
Text Structure Recognition using a Region Algebra

by

Matthew Young-Lai

A t hesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

Cornputer Science

Waterloo, Ontario, Canada, 2001

OMatthew Young-Lai 2001

National Library Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 WeUVIgton Sîreet 395. nie Wellington
OttawaON KlAON4 OttawaON K l A W
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Lïbraxy of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic fonnats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or otheMrise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Cana& de
reproduire' prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

The University of Waterloo requires the signatures of al1 persons using or photo-

copying this thesis. Please sign below, and give address and date.

Abstract

We consider the problem of incrementally developing a parser for text structure.

This rneans building the parser specification a piece at a time while simultaneously

developing Our understanding of the te*.

We argue that existing solutions have usability and efEciency problems for this

application and propose an alternative approach based on the type of region algebra

that is often used as a query language for text databases. This is an appropriate

interface for incremental development, but has no efficient batch parsing model

such as those that exist for grammars. In this thesis, we propose an efficient batch

parsing model and characterize the region algebras to which it applies.

vii

Acknowledgement s

1 would like to thank my supervisor, Dr. Frank Tompa, and the mernbers of my

examining cornmittee: Dr. Gordon V. Cormack, Dr. Kostos Kontogiannis, Dr.

Jeffrey O. Shallit, and Dr. David S. Barnard of the University of Regina. Also,

thanks to Dr. Howard Johnson for reading and commenting on an early draft of

this t hesis. Finally, 1 gratefully acknowledge financial assistance fiom the Natural

Sciences and Engineering Research Council of Canada, the Institute for Computer

Research, and the University of Waterloo.

Contents

1 Introduction 1

2 Background 7

2.1 Conversion . 7

2.2 Parser Efficiency . II

2.3 Regular Expressions and Finite Automata 12

2.4 Rational Relations and Functions 14

2.5 Context-Free Grammars . 16

3 IncrementalIy Specifying a Parser 19

3.1 Evaluation of Existing Modeis . 19

3.1.1 Interactive Efficiency . 19

3.1.2 Structure Mode1 Flexibility 20

3.1.3 Scalability . 20

3.1.4 Batch Efficiency . 21

3.2 Proposed Mode1 . 23

3.3 Evaluation of the Proposed Mode1 25

3.3.1 Interactive Efficiency . 25

3.3.2 Structure Mode1 . 26

3.3.3 Scalability . 27

3.3.4 Batch Efficiency . 28

4 Parsing Models

. . . * 4.1 Regular Expression Parsers ..

4.1.1 Finding Substrings .

4.1.2 Two-Pass Longest Matching

. 4.1.3 One Pass Longest Matching

. 4.2 Rational Function Parsers

. 4.2.1 Coding

. 4.2.2 Efficiency

. 4.2.3 Complications

4.3 General, Multiple-Pass Parsing Models

5 Algebra Design 61

5.1 Interactive Efficiency . 61

. 5 -2 String-to-Region Functions .. 62

5.2.1 Substring Matching . 63

5.2.2 Regular Expression Matching 63

5.3 Region-to-Region Functions . 64

5.3.1 Structure Selection Queries 67

5.3.2 Region Generation . 81

5.3.3 General Functions . 83

xii

. 5.3.4 Constant Lookahead 85

. 5.4 Completely Cornposable Algebras 86

. 5.5 Stratified Algebras 88

. 5-6 Restricted Matching 90

. 5.7 Summary 99

6 Example 101

. 6.1 An Algebra 101

. 6.2 OBD Bibliography 105

. 6.2.1 TheINRgrammar 105

. 6.2.2 The Algebra Specification 111

. 6.2.3 Complexity 123

. 6.2.4 Batch Efficiency 126

. 6.2.5 Interactive Efficiency 127

7 Summary and Future Work 129

. 7.1 Summary 129

. 7.2 Future Work 132

. 7.2.1 Interface Concerns 132

. 7.2.2 Efficiency Concerns 133

Bibliography 135

Chapter 1

Introduction

Consider the problem of recognizing structure in text that contains markup. With-

out loss of generality, we take text to mean human readable characters (binary

codes can easily be converted to such a representation). By structure we mean

the breakup of text into elements. For example, elements may be paragraphs, sec-

tions, and chapters for text like this thesis, or head-words, etyrnologies, usages,

and pronunciations for text from a dictionary. We use the term markup to mean

any characters or codes interspersed with the text that tell us sornething about its

structure while being separable from it at a conceptual level (Coombs, Renear, &

DeRose, 1987). Figures 1.1, 1.2, and 1.3 are examples of marked up text.

By recognition, we mean the process of parsing a text into substrings that corre-

spond to structure elements, and associating types with those elements. Often, the

term parsing is used specifically to apply to recognition performed using a context-

free gramrnar. We do not limit it in this way. From this perspective, our usage of

the term c m be considered an expanded definition.

CHAPTER 1. INTRODUCTION

+IO00 00000000000 1 Malison
+PR (m+23 +I l l i s t + S l n) ,
+PS sb.
+LA arch. +R and +I dia l .
+VL Forms: 4 +B malisun(e, malysun, malesun, maliscun, malescun,
malicun, malicoun, +R 4+14 5 +B malyson(e,malisoun(e, +R 4+14 6
+B malysoun, +R 5+14 6 +B maleso(u)n(e, +R 6 +B rnalisone, +R 7
+B mallison, +R 4+14 +O +B malison.
+ET +OB a. OF, +I maleison +R: +13 L- +I maledictio+i n-em
+SC Malediction. +EB

Figure 1.1: Text fragment from the Oxford English Dictionary (OED) as keyed in
from the printed version. Tags beginning with a "+" are codes in a markup system
adapted for the OED computerization project.

Developing parsers for complex text is a difficult problem, especially if the text

was created outside computer control and without the intent of supporting auto-

mated recognition. One example of the effort that can be needed to construct a

grammar for complex text is found in the Oxford English Dictionary computeriza-

tion project. Kazman (1986) describes the process of building a gramrnar for over

500 Mb of text like the excerpt shown in Figure 1.1. Overall, the process took

about six months of work to bring to the state described in Kazman's thesis, and

Oxford University Press continued to refine the result for some time thereafter.

m i l e one source of difficulty in the project was understanding low-level details

about the markup and structure in the text, the hardest part was constructing

a grammar to describe those details. Grammars are an adequate specificafion

mechanism for simple recognition tasks that do not involve much debugging. In

tbis case, we can break the process into discrete steps:

,so /usr/share/lib/tmac/sml
.so /usr/share/lib/tmac/rsml
.SH NAME
, PP
*Lls*O \- Lists and generates statistics for files
.SH SYNOPSIS
. PP
. SS
*Lls*O
*O [*L-aAbcCdf FgilLmnopqrRstuxl*O 1
*O [*Vf ile*O
\&. ..
I
*Vdirectory*O
\&. . .]
- SE
. PP
The *Lls*O comrnand mites to standard output the contents of each
specified directory or the name of each specified
file, along uith any other information you ask for with flags.
If you do not specify a file or a directory,
*Lls*O displays the contents of the curent directory .
.SH FLAGS
. PP
.VL 4m
.LI "*L-a*Q"
Lists al1 entries in the directory, including the entries that begin
with a *L.*O (dot). Entries that begin with a . are not displayed
unless you refer to them specifically, or you specify the *L-a*O
f lag .

Figure 1.2: Part of a file for the troff typesetting system. Tags beginning with a
period, and most non-alphabetic characters are markup with special meaning to
troff.

CHAPTER 1. INTRODUCTrON

UWinfo -- University of Waterloo (p l of 2)

[University of Waterloo -- UWinfo]

Waterloo, Ontario, Canada NSL 3Gl -- (519) 888-4567

About the University of Waterloo

+ [2] Daily Bulletin * [3] General information * [4]Neus *
[5] Weather

+ [G]UWevents and conferences * C73How to reach ü W * [dl Campus
map

+ [S]Admissions and other information for future students

Finding information and people at UW

+ CIO] Departments , groups , topics * ClllUWdir directory of
people

+ Search UWinf O using Cl21 AltaVista

Figure 1.3: A web page rendered using lynx. Ernpty lines, indentation, whitespace,
numbered links, horizontal lines, and punctuation are aII examples of markup.

1. Understand the structure and markup in the data.

2. Express that understanding in a specification.

3. Use the specification to parse the data.

For cornplex data, however, it is not realistic to perforrn these steps separately. In-

stead, we need to gradually evolve our understanding of the structure and markup,

build the specification a piece at a time, and debug errors in the specification.

Thus, the process is an ongoing loop rather than a series of discrete steps: we form

hypotheses about the data, write and debug specification fragments, see the results,

and either update Our hypotheses based on these results or continue forming new

hypotheses. We term such a process incremental specification.

The motivation for this thesis is our prernise that existing approaches are poorly

suited to the task of incrementally developing large parser specifications. This is a

view that we justify further in Chapter 3, after presenting background definitions

and concepts in Chapter 2. We continue in Chapter 3 by describing our proposed

approach based on a region algebra. A Iimitation of such an interface is that it

is oriented towards interpreted, st ep-by-st ep evaluation. We therefore propose an

efficient batch parsing mode1 in Chapter 5, after giving examples of efficient models

with similar characteristics in Chapter 4. We continue in Chapter 5 by describing

how the requirements of the parsing mode1 restrict the design of the algebraic

specification language. Chapter 6 gives an exarnple that illustrates the utility of

the overall approach. Chapter 7 lists conclusions and possibilities for future work.

Chapter 2

Background

2.1 Conversion

Recognition is a sub-problern of conversion, which can be broken into the following

parts:

1. recognition - identiSing parts of the text that correspond to structural

elements

2. string transformation - inserting, deleting, moving, or replacing sub-

strings of the text

3. structure transformation - inserting, deleting, moving, or replacing

structural elements

4. schema generation - constructing a grammar or other type of schema to

describe correct usage of structural elements

CWAPTER 2. BACKGROUND

Existing conversion approaches can be classified into the following categories:

1. tagging by hand or with SGML (or equivdent) editing software

2. custom programming with a general purpose programming language

3. manual specification using a pattern matching mode1

4. manual specification using a one-gramma model

5. manual specification using a two-gramma mode1

6. automatic learning and inference approaches

The first two approaches are unsuited to large, cornplex data, and we do not consider

thern further.

The manual specification approaches use a compiler-compiler paradigm: provide

a tool that takes a specification and generates a compiler, which is then used to

transform source code (unconverted text) into target code (converted text).

In the pattern matching specification model, the inputs are a text consisting of

one long string, a set of patterns in some pattern language, and an action associated

with each pattern. Examples of pattern rnatching systems are SNOBOL (Gimpel,

1973), lex (Lesk & Schmidt, 1984), sed (Dougherty, 1991), awk (Aho, Kernighan,

& Weinberger, 1978), perll (Wall, Schwartz, Christiansen, & Potter, 1996), DSSSL

(ISO, 1996), XSLT (Clark, 1999), TranSid (Lindén, 1997), GOEDEL (Blake, Bray,

& Tompa, 1992), and the TSIMMIS web interface (Hammer, Garcia-Molina, Cho,

'Despite being ùitended for more general purposes, the powerful string facilities of perl make
it very well suited for conversion using the pattern matching model.

2-1. CONVERSION

Aranha, & Crespo, 1997). In al1 these approaches, when a pattern matches a text

segment, a corresponding action is performed. Characteristics such as precedence

between patterns, whether the search is done left to right, lookahead, etc., axe

all defined by the pattern language. Also defined is the order in which matches

for different patterns are generated (which affects the order in which actions are

performed). Actions may be restricted, or they may be arbitrarily complex. Actions

in sed, for example, are restricted to simple editing operations such as cut, copy,

paste, delete, or replace; actions in lex, on the other hand, are specified in C and

can be completely arbitrary.

In a one-gramrnar model, the inputs are a text, a grammar, and actions as-

sociated with specified parsing steps. Examples of one-grammar systems are yacc

(Johnson, 1975), SGMLC (SGML Systems Engineering Ltd.,), Omnimark (Exoter-

icâ Corporation, 1993), DREAM (Gottke & Fankhauser, 1992), and INR (Johnson,

1989). Depending on the exact model, actions may be associated with produc-

tions (e-g., attribute assignments in attribute grammars), with terminals (e.g., local

string substitution), or with the start and end points of substrings corresponding

to non-terminals (e.g., inserting start and end tags) . Actions are applied while the

grammar is being used to parse the text, or afterwards when the complete parse

tree is availabie.

In a two-gramrnar rnodel, the inputs are a text, a source grarnmar, a target

gramrnar, and rules for converting between the two. Examples of two-grammar

systems are Chameleon (Mamrak, 07Connell, & Barnes, 1992), Alchemist (Lindén,

19977, and Grif (Quint & Vatton, 1986). The text is parsed according to the source

10 CHAPTER 2. BACKGROUND

grammar. The rules specify how to rearrange subtrees in the resuleing parse tree

to give a tree conformant with the target grammar. Types of subtrees that can be

specified depend on the specific formalism. For example, syntax directed translation

schemas (SDTSs) only allow transformation of depth-one trees corresponding to

productions (Lewis & Stearns, 1968), whereas text transformation (TT) grammars

allow transformation of arbitrary subtrees (Keller, Perkins, Payton, & Mardinly,

1984).

Learning systems are based on the ahficial intelligence sub-field of machine

learning (Michalski, Carbonell, & Mitchell, 1983). Examples include Markitup!

(Fankhauser & Xu, 1993), MINI-EDIT (Mo & Witten, 1992), U (Nix, 1989),

STALKER (Muslea, Minton, & Knoblock, l998), NoDose(Adelberg, l998), WIEN

(Kushrnerick, Weld, & Doorenbos, 1997), Ariadne (Knoblock, Minton, Ambite,

& Ashish, l998), TexTamer (Reed-Lade, l989), mod-ALERGIA (Young-Lai &

Tompa, 2OOO), XTRACT (Garofalakis, Gionis, Rastogi, Seshadri, & Shim, 2000),

and the work of Ashish and Knoblock (Ashish & Knoblock, 1997). They use the

same models as specification approaches, but, rather than manually constructing

a specification, the user dernonstrates the desired results for a few examples and

the systern infers the underlying rules. This is then applied to the remaining data.

Some learning approaches request clarifications and use them to evdve the specifi-

cation whenever problems are encountered. This helps to overcome limitations of

the learning model.

While learning approaches require less user effort than manual specification,

they accomplish this by trading off flexibility (Crespo, Jannink, Neuhold, Rys, &

2.2. PARSER EFFICLENCY Il

Studer, 2000). Generally speaking, learning approaches are only feasible if the

training data, the user interaction, the learning met hod, and the target format

are simple and uniform. We are interested in problems that do not have these

characteristics, and therefore do not consider learning approaches further.

Overall, pattern matching and one-grammar approaches are most applicable to

the recognition sub-problem. They are t herefore the approaches we are interested

in examining in this thesis. Note that both are also well suited to the text transfor-

mation sub-problem, while one-grarnmar and two-grammar systems are applicable

to structure transformation.

2.2 Parser Efficiency

Recall that our expanded definition of a parser includes any entity that performs

recognition. Informally, recognition takes a string, finds substrings of interest,

and associates types with them. Forrnally, we define a parser to be a mapping

from strings to sets of regions. A region is a (type,Zeft,right) triple representing a

substring labeled t y p e that starts a t position lej? in the string and continues to

position r ight .

The size of a particular parsing problem is characterized by three values: n is the

number of characters in the input string, m is the size of the output set of regions,

and a is the size of the parser specification. In these terms, the approximate size

of the OED parsing problem, for example, is: n = 108, rn = IO6, and o E;. IO3.

Consider the following mode1 of computation: we have a computer with a ran-

dom access main memory and a secondary storage. The secondary storage is much

12 CHAPTER 2. BACKGROUND

larger and much slower to access than main memory. Within this model, we c m

characterize the efficiency of an algorithm by: 1) the asymptotic upper bound on

the time used to compute the mapping, 2) the asymptotic upper bound on the

number of characters that are read and vvrïtten from secondary storage (I/O), and

3) the asymptotic upper bound on the number of characters that are stored in main

memory at any one time.

With current computing and secondary storage technology, an algorithm for

parsing an input comparable in size to the OED should, a t worst, have the following

asymptotic bounds: O(on + om) time, O(n + m + O) I/O, and O(o) memory.

In practice, bounds any larger than this are too costly, and even large constant

multipliers may not be acceptable. Note that the rnemory bound implies that the

input must reside on secondaxy storage, and the output should end up there.

2.3 Regular Expressions and Finite Automata

Hopcroft and Ullman (1979) provide a standard account of regular expressions and

languages. Forrnally, we define regular expressions over an alphabet C recursively

as foI1ows:

If a E C then a is a regular expression representing the language {a).

If p and q are regular expressions for the languages L@) and L(q), then their

concatenation p O q (abbreviated pq) is a regular expression for the language

L @ M d = {XY l x E L(P) A Y E L(q)) .

0 If p and q are regular expressions for the languages L@) and L(q), then p (q

2.3- REGULAR EXPR.ESSIONS A N D FINITE AUTOMATA

is a regular expression for the language L(p) U L(q).

If p is a regular expression for the language L, then the KEeene closure, p* is a

regular expression for the language Uzo Li, where Lo = {E) and L' = LLi-'.

If p is a regular expression for the language L, then the positive closure, p+

is a regular expression for the language Uz, L'.

When writing a regular expression, brackets can be used to c l a r e precedence.

Otherwise the order of precedence from highest to lowest is assumeà to be *, +, O , 1.
A non-deterministic finite automaton (NFA) is a tuple 11.1 = (Q, C, 6, qo, F),

where Q is a set of states, C is a finite input alphabet, 6 is a transition function

from Q x (C U {c)) to the power set of Q, qo is the start state, and F is a set of

final states. A directed graph is associated with an NFA as follows: the vertices of

the graph correspond to states in Q. If there is a transition from state p to state

q on input a, then there is an arc labeled a from the vertex corresponding to state

p to the vertex for state q in the graph. For a string x E C*, we write q E B(r ,x)

or ((r , x) -+ q) E 6 if a sequence of transitions corresponding to the symbols of x

leads from T to q (including any number of edges labeled with E , the empty string).

An NFA accepts a string x if (6(qo, x) n F) # 0.

Regular expressions and non-deterministic finite automata (NFAs) are equiv-

alent mechanisms for defining regular languages. Regular expressions are a more

convenient specification mechanism, but NFAs are the more convenient representa-

tion for manipulation and for finding matches. In practice, most regular expression

matching strategies first convert a given regular expression to an equivdent NFA.

This can be done with a simple construction (Hopcroft & Ullrnan, 1979; Aho,

Hopcroft, & UUman, 1974). Given a regdar expression r, the size of the NFA

produced with this construction is O(lr1).

2.4 Rational Relations and finctions

The formal definitions of a monoid, morphisrn, and rational relation are as follows:

Definition: A monoid (M , O, s) is a non-empty set M with one binary

operator o and a constant element s such that Vu, b, c E M:

a o (b o c) = (ao b) o c

Definition: A morphisrn f between monoids (Mi, 01, si) and

(M2, 02, s2) is a function defined on Ml such that Va, b b Ml:

Definition: A rational relation is defined as follows: given two alphabets

C and A, a relation R C* x A* is rational if there is an alphabet a,
a reguiar language L C a*, and two morphisms a : a* + C* and

: (P' + A* such that (2, y) E R if and only if there is a r E L such

that x = a(z) and y = ,û(z).

2.4. RATIONAL RELATrONS AND FWVCïTONS 15

A thorough discussion of rational relations can be found in (Eilenberg, 1974) or

(Berstel, 1979). We can think of a rational relation in a static sense as a subset of

the Cartesian product of two sets, or in a dynamic sense as a mapping from the

first set to the set of subsets of the second.

A rational relation can be computed by a finite transducer that inputs a string

from C* and outputs a string from A*. There are several equivalent forms of finite

transducers (see (Johnson, l983), for example). One is an NFA with the transition

function redefined to be from Q x C to Q x A*- This is the form of finite transducer

we assume from now on. There are many ways to specie finite transducers (for

example, INR (Johnson, l983), or the finite-state calculus described by Karttunen

(Karttunen, 1992, 1995, 1996)). We can test (x, y) for membership in a rational

relation specified as a finite transducer in O(lxl x lyl) time and O(min(

memory (Johnson (1983) gives an overview of the relevant algorithrn).

Now consider rational relations-where each x is associated with a t most one y:

Definition: A rational function f from C* to A* is a rational relation

on C* x A* that is a partial function. Thus for every x E dom(f) there

is at most one y such that (x, y) E f.

A rational function can be computed more efficiently than a general rational relation

as a consèquence of the following theorem (Berstel, 1979):

Theorem 1 Any rational function can be expressed as a length-preserving right-left

sequential function composed with a left-right sequential function.

A sequential function is a rational function that can be computed by a sequential

transducer, which is a deterministic finite transducer with no distinguished set of

CHAPTER 2. BACKGROUND

final states (any string correspondhg to a path through a sequential transducer is

accepted). A finite transducer is deterministic if b(q, a) contains at most one state

for any state q and character a.

A Ieft-right sequential transducer reads its input from left to right and writes

its output from lefi to right as well. A right-left sequential transducer reads and

writes from right to left. Thus any rational function can be computed using a two-

pass algonthm in O(lx1 + 1 y 1) time, and O(lxl + 1 y 1) memory. Altematively, the

input and output can reside on secondary storage giving a tw*pass algorithm with

O(lxl + Iyl) time, O(lxl+ (yl) I/O, and O(1) memory.

Another way of defining a rationa1 function is to define an arbitrary h i t e trans-

ducer and use appropriate rules to choose a unique output during simulation (John-

son, 1987). This was the approach used for the OED cornputerkation project

(Kazman, 1986), for example.

2.5 Context-Free Grammars

A context-free grammar G is a Ctuple (V,T, P, S), where V and T are disjoint,

finite sets of variables and terminals. P is a finite set of productions, and S is a

special variable called the start symbol. Each production is of the form A + a
where A is a variable and a is a string of syrnbols from (V U T)'. A is called the

left-hand side of the production and a is the right-hand side. See Hopcroft and

Uliman (1979) for an overview of the properties of context-free grammars.

A string is in the language of a grammar if and only if a parse tree for that

string can be built using the productions of the grammar. Such a parse tree is

of the following form: the root is labeled with S, interna1 nodes are labeled with

variable names, and leaves are labeled with terminals- The labels on the terminals

read fiom Ieft to right must equal the string, and for any internd node labeled A

with children X I , &, . . . Xk there must be a production A + X1X2.. . Xk in P. A

parse tree has at most 2n nodes where n is the length of the string if there are no

"useless" productions that simply rename non-terminais.

The process of finding a parse tree for a given grammar and string, if one exists,

is what is normally defined as paxsing (our definition includes this one). In general

context-free parsing can be done in 0(n3) time and 0(n2) memory, where n is

the size of the input string (Earley, 1970). Algorithms exist that achieve slightly

better asymptotic time bounds but have too much overhead to be useful except for

inputs much larger thao are of practical interest (Valiant, 1975). Parsing algorithms

also exist that use O(n) time and memory provided the grammar belongs to some

subclass that allows the parsing process to be conducted using constant lookahead

(e-g., LL(k), LR(k), LALR(k)). See Aho and Ullman (1972) for an oveMew of

parsing.

Lalonde (1977) describes regular right part grammars (RRPGs), a variant of

context-free grammars where the right-hand sides of productions can be regular

expressions of terminals and non-terminals rather than fixed strings. These describe

the same set of languages as context-free grammars. They are easier to specify and

understand, but have greater potential for ambiguity. This is because there are

more ways to find regular expression matches in a string than there are ways tu

find constant strings. (We examine regular expression substring matching in detail

18

in Chapter 4.)

CHAPTER 2, BACKGROUND

Chapter 3

Incrementally Specifying a Parser

3.1 Evaluat ion of Exist ing Models

Recall that pattern matching and one-grammar approaches are the models best

suited to recognition. We now examine some of the weaknesses of these models for

the task of incrementally specifying a parser. Recall that incremental development

involves progressing our understanding of the data one piece at a time, and also

writing and debugging the specification one piece at a time. We identify four areas

where grammars and pattern matching are deficient for this style of use: interactive

efficiency, structure mode1 flexibility, scalability, and batch efficiency.

3.1.1 Interactive Efficiency

The computational work done after each incremental addition or change to a specifi-

cation should be small enough that the process of incrementally speciFng a parser

can be done interactively. That is, modifications to the specification should be

20 C W T E R 3. LNCREMENT'ALLY SPECIFYLNG A PARSER

separated by short delays. None of the tools or systems we are aware of (those sur-

veyed in Section 2.1) have this characteristic. They al1 need to completely re-parse

the data every time the user changes the specification. This makes it difficult to

develop parsers for large data sets interactively-

3.1.2 Structure Mode1 Flexibility

A stmcture model is a way of restricting how structure elements are used. For

example, a grarnrnar requires that d l structure elements (non-terminal matches)

fit into a nested hierarchy (a parse tree). Pattern matching approaches, however,

have no inherent structure model.

We consider a hierarchy to be an overly restrictive structure model for incre-

mental parser specification. One problem is that the most natural model for a given

text may require overlapping sub-structures, which are not allowed in a hierarchy.

Another is that incremental development may be easier if elements are allowed

to occur in an unrestricted way until we determine how to fit them into a more

restricted structure model.

3.1.3 Scalability

Large monolithic parser specifications share a problem with large monolithic pro-

granls: dependencies between components eventually become too complex to un-

derstand. Therefore, as a specification grows, modification eventually become im-

possible since small changes to one part can wreak havoc on the remainder. A

survey by Clark (1991) examines several recognition tools and concludes that al1 of

3.1 - EVALUATION OF EXTSTLNG MODELS 21

them have this problem. As an analogy with software engineering, existing tools

are like primitive programming languages with no support for object-oriented, or

even structured, program organization.

Others have also pointed out this problem specifically for grammars, noting that

their inherent "brittleness" increases the effort needed to construct and maintain

them (Murphy & Notkin, 1996). A large part of the reason for this is the fact that

dependencies between productions are effectively unrestricted.

A well-known way of decreasing the number of dependencies in a specification

is to build it as separate modules and then combine them- One way to do this

with a grammar, for example, is to build separate grammars with start symbols

SI, S2, -, then combine them by taking the union of their productions and adding

the production S -+ SI 1 S2 1 - - -. Unfortunately, most commonly used context-

fiee gramrnar subclasses are not closed under even this simple operation (van den

Brand, Sellink, & Verhoef, 1998). More powerful forms of composition are therefore

also impossible with grammars.

3.1.4 Batch Efficiency

Whether specified incrementally or not, we want a parser to be efficient in the sense

expfained in Section 2.2. Even if we specify incrementally and parse the data as

part of the incremental process, we want to be able to apply the resulting parser

to other data with the same format. This is necessary, for example, if new data is

cont inually being generated.

There is no standard forma1 mode1 for batch parsing with pattern matching.

Simple forms of pattern rnatching such as lexical analysis c m be performed with

fhïte automata or finite tramducers. However, more powerful pattern laquages

that include structure relationships have not been studied fkom the perspective of

batch parsing.

Efficient parsing with grammars, on the other hand, is a highly studied problem.

Not al1 context-free grammars can be used to parse efficiently, but many context-free

subclasses can with constant lookahead (e-g., LL(k) , LR(k) , LALR(k)). Constant

lookahead tends to be appropriate for applications such as programming languages

because it is closely related to readability, and because language designers can

simply modify the languages to incorporate such cûnstraints. However, arbitras.

legacy data is not generally guaranteed to be parseable with constant lookahead.

A concern with grammar parsing is the amount of memory used to maintain

a stack. In general, this is O(n) for context-free grammars. One solution is to

ignore this problem on the assumption that only pathological cases require large

stacks when the grammars are specified with regular right part productions. An-

other solution is to bound the depth of the recursion as part of the forma1 model.

For example, although the overall parsing model used by SGML is context-free, a

constant (TAGLVL) is used to limit the maximum depth of nesting that is allowed

in a document (ISO, 1986; Goldfarb, 1990). A more extreme solution is to disallow

recursion altogether. This was the strategy used for recognition of the OED (Kaz-

man, 1986). In that case, recursive structures were dealt with by assigning distinct

types to every level of nested structure.

3.2. PROPOSED MODEL

3.2 Proposed Mode1

Overall, both grammars and pattern matching approaches suffer from esciency and

scalability problems when used for incremental specification. In addition, pattern

matching lacks a formal batch parsing rnodel. G r a m m m have forma1 batch parsing

models but use an overly restrictive structure rnodel-

The approach that we propose to elirninate these problems is as follows: main-

tain a dynarnic set of regions representing the result of the recognition process, and

provide a set of functions for interactively updating this set. We refer to the set

of regions as a region inventory, and the set of functions as a region algebm. Our

intention is that a region algebra used for this purpose will have many similarities

with the region algebras used as query languages for text databases or information

retrieval (Salminen & Tornpa, 1992; Burkowski, 1994; Kilpelainen & Mannila, 1993;

Clarke, Cormack, & Burkowski, 1995; Navarro, 1995; Dao, Sacks-Davis, & Thom,

1996).

The functions that comprise a region algebra al1 operate on subsets of the region

inventory. That is, a function call takes a subset of regions from the inventory as

arguments, and returns a set of regions as a result. This returned set then becomes

part of the region inventory.

Functions can be composed by passing the result of one function call as an ar-

gument to another. An algebra ezpresszon is a composition of two or more function

calls. Define the expression graph representation of an algebra expression as fol-

lows: each function call is represented by a node, and if one call A takes the result

of another cal1 B as an argument, then there is an edge from the node for A to the

CHAPTER 3. iNrREM%NTALLY SPECLFYING A PARSER

Figure 3.1: An expression graph that is a DAG.

node for B. The height of a node in an expression graph is the number of nodes on

the longest path from that node to a leaf.

An expression graph must be acyclic. That is, a function cal1 c a n o t use its own

result as an argument, nor can its result be used by any function which contributed

to its evaluation. An expression graph does not need to be a tree. It can be multi-

rooted, thus representing a set of expressions rather than just one. The directed

acyclic graph (DAG) in Figure 3.1, for example, represents two expressions with

a common sub-expression rooted at D. A graph can also be disconnected, thus

representing a set of expressions without common sub-expressions.

When using a region algebra as an interface, an expression graph plays the role

of the parser specification (in the same way that a grammar plays the role of the

parser specification when using grammars as an interface). The result of evaluating

an expression graph, that is, of parsing with it, is as follows: 1) every node is

marked as either producing an intermediate or a final result, and 2) the overall

result is the region inventory that is equal to the union of al1 final results.

3.3. EVALUATION OF THE PROPOSED MODEL

3.3 Evaluation of the Proposed Mode1

3.3.1 Interactive Efficiency

To ensure interactive efficiency7 the functions in a region algebra should al1 be

designed so that they can be evaluated efficiently. For example, we can guarantee

O(n) time and 1/0 by breaking the region inventory into subsets of at most n

regions that serve as arguments to functions. An example of a useful subset mode1

that allows many operations with O(n) time, O(n) 1/07 and O(1) mernory is a flat,

sorted region list such as those used in PAT (Salrninen & Tompa, 1992).

Even with O(n) time and 110, there is always a size cutoff after which an input

string is too Iarge to use the algebra interactively. Where this cutoff is depends on

the functions, the implementations, and the density of structure in the data. For

data larger than the cutoff, Our only choice is to build a parser for a subset of the

data interactively, and then parse the remainder in batch mode. Note, however, that

O(n) time and 1/0 is a n upper bound that may not be necessary for al1 functions.

Many useful operations will typically work with sets of significantly fewer than n

regions. Therefore, in practice, the average cost of an interactive function cal1 may

be much lower than n regions of I/O.

A more agressive goal might be to provide sub-linear interactive efficiency.

However, many useful functions require inputs and outputs that can be O(n) in

size. For this reason, we consider linear time and 110 to be the most appropriate

upper bound to use when choosing operations.

3.3.2 Structure Mode1

A region inventory may have any stmcture model we choose. For example, we may

require that al1 regions fit into a hierarchy, or we may allow regions to be completely

unrestricted . -4s pointed out, a strict hierarchy h a disadt-antages for interactive

use. Therefore, an unrestncted model is a better choice for this application1.

With respect to the survey by Baeza-Yates and Navarro (l996), an unrestricted

region inventory is classified as follows as a text structure model:

O It lies somewhere above a hierarchical model but below a full network model.

A full network mode1 would allow arbitrary, typed relationships between

nodes.

I t uses an explicit non-hierarchical list of regions. Explicit means that the

structure is separated from the text, as opposed to some models that use

interspersed markup.

It uses dynamic structure. This contrasts with models that require the struc-

ture to be static.

It is strongly structure bound, which means that the structure is mostly

separated from the text and the text is just used to restrict matches in the

structure. The alternatives are strongly text-bound models which interleave

the structure with the text and translate al1 queries into text operations,

and models that are intermediate between strongly text bound and strongly

lUseful models may exist that restrict regions in some way, but not as severely as a hierarchy.
However, we do no6 consider this further here.

3.3. EVALUATION OF THE PROPOSED MODEL

structure bound. These intermediate systems allow both text substrings and

structure subsets to be retrieved and rnanipulated as first class objects. We

do not need this functionality since we are only performing recognition, not

string transformation.

3.3.3 Scalability

With a region algebra, we can incrementally develop a parser specification non-

monotonically (Ait-Mokhtar and Chanod (1997) introduce this term in the context

of parsing). This means that, when we wish to modiQ a set of regions, we can

change the set directly using function calls from the algebra. This contrasts with

monotonic development where we have no choice but to go back and change the

parts of the specification that initially generated the set. (This is the case with a

grammar, for example.)

Non-monotonic development gives us the freedom to refine or revise earlier de-

cisions without going back and changing earlier parts of the specification, or even

having to understand them. This means that we also have the freedom to organize

the specification with fewer dependencies - by building modular specifications, for

example. This is a significant advantage from the point of view of scalability.

Another advantage of a region algebra is the freedom to include functions that

combine or compose results in many different ways. For example, it is simple

to provide algebra functions that takes sets of regions and perform standard set

operations on them (e-g., intersection, union, and difference). In contrast, the

closure properties of grammars mean that it is not generally possible to combine

28 CHAPTER 3. INCI[EEMENTALLY SPECLFYING A PARSER

them so as to perform set operations on their parse trees. This is another property

of region algebras that gives us more fkeedom to organize a specïfication modularly,

thus aIlowing fewer depeudencies and more scalability.

3.3.4 Bat ch Efficiency

A disadvantage of a region algebra approach is that, in general, evaluating an ex-

pression graph may be much more expensive than parsing with an efficient grarnmar

srzbclass. In a typical bottom-up evaluation, for example, the queries are evaluated

one-by-one, starting a t the leaf nodes and working upward. Heuristic techniques

can be used to reduce the cost of evaluating an expression graph (Consens, 1998).

However, Jaakkola and Kilpelainen (1999), claim that, in general, the worst case

evaluation cost is 0(n2) time. This is excessive for use as a batch parser.

Others have described specific algebras for which linear time, constant memory,

evaluation is possible for any expression graph (Clarke & Cormack, 2000; Ives,

Levy, & Weld, 2000). In Chapter 5, we take this further, by developing a general

characterization of classes of operations that can always be evaluated efficiently

when included together in a region algebra.

Chapter 4

Parsing Models

In the previous chapter, we introduced the idea of using a region algebra as an in-

terface for incrementally developing parsers. We now discuss batch parsing models,

defining a parsing model to be a set of mappings from strings to sets of regions.

For example, the set of al1 mappings that can be specified with grammars is a

parsing model. The set of mappings that c m be performed using the UNIX tool

lex can also be considered a parsing model, as can the set of mappings that can be

performed using the UNXX tool grep.

4.1 Regular Expression Parsers

We start by examining a simple example of a parsing model: given a regular expres-

sion and a string, return a list of regions al1 of which are matches for the regular

expression. Note that regions in the list are not distinguished by type, i.e., this

problem uses a simplified version of the structure model.

30 CHAPTER 4. PARSING MODELS

The longest matching results presented in this section are original. We include

them here since they are a useful part of the overail parsing mode1 that we describe

in the next chapter.

4.1.1 Finding Substrings

It is well kno~vn how to simulate an NFA M on a given string x to determine

whether x is in the language L(M) . See Aho et ai. (1974), for example. Finding

non-empty substrings of a string x that are in L (M) is a more difficult problem.

There are ("Tl) potential matches in a string of length n, corresponding to starting

and ending a match before and after every character.

Practical algorithms restrict potential matches in some way to reduce this num-

ber when dealing Rith large strings. A widely used restriction is found in the

POSIX standard (IEEE, 1992) which mandates left-most, longest, non-overlapping

matching. This means that when there are two matches with one inside another,

the inside one is discarded in favour of the outside; when there are two matches

where one overlaps the other, the right one is discarded in favour of the left. Thus

the result is a set of matches with no overlapping or nesting. Clarke and Cormack

(1997) propose an alternative rule for information retrieval applications: find d l

shortest, possibly overlapping matches. For this rule, outside matches are discarded

in favour of inside ones in cases of nesting, but overlapping matches are kept. Perl

uses left-most matching and allows the user to specify whether each variable length

operator (e-g., * or +) should match the longest or shortest possible string (Wall

et al., 1996).

Al1 of the above rules guarantee that the number of matches in a result is a t most

equal to the number of characters in the string. This is ensured by the condition

that nested matches are not allowed, a condition that is met by always keeping only

a single element from a nested set of matches (for example, either the longest or

the shortest). To resolve between overlapping non-nested matches, there are two

strategies. One is to keep them al1 (the number of possible matches remains linear

in the length of the string). The other is to keep just one, such as the leftmost.

This is the most natural choice if the string is scanned left to right, but there is no

inherent reason not to choose, Say, the rightmost, or to do something more arbitrary

like choosing non-deterministically which one to keep.

Finding d l shortest, overlapping matches for a regular expression can be done

in linear time and constant memory. Clarke and Cormack (1997) give an algorithm

for this, extended from one given by Alio et al. (197'4). However, finding longest

matches is not always possible with a single pass and constant memory.

Consider searching for longest matches in a string by scanning from left to

right. When a match completes, there is no way to know whether a longer match

will cornplete later to supersede it. Thus, in the worst case, every match must

be bufFered indefinitely. For example, consider matching the regular expression

(ab) 1 (aC*c) against a string of the form (ab)"c for some n. When scanning from

left to right, every a b is a match which has to be stored until the final c is read,

a t which point they can aH be discarded in favour of the single match equal to the

entire string.

One solution is to bound the lookahead: if we have a match buffered, and no

longer match completes within a given number of characters, then the buEered

match is output. Any matches in progress that may be longer if they complete

are discarded a t this time. This approach may be appropriate for a tokenizing

application, for example, where we know in advance that tokens are never more

than some maximum length. The trouble is that it does not, in general, always

find the matches that are strictly longest. In the example above, it misses the

match equal to the entire string if the string is longer than the chosen limit on how

many characters to wait before outputting buffered matches. In sections 4.1.2 and

4.1.3, we describe methods that always correctly find longest matches for a regular

expression using only bounded buffering.

4.1.2 Two-Pass Longest Matching
'i

The first method we propose finds longest matches by abandoning the assumption

that the search must be done in a single pass over the string. The algorithm uses

two passes, the first of which outputs potential matches as they complete (this may

require O(n) secondary storage for a string of length n). It then makes a second

pass over the potential matches, deleting those superseded by longer matches that

completed later during the first pass. The second pass is done in the opposite

direction of the first, Le., if the first pass reads the string from Ieft to right, then

the second reads the potential matches from right to left.

The shortest matching algorithm given by Clarke and Cormack (1997) can be

modified to perform the first pass of the two-pass algorithm as shown in Algo-

rithm 1. States are designated by numbers in the range 1 to IQI with 1 representing

4.1- REG ULAR EXPRESSION PARSERS

Algorithm 1: Perform the first pass of the longest rnatching algorithm.
Input: A string x = ala:!. . . h, and an NFA M = (Q, C , 6,1, F)
Output: A list of regions, sorted by right end positions.
MATCH(X, M, S)
(1) for j t 1 to IQI
(2) Pj t -1
(3) f o r i t f ton
(4) if Pl = -1 then Pl t i
(5) for j t 1 to 1QI
(6) Pi t -1
(7) for j t 1 to IQI
(8) foreach q t 6(Pj, ai)
(9) if Pi = -1 OR Pj < Pi then Pi t Pj
(10) u t -1
(11) for j c 1 to lQI
(12) if j € Fand Pj'Z-1
(13) if u = -1 OR Pj < u then u t Pjr
(14) if u # -1 then OUTPUT((U, i))
(15) t emp t P
(16) P t P'
(17) P' t temp

CHAPTER 4- PARSI-NG MODELS

Algorithm 2: Perform the second p a s of the longest matching algorithm.

Input: A list L = {Z1, Z2, . . . ,lm) of possibly nested regions sorted
by right end positions. Each region li is a pair of natural numbers
(Zi-Z, Zi-r) th Zi.Z 5 zi*r-
Output: The input list with any regions nested inside other regions
deleted.
FILTER(L)
(1) 6 + lm
(2) for i t rn - 1 to 1
(3) if liez < b.1
(4) OUT PUT(^)
(5) b t Zi
(6) OUT PUT(^)

the start state qo. The idea is to scan the text from left to rïght (lines 3-17) with

a new execution of the NFA beginning a t the start state for each character in the

text (line 4). For a match in progress that starts a t a previous character in the

string and brings the NFA to state j, we record the start position in the array P

at index j . If no match in progress ends in state j , then the entry Pj is equal to

-1. The array P' is used for update purposes, and P and P' are swapped a t the

end of each pass (lines 15-17). If two intervals of text leave the NFA in the same

state, we can immediately discard the shorter one since we are searching for longest

matches (as opposed to discarding the longer one in shortest matching). This is

performed in lines 9 and 13, and is also reflected in the condition a t !ine 4 which

does not begin a new match if there is already a match in progress currently in

the start state. Line 10-14 find and outputs the longest match that ends in a final

state at the curent character, if one exists. Since matches are output immediately

when they complete, the list of potential matches is sorted by rigbt end.

4.1. REG ULAR EXPR.FSSfON PARSERS

Since the output of the first pass is a list of regions sorted by right ends, the

second pass can iterate the list from right to left and be sure of always encountering

a longer match before any shorter match that is nested inside of it. Thus we can

perform the second pass using constant memory as shown in Algorithm 2. This

keeps a single region, b, buffered at alf times. Line 1 sets b to be equal to the last

region in the list. Then the main loop (lines 2-5) vîsits each remaining region in

turn from right to left. The value of b is always a region visited before Li in the

loop. Since the list is sorted by right ends and we visit the regions from right to

left, the right end of b is therefore always greater than or equal to the right end of

Li. Therefore, if the condition of line 3 is false (Le., the left end of Li is greater than

or equal to the ieft end of b), then we know that li is nested inside of b. In this case,

the algorithm does nothing with li, therefore discarding it. If, on the other hand,

the condition of line 3 is true, then li is either to the left of b or overlaps it on the

left. In either case, b is output and replaced with Zi. After the loop completes, the

algorithm outputs the final b.

The first pass uses O(I PI) memory, where 1 PI is the number of states in the

NFA. This is linearly related to the size Ir1 of the regular expression. Therefore,

the pass uses O(lr1) memory. The second pass uses O(1) memory in the form of

a single buffer. Therefore, the overall memory used by the two-pas algorithm is

Wl)-

Another way of looking a t the first pass algorithm is that it finds the longest

match ending at every character in the string. A proof of this can be constmcted

based on two points: 1) the algorithm directly chooses the longest match when

CHAP'TER 4. PARSING MODELS

several end at the same character, and 2) the way that it chooses between matches

in progress that converge to the same state never results in a longer match being

missed. To understand the second point, suppose we have two matches in progress

with start characters ai and aj, where i < j. Consider what it means if the paths

through the NFA corresponding to these two matches in progress converge to the

same state s: any path from s to a final state ending at character ak necessarily

represents a match from ai to a k and another match from aj to ak. That is, there is

no way for the shorter match from aj to ak to occur without the longer one from

to ac alço occurring. Therefore, discarding the match in progress with the aj start

point never results in a missed longer match.

The proof that the second pass correctly deletes all matches nested inside of

longer matches is as follows: if, at any time, the li currently being visited is nested

inside some other region in the input (possibly more than one), then li is necessarily

nested inside the current b. We prove this by contradiction. Suppose it is possible

for the current b to not contain Zi even though there is sorne region b' that does

contain li. We knoiv that b.r must be greater than li.r, since b must be visited

before Ii in the right-left iteration order. This implies that b.1 must be greater than

l i . l , otherwise b would contain li. This, in turn, implies that b-Z is greater than b'.l

since Zi is contained in b'. Given these restrictions, there are two cases of interest:

1) b is nested inside b', or 2) b.r > b' .r. In the first case, b' is visited before b, and b

is discardedrather than replacing b'. In the second case, b is visited before b', but

replaced by b' prior to reading Zi since bl.Z < 5.1. Both of these cases contradict the

initial assumption that the current b is not b'. Therefore, if Zi is nested inside one

4-1 - REGULAR EXPRESSION PARSERS 37

or more regions, then it is sure to be nested inside the current b, and we always

know whether or not to discard an Zi by comparing i t to the current b. Also, we

know that we never discard a n li that should not be since we always specifically

have the b that contains it a t the time when it is discarded.

Note that the second pass of the algonthm visits the regions in the list from

right to left, this is also the order in which it outputs them. In some cases, it

may be more appropriate for the final output to be sorted from left t o right. To

arrange this we can simply reverse the direction of both passes. This means that

the first pass over the string is right to left, and the second p a s over the potential

matches is left to right. The necessary modifications to the two algorithms are

straightforward.

4.1.3 One Pass Longest Matching

The second approach we propose for finding longest matches is to restrict the regular

expressions that are allowed so that only a single pass is required. An example of

a regular expression that requires only a single pass is (011)+, which matches any

non-empty string of 0's and 1's. We can find longest matches for this expression

using constant memory: whenever a match completes, we need onLy check the next

character to see if it is a O or a 1. If not, then we output the match, otherwise we

discard it. In other words, this regular expression requires only a single character

of lookahead to find longest matches.

C W T E R 4. PARSLNG MODELS

Figure 4.1: An NFA for which unbounded lookahead is required to find longest
matches.

Figure 4.2: An NFA for which we can find Iongest matches using only two characters
of lookahead.

4.1. REGULAR EXPRESSION PARSERS

Bounded Lookahead

We use this observation, together with the previously introduced idea that if we

have a match buffered, and no longer match completes within a given number of

characters, then we output the buffered match. However, rather than choosing

a constant bound that may not accurately find longest matches for some regular

expressions, we propose to choose the bound based on the regular expression, and

further, to disallotv regular expressions for which no constant bound is possible.

The amount of lookahead needed to find longest matches for a given regular

expression can be determined by examining the corresponding NFA. Suppose that

a match completes using Algorithm 1 and that S is the set of states that contain a

match in progress. A match completes whenever the automaton enters a final state.

Thus, the maximum lookahead required to decide whether to keep the completed

match is the length of the longest possible string x such that 3s E S for which

b(s, x) is a final state, and there is no prefix z of x such that b(s, T) is a final state.

For example, consider the NFA in Figure 4.1. Suppose we match against a string

that starts with ab. When the first ab match is found, there is also a match in

progress in state 2 that started on the same character. Because of the loop a t state

2, a path starting a t state 2 can be arbitrarily long without passing through a final

state. Therefore, the lookahead required to decide whether to keep the ab match

is unbounded. In contrast, consider Figure 4.2. When an ab match completes,

the only match in progress that may eventually be longer is one that extends the

original match by continuing from state 3. This can take at most two transitions

before reaching a final state (i.e., returning to state 3). Therefore, the maximum

lookahead required to find longest matches is 2.

We now describe how to compute the maximum lookahead for any regular ex-

pression r. Let M (r) be an NFA constructed from r , s be some state in M(r),

and pre&(iM(r), s) be the NFA formed by taking the NFA M (T) , changing the set

of final states to {s), and deleting al1 states and transitions fkom which it is not

possible to reach s. For example, Figure 4.3 a) is prefix(M(r), 2) where M(r) is

Figure 4.1.

Let M (r) = (Q, C , 6, qo, F) as before, and constmct M(C*r) = (Q U {qb), C , 6 U

{(q6,3 -t qa , (qb , C) -t qa) , qh, F) . For example, Figure 4.3 b) is M(C*r) if M (r)

is Figure 4.1. State O in the figure corresponds to qb.

We next constmct the NFA for the intersection of L(M(C*r)) and

L(prefix(M(r), s)) . A general construction for intersecting two NFAs Ml and M2

is as follows ': let Ml be (Ql,C, bl,ql, Fl) and M2 be (Q2,C762,q27 F2)- Then,

define the NFA Ml2 = (Q1 x QZi C, 6, [qL1 q2], Fl x FZ) with a transition function 6

as follows: V((p1 , a) + p2) E 61, 'd((p3, a) -t p4) E 62 the transition (([pi, p3], a) +
[p?,p4]) is in 6- A h ~ ([P ~ , P & E) = (&(p17e) x (132)) u ({pl) x 62b2,~))- For ex-

ample, let Figure 4.3 b) be Ml, and Figure 4.3 a) be M2. Then Mlî is shown in

Figure 4.3 c). Note that there should be a transitions from states [1,1] and [1,2]

to a state [2,2]. However, [2,2] is a dead-end from which it is impossible to reach

a final state. It is therefore omitted.

If the intersection of the languages L(M(C*r)) and L(prefixM(r), s) is non-

empty for some state s in M(r), then it is possible for the situation depicted in

'Hopcroft and UUman (1979) give a construction for intersecting two DFAs. This is a straight-
forward extension.

C) M(C*r)fl prefix(M (r) , 2)

Figure 4.3: NFAs constructed from Figure 4.1.

CHAPTER 4. PARSING MODELS

Figure 4.4: A match that completes inside a potentially longer match in progress.

Figure 4.5: s u f f k (M (r) , 2).

Figure 4.4 to occur. This represents a match for the regular expression r at the

end of a prefix match that finishes in state S. The lookahead required to decide

whether to keep or discard the r match in this case depends on the possible paths

from s to a final state.

Define su&(M(r), s) to be the NFA formed by taking M (r) , changing the start

state to s, and deleting al1 states and transitions that cannot be reached starting

fkom S. Figure 4.5 shows suffix(M(r) , 2) for our example. The longest path through

this NFA from the start state to the final state that does not pass through a final

state is the required lookahead (ifs is itself a final state, then it can start in a final

state). We denote the length of the longest such path by longest(M(r)) for an NFA

4.1. REGULAR EXPRESSION PARSERS 43

Algorithm 3: Find the maximum lookahead required to search for longest
matches for a regular expression using a single p a s .

Input: A regular expression r .
Output: The required lookahead.
MATCH(T)

(1) lookahead t O
(2) foreach state s in the state set of M(r)
(3) if (Jwf(C*r)) n L(prefix(M(r), 9))) # 9
(4) if longest(suffix(M(r) , s) > lookahead
(5) lookahead t longest (s u f i (M (r) , s)
(6) return lookahead

hl(+). For example, longest (sufEx(M(r), 2)) is m because of the loop at state 2.

Algorithm 3 uses the ideas illustrated above to compute the maximum lookahead

that may be needed when finding longest matches for a regular expression r. The

efficiency is as follows: both M(C*r) and prefix(M(r), s) are of size O(lr1) since we

can always constmct an NFA for a regular expression proportional to the length of

the regular expression (Hopcroft & Ullman, 1979). The construction of the NFA for

L(M(C*r)) n L(preh(M(r) , s)) uses the cross product of the two state sets as the

state space, and therefore gives a resuit of size O(lrI2). If the intersection is non-

empty, then su&(M (r) , s) must be computed. This is of size O(lr [), and finding

the length of the longest path therefore takes O(lr1) time. Since the algorithm

performs one intersection for each state, the overall time complexity is O(lrI3).

The memory used is the size of a single intersection, i-e., O(lr1*).

Bounded Buffering

Lookahead is the number of characters that must be read after a match completes

before knowing whether it is superseded by a longer match. For the purpose of

MODELS

Figure 4.6: A pattern of potential matches that requires buffering.

finding longest matches, requiring bounded lookahead is more restrictive than nec-

essary. What we really need to bound is the number of buffered matches, i.e., the

arncunt of required memory. This is bounded if the lookahead is bounded, but

may also be bounded when the lookahead is not. Consider the expression aC'b,

for esample. Matching against a string of the form abaib requires i characters of

lookahead after the match ending at the second character to find the match ending

at the last character. However, only one match is buffered while ail these characters

are visited.

For buffering to be required, i t must be possible for one or more matches to

complete inside a longer match as in Figure 4.6. In this case, al1 of the inside

matches are buffered from the time they complete until the time that the outside

match completes. Note, however, that matches that are more deeply nested may

be discarded. For a regular expression r , an upper bound on the number of regions

that may have to be buffered is the maximum k such that L((C*T)~ZC ')n L(T) is

non-empty. Here, k is the number of matches that can occur directly inside a longer

match as in Figure 4.6.

We now show how to calculate the maximum k. Let Mi = M (r) , and M2 =

M((C*r)+C*) constructed as shown in Figure 4.7. Next, construct the NFA Ml*

for the intersection of Ml and M2 the same way as in the previous section. For

4.1. REGULAR EXPRESSION PARSERS

Figure 4.7: The NFA for M((C*r)+CB). The Q transition into M (r) goes to ql. The
E transitions out of M (r) corne from any final state in 4.

example, for r = aC* b, Ml is shown in Figure 4.8 a), M2 is shown in Figure 4.8 b) ,

and Ml? is Figure 4.8 c) . Note that there is a b transition from [2,2] to [3,2] that

is not shown because it is not possible to reach a final state from [3,2].

Consider a path p through Ml* that starts in a state [x, q,] for some x E QI

(recall that q,, the second element in the square brackets, is the start state of Ml,

but also part of the state space of Mz) . Suppose also, that the path ends in a

state [y , q f] for some y E QI and qf E FI (again, qf is a final state of Ml but also

part of the state space of M2). An example is the path [2,1] -t [2,2] -t [2,3] in

Figure 4.8 c). As ql and q~ are the second elements in the square brackets, they

therefore represent states in M2. Therefore, a path of this form corresponds to a

path through the sub-automaton inside the rectangle in Figure 4.7. The path p

therefore represents a match inside a potentially longer match, the basic condition

for buffering. If p takes place inside a cycle of Mlz, theri any number of matches

can occur inside a longer match. This is true, in Figure 4.8 c) since there is a

CHAPTER 4. PARSING MODELS

Figure 4.8: NFAs constructed with r = aC*b.

4-1. REGULAR EXPRESSION PARSERS

Figure 4.9: A pattern of potential matches that requires only one buffer.

transition from [2,3] to [2, O] and then to [2,1], the beginning of p. This means that

the intersection L((C*T)~C*) n L(T) is non-empty for any k, Le., k is m. If there is

no such p inside a cycle, then the maximum k is the maximum number of matches

on a cycle-free path through MI2-

The k found above is a weak upper bound on the required buffering since it

neglects that some matches in progress are eliminated when they converge to the

same state. Consider using the NFA in Figure 4.8 a) to match against a string of

the forrn a(ab)'b. A match begins a t the first character, and at each subsequent

a. However, al1 matches in progress converge to state 2, at which point the later

starting match is discarded. Therefore, the potential matches are of the form shown

in Figure 4.9 rather than Figure 4.6, and it is never necessary to buffer more than

one match at a time.

To take discarded matches in progress into account, Ive need to consider states

of the form [x, x] in MI2. Since this represents convergence to a single state in

M(r) ; we are interested in the paths that do not contain a state of that form. If al1

paths containing a match also contain an [x,x] state, as is the case in Figure 4.8

CHAPTER 4. PARSlZVG -'ODELS

c) , then the number of buffers required is 1. Otherwise, the required buffering is

calculated from the paths that do not contain an [z, x] state.

Overall then, to find the maximum buffering required to search for longest r

matches, we first construct the NFA M12. Ml and M2 are O(lr1) in size, so Mi2

is O((rI2). Finding the longest path through an NFA can he done in linear time.

(The fact that we measure the length as the number of matches rather than the

number of transitions does not change this, and neither does having to consider

[x, x] States.) Therefore, this procedure uses O (Ir 1 2) time and 0 (Ir i2) memory.

Longest Matching Subclasses

Consider an application that requires longest matching in a single pass with

bounded memory. One way to provide this is to allow entry of any regular ex-

pression, but reject expressions that require unbounded buffering. An alternative

approach is to only allow entry of regular expressions restricted in some well defined

way so as to always require only bounded buffering. We give some examples of such

restrictions.

Define the finite closure operator as follows: if p is a regular expression for the

language L, then $ is a regular expression for the language ut==, hi.

Lemma 1 We can find Zongest matches uszng a single pass and bounded bufiring

for any regular expression where alb closure operutors are finite.

Proof: If there are only finite closure operators, then the language is

h i t e . If x is the longest string, and y is the shortest string, then IxlllyI

is a weak upper bound on the number of buffers required.

4.1 - REG ULAR EXPRESSION PARSERS

Lemma 2 W e can f ind Zongest matches using a single p a s and bounded bufiering

for any regular expression where alternation is d w a y s between two languages where

a string from one i s never a substring of a string from the other.

For =ample, the expression (ab*c)[(adae) requires only bounded buffering be-

cause there are no strings in the language for (ab*c) that are substrings of strings

from the language for (ad'e) and vice versa. On the other hand, in the expression

(aC'c) 1 (ad'e), strings from (ad'e) can occur inside strings from (aC'c), and this

expression requires unbounded buffering.

Proof: For the situation in Figure 4.6 to occur, it is necessary for

there to be alternation between languages where strings fkom one are

substrings of the other. With no such alternation, this is not possible,

and unbounded buffering is not required.

Lemma 3 W e can find Zongest matches using a single pass and bounded buffering

for any regular expression where the only alternations are between strings with a

single charact e? .

For example, the expression (alblc)*d only has alternations between single-

character strings and therefore only requires bounded buRering.

Proof: This is a direct consequence of Lemma 2.

The above three lemmas characterize restrictions on regular expressions that

ensure the ability to find longest matches in a single pass with bounded buffering.

Equivalently, we can àisallow the alternotion operator, and add the operator Calaz . . . a,J which
defines th; language { a l , az, . - . , G).

50 CHAPTER 4- P ' . I N G MODELS

They are ody examples, and many other such restrictions are possible. More

research is needed to tell whether there is a simple way to characterize the class

of al2 regular expressions that require only bounded buffering, or the class that

requires only bounded lookahead.

4.2 Rational Function Parsers

4.2.1 Coding

We now discuss using rational functions as parsers. Rational functions map from

strings to strings, so the first step is to define a string coding for the output region

inventory. Let T be a blank character and T be a set of types. Let A, the output

alphabet, be the union of { T) and the set U a E T { ~ i à) i where is a start tag for

type a, and à is an end tag. The idea is that the function should output T for

each character of the input string, and insert start and end tags at the appropriate

locations to delimit regions. Given such an output, we can calculate the position

of a tag in the input string by counting the number of preceding T'S. A string with

properly paired start and end tags represents a set of regions. Therefore, the set of

rational functions that always output strings of this forrn are parsers according to

our expanded definition.

4.2.2 Efficiency

Any rational function can be computed using a two-pass algorithm that computes a

length-preserving right-left sequential function composed with a left-right sequential

function (recall Theorem 1 from Section 2.4). The first pass reads the input string

from left t o right and generates an intermediate output of m characters - the size

of the final output (since the second function can always be length-preserving). The

second pass reads the intermediate output from right to left and outputs the h a 1

result. Therefore, the fkst pass reads n characters and writes m characters, and the

second pass reads m characters and writes m characters. The total 1/0 is therefore

n +3m characters. Assuming an appropriate representation, a sequential transducer

can process each character in constant time. Therefore the two-pass algorithm uses

O(n + m) time and I/O. The memory used to simulate a finite transducer is linear

in the size of the transducer, Le., O(o). Overall, these bounds are low enough to

be acceptable for a batch parser, as discussed in Section 2.2.

4.2.3 Compkations

A problem with using rational functions as a parsing model is that finite transducers

are a very restricted model of cornputation. In particular, the need to code the

output region inventory as a string leads to unnecessary complications just t o hande

things like tag pairing and the ambiguity inherent in regular expression matching.

Consider the form of an unambiguous finite transducer that always outputs

properly paired tags. A start tag can only be output if the corresponding end

tag is output eventually. The only way to guarantee this is to construct the finite

transducer so that d l paths from the state that outputs the start t ag lead to a

state that outputs a corresponding end tag. Therefore, if we wish t o recognize a

pattern for which we cannot know for certain after the first character that a match

Figure 4.10: A finite transducer that recognizes any three-character string, and
outputs surrounding start and end tags of type x only if it matches abc. The
notation €15 at a transition means input an E , and output an 5. Al1 other transitions
have only the input syrnbol marked, and the output symbol is implicitly r.

will comptete, then we need to include a non-deterministic choice between taking

a path that always completes a match and one that does not. Only the first path

should output the start tag. Consider the exômple finite transducer in Figure 4.10

that accepts any three character string and assigns it the type x if it is abc by

outputting an rE at the first character and an 5 a t the last. The bottom path

outputs start and end tags, and matches the string abc. The other paths output no

tags, and match any string of three characters except abc. The non-deterministic

choice between the bottom and middle paths is necessary since there is no way to

tell without lookahead whether an initial a will eventually complete a match and

therefore whether to output a start tag or not.

If we wish to use two passes to evaluate a rational function specified as a single

transducer, then we need some way to decompose the single transducer into left

and right sequential transducers automatically. For example, one way to decompose

an unambiguous transducer that outputs properly paired start and end tags is to

modiQ it in such a way that it outputs start tags on the Ieft-right pass without

worrying whether a match completes. The right-left pass can then delete unpaired

start tags for matches that did not complete. The right sequential function to

perform this deletion has a state space defined by a finite control that keeps track

of a subset of T, the set of types. The transition function adds a type to the finite

control on reading its end tag, and removes it on reading the next start tag. When

a start tag is encountered and the type is not in the finite control, the tag is deleted

from the output stream. All other inputs are simply echoed to the output.

We now give an example of a decomposition into two passes, this time for an

CHAPTER 4. P ' L N G MODELS

Figure 4.11: A finite transducer M that performs a regular expression matching
operation. The dashed box contains the NFA for the regular expression. The
transition into the NFA enters its start state. The transition out leaves from the
final state (assume that we construct the NFA so that there is only one final state).
The finite transducer outputs a r for every non-c input character.

4.2. RATIONAL FUNCTION PARSERS

ambiguous transducer that specifies a rational function only when taken together

with a disarnbiguation rule. The transducer M is shown in Figure 4.11. The task

that we wish to perfonn is to find a flat list of regular expression matches. Note

that we give this example to demonstrate only that a h i t e state mode1 leads to

more complications than should r e m be necessary, even for this relatively simple

operation. The construction below is not otherwise an integral part of the thesis.

There are two sources of ambiguity in M. The first is the C loop at the start

state- This makes the position where a simulator should enter the NFA and out-

put a start tag ambiguous. The second source of ambiguity arises from any non-

determinism within the NFA. This makes it ambiguous where a path can leave the

NFA and output an end tag. As discussed in Section 4.1, this ambiguity is an in-

herent property of regular expression matching. Two possible disambiguation rules

are to either keep only leftmost-shortest or leftmost-longest matches. Any such rule

that results in a flat list of matches effectively chooses a single path through M.

The decomposition into two passes that Ive propose uses the same idea as for an

unambiguous transducer: output when in doubt on the left-right pass and delete

extra tags on the right-left pass. Now, however, we are in doubt about which path

to take through M, not just whether a match will eventually complete. We proceed

by considering how to deal with this.

Let the output of the first pass be the superimposed outputs of al1 possible paths

through M, including dead end paths that never complete. By superimposed, we

mean that al1 outputs go to a single string, but repeated characters at the same

input location are deleted. Therefore, the T character is output only once for each

input character, rather than being repeated once for each path. Tags output by

different paths at the same input location appear in an arbitraxy order.

The problem wïth superimposing the output in the above manner is that we

can no longer be sure about how to pair start and end tags. For example, suppose

we start a match at position O, start another at position 1, abort the first match

at position 2, and complete the second at position 3. In this case, dl we see in

the superimposed output is two start tags followed by an end tag. There is no

indication that the end tag can only be paired with the second start tag and not

the first. We need to include extra information in the output string to interpret it

correctly. This can be done by redefining the output alphabet:

where a is the number of states in the NFA. Only start and end tags with the same

subscript can be paired. When a path enters the NFA, it is assigned an unused

subscript and a start tag with that subscript is output. The path then keeps that

subscript until the match either aborts or completes. If it completes, then we

output the end tag with the appropriate subscript. The number of subscripts in

simultaneous use is bounded by deleting a path whenever two paths converge to

the same state. Which path to delete depends on whether we are searching for

shortest or longest matches. To make the decision, we need to keep a list that

shows the order in which paths corresponding to each subscript began. Shen we

keep the earlier starting subscript for longest matching, and the later starting one

for shortest.

4.2. RATIONAL FUNCTION PARSERS

We have now constructed a left sequential transducer that is completely deter-

mined from M. The first component of the state space for the sequential transducer

is the reachable subset of the power set of Q, the state space of M. In addition,

each state in Q is paired with a subscript when it is in the process of matching the

NFA, and a list of matches in progress is stored to indicate the order in which the

matches began. A state in the left-right transducer therefore consists of a subset of

Q, a iist of subscripts associated with some of the states in this subset, and a list of

subscripts that indicates the order in which the matches in progress corresponding

to those subscripts began.

We now define the right sequential transducer that is composed with the left

sequential transducer to implement the rational function for M. On reading an

end tag, the right sequential transducer stores the subscript in its finite control

and deletes al1 other start and end tags until i t finds the paired start tag with the

proper subscript. At that point it removes the start tag from the finite control.

Any start tag encountered when there is no end tag with the same subscript in the

finite control is deleted. A11 other input is echoed from the input to the output.

There is a final detail when we are searching for shortest matches. Consider

the case where we have an output gl, L C 2 , its, kl. Reading right to left on the second

p a s , we encounter subscript 1 first and have no way of knowing that there is

shorter match and that fl should be deleted. This is something that we do know

on the Ieft-right pass as soon as k2 is output. Therefore, whenever a shortest match

completes in the left-right pass, we must delete any other matches in progress that

may eventually output longer matches. This is a slight change to the construction

CHAPTER 4. PARSING MODELS

of the left sequential transducer.

The general strategy exemplified by the above construction can be applied to

any finite transducer that defines a rational function directly, or does so together

with extra disambiguation rules that also define a rational function. The first step

is to supenmpose the output of d l paths through the finite transducer, adding

any necessary information to distinguish between paths (e-g., the subscripts in the

above example). The second step is to implement the disambiguation rules to delete

al1 outputs except for those of the single correct path. Any lookahead required by

the disambiguation rules or the original finite transducer is implemented in the

right sequential function, any lookback is irnplemented as an additional part of the

left sequential function (e-g., the rule to delete matches in progress for a shortest

matching type whenever a match completes).

4.3 General, Multiple-Pass Parsing Models

We can view a two-pas algorithm for calculating a rational function parser as

one example of a more general parsing model that uses multiple passes, possibly

more than two. The longest matching algorithm for regular expressions is another

example of such a parsing rnodel that also uses two passes.

In the general parsing model, the first pass inputs the string and outputs a

region inventory, and the second pass inputs the region inventory and outputs a

modified region inventory. We can also generalize to more than two passes by

having every subsequent pass input the region inventory output by the previous

pas , and output a new region inventory.

4.3. GENERAL, MIILTPLEPASS PARSING MODELS

For both example pming models, the first pass is lefi-right and the second

is right-left. Extending to more than two passes we could malce the third left-

right, the fourth right-left, and so on. That is, the direction alternates every pass.

Alternatively, we could begin Mth a right-left pass and then alternate.

One advantage of a parsing model that uses multiple passes in alternating di-

rections is that it allows computation of functions that require lookahead by using

individual passes that do not require lookahead. This is true with rational func-

tions, for example, since the sequential transducers used to compute left and right

sequential functions are deterrninistic.

A general, multiple-pass parsing model need not be limited to a finite state corn-

putation model like a sequential transducer. If required, more powerful operations

can be allowed, such as building a hash table of identifiers, or maintaining a queue

or stack of symbols. The only restriction we assume on the computation is that

it satisfy the efficiency bounds given in Section 2.2. Note that with multiple-pass

models, reading and writing the intermediate outputs is part of the 1/0 cost.

Chapter 5

Algebra Design

This chapter shows how to design region algebras for which we can efficiently eval-

uate al1 possible expression graphs. Recall from Section 2.2 that efficiency in the

context of batch parsing means at most O(on + crm) time, O(n + m + O) I/O,

and O(o) mernory. We propose an evaluation method that satisfies these bounds.

We then characterize classes of functions that an algebra can include if al1 possible

expression graphs are to be evaluated with this method.

5.1 Interactive Efficiency

Recall that we want interactive efficiency in addition to batch efficiency. Thus w e

restrict every function so that it accesses O(n) regions. We do this by breaking

the region inventory into subsets of size at most n that are used as arguments to

functions. The subset mode1 that we initially assume is a flat (non-overlapping,

non-nesting), sorted region list similar to that used in PAT (Salminen & Tornpa,

62 CHAPTER 5. ALGEBRA DESIGN

1992). All regions in a flat list have the same type, and can therefore be stored as

lefi and right indexes only. A flat list contains at most n regions for a string of

length n (this occurs only if there is one region for each character in the string).

Zero length regions are not allowed.

One reason for choosing a flat list representation is that it allows simple bounds

on memory usage for the evaluation method described Iater in this chapter. Another

reason is that functions operating on fiat lists are easy to define and understand.

In particdar, we c m define many functions that correspond exactly to those in

typical structured query languages,

A general disadvantage of a flat list representation is that i t is more difficult

to ensure, when the lists are dynarnic, that al1 regions fit into an overall structure

mode1 such as a tree. This is not a limitation here since we are assuming that

region inventories have no restrictions.

5.2 String-to-Region Funct ions

We start by considering functions that generate flat lists of regions from the input

string. These are the only functions that do not take lists as arguments. Therefore,

string-to-region function calls can never depend on each other in an expression

graph. Al1 the leaf nodes of an expression graph should be string-to-region functions

if the graph is to speci& a parser according to our extended definition.

Substring Matching

Matching functions find regions in the string that match a given pattern. The

simplest form of pattern matching is finding substrings. For example, we can define

the function string s) to perform this operation. It finds substrings exactly

matching s and returns them in a list. Note that the overall input string for the

parsing process is an implied argument to MATCH(). TO ensure a flat result, some

matches must be deleted in cases where there is overlap. The naturai way to do

this is to select leftmost matches if the search is perforrned with a left-right pass,

or rightmost matches if the search is performed with a right-left pass.

For interactive use, we can evaluate a function like MATCH() either by scanning

the string, or by using an index. This could be an inverted list or a PAT array, for

example, depending on what kinds of strings we wish to find. For the batch parser,

there is no advantage to using an index since substring scans are independent and

can be performed simultaneously during the scan that would be needed to build

the index.

5.2.2 Regular Expression Matching

Now consider matching functions that use regular expressions as the pattern lan-

guage. For example, we can define M A T C H - S H O R T E S T (~ ~ ~ X ~ re) which firds short-

est matches for the regular expression re, and MATCH-LONGEST(&~~XP re) which

finds longest matches. Recall our discussion of shortest and longest regular expres-

sion matching in Section 4.1.

Shortest matching can be useful for finding structures that have known end-

64 CHAPTER 5. ALGEBR4 DESIGN

points, but content that is not weU understood. For example, the expression

abc.*def finds regions delîmited by closest pairs of the substrings abc and de f.

This would be more complicated to do with longest matching since we would have

to use a more specific description of the characters between the two endpoints to

avoid absorbing abc or de f as part of the content.

Longest matching is needed to perform the type of tokenizing done with pro-

grarnming laquages. For example, the most natural way to find number tokens

represented by strings of digits is to find longest matches for the regular expression

Cz where Cd represents the set of digits. Longest matching can also be useful for

finding strings that represent large structures to be broken up later, rather than

just short, bottom-level tokens. So, for example, we could search for phrases of

words consisting only of dphanumeric characters and spaces with the regular ex-

pression (C ,) Cs)+ where C , represents the set of alphanumeric characters and Cs

represents the set of whitespace characters.

We have the same choices for interactive and batch implementation as with

substring matching. Interactively, we can use scanning as dêscribed in Section 4.1,

or an index (see, for example, Baeza-Yates (l989), Baeza-Yates and Gonnet (1996),

and Manber and Wu (1993).) In batch mode we should use scanning since there

are no dependencies and al1 matching can be performed simultaneously.

5.3 Region-to-Region Functions

We now consider functions that take lists of regions as arguments and return lists

of regions as results. These can be cornposed to give expression graphs that have

edges, unlike the case where only string-to-region functions are used.

Recall that the output region inventory for an expression graph is the merge

of al1 the find output lists. Similarly the input region inventory is the merge of

al1 the input lists. For an expression graph that represents a paner, all input lists

are outputs of string-to-region calls. However, the following discussion begins by

considering expression graphs made up exclusively of region-to-region cdls. This

means that the arguments to the leaf nodes in the expression graph are external

inputs.

Imagine that the input and output region inventories are one merged, sorted

region inventory. Regions can be sorted primarily by left end or by right end (left-

sorted or right-sorted). We do not consider the secondary sort order for reasons

explained later. Suppose there are M regions in total. Then consider the following

loop that iterates the regions in the sort order:

for i fiorn 1 to hg

process region i

Processing a region involves outputting it if it is an elernent of the output region

inventory, or buffering it if it is an input region that will be needed later. A region

must be output immediately if it is to be output at d l . Buffered regions can only

be used to make decisions about outputting other regions. Therefore, the sort order

of the output is the same as for the input.

Suppose the loop buffers no more than O(a) regions at a time where O is the

CHAPTER 5. ALGEBR4 DESIGN

number of function calls in the expression. Then it uses O(c) memory. Assume that

all input regions are generated while reading the string fkom secondary storage, and

that all output regions are written to secondary storage. Then the 110 is O(n+m).

Finally, assume that M, the total nurnber of regions in both the input and output

region inventories, is O(on + cm), and that each iteration of the loop uses 0(1)

time. Shen the total time used by the loop is O (m + om). Overall then, an

evaluation model based on this loop satisfies our efficiency requirements for a batch

parsing model.

Note that it is not necessary to store an input region inventory directly as a

single list of typed regions to use such a loop. Rather, we can store separate flat

Iists and logically merge them while performing the loop. In the same way, it is

possible to split the output into separate lists while executing the loop. One or

both of these strategies mi& be appropriate depending on the form in which the

input is available, and what form of output is needed. In particular, separate flat

lists are the appropriate representation for using a region algebra interactively.

Depending on the input sort order of the loop, we refer to it as either a left-

right deterrninist ic pass wi th left-sorted inpu t , or a left-right de termin is t i c pass with

right-sorted input . Here we are using the term determinis t ic as an analogy with

deterministic finite transducers: in the same way that a deterministic finite trans-

ducer never needs to look ahead to a later character to choose which transition

to take, a deterministic pass never needs to look ahead to a later region to decide

whether to output the current region. Because of this restriction, such a pass can-

not be used to evaluate arbitrary expressions. In the following sections, we explore

5.3. REGION-TO-REGION FUNCTIONS

the properties of expressions that it can be used to evaluate.

5.3.1 Structure Selection Queries

We define a structure selection query Q(S, D) to be a function with two list argu-

ments S and D that selects a subset of the regions fiom S according to a depen-

dency on the regions in D. Structure selection queries are expressed in the form

{s E S 1 C), where C is a boolean expression that consists of one or more clauses

joined by the logical operators A and V, using brackets to specify precedence. Each

clause is of the f o m (x O y) where x E {s.l,s.r}, E {=,<,>,#,~,~} , and

y E (d.1, d.r), or more generally y is an arithmetic expression involving d.1 or d.r.

The overall boolean expression C is qualified by either 3d E D or $d E D.

An exarnple of a structure query is CONTAINED-IN(S,D) which returns {s E S 1
3d E D (s.1 > d.1) A (s.r 5 d.r)}. This selects regions in S that are inside a

region from D. Similarly, NOT-CONTAINING(S,D) returns {s E S 1 $d E D (s.1 5

d.1) A (s r 2 der)), which selects regions in S that do not contain a region from

D. An example of a function that uses a clause with an arithmetic expression

involving d.l is STARTS-SOON-AFTER(S,D), which returns {s E S 1 3d E D (s.1 >

d.r) A (s.1 < d.r + 100)). This selects s regions that have a left end less than 100

characters after the right end of a d.

Structure queries are well defined for arbitras- sets of regions, not just for flat

lists. Therefore, another example of a query is the selection performed by the

second p a s of the longest matching algorithm. Let the query NOT-CONTAINED-

IN() be {s E S 1 $d E D ((s.1 > d.l) A (s-r 5 d.r)) V ((s.1 > d.1) (s-T < d - r)) } .

This finds al1 d regions that are not contained inside of an s region, but does not

treat a d region equd to an s region as being contained in it. Suppose we cal1 this

function with both arguments equd to the set of potential matches generated by

the first pass of the longest matching algorithm. The effect is to select the longest

matches, Le., those that are not contained in any others.

From this point on, we use the convention that, unless otherwise specified, the

arguments to a query are always named S and D. Furthermore, we assume that s

is a region in S and d is a region in D. This allows us to specify query definitions

unambiguously by writing just the constraint C- We also assume the presence of

3d if no existentid qualifier is specified. For example, CONTAINED-IN() is written

(1 d l) (S . d) When we talk about more than one query at a time, or

specific calls to queries, me introduce a subscript, and refer to separate queries as

QI, Q2 etc. In this case, the arguments are SI, S2, . - -, and Dl, D2, . - ., and regions

from the arguments are SI, ~ 1 , . -. and d l , 4,. . ..

We assume that any function included in a region algebra depends on al1 its

arguments. For structure selection queries, this means that C must not be a tau-

tology that aiways seIects s, nor a contradiction that aiways fails to select it. We

can efnciently recognize such a badly defined structure selection query:

Lemma 4 Given a structure selection query defined b y a boolean expression C with

m clauses, we can de temine zuhether C is a contradiction o r ta t~to logy in 0(m2)

time.

Proof: All clauses refer to points on the same domain (character po-

sitions in the string), and compare either s.1 or s.r to some expression

involving d.1 or d-r . To be a valid query, there must be a t least one

assignment of s.1 and s-r making the expression true, and a t least one

making it false. If there are m different clauses, then there are a t most

2m + 1 relevant assignment classes of s.1 or s-r to test. These are the

m points that s.l and s.r are compared to, the m - 1 regions between

them, the region from the start of the string to the first point, and the

region from the Iast point to the end of the string. Thus there are ex-

actly (221) + 2m + 1 assignments of interest. If al1 of these are true or

false then the expression is a tautology or contradiction.

The composition of a query Q1 with another query Q2 is found by passing the

result of one cal1 as an argument to the other. So, for example, the statement

Q2 (S2, Ql (SI, Dl)) means perform query Ql on Si and Dl, and then perform Q2

on S2 and the result.

Recall that the set returned by a query Qz is specified in the form {s2 E S2 1 CZ)
where C2 is a boolean expression involving s2 and d2 with an existential qualifier

on d2. When we compose two functions Q2 and QI by passing the result of QI as

an argument to Q2, the returned set is {s2 E S2 1 C2 A Cl) with al1 instances of s2

and Sî replaced by sl and SI if the result of Q1 is passed as the first argument to

Q2, or al1 instances of d2 and D2 replaced by sl and Sl if it is passed as the second

argument. For example, the set returned by the composition NOT-CONTAINING(~~,

CONTAINED- IN (SI, Dl)) is

CHAPTER 5. ALGEBRA DESIGN

where is the result of the CONTAINED-IN() cd1 and therefore a subset of SI.

Thus we replace instances of d2 and LI2 by s1 and Sl to give

For a query Q2 where the first argument is the result of a query Ql and the

second is the result of a query Qo, the set specification is of the form {s2 E S2 1

CZ /\ Cl A CO} Nith instances of sz and S2 replaced by sl and Si, and instances of

d2 and D2 replaced by so and So. Applying these rules recursively, we can write

out the set specification for the result of any query in an expression.

We define the dependency expression for a set specification to be the boolean

expression component with existential qudifiers removed. For a query Q, we de-

note this E(Q). For euample, E(CONTAINED-IN) is (s.2 2 d.l) A (s.r < d . ~) .

We denote the dependency expression for a query Q in an expression graph

G, EG(Q). For example, E G (~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~) for the graph defined by NOT-

CONTAINING(S~,CONTAINED-IN(S~ , Di)) i~

A dependency expression can be seen as a general description of the possible po-

sitions of a d region that may affect whether a given s region satisfies a query.

5.3. REGION-TO-REGION FUNCTIONS 71

For example, letting denote logicd implication, we can see that E(CONTAINED

IN) + (d - l < sr) since s.1 5 s.r for any region. In other words, any d match

relevant to the decision whether t o keep a given s match must start before the s

ends.

Consider an expression constructed by composing only CONTAINEDIN() calls.

We assert that this can always be evaluated using a left-rîght deterministic pass

with Mt-sorted input. A CONTAINED-IN call never requires lookaheaà in this case

since if a region s is contained inside another region d, then d is guaranteed to

be read before s in left-sorted order. The amount of buffering required for each

function call is a single region since, with flat lists, a d that contains a given s, if it

exists, is guaranteed to the most recent d read. Therefore, exactly o regions need

be buffered for an expression consisting of o CONTAINED-IN() calls.

Now consider the function CONTAINING(S,D) defined as (s.1 5 d l) A (sr 2 der) .

This selects al1 regions in S that contain a region from D. Any expression composed

exclusively of CONTAINING () calls can be evaluated using a left-right deterministic

pass with right-sorted input, as we will show below. However, arbitrary expressions

formed by composing CONTAININGO and CONTAINED-IN() calls can not always be

evaluated with a left-right deterministic pass.

Consider the regions shown in Figure 5.1. Suppose a must be contained in b, b

must contain c, c must be contained in d and d must contain e. Suppose we iterate

the list in left-sorted order: d, b, a, c, e. When we visit e we koow it should be kept

since i t has no dependencies. However, we do not know whether to keep d without

looking ahead to the point where we visit e. By extension, we do not know whether

CHAPTER 5. ALGEBRA DESIGN

Figure 5.1: A list of regions related by both CONTAINED-IN() and CONTAINING().

to keep b, a, and c since they indirectly depend on e. Now consider a right-sorted

order: a, c, b, e, d. In this case, we read e before cl and therefore know to keep both

of these regions. Hotvever, we read c before d and therefore do not know whether

to keep it or a and b since they depend on c.

In general, the problem is that arbitrary compositions of CONTAINED-IN() and

CONTAININGO can require fookahead regardless of the sort order of the pass. We

need i;o characterize the conditions under which an expression does not require

lookahead.

We start by considering individual queries that are not part of expressions. An

individual query requires no lookahead if the decision to keep or discard a region s

is always based on a region d that is read before s in the loop.

Lemma 5 A single query Q requires no lookahead with left-sorted input iff E(Q) +
(d-l < d).

Proof: If E(Q) (d.1 c s.1) then the decision whether to keep a

given s always depends on a d with an earlier left end. If the input

is left-sorted, then this d is read before s- Therefore, no lookahead is

needed.

If no lookahead is required, then the d needed to decide whether to keep

a given s is read before that S. This means that E(Q) must relate s

to a d that is guaranteed to have an earlier left end. In other words,

E(Q) + (d J < s.Z).

For example, E(Q) for the query (s-Z > d.1) A (sr < d.r) implies that (d.1 < s.1).

However, E(Q) for the query (s-r = d l) makes no such implication. Therefore, we

can evaluate the first query using a left-right detenninistic pass with left-sorted

input, but not the second.

If regions have equal left ends in a left-sorted input, then either we must make

no assumptions about their relative ordering, or we have to consider a s e c o n d q

sort order to decide whether d cornes before s in the pass. We avoid this issue

by assuming that regions with equal left-ends are read and buffered before any

processing, meaning we can treat them as if they are read simultaneously. When

using this strategy, the lemma is:

Lemma 6 A single qvery Q requires no lookahead with left-sorted inpu t if E(Q)

(d.Z 5 s.1).

The corresponding lemma for right-sorted input is as follows. Again, we assume

that equd regions according to the sort order are read and buffered before any

processing. The proof is similar to that for the last lemma.

Lemma 7 A single query Q requires n o lookahead with right-sorted input iff

E(Q) + (d-r 5 sx).

We now consider multiple queries- We c m evaluate al1 queries in an expres-

sion graph G using a left-right deterministic pass iff for every query Q in G, the

CHAPTER 5- ALGEBRA DESIGN

dependency expression Eo (Q) does not imply lookahead. With lefesorted input,

for example, EG(Q) must imply that (x.1 5 s.1) for every region x referenced in

EG(Q). In other tvords, dl regions needed to decide whether a given s satisfies a

query must be visited before S. Note that this assumes that every x list referenced

in Ec(Q) actually does affect the result of the query, which follows directly fiom

our assumption that hnctions depend on dl of their arguments.

We now show that &(Q) implies no lookahead for every query in G exactly

when E(Q) implies no lookahead for every query in G:

Theorem 2 We can evaluate an expression graph G made up of structure selection

querées using a left-right, deteminzstic pass with left-sorted input ififor every q u e q

Q in G, E(Q) * (d.l 5 s.l).

Proof: First we prove the necessity of the condition. If 3Q E G such

that E(Q) + (d.l 5 s.l), then by Lemma 6, the query requires looka-

head to calculate.

Next we prove the suEciency of the condition through induction on h,

the height of a query in G. For the base case of h = 1 (any single

query Q), the dependency expression E(Q) implies (d-l $ s.1) by the

requirement of the theorem and therefore requires no lookahead. The

induction hypothesis is that any query of height at most h - 1 has a

dependency expression &(&) that implies (x.2 5 s.l) for every x in

Ec(Q).

For the induction step, we consider a query Qo of height h. The induc-

tion hypothesis applies t o al1 descendants of Qo since they have heights

less than or equal to h - 1. Now, build the dependency expression

EG(Qo) in the usual way s tar thg with E(Qo) A Ec(Qr) A Ec(Qr) where

Q1 is the left child of Qo, and Q, is the right child of Qo, and replac-

ing instances of so in E(Qo) by si, and instances of do by sr. Next

we perform the induction step. We know that EG(QI) * (x.Z 5 si-1)

for al1 x in EG(QI) by the induction hypothesis. Also, we know that

EG(&,) * (y-l < s,.l) for al1 y in EG(Qr) by the induction hypothe-

sis. Finally, by the condition of the theorem, we know that E (Q o)

(do-l 5 so-1) which, after the substitution, is E(Qo) (S . sL.l).

Thus EG(Qo) * (1.1 5 s[-1) for every x in Ec(Qo), from which it fol-

lows that the result of Qo can be calculated with no lookahead.

Theorem 3 W e can euûluate an expression graph G made up of structure se-

lection queries using a left-right, deterministic pass with right-sorted input iff

VQ E G, E(Q) * (d - r _< s.T).

Proof; The proof is of the same form as that of the previous theorem.

Consider an application of the theorems. The queries (s.Z 3 d.I) /\ (sr 5 d . ~)

and (d.r = s.1) both imply (d-l 5 s-1), which is the condition of Theorem 2. The

theorem therefore states that , using one deterministic p a s with left-sorted input

and left-sorted output, we can evaluate any expression graph formed by composing

calls to these two queries, regardless of how large.

We use the conditions of the theorems as the basis for a categorization of query

functions. Henceforth, we refer to functions that satisfy E(Q) (d.1 5 s.1) as

CHAPTER 5. ALGEBRA DESIGN

Figure 5.2: Three overlapped regions.

condition 1 queries f o r a left-right p a s , and those that s a t i e E(Q) + (d.r 5 s-r)

as condition 2 queries for a left-right pass. Note that a function can be in both

categories. For euample, the function (d.r = s.1) is both condition 1 and condition

2.

Now consider a slight variation of the left-right deterministic pass. Suppose the

input is left-sorted, but instead of outputting every region immediately in its left-

sorted order, we buffer regions ternporarily so as to give a right-sorted output. For

an individual query Q to require no lookahead in this case, it is necessary that al1

regions on which s depends be read before s is output. That is, unlike the normal

left-right deterministic pass, some of the regions s depends on may be visited afier

s is visited. However, in this case, they must be visited during the time that s is

buffered. Since s is read in its left-sorted position, and buffered until its right-sorted

position, evaluating a query Q in an expression graph G requires that E(Q) implies

(d l S .) 1% cal1 a query that satisfies this implication a condition 3 query for

a left-right p a s . To evaluate a condition 3 query Q as part of an expression graph

G, &(Q) must imply (x.1 $ s r) for all x regions in Ec (Q).

It is not generally true that we can evaluate al1 queries in an expression made

5.3- REGION-TO-REGION FUNCTIONS

up of condition 3 queries using a detenninistic pass with left-sorted input and right-

sorted output. Consider the three regions in Figure 5.2. Suppose that s depends on

di and di depends on d2. It is true that (d J 5 s-r) and that (d2.1 5 di.r), but it is

not tme that (d2.1 5 s-r) . Therefore, we cannot decide whether to keep s without

using lookahead in a left-right pass with left-sorted input and right-sorted output.

The problern is that the condition 3 implication is not transitive. Therefore, not all

expressions composed of condition 3 queries can be evaluated using a deterministic

pass-

We can now state the conditions under which we know for sure that al1 expres-

sions constructible using queries from a given region algebra are evaluable with a

lefi-right deterrninistic p a s with properly sorted inputs and outputs:

Theorem 4 For a set Q of query functions, we can evaluate every expression

f o m e d with queries from this set using a left-right, deterministic pass with properly

sorted input and output i f l all functions are condition i or al1 functions are condition

2.

Proof: Sufficiency of the condition is established by the preceding the-

orems. That is, Ive know that we can evaluate al1 expressions made

up entirely of condition 1 or condition 2 functions using a left-right,

deterministic pa s .

To show the necessity of the condition, we prove that, given any set

of functions that are not al1 condition 1 and not al1 condition 2 it is

always possible to construct an expression that requires lookahead to

compute. This is true for a pass with left-sorted input and left-sorted

CHAPTER 5. ALGEBRA DESIGN

I 1

----------- 7 r-----------
s2 dl

Figure 5.3: A situation that requires lookahead.

output by Theorem 2, and true for a p a s with right-sorted input and

right-sorted output by Theorem 3. It is not possible for a pass to use

right-sorted input and Ieft-sorted output since this may require that

regions be output before they are read. The only remaining option is

left-sorted input and right-sorted output. For al1 queries in a given

expression graph G to require no lookahead with this option, Ec(Q)

must imply (x.1 5 s.r) for every Q in G.

Suppose we have a query QI such that E(Q1) * (d l 5 s-1), and another

query Q2 such that E (Q 2) ï+ (d . ~ 5 s . r) . That is, QI is not condition

1 (although it may be condition 2), and QÎ is not condition 2 (although

it may be condition 1). Consider the composition Q2(S2> (QI (SI, Dl)) .

For a region sl E S l i the decision whether sl satisfies QI rnay require

knowledge of a region dl E Dl with di.l > s1.l since E (Q 1) + (d.1 <
1) Similarly, the decision whether a region s2 E S2 satisfies Q2 rnay

require knowledge of a region da E D2 with d2.r > s2.r since E(Q2) G+

(d . s r) Because D2 is the result of QI, which is a subset of SI,

this means that determining whether s:! satisfies Q2 c m depend on a

region sl E Si where s1.r > s2.r. Thus we c m have the situation shown

in Figure 5.3. The decision whether sz satisfies Q2 is based on an sl

where (sl.r > s ~ . T) , and the decision whether sl satisfies QI is based

on a dl where (dl -1 > sl .l). Since these conditions are consistent with

(dJ > sz.r), we cannot calculate Q2 without lookahead.

Now consider a right-lefi deterrninistic pass which visits regions in descending

left-sorted or right-sorted order:

for i from M to 1

process region i

Al1 of the preceding results can be adapted to this case:

Corollary 1 For a set Q of que? functions, we can evaluate every expression

formed with quen'es from this set using a right-left, deterministic pass with properly

sorted input and output iff al1 functions Q E & satisfy E(Q) (d-r 2 s r) or al1

functions satisfy E (Q) + (d.1 2 s.1).

Proof: The proof is symmetrically the sarne as Theorem 4, with al1

occurrences of left and right swapped.

We refer to functions satis*ng E(Q) + (d . ~ 2 s r) as condition 1 quen'es for

a right-left pass, and those satis%ing E (Q) + (d.1 2 s.1) as condition 2 queries

for a right-left pass. The classification of a function is not necessarily the same for

passes in both directions. For example, (d.1 < s.1) h (d.r > s.1) A (d.r < s.r) is

both condition 1 and condition 2 for a left-right p a s , but neither condition 1 nor

condition 2 for a right-left p a s .

CH-4PTER 5. ALGEBRA DESIGN

In general, any structure selection query can be written as a set specification and

then classified according to the implied order of s and d. For example, CONTAINED-

IN() is condition 1 in either direction and therefore, according to the above results,

we can evaluate any expression formed using CONTAINED-IN() queries with either a

left-right deterministic pass or a right-left deterministic p a s . Similarly, CONTAIN-

ING() is condition 2 in either direction and we can evaluate arbitrary expressions

with a left-right or right-left deterministic pas . However, we cannot evaluate arbi-

trary expressions formed by composing CONTAINED-IN() and CONTAININGO with

a deterministic p a s since this mixes condition 1 and condition 2 queries as in the

example of Figure 5.1.

Another exarnple of a query is INTERSECT(S ,D) ,-which perforrns set intersection,

returning al1 regions from S that are also in D. The set specification is (s.1 =

d l) A (s r = d- r) , which is both condition 1 and condition 2 in either direction.

Another set query is SUBTRACT(S:D) which returns al1 regions from S that are

not in D. The set specification is $d(s.l = d.d) A (sr = d . ~) , which is also both

condition 1 and condition 2 in either direction-

As a final example, consider AFTER(), which has the set specification (s.1 = d.7).

This finds ail regions in S that follow and abut a region in D. It is both condition 1

and condition 2 for a left-right pass, but neither for a right-left pass. The opposite

function BEFORE() with the set specification (s.r = d.1) is condition 1 and condition

2 for a right-left pass, but neither for a left-right pass.

Overall, if we have an algebra containing functions that are al1 of the same

classification, then we can evaluate any expression formed with that algebra using

a deterministic pass. For example, CONTAINING 0, INTERSECT() , SUBTRACT(), and

AFTER() are d l condition 1 in a left-right direction. Therefore, we c m define an

algebra consisting of just these functions, and evaluate any expression using a left-

right deterministic pass with left-sorted input. Another example is the algebra

consisting of CONTAINED-IN(), INTERSECT~, SUBTRACT~, and BEFORE() which

are al1 condition 2 in a right-left direction. We can evaluate any expression in this

algebra using a right-left deterministic pass with left-sorted input.

The memory used to evaluate an expression with a deterministic p a s is equal

to the sum of the memory used to evaluate each query in the expression. Al1 the

queries we have introduced as examples use constant memory, so the memory used

to evaluate expressions made up of such queries is linear in the size of the expression.

For general region inventories, the assumption that equal regions according to

the sort order are buffered before processing may use arbitrary additional memory.

However, for a region inventory that is a merge of k fiat lists, we have an upper

bound of k regions that can share an endpoint. Since the number of lists in the

input is linearly bounded by the number of queries in the expression, the overall

memory usage therefore remains linear in the size of the expression.

5.3.2 Region Generation

Region generation functions take lists of regions and output new regions. This

contrasts with structure query functions which simply return subsets of their argu- .

ments. One paradigrn for region generation is to find pairs of regions satisfjhg a

query, and calculate a new region from each pair. We define queries in the same

CHAPTER 5- ALGEBRA DESIGN

way as before, except that both s and d are returned to make a pair (s, d) .

A n example of a region generation function is MERGEOVERLAPS(S,D). The

query is {(s, d) ((s - l < d-1) A (s - r > d.l) A (s-r < d- r) } . This finds (s, d) pairs where

d overlaps s on the right. For each pair, MERGE-OVERLAPS() generates a region

running from the start of the s to the end of the d.

In general, the result of a query may be ambiguous in the sense that an s can pair

with more than one d, or a d with more than one S. This requires a disambiguation

rule. For example, the query { (s, d) 1 (s.l > d - r) } can pair each s with any preceding

d. One way to disarnbiguate this is to specify that it pairs with the closest d. This

can be specified as follows: {(s, d) 1 (s.1 > d.r) A ($sl (si -1 > d - l) A (s l . l < s.1)) .

The limitations on region generation functions are closely related to those on

structure query functions. Consider using a function that queries for (s, d) pairs

and generates g regions. We can express the relationship between g and s, and

between g and d as dependency queries. For exarnple, MERGE-OVERLAPS~ has the

dependency queries (g 1 (g-1 = s.1) A (g.r > s-r)) and { g 1 (g.I < d.1) A (g . r = d - r) } .

These dependencies can be classified as condition I or condition 2 in the usual

way. For euample, both of the above are condition 2 for a left-right pas , meaning

that generation of g regions is always based on regions that have already been read

during a left-right deterministic pass with right-sorted input.

We refer to a region generation function as condition 1 or condition 2 if both

of the dependency queries are condition 1 or condition 2. Rom the results of Sec-

tion 5.3.1 it directly follows that a l functions in an expression constructed from

structure queries and region generation functions can be calculated with a deter-

ministic pass iff every function is condition 1, or every function is condition 2.

We can consider string-to-region functions to be region generation functions.

Suppose that we view the string input to a stringteregion function as a list of

regions, one for each character. Then MATCH(), for example, is a region generation

function that finds a tuple of adjacent characters equd to a match, and generates

a region running from the k t character to the last character. Since the generated

region contains al1 of the characters in the tuple, MATCH() is a condition 2 region

generation function. This type of classification can be done for any function that

generates regions based on characters in the string.

5.3.3 General Functions

We can now generalize beyond structure query and region generation functions.

Suppose we have a function where the output of a region s always depends on some

set D of other regions. Then we classifj- the function as follows:

0 Condition 1 for a left-right p a s if Vd Dy (d.l 5 s.1).

Condition 2 for a left-right pass if Vd E Dy (d . ~ < s . ~) .

Condition 1 for a right-left p a s if Vd E, (d - r 2 s r) .

Condition 2 for a nght-left pass if Vd E Dy (d.1 2 s.1).

An exarnple of a useful operation that is not a region generation or a structure

query is finding the set union of two flat lists. The set union of two flat lists is not,

in general, a flat list itself. Therefore, any fûnction we define h a to return some

subset of the entire set union. For example, we can include d l regions fiom A in the

CHAPTER 5. ALGEBRA DESIGN

result, and all regions in B that do not nest or overlap a region in A. This subset of

B can be found with a structure query: DISJOINT(B,A) = {b E B ($a E A (b.1 <

a.~) A (b.r > a.1). This approach has the nice property that regions from A always

have priority in case of confiicts. Unfortunately, the query is neither condition 1

nor condition 2 in either direction. A more symmetrïc alternative is to query both

iists, always giving the first region encountered priority in case of codict. In this

case, the decision whether to output any a or b depends on whether there is any

touching region of the other type with a smaller left end for a IeRright pas , or a

greater right end for a right-left pass. This is condition 1 but not condition 2.

There are also some useful variations of containment structure queries. For

example, CONTAINING-N(S,D,~) fin& s regions that contain at least n d regions.

Also, NTH-CONTAINED-r~(s,D,n) finds the nth s contained in a d. These are not,

strictly speaking, structure selection queries according to our previous definition

since they take an additional argument. However, they are still clearly condition 2

and condition 1 functions, respectively.

We can also generalize beyond functions that operate on flat lists. Requiring

that al1 lists be flat is a simple way to ensure interactive efficiency, but there are

other models such as overlapped lists, or even full tree models, that can be made

efficient with appropriate design. The ability to evaluate any expression using a

single deterministic pass can still be characterized in terms of the dependencies of

the component functions. For example, a structure query that is possible with trees

but not with flat lists is DIRECTLY-CONTAINING(). This returns an s instance that

contains a d instance only if there is no instance of another type that is contained

in the s and contains the d. This is only possible if regions other than those in S

and D are availab1e to the function, which is not the case with flat hts. However,

the hnction is still condition 2, since any d that an s depends on has a less than

or equal right end, and so does any other region that may contain the d and be

contained in the S. Similady, we can define a function DIRECTLY-CONTAINED-IN()

that is condition 1 and works for trees but not for flat lists.

5.3.4 Constant Lookahead

Consider a variation of a deterministic left-right pas : a constant lookahead left-right

pass has access to the next k regions in the input region inventory a t the time when

it rnake a decision whether to output the current region. If we compose two queries,

each of which requires a pass with a constant lookahead of k regions, then the overall

lookahead required may be as much as 2k. In general, an expression graph with

depth d where every function requires lookahead k will require lookahead dk to

evaluate. Thus, we can evaluate an expression composed of constant lookahead

functions using a constant lookahead pas , but the constant depends on the size of

the expression.

In practice, there are not many useful functions that can be defined tc require

constant lookahead in the region inventory- Therefore, we do not consider constant

lookahead passes further. Deterministic passes are more useful for our purposes.

Also, constant Iookahead passes are not strictly necessary since arbitrary lookahead

can be achieved by using multiple passes in different directions as discussed in the

next section.

86 CHAPTER 5. ALGEBRA DESIGN

5.4 Completely Composable Algebras

When using an algebra to construct a parser interactively, the simplest situation

for a user is if every possible expression graph can be evaluated efficiently. In this

case, the user does not have to worry about rules or limitations on how function

calls can be composed, and we Say that the algebra is completely composable.

Suppose that we want an algebra that is completely composable when using

a single-pass evaluation method, either left-right or right-left. Accordiag to the

previous results, we must include only condition 1 functions or only condition 2

functions in the algebra. Also, we rnust include a t least one string-to-region func-

tion to occupy the leaves of the expression graphs. Al1 the useful string-to-region

functions of which we are aware are condition 2. This means that al1 functions

in the algebra must also be condition 2. An algebra of condition 2 functions is

therefore our only option if we want a single pass evaluation method.

A second option for a completely composable algebra is to evaluate string-to-

region function calls with a first pass (either left-right or right-left) and al1 region-

to-region calls with a second pass. In this case, the functions that we evaluate with

the second pass can al1 be condition 1, or al1 condition 2. If we choose condition 1,

then we can include a generaI longest matching function since the second pass of the

general longest matching algorithm for regular expressions is a condition 1 structure

query (NOT-CONTAINED-IN()). Note that if we do include general longest rnatching,

then the second p a s must be in the opposite direction to the first. Otherwise, this

is not necessarily a requirement.

The output sort order of a p a s must be the sarne as the input sort order of

5.4. COMPLETELY COMPOSABLE ALGSBRAS

the next p a s in a multiple-pas evaluation model. Therefore, for example, if we

output right-sorted regions (as all left-right string-to-region functions do) then the

next pass must use right-sorted input. However, we can easily convert a region

inventory from right-sorted to Ieft-sorted input by buffering regions when they are

read and processing them only when we reach their lefi-sorted positions. If a region

inventory is made up of k flat lists, then this strategy buffers at most k regions at

a time. Therefore, Ive have four options for the second pas: it c m be left-right

left-sorted, left-right right-sorted, right-left left-sorted, or right-left right-sorted.

However, there is no benefit in using the same direction and sort order for both

the first and second pas , If we do this, then the second pass cannot evaluate

anything more than the first. Therefore, assuming the first pass uses string-te

region functions, there are a total of six useful two-pass combinations:

1. First pass left-right with right-sorted output; second right-left with right-

sorted input.

2. First pass left-right with right-sorted output; second right-left with left-sorted

input.

3. First pass left-right with right-sorted output; second left-right with left-sorted

input.

4. First pass right-left with left-sorted output; second left-right with left-sorted

input.

5. First pass ri&-left with left-sorted output; second left-right with right-sorted

input.

6. First pass right-left with left-sorted output; second right-left with rïght-sorted

input.

Remernber that the sort order of a p a s determines whether it c m evaluate condition

1 or condition 2 functions. Also, recall that condition I and condition 2 mean

different things depending on the direction of the pass. Therefore, every one of

the above two-pass combinations corresponds to a different class of completely

composable region algebras,

5.5 Stratified Algebras

The disadvantage of completely composable algebras is that the allowed functions

are Iimited. For example, we cannot include both condition 1 and condition 2

structure queries. We now consider possible ways of loosening this requirement.

One possibility is to calculate dynarnically how many passes are needed to find

the result of any given function call in a n expression, and disallow an expression if it

requires too many. For exarnple, an expression containing condition 3 function calls

can be calculated in a single pass in some situations but requires more in others.

Assuming it is possible to calculate the required number of passes efficiently, this

approach could be used to decide dynamically how many passes are needed by a

given call. The trouble is that not knowing whether functions can be composed in

certain ways until after trying them is confusing to the user. Therefore, some way

of pre-calculating this information and representing i t is needed.

We propose an approach based on breaking the algebra into a small, ordered

list of strata. A function call from one stratum can only be passed the resuIt of a

5.5. STRATIFIED ALGEBRAS 89

function cal1 fkom the same stratum or an earlier one. For example, consider a two

strata model. Then every path through a legal expression graph that starts a t an

arbitraxy node and continues to a leaf must p a s through zero or more calls from

the first stratum followed by zero or more calls from the second.

If we can evaluate any expression formed from the functions in a single stra-

tum using one deterministic p a s , then we can partition the expression graph by

removing al1 edges that start at a function from one stratum and end at a function

from another. Thereafter, we can evaluate each of these partitions with a single

pass since each is formed using a cornpletely composable âlgebra. The pass corre-

sponding to the first stratum inputs the string, and al1 subsequent passes input the

output of the previous pass. In other words, we evaluate al1 calls to functions from

the first stratum in the first pass, al1 calls to functions in the second stratum in the

second pass, and so on.

Having two strata allows us to mix condition 1 and condition 2 functions in

a limited way. For example, condition 2 queries and region generation functions

can be included in the first stratum along with functions like MATCH-SHORTEST()

(which is a condition 2 region generator). Shen, the second stratum can include

condition 1 query functions. Generally, we can have more than two passes and a

separate stratum for each one, alternating condition 1 and condition 2 functions

for each successive class. We give an example of a useful two-strata algebra in the

next chapter.

CHAPTER 5. ALGEBRA DESIGN

5.6 Restrict ed Mat ching

Some single function calls require more than one pass to cornpute. For exarn-

ple, MATCH-LONGEST() requires two passes to find general longest matches. One

way to view such a function when part of a stratified algebra is as a composition

of two functions in adjacent strata. For example, in a ho-stratum algebra, we

can view MATCH-LONGEST() a s a composition of NOT-CONTAINED-IN() and a new

function MATCH-POTENTIAL-LONGEST() which finds the output of the first pass

of the longest matching algorithm. In a stratified algebra, for example, MATCH-

POTENTIAL-LONGEST() codd be part of the first stratum and NOT-CONTAINED-

IN() could be part of the second stratum. We now consider a class of functions that

generalize the two-pass longest matching algorithm by allowing arbitrary structure

queries between mat ches for diEerent expressions.

Consider searching for matches for a regular expression r and requiring these

matches to satisfy a structure query. The simplest way to do this is to perform a

regular expression search folloived by a query on the result. We are interested in

something slightly different, however: having the query affect the search itself. For

example, suppose we define a function MATCH-SHORTEST-INSIDE(T, A) that finds

shortest r matches that are inside a region in A. Calling MATCH-SHORTEST() fol-

lowed by CONTAINED-IN() does not do the same thing since it may miss some

matches that MATCH-SHORTEST() discards as overlaps. If MATCH-SHORTEST()

keeps leftmost matches, for example, then it misses a match inside an a if it has

another match overlapping it on the left that is not inside an a.

Now suppose that we wish to search for A matches using a regular expression

at the same tirne as we search for matches for r. This is the type of problem we

examine in this section: simultaneously searching for multiple regular expressions

that depend on each other according to queries. It is simple to search for multiple

expressions simultaneously when they do not depend on each other. However, as

we will see below, there are possibilities for eEciency probIems with simultaneous

restricted searches.

The general approach we propose is to find potential matches using a first pa s ,

then filter them to satisfy any queries with a second pas . This gives us more

fieedom than performing independent matches with a first pass and querying with

a second since a list of potential matches need not be fi&. The only restriction on

the list of potential matches is that its size be at most linear in the length of the

string-

Consider MATCH-SHORTEST-INSIDE(). We can always guarantee a Iinear num-

ber of potential outputs with this function, regardless of the other matches that

they depend on. In the worst case, we need only output al1 shortest matches,

including any overlaps. This is Iinear even though it is not flat.

Now consider a function MATCH-LONGEST-INSIDE() that searches for longest

matches inside other matches. Suppose we simultaneously search for unrestricted b

matches using an NFA B, and longest a matches inside b matches using an NFA A.

Using the normal matching algorithm, the number of b matches in progress, and

therefore the memory used, is bounded by the number of states in B. However,

in this case, we c a n o t bound the number of a matches in progress by the number

of states in A. Figure 5.4 illustrates the situation where we have two b matches

CHAPTER 5. ALGEBRA DESIGN

Figure 5.4: We want to discard one a, keeping the longest that is inside a b. It is
impossible to know which one to discard, since we do not know if the longer b will
complete.

in progress and two a matches in progress, each of which starts inside a different

b match in progress. Suppose that the two a matches in progress converge to the

same state in the A NFA at the point x. For unrestricted matching, we would

be able t o choose the longer one. However, in this case, we do not know whether

one or both of bl and b2 will cornplete. If we keep only al and b2 completes but

bl does not, then we have missed the longest match inside of b2. In general, the

number of a matches in progress that we need to keep can be as high as IAl times

IBI. Now suppose we wish to sirnultaneously find the potential matches for a chain

of k MATCH-LONGEST-INSIDE() calls with NFAs of size SI, s*, . . . , sk. Then uses

O (sIs2 . sk) mernory.

So why does shortest matching inside of other matches mork, but not longest

matching? There is an important relationçhip here between shortest matching

and the CONTAINED-IN () structure query. When searching for shortest matches

inside other matches, the decision to always choose the shortest match when paths

converge or matches cornplete at the same location is never wrong. This is easy to

prove: if a region a is inside a region b, then any shorter region a* inside of a is

also inside b. This property is not true for a longer match al that contains a: al is

not necessarily inside b just because a is. So searching for shortest matches inside

other matches is efficiently possible but searching for longest matches is not.

Queries also exist for which we c m efficiently search for longest but not for

shortest matches. Suppose we require a match to contain a match of another type

(Le., the CONTAINING() query). If a region a contains a region b, then any longer

match al that contains a also contains b. However, a shorter match a0 inside a does

not necessarily contain b. Therefore, the hinction MATCH-LONGEST-CONTAINING()

can be efficient but MATCH-SHORTEST-CONTAINING() cannot.

To bound the memory used for any kind of matching, we need to be able to

bound the number of matches in progress that must be stored at any one time. Tu

bound the number of matches in progress, we must be able to choose which ones to

keep and which to discard when we have too many. We cal1 a way of making this

choice a lznearization rule.

Note that longest and shortest matching are more than just linearization rules.

They also tell us how to choose between potential matches so that our final result

is a non-nesting list. A linearization rule by itself only says how to choose between

matches in progress. From now on, when we refer to shortest or longest matching

as linearization rules, we mean only the linearization rule component.

94 CHAPTER 5. ALGEBRA DESIGN

When we enforce a bound on the number of matches in progress, we automati-

cally b m d the number of potential matches. That is, if we have at most c matches

in progress at once, then no more than c complete at every input character. Thus

the maximum number of potential matches is cn. With automaton matching, this

immediately guarantees an output of at most n potential matches. Since any NFA

can be written with a single final state, matches in progress must always converge

to that single state before they complete. Therefore, at most one completed match

- is output for each input character.

In general, choosing permissible linearization rules for restricted rnatcbing needs

to take into account both the matches in progress among which the choice is tu be

made, and information about other matches. As shown above, this is possible for

some combinations of restrictions and linearization rules, but not for others. For

example, we can perforrn shortest matching inside other matches, but not longest

mat ching.

Let an anchor be a position in the string referred to by the right hand side of

a clause in a query. For example, suppose we have two d regions (1,2) and (5,6),

and a query (s.1 5 d l) A (s- r 2 d-r c 5). Then the anchors for the first clause are

the two d.1 points: 1 and 5. The anchors for the second clause are 7 and 11, the

two points matching d.r + 5.

The general problem we are interested in is this: we wish to scan for matches

that depend on anchors through a query, but when we apply a linearization rule

to choose between matches in progress, we may only know potential locations of

anchors, any of which can disappear. We Say that a query and a iinearization rule

Figure 5.5: We want to choose between si and s2.

are compatible if the linearization rule never discards a match in progress that might

turn out to be the correct choice if any or al1 of the potential anchors disappear.

We now present results regarding compatible queries and linearization rules:

Theorem 5 Consider a search that depends on a set of anchors Y according to a

W ~ W Q- If 3 ~ 1 , y2 E Y S U C ~ that E(Q) + (y1 5 s.2 5 y2) A E(Q) =e (s-r < - y,),

then no linearization rule is compatible &th Q.'

Proof: Suppose we need to choose between two matches in progress sl

and s2 as depicted in Figure 5.5. Let yl. y2 be two potential anchors

such that y1 5 s1 5 y2 is necessary for sl to satisfy the query. Similarly,

s2 satisfies the query only if y; 5 sz 5 y;. Suppose sl and s2 converge

to the same state a t position x in the string. (This can happen before

s i and S* complete since E(Q) e (s.r 5 y2).) Given that any potential

anchor rnay disappear, we have no way of choosing between sl and s;!

'Note that (s.1 = y) is quivalent to (y s.1 5 y).

CHAPTER 5- ALGEBRA DESIGN

that is guaranteed to be correct. Therefore, no lineaxization rule is

compatible with Q.

Theorem 6 Consider a search that depends on anchors in Y according to a query

Q for which the condition of Theorem 5 does not apply (ie., Vyi, y2 E Y, E(Q) G+

(YI I S J I ~ 2) V E(Q) * (s-r < - ~ 2)) -

1. If 3y E Y such that E(Q) =. (s.l 2 y) then shortest rnatching zs the only

linearization m l e compatible with QI

2. If 3y E Y such that E(Q) + (s.l 5 y) A E(Q) .B (s.r 5 y), then longest

matching is the only linearization rule compatible with Q.

Proof: For case 1, s.l must be somewhere to the right of an anchor y.

Suppose we have a set of potential y points, and matches in progress

beginning at si and sa where s2 is to the right of SI. Then no matter

what subset of the y points disappears, if sl satisfies Q then this implies

that s:! does also. However sz satisfying Q does not imply that sl does.

In other words, the only possible cases are for neither sl nor s:! to satisfy

Q, for both to satise Q, or for just s;? to satise Q. Therefore, the only

choice that is guaranteed not to discard a correct match in progress is

sp, which is the rightmost and therefore the shortest.

If both sl and s:! are to the right of al1 potential y points, then it does

not matter which we choose. However, shortest matching is the only

linearization rule that consistently chooses the same way every time,

regardless of y points.

Case 2 is similar to case 1. If s.1 can be anywhere t o the left of a y

point, then the only way to never discard a correct match in progress

is to always choose the leftmost. Again, it does not matter which we

choose if sl and s2 are both to the left of all potential y points, but we

require a consistent linearization rule.

Corollary 2 If none of the conditions of Theorems 5 and 6 apply, then any Zin-

earization rule zs compatible with Q.

Proof: Neither of the previous theorems apply if Vy 'y Y, (E(Q) *
(s.1 5 y) A E(Q) (s.1 2 y)) V E(Q) + (s.r 5 y). In other words,

either there is no restriction on s.2, or s.l is never restricted except by

anchors that occur after the match completes. In either case, it does

not matter how we choose between matches in progress. Therefore, we

can use any linearization rule.

Consider some examples of compatible queries and linearization rules. - The

query (s.1 > d.1) A (s.r 5 d.r) is used by MATCH-SHORTEST-INSIDE(). According

to the theorem, this is only compatible with shortest matching, which agrees with

our previous conclusion. The query (s.1 5 d.l) A (s.r 2 d - r) is used by MATCH-

LONGEST-CONTAININGO and is only compatible with longest matching according to

the theorem, again in agreement with Our previous conclusion. The query (s.r = d.1)

has no a-l clause and is therefore compatible with any linearization rule. The query

(s.1 = d.r) is not compatible with any linearization rule, and neither is (s.l >

d.1) (s.1 < d.r). As an example of a distance query, (s.1 > (d.l+ 10)) h (s.r 5 d.r)

98 CHAPTER 5. ALGEBRA DESIGN

requires that an s match start at least ten characters after the start of a d match;

this is only compatible with shortest matching.

Corollary 3 The rules for determining compatible 1.inearization rules for a struc-

tural restriction are valzd even i f the potential anchors are completely unknown when

ecre apply a linearizdtion rule.

The proofs of the theorerns are equally valid if anchors can arbitrarily appear

as well as disappear. Therefore, for compatible linearization rules and queries, we

can find a h e m sized list of potential s matches before we know mything about

the points to which the restrictions refer. We simply find and output al1 potential

matches as if performing unrestricted matching, and then filter them later when we

know the anchors.

Corollary 4 The theorems apply t o right-left scanning as well i f we replace every

instance of s.1 by sr, s.r by s.l, < by >, and > by <.

This is true by the symmetry of the proof and means that, just as queries may be

of different types (Le., condition 1 or condition 2) for left-right and right-left passes,

they rnay also be compatible with different linearization niles. For example, the

query (s.1 = d.1) is compatible with any linearization rule with left-right scanning

but is not compatible with any with right-left scanning.

Overall, the results in this section characterize the conditions under which we

can efficiently search for several regular expressions simultaneously when they de-

pend on each other according to structure queries. Efficiency in this case rneans

that there is at most one match in progress a t a time for each state of each NFA,

5.7- SUMMARY

and a t most n potential matches are output for each regular expression. Recall that

this is only an issue if we wish to have the queries affect the searches themselves.

It is trivial to simultaneously search for several regular expressions simultaneously

if the searches are performed independently.

RecalI that we intend for a second pass to be used to choose between the po-

tential matches output by the first pass. Cornpatibility between a linearization rule

and a query does not mean that we can completely evaluate the query during the

scan, just that we do not discard any regions in error. Evaluation of queries using

a second pass is subject to the sarne rules detailed in previous sections. That is,

they must al1 be condition 1 or al1 condition 2 if we wish to use a deterministic p a s

with properly sorted input and output.

5.7 Summary

In this chapter, we proposed a batch evaluation rnethod for expression graphs that

satisfies the efficiency bounds given in Section 2.2. The method uses a deterministic

pass that iterates both input and output region inventories as one sorted list. This

leads to a natural classification of functions according to how their dependencies

relate to the sort order. We have examined several types of functions in detail,

including structure selection queries, region generation functions, and restricted

rnatching functions, and also considered more general functions.

The main result in this chapter describes the design of completely composable

algebras, that is, algebras for which we can evaluate al1 possible expression graphs

using the proposed method. We also examine the idea of stratified algebras that

100 CHAPTER 5- -4LGEBRA DESIGN

miu functions of different classifications. The tradeoff that makes this possible is

that these algebras incur restrictions on how expression graphs can be constructed

if the number of passes required for evaluation is to be controlled.

Chapter 6

Example

6.1 An Algebra

We now describe a small algebra as an esari~ pl^. The functions are listed in Table 6.1

along with their classifications as either condition 1, condition 2, or both, for left-

right and right-left p a s directions. Descriptions of each function follow. There are

two matching functions:

0 MATCH-SHORTEST() is as defined previously. It keeps nghtmost matches in

the case of overlaps.

O MATCH-LONGEST() is as defined previously. It only accepts regular expres-

sions that require a t most one character of lookahead.

The following are query functions:

0 UNION~(S,D) uses the query $d (s.1 < d.1) /\ (sr > d- l) to select s regions

that do not have touching d region with a later left end. It uses the query

CHAPTER 6. EXAMPLE

Name
MATCH-SHORTEST

MATCH-LONGEST

 UNION^
CONTAINING

NOT-BEFORE

NOT-SAME-START

 UNION^
SUBTRACT

NOT-OVERLAP-AFTER

CONTAINED-IN

NOT-CONTAINED-IN

AFTER

FIRST-AFTER

PAIR-STARTS

CUT

PAIR-REGIONS

Table 6.1: The functions of the example algebra, and their left-rïght and right-left
classifications.

$s(d.l 5 s.l) A (d-r > s.l) to select d regions that do not have a touching s

region with an equal or later left end. The result of a UNION^() cal1 is the set

union of the results of the two queries, which is a flat list.

CONTAINING() is as defined previousiy.

NOT-BEFORE(S,D) finds s regions that do not occur irnmediately preceding a

d region. The query is $d (sr = dl) .

NOT-SAME-START(S,D) finds s regions that do not share a left end with a d

region. The query is $d(s.l = d.2).

UNION~(S,D) uses the query $d (s.2 > d l) /\ (s.1 < d - r) to select s regions

that do not have a touching d region with an earlier left end, and the query

3s (d.1 3 s.1) A (d.1 < s r) to select d regions that do not have a touching

s region with an equal or earlier left end. The result of the UNION^() c d is

the set union of the results of the two queries, which is a flat list.

O SUBTRACT() is as defined previously.

0 NOT-OVERLAP-AFTER(S,D) finds s regions that do not overlap after a d. The

query is $Id (s.l > d.1) A (s-1 < d.7) A (s.r > d . ~) .

O CONTAINED-IN() is as defined previously.

O NOT-CONTAINED-IN() is as defined previously.

O AFTER(S,D) finds s regions that immediately follow a d region. The query is

3d (s.1 = d.r). -

FIRST-AFTER(S,D) finds the first s following each d region. This uses the

query 3d (S . > d) A (s (sl . l > d . ~) A (sl.l < s - l)) .

The follonring are region generation functions:

PAIR-STARTS(S) generates a region from the beginning of every s to the be-

ginning of the next S. One additional region is also generated from the start

of the last s to the end of the string.

O PAIR-STARTS(S,D) finds closest pairs (s , d) using the query (3d (s.r < d.1)) A

(as1 (si.l > s r) A (si.l < d.1)). For each such pair, i t outputs a g from s.l

t o d.1-

CUT(S,D) For every s, if there is a d overlapping it on the right, then this

function outputs a region from s.l to d.1. Otherwise, i t outputs s unchanged.

MERGE-ADJACENT(S) For every SI, sl E S such that sl.r = s2.1i this generates

the region (si.l, s2-T).

Note that there are no restricted matching functions in this example algebra.

Now consider the parsing model implied by this algebra. Since it contains both

condition 1 and condition 2 functions, i t must use more thaa one stratum. Recall

that matching functions must always be the leaves of an expression graph. This

implies that they must be part of the first stratum. Since matching functions are al-

ways condition 2, this means that the first stratum must consist entirely of left-right

condition 2 functions or right-left condition 2 functions. Looking at the chart, we

can see that some of the functions have been defined so that they are only condition

2 for a right-left pas . Therefore, we make al1 of the first stratum functions right-left

condition 2 so that these functions can be inciuded. The first stratum consists of

MATCH-SHORTEST, MATCH-LONGEST, UNIONI, CONTAINING, NOT-BEFORE, NOT-

SAME-START, SUBTRACT, PAIR-STARTS, CUT, and MERGE-ADJACENT.

Examining the remaining functions, we see that they al1 have the left-right

condition 1 classification in cornmon. Therefore we group UNIONS, NOT-OVERLAP-

AFTER, CONTAINED-IN, NOT-CONTAINED-IN, AFTER, and FIRST-AFTER int0 a sec-

ond stratum.

Overall, the given algebra is divided into two strata, and has a two-pass parsing

model. The first pass is right-left and outputs a Left-sorted region inventory. The

second is left-right and inputs and outputs a left-sorted region inventory.

6-2. OED B.lBLIOGR4FHY

6.2 OED Bibliography

As an example of applying the algebra described in the previous section, we compare

two ways of parsing the Oxford English Dictionary bibliography. An excerpt from

this data is shown in Figure 6.1. The first parser is specSed with an WR grammar

(Johnson, 1983); the second uses an algebra specification.

6.2.1 The INR grammar

The INR grammar was developed by two different people. The first version was

written to find the author, title, and date fields for use in an exploration of auto-

matic citation resolution (Townsend, 1989). It was not important for this purpose

that the parse be especially good, only that it find enough fields to give some data

for experiments.

The second version of the grammar, which we use here, was an attempt to

improve the first. It is stiIl quite simplistic and has many problems. Of the 17,444

entries in the bibliography, it parses 15,410 (about 88%). Of those that it does not

parse, 838 are not included in the language defined by the grarnmar, thus causing

the parser to abort and recover starting at the next entry. Another 1196 are parsed

by recognizing everything as junk rather than finding any interna1 structure. There

are also many errors in the 15,410 entries that it does parse.

The complete grammar is below. Each production begins with a name, and is

followed by an equals sign which separates the left-hand side from the right-hand

side. Every production ends with a semi-colon. Right-hand sides are expressed in

a notation similar to regular expressions. The plus (+) , star (*) , question mark (?) ,

<E><CR>+SC A. +CR +R 1593 See +I Passionate Morrice +R </CR>
<E>+SC A., +R A. +NR +I Reply to Dr. Sanderson +R 1650
<E>+SC A., +R D. +NR +I The art of converse +R 1683
<E><CR>+SC A., +R H. +CR 1613, 1633 +I See +SC Austin, +R Henry; +SC
Haukins, +R Henry</CR>
<E>+SC A., +R W. +NR +I A speciall remedie against the furious force
of lavlesse loue +R 1579 (Roxb. Cl. 1844)
<E>+SC 'Aarons, +R E. S.' (Paul Ayres &. Edvard Ronns) +NR +I
Assignment treason +R 1956
<E>+SC Abbay, +R Richard +NR +1 The Castle of Knaresborough +R 1887
<E>+SC Abbot, +R Charles +NR +I Jurisdiction and practice of the Court
of Great Sessions of Wales on the Chester Circuit +R 1795
<E>+SC Abbot, +R Abp. George +NR +I A briefe description of the uhole
uorlde +R (anon.) 1599 (1617, 1634) +BS An exposition upon the prophet
Jonah +R 1600 +BS A treatise of the perpetuall visibilitie and
succession of the true church +R (anon.) 1624
<E>+SC Abbot, +R George +NR +I The uhole book of Job paraphrased +R 1640
<E>+SC Abbot, +R Robert +NR +I The old vaye +R 1610
<E>+SC Abbott, +R Charles C. +NR +I Waste-land vanderings +R 1887
<E>+SC Abbott, +R David +NR +I Inorganic cheznistry +R 1965
<E>+SC Abbott, +R Edwin A. +NR +I Francis Bacon: an account of his
life and vorks +R 1885
<E>+SC Abbott, +R Jacob +NR +I Wallace: a Franconia story +R 1853
<E>+SC Abbott, +R John Henry Macartney +NR +I Tommy Cornstalk +R 1902
<E>+SC Abbott, +R John S. C. +NR +1 Life of Napoleon +R 1854 (1855)
<E>+SC Abbs, +R Akosua +NR +I Ashanti boy +R 1959
<E>+SC Abdy, +R Edward S. +NR +I The uater cure +R 1842 (1843)
<E>+I Aberbrothoc. Liber S. Thome de Aberbrothoc. Registrorum Abbacie
de Aberbrothoc pars prior ; pars altera +NR +R v .d. (Bannatyne
Cl. 1848, 1856)
<E>+SC Abercrombie, +R David +NR +I English phonetic texts +R 1964 +BS
Problems and principles: studies in the teaching of English as a
second language +R 1956

Figure 6.1: AI; excerpt from the OED bibliography data.

6.2. OED BIBLIOGRAPHY 107

and alternation (I) symbok have their usual meanings. Curly brackets C) are used

to enclose a set, the members of which are separated by commas (which, thus, also,

rneans alternation in this context).

This grarnmar describes a transduction which outputs a modified form of the

input text. In general, transduction differs from simple recognition, but in this case,

the grammar only echoes the text unchanged except for the insertion of SGMLstyle

tags around recognized elements. A single set of square brackets enclosing a string

denotes writing that string to standard output. Thus, for example, C ' CD> '1 a t the

beginning of the date production inserts that tag at the beginning of any recognized

date. The output CRESTART] is intercepted by the interpreter rather than being

output. It denotes a position from which to start re-parsing when there is an error.

Double square brackets have a special meaning that is used to implement a

font-checking mechanism. The outputs C Cwrl 1 and C Crrl 1 are assertions, short

for "write roman" and "read roman". Similarly, C Cui] 1 , [Cri3 1 , 1 [us] 1 , C [rs] 1

are corresponding assertions for italics or small caps. The grammar makes a "write"

assertion when it finds a code that signals a switch to a different font. For example,

w r is used when it finds +R or +DM. I t uses a read assertion when i t needs to check

that it is in a given font. For example, rr is used to check that it is in a roman

font. The last two productions of the grammar define this behaviour. The conf orm

production describes a language where any nurnber of read assertions in a given

font can follow a write assertion for that font. The last production then uses the

composition (O) operator to require that al1 the assertions made in the other parts

of the grarnmar conform to this language.

108

roman
ibreak
italic
SC

bs
nr
Cr

m2
dm

blank
nl

see

digit
UC

lc
spec

entref
pretag
unit
letter

nonwhit e=
anything=

notvord =
vord - -
anytext =
letword =

letext =

- year -

CHAPTER 6- EXAMPLE

'8' (uc, Ic, digit, spec)* '. ';
{><i>~,'</i>~ ,J<~~>J,J</~~>','<ed>>,J</ed>J,'<R>','</R>J>;
(entref , pretag,nl> ;
{uc , lc ,unit) ;

(anything* {nl , ' CE> ' , ' 3 anything*) ? ;
notword:acomp;
vord (blank word) *;
{(vord? letter word?)+, digit digit?);
(letuord blank) * letuord;

(<'v.dJl<'iJ digit, J7',J8','9'){digit, >.'){digit, '.>))
<J - > , P / , J , J , J.' , ,digit,'etcJ)*)+;

(roman > ?) ' '?)? (italic C'a', 'c ') blank)? roman yearstr;

6.2. OED B~LIOGRAPKY

date - -

bl - -
badword =
badtext =

text - -

yeswork =
worktext=

junk =

soc - -

author =

uork - -

date j unk=

n e f - -

y y + ;

(('SJ,'sJ) ' e e l ' alsoJ? 1 yearstr 1;
((bl uord?) * (uord bl) * ,
(word bl) * baduord (bl? word) *,
<nonwhite,bl,nl)* '<E>' (nonvhite,bl)* 1;
badtext : acomp ;

(({JS',J~J3 'eeJ also1?)?
(bl vord?)* ((vord bl)* ('aJPJc')?

1 (nonuhite, bl ,nl)* '<E> {nonwhite ,bl)*) ;

notvork: acomp ;
italic yeswork;

roman (text I ' (' yearstr ') ' ;

['<A>'] SC

(letter anytext ((l . ,' , '1 blank roman
C 1 <AA> '1 anytext [</AA> 1) ? C J ' 1 ,

' ' anytext (' , ' blank roman C1<AA> '1 anytext [</AA>]) ?
blank? l \ J 1 (blank anytext)? ['>]);

author
(<' &. ' , l, ,blank roman ('or' 1 'and1)) blank author)*;

date ({blank junk, ') (blank anytext)?)?;

(roman, italic) ((work, junk) blank) ?
see 'also)?
(junk 1 (uork, authors) (datejunk, blank junk));

qvork = (junk blank)? vork
(blank junk) ?
(blank datejunk)?;

moreqw = (blank? CRESTART]
Cbs
(qwork (ibreak qwork)*
I xref
1 date (blank junk)?),

dmqu blank? 3

quork (ibreak qwork)* moreqv;

authors blank? n r (qworks,xref);

m2 {text blank? , (text blank) ? (date blank) ?authors blank?)
italic {qvorks, qwork blank see 'aïs0 '? vork);

vork blank? nr (junk blank) ?
date junk
(italic (quork,
see 'also '? roman? authors? roman? anytext?))?

moreqv?
(blank bs {junk,datejunk))?;

soc work blank
(junk blank)? datejunk
moreqw ;

soc n e f ;

6.2. OED BIBLIOGRAPHY

socNR = soc uork blank nr date;

CR & - '<CR>' Canything, >+', '0 * / * ? Jsoc>J)+ '</CR>> ;

entry = ~ < E ~ J { e m t w ~ , a N R , w N R , C R , s o c N R , s o c ~ e e ['</E>'];

conform = ((UT TT*), (wi ri*), (US rs*))* ;
bib l i o = CRESTART] ((entry nl)+ Q conform) ;

6.2.2 The Algebra Specification

Our goal with the algebra specification is to produce a result that is objectively

comparable to that produced by the grammar. To this end, we developed the

algebra specification using the grammar result as an oracle. For each element, we

continued refining the set of results until the difference from the set produced by

the grammar was small enough that we could examine it manually. In each case, we

considered the specification for an element finished when the number of errors made

by the algebra in this set was manually verified to be no more than the nurnber of

errors made by the grammar.

For interactive purposes, we require that the algebra have some basic functions

for managing and examining lists and their identifiers. The following functions are

a minimal interface for this purpose:

 string i, List 1) Set the identifier i to point to 1.

0 LIST(L~S~ 1) Display the first few regions of Z.

Note that we use some regular expression facilities beyond those defined in

Chapter 2 - the regular expression language is comparable to that provided by

tools such as grep and perl. In particular, the notation Ca-zl means the set of aJl

ASCII characters between and including a and z, the notation a? means zero or one

occurrences of a, the notation . means any character in C, the notation \+ means

a literal + symbol, the notation \? means a literal ? symbol, and the notation \s

means any tvhitespace character.

We start by recognizing entnes. These are very simple, and the result is identical

to that found by the grammar. Note that LIST() also indicates whether the set is

an output from a first or second stratum function.

> set entry (pair-starts (match-shortest CE>))
> l ist entry

stratum 1

0,61 <E><CR>+SC A. +CR +R 1593 See +I Passionate Morric ...
61,116 <E>+SC A., +R A . +NR +I Reply to Cr. Sanderson +R ...
116,168 <E>+SC A . , +R D. +NR +I The art of converse +R 168 ...
168,260 <E><CR>+SC A . , +R H. +CR 1613, 1633 +I See +SC Aus ...

Next

17444 regions

we find regions delimited by SGML style CR tags:

> set cross-reference-entry (match-shortest <CR>.*</CR>)
> list cross-reference-entry

stratum 1

3,60 <CR>+SC A . +CR +R 1593 See +I Passionate Morrice + ...
171,259 <CR>+SC A . , +R H. +CR 1613, 1633 +I See +SC Austin . . .
11638,11705 <CR>+SC Addleshav, +R W. P. +CR +I See +SC Hemingw ...
12979,13067 <CR>+I Adventures of Captain Robert Boyle +CR +R 1 ...

6.2- OED BDLIOGRAPHY

1196 regions

Next we find most of the markup in the text for later use:

stratum 1

128599 regions

We continue by finding the last names of authors. The first command finds +SC

codes and pairs each one with the nearest following code of any kind to give a region.

The second line gets rid of al1 such regions that occur inside a cross-reference-entry

(since the grammar does not recognize any substructures in such entries). Note

that the ^ symbol refers to the result of the previous line. The resulting 13265

regions are identical to those found by the grammar, not counting the 838 entries

for which the grammar aborts.

> pair-starts (match-shortest \+SC) code
> s e t lastname (not-contained-in cross-reference-entry)
> list lastname

stratum 2

64,72 +SCA. ,
119,127 +SC A . ,
263,271 +SC A . ,

374,387 +SC ' Aarons ,
- - .

13265 regions

The next step is to find first names. To do this, we pair the tag that switches to

a roman font with the closest following region. Note that many of the resulting

regions are dates or other text that does not represent a name. Notice also, that

PAIR-STARTS() is a stratum 1 function, and that we used a stratum 2 function in

the previous step. That is, we can mix calls to stratum 1 and 2 functions arbitrarily

in the interactive process as long as results of stratum 2 functions are not used as

inputs to stratum 1 functions.

> set roman (match-shortest \+Rb)
> set firstname0 (pair-starts roman code)
> list firstnameo

stratum 1

18,30 +R 1593 See
72,78 +RA.
108,116 +R 1650
127,133 +R D.

44841 regions

The first line of the next part finds patterns that are used to separate multiple

authors. Any regions in firstnameo that contain the left end of one of these

separators are then truncated using cut, and those that are reduced to just a roman

code by this truncation are removed with SUBTRACT(). Al1 resulting regions that

immediately follow a last name are then selected and cdled firstnamel.

6.2. OED BFBLIOGRAPKY

> set author-sep (match-shortest (, \+SC) 1 (&- \+SC) 1
(and \+SC) 1 (or \+SC)

> subtract (cut firstname0 author-sep) roman
> set firstnamel Cafter - lastname)
> list firstnamel

stratum 2

72,78 +R A.
127,133 +R D.
271,277 +R W.
387,429 +R E. S. (Paul Ayres &. Edvard Ronns)

13149 regions

The next step is to fix cases that occur inside of single quotes. This process is com-

plicated slightly by the fact that a closing single quote is also used as an apostrophe,

which can occur inside of some names. The first step finds close quotes followed by

a space or + symbol (when used as an apostrophe, the following character is always

a letter). Roman codes are paired with the results and called firstname2.

> set author-end (match-shortest ' (\s 1 \+))
> set f irstname2 (pair-starts roman author-end)
> list firstname2

stratum 1

387,395 +R E. S.
11049,11091 +R 1715 (1721) +BS Essay on 'Paradise Lost
11974,11989 +R 1896 +BS Doc
17100,17107 +R Milo

855 regions

Next, we find complete regions surrounded by quotes. These generally correspond

to a last name followed by a first name.

CHAPTER 6. EXAMPLE

> set quoted (match-shortest ' . *' (\s 1 \+))
> list quoted

stratum 1

378,397 'Aarons, +R E. S . '
11077,11093 'Paradise Lost
17088,17109 CAinsworth, +R Milo'
17881,17902 Aird, tR Catherine '

526 regions

Finaliy, we select al1 firstname2 regions inside both a quoted region and a first-

namel. We then combine the result with firstnamei, using union2 so that first-

namel regions have lower precedence. Those that start at the sarne location as

a first name inside a quoted region are therefore deleted. Of the resulting 13149

regions, there are 51 cases where the gramrnar and the algebra result disagree be-

cause the grammar makes an obvious error with first names that occur at the end

of a line. There are also 63 first names found by the algebra specification that are

skipped over as junk by the grammar. (This is not counting the entries for which

the grammar aborts.) Overall, we consider these differences slight enough to Say

that the two results are essentially the same.

> contained-in (contained-in f irstname2 quoted) f irstnamel
> set firstname (union2 - firstnamel)
> list firstname

stratum 2

6.2. OED BIBLIOGRAPHY

13149 regions

Next, we find titles of works. The first steps find regions running from the beginn

of any italic region to the beginning of the next code, or date (a for ante, c for circa,

v . d . for various dates), or cross reference (Sse also).

> set work-left (match-shortest (\+BS) 1 (\+I 1)
> set work-right (rnatch-shortest (a \+) 1 (C \+) 1 (v\ .d\ .) 1

(See (also)?)
> cut (pair-starts uork-left code) work-right
> list uorki

stratum 1

3O,52 +I Passionate Morrice
82,108 +I Reply to Dr. Sanderson
137,160 +I The art of converse
281,346 +I A speciall remedie against the furious force of ...

29480 regions

This next part finds works beginning with +DM codes. These are different from italic

works in that the end of the title is not usually separated from a date by a code.

(This can be considered an inconsistency in the markup.) Therefore, we find the

right end of these works by looking either for patterns that look like a year, or the

end of a line.

> set dm-left (match-shortest (\+DM 1)
> set dm-right (match-shortest (\d\d(\dl \ .)) 1 <\ (\d\d\d\d[, ;]) 1 (\n))
> pair-start s dm-lef t (union1 dm-lef t vork-lef t)
> cut (cut A dm-right) uork-right
> set vork2 (con ^ dm-left)
> list uork2

stratum 1

3121,3132 +DM (ed. 2)
5559,5577 +DM (c o q l e t e ed.)
8717,8731 +DH (rev. ed.)
18883,18922 +DM (ed. 2, ed, by W . T- Aiton) 5 vo l s .

539 regions

The purpose of the next part is to simulate an inconsistency in how the grammar

treats cases where the start of a date bs signalled with a font change.

> s e t i (match-shortest \+I)
> not-same-start i (match-shortest \+I c)
> set vork3 (not-before vork2 ^)

> l ist (sub work2 work3)

stratum 1

99 regions

> l i s t vork3

stratum 1

440 regions

+DM (another ed. , vi th)
+DM Sunday ed., as
+DM another ed . , en t i t l ed
+DM (vith)

+DM (ed. 2)
+DM (complete ed.)
+DM (rev. ed.)
+DM Ced. 2, ed. by W. T. Aiton) 5 v o l s .

The final section combines the italic and +DM cases and deletes those inside a cross-

reference entry. Of the 29006 resdting works, there are six discrepencies between

the grammar and the algebra result. Four of these are errors on the part of the

6.2. OED BIBLIOGRAPHY

grarnmar, and two are cases that the gamrnar misses.

> union2 uorki work3
> not-contained-in cross-reference-entry
> set work "
> list vork

stratum 2

82,108 +I Reply to Dr. Sanderson
137,160 +I The art of converse
281,346 +I A speciall remedie against the furious force of ...
433,455 +I Assignment treason

29006 regions

We next search for date elements. We start by finding patterns that look like a

year, possibly preceded by an ante or circa:

Warning: overlaps detected. Keeping rightmost.

> set year "

Note that the overlap occurs in cases such as the following when a year occurs as

the last part of a title:

+I The autobiography and persona1 diary , from 1552 to 1602 a +R 1611

In this case, keeping the rightmost, a +R 1611, rather than 1602 is the correct

behaviour. The next step is to find other regions that can be part of a date, and

union them al1 into a single list. Next, adjacent parts are rnerged into a single

date using MERGE-ADJACENT. Any resulting regions that cannot comprise a date

by themselves (a single italic code, or a single question mark) are then removed.

Finally, al1 dates that are inside a work, or overlapped after one are deleted.

> set vd (match-shortest (v\.d\ .? ?))
> set q (match-shortest (\? ?))
> unionl (unionl (unionl year vd) i) q
> merge-adjacent ^

> sub (sub - i) q
> set date1 (not-overlap-af ter bot-contained-in ' vork) uork)
> list date1

stratum 2

36381 regions

The next part emulates an error in the grammar: it discards a11 dates except for

the first one following each work.

> set date2 (first-after date1 work)
> set date3 (first-after date1 bs)
> union2 date2 date3
> set date (not-contained-in ^ cross-reference-entry)
> list date

stratum 2

28650 regions

Of the final 28650 results, 162 are correctly identified dates that are missed by the

6.2. OED BLBLIOGRAPWY

grammar. There are dso 4 cases that the grammar incorrectly marks as dates even

though they are part of a title, 10 cases where the two results disagree because

the grammar chooses a date other than the first one following a work, and 30

cases where the grammar finds only a substnng of a full date found by the algebra

specification.

Follow-ing is the complete algebra specification without commentary:

find entries and codes
set entry (pair-starts (match-shortest CE>))
set cross-reference-entry (match-shortest <CR>.*</CR>)

set tag (match-shortest (CE>) I (<CR>) 1 (</CR>))
set code (union1 (match-longest \+ CA-ZI *) t a g)

find last names
pair-starts (match-shortest \+SC) code
set lastname (not-contained-in - cross-reference-entry)

find firstnames
set roman (match-shortest \+R\s)
set f irstnameo (pair-starts roman code)

set author-sep (match-shortest (, \+SC) 1 (&. \+SC) 1 (and \+SC)'l (or \+SC))
subtract (cut f irstnameo author-sep) roman
set firstnamel (after ' lastnane)

set author-end (match-shortest \ ' (\s 1 \+))
set f irstname2 (pair-starts roman author-end)

set quoted (match-shortest \ ' . * \ ' (\S I \+))
contained-in (contained-in f irstname2 quoted) f irstnamel
set firstname (union2 firstnamel)

find works

set work-left (match-shortest (\+BS) I (\+I))
set work-right (match-shortest (a \+) I (c \+) I < v\.d\.) I (See (aïso)?))
cut (pair-starts uork-left code) vork-right

set dm-left (match-shortest (\+DM))
set ch-right (match-shortest (\d\d (\d l \ .)) 1 (\ (\d\d\d\d [, ; 1) 1 (\n))
pair-starts dm-left (union1 dm-lef t uork-lef t)
cut (cut - dm-right) work-right
set work2 (con - dm-left)
set i (match-shortest \+I)
not-same-start i (match-shortest \+I c)
set work3 (not-before uork2 *)

union2 workl vork3
not-contained-in cross-reference-entry
set work -

find dates

set year -
set vd (match-shortest (v\ . d\ . ? ?))
set q (match-shortest (\? ?))
unionl (unionl (unionl year vd) il q
merge-adj acent
sub (sub - il q
set date1 (not-overlap-af ter (not-contained-in - uork) work)
set date2 (f irst-after date1 work)
set date3 (first-after date1 bs)
union2 date2 date3
set date bot-contained-in * cross-reference-entry)

6.2- OED BIBLIOGRAPHY

We now compare the understandability of the grarnmar and the algebra specifi-

cation using some simple metrics. Not counting the nl, digit, uc, Ic, and spec

elements which are trivial, there are 53 productions in the grammar. This is about '

the same as the total number of function callç in the algebra specification which is

54 (omitting SET() and LIST() calls) .

The two specifications differ more significantly in the number of dependencies.

Let a dependency graph for a grammar be defined as follows: there is a node for

every non-terminal, and an arc from one node to another if there is a production

with the source as the- left-hand side and the destination in the right-hand side.

The dependency graph for the grarnmar has 53 nodes and 126 edges, as compared

to 54 nodes and 68 edges for the algebra expression graph. The two graphs are

shown in Figures 6.2 and 6.3l. From this, we conclude that the grammar is harder

to understand, and also harder to extend, than the algebra specification.

The discrepancy is really worse than implied by the larger nurnber of depen-

dencies. This is because it is possible to extend an algebra specification without

understanding it at all. A new element can always be created independently of

existing elements, and optionally related to existing elements later. This is how

the date element was developed, for example: we found dates independently of

other elements, then deleted those that were inside a title. This type of modular

development is not possible with the grammar: i t is always necessary to determine

where to fit in a new element, and to consider how this affects existing elements.

' We generated these graphs and performed edge-crossover minimization using the da Vinci
program (F'rohlich & Werner, 1994)

Figure 6.2: The dependency graph for the grammar

6.2- OED BIBLIOGRAPHY

Figure 6.3: The expression graph for the algebra specification.

6.2.4 Batch Efficiency

When parsing with a grammar, we do not need to output the entire passe tree.

Rather, we can speciS a subset of the productions in which we are interested. For

this example, these are the date, author, work, and entry productions. IR the same

way, for an algebra specification, we can speci@ a subset of the lists in which we

are interested. This is the distinction we made earlier between Iists that are final

results, and those that are intermediate results-

Parsing with a grammar, it is only necessary to output final results. Interme-

diate results must be found but need never be output. For the example, the final

results total 99,287 regions. Assuming that each region is represented with eight

bytes (two integers), this gives a total output size of 794,296 bytes. The required

input is the size of the bibliography which is 2,163,877 bytes. Therefore, the total

1/0 required to parse using the grammar is about 3 Mb.

Parsing an algebra specification requires that some of the intermediate resu1ts

be output. Specifically, any lists that are outputs of class one functions and inputs

to class two functions must be output dunng the first pass and read in during the

second. In the example, there are 10 such lists containing a total of 152,828 regions.

To mi te these once, and then read them again a t 8 bytes per region uses a total of

about 2.4 Mb of I/O. Together with reading the file, and writing the final results

once, the total 1/0 cost of parsing the algebra specification is about 5.4 Mb.

Overall then, parsing with the algebra is about 80 percent more costly in terms

of 1/0 than using the grammar - roughly what would be expected given that

it uses two passes. What we gain from this extra cost is that both passes are

6.2- OED BBLIOGRAPHY

deterministic, in contrast with the grammar which has non-determinism that can

require unbounded lookahead to resolve. This does not make any practical differ-

ence for this example where lookahead never extends past the begirining of the next

bibliographie entry, but could be a problem for other data.

6.2.5 Interactive Efficiency

When developing a gramrnar, every change that we make requires a reparse of the

data. Recall that, for the example, a single parse uses about 3 Mb of 110. Thus,

assuming that the number of output regions stays about the same for each step,

the total I/O cost of an interactive grammar development process is the number of

changes that we make times 3 Mb.

Recall that there are a total of 54 function calls in the algebra specification. 19

of these are matching calls that scan the data, and the remainder operate on lists

of regions. Executed interactively one by one, the 19 matching calls therefore read

the 2.2 Mb of the file 19 times for a total of 41 Mb read from secondary storage.

cThirteen of the matching calls are for constant strings that would be easy to search

for using an index, but we do not take this into account for this discussion.) The

remaining calls read or write a total of 3,350,114 regions from secondary storage.

Assuming again 8 bytes (two integers) per region, this is 27 Mb. The overall total

amount of 1/0 that is used to interactively execute the algebra specification one

function call a t a time is therefore about 68 Megabytes, or an average of 1.3 Mb

per call.

Assuming that the above discussion is a reasonable estimation of the average

110 required for an algebra d l , we can conclude that more than M c e as many

interactive steps are possible with the algebra given the same amount of I/O as

required for a grammar. In general, this means that interactive exploration and

experimentation can be carried out at a more fine-graineà level.

Overall, our conclusion is that incrementally developing a parser using the al-

gebra is both significantly simpler and also more efficient, than using a more tradi-

tional grammar approach.

Chapter 7

Summary and Future Work

7.1 Summary

In Chapter 3, we identify four important characteristics that a system for text

structure recognition should have if it is to used for incremental development of

recognizer specifications. These are 1) interactive efficiency, 2) a flexible structure

model, 3) scalability, and 4) batch efficiency. We argue that existing formalisms, and

grammars in particular, al1 lack one or more of these characteristics, and propose

an alternative approach based around a region algebra as an interface.

We argue in principle that an approach based on an algebra is better than exist-

ing approaches from the point of view of interactive efficiency, structure model flex-

ibility, and scalability in Chapter 3. We also demonstrate anectodally in Chapter 6

that this is true specifically in comparison to a grarnmar-based approach. In addi-

tion, we have made the prototype tool used to construct the example in Chapter 6

available to the Déctzonary of Old English project (Healey, Hoiland, McDougall,

130 CHAPTER 7. SUMMARY AND FUTURE WORK

& Mielke, 2000). They had previously evaluated and rejected the idea of using a

gramrnar-based approach for recognition, and have found the prototype to be a

much more appropriate tool (Healey & Mielke, 2000). Note also that other exam-

ples exist where grammar-based approaches were evaluated and rejected in favour

of pattern matching approaches similar to region algebras (Murphy & Notkin, 1996;

Miller & Myers, 1999; Ait-Mokhtar & Chanod, 1997; Grefenstette, 1996).

An important characteristic that a region algebra lacks for this application is

efficient batch evaluation. Therefore, in Chapter 5, we propose a batch evaluation

rnethod for region algebra expression graphs. This views the set of inputs and

outputs to an expression graph as a single, merged region inventory, and evaluates

the graph using a single deterministic pass over this inventory. Unfortunately, it is

easy, using common region algebra operations, to construct expressions that cannot

be evaluated in this way.

Our main results characterize the conditions under which it is possible to eval-

uate an expression graph using a single deterministic pass (that is, one that does

not use lookahead). A function that selects s regions based on d regions is classi-

fied as condition 1 for a left-right p a s if its dependency expression E(Q) implies

(d l S .) It is condition 2 for a left-right p a s if E(Q) + (d.r 5 s-r) , condition

1 for a right-left pass if E(Q) + (d.r 2 s.T) , or condition 2 for a right-left pass if

E(Q) + (d-l 2 s.1). For functions where s depends on a set D of other regions,

the implication must hold for every d in D. Using this classification, we prove that,

for a given algebra, we can evaluate al1 expression graphs that can be constructed

with that algebra if and only if a11 functions are condition 1, or al1 are condition 2

for the same pass direction.

Based on this result, we can constmct completely composable algebras for which

we can evduate al1 possible expressioil graphs in one pa s . However, there are

limitations on the functions that can be included in a completely composabie al-

gebra, which may be a problem in some cases. Therefore, we also consider one

way of overcoming this limitation: divide an algebra into multiple strata, and use

a multiple-pass evaluation method. We show that such an approach is feasible us-

ing a two-strata example in Chapter 6 . Note, however, that we do not rule out

the possibility that other useful ways of overcoming the limitation may be more

appropriate.

We also give results having to do with regular expression rnatching. This is an

important operation since we are interested in expression graphs that have string-

to-region functions a t the leaves and therefore recognize structure starting from

nothing but a string. It is not possible to perform longest regular expression match-

ing as part of a single deterministic p a s . However, as proved in Section 4.1, we

can perform longest matching using two deterministic passes, and we can perform

longest matching using one deterministic pass for certain subclasses of regular ex-

pressions. An additional resuIt in Section 5.6 characterizes the conditions under

which we can perform regular expression matching that is restricted according to

uncertain anchors in the string.

CHAPTER 7. SUMMARY A2VD FUTURE WORK

7.2 Future Work

7.2.1 Interface Concerns

The main consideration in this thesis is eEcient batch evaluation when using a

region algebra for specification. Thus, we did not design a comprehensive region

algebra, nor examine interface issues in detail. Rather, we introduced as many

functions as needed to demonstrate and prove specific principles, and to constmct

an example. More work is needed to look at user interface questions. For example, is

it possible for an expert to design a comprehensive region algebra that is applicable

to a wide range of recognition problems, or is designing a customized algebra a

necessary part of the recognition process? Also, are stratified algebras appropriate

from a user's perspective, or are the limitations on constructing expressions too

distracting?

Another important user interface concern is whether there is a simple charac-

terization of the type of processing that can be done using a deterministic pas .

In prïnciple, any processing that does not use lookahead in the region inventory

is possible. However, this is restricted by the fact that we specie the processing

by composing operations from an algebra. In pactise, interface issues such as the

desire for complete cornposability may limit the scope of the processing that can

be specified. Further work is needed to determine whether it is possible to design

an algebra of simple operations that is usable, small, orthogonal, and complete in

the sense that it allows specification of any processing possible with the evaluation

model.

7.2. FUTURE WORK

A high level concern is that our approach is a tool for designing recognition

specifications rather than a design methodology (in the same way that an object

oriented programming language is a tool rather than a methodology). The process

of designing large recognition specifications could still benefit greatly from the de-

velopment of some kind of formal methodology sirnilar to those used in software

engineering.

As mentioned in Chapter 2, learning approaches to recognition have been ex-

plored by others, but suffer from the limitation of too many simplifjkg assump-

tions. A region algebra seems to be an interface with an appropriate level of power,

but this level of power makes it too complicated to leam automatically. Perhaps

leaming approaches would be more usefully targeted at the task of helping the user

understand what to specify, rather than trying to generate a specification them-

selves. In other words, they could be used as a tool for explorhg the data.

7.2.2 Efficiency Concerns

Our main result shows the conditions under which al1 expressions constructible

with an algebra are evaluable with a deterministic pass. Since these conditions

restrict the functions that can be included in the algebra, we have also introduced

the idea of stratified algebras, which allow a larger selection of functions but place

restrictions on how expressions are constructed. It might be useful to explore other

ways of arranging this tradeoff, that is, of allowing more functions, but adding

restrictions on how they are composed.

We have only given detailed consideration to deterministic passes with properly

134 CHAPTER 7. SUMhIARY AND FUTURE IYORK

sorted inputs and outputs. However, it might be useful to take a closer look at

other variants of deterministic passes. For example, suppose that the input and

output region inventories are not strictly left-sorted or right-sorted, but rather,

have al1 regions of a given type displaced by a constant number of positions from

their left or right sorted positions; or, suppose that regions of each type are sorted

within a region inventory but there is no restriction on the ordering of regions of

different types. The goal of exploring such variants would be to find additionai

cases with rules for expression construction that could be as simply stated as those

for deterministic, properly-sorted passes.

An efnciency issue with an unrestricted structure mode1 is that there is no

bound on the number of regions. A flat list representation gives a bound of ns

regions where s is the number of lists. However, it might be useful to examine more

restrictive models that allow a stronger bound without going as far as requiring a

strict hierarchy.

Our results c m be seen as a form of query optimization applicable to struc-

tured query languages. Traditional forms of query optimization involve performing

transformations on the expression graph, or formulating a qilery plan for sequential

evaluation of the queries so as to reduce the size of intermediate results (e.g., Con-

sens (1998)). In contrast, our approach evaluates many queries in an expression

simultaneously in each pas . Integrating this wit h traditional approaches could

potentially result in a better overall query optimization method.

Adelberg, B. (1998). NoDoSE: A tool for semi-automatically extracting stmctured

and semi-structured data from text documents. SIGMOD Record, 27(2),

283-294.

Aho, A. V., Kernighan, B., & Weinberger, P. (1978). Awk - A pattern scanning

and processing language. Tech. rep., Bell Telephone Laboratories.

Aho, A. V., & Ullrnan, J. D. (1972). The Theory of Parsing, Translation, and

Compiling. Prentice-Hall, Inc., Englewood Cliffs, N. J.

Aho, -4.; Hopcroft, J., & Ullman, J. (1974). The Design and Analyszs of Computer

Algorithms. Addison-Wesly, Reading, Massachusetts.

Aït-Mokhtar, S., & Chanod, J.-P. (1997). Incremental finite state-parsing. In

Proceedzngs of ANLP '97, pp. 72-79 Washington.

Ashish, N., & Knoblock, C. A. (1997). Wrapper generation for semi-structured

internet sources. SIGMOD Record, 26 (4).

Baeza-Yates, R. (1989). EfFcient Tezt Searching. Ph-D. thesis, Department of

Computer Science, University of Waterloo. Also available as technical report

CS-89-17.

Baeza-Yates, R., & Gonnet, G. H. (1996). Fast searching for regular expressions or

automaton searching on tries. JACM, 43 (6) , 915-936.

Baeza-Yates, R-, & Navarro, G. (1996). Integrating contents and structure in text

retrieval. SIGMOD Record, 25 (1).

Berstel, J. (1979). Transductbns and Context-free languages. Teubner, Stuttgart,

Germany.

Blake, G . E., Bray, S., & Tompa, F. W. (1992). Shortening the OED: Experi-

ence with a grammar-defined database. ACM Transactions on Information

Systems, 10(3) , 213-232.

Burkowski, F. J. (1994). An algebra for hierarchical organized text-dominated

databases. Information Processing and Management, 28, 313-324.

Clark, D. (1991). Finite state transduction tools. Tech. rep. OED-91-03, UW

Centre for the New Oxford English Dictionary and Text Research, Waterloo,

Ontario.

Clark, J. (1999). XSL transformations (XSLT) version 1.0. world wide web consor-

tium reccomendation. h t tp : //m. v3. org/TR/xslt .

Clarke, C., & Cormack, G. (1997). On the use of regular expressions for searching

text. ACM Transactions on Progmmming Languages and Systems, 19, 413-

426.

Clarke, C., & Cormack, G. (2000). Shortest-substring retrieval and ranking. ACM

Transactions on Information Systems, 18 (l), 44-78.

Clarke, C., Cormack, G., & Burkowski, F. (1995). An algebra for structured text

search and a framework for its implementation. Cornputer Journal, 38(1),

43-56.

Consens, M. P. (1998). Algebras for querying text regions: Expressive power and

optimization. Journal of Cornputer and System Sciences, 57, 272-88.

Coombs, J. H., Renear, A. H., & DeRose, S. J. (1987). Markup systems and the

future of scholarly text processing. Communications of the - ACM, 30 (Il),

933-947.

Crespo, A., Jannink, J., Neuhold, E., Rys, M., & Studer, R. (2000). A survey

of semi-automatic extraction and transformation. Subrnitted to Information

Systems.

Dao, T., Sacks-Davis, R., & Thom, J. (1996). Indexing structured text for queries

on containment relationships. In Proceedings of the 7th Australasia Database

Conference, pp. 82-91 Melbourne, Australia.

Dougherty, D. (1991). SED Ef AWK- O1Reilly & Associates, Inc., Newton, MA.

Earley, J. (1970). An efficient context-free parsing algorithm. Communications of

the ACM, 13(2), 94-102.

Eilenberg, S. (1974). Automata, Languages, and Machines, Vol. A. Academic Press,

New York.

Exoterica Corporation (1993). OmniMark programmer's guide. (software manual).

Fankhauser, P., & Xu, Y. (1993). MarkltUp! an incremental approach to docu-

ment structure recognition. Electronic Publishing - Origin, Dissemination

and Design, 6(4), 447-456.

Frohlich, M., k Werner, M. (1994). The graph visudization sys-

tem daVinci - a user interface for applications. Tech. rep.

5/94, Department of Cornputer Science; Universitat Bre-

men. ftp://ftp.uni-bsemen.de/pub/graphics/daVinci/papers/

techrep0594.ps.g~-

Garofalakis, M., Gionis, A., Rastogi, R., Seshadri, S., & Shim, K. (2000). XTRACT:

A system for extracting document type descriptors from XML documents. In

SIGMOD/PODS Dallas, Texas.

Gimpel, J. (1973)- A theory of discrete patterns and their implementation in

SNOBOL4. Communications of the ACM, l6(2), 91-100.

Goldfarb, C. F. (1990). The SGML Handbook. Clarendon Press, London.

Gottke, T., & Fankhauser, P. (1992). DREAM 2.0 User Manud. Arbeitspapiere

der GMD, No. 660, Sankt Augustin.

Grefenstette, G. (1996). Light parsing as finite-state filtering. In Kornai, A. (Ed.) ,

Proceedings ECAI'96 workshop on Extended Finite State Models of Laquage

Budapest.

Hammer, J., Garcia-Molina, H., Cho, J., Aranha, R., & Crespo, A. (1997). Ex-

tracting semi-structured data fiom the web. In Proceedings of Worlcshop on

Management of Semi-structured Data, pp. 18-25.

Healey, A., Holland, J., McDougall, I., & Mielke, P. (2000). The Dictionary of OId

English Corpus in Electronic F o m , TEI-P3 conformant v e ~ s i o n , 2000 Re-

lease. DOE Project, Toronto. h t tp: //www. doe .utoronto. ca/corpus . html.

Healey, A., & Mielke, P. (2000) Personal communication.

Hopcroft, 3. E., & Ullman, J. D. (1979). Introduction to Automata Theory, Lan-

guages and Computation. Addison-Wesley, Reading, Massachusetts.

IEEE (1992). Standard for information technology - portable operating system in-

terface (posix) - part 2 (shell and utilities) - section 2.8 (regular expression

notation). Tech. rep. IEEE Std 1003.2, Institute of Electrical and Electronics

ISO (1986). Information processing - text and office systems - standard generalized

markup language (SGML). International Organization for Standardization

ISO/IEC 8879.

ISO (1996). Document style semantics and specification language (DSSSL). Inter-

national Organization for Standardization ISOfIEC 10179.

Ives, Z., Levy, A., & Weld, D. (2000). Efficient evaluation of regular path expres-

sions on streaming xml data. Tech. rep., University of Washington.

Jaakkola, J., & Kilpelainen, P. (1999). Nested text-region algebra. Tech. rep.

C1999-2, Department of Computer Science, University of Helsinki.

Johnson, H. 3. (1983). F o m a l Modek for String Szmilarity. Ph.D. thesis, University

of Waterloo, Department of Computer Science.

Johnson, H. J. (1987). Single-valued finite transduction. In Ottmann, T.

(Ed.) , Automata, Languages and Programmzng, 14th International Collo-

quium (ICALP87), Karlsruhe, Gennnn y.

Johnson, H. J. (1989). INR: A program for computing finite automata. Tech. rep.,

Department of Computer Science, University of Waterloo.

Johnson, S. C. (1975)- Yacc: Yet another compiler-compiler. Tech. rep. CSTR32,

Bell Laboratories, Murray Hill, New Jersey.

Karttunen, L. (1992). Constmcting lexical transducers. In Proceedings of the Fif-

teenth International Conference o n Computational Linguistics, pp. 405-411

Kyoto, Japan.

Karttunen, L. (1995). The replace operator. In Proceedings of the 33rd Annual

Meeting of the Association for Computational Linguistics, ACL-95, pp. 16-

23 Boston, Massachusetts.

Karttunen, L. (1996). Directed replacement. In Proceedings of t h e 34th Annual

Meeting of the Association for Computational Linguistics, ACL-96 Santa

Cruz, California.

Kazman, R. (1986). Structuring the text of the Oxford English Dictionary through

finite state transduction. Master's thesis, Cornputer Science Department,

University of Waterloo. Also available as technical report CS-86-20.

Keller, S., Perkins, J., Payton, S., & Mardinly, S. (1984). Tree transformation

techniques and experiences. SIGPLAN Notices (Proc. of the A CM SIGPLAN

'84 ~ y n p o s i v m on Compiler Construction), 19 (6) , 190-201.

Kilpelainen, P., & Mannila, H. (1993). Retrieval fiom hierarchical texts by partial

patterns. In Korfhage, R., Rasmussen, E., & Willett, P. (Eds.), SIGIR '93

- Proceedings of the 16th Annual International ACM SIGIR Conference on

Research and Development in In famat ion Retrieval, pp. 214-222 New York.

Knoblock, C., Minton, S., Ambite, J., & Ashish, N. (1998). Modeling web sources

for information integration. In Proceedings of the Fifteenth National Confer-

ence on Artificial Intelligence (AAAI-98)) Madison, Wisconsin.

Kushmerick, N., Weld, D., & Doorenbos, R- (1997). Wrapper induction for informa-

tion extraction. In Proceedings of 15th International Concerence on Artificial

Intelligence, pp. 729-735.

Ldonde, W. (1977). Regular right part grammars and their parsers. Communica-

tions of the ACM, 20 (IO), 731-741.

Lesk, M. E., & Schmidt, E. (1984). Lex - a lexical analyser generator. In Unix

Programmer's Manual.

Lewis, P. M., & S t e m s , R. E. (1968). Syntax-directed transduction. Journal of

the ACM, 15(3) , 465-488.

Lindén, G. (1997). Structured Document T~ansformutions. Ph-D. thesis, University

of Helsinki, Finland.

Mamrak, S. A., 07Connell, C. S., & Barnes, J. (1992). Techni-

cal Documentation for the htegrated Charneleon Architecture.

ftp://ftp.ifi.uio.no/pub/SGML/ICA/IC~doc-l.2.tar.g~.

Manber, U., & Wu, S. (1993). GLIMPSE: a tool to search through entire file

systems.. Tech. rep. 93-34, Dept. Computer Science, University of Arizona.

Michalski, R- S., Carbonell, 3. G., & Mitchell, T. M. (Eds.). (1983). Machine

Learning, an Artificial Intelligence approach, Vol. 1. Morgan Kaufmann, San

Mateo, California.

Miller, R. C., & Myers, B. C. (1999). Lightweight structured text processing. Usenix

Annual Technical Conference, 131-144.

Mo, D. H., & Witten, 1. H. (1992). Learning te* editing tasks from examples: A

procedural approach. Behaviour #Y Infornation Technology, 14 (l), 32-45.

Murphy, G. C., & Notkin, D. (1996). Lightweight lexical source mode1 extraction.

A CM Transactions on Software Engineering and Methodology, 5 (3), 262-292.

Muslea, I., Minton, S., & Knoblock, C. (1998). Wrapper induction for semistruc-

tured, web-based information sources. In Proceedings of the Conference on

Automatzc Learning and Discovery (CONALD-98).

Navarro, G. (1995). A language for queries on structure and contents of textual

databases. In Proceedings of the 18th SIGIR, pp. 93-101 Seattle, Washington.

Nix, R. (1989). Editing by Exam~le. Ph.D. thesis, Computer Science Department,

Yale University.

Quint, V., & Vatton, 1. (1986). GRIF: An interactive system for structured doc-

ument manipulation. In van Vliet, 3. C. (Ed.), EP86 - Proceedings of the

International Con ference on Text Processing and Document Manipulation,

pp. ,200-2 13 Nottingham, UK. Cambridge University Press.

Reed-Lade, M. (1989). Grammar acquisition and parsing of semi-structured text.

Master's thesis, Artificial Intelligence Laboratory, University of Texas at

Austin.

Salminen, A., & Tompa, F. (1992). PAT expressions: an algebra for text search.

Acta Linguistica Hungarica, 41 (1-4), 277-306.

SGML Systems Engineering Ltd. SGMLC overview .

http://www.dircon.co.uk/sgml/overview.htm.

Townsend, G. (1 989). Citation matching in the OED. Master's thesis, University

of Waterloo, Department of Computer Science. Also available as technical

report OED-89-06.

Valiant, 1. (1975). General context-kee recognition in less than cubic time. Journal

of Cornputer and Systems Sciences, 10 (2), 308-315.

van den Brand, M., Sellink, A., & Verhoef, C. (1998)- Current parsing techniques

in software renovat ion considered hannfd. In Proceedings of the International

Workshop on Program Comprehension, pp. 108-117 Ischia, Italy.

WalI, L., Schwartz, R. L., Christiansen, S., &- Potter, S. (1996). Programming Perl

(2nd edition). O'ReilIy & Associates.

Young-Lai, M., & Tornpa, F. W. (2000). Stochastic grammatical inference of text

database structure. Machine Leaming, 40 (2), 111-137.

