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Abstract 

We consider the problem of incrementally developing a parser for text structure. 

This rneans building the parser specification a piece at a time while simultaneously 

developing Our understanding of the te*. 

We argue that existing solutions have usability and efEciency problems for this 

application and propose an alternative approach based on the type of region algebra 

that is often used as a query language for text databases. This is an appropriate 

interface for incremental development, but has no efficient batch parsing model 

such as those that exist for grammars. In this thesis, we propose an efficient batch 

parsing model and characterize the region algebras to which it applies. 
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Chapter 1 

Introduction 

Consider the problem of recognizing structure in text that  contains markup. With- 

out loss of generality, we take text to mean human readable characters (binary 

codes can easily be converted to such a representation). By structure we mean 

the breakup of text into elements. For example, elements may be paragraphs, sec- 

tions, and chapters for text like this thesis, or head-words, etyrnologies, usages, 

and pronunciations for text from a dictionary. We use the term markup to mean 

any characters or codes interspersed with the text that tell us sornething about its 

structure while being separable from it at a conceptual level (Coombs, Renear, & 

DeRose, 1987). Figures 1.1, 1.2, and 1.3 are examples of marked up text. 

By recognition, we mean the process of parsing a text into substrings that corre- 

spond to structure elements, and associating types with those elements. Often, the 

term parsing is used specifically to apply to recognition performed using a context- 

free gramrnar. We do not limit it in this way. From this perspective, our usage of 

the term c m  be considered an expanded definition. 
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+IO00 00000000000 1 Malison 
+PR (m+23 +I l  l i s t + S l  n) , 
+PS sb. 
+LA arch.  +R and +I dia l .  
+VL Forms: 4 +B malisun(e, malysun, malesun, maliscun, malescun, 
malicun, malicoun, +R 4+14 5 +B malyson(e,malisoun(e, +R 4+14 6 
+B malysoun, +R 5+14 6 +B maleso(u)n(e, +R 6 +B rnalisone, +R 7 
+B mallison, +R 4+14 +O +B malison. 
+ET +OB a. OF, +I maleison +R: +13 L- +I maledictio+i n-em 
+SC Malediction. +EB 

Figure 1.1: Text fragment from the Oxford English Dictionary (OED) as keyed in 
from the printed version. Tags beginning with a "+" are codes in a markup system 
adapted for the OED computerization project. 

Developing parsers for complex text is a difficult problem, especially if the text 

was created outside computer control and without the intent of supporting auto- 

mated recognition. One example of the effort that can be needed to  construct a 

grammar for complex text is found in the Oxford English Dictionary computeriza- 

tion project. Kazman (1986) describes the process of building a gramrnar for over 

500 Mb of text like the excerpt shown in Figure 1.1. Overall, the process took 

about six months of work to bring to  the state described in Kazman's thesis, and 

Oxford University Press continued to refine the result for some time thereafter. 

m i l e  one source of difficulty in the project was understanding low-level details 

about the markup and structure in the text, the hardest part was constructing 

a grammar to describe those details. Grammars are an adequate specificafion 

mechanism for simple recognition tasks that do not involve much debugging. In 

tbis case, we can break the process into discrete steps: 



,so /usr/share/lib/tmac/sml 
.so /usr/share/lib/tmac/rsml 
.SH NAME 
, PP 
\*Lls\*O \- Lists and generates statistics for files 
.SH SYNOPSIS 
. PP 
. SS 
\*Lls\*O 
\*O [\*L-aAbcCdf FgilLmnopqrRstuxl\*O 1 
\*O [\*Vf ile\*O 
\&. .. 
I 
\*Vdirectory\*O 
\&. . .] 
- SE 
. PP 
The \*Lls\*O comrnand mites to standard output the contents of each 
specified directory or the name of each specified 
file, along uith any other information you ask for with flags. 
If you do not specify a file or a directory, 
\*Lls\*O displays the contents of the curent directory . 
.SH FLAGS 
. PP 
.VL 4m 
.LI "\*L-a\*Q" 
Lists al1 entries in the directory, including the entries that begin 
with a \*L.\*O (dot). Entries that begin with a . are not displayed 
unless you refer to them specifically, or you specify the \*L-a\*O 
f lag . 

Figure 1.2: Part of a file for the troff typesetting system. Tags beginning with a 
period, and most non-alphabetic characters are markup with special meaning to 
troff. 
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UWinfo -- University of Waterloo ( p l  of 2) 

[University of Waterloo -- UWinfo] 

Waterloo, Ontario, Canada NSL 3Gl -- (519) 888-4567 

About the University of Waterloo 

+ [2] Daily Bulletin * [3] General information * [4]Neus * 
[5] Weather 

+ [G]UWevents and conferences * C73How to reach ü W  * [dl Campus 
map 

+ [S]Admissions and other information for future students 

Finding information and people at UW 

+ CIO] Departments , groups , topics * ClllUWdir directory of 
people 

+ Search UWinf O using Cl21 AltaVista 

Figure 1.3: A web page rendered using lynx. Ernpty lines, indentation, whitespace, 
numbered links, horizontal lines, and punctuation are aII examples of markup. 



1. Understand the structure and markup in the data. 

2. Express that understanding in a specification. 

3. Use the specification to parse the data. 

For cornplex data, however, it is not realistic to perforrn these steps separately. In- 

stead, we need to gradually evolve our understanding of the structure and markup, 

build the specification a piece at a time, and debug errors in the specification. 

Thus, the process is an ongoing loop rather than a series of discrete steps: we form 

hypotheses about the data, write and debug specification fragments, see the results, 

and either update Our hypotheses based on these results or continue forming new 

hypotheses. We term such a process incremental specification. 

The motivation for this thesis is our prernise that existing approaches are poorly 

suited to the task of incrementally developing large parser specifications. This is a 

view that we justify further in Chapter 3, after presenting background definitions 

and concepts in Chapter 2. We continue in Chapter 3 by describing our proposed 

approach based on a region algebra. A Iimitation of such an interface is that it 

is oriented towards interpreted, st ep-by-st ep evaluation. We therefore propose an 

efficient batch parsing mode1 in Chapter 5, after giving examples of efficient models 

with similar characteristics in Chapter 4. We continue in Chapter 5 by describing 

how the requirements of the parsing mode1 restrict the design of the algebraic 

specification language. Chapter 6 gives an exarnple that illustrates the utility of 

the overall approach. Chapter 7 lists conclusions and possibilities for future work. 





Chapter 2 

Background 

2.1 Conversion 

Recognition is a sub-problern of conversion, which can be broken into the following 

parts: 

1. recognition - identiSing parts of the text that correspond to structural 

elements 

2. string transformation - inserting, deleting, moving, or replacing sub- 

strings of the text 

3. structure transformation - inserting, deleting, moving, or replacing 

structural elements 

4. schema generation - constructing a grammar or other type of schema to 

describe correct usage of structural elements 
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Existing conversion approaches can be classified into the following categories: 

1. tagging by hand or with SGML (or equivdent) editing software 

2. custom programming with a general purpose programming language 

3. manual specification using a pattern matching mode1 

4. manual specification using a one-gramma model 

5. manual specification using a two-gramma mode1 

6. automatic learning and inference approaches 

The first two approaches are unsuited to large, cornplex data, and we do not consider 

thern further. 

The manual specification approaches use a compiler-compiler paradigm: provide 

a tool that takes a specification and generates a compiler, which is then used to 

transform source code (unconverted text) into target code (converted text). 

In the pattern matching specification model, the inputs are a text consisting of 

one long string, a set of patterns in some pattern language, and an action associated 

with each pattern. Examples of pattern rnatching systems are SNOBOL (Gimpel, 

1973), lex (Lesk & Schmidt, 1984), sed (Dougherty, 1991), awk (Aho, Kernighan, 

& Weinberger, 1978), perll (Wall, Schwartz, Christiansen, & Potter, 1996), DSSSL 

(ISO, 1996), XSLT (Clark, 1999), TranSid (Lindén, 1997), GOEDEL (Blake, Bray, 

& Tompa, 1992), and the TSIMMIS web interface (Hammer, Garcia-Molina, Cho, 

'Despite being ùitended for more general purposes, the powerful string facilities of perl make 
it very well suited for conversion using the pattern matching model. 
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Aranha, & Crespo, 1997). In al1 these approaches, when a pattern matches a text 

segment, a corresponding action is performed. Characteristics such as  precedence 

between patterns, whether the search is done left to right, lookahead, etc., axe 

all defined by the pattern language. Also defined is the order in which matches 

for different patterns are generated (which affects the order in which actions are 

performed). Actions may be restricted, or they may be arbitrarily complex. Actions 

in sed, for example, are restricted to simple editing operations such as cut, copy, 

paste, delete, or replace; actions in lex, on the other hand, are specified in C and 

can be completely arbitrary. 

In a one-gramrnar model, the inputs are a text, a grammar, and actions as- 

sociated with specified parsing steps. Examples of one-grammar systems are yacc 

(Johnson, 1975), SGMLC (SGML Systems Engineering Ltd., ), Omnimark (Exoter- 

icâ Corporation, 1993), DREAM (Gottke & Fankhauser, 1992), and INR (Johnson, 

1989). Depending on the exact model, actions may be associated with produc- 

tions (e-g., attribute assignments in attribute grammars), with terminals (e.g., local 

string substitution), or with the start and end points of substrings corresponding 

to non-terminals (e.g., inserting start and end tags) . Actions are applied while the 

grammar is being used to parse the text, or afterwards when the complete parse 

tree is availabie. 

In a two-gramrnar rnodel, the inputs are a text, a source grarnmar, a target 

gramrnar, and rules for converting between the two. Examples of two-grammar 

systems are Chameleon (Mamrak, 07Connell, & Barnes, 1992), Alchemist (Lindén, 

19977, and Grif (Quint & Vatton, 1986). The text is parsed according to the source 
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grammar. The rules specify how to  rearrange subtrees in the resuleing parse tree 

to give a tree conformant with the target grammar. Types of subtrees that can be 

specified depend on the specific formalism. For example, syntax directed translation 

schemas (SDTSs) only allow transformation of depth-one trees corresponding to 

productions (Lewis & Stearns, 1968), whereas text transformation (TT) grammars 

allow transformation of arbitrary subtrees (Keller, Perkins, Payton, & Mardinly, 

1984). 

Learning systems are based on the ahficial intelligence sub-field of machine 

learning (Michalski, Carbonell, & Mitchell, 1983). Examples include Markitup! 

(Fankhauser & Xu, 1993), MINI-EDIT (Mo & Witten, 1992), U (Nix, 1989), 

STALKER (Muslea, Minton, & Knoblock, l998), NoDose(Adelberg, l998), WIEN 

(Kushrnerick, Weld, & Doorenbos, 1997), Ariadne (Knoblock, Minton, Ambite, 

& Ashish, l998), TexTamer (Reed-Lade, l989), mod-ALERGIA (Young-Lai & 

Tompa, 2OOO), XTRACT (Garofalakis, Gionis, Rastogi, Seshadri, & Shim, 2000), 

and the work of Ashish and Knoblock (Ashish & Knoblock, 1997). They use the 

same models as specification approaches, but, rather than manually constructing 

a specification, the user dernonstrates the desired results for a few examples and 

the systern infers the underlying rules. This is then applied to the remaining data. 

Some learning approaches request clarifications and use them to evdve the specifi- 

cation whenever problems are encountered. This helps to overcome limitations of 

the learning model. 

While learning approaches require less user effort than manual specification, 

they accomplish this by trading off flexibility (Crespo, Jannink, Neuhold, Rys, & 
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Studer, 2000). Generally speaking, learning approaches are only feasible if the 

training data, the user interaction, the learning met hod, and the target format 

are simple and uniform. We are interested in problems that do not have these 

characteristics, and therefore do not consider learning approaches further. 

Overall, pattern matching and one-grammar approaches are most applicable to 

the recognition sub-problem. They are t herefore the approaches we are interested 

in examining in this thesis. Note that both are also well suited to the text transfor- 

mation sub-problem, while one-grarnmar and two-grammar systems are applicable 

to structure transformation. 

2.2 Parser Efficiency 

Recall that our expanded definition of a parser includes any entity that performs 

recognition. Informally, recognition takes a string, finds substrings of interest, 

and associates types with them. Forrnally, we define a parser to be a mapping 

from strings to sets of regions.  A region is a (type,Zeft,right) triple representing a 

substring labeled t y p e  that starts a t  position lej? in the string and continues to 

position r ight .  

The size of a particular parsing problem is characterized by three values: n is the 

number of characters in the input string, m is the size of the output set of regions, 

and a is the size of the parser specification. In these terms, the approximate size 

of the OED parsing problem, for example, is: n = 108, rn = IO6,  and o E;. IO3. 

Consider the following mode1 of computation: we have a computer with a ran- 

dom access main memory and a secondary storage. The secondary storage is much 
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larger and much slower to access than main memory. Within this model, we c m  

characterize the efficiency of an algorithm by: 1) the asymptotic upper bound on 

the time used to compute the mapping, 2) the asymptotic upper bound on the 

number of characters that are read and vvrïtten from secondary storage (I/O), and 

3) the asymptotic upper bound on the number of characters that are stored in main 

memory at any one time. 

With current computing and secondary storage technology, an algorithm for 

parsing an input comparable in size to the OED should, a t  worst, have the following 

asymptotic bounds: O(on + om) time, O(n + m + O)  I/O, and O(o) memory. 

In practice, bounds any larger than this are too costly, and even large constant 

multipliers may not be acceptable. Note that the rnemory bound implies that the 

input must reside on secondaxy storage, and the output should end up there. 

2.3 Regular Expressions and Finite Automata 

Hopcroft and Ullman (1979) provide a standard account of regular expressions and 

languages. Forrnally, we define regular expressions over an alphabet C recursively 

as foI1ows: 

If a E C then a is a regular expression representing the language {a).  

If p and q are regular expressions for the languages L@) and L(q), then their 

concatenation p O q (abbreviated pq) is a regular expression for the language 

L @ M d  = {XY l x E L(P) A Y E L(q)) .  

0 If p and q are regular expressions for the languages L@) and L(q), then p ( q 
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is a regular expression for the language L(p) U L(q). 

If p is a regular expression for the language L, then the KEeene closure, p* is a 

regular expression for the language Uzo Li, where Lo = {E) and L' = LLi-'. 

If p is a regular expression for the language L, then the positive closure, p+ 

is a regular expression for the language Uz, L'. 

When writing a regular expression, brackets can be used to c l a r e  precedence. 

Otherwise the order of precedence from highest to lowest is assumeà to be *, +, O ,  1. 
A non-deterministic finite automaton (NFA) is a tuple 11.1 = (Q, C, 6, qo, F), 

where Q is a set of states, C is a finite input alphabet, 6 is a transition function 

from Q x (C U {c)) to the power set of Q, qo is the start state, and F is a set of 

final states. A directed graph is associated with an NFA as follows: the vertices of 

the graph correspond to states in Q. If there is a transition from state p to  state 

q on input a, then there is an arc labeled a from the vertex corresponding to  state 

p to the vertex for state q in the graph. For a string x E C*, we write q E B(r ,x )  

or ( ( r , x )  -+ q) E 6 if a sequence of transitions corresponding to the symbols of x 

leads from T to q (including any number of edges labeled with E ,  the empty string). 

An NFA accepts a string x if (6(qo, x) n F )  # 0. 

Regular expressions and non-deterministic finite automata (NFAs) are equiv- 

alent mechanisms for defining regular languages. Regular expressions are a more 

convenient specification mechanism, but NFAs are the more convenient representa- 

tion for manipulation and for finding matches. In practice, most regular expression 

matching strategies first convert a given regular expression to an equivdent NFA. 

This can be done with a simple construction (Hopcroft & Ullrnan, 1979; Aho, 



Hopcroft, & UUman, 1974). Given a regdar expression r,  the size of the NFA 

produced with this construction is O(lr1). 

2.4 Rational Relations and finctions 

The formal definitions of a monoid,  morphisrn, and rational relation are as  follows: 

Definition: A monoid  ( M ,  O, s)  is a non-empty set M with one binary 

operator o  and a constant element s such that Vu, b, c  E M: 

a o  ( b o c )  = (ao b) o c  

Definition: A morphisrn f between monoids (Mi, 01, si) and 

(M2, 02,  s2)  is a function defined on Ml such that Va, b b Ml: 

Definition: A rational relation is defined as follows: given two alphabets 

C and A, a relation R C* x A* is rational if there is an alphabet a, 
a reguiar language L C a*, and two morphisms a : a* + C* and 

: (P' + A* such that (2, y) E R if and only if there is a r E L such 

that x = a(z )  and y = ,û(z). 
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A thorough discussion of rational relations can be found in (Eilenberg, 1974) or 

(Berstel, 1979). We can think of a rational relation in a static sense as a subset of 

the Cartesian product of two sets, or in a dynamic sense as a mapping from the 

first set to the set of subsets of the second. 

A rational relation can be computed by a finite transducer that inputs a string 

from C* and outputs a string from A*. There are several equivalent forms of finite 

transducers (see (Johnson, l983), for example). One is an NFA with the transition 

function redefined to be from Q x C to Q x A*- This is the form of finite transducer 

we assume from now on. There are many ways to specie finite transducers (for 

example, INR (Johnson, l983), or the finite-state calculus described by Karttunen 

(Karttunen, 1992, 1995, 1996)). We can test (x, y) for membership in a rational 

relation specified as a finite transducer in O(lxl x lyl) time and O(min( 

memory (Johnson (1983) gives an overview of the relevant algorithrn). 

Now consider rational relations-where each x is associated with a t  most one y: 

Definition: A rational function f from C* to A* is a rational relation 

on C* x A* that is a partial function. Thus for every x E dom( f )  there 

is at  most one y such that (x, y) E f. 

A rational function can be computed more efficiently than a general rational relation 

as a consèquence of the following theorem (Berstel, 1979): 

Theorem 1 Any rational function can be expressed as a length-preserving right-left 

sequential function composed with a left-right sequential function. 

A sequential function is a rational function that can be computed by a sequential 

transducer, which is a deterministic finite transducer with no distinguished set of 
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final states (any string correspondhg to a path through a sequential transducer is 

accepted). A finite transducer is deterministic if b(q, a) contains at most one state 

for any state q and character a. 

A Ieft-right sequential transducer reads its input from left to right and writes 

its output from lefi to right as well. A right-left sequential transducer reads and 

writes from right to left. Thus any rational function can be computed using a two- 

pass algonthm in O(lx1 + 1 y 1) time, and O(lxl + 1 y 1) memory. Altematively, the 

input and output can reside on secondary storage giving a tw*pass algorithm with 

O(lxl + Iyl) time, O(lxl+ (yl) I/O, and O(1) memory. 

Another way of defining a rationa1 function is to define an arbitrary h i t e  trans- 

ducer and use appropriate rules to choose a unique output during simulation (John- 

son, 1987). This was the approach used for the OED cornputerkation project 

(Kazman, 1986), for example. 

2.5 Context-Free Grammars 

A context-free grammar G is a Ctuple (V,T, P, S), where V and T are disjoint, 

finite sets of variables and terminals. P is a finite set of productions, and S is a 

special variable called the start symbol. Each production is of the form A + a 
where A is a variable and a is a string of syrnbols from (V U T)'. A is called the 

left-hand side of the production and a is the right-hand side. See Hopcroft and 

Uliman (1979) for an overview of the properties of context-free grammars. 

A string is in the language of a grammar if and only if a parse tree for that 

string can be built using the productions of the grammar. Such a parse tree is 



of the following form: the root is labeled with S, interna1 nodes are labeled with 

variable names, and leaves are labeled with terminals- The labels on the terminals 

read fiom Ieft to right must equal the string, and for any internd node labeled A 

with children X I ,  &, . . . Xk there must be a production A + X1X2.. . Xk in P. A 

parse tree has at  most 2n nodes where n is the length of the string if there are no 

"useless" productions that simply rename non-terminais. 

The process of finding a parse tree for a given grammar and string, if one exists, 

is what is normally defined as paxsing (our definition includes this one). In general 

context-free parsing can be done in 0(n3)  time and 0(n2)  memory, where n is 

the size of the input string (Earley, 1970). Algorithms exist that achieve slightly 

better asymptotic time bounds but have too much overhead to be useful except for 

inputs much larger thao are of practical interest (Valiant, 1975). Parsing algorithms 

also exist that use O(n) time and memory provided the grammar belongs to some 

subclass that allows the parsing process to be conducted using constant lookahead 

(e-g., LL(k), LR(k), LALR(k)). See Aho and Ullman (1972) for an oveMew of 

parsing. 

Lalonde (1977) describes regular right part grammars (RRPGs), a variant of 

context-free grammars where the right-hand sides of productions can be regular 

expressions of terminals and non-terminals rather than fixed strings. These describe 

the same set of languages as context-free grammars. They are easier to specify and 

understand, but have greater potential for ambiguity. This is because there are 

more ways to find regular expression matches in a string than there are ways tu 

find constant strings. (We examine regular expression substring matching in detail 
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in Chapter 4.) 
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Chapter 3 

Incrementally Specifying a Parser 

3.1 Evaluat ion of Exist ing Models 

Recall that pattern matching and one-grammar approaches are the models best 

suited to recognition. We now examine some of the weaknesses of these models for 

the task of incrementally specifying a parser. Recall that incremental development 

involves progressing our understanding of the data one piece at a time, and also 

writing and debugging the specification one piece at a time. We identify four areas 

where grammars and pattern matching are deficient for this style of use: interactive 

efficiency, structure mode1 flexibility, scalability, and batch efficiency. 

3.1.1 Interactive Efficiency 

The computational work done after each incremental addition or change to a specifi- 

cation should be small enough that the process of incrementally speciFng a parser 

can be done interactively. That is, modifications to the specification should be 
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separated by short delays. None of the tools or systems we are aware of (those sur- 

veyed in Section 2.1) have this characteristic. They al1 need to completely re-parse 

the data every time the user changes the specification. This makes it difficult to 

develop parsers for large data sets interactively- 

3.1.2 Structure Mode1 Flexibility 

A stmcture model is a way of restricting how structure elements are used. For 

example, a grarnrnar requires that d l  structure elements (non-terminal matches) 

fit into a nested hierarchy (a parse tree). Pattern matching approaches, however, 

have no inherent structure model. 

We consider a hierarchy to be an overly restrictive structure model for incre- 

mental parser specification. One problem is that the most natural model for a given 

text may require overlapping sub-structures, which are not allowed in a hierarchy. 

Another is that incremental development may be easier if elements are allowed 

to occur in an unrestricted way until we determine how to fit them into a more 

restricted structure model. 

3.1.3 Scalability 

Large monolithic parser specifications share a problem with large monolithic pro- 

granls: dependencies between components eventually become too complex to un- 

derstand. Therefore, as a specification grows, modification eventually become im- 

possible since small changes to one part can wreak havoc on the remainder. A 

survey by Clark (1991) examines several recognition tools and concludes that al1 of 
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them have this problem. As an analogy with software engineering, existing tools 

are like primitive programming languages with no support for object-oriented, or 

even structured, program organization. 

Others have also pointed out this problem specifically for grammars, noting that 

their inherent "brittleness" increases the effort needed to construct and maintain 

them (Murphy & Notkin, 1996). A large part of the reason for this is the fact that 

dependencies between productions are effectively unrestricted. 

A well-known way of decreasing the number of dependencies in a specification 

is to build it as separate modules and then combine them- One way to do this 

with a grammar, for example, is to build separate grammars with start symbols 

SI, S2, -, then combine them by taking the union of their productions and adding 

the production S -+ SI 1 S2 1 - - -. Unfortunately, most commonly used context- 

fiee gramrnar subclasses are not closed under even this simple operation (van den 

Brand, Sellink, & Verhoef, 1998). More powerful forms of composition are therefore 

also impossible with grammars. 

3.1.4 Batch Efficiency 

Whether specified incrementally or not, we want a parser to be efficient in the sense 

expfained in Section 2.2. Even if we specify incrementally and parse the data as 

part of the incremental process, we want to be able to apply the resulting parser 

to other data with the same format. This is necessary, for example, if new data is 

cont inually being generated. 

There is no standard forma1 mode1 for batch parsing with pattern matching. 



Simple forms of pattern rnatching such as lexical analysis c m  be performed with 

fhïte automata or finite tramducers. However, more powerful pattern laquages 

that include structure relationships have not been studied fkom the perspective of 

batch parsing. 

Efficient parsing with grammars, on the other hand, is a highly studied problem. 

Not al1 context-free grammars can be used to parse efficiently, but many context-free 

subclasses can with constant lookahead (e-g., LL(k) , LR(k) , LALR(k)). Constant 

lookahead tends to be appropriate for applications such as programming languages 

because it is closely related to readability, and because language designers can 

simply modify the languages to incorporate such cûnstraints. However, arbitras. 

legacy data is not generally guaranteed to  be parseable with constant lookahead. 

A concern with grammar parsing is the amount of memory used to maintain 

a stack. In general, this is O(n) for context-free grammars. One solution is to 

ignore this problem on the assumption that only pathological cases require large 

stacks when the grammars are specified with regular right part productions. An- 

other solution is to bound the depth of the recursion as part of the forma1 model. 

For example, although the overall parsing model used by SGML is context-free, a 

constant (TAGLVL) is used to limit the maximum depth of nesting that is allowed 

in a document (ISO, 1986; Goldfarb, 1990). A more extreme solution is to disallow 

recursion altogether. This was the strategy used for recognition of the OED (Kaz- 

man, 1986). In that case, recursive structures were dealt with by assigning distinct 

types to every level of nested structure. 
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3.2 Proposed Mode1 

Overall, both grammars and pattern matching approaches suffer from esciency and 

scalability problems when used for incremental specification. In addition, pattern 

matching lacks a formal batch parsing rnodel. G r a m m m  have forma1 batch parsing 

models but use an overly restrictive structure rnodel- 

The approach that  we propose to elirninate these problems is as follows: main- 

tain a dynarnic set of regions representing the result of the recognition process, and 

provide a set of functions for interactively updating this set. We refer to the set 

of regions as a region inventory, and the set of functions as a region algebm. Our 

intention is that a region algebra used for this purpose will have many similarities 

with the region algebras used as query languages for text databases or information 

retrieval (Salminen & Tornpa, 1992; Burkowski, 1994; Kilpelainen & Mannila, 1993; 

Clarke, Cormack, & Burkowski, 1995; Navarro, 1995; Dao, Sacks-Davis, & Thom, 

1996). 

The functions that comprise a region algebra al1 operate on subsets of the region 

inventory. That is, a function call takes a subset of regions from the inventory as 

arguments, and returns a set of regions as a result. This returned set then becomes 

part of the region inventory. 

Functions can be composed by passing the result of one function call as an ar- 

gument to another. An algebra ezpresszon is a composition of two or more function 

calls. Define the expression graph representation of an  algebra expression as fol- 

lows: each function call is represented by a node, and if one call A takes the result 

of another cal1 B as an argument, then there is an edge from the node for A to the 
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Figure 3.1: An expression graph that is a DAG. 

node for B. The height of a node in an expression graph is the number of nodes on 

the longest path from that node to a leaf. 

An expression graph must be acyclic. That is, a function cal1 c a n o t  use its own 

result as an argument, nor can its result be used by any function which contributed 

to its evaluation. An expression graph does not need to  be a tree. It can be multi- 

rooted, thus representing a set of expressions rather than just one. The directed 

acyclic graph (DAG) in Figure 3.1, for example, represents two expressions with 

a common sub-expression rooted at D. A graph can also be disconnected, thus 

representing a set of expressions without common sub-expressions. 

When using a region algebra as an interface, an expression graph plays the role 

of the parser specification (in the same way that a grammar plays the role of the 

parser specification when using grammars as an interface). The result of evaluating 

an expression graph, that is, of parsing with it, is as follows: 1) every node is 

marked as either producing an intermediate or a final result, and 2) the overall 

result is the region inventory that is equal to the union of al1 final results. 
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3.3 Evaluation of the Proposed Mode1 

3.3.1 Interactive Efficiency 

To ensure interactive efficiency7 the functions in a region algebra should al1 be 

designed so that they can be evaluated efficiently. For example, we can guarantee 

O(n) time and 1/0 by breaking the region inventory into subsets of at most n 

regions that serve as arguments to functions. An example of a useful subset mode1 

that allows many operations with O(n) time, O(n)  1/07 and O(1) mernory is a flat, 

sorted region list such as those used in PAT (Salrninen & Tompa, 1992). 

Even with O(n)  time and 110, there is always a size cutoff after which an input 

string is too Iarge to use the algebra interactively. Where this cutoff is depends on 

the functions, the implementations, and the density of structure in the data. For 

data larger than the cutoff, Our only choice is to build a parser for a subset of the 

data interactively, and then parse the remainder in batch mode. Note, however, that 

O(n) time and 1/0 is a n  upper bound that may not be necessary for al1 functions. 

Many useful operations will typically work with sets of significantly fewer than n 

regions. Therefore, in practice, the average cost of an interactive function cal1 may 

be much lower than n regions of I/O. 

A more agressive goal might be to provide sub-linear interactive efficiency. 

However, many useful functions require inputs and outputs that can be O(n) in 

size. For this reason, we consider linear time and 110 to be the most appropriate 

upper bound to use when choosing operations. 



3.3.2 Structure Mode1 

A region inventory may have any stmcture model we choose. For example, we may 

require that al1 regions fit into a hierarchy, or we may allow regions to be completely 

unrestricted . -4s pointed out, a strict hierarchy h a  disadt-antages for interactive 

use. Therefore, an unrestncted model is a better choice for this application1. 

With respect to the survey by Baeza-Yates and Navarro (l996), an unrestricted 

region inventory is classified as follows as a text structure model: 

O It lies somewhere above a hierarchical model but below a full network model. 

A full network mode1 would allow arbitrary, typed relationships between 

nodes. 

I t  uses an explicit non-hierarchical list of regions. Explicit means that the 

structure is separated from the text, as opposed to  some models that use 

interspersed markup. 

It uses dynamic structure. This contrasts with models that require the struc- 

ture to be static. 

It is strongly structure bound, which means that the structure is mostly 

separated from the text and the text is just used to restrict matches in the 

structure. The alternatives are strongly text-bound models which interleave 

the structure with the text and translate al1 queries into text operations, 

and models that are intermediate between strongly text bound and strongly 

lUseful models may exist that restrict regions in some way, but not as severely as a hierarchy. 
However, we do no6 consider this further here. 
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structure bound. These intermediate systems allow both text substrings and 

structure subsets to  be retrieved and rnanipulated as first class objects. We 

do not need this functionality since we are only performing recognition, not 

string transformation. 

3.3.3 Scalability 

With a region algebra, we can incrementally develop a parser specification non- 

monotonically (Ait-Mokhtar and Chanod (1997) introduce this term in the context 

of parsing). This means that, when we wish to  modiQ a set of regions, we can 

change the set directly using function calls from the algebra. This contrasts with 

monotonic development where we have no choice but to go back and change the 

parts of the specification that initially generated the set. (This is the case with a 

grammar, for example.) 

Non-monotonic development gives us the freedom to refine or revise earlier de- 

cisions without going back and changing earlier parts of the specification, or even 

having to understand them. This means that we also have the freedom to organize 

the specification with fewer dependencies - by building modular specifications, for 

example. This is a significant advantage from the point of view of scalability. 

Another advantage of a region algebra is the freedom to include functions that 

combine or compose results in many different ways. For example, it  is simple 

to provide algebra functions that takes sets of regions and perform standard set 

operations on them (e-g., intersection, union, and difference). In contrast, the 

closure properties of grammars mean that it is not generally possible to combine 
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them so as to  perform set operations on their parse trees. This is another property 

of region algebras that gives us more fkeedom to organize a specïfication modularly, 

thus aIlowing fewer depeudencies and more scalability. 

3.3.4 Bat ch Efficiency 

A disadvantage of a region algebra approach is that, in general, evaluating an ex- 

pression graph may be much more expensive than parsing with an efficient grarnmar 

srzbclass. In a typical bottom-up evaluation, for example, the queries are evaluated 

one-by-one, starting a t  the leaf nodes and working upward. Heuristic techniques 

can be used to reduce the cost of evaluating an expression graph (Consens, 1998). 

However, Jaakkola and Kilpelainen (1999), claim that, in general, the worst case 

evaluation cost is 0(n2) time. This is excessive for use as a batch parser. 

Others have described specific algebras for which linear time, constant memory, 

evaluation is possible for any expression graph (Clarke & Cormack, 2000; Ives, 

Levy, & Weld, 2000). In Chapter 5, we take this further, by developing a general 

characterization of classes of operations that can always be evaluated efficiently 

when included together in a region algebra. 



Chapter 4 

Parsing Models 

In the previous chapter, we introduced the idea of using a region algebra as an in- 

terface for incrementally developing parsers. We now discuss batch parsing models, 

defining a parsing model to be a set of mappings from strings to sets of regions. 

For example, the set of al1 mappings that can be specified with grammars is a 

parsing model. The set of mappings that c m  be performed using the UNIX tool 

lex can also be considered a parsing model, as can the set of mappings that can be 

performed using the UNXX tool grep. 

4.1 Regular Expression Parsers 

We start by examining a simple example of a parsing model: given a regular expres- 

sion and a string, return a list of regions al1 of which are matches for the regular 

expression. Note that regions in the list are not distinguished by type, i.e., this 

problem uses a simplified version of the structure model. 
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The longest matching results presented in this section are original. We include 

them here since they are a useful part of the overail parsing mode1 that we describe 

in the next chapter. 

4.1.1 Finding Substrings 

It is well kno~vn how to simulate an NFA M on a given string x to  determine 

whether x is in the language L(M) .  See Aho et ai. (1974), for example. Finding 

non-empty substrings of a string x that are in L ( M )  is a more difficult problem. 

There are ("Tl) potential matches in a string of length n, corresponding to starting 

and ending a match before and after every character. 

Practical algorithms restrict potential matches in some way to reduce this num- 

ber when dealing Rith large strings. A widely used restriction is found in the 

POSIX standard (IEEE, 1992) which mandates left-most, longest, non-overlapping 

matching. This means that when there are two matches with one inside another, 

the inside one is discarded in favour of the outside; when there are two matches 

where one overlaps the other, the right one is discarded in favour of the left. Thus 

the result is a set of matches with no overlapping or nesting. Clarke and Cormack 

(1997) propose an alternative rule for information retrieval applications: find d l  

shortest, possibly overlapping matches. For this rule, outside matches are discarded 

in favour of inside ones in cases of nesting, but overlapping matches are kept. Perl 

uses left-most matching and allows the user to specify whether each variable length 

operator (e-g., * or +) should match the longest or shortest possible string (Wall 

et al., 1996). 



Al1 of the above rules guarantee that the number of matches in a result is a t  most 

equal to the number of characters in the string. This is ensured by the condition 

that nested matches are not allowed, a condition that is met by always keeping only 

a single element from a nested set of matches (for example, either the longest or 

the shortest). To resolve between overlapping non-nested matches, there are two 

strategies. One is to  keep them al1 (the number of possible matches remains linear 

in the length of the string). The other is to keep just one, such as the leftmost. 

This is the most natural choice if the string is scanned left to right, but there is no 

inherent reason not to choose, Say, the rightmost, or to do something more arbitrary 

like choosing non-deterministically which one to keep. 

Finding d l  shortest, overlapping matches for a regular expression can be done 

in linear time and constant memory. Clarke and Cormack (1997) give an algorithm 

for this, extended from one given by Alio et al. (197'4). However, finding longest 

matches is not always possible with a single pass and constant memory. 

Consider searching for longest matches in a string by scanning from left to  

right. When a match completes, there is no way to know whether a longer match 

will cornplete later to supersede it. Thus, in the worst case, every match must 

be bufFered indefinitely. For example, consider matching the regular expression 

(ab) 1 (aC*c) against a string of the form (ab)"c for some n. When scanning from 

left to right, every a b  is a match which has to be stored until the final c is read, 

a t  which point they can aH be discarded in favour of the single match equal to  the 

entire string. 

One solution is to  bound the lookahead: if we have a match buffered, and no 



longer match completes within a given number of characters, then the buEered 

match is output. Any matches in progress that may be longer if they complete 

are discarded a t  this time. This approach may be appropriate for a tokenizing 

application, for example, where we know in advance that tokens are never more 

than some maximum length. The trouble is that it does not, in general, always 

find the matches that are strictly longest. In the example above, it misses the 

match equal to the entire string if the string is longer than the chosen limit on how 

many characters to wait before outputting buffered matches. In sections 4.1.2 and 

4.1.3, we describe methods that always correctly find longest matches for a regular 

expression using only bounded buffering. 

4.1.2 Two-Pass Longest Matching 
'i 

The first method we propose finds longest matches by abandoning the assumption 

that the search must be done in a single pass over the string. The algorithm uses 

two passes, the first of which outputs potential matches as they complete (this may 

require O(n)  secondary storage for a string of length n). It then makes a second 

pass over the potential matches, deleting those superseded by longer matches that 

completed later during the first pass. The second pass is done in the opposite 

direction of the first, Le., if the first pass reads the string from Ieft to right, then 

the second reads the potential matches from right to left. 

The shortest matching algorithm given by Clarke and Cormack (1997) can be 

modified to perform the first pass of the two-pass algorithm as shown in Algo- 

rithm 1. States are designated by numbers in the range 1 to IQI with 1 representing 
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Algorithm 1: Perform the first pass of the longest rnatching algorithm. 
Input: A string x = ala:!. . . h, and an NFA M = (Q, C ,  6,1, F) 
Output: A list of regions, sorted by right end positions. 
MATCH(X, M, S) 
(1) for j t 1 to IQI 
(2) Pj t -1 
(3) f o r i t f  ton 
(4) if Pl = -1 then Pl t i  
(5) for j t 1 to 1QI 
( 6 )  Pi t -1 
(7) for j t 1 to IQI 
(8) foreach q t 6(Pj, ai) 
(9) if Pi = -1 OR Pj < Pi then Pi t Pj 
(10) u t -1 
(11) for j c 1 to  lQI 
(12) if j €  Fand Pj'Z-1 
(13) if u = -1 OR Pj < u then u t Pjr 
(14) if u # -1 then OUTPUT((U, i)) 
(15) t emp t P 
(16) P t P' 
(17) P' t temp 
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Algorithm 2: Perform the second p a s  of the longest matching algorithm. 

Input: A list L = {Z1, Z2, . . . ,lm) of possibly nested regions sorted 
by right end positions. Each region li is a pair of natural numbers 
(Zi-Z, Zi-r)  th Zi.Z 5 zi*r- 
Output: The input list with any regions nested inside other regions 
deleted. 
FILTER(L) 
(1) 6 + lm 
( 2 )  for i t rn - 1 to 1 
(3) if liez < b.1 
(4) OUT PUT(^) 
( 5 )  b t Zi 
(6) OUT PUT(^) 

the start state qo. The idea is to scan the text from left to rïght (lines 3-17) with 

a new execution of the NFA beginning a t  the start state for each character in the 

text (line 4). For a match in progress that starts a t  a previous character in the 

string and brings the NFA to state j, we record the start position in the array P 

at  index j .  If no match in progress ends in state j ,  then the entry Pj is equal to 

-1. The array P' is used for update purposes, and P and P' are swapped a t  the 

end of each pass (lines 15-17). If two intervals of text leave the NFA in the same 

state, we can immediately discard the shorter one since we are searching for longest 

matches (as opposed to  discarding the longer one in shortest matching). This is 

performed in lines 9 and 13, and is also reflected in the condition a t  !ine 4 which 

does not begin a new match if there is already a match in progress currently in 

the start state. Line 10-14 find and outputs the longest match that ends in a final 

state at  the curent character, if one exists. Since matches are output immediately 

when they complete, the list of potential matches is sorted by rigbt end. 
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Since the output of the first pass is a list of regions sorted by right ends, the 

second pass can iterate the list from right to  left and be sure of always encountering 

a longer match before any shorter match that is nested inside of it. Thus we can 

perform the second pass using constant memory as shown in Algorithm 2. This 

keeps a single region, b, buffered at alf times. Line 1 sets b to be equal to  the last 

region in the list. Then the main loop (lines 2-5) vîsits each remaining region in 

turn from right to left. The value of b is always a region visited before Li in the 

loop. Since the list is sorted by right ends and we visit the regions from right to 

left, the right end of b is therefore always greater than or equal to the right end of 

Li. Therefore, if the condition of line 3 is false (Le., the left end of Li is greater than 

or equal to the ieft end of b), then we know that li is nested inside of b. In this case, 

the algorithm does nothing with li, therefore discarding it. If, on the other hand, 

the condition of line 3 is true, then li is either to the left of b or overlaps it on the 

left. In either case, b is output and replaced with Zi. After the loop completes, the 

algorithm outputs the final b. 

The first pass uses O(I PI) memory, where 1 PI is the number of states in the 

NFA. This is linearly related to the size Ir1 of the regular expression. Therefore, 

the pass uses O(lr1) memory. The second pass uses O(1) memory in the form of 

a single buffer. Therefore, the overall memory used by the two-pas algorithm is 

Wl)- 

Another way of looking a t  the first pass algorithm is that it finds the longest 

match ending at every character in the string. A proof of this can be constmcted 

based on two points: 1) the algorithm directly chooses the longest match when 
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several end at the same character, and 2) the way that it chooses between matches 

in progress that converge to the same state never results in a longer match being 

missed. To understand the second point, suppose we have two matches in progress 

with start characters ai and aj, where i < j. Consider what it means if the paths 

through the NFA corresponding to these two matches in progress converge to the 

same state s: any path from s to a final state ending at character ak necessarily 

represents a match from ai to  a k  and another match from aj  to ak. That is, there is 

no way for the shorter match from aj to ak to occur without the longer one from 

to ac alço occurring. Therefore, discarding the match in progress with the aj start  

point never results in a missed longer match. 

The proof that the second pass correctly deletes all matches nested inside of 

longer matches is as follows: if, at any time, the li currently being visited is nested 

inside some other region in the input (possibly more than one), then li is necessarily 

nested inside the current b. We prove this by contradiction. Suppose it is possible 

for the current b to not contain Zi even though there is sorne region b' that does 

contain li. We knoiv that b.r must be greater than li.r, since b must be visited 

before Ii in the right-left iteration order. This implies that  b.1 must be greater than 

l i . l ,  otherwise b would contain li. This, in turn, implies that  b-Z is greater than b'.l 

since Zi is contained in b'. Given these restrictions, there are two cases of interest: 

1) b is nested inside b', or 2) b.r > b' .r. In the first case, b' is visited before b, and b 

is discardedrather than replacing b'. In the second case, b is visited before b', but 

replaced by b' prior to reading Zi since bl.Z < 5.1. Both of these cases contradict the 

initial assumption that the current b is not b'. Therefore, if Zi is nested inside one 
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or more regions, then it is sure to be nested inside the current b, and we always 

know whether or not to discard an Zi by comparing i t  to the current b. Also, we 

know that we never discard a n  li that should not be since we always specifically 

have the b that contains it a t  the time when it is discarded. 

Note that the second pass of the algonthm visits the regions in the list from 

right to left, this is also the order in which it outputs them. In some cases, it 

may be more appropriate for the final output to be sorted from left t o  right. To 

arrange this we can simply reverse the direction of both passes. This means that 

the first pass over the string is right to  left, and the second p a s  over the potential 

matches is left to right. The necessary modifications to the two algorithms are 

straightforward. 

4.1.3 One Pass Longest Matching 

The second approach we propose for finding longest matches is to restrict the regular 

expressions that are allowed so that only a single pass is required. An example of 

a regular expression that requires only a single pass is (011)+, which matches any 

non-empty string of 0's and 1's. We can find longest matches for this expression 

using constant memory: whenever a match completes, we need onLy check the next 

character to see if it is a O or a 1. If not, then we output the match, otherwise we 

discard it. In other words, this regular expression requires only a single character 

of lookahead to find longest matches. 
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Figure 4.1: An NFA for which unbounded lookahead is required to  find longest 
matches. 

Figure 4.2: An NFA for which we can find Iongest matches using only two characters 
of lookahead. 
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Bounded Lookahead 

We use this observation, together with the previously introduced idea that if we 

have a match buffered, and no longer match completes within a given number of 

characters, then we output the buffered match. However, rather than choosing 

a constant bound that may not accurately find longest matches for some regular 

expressions, we propose to choose the bound based on the regular expression, and 

further, to disallotv regular expressions for which no constant bound is possible. 

The amount of lookahead needed to find longest matches for a given regular 

expression can be determined by examining the corresponding NFA. Suppose that 

a match completes using Algorithm 1 and that S is the set of states that contain a 

match in progress. A match completes whenever the automaton enters a final state. 

Thus, the maximum lookahead required to decide whether to keep the completed 

match is the length of the longest possible string x such that 3s E S for which 

b(s, x) is a final state, and there is no prefix z of x such that b(s, T) is a final state. 

For example, consider the NFA in Figure 4.1. Suppose we match against a string 

that starts with ab. When the first ab match is found, there is also a match in 

progress in state 2 that started on the same character. Because of the loop a t  state 

2, a path starting a t  state 2 can be arbitrarily long without passing through a final 

state. Therefore, the lookahead required to decide whether to keep the ab match 

is unbounded. In contrast, consider Figure 4.2. When an ab match completes, 

the only match in progress that may eventually be longer is one that extends the 

original match by continuing from state 3. This can take at most two transitions 

before reaching a final state (i.e., returning to state 3). Therefore, the maximum 



lookahead required to  find longest matches is 2. 

We now describe how to compute the maximum lookahead for any regular ex- 

pression r. Let M ( r )  be an NFA constructed from r ,  s be some state in M(r), 

and pre&(iM(r), s) be the NFA formed by taking the NFA M ( T ) ,  changing the set 

of final states to {s), and deleting al1 states and transitions fkom which it is not 

possible to reach s. For example, Figure 4.3 a) is prefix(M(r), 2) where M(r) is 

Figure 4.1. 

Let M ( r )  = (Q, C ,  6, qo, F) as before, and constmct M(C*r) = (Q U {qb), C ,  6 U 

{(q6,3 -t qa , (qb , C) -t qa ) , qh, F) . For example, Figure 4.3 b) is M(C*r) if M ( r )  

is Figure 4.1. State O in the figure corresponds to qb. 

We next constmct the NFA for the intersection of L(M(C*r)) and 

L(prefix(M(r), s)) . A general construction for intersecting two NFAs Ml and M2 

is as follows ': let Ml be (Ql,C, bl,ql, Fl)  and M2 be (Q2,C762,q27 F2)- Then, 

define the NFA Ml2 = (Q1 x QZi C, 6, [qL1 q2], Fl x FZ) with a transition function 6 

as follows: V((p1 ,  a )  + p2) E 61, 'd((p3, a) -t p4) E 62 the transition (([pi, p3], a )  + 
[p?,p4]) is in 6- A h  ~ ( [ P ~ , P & E )  = (&(p17e) x (132)) u ({pl) x 62b2,~))-  For ex- 

ample, let Figure 4.3 b) be Ml, and Figure 4.3 a) be M2. Then Mlî is shown in 

Figure 4.3 c). Note that there should be a transitions from states [1,1] and [1,2] 

to a state [2,2]. However, [2,2] is a dead-end from which it is impossible to reach 

a final state. It is therefore omitted. 

If the intersection of the languages L(M(C*r))  and L(prefixM(r), s) is non- 

empty for some state s in M(r), then it is possible for the situation depicted in 

'Hopcroft and UUman (1979) give a construction for intersecting two DFAs. This is a straight- 
forward extension. 



C )  M(C*r)fl prefix(M ( r ) ,  2 )  

Figure 4.3: NFAs constructed from Figure 4.1. 
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Figure 4.4: A match that completes inside a potentially longer match in progress. 

Figure 4.5: s u f f k ( M ( r ) ,  2). 

Figure 4.4 to occur. This represents a match for the regular expression r  at the 

end of a prefix match that finishes in state S. The lookahead required to decide 

whether to keep or discard the r match in this case depends on the possible paths 

from s to a final state. 

Define su&(M(r), s) to be the NFA formed by taking M ( r ) ,  changing the start 

state to s, and deleting al1 states and transitions that cannot be reached starting 

fkom S. Figure 4.5 shows suffix(M(r) , 2 )  for our example. The longest path through 

this NFA from the start state to the final state that does not pass through a final 

state is the required lookahead (ifs is itself a final state, then it can start in a final 

state). We denote the length of the longest such path by longest(M(r)) for an NFA 
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Algorithm 3: Find the maximum lookahead required to search for longest 
matches for a regular expression using a single p a s .  

Input: A regular expression r .  
Output: The required lookahead. 
MATCH(T) 

(1) lookahead t O 
( 2 )  foreach state s in the state set of M(r)  
(3) if (Jwf(C*r))  n L(prefix(M(r), 9))) # 9 
(4) if longest(suffix(M(r) , s) > lookahead 
( 5 )  lookahead t longest ( s u f i  (M (r) , s) 
( 6 )  return lookahead 

hl(+). For example, longest (sufEx(M(r), 2)) is m because of the loop at state 2. 

Algorithm 3 uses the ideas illustrated above to compute the maximum lookahead 

that may be needed when finding longest matches for a regular expression r. The 

efficiency is as follows: both M(C*r) and prefix(M(r), s) are of size O(lr1) since we 

can always constmct an NFA for a regular expression proportional to the length of 

the regular expression (Hopcroft & Ullman, 1979). The construction of the NFA for 

L(M(C*r ) )  n L(preh(M(r) ,  s ) )  uses the cross product of the two state sets as the 

state space, and therefore gives a resuit of size O(lrI2). If the intersection is non- 

empty, then su&(M (r) , s) must be computed. This is of size O(lr [), and finding 

the length of the longest path therefore takes O(lr1) time. Since the algorithm 

performs one intersection for each state, the overall time complexity is O(lrI3). 

The memory used is the size of a single intersection, i-e., O(lr1*). 

Bounded Buffering 

Lookahead is the number of characters that must be read after a match completes 

before knowing whether it is superseded by a longer match. For the purpose of 
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Figure 4.6: A pattern of potential matches that requires buffering. 

finding longest matches, requiring bounded lookahead is more restrictive than nec- 

essary. What we really need to bound is the number of buffered matches, i.e., the 

arncunt of required memory. This is bounded if the lookahead is bounded, but 

may also be bounded when the lookahead is not. Consider the expression aC'b, 

for esample. Matching against a string of the form abaib requires i characters of 

lookahead after the match ending at the second character to find the match ending 

at  the last character. However, only one match is buffered while ail these characters 

are visited. 

For buffering to be required, i t  must be possible for one or more matches to 

complete inside a longer match as in Figure 4.6. In this case, al1 of the inside 

matches are buffered from the time they complete until the time that the outside 

match completes. Note, however, that matches that are more deeply nested may 

be discarded. For a regular expression r ,  an upper bound on the number of regions 

that may have to be buffered is the maximum k such that L( (C*T)~ZC ')n L(T) is 

non-empty. Here, k is the number of matches that can occur directly inside a longer 

match as in Figure 4.6. 

We now show how to calculate the maximum k. Let Mi = M ( r ) ,  and M2 = 

M((C*r)+C*) constructed as shown in Figure 4.7. Next, construct the NFA Ml* 

for the intersection of Ml and M2 the same way as in the previous section. For 
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Figure 4.7: The NFA for M((C*r)+CB). The Q transition into M ( r )  goes to ql. The 
E transitions out of M ( r )  corne from any final state in 4. 

example, for r = aC* b, Ml is shown in Figure 4.8 a), M2 is shown in Figure 4.8 b) , 

and Ml? is Figure 4.8 c) . Note that there is a b transition from [2,2] to [3,2] that 

is not shown because it is not possible to reach a final state from [3,2]. 

Consider a path p through Ml* that starts in a state [x, q,] for some x E QI 

(recall that q,, the second element in the square brackets, is the start state of Ml, 

but also part of the state space of Mz) .  Suppose also, that the path ends in a 

state [ y , q f ]  for some y E QI and qf  E FI (again, qf is a final state of Ml but also 

part of the state space of M2).  An example is the path [2,1] -t [2,2] -t [2,3] in 

Figure 4.8 c). As ql and q~ are the second elements in the square brackets, they 

therefore represent states in M2. Therefore, a path of this form corresponds to  a 

path through the sub-automaton inside the rectangle in Figure 4.7. The path p 

therefore represents a match inside a potentially longer match, the basic condition 

for buffering. If p takes place inside a cycle of Mlz, theri any number of matches 

can occur inside a longer match. This is true, in Figure 4.8 c) since there is a 
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Figure 4.8: NFAs constructed with r = aC*b. 
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Figure 4.9: A pattern of potential matches that requires only one buffer. 

transition from [2,3] to [2, O] and then to [2,1], the beginning of p. This means that 

the intersection L( (C*T)~C*)  n L(T) is non-empty for any k, Le., k is m. If there is 

no such p inside a cycle, then the maximum k is the maximum number of matches 

on a cycle-free path through MI2- 

The k found above is a weak upper bound on the required buffering since it 

neglects that some matches in progress are eliminated when they converge to the 

same state. Consider using the NFA in Figure 4.8 a) to match against a string of 

the forrn a(ab)'b. A match begins a t  the first character, and at  each subsequent 

a. However, al1 matches in progress converge to state 2, at which point the later 

starting match is discarded. Therefore, the potential matches are of the form shown 

in Figure 4.9 rather than Figure 4.6, and it is never necessary to  buffer more than 

one match at a time. 

To take discarded matches in progress into account, Ive need to consider states 

of the form [x, x] in MI2.  Since this represents convergence to  a single state in 

M(r ) ;  we are interested in the paths that do not contain a state of that form. If al1 

paths containing a match also contain an [x,x] state, as is the case in Figure 4.8 
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c) ,  then the number of buffers required is 1. Otherwise, the required buffering is 

calculated from the paths that do not contain an [z, x] state. 

Overall then, to find the maximum buffering required to  search for longest r 

matches, we first construct the NFA M12. Ml and M2 are O(lr1) in size, so Mi2 

is O((rI2).  Finding the longest path through an NFA can he done in linear time. 

(The fact that we measure the length as the number of matches rather than the 

number of transitions does not change this, and neither does having to consider 

[x, x] States.) Therefore, this procedure uses O (Ir 1 2 )  time and 0 (Ir i2) memory. 

Longest Matching Subclasses 

Consider an application that requires longest matching in a single pass with 

bounded memory. One way to provide this is to allow entry of any regular ex- 

pression, but reject expressions that require unbounded buffering. An alternative 

approach is to only allow entry of regular expressions restricted in some well defined 

way so as to always require only bounded buffering. We give some examples of such 

restrictions. 

Define the finite closure operator as follows: if p is a regular expression for the 

language L, then $ is a regular expression for the language ut==, hi. 

Lemma 1 We can find Zongest matches uszng a single pass and bounded bufiring 

for any regular expression where alb closure operutors are finite. 

Proof: If there are only finite closure operators, then the language is 

h i t e .  If x is the longest string, and y is the shortest string, then IxlllyI 

is a weak upper bound on the number of buffers required. 



4.1 - REG ULAR EXPRESSION PARSERS 

Lemma 2 W e  can f ind Zongest matches using a single p a s  and bounded bufiering 

for any regular expression where alternation is d w a y s  between two languages where 

a string from one i s  never a substring of a string from the other. 

For =ample, the expression (ab*c)[(adae) requires only bounded buffering be- 

cause there are no strings in the language for (ab*c) that are substrings of strings 

from the language for (ad'e) and vice versa. On the other hand, in the expression 

(aC'c) 1 (ad'e), strings from (ad'e) can occur inside strings from (aC'c), and this 

expression requires unbounded buffering. 

Proof: For the situation in Figure 4.6 to occur, it is necessary for 

there to be alternation between languages where strings fkom one are 

substrings of the other. With no such alternation, this is not possible, 

and unbounded buffering is not required. 

Lemma 3 W e  can find Zongest matches using a single pass and bounded buffering 

for any regular expression where the only alternations are between strings with a 

single charact e? . 

For example, the expression (alblc)*d only has alternations between single- 

character strings and therefore only requires bounded buRering. 

Proof: This is a direct consequence of Lemma 2. 

The above three lemmas characterize restrictions on regular expressions that 

ensure the ability to find longest matches in a single pass with bounded buffering. 

Equivalently, we can àisallow the alternotion operator, and add the operator Calaz . . . a,J which 
defines th; language { a l ,  az, . - . , G). 
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They are ody examples, and many other such restrictions are possible. More 

research is needed to tell whether there is a simple way to characterize the class 

of al2 regular expressions that require only bounded buffering, or the class that 

requires only bounded lookahead. 

4.2 Rational Function Parsers 

4.2.1 Coding 

We now discuss using rational functions as parsers. Rational functions map from 

strings to strings, so the first step is to define a string coding for the output region 

inventory. Let T be a blank character and T be a set of types. Let A, the output 

alphabet, be the union of { T )  and the set U a E T { ~ i à ) i  where is a start tag for 

type a, and à is an end tag. The idea is that the function should output T for 

each character of the input string, and insert start and end tags at the appropriate 

locations to delimit regions. Given such an output, we can calculate the position 

of a tag in the input string by counting the number of preceding T'S. A string with 

properly paired start and end tags represents a set of regions. Therefore, the set of 

rational functions that always output strings of this forrn are parsers according to 

our expanded definition. 

4.2.2 Efficiency 

Any rational function can be computed using a two-pass algorithm that computes a 

length-preserving right-left sequential function composed with a left-right sequential 



function (recall Theorem 1 from Section 2.4). The first pass reads the input string 

from left t o  right and generates an intermediate output of m characters - the size 

of the final output (since the second function can always be length-preserving). The 

second pass reads the intermediate output from right to left and outputs the h a 1  

result. Therefore, the fkst pass reads n characters and writes m characters, and the 

second pass reads m characters and writes m characters. The total 1/0 is therefore 

n +3m characters. Assuming an appropriate representation, a sequential transducer 

can process each character in constant time. Therefore the two-pass algorithm uses 

O(n + m) time and I/O. The memory used to simulate a finite transducer is linear 

in the size of the transducer, Le., O(o).  Overall, these bounds are low enough to 

be acceptable for a batch parser, as discussed in Section 2.2. 

4.2.3 Compkations 

A problem with using rational functions as a parsing model is that finite transducers 

are a very restricted model of cornputation. In particular, the need to  code the 

output region inventory as a string leads to unnecessary complications just t o  hande 

things like tag pairing and the ambiguity inherent in regular expression matching. 

Consider the form of an unambiguous finite transducer that always outputs 

properly paired tags. A start tag can only be output if the corresponding end 

tag is output eventually. The only way to guarantee this is to  construct the finite 

transducer so that d l  paths from the state that outputs the start t ag  lead to a 

state that outputs a corresponding end tag. Therefore, if we wish t o  recognize a 

pattern for which we cannot know for certain after the first character that  a match 



Figure 4.10: A finite transducer that recognizes any three-character string, and 
outputs surrounding start and end tags of type x only if it matches abc. The 
notation €15 at a transition means input an E ,  and output an 5. Al1 other transitions 
have only the input syrnbol marked, and the output symbol is implicitly r. 



will comptete, then we need to  include a non-deterministic choice between taking 

a path that always completes a match and one that does not. Only the first path 

should output the start tag. Consider the exômple finite transducer in Figure 4.10 

that accepts any three character string and assigns it the type x if it is abc by 

outputting an rE at the first character and an 5 a t  the  last. The bottom path 

outputs start and end tags, and matches the string abc. The other paths output no 

tags, and match any string of three characters except abc. The non-deterministic 

choice between the bottom and middle paths is necessary since there is no way to 

tell without lookahead whether an initial a will eventually complete a match and 

therefore whether to output a start tag or not. 

If we wish to use two passes to evaluate a rational function specified as a single 

transducer, then we need some way to  decompose the single transducer into left 

and right sequential transducers automatically. For example, one way to decompose 

an unambiguous transducer that  outputs properly paired start and end tags is to 

modiQ it in such a way that it  outputs start tags on the Ieft-right pass without 

worrying whether a match completes. The right-left pass can then delete unpaired 

start tags for matches that did not complete. The right sequential function to 

perform this deletion has a state space defined by a finite control that keeps track 

of a subset of T, the set of types. The transition function adds a type to the finite 

control on reading its end tag, and removes it on reading the next start tag. When 

a start tag is encountered and the type is not in the finite control, the tag is deleted 

from the output stream. All other inputs are simply echoed to  the output. 

We now give an example of a decomposition into two passes, this time for an 
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Figure 4.11: A finite transducer M that performs a regular expression matching 
operation. The dashed box contains the NFA for the regular expression. The 
transition into the NFA enters its start state. The transition out leaves from the 
final state (assume that we construct the NFA so that there is only one final state). 
The finite transducer outputs a r for every non-c input character. 
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ambiguous transducer that specifies a rational function only when taken together 

with a disarnbiguation rule. The transducer M is shown in Figure 4.11. The task 

that we wish to perfonn is to find a flat list of regular expression matches. Note 

that we give this example to demonstrate only that a h i t e  state mode1 leads to 

more complications than should r e m  be necessary, even for this relatively simple 

operation. The construction below is not otherwise an integral part of the thesis. 

There are two sources of ambiguity in M. The first is the C loop at  the start 

state- This makes the position where a simulator should enter the NFA and out- 

put a start tag ambiguous. The second source of ambiguity arises from any non- 

determinism within the NFA. This makes it ambiguous where a path can leave the 

NFA and output an end tag. As discussed in Section 4.1, this ambiguity is an in- 

herent property of regular expression matching. Two possible disambiguation rules 

are to either keep only leftmost-shortest or leftmost-longest matches. Any such rule 

that results in a flat list of matches effectively chooses a single path through M. 

The decomposition into two passes that Ive propose uses the same idea as for an 

unambiguous transducer: output when in doubt on the left-right pass and delete 

extra tags on the right-left pass. Now, however, we are in doubt about which path 

to take through M, not just whether a match will eventually complete. We proceed 

by considering how to deal with this. 

Let the output of the first pass be the superimposed outputs of al1 possible paths 

through M, including dead end paths that never complete. By superimposed, we 

mean that al1 outputs go to a single string, but repeated characters at  the same 

input location are deleted. Therefore, the T character is output only once for each 



input character, rather than being repeated once for each path. Tags output by 

different paths at the same input location appear in an arbitraxy order. 

The problem wïth superimposing the output in the above manner is that we 

can no longer be sure about how to pair start and end tags. For example, suppose 

we start a match at position O, start another at position 1, abort the first match 

at position 2, and complete the second at position 3. In this case, dl we see in 

the superimposed output is two start tags followed by an end tag. There is no 

indication that the end tag can only be paired with the second start tag and not 

the first. We need to include extra information in the output string to interpret it  

correctly. This can be done by redefining the output alphabet: 

where a is the number of states in the NFA. Only start and end tags with the same 

subscript can be paired. When a path enters the NFA, it is assigned an unused 

subscript and a start tag with that subscript is output. The path then keeps that 

subscript until the match either aborts or completes. If it completes, then we 

output the end tag with the appropriate subscript. The number of subscripts in 

simultaneous use is bounded by deleting a path whenever two paths converge to 

the same state. Which path to delete depends on whether we are searching for 

shortest or longest matches. To make the decision, we need to keep a list that 

shows the order in which paths corresponding to each subscript began. Shen we 

keep the earlier starting subscript for longest matching, and the later starting one 

for shortest. 
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We have now constructed a left sequential transducer that is completely deter- 

mined from M. The first component of the state space for the sequential transducer 

is the reachable subset of the power set of Q, the state space of M. In addition, 

each state in Q is paired with a subscript when it is in the process of matching the 

NFA, and a list of matches in progress is stored to indicate the order in which the 

matches began. A state in the left-right transducer therefore consists of a subset of 

Q, a iist of subscripts associated with some of the states in this subset, and a list of 

subscripts that indicates the order in which the matches in progress corresponding 

to  those subscripts began. 

We now define the right sequential transducer that is composed with the left 

sequential transducer to implement the rational function for M. On reading an 

end tag, the right sequential transducer stores the subscript in its finite control 

and deletes al1 other start and end tags until i t  finds the paired start tag with the 

proper subscript. At that point it  removes the start tag from the finite control. 

Any start tag encountered when there is no end tag with the same subscript in the 

finite control is deleted. A11 other input is echoed from the input to  the output. 

There is a final detail when we are searching for shortest matches. Consider 

the case where we have an output gl, L C 2 ,  its, kl. Reading right to left on the second 

p a s ,  we encounter subscript 1 first and have no way of knowing that there is 

shorter match and that fl should be deleted. This is something that  we do know 

on the Ieft-right pass as soon as k2 is output. Therefore, whenever a shortest match 

completes in the left-right pass, we must delete any other matches in progress that 

may eventually output longer matches. This is a slight change to the construction 
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of the left sequential transducer. 

The general strategy exemplified by the above construction can be applied to 

any finite transducer that defines a rational function directly, or does so together 

with extra disambiguation rules that also define a rational function. The first step 

is to supenmpose the output of d l  paths through the finite transducer, adding 

any necessary information to distinguish between paths (e-g., the subscripts in the 

above example). The second step is to  implement the disambiguation rules to delete 

al1 outputs except for those of the single correct path. Any lookahead required by 

the disambiguation rules or the original finite transducer is implemented in the 

right sequential function, any lookback is irnplemented as an additional part of the 

left sequential function (e-g., the rule to delete matches in progress for a shortest 

matching type whenever a match completes). 

4.3 General, Multiple-Pass Parsing Models 

We can view a two-pas algorithm for calculating a rational function parser as 

one example of a more general parsing model that uses multiple passes, possibly 

more than two. The longest matching algorithm for regular expressions is another 

example of such a parsing rnodel that also uses two passes. 

In the general parsing model, the first pass inputs the string and outputs a 

region inventory, and the second pass inputs the region inventory and outputs a 

modified region inventory. We can also generalize to more than two passes by 

having every subsequent pass input the region inventory output by the previous 

pas ,  and output a new region inventory. 
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For both example pming  models, the first pass is lefi-right and the second 

is right-left. Extending to more than two passes we could malce the third left- 

right, the fourth right-left, and so on. That is, the direction alternates every pass. 

Alternatively, we could begin Mth a right-left pass and then alternate. 

One advantage of a parsing model that uses multiple passes in alternating di- 

rections is that it allows computation of functions that require lookahead by using 

individual passes that do not require lookahead. This is true with rational func- 

tions, for example, since the sequential transducers used to  compute left and right 

sequential functions are deterrninistic. 

A general, multiple-pass parsing model need not be limited to a finite state corn- 

putation model like a sequential transducer. If required, more powerful operations 

can be allowed, such as building a hash table of identifiers, or maintaining a queue 

or stack of symbols. The only restriction we assume on the computation is that 

it satisfy the efficiency bounds given in Section 2.2. Note that with multiple-pass 

models, reading and writing the intermediate outputs is part of the 1/0 cost. 





Chapter 5 

Algebra Design 

This chapter shows how to design region algebras for which we can efficiently eval- 

uate al1 possible expression graphs. Recall from Section 2.2 that efficiency in the 

context of batch parsing means at most O(on + crm) time, O(n + m + O )  I/O, 

and O(o) mernory. We propose an evaluation method that satisfies these bounds. 

We then characterize classes of functions that an algebra can include if al1 possible 

expression graphs are to be evaluated with this method. 

5.1 Interactive Efficiency 

Recall that we want interactive efficiency in addition to batch efficiency. Thus w e  

restrict every function so that it accesses O(n) regions. We do this by breaking 

the region inventory into subsets of size at most n that are used as arguments to 

functions. The subset mode1 that we initially assume is a flat (non-overlapping, 

non-nesting), sorted region list similar to that used in PAT (Salminen & Tornpa, 
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1992). All regions in a flat list have the same type, and can therefore be stored as 

lefi and right indexes only. A flat list contains at most n regions for a string of 

length n (this occurs only if there is one region for each character in the string). 

Zero length regions are not allowed. 

One reason for choosing a flat list representation is that it allows simple bounds 

on memory usage for the evaluation method described Iater in this chapter. Another 

reason is that functions operating on fiat lists are easy to define and understand. 

In particdar, we c m  define many functions that correspond exactly to those in 

typical structured query languages, 

A general disadvantage of a flat list representation is that i t  is more difficult 

to ensure, when the lists are dynarnic, that al1 regions fit into an overall structure 

mode1 such as a tree. This is not a limitation here since we are assuming that 

region inventories have no restrictions. 

5.2 String-to-Region Funct ions 

We start by considering functions that generate flat lists of regions from the input 

string. These are the only functions that do not take lists as arguments. Therefore, 

string-to-region function calls can never depend on each other in an expression 

graph. Al1 the leaf nodes of an expression graph should be string-to-region functions 

if the graph is to speci& a parser according to our extended definition. 



Substring Matching 

Matching functions find regions in the string that match a given pattern. The 

simplest form of pattern matching is finding substrings. For example, we can define 

the function  string s) to perform this operation. It finds substrings exactly 

matching s and returns them in a list. Note that the overall input string for the 

parsing process is an implied argument to MATCH(). TO ensure a flat result, some 

matches must be deleted in cases where there is overlap. The naturai way to do 

this is to select leftmost matches if the search is perforrned with a left-right pass, 

or rightmost matches if the search is performed with a right-left pass. 

For interactive use, we can evaluate a function like MATCH() either by scanning 

the string, or by using an index. This could be an inverted list or a PAT array, for 

example, depending on what kinds of strings we wish to find. For the batch parser, 

there is no advantage to using an index since substring scans are independent and 

can be performed simultaneously during the scan that would be needed to build 

the index. 

5.2.2 Regular Expression Matching 

Now consider matching functions that use regular expressions as the pattern lan- 

guage. For example, we can define M A T C H - S H O R T E S T ( ~ ~ ~ X ~  re) which firds short- 

est matches for the regular expression re, and MATCH-LONGEST(&~~XP re) which 

finds longest matches. Recall our discussion of shortest and longest regular expres- 

sion matching in Section 4.1. 

Shortest matching can be useful for finding structures that have known end- 
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points, but content that is not weU understood. For example, the expression 

abc.*def finds regions delîmited by closest pairs of the substrings abc and de f. 

This would be more complicated to do with longest matching since we would have 

to use a more specific description of the characters between the two endpoints to 

avoid absorbing abc or de f as part of the content. 

Longest matching is needed to perform the type of tokenizing done with pro- 

grarnming laquages. For example, the most natural way to find number tokens 

represented by strings of digits is to find longest matches for the regular expression 

Cz where Cd represents the set of digits. Longest matching can also be useful for 

finding strings that represent large structures to be broken up later, rather than 

just short, bottom-level tokens. So, for example, we could search for phrases of 

words consisting only of dphanumeric characters and spaces with the regular ex- 

pression ( C ,  ) Cs)+ where C ,  represents the set of alphanumeric characters and Cs 

represents the set of whitespace characters. 

We have the same choices for interactive and batch implementation as with 

substring matching. Interactively, we can use scanning as  dêscribed in Section 4.1, 

or an index (see, for example, Baeza-Yates (l989), Baeza-Yates and Gonnet (1996), 

and Manber and Wu (1993).) In batch mode we should use scanning since there 

are no dependencies and al1 matching can be performed simultaneously. 

5.3 Region-to-Region Functions 

We now consider functions that take lists of regions as arguments and return lists 

of regions as results. These can be cornposed to give expression graphs that have 



edges, unlike the case where only string-to-region functions are used. 

Recall that the output region inventory for an expression graph is the merge 

of al1 the find output lists. Similarly the input region inventory is the merge of 

al1 the input lists. For an expression graph that represents a paner, all input lists 

are outputs of string-to-region calls. However, the following discussion begins by 

considering expression graphs made up exclusively of region-to-region cdls. This 

means that the arguments to the leaf nodes in the expression graph are external 

inputs. 

Imagine that the input and output region inventories are one merged, sorted 

region inventory. Regions can be sorted primarily by left end or by right end (left- 

sorted or right-sorted). We do not consider the secondary sort order for reasons 

explained later. Suppose there are M regions in total. Then consider the following 

loop that iterates the regions in the sort order: 

for i fiorn 1 to hg 

process region i 

Processing a region involves outputting it if it is an elernent of the output region 

inventory, or buffering it if it is an input region that will be needed later. A region 

must be output immediately if it is to be output at d l .  Buffered regions can only 

be used to make decisions about outputting other regions. Therefore, the sort order 

of the output is the same as for the input. 

Suppose the loop buffers no more than O(a)  regions at a time where O is the 
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number of function calls in the expression. Then it uses O(c) memory. Assume that 

all input regions are generated while reading the string fkom secondary storage, and 

that all output regions are written to  secondary storage. Then the 110 is O(n+m). 

Finally, assume that M, the total nurnber of regions in both the input and output 

region inventories, is O(on + cm), and that each iteration of the loop uses 0(1) 

time. Shen the total time used by the loop is O ( m  + om). Overall then, an 

evaluation model based on this loop satisfies our efficiency requirements for a batch 

parsing model. 

Note that it is not necessary to  store an input region inventory directly as a 

single list of typed regions to use such a loop. Rather, we can store separate flat 

Iists and logically merge them while performing the loop. In the same way, it is 

possible to split the output into separate lists while executing the loop. One or 

both of these strategies mi& be appropriate depending on the form in which the 

input is available, and what form of output is needed. In particular, separate flat 

lists are the appropriate representation for using a region algebra interactively. 

Depending on the input sort order of the loop, we refer to  it as either a left- 

right deterrninist ic pass wi th  left-sorted inpu t ,  or a left-right de termin is t i c  pass with 

right-sorted input .  Here we are using the term determinis t ic  as an analogy with 

deterministic finite transducers: in the same way that a deterministic finite trans- 

ducer never needs to look ahead to a later character to choose which transition 

to take, a deterministic pass never needs to look ahead to a later region to decide 

whether to output the current region. Because of this restriction, such a pass can- 

not be used to evaluate arbitrary expressions. In the following sections, we explore 
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the properties of expressions that it can be used to evaluate. 

5.3.1 Structure Selection Queries 

We define a structure selection query Q(S, D) to be a function with two list argu- 

ments S and D that selects a subset of the regions fiom S according to a depen- 

dency on the regions in D. Structure selection queries are expressed in the form 

{s E S 1 C), where C is a boolean expression that consists of one or more clauses 

joined by the logical operators A and V, using brackets to  specify precedence. Each 

clause is of the f o m  (x O y) where x E {s.l,s.r}, E {=,<,>,#,~,~} ,  and 

y E (d.1, d.r), or more generally y is an arithmetic expression involving d.1 or d.r. 

The overall boolean expression C is qualified by either 3d E D or $d E D. 

An exarnple of a structure query is CONTAINED-IN(S,D) which returns {s E S 1 
3d E D (s.1 > d.1) A (s.r 5 d.r)}. This selects regions in S that are inside a 

region from D. Similarly, NOT-CONTAINING(S,D) returns {s E S 1 $d E D (s.1 5 

d.1) A ( s r  2 der)),  which selects regions in S that do not contain a region from 

D. An example of a function that uses a clause with an arithmetic expression 

involving d.l is STARTS-SOON-AFTER(S,D), which returns {s E S 1 3d E D (s.1 > 

d.r) A (s.1 < d.r + 100)). This selects s regions that have a left end less than 100 

characters after the right end of a d. 

Structure queries are well defined for arbitras- sets of regions, not just for flat 

lists. Therefore, another example of a query is the selection performed by the 

second p a s  of the longest matching algorithm. Let the query NOT-CONTAINED- 

IN() be {s E S 1 $d E D ((s.1 > d.l)  A (s-r 5 d.r)) V ((s.1 > d.1) (s-T < d - r ) ) } .  



This finds al1 d regions that are not contained inside of an s region, but does not 

treat a d region equd to an s region as being contained in it. Suppose we cal1 this 

function with both arguments equd to the set of potential matches generated by 

the first pass of the longest matching algorithm. The effect is to select the longest 

matches, Le., those that are not contained in any others. 

From this point on, we use the convention that,  unless otherwise specified, the 

arguments to a query are always named S and D. Furthermore, we assume that s 

is a region in S and d is a region in D. This allows us to specify query definitions 

unambiguously by writing just the constraint C- We also assume the presence of 

3d if no existentid qualifier is specified. For example, CONTAINED-IN() is written 

( 1  d l )  ( S .  d )  When we talk about more than one query at a time, or 

specific calls to queries, me introduce a subscript, and refer to separate queries as 

QI, Q2 etc. In this case, the arguments are SI, S2, . - -, and Dl,  D2, . - ., and regions 

from the arguments are SI, ~ 1 , .  -. and d l ,  4,. . .. 

We assume that any function included in a region algebra depends on al1 its 

arguments. For structure selection queries, this means that C must not be a tau- 

tology that aiways seIects s, nor a contradiction that  aiways fails to select it. We 

can efnciently recognize such a badly defined structure selection query: 

Lemma 4 Given a structure selection query defined b y a boolean expression C with 

m clauses, we can de temine  zuhether C is a contradiction o r  ta t~to logy in 0(m2)  

time. 

Proof: All clauses refer to points on the same domain (character po- 

sitions in the string), and compare either s.1 or s.r to some expression 



involving d.1 or d-r .  To be a valid query, there must be a t  least one 

assignment of s.1 and s-r making the expression true, and a t  least one 

making it  false. If there are m different clauses, then there are a t  most 

2m + 1 relevant assignment classes of s.1 or s-r to test. These are the 

m points that s.l and s.r are compared to, the m - 1 regions between 

them, the region from the start of the string to the first point, and the 

region from the Iast point to the end of the string. Thus there are ex- 

actly (221) + 2m + 1 assignments of interest. If al1 of these are true or 

false then the expression is a tautology or contradiction. 

The composition of a query Q1 with another query Q2 is found by passing the 

result of one cal1 as an argument to the other. So, for example, the statement 

Q2 (S2, Ql (SI, Dl)) means perform query Ql on Si and Dl, and then perform Q2 

on S2 and the result. 

Recall that the set returned by a query Qz is specified in the form {s2 E S2 1 CZ) 
where C2 is a boolean expression involving s2 and d2 with an existential qualifier 

on d2. When we compose two functions Q2 and QI by passing the result of QI as 

an argument to  Q2, the returned set is {s2 E S2 1 C2 A Cl) with al1 instances of s2 

and Sî replaced by sl and SI if the result of Q1 is passed as the first argument to 

Q2, or al1 instances of d2 and D2 replaced by sl and Sl if it is passed as the second 

argument. For example, the set returned by the composition NOT-CONTAINING(~~, 

CONTAINED- IN (SI, Dl)) is 
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where is the result of the CONTAINED-IN() cd1 and therefore a subset of SI. 

Thus we replace instances of d2 and LI2 by s1 and Sl to give 

For a query Q2 where the first argument is the result of a query Ql and the 

second is the result of a query Qo, the set specification is of the form {s2 E S2 1 

CZ /\ Cl A CO} Nith instances of sz and S2 replaced by sl and Si, and instances of 

d2 and D2 replaced by so and So. Applying these rules recursively, we can write 

out the set specification for the result of any query in an expression. 

We define the dependency expression for a set specification to be the boolean 

expression component with existential qudifiers removed. For a query Q, we de- 

note this E(Q). For euample, E(CONTAINED-IN) is (s.2 2 d.l) A (s.r < d . ~ ) .  

We denote the dependency expression for a query Q in an expression graph 

G, EG(Q). For example, E G ( ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ )  for the graph defined by NOT- 

CONTAINING(S~,CONTAINED-IN(S~ , Di)) i~ 

A dependency expression can be seen as a general description of the possible po- 

sitions of a d region that may affect whether a given s region satisfies a query. 
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For example, letting denote logicd implication, we can see that E(CONTAINED 

IN) + ( d - l  < sr) since s.1 5 s.r for any region. In other words, any d match 

relevant to the decision whether t o  keep a given s match must start before the s 

ends. 

Consider an expression constructed by composing only CONTAINEDIN() calls. 

We assert that this can always be evaluated using a left-rîght deterministic pass 

with Mt-sorted input. A CONTAINED-IN call never requires lookaheaà in this case 

since if a region s is contained inside another region d, then d is guaranteed to 

be read before s in left-sorted order. The amount of buffering required for each 

function call is a single region since, with flat lists, a d that contains a given s, if it 

exists, is guaranteed to the most recent d read. Therefore, exactly o regions need 

be buffered for an expression consisting of o CONTAINED-IN() calls. 

Now consider the function CONTAINING(S,D) defined as (s.1 5 d l )  A (sr 2 der) .  

This selects al1 regions in S that contain a region from D. Any expression composed 

exclusively of CONTAINING () calls can be evaluated using a left-right deterministic 

pass with right-sorted input, as we will show below. However, arbitrary expressions 

formed by composing CONTAININGO and CONTAINED-IN() calls can not always be 

evaluated with a left-right deterministic pass. 

Consider the regions shown in Figure 5.1. Suppose a must be contained in b, b 

must contain c, c must be contained in d and d must contain e. Suppose we iterate 

the list in left-sorted order: d, b, a, c, e. When we visit e we koow it should be kept 

since i t  has no dependencies. However, we do not know whether to keep d without 

looking ahead to the point where we visit e. By extension, we do not know whether 
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Figure 5.1: A list of regions related by both CONTAINED-IN() and CONTAINING(). 

to keep b, a, and c since they indirectly depend on e.  Now consider a right-sorted 

order: a, c, b, e, d. In this case, we read e before cl and therefore know to keep both 

of these regions. Hotvever, we read c before d and therefore do not know whether 

to keep it or a and b since they depend on c. 

In general, the problem is that arbitrary compositions of CONTAINED-IN() and 

CONTAININGO can require fookahead regardless of the sort order of the pass. We 

need i;o characterize the conditions under which an expression does not require 

lookahead. 

We start by considering individual queries that are not part of expressions. An 

individual query requires no lookahead if the decision to keep or discard a region s 

is always based on a region d that is read before s in the loop. 

Lemma 5 A single query Q requires no lookahead with left-sorted input iff E(Q) + 
(d-l < d). 

Proof: If E(Q) (d.1 c s.1) then the decision whether to keep a 

given s always depends on a d with an earlier left end. If the input 

is left-sorted, then this d is read before s- Therefore, no lookahead is 

needed. 



If no lookahead is required, then the d needed to decide whether to  keep 

a given s is read before that S. This means that E(Q) must relate s 

to a d that is guaranteed to  have an earlier left end. In other words, 

E(Q) + ( d J  < s.Z). 

For example, E(Q) for the query (s-Z > d.1) A (sr < d.r) implies that (d.1 < s.1). 

However, E(Q) for the query (s-r = d l )  makes no such implication. Therefore, we 

can evaluate the first query using a left-right detenninistic pass with left-sorted 

input, but not the second. 

If regions have equal left ends in a left-sorted input, then either we must make 

no assumptions about their relative ordering, or we have to  consider a s e c o n d q  

sort order to decide whether d cornes before s in the pass. We avoid this issue 

by assuming that regions with equal left-ends are read and buffered before any 

processing, meaning we can treat them as if they are read simultaneously. When 

using this strategy, the lemma is: 

Lemma 6 A single qvery Q requires no lookahead with left-sorted inpu t  if E(Q) 

(d.Z 5 s.1). 

The corresponding lemma for right-sorted input is as follows. Again, we assume 

that equd regions according to the sort order are read and buffered before any 

processing. The proof is similar to that for the last lemma. 

Lemma 7 A single query Q requires n o  lookahead with right-sorted input  iff 

E(Q) + (d-r  5 sx). 

We now consider multiple queries- We c m  evaluate al1 queries in an expres- 

sion graph G using a left-right deterministic pass iff for every query Q in G, the 
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dependency expression Eo (Q) does not imply lookahead. With lefesorted input, 

for example, EG(Q) must imply that (x.1 5 s.1) for every region x referenced in 

EG(Q). In other tvords, dl regions needed to decide whether a given s satisfies a 

query must be visited before S. Note that this assumes that every x list referenced 

in Ec(Q) actually does affect the result of the query, which follows directly fiom 

our assumption that hnctions depend on dl of their arguments. 

We now show that &(Q) implies no lookahead for every query in G exactly 

when E(Q) implies no lookahead for every query in G: 

Theorem 2 We can evaluate an expression graph G made up of structure selection 

querées using a left-right, deteminzstic pass with left-sorted input ififor every q u e q  

Q in G, E(Q) * (d.l 5 s.l). 

Proof: First we prove the necessity of the condition. If 3Q E G such 

that E(Q) + (d.l 5 s.l), then by Lemma 6, the query requires looka- 

head to calculate. 

Next we prove the suEciency of the condition through induction on h, 

the height of a query in G. For the base case of h = 1 (any single 

query Q), the dependency expression E(Q) implies (d-l $ s.1) by the 

requirement of the theorem and therefore requires no lookahead. The 

induction hypothesis is that any query of height at most h - 1 has a 

dependency expression &(&) that implies (x.2 5 s.l) for every x in 

Ec(Q). 

For the induction step, we consider a query Qo of height h. The induc- 

tion hypothesis applies t o  al1 descendants of Qo since they have heights 



less than or equal to h - 1. Now, build the dependency expression 

EG(Qo) in the usual way s tar thg with E(Qo) A Ec(Qr)  A Ec(Qr) where 

Q1 is the left child of Qo, and Q, is the right child of Qo, and replac- 

ing instances of so in E(Qo) by si, and instances of do by sr. Next 

we perform the induction step. We know that EG(QI) * (x.Z 5 si-1) 

for al1 x in EG(QI) by the induction hypothesis. Also, we know that 

EG(&,) * (y-l < s,.l) for al1 y in EG(Qr) by the induction hypothe- 

sis. Finally, by the condition of the theorem, we know that E ( Q o )  

(do-l 5 so-1) which, after the substitution, is E(Qo) ( S .  sL.l). 

Thus EG(Qo) * (1.1 5 s[-1)  for every x in Ec(Qo),  from which it fol- 

lows that the result of Qo can be calculated with no lookahead. 

Theorem 3 W e  can euûluate an expression graph G made up of structure se- 

lection queries using a left-right, deterministic pass with right-sorted input iff 

VQ E G, E(Q) * (d - r  _< s.T). 

Proof; The proof is of the same form as that of the previous theorem. 

Consider an application of the theorems. The queries (s.Z 3 d.I) /\ (sr 5 d . ~ )  

and (d.r = s.1) both imply (d-l  5 s-1), which is the condition of Theorem 2. The 

theorem therefore states that , using one deterministic p a s  with left-sorted input 

and left-sorted output, we can evaluate any expression graph formed by composing 

calls to these two queries, regardless of how large. 

We use the conditions of the theorems as the basis for a categorization of query 

functions. Henceforth, we refer to functions that satisfy E(Q) (d.1 5 s.1) as 
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Figure 5.2: Three overlapped regions. 

condition 1 queries f o r  a left-right p a s ,  and those that s a t i e  E(Q)  + (d.r 5 s-r )  

as condition 2 queries for a left-right pass. Note that a function can be in both 

categories. For euample, the function (d.r = s.1) is both condition 1 and condition 

2. 

Now consider a slight variation of the left-right deterministic pass. Suppose the 

input is left-sorted, but instead of outputting every region immediately in its left- 

sorted order, we buffer regions ternporarily so as to give a right-sorted output. For 

an individual query Q to require no lookahead in this case, it is necessary that al1 

regions on which s depends be read before s is output. That is, unlike the normal 

left-right deterministic pass, some of the regions s depends on may be visited afier 

s is visited. However, in this case, they must be visited during the time that s is 

buffered. Since s is read in its left-sorted position, and buffered until its right-sorted 

position, evaluating a query Q in an expression graph G requires that E(Q) implies 

( d l  S . )  1% cal1 a query that satisfies this implication a condition 3 query for 

a left-right p a s .  To evaluate a condition 3 query Q as  part of an expression graph 

G, &(Q) must imply (x.1 $ s r )  for all x regions in Ec (Q). 

It is not generally true that we can evaluate al1 queries in an expression made 
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up of condition 3 queries using a detenninistic pass with left-sorted input and right- 

sorted output. Consider the three regions in Figure 5.2. Suppose that s depends on 

di and di depends on d2. It is true that  ( d J  5 s-r)  and that (d2.1 5 di.r), but it is 

not tme  that (d2.1 5 s-r) .  Therefore, we cannot decide whether to keep s without 

using lookahead in a left-right pass with left-sorted input and right-sorted output. 

The problern is that the condition 3 implication is not transitive. Therefore, not all 

expressions composed of condition 3 queries can be evaluated using a deterministic 

pass- 

We can now state the conditions under which we know for sure that al1 expres- 

sions constructible using queries from a given region algebra are evaluable with a 

lefi-right deterrninistic p a s  with properly sorted inputs and outputs: 

Theorem 4 For a set Q of query functions, we can evaluate every expression 

f o m e d  with queries from this set using a left-right, deterministic pass with properly 

sorted input and output i f l  all functions are condition i or al1 functions are condition 

2. 

Proof: Sufficiency of the condition is established by the preceding the- 

orems. That is, Ive know that we can evaluate al1 expressions made 

up entirely of condition 1 or condition 2 functions using a left-right, 

deterministic pa s .  

To show the necessity of the condition, we prove that, given any set 

of functions that are not al1 condition 1 and not al1 condition 2 it  is 

always possible to construct an expression that requires lookahead to 

compute. This is true for a pass with left-sorted input and left-sorted 
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Figure 5.3: A situation that requires lookahead. 

output by Theorem 2, and true for a p a s  with right-sorted input and 

right-sorted output by Theorem 3. It is not possible for a pass to use 

right-sorted input and Ieft-sorted output since this may require that 

regions be output before they are read. The only remaining option is 

left-sorted input and right-sorted output. For al1 queries in a given 

expression graph G to require no lookahead with this option, Ec(Q) 

must imply (x.1 5 s.r) for every Q in G. 

Suppose we have a query QI such that E(Q1) * ( d l  5 s-1), and another 

query Q2 such that E ( Q 2 )  ï+ ( d . ~  5 s . r ) .  That is, QI is not condition 

1 (although it may be condition 2), and QÎ is not condition 2 (although 

it may be condition 1). Consider the composition Q2(S2> (QI (SI, Dl)) .  

For a region sl E S l i  the decision whether sl satisfies QI rnay require 

knowledge of a region dl  E Dl with di.l  > s1.l since E ( Q 1 )  + (d.1 < 
1 )  Similarly, the decision whether a region s2 E S2 satisfies Q2 rnay 

require knowledge of a region da E D2 with d2.r > s2.r since E(Q2) G+ 

( d .  s r )  Because D2 is the result of QI, which is a subset of SI, 

this means that determining whether s:! satisfies Q2 c m  depend on a 

region sl E Si where s1.r > s2.r. Thus we c m  have the situation shown 



in Figure 5.3. The decision whether sz satisfies Q2 is based on an  sl 

where (sl.r > s ~ . T ) ,  and the decision whether sl satisfies QI is based 

on a dl where (dl -1 > sl .l). Since these conditions are consistent with 

(dJ  > sz.r), we cannot calculate Q2 without lookahead. 

Now consider a right-lefi deterrninistic pass which visits regions in descending 

left-sorted or right-sorted order: 

for i from M to 1 

process region i 

Al1 of the preceding results can be adapted to this case: 

Corollary 1 For a set Q of que? functions, we can evaluate every expression 

formed with quen'es from this set using a right-left, deterministic pass with properly 

sorted input and output iff al1 functions Q E & satisfy E(Q) (d-r 2 s r )  or al1 

functions satisfy E ( Q )  + (d.1 2 s.1). 

Proof: The proof is symmetrically the sarne as Theorem 4, with al1 

occurrences of left and right swapped. 

We refer to functions satis*ng E(Q) + ( d . ~  2 s r )  as condition 1 quen'es for 

a right-left pass, and those satis%ing E ( Q )  + (d.1 2 s.1) as  condition 2 queries 

for a right-left pass. The classification of a function is not necessarily the same for 

passes in both directions. For example, (d.1 < s.1) h (d.r > s.1) A (d.r < s.r) is 

both condition 1 and condition 2 for a left-right p a s ,  but neither condition 1 nor 

condition 2 for a right-left p a s .  



CH-4PTER 5. ALGEBRA DESIGN 

In general, any structure selection query can be written as a set specification and 

then classified according to the implied order of s and d. For example, CONTAINED- 

IN() is condition 1 in either direction and therefore, according to the above results, 

we can evaluate any expression formed using CONTAINED-IN() queries with either a 

left-right deterministic pass or a right-left deterministic p a s .  Similarly, CONTAIN- 

ING() is condition 2 in either direction and we can evaluate arbitrary expressions 

with a left-right or right-left deterministic pas .  However, we cannot evaluate arbi- 

trary expressions formed by composing CONTAINED-IN() and CONTAININGO with 

a deterministic p a s  since this mixes condition 1 and condition 2 queries as in the 

example of Figure 5.1. 

Another exarnple of a query is INTERSECT(S ,D) ,-which perforrns set intersection, 

returning al1 regions from S that are also in D. The set specification is (s.1 = 

d l )  A ( s r  = d- r ) ,  which is both condition 1 and condition 2 in either direction. 

Another set query is SUBTRACT(S:D) which returns al1 regions from S that are 

not in D. The set specification is $d(s.l = d.d) A (sr  = d . ~ ) ,  which is also both 

condition 1 and condition 2 in either direction- 

As a final example, consider AFTER(), which has the set specification (s.1 = d.7). 

This finds ail regions in S that follow and abut a region in D. It is both condition 1 

and condition 2 for a left-right pass, but neither for a right-left pass. The opposite 

function BEFORE() with the set specification (s.r = d.1) is condition 1 and condition 

2 for a right-left pass, but neither for a left-right pass. 

Overall, if we have an algebra containing functions that are al1 of the same 

classification, then we can evaluate any expression formed with that algebra using 



a deterministic pass. For example, CONTAINING 0, INTERSECT() , SUBTRACT(), and 

AFTER() are d l  condition 1 in a left-right direction. Therefore, we c m  define an 

algebra consisting of just these functions, and evaluate any expression using a left- 

right deterministic pass with left-sorted input. Another example is the algebra 

consisting of CONTAINED-IN(), INTERSECT~,  SUBTRACT~,  and BEFORE() which 

are al1 condition 2 in a right-left direction. We can evaluate any expression in this 

algebra using a right-left deterministic pass with left-sorted input. 

The memory used to evaluate an expression with a deterministic p a s  is equal 

to the sum of the memory used to evaluate each query in the expression. Al1 the 

queries we have introduced as examples use constant memory, so the memory used 

to evaluate expressions made up of such queries is linear in the size of the expression. 

For general region inventories, the assumption that equal regions according to 

the sort order are buffered before processing may use arbitrary additional memory. 

However, for a region inventory that is a merge of k fiat lists, we have an upper 

bound of k regions that can share an endpoint. Since the number of lists in the 

input is linearly bounded by the number of queries in the expression, the overall 

memory usage therefore remains linear in the size of the expression. 

5.3.2 Region Generation 

Region generation functions take lists of regions and output new regions. This 

contrasts with structure query functions which simply return subsets of their argu- . 

ments. One paradigrn for region generation is to find pairs of regions satisfjhg a 

query, and calculate a new region from each pair. We define queries in the same 
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way as before, except that both s and d are returned to make a pair (s, d ) .  

A n  example of a region generation function is MERGEOVERLAPS(S,D). The 

query is {(s,  d)  ( ( s - l  < d-1) A ( s - r  > d.l) A (s-r < d- r ) } .  This finds (s,  d)  pairs where 

d overlaps s on the right. For each pair, MERGE-OVERLAPS() generates a region 

running from the start of the s to the end of the d. 

In general, the result of a query may be ambiguous in the sense that an s can pair 

with more than one d, or a d with more than one S. This requires a disambiguation 

rule. For example, the query { (s, d) 1 (s.l > d - r ) }  can pair each s with any preceding 

d. One way to disarnbiguate this is to specify that it pairs with the closest d. This 

can be specified as follows: {(s, d) 1 (s.1 > d.r) A ($sl (si -1 > d - l )  A (s l . l  < s.1)) .  

The limitations on region generation functions are closely related to those on 

structure query functions. Consider using a function that queries for (s, d )  pairs 

and generates g regions. We can express the relationship between g and s, and 

between g and d as dependency queries. For exarnple, MERGE-OVERLAPS~ has the 

dependency queries ( g  1 (g-1 = s.1) A (g.r > s-r))  and { g  1 (g.I < d.1) A (g . r  = d - r ) } .  

These dependencies can be classified as condition I or condition 2 in the usual 

way. For euample, both of the above are condition 2 for a left-right pas ,  meaning 

that generation of g regions is always based on regions that have already been read 

during a left-right deterministic pass with right-sorted input. 

We refer to a region generation function as condition 1 or condition 2 if both 

of the dependency queries are condition 1 or condition 2. Rom the results of Sec- 

tion 5.3.1 it directly follows that  a l  functions in an expression constructed from 

structure queries and region generation functions can be calculated with a deter- 



ministic pass iff every function is condition 1, or every function is condition 2. 

We can consider string-to-region functions to be region generation functions. 

Suppose that we view the string input to a stringteregion function as a list of 

regions, one for each character. Then MATCH(), for example, is a region generation 

function that finds a tuple of adjacent characters equd to a match, and generates 

a region running from the k t  character to the last character. Since the generated 

region contains al1 of the characters in the tuple, MATCH() is a condition 2 region 

generation function. This type of classification can be done for any function that 

generates regions based on characters in the string. 

5.3.3 General Functions 

We can now generalize beyond structure query and region generation functions. 

Suppose we have a function where the output of a region s always depends on some 

set D of other regions. Then we classifj- the function as follows: 

0 Condition 1 for a left-right p a s  if Vd Dy (d.l 5 s.1). 

Condition 2 for a left-right pass if Vd E Dy ( d . ~  < s . ~ ) .  

Condition 1 for a right-left p a s  if Vd E,  (d - r  2 s r ) .  

Condition 2 for a nght-left pass if Vd E Dy (d.1 2 s.1). 

An exarnple of a useful operation that is not a region generation or a structure 

query is finding the set union of two flat lists. The set union of two flat lists is not, 

in general, a flat list itself. Therefore, any fûnction we define h a  to return some 

subset of the entire set union. For example, we can include d l  regions fiom A in the 
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result, and all regions in B that do not nest or overlap a region in A. This subset of 

B can be found with a structure query: DISJOINT(B,A) = {b E B ( $a E A (b.1 < 

a.~) A (b.r > a.1). This approach has the nice property that regions from A always 

have priority in case of confiicts. Unfortunately, the query is neither condition 1 

nor condition 2 in either direction. A more symmetrïc alternative is to query both 

iists, always giving the first region encountered priority in case of codict.  In this 

case, the decision whether to output any a or b depends on whether there is any 

touching region of the other type with a smaller left end for a IeRright pas ,  or a 

greater right end for a right-left pass. This is condition 1 but not condition 2. 

There are also some useful variations of containment structure queries. For 

example, CONTAINING-N(S,D,~) fin& s regions that contain at least n d regions. 

Also, NTH-CONTAINED-r~(s,D,n) finds the nth s contained in a d. These are not, 

strictly speaking, structure selection queries according to our previous definition 

since they take an additional argument. However, they are still clearly condition 2 

and condition 1 functions, respectively. 

We can also generalize beyond functions that operate on flat lists. Requiring 

that al1 lists be flat is a simple way to ensure interactive efficiency, but there are 

other models such as overlapped lists, or even full tree models, that can be made 

efficient with appropriate design. The ability to evaluate any expression using a 

single deterministic pass can still be characterized in terms of the dependencies of 

the component functions. For example, a structure query that is possible with trees 

but not with flat lists is DIRECTLY-CONTAINING(). This returns an s instance that 

contains a d instance only if there is no instance of another type that is contained 



in the s and contains the d. This is only possible if regions other than those in S 

and D are availab1e to  the function, which is not the case with flat hts. However, 

the hnction is still condition 2, since any d that an s depends on has a less than 

or equal right end, and so does any other region that may contain the d and be 

contained in the S. Similady, we can define a function DIRECTLY-CONTAINED-IN() 

that is condition 1 and works for trees but not for flat lists. 

5.3.4 Constant Lookahead 

Consider a variation of a deterministic left-right pas :  a constant lookahead left-right 

pass has access to the next k regions in the input region inventory a t  the time when 

it rnake a decision whether to output the current region. If we compose two queries, 

each of which requires a pass with a constant lookahead of k regions, then the overall 

lookahead required may be as much as 2k. In general, an expression graph with 

depth d where every function requires lookahead k will require lookahead dk to 

evaluate. Thus, we can evaluate an expression composed of constant lookahead 

functions using a constant lookahead pas ,  but the constant depends on the size of 

the expression. 

In practice, there are not many useful functions that can be defined tc require 

constant lookahead in the region inventory- Therefore, we do not consider constant 

lookahead passes further. Deterministic passes are more useful for our purposes. 

Also, constant Iookahead passes are not strictly necessary since arbitrary lookahead 

can be achieved by using multiple passes in different directions as discussed in the 

next section. 
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5.4 Completely Composable Algebras 

When using an algebra to construct a parser interactively, the simplest situation 

for a user is if every possible expression graph can be evaluated efficiently. In this 

case, the user does not have to worry about rules or limitations on how function 

calls can be composed, and we Say that the algebra is completely composable. 

Suppose that we want an algebra that is completely composable when using 

a single-pass evaluation method, either left-right or right-left. Accordiag to the 

previous results, we must include only condition 1 functions or only condition 2 

functions in the algebra. Also, we rnust include a t  least one string-to-region func- 

tion to occupy the leaves of the expression graphs. Al1 the useful string-to-region 

functions of which we are aware are condition 2. This means that al1 functions 

in the algebra must also be condition 2. An algebra of condition 2 functions is 

therefore our only option if we want a single pass evaluation method. 

A second option for a completely composable algebra is to evaluate string-to- 

region function calls with a first pass (either left-right or right-left) and al1 region- 

to-region calls with a second pass. In this case, the functions that we evaluate with 

the second pass can al1 be condition 1, or al1 condition 2. If we choose condition 1, 

then we can include a generaI longest matching function since the second pass of the 

general longest matching algorithm for regular expressions is a condition 1 structure 

query (NOT-CONTAINED-IN()). Note that if we do include general longest rnatching, 

then the second p a s  must be in the opposite direction to the first. Otherwise, this 

is not necessarily a requirement. 

The output sort order of a p a s  must be the sarne as the input sort order of 
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the next p a s  in a multiple-pas evaluation model. Therefore, for example, if we 

output right-sorted regions (as all left-right string-to-region functions do) then the 

next pass must use right-sorted input. However, we can easily convert a region 

inventory from right-sorted to Ieft-sorted input by buffering regions when they are 

read and processing them only when we reach their lefi-sorted positions. If a region 

inventory is made up of k flat lists, then this strategy buffers at most k regions at 

a time. Therefore, Ive have four options for the second pas:  it c m  be left-right 

left-sorted, left-right right-sorted, right-left left-sorted, or right-left right-sorted. 

However, there is no benefit in using the same direction and sort order for both 

the first and second pas ,  If we do this, then the second pass cannot evaluate 

anything more than the first. Therefore, assuming the first pass uses string-te 

region functions, there are a total of six useful two-pass combinations: 

1. First pass left-right with right-sorted output; second right-left with right- 

sorted input. 

2. First pass left-right with right-sorted output; second right-left with left-sorted 

input. 

3. First pass left-right with right-sorted output; second left-right with left-sorted 

input. 

4. First pass right-left with left-sorted output; second left-right with left-sorted 

input. 

5. First pass ri&-left with left-sorted output; second left-right with right-sorted 

input. 



6. First pass right-left with left-sorted output; second right-left with rïght-sorted 

input. 

Remernber that the sort order of a p a s  determines whether it c m  evaluate condition 

1 or condition 2 functions. Also, recall that condition I and condition 2 mean 

different things depending on the direction of the pass. Therefore, every one of 

the above two-pass combinations corresponds to a different class of completely 

composable region algebras, 

5.5 Stratified Algebras 

The disadvantage of completely composable algebras is that the allowed functions 

are Iimited. For example, we cannot include both condition 1 and condition 2 

structure queries. We now consider possible ways of loosening this requirement. 

One possibility is to calculate dynarnically how many passes are needed to find 

the result of any given function call in a n  expression, and disallow an expression if it 

requires too many. For exarnple, an expression containing condition 3 function calls 

can be calculated in a single pass in some situations but requires more in others. 

Assuming it is possible to calculate the required number of passes efficiently, this 

approach could be used to decide dynamically how many passes are needed by a 

given call. The trouble is that not knowing whether functions can be composed in 

certain ways until after trying them is confusing to the user. Therefore, some way 

of pre-calculating this information and representing i t  is needed. 

We propose an approach based on breaking the algebra into a small, ordered 

list of strata. A function call from one stratum can only be passed the resuIt of a 
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function cal1 fkom the same stratum or an earlier one. For example, consider a two 

strata model. Then every path through a legal expression graph that starts a t  an 

arbitraxy node and continues to a leaf must p a s  through zero or more calls from 

the first stratum followed by zero or more calls from the second. 

If we can evaluate any expression formed from the functions in a single stra- 

tum using one deterministic p a s ,  then we can partition the expression graph by 

removing al1 edges that start at  a function from one stratum and end at a function 

from another. Thereafter, we can evaluate each of these partitions with a single 

pass since each is formed using a cornpletely composable âlgebra. The pass corre- 

sponding to the first stratum inputs the string, and al1 subsequent passes input the 

output of the previous pass. In other words, we evaluate al1 calls to functions from 

the first stratum in the first pass, al1 calls to functions in the second stratum in the 

second pass, and so on. 

Having two strata allows us to mix condition 1 and condition 2 functions in 

a limited way. For example, condition 2 queries and region generation functions 

can be included in the first stratum along with functions like MATCH-SHORTEST() 

(which is a condition 2 region generator). Shen, the second stratum can include 

condition 1 query functions. Generally, we can have more than two passes and a 

separate stratum for each one, alternating condition 1 and condition 2 functions 

for each successive class. We give an example of a useful two-strata algebra in the 

next chapter. 
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5.6 Restrict ed Mat ching 

Some single function calls require more than one pass to cornpute. For exarn- 

ple, MATCH-LONGEST() requires two passes to find general longest matches. One 

way to view such a function when part of a stratified algebra is as a composition 

of two functions in adjacent strata. For example, in a ho-stratum algebra, we 

can view MATCH-LONGEST() a s  a composition of NOT-CONTAINED-IN() and a new 

function MATCH-POTENTIAL-LONGEST() which finds the output of the first pass 

of the longest matching algorithm. In a stratified algebra, for example, MATCH- 

POTENTIAL-LONGEST() codd be part of the first stratum and NOT-CONTAINED- 

IN() could be part of the second stratum. We now consider a class of functions that 

generalize the two-pass longest matching algorithm by allowing arbitrary structure 

queries between mat ches for diEerent expressions. 

Consider searching for matches for a regular expression r and requiring these 

matches to satisfy a structure query. The simplest way to do this is to  perform a 

regular expression search folloived by a query on the result. We are interested in 

something slightly different, however: having the query affect the search itself. For 

example, suppose we define a function MATCH-SHORTEST-INSIDE(T, A) that finds 

shortest r matches that are inside a region in A. Calling MATCH-SHORTEST() fol- 

lowed by CONTAINED-IN() does not do the same thing since it may miss some 

matches that MATCH-SHORTEST() discards as overlaps. If MATCH-SHORTEST() 

keeps leftmost matches, for example, then it misses a match inside an a if it  has 

another match overlapping it on the left that is not inside an a. 

Now suppose that we wish to search for A matches using a regular expression 



at  the same tirne as we search for matches for r.  This is the type of problem we 

examine in this section: simultaneously searching for multiple regular expressions 

that depend on each other according to queries. It is simple to search for multiple 

expressions simultaneously when they do not depend on each other. However, as 

we will see below, there are possibilities for eEciency probIems with simultaneous 

restricted searches. 

The general approach we propose is to find potential matches using a first pa s ,  

then filter them to satisfy any queries with a second pas .  This gives us more 

fieedom than performing independent matches with a first pass and querying with 

a second since a list of potential matches need not be fi&. The only restriction on 

the list of potential matches is that its size be at most linear in the length of the 

string- 

Consider MATCH-SHORTEST-INSIDE(). We can always guarantee a Iinear num- 

ber of potential outputs with this function, regardless of the other matches that 

they depend on. In the worst case, we need only output al1 shortest matches, 

including any overlaps. This is Iinear even though it is not flat. 

Now consider a function MATCH-LONGEST-INSIDE() that searches for longest 

matches inside other matches. Suppose we simultaneously search for unrestricted b 

matches using an NFA B, and longest a matches inside b matches using an NFA A. 

Using the normal matching algorithm, the number of b matches in progress, and 

therefore the memory used, is bounded by the number of states in B. However, 

in this case, we c a n o t  bound the number of a matches in progress by the number 

of states in A. Figure 5.4 illustrates the situation where we have two b matches 
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Figure 5.4: We want to discard one a, keeping the longest that is inside a b. It is 
impossible to know which one to discard, since we do not know if the longer b will 
complete. 

in progress and two a matches in progress, each of which starts inside a different 

b match in progress. Suppose that the two a matches in progress converge to the 

same state in the A NFA at  the point x. For unrestricted matching, we would 

be able t o  choose the longer one. However, in this case, we do not know whether 

one or both of bl and b2 will cornplete. If we keep only al and b2 completes but 

bl does not, then we have missed the longest match inside of b2.  In general, the 

number of a matches in progress that we need to keep can be as high as IAl times 

IBI. Now suppose we wish to sirnultaneously find the potential matches for a chain 

of k MATCH-LONGEST-INSIDE() calls with NFAs of size SI, s*, . . . , sk. Then uses 

O (sIs2 . sk) mernory. 

So why does shortest matching inside of other matches mork, but not longest 

matching? There is an important relationçhip here between shortest matching 



and the CONTAINED-IN () structure query. When searching for shortest matches 

inside other matches, the decision to always choose the shortest match when paths 

converge or matches cornplete at the same location is never wrong. This is easy to 

prove: if a region a is inside a region b, then any shorter region a* inside of a is 

also inside b. This property is not true for a longer match al that contains a: al is 

not necessarily inside b just because a is. So searching for shortest matches inside 

other matches is efficiently possible but searching for longest matches is not. 

Queries also exist for which we c m  efficiently search for longest but not for 

shortest matches. Suppose we require a match to contain a match of another type 

(Le., the CONTAINING() query). If a region a contains a region b, then any longer 

match al that contains a also contains b. However, a shorter match a0 inside a does 

not necessarily contain b. Therefore, the hinction MATCH-LONGEST-CONTAINING() 

can be efficient but MATCH-SHORTEST-CONTAINING() cannot. 

To bound the memory used for any kind of matching, we need to be able to 

bound the number of matches in progress that must be stored at any one time. Tu 

bound the number of matches in progress, we must be able to choose which ones to 

keep and which to discard when we have too many. We cal1 a way of making this 

choice a lznearization rule. 

Note that longest and shortest matching are more than just linearization rules. 

They also tell us how to choose between potential matches so that our final result 

is a non-nesting list. A linearization rule by itself only says how to choose between 

matches in progress. From now on, when we refer to shortest or longest matching 

as linearization rules, we mean only the linearization rule component. 
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When we enforce a bound on the number of matches in progress, we automati- 

cally b m d  the number of potential matches. That is, if we have at most c matches 

in progress at once, then no more than c complete at every input character. Thus 

the maximum number of potential matches is cn. With automaton matching, this 

immediately guarantees an output of at most n potential matches. Since any NFA 

can be written with a single final state, matches in progress must always converge 

to that single state before they complete. Therefore, at most one completed match 

- is output for each input character. 

In general, choosing permissible linearization rules for restricted rnatcbing needs 

to take into account both the matches in progress among which the choice is tu be 

made, and information about other matches. As shown above, this is possible for 

some combinations of restrictions and linearization rules, but not for others. For 

example, we can perforrn shortest matching inside other matches, but not longest 

mat ching. 

Let an anchor be a position in the string referred to by the right hand side of 

a clause in a query. For example, suppose we have two d regions (1,2) and (5,6),  

and a query (s.1 5 d l )  A (s- r  2 d-r c 5). Then the anchors for the first clause are 

the two d.1 points: 1 and 5. The anchors for the second clause are 7 and 11, the 

two points matching d.r + 5. 

The general problem we are interested in is this: we wish to scan for matches 

that depend on anchors through a query, but when we apply a linearization rule 

to choose between matches in progress, we may only know potential locations of 

anchors, any of which can disappear. We Say that a query and a iinearization rule 



Figure 5.5: We want to  choose between si and s2. 

are compatible if the linearization rule never discards a match in progress that might 

turn out to be the correct choice if any or al1 of the potential anchors disappear. 

We now present results regarding compatible queries and linearization rules: 

Theorem 5 Consider a search that depends on a set of anchors Y according to a 

W ~ W  Q- If 3 ~ 1 ,  y2 E Y S U C ~  that E(Q) + (y1 5 s.2 5 y2) A E(Q) =e (s-r < - y,), 

then no linearization rule is compatible &th Q.' 

Proof: Suppose we need to choose between two matches in progress sl 

and s2 as depicted in Figure 5.5. Let yl. y2 be two potential anchors 

such that  y1 5 s1 5 y2 is necessary for sl to  satisfy the query. Similarly, 

s2 satisfies the query only if y; 5 sz 5 y;. Suppose sl and s2 converge 

to the same state a t  position x in the string. (This can happen before 

s i  and S* complete since E(Q) e (s.r 5 y2).) Given that any potential 

anchor rnay disappear, we have no way of choosing between sl and s;! 

'Note that (s.1 = y) is quivalent to (y s.1 5 y). 
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that is guaranteed to be correct. Therefore, no lineaxization rule is 

compatible with Q. 

Theorem 6 Consider a search that depends on anchors in Y according to a query 

Q for which the condition of Theorem 5 does not apply (ie., Vyi, y2 E Y, E(Q) G+ 

(YI I S J  I ~ 2 )  V E(Q) * (s-r < - ~ 2 ) ) -  

1. If 3y E Y such that E(Q) =. (s.l 2 y)  then shortest rnatching zs the only 

linearization m l e  compatible with QI 

2. If 3y E Y such that E(Q) + (s.l 5 y) A E(Q) .B (s.r 5 y), then longest 

matching is the only linearization rule compatible with Q. 

Proof: For case 1, s.l must be somewhere to the right of an anchor y. 

Suppose we have a set of potential y points, and matches in progress 

beginning at si and sa where s2 is to the right of SI. Then no matter 

what subset of the y points disappears, if sl satisfies Q then this implies 

that s:! does also. However sz satisfying Q does not imply that sl does. 

In other words, the only possible cases are for neither sl nor s:! to satisfy 

Q, for both to satise Q, or for just s;? to satise Q. Therefore, the only 

choice that is guaranteed not to discard a correct match in progress is 

sp, which is the rightmost and therefore the shortest. 

If both sl and s:! are to the right of al1 potential y points, then it does 

not matter which we choose. However, shortest matching is the only 

linearization rule that consistently chooses the same way every time, 

regardless of y points. 



Case 2 is similar to case 1. If s.1 can be anywhere t o  the left of a y 

point, then the only way to never discard a correct match in progress 

is to always choose the leftmost. Again, it does not matter which we 

choose if sl and s2 are both to the left of all potential y points, but we 

require a consistent linearization rule. 

Corollary 2 If none of the conditions of Theorems 5 and 6 apply, then any Zin- 

earization rule zs compatible with Q. 

Proof: Neither of the previous theorems apply if Vy 'y Y, (E(Q) * 
(s.1 5 y )  A E(Q) (s.1 2 y)) V E(Q) + (s.r 5 y). In other words, 

either there is no restriction on s.2, or s.l is never restricted except by 

anchors that occur after the match completes. In either case, it does 

not matter how we choose between matches in progress. Therefore, we 

can use any linearization rule. 

Consider some examples of compatible queries and linearization rules. - The 

query (s.1 > d.1) A (s.r 5 d.r) is used by MATCH-SHORTEST-INSIDE().  According 

to the theorem, this is only compatible with shortest matching, which agrees with 

our previous conclusion. The query (s.1 5 d.l) A (s.r 2 d - r )  is used by MATCH- 

LONGEST-CONTAININGO and is only compatible with longest matching according to  

the theorem, again in agreement with Our previous conclusion. The query (s.r = d.1) 

has no a-l clause and is therefore compatible with any linearization rule. The query 

(s.1 = d.r) is not compatible with any linearization rule, and neither is (s.l > 

d.1) (s.1 < d.r). As an example of a distance query, (s.1 > (d.l+ 10)) h (s.r 5 d.r) 
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requires that an s match start at least ten characters after the start of a d match; 

this is only compatible with shortest matching. 

Corollary 3 The rules for determining compatible 1.inearization rules for a struc- 

tural restriction are valzd even i f  the potential anchors are completely unknown when 

ecre apply a linearizdtion rule. 

The proofs of the theorerns are equally valid if anchors can arbitrarily appear 

as well as disappear. Therefore, for compatible linearization rules and queries, we 

can find a h e m  sized list of potential s matches before we know mything about 

the points to which the restrictions refer. We simply find and output al1 potential 

matches as if performing unrestricted matching, and then filter them later when we 

know the anchors. 

Corollary 4 The theorems apply t o  right-left scanning as well i f  we replace every 

instance of s.1 by sr, s.r by s.l, < by >, and > by <. 

This is true by the symmetry of the proof and means that, just as queries may be 

of different types (Le., condition 1 or condition 2) for left-right and right-left passes, 

they rnay also be compatible with different linearization niles. For example, the 

query (s.1 = d.1) is compatible with any linearization rule with left-right scanning 

but is not compatible with any with right-left scanning. 

Overall, the results in this section characterize the conditions under which we 

can efficiently search for several regular expressions simultaneously when they de- 

pend on each other according to structure queries. Efficiency in this case rneans 

that there is at most one match in progress a t  a time for each state of each NFA, 
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and a t  most n potential matches are output for each regular expression. Recall that 

this is only an issue if we wish to  have the queries affect the searches themselves. 

It is trivial to simultaneously search for several regular expressions simultaneously 

if the searches are performed independently. 

RecalI that we intend for a second pass to be used to choose between the po- 

tential matches output by the first pass. Cornpatibility between a linearization rule 

and a query does not mean that  we can completely evaluate the query during the 

scan, just that we do not discard any regions in error. Evaluation of queries using 

a second pass is subject to the sarne rules detailed in previous sections. That is, 

they must al1 be condition 1 or al1 condition 2 if we wish to  use a deterministic p a s  

with properly sorted input and output. 

5.7 Summary 

In this chapter, we proposed a batch evaluation rnethod for expression graphs that 

satisfies the efficiency bounds given in Section 2.2. The method uses a deterministic 

pass that iterates both input and output region inventories as one sorted list. This 

leads to a natural classification of functions according to how their dependencies 

relate to the sort order. We have examined several types of functions in detail, 

including structure selection queries, region generation functions, and restricted 

rnatching functions, and also considered more general functions. 

The main result in this chapter describes the design of completely composable 

algebras, that is, algebras for which we can evaluate al1 possible expression graphs 

using the proposed method. We also examine the idea of stratified algebras that 
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miu functions of different classifications. The tradeoff that makes this possible is 

that these algebras incur restrictions on how expression graphs can be constructed 

if the number of passes required for evaluation is to be controlled. 



Chapter 6 

Example 

6.1 An Algebra 

We now describe a small algebra as an esari~  pl^. The functions are listed in Table 6.1 

along with their classifications as either condition 1, condition 2, or both, for left- 

right and right-left p a s  directions. Descriptions of each function follow. There are 

two matching functions: 

0 MATCH-SHORTEST() is as defined previously. It keeps nghtmost matches in 

the case of overlaps. 

O MATCH-LONGEST() is as defined previously. It only accepts regular expres- 

sions that require a t  most one character of lookahead. 

The following are query functions: 

0 UNION~(S,D) uses the query $d (s.1 < d.1) /\ (sr > d- l )  to select s regions 

that do not have touching d region with a later left end. It uses the query 
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Name 
MATCH-SHORTEST 

MATCH-LONGEST 

 UNION^ 
CONTAINING 

NOT-BEFORE 

NOT-SAME-START 

 UNION^ 
SUBTRACT 

NOT-OVERLAP-AFTER 

CONTAINED-IN 

NOT-CONTAINED-IN 

AFTER 

FIRST-AFTER 

PAIR-STARTS 

CUT 

PAIR-REGIONS 

Table 6.1: The functions of the example algebra, and their left-rïght and right-left 
classifications. 

$s(d.l 5 s.l) A (d-r  > s.l) to select d regions that do not have a touching s 

region with an equal or later left end. The result of a  UNION^() cal1 is the set 

union of the results of the two queries, which is a flat list. 

CONTAINING() is as defined previousiy. 

NOT-BEFORE(S,D) finds s regions that do not occur irnmediately preceding a 

d region. The query is $d (sr = dl) .  

NOT-SAME-START(S,D) finds s regions that do not share a left end with a d 

region. The query is $d(s.l = d.2). 

UNION~(S,D) uses the query $d (s.2 > d l )  /\ (s.1 < d - r )  to select s regions 

that do not have a touching d region with an earlier left end, and the query 



3s (d.1 3 s.1) A (d.1 < s r )  to select d regions that do not have a touching 

s region with an equal or earlier left end. The result of the  UNION^() c d  is 

the set union of the results of the two queries, which is a flat list. 

O SUBTRACT() is as defined previously. 

0 NOT-OVERLAP-AFTER(S,D) finds s regions that do not overlap after a d. The 

query is $Id (s.l > d.1) A (s-1 < d.7) A (s.r > d . ~ ) .  

O CONTAINED-IN( )  is as defined previously. 

O NOT-CONTAINED-IN()  is as defined previously. 

O AFTER(S,D) finds s regions that immediately follow a d region. The query is 

3d (s.1 = d.r). - 

FIRST-AFTER(S,D) finds the first s following each d region. This uses the 

query 3d ( S .  > d )  A ( s  (sl . l  > d . ~ )  A (sl.l < s - l ) ) .  

The follonring are region generation functions: 

PAIR-STARTS(S) generates a region from the beginning of every s to the be- 

ginning of the next S.  One additional region is also generated from the start 

of the last s to the end of the string. 

O PAIR-STARTS(S,D) finds closest pairs (s ,  d )  using the query (3d (s.r < d.1)) A 

(as1 (si.l > s r )  A (si.l < d.1)). For each such pair, i t  outputs a g from s.l 

t o  d.1- 



CUT(S,D) For every s, if there is a d overlapping it on the right, then this 

function outputs a region from s.l to  d.1. Otherwise, i t  outputs s unchanged. 

MERGE-ADJACENT(S) For every SI, sl E S such that sl.r = s2.1i this generates 

the region (si.l, s2-T).  

Note that there are no restricted matching functions in this example algebra. 

Now consider the parsing model implied by this algebra. Since it contains both 

condition 1 and condition 2 functions, i t  must use more thaa one stratum. Recall 

that matching functions must always be the leaves of an expression graph. This 

implies that they must be part of the first stratum. Since matching functions are al- 

ways condition 2, this means that  the first stratum must consist entirely of left-right 

condition 2 functions or right-left condition 2 functions. Looking at the chart, we 

can see that some of the functions have been defined so that they are only condition 

2 for a right-left pas .  Therefore, we make al1 of the first stratum functions right-left 

condition 2 so that these functions can be inciuded. The first stratum consists of 

MATCH-SHORTEST, MATCH-LONGEST, UNIONI, CONTAINING, NOT-BEFORE, NOT- 

SAME-START, SUBTRACT, PAIR-STARTS, CUT, and MERGE-ADJACENT. 

Examining the remaining functions, we see that they al1 have the left-right 

condition 1 classification in cornmon. Therefore we group UNIONS, NOT-OVERLAP- 

AFTER, CONTAINED-IN, NOT-CONTAINED-IN, AFTER, and FIRST-AFTER int0 a sec- 

ond stratum. 

Overall, the given algebra is divided into two strata, and has a two-pass parsing 

model. The first pass is right-left and outputs a Left-sorted region inventory. The 

second is left-right and inputs and outputs a left-sorted region inventory. 
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6.2 OED Bibliography 

As an example of applying the algebra described in the previous section, we compare 

two ways of parsing the Oxford English Dictionary bibliography. An excerpt from 

this data is shown in Figure 6.1. The first parser is specSed with an WR grammar 

(Johnson, 1983); the second uses an algebra specification. 

6.2.1 The INR grammar 

The INR grammar was developed by two different people. The first version was 

written to find the author, title, and date fields for use in an exploration of auto- 

matic citation resolution (Townsend, 1989). It was not important for this purpose 

that the parse be especially good, only that it find enough fields to give some data 

for experiments. 

The second version of the grammar, which we use here, was an attempt to 

improve the first. It is stiIl quite simplistic and has many problems. Of the 17,444 

entries in the bibliography, it parses 15,410 (about 88%). Of those that it does not 

parse, 838 are not included in the language defined by the grarnmar, thus causing 

the parser to abort and recover starting at the next entry. Another 1196 are parsed 

by recognizing everything as junk rather than finding any interna1 structure. There 

are also many errors in the 15,410 entries that it does parse. 

The complete grammar is below. Each production begins with a name, and is 

followed by an equals sign which separates the left-hand side from the right-hand 

side. Every production ends with a semi-colon. Right-hand sides are expressed in 

a notation similar to regular expressions. The plus (+) , star (*) , question mark (?) , 



<E><CR>+SC A. +CR +R 1593 See +I Passionate Morrice +R </CR> 
<E>+SC A., +R A. +NR +I Reply to Dr. Sanderson +R 1650 
<E>+SC A., +R D. +NR +I The art of converse +R 1683 
<E><CR>+SC A., +R H. +CR 1613, 1633 +I See +SC Austin, +R Henry; +SC 
Haukins, +R Henry</CR> 
<E>+SC A., +R W. +NR +I A speciall remedie against the furious force 
of lavlesse loue +R 1579 (Roxb. Cl. 1844) 
<E>+SC 'Aarons, +R E. S.' (Paul Ayres &amp. Edvard Ronns) +NR +I 
Assignment treason +R 1956 
<E>+SC Abbay, +R Richard +NR +1 The Castle of Knaresborough +R 1887 
<E>+SC Abbot, +R Charles +NR +I Jurisdiction and practice of the Court 
of Great Sessions of Wales on the Chester Circuit +R 1795 
<E>+SC Abbot, +R Abp. George +NR +I A briefe description of the uhole 
uorlde +R (anon.) 1599 (1617, 1634) +BS An exposition upon the prophet 
Jonah +R 1600 +BS A treatise of the perpetuall visibilitie and 
succession of the true church +R (anon.) 1624 
<E>+SC Abbot, +R George +NR +I The uhole book of Job paraphrased +R 1640 
<E>+SC Abbot, +R Robert +NR +I The old vaye +R 1610 
<E>+SC Abbott, +R Charles C. +NR +I Waste-land vanderings +R 1887 
<E>+SC Abbott, +R David +NR +I Inorganic cheznistry +R 1965 
<E>+SC Abbott, +R Edwin A. +NR +I Francis Bacon: an account of his 
life and vorks +R 1885 
<E>+SC Abbott, +R Jacob +NR +I Wallace: a Franconia story +R 1853 
<E>+SC Abbott, +R John Henry Macartney +NR +I Tommy Cornstalk +R 1902 
<E>+SC Abbott, +R John S. C. +NR +1 Life of Napoleon +R 1854 (1855) 
<E>+SC Abbs, +R Akosua +NR +I Ashanti boy +R 1959 
<E>+SC Abdy, +R Edward S. +NR +I The uater cure +R 1842 (1843) 
<E>+I Aberbrothoc. Liber S. Thome de Aberbrothoc. Registrorum Abbacie 
de Aberbrothoc pars prior ; pars altera +NR +R v .d. (Bannatyne 
Cl. 1848, 1856) 
<E>+SC Abercrombie, +R David +NR +I English phonetic texts +R 1964 +BS 
Problems and principles: studies in the teaching of English as a 
second language +R 1956 

Figure 6.1: AI; excerpt from the OED bibliography data. 
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and alternation ( I ) symbok have their usual meanings. Curly brackets C) are used 

to enclose a set, the members of which are separated by commas (which, thus, also, 

rneans alternation in this context). 

This grarnmar describes a transduction which outputs a modified form of the 

input text. In general, transduction differs from simple recognition, but in this case, 

the grammar only echoes the text unchanged except for the insertion of SGMLstyle 

tags around recognized elements. A single set of square brackets enclosing a string 

denotes writing that string to standard output. Thus, for example, C ' CD> '1 a t  the 

beginning of the date production inserts that tag at  the beginning of any recognized 

date. The output CRESTART] is intercepted by the interpreter rather than being 

output. It denotes a position from which to start re-parsing when there is an error. 

Double square brackets have a special meaning that is used to implement a 

font-checking mechanism. The outputs C Cwrl 1 and C Crrl 1 are assertions, short 

for "write roman" and "read roman". Similarly, C Cui] 1 , [ Cri3 1 , 1 [us] 1 , C [rs] 1 

are corresponding assertions for italics or small caps. The grammar makes a "write" 

assertion when it finds a code that signals a switch to a different font. For example, 

w r  is used when it finds +R or +DM. I t  uses a read assertion when i t  needs to check 

that it is in a given font. For example, rr is used to check that it is in a roman 

font. The last two productions of the grammar define this behaviour. The conf orm 

production describes a language where any nurnber of read assertions in a given 

font can follow a write assertion for that  font. The last production then uses the 

composition (O) operator to require that al1 the assertions made in the other parts 

of the grarnmar conform to this language. 
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roman 
ibreak 
italic 
SC 

bs 
nr 
Cr 

m2 
dm 

blank 
nl 

see 

digit 
UC 

lc 
spec 

entref 
pretag 
unit 
letter 

nonwhit e= 
anything= 

notvord = 
vord - - 
anytext = 
letword = 

letext = 

- year - 
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'8' (uc, Ic, digit, spec)* '. '; 
{><i>~,'</i>~ ,J<~~>J,J</~~>','<ed>>,J</ed>J,'<R>','</R>J>; 
(entref , pretag,nl> ; 
{uc , lc ,unit) ; 

(anything* {nl , ' CE> ' , ' 3 anything*) ? ; 
notword:acomp; 
vord (blank word) *; 
{(vord? letter word?)+, digit digit?); 
(letuord blank) * letuord; 

(<'v.dJl<'iJ digit, J7',J8','9'){digit, >.'){digit, '.>)) 
<J - > , P / , J  , J , J.' , ,digit,'etcJ)* )+; 

(roman > ? )  ' '?)? (italic C'a', 'c ' )  blank)? roman yearstr; 
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date - - 

bl - - 
badword = 
badtext = 

text - - 

yeswork = 
worktext= 

junk = 

soc - - 

author = 

uork - - 

date j unk= 

n e f  - - 

y y + ;  

(('SJ,'sJ) ' e e l  ' alsoJ? 1 yearstr 1; 
((bl uord?) * (uord bl) * , 
(word bl) * baduord (bl? word) *, 
<nonwhite,bl,nl)* '<E>' (nonvhite,bl)* 1; 
badtext : acomp ; 

( ({JS',J~J3 'eeJ also1?)? 
(bl vord?)* ((vord bl)* ('aJPJc')? 

1 (nonuhite, bl ,nl)* '<E> {nonwhite ,bl)* ) ; 

notvork: acomp ; 
italic yeswork; 

roman (text I ' (' yearstr ' ) ' ; 

['<A>'] SC 

( letter anytext ( ( l .  ,' , '1 blank roman 
C 1  <AA> '1 anytext [ </AA> 1 ) ? C J  </A> ' 1 , 

' ' anytext ( ' , ' blank roman C1<AA> '1 anytext [ </AA> ] ) ?  
blank? l \ J 1  (blank anytext)? ['</A>>]); 

author 
(<' &amp. ' , l, ,blank roman ('or' 1 'and1)) blank author)*; 

date ({blank junk, ') (blank anytext)?)?; 

(roman, italic) ((work, junk) blank) ? 
see 'also )? 
(junk 1 (uork, authors) (datejunk, blank junk)); 



qvork = (junk blank)? vork 
(blank junk) ? 
(blank datejunk)?; 

moreqw = (blank? CRESTART] 
Cbs 
( qwork (ibreak qwork)* 
I xref 
1 date (blank junk)? ), 

dmqu blank? 3 

quork (ibreak qwork)* moreqv; 

authors blank? n r  (qworks,xref); 

m2 {text blank? , (text blank) ? (date blank) ?authors blank?) 
italic {qvorks, qwork blank see 'aïs0 '? vork); 

vork blank? nr (junk blank) ? 
date junk 
(italic (quork, 
see 'also '? roman? authors? roman? anytext?))? 

moreqv? 
(blank bs {junk,datejunk))?; 

soc work blank 
(junk blank)? datejunk 
moreqw ; 

soc n e f ;  
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socNR = soc uork blank nr date; 

CR & - '<CR>' Canything, >+', '0 * / * ?  Jsoc>J)+ '</CR>> ; 

entry = ~ < E ~ J { e m t w ~ , a N R , w N R , C R , s o c N R , s o c ~ e e  ['</E>']; 

conform = ((UT TT*), (wi ri*), (US rs*))* ; 
bib l i o  = CRESTART] ((entry nl)+ Q conform) ; 

6.2.2 The Algebra Specification 

Our goal with the algebra specification is to produce a result that is objectively 

comparable to  that produced by the grammar. To this end, we developed the 

algebra specification using the grammar result as an oracle. For each element, we 

continued refining the set of results until the difference from the set produced by 

the grammar was small enough that we could examine it manually. In each case, we 

considered the specification for an element finished when the number of errors made 

by the algebra in this set was manually verified to be no more than the nurnber of 

errors made by the grammar. 

For interactive purposes, we require that the algebra have some basic functions 

for managing and examining lists and their identifiers. The following functions are 

a minimal interface for this purpose: 

 string i, List 1) Set the identifier i to point to 1. 

0 LIST(L~S~ 1) Display the first few regions of Z. 

Note that  we use some regular expression facilities beyond those defined in 



Chapter 2 - the regular expression language is comparable to  that provided by 

tools such as grep and perl. In particular, the notation Ca-zl means the set of aJl 

ASCII characters between and including a and z, the notation a? means zero or one 

occurrences of a, the notation . means any character in C, the notation \+ means 

a literal + symbol, the notation \? means a literal ? symbol, and the notation \s 

means any tvhitespace character. 

We start by recognizing entnes. These are very simple, and the result is identical 

to that found by the grammar. Note that LIST() also indicates whether the set is 

an output from a first or second stratum function. 

> set entry (pair-starts (match-shortest CE>) ) 
> l ist  entry 

stratum 1 

0,61 <E><CR>+SC A. +CR +R 1593 See +I Passionate Morric ... 
61,116 <E>+SC A., +R A .  +NR +I Reply to Cr. Sanderson +R ... 
116,168 <E>+SC A . ,  +R D. +NR +I The art of converse +R 168 ... 
168,260 <E><CR>+SC A . ,  +R H. +CR 1613, 1633 +I See +SC Aus ... 

Next 

17444 regions 

we find regions delimited by SGML style CR tags: 

> set cross-reference-entry (match-shortest <CR>.*</CR>) 
> list cross-reference-entry 

stratum 1 

3,60 <CR>+SC A .  +CR +R 1593 See +I Passionate Morrice + ... 
171,259 <CR>+SC A .  , +R H. +CR 1613, 1633 +I See +SC Austin . . . 
11638,11705 <CR>+SC Addleshav, +R W. P. +CR +I See +SC Hemingw ... 
12979,13067 <CR>+I Adventures of Captain Robert Boyle +CR +R 1 ... 
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1196 regions 

Next we find most of the markup in the text for later use: 

stratum 1 

128599 regions 

We continue by finding the last names of authors. The first command finds +SC 

codes and pairs each one with the nearest following code of any kind to give a region. 

The second line gets rid of al1 such regions that occur inside a cross-reference-entry 

(since the grammar does not recognize any substructures in such entries). Note 

that the ^ symbol refers to the result of the previous line. The resulting 13265 

regions are identical to those found by the grammar, not counting the 838 entries 

for which the grammar aborts. 

> pair-starts (match-shortest \+SC) code 
> s e t  lastname (not-contained-in cross-reference-entry) 
> list lastname 

stratum 2 

64,72 +SCA. ,  
119,127 +SC A . ,  
263,271 +SC A .  , 



374,387 +SC ' Aarons , 
- - .  

13265 regions 

The next step is to find first names. To do this, we pair the tag that switches to 

a roman font with the closest following region. Note that many of the resulting 

regions are dates or other text that does not represent a name. Notice also, that 

PAIR-STARTS() is a stratum 1 function, and that we used a stratum 2 function in 

the previous step. That is, we can mix calls to stratum 1 and 2 functions arbitrarily 

in the interactive process as long as results of stratum 2 functions are not used as 

inputs to stratum 1 functions. 

> set roman (match-shortest \+Rb) 
> set firstname0 (pair-starts roman code) 
> list firstnameo 

stratum 1 

18,30 +R 1593 See 
72,78 +RA. 
108,116 +R 1650 
127,133 +R D. 

44841 regions 

The first line of the next part finds patterns that are used to separate multiple 

authors. Any regions in firstnameo that contain the left end of one of these 

separators are then truncated using cut, and those that are reduced to just a roman 

code by this truncation are removed with SUBTRACT(). Al1 resulting regions that 

immediately follow a last name are then selected and cdled firstnamel. 
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> set author-sep (match-shortest (, \+SC) 1 (&amp- \+SC) 1 
(and \+SC) 1 (or \+SC) 

> subtract (cut firstname0 author-sep) roman 
> set firstnamel Cafter - lastname) 
> list firstnamel 

stratum 2 

72,78 +R A. 
127,133 +R D. 
271,277 +R W. 
387,429 +R E. S. (Paul Ayres &amp. Edvard Ronns) 

13149 regions 

The next step is to fix cases that occur inside of single quotes. This process is com- 

plicated slightly by the fact that a closing single quote is also used as an apostrophe, 

which can occur inside of some names. The first step finds close quotes followed by 

a space or + symbol (when used as an apostrophe, the following character is always 

a letter). Roman codes are paired with the results and called firstname2. 

> set author-end (match-shortest ' (\s 1 \+) ) 
> set f irstname2 (pair-starts roman author-end) 
> list firstname2 

stratum 1 

387,395 +R E. S. 
11049,11091 +R 1715 (1721) +BS Essay on 'Paradise Lost 
11974,11989 +R 1896 +BS Doc 
17100,17107 +R Milo 

855 regions 

Next, we find complete regions surrounded by quotes. These generally correspond 

to a last name followed by a first name. 
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> set quoted (match-shortest ' . *' (\s 1 \+) ) 
> list quoted 

stratum 1 

378,397 'Aarons, +R E. S . '  
11077,11093 'Paradise Lost 
17088,17109 CAinsworth, +R Milo' 
17881,17902 Aird, tR Catherine ' 

526 regions 

Finaliy, we select al1 firstname2 regions inside both a quoted region and a first- 

namel. We then combine the result with firstnamei, using union2 so that first- 

namel regions have lower precedence. Those that start at the sarne location as 

a first name inside a quoted region are therefore deleted. Of the resulting 13149 

regions, there are 51 cases where the gramrnar and the algebra result disagree be- 

cause the grammar makes an obvious error with first names that occur at the end 

of a line. There are also 63 first names found by the algebra specification that are 

skipped over as junk by the grammar. (This is not counting the entries for which 

the grammar aborts.) Overall, we consider these differences slight enough to Say 

that the two results are essentially the same. 

> contained-in (contained-in f irstname2 quoted) f irstnamel 
> set firstname (union2 - firstnamel) 
> list firstname 

stratum 2 
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13149 regions 

Next, we find titles of works. The first steps find regions running from the beginn 

of any italic region to the beginning of the next code, or date (a for ante, c for circa, 

v . d . for various dates), or cross reference (Sse also). 

> set work-left (match-shortest (\+BS ) 1 (\+I 1) 
> set work-right (rnatch-shortest ( a \+) 1 ( C \+) 1 ( v\ .d\ . ) 1 

( See (also )?) 
> cut (pair-starts uork-left code) work-right 
> list uorki 

stratum 1 

3O,52 +I Passionate Morrice 
82,108 +I Reply to Dr. Sanderson 
137,160 +I The art of converse 
281,346 +I A speciall remedie against the furious force of ... 

29480 regions 

This next part finds works beginning with +DM codes. These are different from italic 

works in that the end of the title is not usually separated from a date by a code. 

(This can be considered an inconsistency in the markup.) Therefore, we find the 

right end of these works by looking either for patterns that look like a year, or the 

end of a line. 

> set dm-left (match-shortest (\+DM 1) 
> set dm-right (match-shortest ( \d\d(\dl \ . ) ) 1 <\ (\d\d\d\d[, ;] ) 1 (\n) ) 
> pair-start s dm-lef t (union1 dm-lef t vork-lef t) 
> cut (cut A dm-right) uork-right 
> set vork2 (con ^ dm-left) 
> list uork2 

stratum 1 



3121,3132 +DM (ed. 2) 
5559,5577 +DM ( c o q l e t e  ed.)  
8717,8731 +DH (rev. ed.) 
18883,18922 +DM (ed. 2, ed, by W .  T- Aiton) 5 vo l s .  

539 regions 

The purpose of the next part is to simulate an inconsistency in how the grammar 

treats cases where the start of a date bs signalled with a font change. 

> s e t  i (match-shortest \+I) 
> not-same-start i (match-shortest \+I c) 
> set vork3 (not-before vork2 ^) 

> l ist (sub work2 work3) 

stratum 1 

99 regions 

> l i s t  vork3 

stratum 1 

440 regions 

+DM (another ed. , vi th)  
+DM Sunday ed., as 
+DM another ed . ,  en t i t l ed  
+DM (vith) 

+DM (ed. 2) 
+DM (complete ed.) 
+DM (rev. ed.) 
+DM Ced. 2,  ed. by W. T. Aiton) 5 v o l s .  

The final section combines the italic and +DM cases and deletes those inside a cross- 

reference entry. Of the 29006 resdting works, there are six discrepencies between 

the grammar and the algebra result. Four of these are errors on the part of the 
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grarnmar, and two are cases that the gamrnar misses. 

> union2 uorki work3 
> not-contained-in cross-reference-entry 
> set work " 
> list vork 

stratum 2 

82,108 +I Reply to Dr. Sanderson 
137,160 +I The art of converse 
281,346 +I A speciall remedie against the furious force of ... 
433,455 +I Assignment treason 

29006 regions 

We next search for date elements. We start by finding patterns that look like a 

year, possibly preceded by an ante or  circa: 

Warning: overlaps detected. Keeping rightmost. 

> set year " 

Note that the overlap occurs in cases such as the following when a year occurs as 

the last part of a title: 

+I The autobiography and persona1 diary , from 1552 to 1602 a +R 1611 

In this case, keeping the rightmost, a +R 1611, rather than 1602 is the correct 

behaviour. The next step is to find other regions that can be part of a date, and 

union them al1 into a single list. Next, adjacent parts are rnerged into a single 

date using MERGE-ADJACENT. Any resulting regions that cannot comprise a date 



by themselves (a single italic code, or a single question mark) are then removed. 

Finally, al1 dates that are inside a work, or overlapped after one are deleted. 

> set vd (match-shortest (v\.d\ .? ?)) 
> set q (match-shortest ( \? ?)) 
> unionl (unionl (unionl year vd) i) q 
> merge-adjacent ^ 

> sub (sub - i) q 
> set date1 (not-overlap-af ter bot-contained-in ' vork) uork) 
> list date1 

stratum 2 

36381 regions 

The next part emulates an error in the grammar: it discards a11 dates except for 

the first one following each work. 

> set date2 (first-after date1 work) 
> set date3 (first-after date1 bs) 
> union2 date2 date3 
> set date (not-contained-in ^ cross-reference-entry) 
> list date 

stratum 2 

28650 regions 

Of the final 28650 results, 162 are correctly identified dates that are missed by the 
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grammar. There are dso 4 cases that the grammar incorrectly marks as dates even 

though they are part of a title, 10 cases where the two results disagree because 

the grammar chooses a date other than the first one following a work, and 30 

cases where the grammar finds only a substnng of a full date found by the algebra 

specification. 

Follow-ing is the complete algebra specification without commentary: 

# find entries and codes 
set entry (pair-starts (match-shortest CE>) ) 
set cross-reference-entry (match-shortest <CR>.*</CR>) 

set tag (match-shortest (CE>) I (<CR>) 1 (</CR>)) 
set code (union1 (match-longest \+ CA-ZI *) t a g )  

# find last names 
pair-starts (match-shortest \+SC) code 
set lastname (not-contained-in - cross-reference-entry) 

# find firstnames 
set roman (match-shortest \+R\s) 
set f irstnameo (pair-starts roman code) 

set author-sep (match-shortest (, \+SC) 1 (&amp. \+SC) 1 (and \+SC)'l (or \+SC)) 
subtract (cut f irstnameo author-sep) roman 
set firstnamel (after ' lastnane) 

set author-end (match-shortest \ '  (\s 1 \+) ) 
set f irstname2 (pair-starts roman author-end) 

set quoted (match-shortest \ ' . * \ ' ( \S I \+ ) )  
contained-in (contained-in f irstname2 quoted) f irstnamel 
set firstname (union2 firstnamel) 

# find works 



set work-left (match-shortest (\+BS ) I (\+I )) 
set work-right (match-shortest ( a \+) I ( c \+) I < v\.d\. ) I ( See (aïso )?)) 
cut (pair-starts uork-left code) vork-right 

set dm-left (match-shortest (\+DM ) ) 
set ch-right (match-shortest ( \d\d (\d l \ . ) ) 1 (\ (\d\d\d\d [ , ; 1 ) 1 (\n) ) 
pair-starts dm-left (union1 dm-lef t uork-lef t) 
cut (cut - dm-right) work-right 
set work2 (con - dm-left) 
set i (match-shortest \+I) 
not-same-start i (match-shortest \+I c) 
set work3 (not-before uork2 *) 

union2 workl vork3 
not-contained-in cross-reference-entry 
set work - 

# find dates 

set year - 
set vd (match-shortest (v\ . d\ . ? ?) ) 
set q (match-shortest ( \? ?)) 
unionl (unionl (unionl year vd) il q 
merge-adj acent 
sub (sub - il q 
set date1 (not-overlap-af ter (not-contained-in - uork) work) 
set date2 (f irst-after date1 work) 
set date3 (first-after date1 bs) 
union2 date2 date3 
set date bot-contained-in * cross-reference-entry) 
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We now compare the understandability of the grarnmar and the algebra specifi- 

cation using some simple metrics. Not counting the nl, digit, uc, Ic, and spec 

elements which are trivial, there are 53 productions in the grammar. This is about ' 

the same as the total number of function callç in the algebra specification which is 

54 (omitting SET() and LIST() calls) . 

The two specifications differ more significantly in the number of dependencies. 

Let a dependency graph for a grammar be defined as follows: there is a node for 

every non-terminal, and an arc from one node to another if there is a production 

with the source as the- left-hand side and the destination in the right-hand side. 

The dependency graph for the grarnmar has 53 nodes and 126 edges, as  compared 

to 54 nodes and 68 edges for the algebra expression graph. The two graphs are 

shown in Figures 6.2 and 6.3l. From this, we conclude that the grammar is harder 

to understand, and also harder to extend, than the algebra specification. 

The discrepancy is really worse than implied by the larger nurnber of depen- 

dencies. This is because it is possible to extend an algebra specification without 

understanding it at all. A new element can always be created independently of 

existing elements, and optionally related to existing elements later. This is how 

the date element was developed, for example: we found dates independently of 

other elements, then deleted those that were inside a title. This type of modular 

development is not possible with the grammar: i t  is always necessary to determine 

where to fit in a new element, and to  consider how this affects existing elements. 

' We generated these graphs and performed edge-crossover minimization using the da Vinci 
program (F'rohlich & Werner, 1994) 



Figure 6.2: The dependency graph for the grammar 
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Figure 6.3: The expression graph for the algebra specification. 



6.2.4 Batch Efficiency 

When parsing with a grammar, we do not need to output the entire passe tree. 

Rather, we can speciS a subset of the productions in which we are interested. For 

this example, these are the date, author, work, and entry productions. IR the same 

way, for an algebra specification, we can speci@ a subset of the lists in which we 

are interested. This is the distinction we made earlier between Iists that are final 

results, and those that are intermediate results- 

Parsing with a grammar, it is only necessary to output final results. Interme- 

diate results must be found but need never be output. For the example, the final 

results total 99,287 regions. Assuming that each region is represented with eight 

bytes (two integers), this gives a total output size of 794,296 bytes. The required 

input is the size of the bibliography which is 2,163,877 bytes. Therefore, the total 

1/0 required to parse using the grammar is about 3 Mb. 

Parsing an algebra specification requires that some of the intermediate resu1ts 

be output. Specifically, any lists that are outputs of class one functions and inputs 

to class two functions must be output dunng the first pass and read in during the 

second. In the example, there are 10 such lists containing a total of 152,828 regions. 

To mi te  these once, and then read them again a t  8 bytes per region uses a total of 

about 2.4 Mb of I/O. Together with reading the file, and writing the final results 

once, the total 1/0 cost of parsing the algebra specification is about 5.4 Mb. 

Overall then, parsing with the algebra is about 80 percent more costly in terms 

of 1/0 than using the grammar - roughly what would be expected given that 

it uses two passes. What we gain from this extra cost is that both passes are 
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deterministic, in contrast with the grammar which has non-determinism that can 

require unbounded lookahead to resolve. This does not make any practical differ- 

ence for this example where lookahead never extends past the begirining of the next 

bibliographie entry, but could be a problem for other data. 

6.2.5 Interactive Efficiency 

When developing a gramrnar, every change that we make requires a reparse of the 

data. Recall that, for the example, a single parse uses about 3 Mb of 110. Thus, 

assuming that the number of output regions stays about the same for each step, 

the total I/O cost of an interactive grammar development process is the number of 

changes that we make times 3 Mb. 

Recall that there are a total of 54 function calls in the algebra specification. 19 

of these are matching calls that scan the data, and the remainder operate on lists 

of regions. Executed interactively one by one, the 19 matching calls therefore read 

the 2.2 Mb of the file 19 times for a total of 41 Mb read from secondary storage. 

cThirteen of the matching calls are for constant strings that would be easy to search 

for using an index, but we do not take this into account for this discussion.) The 

remaining calls read or write a total of 3,350,114 regions from secondary storage. 

Assuming again 8 bytes (two integers) per region, this is 27 Mb. The overall total 

amount of 1/0 that is used to interactively execute the algebra specification one 

function call a t  a time is therefore about 68 Megabytes, or an average of 1.3 Mb 

per call. 

Assuming that the above discussion is a reasonable estimation of the average 



110 required for an algebra d l ,  we can conclude that more than M c e  as many 

interactive steps are possible with the algebra given the same amount of I/O as 

required for a grammar. In general, this means that interactive exploration and 

experimentation can be carried out at a more fine-graineà level. 

Overall, our conclusion is that incrementally developing a parser using the al- 

gebra is both significantly simpler and also more efficient, than using a more tradi- 

tional grammar approach. 



Chapter 7 

Summary and Future Work 

7.1 Summary 

In Chapter 3, we identify four important characteristics that a system for text 

structure recognition should have if it is to used for incremental development of 

recognizer specifications. These are 1) interactive efficiency, 2) a flexible structure 

model, 3) scalability, and 4) batch efficiency. We argue that existing formalisms, and 

grammars in particular, al1 lack one or more of these characteristics, and propose 

an alternative approach based around a region algebra as an interface. 

We argue in principle that an approach based on an algebra is better than exist- 

ing approaches from the point of view of interactive efficiency, structure model flex- 

ibility, and scalability in Chapter 3. We also demonstrate anectodally in Chapter 6 

that this is true specifically in comparison to a grarnmar-based approach. In addi- 

tion, we have made the prototype tool used to construct the example in Chapter 6 

available to  the Déctzonary of Old English project (Healey, Hoiland, McDougall, 
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& Mielke, 2000). They had previously evaluated and rejected the idea of using a 

gramrnar-based approach for recognition, and have found the prototype to be a 

much more appropriate tool (Healey & Mielke, 2000). Note also that other exam- 

ples exist where grammar-based approaches were evaluated and rejected in favour 

of pattern matching approaches similar to region algebras (Murphy & Notkin, 1996; 

Miller & Myers, 1999; Ait-Mokhtar & Chanod, 1997; Grefenstette, 1996). 

An important characteristic that a region algebra lacks for this application is 

efficient batch evaluation. Therefore, in Chapter 5, we propose a batch evaluation 

rnethod for region algebra expression graphs. This views the set of inputs and 

outputs to an expression graph as a single, merged region inventory, and evaluates 

the graph using a single deterministic pass over this inventory. Unfortunately, it is 

easy, using common region algebra operations, to construct expressions that cannot 

be evaluated in this way. 

Our main results characterize the conditions under which it is possible to eval- 

uate an expression graph using a single deterministic pass (that is, one that does 

not use lookahead). A function that selects s regions based on d regions is classi- 

fied as condition 1 for a left-right p a s  if its dependency expression E(Q) implies 

( d l  S . )  It is condition 2 for a left-right p a s  if E(Q) + (d.r 5 s-r) ,  condition 

1 for a right-left pass if E(Q) + (d.r 2 s.T) ,  or condition 2 for a right-left pass if 

E(Q) + (d-l 2 s.1). For functions where s depends on a set D of other regions, 

the implication must hold for every d in D. Using this classification, we prove that, 

for a given algebra, we can evaluate al1 expression graphs that can be constructed 

with that algebra if and only if a11 functions are condition 1, or al1 are condition 2 



for the same pass direction. 

Based on this result, we can constmct completely composable algebras for which 

we can evduate al1 possible expressioil graphs in one pa s .  However, there are 

limitations on the functions that can be included in a completely composabie al- 

gebra, which may be a problem in some cases. Therefore, we also consider one 

way of overcoming this limitation: divide an algebra into multiple strata, and use 

a multiple-pass evaluation method. We show that such an approach is feasible us- 

ing a two-strata example in Chapter 6 .  Note, however, that we do not rule out 

the possibility that other useful ways of overcoming the limitation may be more 

appropriate. 

We also give results having to do with regular expression rnatching. This is an 

important operation since we are interested in expression graphs that have string- 

to-region functions a t  the leaves and therefore recognize structure starting from 

nothing but a string. It is not possible to perform longest regular expression match- 

ing as part of a single deterministic p a s .  However, as proved in Section 4.1, we 

can perform longest matching using two deterministic passes, and we can perform 

longest matching using one deterministic pass for certain subclasses of regular ex- 

pressions. An additional resuIt in Section 5.6 characterizes the conditions under 

which we can perform regular expression matching that is restricted according to 

uncertain anchors in the string. 
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7.2 Future Work 

7.2.1 Interface Concerns 

The main consideration in this thesis is eEcient batch evaluation when using a 

region algebra for specification. Thus, we did not design a comprehensive region 

algebra, nor examine interface issues in detail. Rather, we introduced as many 

functions as needed to demonstrate and prove specific principles, and to constmct 

an example. More work is needed to look at user interface questions. For example, is 

it possible for an expert to design a comprehensive region algebra that is applicable 

to a wide range of recognition problems, or is designing a customized algebra a 

necessary part of the recognition process? Also, are stratified algebras appropriate 

from a user's perspective, or are the limitations on constructing expressions too 

distracting? 

Another important user interface concern is whether there is a simple charac- 

terization of the type of processing that can be done using a deterministic pas .  

In prïnciple, any processing that does not use lookahead in the region inventory 

is possible. However, this is restricted by the fact that we specie the processing 

by composing operations from an algebra. In pactise, interface issues such as the 

desire for complete cornposability may limit the scope of the processing that can 

be specified. Further work is needed to determine whether it is possible to design 

an algebra of simple operations that is usable, small, orthogonal, and complete in 

the sense that  it  allows specification of any processing possible with the evaluation 

model. 
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A high level concern is that our approach is a tool for designing recognition 

specifications rather than a design methodology (in the same way that an object 

oriented programming language is a tool rather than a methodology). The process 

of designing large recognition specifications could still benefit greatly from the de- 

velopment of some kind of formal methodology sirnilar to those used in software 

engineering. 

As mentioned in Chapter 2, learning approaches to recognition have been ex- 

plored by others, but suffer from the limitation of too many simplifjkg assump- 

tions. A region algebra seems to be an interface with an appropriate level of power, 

but this level of power makes it too complicated to leam automatically. Perhaps 

leaming approaches would be more usefully targeted at the task of helping the user 

understand what to specify, rather than trying to generate a specification them- 

selves. In other words, they could be used as a tool for explorhg the data. 

7.2.2 Efficiency Concerns 

Our main result shows the conditions under which al1 expressions constructible 

with an algebra are evaluable with a deterministic pass. Since these conditions 

restrict the functions that can be included in the algebra, we have also introduced 

the idea of stratified algebras, which allow a larger selection of functions but place 

restrictions on how expressions are constructed. It might be useful to explore other 

ways of arranging this tradeoff, that is, of allowing more functions, but adding 

restrictions on how they are composed. 

We have only given detailed consideration to deterministic passes with properly 
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sorted inputs and outputs. However, it might be useful to take a closer look at 

other variants of deterministic passes. For example, suppose that the input and 

output region inventories are not strictly left-sorted or right-sorted, but rather, 

have al1 regions of a given type displaced by a constant number of positions from 

their left or right sorted positions; or, suppose that regions of each type are sorted 

within a region inventory but there is no restriction on the ordering of regions of 

different types. The goal of exploring such variants would be to find additionai 

cases with rules for expression construction that could be as simply stated as those 

for deterministic, properly-sorted passes. 

An efnciency issue with an unrestricted structure mode1 is that there is no 

bound on the number of regions. A flat list representation gives a bound of ns 

regions where s is the number of lists. However, it might be useful to examine more 

restrictive models that allow a stronger bound without going as far as requiring a 

strict hierarchy. 

Our results c m  be seen as a form of query optimization applicable to struc- 

tured query languages. Traditional forms of query optimization involve performing 

transformations on the expression graph, or formulating a qilery plan for sequential 

evaluation of the queries so as to  reduce the size of intermediate results (e.g., Con- 

sens (1998)). In contrast, our approach evaluates many queries in an expression 

simultaneously in each pas .  Integrating this wit h traditional approaches could 

potentially result in a better overall query optimization method. 
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