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Abstract 
 
 

The main objective of this thesis is to further reduce the machining cycle time for 

producing Calcium Polyphosphate (CPP) implant constructs. To achieve this, the impregnation 

of the CPP lattice with various polymers is investigated, with the aim of improving the toughness 

of the material.  By applying Taguchi’s orthogonal array method it was determined that CPP 

infiltrated with an ionic bonding polymer produces the best material for generating high quality 

machined surfaces and features. While there is some loss in surface porosity, in comparison to 

cutting uninfiltrated CPP, the porosity loss was deemed acceptable for the clinical purpose of the 

implant, and in many cases, would be trimmed off during a consecutive finish machining 

operation. 

 

The 2 fluted 4 mm diameter flat end mill at a cutting speed of 30 m/min and ¾ immersion 

up-milling, 0.1 mm chip load and 3 mm depth of cut were determined to be highly suitable for 

achieving both high productivity as well as excellent surface integrity.  These conditions 

produced a material removal rate of 4,302 mm3/min, which was 14 times higher than the material 

removal rate achieved in machining pure CPP in earlier studies. The constructed machining 

model was highly successful in predicting the cutting forces, and therefore can be used in process 

planning and optimization in the production of tissue engineered implant constructs out of CPP. 

 

The Finite Element analyses predicted that the implant would not chip or break during the 

roughing operation, as validated experimentally. This allowed the roughing cycle time to be 

reduced from 159 min to 19 min, effectively achieving a productivity improvement of 8 times 

over the earlier work done in this area. 
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CHAPTER  1 

Introduction 

 
 
 
 
 
 
 

1.1   Synopsis 
 

This thesis targets improvement of the machining productivity of Calcium Polyphosphate 

(CPP), which is a porous biodegradable ceramic that is currently being investigated as a substrate 

material for tissue engineered biomedical implants. Earlier studies conducted at the University of 

Toronto and Mount Sinai Hospital [8] have revealed that CPP has the potential of being an 

excellent bone substitute due to the following reasons: 

 
• The compressive and tensile strength of CPP are significantly higher (~38 MPA and 9 

MPa, respectively) compared to that of Hydroxyapatite (~28 MPa and 3 MPa, 

respectively) [31], where Hydroxyapatite is one of most commonly used biodegradable 

implant materials. 

• The porous structure of CPP allows excellent support for in-vivo cell seeding, thus 

enabling laboratory-grown cartilage to be formed on the implant surface prior to 

implantation, as illustrated in Figure 1.1. 

• The porosity of the CPP also facilitates revascurilazation of blood vessels, which 

accelerates bone healing and in-growth, as opposed to bone-loss which is the common 

problem encountered in most bone-to-metal contact implants. 
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• As the original bone heals and grows into the volumetric shape of the implant, CPP 

disintegrates in the host’s body leaving behind only Calcium ions and phosphate 

compounds, which can be absorbed into, and removed by the host organism without 

encountering any biocompatibility issues. 

Therefore, the utilization of CPP as a tissue engineering implant material has been under heavy 

investigation throughout the recent years, by researchers from the University of Toronto and 

Mount Sinai Hospital [8][12][13][14]. 

 

 
Figure 1-1: Method of in vivo and in vitro grown tissue-engineered cartilage [15]. 

 

In tissue engineered implant design, in addition to achieving good mechanical compatibility 

between the substrate material and the original tissue/bone region in terms of strength, elasticity, 

and fracture toughness, it is also vital that the volumetric shape of the implant display a certain 

level of compliance with the geometry of its surrounding features, in order to distribute 

mechanical loads evenly without leading to unnecessary stress concentrations.  

 

In 2005, to assess the performance of tissue engineered CPP implants under realistic 

application and loading conditions, it was found necessary to shape various portions of CPP 

implants according to actual anatomical features. Hence, it became necessary to develop new 

methods of shaping such implants into complex geometries, which could not be achieved simply 

through the use of slip casting dies and moulds prior to sintering the implants according to a 

standard protocol [15]. Especially, for producing customized bone implants that are to be 

designed directly through the use of CT scan data from individual patients, it is imperative to 

have reliable, efficient, and accurate shaping techniques for CPP. Thus, collaboration was 

initiated between the University of Waterloo and the University of Toronto, where Waterloo 
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researchers (Prof. E. Toyserkani and Prof. K. Erkorkmaz) were charged with the task of 

investigating such manufacturing methods to impart complex 3D geometries onto CPP 

structures.  

 

Prof. Toyserkani’s group has focused on additive methods involving the use of solid freeform 

fabrication (SFF) to produce the implants very quickly and with minimal CPP powder loss 

[12][15]. Prof. Erkorkmaz’ group, on the other hand, has investigated the use of machining 

techniques [15][16] that achieve high levels of accuracy and good surface porosity. 

Unfortunately, machining also causes a lot of sintered CPP material, which is expensive and 

labour intensive to manufacture, to be wasted. Other disadvantages of machining are the 

excessive manufacturing cycle time and the risk of destroying the implant due to cutting force 

overload or excessive vibrations, which can result in cracking and brittle breakage. It is obvious 

that both SFF and machining have distinctive advantages and drawbacks for shaping CPP, and 

perhaps could be used in a sequence where their strengths could be combined and weaknesses 

mitigated, such as producing near-net-shaped implants first as green parts using SFF, and after 

they are sintered, machining them to their final geometry, features, and dimensions with 

minimum powder loss and in machining time, using multi-axis machining. 

 

This thesis targets furthering the CPP machining conditions that were achieved in [16], and 

reported in [8]. The methods applied in this thesis and the benefits obtained are applicable in 

both cases, where machining is used as a stand-alone operation to shape post-sintered CPP 

blanks from basic 3D shapes like prisms or cylinders, or it is used as a complementary operation 

post-sintering, after near-net-shape green substrates are first produced using solid freeform 

fabrication. 

 

1.2   Earlier Machining Work for CPP 
 

During the most recent study [16][8], a mechanistic cutting force model was developed for 

machining 70% density CPP with 45-150 um particle size using milling. The machining 

conditions comprising of cutting speed, tool/workpiece engagement conditions, cutting depth, 
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and chip load were selected by trial and error in order to yield the most favourable results in 

terms of surface porosity, geometric feature retention and machining productivity, though a 

limited number of preliminary experiments. It was determined that using up-milling in up to full 

immersion with 1-2 mm depth of cut, 50-150 mm/min cutting speed range, and 0.05 mm/tooth 

chip load, kept the resulting cutting force below 45 N and was able to produce acceptable results 

with open surface porosity and good geometric features without chipping. Ultimately, these 

findings were incorporated into planning the 5-axis machining operation for producing a tibial-

plateu (lower knee joint) implant, which was designed by researchers led by Prof. R.M. Pilliar 

and Prof. R. Kandel from the University of Toronto and Mt. Sinai Hospital. The developed 

machining procedure is shown in Figure 1.3. 

 

While the CPP implant, as seen in Figure 1.4, could be produced with high accuracy, good 

surface porosity and acceptable dimensional integrity, the total machining cycle time for all of 

the phases was nearly 5 hours (160 min for roughing, 70 for semi-finishing, and 60 for 

finishing). In a clinical application involving the custom manufacture of bone implants based on 

CT scans, such a long shaping duration may be unacceptable. 

1.3   Aims and Contributions of this Thesis 
 

The main objective of this thesis is to further reduce the machining cycle time for producing 

CPP implant constructs. To achieve this objective, the impregnation of the CPP lattice with 

various polymers is investigated, with the aim of improving the toughness of the material and 

therefore its resistance to cracking and chipping during elevated cutting speeds as well as 

aggressive chip loads and cutting depths. Post machining, the polymers would be burned off by 

heat-treating the implant, along with any hydrocarbons that could have contaminated the CPP 

during the machining or handling operation. 
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Figure 1-2: Developed implant machining steps in [16]: Figure 1: 1) 3-axis roughing, 2) 5-
axis roughing, 3) 5-axis finishing, 4) Keel surfacing and hole drilling, 5) Flat surface 

machining inside a conformal wax clamp. 
 

 
According to Figure 1.4, it is clear that the roughing cycle takes the largest amount of time in 

the scenario where the complete implant is shaped using solely machining. Therefore, the focus 

in this thesis has been to devise the design-of-experiment and use correlation techniques that 

would help identify the cutting conditions which would dramatically reduce the roughing time 

for the implant. These conditions have afterwards been adopted in the production of implants, 

which are currently being used in pre-clinical trials on sheep. The design-of-experiment was 

realized using the Taguchi Method. After identifying the important factors that influenced the 

CPP machining operation, initially a 9-experiment L9 array, followed by a 4-experiment L4 array, 

was executed. These experiments helped to determine the most suitable machining conditions 

that significantly reduced the roughing cycle time, and also yielded CPP substrates with 
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acceptable dimensional and surface quality. These studies were complimented with Finite 

Element (FE) analyses, which helped to determine toolpath planning configurations to reduce the 

stress loading on the workpiece. This meant that higher chip loads and cutting depths could be 

adopted, thereby also improving the machining productivity, without breaking the implant. The 

overall results of these studies have been incorporated into a 5-axis machining strategy, which 

has been validated experimentally. 

 

  

 

  

Figure 1-3: Machined implant and machining time break-down [8]. 
 

It is important to point out that while the main focus of this thesis was to minimize the cycle 

time for the roughing stage, the same design-of-experiment and Finite Element analysis could 

also have been applied to improve the machining conditions for semi-finishing and finishing 

stages, in the case where multi-axis machining is to be used following the sintering operation, 

after a near-net-shape implant is first produced using solid freeform fabrication.  

 

Henceforth, the thesis is organized as follows: Chapter 2 presents a literature review, 

followed by the main design of experiment in Chapter 3, which has helped determine the most 

suitable CPP and polymer combination to be used in the remaining machining studies. Chapter 4 

narrows down the search for the optimal machining conditions by investigating the influence of 

the chip load and depth of cut during the roughing process. Also, sample implants are produced 

by applying the findings obtained so far to 5-axis toolpath planning. It is shown that at least 140 

minutes reduction in the roughing cycle time, and an overall 2 hours and 20 minutes reduction in 

the time required to produce one complete implant can be achieved, compared to the results that 

were reported in [16][8]. Also in Chapter 4, FE analyses are conducted for critical portions of the 
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machining operation, that help determine better configurations that reduce the stress loading on 

the CPP implant. As a result, the 5-axis machining toolpaths are revised to allow more 

aggressive machining conditions to be realized, thereby allowing a further 140 minutes reduction 

in the cycle time. These toolpaths are also validated experimentally. Finally, the conclusions for 

this thesis are presented in Chapter 5. 
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CHAPTER  2 

Literature Review    
 

 

 

 

 

 

 

 

 

 

 

 

Calcium Polyphosphate (CPP) material has been proposed as an alternative to metallic 

implants for use in fracture fixation applications [8]. The mechanical strength of the 

biodegradable fixation decreases with time and gradually transfers the load to the healing bone, 

thus reducing shielding stress that leads to osteoporosis [13]. The material is degraded and 

eliminated by excretion and resorption, so that the removal of the device by operation is not 

necessary. This reduces the cost of the treatment when compared to metallic implants. 

 

CPP is also porous, which allows for chondrocytes to enter into the pores. Cartilage that 

forms in the region anchors the tissue to the CPP. With CPP being porous, bone grows into the 

pores, which is not filled by cartilage after implantation, which results in the implant being 

secured and fixed in place. This is why surface porosity is vital to cell growth. 
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2.1   Solid Freeform Fabrication (SFF) of Calcium 

Polyphosphate (CPP) 
 
 

 
Figure 2-1. Scanning Electron Microscope (SEM) of PVA-CPP 

blend powder [12]. 
 

A method that is currently being investigated for manufacturing Calcium Polyphosphate 

shapes is Solid Freeform Fabrication (SFF).  This techniques allows the fabrication of 

anatomically shaped porous components by building the geometry up in layers. SFF systems are 

considered to function in one of the three categories based on the original structure of the 

material they apply, which can be: liquid-based, solid-based, or powder-based.  

 

 This method of manufacturing has been investigated by Shanjani [12] in the Rapid 

Prototyping Laboratory of the University of Waterloo. CPP powder of 75–150 µm was mixed 

with polyvinyl alcohol (PVA) polymeric binder and was used in the SFF machine with 

appropriate settings for the powder mesh size, as shown in Figure 2-1.  The PVA binder was then 

removed during an annealing process and the preformed shape was sintered. The few samples 

that were measured with a micro-CT scanner had 32% porosity.  The average pore size was 

around 53 µm. To obtain these results, mercury porosimetry was used.  The compressive strength 

of 6 mm cylinders was measured, using 10 samples, as 33.86 ± 6.33 MPa. 
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2.2 Machining of Porous Calcium Polyphosphate (CPP) 
 

 
Figure 2-2. SEM image of a machined CPP specimen [8]. 

 
Another method of fabricating porous CPP shapes out of sintered pre-forms is machining.  

Machined porous CPP structures with 30 percent volume of interconnected pores and spaces 

between each network of pores that have 50-150 micron range were determined to be suitable for 

bone and cartilage ingrowth [22][23][24]. Based on the results of diametral compression testing 

[8], the compressive strength of 70% dense machined CPP was measured to be around 38 MPa. 

 

Unfortunately, CPP is a brittle material which is difficult to machine. Overcoming this 

difficulty is the main objective of this thesis. It is also vital that the manufactured implant 

adequately mimics the geometry and stiffness characteristics of the original bone structure, in 

order to avoid unwanted stress concentrations that could damage the implant, deteriorate the cell 

adhesion and bone ingrowth characteristics, or damage the in-vitro grown cartilage layer. Figure 

2-2 is a Scanning Electron Microscope (SEM) image of a machined CPP specimen taken from 

[8], which was produced by milling at a cutting speed of 50 mm/min and chip load of 0.0167 

mm/tooth. It is clear that conservative these parameters are capable of producing accurate and 

clean edges, sharp corners, and a porous surface. However, these feeds and speeds which are 

conservative also results in excessive cycle times for producing implants; in the order of 6 hours 

per piece. One of the major aims in this thesis is to improve the machining productivity of CPP 

while retaining the feature and surface quality characteristics. 
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2.3 Infiltrating Porous CPP with Polycarbonate Resin 
 

The disadvantage of porous CPP is its brittleness and poor fracture toughness, which 

results in low elastic deformation capability for load bearing applications. Biodegradable 

Interpenetrating Phase Composites (IPC) provide an ideal case for strength increase in porous 

CPP.  They consist of two or more 3D continuous phases that interpenetrate with each other 

[25][26]. Polycarbonate diol (PCN) based divinyl oligomer, along with methacrylic acids (MA), 

can be produced to cross link polymer resins [21]. A ratio of PCN divinyl oligomer and MA of 

1:20 has an interfacial shear strength of 6.71 MPa, which results an increase in strength when 

compared with the non-ionic resin, which achieves 1.5 MPa [21].  The polymer backbone of 

polycaprolactone consists of ester groups that hypothetically can only provide weak van der 

Waal’s interactions with CPP.  It was studied in [21] that the higher proportion of oligomeric 

polycarbonate and lower number of MA groups were assumed to have contributed to a decrease 

in the mechanical strength. Also, it seems that the increase in the amount of MA indicates a 

stronger interaction with the CPP fibers, which translates into higher bending strength and an 

increase in toughness. 

 
In this thesis, one approach that will be investigated as a means of improving the 

machinability of CPP is to infiltrate the matrix with various resins that either form ionic bonds, 

or only achieve van der Waals interactions. 

 

2.4 Conclusions 
 

This chapter has provided a review of the current state-of-research being conducted for 

shaping CPP into functional implants. This includes SFF and machining. Earlier work has also 

indicated that polymer impregnation has the capacity to improve the strength of CPP. The impact 

of this idea on improving the machining quality and productivity will be investigated in this 

thesis. 
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CHAPTER  3    

Identification and Optimization of the Most 
Significant Factors that Influence the Machining of 
CPP 

 
 
 
 

3.1   Introduction  
 

 

This chapter investigates the most significant factors that influence the machining process 

for sintered CPP, with the aim of optimizing these factors so that implants of acceptable quality 

can be produced by machining in the shortest cycle time. 

Due to its versatility for producing complex freeform shapes, milling is chosen as the 

means of imparting the desired geometry onto prismatic CPP blanks. Hence, the chapter begins 

with a brief look at milling mechanics in Section 3.2. In Section 3.3, the manufacturing 

conditions believed or observed to influence the milling operation are identified for experimental 

investigation. While the choice of cutting tool and machining parameters plays a major role, the 

composition of the CPP blank is found to be just as important. One of the main contributions of 

this thesis is to investigate whether impregnating the CPP structure with certain polymers, as 

discussed in Section 3.3; helps improve the machinability of this material. 

Due to the relatively high cost of manufacturing CPP blanks in small batches, the 

machinability of this material needs to be studied while consuming the minimum number of 

specimens. This has motivated the use of Taguchi’s design-of-experiment methodology [3], 

which helps to configure the minimum number of experiments that need to be executed in order 

to reliably assess how different factors contribute to the machining outcome. An overview of 
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Taguchi’s method is provided in Section 3.4, followed by its adaptation to the research problem 

at hand, in Section 3.5, according to the factors that are identified in Section 3.3. 

Evaluation of the test results is realized in Section 3.6. The two responses considered to be 

the most relevant are machined surface integrity (for producing the desired geometric features 

without chipping the implant), and surface porosity (to ensure that the implants achieve their 

desired clinical function of cell seeding and bone regeneration). Both responses are measured 

visually by capturing optical and Scanning Electron Microscope (SEM) images, and evaluated 

using subjective and quantitative means. Parallel to visual observations and discussions, a 

statistical Analysis of Variance (ANOVA) is also conducted for both responses, in order to 

gauge the most significant factors that influence each response. Main results of these analyses 

are presented in Section 3.7, which indicate that polymer impregnation can indeed improve the 

productivity of the operation while retaining excellent surface integrity and acceptable porosity. 

3.2 Cutting Mechanics of Milling 
 

This section provides a brief review of the cutting mechanics for milling operation. Further 

details can be found in [1]. 

 

In milling, the cutter rotates and relative translational motion is realized between the 

workpiece and cutter, in order to achieve the desired material removal. Figure 3-1 provides an 

illustration of the two most commonly used configurations in milling, which are up- and down-

milling; also referred to as conventional and climb cutting, respectively. By looking at Figure 3-

2, the engagement of the rotating cutting edge with the workpiece can be analyzed in a 

generalized manner by considering instantaneous angle of the cutting edge (φ ), which is 

measured from the y-axis that is orthogonal to both the feed direction (x-axis) and the axis of 

cutter rotation (z-axis). This edge will be removing material from the workpiece whenever φ  is 

between the interval defined by the entry and exit angles, stφ  and exφ  respectively. 
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Figure 3-1: Down-milling and up-milling operations; ‘f’ designates the feed direction [17]. 
 

 
Figure 3-2: Geometry of an End Milling Process [1]. 

 

Each cutting edge on the endmill creates a periodic chip thickness that varies during the 

tooth passing cycle. The chip thickness generated can be approximated as [1], 

φ=φ sin)( ch  (3.1) 

Above, c  represents the amount of feed per tooth, or “chip load”. 

If the cutting edges on an end mill are helical, the instantaneous immersion angle of a point 

on the cutting edge “i ” will be a function of the helix angle of the tool (β ), the axial height (a ) 

of this point from the tip of the cutter, and the pitch angle pφ , which defines the angular 

clearance between consecutive cutting edges, as shown in Figure 3-3. For example, a uniform-

pitch cutter with two flutes would have pφ =180°. 
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Figure 3-3: Geometry of Helical End  Milling [1]. 
 

In this case, the instantaneous chip thickness generated by such a point on the cutting edge 

i  would be expressed as, 

 

aDicah piii ]/)tan2[(   :   where,   sin)( β−φ+φ=φφ=  (3.2) 
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Above, D  is the diameter of the cutter and φ  represents the rotation angle of the first 

cutting edge at the tip of the tool. By applying the Finite Element method, as illustrated in Figure 

3-3, if this point is considered to generate a cutting force along an axial discretization length of 

dz; using the oblique cutting model [1], components of this force in the tangential, radial, and 

axial directions ( tdF , rdF , and adF , respectively) with respect to the milling operation as 

illustrated in Figures 3-2 and 3-3, can be calculated as: 
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 (3.3) 

 

Above, tcK , fcK , and acK  are the cutting force coefficients that determine how much 

force is generated per uncut chip area (dahi × ) to achieve the required chip shearing mechanism 

for cutting. teK , reK , and aeK , on the other hand, represent how much additional force is 

generated due to the chip rubbing along the rake face of the milling cutter. These coefficients 

will be identified experimentally when characterizing the CPP machining operation in Chapter 4. 

It is important to note that the incremental force components in Eq. (3.3) will be zero when a 

particular section of the flute is not engaged in the cut (i.e. if exist φ≤φ≤φ  does not hold, then 

0, =itdF , 0, =irdF , and 0, =iadF ). 

 

Considering the geometry of milling in Figure 3-2, the differential force components can be 

projected to the x- (feed) y- (normal), and z- (axial) directions as: 
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Hence, the total force in the x-, y-, and z-directions can be obtained by summing up the 

individual force contributions as: 
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 (3.5) 

 

Above, N  is the total number of flutes and L  is the total number of length-wise elements 

considered in the computation. The individual force components can be combined to obtain the 

resultant cutting force: 

)()()()( 222 φ+φ+φ=φ zyx FFFF  (3.6) 

 

According to this model, the average values of cutting forces can be predicted per Eq. 

(3.7), if the cutting coefficients, tool geometry, and engagement angles are known: 
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(3.7) 

 

Equation (3.7) can also be used to estimate the cutting coefficients when there is 

experimental data available about the average cutting forces generated by a given material and 

tool pair. 

In Chapter 4 of this thesis, a machining model for milling polymer infiltrated CPP will be 

established by identifying the cutting force coefficients for this material and validating the model 

with simulations. These tasks were realized using CutPro machining process simulation and 

analysis software, which applies the theory summarized in Eq. (3.1)-(3.7). 
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3.3    Factors that Influence the Machining of CPP 
 
 In planning a robust design-of-experiment, it is important to recognize the factors that 

influence the outcome.  Then chip load, cutting speed, and depth of cut of the tool relative to the 

workpiece can all play an influential role on the machining productivity.  These, as well as other 

factors believed to affect the machining process, are listed in the following along with particular 

design choices that will be made related to the machinability experiments, which will be 

conducted in the latter portion of this chapter. 

 

1. Material 
 

The brittle nature of porous CPP makes it quite difficult to machine at high productivity 

rates. While there is the possibility of obtaining different structures for CPP, the purpose of the 

current sintering protocol is to generate a porous material to fulfill the afore mentioned 

biomedical functions. However, one main hypothesis that is investigated in this thesis is whether 

infiltrating the CPP lattice with a polymer can help improve the ductility and chipping resistance 

of this material, in order to be able to withstand heavier machining cuts. Two kinds of polymers 

will be explored; one which does not form any ionic bond with CPP, and another one which 

does. Hence, the material factor will be investigated in 3 levels: 

 

• 1a. Pure CPP (70% density, 45-105 micron particle size): This will be the “control” 

material, corresponding to the same material used in earlier studies [8]. 

 

• 1b. CPP Infiltrated with a Non-Bonding Polymer: After following the standard protocol 

for making a CPP block [18], the block was soaked inside a mixture of benzoyl peroxide 

(BPO), ethyl methacrylate (EMA), and methyl methacrylate (MMA). Post soaking, the block 

was temperature-cured at around 115°C. Hence, this created a CPP structure with the pores 

being filled by the polymer [21].  

 

• 1c. CPP Infiltrated with a Bonding Polymer: This time, the CPP block was soaked inside a 

mixture of benzoyl peroxide (BPO), ethyl methacrylate (EMA), methacrylic acid (MA), and 

methyl methacrylate (MMA) [21]. The difference between the two polymers is that the non-
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bonding polymer (1b) does not have any MA, thus making it hydrophobic (non-polar) and it 

relies on weaker van der Waals bonds for interaction with the CPP [21]. This polymer (1c), 

on the other hand, is able to make strong ionic bonds with CPP. 

 

2 . Cutting Speed 
 
Earlier studies had indicated that milling the implant at a maximum cutting speed (i.e., 

rotating tangential speed) of 22.4 m/min prevented loss of surface porosity [8].  While retaining 

surface porosity is an important issue in the final use of the implant, the main operation 

considered in this thesis is roughing. Since roughing is typically followed by semi-finishing and 

finishing operations, this means that a loss of porosity contained within a layer of limited depth 

would be acceptable, which could be removed during latter operations. Hence, while earlier 

studies had considered 10 m/min as an acceptable cutting speed, this thesis will investigate the 

applicability of a cutting speed range of 10, 20, and 30 m/min for the afore mentioned material 

scenarios. 

 
3. Chip Load and Depth of Cut 
 
The chip load and depth of cut, in combination, determine the uncut chip area, and 

therefore the magnitude of forces generated during the machining operation. In thin wall 

machining, if the force normal to the feed direction becomes excessive, it can result in damage to 

the wall. Similarly, when the tool is about the exit the implant, the resultant cutting force in the 

feed direction can cause the remaining bit of material to be broken off before it can be sheared 

away by the cutting edge. Hence, proper choice of chip load and depth of cut plays a crucial role 

in avoiding the force overloading and chipping of the implant. Too small values, on the other 

hand, result in a loss of productivity and increase the cost of the machining operation. 

 

It was stated in [8] that cutting at 0.0125 mm/tooth chip load and 2 mm depth of cut 

prevented chipping or breakage along the cutting edge of the implant. It is expected that 

impregnating the CPP with a polymer will change the ductility of the material, so that it can 

withstand higher cutting forces before breakage occurs. Hence, the following chip loads and 

depths of cut will be explored in the proceeding studies: 
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Chip Load: 0.05, 0.10, 0.15 mm/tooth 

Depth of Cut:  1, 2, 3 mm 

 

4. Tool Engagement Condition 
 

Tool engagement conditions (i.e., entry and exit angles, as shown in Fig. 3-2) can 

determine whether the milling operation is up- or down-milling. They also determine the radial 

width of cut, and the lower and upper boundaries for the uncut chip area [1]. While traditional 

metal cutting calls for down-milling in finishing operations, to obtain high quality surfaces, in 

machining CPP it was seen that this mode of operation resulted in the smearing of CPP particles 

into the pores and therefore the deterioration of surface porosity. Down-milling also has the 

tendency to generate large impact forces each time a cutting edge engages into the workpiece, 

which can increase the tendency for breakage or chipping. Therefore, an up-milling 

configuration consisting of an entry angle of stφ =0° was experimentally validated to be more 

appropriate for milling CPP [8], which resulted in a cutting effect similar to “plucking” out the 

CPP particles; thereby leaving an open-porous surface post-machining. 

 

 

 

 

 

 

  
A                                                                     B 

Figure 3-3:  A: 4 mm Diameter, 4 Flute Flat Endmill (worn-out after 9 experiments),  B: 
Workpiece (Run #2). 
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A                                                                      B 

Figure 3-4:  A: 4mm Diameter, 2 Flute Flat Endmill  (very little wear after 9 experiments),  
B: Workpiece (Run #3). 

 
 
Although the maximum material removal rate would be obtained when the tool is engaged 

with its full diameter (i.e. exφ =180°, resulting in “slotting”), when a 4-fluted cutter is considered, 

as was the original plan when starting out with the “best conditions” reported in [8], it can be 

verified that this creates the worst-case for triggering chatter vibrations and can cause chipped 

edges along the implant. To avoid this situation, three quarters immersion was chosen, resulting 

in an exit angle of an exit exφ =120°. This exit angle was also retained when the cutter type was 

changed from four fluted to two. 

 
 

Figure 3-5: Mitsubishi Tool Selected for Cutting Tests 
 
5. Number of Flutes 

 
Although increasing the number of flutes in a milling cutter can help decrease the chip load 

while keeping the overall feed rate constant, it was found for machining CPP that using a 4 mm 



22 
 

diameter tool with 4 flutes resulted in significant problems with the chip evacuation. As a result, 

it was observed that the tool wore out prematurely, and the worn tool also caused excessive force 

loading, which led to breakage in the CPP samples while leaving the cut, as seen in Figure 3-3. 

By switching to a 2-fluted tool, this problem was avoided and much better surfaces could be 

produced without wearing out the tool or breaking the part. This is shown in Figure 3-4. Hence, a 

2-fluted tool was selected for the remaining machinability studies, which is shown in Figure 3-5. 

After setting the engagement conditions and the tool selection as aforementioned, the 

remaining factors are to be investigated, each of which is considered in three levels, are listed in 

Table 3-1. The design-of-experiment in Section 3.5 is achieved by considering these factors. 

Table 3-1: Factors and Levels for Each Factor. 

Factors 
Levels 

1 2 3 

Material  
Porous 
CPP 

CPP + non- 
bonding polymer 

CPP + bonding 
Polymer 

Depth of Cut (mm) 1 2 3 

Cutting Speed (m/min)  10 20 30 

Chip Load (mm/tooth) 0.05 0.1 0.15 

  
 

              
 

   Table 3-2: L₄ (2³) Orthogonal Array.   Figure 3-6: 3-Dimensional Cube for L₄. 
 

3.4    Design-of-Experiment Using an Orthogonal Array 
 

This section briefly describes the general process of constructing an orthogonal array for 

designing experiments. Before generating the array, the following requirements must be defined: 

• Number of factors 

• Number of levels for each factor 

• Interactions between factors to be estimated 

Exp. 

No. 

Factors 

A B C 

1 1 1 1 

2 1 2 2 

3 2 1 2 

4 2 2 1 



23 
 

• Particular difficulties that would be encountered in running the experiments 

 

Once these have been defined, the minimum number of experiments corresponding to the 

degrees of freedom must be performed to study the chosen factors and levels for each control 

factor. 

 

To further explain the construction of an orthogonal array, consider an example of a 2³-L4 

experiment. Such an experiment would be defined to represent a situation involving 3 factors 

with 2 levels each.  One degree of freedom is associated with the overall mean, regardless of the 

number of control factors that need to be studied. Table 3-3 indicates the total degrees of 

freedom for a 2³-L4 experiment to be four. A 2-level factor counts as one degree of freedom, 

because for a 2-level factor (for example, factor A), we are interested in the comparison of two 

possible cases.  By taking A1 as the base level, we want to know how the response changes when 

we change the level to A2.  

 

Table 3-3: Total Degrees of Freedom Considered in an L4 Experiment 

Factor Degrees of 

Freedom 

Overall Mean 1 

A, B, C 3 x (2-1) = 3 

Total 4 

 

The three dimensional cube in Figure 3-2 illustrates coordinates that verify two levels for 

each factor labeled at the vertices that are of interest for an L4 orthogonal array. The vertices of 

interest interact diagonally with each other on every face of the cube. Hence, for every face 2 

vertices are eliminated from the experiment, thus parting a total of 4 vertices (4 runs), as shown 

in Table 3-2.  Hence, an L4 orthogonal array would be a viable choice for this experiment. 
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Table 3-4: Standard Orthogonal Arrays [3]. 

Orthogonal 
 Array 

Number 
Of rows 

Maximum 
Number 
of Factors 

Maximum Number Of 
Levels For Each Factor 
2 3 4 5 

L₄ 4 3 3 - - - 
L₈ 8 7 7 - - - 
L₉ 9 4 - 4 - - 
L₁₂ 12 11 11 - - - 
L₁₆ 16 15 15 - - - 
L’ ₁₆ 16 5 - - 5 - 
L₁₈ 18 8 1 7 - - 
L₂₅ 25 6 - - - 6 
L₂₇ 27 13 - 13 - - 
L₃₂ 32 31 31 - - - 
L’ ₃₂ 32 10 1 - 9 - 
L₃₆ 36 23 11 12 - - 
L’ ₃₆ 36 16 3 13 - - 
L₅₀ 50 12 1 - - 11 
L₅₄ 54 26 1 25 - - 
L₆₄ 64 63 63 - - - 
L’ ₆₄ 64 21 - - 21 - 
L₈₁ 81 40 - 40 - - 

 
 

Generalizing upon this idea, Genichi Taguchi [3] tabulated 18 basic orthogonal arrays, 

where Table 3-4 lists these 18 standard orthogonal arrays along with the number of columns at 

different levels. To determine the orthogonal array for the experiments that need to be conducted 

in this study, the control factors which were determined previously need to be considered. 

Hence, counting the degrees of freedom of the experiment essentially determines the orthogonal 

array.  In all cases, the overall mean is considered as one degree of freedom.  

 

In the case of identifying the optimum CPP machining conditions, there are only 3-level 

factors, which are being considered to exhibit a characteristic of only 2 degrees of freedom each 

(3-1=2). This gives 8 degrees of freedom, and one for the mean, thus summing up to a total of 9 

degrees of freedom (i.e., 9 runs), as shown in Table 3-5. Hence, for the identified 4 factors of 

material, depth of cut, cutting speed, and chip load, the L₉ orthogonal array has been adopted in 

the design of experiments.  
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Table 3-5: Total Degrees of Freedom Considered in an L₉ Experiment. 

Factor Degrees of 

Freedom 

Overall Mean 1 

A, B, C, D 4 x (3-1) = 8 

Total 9 

 
 

3.5   Design and Execution of Machining Experiments 
According to an L₉ Array 

 
Design of the experiments is developed to mill the CPP at the highest possible productivity, 

while ensuring acceptable quality for the manufactured implants.  

 

The process of developing a model with certain control factors that are minimally affected 

by noise provides reliability in the experiment.  Noise factors are classified as external, unit-to-

unit variation, and deterioration.  Some of the external noise factors are considered to be 

vibrations of the surrounding CNC machine, as well as the CNC machine and tool itself.  A unit-

to-unit variation, in this case, is the production of the CPP blocks.  They are conventionally 

sintered to certain dimensions, which can vary from block to block.  Material properties, and 

therefore the machining response may vary from batch to batch.  However, due to the limitation 

of the CPP fabrication resources, CPP block of different compositions were pronounced in the 

same batches.  A deterioration noise factor, in this case, is tool wear.  Hence, monitoring the tool 

wear after each run can help to remove this noise factor from the model. 
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Table 3-6: L₉ (3⁴) Orthogonal Array with Labeled Parameters.  

Experiment 
No. 

Factor A 
Material 

Factor B 
Depth of 

Cut 
(mm) 

Factor C 
Cutting 
Speed 

(m/min) 

Factor D 
Chip Load 
(mm/tooth) 

1 Porous CPP 1 10 0.05 
2 Porous CPP 2 20 0.1 
3 Porous CPP 3 30 0.15 
4 CPP+ non-bonding 

polymer 
1 20 0.15 

5 CPP+ non-bonding 
polymer 

2 30 0.05 

6 CPP+ non-bonding 
polymer 

3 10 0.1 

7 CPP+ bonding 
polymer 

1 30 0.1 

8 CPP+ bonding 
polymer 

2 10 0.15 

9 CPP+ bonding 
polymer 

3 20 0.05 

 
 
 

  
   A      B 

Figure 3-7: A: Drawing of a Single Machining Specimen (units: mm), B: Verified 
Machining Part in MasterCAM. 

 

The experiments in this section were designed to eliminate the conditions that do not fit the 

objective of high productivity and good quality machining, with particular focus on the roughing 

process.  The response set of interest, for the experiments, is comprised of: 
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1 – Surface / Feature Integrity 

2 – Surface Porosity 

 
The surface and feature integrity will be assessed based on subjective evaluation of visual 

observations on a scale from 1 to 5, with representing the worst, and 5 representing the best 

cases.  The surface porosity, on the other hand, will be evaluated quantitatively by computing the 

percentage of surface pore area in obtained Scanning Electron Microscope (SEM) images of 

machined samples. This will determine the quality of the cuts by distinguishing the better 

machined specimens from the poor ones. Overall, the experiments will help determine the most 

significant factors that affect the surface integrity and porosity. 

 
In addition to inspecting the machined specimens for surface integrity and porosity, tool 

wear of the cutter will also be monitored after each cut for assurance that the tool retains its 

sharpness.  The control factors and settings chosen for each factor of according to the L₉ array 

are shown in Table 3-6.  

 

The CPP machining test blocks were conventionally sintered according to standard 

protocol in [18].  The polymer impregnated samples were prepared as explained in Section 3.3.      

All samples were fabricated by Dr. Eugene Hu at the University of Toronto in the Biomaterials 

Department.  The dimensions of the blocks, post sintering, were 20 mm × 20 mm × 20 mm. 

 

Each block will be subject to 3 cuts, where each pass will have different machining 

parameters obtained from the L9 orthogonal array.  The passes will have equal wall thicknesses 

(2.75mm) between each other and also 0.25mm for a clearance path.  Straightness and integrity 

of the edges along the wall of the specimens would indicate good surface quality, and as a result, 

good machinability. Figure 3-7 illustrates the machining layout for each block in the experiment. 

 

After the machining cuts are complete, all three specimens on each block are separated 

individually with a slitting saw, so they can be imaged thoroughly for surface integrity and 

surface porosity.  A solid carbide slitting saw with 2-3/4” diameter x 1/32” thickness and 72 

teeth was used to cut the specimens. 
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3.6  Analysis and Discussion of Results  
 

  
                   A               B 

Figure 3-8:  Comparison Images for Surface Integrity. A: Chipping along edges for Run 
#4; B: No Chipping Along Edges, Run #9. 

 
 

 

Figure 3-9: SEM Imaging Locations for Each Specimen. 
 

 The data summary for all 9 experiments was computed in a similar fashion and the results 

were tabulated for each response in terms of surface integrity and surface porosity.    Once the 

data was collected, it was analyzed to estimate the effect of each control factor at the level of 

interest by constructing an analysis of variance (ANOVA) table.  Main effects plots were 

constructed to justify which factor had the most influence on each response.  Interaction plots 

were also constructed to justify which level at every factor had the most influence on surface 

integrity and surface porosity.  These steps are detailed in the proceeding subsections. 
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3.6.1   Visual and Tabular Evaluation 
 

   

     A                                                          B 
Figure 3-10: Comparison Images for Surface Porosity. A: Good Surface Porosity Obtained 

in Run #1, B: Significant Loss of  Surface Porosity Obtained in Run #4. 
 

The surface integrity was evaluated along different parts of each specimen. Figure 3-8 

presents images obtained with a camera. They were taken to verify the quality of surface 

integrity and used in a subjective evaluation. The images were categorized for the following 

positions in the cut: when the tool enters the specimen; the inside pocket of the specimen; and 

when the tool exits the specimen, generating a total of 3 evaluations to obtain an overall 

summation.  Observations for the 3 positions and the overall summations are shown in Table 3-7. 

 

The images illustrate the quality of the specimen and were used to evaluate the surface 

integrity of the material after each cut.  For example, in Figure 3-8A the specimen has more 

chipping along the edges and would receive a low value of “1” in its category.  The specimen in 

Figure 3-8B has no chipping along the edges it would receive the highest grade of “5”. 

 

The SEM images help determine the percentage of surface pores per area in each run. The 

SEM images were taken at 4 different locations as shown in Figure 3-9; entry of the tool into the 

specimen (1), middle of the cut (2), tool exit (3), and the inner edge of the specimen (4). These 

locations have been labeled from B to E, in the mentioned order.    

 
 The observations for surface porosity were interpreted by computing the surface pore per 

area percentage. This was accomplished by processing the SEM images with Image-Pro Plus®, 

which determined the mean and variance of the pores along the surface of the material by 

estimating the grayness histogram for the pore sites. For the percentage of surface pores per area, 
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the higher value indicates better porosity. Figure 3-10 shows a comparison of two different 

porosity levels that were seen in the experiment. Figure 3-10A has high surface porosity 

percentage (36.5 %) whereas Figure 3-10B has significant loss of surface porosity, computed as 

a percentage of 0.9 %. Sample images for Run #1 are shown in Figure 3-11. Images obtained for 

the other runs are presented in Appendix A. 

 
Table 3-7: Summary of Experimental Conditions and Surface Integrity and Surface 

Porosity Response Levels. 
 
Exp. 
No. 

 
         
        
Material  

 
DOC 
 
(mm) 

 
Cutting  
Speed 
(m/min) 

 
Chip 
Load 
(mm/tooth) 

Surface 
Integrity        
at Entry  
Of Cut 

Surface   
Integrity            
at Exit  
of Cut 

Surface 
Integrity        
on Inner 
Edge of  
Cut 

 
Overall    
Surface 
Integrity  

Surface 
Porosity/ 
Surface 
Pore  
Area  
(% Area) 

1 Porous 
CPP  

1 10 0.05 4 3 4 11 36.5 

2 Porous 
CPP  

2 20 0.1 3 1 4 8 29.4 

3 Porous 
CPP  

3 30 0.15 3 1 4 8 30.2 

4 CPP + Non-
Bonding 
Polymer 

1 20 0.15 2 1 1 4 6.1 

5 CPP + Non-
Bonding 
Polymer 

2 30 0.05 1 1 3 5 0.9 

6 CPP + Non-
Bonding 
Polymer 

3 10 0.1 4 1 2 7 6.9 

7 CPP + 
Bonding 
Polymer 

1 30 0.1 4 5 3 11 18.4 

8 CPP + 
Bonding 
Polymer 

2 10 0.15 4 2 4 10 21.2 

9 CPP + 
Bonding 
Polymer 

3 20 0.05 5 5 5 15 23.5 
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A 

   
B                                                          C                                                          

   
D                                                         E                                                        

     
F                                                          G                                                   

Figure 3-11:  Run 1 CPP Non-Infiltrated, Depth of Cut: 1mm, Chip Load: 0.05mm/tooth, 
Cut Speed: 10m/min (From top left to bottom right.  Image A: the Specimen, Image B: 
Entrance of the cutpass, Image C: Middle of the cutpass, Image D: Exit of the cutpass, 

Image E: Inner edge of the cutpass, Image F&G: Higher magnification of Image C. 
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3.6.2   Statistical Analysis and Observations 
 

   
                                     A                                                                B 

   
C                                                                 D 

Figure 3-12:   A: Run 4 - CPP Infiltrated with the Non-Bonding Polymer, Depth of Cut: 
1mm, Chip Load: 0.15mm/tooth, Cutting Speed: 20m/min; B: Run 5 - CPP Infiltrated with 
a Non-Bonding Polymer, Depth of Cut: 2 mm, Chip Load: 0.05mm/tooth, Cutting Speed: 

30m/min; C: SEM image of the middle pass; D: 300X Magnification of Image C. 
 

The responses obtained in all 9 runs are tabulated in Table 3-7. Some of the observations 

from the experiment are noted in the following: 

 

1.  Surface integrity of the non-infiltrated CPP had quite a bit of chipping along the edges 

of the specimen. This was expected, because the envolope of the experiments started at the upper 

limits of machinability for unempregnated CPP. Especially where the tool exits the specimen, the 

edge has high amount of chipping and breakage, as seen in Figure 3-11. 

 
2.  Surface porosity is excellent throughout the surface for Run #1 with plain CPP. The 

higher magnifications (300X and 1000X in Figure 3-11) show that the cavity openings are very 

large and low smearing occurs on each particle.  The obtained surface porosity is acceptable and 

of practical use for surgical purposes. 
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A                                                                   B 

   
C                                                                     D  

Figure 3-13: A: Run 9 - CPP Infiltrated with a Bonding Polymer, Depth of Cut: 3mm, Chip 
Load: 0.05mm/tooth, Cutting Speed: 20m/min, B: Run 7 - CPP Infiltrated with a Bonding 
Polymer, Depth of Cut: 1mm, Chip Load: 0.1mm/tooth, Cutting Speed: 30m/min, C: SEM 

Image of the Middle Pass, D: 1000X Magnification of Image C. 
 
 

3.  Considering Figure 3-12, the surface integrity and porosity of CPP infiltrated with a 

non-bonding polymer is very poor. The edges are unacceptable and the material demonstrates 

extreme loss of surface porosity. It is speculated that the high cutting speed may have contributed 

to the melting of CPP particles and the polymer, thus generating a smooth and closed surface 

during cooling. Hence, this material is not suitable for machining CPP implants due to its 

extreme loss of surface porosity and high chipping, making the implant unusable for its clinical 

application. 

 
4.  The surface integrity of CPP infiltrated with the bonding polymer is much better, 

when compared to the results obtained with the other 2 materials, as seen in Figure 3-13.  The 

0.05mm/tooth and 0.1mm/tooth chip loads are the conditions where the least amount of chipping 

occurs. The 0.05mm/tooth chip load showed excellent results in terms of machinability.  The 

edges were nearly flawless with no sign of chipping.  While some areas of the surface had loss of 
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porosity. However, the research collaborators in the Biomaterials Laboratory at the University of 

Toronto have indicated that the amount of surface porosity retained was still sufficient to grow 

cartilage cells on the implant. 

 

 The results for surface integrity and surface porosity were gathered to create a statistical 

analysis, in the form of an Analysis of Variance table (ANOVA) [3]. These tables, shown in 

Table 3-8 and Table 3-9, determine the outcome variances caused by each factor.  The ANOVA 

was developed by calculating the response for each factor at each separate level.  Then, the sum 

of squares was calculated to determine the mean of squares.  The mean square per standard error 

for every factor would determine whether that factor would be within the confidence interval of 

the mean.  If the case is such that the influence of a factor is past a critical point, then that factor 

would be considered as the cause for the variation of that response. Upon this, “main effects 

plots” are developed to validate the influence of the factors in each response.  Figure 3-14 

illustrates the main effect plots for surface integrity and Figure 3-16 illustrates the main effect 

plots for surface porosity. Also, “interaction plots” are developed to justify the most optimal 

level for each factor of significance to the response. 

 
 

Table 3-8:  ANOVA Table for Surface Integrity with 95% Confidence Interval, 

f-cr.(α=0.05) = 6.94. 

Factor Level 1 
Level 
2 Level 3 

Degrees 
of 
Freedom 

Sum of 
Squares 

Mean 
of 
Squares F obs. 

A-Material 9.00 5.33 12.00      2 66.89 33.44 12.04 

B-DOC 8.67 7.67 10.00      2 8.22 4.11  1.48 

C-Cut Speed 9.33 9.00 8.00      2 2.89 1.44  0.52 

D-Chip Load 10.33 8.67 7.33      2 13.56 6.78 2.44 

Error            0 0 0   

Total            8 91.56     

(Error)-
pooled 
estimates            4 11.11 2.78   

 
 

According to the analysis of variance table, the most significant factor affecting the 

surface integrity is material.  Also, by looking at the main effect plots, it can be seen that the chip 
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load has a moderate effect on surface integrity.  Cutting speed and depth of cut seem to have 

much smaller, almost negligible, effects on this outcome.   

  

  
 

  
 

Figure 3-14: Main Effect Plots for Surface Integrity. 
 

The interaction plots verify that setting the conditions of the material factor to CPP with a 

bonding polymer will provide the optimal cutting performance for surface integrity in the model. 

Hence, infiltrating the CPP with polymers that achieve ionic bonding with the scaffold provides 

a simple and efficient method to improve the machinability of the material. Infiltrating with a 

polymer that realizes only van der Vals bonds with CPP, on the other hand, leads to a poor 

surface integrity and does not help to achieve more productive cutting conditions.   

 

The interaction plots for material show synergistic behavior, implying that CPP with a  

bonding polymer seems to be the best choice.  The interaction plots for chip load, however, show 

antisynergistic interaction, meaning that an optimum level for this parameter is not really 

applicable for surface integrity. 
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Figure 3-15:  Interaction Plots for Surface Integrity. 
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Table 3-9: ANOVA table for surface porosity with a 95% Confidence Interval 

f-cr (α=0.05) = 6.94. 

 
Factor Level 1 Level 2 

Level  
3 

Degrees of 
Freedom 

Sum of 
Squares 

Mean of 
Squares Fobs. 

A-Material 32.03 4.63 21.03         2 1140.72 570.36 88.86 

B-DOC 20.33 17.17 20.20         2 19.25 9.62 1.5 

C-Cut Speed 21.53 19.67 16.50         2 38.85 19.42 3.03 

D-Chip Load 20.30 18.23 19.17         2 6.43 3.21 0.5 

Error            0 0 0  

Total            8 1205.24   

Standard Error            4 25.67 6.42  

 
 

   
  

   
 

Figure 3-16: Main Effect Plots for Surface Porosity. 
 
 

According to the analysis of variance in Table 3-9, and the main effects plot in Figure 3-

16, the most significant factor affecting surface porosity is material as well.  
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Figure 3-17:  Interaction Plots for Surface Porosity. 
 
 

The non-infiltrated CPP retains the highest surface porosity after machining, compared to 

the other two materials.  This is consistent with the visual and SEM observations noted from 

each run. Setting the cutting speed to 10m/min seems to develop the highest level of surface 

porosity. The interaction plots of material and every other factor for surface porosity have 

synergistic interaction, meaning that the optimum levels identified by the model are applicable 

and that the material choice has a  strong effect on the outcome of surface porosity. 

 

The CPP infiltrated with a bonding polymer also shows sufficient surface porosity. It is 

possible that the surface porosity is reduced  due to the polymer melting and re-solidifying 

between the CPP particles, thus leaving a few sections of smeared surfaces. Since prior to cell 

seeding, the polymers are to be burned-off in heat treatment of the implant, the surface porosity 

can likely be recovered.  Furthermore, while surface porosity may be lost to a certain depth 
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during a rough machinig operation, this layer can later be trimmed off during finish or semi-

finish machining. 

 

Overall, the surface integrity response indicates that CPP infiltrated  with an ionic bonding 

polymer seems  to be the best choice of material for shaping the implant at high productivity 

rates. 

  

3.7    Conclusions 
 

This chapter has investigated the design-of-experiment for identifying the most critical 

factors that influence the surface integrity and porosity in machining CPP. By applying 

Taguchi’s orthogonal array method, followed by visual and SEM imaging and statistical 

analysis, it was determined that CPP infiltrated with an ionic bonding polymer produces the best 

material for generating high quality machines surfaces and features. While there is some loss in 

surface porosity, in comparison to cutting uninfiltrated CPP, the porosity loss was deemed 

acceptable for the clinical purpose of the implant, and in many cases, would be trimmed off 

during a consecutive finish machining operation. 

 

Having determined the most suitable material configuration, the next chapter will refine in 

further detail the remaining cutting parameters for machining CPP. 
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CHAPTER 4 

Further Refinement and Modeling of Machining 
Conditions and Experimental Validation in 
Rough Machining of a Tibial Plateau Implant 

 
 
 
 
 
 

4.1   Introduction 
   

The earlier chapter had indicated that using CPP which is infiltrated with an ionic bonding 

polymer as the workpiece material can significantly improve the productivity and surface quality 

achieved during the roughing operation. This chapter aims to: 

• Further refine the machining conditions (Section 4.2.1); 

• Construct and verify a mechanistic cutting force model for this material (Section 4.2.2); 

• Analyze the stresses and deflection on the implant using Finite Element technique 

(Section 4.3) 

• Validate the optimized cutting conditions and achieved productivity gain by 

experimentally completing the rough machining cycle for the tibial plateau implant 

(Section 4.4). 

The conclusions for the chapter are presented in Section 4.5. 
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4.2  Refinement of Cutting Conditions 
 

In Chapter 3, it was determined that impregnating CPP with an ionic bonding polymer can 

significantly improve the machinability of this material and help obtain excellent surface 

integrity, as well as acceptable surface porosity. The bonding polymer essentially helps increase 

the ductility of the composite implant, thereby allowing it to withstand higher cutting forces and 

impacts during machining.  Having chosen the machining material, the objective in this section is 

to further refine the remaining conditions to maximize the material removal rate. 

 
The parameters that affect the material removal rate during rough milling are: 

1) Cutting speed, 

2) Engagement condition (i.e., exit angle) of the tool, 

3) Chip load, and 

4) Depth of cut.  

 

Since surface integrity and high material removal rate are greater concerns than surface 

porosity in roughing, the cutting speed that will be considered in the proceeding studies is the 

maximum value (30 m/min) that was used in the earlier experiments in Chapter 3. This speed 

had still produced implants with acceptable surface porosity. This leaves three other factors to be 

investigated, which will be realized by considering two levels for each factor, thereby leading to 

an L₄ design-of-experiment. 

4.2.1 L₄  Experiment Design and Execution   
 

Table 3-2 shows an L₄ array which consists of three factors, with two levels designated to 

each factor [3].  Here, these factors would correspond to exit angle, chip load, and depth of cut. 

The following levels are considered for each factor: 

 

1. Tool engagement condition (exit angle) 

Tool engagement affects the material removal rate, and also the shape of the force profile 

during and material removal process. While exφ =120° generates a larger uncut chip area and 
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better material removal rate, a second level of exφ =90° was also chosen to see whether surface 

quality would be influenced by a reduction in the exit angle.  

 
2. Chip load 

Chip load is essential for increasing the material removal rate. Given the surface integrity 

results obtained in Section 3.5, chip loads of 0.05 and 0.10 mm/tooth seem to generate cuts with 

excellent surface integrity.  Hence, these values have been chosen for the two levels that will be 

studied further. 

 
3. Depth of cut 

Increasing the depth of cut also increases the material removal rate. The results obtained in 

Section 3.5 show that depth of cuts of 2 mm and 3 mm generate excellent surface integrity.  

Therefore, these values have been chosen for this study. 

 

The tool (2 flute, 4mm solid carbide end mill) that was used in the experiments in Chapter 

3 will continue to be used in the proceeding L₄ experiments. The three factors and two levels that 

are investigated for each factor are summarized Table 4-1. 

 

To obtain a robust model, these L₄ experiments will be repeated 3 times for each case. 

 
Table 4-1: Orthogonal Array with Control Factors and Milling Conditions. 

Experiment 
No. 

Depth of 
Cut (mm) 

Exit Angle 
(°)  

Chip Load  
(mm/tooth) 

         1           2         90       0.05  

         2           2       120       0.1  

         3           3         90       0.1  
         4           3       120       0.05  

 
 

4.2.2   Cutting Force Model   
 

A cutting force model was developed to determine the loads for each run during the next 

set of experiments. This model determines whether the measurements obtained can also be 

predicted with cutting mechanics-based simulations.  
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The force measurements were obtained using MALDAQ software, which is part of the 

CutPro 7.0 machining process simulation and analysis package. A National Instruments data 

acquisition card was used to record the force measurements obtained using a Kistler table top 

dynamometer. In collecting raw data, a sampling frequency of 10 kHz was used without any 

filtering. The measurements were later processed in Matlab with a 2nd order Butterworth low-

pass filter at a cut-off frequency of 250 Hz. CutPro 7.0 was also used to simulate the expected 

cutting forces using the technique described in [1]. 

 

 
Figure 4-1: Average Forces and Linear Regression for Results on Cutting Tests L₄. 

 
Table 4-2: Identified Cutting Force Coefficients for Impregnating CPP With a Bonding 

Polymer. 
Ktc 
(N/mm²) 

 Krc 
(N/mm²) 

 Kte 
(N/mm) 

Kre 
(N/mm) 

Correlation 
Coefficients 

 
186.99 

 
84.51 

 
11.32 

 
9.53 

R²y = 0.632   
R²x = 0.637 

  

The measured average cutting forces and identified cutting force coefficients are shown in 

Figure 4-1 and Table 4-2. In identifying the cutting force coefficients, the linear fits were applied 

by considering all 12 experiments (4 tests repeated three times each). The spread of data and 
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relatively low correlation coefficients are attributed to the non -homogeneous nature of the 

material [16].   

 

The cutting forces were simulated in both x (feed) and y (normal) directions. The 

simulations overlaid on top of the experimental data show a close match, indicating reasonably 

successful identification of the cutting force coefficients and milling behavior of CPP under the 

tested conditions. It is inevitable that vibrations from the machine tool, surroundings, and the 

process will also influence the cutting operation, which is the main reason the low-pass filter was 

used in evaluating the data. 

Figures 4-2 to 4-5 show the results for the first run of the Experiments 1 to 4 in Table 4-1.  

The results for the consecutive repetitions are presented in Appendix B. 

 
 

 
Figure 4-2: Run 1 simulated and experimental data, 1st execution for 4mm, 2-flute flat 

endmill at 30m/min cut speed, 0.05mm/tooth chip load, and 2mm DOC, half immersion. 
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Figure 4-3: Run 2 simulated and experimental data, 1st execution for 4mm, 2-flute flat 

endmill at 30m/min cut speed, 0.1mm/tooth chip load, and 2mm DOC, 3 Quarter 
immersion. 

 

 
Figure 4-4: Run3 simulated and experimental data, 1st execution for 4mm, 2-flute flat 
endmill at 30m/min cut speed, 0.1mm/tooth chip load, and 3mm DOC, half immersion. 
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Figure 4-5: Run 4 simulated and experimental data, 1st execution for 4mm, 2-flute flat 

endmill at 30m/min cut speed, 0.05mm/tooth chip load, and 3mm DOC, 3 Quarter 
immersion. 

 
4.2.3   Visual and Tabular Evaluation of Results  

 
Surface integrity was evaluated along different parts of each specimen.  Images were taken 

to verify the quality of surface integrity and used in subjective evaluation following the same 

scaling used in Section 3.6. The cuts in every experiment, conducted three times each, showed 

no sign of chipping at the edges of the specimen. Hence, all experimental outcomes were 

evaluated with the highest score of 5, as shown in Table 4-3. The images obtained for each run in 

the second and third run are presented in Appendix C. Sample images for the first execution are 

shown in Figure 4-6. 

Table 4-3: Observation Chart for First Execution of the L₄ Experiment. 

 
Exp. 
No. 

 
DOC 
(mm) 

 
Exit 

Angle 
(°) 

 
Chip Load 
(mm/tooth) 

Observation - Surface Integrity 
1st 

Repetition 
2nd 

Repetition 
3rd 

Repetition 

1 2 90 0.05         5          5         5 
2 2 120 0.1         5          5         5 
3 3 90 0.1         5          5         5 
4 3 120 0.05         5          5         5 

 



47 
 

  
A                                                   B 

  
C                                                   D 

Figure 4-6: Surface Integrity Result for the First Execution of the L₄ Experiment. 
 
 

  
 

Figure 4-7: Scanning Electron Microscope Images at 2 Different 
Magnifications of a Specimen from the L₄ Experiment. 

 

In evaluating the results of the L₄ experiment, a statistical analysis was not deemed 

necessary for identifying the optimal machining conditions, as the choice of highest chip load, 

largest depth of cut, and largest exit angle still produced excellent surface integrity while 

maximizing the material removal rate. 
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While surface porosity is not an issue during the roughing process, it is still a concern how 

deep into the surface the CPP particles smear during cutting at high speeds nearing 30 m/min.  In 

Appendix A, SEM images taken from runs 7 to 9 illustrate that smearing does indeed occur and 

is something to watch out for when planning the roughing operation. It should be possible to 

remove such a smeared layer in a consecutive finishing or semi-finishing operation without 

having to take additional passes. 

 

To validate that the smearing produced during the L4 experiments were kept within 

acceptable limits, a cross-section of a specimen from Experiment #2 was used for SEM imaging. 

The result is shown in Figure 4-7, which illustrates that the smeared particles go into the 

specimen only as deep as 50 µm.  During the semi-finishing and finishing of the implant, the 

maximum depth of cut is approximately 1.3 mm, thus removing more than enough material to 

obtain sufficient surface porosity. The cutting speeds in the semi-finishing and finishing 

processes are adjusted to be lower, in order to obtain good surface porosity. 

 

4.3   Validation of Cutting Conditions in Finite Element    
Analysis 

 
It is important to validate that the internal stresses caused by machining forces acting on the 

implant do not cause the implant to break or chip at a location other than tool contact interface. 

Therefore, a Finite Element model of the implant was developed in Autodesk, Multiphysics 

Simulation 2012, and stress analysis was carried out as explained in the proceeding section. 

 

1. Material Properties and FE Mesh 

The implant to be machined is composed of 70% density CPP with 75-150 µm particle 

size, which has been infiltrated with an ionic bonding polymer. Since the polymer impregnation 

for CPP is a relatively new topic of study, at the time of writing of this thesis, there was no exact 

data available on the properties of this composite being investigated in the machining studies. 

While there has been published work on a similar polymer infiltration for CPP [21], it was noted 

by our collaborator (Prof. R.M. Pilliar) that the properties of the current material under 
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investigation are likely to be different from those reported in [21]. Therefore, as a conservative 

assumption, the known material properties for pure and un-infiltrated CPP with 70% density CPP 

with 75-150 µm particle size were considered in the FE studies, which are shown in Table 4-4. 

 
Figure 4-8:  Finite Element Mesh used for Stress Analysis. 

 
 

Table 4-4: Material property data for Finite Element Analysis 

Material Young’s Modulus Mass Density Poisons ratio  

Porous 
CPP 

72 GPa 0.0026 kg/mm³ 0.3 

 

The FE model was setup with 4,857 solid mesh elements, where the size of each element 

was approximately 1.10 mm. The FE mesh is shown in Figure 4-8. 

 

2. Boundary and Loading Conditions 

During the actual machining operation, the implant is glued to an aluminum beam for 

fixturing. To simulate this, the nodes at the bottom portion of the implant were constrained from 

any motion in the translational x-y-z directions. 

 

Considering the cutting force profiles shown in Figure 4-9, which correspond to 0.1 

mm/tooth chip load, 3 mm depth of cut, ¾ immersion, and 30 m/min cutting speed, it can be seen 
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that the maximum magnitudes of cutting force in the feed and normal directions are 

approximately 90 N and 40 N, respectively. Hence, a maximum resultant cutting force of around 

98.5 N (~100 N) is expected with a 42° angle into the machined wall surface. In a 2-fluted cutter, 

only one cutting edge will be in contact with the work material at a time. Hence, the resultant 

force was applied by distributing it along the contacting edge of the helical cutter, shown in 

Figure 3-3. The force loading onto the implant is shown in Figure 4-10. 

 

The cutting load was applied at different points on the top surface of the implant, where the 

part is the weakest and chips the easiest. The results were evaluated for each case. As the tool 

cuts in the vicinity of a smaller protrusion (like the topmost layer for the roughing part), the 

stress concentration at this protrusion will increase. This can cause the implant to chip and 

develop form errors, which can also lead to the loss of dimensional accuracy which may not be 

correctible in consecutive finishing passes.  

 

 
Figure 4-9.  Determination of Maximum Forces in the Feed and Normal Directions. 
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Figure 4-10.  Loading Conditions as a Distributed Line Force Acting on the Implant along 
the Contacting Edge of the Helical Endmill [1]. 

 

 

 

 

3. Analysis Method and Results 

In carrying out the analyses, Von Mises criterion was used for maximum stress. This is 

because CPP is known to fracture in a brittle manner rather than show any plastic deformation. 

To gauge whether the part geometry would be adversely affected by elastic deformations of the 

implant, the maximum displacement was also evaluated. A sample result from the analyses is 

shown in Figure 4-11. As can be seen, the highest stress level occurs at the tool contact edge, 

which is predicted to be around 347 MPa. By applying basic orthogonal cutting mechanics to the 

cutting coefficients identified in Section 4.2 [1], the friction angle ( aβ ), shearing angle (cφ ) and 

shear strength (sτ ) were roughly estimated to be aβ =29.3°, cφ =32.9°, sτ =60.3 MPa [1]. As the 

predicted peak stress is clearly above the shearing limit, this indicates that main fracture 

mechanism is the chip removal process due to machining. 

 

There is a notable stress gradient in the outer vicinity of the tool contact edge, which is 

estimated to be 34-70 MPa. While the machining experiments with uninfiltrated CPP had 

displayed chipping under the corresponding machining conditions, it was experimentally 

observed that the ionic bonding polymer infiltrated CPP was able to withstand these stresses 
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without surface breakage. This is attributed to the pure 70% dense CPP possessing a compressive 

strength of 38 MPa [8], which is lower than the predicted stress loading. On the other hand, the 

maximum strength measured through 3-point bending tests for CPP infiltrated with an ionic 

bonding polymer similar to the one used in this thesis was reported as 87.4 ± 5.1 MPa [21]. 

Hence, it is believed that the infiltrated CPP samples tested in the cutting experiments also 

possessed a comparable, or possibly higher, maximum strength. 

 

Elsewhere in the implant, no other stress concentrations are seen which indicate that the 

implant would not break due to moment overload (i.e. bending) or shearing during the roughing 

operation. 

 

In addition, the maximum deflection, shown in Figure 4-12, is predicted to be around only 

2 microns. This indicates that the elastic deflection is not a major issue that can cause tolerance 

violations during rough machining, since another 1.3 mm of material would typically be 

removed by a proceeding semi- and final-finishing operation. Key results of the FE studies, 

obtained for the worst-case point have been summarized in Table 4-5. 

 

 
A 
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B 

Figure 4-11. Maximum Von Mises Stress; A: Whole Implant, B: Close-Up View. 
 

 
Figure 4-12.  Displacement Magnitude. 

 
 

Table 4-5.  Stress and Displacement of the Implant. 

Max. Von-Mises 
Stress  (MPa) 

Max. Von-Mises 
Strain   

Max. Magnitude 
Displacement  

(mm) 
347.83 0.009 0.002 

 
 



54 
 

4.4  Machining Experiments for the Implant 
 

In this section, the optimized machining conditions determined in Section 4.2 are verified 

by completing the roughing cycle for the implant for two different chip loads; 0.10 mm/tooth and 

0.05 mm/tooth. 

  

4.4.1 Rough Machining of the Implant     
 

The tool that was used in the roughing experiments has the same diameter and flute 

configuration as one used in Section 4.2. However, the roughing tool here has 20 mm neck 

length, as shown in Figure 4-13, for better access to the implant. The previous tool had a neck 

length of 12 mm. There will be two implants machined to determine whether the 0.05 mm/tooth 

or 0.10 mm/tooth chip load provides better surface integrity. The cutting speed of 30 m/min, tool 

engagement of 120°, and depth of cut of 3 mm will remain the same during the rough machining 

of the two implants. 

 

 
Figure 4-13. Mitsubishi tool selected for Roughing Stage of Tibia Plateau Implant. 
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Figure 4-14. Master CAM verified images of the roughing stage of Tibia Plateau Implant. 

 
 

  
Figure 4-15. Machined Tibia Plateau Implant at 0.05mm/tooth Chip Load. 

 

   
Figure 4-16. Machined Tibia Plateau Implant at 0.1 mm/tooth Chip Load. 
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Once the toolpath is programmed in MasterCAM X3 (.MCX) and the parameters are 

placed in their category, the NC (Numerical Code) file is generated which is fed to the CNC 

controller. 

 

Figure 4-14 presents a simulation of roughing operation in MasterCAM X3.  The 

simulation shows what the implant should look like after roughing. Figures 4-15 and 4-16 show 

the roughed implants produced with 0.05 mm/tooth and 0.10 mm/tooth chip loads, respectively. 

 

The top of each implant, where chipping is most likely to occur, has been circled with red 

color in each figure. Both roughed parts seem to have excellent surface integrity. However, 

slightly better quality was observed in the implant machined with the higher chip load, which is 

difficult to explain for the time being and could just be a random effect that needs further 

investigation. Overall, by applying the optimized machining conditions including 0.10 mm/tooth 

chip load, a material removal rate of 4,302 mm3/min was achieved. This is noted to be over 14 

times higher than the material removal rate of 300 mm3/min, which was achieved for rough 

machining CPP in the earlier work preceding this thesis [16][8]. 

 
4.4.2   Machining Cycle Time Comparison in the Roughing Stage 

 
Shorter machining cycle time indicates better productivity. Using the machining parameters 

in the earlier work [8] causes the roughing process to take approximately 159 minutes.  This can 

be very adverse when the time cost per implant is considered. Table 4-6 presents the machining 

parameters and cycle times achieved in the earlier work for machining the CPP implant, and the 

results obtained in this thesis. The cycle times were computed using MasterCAM simulations.  

 

As can be seen, by implementing the machining conditions optimized in this thesis, the 

cycle times have been decreased by approximately by eight times. Originally it took 108 minutes 

to complete the first roughing operation (Surface Rough Pocketing) and 51 minutes to complete 

the second (Surface Finish Contouring). Machining the ionic bonding polymer infiltrated CPP 

with the new parameters took only a total of 19 minutes to complete. This has removed 140 

minutes of machining time, as shown with the bar graph in Figure 4-17. 
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Table 4-6: Earlier Reported and Currently Achieved Process Cycle Times. 

 Earlier Work [8]    Currently Achieved  

Material Porous CPP  CPP+ Bonding Polymer 

Cutting Tool 4 Flute, 3/16” Flat End Mill  2 Flute, 4mm Flat End Mill 

Toolpath #1 Surface Rough Pocket Surface Rough Pocket 

Machining 
Parameters 

DOC  2 mm,   
Exit Angle  90°, 

Cut Speed   22.4 m/min,  
Chip Load   0.0125 mm/tooth 

DOC  3 mm,   
Exit Angle  120°, 

Cutting Speed  30 m/min,  
Chip Load   0.1 mm/tooth 

Cycle Time 108 min. 11 min. 
Toolpath #2 Surface Finish Contour 

  
Surface Finish Contour 

Machining 
Parameters 

DOC 0.5 mm,  
Cutting Speed  22.4 m/min,  

Chip Load   0.0125 mm/tooth 

DOC  0.5 mm,  
Cutting Speed  30 m/min,  
Chip Load   0.1 mm/tooth 

Cycle Time 51 min. 8 min. 
Total Cycle 

Time 
159 min. 19 min. 
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Figure 4-17. Bar Graph Comparing Earlier and Currently Achieved Roughing Cycle 

Times. 
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4.5 Conclusions 
 

In the beginning of this chapter, experiments were developed to refine the machining 

conditions to optimize the roughing process for surface integrity. It was determined that a certain 

depth of porosity loss, typically less than 1.3 mm, could be tolerated due to the use of latter 

finishing operations which would ultimately trim away the smudged later. With these kept in 

mind, for CPP infiltrated with the ionic bonding polymer, the following conditions were 

determined to be highly suitable for achieving both high productivity as well as excellent surface 

integrity: 

• 2 fluted 4 mm diameter flat end mill 

• 30 m/min cutting speed 

• ¾ immersion up-milling with 0.1 mm chip load and 3 mm depth of cut 

These conditions produced a material removal rate of 4,302 mm3/min, which was 14 times 

higher than the material removal rate achieved for machining pure CPP in earlier studies. 

 

The cutting force coefficients for polymer infiltrated CPP were identified for the first time 

in machining literature, which have been summarized in Table 4.2. The constructed machining 

model was highly successful in predicting the cutting forces, and therefore can be used in process 

planning and optimization in the production of tissue engineered implant constructs out of CPP. 

 

The Finite Element analyses predicted that the implant would not chip or break during the 

roughing operation, as validated experimentally. Also, the stress levels around the vicinity of the 

tool contact were in agreement with the experimental trends observed for un-infiltrated and 

infiltrated CPP samples. 

 

Finally, the optimized machining conditions have been validated in rough machining of a 

tibial plateau implant, where the roughing cycle time was reduced from 159 min to 19 min, 

effectively achieving a productivity improvement of 8 times over the earlier work done in this 

area. 
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CHAPTER  5 

Conclusion 
 
 
 
 
 
 
 
 
 
 

This thesis has investigated the improvement of machining productivity for CPP implants. 

Since the majority of the time in machining is dedicated to the roughing operation, this task was 

chosen as the target for achieving the maximum cycle time reduction. Using Taguchi’s method, 

the minimum number of experiments were designed that allowed the major factors that influence 

the CPP machining operation to be investigated. These factors were: material composition, 

cutting speed, chip load, depth of cut, and tool engagement. It was determined that up-milling 

CPP stock that is infiltrated with an ionic-bonding polymer, using a 2-fluted 4 mm diameter end 

mill at 30 m/min cutting speed, under ¾ immersion, 0.1 mm chip load, and 3 mm depth of cut 

provide a material removal rate of 4,302 mm3/min, which is 14 times higher than the roughing 

productivity which was achieved in the earlier study. Under these conditions, as excellent surface 

and feature integrity could be consistently obtained. Although there was some loss of porosity 

compared to machining pure CPP, this was deemed acceptable for the implant’s clinical function 

by the biomedical researchers at the University of Toronto. Furthermore, the depth of the 

smudged layer was only around 50 microns, and would typically be removed during consecutive 

semi- or final-finishing operations. 

 
A cutting force model for this material was constructed, by identifying the cutting force 

coefficients for the first time and validating the experimentally measured force profiles with 

simulations. This model can be used for process planning and optimization in the production of 

tissue engineered implants. 
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Finite Element analyses were conducted, which predicted that the implant would not chip 

or break during the roughing operation due to fixturing and cutting force overload, as was 

verified experimentally. The stress levels around the vicinity of the tool contact area also 

explained why pure CPP broke off or chipped more easily, while the stock of CPP infiltrated 

with the ionic bonding polymer did not. 

 

Finally, the results of these studies were incorporated into planning the machining 

operation of a tibial plateau implant. This allowed the roughing cycle time to be reduced from 

159 min to 19 min, effectively achieving a productivity improvement of 8 times over the earlier 

work done in this area. 
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Appendix A 
 

 
 

    
a                                                        b 

     
c                                                          d 

     
e                                                         f 

Figure A-1:  Run 2 CPP Non-Infiltrated, Depth of Cut: 2mm, Chip Load: 0.1mm/tooth, Cut Speed: 20m/min. (From top 
left to bottom right.  a. Entrance of the cutpass, b. middle of the cutpass, c. exit of the cutpass, d.  inner edge of the 

cutpass, e & f. higher magnification of middle cutpass) 
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Figure A-2: Run 3 CPP Non-Infiltrated, Depth of Cut: 3mm, Chip Load: 0.15mm/tooth, Cut Speed: 30m/min. (From top 

left to bottom right.  a. Entrance of the cutpass, b. middle of the cutpass, c. exit of the cutpass, d. inner edge of the 
cutpass, e & f. higher magnification of middle cutpass) 
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Figure A-3: Run 4 CPP Infiltrated Non-Bond, Depth of Cut: 1mm, Chip Load: 0.15mm/tooth, CutSpeed: 20m/min. 

(From top left to bottom right.  a. Entrance of the cutpass, b. middle of the cutpass, c. exit of the cutpass, d. inner edge of 
the cutpass, e & f. higher magnification of middle cutpass) 
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Figure A-4: Run 5 CPP Infiltrated Non-Bond, Depth of Cut: 2mm, Chip Load: 0.05mm/tooth, CutSpeed: 30m/min. 

(From top left to bottom right.  a. Entrance of the cutpass, b. middle of the cutpass, c. exit of the cutpass, d. inner edge of 
the cutpass, e & f. higher magnification of middle cutpass) 
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Figure A-5: Run 6 CPP Infiltrated Non-Bond, Depth of Cut: 3mm, Chip Load: 0.1mm/tooth, Cut Speed: 10m/min. 

(From top left to bottom right.  a. Entrance of the cutpass, b. middle of the cutpass, c. exit of the cutpass, d. inner edge of 
the cutpass, e & f. higher magnification of middle cutpass) 
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Figure A-6: Run 7 CPP Infiltrated Bond, Depth of Cut: 1mm, Chip Load: 0.1mm/tooth, Cut Speed: 30m/min. (From top 

left to bottom right.  a. Entrance of the cutpass, b. middle of the cutpass, c. exit of the cutpass, d. inner edge of the 
cutpass, e & f. higher magnification of middle cutpass) 
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Figure A-7: Run 8 CPP Infiltrated Bond, Depth of Cut: 2mm, Chip Load: 0.15mm/tooth, Cut Speed: 10m/min. (From top 

left to bottom right.  a. Entrance of the cutpass, b. middle of the cutpass, c. exit of the cutpass, d. inner edge of the 
cutpass, e & f. higher magnification of middle cutpass) 
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Figure A-8: Run 9 CPP Infiltrated Bond, Depth of Cut: 3mm, Chip Load: 0.05mm/tooth, Cut Speed: 20m/min. (From top 

left to bottom right.  a. Entrance of the cutpass, b. middle of the cutpass, c. exit of the cutpass, d. inner edge of the 
cutpass, e & f. higher magnification of middle cutpass) 
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Appendix B 
 

Repetition #2 

 
Figure B-1: Run 1 Simulated and Experimental Data, 2nd Repetition, for 4mm, 2-flute flat endmill at 30m/min Cut 
Speed, 0.05mm/tooth Chip Load, and 2mm DOC, Half Immersion. From top to bottom, plots refer to x and y axes 

respectively  

 
Figure B-2: Run 2 Simulated and Experimental Data, 2nd Repetition, for 4mm, 2-flute flat endmill at 30m/min Cut 

Speed, 0.1mm/tooth Chip Load, and 2mm DOC, 3 Quarter Immersion. From top to bottom, plots refer to x and y axes 
respectively  
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Figure B-3: Run 3 Simulated and Experimental Data, 2nd Repetition, for 4mm, 2-flute flat endmill at 30m/min Cut 
Speed, 0.1mm/tooth Chip Load, and 3mm DOC, Half Immersion. From top to bottom, plots refer to x and y axes 

respectively  
 

 
Figure B-4: Run 4 Simulated and Experimental Data, 2nd Repetition, for 4mm, 2-flute flat endmill at 30m/min Cut 

Speed, 0.05mm/tooth Chip Load, and 3mm DOC, 3 Quarter Immersion. From top to bottom, plots refer to x and y axes 
respectively  
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Repetition #3 

 
Figure B-5: Run 1 Simulated and Experimental Data, 3rd Repetition, for 4mm, 2-flute flat endmill at 30m/min Cut Speed, 
0.05mm/tooth Chip Load, and 2mm DOC, Half Immersion. From top to bottom, plots refer to x and y axes respectively  

 

 
Figure B-6: Run 2 Simulated and Experimental Data, 3rd Repetition, for 4mm, 2-flute flat endmill at 30m/min Cut Speed, 

0.1mm/tooth Chip Load, and 2mm DOC, 3 Quarter Immersion. From top to bottom, plots refer to x and y axes 
respectively  
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Figure B-7: Run 3 Simulated and Experimental Data, 3rd Repetition, for 4mm, 2-flute flat endmill at 30m/min Cut Speed, 

0.1mm/tooth Chip Load, and 3mm DOC, Half Immersion. From top to bottom, plots refer to x and y axes respectively  
 

 
Figure B-8: Run 4 Simulated and Experimental Data, 3rd Repetition, for 4mm, 2-flute flat endmill at 30m/min Cut Speed, 

0.05mm/tooth Chip Load, and 3mm DOC, 3 Quarter Immersion. From top to bottom, plots refer to x and y axes 
respectively  
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Appendix C 
 

    
A                                                   B 

  
C                                                 D 

Figure C-1: 2nd Repetition A: Run 1, B: Run 2, C: Run 3, and D: Run 4.  
 

   
A                                                    B  

  
                                    C                                                  D 

Figure C-2: 3rd Repetition A: Run 1, B: Run 2, C: Run 3, and D: Run 4.  


