication, however the results from this 

study are based on indirect measurements of these proteins factors. Additionally, the 

estimation of model parameters is idealized to fit a set of requirements that are too 

stringent to accurately describe the origin firing program. One of the major goals of this 

thesis was to gather experimental data from live cells for the levels of replication 

initiation proteins through the cell cycle.  

 The next goal was to build a quantitative ODE-based framework for the analysis 

of system behaviour. Using the experimental data gathered, parameters associated with 

the network’s rate reactions would be derived using various global and local search 

techniques. Through model refinement based on matching in vivo observations to model 

simulations, construction of the network was to be revised until a reliable depiction of the 

protein network is obtained. To ensure model robustness, predictions were to be made 
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about the state of the system upon perturbation. These were to be compared to 

experimental observations in the literature as well as to experiments performed in this 

study that mimic the model perturbations.   

 As previously mentioned, a quantitative description of DNA replication was 

lacking in an established model of the entire yeast cell cycle. The next goal was to 

integrate the present model into the established cell cycle model. 

In building a comprehensive model of replication, new elements should 

continually be incorporated. If new mechanisms controlling the regulation of replication 

are discovered or if old ones are called into question, these details should be reflected in a 

revised model. High-throughput proteomic screening is a useful approach to provide 

insight into yet uncharacterized roles for replication proteins or for the identification of 

novel ones. As a proof of principle, a goal of this project was to analyze chromatin 

fractions with 2D-DIGE to identify proteins that are enriched on the DNA. The cellular 

response to DNA damaging agents involves the functional enrichment of proteins on the 

chromatin. To highlight proteins potentially involved in DNA damage response, another 

objective was to use 2D-DIGE to identify differential chromatin association of budding 

yeast proteins in response to genotoxic stress. Once potential candidates were 

highlighted, a final goal was to examine their contribution to genotoxic sensitivity or 

resistance. 
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Chapter 2: Materials and Methods 
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2.1 Yeast Strains 

Strains DY-82, DY-123, DY-128, DY-139, DY-140, DY-142, DY-143, DY-255 and DY-

256 are isogenic to the DY-26 wild-type strain (MATa, his3Δ200, leu2Δ, met15Δ0, 

trp1Δ63, ura3Δ0), which is itself derived from the ATCC strain BY4473 (see Table 2.1 

for details). Chromatin fractionation for cell cycle timecourses used to gather data for the 

model in chapter 3 was performed using DY-26, DY-82 and DY-128. Tagged strains 

were created by genomic tagging of the corresponding ORF by homologous 

recombination with linear PCR fragments amplified using plasmid templates, as 

described by Longtine et al., (1998). Epitope tagging cassettes were amplified from 

Longtine plasmid vectors which also contained selectable marker genes to allow for the 

selection of integrants. Specifically, the Longtine plasmid pFA6a-TRP1-PGAL1-3HA 

was used to create DY-139 (MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0, 

cdc6::Pgal-3HA-CDC6 [TRP1]), DY-140 (MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, 

ura3Δ0, cdt1::Pgal-3HA-CDT1 [TRP1]) and DY-255 (MATa, his3Δ200, leu2Δ0, 

met15Δ0, trp1Δ63, ura3Δ0, dbf4 ::Pgal-3HA-DBF4 [TRP1]). pFA6a-3HA-TRP1 was 

used to create DY-142 (MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0, 

cdc6::CDC6-3HA [TRP1]), DY-143 (MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, 

ura3Δ0, cdt1::CDT1-3HA [TRP1]), and DY-256 (MATa, his3Δ200, leu2Δ0, met15Δ0, 

trp1Δ63, ura3Δ0, dbf4::DBF4-3HA [TRP1]). These six strains were used in the GAL1 

shutoff/knock-down experiments. Amplification of plasmid-based cassettes was 

accomplished using primers that possessed complementary sequences to target regions in 

the genome, thus allowing for homologous recombination upon transformation. In the 

case of DY-142, DY-143 and DY-256, which possess C-terminal 3HA-tags, the forward 
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PCR primer used for amplification contained a sequence that allowed for recombination 

immediately upstream of the stop codon, while the reverse primer contained a sequence 

that allowed for recombination downstream of the ORF. Thus the tag was incorporated 

in-frame immediately after the last coding codon, resulting in a C-terminal fusion protein. 

In strains DY-139, DY-140 and DY-255, the corresponding gene was placed under 

control of the GAL1 promoter and expressed an N-terminal 3HA-tag. For PCR 

amplification of the cassette used in homologous recombination-based integration, the 

forward primer contained a sequence that allowed for recombination 50 bp upstream of 

the start codon, while the reverse primer contained a sequence that allowed for 

recombination in the first 13 codons of the gene. DY-82 and DY-128 were created 

similarly to the 3HA-tagged strains, however the pFA6a-13Myc-TRP plasmid was used 

as a PCR template to create C-terminal 13Myc-tagged fusion proteins for ease of 

detection in the cell cycle timecourse experiments. Proper integration in these strains was 

confirmed by PCR using primers that flanked the region of recombination and proper 

expression was confirmed by Western blot. BY-4733 (Open Biosystems) was used in 

large-scale chromatin fractionation for the 2D-DIGE-based proteomic screen. For the 

genotoxic sensitivity assays, either haploid knockout (KO) or DAmP strains were used 

(both from Open Biosystems in a BY-4741 background). In the former, a KanMX 

cassette (Wach et al., 1994) possessing a forward primer homologous to the 5’ end and 

reverse primer homologous to the 3’ end of the corresponding gene was used to replace it 

with a sequence conferring kanamycin resistance. DAmP strains (Decreased Abundance 

by mRNA Proteins) were created by insertion of the same KanMX cassette into the 3’ 

UTR of the corresponding gene, destabilizing its mRNA transcript. In the TH-5854 strain 
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(BY-4174 background, Open Biosystems) a one-step integration of the tTA 

transactivator, under the control of the CMV promoter was performed at the URA3 locus. 

Following this, a plasmid carrying a kanR-tetO7-TATA cassette with sequences 

homologous to the promoter of CDC45 was then integrated into the genome replacing the 

endogenous promoter. Thus, the expression of the gene can be switched off or titrated 

down by the addition of doxycycline to the growth medium. This was used in the Cdc45 

knock-down perturbation experiment. 
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Table 2.1. Yeast strains used in this study. 

Strain Genotype 

DY-26 MATa, his3Δ200, leu2Δ, met15Δ0, trp1Δ63, ura3Δ0 

DY-82 MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0, cdc45::CDC45-13Myc (HIS3) 

DY-123 MATa, ade2-1, can1-100, his3-11,-15, leu2-3, -112, trp1-1, rad53::rad53-11 (URA3) 

DY-128 MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0, CDC6::CDC6-13Myc (HIS3) 

DY-139 MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0, cdc6::Pgal-3HA-CDC6 (TRP1) 

DY-140 MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0, cdt1::Pgal-3HA-CDT1 (TRP1)  

DY-142 MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0, cdc6::CDC6-3HA (TRP1) 

DY-143 MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0, cdt1::CDT1-3HA (TRP1)  

DY-255 MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0, dbf4::Pgal-3HA-DBF4 (TRP1)  

DY-256 MATa, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0, dbf4::DBF4-3HA (TRP1)  

TH-5854 MATa, his3-1, leu2-0, met15-0, cdc45::kanR-teto7-TATA-CDC45 URA3::CMV-tTA 

BY4733 MATa, his3Δ200, leu2Δ0, met15Δ0, trpΔ63, ura3Δ0 

BY4741 MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0 

YAR007C DAmP MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, rpa1::DAmP 

YNL312W DAmP MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, rpa2::DAmP 

YDR002W DAmP MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, yrb1::DAmP 

YJR065C DAmP MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, arp3::DAmP 

YCR004C KO MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, ycp4::KanMX/YCP4 

YPL004C KO MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, lsp1::KanMX/LSP1 

YDR032C KO MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, pst2::KanMX/PST2 

YER177W KO MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, bmh1::KanMX/BMH1 

YDR533C KO MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, hsp31::KanMX/HSP31 

YLR144C KO MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, acf2::KanMX/ACF2 

YOR212W KO MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, ste4::KanMX/STE4 

YGR180C KO MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, rnr4::KanMX/RNR4 

YPL061W KO MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, ald6::KanMX/ALD6 

YGR282C KO MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, bgl2::KanMX/BGL2 

YDR099W KO MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, bmh2::KanMX/BMH2 

YLR044C KO MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, pdc1::KanMX/PDC1 

YDL229W KO MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, ssb1::KanMX/SSB1 

YNL209W KO MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, ssb2::KanMX/SSB2 

YKL056C KO MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, tma19::KanMX/TMA19 

YBL039C KO MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, ura7::KanMX/URA7 
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2.2 Cell cycle Timecourse 

DY-26 cells were grown in YPD medium (1% Bacto-yeast extract, 2% Bacto-peptone, 

2% dextrose) to exponential phase at 30°C, washed with dH20 and resuspended in fresh 

YPD at a concentration of 1 x 107 cells/ml. Cultures were subsequently arrested in late G1 

phase with the addition of 5µg/ml α-factor peptide (Sigma-Aldrich) for 3 h. Cells were 

monitored for late G1 arrest through microscope observation of the percentage of 

unbudded cells. Approximately 1.5 x 107 cells were collected and treated with 0.1% 

sodium azide then kept on ice at 4°C. The remainder of the arrested culture was then 

centrifuged at 200g and the pellet was washed twice with dH20. All cells were BAR1+ and 

thus secrete the Bar1 protein, which degrades the α-factor pheromone used. Medium was 

collected and saved during centrifugation of the original logarithmic culture containing 

this protein and was subsequently used to resuspend the cells for the release from G1 

phase. Additionally, Pronase E (Sigma-Aldrich), an enzyme that also hydrolyzes alpha-

factor, was added at a concentration of 10µg/ml to facilitate a synchronous release. 

Roughly the same number of cells collected in the G1-arrested samples were collected at 

the other time points following release and similarly treated with sodium azide and kept 

on ice until the completion of the time course. A scheme for this procedure as well as the 

ensuing chromatin fractionation of samples collected here is depicted in Figure 2.1. 
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Figure 2.1. Schematic for cell cycle timecourse experiments and chromatin 
fractionation. Logarithmically growing yeast cultures were spun down, washed and 
resuspended in fresh medium containing α-factor. After three hours, samples were taken 
for FACS analysis and for fractionation. Cells were spun down, washed and resuspended 
in fresh media lacking α-factor, thus allowing them to resume the cell synchronously. 
Samples were taken at the indicated timepoints (minutes after release from the G1 arrest). 
Aliquots of these samples were collected for FACS analysis to verify cell culture 
synchrony. The remainder of each sample was subjected to chromatin fractionation. This 
permitted the separation of chromatin bound and unbound proteins, which were 
subsequently analyzed via Western blotting. 
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2.3 Cell Culture for Chromatin Fractionation Samples used in 2D-DIGE 
Experiments  
 

For large-scale cultures, 10-20 µl of saturated seed culture (BY4733) was transferred to 

300 ml YPD medium in a 2 L flask and incubated with shaking at 30°C until a cell 

density of 2-3 × 107/ml was achieved. For MMS treatment experiments, the 300 ml 

sample was centrifuged, the cell pellet was resuspended in 600 ml fresh YPD medium, 

and then divided equally into two 2 L flasks, and then further cultured at 30°C for 2 hrs. 

MMS was added to 0.03% for one of the flasks, and both were cultured at 30°C for 

another 90 min. The final cell density was not more than 3 × 107/ml. 

 

2.4 Whole Cell Extract Preparation 

Cells were pelleted at 4000 rpm for 3.5 min and resuspended in 400 µl of ice-cold lysis 

buffer (10 mM Tris-HCl, pH 8; 140 mM NaCl; 1% Triton X-100; 1 mM EDTA; PMSF 

and protease inhibitor tablet from Roche, Germany). The suspension was transferred to a 

2 ml screw- cap tube containing 0.3 g of 0.5 mm glass beads, on ice. Samples were lysed 

by 6 cycles of bead beating (Biospec) with 30 sec on/30 sec on ice. The slurry was then 

spun at 13,000 rpm for 30 sec and the supernatant transferred to a fresh tube. This was 

processed for Western blotting as described below (section 2.7). 

 

2.5 Fluorescence Activated Cell Sorting (FACS) 

To assess cell synchrony, 1.5 x 106 cells were removed from each time point sample. 

They were immediately centrifuged, re-suspended in 1ml of ice-cold 70% ethanol and 

stored overnight at 4°C. Cells were then re-suspended in 500 µl of 50 mM Tris-HCl pH 8 
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containing 10 mg/ml of RNase A and incubated for 2 hours at 37°C. This was followed 

by centrifugation and re-suspension in 500 µl 50 mM Tris-HCl 7.5 with 2 mg/ml 

Proteinase K. Incubation at 50°C for an hour was performed prior to final resuspension in 

100 µl FACS buffer (200 mM Tris-HCl 7.5, 200 mM NaCl and 78 mM MgCl2). Cells 

were stained with SYTOX Green dye (5 µM; Molecular Probes) for at least one hour and 

then analyzed using a Becton-Dickinson FACScan. This analysis was performed with a 

BD FACSVantage SE cell sorting system in the Molecular Core Facility of the 

Department of Biology at the University of Waterloo. 

 

2.6 Cdc45 in vivo Knock-down 

Logarithmically growing yeast cells in YPD and expressing Cdc45 endogenously from 

the tetracycline-repressible tetO7 promoter in a BY4741 background (BAR1+) were split 

into two cultures. Each was arrested for 90 min in YPD medium containing 5µg/ml α-

factor. 50µg/ml of doxycycline, a tetracycline analog, was added to one culture and both 

were maintained in the late G1 block for 6 h. Following this, cultures were washed in 

dH2O as described in 2.1 and were released into fresh YPD medium, lacking α-factor and 

containing 100µg/ml Pronase E (Sigma-Aldrich). Timepoints were taken and analysed by 

FACS. 
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2.7 Western Blotting  

2.7.1 Of Cell Cycle Timcourse Chromatin Fractionation Samples and of Whole Cell 
Extracts from Knock-down Experiments (Chapter 3) 
 

Chromatin fractionation samples (supernatant and chromatin pellet) were assayed for 

protein concentration using the Bradford assay (Biorad) to calculate volumes for equal 

loading. Proteins were denatured by the addition of a half-volume of sample buffer (60% 

4x buffer [15% SDS; 40% glycerol, 166 mM tris-base]; 0.26 M DTT; 7% bromophenol 

blue) to each sample followed by boiling for 10 min. The sample was then stored at -

20°C until it was run on a 7.5% SDS polyacrylamide gel. The proteins in the 

polyacrylamide gel were transferred to a nitrocellulose membrane by sandwiching the gel 

and the membrane between two pieces of Watman paper and sponges in a cassette that 

was then transferred using an OWL transfer apparatus containing transfer buffer (200 

mM glycine; 25 mM tris-base; 20% MeOH; 0.05% SDS). The transfer was carried out at 

30-50 volts at 4°C for 2-16 h. The membranes were stained with 0.1% Ponceau S dye 

(Sigma), and imaged. The membranes were then destained with TEN+T (20 mM Tris-

HCl; 1mM EDTA; 0.14 M NaCl; 0.05% Tween 20). Detections were carried out by first 

blocking the membrane in TEN+T with 5% skim milk powder for 45 min at room 

temperature or overnight at 4°C. The membrane was then incubated with primary 

antibody in TEN+T with 5% skim milk powder for 1-2 h at room temperature with gentle 

rocking. Following 2-3 five min washes in TEN+T, the membrane was incubated in 

secondary antibody in TEN+T for 45 min-1 h at RT with gentle rocking; for Alexa Fluor 

antibodies this incubation was carried out in the dark. The membrane was then washed 

twice in TEN+T and once in dH2O. 



 89 

Mouse monoclonal α-Myc (Sigma, 1:5000) and Alexa Fluor 488 goat α-mouse 

IgG  (Invitrogen, 1:5000) antibodies were used to detect Myc-tagged Cdc45 and Cdc6. α-

Mcm2 antibody (yN-19 goat polyclonal, Santa Cruz, 1:500) along with Alexa Fluor 488 

donkey α-goat IgG (Invitrogen, 1:3000) antibodies were used to detect Mcm2. Blots were 

incubated in primary and secondary antibodies for 2 h each, proceeding 4 h of blocking in 

5% skim milk. Between blocking and each antibody treatment, blots were washed for 2 x 

10 min with 1 x TEN+0.05% Tween-20. The Typhoon 9400™ Variable Mode Imager 

(GE Healthcare) was used to analyze the blots via the fluorophores conjugated to the 

secondary antibodies. Densitometry readings were performed using Image Quant TL 

software (BD) and were normalized to total protein concentration as judged by the 

Ponceau S stain and/or tubulin band intensity detected using the mouse monoclonal α-

TAT1 antibody (1:500, Sherwin and Gull, 1989) along with Alexa Fluor 488 donkey α-

goat IgG (Invitrogen, 1:3000). The same protocol for Western blotting was used in 

perturbation (knock-down) experiments involving HA-tagged strains. In this case, mouse 

monoclonal α-HA (Sigma, 1:5000) and Alexa Fluor 488 goat α-mouse IgG  (Invitrogen, 

1:3000) antibodies were used to determine levels of Cdc6, Cdt1 and Dbf4. 

 

2.7.2 For Detecting Levels of DAmP Strain Proteins and Chromatin Fractionation 
Efficiency (Chapter 4) 
 

Western blotting was performed as described above. RpaI was detected with rabbit 

polyclonal α-RFA antibody (1:2000 dilution, Agrisera) and a 1:3000 dilution of the Alexa 

Fluor 647 goat anti-rabbit IgG secondary antibody. Arp3 was detected with the goat 
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polyclonal α-Arp3 antibody (1:1000 dilution, Santa Cruz) and a 1:3000 dilution of the 

Alexa Fluor 488 donkey anti-goat IgG secondary antibody.  

Initial whole cell extract (WCE), as well as supernatant (SUP) and chromatin 

(PEL) fractions were subjected to SDS-PAGE and transferred to a nitrocellulose 

membrane as described above. Detection was carried out with rabbit polyclonal α-Orc2 

(1:1000 dilution, Duncker et al., 2002), mouse monoclonal α-TAT1 (1:500 dilution, 

Sherwin and Gull, 1989), and rabbit polyclonal α-histone H2B (1:1000 dilution, 

Cedarlane), using 1:3000 dilutions of either Alexa Fluor 647 goat anti-rabbit IgG or 

Alexa Fluor 488 goat anti-mouse IgG secondary antibodies. With efficient fractionation, 

PEL fractions in this version of the assay (considering resuspension volumes) are 

concentrated tenfold relative to WCE and SUP. In each case, equal volumes of WCE and 

SUP fractions were loaded, with double (histone H2B, α-tubulin detection) or triple 

(Orc2 detection) the volume of the PEL fraction loaded. Refer to Appendix B, Figure B1. 

A summary of the antibodies used is shown below in Table 2.2. 
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Table 2.2. Antibodies used in this project for use in Western blotting. 

Antibody Source Dilution 

α-Myc (mouse monoclonal) Sigma 1:5000 

α-HA (mouse monoclonal) Sigma 1:5000 

α-Mcm2 (goat polyclonal) Santa  Cruz 1:500 

α-RFA (rabbit polyclonal) Agrisera 1:2000 

α-TAT1 (mouse monoclonal)  Gift from Gull lab 1:500 

α-Arp3 (goat polyclonal)  Santa Cruz 1:1000 

α-histone H2B (rabbit polyclonal) Cedarlane 1:1000 

α-Orc2 (rabbit polyclonal) Gift from Gasser lab 1:1000 

Alexa Fluor donkey α-goat Invitrogen 1:3000 

Alexa Fluor goat α-mouse Invitrogen 1:3000 

Alexa Fluor goat α-rabbit Invitrogen 1:3000 

 

 

 

 

 

 

 

 

 



 92 

2.8 Densitometric Analysis of Cell Cycle Timecourse Samples 

Determination of in vivo cellular concentrations for each factor was performed for each 

time point. Normalization of densitometry readings was carried out by averaging the 

means of all SUP values from each set of experiments for a given protein. This average 

was divided by the means of the SUPs for each trial to give a scaling factor (S1) for each 

trial. Each SUP value for a given trial was then multiplied by its scaling factor. The same 

procedure was applied to all PEL sample values.  In general, when a protein is in the 

chromatin fraction it is DNA-bound. To correct for non-specific DNA-binding, for each 

protein, a background level of non-specific binding was determined corresponding to the 

observed abundance from a time-point at which the factor is known to be absent from 

origins. To obtain densitometric values, the program Imgage Quant™ was used to 

analyze blots scanned by a Typhoon™ 9400 imager (both GE Healthcare). To convert the 

densitometry measures to molecules/cell concentrations, a scaling factor (S2) for each 

protein was determined from the molecule counts reported in Huh et al. (2003). For each 

experiment, the total densitometry measure (SUP plus PEL) was averaged across the 

time-points to arrive at an averaged asynchronous densitometry reading (weighted 

according to the time contribution of each sample to a 90 minute cycle), which was then 

compared to the database to arrive at a scaling factor. This procedure could not be 

followed for Cdc6 or Dbf4, since they are not included in the database presented in Huh 

et al. (2003). A scaling factor was determined for these proteins by comparing 

asynchronous whole cell extract levels of Cdc6-Myc and Cdc45-Myc and Cdc6-HA and 

Dbf4-HA. A sample conversion is shown in Appendix A, Table A1. Western blotting and 

densitometric analysis provided an asynchronous value of 576 molecules/cell for Cdc6 
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(Cdc6Total = 576). This was one third of the value reported for the concentration of Cdc45, 

i.e. 1730 copies/cell according to Huh et al. (2003) (Cdc45Total=1730). Similarly, the 

concentration of Dbf4 in an asynchronous population was 170 molecules/cell (Dbf4Total = 

170). The copy/cell number used for Mcm2 was 40,000 (Lei et al., 1996) while that for 

Cdt1 was 2190 (Huh et al., 2003) (Cdt1Total = 2190).  

 

2.9 Chromatin Fractionation   

Chromatin fractionation was performed as described in Semple et al. (2006) with some 

modifications. Approximately 1 x 107 cells collected from each time point were 

incubated in 7.5 ml pre- spheroplasting buffer (100 mM EDTA-KOH pH 8, 10 mM 

DTT), after washing once with dH2O. They were then incubated at 30°C for 10 min with 

gentle shaking. Cells were centrifuged and re-suspended in 7.5 ml spheroplasting buffer 

(1 X YPD, 1.1 M sorbitol) containing 0.5 mg/ml Zymolyase 20T (Seikagaku Corp., 

Japan) and 0.1 mg/ml Oxalyticase (Sigma), followed by shaking at 30°C for 30-45 min 

with gentle mixing. Cells were then washed once with 20 ml spheroplasting buffer 

containing 0.5 mM PMSF followed by resuspension in 1 ml ice-cold wash buffer  (5 mM 

Tris–HCl pH 7.4, 20 mM KCl, 2 mM EDTA-KOH pH 7.4, 1 M sorbitol, 1% thiodiglycol, 

125 mM spermidine, 50 mM spermine). Wash, Breakage and Lysis buffers all contained 

1 tablet/10ml of EDTA-free protease inhibitors (Roche) and were supplemented with 0.5 

mM PMSF. Cells were centrifuged at 400g for 1 min at 4°C, washed twice with 1 ml of 

Wash buffer and then re-suspended in 800 µl of Breakage buffer (5 mM Tris–HCl pH 

7.4, 20 mM KCl, 2 mM EDTA-KOH pH 7.4, 0.4 M sorbitol, 1% thiodiglycol, 125 mM 

spermidine, 50 mM spermine). To these cells, 1ml of Lysis buffer (Breakage buffer 
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supplemented with 1% Triton X-100) was added and after repeated inversion (until the 

solution turned clear), cells were pelleted at 16,000g for 10 min. This separated the 

proteins bound to the chromatin (residing in the pellet, referred to as PEL) from those 

solubilized in the non-chromatin fraction (supernatant or SUP). After removal of the 

supernatant, an additional 1 min spin at 16,000g was performed to isolate any residual 

supernatant and the pellet was re-suspended in 100 µl Breakage buffer. MgCl2 (5 mM) 

and DNaseI (2 µg/ml) were added to the PEL fractions to solubilize the chromatin and 

associated proteins. After 10 min, the reaction was quenched with the addition of 2 µl 0.5 

M EDTA. 10 µl of each SUP and PEL sample were collected for protein quantification 

via the Bradford assay. To the remaining of each sample, a half volume of sample 

loading buffer was added and processed for Western blotting, as described in section 2.7. 

For an equal volume, PEL samples were 20-fold more concentrated than SUP samples 

due to the fact that approximately 5% of proteins are chromatin-bound.  

 

2.10 Perturbation experiments   

DY-139 (GAL1-CDC6-HA), DY-140 (GAL1-CDT1-HA) and DY-255 (GAL1-DBF4-HA) 

strains were grown to 1 x 107 cells/ml in 2% galactose/1% raffinose medium (GAL) at 

30°C, centrifuged at 6000g for 5min and washed with dH20. Cells were then resuspended 

in 2% glucose medium, maintaining the same cell concentration. Culture aliquots were 

removed for FACS analysis and preparation of whole cell extracts (as described in Varrin 

et al., 2005), both before, and at various intervals after the switch to glucose. As 

references for normal endogenous protein levels, whole cell extracts were also prepared 

from strains expressing Cdc6 (CDC6-HA, DY-142), Cdt1 (CDT1-HA, DY-143) and Dbf4 
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(DBF4-HA, DY-256) from their endogenous promoters. All strains produced fusion 

proteins with a 3HA epitope tag to facilitate visualization via Western blotting.  

 

2.11 Time-Varying Model Inputs 

Protein data was collected from yeast strains, which were observed to have a generation 

time of ~ 90 min in log phase. In order to fit the data to the timescale of the Chen et al. 

(2004) model, which has a period of 101.2 min, the experimental time-course was scaled 

to reflect this change in timing. This value, as described in the Chen model, is chosen to 

reflect the longer cycle of daughter cells (which are smaller than mother cells in 

asymmetric cell division). Time-point samples were collected from an α-factor arrest in 

late G1 phase, corresponding to experimental timepoint T=0. Additional samples were 

collected at 5, 10, 15, 30, 45, 60 and 75 min after synchronous release from the alpha 

factor block. The experimental timepoint T=0 corresponds to 19 min after the beginning 

of G1 phase in the 101.2 min model. This number was determined by comparing the point 

at which cells entered S phase in vivo (~15 min after α-factor release as determined by 

FACS analysis) and the corresponding start of S phase in the model.  

One of the two inputs used from the Chen model was the APC co-factor Cdc20. 

Its role in the present is to activate the APC, which rapidly degrades Dbf4. In the Chen 

model, Cdc20 serves exclusively as a signal to exit mitosis. The Cdc20 degradation rate 

is a function of the parameter kmad2, which describes the activity level of the protein 

Mad2, a key factor in the spindle assembly checkpoint.  In order to prevent the 

occurrence of mitosis before replicated chromosomes have been properly attached to the 

mitotic spindle (representing the spindle assembly checkpoint), the value of kmad2 jumps 
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discontinuously from 0.01 to 8 once DNA replication has commenced. This is signified 

by the lumped Chen model variable ORI reaching a threshold value of 1.  This sequence 

of events ensures that Cdc20 levels are low, thus preventing premature activation of the 

MEN pathway.  Later, when correct spindle assembly is specified by other factors, the 

value of kmad2 falls back to 0.01, allowing Cdc20 to accumulate. The signal for this event 

is a second lumped parameter, SPN, hitting its threshold value of 1. As a result of these 

discontinuous transitions in kmad2, the Cdc20 profile shows rather sharp shifts in 

behaviour.  When this profile was applied as an input to the DNA replication model, the 

Dbf4 profile showed a precautious and abrupt spike compared to laboratory observations; 

this discrepancy was not observed in the Chen model since that model does not address 

the influence of Cdc20 on Dbf4. To address this inconsistency, the kmad2 profile was 

smoothed to allow for a gradual decline in Mad2 activity. The timing of this activity was 

chosen to match these in vivo Dbf4 observations. The original formulation for kmad2 

specifies a value of 0.01 when ORI is less than 1 or SPN is greater than 1, and otherwise 

is equal to 8. This condition was replaced with: 

𝐾!"#! = (7.99×(𝑂𝑅𝐼 15)(!/!)×(1 1+ 𝑆𝑃𝑁!""))+ 0.01                                           (2) 

The difference between the original Cdc20 profile and the modified version is shown in 

Figure 3.8. 

 

2.12 Implementation of a combined model  

In order to implement a combined model, the loop between the DNA replication model 

and the cell cycle model of Chen et al. (2004) was closed by eliminating the lumped 

species ORI and replacing it with an indication of the progress of replication, represented 
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by the FORK species. In this combined model the formula for kmad2 shown above was 

modified by replacing the ratio (ORI/15) with , where the integration 

begins at the start of the cell cycle. Since each model incorporates a description of Cdc6 

dynamics, they were merged by including the dynamics of origin binding from the DNA 

replication model with the Cdc6 dynamics of the Chen model. This resulted in good 

accordance between the behaviour of the replication initiation network within the 

combined model.  The only noticeable differences (Figure 3.9) are caused by the merged 

description of Cdc6 dynamics. Firstly, due to the fact that the internal model uses a Clb5 

profile generated by scaling from arbitrary units, it is nearly, but not exactly identical to 

the Chen model Clb5 profile. The Chen Clb5 profile extends farther past the 101.2 min 

mark than in the internal model resulting in a more rapid dephosphorylation of RC7 in 

the internal model. Thus, RC7 persists for ~5 min longer in the combined model. 

Secondly, because the merged Cdc6 decreases in concentration earlier than in the DNA 

replication model in isolation, RC1 levels stay high until fork firing occurs. Despite these 

differences, the essential dynamics of the system are preserved: replication fork firing 

follows the same pattern, with the RC7àRC1 delay having no effect on timing of 

firing.  The behaviours of the Chen model species are not perceptibly altered by the 

removal of ORI and the combination of the two models (Figure 3.9). 

 The effects of combining the models are shown to be minimal in the wildtype 

case (Figure 3.9). Comparing mutations used to fit the Chen model in the combined 

model, the same phenotypes are observed (Appendix A, Figure A4). This exemplifies the 

efficacy with which the DNA replication initiation module replaces the corresponding 

black box in Chen et al.’s whole cell cycle model.  

( FORK∫ / 500)
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2.13 Parameter Estimation and Error Analysis 

For parameter estimation, an initial global parameter search was performed using a 

variation of the commonly used simulated annealing technique – “adaptive simulated 

annealing” (ASA; Ingber, 1996). This was used to statistically find the best global fit to 

the nonlinear constrained non-convex cost-function over a D-dimensional space. In the 

case of the DNA replication model, the cost function corresponds to the sum of squared 

error (SSE), which is defined as the cumulative difference between measured data points 

and the corresponding simulated values. The search was performed in a 24-dimensional 

space. A crucial difference with ASA compared to other forms of simulated annealing is 

that it permits adaptation to changing sensitivities over the multi-dimensional space, such 

that individual parameters are afforded an individualized cooling schedule. This schedule 

refers to the speed at which convergence occurs (a higher cooling rate will arrive at a 

solution more quickly, but with the tradeoff of an increasing likelihood of not finding the 

global minimum). 

Additionally, a local search was performed using the Nelder-Mead simplex 

algorithm to optimize the parameter estimate at the previously determined global 

minimum (Nelder and Mead, 1965). 

Parameter error was estimated as a way of identifying or testing the invalidity of 

the model. In other words, a global optimum can never be confirmed, only inferred based 

on evaluation of statistics representing the congruence between observed data and  

model-derived estimation of parameters. While in some cases, global optimization 

routines use a parameter error calculation to decide whether to continue searching, a post-

hoc error analysis of the parameter set was performed in Chapter 3. This was after 
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qualitatively determining that the SSE was sufficiently low so as to represent good 

accordance between data and model simulation derived by the ASA regimen.  

The goal of parameter estimation is to statistically minimize the difference 

between the derived parameter values and their true value. This is a function of the data, 

the estimated parameters and the variance within the data. If the vector of the parameter 

set describing the observed data, x is represented by 𝜃, it gives rise to a probability 

distribution 𝑃 𝑥 𝜃 , where 𝜃 is an unknown fixed constant within the distribution. An 

unbiased estimator,𝜃 maps observed data to values that are hopefully close to 𝜃. To 

obtain the lower bound on the variance (Var) of the unbiased estimator, the variance of 𝜃 

must satisfy the conditions: 

 

Var   𝜃  ≥ !
!
!" !"! ! !

!

! !

                              (3) 

 

, where the denominator is known as the Fisher information matrix (FIM; Emery and 

Nenarokomov, 1998). This gives the lower bound of the inverse of the FIM and is known 

as the Cramer-Rao bound. It is reported in this thesis as a percentage by scaling each 

error estimate to the maximum error estimate over the entire time course of the simulated 

vector (reviewed in Gadkar et al., 2005). Scaling to a maximum value eliminates spurious 

interpretation of the error estimate where the parameter values are very low. The Cramer-

Rao bound effectively allows for the maximization of the expected accuracy in the 

nominal parameter set such that the estimated parameters have minimum variance. An 

assumption made is that the errors in measurement between estimated and true parameter 

values follow a Gaussian or normal distribution. 
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2.14 Protein Extraction for Use in DIGE 

Chromatin pellets from the chromatin preparation were resuspended in two volumes of 

extraction buffer (50 mM Tris-HCl, pH 8.5, 2% (w/v) SDS, 50 mM DTT), and incubated 

in a boiling water bath for 10 min. Protein extracts were separated by centrifugation at 

14,000g for 10 min. The supernatants were collected then desalted using a 2-D Clean-Up 

kit (Amersham Biosciences). Protein pellets from the 2-D Clean-Up treatment were 

dissolved in IEF rehydration buffer (7 M urea, 2 M thiourea, 4% (w/v) CHAPS). Protein 

concentration was measured using the Bradford assay (Bio-Rad). Protein yield of the 

chromatin fraction was calculated based on the amount in the pellet compared to the total 

amount in the WCE. A typical 300 ml culture at ~3 × 107cells/ml yielded approximately 

200 +/- 100 µg of protein in the chromatin fraction. 

 

2.15 Differential-in-gel-electrophoresis (DIGE) 

DIGE was performed based on recommended protocols of the manufacturer (GE 

Healthcare) using minimal labeling CyDye™ DIGE Fluors of Cy2, Cy3 and Cy5. For the 

CyDye™ labeling reaction, 40 µg of protein sample in 50 µl of rehydration buffer 

containing 25 mM Tris-HCl, pH 8.5 was used for each dye. 1 µl CyDye™ solution (200 

pmol/µl in 100% dimethylformamide) was added to samples on ice. The reaction was 

incubated for 40 min on ice, after which 1 µl of 10 mM lysine was added to stop the 

reaction. After incubation for 10 min, three sets of 50 µl samples (labeled with Cy2, Cy3 

and Cy5) were combined and mixed with 45 µl of 1 M DTT, 4.5 µl of 1% (v/v) IEF 

buffer 4-7, 1 µl of 1% (w/v) bromophenol blue (BPB) and 250 µl of the rehydration 

buffer. 
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Immobiline™ DryStrip gels (IPG pH4-7/24 cm, GE Healthcare) were used for 

isoelectric focusing as the first dimensional separation. The strips were passively 

rehydrated with 450 µl of labeled protein sample in the rehydration buffer overnight at 

room temperature. Isoelectric focusing (IEF) was performed using an Ettan™ IPGphor II 

system (GE Healthcare) with oil immersion and paper wicks at electrode contacts. The 

voltage profile used for IEF was as follows: hold at 500 V for 1 h, gradient to 1,000 V for 

3 h, gradient to 3,000 V for 3 h, hold at 3,000 V for 2 h, gradient to 8,000 V for 3 h, at 

8,000 V for 10.5 h, and step to a final voltage of 500 V. 

After the 1st dimension separation, IEF strips were incubated in equilibration 

buffer (6 M urea, 2% (w/v) SDS, 50 mM Tris-HCl (pH 8.8), 30% (v/v) glycerol, 0.002% 

(w/v) BPB) containing DTT (10 mg/ml) for 20 min and then a further 20 min with the 

same buffer containing iodoacetamide (25 mg/ml). The strips were loaded onto 10% Tris-

glycine SDS-polyacrylamide gels and run at 15 W per gel by using an Ettan™ DALTsix 

electrophoresis unit (GE Healthcare). Scanning of the DIGE gels was done using 

Typhoon 9400™ Variable Mode Imager (GE Healthcare). 

A three-dye system was employed with four biologically independent replicates 

using an independent Cy2 dye channel as internal standard for each gel. The internal 

standard was composed of an equal mixture of control and test samples. The control and 

test samples used either Cy3 or Cy5 with dye swapping. Gel image analysis was 

performed using DeCyder™ 2-D differential analysis software version 6.0 (GE 

Healthcare), with the peak detection threshold set to an expected value of 2500 spots. 

Protein spots were quantified using peak volumes calculated by the DeCyder™ software. 

Each gel was normalized based on the independent Cy2 channel using the differential in-
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gel analysis (DIA) module. Biological variation analysis (BVA) was done for four 

replicates, including 4 internal standards, 4 controls and 4 test samples. Statistical 

analysis of spots was performed by the Student's t-test with FDR (false discovery rate) 

correction as previously described (Karp et al., 2007; Molloy et al., 2003). Average spot 

ratios for treated to control samples were calculated based on spot volumes for each 

matched spot, along with p-values. For the chromatin enrichment analysis, the 

enrichment factor (EF) was defined as the average ratio of normalized spot volumes in 

the chromatin fraction vs. WCE. EF values were calculated by the DeCyder software as 

fold change (EF = chromatin abundance/WCE), when chromatin abundance exceeded 

WCE abundance for the target protein, and as a negative fold change  

(EF = -WCE/chromatin abundance) otherwise. For experiments comparing the MMS-

treated vs. non-treated chromatin fraction, differential factors (DF) were similarly 

calculated, where DF = (MMS treated/control) when treated ≥ control, and as a negative 

fold change (DF = -control/MMS treated) otherwise. As with the chromatin abundance 

experiment, the average ratio of spot volumes of the two DIGE channels being compared 

is reported. Calculated enrichment factors (EF) provide a measure of chromatin 

association (protein localization) independent of total protein abundance, whereas the 

differential factors (DF) measure changes in abundance in the chromatin fraction, 

including both changes in total abundance in the cell and changes in protein localization.  

For graphical presentation, a log scale is used and values are presented as 

log2 (treated/control). To determine the magnitude of change that is likely to be detected, 

a post-hoc power analysis was conducted using the statistical analysis package R (Team 

RDC). Standard deviations were calculated for all spots appearing on 10 or more gel 
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image channels (i.e. 10 from 12 total on 4 gels), and used to estimate the expected 

detectable fold change with a power of 0.80 (β = 0.20). 

 

2.16 Preparative 2D-PAGE 

For preparative 2D-PAGE, 0.7 to 1.0 mg of protein was separated on large-format gels 

using a 24 cm IPG 4-7 strip for 1st dimension separation and an SDS-PAGE gel for the 

second dimension as described above. Preparative gels were visualized by the colloidal 

Coomassie-staining method (Candiano et al., 2004) and scanned using a Typhoon 

9400™ Variable Mode Imager (GE Healthcare). Spots of interest were matched between 

DIGE images and the preparative gel, and spots manually excised for protein 

identification. Spots were prioritized for identification using an FDR corrected p-value 

cut-off of 0.05 and a change in expression of 1.4 or greater. 

 

2.17 Mass spectrometry 

Protein spots excised from the preparative gel were cut into approximately 1 mm3 pieces, 

then reduced and alkylated by treatment with 10 mM DTT and 55 mM iodoacetamide in 

50 mM ammonium bicarbonate buffer (Granvogl et al., 2007). Gel pieces were washed 

with 50 mM ammonium bicarbonate buffer and dehydrated in a SpeedVac® concentrator 

(Savant) for 1 h, soaked with 3-10 µl of 20 ng/µl trypsin solution (sequencing grade 

modified trypsin, Promega) in 50 mM acetic acid on ice for 20 min, then washed again 

with buffer. Protein digestion was performed in the same buffer (50 µl) overnight at 

35°C. Reaction supernatant was recovered and gel pieces were further extracted by 2× 

sonication in 50 µl 50% acetonitrile/1% trifluroacetic acid, and then dried using a 
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SpeedVac® concentrator (Savant). Mass spectrometry for higher abundance spots was 

performed using a Waters micromass quadrupole time of flight (Q-TOF) Ultima mass 

spectrometer with a nanospray ESI injection at the mass spectrometry facility at 

University of Waterloo. Samples analyzed using the Q-Tof were desalted prior to 

analysis using C18 ZipTip® pipette tips (Millipore) and eluted using 50% acetonitrile in 

water with 0.2% formic acid. For lower abundance spots, trypsin-digested peptides were 

analyzed (without ZipTip desalting) using an Applied Biosystems Q-Trap mass 

spectrometry system at the Proteomics Core Facility of Dalhousie University (Halifax, 

Nova Scotia). 

 

2.18 Protein identification 

Protein identification was performed using Peaks Studio (version 2.4, Bioinformatics 

Solutions, Waterloo), which combines auto de novo sequencing and homology-based 

database searching, with the non-redundant MSDB database (Dr. D.N Perkins, Imperial 

College London, Release 20063108, 3239079 sequences). Mass error tolerances of 

parental and fragment ions were set at 0.1 for Q-TOF spectra and 0.3 or 0.4 for Q-Trap 

spectra, with 0.3 used if a more restrictive search was required. Confidence of protein 

identifications were based on the Peaks database search score (%) according to the 

algorithm of Ma et al. (2005). Protein identifications were accepted if the homology 

search score was higher than 80% (i.e. extremely high confidence) and identified a single 

yeast protein. For Peaks scores less than 80%, protein identity was additionally confirmed 

using the web-based Mascot search engine (version 4) in the MS/MS ion search module 

(Matrix Science, http://www.matrixscience.com) with MSDB by restricted to 

Saccharomyces cerevisiae (10742 sequences) as the target organism. Protein matches 
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were retained if the Mascot search had a significance threshold of p < 0.05, with default 

mass error tolerances of 1.2 and 0.6 Da for parental and fragment ions, respectively. 

Finally, the false discovery rate (threshold set to 0.01) was confirmed by performing the 

Mascot decoy database search. For both the Peaks and Mascot database searches, trypsin 

was set as the digestive protease allowing one missed cleavage, and 

carbamidomethylation of cysteine and oxidation of methionine were set as the fixed and 

variable modifications, respectively. For counting number of unique peptides matching to 

hit proteins, only peptide ions that are doubly or triply charged were included. Peptide 

sequence coverage (%) was obtained based on the matching peptide sequences from 

Peaks. 

 

2.19 Genotoxic sensitivity assays 

To identify potential genotoxic effects of targeted proteins, spotting growth assays were 

performed to assess MMS or hydroxyurea (HU) resistance (Hanway et al., 2002; Varrin 

et al., 2005) in gene knockout cell lines or cells with lowered mRNA expression. Haploid 

knockout and DAmP cell lines in a BY4741 background were purchased from Open 

Biosystems (Thermo Fisher Scientific Inc.). BY4741 wild type and DNA damage 

checkpoint-compromised rad53-11 (DY-123, Santocanale and Diffley, 1998) strains 

were used as controls. Cultures of cells were grown to saturation (~2 × 108 cells/ml) and 

serial 10-fold dilutions, ranging from 107 cells/ml to 104 cells/ml, were prepared for each 

strain. 5 µl of each dilution was spotted onto a series of YPD plates with varying 

concentrations of MMS (up to 0.04%) or HU (up to 100 mM). The plates were incubated 

at 30°C for 2 days.   
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Chapter 3: A Quantitative Model of the Initiation of DNA Replication 

in Saccharomyces cerevisiae Predicts the Effects of System 

Perturbations  
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3.1 Introduction 

The machinery of the eukaryotic cell cycle has been extensively dissected and described, 

in both simple and complex organisms. Proliferation hinges on the cell’s ability to 

replicate the genome with high fidelity, segregate the chromosomes equally, and 

ultimately divide into two genetically identical cells. A fundamental process in the 

regulation of DNA replication is the step-wise assembly of the pre-replicative complex 

(pre-RC) at origins of replication facilitated by the six-subunit origin recognition 

complex (ORC), which, in the budding yeast Saccharomyces cerevisiae, binds an 11 bp 

consensus sequence (Bell and Sillman, 1992; Rao and Stillman, 1995; Rowley et al., 

1995; Speck et al., 2005 and 2007; Tanaka et al., 2007). The co-import of Cdt1 and the 

Mcm2-7 complex (MCM) into the nucleus follows (Tanaka and Diffley, 2002), and the 

MCM•Cdt1 heptamer is then targeted to origins by an interaction between Cdt1 and Orc6 

(Semple et al., 2006; Chen and Bell, 2007). Reiterative loading of multiple MCM 

molecules occurs via Cdc6 and ORC ATP-hydrolysis (Randell et al., 2006), resulting in 

two rings at each origin (Bowers et al., 2004; Ervin et al. 2004; Remus et al., 2009). At 

this point origins are said to be licensed. In late G1 phase, a burst of Dbf4 synthesis 

activates the Dbf4-dependent kinase Cdc7 (DDK), which then phosphorylates multiple 

MCM subunits, stimulating the complex (Francis et al., 2009; Lei et al., 1997, Randell et 

al., 2010; Sheu and Stillman, 2010). Dbf4 levels decrease over the course of S-phase and, 

starting at the metaphase/anaphase transition, Dbf4 is actively degraded by the anaphase 

promoting complex (APC) and its activating co-factor, Cdc20 (Cheng et al., 1999; Eytan 

et al. 2006; Ferreira et al., 2000; Oshiro et al., 1999; Zachariae and Nasmyth, 1999). In 

this way, Dbf4 levels are prevented from rising until the next G1/S transition.  
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The phosphorylation of MCM by DDK is coincident with the phosphorylation of 

the protein factors Sld2 and Sld3 by Clb5-Cdc28, a cyclin-dependent kinase (CDK) 

complex, the activity of which rises just prior to S-phase entry. The Sld proteins, once 

phosphorylated, are stabilized as a complex with the adaptor protein Dpb11 and the 

tetrameric GINS complex, forming a module that interacts with Cdc45 (Gambus et al., 

2006; Kanemaki and Labib, 2006; Zegerman and Diffley, 2007). The end result is the 

tight association of Cdc45, MCM and GINS (collectively known as CMG) with origins, 

allowing the unwinding of DNA and processive replication by DNA polymerase (Bruck 

and Kaplan, 2011). This represents the essential role of CDK in stabilizing polymerase at 

the moving replication fork and switching the system from a pre-replicative state to a 

replicative one. From this point until mitosis, CDK levels remain high. This continued 

CDK activity prevents re-establishment of pre-RCs at origins that have already fired 

through a number of mechanisms. Firstly, CDK phosphorylates Cdc6, thus causing the 

SCFCdc4 complex to target Cdc6 to the proteasome for degradation (Drury et al., 1997 and 

2000; Dutta and Bell, 1997; Elsasser et al., 1999). Secondly, Orc2 and Orc6 are 

phosphorylated by CDK (Nguyen et al., 2001; Vas et al., 2001; Wilmes et al., 2004), 

with the phosphorylation of Orc6 rendering it refractory to interaction with Cdt1 (Chen 

and Bell, 2011), thereby preventing further MCM loading. Finally, CDK facilitates the 

nuclear export of both MCM and Cdt1, at different time points. Just prior to initiation, 

Cdt1 exits via a CDK-dependent mechanism, while MCM complexes fall off the DNA 

upon fork termination and are then exported in a CDK-dependent manner (Labib et al., 

1999; Liku et al. 2005; Nguyen et al., 2000; Tanaka and Diffley 2002). Thus, while CDK 

initiates replication, it subsequently prevents pre-RC reassembly.  
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 Mathematical modeling has been successfully used in the past to address various 

aspects of the cell cycle. Early models (e.g. Kauffman and Wille, 1975) did not 

incorporate specific biochemical mechanisms; they were hypothetical representations of 

periodic cellular activity. As the molecular mechanisms driving the cell cycle were 

revealed, models appeared that incorporated these findings (e.g. Hyver and Le Guyader, 

1990; Goldbeter, 1991; Norel and Agur, 1991; Tyson, 1991). For S. cerevisiae in 

particular, multiple modeling approaches have been applied, based both on network 

descriptions (Li et al., 2004) and on specific molecular details such as gene expression 

and biochemical kinetics (Chen et al., 2000 and 2004; Klipp et al. 2005 and reviewed in 

Ingalls et al., 2007). Some modeling efforts have been comprehensive, such as the Tyson 

group’s ordinary differential equation (ODE)-based models (Chen et al., 2000 and 2004), 

while others address specific cell-cycle phenomena, such as the links between cell size 

and cycle progression (Alcarón and Tindall, 2007; Barberis et al., 2007). Spiesser et al. 

(2009), de Moura et al., (2010), Yang et al. (2010) and Retkute et al., (2011) present 

deterministic as well as stochastic aspects of the temporal pattern of origin firing. 

A recent report (Brümmer et al., 2010) presented an ODE-based model describing 

the initiation of DNA replication, incorporating origin licensing, firing and the network of 

regulatory phosphorylation events. The model parameters were partly calibrated against 

experimental data, but largely selected through an optimization routine designed to attain 

an idealized function, resulting in a model that is particularly suited to exploring events 

specifically at the G1/S transition.  

Here, a new model of the initiation of DNA replication is presented. In contrast to 

the work of Brümmer et al. (2010), a ‘bottom-up’ approach was taken through the 
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gathering of in vivo data for the precise protein levels at time-points throughout the cell 

cycle, then calibrated the model against these values. Rather than limiting the model to 

the observation of firing near the G1/S transition and fitting to DNA-specific replication 

profiles, it was validated against the behaviour of the constituent protein complexes 

throughout the replication cycle. To facilitate the use of the model in a comprehensive 

description of the cell cycle, it was designed to integrate easily with the model of Chen et 

al. (2004). Finally, the model was validated by comparing in silico predictions to 

experimental observations, using both knockdown experiments performed in this study 

and by results from the literature. 

 

3.2 Results 

Construction of the model was initiated by identifying the important players in replication 

initiation and establishing an interaction network, as shown in Figure 3.1. After selecting 

appropriate descriptions of reaction kinetics, an ODE-based model was generated and the 

model parameters were calibrated to in vivo data.  

 

 

3.2.1 Description of Model Components 

The model describes sixteen molecular species (twelve of which are dynamically 

independent) and depends on twenty-four parameters, which characterize the rates of 

seventeen biochemical processes (protein expression and degradation, complex 

association/dissociation, and transport across the nuclear membrane). The model 

describes the following molecular species (Figure 3.1). 
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RC1 (Replication complex, state 1): origin-bound ORC  

RC2: origin-bound ORC associated with CDC6  

RC3: origin-bound ORC associated with CDC6, with MCM loaded  

RC4: origin-bound ORC, with MCM loaded  

RC5: origin-bound ORC, with MCM loaded and DBF4 associated  

RC6: origin-bound ORC, with MCM loaded and DBF4 and CDC45 associated  

RC7: origin-bound phosphorylated ORC 

FORK: the elongation fork, with MCM and CDC45 associated  

CDC6N: non-chromatin associated nuclear Cdc6  

DBF4N: non-chromatin associated nuclear Dbf4 

CDC45N: non-chromatin associated nuclear Cdc45  

MCMC: cytosolic MCM 

CDT1C: cytosolic CDT1  

MCM•CDT1N: non-chromatin associated nuclear MCM bound to Cdt1  

CDT1N: non-chromatin associated nuclear Cdt1  

MCMN: non-chromatin associated nuclear MCM 

The MCM species corresponds to dimers of Mcm2-7 heterohexamers, as two complexes 

are loaded at each origin. Similarly, the CDC45 species corresponds to a dimer, as 

described by (Bowers et al., 2004). Concentrations are described in units of molecules 

per cell. 
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Figure 3.1. Network diagram for the initiation of DNA replication. Chromatin-bound 
species are shown in yellow. Reactions have considered reversible are shown with an 
arrowhead at each end. ORC-bound DNA (RC1) specifies a complex that has bound 
origin sequences following DNA replication of the previous cycle. Cdc6 reversibly binds 
ORC-bound DNA starting in late M-phase to form RC2. The Mcm2-7 hexamers, 
chaperoned by Cdt1 are localized to origins where they are loaded onto the double helix 
(RC3). Cdt1 is later exported from the nucleus by a CDK-dependent mechanism (i.e. by 
Clb5-Cdc28). Free Cdc6 is targeted for proteolysis in a CDK-dependent manner. Upon 
Cdc6 dissociation, the complex of MCM and ORC (RC4) is also subject to dissociation. 
RC4 awaits association of and activation by a complex of Dbf4 and Cdc7 (DDK), which 
phosphorylates various MCM subunits (RC5). Required ultimately for the stabilization of 
DNA polymerase, Cdc45 binds in response to specific CDK phosphorylation events 
(RC6, also called the Pre-IC). DNA replication begins as forks are established (FORK). 
Dbf4 dissociates soon after initiation and is constitutively degraded throughout S-phase. 
Its levels cannot rise until late G1 since it is actively targeted for degradation by 
APCCdc20, whose low in G1 are sufficient for this inhibition. Once a replication fork 
terminates, both Cdc45 and the MCM fall off the chromatin. Free MCM complexes are 
exported to the cytoplasm via a CDK-dependent mechanism. ORC is phosphorylated by 
CDK (RC7) and cannot interact with pre-RC components until it is dephosphorylated, 
returning it to the RC1 state.   
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3.2.2 Reaction events   

The seventeen reactions that make up the model are shown in Table 3.1. Their rates 

depend on the species concentrations, the model parameters, and on two fixed, time-

varying input functions describing the abundance of Clb5 (representing activated CDK) 

and of Cdc20.  

 In choosing reaction kinetics, the complexity of the model was balanced against 

its ability to adequately describe the behaviour of the overall system. The description of 

initiation was limited to the interactions between the pre-RC and replisome proteins that 

were thought to be the essential core of the network (e.g. Dbf4 representing the Dbf4-

Cdc7 complex, discussed below). As a result, certain processes were combined into 

single events, some reactions were presumed irreversible, and only some reaction rates 

were presumed to have non-linear kinetics. 

Except for RC7, phosphorylation states are not explicitly described, as no data for 

the individual phosphorylation events is available. This is acceptable for the purposes of 

the model as the lumped function of CDK in each case is consistent with a scenario 

where the effect of CDK is proportional to its concentration (i.e. [Clb5]). Additionally, 

processes that involve multi-protein complexes are represented by a single member – one 

CMG (Cdc45�Mcm2-7�GINS) complex stabilizes DNA polymerase at each replication 

fork. Of the three protein factors it is comprised of, Cdc45 is limiting. Although MCM is 

also included in the GINS complex, both MCM and Cdc45 are modeled as separate 

species. Dbf4 represents the Dbf4-Cdc7 kinase complex and Mcm2 represents the Mcm2-

7 helicase. Although the protein factors Cdc45, Dbp11, Sld2, Sld3 and GINS interact to 

facilitate formation of the pre-initiation complex at origins, only Cdc45 is modeled, 
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which is the limiting factor in the CMG complex (Tanaka et al., 2011); ultimately the 

number of forks fired (described by the model) is dependent on the Cdc45 concentration. 

Dbf4, which is the limiting regulatory subunit of Cdc7, is taken as representative of 

active DDK, which is one of the limiting factors in replication initiation (Mantiero et al., 

2011). Mcm2 is used to represent MCM complexes; the Mcm2 concentration has been 

reported to approximate the number of total complexes per cell in an asynchronous 

population (Donovan et al., 1997; Lei et al., 1996). The replication complexes in the 

models exist only on chromatin and therefore represent the activity of these proteins at 

the DNA as opposed to soluble complexes.  

The network shown in Figure 3.1 includes both reversible and irreversible 

reactions as indicated. Association/dissociation reactions are considered reversible, in 

accordance with a dynamic pre-RC/pre-IC loading mechanism as described above. In 

most cases, phosphorylation events are modeled as irreversible, in the absence of 

identified countervailing enzymes. Most reaction rates were found to be sufficiently 

described by mass action kinetics.  In cases where saturation occurs (the nuclear import 

of MCM•Cdt1, v6, and the association of Cdc45 with ORC, v13), Michaelis-Menten 

kinetics were employed.  To simplify the description of the phosphorylation of ORC by 

CDK (RC7), phosporylation and dephosphorylation are not described explicitly, but are 

combined into a single dephosphorylation event whose rate is inversely proportional to 

the level of CDK (v17). Cooperativity in this mechanism is introduced to account for 

multiple phosphorylation events (Nguyen et al., 2001) or an additional inhibitory CDK-

Orc6 binding mechanism (Chen and Bell, 2011; Wilmes et al., 2004).  
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The establishment of replication complexes in the model reflects the sequential binding 

of proteins that constitute the pre-replicative complex. In some cases the association and 

dissociation of pre-RC components is reversible. The loading and maintenance of Mcm2-

7 helicase complexes is treated as a dynamic process, which is dependent on the 

concentrations of the factors ORC, Cdc6, Cdt1 and Mcm2-7 itself. A mechanistic model 

for the dynamic assembly of pre-RCs was first described by the Bell lab (Aparicio et al., 

1997). The requirement of pre-RC factors for maintenance of helicase-loaded origins in 

late G1 has been further demonstrated by work from these researchers as well by 

published and unpublished data from the Duncker lab (Chen and Bell, 2007; Gibson et al. 

2006; Semple et al., 2006). 

	
  

 

 

 

 

 

 

 

 

 



 117 

3.2.3 Network and Differential Equations  

Referring to Figure 3.1 and Table 3.1, the dynamics of the system are described as: 

 

 

 

 

 

 

 

 

 

The remaining state variables are constrained by the following conservations:  

RC1 = RCTotal − RC2 − RC3 − RC4 − RC5 − RC6 – RC7   

CDT1C = CDT1Total − CDT1N  

MCMC = MCMTotal − MCMN − RC3 − RC4 − RC5 − RC6 − FORK − MCM•CDT1  

CDC45N = CDC45Total − RC6 − FORK, 

where RCTotal, CDT1Total, MCMTotal, and CDC45Total are the fixed total number of origins, 

Cdt1 molecules, Mcm2-7 complexes, and Cdc45 dimers, respectively. These four factors 

have been shown to be present at constant levels throughout the cell cycle (Forsburg, 

2004; Hopwood and Dalton, 1996; Liang and Stillman, 1997; Owens and Detweiler, 

1997; Tanaka and Diffley, 2002). The value for RCTotal used in the model is 332, as 

described in (Raghuraman et al., 2001). 

 

dFORK
dt

= v14 − v15

dCDC6N
dt

= v1 + v10 − v5 − v2

dDBF4N
dt

= v3 + v14 − v12 − v4

dCDT1N
dt

= v7 − v8 + v9

dMCMN

dt
= v15 + v11 + v9 − v16

dMCM •Cdt1N
dt

= v6 − v9 − v7

dRC2
dt

= v5 − v7

dRC3
dt

= v7 − v10

dRC4
dt

= v10 − v12 − v11

dRC5
dt

= v12 − v13

dRC6
dt

= v13 − v14

dRC7
dt

= v14 − v17
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3.2.4 System Inputs  

The biological network responsible for the initiation of DNA replication does not 

oscillate autonomously; it displays periodic behaviour when driven by periodic signals 

from the cell cycle. Likewise, the model displays oscillations only when driven by 

periodic forcing input.  In order to facilitate the combination of the model with the cell 

cycle model of Chen et al. (2004), the simulated profiles of Clb5 and Cdc20 from their 

model were used as periodic inputs to the present model. Cdc20 mediates the degradation 

of Dbf4 (reaction v4). Clb5 is responsible for Cdc6 degradation (v2), loading of Cdc45 

(v13), nuclear export of free MCM (v16) and Cdt1 (v8), and phosphorylation of Orc2 and 

Orc6 (v17). The time-varying profiles of Clb5 from the Chen et al. (2004) model were 

converted to molecules-per-cell units using the genome-wide GFP tagging experiments 

described in Huh et al. (2003) and Ghaemmaghami et al. (2003). The profile of Cdc20 

was similarly obtained by scaling to cellular abundance levels reported in another study – 

while Cdc20 has been determined to peak at 2200 copies in a haploid cell, the functional 

APCCdc20 level can be estimated by considering the APC cyclosome subunit Cdc27 

(Poddar et al., 2005, Schreiber et al., 2011). This was reported in different studies to be 

593 mol/cell in an asynchronous population (Huh et al., 2003) and at its maximal value 

of 750 mol/cell in metaphase (Poddar et al. 2005). 
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Table 3.1. Kinetic Reaction Rates Describing the Network. 

 

3.2.5 Data Acquisition  

Data for Cdc45 and Cdc6 levels were obtained from individual isogenic strains in which 

the open reading frame of the corresponding gene was fused to a sequence encoding a 

13Myc epitope tag (Longtine et al., 1996). In Figure 3.2, a representative western blot for 

Cdc45-Myc is shown (panel A), with the corresponding FACS analysis (panel B). The 

levels of Mcm2 were determined using an anti-Mcm2 antibody. In each time course 

experiment, cells were first arrested in late G1 phase with the mating pheromone α-factor 

and then released synchronously into the cell cycle, as described in Materials and 

Rate Description Rate Equation 
 Expression & Degradation  
v1 Expression of CDC6 k1 
v2 Degradation of CDC6 k2CLB5�CDC6  
v3 Expression of DBF4 k3 
v4 Degradation of DBF4 k4DBF4�CDC20  
   
 Formation of the Pre-Replicative Complex   
v5 Association of ORC and CDC6 k5RC1�CDC6 – k5rRC2 
v6 Association and nuclear import of MCM and 

CDT1 
k6MCMC�CDT1C/(KM1 + MCMC) 

v7 Loading of MCM by CDT1 k7RC2�MCM•CDT1 
v8 Nuclear export of CDT1 k8CLB5�CDT1  
v9 Dissociation of nuclear MCM-CDT1 complex k9MCM•CDT1 – k9rMCM�CDT1   
v10 Dissociation of CDC6 from the Pre-RC k10RC3 – k10rCDC6�RC4  
   
 Formation of the Pre-Initiation Complex   
v11 Dissociation of ORC and MCM from Pre-RC k11RC4 
v12 Association of DBF4 and the Pre-RC k12RC4�DBF4 – k12rRC5  
v13 Association of CDC45 and the Pre-RC k13RC5�CDC45�CLB5/(KM2 + 

CDC45)  
   
  Post-Replicative Complex and Ensuing Events  
v14 Origin firing k14RC6 
v15 Breakup of the elongation fork k15FORK 
v16 Nuclear export of the MCM k16MCM�CLB5 
v17 Phosphorylation of ORC k17RC7/(1+(CLB5/k18)5) 
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Methods. From the literature, time course data for chromatin-bound and soluble Dbf4 and 

Mcm2 (to supplement in vivo data collected in this thesis) from (Pasero et al., 1999) and 

quantitation of the nuclear fraction of Cdt1 (Tanaka and Diffley, 2002) was used. In order 

to convert relative measures of protein abundance to molecule-per-cell numbers, scaling 

factors obtained from the database provided by Ghaemmagham et al. (2003) were used. 

The data is shown along with a best-fit simulation in Figure 3.3. Raw timecourse data can 

be found in Appendix A, Figures A1-A3 with an example of molecule/cell derivation in 

Table A1. The fits in Figure 3 represent the best solution to a trade-off between quality of 

fit and model complexity. The effect of adding additional species and parameters were 

explored. These additional features could, in some cases, provide minor improvements to 

the fit, but confidence in the parameter estimates suffered as the complexity of the model 

grew. 

 While the model is quantitative in that it reports proteins and complex 

concentrations in absolute units of molecules/cell, accuracy regarding these values is 

restricted by the literature-reported cellular abundances for the various protein factors. 

Discretion has been used when inconsistencies arise, choosing the reported values that 

are closest to what is observed across multiple cell cycle studies. It should be noted that, 

while a strength of this model is its quantitative aspect, changing the global protein level 

for a particular factor does not abolish its network dynamics. While the relative 

abundances of protein factors would change, scaling of the appropriate rate constant(s) (a 

relatively simple feat) would return the system to its nominal behaviour. This is an 

important consideration regarding the conversion of densitometry readings to absolute 

values as the overall levels are ultimately determined by a literature-derived scaling 
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factor. Densitometry readings and quantitative data acquisition are, however, crucial to 

developing protein level profiles through the cell cycle. In the event that new data arises 

confirming different estimates of protein abundances, these changes can be easily 

incorporated into the model without having to alter system dynamics. 
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Figure 3.2. Example of in vivo timecourse experiment. (A) Western blot probed with 
α-Myc antibody to detect the Cdc45-Myc fusion protein. The corresponding Ponceau-S 
membrane stains are shown; these serve as loading controls to which densitometric 
readings were normalized.  The labels indicate the time (min) elapsed since release from 
α-factor; S and P denote the supernatant (soluble protein) and pellet (DNA-bound) 
fractions, respectively. (B) FACS analysis of the samples described in A, along with an 
asynchronous culture sample (Async) prior to α-factor arrest. 
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Figure 3.3. Model-generated best fits. Blue lines represent model simulation; red 
diamonds represent in vivo data points. PEL indicates a chromatin-bound species (pellet); 
SUP indicates non-chromatin bound (supernatant); NUC indicates nuclear fraction.  The 
error bars indicate the variance calculated from triplicate experiments.  Since the Cdt1 
and Dbf4 data (Tanaka and Diffley, 2002 and Pasero et al., 1999, respectively) was not 
reported with variance values, values were assigned to these factors equal to the variance 
from the corresponding time-point for Cdc45, as these have similar abundances compared 
to other proteins in the model. The observed quantities correspond to the model state 
variables as follows:  CDC6PEL = RC2+RC3, CDC6SUP = CDC6N, CDC45PEL = RC6 
+ FORK, CDC45SUP = CDC45N, DBF4PEL = RC5 + RC6, DBF4SUP = DBF4N, 
MCMPEL = RC3 + RC4 + RC5 + RC6 + FORK, MCMSUP = MCMN + MCM•CDT1N + 
MCMC, and CDT1NUC = CDT1N + MCM•CDT1N. One MCM molecule represents two 
MCM hexamers. Similarly one molecule of Cdc45 represents two individual such 
proteins. 
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3.2.6 Parameter Calibration 

The model parameters were calibrated using a weighted least-squares comparison with 

the data described above.  A combination of global optimization (adaptive simulated 

annealing) and local search (Nelder-Mead simplex method) was used to find the best-fit 

parameter set shown in Table 3.2.  The table also shows the percent error associated with 

each parameter estimate. The percent error is the relative size of a 95% confidence 

interval for the estimate, calculated via the Fisher information matrix and the Cramer-Rao 

bound (Gadkar et al., 2005). The percentage errors show that some parameters are 

estimated with high confidence while others are represented with less accuracy. 

Parameter values that were well constrained by the data include the rates of production, 

degradation and association of Cdc6 (k1, k2, k5) and Dbf4 (k3, k4, k12) as well as the rate 

of origin firing (k14). This reflects the strong reliability of the data for these two protein 

factors as well as for the proteins that form the replication complex (RC6) that gives rise 

to active forks.  

Parameters values in which there is low confidence include those that govern the 

loading of MCM by Cdt1 (v7), Cdc6 dissociation from RC3 (k5r), and the 

phosphorylation of ORC (k17). The reversible dissociation of Cdc6 is needed to 

accurately fit the data and there is no evidence suggesting that ORC-Cdc6 binding is 

irreversible. Nevertheless, it is clear that experimental observations specific to this 

process are required to more precisely estimate this parameter value.  The reaction 

whereby the Cdt1•MCM species loads the MCM complex (v7) is extremely transient 

(Randell et al., 2006). Provided parameter k7 is sufficiently large, the kinetics of this 

reaction will be rapid enough to fit the data.  Consequently, the data cannot support a 
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precise estimate of the parameter value. This observation suggests that MCM loading is 

an extremely rapid biochemical step in pre-RC assembly. It may point to a role for Cdt1 

in repeatedly targeting MCM complexes to origins throughout G1. Such a phenomenon is 

consistent with the requirement for a dynamic loading mechanism that ensures pre-RC 

fidelity up until the G1/S transition. Finally, the phosphorylation of ORC (characterized 

by k17) contributes to the prevention of repeated origin firing. However, this mechanism 

has not been well characterized, and the data is unable to accurately constrain the 

specifics of this process.  

The kinetic rates in this network have not been the subject of prior experiments, 

but previous reports of protein half-lives are consistent with the model-predicted 

parameter values. Drury et al., (1997) estimated that Cdc6 is reduced below the point of 

detection within 5 minutes of S-phase entry, corresponding to a half-life no longer than 

1.5 min. Similarly, (Cheng et al., 1999) reported that Dbf4 is reduced below visible levels 

within 10 minutes by the APC-dependent pathway, indicating a half-life no longer than 3 

min. Model-based predictions of degradation rates correspond to half-lives of 1 min. and 

2.5 min. for Cdc6 and Dbf4 respectively, in good agreement with these earlier findings. 

Figure 3.4 shows the simulated model behaviour for the best-fit parameter set. 

Some replication complex species – RC2, RC4 and RC5 – are extremely transient.  Their 

low levels of abundance are shown separately from other RCs, on an appropriate scale. 

Simulations were carried out in Matlab. 
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Table 3.2. Optimal Values of Parameters Used to Describe the Network. These 
values were used to solve the ODEs in the consensus model. The percentage error for 
each parameter is indicated. 
 

Description Parameter Value Units % Error 

Cdc6 production k1 15.982 (Mol./cell) x min-1 8.86 

Cdc6 degradation k2 0.001 (Mol./cell)-1 x min-1 22.76 

Dbf4 production k3 1368.220 (Mol./cell) x min-1 17.18 

Dbf4 degradation k4 2.440 (Mol./cell)-1 x min-1 17.82 

Cdc6 association with ORC k5 0.016 (Mol./cell)-1 x min-1 30.86 

Cdc6 dissociation from ORC k5r 675.422 min-1 861.23 

MCM-Cdt1 import k6 1.015 (Mol./cell)-1 x min-1 24.88 

MCM loading k7 275.675 (Mol./cell)-1 x min-1 827.56 

Cdt1 export k8 1.732 (Mol./cell)-1 x min-1 41.81 

Dissociation of MCM-Cdt1 k9 100.881 min-1 39.84 

Re-assocation of MCM-Cdt1 k9r 1042.739 (Mol./cell)-1 x min-1 41.98 

Dissociation of Cdc6 from RC3 k10 936.745 min-1 32.07 

Re-assocation of Cdc6 with RC3 k10r 352.504 (Mol./cell)-1 x min-1 29.39 

Unloading of MCM from RC4 k11 885.147 min-1 29.61 

Dbf4 association with RC4 k12 0.568 (Mol./cell)-1 x min-1 38.91 

Dbf4 dissociation with RC4 k12r 192.628 min-1 54.52 

Association of Cdc45 with RC5 k13 0.528 (Mol./cell)-1 x min-1 54.16 

Fork Firing k14 0.237 min-1 30.08 

Fork disassembly k15 0.097 min-1 16.52 

MCM export k16 3.196 min-1 41.82 

Phosphorylation of ORC k17 13.313 min-1 239.26 

Dephosphorylation of ORC k18 2.497 Mol./cell 43.63 

Michealis constant for import of MCM KM1 195.302 Mol./cell 2123.53 

Michealis constant for association of 

Cdc45  

KM2 8.248 Mol./cell 2094.64 
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Figure 3.4. Protein concentration profiles simulated by the model. Panel (A) includes 
the inputs from the Chen et al., model used to drive the network (Clb5 and Cdc20), 
scaled from arbitrary units to molecules/cell. Included are the behaviours of various 
protein factors within the model. Additional factors, replication complexes (RCs) as well 
as the FORK species are shown in panel (B). The transient RC species (RC2, RC4 and 
RC5) are shown in panel (C).   
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3.2.7 Perturbations 

Initial explorations of the model revealed that the network’s behaviour is particularly 

sensitive to the abundance of Dbf4 and Cdc6 and relatively insensitive to the level of 

Cdt1. The effects of perturbations by simulating reductions in Dbf4, Cdt1 and Cdc6 

(Figure 3.5) in the model were investigated. When the Cdc6 production rate (v1) was 

reduced to 10% of its nominal (wild-type) value, persistence of the RC1 complex was 

observed.  Similarly, when the Dbf4 production rate (v3) is reduced by the same relative 

amount, an accumulation of RC3 occurs. In both cases, the perturbation interferes with 

pre-initiation complex assembly and blocks the system at the nearest previous persistent 

RC state (RC4 is not persistent since the unloading of MCM causes a rapid transition 

back to RC1). It is worth noting that because MCM can dissociate from ORC (v22), RC4 

represents a complex containing MCMs that will be functionally incorporated into 

replication forks as opposed to those that loosely associate with origins. Because the 

timing of the model is fixed, the various state concentrations (RC levels) indicate the 

progression from licensing to firing. A reduction in the FORK species compared to the 

wild-type case suggests a slow-down in S-phase because fewer origins are firing within 

the prescribed time. Using the peak abundance of the FORK species as a measure of 

replicative efficiency, significant reductions in both simulated knock-downs were 

observed (by 68% for Dbf4 and 73% for Cdc6, Figure 3.5 panels B and C, respectively). 

Conversely when the reduction of Cdt1 abundance to 10% of nominal values was 

simulated, origin firing was only reduced by 23%, suggesting that the network is 

relatively refractory to depletion of Cdt1 (Figure 3.5 panel D).  
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To investigate the accuracy of these mathematical predictions, corresponding wet 

lab depletion experiments were carried out. Reducing Dbf4 or Cdc6 concentrations in 

yeast cells to roughly 90% below normal endogenous levels resulted in a rapid G1 phase 

arrest, evident after 2 h of depletion, as judged by FACS analysis indicating the 

accumulation of cells with 1C (unreplicated) DNA content (Figure 3.6). In contrast, a 

corresponding depletion of Cdt1 had no appreciable effect, and DNA replication defects 

were only evident after 6 h of further reduction. Thus, simulations using the nominal 

parameter set were predictive of in vivo perturbations. These experiments were used to 

validate the model; they were not used for calibration.  

The insensitivity to perturbations in Cdt1 levels is consistent with its apparent 

excess relative to origins (Ghaemmaghami et al., 2003), although the number of Cdt1 

molecules that act at each origin has not yet been characterized. Moreover, the 

mechanism by which Cdt1 aids in recruiting the helicase molecules to pre-RCs is 

extremely transient (Randell et al., 2006).  

While many factors are limiting, the system appears to be highly sensitive to the 

levels of Cdc6. Due to its low abundance relative to MCM and Cdt1, even a moderate 

depletion of Cdc6 significantly alters the dynamics of pre-RC loading. The same is true 

for Dbf4, although in this case its role in activation of the Cdc7 kinase renders the system 

highly sensitive to its concentration; firing cannot occur without the Dbf4-Cdc7 complex.  

Since Dbf4 is, like Cdc6, limiting, flow through the network is blocked when the kinase 

does not reach a threshold level. Additionally at limiting levels, the number of replication 

forks produced by the model is significantly reduced, consistent with in vivo reports from 

the literature showing a lengthening of S-phase (Sheu and Stillman, 2006). 
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Further model validation comes from comparison with additional in vivo experiments 

reported in the literature. Jones et al. (2010) showed that the interaction between the 

MCM complex and Dbf4 was reduced to half its wild-type level when a Dbf4 domain 

that binds Mcm2 was mutated, impairing S-phase progression. This effect was mimicked 

by reducing the rate of association of Dbf4 with RC4 (k12) by 50%, leading to a similar 

result (compare Figure 3.7 panels A and B). Similarly, it was reported (Zou et al., 1997) 

that the cdc45-1 mutant shows an aberrant growth phenotype at the non-permissive 

temperature. This is thought to be due to a disruption of Cdc45’s ability to interact with 

MCM and ORC (RC6). As shown in Figure 3.7, panel C, by reducing the rate of Cdc45 

interaction with RC6 (k13) by 50%, a marked reduction in the peak abundance of the 

FORK species results, indicative of a slower S-phase, as observed when the mutant was 

grown at the non-permissive temperature. The actual reduction in Cdc45’s association 

with the pre-RC due to conformational changes in the mutant might be even more 

pronounced than a 2-fold reduction. In any case, the model’s simulation is consistent with 

Cdc45’s origin-initiation role being compromised by impairing its ability to interact with 

its ligands to leading to its incorporation into the CMG complex. 

 To further demonstrate the sensitivity of the system to the levels of Cdc45, cell 

cycle progression following release from an α-factor block was investigated in cells 

having wild-type or reduced levels of the protein (Figure 3.8). Cells expressing Cdc45 

endogenously from the tetracycline- repressible tetO7 promoter were split into two 

cultures, each arrested for 90 min in medium containing α-factor. Doxycycline or “Dox” 

(an analog of tetracycline) was added to one culture and both were maintained in a late 

G1 block for 6 h. Following this, both cultures were released into fresh medium, lacking 
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α-factor to initiate release from the block. Cells that were treated with Dox, in which 

Cdc45 expression was presumably reduced below endogenous wild-type levels, 

progressed more slowly through S-phase compared to those not treated with Dox (see 

timepoint T= 40 min). As shown in Figure 3.7, panel C, Cdc45 is a limiting factor in the 

assembly of the pre-initiation complex. Its reduction below a threshold level would 

ostensibly result in less origins firing per cell cycle, thus extending the time taken to 

completely replicate the chromosomes.   

While simulations of protein knock-downs validate the model in light of 

experimental observations, overexpression of network factors also provide useful insight. 

Simulating the results of Tanaka et al. (2011), overexpression and increase in RC 

association (v13) of a complex containing Cdc45 leads to a greater number of origins fired 

(134% increase compared to wild-type). This is in good accordance with the 

experimental observation. Similarly, either overexpressing (v2) or increasing the 

chromatin association (v11) of another limiting factor, Dbf4 results in an increase in origin 

firing. While these predictions might seem like an obvious result of network construction, 

comparing these results to a similar degree of Cdt1 overexpression (note that the cellular 

levels of Cdt1 and Cdc45 are similar) shows that the system is more sensitive to 

particular nodes and factors. An interesting observation is that increasing Cdt1 and Cdc45 

levels and chromatin association by the same amount causes very little increase in origin 

firing in the case of Cdt1 and a linear increase in origin firing for Cdc45 (as well as for 

Dbf4) together with an increase in the amount of re-replication. 
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A number of literature-described hypomorphic mutants were simulated by the 

model. A summary of these and other mutants as well as a comparison of in silico results 

versus experimental observations is given in Table 3.3. 
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Table 3.3. Cell cycle mutants simulated by the model of DNA replication initiation. 
Results of in silico perturbations were matched against phenotypes observed in the 
literature, where available.  
 

Mutant/Perturbation Observations from Model Simulation Experimental Phenotype 
Origins fired/cell 

cycle                 
  (% WT) Reference 

Wild-type –  – 100 This study 
Cdc6 knockdown (to 10%) 73% peak [FORK] height reduction G1 arrest within 2 h  24.6 This study 
Dbf4 knockdown (to 10%) 68% peak [FORK] height reduction G1 arrest within 2 h  29.6 This study 
Cdt1 knockdown (to 10%) 23% peak [FORK] height reduction G1 arrest within 8 h  84.2 This study 
Dbf4-Mcm2 interaction 
halved 11% longer S phase Slower S-phase, reduced 

initiation at origins  62.59 Jones et al. 
(2010) 

cdc45-1 (pre-RC association 
halved*) 17% longer S phase Slower S-phase, reduced 

initiation at origins  48.55 Zou et al. 
(1997) 

cdc6Δ No replication fork firing Inviable 0 SGDP***  
dbf4Δ No replication fork firing Inviable 0 SGDP***  
cdt1Δ No replication fork firing Inviable 0 SGDP***  
mcm2Δ No replication fork firing Inviable 0 SGDP***  
cdc45Δ No replication fork firing Inviable 0 SGDP***  
Cdc45/Sld3/Sld7 
overexpression** Increase in origins fired Increase in fired origins to 134% 

of wild-type 139 Tanaka et 
al. (2011) 

Cdt1 M-G1 deplete Mcm2-7 excluded from nucleus Mcm2-7 excluded from nucleus 0 Tanaka et 
al. (2002) 

mcm2-1 v14 reduced to zero: S phase 49% longer Delayed passage through S 
phase/initiation defect 87.21 Yan et al. 

(1991) 
mcm3-1 v14 reduced to zero: no FORK produced Inviable at restrictive temperature 0 Yan et al. 

(1993) 
orc2-1 v24 reduced by 20%: reduced origin firing ORC-DNA binding defect 11.14 Gibson et al. 

(2006) 
cdc6-1 Arrest in RC2 state (G1) G1 arrest  0 Detweiler 

and Li 
(1997) 

cdc7-1 Arrest in RC5 state (G1) G1 arrest (failure to enter S-
phase) 0 Bousset and 

Diffley 
(1998) 

DDK activity increased  
10-fold (re-fired origins increased by 12.42/cell cycle)  – 105 – 
Cdc45 activity increased  
10-fold (re-fired origins increased by 12.66/cell cycle)  – 108 – 
Cdt1 activity increased  
10-fold No extra origins re-fire**** – 100.7 – 
 

* This is an estimate of the defect of cdc45-1 in initiating replication. It is likely that the phenotype is more severe 
in vivo. 
** This is simulated using Cdc45 as a proxy for the complex that stabilizes CMG at origins. A three-fold increase 
in levels and association was simulated by the model based on Western blotting results from  
Tanaka et al. (2011). 
*** Saccharomyces Genome Deletion Project 
**** Although 100.7% of origins fire compared to wild-type, this represents a small decrease in unused RC 
species amongst the 332 potential origins, not re-replication. 
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Figure 3.5. In silico simulations of perturbations. (A) Wild-type behaviour. (B) 
Expression of Dbf4 reduced to 10% of nominal. (C) Expression of Cdc6 reduced to 10% 
of nominal. (D) Total abundance of Cdt1 reduced to 10% of nominal. Perturbations of 
Cdc6 and Dbf4 had a significant impact on replicative efficiency, as evidence by a 
reduced abundance of activated replication forks (FORK). In contrast, a similar reduction 
in Cdt1 levels had much less impact. 
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Figure 3.6. Experimental investigation of protein depletion below normal 
endogenous levels for Dbf4, Cdc6 and Cdt1. (A) Asynchronous cultures of GAL1-
CDC6 (DY-139), GAL1-CDT1 (DY-140), GAL1-DBF4 (DY-255) and their wild-type 
counterparts DY-142, DY-143 and DY-256, respectively, were grown to 106 cells/ml in 
galactose (GAL) medium, washed and resuspended in glucose (GLU) medium. Whole-
cell extracts were prepared from culture aliquots taken prior and post shift from galactose 
to glucose with indicated time points corresponding to time in glucose medium. HA-
tagged Cdc6 and HA-tagged Cdt1 were detected using an anti-HA antibody (Sigma) and 
a fluorescent secondary antibody (Invitrogen). Ponceau S staining of the region detected 
by the blot to judge loading of whole-cell extracts is also shown. (B) FACS analysis of 
culture aliquots from either asynchronous (Async) cultures, or at the indicated times after 
cell resuspension in glucose medium. The 1C and 2C markers refer to the amount of 
DNA present (C = Complement of the genome) in cells within the population – 1C 
corresponds to G1 phase, while 2C corresponds to cells that have replicated their DNA, 
but not undergone cell division. 
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Figure 3.7.  In silico perturbations to the consensus model agree with reported in 
vivo cell cycle defects. (A) Wild-type behaviour.  (B) Reduction of the rate of Dbf4-
MCM association (k12) to 50% of the nominal value. (C) Reduction of the rate of Cdc45 
interaction with the pre-RC (k13) to 50% of the nominal value. In both cases, a decrease 
in the abundance of the FORK species indicates a defect in DNA replication. 
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Figure 3.8. Cells depleted of Cdc45 in late G1 progress more slowly through S phase. 
Cells expressing Cdc45 under the control of a doxycycline (Dox)-repressible promoter 
were split into two cultures, each treated with α-factor to arrest them in late G1. Cells 
were held in this block for 6 h (A), after which each culture was transferred to fresh 
medium lacking α-factor to release them into the cell cycle (B). FACS profiles are shown 
demonstrating tight G1 arrest through the 6h. DNA content is shown for samples 
collected at the indicated timepoints (minutes) following α-factor release.  
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3.2.8. Linking the DNA replication initiation model to a previously established cell 
cycle model 
 

The model of the replication initiation presented here only displays oscillatory behaviour 

when forced with periodic signals from the cell cycle.  By choosing to incorporate signals 

that correspond to species in the cell cycle model of Chen et al. (2004), the two models 

could be merged in a straightforward manner.  In the Chen model, the initiation of DNA 

replication is represented by a single lumped state variable, called ORI.  At the beginning 

of the cell cycle, ORI has value zero.  Its rate of growth depends linearly on Clb5.  When 

it reaches a threshold value, DNA synthesis is presumed to have begun, and triggers an 

increase in the value of the parameter kmad2 (activity level of the Mad2 protein) leading to 

an inactivation of Cdc20, which is required for mitotic exit.  This Mad2-dependent 

inhibition of Cdc20 represents the spindle assembly checkpoint (Yu, 2002), ensuring that 

cells with replicated DNA do not complete mitosis without properly aligning the 

chromosomes. When chromosomes have properly aligned on the metaphase plane kmad2 

drops and Cdc20 promotes exit from mitosis. The Chen et al. (2004) Cdc20 profile in 

scaled mol/cell units is depicted in Figure 3.9. In the replication model, the level of DNA 

synthesis is represented by the FORK species. To merge the two models, the ORI state 

was removed from the Chen model, and the FORK species was used instead to trigger the 

change in kmad2, as detailed in Materials and Methods.   

Besides “closing the loop” between the two models by incorporating two-way 

inter-model signalling (involving Clb5, Cdc20, and FORK), both models include a single 

shared species, describing the dynamics of Cdc6. A merged description of Cdc6 

behaviour was produced by incorporating the dynamics of replication complex 
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association and dissociation into the Chen model’s formulation of Cdc6 behaviour. 

Details are described in Materials and Methods. The resulting combined model behaves 

only marginally differently from either model in isolation, as shown in Figure 3.10.  
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Figure 3.9. Comparison of Cdc20 profiles cycling over the course of a 101.2 minute 
cell cycle. (A) Time-varying Cdc20 concentration (scaled from arbitrary units to 
molecules/cell) from the original Chen et al., (2004) model. (B) Modification for use in 
the present model of Cdc20 where the control of the levels of its inhibitor, Mad2 replaces 
a step function with a smoother function. This results in lower Cdc20 levels in mid and 
late G1 phase, thus allowing Dbf4 to gradually accumulate, peaking at the start of S 
phase. 
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Figure 3.10. Combining models does not alter either’s behaviour in isolation. (A) 
Chen et al. (2004) model species in the combined model are only marginally altered 
temporally. Several species are shown including Cdc20 (enlarged in Figure 3.9). (B) 
DNA replication model species within the combined do not deviate significantly from the 
model simulated in isolation. Shown are the four stable replication complex species 
(RCs) as well as the FORK species. In both cases, the minor deviations in species profiles 
can be attributed to the sharing of a common species, Cdc6 (teal in panel A). 
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3.3 Discussion 

While the model provides a sound description of the initiation of DNA replication, a 

number of aspects of the network remain unresolved: for example, the kinetics of MCM 

loading, the mechanism by which CDK phosphorylates ORC, and the details of the 

association of the GINS complex, Sld2, and Sld3. While modeling Cdc45 captures the 

events regarding CMG formation at origins, being its limiting factor, a future version of 

the model could better distinguish the initial Cdc45 association at origins from 

subsequent CMG formation. While this has minimal effect on network dynamics and no 

effect on the blocking of re-replication, it would provide a better resolution of events at 

origins just prior to the G1/S transition. Incorporating timecourse experiment data for 

levels of a GINS complex member would aid in this analysis. Nevertheless, the 

assumptions made allow the approximation of the aforementioned processes, simplifying 

the network without losing information about system behaviour at the level intended to 

model. With the nominal parameter set, the system is observed to behave as the ordered 

accumulation of proteins forming a loading complex at origins throughout the genome. 

Activation by increasing S-CDK levels and the concentration of Dbf4 (regulating kinase 

activity of Cdc7) increase linearly the number of replication forks set up at the various 

loading complexes. It should be noted that as is found in vivo, not all origins fire, while 

they are all furnished with MCM-containing pre-RCs. Replication is maximal at the G1/S 

transition, but continues into S-phase as origin firing is temporally spaced. This is 

thought to ensure sufficient time to address any defects in replication and is mediated by 

the limiting nature of one of the initiation activators, DDK (reviewed in Mantiero et al., 

2011 and Tanaka et al., 2011). The in vivo perturbation of Dbf4 levels reproduces this 
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consequence and points to other system observations: Cdc6 levels are intimately 

controlled by CDK levels to avoid re-replication, however this mechanism is tightly 

regulated such that Clb5 levels rising too soon would prevent the assembly of the pre-RC 

in G1, a feature of the system well documented. Additionally, Cdt1 appears to act 

catalytically rather than stoichiometrically given the system is relatively impervious to 

reductions in this factor to 10% of its widtype level. This might play into its role in 

chaperoning Mcm2-7 hexamers to origins, where they are loaded subsequently leading to 

the release of Cdt1, which may be then recycled to aid the loading of other MCMs. This 

aspect of the system has not yet been investigated experimentally and would be of future 

interest.  

As an example of the agreement of the simulated values with literature-observed 

origin stoichiometry, Mcm2 (representing the MCM complex) was present at levels that 

were consistent with having two MCM complexes bound to each origin. This reflects the 

head to head placement of the heterododecamer at the origin. Once firing occurs, two 

forks are produced, illustrated in the model as one Mcm2-7�Cdc45 species molecule 

being generated (each FORK in the model represents a pair of these complexes). The 

levels of chromatin-associated MCM protein that were obtained corresponds to roughly 

300 origins being bound in this manner, which is the range of the number of origins that 

are reported to potentially fire according to various global origin characterization studies 

(Feng et al., 2006; Nieduszynski et al., 2006; Raghuraman et al., 2001; Wyrick et al., 

2001).  

The recently published model of Brümmer et al. (2010) also describes the 

network responsible for the initiation of DNA replication.  The 51 free parameters of that 
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model were chosen by a combination of fitting and optimization.  The authors used 

literature-derived data to fix 28 of the kinetic parameters.  The remaining 23 free 

parameters were not fit to data, but were selected through a procedure that optimized the 

coherence of origin firing and minimized re-replication (selected as hypothetical goals of 

evolutionary ‘design’).  While it is impossible to assess the accuracy of the parameter 

values obtained from this procedure, the resulting idealized model provides a useful 

starting point for examining how the network structure constrains the system behaviour. 

 The model of Brümmer et al. (2010) focuses on early origin firing and so 

represents the mechanics of firing at the start of S-phase.  In contrast, the model 

presented here describes firing dynamics throughout S-phase in order to fit into the 

broader context of the cell cycle (Goldar et al., 2009; Hyrien et al., 2003; McCune et al. 

2008). The parameter set driving the system is not filtered to retain only those that 

produce replication dynamics consistent with coherent firing just at the G1/S boundary. 

Rather, they are specified by the actual cellular concentrations of the active protein 

factors generating replication forks. While both models incorporate the important role of 

CDK, Brümmer et al. emphasize the multi-site phosphorylations of several factors 

involved in mechanisms that minimize potential re-replication. To this end, they 

employed a metric to assess re-replication.  Their idealized model exhibits 0.0028 re-

replication events per cycle.  Applying the same measure to the bottom-up model 

presented in this thesis yields 0.36 re-replication events per cycle (although that can 

readily be reduced by modifying parameters from their best-fit values). The near-zero 

value obtained by Brümmer et al. is close to their idealized target of zero.  Both estimates 

are consistent with the belief that re-replication occurs in wildtype cells, but at an 
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extremely low rate (Green et al., 2006). Because the nature of the dephosphylation of 

ORC (RC7àRC1 transition) remains uncharacterized, a conservative estimate of the 

number of ORC phosphorylation sites is used. Increasing this number by twofold, 

consistent with the number of CDK target residues on ORC (Nguyen et al., 2001) reduces 

re-replication to a value on the same order of magnitude as Brümmer’s value. Thus, both 

models effectively deal with representing control and prevention of rereplication. 

Many human orthologs of the yeast proteins described in the model’s network 

have been associated with cellular pathologies. The model presented here is specific to 

the replication machinery in budding yeast, but the mechanisms driving this process are 

highly conserved throughout Eukarya. Efforts to develop an analogous model in 

mammalian cells would be useful in understanding and dissecting cell proliferation in 

humans. A number of models of the mammalian cell cycle have been proposed 

(Chassagnole et al., 2006; Gerard and Goldbeter, 2010; Novak and Tyson, 2004; Qu et 

al., 2003; Swat et al., 2004). For example, incorrect pre-RC formation has been linked to 

impaired DNA damage repair pathways in humans (Lau and Jiang, 2006), while both 

Orc6 (Gavin et al., 2008) and members of the Mcm2-7 (reviewed in Gonzalez et al., 

2005) have been shown to be reliable cancer biomarkers. Recent work by Bicknell et al. 

(2011a, 2011b) has shown that point mutations in the human ORC1, ORC4, ORC6, 

CDT1 and CDC6 genes are associated with Meier-Gorlin syndrome, a form of primordial 

dwarfism, and several of these mutations were determined to interfere with proper pre-

RC formation. These findings highlight the potential utility of in silico mammalian 

models in further exploring the molecular basis of such disorders. Given that the model 

shows good predictive capability, it serves not only as an informational tool for yeast 
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biology, but also as a proof of principle for higher order system models. Despite the 

requirement for a mammalian model to comprehensively verify specific mechanisms, the 

system of DNA replication initiation is conserved well enough that perturbations to 

proteins such as those described above can, in fact be preliminarily examined.  

Although previously established replication models (de Moura et al., 2010; 

Retkute et al., 2011; Spiesser et al. 2009) consider the ordered timing of origin firing 

based on genomic replication profiles, the goal of this model was to represent the 

temporal organization of origin firing as a function of the concentration of active 

replication species. A focus on using real protein levels as a determinant of replication 

dynamics is a novel approach. When used in concert with models describing genome-

level origin characteristics and/or combining the findings with models exploring other 

cell-cycle modules, a well-rounded picture of DNA replication initiation can be 

generated.  
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Chapter 4: Differential chromatin proteomics of the MMS-induced 

DNA damage response in Saccharomyces cerevisiae 
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assays as well as controls for DAmP strain expression were performed by the author of 
this thesis.  
 
This chapter is published as a manuscript in the journal Proteome Science. Permission 
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4.1 Introduction 

Within many proteomic studies, protein abundance and complexity can affect practical 

detection sensitivity, even with advances in differential in-gel electrophoresis 

(DIGE) (Tonge et al., 2001) and MS-based approaches (Aerbersold et al., 2003). For 

example, certain functional classes of proteins such as transcription factors and cell cycle 

proteins are present at low abundance in whole cell extracts compared to other structural 

and metabolic proteins (Ghaemmaghami et al., 2003). In response to the issues of low 

abundance and dynamic range limitations of quantitative proteomics methods (e.g., LC-

MS or DIGE), one strategy is to minimize sample complexity through enrichment 

approaches, such as affinity capture of protein complexes (e.g. tandem affinity 

purification) (Gavin et al., 2002) selection of phosphopeptides (Smolka et al., 2007), and 

sub-cellular fractionation (Anderson and Mann, 2006; Forner et al., 2006; Yates et al., 

2005). Although targeted affinity-based methods can lead to high levels of enrichment, 

they have a high probability of excluding relevant proteins. An attractive alternative 

approach is a sub-cellular fractionation, where overall protein complexity and 

stoichiometry can be largely retained during the fractionation. Based on this rationale, 

cellular organelles have been subjected to proteomic analysis, including mitochondria 

and chloroplasts, demonstrating that the combination of sub-cellular fractionation and 

proteomics techniques provides a practical means for the analysis of low-abundance 

proteins localized in discrete regions of the cell. 

 Though it is not a separate organelle per se, chromatin is physically organized in 

the cell and, due to the importance of chromatin in molecular analyses of DNA 

replication and epigenetics, procedures to separate chromatin from other cellular 
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components have become well established in budding yeast (Liang and Stillman, 1997; 

Rattner et al., 1982; Szent-Gyorgyi and Isenberg, 1983). By using fractionated chromatin 

samples, MS-based approaches have been employed to identify a wide range of 

chromatin-associated proteins, including those from developing Xenopus embryos 

(Khoudoli et al., 2008) and C. elegans sperm (Chu et al., 2006). As demonstrated in such 

studies based on chromatography and/or mass spectrometry-based analysis of digested 

peptides, initial fractionation coupled with downstream proteomics methods is extremely 

valuable for addressing the relatively low abundance of many chromatin-associated 

proteins, especially in the context of large-scale protein identification. However, it can 

still be challenging to address differential expression using fractionated chromatin, as 

technical variability during its preparation can interfere with multiplex sampling and 

stringent statistical evaluation is needed to minimize false discovery rates. In addressing 

this aspect, gel-based proteomics is a promising approach to accommodate multiplex 

experimentation effectively while minimizing systemic experimental variation. In 

addition, the DIGE method is extremely useful for identifying various protein forms 

resulting from posttranslational modifications such as phosphorylation (Tang et al., 2008) 

and evaluating their relative abundance. 

Chromatin-associated proteins mediate a multitude of biological processes such as 

DNA replication, repair, and transcription (Bernstein and Schreiber, 2002; Morgan and 

Loog, 2005; Sclafani and Holzen, 2007)), through complex regulatory mechanisms. The 

structure of chromatin changes as a function of the cell cycle, adopting a more condensed 

conformation during mitotic phase relative to interphase, when DNA is duplicated. When 

chromatin integrity is compromised as a result of exposure to genotoxic agents, the 
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cellular repair machinery is recruited to sites of DNA damage (Harrison and Haber, 2006; 

Koundrioukoff et al., 2004). The appropriate regulation of each process requires a 

multitude of mechanisms such as histone modification (Jiang et al., 2004), chromatin 

remodeling (Pollard and Peterson, 1998), and formation of diverse protein complexes. In 

studies of biological mechanisms, the qualitative and quantitative analyses of interactions 

and/or binding with chromatin are crucial in order to investigate protein function, 

signaling pathways, and modular networks (Rodriguez and Huang, 2005). Therefore, 

global proteomic profiling of chromatin provides an effective means to gain valuable 

information about these central biological processes (Rodriguez and Huang, 2005), and 

has widespread applications such as acceleration of pharmaceutical development (Jiang et 

al., 2004). 

In this study, an analysis of differential protein expression using 2D-DIGE was 

conducted in combination with chromatin fractionation of budding yeast. Initially the 

effectiveness of the approach consisting of isolating and detecting chromatin-associated 

proteins using DIGE was assessed. The combination of DIGE with fractionation allows 

both identification of differential abundance due to an applied treatment, and additionally 

provides a means to estimate changes in protein localization, or in this case, chromatin 

affinity. The potential utility of this novel approach was then confirmed by applying the 

method to screen for differentially expressed proteins following treatment with the DNA 

damaging methyl methanesulfonate (MMS), resulting in the detection of both known and 

novel DNA damage response proteins. 
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4.2 Results 

4.2.1 Initial DIGE Based Identification of Chromatin Fraction Proteins 

Yeast protein extracts from whole cells and from chromatin enrichment were compared 

using DIGE. Candidate proteins were selected for identification on the basis of chromatin 

enrichment factor (EF), defined for a given spot as the average ratio of spot volume in the 

chromatin fraction vs. the whole cell extract in DIGE images (Figure 4.1). Enrichment 

factors were calculated for paired chromatin and WCE samples in the four DIGE gels 

using the BVA analysis module within the DeCyder™ software package. P-values were 

also calculated for protein spots, but as two different sample types are being compared 

these provide only a relative measure of variability and enrichment. As the initial 

fractionation procedure retained approximately 5% of the total cellular protein on 

average, the theoretical upper limit of the enrichment factor is approximately 20-fold. 

To verify that the fractionation was successful at targeting chromatin-associated proteins, 

a subset of enriched protein spots was analyzed by mass spectrometry. A Coomassie-

stained gel was prepared from a chromatin-enriched yeast fraction for protein 

identification (Figure 4.2). Spots with an experimental enrichment factor greater than 1.4 

fold were selected for MS analysis, and 33 of these were identified (Figure 4.1, 

Table 4.1). Based on annotations from the Saccharomyces Genome Database 

(http://www.yeastgenome.org), the organelle database (http://organelledb.lsi.umich.edu), 

and literature sources, the majority have been previously identified as localizing to the 

nucleus and include many functionally important chromatin proteins. Estimated protein 

copy number per cell (Ghaemmaghami et al., 2003) is shown in Table 4.1 for known 

chromatin-associated proteins identified in the chromatin fraction (Figure 4.1). Overall, 
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the fractionation procedure was effective at enriching low-abundance chromatin 

associated proteins. Interestingly, a number of the identified proteins had very low 

expected cellular levels (e.g. 1070 copies/cell for Arp4 and 1360 for Arp7) based on 

previous GFP fusion experiments (Ghaemmaghami et al., 2003). The quality of the 

chromatin fractionation was verified by performing western blots for aliquots of the 

initial WCE, as well as chromatin and supernatant fractions, with antibodies for Orc2 and 

histone H2B which should both be chromatin-bound, as well as α-tubulin, which should 

be in the supernatant (Liang and Stillman, 1997). The results are shown in Appendix B, 

Figure B1. 

Among the identified proteins, some belong to well-known complexes involved in 

chromatin remodeling, such as SWI/SNF and INO80 (Saha et al., 2006). These include 

Swi3, Taf14, Arp4, Arp7, Arp9, and Rvb2. Members of RNA polymerase 

complexes (Jourdain et al., 2003, Lalo et al., 1993) were also identified, including the 

proteins Rpc40, Rpb3, and Tfc7. In addition, some proteins important for telomere 

capping and remodeling were found, such as Stm1 (Nelson et al., 2000) and 

Cgi121 (Downey et al., 2006). In many cases, proteins were identified along with other 

factors they normally interact with, implying good retention and co-enrichment of 

complex subunits. This result strongly suggests that chromatin fractionation was effective 

at enriching for functional chromatin proteins. 



 156 

 

 

 

Figure 4.1. DIGE gel image comparing a chromatin fraction (green, Cy3) and whole 
cell extract (red, Cy5). The Cy2 channel used for the internal control is not shown. Four 
replicates of biologically independent samples were tested in four different gels with two 
by two dye swapping. The chromatin-enriched spots appear predominantly green in this 
representative image. Selected identified proteins with known chromatin-association are 
indicated. 
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Table 4.1 Proteins identified within the chromatin enriched fraction. DIGE was used 
to compare the chromatin fraction vs. whole cell yeast extract, and protein spots with an 
enrichment factor greater than +1.40 were selected for identification. The source for 
copy/cell numbers are denoted by the following: a - Protein copy numbers per cell are 
from Ghaemmaghami et al. (2003), b - unless otherwise noted, localizations were 
obtained from Huh et al (2003), c - localization was obtained from the organelle 
database. Functional descriptions were obtained from the Saccharomyces Genome 
Database. 
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Protein 
name 

Enrichment 
factor 

Estimated                       
copies/cella 

Cellular Localizationb Description 

   
Arp3 1.74 6650 Cytoskeleton, Nucleus (Yoo et al., 2006) 

Actin-related protein 3, actin filament 
organization 

Arp4 4.2 1070 Nucleus 
Actin-related protein 4, chromatin 
remodeling 

Arp7 2.53 1360 Nucleus 
Actin-related protein 7, chromatin 
remodeling 

Arp9 3.35 1790 Nucleusc 
Actin-related protein 9, chromatin 
remodeling 

Asc1 2.88 333000 Cytoplasm 
G protein beta subunit, small subunit 
ribosomal protein 

Atp2 1.43 164000 Mitochondrion 
F1-ATPase beta chain, mitochondrial ATP 
synthesis 

Cdc10 3.09 14100 Septin ring, cytosketelon, nucleusd Septin ring protein, cell division 

Cgi121 3.37 N.D. Nucleus (Downey et al., 2006) 
Component of KEOPS, telomere uncapping 
and elongation 

Crn1 4.06 2900 Contractile ring, Cytoskeletonc Coronin, actin filament organization 

Cys3 1.65 38300 Cytoplasm Gamma-cystathionase, Cysteine biosynthesis 

Egd2 1.55 38000 Cytoplasm, Nucleus (Franke et al., 2001) Component of NAC, ribosome associated 

End3 10.4 2600 Cytoskeleton 
EH domain protein, actin cytoskeletal 
organization 

Gdi1 1.58 7280 Cytoplasm 
GDP dissociation inhibitor, vesicle mediated 
transport 

Ilv2 13.4 31900 Mitochondrion Acetolactate synthase, amino acid synthesis 

Ilv5 1.95 883000 Nucleus, Mitochondrionc 
Acetohydroxy-acid isomerase, amino acid 
synthesis 

Lat1 2.42 5440 Mitochondrion 
Dihydrolipoamide acetyl-transferase, 
pyruvate metabolism 

Lsp1 5.54 104000 Cytoplasm (punctate composite) Component of eisosome, endocytosis 

Pdb1 3.93 9970 Mitochrondrion, Nucleusc 
Pyruvate dehydrogenase, pyruvate 
metabolism 

Pil1 +1.65, 
Pil1(a) 
+2.31, 
Pil1(b) 

115000 Cytoplasm (punctate composite) Component of eisosome, endocytosis 

        

Pst2 3.37 2330 Mitochondrion, Nucleus (Valencia-Burton 
et al., 2006) 

Flavodoxin-like protein 

   
Qcr2 1.73 35700 Mitochondrion 

Ubiquinol cytochrome C reductase, 
respiration 

Raf1 3.37 N.D. Nucleus (Murray et al., 1987) 
FLP1recombinase activating factor, plasmid 
maintenance 

Rpb3 3.38 10000 Nucleus DNA directed RNA polymerase II 

Rpc40 3.98 13000 Nucleus Component of RNA polymerases I 

Rpt1 1.92 105 Nucleus ATPase subunit of proteosome 

Rvb2 4.03 3030 Nucleusd Transcription, chromatin remodeling 

Stm1 2.21 46800 Cytoplasm, Nucleusc TOR signaling, telomere structure 

Swi3 6.85 3150 Nucleus Chromatin remodeling complex, SWI/SNF 

Taf14 4.32 3120 Nucleus 
Subunit of TFIID, TFIIF, INO80, SWI/SNF, 
NUA3 complexes, chromatin remodeling 

Tfc7 3.89 2660 Cytoplasm, Nucleus RNA polymerase IIIc 

Tub2 3.73 N.D. Nucleus, Cytoskeletonc Tublin 2, microtubule component 

Ume1 2.22 3040 Cytoplasm, Nucleus 
Negative regulator of meosis, binding to 
histone deacetylase RPD3. 

Ura7 3.73 57600 Cytoplasm CTP synthase, phospholipid biosynthesis 
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Figure 4.2. 2D-protein spot map of the yeast chromatin fraction. Representative 
proteins enriched in the chromatin fraction were identified by mass spectrometry and are 
marked with corresponding protein names. Protein identification data are summarized in 
Appendix B, Table B1, with respective chromatin enrichment factors and p-values.  
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4.2.2 Changes in Chromatin Fraction due to MMS Treatment 

To further investigate differential profiling of chromatin-associated proteins, the response 

to MMS-induced changes in budding yeast was examined. A well-studied genotoxic 

agent, MMS alkylates DNA and results in activation of the DNA damage checkpoint, 

initially with detection of DNA damage, followed by a signaling cascade which results in 

the phosphorylation of protein targets involved in cell cycle control, DNA replication and 

repair (Harrison and Haber, 2006; Koundrioukoff et al., 2004). Comparison of chromatin 

fractions from MMS treated and control samples should indicate proteins that are 

differentially regulated and/or have a greater degree of chromatin association in response 

to MMS. 

Four independent replicates of cultures were made for untreated samples and 

samples treated with 0.03% MMS, and chromatin enrichment was conducted as before. 

Differential protein abundance in the chromatin fraction was compared between MMS 

treated and control samples using DIGE (Figure 5.3). Additionally, whole-cell extracts 

and chromatin fractions were compared to calculate protein enrichment factors in the 

presence of MMS. The statistical power of detecting changes in abundance was also 

estimated, and at a statistical power of 0.8 (β = 0.2) with α = 0.05, the four DIGE gels can 

theoretically be used to identify a change of 1.43 fold in spot abundance with a success 

rate of 80%. The normalized standard deviation of protein spots present on all gels was 

0.216 for untreated samples and 0.220 for the MMS treated samples. Differential factor 

(DF) values for MMS treatment were determined through quantification using the 

DeCyder™ v.6.0 software as described in Experimental Procedures, with DF calculated 

from the ratio of the protein in the MMS treated sample vs. the control sample. Here, DF 
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includes contributions from both expression and changes in localization; for example, if 

DF increases but the EF ratios for the MMS+ treated and control samples are similar, the 

change is largely due to expression. It is also possible that DF to be positive and the EF 

ratio to decrease, indicating an increased protein expression and increased amount in the 

chromatin fraction, but a larger increase in non-chromatin associated protein. A total of 

1763 spots were matched across the four replicates in the differential MMS experiment, 

of which 455 showed significant changes (increased or decreased) at p < 0.05 with FDR 

correction. Comparing the calculated EF values from chromatin enrichment for these 455 

spots, 217 were both differentially regulated and enriched in chromatin fractions. 
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Figure 4.3. DIGE gel image comparing MMS treated and control chromatin 
fractions. A gel image from one of four replicates is shown for MMS-treated (red, Cy5) 
and untreated (green, Cy3) chromatin fractions. The Cy2 channel used for internal control 
is not shown. Five representative proteins (Rnr4, Rpa1, Rpa2, Vma2, Yrb1) are indicated 
along with an expansion of the region showing multiple identified isoforms for Rnr4 and 
Vma2.  
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Suppl. Figure 2. DIGE gel image comparing MMS treated and control 

chromatin fractions. A gel image from one of four replicates is shown for 

MMS-treated (red, Cy5) and untreated (green, Cy3) chromatin fractions. The 
Cy2 channel used for internal control is not shown. Five representative 

proteins (Rnr4, Rpa1, Rpa2, Vma2, Yrb1) are indicated along with an 

expansion of the region showing multiple identified isoforms for Rnr4 and 

Vma2.  
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4.2.3 Identification of MMS-Responsive Proteins 

 

Protein spots from the MMS DIGE experiment were prioritized for identification 

according to the degree of chromatin enrichment (EF) and changes in observed 

abundance ('differential factor', DF). Spots that showed both positive EF and DF values 

(among the 217 described above) were of particular interest, as they indicated both 

chromatin-association and induction by MMS treatment, respectively. A preparative 

Coomassie-stained gel was made using chromatin fractions of the MMS treated samples 

(Figure 4.4), and protein spots were excised for identification by mass spectrometry. 

Identifications were made for 23 DF+ proteins and 12 DF- proteins (Table 5.2, Appendix 

B, Table B2). A subgroup of identified proteins corresponds to known checkpoint-

regulated proteins, including Rnr4, Rpa1, and Rpa2. Rpa1 and Rpa2 are subunits of the 

hetero-trimeric replication factor A complex, which plays an integral role in DNA 

replication and checkpoint responses (Harrison and Haber, 2006; Longhese et al., 1996; 

Santocanale et al, 1995; Umezu et al., 1998). Among the spots with negative enrichment 

factors, Rnr4 isoforms exhibited some of the largest responses to MMS treatment as 

reflected by DF values (Table 5.2). The RNR complex controls the nucleotide pool for 

DNA synthesis and is a downstream target of the Rad53 checkpoint kinase (Huang and 

Elledge, 1997; Yao et al., 2003). 

Along with the previously well-characterized proteins above, several additional 

DNA damage-associated proteins were identified as differentially expressed on MMS 

treatment including Bmh1, Pst2, Vma2, and Vma4 (see Table 5.2). Bmh1 is a 14-3-3 

protein family member, which has been shown to directly modulate Rad53 activity (Usui 

and Petrini, 2003). Pst2, a predicted oxidative response protein, has also been implicated 
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in DNA damage responses (Umezu et al., 1998). Vacuolar-type H+ ATPase subunits 

Vma2 and Vma4 have been shown to play a role in DNA damage responses following 

treatment with MMS and cisplatin (Liao et al., 2006). In addition, several other proteins 

were identified that have not been well characterized in terms of their potential role 

following DNA damage, including Acf2, Arp3, Hsp31, Lsp1, Ste4, Ycp4, and Yrb1. 

Several proteins with low chromatin association (low EF values) and showing a 

differential response to MMS treatment were also identified (Table 4.2, Appendix B, 

Table B2). While these proteins are not chromatin associated per se, some (e.g. metabolic 

enzymes Ald6 and Pdc1) are consistent with a stress response in which yeast cells have a 

lowered metabolic activity and concomitant reduced growth competency. This 

observation is consistent with the model of suppressed protein synthesis upon DNA 

damage checkpoint execution or cellular stress (Hinnebusch and Natarajan, 2002). It is 

also possible that for some of these factors the effect of MMS may not have been due to 

DNA damage, since this alkylating agent can also act directly on proteins (Norman et al., 

1986; Shin et al., 1996). A number of key DNA damage response factors including the 

kinases Mec1, Tel1, Rad53 and Chk1, and members of the 9-1-1 complex (Rad17, Mec3, 

Ddc1) (reviewed in Harrison and Haber, 2006) were not among the proteins that were 

identified in this screen. However, this is not surprising as only a subset of proteins that 

were chromatin- and/or MMS-enriched in the samples were characterized. 
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Figure 4.4. 2D-protein spot map showing differentially expressed proteins identified 
in the MMS treated yeast chromatin fraction. Proteins with statistically significant 
changes abundance on MMS treatment were identified by mass spectrometry and are 
marked with corresponding protein names. Protein identification data are summarized in 
the Appendix, Table B2. 
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Table 4.2. Statistical data for MMS-induced differentially expressed proteins in 
chromatin fraction. Multiple protein isoforms are indicated with a, b, c and d in 
parentheses. DF, differential factor, is fold change in abundance in the chromatin fraction 
on MMS treatment, where +DF indicates an increase and -DF a decrease. EF is the 
chromatin enrichment factor relative to the whole cell extract in either treated (MMS+) or 
control (MMS-) samples. See Appendix B, Table B2 for MS/MS identification data. 
 

Protein name DF 

p-value 

EF (+MMS) 

p-value 

EF (-MMS) 

p-value 

(DF) (EF, +MMS) 
(EF, -
MMS) 

Acf2 1.48 0.02 1.57 0.011 -1.3 0.048 
Aim13 1.7 0.0053 3.3 0.034 2.27 0.00097 
Arp3 1.35 0.024 N/A N/A 1.52 0.063 
Atp2 1.52 0.0093 1.5 0.093 5.74 0.000041 
Bmh1 (a) 1.92 0.0014 3.57 0.0039 -1.03 0.07 
Cdc10 (a) 1.61 0.0034 7.28 0.0099 6.33 0.000015 
Cdc10 (b) 1.38 0.044 1.5 0.18 2.43 0.0015 
Cps1 1.61 0.01 2.16 0.0036 -2.57 0.00018 
Crn1 1.78 0.0034 3.85 0.0024 2.36 0.0012 
Gcv3 1.75 0.019 1.07 0.52 -1.9 0.00087 
Ilv2 2.15 0.013 1.5 0.39 -1.15 0.086 
Lsp1 (a) 1.51 0.0023 3.17 0.0011 1.79 0.022 
Lsp1 (b) 1.84 0.0046 3.69 0.00072 -1.71 0.0078 
Nsp1 1.58 0.005 3.07 0.014 1.65 0.017 
Pil1 2.05 0.0013 9.6 0.0068 2.65 0.036 
Pst2 (a) 1.5 0.0023 3.99 0.0074 1.55 0.0019 
Pst2 (b) 3.83 0.0013 4.5 0.0074 -1.02 0.14 
Rpa1 3.58 0.0007 4.16 0.01 -1.33 N/A 
Rpa2 1.47 0.036 2.5 0.015 -1.12 0.089 
Ste4 1.61 0.023 2.32 0.000092 -1 0.16 
Vma2 (a) 1.92 0.0052 1.59 0.0063 -1.34 0.00019 
Vma2 (b) 1.48 0.018 1.64 0.0041 -1.58 0.00018 
Vma2 (c) 1.53 0.0097 1.65 0.021 1.1 0.05 
Vma4 1.85 0.01 1.58 0.0048 -1.08 0.07 
Ycp4 (a) 2.01 0.0007 5.4 0.00073 1.76 0.0005 
Ycp4 (b) 1.69 0.037 5.31 0.00063 1.18 0.13 
Yrb1 2.05 0.025 5.07 0.0011 1.77 0.004 
Hsp31 1.63 0.0063 -1.64 0.0051 -1.84 0.000062 
Rnr4 (a) 1.91 0.0014 -1.24 0.25 -1.47 0.013 
Rnr4 (b) 3.9 0.000057 -2.08 0.012 -3.11 0.00011 
Rnr4 (c) 3.89 0.000057 -1.17 0.27 -2.23 0.00025 
Rnr4 (d) 2.41 0.0023 -1.06 0.74 1.3 0.015 
Ald6 -1.84 0.00056 -2.21 0.021 -1.81 0.00014 
Bgl2 -1.85 0.00068 -1.54 0.17 7.02 0.000022 
Bmh1 (b) -1.43 0.002 -1.53 0.0071 -1.07 0.059 
Bmh2 -1.9 0.002 -2.08 0.021 -1.06 0.069 
Hsp60 -1.72 0.00017 -1.56 0.091 1.31 0.0079 
Pdc1 -1.69 0.00022 -2.27 0.013 -2.64 0.000099 
Rpc40 -1.53 0.0016 2.31 0.013 3.98 0.000015 
Rpp0 -1.7 0.00056 -2.15 0.028 -1.61 0.00037 
Ssb1 -1.62 0.0084 -1.41 0.12 -1.27 0.00027 
Ssb2 -1.83 0.0092 2.01 0.018 1.45 0.009 
Tma19 -1.93 0.0027 -3 0.036 -1.02 0.14 
Ura7 -1.85 0.0027 6.01 0.059 3.73 0.000022 
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4.2.4 Changes in Chromatin Association and Localization Due to MMS Treatment 

 

The MMS DIGE experiment provided a direct measure of changes in protein abundance 

within the chromatin enriched fraction. This can represent a change in expression of the 

protein of interest, a change in the degree of chromatin association (including direct 

binding to DNA, interaction with DNA binding proteins, or simple inclusion in the 

chromatin pellet), or some combination of these factors. Here, the calculated EF ratios for 

MMS treated and control samples can be compared and changes in EF values can provide 

an estimate of changes in the degree of chromatin association (i.e. localization). The EF 

ratios for the control (MMS-) and treated (MMS+) samples are compared in Figure 4.5. 

The majority of proteins increased their degree of chromatin association in response to 

MMS treatment. Interestingly, different forms of the same protein often exhibited 

different changes in expression and chromatin association, including Rnr4, Vma2, Pst2, 

Lsp1, Ycp4, Cdc10 and Bmh1 (Table 4.2, Appendix B, Table B2). For example, four 

isoforms of Rnr4 were detected, all of which increased in chromatin abundance in 

response to MMS treatment (Figure 4.3). Rnr4 was previously reported to undergo 

increased translocation to the cytoplasm under genotoxic stress (Yao et al., 2003). 

Consistent with this, the isoform with the highest chromatin association, Rnr4-d, showed 

a decrease in the proportion of Rnr4-d associated with chromatin on MMS treatment as 

reflected by the decrease in enrichment factor from +1.30 to -1.06. However, the total 

amount of all forms of Rnr4 binding chromatin increased, as all forms had positive DF 

values. The most abundant isoform, Rnr4-b (Figure 4.3), had minimal association with 

chromatin with or without MMS treatment (Table 4.2). The observed values of DF and 
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EF indicate a complex response, with some isoforms increasing and others decreasing 

their relative degree of chromatin association (EF), with the total amount of cellular Rnr4 

apparently increasing on MMS exposure. 

All Vma2 isoforms demonstrated greater chromatin association (EF) as a 

consequence of MMS treatment, but isoforms Vma2-a and b, showed a more dramatic 

increase than Vma2-c. Comparing the DF and EF values in Table 4.2, the change in 

chromatin abundance can be largely attributed to an increase in chromatin association for 

Vma2 as opposed to increased cellular protein levels. Similarly, Rpa1 demonstrated a 

pronounced increase in chromatin association on MMS exposure, suggesting that the 

observed increase in chromatin abundance (DF) can be largely attributed to a change in 

cellular localization (Table 4.2). Conversely, Cdc10-b exhibited a small net increase in 

abundance in the chromatin fraction on MMS treatment (DF +1.38) but a decrease in EF 

from +2.43 to +1.50. This is consistent with an increase in cellular expression of Cdc10-

b, but a smaller proportion of Cdc10-b associating with chromatin. 

It has previously been observed that genes that are induced by DNA damaging 

agents are not those that are identified as protecting cells against DNA damage (Birrell et 

al., 2002). However, as proteins can respond more rapidly than genes through post-

translational modifications or changes in localization, there may be a closer relationship 

between increased chromatin association and DNA-protective proteins. In contrast to 

gene expression data (Birrell et al., 2002), almost half of the proteins identified (10 of 22) 

were previously identified as responding to genotoxic agents in high-throughput 

screening studies. Specifically, acf2, aim13, gcv3, and ycp4 knockout strains were 

identified as having significant fitness defects (p < 0.05) on MMS exposure, 
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with aim13, bmh1,cdc10, cps1, gcv3, pil1, pst2, rnr4 knockout strains having fitness 

defects on exposure to hydroxyurea (Hillenmeyer et al., 2008). 
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Figure 4.5. Chromatin Enrichment Factors (EF) in the presence and absence of 
MMS. Enrichment factors were calculated from the ratio of protein abundance in the 
chromatin fraction versus whole cell extract. A general increase in chromatin association 
is seen with MMS treatment, along with changes specific protein to given protein 
isoforms including Rnr4, Vma2, Pst2, Cdc10, Ycp4, Bmh1 and Lsp1. 
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4.2.5 Evaluation of Sensitivity to Genotoxic Agents for Mutant Yeast Strains 

To further investigate MMS induced proteins identified via the DIGE analysis, yeast 

strains with mutations corresponding to the genes encoding several of these proteins were 

evaluated in growth assays in the presence of the genotoxic agents MMS or HU (Hanway 

et al., 2002; Varrin et al., 2005) Haploid cells either containing gene knockouts 

(pst2, bmh1, hsp31, acf2, ste4, rnr4) or, in the case of essential genes, lowered mRNA 

expression due to reduced mRNA stability, (DAmP strains, Open Biosystems) 

(rpa1, rpa2, yrb1, arp3) were employed. An isogenic wild-type strain was used as a 

negative control and a rad53-11 strain (Santocanale and Diffley, 1998) with a mutant 

allele in the checkpoint kinase Rad53 as a positive control for sensitivity to genotoxic 

agents. 

The primary interest was in proteins increasing in chromatin abundance, however 

haploid yeast knockout strains corresponding to a number of proteins decreasing in 

abundance were also investigated (Figure 4.6). None of these strains showed either 

enhanced or reduced susceptibility to MMS or HU relative to the isogenic wild-type 

strain. Among the strains corresponding to proteins with increased chromatin 

abundance, acf2, arp3, hsp31, and ycp4 mutants did not show apparent changes in 

sensitivity relative to the wild-type strain (Figure 4.7). Interestingly, pst2, ste4, 

and lsp1 mutants actually exhibited increased resistance to MMS, indicating a link to the 

DNA damage response, possibly through interrelated pathways such as MAP kinase 

signaling, eisosome trafficking and oxidative stress response. rpa1, rpa2 and rnr4 

mutants have previously been shown to be sensitive to MMS or HU, in agreement with 

their DNA damage checkpoint regulation (Huang and Elledge, 1997; Santocanale et al., 
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1995; Umezu et al., 1998; Yao et al., 2003). Here however, no significant response was 

seen for rpa1or rpa2 DAmP strains to MMS treatment and rpa1 to HU treatment. 

Subsequent western blot analysis of Rpa1 levels revealed that it was not reduced in 

the rpa1 DAmP strain relative to the isogenic wild-type (Figure 4.8), accounting for the 

lack of sensitivity observed. Given that the rpa2 DAmP strain was sensitive to HU, its 

Rpa2 level presumably was reduced compared to wild-type, however it may not have 

been sufficiently diminished to render cells more vulnerable to the effects of MMS. Also 

shown in Figure 4.8 is the decrease in protein abundance of Arp3 relative to the isogenic 

wild-type in the Arp3 DAmP strain validating its use in evaluating sensitivity to 

genotoxic stress. The rnr4 knockout strain similarly did not show increased genotoxic 

sensitivity. It is possible that other RNR genes may compensate for rnr4 deletion (Gasch 

et al., 2001), and the RNR4 isoform is not required for cell viability. Most interestingly, 

the yrb1 DAmP cells showed pronounced sensitivity to MMS (at more than 0.02%) and 

HU (at more than 25 mM).  
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Figure 4.6. Spotting growth assay for genotoxic sensitivity corresponding to proteins 
decreasing in abundance on chromatin following MMS treatment. Haploid yeast 
knockout strains corresponding to proteins that showed a reduction in chromatin 
association following MMS exposure were obtained from Open Biosystems. The assay 
was performed on YPD plates containing indicated concentrations of MMS or HU. Cells 
were 10-fold serially diluted and incubated at 30°C for 2 days. An isogenic wild-type 
strain BY4741 was used as a negative control and rad53-11 mutant strain as a positive 
control.  
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Suppl. Figure 3. Additional spotting growth assay for genotoxic 

sensitivity. Haploid yeast knockout strains corresponding to proteins that 

showed a reduction in chromatin association following MMS exposure were 
obtained from Open Biosystems. Wild-type, rad53-11, ald6, bgl2, bmh2, 

pdc1, ssb1, ssb2, tma19 and ura7 strains were analyzed as described in 

Figure 4. 
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Figure 4.7. Spotting growth assay for genotoxic sensitivity corresponding to proteins 
increasing in abundance on chromatin following MMS treatment. The yeast cells 
were either knockout (ycp4, lsp1, pst2, bmh1, hsp31, acf2, ste4, and rnr4) or DAmP 
strains (rpa1, rpa2, yrb1 and arp3). Wild-type, rad53-11, ald6, bgl2, bmh2, pdc1, ssb1, 
ssb2, tma19 and ura7 strains were analyzed as described in Figure 4.6. 
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Figure 4.8. Western blot analysis of RpaI DAmP and Arp3 DAmP strains. Whole cell 
extracts prepared from asynchronous cultures of these strains were used to evaluate 
whether protein abundance was in fact reduced compared to the isogenic wild-type 
(BY4741). Arp3 DAmP showed a significant decrease in the levels of the Arp3 protein 
compared to the wild-type, whereas levels of RpaI in the corresponding DAmP strain 
were comparable to the wild-type.    
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4.3 Discussion 

The differential proteomics technique of DIGE was combined with a chromatin 

fractionation and enrichment strategy. This was and applied to investigate the response to 

genotoxic agents in budding yeast cells. The approach facilitated the selective screening 

of important chromatin-associated proteins that can otherwise be difficult to observe by 

typical proteomics approaches, and was successful in identifying functionally relevant 

target proteins. Moreover, the method was effective for the differential analysis of yeast 

cells following chemical treatment, as demonstrated by the MMS exposure experiment. 

While the fractionation method used was effective at enrichment of chromatin binding 

factors, a number of the observed proteins were likely mitochondrial, suggesting that 

more specific fractionation methods could be applied. One possible approach would be to 

first isolate nuclei prior to chromatin enrichment. Overall, the described method was 

successful in permitting the differential analysis of chromatin binding proteins using a 

gel-based proteomics technique, largely overcoming the technical limitations for 

analyzing lower-abundance chromatin proteins.  

While the methodology was effective at identifying known and potentially novel 

proteins involved in DNA damage response, the technique does not provide 

comprehensive coverage. Future refinements to the methodology may be able to increase 

the number of factors identified in similar studies. The gel methods could be expanded to 

increase the pH range over which proteins can be separated effectively, more sensitive 

mass spectrometers may be used to increase the success rate of protein identification, a 

greater degree of replication and experimental precision may be utilized to detect proteins 

undergoing small changes in abundance and/or localization.  
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Characterization of differentially expressed proteins based on DF analysis was 

extended using an analysis of the chromatin enrichment factors (EF), providing a 

quantitative estimate of protein localization not typically available within proteomics 

studies. The method was also informative in addressing changes in protein localization, 

as demonstrated in the change of enrichment factor depending on treatment. Chromatin 

fractionation was able to consistently reveal a large population of chromatin-associated 

proteins using a relatively straightforward sampling procedure, in which intact complexes 

are maintained, as indicated by the co-detection of functionally related chromatin proteins 

(i.e. Tables 4.1 and 4.2). A technical strength of DIGE itself, compared to MS-based 

methods, is that it is able to distinguish differences in response to compounds such as 

MMS for different protein isoforms or post-translational variants, as revealed in the Rnr4 

isoforms in this study. In contrast, quantitative MS-based methods largely rely on 

digested peptides (Ong and Mann, 2005), making it more challenging to distinguish 

variable forms, as the peptides on which the change is located need to be correctly 

identified, quantified, and compared with peptides representing other forms of the 

protein. 

With respect to the budding yeast DNA damage response, this study was in broad 

agreement with previous high-throughput studies on this response, using a variety of 

approaches such as microarray analysis (Gasch et al., 2001), phenotyping of deletion 

strains (Begley et al., 2002) and quantitative phosphoproteomics (Smolka et al., 2007). 

The microarray study showed the over-expression of the RNR complex (which is 

composed of four subunits Rnr1, Rnr2, Rnr3 and Rnr4) as the most significantly changed 

along with other key proteins such as Din7, Dun1, Rad54 and Rad51. The 
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phosphoproteome study screened the possible phosphorylation-mediated targets of 

Mec1/Tel1 and Rad53 kinases (Smolka et al., 2007), and identified proteins involved in 

DNA replication, cytokinesis, transcription, mitosis, RNA export, stress response, 

transcription, and nuclear transport. Compared to the above studies, the approach used 

here focused on a subset of the budding yeast proteome that is highly associated with 

chromatin. In addition to the confirmation of known checkpoint-regulated factors (e.g. 

Rpa1, Rpa2, Rnr4), several new proteins related to DNA damage response pathways have 

been identified. One such factor is the Ran-GTPase binding protein Yrb1, a component of 

the nuclear import-export system (Künzler et al., 2001) in which the ternary complex of 

Gsp1, Yrb1 and Rna1 controls the GTP/GDP balance across the nuclear membrane. It is 

proposed here that Yrb1 protein may represent a link between the nuclear transport 

system and DNA damage responses, as implied by a recent model for G1/S cell cycle 

arrest during checkpoint execution (Ghavidel et al., 2007). It will now be of interest to 

determine which proteins dependent on Yrb1-mediated nucleocytoplasmic trafficking act 

downstream of this factor in affording protection to genotoxic agents. 

In conclusion, a simple fractionation and DIGE-based approach for chromatin 

proteomics is presented, which can be broadly applied to investigate biological responses 

to chemical stress and other factors. This method was successfully applied to investigate 

changes that occur following exposure to the genotoxic agent MMS, confirming that it is 

effective in identifying novel proteins involved in cellular processes, such as the response 

to DNA damage.  
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Chapter 5: General Conclusions and Future Directions 
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5.1 A Mathematical Model of Replication Initiation is Robust and 
Predictive 
 

The kinetic model of DNA replication initiation presented in this thesis aims to depict the 

dynamic processes that underlie its function. Modeling of the cell cycle has been 

undertaken by several groups, benefitting from the different scales and approaches 

considered. Overall, the goal of such an endeavor is to establish a falsifiable model of 

how the cell cycle is regulated from genetic regulation to modules of protein-based 

circuits. Successive experimental studies in a given scientific area build on accepted 

theories from which further questions arise. Similarly, a collaborative process of 

amalgamating new models is important. Very basic models of cell cycle oscillation have 

characterized this emergent behaviour and larger models of the entire cell cycle have 

refined this characterization. Also important is the diversity of perspectives from which 

to model the cell cycle, be it at the level of transition between replication species or 

focused on the temporal profiles of duplicating chromosomes through S phase. A crucial 

improvement in increasing the understanding of the cell cycle through modeling is being 

able to apply quantitative values to its description. The combination and contrasting of 

different models highlights areas that need to be investigated more thoroughly. In 

addition, as is the case with the model presented here, this process fills in major details 

towards a comprehensive and highly resolved understanding of the cell cycle.  

For the purposes of the present model, emphasis is on the mechanistic assembly 

of protein complexes in G1 phase, which subsequently give rise to replication forks 

throughout S phase. The proteins considered are the key players in this scheme and 

through quantitative analysis of their in vivo levels, the system kinetics derived by 
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parameter fitting permit predictions about system behavior, again on a quantitative scale. 

Distinctions between the model presented here and other cell cycle and even DNA 

replication models have been pointed out in detail in chapter 3. Briefly, parameter fitting 

is constrained only by the levels of replication proteins observed in live cells, and not by 

any optimization that seeks to restrict values according to idealized assumptions 

regarding the temporal nature origin firing or otherwise. The behaviour of this system is 

thus a direct output of the levels of replication proteins themselves. Apart from being 

consistent with experimental perturbations to replication proteins, the model has exposed 

sensitivities in the network that provide fodder for future experimental exploration. For 

example, the potential catalytic role of Cdt1 in loading multiple MCM complexes before 

being excluded from the nucleus is an interesting phenomenon to explore in vivo. 

The regulation of Dbf4 and Cdc6 by the cell, both in terms of properly timed 

expression and degradation have been captured by the model. This feature is interesting 

in light of the overexpression of their human homologs in cancerous tissues. The model 

was extremely sensitive to fluctuations in levels of these two limiting factors, a facet 

demonstrated by their individual in vivo knockdowns. This underscores the important 

cellular function of preventing their degradation by the proteasome (Cdc6) or APC 

(Dbf4) during the time they exert their critical functions and by limiting their expression 

so that over-replication does not occur. This is mediated by the tight regulation of 

discrete cellular events by cyclins (specifically Clb5), another overarching theme in cell 

cycle studies.  

Another interesting property of the system is the catalytic role of Cdt1 in loading 

Mcm2-7 at origins. The model suggests a very high value for the kinetics of this reaction. 
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Recent studies have elucidated the mechanism by which Cdt1 interacts with Orc6 to 

recruit helicase rings to pre-RCs (Chen et al., 2007; Takara and Bell, 2011). It remains to 

be established if and how Cdt1 molecules are recycled during G1 and whether they recruit 

new Mcm2-7 complexes to pre-RCs after initial dissociation from this complex. The 

model supports this possibility given Cdt1-origin association is extremely transient, 

consistent with the literature (Randell et al., 2006). Contrary to Cdc6 and Dbf4, the 

model suggests that cells are refractory to depletion in Cdt1 levels well below the 

endogenous level, again supporting this observation. Investigating the mechanism by 

which Cdt1 is extruded from pre-RCs and the fate of such molecules until their nuclear 

export occurs a crucial next step in better characterizing helicase loading. Experiments 

using fluorescently-tagged Cdt1 and/or specific origins might allow the observation of 

distinct pools of Cdt1 being redistributed to different origins in late G1, in keeping with a 

dynamic loading model. 

While the model faithfully represents the DNA replication network, further 

refinements would help in understanding different aspects of initiation, which would then 

be integrated into the existing model. Although the requirement for an active CMG 

helicase at replication forks is effectively recapitulated by the modeling of Cdc45 and 

Mcm2, the quantitative evaluation of proteins such as Sld2, Sld3, Dpb11 and components 

of GINS might give a more accurate estimate of the rate of pre-IC (RC6 in the model) 

assembly. A methodological detail in fitting the model involved distinguishing between 

DNA-bound and unbound protein. Because the assembly of replication complexes occurs 

on the DNA this was important in accurately describing the system. Although proteins 

such as Cdt1, Cdc6 and Dbf4 exert their function at origins, there is the possibility that 
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they bind to non-origin sequences. For this reason estimates of non-specific binding were 

incorporated. Determining the precise levels of non-specific binding using techniques 

such as ChIP-seq for proteins used in the model would be beneficial in further resolving 

protein level quantitation. 

The temporal separation of G1 and S phase in the model is not explicitly coded. 

The overlap in the time during which pre-RCs can be formed and the commencement of 

fork firing is largely dependent upon the time profile of G1-associated factors (e.g., Cdc6) 

incorporated into replication complexes. Because DNA-bound Cdc45 and Cdc6 overlap, 

it is possible that in order to fit the data, the network behaves in such a way that RC 

complexes containing Cdc6 can still be established after the first fork fires. Such 

complexes never evolve into fired forks due to the inhibitory CDK effects and end up as 

residual, “unused” pre-RCs. One source of inherent technical variability is the coherence 

of synchronized timecourse experiments such that in a given trial, a particular culture 

may enter S phase earlier. While we hold each timepoint sample to correspond to a 

specific point in the cell cycle, this is likely not to be completely accurate. The minor 

differences in timing do not seem to affect the system behavior, considering the 

theoretically consistent transition of the RCs. Modifying the timing of Cdc6, however 

such that its levels in the pellet fraction reach zero prior to the rise in Dbf4 would provide 

an interesting comparison with the current model behaviour. This could be performed by 

shifting its corresponding timepoints earlier, which can be justified by the delay in 

expression following an α-factor block. Just like the inclusion of factors such as GINS 

subunits in the model, it would provide a greater resolution of the events at the G1/S 

transition. 
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Although the model presented in this thesis provides a unique perspective in that 

it uses the protein components of replication to derive an output of replication fork 

concentration, it matches the observations from models that examine the spatio-temporal 

pattern of origin firing (de Moura et al., 2010; Spiesser et al., 2009, Yang et al., 2010). 

How are origin efficiency and the temporal firing program captured by the mean field 

approach of the replication model (individual origins are not modeled, but their overall 

output, i.e. [FORK] is)? For an understanding of this phenomenon, it is useful to observe 

the results of overexpression and protein knock-down within the model. One would 

expect that reducing a factor’s overall abundance and on the DNA in the network would 

result in fewer origins fired (and vice versa). It turns out, however that each factor 

contributes differently in terms of being limiting or having the capacity to drive 

additional origin firing. As noted, Cdt1 seems to act catalytically within the network, 

loading Mcm2-7 complexes at a very high rate. This is a key finding of the model as the 

cellular abundance of Cdt1 is close to that of Cdc45, which seems to act 

stoichiometrically. An increase in Cdt1 abundance and activity ten-fold does not 

appreciably increase the number of origins fired, whereas in the case of Dbf4 and Cdc45, 

an analogous increase increases the number of potential origins that actually fire (Table 

3.3).  

Examining the temporal profile of the various reaction rates reveals that among 

the 332 potential origins “supplied” by the system, only a subset of them (~305) fire. A 

parameter that is tightly constrained is that which specifies the rate of RC4 breakup (v22). 

Increasing its value causes an increase in the cycling of the system from RC1 through 

RC4, ultimately leading to less origins being fired. This plays into the notion of a 
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dynamic loading mechanism, wherein MCMs can be unloaded from the DNA requiring 

the continued presence of pre-RC components to reload them until DDK and CDK 

activity (represented by Dbf4 and Cdc45 association) produces a functional replication 

fork. Decreasing RC4 breakup increases forward flux through the system leading to 

increased origin firing. Any deviation from the value of v22 will either result in less 

origins firing (futile RC1àRC4 cycling) or an increase in firing, but at the risk of re-

replication (a representation of a potential source of cancer) if other rates are kept 

constant. Referring back to the question of how the model reproduces the temporal firing 

pattern observed in other models, the efficiency of a hypothetical origin in the model is 

represented by the cumulative concentration of all the factors required for replication fork 

firing. During early replication complex cycling, an origin will have a high efficiency if it 

is provided with MCMs, Cdc45 and Dbf4. Crucially, MCMs are present earlier than 

Cdc45 and Dbf4 and represent the factor that would impart intrinsic efficiency to an 

origin/replication complex in transition. As origins begin to fire and the proportion of 

unfired origins (RC1àRC6) decreases relative to the amount of Dbf4 and Cdc45 

(“limiting activators”), the probability of origin firing does indeed increase over the 

course of S phase. This is consistent with the proposed mechanism for a hybrid 

deterministic/stochastic pattern of origin firing described by de Moura et al. (2010) and 

Yang et al. (2010). 

Ultimately the model is a useful tool in predicting behaviour of the network of 

DNA replication. These findings can be used to probe the mammalian system. Such a 

model can be employed to identify potential targets for cell cycle control (e.g. Dbf4 and 

Cdc45 are better targets than Cdt1 for deregulation), and is crucial in optimizing 
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individualized therapies for cancer and other human diseases as discussed in sections 3.3 

and 5.3. 

 

5.2 Exploring New Techniques for Isolating Novel Cell Cycle Proteins 
and Functions 
 

The isolation of sub-cellular complexes or even organelles has provided researchers with 

the ability to enrich for proteins of interest. This is important for studying functional 

relationships within the context of localized modules. Fractionation techniques such as 

immunoprecipitation, gradient sedimentation, and electrophoresis assist in identifying 

proteins of low abundance or of localized concentration (Bauer and Kuster, 2003; Dreger, 

2003; Pasquali et al., 1999). Typically, the protein landscape of enriched samples is then 

examined using multi-dimensional separation of proteins, and subsequent identification 

of peptides. The most widely implemented scheme involves 2D-PAGE followed by mass 

spectrometry (Sutton et al., 1995; Cohen et al., 2002; Watt et al., 2003 and reviewed in 

Huber et al., 2003). In some cases, complexes obtained by affinity purification can be 

directly analyzed by mass spectrometry (reviewed in Pache and Aloy, 2008). 

Attempts to isolate sub-complexes in yeast has yielded great success as in the case of 

mitochondrial proteins (Prokisch et al., 2004; Reinders et al., 2006; Sickmann et al., 

2003), membrane proteins, the proteome of the Golgi apparatus and related structures, as 

well as cytoplasmic and nuclear proteins (reviewed in Gavin et al., 2002). In each of 

these cases, it is important to verify the purity of the sample collected, usually through 

identifying characteristic markers via Western blotting.  
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 2D-PAGE has been widely employed to separate proteins in order to facilitate 

their identification via downstream techniques. In chapter 4, a unique combination of 

fractionation and 2D-DIGE provides a useful technique to isolate proteins that have a 

differential association with chromatin in response to the DNA damaging agent, MMS. 

Several novel proteins were identified as having a differential chromatin association 

profile in response to DNA damage. Of these, Yrb1 was of particular interest as a strain 

expressing unstable transcripts of it showed acute genotoxic sensitivity to both MMS and 

HU.  

Yrb1 (yeast ran-binding-protein-1) has been identified as a Ran GTPase that plays 

a role in neucleocytoplasmic trafficking. Mutations to this protein inhibit its function in 

facilitating nuclear import and export of proteins such as those involved in the yeast 

mating response as well as RNA nuclear export (Kunzler et al., 2001). In response to 

environmental changes, such as a mating signal or DNA damage, the transcription profile 

of the appropriate response genes is changed. The localization of proteins or transcripts 

involved in such a response changes with the need for export to the cytoplasm for 

translation and nuclear import to exert a transcriptional function. Given the results 

presented in chapter 4, Yrb1 is a strong candidate for mediating these changes. An 

intriguing DNA damage response mechanism involving relaying the signal of genomic 

catastrophe has been identified by Ghavidel et al. (2007). In this study, they demonstrate 

the role of unspliced tRNAs in inducing a G1 checkpoint arrest through their localization 

pattern. Unspliced intron-containing tRNA is normally extruded from the nucleus via the 

export factor Los1 for processing. In the event of DNA damage, a Rad53-dependent 

cytoplasmic localization of Los1 occurs, preventing it from mediating the nuclear export 
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of the unspliced premature tRNA species. As a result, the nuclear accumulation of these 

tRNAs induces the transcription of GCN4, a ubiquitous transcription factor (Hinnebusch 

and Natarajan, 2002). GCN4 upregulates the expression of DNA damage repair genes 

(Natarajan, Meyer, Jackson 2001), while inhibiting CLN2 transcription (Ghavidel et al., 

2007) resulting in a G1 arrest.  

The accumulation of unspliced tRNAs in response to MMS-induced DNA 

damage thus provides a mechanism to relay the message that transcription of genes 

involved in proliferation should cease while those implicated in DNA repair should be 

upregulated. The genotoxic sensitivity observed in Yrb1-depleted cells, shown in chapter 

4 presents a promising area of interest, linking this protein to a role in the DNA damage 

response. It is possible that its function in nuclear trafficking extends to a parallel 

pathway with Los1 or an independent role in regulating the levels of tRNA export. 

Ultimately this is likely to affect the downstream target of these pathways, GCN4. Future 

studies investigating the interaction between Yrb1 and GCN4 transcriptional activation or 

the nuclear export of Gcn4 mRNA could shed light on the results observed in this thesis.  

The protein coverage for DNA damage repair factors was not all-inclusive, not 

having isolated proteins such as Mec1, Tel1 and Rad53. This is perhaps a result of not 

identifying all potential gel spots or reflective of their limited differential chromatin 

association in response to MMS relative to other factors. One limitation in analysis of 

sensitivity to genotoxic stress was the poor knockdown of protein levels for at least one 

commercially-derived strain, Rpa1 DAmP. It is possible that more proteins that were 

identified as having notable chromatin enrichment profiles when exposed to MMS do in 

fact impart sensitivity or even resistance. Their analysis in the genotoxic sensitivity assay 
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is potentially marred by the inefficient reduction of protein levels in the corresponding 

DAmP strain. The use of knockout strains or well-characterized mutants would be more 

suitable for further investigations.  

Other peptide-labeling techniques for identifying differential protein expression 

amongst treatment samples have been developed such as isotope-coded affinity tagging 

(ICAT, Gygi et al., 1999) and isobaric tags for relative and absolute quantitation (iTRAQ, 

Ross et al., 2004). These are claimed to provide better protein coverage within samples 

compared to DIGE and have a greater variety of tagging dyes, allowing analysis of 

multiple treatments simultaneously. Future analysis of chromatin fractions by these 

methods may yield better results or cover a different spectrum of the protein landscape. It 

is noteworthy that in the study presented in chapter 4, different isoforms of several 

factors (e.g. Rnr4) bound differentially to chromatin after MMS treatment. These specific 

behaviours for protein isoforms are of great interest to understanding their biological 

functions and their visualization is optimal via DIGE-based analysis as ICAT and iTRAQ 

procedures cleave reactive groups, such as phosphates. This validates the methods used 

here as valuable in uncovering novel functions and identities of chromatin-binding 

proteins. 

 

5.3 Future Prospects and a Link between DNA Replication and DNA 
Damage  
 

All biological models strive to both accurately describe a biological process, system or 

mechanism as well as to uncover non-intuitive insights that may help in predicting 

network behaviour and suggesting potential experiments. These are both useful for 
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circumventing the resource intensive approach of step-by-step hypothesis driven “wet-

lab” research. A general scheme for biological modeling is to first build a robust and 

predictive model, make testable predictions and incorporate new data into further 

iterations. The model of DNA replication initiation presented in this thesis provides a 

primer for exploring a process that is integral to cell survival and regulated proliferation. 

While there are many replication factors that were not included in the network 

framework, the model contains its essential components and faithfully describes how a 

group of factors interact at various points in the cell cycle to produce the replication forks 

required to complete duplication of the genome. 

 Moving forward, additions to the model would potentially involve inclusion of 

factors that increase the resolution of steps that for the purpose of reducing model 

complexity, are currently treated as lumped. Modeling the association of GINS (one or 

more of its component subunits) with the DNA would be an obvious step. This would aid 

in the distinction between Cdc45 that associates with origins and that which is included in 

an active CMG complex. Another area that could be explored is the modulation of the 

total number of potential origins (RCTotal) to investigate how having more or less sites of 

potential pre-RC formation would affect the rates with which proteins interact with one 

another. This would be well served by including a clear distinction between G1 and S 

phase as the model at present (due to the overlap of Cdc6 and Cdc45) provides the 

potential for pre-RCs to form after the first firing event. Because inhibitory CDK 

mechanisms have been included in the model, this prevents the firing of such theoretical 

‘S phase pre-RCs’, such that they do not actually contribute to fork formation. It is 

possible, however that they might fire if they are formed earlier in the cell cycle, before 
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CDK inhibition plays a role, increasing the overall number of origins. Questions 

regarding origin usage and efficiency would benefit from this analysis. Due to the 

methods used to scale the data, the amount of MCM present in the pellet was kept at a 

conservative amount such that the maximum concentration of MCM Pellet never 

exceeded the amount of potential origins. Doubling the amount of MCM on the 

chromatin (and subtracting appropriately from the soluble fraction) would provide excess 

MCM and insights into how extra MCMs regulate origin firing, particularly the events 

concerning the breakup of RC4 and the concept of dynamic loading. 

 A great deal of proteins were identified in Chapter 4 as having a differential 

affinity for chromatin in response to the DNA-damaging agent MMS. Interesting patterns 

of regulation even among isoforms of a given protein provide interesting avenues of 

future research regarding their specific roles in the DNA damage response pathway. 

While these experiments are at first glance isolated from the DNA replication model, the 

latter would benefit from exploring the roles of proteins that act in both pathways – DNA 

replication and checkpoint response. Mec1 and Dbp11 are factors that are intimately 

linked with both processes. The former acts as a regulator of nucleotide pools upon S 

phase entry to ensure a normal rate of S phase progression. It is also implicated in the 

priming of MCM subunit residues for subsequent phosphorylation by DDK (Sheu and 

Stillman, 2010). These represent its role in a normal, unperturbed cell cycle. Mec1 is also 

a key checkpoint kinase in the DNA damage and DNA replication checkpoint responses, 

as described in Chapter 1. Dpb11 mediates the interaction between Sld2 and Sld3, 

leading to the eventual formation of a stable CMG complex (modeled through the action 

of Cdc45 in this thesis). Notably, Mec1 is activated by Dpb11 during the checkpoint 
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response and so these proteins play critical roles in both DNA replication and DNA 

damage response. Expanding the network of the model to include these factors as well as 

other relevant checkpoint proteins would permit the dynamic investigation of DNA 

replication in a cell cycle perturbed by DNA damage-induced arrest. As was the case 

with highlighting emergent properties of the replication system in the current model, the 

proposed model would shed light on the non-obvious behaviours of and interactions 

between all factors included.  

 

5.4 Perspectives on Cancer 

5.4.1 Cancer and the Cell Cycle 

As modern medicine forges ahead, the scope of targeted and personalized treatment has 

the multi-faceted disease of cancer in its sights. Decades of work have resulted in great 

advances in both treatment and prevention. Nevertheless, even more promising 

technologies are emerging, with the advent of targeted drug delivery systems and 

personalized treatments. In light of these promising avenues of research and treatment, it 

is useful to consider some of the fundamental processes that lead to the deregulation of 

the cell cycle.  

A major goal of combating existing cancer is the ability to target cancerous tissues 

without collaterally harming healthy host cells. Many therapeutics are designed without 

considering the varying molecular basis of cell cycle deregulation, providing a largely 

unexplored approach to developing more targeted cures. While a great number of anti-

cancer drugs target replication machinery components such as topoisomerase or elements 
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of the mitotic spindle, the efficacy varies from patient to patient due to the specific 

molecular etiology.  

The DNA damage repair mechanisms that are tasked with ensuring the fidelity of 

the genome are ripe targets for disrupting the cell cycle on the path to genomic instability 

and consequent tumorigenesis (Fishel et al., 1993; Hanawalt and Sarasin, 1986). 

Chromosomal damage, improper segregation and an array of genomic aberrations have 

been implicated in cancer and related ailments such as Werner’s syndrome and ataxia 

telangiectasia (Jeggo et al., 1991; Vogelstein et al., 1989). It has been shown that many 

environmental agents that have wide exposure interfere with the G1/S checkpoint. These 

render cells susceptible to further genomic instability incurred by known genotoxic 

agents (Afshari and Barrett, 1993).  As reviewed previously in this thesis, these are 

outcomes normally prevented by cell cycle checkpoints, their disruption therefore having 

been the subject of investigation for their potential roles in carcinogenesis (Lau and Jiang, 

2006; O’Connor and Kohn, 1992; reviewed in Hartwell and Kastan, 1994).  

Errors in the control of mitosis have also been implicated in cancerous pathologies. 

Organization of the spindle is deregulated in murine pancreatic tissue expressing the 

SV40 large T antigen. This results in chromosomal instability due to improperly 

segregated chromosomes (Levine et al., 1991). The c-mos proto-oncogene controlling 

meiosis is abnormally expressed in tumor cells, an effect caused by polyploidy (Singh 

and Arlinghaus, 1992). BRCA2-deficient tumors are derived via chromosomal instability 

implicating the gene in DNA damage repair processes (Venkitaraman, 2002). A role for 

BRCA2 in regulating mitotic functions has also been documented, leading to spontaneous 
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cancer development in mice with a defective copy of the gene (Choi et al., 2012; Rowley 

et al., 2011). 

A correlation between age and susceptibility to cancer has long been established 

and postulated as existing due to the breakdown through mutation of the mechanisms that 

ensure proper cellular propagation (reviewed in Nowell, 1976 and Hartwell and Kastan, 

1994). Cellular aging itself has been postulated to occur as a result of continued cycles of 

cell division. Thus the number of cell cycles determines the age of a cell as opposed to 

chronological time (Hayflick and Moorhead, 1961; Shay and Wright, 2000). A major 

contributor of this is the decrease in the activity of the enzyme telomerase as cells age. 

This enzyme aids in the replication of the 3’ end of the lagging strand at the end of 

chromosomes. Thus, as cells age and lose telomerase function, they eventually reach a 

critical size at which point the cell undergoes an irreversible arrest. Termed “cellular 

senescence”, it is suggested to be a natural method for preventing cancer as the arrest 

generally occurs before the chromosomes accumulate enough mutations to render them 

cancerous (Olovnikov, 1973; Shay et al., 2001). Consistent with this, the loss of 

telomeric sequences in S. cerevisiae was found to cause senescence and cell death 

(Lundblad and Szostak, 1989). In contrast, the maintenance of high levels of telomerase 

has been found in cancerous cells leading to the hypothesis that they are made immortal 

due to the lack of a senescence arrest. Because this represents a frequent step in 

oncogenesis, the targeting of telomerase is a potent approach for combating cancer (Holt 

and Shay, 1999; Shay, 1995; Shay and Wright, 1996; Wright and Shay 2001;). 
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5.4.2 DNA Replication and Cancer 

An intermediate stage between natural cell proliferation and a neoplastic state is termed 

dysplasia (De Vita et al., 1993). Despite unique morphological and molecular differences 

in such cells, methods for detecting the symptoms of such changes have suffered from a 

paucity of detectable markers. Existing ones often have functionally redundant roles thus 

limiting the detection of cancer arising as a result of varying cellular defects. Widely-

used biomarkers for cancer include PCNA and Ki-67, however they have demonstrated 

low efficacy in detecting brain tumors, meningiomas and tumors of the cervix (reviewed 

in Duncker and Semple, 2004). As one would expect, proliferating cells are those that 

undergo a replicative cycle and thus for most tumors, viable biomarkers are those that act 

in the initiation of DNA replication (Korkolopoulou et al., 2002 and 2005; Murphy et al., 

2005). Proteins considered in the model described in this thesis are, therefore good 

candidates as cancer biomarkers. Orc6, as an example has been shown in two 

independent studies to be overexpressed in colorectal cancer tumors (Gavin et al., 2008; 

Xi et al. 2008). 

Cdc6 levels were shown to be elevated in samples of cervical carcinoma (linked 

to human papilloma virus, HPV infection) compared to normal tissue (Williams et al., 

1998). This contrast was significantly greater for Cdc6 than for the aforementioned Ki-67 

and PCNA, a proof of principle for the use of replication proteins in detecting cancer 

cells. Robbles et al. (2002) demonstrated aberrant expression of Cdc6 in malignant 

prostate cancer. Staining of neuroepithelial samples with α-Cdc6 antibody showed a 

correlation between tumorous cells in the brain and detectable Cdc6 levels.  
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Subunits of the Mcm2-7 complex have also been shown to be effective predictors of 

neoplasia. The staining of tumorigenic tissue samples with α-Mcm7 (Hiraiwa et al., 

1997), α-Mcm5 (Williams et al., 1998) and α-Mcm2 (Todorov et al., 1998) showed vast 

increases in their levels compared to normal tissues, again outperforming Ki67 and 

PCNA. Freeman et al. (1999) showed that the degree of staining with α-Mcm2 and α-

Mcm5 indicated the severity of dysplasia, demonstrating a quantitative function for these 

proteins in preventative diagnostics. Mcm2 has been shown to be of similar use in 

diagnosing a variety of cancers such as those found in dendritic tissue, lung tissue, renal 

cells, esopageal squamous cells and meningiomas. The same is true for Mcm5 with 

respect to bladder and ureter-derived malignancies (Ishimi et al., 2003; reviewed in 

Duncker and Semple, 2004). 

As discussed previously, the Dbf4-Cdc7 kinase complex is an essential activator 

of DNA replication and both components have been evaluated as cancer biomarkers. 

Overexpression of Dbf4, which is limiting (Tanaka et al., 2011) and Cdc7 has been 

linked to cancer. In yeast, overexpression of DDK increases the rate of mutation in cells 

exposed to a genotoxic agent (Sclafani et al., 1988). Thus, acting as a mutagenic catalyst, 

it was proposed to increase the probability of malignancy at high levels (Sclafani and 

Jackson, 1994). The human CDC7 protein is overexpressed in certain tumor cell lines as 

well as in lung and breast cancer tissues (Bonte et al., 2008; Hess et al., 1998). Similar 

results have been found for the human homologue of Dbf4, ASK in cancer cell lines as 

well as tumor samples (discussed in Sclafani et al., 2000).   
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5.4.3 Modeling of Cancer 

As discussed in Chapter 3, mathematical models have the potential to uncover the 

fundamental mechanisms that cellular machines employ. Additionally, unknown aspects 

of the network are often highlighted and new thoroughfares for investigation are created. 

Following an explosion of genomic, proteomic and metabolomic data and novel analysis 

techniques in the past few decades, researchers must now reverse-engineer the processes 

that underlie cellular function (Hollywood et al. 2006; Jares, 2006). Processing the vast 

amount of information is made easier by the use of ODE-based models, such as the one 

presented in this dissertation. Because there are fundamental differences in the various 

types of cancer, specialized treatments must be developed with personalized treatments. 

Predictive models change the landscape of cancer therapy as they provide a tool with 

which to study the responses of the cell with minimal experimental cost. A large number 

of ODE-based mathematical models have thus been developed to study the causes of 

malignancy and resistance to therapeutics. This includes models of the basic cellular 

processes in normal cells as well as modeling of cancerous cells (e.g. Charlebois et al., 

2011; Cox et al., 1980; Heng et al., 2006; Spencer et al., 2004; Stringer et al., 2005; Itani 

et al., 2010; reviewed in Materi and Wishart, 2007). Importantly they enable the 

prediction of global changes to the cell, particularly the side effects of a given treatment 

on a molecular level. With the increasing number of models and their careful integration, 

the manner in which science and medicine approach the treatment and prevention of 

cancer is being revolutionized. 
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Appendix A – Supplementary Information from Chapter 3 

Figure A1. Western blotting of chromatin fractionation samples from three Cdc6-
Myc timecourses. Mouse α-Myc (Sigma, 1:5000) and Alexa Fluor 488 goat α-mouse 
IgG  (Invitrogen, 1:3000) antibodies were used to probe for Cdc6. Ponceau S staining is 
shown. Numbers correspond to timepoint at which samples were collected during the 
timecourse following release from α-factor block (T=0 corresponds to cells arrested in 
late G1, prior to release). The letter P denotes chromatin pellet samples, while 
supernatant samples are denoted by the letter S. 
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Figure A2. Western blotting of chromatin fractionation samples from three Cdc45-
Myc timecourses. Mouse α-Myc (Sigma, 1:5000) and Alexa Fluor 488 goat α-mouse 
IgG  (Invitrogen, 1:3000) antibodies were used to probe for Cdc45. Ponceau S staining is 
shown. Numbers correspond to timepoint at which samples were collected during the 
timecourse following release from α-factor block (T=0 corresponds to cells arrested in 
late G1, prior to release). The letter P denotes chromatin pellet samples, while 
supernatant samples are denoted by the letter S. 
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Figure A3. Western blotting of chromatin fractionation samples from two DY-26 
(wild-type) timecourses. Mouse α-Myc (yN-19 goat polyclonal, Santa Cruz, 1:500) 
along with Alexa Fluor 488 donkey α-goat IgG (Invitrogen, 1:3000) antibodies were used 
to probe for Mcm2. Ponceau S staining is shown. Numbers correspond to timepoint at 
which samples were collected during the timecourse following release from α-factor 
block (T=0 corresponds to cells arrested in late G1, prior to release). The letter P denotes 
chromatin pellet samples, while supernatant samples are denoted by the letter S. 
Additional Mcm2 data from Pasero et al. (1999) was combined with this data set. 
 

 

 

 

 

 

!!0S!!!!0P!!!!5S!!!!5P!!10S!!10P!!!15S!!!15P!

25S!!!!25P!!45S!!45P!!60S!!60P!!75S!!!75P!

!!0S!!!!0P!!!!5S!!!!5P!!10S!!10P!!!15S!!!15P!

25S!!25P!!45S!!45P!!!60S!!!60P!!75S!!!!75P!

TRIAL!1!

TRIAL!2!



 239 

Table A1. Sample conversion of densitometry values obtained from chromatin 
fractionation western blots to molecules/cell numbers. This is shown for a single               
Cdc45-Myc timecourse. 
 

 

Densitometry reading 
(normalized*) 

   Timepoint 
(min) Supernatant Pellet Sum Weight (t) Weighted value 
0 19276469 823312 20099781 X 5 100498905.6 
5 17568831 2556677 20125509 X 5 100627542.8 
10 16406344 2807410 19213754 X 5 96068771.05 
15 15247009 5756224 21003233 X 10 210032329.7 
25 16778584 3828568 20607152 X 20 412143036.2 
45 16956987 1884426 18841413 X 15 282621197.5 
60 17420679 1513775 18934453 X 15 284016801.9 
75 17048102 2015896 19063998 X 15 285959972.7 

      
      
   

Weighted sum= 1771968558 

   
AVG (/90)= 19688540 

      
      
* Values are normalized to intensity of 
Ponceau S staining as well as concentration 
ratios of supernatant to pellet 

Mol/cell = 1730** 
Scaling factor = (mol/cell)/AVG   

 
= 8.79 X 10-5 

      ** Huh et 
al. (2003) 

  
Multiply each timepoint by scaling factor to 
generate scaled data: 

   
      
   

Timepoint  Supernatant Pellet 

   
0 1694 72 

   
5 1544 225 

   
10 1442 247 

   
15 1340 506 

   
25 1474 336 

   
45 1490 166 

   
60 1531 133 

   
75 1498 177 
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Figure A4. Behaviour of mutant rescues simulated by the Chen et al. (2004) model 
remains unchanged in the combined model. Profiles of various species from the whole 
cell cycle model are shown as simulated by the combined model to illustrate the rescue of 
two mutants. These profiles are identical to those presented in Chen et al. (2004). (A) A 
triple-Cln mutant (cln1Δcln2Δcln3Δ) is rescued by the deletion of Sic1 
(cln1Δcln2Δcln3Δsic1Δ). (B) Cells lacking Cdc20 and the S-phase cyclin, Clb5 are 
inviable (Cdc20ΔClb5Δ), but are rescued by deletion of Pds1 (Cdc20ΔClb5ΔPds1Δ). 
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Appendix B – Supplementary Information from Chapter 4 

 
Table B1. Mass spectrometry data for proteins identified in chromatin-enriched 
sample. 
 

 

 
a Saccharomyces Genome Database (SGD) identifier 
b Protein identification score as described by Ma et al., 2005. Score and sequence 
coverage are calculated using Peaks Studio version 2.4. If the Peaks search score was 
below the threshold of 80, additional confirmation was made using the Mascot MS/MS 
ion search with a confidence cutoff of p<0.05 (Mascot scores shown in parentheses). 
c p-values of DIGE experiments are obtained with DeCyder FDR correction with four 
biological replicates. 
 

 

 

Suppl. Table 1. Mass spectrometry data for proteins identified in chromatin enriched sample. 

 
Protein 

name 

Systematic 

namea 

Peaks score / 

sequence coverage 

(%) (Mascot score)b  

Peptides 

matched  

Mw 

(kDa) 

EF  p-valuec 

Arp3 YJR065c 98.90 / 14.03 6 49.49 +1.74 0.0043 

Arp4 YJL081c 99.97 / 31.49 17 54.78 +4.20 0.0010 

Arp7 YPR034w 94.41 / 20.13 9 53.70 +2.53 0.0011 

Arp9 YMR033w 46.06 / 5.35 (63) 2  53.02 +3.35 0.00035 

Asc1 YMR116c 81.04 / 23.20 6 34.63 +2.88 0.0046 

Atp2 YJR121w 99.99 / 38.36 15 54.74 +1.43 0.00025 

Cdc10 YCR022c 97.10 / 17.38 5 40.00 +3.09 0.0045 

Cgi121 YML036w 39.73 / 13.81 (73) 3  20.63 +3.37 0.00030 

Crn1 YLR429w 97.65 / 8.29 5 72.49 +4.06 0.000025 

Cys3 YAL012w 98.23 / 17.77 6 42.50 +1.65 0.00076 

Egd2 YHR193c 54.70 / 15.50 (56) 2  18.68 +1.55 0.0016 

End3 YNL084c 63.53 / 10.03 (109) 3  40.28 +10.4 0.00012 

Gdi1 YER136w 96.87 / 22.20 9 51.16 +1.58 0.00019 

Ilv2 YMR108w 93.25 / 9.17 5 74.87 +13.4 0.000031 

Ilv5 YLR355c 96.35 / 25.37 7 44.30 +1.95 0.00050 

Lat1 YNL071w 92.00 / 14.11 6 51.76 +2.42 0.00097 

Lsp1 YPL004c 98.28 / 21.99 6 38.03 +5.54 0.00043 

Pdb1 YBR221c 97.14 / 20.22 6 40.02 +3.93 0.000036 

Pil1 (a) YGR086c 87.21 / 31.27 8 38.31 +1.65 0.0029 

Pil1 (b) YGR086c 94.80 / 14.45 5 38.31 +2.31 0.00061 

Pst2 YDR032c 74.95 / 12.12 (97) 2  20.93 +3.37 0.000062 

Qcr2 YPR191w 98.72 / 26.90 8 40.44 +1.73 0.00036 

Raf1 R0030w 98.33 / 32.04 6 21.26 +3.37 0.00030 

Rpb3 YIL021w 90.73 / 20.44 5 35.26 +3.38 0.000022 

Rpc40 YPR110c 97.49 / 26.27 8 37.65 +3.98 0.000015 

Rpt1 YKL145w 84.18 / 19.06 9 51.93 +1.92 0.00091 

Rvb2 YPL235w 29.20 / 9.10 (54) 5  51.56 +4.03 0.00055 

Stm1 YLR150w 44.40 / 18.32 (220) 4  30.00 +2.21 0.000082 

Swi3 YJL176c 96.50 / 14.20 4 63.11 +6.85 0.000065 

Taf14 YPL129w 95.30 / 14.30 4 27.40 +4.32 0.000065 

Tfc7 YOR110w 36.10 / 8.10 (78) 3  49.10 +3.89 0.000027 

Tub2 YFL037w 70.61 / 6.64 (53) 2 50.58 +3.73 0.0010 

Ume1 YPL139c 95.57 / 17.39 4 50.97 +2.22 0.00020 

Ura7 YBL031c 67.53 / 3.45 (76) 2  64.65 +3.73 0.000022 
a Saccharomyces Genome Database (SGD) identifier 

b Protein identification score as described in Ma et al. (2005) [53].  Score and sequence coverage are calculated using Peaks 

Studio version 2.4. If the Peaks search score was below the threshold of 80, additional confirmation was made using the Mascot 

MS/MS ion search with a confidence cutoff of p<0.05 (Mascot scores shown in parentheses).  
c p-values of DIGE experiments are obtained with Decyder FDR correction with four biological replicates.  

 



 243 

 
Table B2. Mass spectrometric identification of MMS-induced differentially 
expressed proteins. 
 

 
a Saccharomyces Genome Database (SGD) identifier 
b Protein identification score as described by Ma et al., 2005. Score and sequence 
coverage are calculated using Peaks Studio version 2.4. If the Peaks search score was 
below the threshold of 80, additional confirmation was made using the Mascot MS/MS 
ion search with a confidence cutoff of p<0.05 (Mascot scores shown in parentheses). 
 
  
 

 

Suppl. Table 2. Mass spectrometric identification of MMS-induced differentially expressed 

proteins. 

 
Protein 

name 

Description Systematic namea MS/MS score /sequence 

coverage (%)b 

Peptides 

matched  

Mw 

(kDa) 

Acf2 Cytoskeleton assembly factor YLR144c 99.71 / 20.41 15 88.00 

Aim13 Genome stability protein YFR011c 85.27 / 27.06 5 18.83 

Arp3 Actin-related protein 3 YJR065c 99.93 / 51.45 17 49.49 

Atp2 ATPase beta chain YJR121w 95.64 / 38.16 41 54.74 

Bmh1 (a) 14-3-3 homolog  YER177w 99.64 / 70.41 30 30.05 

Cdc10 (a) Septin ring protein, cytokinesis YCR002c 99.99 / 61.80 24 36.98 

Cdc10 (b) Septin ring protein, cytokinesis YCR002c 97.12 / 17.39 6 36.98 

Cps1 Gly-X carboxypeptidase YJL172w 98.72 / 43.58 72 64.54 

Crn1 Coronin YLR429w 92.81 / 26.27 13 72.49 

Gcv3 FUN40, glycine cleavage YAL044c 94.10 / 47.46 13 19.55 

Hsp31 Cysteine-type endopeptidase YDR533c 99.78 / 66.24 16 25.64 

Ilv2 Acetolactate synthase  YMR108w 99.99 / 39.88 32 74.87 

Lsp1 (a) Primary component of eisosome YPL004c 99.31 / 25.81 8 38.03 

Lsp1 (b) Primary component of eisosome YPL004c 77.31 / 17.3 (34) 6  38.03 

Nsp1 Nucleoskeletal like protein YJL041w 99.99 / 28.68 24 86.50 

Pil1 Component of eisosome YGR086c 94.80 / 14.45 5 38.31 

Pst2 (a) Flavodoxin-like protein YDR032c 90.38 / 33.84 5 20.93 

Pst2 (b) Flavodoxin-like protein YDR032c 94.19 / 52.02 6 20.93 

Rpa1 Replication factor A 1 YAR007c 100.00 / 40.10 22 70.29 

Rpa2 Replication factor A 2 YNL312w 82.44 / 37.0 6 29.90 

Rnr4 (a) Ribonucleotide reductase  YGR180c 99.02 / 43.77 11 39.98 

Rnr4 (b) Ribonucleotide reductase YGR180c 99.83 / 33.33 19 39.98 

Rnr4 (c) Ribonucleotide reductase YGR180c 81.68 / 22.03 9 39.98 

Rnr4 (d) Ribonucleotide reductase YGR180c 97.64 / 31.59 12 39.98 

Ste4 GTP binding protein  YOR212w 71.56 / 14.18 (113) 4  46.53 

Vma2 (a) Subunit 2 of V-ATPase  YBR127c 99.40 / 24.76 10 57.70 

Vma2 (b) Subunit 2 of V-ATPase YBR127c 99.82 / 28.82 13 57.70 

Vma2 (c)  Subunit 2 of V-ATPase YBR127c 99.35 / 24.76 13 57.70 

Vma4 Subunit 4 of V-ATPase YOR332w 99.82 / 27.90 9 26.44 

Ycp4 (a) Flavodoxin-like protein YCR004c 99.57 / 43.81 7 26.32 

Ycp4 (b) Flavodoxin-like protein YCR004c 87.20 / 17.41(169) 3 26.32 

Yrb1 Ran GTPase binding protein YDR002w 52.21 / 26.37 (38) 6  22.92 

Ald6 Aldehyde dehydrogenase YPL061w 99.79 / 25.75 10 54.52 

Bgl2 Glucan endo-1,3-beta-glucosidase YGR282c 99.49 / 18.61 9 33.50 

Bmh1 (b) 14-3-3 protein 1 YER177W 99.59 / 39.70 9 30.05 

Bmh2 14-3-3 protein 2 YDR088w 97.78 / 25.64 6 31.13 

Hsp60 Mitochondrial chaperone  YLR259c 99.90 / 26.22 12 60.69 

Pdc1 Pyruvate decarboxylase YLR044c 99.88 / 25.22 13 61.44 

Rpp0 Acidic ribosomal protein P0 YLR340w 98.83 / 24.68 7 33.68 

Rpc40 Component of RNA polymerase  YPR110c 98.10 / 19.70 6 37.65 

Ssb1 DnaK-type molecular chaperone  YDL229w 99.86 / 21/21 9 66.54 

Ssb2 DnaK-type molecular chaperone YNL209w 99.74 / 26.10 13 66.54 

Tma19 Histamine-releasing factor homolog YKL056c 67.11 / 23.35 (69) 3  18.71 

Ura7 CTP synthase YBL039c 67.53 / 3.45 (76) 2  64.65 
a Saccharomyces Genome Database (SGD) identifier 

b Protein identification score as described in Ma et al. (2005) [53].  Score and sequence coverage are calculated using Peaks 

Studio version 2.4. If the Peaks search score was below the threshold of 80, additional confirmation was made using the Mascot 

MS/MS ion search, and the identification retained for Mascot scores significant at p<0.05 (Mascot score shown in parentheses).  
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Figure B1. Western blot analysis of chromatin fractionation samples. Initial whole 
cell extract (WCE), as well as supernatant (SUP) and chromatin (PEL) fractions were 
subjected to SDS-PAGE and transferred to a nitrocellulose membrane. Detection was 
carried out with rabbit polyclonal α-Orc2 (1:1000 dilution, Duncker et al., 2002), mouse 
monoclonal α-TAT1 (1:500 dilution, Sherwin and Gull, 1989), and rabbit polyclonal α-
histone H2B (1:1000 dilution, Cedarlane), using 1:3000 dilutions of either Alexa Fluor 
647 goat α-rabbit IgG or Alexa Fluor 488 goat α-mouse IgG secondary antibodies. PEL 
fractions are concentrated tenfold relative to WCE and SUP. In each case, equal volumes 
of WCE and SUP fractions were loaded, with double (histone H2B, tubulin detection) or 
triple (Orc2 detection) the volume of the PEL fraction loaded. This resulted in 
approximately equal amounts of protein being analyzed for each sample.  
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