
Optimal Shipping Decisions in an
Airfreight Forwarding Network

by

Zichao Li

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Management Sciences

Waterloo, Ontario, Canada, 2012

c© Zichao Li 2012



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

This thesis explores three consolidation problems derived from the daily operations of

major international airfreight forwarders.

First, we study the freight forwarder’s unsplittable shipment planning problem in an

airfreight forwarding network where a set of cargo shipments have to be transported to given

destinations. We provide mixed integer programming formulations that use piecewise-

linear cargo rates and account for volume and weight constraints, flight departure/arrival

times, as well as shipment-ready times. After exploring the solution of such models using

CPLEX, we devise two solution methodologies to handle large problem sizes. The first

is based on Lagrangian relaxation, where the problems decompose into a set of knapsack

problems and a set of network flow problems. The second is a local branching heuristic that

combines branching ideas and local search. The two approaches show promising results

in providing good quality heuristic solutions within reasonable computational times, for

difficult and large shipment consolidation problems.

Second, we further explore the freight forwarder’s shipment planning problem with

a different type of discount structure - the system-wide discount. The forwarder’s cost

associated with one flight depends not only on the quantity of freight assigned to that

flight, but also on the total freight assigned to other flights operated by the same carrier.

We propose a multi-commodity flow formulation that takes shipment volume and over-

declaration into account, and solve it through a Lagrangian relaxation approach. We also

model the “double-discount” scheme that incorporates both the common flight-leg discount

iii



(the one used in the unsplittable shipment problem) and the system-wide discount offered

by cargo airlines.

Finally, we focus on palletized loading using unit loading devices (ULDs) with pivots,

which is different from what we assumed in the previous two research problems. In the

international air cargo business, shipments are usually consolidated into containers; those

are the ULDs. A ULD is charged depending on whether the total weight exceeds a certain

threshold, called the pivot weight. Shipments are charged the under-pivot rate up to the

pivot weight. Additional weight is charged at the over-pivot rate. This scheme is adopted

for safety reasons to avoid the ULD overloading. We propose three solution methodologies

for the air-cargo consolidation problem under the pivot-weight (ACPW), namely: an

exact solution approach based on branch-and-price, a best fit decreasing loading heuristic,

and an extended local branching. We found superior computational performance with a

combination of the multi-level variables and a relaxation-induced neighborhood search for

local branching.

iv



Acknowledgements

I would like to thank my advisors Dr. Jim Bookbinder and Dr. Samir Elhedhli for the

unique perspective and expertise they each brought to this thesis and my graduate studies.

I valued both greatly. I could not have asked for more from doing research with the two of

them; it simply has been a lot of challenge and progress. I would especially like to thank

both of them for their involvement and patience with my maturation as a researcher and

writer.

My gratitude also goes to the faculty of the Department of Management Sciences for

providing me with the foundations for my Ph.D. research. In the meantime, I would thank

Dr. Teodor G. Crainic, Dr. Liping Fu, Dr. Fatma Gzara and Dr. Elizabeth Jewkes for

their time and effort in serving on my Ph.D. committee.

I would like to thank all my friends in Kitchener-Waterloo who made my stay in Canada

so memorable, especially my great fellow students Bissan, Da, Eman, Emre, Ginger and

Joe, who provided comprehensive help in research, immigration and daily living. My

special thanks to my officemate Mey, who shared a series of coincidental footsteps with me

in Singapore, United States and Canada. I also benefited from the facilities of WATMIMS

(Waterloo Management of Integrated Manufacturing Systems), as well as first-class services

from our department’s staff: Bev, Carol, Kathy and Wendy.

Finally, I am forever indebted to my parents for their unconditional love and support,

and for the sacrifices they have always made to see me realize my dreams in life.

v



Dedication

This is dedicated to the one I love.

vi



Table of Contents

List of Tables xii

List of Figures xiv

1 Introduction and Motivations 1

1.1 Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Unsplittable Network Consolidation with Volume Weight . . . . . . 3

1.1.2 Consolidation Problem Under System-wide Discount . . . . . . . . 7

1.1.3 Pivot-Weight Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature Review 11

2.1 Airfreight Consolidation Problem . . . . . . . . . . . . . . . . . . . . . . . 11

vii



2.2 The Multicommodity Flow Model for Consolidation of Splittable Shipments 14

2.3 Network Design for the Unsplittable-Shipments Consolidation Problem . . 17

2.4 System-wide Discount and Double Discount . . . . . . . . . . . . . . . . . 18

2.5 Airfreight Consolidation with Pivot-Weight . . . . . . . . . . . . . . . . . . 19

2.6 Solution Methodology Literature . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Lagrangian Relaxation Techniques . . . . . . . . . . . . . . . . . . 21

2.6.2 Branch-and-Price and Column Generation . . . . . . . . . . . . . . 22

2.6.3 Local Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 The Unsplittable Shipment Consolidation Problem 30

3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Solution Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 The Lagrangian Relaxation Approach . . . . . . . . . . . . . . . . . 35

3.3.2 Modified Local Branching Heuristic . . . . . . . . . . . . . . . . . . 40

3.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Generation of Test Cases for Numerical Analysis . . . . . . . . . . . 44

viii



3.4.2 Computational Analysis for Small-size Instances . . . . . . . . . . . 48

3.4.3 Computational Analysis for Lagrangian Relaxation . . . . . . . . . 50

3.4.4 Computational Analysis for Local Branching Heuristic . . . . . . . 52

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Shipment Consolidation Problem under System-wide Discount 59

4.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Solution Methodology for System-wide Discount . . . . . . . . . . . . . . . 65

4.4.1 Lagrangian Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Branch-and-Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.3 Subgradient Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.4 Generation of Test Cases . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.5 Numerical Analysis for Lagrangian Relaxation . . . . . . . . . . . . 76

4.5 Double Discount Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.1 A Mixed Local Branching Solution . . . . . . . . . . . . . . . . . . 80

ix



4.5.2 Practical Benefits of the Double Discount . . . . . . . . . . . . . . . 86

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Consolidation Problem with Pivot Weight 88

5.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Branch-and-Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Column Generation And Branch-and-Price . . . . . . . . . . . . . . 91

5.3.2 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.3 Generating an Initial Feasible Solution . . . . . . . . . . . . . . . . 94

5.3.4 Lagrangian Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 A Best-Fit Decreasing Heuristic . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 A Local Branching Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5.1 The Basic Local Branching Algorithm . . . . . . . . . . . . . . . . 100

5.5.2 Local Branching with Multiple Trees . . . . . . . . . . . . . . . . . 102

5.5.3 A Modified Relaxation-Induced Neighborhood Search Heuristic . . . 104

5.6 Computational Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

x



5.6.1 Performance of the Branch-and-Price Algorithm . . . . . . . . . . . 107

5.6.2 Performance of the Best-First Decreasing Heuristic . . . . . . . . . 109

5.6.3 Performance of The Two Local Branching Extensions . . . . . . . . 111

5.6.4 Multiple ULD Classes . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Conclusions and Future Research Directions 120

References 125

xi



List of Tables

2.1 Comparison of Shipment Consolidation Literature Related to our Problem 13

3.1 Test Cases for Computational Experiments . . . . . . . . . . . . . . . . . . 47

3.2 Impact of Flight Capacities when |K| = 4 and Den = 1 . . . . . . . . . . . 49

3.3 Impact of Number of Shipments when Fca = 0.8 and |K| = 4 . . . . . . . 50

3.4 Comparison of Test Results between CPLEX and Lagrangian Relaxation . 51

3.5 Loosely Capacitated Test Cases with |K| = 3, |P | = 40, L1=10, L2=5,

L3=5 and L4=20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Tightly-Capacitated Test Cases with |P | = 40, L1=10, L2=5, L3=5 and

L4=20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Results for Loosely-Capacitated Cases . . . . . . . . . . . . . . . . . . . . 55

3.8 Results for Tightly-Capacitated Cases . . . . . . . . . . . . . . . . . . . . . 56

xii



3.9 Results for Tightly-Capacitated Cases with Different Time Limits . . . . . 57

4.1 Discount factors for illustrative example . . . . . . . . . . . . . . . . . . . 64

4.2 Cases Generated for the Numerical Tests . . . . . . . . . . . . . . . . . . . 75

4.3 Comparison of Lagrangian Relaxation result for different |C| . . . . . . . . 77

4.4 Comparison of Local Branching with CPLEX . . . . . . . . . . . . . . . . 84

4.5 Comparison of Local Branching on the Choice of δ . . . . . . . . . . . . . . 85

4.6 Comparison of Double Discount with No Discount and Single Discounts . . 86

5.1 Computational Results of the Branch-and-Price Approach on Small Instances108

5.2 Comparison between Branch-and-Price and BFDH for cEj /cj = 1.2 . . . . . 110

5.3 Comparison between Branch-and-Price and BFDH for cEj /cj = 3 . . . . . . 112

5.4 Comparison of Multi-Trees and RINS Approaches for cEj /cj = 1.2 . . . . . 113

5.5 Comparison of Multi-Trees and RINS Approaches for cEj /cj = 3 . . . . . . 114

5.6 Average Performance Comparison of Different Local Branching Extensions 116

5.7 Local Branching with Different Classes of ULDs . . . . . . . . . . . . . . . 118

xiii



List of Figures

1.1 International Airfreight Network Structure . . . . . . . . . . . . . . . . . . 4

1.2 Airfreight Discount Schedule with and without a Fixed Charge . . . . . . . 6

2.1 The Flow of Typical Lagrangian Relaxation Techniques . . . . . . . . . . . 22

3.1 Implementation of Local Branching . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Cases for Local Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Algorithm for updating the Lagrange multipliers . . . . . . . . . . . . . . . 67

4.3 Details of the Lagrangian Heuristic . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Algorithm for Branch-and-Price . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Local Search within Local Branching . . . . . . . . . . . . . . . . . . . . . 82

xiv



5.1 Algorithm for updating the Lagrange multipliers . . . . . . . . . . . . . . . 92

5.2 Two-level Branching Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 The Two Cases of Step 7 in Lagrangian Heuristic . . . . . . . . . . . . . . 97

5.4 Local Branching with Multiple Local Trees . . . . . . . . . . . . . . . . . . 103

xv



Chapter 1

Introduction and Motivations

This dissertation aims to investigate the cost saving opportunities that come with air cargo

transportation. “We” (you, the reader and myself, the author) will focus the study from a

freight forwarder’s perspective.

International air cargo is an operation-intensive industry, involving complex procedures

and many players (Huang and Chi, 2007). The main players in the air cargo supply chains

are: airlines, freight forwarders, and shippers. The shippers send their loads to freight

forwarders, and forwarders tender the freight to airlines. Freight forwarders satisfy the

demands of shippers by securing cargo capacity from the airlines. Generally, airlines offer

cargo space in two stages. In the first, a few months prior to a season, freight forwarders

bid for upcoming cargo space. The cargo capacity committed during this bidding process is

called allotted capacity. Airlines usually allocate some of the remaining space to contracts,

which is the space reserved for large customers at an offered price. The remaining cargo

1



space, the capacity available for free sale, is open for booking in the second stage, within

a few days before the flight departs.

Forwarders are important players in the international supply chain. They do not

own airplanes, but rather rely on airlines to transport their cargo. A limited number of

international forwarders own some airplanes, but still heavily depend on external airlines.

Customers typically get in touch with forwarders instead of airlines: Airlines have very

limited number of destinations with larger capacities, while forwarders can reach more

destinations and have access to greater capacities. Freight forwarders can provide the

customer with door-to-door delivery. For certain destinations, a combination of different

transportation modes results in much lower transportation costs, adding to the advantage

of using a freight forwarder.

Airfreight forwarders need to meet the customer’s transportation requirements while

minimizing the expense charged by the airlines. However, the air cargo rate structure

is very complicated: In the most basic flight-leg discount, the cost (or discount) on each

flight leg depends upon both shipment weight and volume. This makes the consolidation

problem a difficult one for the airfreight forwarder. A given shipment will be routed through

various stations in the airfreight forwarding network before reaching its final destination.

This routing decision has to be made in consideration of possible consolidation with any

other shipments in the network. This leads to the consolidation problem faced by freight

forwarders, as they try to maximize their revenue from customers while being charged

for a minimum payload by the carriers. Other than the flight-leg discount, there are

various additional incentives offered by cargo airlines to attract freight forwarders. We are

2



motivated to find out the optimal decisions for forwarders in each of the three problems

for forwarders below.

1.1 Research Problems

1.1.1 Unsplittable Network Consolidation with Volume Weight

A freight forwarder manages the shipping process for a customer (Leung et al., 2009). The

major decision in that process is the assignment of shipments to flight legs. In Chapter

3, we focus on the freight forwarding decision problem at a tradelane level. A tradelane

refers to a set of origins and destinations which are geographically pairwise adjacent. Each

tradelane is part of a freight forwarder’s global network that consists of a set of airports

classified as exporting stations, exporting hubs, importing hubs and importing stations.

For example, in the Sino-US tradelane (Fig 1.1), the China operations manager needs to

decide on the routing of export shipments from China to the US. Suppose we have a number

of air shipments in Chongqing (CHQ), China to be delivered to Denver (DEN), Colorado,

USA. The shipments have to be first consolidated at major exporting hubs in China,

namely Beijing (PEK), Shanghai (PVG), Guangzhou (CAN) or Hongkong (HKG). Then,

the consolidated shipments are transported to US importing hubs such as San Francisco

(SFO), Los Angeles (LAX) or Chicago (ORD), where shipments are de-consolidated and

transferred to the final destination Denver. There are given capacities between outbound

hubs in China and inbound hubs in the United States.

3



The leg between the cargo origin and the exporting hub in China is often called the

Feed Leg. Defeed Leg refers to the leg between a US gateway hub and a final destination

in the US. The leg between hubs in China and those in the US is called the Major

International Line-Haul (Fig. 1.1). The result is a layered network similar to that described

in Balakrishnan and Graves (1989) with nodes classified into four types: origin nodes,

export hub nodes, import hub nodes and destination nodes.

Figure 1.1: International Airfreight Network Structure

Although the decisions may appear similar, a cargo airline and a freight forwarder have

two different objectives for a given tradelane network. From the airline’s perspective, the

objective is to find the minimum-cost route for a set of shipments by taking advantage

of economies of scale, while having to consider loading constraints and cargo allocation

constraints. From the freight forwarder’s perspective, the objective is to minimize the cost

through balancing chargeable weight and volume weight, exploiting quantity discounts,

4



avoiding late penalty charges, and reserving the proper space with the cargo airlines. The

last aspect, reservation of space, requires better forecasting, which will not be covered here.

Balancing Gross Weight and Volume Weight

The air cargo rating system takes into account the shipment volume in addition to its

gross weight. According to Huang and Chi (2007), the volumetric weight is obtained by

dividing the shipment volume in cm3 by a constant, 6000 cm3/kg, currently adopted by

the industry. The chargeable weight is the greater of the gross weight and the volumetric

weight. Therefore, airfreight forwarders have an incentive to combine smaller loads from

different shippers into a larger and consolidated shipment. The overall chargeable weight

of a consolidated shipment containing low- and high-density items is less than the sum of

individual chargeable weights.

Exploiting Quantity Discounts

There are two ways to take advantage of quantity discounts. In the first, as the unit cost

on each flight is divided into several decreasing price segments (Fig. 1.2(a)), forwarders try

to consolidate as much as they can on a single flight to obtain a lower price. The rates in

Figure 1.2(a) are $3/kg, $2.50/kg, and $2.25/kg for shipments less than 240 kg, between

240 kg and 400 kg, and greater than 400 kg respectively. In the air cargo industry, the

weights of 240 kg and 400 kg in this example are called weight break points. Obviously, if

a forwarder can consolidate shipments where the overall weight exceeds 400kg, the total

5



cost per unit shipped would be minimized. We note that the quantity discounts used in

freight forwarding industry are typically of the “all unit” type; an incremental discount is

rarely seen.

Secondly, between these weight breakpoints, a forwarder may over-declare a quantity

to take advantage of the next discount (e.g. Carter et al. (1995)). As in Figure 1.2(a),

if a shipment with weight between 200 and 240 kg is declared to be 240 kg, it would be

charged $2.50/kg. This is a saving compared to paying $3/kg for the actual chargeable

weight. A similar situation applies to consolidated shipments in the range of 360 kg to

400 kg. Therefore, for loads between certain weights, it is desired to over-declare them to

the minimum quantity of the next weight range. This practice of over-declaration, when

favorable, is sometimes referred to as making use of the “bumping clause”, whereby the

shipment is pushed into the next higher weight range.

(a) Without Fixed Charge (b) With Fixed Charge

Figure 1.2: Airfreight Discount Schedule with and without a Fixed Charge

Moreover, it is quite common to have a fixed cost, called the “document cost” or

“consolidation cost”, for each weight range in the cost structure. Such a fixed cost does

6



not favor over-declaration (See Fig. 1.2(b)). In contrast, for the same case without the

fixed cost, we could create two regions (200, 240) and (360, 400), for over-declaration as

shown in Figure 1.2(a). Scenario 1.2(b) resembles a production system with setup cost. In

practice, the document cost is usually very small compared to the shipment costs and can

be ignored, making figure 2-(a) more popular for the air cargo industry. Hence, we assume

this fixed charge is 0 throughout Chapter 3.

In this thesis, the goal is to build and optimize decision models that address six

important practical characteristics. The models incorporate as appropriate, one or more

of the following characteristics:

1. Multiple origins and multiple destinations.

2. A capacity constraint on flight legs or network arcs.

3. Economies-of-scale on each flight leg.

4. Shipment volume alongside shipment weight.

5. Possible over-declaration to the next weight range.

6. Flight departure/arrival time and shipment ready/delivery time.

1.1.2 Consolidation Problem Under System-wide Discount

Apart from the widely known flight-leg discount, regional and passenger airlines typically

offer a system-wide discount, if a freight forwarder exceeds a specific aggregate quantity on

7



all flights operated by that carrier within a certain period of time. Thus, the forwarder’s

cost associated with one flight not only depends on the quantity of freight assigned to that

flight, but also on the total freight assigned to other flights operated by that carrier (Cohn

et al., 2008). This type of discount scheme is typically offered by a passenger airline that

operates multiple daily flights on certain routes, and carries cargo in its lower cabin. Due

to limited belly capacity, such airlines offer the discount to attract high-volume customers.

Forwarders that handle large numbers of small parcels are the greatest beneficiaries of this

discount scheme, as they fail to qualify for volume discounts on conventional cargo airlines.

Due to the seasonality and trade imbalance, cargo airlines are increasingly motivated to

offer forwarders a system-wide discount in low season and on less-utilized routes. Unlike the

piece-wise linear “bumping-clause” discount scheme ( Higginson and Bookbinder (1994);

Croxton et al. (2003); Huang and Chi (2007); Chang (2008)), which is popular in the

airfreight industry, there is very little literature that focuses on the system-wide problem.

Cohn et al. (2008) were the first to study this case, and model it as a network flow problem

where arc costs depend not only on the flow on that arc, but also on the flow on all arcs

associated with the same carrier. Therefore, the cost has two components: a per-unit base

cost, and a discount factor that depends on the quantity of freight flowing over all arcs

associated with the same carrier. Cohn et al. (2008), however, do not account for certain

practical features of the cargo business, namely the “unsplittable” requirement (a given

shipment cannot be divided), shipment volume alongside weight, and “over-declaration”.

We will incorporate those features into a mathematical programming formulation and

propose solution methodologies that are capable of solving large-size problems.

8



1.1.3 Pivot-Weight Scheme

The operations of an airfreight forwarder include making capacity reservations with cargo

airlines, consolidating shipments, tendering freight to the airline, and breaking bulk for

the final delivery at the destination. In the first stage, large forwarders sometimes reserve

a desired number of containers from airlines (instead of reserving in terms of chargeable

weight). These containers are called Unit Load Devices (ULDs) in the industry. Each

airline offers several types of containers. They differ in fixed reservation charges, pivot

weights, unit pivot costs, maximum weights and over-pivot rates.

The pivot weight is a weight threshold of a ULD, under which the cargo is charged at a

rate of unit pivot cost. Any weight that falls between the pivot weight and the maximum

capacity is charged at a special unit rate higher than the pivot rate, called the over-pivot

rate. In addition, there is a fixed reservation cost for each reserved ULD. Faced with this

pricing scheme, a forwarder is interested in finding the optimal consolidation decisions to

minimize total cost. This problem is commonly encountered by large freight forwarders

and airline operators.

Note that the pivot-weight scheme discussed here is not a discount. Airlines price in

this way to prevent shippers from overloading ULDs. The over-pivot cost can be seen

as an incremental penalty, rather than a discount. The well-known “bumping-clause”, as

in Bookbinder and Higginson (2002), whereby it can be advantageous to over-declare the

total weight dispatched, is used more for general cargo (goods that are not containerized).

Rather the pivot-weight scheme is suitable for shipments consolidated in ULDs.

9



Li et al. (2009) give a detailed description of the problem and propose a large-scale

neighborhood search heuristic to solve this problem. However, one of the constraints

presented by those authors is redundant and can be discarded to simplify the problem

decomposition. Moreover, Li et al. (2009) do not furnish any solution methodologies

that can deliver the solution with an exact method. In this problem, we aim to address

the deficiencies in their paper by providing three solution methodologies for ACPW (the

Airfreight Consolidation Problem under the Pivot Weight).

1.2 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we review the existing models

on operational planning and consolidation in transportation, as well as the corresponding

solution methodologies to solve those models. In Chapter 3, we discuss the network

consolidation that incorporates volume weight, over-declaration and multi-origin feature.

This is followed by a presentation of the system-wide discount and double-discount problem

in Chapter 4. Later in Chapter 5, we illustrate the pivot-weight scheme in the airfreight

consolidation. Finally, Chapter 6 concludes and highlights future research.

10



Chapter 2

Literature Review

In this chapter, we will walk through the literature in Sections 2.1 through 2.3 leading to

our first research problem. Upon completion of the unsplittable shipment consolidation

problem, literature in Sections 2.4 and 2.5 will inspire us to explore additional discount

and pricing structures in airfreight, thus leading to the system-wide discount and pivot

weight problem. Finally, the three research problems are largely supported by exploring

the solution literature in Section 2.6.

2.1 Airfreight Consolidation Problem

The literature is rich with research on shipment consolidation problems. According to

Hall (1987) and Higginson and Bookbinder (1994), there are three dimensions to freight

11



consolidation: unit consolidation, time consolidation, and route consolidation. The first

to formulate the airfreight-forwarder consolidation problem (AFCP) are Huang and Chi

(2007). They consider a single origin with deterministic customer demand and formulate

the problem as an MIP. They use Lagarangian relaxation to transform the model to a

set covering problem, and develop a recursive heuristic that generates solutions that are

often close to optimality. With similar assumptions and problem definition, Wong et al.

(2009) formulate a forwarder’s shipment planning problem using binary variables. Effects

of integration and consolidation on the timely delivery of shipments during any phase of

the shipping process are explicitly addressed. A forwarder’s in-house capacity, as well as

the available capacity of its partners and sub-contracting agents, are incorporated. The

objective is to minimize the shipping cost subject to target delivery time, target cost, and

resource capacity. Tabu search is used to solve the problem. Leung et al. (2009) consider

a similar model and solve it using heuristics and branch-and-bound.

Compared to Huang and Chi (2007), neither Wong et al. (2009) nor Leung et al.

(2009) exploit the difference between volumetric weight and gross weight for consolidation

purposes. Moreover, neither take the bumping clause into account. Wong et al. (2009)

and Leung et al. (2009) divide the forwarding process into k jobs, and try to get the

best job-shipment assignment combination with minimal operational cost. Unlike Wong

et al. (2009) and Leung et al. (2009), however, Huang and Chi (2007) consider the

readiness of flights for shipment in terms of shipment ready time, the arrival due-time, or

the requirements or preferences of shippers.

12



The consolidation of ocean freight is very similar to the airfreight problem. Ang

et al. (2007) consider the sea-cargo-mix problem for the international shipment of ocean

containers. It is similar to our problem, as there is consideration of shipment weight, volume

and bumping clause. Those authors describe the characteristics of the cargo-mix problem

for the carrier in a multi-period planning horizon, and formulate it as a multidimensional

multiple knapsack problem (MDMKP). In particular, the MDMKP maximizes the total

profit generated by all freight bookings accepted in a multi-period planning horizon, subject

to the limited shipping capacities. Ang et al. (2007) propose two heuristic algorithms that

can solve large scale problems, with tens of thousands of decision variables in a short time.

They also conduct numerical experiments on randomly generated problem instances.

Table 2.1 compares the four papers that are most related to our research. Except for

Wong et al. (2009), much of the earlier research concentrates on decisions for only a single

origin. After various mergers and acquisitions, global freight forwarders are gaining more

presence around the world. An airfreight forwarder thus needs to deal with decisions on

multiple origins.

Paper
Model Bumping Clause Multi-Origin Solution

Methodology

Huang and Chi (2007) MIP Yes No Lagrangian Relaxation
and Heuristic

Ang et al. (2007) MCMKP Yes No Heuristic

Leung et al. (2009) IP No No Branch-and-bound
and Tabu Search

Wong et al. (2009) IP No Yes Tabu Search

Table 2.1: Comparison of Shipment Consolidation Literature Related to our Problem

13



2.2 The Multicommodity Flow Model for Consolida-

tion of Splittable Shipments

Many of these previous studies on consolidation problems make use of a multicommodity

flow model, where we can utilize the integral property and flow decomposition property of

the commodity flow. Some related research is derived from the studies on courier delivery

network design. Barnhart et al. (2002), Armacost et al. (2004), Barnhart and Shen

(2005), Root and Cohn (2008), and Schenk and Klabjan (2008) incorporate network-

level decision models. However, none of them take into account the bumping clause for

consolidated shipments. Most of the models are based on the Piecewise-Linear Network

Flow Problem (PLNFP), which concerns the minimization of a convex separable piecewise-

linear objective function, subject to linear constraints. There are many successful solution

methodologies for PLNFP, such as Balakrishnan and Graves (1989), Amiri and Pirkul

(1997), Croxton et al. (2003) and Chang (2008). Balakrishnan and Graves (1989)

formulate the PLNFP as a mixed integer program and develop a composite algorithm to

generate both lower bounds and feasible solutions. However, those authors do not consider

capacities nor over-declaration. Amiri and Pirkul (1997) use Lagrangian relaxation to

solve this problem.

A common character of the consolidation problem modeled in PLNFP is that it assumes

a demand between a pair of origin and destination nodes, and this demand is split across

different route combinations. We use the term splittable problem to refer to the case of

14



shipment consolidation that allows a load to be broken up and then reconsolidated. For

simplicity, only the shipments gross weight is considered.

The splittable model has previously been formulated using three sets of MIP formula-

tions: the multiple choice model, the incremental model and the convex combination model.

Our models in Chapters 3, 4 and 5 are the “unsplittable” variants that are developed

based upon the multiple choice model, first proposed by Balakrishnan and Graves (1989).

Croxton et al. (2003) compare three mixed-integer programming formulations, each of

which approximates the cost function by its lower convex envelope to solve a standard

minimization problem with separable nonconvex piecewise linear costs.

The incremental model, presented initially by Dantzig (1960) and Hadley (1964),

introduces a range-load variable ykj , defined as the load in the range k on arc j. (The value

of this variables differs from that in the multiple choice model). Feasibility requires a value

zero on range k+1 unless range k is full (reaches bkj ). In other words, wkj = 1 if ykj > 0, but

wkj = 0 otherwise. In addition to the manipulation of flow variable y, the new fixed cost is

F̂ k
j = (F k

j + ckj b
k−1
j )− (F k−1

j + ck−1
j bk−1

j ). Therefore, the formulation appears as below:

[Incremental Model] min
∑
j

∑
k

(ckjy
k
j + F̂ k

j w
k
j ) (2.1)

s.t. Ny = d (2.2)

(bkj − bk−1
j )wk+1

j ≤ ykj ≤ (bkj − bk−1
j )wkj (2.3)

wkj ∈ {0, 1}, ykj ≥ 0

15



Note that in (2.2), the flow balance constraint is expressed in simplified rectangular-matrix

form. In this formulation, yK+1
j = 0 for the rightmost piecewise linear segment K of the

cost function.

The convex combination model, suggested by Nemhauser and Wolsey (1988), does not

handle discontinuous cost functions. Croxton et al. (2003) modify it such that the cost of

flow within weight range k is a convex combination of the cost of its two endpoints bk−1
j

and bkj . By defining multipliers µkj and λkj as the weights on the two endpoints, the model

can be re-written as:

[Convex Combination Model]: min
∑
j

∑
k

µkj (c
k
j b
k−1
j + F k

j ) + λkj (c
k
j b
k
j + F k

j ) (2.4)

s.t. Ny = d (2.5)

µkj + λkj = wkj ∀j (2.6)∑
k

wkj ≤ 1 ∀j (2.7)

µkj , λ
k
j ≥ 0, wkj ∈ {0, 1}

Given that all three of the previous formulations are valid, it is natural to ask if one is better

than another. Croxton et al. (2003) establish that all three formulations are equivalent,

in the sense that each approximates the real cost function with its lower convex envelope.

Chang (2008) also presents a heuristic solution to the courier delivery network design

problem. However, none of the authors above honors the integral property of a shipment: It

16



cannot be split along the path from origin to destination. The “unsplittable” requirement

is central to all the three topics we worked on, and is discussed next.

2.3 Network Design for the Unsplittable-Shipments

Consolidation Problem

One feature that distinguishes the design of an unsplittable shipment network from the

standard network flow problem is that each commodity (shipment) must run through a

single path in the network and cannot be separated. Bartolini and Mingozzi (2009) use the

term non-bifurcated. If the flow is allowed to be divided among several paths, the problem

is called the bifurcated or splittable shipment problem.

Belaidouni and Ben-Ameur (2007) refer to the unsplittable problem as the minimum

cost single-path routing problem, commonly encountered in communication networks.

When single-path routing is considered in a packet network, the sequence in which packets

arrive is the same as their departure order, removing the need to implement any mechanism

to support in-order packet delivery. Those authors present a cutting plane algorithm to

solve the minimum cost multiple-source unsplittable flow problem.

Barnhart et al. (2000) solve an unsplittable flow problem arising in express package

delivery. The majority of methods proposed to solve this problem are heuristics. For

example, Crainic et al. (2000) and Ghamlouche et al. (2003) use a Tabu search approach.

Atamtürk and Rajan (2002) study both the bifurcated and non-bifurcated problem, and

17



report computational results on a set of instances corresponding to directed non-bifurcated

problems. They present a linear time algorithm for separating residual capacity inequalities

and introduce two new classes of valid inequalities for the non-bifurcated case, both of

which include the “c-strong” inequalities as a special case. The effectiveness of the new

inequalities is then tested using a branch-and-cut procedure. We note that none of the

papers for the unsplittable problem considers economies of scale, nor the bumping clause

in the unit transportation rates.

2.4 System-wide Discount and Double Discount

In traditional transportation problems, freight charges and discounts are associated with

each transportation leg or route; there is no interaction between different legs or routes.

In the trans-Atlantic market, we often encounter another type of discount called a system-

wide discount : The carrier provides certain discounts if the forwarder can reach a specified

aggregate capacity on the total flights operated by the carrier in a certain period of time.

Thus, the forwarder’s cost associated with one flight depends not only on the quantity of

freight assigned to that flight, but also on the loads assigned to other flights operated by

that carrier as well (Cohn et al., 2008). This type of discount scheme is typically offered by

a regional airline whose focus is on the passenger business, but which offers its lower cabin

for cargo. In that case, however, there are normally no quantity discounts on different

weight ranges as in Figure 1.2(a). The reason is that the system-wide-discount scheme

targets small-package transportation. Cohn et al. (2008) modeled it as a variation of the

18



multi-commodity flow problem. Since almost nobody except those authors has explored

this problem, we decided to further extend it with some practical features in Chapter 4.

2.5 Airfreight Consolidation with Pivot-Weight

Earlier works on airfreight consolidation problems assume that forwarders reserve cargo

space from airlines in terms of payload or chargeable weight. This assumption is applied to

general cargo and non-palletized shipments. However, large airfreight forwarders usually

make their booking with an airline in terms of ULDs. Other than in Li et al. (2009), the

pivot-weight scheme has not been investigated before.

In the meantime, quite a number of equivalent works on the ocean counterpart address

the loading problem based on 20-foot containers. Pisinger (2002) investigates an ocean

container-loading problem, that of loading a subset of rectangular boxes into a rectangular

container of fixed dimensions, such that the volume of the packaged boxes is maximized.

Brønmo et al. (2010) present a Dantzig-Wolfe procedure for the ship-scheduling problem

with flexible cargo sizes. Although those discoveries on the ocean cargo side give some

insight for us, ocean containers have a conventional fixed capacity limit, instead of a pivot-

weight.

Our ACPW problem is different from the bin-packing and knapsack problems which

have been used as the foundations of many consolidation-related problem variants. In bin-

packing, cost is associated with the bin-level, but no charge is laid based on the weight

or volume of items as in ACPW. The decision variables for bin packing are all binary.

19



Our problem, however, also has a continuous “overage” cost compared to the variable-size-

and-cost bin-packing problem. In addition, we have distinct capacities on different bins.

The open-end bin-packing problem (Leung et al., 2001) allows the capacity of each bin

to be exceeded by only one of the items packed into the bin; whereas our ACPW does

not restrict the number of excess items. Our problem also differs from the conventional

knapsack problem: First, we have multiple knapsacks with diverse capacities. Second, we

have an over-pivot cost per unit of cargo that exceeds the pivot weight.

There is some existing research on bin-packing problems which gives much insight

to tackle our problem. In particular, the variable-size bin-packing problem (VSBPP)

resembles our work without the continuous variable that represent the over-pivot weight.

However, it should be noted that an important assumption was made in this literature

with respect to the fixed bin costs, which are defined as being proportional to volumes

of the corresponding bins. Although this assumption yields an easy approximation, it

does not reflect reality in the transportation industry. In the airfreight business, the ULD

reservation fee is a relatively independent attribute, one that may or may not be correlated

to its capacity. Therefore we lift this hypothesis in VSBPP in our ACPW, by considering

a fixed reservation cost independent of ULD capacity. Crainic et al. (2011) address the

independence of the fixed reservation cost and the bin capacity, but do not account for the

unit cost cj and the over-pivot cost cEj .

20



2.6 Solution Methodology Literature

The core approach that we use to solve large instances of the three research problems is

decomposition. We will review how other literature leverages on branch-and-price and

column generation in this section. After that, we discuss a heuristic approach called local

branching for large MIP problems.

2.6.1 Lagrangian Relaxation Techniques

Lagrangian relaxation works by dualizing a set of constraints that produces an easily

solvable Lagrangian subproblem (SP) (Fisher, 1981). Lagrangian techniques have been

used extensively to solve the capacitated multi-commodity network flow problem with

piecewise linear concave costs (Muriel and Munshi, 2004). For minimization problems,

the optimal value of the subproblem is a lower bound (LRLB) to the optimal value of

the original problem (Martin, 1999). The Lagrangian dual problem can be formulated

as a master problem (MP), which yields a Lagrangian upper bound (LRUB). The master

problem, subproblem and the multipliers are updated iteratively as shown in Figure 2.1.

When the Lagrangian upper and lower bound coincide, the solution is often infeasible to

the original MIP. Therefore, a Lagrangian heuristic is used to construct a feasible solution.

When this Lagrangian technique is embedded into branch-and-bound tree, the resulting

approach is called branch-and-price.

21



Figure 2.1: The Flow of Typical Lagrangian Relaxation Techniques

2.6.2 Branch-and-Price and Column Generation

To find efficient solution methodologies for the three topics we worked on, we studied the

solution methods for the capacitated network design problem (CNDP) extensively. For a

CNDP problem, since the gap between the optimal IP value and the optimal value of the

LP-relaxation at the root node is usually very large, the LP-relaxation lower bounds are

weak and the conventional branch-and-bound algorithm is not efficient (Puchinger et al.,

2010). Lagrangian relaxations yield substantially tighter lower bounds than simpler LP re-

laxations in many MIPs (Frangioni, 2005). Upper bounds (for minimization problems) are

often obtained as intermediate by-products from the subgradient procedure or by applying

Lagrangian heuristics such as rounding or repair procedures. Even without embedding into

a branch-and-bound framework, those Lagrangian-relaxation based methods can sometimes

be turned into highly successful heuristic approaches.

In the meantime, column generation is at the heart of most of the exact solution

approaches based upon Lagrangian relaxation. Column generation solves a model that

22



results from the Dantzig-Wolfe decomposition of a compact formulation, is stronger, and

leads to improved lower bounds (Vance, 1998; Alves and de Carvalho, 2007). Column

generation has been used widely for the purpose of solving large scale mixed-integer

problems. The original mixed integer problem is decomposed into a master problem and a

subproblem using the Dantzig-Wolfe decomposition. The master problem contains a first

subset of the columns. The subproblem is a separation problem for the dual, which is solved

to identify whether the master problem should be enlarged with additional columns or not.

The procedure iterates between the master problem and the subproblem, until the former

contains all the columns that are necessary to span the optimal solution of the original

MIP (Cherfi and Hifi, 2010). When column generation is performed for each node of the

branch-and-bound tree, the approach becomes branch-and-price (Puchinger et al., 2010).

One main advantage of column generation is to push certain complex constraints outside of

the Dantzig-Wolfe master problem to an auxiliary problem (subproblem) (Chabrier, 2003).

For the network design problem, the resulting decomposed model usually contains the “path

column” that represents a feasible path, defined by the ordered list of the visited nodes. In

Chapter 3, we have a chance to decompose the unsplittable shipment consolidation problem

into a shortest-path/network-flow problem, which makes the overall problem simpler.

However, it is well known that column generation procedures suffer from slow con-

vergence induced by undesirable behavior such as primal degeneracy, or the excessive

oscillations of the dual variables. We can leverage on many existing techniques to speed

up this process, such as in Alves and de Carvalho (2007) and Elhedhli et al. (2011). In

recent years, much effort has been devoted to the topic of stabilized column generation, with

the purpose of accelerating these processes. One way of accelerating column generation

23



was proposed by Degraeve and Peeters (2003), who use a simplex method/subgradient-

optimization procedure to solve the LP relaxation of the cutting stock problem. To obtain

the optimal solution, the following procedure is repeated: for a specific number of iterations,

subgradient optimization is used to update the dual prices, and new columns are priced

and generated; then, the simplex method is used to reoptimize the master problem with

the new columns added.

Column generation and Lagrangian relaxation are equivalent (Nemhauser and Wolsey,

1988), and the subgradient method has been extensively used to solve the Lagrangian

problem. Column generation is known to be more robust, but it has the burden of

reoptimizing the master problem to update the dual variables at every iteration. The

subgradient method provides a fast way of updating the dual solution, but may have some

convergence difficulties. The hybrid procedure of Degraeve and Peeters (2003) combines

the robustness of the column generation method with the fast update of the dual prices of

the subgradient method, producing an overall acceleration of the solution process. We are

going to use subgradient optimization for our problems in Chapters 3 and 4.

For the pivot-weight scheme that we discuss in Chapter 5, most methodologies in the

literature rely either on decomposition techniques (Alves and de Carvalho, 2007) or on

reformulations solved using commercial MIP software, and require significant computation

times when applied to large instances. This computational effort makes them difficult to

use in practice, for planning settings in particular, where efficient, i.e., fast and accurate,

solution methods are crucial to address the ACPW subproblems that must be solved

repeatedly.

24



With regard to the slow convergence in column generation, a neighborhood or local-

search heuristic presents an alternative approach to searching for solutions. These tech-

niques sacrifice the guarantee of obtaining an optimal solution to find high quality solutions

quickly. Instead of producing solutions by searching systematically defined regions of

the feasible set, these heuristics iteratively define and search a neighborhood of a known

solution for an improving solution. Thus, critical decisions when designing a local search

heuristic are the size of the neighborhood to be searched at an iteration, and whether its

structure enables the neighborhood to be searched efficiently. Meta-heuristics such as in

Li et al. (2009) have been quite successful at avoiding becoming stuck at bad local optima.

Although often successful at producing high-quality solutions, local search heuristics are

typically unable to furnish a bound on the optimal value of the problem. Thus, the

only measure of solution quality is a comparison with solutions obtained by alternative

approaches.

2.6.3 Local Branching

Fischetti and Lodi (2003) introduce the local branching framework for MIP, tailored for en-

compassing the advantages of branch-and-bound and neighborhood search. This framework

uses a general mixed-integer programming solver (CPLEX-MIP solver) to explore solution

subspaces or neighborhoods defined by introducing linear inequalities in a mathematical

model of the problem. During local branching, a k-OPT neighborhood of a feasible solution

is searched, via a k-OPT neighborhood constraint, in the hopes of better nearby feasible

solutions. Once the neighborhood is completely searched, the complement constraint is

25



imposed on the general MIP. Local Branching works by partitioning the search tree through

so-called local branching cuts. Since those local cuts are just specific constraints for integer

programming problems, they can be expressed as normal IP constraints using any generic

MIP solver.

Consider an MIP with 0-1 variables x, where x = (x1, ..., xn) is the solution vector. A

k-opt neighborhood around a given incumbent solution x̄=(x̄1, ..., x̄n) can be defined by

the local branching constraint

∆{x, x̄} :=
∑
j∈S̄

xj +
∑

j∈SS\S̄

xj ≤ k (2.8)

where S̄ corresponds to those 0-1 variables that are set to one in the incumbent solution,

i.e. S̄ = {j ∈ J |x̄j = 1}. ∆{x, x̄} works as the conventional Hamming distance between

integer solutions x and x̄ (Puchinger et al., 2010). Starting from an initial solution, the

search space is partitioned into the k-opt neighborhood of this incumbent (we often call it

the “local tree”) and the rest of search space by applying the local branching constraint

(2.8) and its inverse ∆(x, x̄) ≥ k+ 1. The main phases of the standard local branching are

as follows (Akeb et al., 2011):

1. Generate an initial solution for the first tree (node) - x̄.

2. Initialize the first local tree (2.8), using the previously generated solution.

26



3. Iterative Step

(3.1): Solve completely the local tree using an MIP solver.

(3.2): When the local search terminates,

• if a better feasible solution x′ is found, then create from this local tree a new

local tree (∆(x′, x̄′)) using the improved solution x′ as the initial solution;

• otherwise, no better feasible solution is found; therefore, stop.

4. Solve the rest of the search tree corresponding to the inverse local branching con-

straint (∆(x, x̄) ≥ k + 1).

5. Return the best solution found.

Local branching combines mathematical programming with local search techniques

such as intensification/diversification mechanisms. Compared to branch-and-price, local

branching avoids solving a Danzig-Wolfe problem at each node of the branching tree. The

power of Local branching in solving difficult MIP problems has been demonstrated in

Fischetti et al. (2004) for a telecommunications network design problem. Those authors

and Rodriguez-Martin and Salazar-Gonzalez (2010) state that the approach is particularly

suited for MIP problems in which the collection of binary variables can be partitioned into

two sets, such that fixing the value of variables in the first group produces an easier-to-solve

subproblem.

However, if we directly apply the same framework as in Fischetti and Lodi (2003)

to the three problems we worked on, the computational performance is rather poor.

27



Lichtenberger (2005) and Wallace (2010) addressed some deficiencies of the basic local

branching framework implementation as follows:

• When more than one set of binary variables is involved, we are unable to express

the importance of one set over another. For example, in our unsplittable network

consolidation problem, when the assignment decision of shipments to flights is known,

the weight-range decision is easily known.

• The local branching constraint possibly defines a very large neighborhood. Given

a problem with n variables, a feasible solution has (nk) = n!
(n−k)!k!

neighbors within

a Hamming distance of k (the local tree includes all neighbors with a Hamming

distance not larger than k, so the actual search tree is even larger)

• When there is more than one initial feasible solution available for local branching,

the original local branching framework supports the exploration of only a single

neighborhood, despite the fact that an optimal solution may come from any of the

promising solutions.

• While a local branching constraint defines a neighborhood around a feasible solution,

it provides no further guidance for exploring this neighborhood besides the standard

branch and cut strategies (e.g. best-bound-first search). Other local search heuristics

might help to tighten the search tree.

In order to address the shortcomings of basic local branching, we have added three

extensions to the standard local branching algorithm. The first caters to exploration of

28



multiple levels of binary variables; it is applied to both the unsplittable network consolida-

tion (Section 3.3.2) and the system-wide discount problem (Section 4.5.1). The second one

eliminates the restriction of sequential execution by allowing the creation of new local trees

before the previous one(s) are finished. The third extension tries to reduce subproblem

complexity by fixing variables that are less likely than others to change in the optimal

result. Our final two extensions are applied to the Pivot-Weight problem in Section 5.5.

29



Chapter 3

The Unsplittable Shipment

Consolidation Problem

3.1 Problem Description

The transportation of an entire load, without splitting it, facilitates the tracking of that

shipment by vendor and customer. Indeed, in many situations, shipment splitting is not

possible. Even if it were allowed, the result could be managerially cumbersome and lead

to a logistics manager’s nightmare, as orders are received in multiple packages through

different deliveries. Barnhart et al. (2000) and Belaidouni and Ben-Ameur (2007) do

satisfy the unsplittable property in solving an express-package delivery problem and a

communication-packet routing problem, respectively. However, neither paper considers

economies of scale, nor the bumping clause in the unit transportation rates.

30



In this chapter, the unsplittable requirement is applied to given a set of shipments

with different origins and destinations. Moreover, each shipment is characterized by its

gross and volumetric weight. Each flight has its capacity, as well as weight ranges with its

associated cost. Freight forwarders are able to over-declare their consolidated shipments to

the next weight range on all flights. There is a also a fixed cost associated with each flight

chosen to be used, while the unit charge on each flight is based on the chargeable weight of

the consolidated load on that flight. The freight forwarder’s objective is to minimize the

total freight cost plus the total fixed charges.

3.2 Problem Formulation

Despite its focus on a single origin, the model of Huang and Chi (2007) is the most suitable

one for the unsplittable shipment consolidation problem in Section 3.1. We will improve

that model by allowing shipments to be transported via hubs and multiple flight legs. As

the airline industry operates in a network, many consolidations are made in consideration

of the whole airfreight forwarding network, instead of a single station point. In practice, a

global freight forwarder makes shipment decisions for multiple origins. Therefore, it would

be better to take all stations in the network into account.

Based on this model, we propose an extension through an arc-based formulation. The

unsplittable problem is a constrained version of the linear multicommodity flow problem,

in which the flow of a commodity (defined in this case by an origin-destination pair) may

employ only a single path from origin to destination. We also take shipment volume into

31



account in considering the chargeable weight. We use i ∈ I, j ∈ J , k ∈ K and p ∈ P to

denote, respectively, shipments, flights, weight ranges and nodes in the network.

The parameters are:

• Rk
j : cost per unit weight of flow on flight j, if the total weight falls in weight range

k. For each j, R1
j ≥ R2

j ≥ ... ≥ RK
j ≥ 0.

• bkj : end point of chargeable weight range k for flight j. b0
j = 0, unless stated otherwise.

• gi: gross weight of shipment i;

• vi: volumetric weight of shipment i.

• J−p : set of flights whose origin is p;

• J+
p : set of flights whose destination is p;

• N−i : origin node of shipment i;

• N+
i : destination node of shipment i;

• T−jp: departure time for flight j at airport p;

• T+
jp: arrival time for flight j at airport p;

• Q−i : ready time at origin for shipment i;

• Q+
i : delivery deadline for shipment i at the destination;

The decision variables are:

32



• wkj =


1, if the chargeable weight of combined shipments

falls in weight range k of flight j;

0, otherwise;

• zij =


1, if shipment i is assigned to flight j;

0, otherwise;

• ykj is the chargeable weight on flight j (including all shipments consolidated on that

flight) that falls in weight range k;

The mathematical formulation is:

Problem [P-UNSPLIT]

min
∑
j

∑
k

Rk
j y

k
j (3.1)

s.t.
∑
j∈J+

p

zij −
∑
j∈J−p

zij =


−1 if p = N−i

1 if p = N+
i

0 for all other nodes

∀p, i (3.2)

∑
i

giz
i
j ≤

∑
k

ykj ∀j (3.3)

∑
i

viz
i
j ≤

∑
k

ykj ∀j (3.4)

bk−1
j wkj ≤ ykj ≤ bkjw

k
j ∀j, k (3.5)∑

k

wkj ≤ 1 ∀j (3.6)

33



∑
j∈J−p

T−jpz
i
j ≥ Q−i ∀i and p = N−i (3.7)

∑
j∈J+

p

T+
jpz

i
j ≤ Q+

i ∀i and p = N+
i (3.8)

∑
j∈J−p

T−jpz
i
j ≥

∑
j∈J+

p

T+
jpz

i
j ∀p, i (3.9)

wkj ∈ {0, 1}; ykj ≥ 0 (3.10)

zij ∈ {0, 1} (3.11)

We refer to this formulation as the original problem or full-size problem because it takes

the shipment volume information into account. Constraint (3.2) ensures flow balance over

the network. It requires that a shipment will first board a flight that starts at its origin

and boards a flight that goes to its destination. For a hub node (that does not match a

shipment’s origin or destination), we need to choose a flight that flies to this node, and a

flight that flies out of this node. Constraints (3.3) and (3.4) are imposed to make chargeable

weight equal to the maximum of the gross and volumetric weights. Inequality (3.5) implies

that if a particular weight range is selected (wkj = 1), then the flow ykj is bounded by

the lower and upper weight breaks bk−1
j and bkj respectively. Constraint (3.6) governs the

selection of at most one weight range on a particular flight. Note that this problem is not

decomposable by origin-destination pair, as the cost on each flight depends on the total

weight consolidated on that flight.

Chang (2008) presents a shipment consolidation model whose objective is to minimize

total travel time. However, the assumption that a shipment can board the very next flight,

34



any time after those goods arrive at the airport, is not realistic. In practice, each shipment

has a ready time Q−i and a delivery deadline Q+
i . Each flight has a departure time T−jp at

origin and an arrival time T+
jp at the destination. We have constraints (3.7) and (3.8) so

that the flight carrying a particular shipment would leave the origin only after the shipment

ready time and arrive before the delivery deadline. Constraint (3.9) ensures the precedence

relationship between a shipment’s time of arrival at a hub, and its departure from there.

3.3 Solution Methodology

In this section, we propose two solution methodologies for the problem, based on La-

grangian relaxation and local branching.

3.3.1 The Lagrangian Relaxation Approach

Similar to Balakrishnan and Graves (1989) and Amiri and Pirkul (1997), we apply

Lagrangian relaxation to Problem P-UNSPLIT by relaxing constraints (3.3) and (3.4)

with non-negative multipliers αj and βj. This leads to the following subproblem:

Problem [P-UNSPLIT1]

min
∑
j

∑
k

Rk
j y

k
j +

∑
j

αj(
∑
i

giz
i
j −

∑
k

ykj ) +
∑
j

βj(
∑
i

viz
i
j −

∑
k

ykj )

s.t. constraints (3.2), (3.5)− (3.11)

35



This subproblem can in turn be decomposed into two sets of subproblems:

Problem [P-UNSPLIT2]

min
∑
k

(Rk
j y

k
j − αjykj − βjykj ) ∀j

s.t. constraints (3.5), (3.6) and (3.10)

Problem [P-UNSPLIT3]

min
∑
j

(αjgi + βjvi)z
i
j ∀i

s.t. constraints (3.2), (3.7)− (3.9) and (3.11).

Each of the |J | subproblems P-UNSPLIT2 can be solved as a knapsack problem using

a greedy algorithm. And each of the |I| subproblems P-UNSPLIT3 can be solved as a

network flow problem using CPLEX.

Subgradient Procedure

We start with the standard subgradient optimization method to solve the Lagrangian dual

problem. Let Zα
lag be the sum of objective values of relaxed problems P-UNSPLIT2 and

P-UNSPLIT3. We also define Z∗ as the best feasible solution found so far in all iterations.

36



Similar to Fisher (1981), the multipliers αj and βj are adjusted as follows:

α+
j = αj + t(

∑
i

giz
i
j −

∑
k

ykj ) ∀j (3.12)

β+
j = βj + t(

∑
i

viz
i
j −

∑
k

ykj ) ∀j (3.13)

The step-size function is given by

t = λ
Z∗ − Zα

lag∑
j[(

∑
i giz

i
j −

∑
k y

k
j )2 + (

∑
i viz

i
j −

∑
k y

k
j )2]

We set the initial value of λ0 = 2. If the solution Zα
lag does not improve in 20 consecutive

iterations, let λr+1 = λr/2. Terminate the algorithm after 800 iterations unless an optimal

solution is reached before that point, or after 80 consecutive iterations if the best lower

bound improves by a total of less than 0.01%. Ideally, the lower bound and upper bound

would meet together, where we call it the Lagrangian bound.

Construction Heuristic

In each iteration of the subgradient algorithm, the solution of problem P-UNSPLIT3 gives

a route for any pair of communicating nodes. This solution is feasible if the total load

shipped on flight j is smaller than or equal to the flight capacity. If this condition is

violated for one or more arcs, we proceed to the next subgradient iteration and no feasible

solution is generated in the current iteration. The details are as follows:

37



Step 1 Let z̄ be the solution generated by Problem P-UNSPLIT3 in the current subgra-

dient procedure.

Step 2 Let Ej = max{
∑

i giz̄
i
j,
∑

i viz̄
i
j} for each flight j. If ∃ j such that Ej ≥ b

|K|
j ,

then constraint (3.5) is violated and no feasible solution is generated in the current

iteration. Go to Step 3, otherwise go to Step 4.

Step 3 For such a flight j = j̃ that has an infeasible solution in Step 2

If there is another flight j′ that connects the same flight origin and destination

as

j̃ (that violates the capacity constraint),

then (based on z̄ from Step 1)

Sort all those shipments that take flight j by their chargeable weight.

Load the shipments on flight j′ in ascending order of their chargeable weight.

Else Adjust the multipliers according to equations (3.12) and (3.13).

Step 4 For each flight j ∈ J , let k′ be the smallest weight range whose upper limit is

larger than or equal to Ej.

If

Ej = 0, then no range is selected

Else, For each flight j, weight range k,

If Rk′
j Ej > Rk′+1

j bk
′
j and k′ < |K|

If k = k′ + 1

set ykj = bk
′
j and wkj = 1

Else

38



set ykj = 0 and wkj = 0

Else

If k = k′

set ykj = Ej and wkj = 1

Else

set ykj = 0 and wkj = 0

Step 3 is computationally intensive. Some authors thus suggest going directly to adjusting

the multipliers, instead of performing a “fixing” operation as in Step 3. We have found,

however, that Step 3 leads to more rapid convergence in those networks where often there

is more than a single flight that connects each pair of nodes. Note that step 3 is trying to

find an alternative flight that matches the origin/destination of the over-capacitated flight,

and not the origin/destination of the shipment.

Column Generation

Instead of the subgradient procedure, we can utilize the column generation approach. At

each iteration, we find the Lagrange multipliers by solving the Lagrangian Master Problem:

max
∑
j∈J

θj +
∑
i∈I

θi

s.t. θj ≤
∑
k

(Rk
j − αj − βj)y

k,h1
j ∀j (3.14)

θi ≤
∑
j

(αjgi + βjvi)z
i,h2
j ∀i (3.15)

39



Note that we use the superscripts h1 and h2 to distinguish the decision variables at different

iterations. The corresponding dual - Dantzig-Wolf Master problem is:

min
∑
h1

∑
j

γj
∑
k

Rk
j y

k,h1
j (3.16)

s.t.
∑
h2

γi
∑
i

giz
i,h2
j −

∑
h1

γj
∑
k

yk,h1j ≤ 0 ∀j (3.17)

∑
h2

γi
∑
i

viz
i,h2
j −

∑
h1

γj
∑
k

yk,h1j ≤ 0 ∀j (3.18)

∑
h1

γh1j = 1 (3.19)

∑
h2

γh2i = 1 (3.20)

γh1j , γ
h2
i ∈ {0, 1} (3.21)

The relaxed subproblem provides a Lagrangian lower bound, and the Dantzig-Wolf Master

problem provides an upper bound to the Lagrangian dual problem. The iterations are

continued until the lower bound meets the upper bound, which equals the Lagrangian

bound in the subgradient procedure.

3.3.2 Modified Local Branching Heuristic

As we mentioned in Section 2.6.3, the original implementation of Fischetti and Lodi (2003)

treats all binary variables equally. In our problem formulation, we have two sets of binary

variables zij and wkj . However, when the zij are fixed, the wkj become known. Therefore,

we consider only zij in the neighborhood exploration. For a given feasible solution z̄ to

40



problem P-UNSPLIT in Section 3.2, we define the k-OPT neighborhood N(z̄, δ) of z̄ as the

set of feasible solutions of (P) satisfying the additional local branching constraint :

∆(z, z̄) :
∑
i

∑
j and zij=1

(1− zij) +
∑
i

∑
j and zij=0

zij ≤ δ (3.22)

Therefore, for a given incumbent solution z̄, the solution space can be partitioned into a

left branch and a right branch according to (3.23):

∆(z, z̄) ≤ δ (left branch) ,∆(z, z̄) ≥ δ + 1 (right branch) (3.23)

The above definition is consistent with the classical k-OPT neighborhood for the

Traveling Salesman Problem. In the approach of Fischetti and Lodi (2003), neighbors

around the incumbent solution are defined by adding constraints to the original model.

The neighborhood-size parameter δ should be chosen as the largest possible value, such

that the left-branch subproblem is much easier to solve than the one associated with the

parent node. The idea is that the neighborhood N(z̄, δ) corresponding to the left branch

must be “sufficiently small” to be optimized in a short computing time, but still “large

enough” to likely contain better solutions than z̄. According to computational experience,

the choice of δ in the range [11,20] is effective in most cases.

Our implementation follows the framework proposed by Fischetti and Lodi (2003),

except that we consider only the first-level binary variable zij in the initial neighborhood

exploration. After adding constraint (3.22), if the system is not solved to proven optimality

within a given time limit, we resort to the variation of second-level variables which are

41



constrained by (3.24):

∆(w, w̄) :
∑
j

∑
k and wk

j =1

(1− wkj ) +
∑
j

∑
k and wk

j =0

wkj ≤ δ2 (3.24)

By iteratively increasing the value of δ2 up to δmax2 , we explore the second-level neigh-

borhoods which are contained in the first-level neighborhood defined by constraint (3.22).

This modification, which caters to two levels of binary variables, yields excellent results

for our test cases, compared to ordinary local branching as in Fischetti and Lodi (2003).

(See Table 3.9.) The notations used in the algorithm are:

UB - the current problem upper bound. It is used to interrupt the optimization as soon

as the best lower bound becomes greater or equal to UB;

first feasible - boolean parameter for CPLEX MIP Solver which is true if the first

solution lower than UB is required as output; if first feasible = false, CPLEX

returns the best solution found so far.

tmax - the overall running time limit, which is also the global stopping threshold;

zopt - incumbent solution;

fopt - the corresponding objective function value of the incumbent solution;

nodemax - the time limit for each tactical branching exploration;

dvmax - the maximum number of diversifications allowed (We use the value 10 in our

algorithm);

42



elapsedtime - the current elapsed solution time;

zcur, wcur, ycur, fcur - the current solution for variables and corresponding value of the

objective;

The detailed implementation is illustrated in Figure 3.1. The algorithm starts with a

feasible solution z̄1. The branching constraint ∆(z, z̄1) ≤ δ is added to the model creating

a left-branch subproblem (node 2) that is solved by CPLEX. There are two cases we need

to consider: (a) If a better solution z̄2 is found within the node time-limit nodemax, then it

becomes the new incumbent. The process backtracks to the father node (node 1), and the

constraint ∆(z, z̄1) ≤ δ is replaced by ∆(z, z̄1) ≥ δ+ 1. A new left-branch node (node 4) is

created by adding the cut ∆(z, z̄2) ≤ δ (without modifying the value of parameter δ). The

above scenario is illustrated in Figure 3.2(a). (b) If the solution z̄1 is not improved within

the node time limit, we reduce the size of the neighborhood in an attempt to speed-up its

exploration. This can be achieved by reducing the right-hand side term by bδ/2c. Hence,

node 2 is created as illustrated in Figure 3.2(b). This step resembles the intensification

step in Tabu search. Whenever the current neighborhood exploration finds a new solution,

δ is reset to its initially-chosen value, and exploration continues in the same fashion.

At the same time, a diversification step is applied in the local branching procedure.

That is triggered when the MIP solver reports proven infeasibility, or when it is unable to

find a feasible solution within the node time-limit. There are two diversification measures

applied in our implementation. On one hand, we can enlarge the neighborhood of the

reference solution z̄, by increasing the current δ value. On the other hand, we can remove

the upper bound on the optimal solution value, and add a constraint z̄ ≥ 1 in order to

43



escape from the current solution. We also set an upper limit of total diversification steps

being applied. The termination criterion is either that the total time limit (3 hours) is

reached, or the maximum number of diversification steps is exceeded.

3.4 Numerical Experiments

3.4.1 Generation of Test Cases for Numerical Analysis

In order to evaluate the effectiveness of the Lagrangian relaxation approach, we generated

a test bed which consists of 18 cases in Table 3.1. Each case is characterized by four

parameters: |I|, |J |, |K|, |P |. The nodes are picked randomly. First, the origin nodes

are chosen, then the exporting hubs, the importing hubs, and finally the destination

nodes. Amiri and Pirkul (1997) and Cohn et al. (2008) employ the parameter arc

density to indicate the probability of having a direct flight between any node pair. As the

network we generated is layered, we use the network availability parameter (Nav), which

equals the average number of destinations (in the destination layer) that can be reached

from a particular origin. (The generated network is fully connected unless otherwise

mentioned.) The origin-destination pair for each shipment is randomly selected from a

uniform distribution. Each case is generated with flight capacity of 80%, where the flight

capacity (Fca) is:

Fca =
Total Chargeable Weight

Total Flight Booking Capacity on flights between exporting and importing hubs

(3.25)

44



Function LocalBranching(δ, tmax, UB, dvmax)
1 UB = +∞; first feasible = TRUE;TL = tmax; rhs = δ;
2 while elapsedtime < tmax or dv > dvmax
3 do TL = min(nodemax, tmax − elapsedtime);
4 add local branching constraint ∆(z, zcur) ≤ rhs;UB = fcur;
5 status = CPLEXSOLV E(TL, UB, first);
6 switch status
7 case “opt sol found” :
8 reverse last local branching constraint to ∆(z, zcur) ≥ rhs+ 1;
9 < zcur, wcur, ycur >=< ẑ, ŵ, ŷ >; fcur = f̂ ; rhs = δ;UB = fcur;

10 case “feasible sol found” :
11 if first infeasible
12 then remove last local branching constraint ∆(z, zcur) ≤ rhs;
13 < zcur, wcur, ycur >=< ẑ, ŵ, ŷ >; fcur = f̂ ; rhs = δ;UB = fcur;
14 case “proven infeasible” :
15 reverse last local branching constraint to ∆(z, zcur) ≥ rhs+ 1;
16 if diversify
17 then UB = TL = +∞; dv + +; first feasible = TRUE;
18 rhs = rhs+ dδ/2e; diversify = TRUE;
19 case “no feasible sol found” :
20 Refining Heuristic(δmax2 )
21 if diversify
22 then replace last local branching constraint to ∆(z, zcur) ≥ 1;
23 UB = TL = +∞; dv + +; first feasible = TRUE;
24 rhs = rhs+ dδ/2e; first feasible = TRUE;
25 else remove last local branching constraint ∆(z, zcur) ≤ rhs;
26 rhs = rhs− dδ/2e;
27 diversify = TRUE;
28 endswitch
29 if fcur < fopt
30 then < zopt = zcur, yopt = ycur, wopt = wcur >; fopt = fcur;
31 end while
32 TL = tmax − elapsedtime; first feasible = FALSE;
33 status = CPLEXSOLV E(TL, first feasible)
34 if status = “proven infeasible”or“no feasible”
35 then return fcur;
36 else return NOT FEASIBLE;

Figure 3.1: Implementation of Local Branching

45



(a) Case (a) (b) Case (b)

Figure 3.2: Cases for Local Branching

There are four weight ranges on each flight (|K| = 4) with average segment price

variability (Spv) of 2. Spv measures the mean difference in unit cost between adjacent

weight ranges:

Spv =
1

K − 1

K−1∑
k=1

Rk
j

Rk+1
j

(3.26)

The lower the Spv ratio, the larger the cost difference between adjacent weight ranges.

Lower Spv cases will have greater differences in slope values in Figure 1.2. The cost of the

four weight ranges is generated uniformly over the interval [1, 8], with decreasing segment

cost from the first to the last segment on each flight.

As shipment volume information is considered here, we define shipment density (Den)

as
∑

Total Gross Weight∑
Total Volumetric Weight

. If density < 1, we call it a volume cargo case; otherwise, we call

it a dense cargo case. All the test cases generated in this section will have average Den

value of 1, unless otherwise mentioned.

46



Case |I| |J | |K| |P |
1 10 16 4 8

2 10 12 4 8

3 20 30 4 20

4 20 60 4 20

5 10 20 3 10

6 10 20 4 10

7 10 20 5 10

8 60 100 3 40

9 60 100 4 40

10-3 90 175 3 40

10-4 90 175 4 40

10-5 90 175 5 40

11-3 120 175 3 40

11-4 120 175 4 40

11-5 120 175 5 40

12-3 200 175 3 40

12-4 200 175 4 40

12-5 200 175 5 40

Table 3.1: Test Cases for Computational Experiments

Test cases 1 to 9 are smaller-size cases, while cases 10-3 to 12-5 reflect the business

reality for a large freight forwarder’s Sino-US tradelane. The number of weight ranges for

Cases 10-12 is distinguished by the digits after the case number.

In addition to observing the effectiveness of the proposed solution methodologies, we

analyze the impact on our problem difficulty of different parameter settings such as the

number of weight ranges, weight range variability, number of shipments, and shipment

weights.

47



3.4.2 Computational Analysis for Small-size Instances

We first tried to solve problem P-UNSPLIT using CPLEX 11.0 on a Sun Solaris machine

with 1.6GHz CPU and 2GB of RAM. The goal was to investigate factors that affect the

difficulty of the problem through some small-size instances, and seek insights for solving

larger instances.

Initially, we did not consider weight ranges nor shipment volume, and imposed no

capacity constraints in the network. So each shipment followed its cheapest path from

origin to destination. We randomly generated 8 instances, each of which had shipment

weight uniformly distributed over the interval [0,50], far below the first break point, 300.

Each instance was solved within a few seconds at the root node. For multiple weight

ranges, however, CPLEX required further branching with loads shifting from the higher

cost range to ranges with some discounts. Moreover, with other parameters unchanged,

when additional weight ranges were present, the solution became more challenging for

tightly capacitated instances, but not for loosely capacitated instances. We also observed

that the inclusion of fixed costs increases the problem difficulty and requires extra solution

time.

All the factors mentioned above, however, seem to have less impact on the problem’s

ease of solution than the flight capacity or the number of shipments. We first varied only

the flight capacity parameter, and generated test cases from base cases 2-4 in Table 3.1 as

indicated in Tables 3.2 and 3.3 (The use of a letter suffix, as in Cases 2A or 2B, means

that the network is that of Case 2, but there are slight differences in the value of Fca or

Den).

48



Case
Nav Fca |I| CPU

Time (sec)

2A 12 0.2 10 1.0

2B 12 0.5 10 1.0

2C 12 0.8 10 14.2

3A 12 0.2 20 2.3

3B 16 0.5 20 7.6

3C 16 0.8 20 123.9

4A 24 0.2 30 2.9

4B 24 0.5 30 71.1

4C 24 0.8 30 466.4

Table 3.2: Impact of Flight Capacities when |K| = 4 and Den = 1

Instances with Fca < 0.6 are considered “loosely capacitated”, otherwise they are

“tightly capacitated”. As shown in Table 3.2, Fca is the factor that most affects solution

time. Instances whose Fca= 0.8 take about ten times as long to solve as those instances

whose Fca= 0.5.

Some effects are not easy to observe when the number of shipments is small, so we

generated larger instances A1 to D2. These cases have 60 to 400 shipments; all are based

on a network with 40 nodes and 175 available flights. Along with flight capacities, the

number of shipments is found to affect performance (Table 3.3). For networks of a given

size, when the number of shipments increases, the computational performance of CPLEX

deteriorates significantly. For an airfreight forwarder that handles 80 to 200 shipments

per day, a solution time of more than 3 hours is definitely not acceptable. Therefore, it is

necessary to find more efficient solution methodologies, which we now do by Lagrangian

relaxation.

49



Case
|P | |I| Den CPU

Time(sec)

2 20 10 1 14.2

3 32 20 1 123.9

4 40 30 1 466.4

9R1A 40 60 0.8 506

9R1B 40 60 1.2 489

9R2A 40 120 0.8 4010

9R2B 40 120 1.2 4203

9R4A 40 200 0.8 8201

9R3B 40 200 1.2 > 3hrs

9R4A 40 400 0.8 > 3hrs

9R4B 40 400 1.2 > 3hrs

Table 3.3: Impact of Number of Shipments when Fca = 0.8 and |K| = 4

3.4.3 Computational Analysis for Lagrangian Relaxation

In this section, we generate test cases to compare performance between the CPLEX MIP

Solver and Lagrangian relaxation. The volumetric weight is randomly generated in the

same way as the gross weight, with average shipment density equal to 1. In Table 3.4, we

display the solution times for CPLEX, subgradient optimization and column generation

side-by-side. In addition, “gap” measures the percentage difference between solution results

and the known optimal solution of CPLEX. The “gap1” refers to the difference between

the solution and the Lagrangian bound. Table 3.4 shows that the column generation

approach consistently yields a wider gap from the optimal solution, although it provides

substantial speedup (on average 25.6% faster) compared to subgradient optimization. This

is because the solution space for column generation is smaller than that for subgradient

50



optimization. Therefore, we use the results from subgradient optimization to represent

Lagrangian relaxation from here onwards.

CPLEX Subgradient Optimization Column Generation
Test
Case

%gap1 CPU
Time
(s)

%
gap

%
gap1

CPU
Time
(s)

%
gap

%
gap1

CPU
Time
(s)

1 21.1 9 0 21.1 125 0 21.1 40

2 24.2 8 0 24.2 101 0 24.2 43

3 28.0 289 0.2 28.3 1104 0.2 28.3 698

4 21.2 306 0.3 21.6 1360 1.5 23.0 723

5 9.0 40 1.3 10.4 198 1.2 10.2 191

6 15.8 10 0 15.8 205 3.0 19.3 183

7 19.0 22 0 19.0 209 0 19.0 194

8 15.7 362 1.7 17.7 3521 10.1 27.5 2681

9 22.3 518 1.4 23.9 4281 10.7 35.4 3980

9A 18.0 245 2.6 21.1 1164 11.7 31.7 825

9B 12.8 40 0 12.8 634 9.4 23.4 527

10-3 30.5 7508 1.3 31.7 2710 6.1 38.4 2302

10-4 27.6 7294 2.9 31.3 2586 4.9 33.8 2213

10-5 28.3 8054 2.7 31.8 2760 11.3 42.9 1899

11-3 8.8 5530 1.0 9.9 2820 9.1 18.7 2401

11-4 7.5 5620 3.0 10.7 1951 6.2 14.2 1542

11-5 8.5 6004 2.4 11.1 2654 11.1 20.5 2187

12-3 11.0 9891 1.4 12.5 2911 13.4 25.9 1640

12-4 6.4 10027 2.7 9.3 3033 5.3 12.0 2516

12-5 13.4 9650 1.7 15.4 3429 14.5 29.9 2998

Table 3.4: Comparison of Test Results between CPLEX and Lagrangian Relaxation

With the impact of volumetric weight and the requirement that each shipment should

flow on a single path, the optimal value is higher than for the splittable case: Those

consolidated shipments (commodities) cannot take advantage of some lower-cost paths.

Because an increase in the number of weight ranges affects only the step of constructing

51



a feasible solution in Lagrangian relaxation, the solution time is not very sensitive to that

increase.

CPLEX is faster on the small-size cases 1 to 9, while Lagrangian relaxation outperforms

CPLEX on the large problem series of 10 through 12. Cases 10-3 to 10-5 are “skewed cases”.

There are 10 origins, but all 90 shipments are sent from only two of them, in a network that

is fully connected with 10 transshipment hubs and 20 destinations. Lagrangian relaxation

takes about half the computation time of CPLEX for large problem instances e.g. Case

10-3.

Additional shipments in an extensive network do not necessarily imply longer compu-

tational times. Solution of Case 9A takes only half as long as Case 9. The average flight

capacity is 85% in Case 9 and 70% for Case 9A. Case 9B further reduces the average flight

capacity parameter to 35%, which is enough to carry all shipments on the least-cost flight,

and requires a computation time of only 40 seconds. Cases 9A and 9B once again show

that average flight capacity contributes to the difficulty of the problem.

3.4.4 Computational Analysis for Local Branching Heuristic

Based on Cases 10 and 12 in Table 3.1, we generated supplementary cases for computational

analysis, respectively “loosely” and “tightly” capacitated in Tables 3.5 and 3.6. Each

instance is characterized by the number of shipments |I|, number of flights |J |, number

of weight ranges |K| and number of nodes |P |. (Observe that |P | equals the sum of the

number of origins (L1), plus the number of exporting hubs (L2), the number of importing

52



hubs (L3) and the number of destination nodes (L4).) The average volume and gross

weights remain at 200kg. The first two digits of any case number denote the case in Table

3.1 from which it is derived. The next letter represents whether it is a “loose” or “tight”

case. The last letter indicates capacity ratio, with A being the case having the highest

Fca value. Nav = 1 or 2 in Tables 3.5 and 3.6 means the network is fully connected or

partially connected, respectively.

Case |I| |J | Fca Nav

10L1 90 175 0.3 1

10L2 90 175 0.35 1

10L3 90 105 0.3 2

10L4 90 105 0.35 2

12L1 200 175 0.20 1

12L2 200 175 0.225 1

12L3 200 175 0.30 1

12L4 200 175 0.325 1

12L5 200 175 0.35 1

Table 3.5: Loosely Capacitated Test Cases with |K| = 3, |P | = 40, L1=10, L2=5, L3=5
and L4=20

By comparing the computational times in Tables 3.7 and 3.8, we can see clearly

that capacity plays a vital role in the performance of the CPLEX MIP solver. The

capacity has less impact for Lagrangian relaxation than for local branching. As the

backbone solver for local branching is CPLEX, capacity obviously affects local branching.

The most time-consuming part in the Lagrangian approach, the heuristic, is much less

affected by the tightness of the capacity in each case. For tightly-capacitated cases, the

average computation time for local branching is 49% of CPLEX, while time for Lagrangian

relaxation is 41% that of CPLEX. We set a time limit for CPLEX MIP solver to be 3

53



Case |I| |J | |K| n. var n. cons Fca Nav

10T3A 90 175 3 5,175 16,800 0.9 1

10T3B 90 175 3 5,175 16,800 0.8 1

10T3C 90 105 3 4,545 10,080 0.9 2

10T3D 90 105 3 4,545 10,080 0.8 2

12T3A 200 175 3 9,575 36,050 0.9 1

12T3B 200 175 3 9,575 36,050 0.875 1

12T3C 200 175 3 9,575 36,050 0.85 1

12T3D 200 175 3 9,575 36,050 0.825 1

12T3E 200 175 3 9,575 36,050 0.8 1

12T4A 200 175 4 9,925 36,400 0.9 1

12T4B 200 175 4 9,925 36,400 0.875 1

12T4C 200 175 4 9,925 36,400 0.85 1

12T4D 200 175 4 9,925 36,400 0.825 1

12T4E 200 175 4 9,925 36,400 0.8 1

12T5A 200 175 5 10,275 36,750 0.9 1

12T5B 200 175 5 10,275 36,750 0.875 1

12T5C 200 175 5 10,275 36,750 0.85 1

12T5D 200 175 5 10,275 36,750 0.825 1

12T5E 200 175 5 10,275 36,750 0.8 1

Table 3.6: Tightly-Capacitated Test Cases with |P | = 40, L1=10, L2=5, L3=5 and L4=20

hours for tightly-capacitated cases, and picked the best solution when that time limit was

reached. (The characters ‘TL’ in the column CPU Time denote that attainment of the

total time limit was reached.)

For solution quality, the percentage gap information is computed as
fmethod−fcplex

fcplex
×

100%. The local branching approach ties or outperforms Lagrangian relaxation in 17

out of 18 cases. Moreover, the solution from local branching is on average only 0.8%

from the optimal for tightly-capacitated cases, and 0.1% for loosely-capacitated cases.

For Lagrangian relaxation, the average gap is 3.5% and 1.6% for these two categories

54



Case
CPLEX Lagrangian Relaxation Local Branching (11 ≤ δ ≤ 20)
CPU
Time(s)

%gap CPU
Time (s)

%gap CPU
Time (s)

10L1 108 1.6 1676 0 189

10L2 159 2.7 2081 0 231

10L3 12 0 1158 0 52

10L4 13 2.0 1402 0 66

12L1 22 2.2 1787 0 508

12L2 25 2.4 1406 0 497

12L3 184 1.2 2556 0 329

12L4 209 1.2 2534 0 281

12L5 211 1.2 2601 0.8 220

Table 3.7: Results for Loosely-Capacitated Cases

respectively. Local branching also outperforms CPLEX in three cases (12T5A, 12T5B,

12T5C) when the 3-hour time limit is imposed.

From Table 3.8, we find that for similar cases, higher flight capacity ratios (Fca)

make the problem more difficult to solve. This trend is consistent for the three solution

approaches. When the flight capacity is fixed, a larger number of weight ranges will slightly

increase the solution times for CPLEX and the local branching approaches. However, the

impact of the number of weight ranges is not so significant for Lagrangian relaxation.

Moreover, we can manipulate control parameters to force local branching to produce

a feasible solution at earlier stages. Increasing the dvmax value, reducing nodemax and

squeezing the neighborhood size δ can possibly serve this purpose. For example, by halving

the current nodemax and doubling the value of dvmax, we reduced the gap from 10.7% to

5.4% for case 12T3A. Table 3.9 implies that local branching provides early feasible solutions

of good quality. When comparing results of the local branching heuristic to CPLEX after

55



Case
CPLEX Lagrangian Relaxation Local Branching (11 ≤ δ ≤ 20)
CPU
Time(s)

%gap CPU
Time(s)

%gap CPU
Time(s)

10T3A 4091 2.6 2561 1.2 1699

10T3B 2824 1.8 2698 1.8 1248

10T3C 1598 0.4 1909 0 907

10T3D 1930 0.9 1984 0 1054

12T3A TL 7.9 4097 3.7 3688

12T3B TL 1.6 4306 1.0 3601

12T3C 7510 2.3 4320 2.8 2360

12T3D 5833 2.2 3617 1.8 2524

12T3E 4206 1.0 3809 1.0 1833

12T4A TL 12.7 4587 1.1 4608

12T4B TL 2.6 4031 0.1 4287

12T4C TL 2.1 3733 1.2 4275

12T4D 6997 2.4 3860 2.4 2965

12T4E 4101 2.4 3202 1.6 1070

12T5A TL 10.2 4320 -1.0 6011

12T5B TL 2.4 4159 -4.4 4830

12T5C TL 1.2 3967 -2.4 4286

12T5D 7208 2.7 2983 1.4 3020

12T5E 4304 2.0 3146 0.8 2013

Table 3.8: Results for Tightly-Capacitated Cases

15 minutes of CPU time, local branching gives a better solution time for 10 out of 17 cases,

and the same solution speed for another 2 instances (Table 3.9). If we compare the results

from CPLEX after an hour of computational time with those given by the local branching

in 15 minutes, we find that local branching outperforms CPLEX in three cases and ties in

one.

In addition, Table 3.9 shows that using two levels of binary variables in local branching

leads to faster convergence than considering all binary variables at a single level. For cases

56



Case
Our Local
Branching
(15 min)

Fischetti
and Lodi
(2003) (15
min)

Our Local
Branching
(60 min)

CPLEX
(15
min)

CPLEX
(60
min)

%gap %gap %gap %gap %gap

12T3A 5.4 15.9 6.5 15.7 11.5

12T3B 4.9 5.9 2.7 4.9 3.5

12T3C 5.5 7.5 2.7 5.4 4.2

12T3D 5.3 6.3 1.9 3.4 2.9

12T3E 5.4 5.8 1.0 5.2 2.2

12T4A 3.2 7.5 1.8 6.7 3.2

12T4B 1.0 6.7 0.2 5.2 1.0

12T4C 2.8 6.3 1.4 2.8 1.1

12T4D 3.6 6.6 2.4 3.4 1.0

12T4E 2.9 4.2 1.6 2.9 0.8

12T5A 2.1 18.1 1.4 6.5 2.2

12T5B 3.8 3.7 3.2 3.8 1.7

12T5C 3.0 3.0 1.6 2.1 1.0

12T5D 1.9 3.8 1.4 2.5 1.6

12T5E 2.0 2.7 0.8 2.1 0.6

13T4A 0 7.9 0 11.2 0

14T5A 0 15.9 0 8.6 0

Table 3.9: Results for Tightly-Capacitated Cases with Different Time Limits

13T4A and 14T5A, our local branching method can even find optimal solutions within 15

minutes of time. Moreover, all those early solutions found by local branching are within

5.5% (3.5% on average) from the optimal solution computed by CPLEX after three hours.

Comparing local branching and CPLEX with a 60-minute time limit, we find that local

branching is faster than CPLEX in nine cases.

57



3.5 Summary

In this chapter, we provided a formulation for the airfreight forwarding problem that

includes factors previously ignored in the literature, such as the volumetric weight, the

bumping clause, the unsplittable requirement, and the flight/shipment times. After initial

testing using a general MIP solver, we proposed two solution methodologies that are capable

of handling large sizes and difficult instances in reasonable computational time. Heuristics

based on Lagrangian relaxation and local branching approaches were explored and tested

under different network structures.

In the remainder of this thesis, we investigate other cost structures that freight for-

warders face. In particular, pricing based on pivot weight (the carrier will charge for this

weight, even if the shipper’s load is smaller), and system-wide discounts based on volume

during a period, will be explored. The former is the subject of Chapter 5. Before that, we

turn to the case of system-wide discounts.

58



Chapter 4

Shipment Consolidation Problem

under System-wide Discount

4.1 Problem Description

Suppose an airline offers cargo capacity on its flights between Canada and Europe. The

flights are classified into several classes, such as East Coast-Germany, West Coast-Eastern

Europe, and so on. Each such class consists of multiple arcs, one for each flight. Airlines

charge freight forwarders a base cost per chargeable weight on each flight, and offer a

discount factor that depends on the quantity of total cargo on all flights associated with

a class. For instance, the cost of shipping a 500 kg package from Toronto to Frankfurt

depends on the total weight shipped on the Montreal-Hamburg, Montreal-Berlin, Toronto-

Munich and Montreal-Frankfurt routes.

59



The decision faced by freight forwarders is thus to allocate freight to different flights

to make use of that system-wide discount. In other words, a particular freight forwarder

needs to determine the load tendered to each flight, in order to minimize the total cost

in the presence of the system-wide discount. This problem can also be interpreted as a

decision model for a freight forwarder facing multiple system-wide-discount offers from

various cargo airlines. Each flight class can be viewed as the flights of a single cargo airline

that offers a discount on the total tonnage dispatched over all its network. The decision for

a freight forwarder is how to send shipments via these airlines to minimize total shipping

cost (by possibly utilizing the system-wide discounts offered by each airline).

4.2 Problem Formulation

To formulate this problem, we begin with the multi-commodity flow model of Cohn et al.

(2008), and extend it to include shipment volume and gross weight, prevent shipment split-

ting, and take advantage of over-declaration. Experienced shippers and freight forwarders

will, when appropriate, over-declare the weight of a consolidated shipment to enjoy the

discount on the higher-weight segment. (This is the “bumping clause”, mentioned in

Section 1.1.1.) The model of Cohn et al. (2008) does incorporate a system-wide discount.

Instead of using the common node-pair notation for flights, let us denote flights on an

arc by f ∈ F . (Although we used the subscript j to represent a flight in our first problem,

we now employ the subscript f to denote a flight in the current problem because Cohn

et al. (2008), whose work we are extending, used j to represent a node.) Although f may

60



range from 1 to 1,000, this will yield a more general formulation, as there may exist multiple

flight arcs between a node pair in the planning horizon. Let us also denote shipments by

k ∈ K, nodes by n ∈ N , and flight classes by c ∈ C, where each flight f appears in

exactly one class c denoted by c(f). The discount scheme is of the all-unit type, where Rc

represents the set of discount ranges for flight arcs in class c. For each class c and discount

range r, lcr, u
c
r and pcr indicate the lower limit, the upper limit and the discount factor. For

each flight f , bf denotes the base cost (unit cost per kilogram before any discount), while

Uf is the total available capacity. As we also take the shipment volume into account, that

unit cost bf for each flight is based on the unit chargeable weight, i.e. the maximum of

the gross weight (gk) and volume weight (vk). For each shipment k, N−k and N+
k denote

origin and destination node respectively, while N−f and N+
f are the respective origin and

destination nodes of flight f .

The decision variables are:

• xrf= total chargeable weight on flight f , priced according to discount range r ∈ Rc(f).

• ykf =


1, if shipment k is loaded on flight f ;

0, otherwise;

• zcr =


1, if the total weight on flights in class c is in range r;

0, otherwise;

The mathematical model is formulated as follows:

[SYSWIDE] :

61



min W =
∑
f∈F

∑
r∈Rc(f)

(1− pc(f)
r )bfxrf (4.1)

s.t.
∑

f∈{N+
f =n}

∑
r∈Rc(n,i)

ykf −
∑

f∈{N−f =n}

∑
r∈Rc(i,n)

ykf =


−1 if n = N−k

1 if n = N+
k

0 for all other nodes

∀k ∈ K,n ∈ N (4.2)∑
r∈Rc

zcr = 1 ∀c ∈ C (4.3)

∑
k

vkykf ≤
∑
r∈R

xrf ∀f ∈ F (4.4)

∑
k

gkykf ≤
∑
r∈R

xrf ∀f ∈ F (4.5)

lcrz
c
r ≤

∑
f∈c(f)

xrf ≤ ucrz
c
r ∀c ∈ C, r ∈ Rc (4.6)

∑
r∈Rc(f)

xrf ≤ Uf ∀f ∈ F (4.7)

0 ≤ xrf ≤ uc(f)
r ∀f ∈ F, r ∈ Rc(f) (4.8)

ykf , z
c
r ∈ {0, 1} ∀c ∈ C, r ∈ Rc (4.9)

The objective function minimizes the total freight cost, priced at the appropriate class

discount factor.

Equations (4.2) enforce the balance of flow in the multi-commodity problem. The

restrictions (4.3) guarantee that the total chargeable weight for a given class of flights falls

in exactly one system-wide discount range. Constraints (4.4) and (4.5) require that the

62



chargeable weight is always the maximum of the volume weight and gross weight. The

relations (4.6) indicate that the total chargeable weight declared across all flights in a class

and range is either zero or satisfies the upper and lower bounds of the system-wide discount

range. Inequalities (4.7) limit the total declared weight on each flight to be within capacity.

Compared to the model of Cohn et al. (2008), we enforce the “unsplittable” requirement

on each shipment by adding the binary decision variable ykf , and aggregate the flow

variables over all commodities to reduce the number of decision variables. Moreover, the

value of the continuous flow variable xrf does not always equal the total chargeable weight

of all shipments on the flight: Rather, we may over-declare the chargeable weight of those

shipments to enjoy an even greater discount.

After these modifications, the problem formulation resembles the shipment consolida-

tion problem with a discount range on each flight (we call it the “flight-leg discount version”

from now on), presented in Li et al. (2012). The discount range for each flight-class is

equivalent to the weight range on each flight. The piece-wise linear cost in the flight-leg

discount version can be interpreted as a discount factor in the system-wide discount, as

the cost associated with the next-higher weight range is always a certain percent lower

than that of the first weight range. To reach that next-higher range, it may be appropriate

to over-declare the shipment weight, by analogy to the situation in the flight-leg discount

version. Moreover, if we set the number of flight classes equal to the number of flights

in the network, with the weight ranges R being the same, the two discount cases become

identical.

63



4.3 An Illustrative Example

To clarify the problem setting, let us consider a small example similar to that of Cohn

et al. (2008). A certain airfreight forwarder can tender freight to two carriers (Airlines 1

and 2). Each carrier offers a system-wide discount according to the scheme displayed in

Table 4.1, and the six flights displayed in Figure 4.1.

Declared Weight Range Airline 1 (%) Airline 2 (%)

0-150 0 0
151-550 20 3
551-700 30 10

Table 4.1: Discount factors for illustrative example

Cost($ Per kg)
Flight Airline

1
Airline
2

AC 2 3
AD 3 5
BC 5 5.1
BD 5 5
CE 5.1 4
DE 5 4

Figure 4.1: Illustrative Example

Now suppose that Shipments 1 and 2, of respective weights 150 and 200 kg, are to be

sent from A to E, and Shipments 3 and 4 (each of 125 kg) are to be sent from B to E.

Based on the discounts listed in Table 4.1, Shipments 1 and 2 should follow routes AC-CE

on Airline 1, and Shipments 3 and 4 follow route BD-DE on Airline 1, for a total cost of

[(150 + 200) ∗ (2 + 5.1) + (125 + 125) ∗ (5 + 5)] ∗ (1− 0.30) = 3489.5

64



Note that this example has 12 flights, 4 shipments, 2 flight classes, and 3 weight ranges

in each class of flights. The mathematical formulation requires 36 continuous variables xrf ,

and 30 binary variables for ykf and zcr. For a typical freight forwarder, the planning may

involve 100 flights, 400 shipments, 5 flight classes and 3 weight ranges. This corresponds

to 300 continuous variables and about 40,000 binary variables.

4.4 Solution Methodology for System-wide Discount

The original work of Cohn et al. (2008) did not provide a dedicated solution methodology

to the mathematical model. Here, we present a Lagrangian Relaxation approach to this

problem and propose a Lagrangian heuristic to find feasible solutions.

Lagrangian Relaxation

We apply Lagrangian relaxation to Problem [SYSWIDE] by relaxing constraints (4.4) and

(4.5) with non-negative multipliers αf and βf . This leads to the following subproblem

[SYSWIDE-RELAX]:

min
∑
f∈F

∑
r∈Rc(f)

(1− pc(f)
r )bfxrf +

∑
f∈F

αf (
∑
k

vkykf − xrf ) +
∑
f∈F

βf (
∑
k

gkykf − xrf )

s.t. constraints (4.2), (4.3), (4.6)-(4.9)

65



[SYSWIDE-RELAX] can be decomposed into two sets of subproblems. The first set is

[SP 1
f ] : obj1

f = min
∑

r∈Rc(n,j)

(1− pc(f)
r )bfx

r
f −

∑
f

∑
r

αrfxrf −
∑
f

∑
r

βrfxrf ∀f

s.t. constraints (4.3),(4.6)-(4.8)

The second set is

[SP 2
k ] : obj2

k = min
∑
f

(αfvk + βfgk)ykf ∀k

s.t. constraints (4.2) and (4.9).

This decomposition yields a good problem structure, where [SP 1
f ] can be solved as

a knapsack problem and [SP 2
k ] can be solved as a shortest path problem. After obtain-

ing optimal solutions for each subproblem, the sum of the optimal objectives yields a

lower bound (LRLB) to the relaxed problem. The best Lagrangian bound is given by:

maxα,β
∑

f∈F obj
1
f +

∑
k∈K obj

2
k , which is equivalent to the Lagrangian master problem:

[MP ] : max
∑
f∈F

θf +
∑
k∈K

θk

s.t. θf ≤
∑

r∈Rc(f)

[(1− pc(f)
r )bf − αf − βf ]xhrf ∀f, h (4.10)

θk ≤
∑
f

[(αfvk + βfgk)y
h
kf ] ∀k, h (4.11)

αf , βf ≥ 0 ∀f (4.12)

66



where (xrf
h, ykf

h, zcr
h) are feasible solutions to [SP 1

f ] and [SP 2
k ]. The master problem,

subproblems, and multipliers are updated according to algorithms in Figure 4.2.

[MP-SP]
Initiate LRUB =∞, LRLB = −∞

1. Start with a set of αf ≥ 0, βf ≥ 0 (Usually α, β are set to be larger than the
maximum of bf ’s)

While LRUB 6= LRLB

2. Solve subproblem [SP 1
f ] and [SP 2

k ] for each f and k respectively. We get a solution

of (xhrf , y
h
kf , z

ch
r ) and a lower bound LRLBh =

∑
f obj

1
f +

∑
k obj

2
k

3. Update the lower bound LRLB=max(LRLB, LRLBh)

4. Use (xrf
h, ykf

h, zcr
h) to add |F | cuts (4.10) and |K| cuts (4.11) to MP

5. Solve MP to get a new set of α, β and an upper bound LRUB

End while

Figure 4.2: Algorithm for updating the Lagrange multipliers

The subproblem solution is rarely found to be feasible to the original problem. Section

4.4.1 proposes a heuristic procedure. Section 4.4.2 introduces a branch-and-price procedure

to get an exact solution. To obtain a relatively good solution in less computational time,

Section 4.4.3 offers a subgradient procedure to update the Lagrange multipliers α and β.

4.4.1 Lagrangian Heuristic

Figure 4.3 illustrates the details of our Lagrangian Heuristic. Solution of [SP 2
k ] gives a

route for each shipment. This solution is feasible if the total load declared on flight f does

67



not exceed the flight capacity Uf . If that capacity condition is violated for one or more

flight arcs, we construct a feasible solution by assigning shipments from over-capacitated

flights to less-capacitated ones. Step 1 identifies those flights that have capacity violations.

In Step 2, if there are several alternative flights f , we need to sort the alternatives by

their average flight cost. That cost is computed by taking the average of the unit charges

over all the system-wide class ranges. We use neither the charge in the lowest weight range

nor the one in highest weight range, because it is difficult to predict the range r into which

consolidated shipments would fall.

Step 3 is computationally intensive. One could go directly to “adjust the multipliers”,

instead of performing a “fixing” operation as in Step 3. We have found, however, that Step

3 leads to better solutions in networks having more than a single flight that connects each

pair of nodes.

4.4.2 Branch-and-Price

The dual of the Lagrangian master problem [MP] is the Dantzig-Wolfe master problem:

[DWM] : min
Hf∑
h=1

∑
f∈F

γhf
∑

r∈Rc(f)

(1− pc(f)
r )bfx

h
rf

s.t.

Hk∑
h=1

γhkvky
h
kf −

Hf∑
h=1

γhf
∑
r∈R

xhrf ≤ 0 ∀f, k

68



Step 1 Let {x̄rf , ȳkf , z̄cr} be the solutions to [SP 1
f ] and [SP 2

k ] .

• Compute Ef = max{
∑

k gkȳkf ,
∑

k vkȳkf} for each flight f .

• If there exists f such that Ef ≥ Uf , then constraint (4.7) is violated and no feasible
solution is generated in the current iteration; go to Step 2. Otherwise, go to Step 3.

Step 2 For such flight f̃ that has an infeasible solution in Step 1:
If there is another flight f ′ in the same flight class that connects the same origin

and destination node as f̃ ,
then (based on {x̄rf , ȳkf , z̄rc} from Step 1)

Sort all these shipments that takes flight f̃ by their chargeable weight.

Load those shipments onto flight f̃ until the flight capacity is reached.
Load the remaining ones onto f ′.

Else Try another flight from a different class or a flight that is part of the path

between the origin and destination of f̃
Step 3 For each flight class c ∈ C:

• Let r′ be the smallest weight range whose upper limit is larger than or equal to∑
f∈c(f) xrf .

If
∑

f∈c(f) xrf = 0,

then the lowest weight range in this flight class is selected.
Else, For each flight class c, weight range r,

If r = r′

If
∑

f∈c(f)(1− p
c(f)
r )bfxrf >

∑
f∈c(f)(1− p

c(f)
(r′+1))bf l

c
r′+1 and r′ < |Rc|

set xr
′

f = 0 and zr
′
c = 0

set xr
′+1
f = lck′+1 and zr

′+1
c = 1

r = r + 1
Else

set zcr = 1 and xrf = x̄rf
Else

set xrf = 0 and zcr = 0

Figure 4.3: Details of the Lagrangian Heuristic

Hk∑
h=1

γhf gky
h
kf −

Hf∑
h=1

γhf
∑
r∈R

yhkf ≤ 0 ∀f, k

69



Hf∑
h=1

γhf = 1 ∀f

Hk∑
h=1

γhk = 1 ∀k

γhf ≥ 0, h = 1, ....., Hf , ∀f

γhk ≥ 0, h = 1, ....., Hk, ∀f

The Dantzig-Wolfe master problem presents an equivalent formulation to [SYSWIDE]

when γhf , γhk ∈ {0, 1}. To force this, [DWM] has to be embedded within a branch-and-bound

method. As [DWM] is solved through column generation, the result is a branch-and-price

approach.

Branching Rules

At each node, we choose a binary variable ykf or zcr on which to branch, and branching

constraints are appended to the subproblems. There are a few rules to choose the variable

to branch on:

1. Branch on ykf before branching on zcr. This is attractive because when variable ykf

is fixed, the choices of zcr are limited.

2. For each ykf , branching is done first on index k before index f . This helps to fathom

quite a few nodes. For a given network, there are a great many infeasible subtrees

that are easy to identify by looking at ykf . This happens when a certain shipment

70



k would board a flight f that is scheduled to reach an airport that does not have a

connecting flight to k’s final destination.

3. When branching on zcr, branching is done first on the r that corresponds to the

highest weight range. This rule is motivated by the intension to exploit system-wide

discounts.

4. Use a depth-first exploration strategy. As running a construction heuristic at each

tree node is rather time consuming, it is desired to explore to the lowest level and

get a feasible solution quickly.

After branching, two nodes are created based on the branching constraints, and all existing

candidate columns are passed to the child nodes.

The Overall Branch-and-price algorithm

The overall branch-and-price algorithm is illustrated in Figure 4.4. It uses a depth-first

exploration strategy. At each node of the branch-and-price algorithm, an attempt is made

to find feasible solutions to update the incumbent. Since the construction heuristic may

be time consuming, we call the construction heuristic only at higher level tree nodes (when

level < π). This helps to reduce the upper bound at earlier stages, therefore increasing

the likelihood to fathom nodes sooner.

The whole branch-and-price procedure is terminated when the lower and upper bounds

coincide, or all nodes are explored. The procedure is stopped when the two bounds are

within 0.05%.

71



[Branch-and-Price]
At root node, initiate UB =∞, LB = −∞

1. Generate an initial feasible solution (using CPLEX’s first feasible) and set the initial
upper bound UB accordingly.

2. Start with a set of α ≥ 0, β ≥ 0 (Usually α, β are set to be larger than the maximum
of bf ’s). Use the initial feasible solution as initial columns to construct the master
problem.

Loop

Solve the Dantzig-Wolfe problem at the corresponding node as in Figure 4.2, and
update the current lower bound.
If problem is infeasible

fathom current node;

If current lower bound is greater than UB

fathom current node;

If we find an integer solution

Update UB with the solution from master problem, record the integer solution
if UB is lowered; Terminate the branch-and-price algorithm, when UB−LB

UB
≤

0.05%.

Otherwise

A1 Choose the next variable l to branch.

A2 If level < π, invoke the Lagrangian heuristic (Section 4.4.1). Update UB if
the heuristic gives a better upper bound.

A3 Create two child nodes based on the branching variable and pass all the existing
candidate columns to the two children according to the branching cut.

A4 Explore the left child node (l = 1).

A5 Explore the right child node (l = 0).

End Loop

Figure 4.4: Algorithm for Branch-and-Price

72



4.4.3 Subgradient Procedure

The branch-and-price algorithm runs very slowly when the problem size is large. In the

hope of getting a relatively good solution in a short computational time, we implemented

a solution procedure using subgradient optimization. The general idea is to find a good

lower bound through manipulating the Lagrange multipliers α and β. Then we use the

heuristic in Section 4.4.1 to generate a feasible solution from the best bound we found.

Let Wα,β
lag be the sum of objective values of relaxed problems [SP 1

f ] and [SP 2
k ]. We

also define f ∗ as the best feasible solution found so far in all iterations. Similar to Fisher

(1981), the multipliers αf and βf are adjusted as follows:

α+
f = αf + t(

∑
i

vkykf −
∑
r

xrf ) ∀f (4.13)

β+
f = βf + t(

∑
i

gkykf −
∑
r

xrf ) ∀f (4.14)

The step-size function is given by

t = λ
W ∗ −Wα,β

lag∑
f [(

∑
k gkykf −

∑
r xrf )2 + (

∑
k vkykf −

∑
r xrf )

2]

We set the initial value of λ0 = 2. If the solution Wα
lag does not improve in 40 consecutive

iterations, we reduce the λr by half. Starting from an initial set of Lagrange multipliers

(αf , βf ), we solve [SYSWIDE2] to get path designs for each shipment ȳkf and solve [SP 1
f ]

to determine all declared weights on each flight class x̄rf , and each class range assignment

z̄cr. We then get a lower bound Wα,β
lag by substituting x̄rf ,ȳkf ,z̄

c
r into the objective function,

73



generating a feasible solution xrf ,ykf ,z
c
r from {x̄rf ,ȳkf ,z̄cr}. We update the upper bound

W ∗ from that feasible solution. If the gap between Wα,β
lag and W ∗ is greater than 0.01%, we

adjust the multipliers (αf , βf ) with the subgradient algorithm. This procedure is repeated

until the gap between Wα,β
lag and W ∗ drops below a given threshold. The step-size factor t

for adjusting the Lagrange multipliers is cut in half if the best lower bound Wα,β
lag does not

improve in 200 iterations.

The overall algorithm is terminated if the solution does not improve in 2000 (no improve)

iterations, or an optimal solution is reached before that point, or when the best lower bound

improves by less than 0.01% in 100 (T ) consecutive iterations. The smaller the values set

for no improve and T , the shorter the execution time for the subgradient algorithm.

4.4.4 Generation of Test Cases

We generated random instances that are characterized by four parameters:

• |N |: number of nodes.

• |F |: number of flights.

• |K|: the number of shipments in the network.

• e: a factor representing the minimum number of direct flights between two nodes (in

adjacent layers).

74



Each node in the network belongs to one of four “layers”: these are the shipment origins,

the exporting hubs, the importing hubs, and the shipment destinations.

We generated twenty-four test cases in Table 4.2 to be used in the following sections. In

the case-generation phase, we did not specify the number of flight classes. In later sections,

we will vary the number of flight classes (|C|) for each network.

Case No. |N | |F | e |K|
1E1K10 16 48 1 10
1E2K10 16 96 2 10
2E1K30 20 50 1 30
2E2K30 20 100 2 30
3E1K50 30 84 1 50
3E2K50 30 168 2 50
4E1K80 40 100 1 80
4E2K80 40 200 2 80
5E1K60 40 100 1 60
5E2K60 40 200 2 60
6E1K70 40 100 1 70
6E2K70 40 200 2 70
7E1K90 40 100 1 90
7E2K90 40 200 2 90

8E1K100 40 100 1 100
8E2K100 40 200 2 100
9E3K70 40 120 3 70
9E5K70 40 175 5 70

10E1K80 40 120 3 80
10E2K80 40 175 5 80
11E1K90 40 120 3 90
11E2K90 40 175 5 90

12E1K100 40 120 3 100
12E2K100 40 175 5 100

Table 4.2: Cases Generated for the Numerical Tests

75



4.4.5 Numerical Analysis for Lagrangian Relaxation

The numerical tests were conducted using CPLEX 11.0 on a Windows7 workstation with

1.6GHz i7 CPU and 3GB of RAM. Initially, we applied the branch-and-price algorithm to

problem instances generated in Table 4.2. Although branch-and-price did provide an exact

solution, the execution time exceeded 30 minutes for all cases except 1E1K10,1E2K10 and

2E1K30. Therefore, we decided to use subgradient optimization methods for the larger

problem instances.

Table 4.3 displays results under different numbers of flight classes using Lagrangian

relaxation via subgradient optimization. The %GAP is defined as the percentage difference

between the objective computed by the Lagrangian heuristic and that obtained by CPLEX.

The average difference between our results and those of CPLEX was below 1% for networks

with less than 6 classes of flights.

We define %Flight in Table 4.3 to denote the percentage of flights being selected in

the final solution, relative to the total number of flights in the respective case. One area

that Cohn et al. (2008) did not address is the benefit of reducing the number of flights

engaged by forwarders. When only two classes of flights are present in the system, just

60% of the available flights will be chosen by freight forwarders. With the availability of

such a discount, forwarders not only benefit from the system-wide discount itself, but also

tend to load cargo on fewer flights, hence reducing the potential fees for loading or staging.

This translates to lower cost in document administration, and in IT integration.

76



Test Case
|C|=2 |C|=3 |C|=4 |C| = 5

%GAP %Flight %GAP %Flight %GAP %Flight %GAP %Flight
1E1K10 0 81.25 0 81.25 0 87.5 0 91.67
1E2K10 0 59.38 0.1 62.5 0.3 73.96 0.1 94.79
2E1K30 0 76 0 80 0 94 0 96
2E2K30 1.2 56 0.8 58 0.1 69 0 90
3E1K50 0 70.24 0 78.57 0.5 78.57 0.1 90.48
3E2K50 3.4 58.93 0.2 58.33 0.3 69.64 0 83.93
4E1K80 0.1 81 0 79 3.6 88 2.2 92
4E2K80 0 57 0.2 60.5 0.2 67 1.6 84.5
5E1K60 0 71.5 0 79 0.7 83.5 0 85
5E2K60 0 69 0.6 72.5 0.6 73 0.1 79
6E1K70 0 80 0 80 0.2 84.5 1.3 89
6E1K70 0.3 74.5 1.1 79 0.2 85 1.2 85
7E1K90 0.5 78.5 0.4 81 0.5 85.5 1.9 84
7E2K90 0.4 64 0.6 68.5 0.5 72.5 2.2 79

8E1K100 1.6 80.5 1.3 89.5 0.8 88 6.4 91
8E2K100 1.2 79 2.9 85 3.8 85 2.3 87.5
9E3K70 0.3 82.5 0.4 86.67 1.4 86.67 1.1 92.5
9E5K70 0 73.14 1.9 74.29 1.3 76 2.3 76

10E3K80 0.4 80.83 0.9 82.5 0.4 84.17 1.5 87.5
10E5K80 1.1 65.14 0 68 0.6 70.86 0.6 69.14
11E3K90 0.6 80 0.9 81.67 1.3 85.83 1.7 92.5
11E5K90 1.2 69.14 1.3 70.29 1 74.29 2 74.86

12E3K100 0.8 57.5 0.2 57.5 0.8 65 2.1 67.5
12E5K100 0.7 73.71 0.7 77.14 3.1 78.86 0.9 80.57

Average 0.58 71.62 0.60 74.61 0.93 79.43 1.32 85.14

Table 4.3: Comparison of Lagrangian Relaxation result for different |C|

4.5 Double Discount Case

In this section, we explore both a flight-leg and a system-wide discount. In other words,

suppose there is a quantity discount csf associated with each flight leg f , and also a quantity

discount factor pcr associated with flight class c. We use the index s to distinguish the former

from the system-wide-discount range, index r. With other parameters remaining the same

as in Section 4.2, the following additional notation is defined:

77



s: index for each quantity-discount range on flight.

csf : base cost per chargeable weight on flight f according to weight range s.

bsf : end point of chargeable weight range s for flight f . b0
f = 0, unless stated otherwise.

The decision variables are modified to:

• xrsf = total chargeable weight on flight f , priced according to system-wide discount

range r ∈ Rc(f) and quantity discount range s.

• ykf =


1, if shipment k takes flight f

range r ∈ Rc(f)

0, otherwise;

• wsf =


1, if combined shipments on flight f are priced according to the quantity

discount range s ∈ S;

0, otherwise;

• zcr =


1, if the total weight on flights in class c is in range r;

0, otherwise;

The [DOUBLE DISCOUNT] problem is then formulated as:

min
∑
f∈F

∑
r∈Rc(f)

(1− pc(f)
r )

∑
s∈S

csfx
rs
f (4.15)

78



s.t.
∑

f∈{N+
f =n}

ykf −
∑

f∈{N−f =n}

ykf =


−1 if n = N−k

1 if n = N+
k

0 for all other nodes

∀k ∈ K,n ∈ N (4.16)

∑
r∈Rc

zcr = 1 ∀c ∈ C (4.17)

∑
s

wsf = 1 ∀f ∈ F (4.18)

∑
k

vkykf ≤
∑

r∈Rc(f)

xrsf ∀f ∈ F (4.19)

∑
k

gkykf ≤
∑

r∈Rc(f)

xrsf ∀f ∈ F (4.20)

lcrz
c
r ≤

∑
s∈S

∑
f∈c(f)

xrsf ≤ ucrz
c
r ∀c ∈ C, r ∈ Rc(f) (4.21)

bs−1
f wsf ≤

∑
r∈Rc(f)

xrsf ≤ bsfw
s
f ∀f ∈ F, s ∈ S (4.22)

xrsf ≥ 0 ∀f ∈ F, s ∈ S, r ∈ Rc(f)

ykf , w
s
f , z

c
r ∈ {0, 1} ∀c ∈ C, r ∈ Rc

When compared to [SYSWIDE] in Section 4.2, only constraints (4.18) and (4.22) are

added. The restrictions (4.18) imply that just one weight range can be used on each flight

f . Inequalities (4.22) require that the declared weight should be between the corresponding

break points of the weight range. Note that the capacity constraints have been handled

implicitly in (4.22), as the upper-weight limit of the highest weight break on a flight is

always equal to the booking capacity on that flight.

79



4.5.1 A Mixed Local Branching Solution

In the double-discount problem, there are three sets of binary variables. The ykf variables

are more important in the sense that once they are fixed, the other two are easily known.

Based on this, local branching fixes some ykf iteratively to find feasible solutions. When

ykf ’s are fixed, the problem needs to decide only on the corresponding ranges for the two

discount schemes. Therefore, we consider just ykf in the neighborhood exploration. For a

given feasible solution ȳ to [DOUBLE DISCOUNT], we define the k-OPT neighborhood

N(ȳ, δ) of ȳ as the set of the feasible solutions of (P) satisfying the additional local

branching constraint:

∆(y, ȳ) :
∑
f

∑
k and ykf=1

(1− ykf ) +
∑
f

∑
k and ykf=0

ykf ≤ δ (4.23)

Therefore, for a given incumbent solution ȳ, the solution space can be partitioned into a

left branch and a right branch according to:

∆(y, ȳ) ≤ δ (left branch) ,∆(y, ȳ) ≥ δ + 1 (right branch) (4.24)

Our implementation is similar to what we did for the unsplittable network consolidation

problem in Section 3.3.2, as we consider only the first-level binary variable ykf in the initial

neighborhood exploration. After adding constraint (4.23), if the system is not solved to

proven optimality within a given time limit, we resort to the variations of second-level

80



variables which are constrained by (4.25) and (4.26):

∆(w, w̄) :
∑
f

∑
s and ws

f=1

(1− wsf ) +
∑
f

∑
s and ws

f=0

wsf ≤ δ2 (4.25)

∆(z, z̄) :
∑
c

∑
r and zcr=1

(1− zcr) +
∑
c

∑
r and zcr=0

zcr ≤ δ3 (4.26)

By iteratively increasing the values of δ2 and δ3 up to δ, we explored the second-level

neighborhoods contained in the first-level neighborhood defined by constraint (4.23). This

modification, which caters to two levels of binary variables, yielded excellent results for our

test cases, compared to ordinary local branching as in Fischetti and Lodi (2003). According

to our computational experience, the choice of δ in the range of [4, 12] is effective in most

cases. When we set the δ value too high, it didn’t produce the first solution fast enough,

which defeats the original purpose of local branching. The second-level and third-level

neighborhood size are less sensitive and they are set in the range of [0.05 ∗ |F | ∗ |K|, 0.08 ∗

|F | ∗ |K|] in our implementation.

Another modification we made to the algorithm is a local search (see Figure 4.5)

based on the current best feasible solution, before branching on second-level variables,

as branching on the second-level variables wsf and zcr was found to be time consuming.

This local search is a simplified version of neighborhood search in Hansen et al. (2006).

We implemented a rather simple node-based tree termination scheme that has the

following characteristics, as in Puchinger et al. (2010):

• Trees will be aborted when their total number of created nodes exceeds a given limit.

81



[Local Search]
Loop until the node time limit is reached:
Initiate nbh = 1.
Iterate the following steps until nbh = nbhmax

1. Generate ȳ′ at random from the nbhth neighborhood of ȳ (denoted by Nnbh(ȳ))

2. Find the best neighbor ȳ′ of ȳ in Nnbh(ȳ)

3. If Obj(ȳ′) < Obj(ȳ), set ȳ=ȳ′ and continue with the search N1(ȳ). Otherwise, set
nbh=nbh+ 1.

End Loop

Figure 4.5: Local Search within Local Branching

• Trees will be aborted when the number of created nodes since the last improvement

of the best feasible solution found inside the local tree exceeds a given limit.

• When a tree is aborted and the maximum number of local trees is not reached, a

new local tree is created with the current best global solution. Based on the result

of the last local tree, the new tree will be eventually modified:

– When a better solution is found since the last tree was created, local branching

is restarted with this new solution and the initial local branching parameters.

– When no new solutions are found, the new local tree is tightened (if the corre-

sponding parameters are set): the number of variables to be fixed is increased,

and the value of δ gets modified.

Alternatively, a time limit can be used instead of a tree-node limit at each node level.

However, we found that time limit was biased towards smaller sized problem. Therefore,

82



we used the total number of nodes as a limit at each node level, and imposed a time limit

at the overall exploration level.

We now compare the results of local branching (with a 15 or 30 minute time limit) with

those of running CPLEX for 1 hour. Local branching yields very promising performance

according to Table 4.4. The test instances follow the convention of Table 4.2, now adding

another dimension: the number of weight ranges on each flight (|S|). The number of flight

classes is set to either 2 or 3, as differentiated by the digit after character ‘C’ in the test-case

name. We consider the comparison between cases when |S| = 2 and |S| = 4.

The %GAP column in Table 4.4 measures the difference between local branching and

CPLEX, where %GAP =
fLB−fcplex
fcplex

× 100%. A negative (positive) number in this column

implies local branching yields a better (worse) result than CPLEX. The last column,

CPLEX Gap, is the standard CPLEX output that measures the difference between the

best feasible objective and the objective of the best node remaining, when the CPLEX

operations halt after one hour. The default gap for CPLEX is 0.01%.

Table 4.4 reports the gap between the solution using local branching and CPLEX.

Local branching is able to produce solutions to every case combination when two levels of

branching are considered. Each case in the right-hand portion of Table 4.4 has four quantity

discount ranges. Local branching yields results superior to those of CPLEX in ten cases

(within 30 minutes), despite the longer time threshold (one hour) for CPLEX, and ties

with CPLEX for seven cases. When the number of quantity discount ranges is reduced to

|S| = 2, local branching ties with CPLEX in seven cases and surpasses CPLEX in another

seven cases. Moreover, local branching shows even greater advantages over CPLEX when

83



|C| |N | |S|=2 |S|=4
Test
Case

LB
(15min)
%GAP

LB
(30min)
%GAP

CPLEX
%GAP

LB
(15min)
%GAP

LB
(30min)
%GAP

CPLEX
%GAP

1C2K10 2 10 0 0 0.01 1.93 0 0.01
1C3K10 3 10 5.04 0 0.01 4.83 0.58 0.01
2C2K30 2 30 0 0 0.01 0 0 0.01
2C3K30 3 30 9.2 0 0.01 0 0 0.01
3C2K50 2 50 0 0 0.01 0 0 0.01
3C3K50 3 50 6.23 0 0.01 2.29 2.29 0.01
4C2K80 2 80 1.1 -0.19 1.08 12.06 2.44 1.02
4C3K80 3 80 7.94 -1.48 1.94 2.41 -2.19 2.86
5C2K40 2 40 2.44 0.82 0.01 8.24 0.61 0.38
5C3K40 3 40 1.68 1.68 0.01 9.38 0.91 0.43
6C2K60 2 60 5.2 0 0.69 9.88 1.29 0.02
6C3K60 3 60 8.65 0.63 0.01 6.73 -0.25 1.14
7C2K70 2 70 8.52 0.55 1.48 0.14 -1.83 2.1
7C3K70 3 70 2.23 -2.3 3.01 -0.98 -0.98 1.46
8C2K90 2 90 4.21 -1.96 2.85 5.49 -2.11 2.93
8C3K90 3 90 -2.41 -2.41 4.33 -0.09 -2.58 3.52
9C2K100 2 100 1.72 -0.12 0.39 0.48 0.29 0.11
9C3K100 3 100 3.02 0.51 0.44 1.89 -0.38 0.56
10C2K110 2 110 4.18 0.99 0.69 1.21 1.07 0.77
10C3K110 3 110 2.25 -1.03 1.38 0.44 -0.56 0.98
11C2K115 2 115 1.8 1.15 0.47 1.29 -0.2 1.16
11C3K115 3 115 4.11 0.84 0.29 -0.03 -0.13 0.78
12C2K120 2 120 3.17 1.33 0.98 6.81 3.02 2.94
12C3K120 3 120 2.03 2.03 1.22 6.94 1.88 0.94

Table 4.4: Comparison of Local Branching with CPLEX

the number of shipments in the test cases increases in Table 4.4. We also want to highlight

that local branching gives better results when there are three flight classes, compared to

the two-class cases.

The choice of first-level neighborhood size δ also plays a vital role in solution quality.

The local branching constraint possibly defines a very large neighborhood. Given our

problem with n = |K| × |F | first-level variables, the local tree includes all neighbors with

84



a Hamming distance not larger than δ, so the actual search tree contains (nδ ) = n!
(n−δ)!δ!

neighbors with a Hamming distance of δ. Table 4.5 reports the computational performance

based on different first level neighborhood size δ. The %GAP is measured in the same way

as in Table 4.4. To make our analysis less biased, with each combination of |C|, |K| and

|F |, we generated four instances. The %GAP then represents the average of those four.

We chose a 15-minute threshold because, for smaller instance size, the algorithm will not

make much more of an improvement after 30 minutes. This is the best time interval for

comparison.

|C| |K| |F | %GAP for neighborhood size for 15 min
4 8 12 16

2 60 84 3.42 1.69 4.77 6.09
2 60 168 4.08 1.34 0.98 6.20
3 60 84 2.66 0.99 0.92 2.64
3 60 168 4.85 0.78 1.03 6.31
2 80 84 3.10 1.89 0.57 3.91
2 80 168 2.99 0.94 1.02 3.01
3 80 84 5.91 2.19 1.23 4.30
3 80 168 4.06 1.80 2.02 1.95
2 120 84 5.96 3.08 4.73 3.40
2 120 168 6.74 3.91 3.86 4.21
3 120 84 5.35 4.30 4.06 5.02
3 120 168 5.78 2.77 1.70 2.05

Table 4.5: Comparison of Local Branching on the Choice of δ

The trend in Table 4.5 reveals that when the neighborhood size is small (δ = 4), the

algorithm is able to control the gap below 4.5% if the instance size is relatively small. The

large-neighborhood-size setting (δ = 16) result in a larger average gap. When the variables

involved in the problem increase, a smaller neighborhood size always leads to traps in local

85



minima, and no longer produces a good result. The best results shift to settings where

δ = 12 or 16.

4.5.2 Practical Benefits of the Double Discount

To assess the effectiveness of the double-discount scheme, we compare it to the no-discount,

flight-leg, and system-wide discounts. The findings are displayed in Table 4.6, where the

cost savings and the percentages of the total number of flights used are exhibited. The data

in the “No Discount” column are generated by assigning a unit cost equal to the average

costs of the flight-leg and the system-wide discounts. There are no bumping clauses nor

system-wide discounts on any flight legs. The average total discount over all flights is the

same for the flight-leg and the system-wide discounts.

Case C| No Discount Flight-Leg Discount System-Wide Discount Both
Total
Cost($)

% of
flights
used

Total
Cost($)

% of
flights
used

Total
Cost($)

% of
flights
used

Total
Cost($)

% of
flights
used

1C2E2K10 2 17,620 79.17 16,844 65.63 13,405 75.00 12,683 64.58
1C3E2K10 3 17,620 79.17 16,844 65.63 14,421 78.95 12,991 63.54
2C2E2K30 2 43,181 83.00 41,070 64.00 36,991 67.47 33,581 55.00
2C3E2K30 3 43,181 83.00 41,070 64.00 37,424 69.88 34,760 55.00
3C2E2K50 2 70,014 75.00 51,582 61.90 49,744 78.57 46,430 56.55
3C3E2K50 3 70,014 75.00 51,582 61.90 48,590 77.78 46,886 57.14
4C2E2K80 2 113,680 83.50 89,474 69.50 85,240 68.26 83,611 59.00
4C3E2K80 3 113,680 83.50 89,474 69.50 87,504 72.46 83,554 59.50

Table 4.6: Comparison of Double Discount with No Discount and Single Discounts

From Table 4.6, we observe a significant drop in the average percentage of flights used

for the flight-leg discount and the system-wide discount, compared to the no-discount

86



cases. As expected, the double-discount achieves the best results. However, the further

reductions of the double-discount from the flight-leg discount or system-wide discount cases

are smaller percentage than those reductions from no-discount to single discount. That is

because it is hard for declared shipments to reach the last segments on a flight-leg discount

weight range and on a class weight range at the same time. This is also a reason for the

increased cost when there are more flight classes. As supported by Table 4.6, the overall

cost is 0.5% higher when there are three flight classes compared to just two.

4.6 Summary

In this chapter, we have proposed two mathematical models and corresponding solution

procedures for the shipment consolidation problem under two discount schemes: a system-

wide discount and a double-discount.

For the system-wide discount, we extended an existing model due to Cohn et al.

(2008) by including the volume weight, the possibility of weight over-declaration, and

the requirement that a given shipment cannot be divided. We then proposed a column

generation framework to solve it. Under such a discount, forwarders not only benefit from

the system-wide discount itself, but also tend to engage with fewer airlines, thus reducing

administrative fees.

The second discount scheme combined both the system-wide and the flight-leg dis-

counts. Using a mathematical programming model, we presented a local branching ap-

proach to solve it and discussed some of the model’s practical benefits.

87



Chapter 5

Consolidation Problem with Pivot

Weight

5.1 Problem Description

In this chapter, we study a freight consolidation problem variant where shipments are

consolidated into ULDs. An airfreight forwarder is faced with the decision to allocate a

total of n shipments. Each shipment i ∈ I (I is the set of shipments), with gross weight

gi is to be allocated to a particular ULD j ∈ J (J is the set of reserved ULDs), subject to

a capacity limitation. Suppose there are |J | ULDs, each with a fixed reservation cost fj,

a pivot capacity Uj, an extra pivot capacity UE
j , an under-pivot rate cj and an over-pivot

rate cEj . The ULD thus has a total capacity of Uj + UE
j . Given customer demand, the

airfreight forwarder needs to decide on which ULDs to select. For those ULDs chosen,

88



the forwarder also needs to determine which shipments will be loaded in each, in order to

minimize the total cost.

5.2 Problem Formulation

We use binary decision variables xij and zj, where xij takes value 1 if shipment i is assigned

to ULD j, and 0 otherwise; zj takes value 1 if ULD j is used and 0 otherwise; and continuous

variables yEj to denote the additional capacity beyond the pivot weight for ULD j. The

air-cargo consolidation problem with pivot weight is modeled as:

[ACPW]: min
∑
j

fjzj +
∑
i

∑
j

gicjxij +
∑
j

cEj y
E
j (5.1)

s.t.
∑
j

xij = 1 ∀i ∈ I (5.2)

∑
i

gixij ≤ Ujzj + yEj ∀j ∈ J (5.3)

yEj ≤ UE
j zj ∀j ∈ J (5.4)

xij ∈ {0, 1}, zj ∈ {0, 1}, yEj ≥ 0 ∀i, j

The objective (5.1) minimizes the fixed reservation cost plus the under-pivot and over-

pivot costs. Constraints (5.2) require that each shipment be assigned to exactly one ULD.

Constraints (5.3) and (5.4) model the pivot capacity and over-pivot capacity for each ULD

j. Li et al. (2009) showed that this problem is NP-hard, as it can be reduced to the

89



well-known 3-partition problem. In the following section, we propose a branch-and-price

algorithm to solve the problem.

5.3 Branch-and-Price

By relaxing constraint (5.2), we obtain the following subproblem:

[ACPW-Relax]: min
∑
j

fjzj +
∑
i

∑
j

gicjxij +
∑
j

cEj y
E
j +

∑
i

λi(1−
∑
j

xij) (5.5)

s.t.
∑
i

gixij ≤ Ujzj + yEj ∀j (5.6)

yEj ≤ UE
j zj ∀j (5.7)

xij ∈ {0, 1}, zj ∈ {0, 1}, yEj ≥ 0 ∀i, j

Note that since we relaxed an equality constraint, the multiplier λi is unrestricted in sign.

The subproblem can be decomposed to |J | subproblems as follows:

[SPj] : Wj = min fjzj +
∑
i

(gicj − λi)xij + cEj y
E
j

s.t.
∑
i

gixij ≤ Ujzj + yEj (5.8)

yEj ≤ UE
j zj (5.9)

xij ∈ {0, 1} ∀i, zj ∈ {0, 1}, yEj ≥ 0

90



[SPj] is a 0/1 knapsack problem with one continuous variable yEj and an additional

constraint (5.9), corresponding to each ULD j. The Lagrangian bound is given by
∑

jWj+∑
i λi. The best Lagrangian bound is thus maxλ

∑
jWj +

∑
i λi, which is equivalent to the

Lagrangian master problem:

[MP]: max
∑
i

λi +
∑
j

θj

s.t. θj +
∑
i

λix
h
ij ≤ fjz

h
j +

∑
i

gicjx
h
ij + cEj y

Eh
j ∀h, ∀j (5.10)

Here (xhij,y
Eh
j ,zhj ) is a feasible solution to [SPj], where 1 ≤ h ≤ Hj denotes the iteration

number. The master problem yields a Lagrangian upper bound LRUB, while the sub-

problems produce a Lagrangian lower bound LRLB =
∑

i λi +
∑

j SPj(λ). The master

problem, subproblem, and multipliers are updated iteratively according to the following

steps in Figure 5.1.

A solution to the subproblem is rarely found to be feasible for the original problem.

Section 5.3.1 proposes a column generation procedure to get an exact solution.

5.3.1 Column Generation And Branch-and-Price

The dual of [MP] is the Dantzig-Wolfe Master problem:

[DWM]: min

Hj∑
h=1

∑
j

(fjz
h
j +

∑
i

gicjx
h
ij + cEj y

Eh
j )αhj

91



Initiate LRUB =∞, LRLB = −∞

1. Start with a set of λi (For example λi are set to be greater than the maximum of
cjgi + cEj + fj)

While LRUB 6= LRLB

2. Solve subproblem [SPj] for each j. We get a solution (xhij,y
Eh
j ,zhj ) and a lower bound

LRLBh =
∑

jW
h
j +

∑
i λi

3. Update the lower bound LRLB=max(LRLB, LRLBh)

4. Use (xhij,y
Eh
j ,zhj ) to add |J | cuts (5.10) to [MP]

5. Solve [MP] to get a new set of λi and an upper bound LRUB

End while

Figure 5.1: Algorithm for updating the Lagrange multipliers

s.t.
∑
j

Hj∑
h=1

xhijα
h
j = 1 ∀i (5.11)

Hj∑
h

αhj = 1 ∀j (5.12)

αhj ≥ 0, h = 1 ... Hj

The Dantzig-Wolfe master problem presents an equivalent formulation to [ACPW] when

αhj ∈ {0, 1}. To force this, [DWM] has to be embedded within a branch-and-bound method.

As [DWM] is solved through column generation, the result is a branch-and-price approach.

At each node of the branch-and-price algorithm, the Lagrangian dual is solved as in

Figure 5.1. Then a feasible solution is obtained as in Section 5.3.4. That feasible solution

92



is used to update the incumbent. Depending on these bounds, a node is either fathomed,

or further explored by branching. The procedure is repeated until all nodes are fathomed.

5.3.2 Branching

Theoretically, we can branch on either xij or zj. However, after some initial testing, we

found that branching first on zj gave additional feasible columns at an early stage of

the branch-and-price process. Therefore, we branch first on zj, followed by xij. When

branching on xij, we try to branch on the j index before the i index. The two-level

branching strategy is illustrated in Figure 5.2.

Figure 5.2: Two-level Branching Strategy

A depth-first strategy will explore the choice where only one ULD is open, which is

unlikely to yield a feasible solution. Recall that we need a good feasible solution to update

the incumbent and increase the likelihood of successfully fathoming the subsequent child

nodes. Therefore, branching first on j will lead to a solution with all ULDs being utilized.

93



This will result in a feasible solution, which can be used as a good upper bound for

fathoming the right side of the tree.

The preceding strategy resembles the branching strategy in facility location problems.

There, it is always better to branch first on whether facility is “open” or “closed”. Once

we have decided whether to use a given ULD or not, we can then decide on the assignment

of shipments to ULDs. Moreover, for each zj, we branch on those j with smaller values

of
fj+cj∗Uj

Uj
, as the ULDs with lower unit cost are more likely to be used. For the binary

variables xij, we give branching priority to the ones with the greatest fractional values.

Branching is halted when one of the following three conditions is met:

• The Lagrangian lower bound exceeds the incumbent

• “Closing” any ULD will result in an infeasible solution

• All nodes created by the branching rule have been searched

5.3.3 Generating an Initial Feasible Solution

A basic feasible solution can be obtained from the relaxation of the original [ACPW]

formulation. We approximate the primal integer solution to [ACPW] by rounding its LP,

denoted by:

[LP-ACPW]: min
∑
j

fjzj +
∑
i

∑
j

gicjxij +
∑
j

cEj y
E
j

94



s.t.
∑
j

xij = 1 ∀i ∈ I

∑
i

gixij ≤ Ujzj + yEj ∀j ∈ J

yEj ≤ UE
j zj ∀j ∈ J

0 ≤ xij ≤ 1, 0 ≤ zj ≤ 1, yEj ≥ 0 ∀i, j

The next step can be viewed as a two-step approach similar to that of Akeb et al. (2011):

• Once [LP-ACPW] is solved, fractional xij and zj are rounded. The fractional variable

that has the largest value is rounded first.

• The reduced problem that remains after the preceding step is subject to a similar

procedure, until no further rounding is needed.

5.3.4 Lagrangian Heuristic

When we solved the Dantzig-Wolfe problem at each tree node, we often obtained infeasible

solutions from the subproblems. We thus need a quick heuristic that can generate a feasible

solution based on the solution to the subproblem. The infeasible solutions above usually

had some shipments being assigned to multiple ULDs, while other shipments were not

assigned to any. Therefore, we use the following Lagrangian Heuristic:

95



1. For any shipment assigned to more than one ULDs; For each of those j ULDs,

evaluate the ratio
fj+cj∗Uj

Uj
value, retain the shipment in the ULD with the minimum

ratio. Remove that shipment from the remaining ULDs.

2. Treat each ULD as two knapsacks, one with a capacity of Uj and the other with

capacity of Uj + UE
j . (These are respectively type (i) and type (ii).)

3. Sort all shipments in descending order of their weight

4. Update each ULD’s available capacity: Uj
′=Uj−

∑
i loaded into j gi;

5. Sort all ULDs in ascending order of
fj+cj∗U ′j

U ′j
if they are type (i) knapsacks, or in

ascending order of
fj+cj∗Uj+cEj ∗UE

j

Uj+UE
j

for type (ii) knapsacks. Only one type can be used

at a time.

6. Fill the ULDs with shipments in the sorted order.

7. If the total weight in the ULD does not exceed Uj, fill that ULD with shipments

until the total weight contained just exceeds the pivot weight Uj. Let r denote the

shipment that first causes the ULD’s load to exceed the pivot weight. Let S represent

the solution with shipment r, and S ′ represent the solution without shipment r.

Choose S or S ′, whichever has lower cost. (See Figures 5.3(a) and 5.3(b) for an

illustration.)

8. If there still remain any shipments not allocated to ULDs, return to Step 4. Other-

wise, stop.

96



The preceding algorithm is similar to the profit-density greedy approach to the knapsack

problem, where
fj+cj∗Uj

Uj
is equivalent to the profit-density ratio for each shipment. The

heuristic for Case 2 is derived based on the following observation: When the binary

requirement is relaxed for each binary variable in the knapsack problem, the optimal

solution is still binary except for the last item in the knapsack.

(a) Case 1 (b) Case 2

Figure 5.3: The Two Cases of Step 7 in Lagrangian Heuristic

5.4 A Best-Fit Decreasing Heuristic

The branch-and-price procedure in Section 5.3 is usually very slow to converge. The

airfreight industry requires rapid decisions in operational planning. Therefore, we require

a fast and accurate heuristic for the ACPW. The heuristic we propose in this section is

motivated by heuristics for the bin-packing and the knapsack problems.

We adopt the best-fit decreasing heuristic (BFDH) based on profit density. Kan

et al. (1993) suggest a class of generalized greedy algorithms for the {0, 1} multi-knapsack

problem. Items are selected according to decreasing ratios of their profit and a weighted

sum of their requirement coefficients.

97



The BFDH first sorts all shipments according to the non-increasing order of their gross

weight. For each shipment, the algorithm initially attempts to load it in the “best” already-

selected ULD, which is that ULD with the minimum “adjusted-unit-cost” ratio, defined

as
fj+cj∗Uj

Uj
if no over-pivot capacity is used; or

fj+cj∗Uj+cEj ∗UE
j

Uj+UE
j

otherwise. If the shipment

cannot be loaded on an already-selected ULD, a new ULD is chosen. Once a shipment is

assigned to a ULD, the “best” ULD is re-computed according to the space remaining in

each ULD. Due to the existence of over-pivot capacity, the calculation of adjusted-unit-cost

ratio has to take cEj and UE
j into account. The detailed algorithm is shown below.

1. Initialize S = {∅}. Sort all shipments i in decreasing order of their gross weight.

2. Set Uj
′=Uj, Rj=

fj+cj∗Uj
′

Uj
′ for each ULD.

3. For all i ∈ I (assumed to be in descending order of gross weight)

3.1 for all j ∈ J

if gi > Uj
′ + UE

j go to the next ULD

else if gi > Uj
′ set Rj =

fj+cj∗Uj
′+cEj ∗UE

j

Uj
′+UE

j

end if

3.2 sort all ULDs in ascending order of Rj. Let j′ be the first ULD in the ordered

list, and fill i into j′. Set Uj
′=Uj − gi,S = S ∪ {j′}.

4. For all j ∈ S do

4.1 set Mj =
∑

i i loaded in j gi

98



4.2 for all k ∈ J\S do

if Uk > Mj and cj < ck then

move all the items from j to k

S = S\j ∪ {k}

end if

5. Call LocalSearch(j, size(j)/3), described next.

The Local Search routine is as follows:

Loop until the local time limit is reached:

Initiate nbh = 1.

Iterate the following steps until nbh = nbmax

1. For the given ULD j, generate x̄′ij at random from the nbhth neighborhood of x̄ij

(denoted by Nnbh(x̄
′
ij)), where j 6= j′.

2. Find the best neighbor x̄′ij of x̄ij in Nnbh(x̄ij)

3. If Obj(x̄′ij) < Obj(x̄ij), set x̄ij=x̄
′
ij and continue the search within Nnbh(x̄ij), where

nbh = 1. Otherwise, set nbh=nbh+ 1.

end

Our calculation of the adjusted-unit-cost ratio is inspired by the item-selection rule for

knapsack problems. We thus select bins according to the non-increasing order of their unit

99



cost/volume ratios, and in the non-decreasing order of their volumes when the unit costs

are equal.

5.5 A Local Branching Heuristic

In this section, we first apply the multi-level-variable branching extension proposed in

Chapters 3 and 4 to the ACPW problem. Based upon handling those multi-level variables,

we introduce new extensions to improve the existing local branching framework.

5.5.1 The Basic Local Branching Algorithm

Given a feasible solution z̄ of ACPW and a positive integer parameter k, the k-OPT

neighborhood N(z̄, k) of z̄ is the set of feasible solutions of ACPW satisfying the additional

local branching constraint (which is also called the Hamming Distance constraint):

∆(z, z̄) :
∑

j and z̄j=1

(1− zj) +
∑

j and z̄j=0

zj ≤ k (5.13)

Therefore, for a given incumbent solution z̄, the solution space can be partitioned into

a left branch and a right branch according to (5.14):

∆(z, z̄) ≤ k1 (left local tree) ,∆(z, z̄) ≥ k1 + 1 (right local tree) (5.14)

100



According to computational experience, the choice of k in the range of [6, 12] is effective

in most cases. In addition to the framework proposed by Fischetti and Lodi (2003), we

consider only the first-level binary variable zj in the initial neighborhood exploration. After

adding constraint (5.13), if the system is not solved to proven optimality within a given

time limit, we resort to the variation of second-level variables which is constrained by

(5.15):

∆(x, x̄) :
∑
i

∑
j and x̄ij=1

(1− xij) +
∑
i

∑
j and x̄ij=0

xij ≤ k2 (5.15)

By iteratively increasing the value of k2 up to kmax2 , we explore the second-level neigh-

borhoods which are contained in the first-level neighborhood defined by constraint (5.13).

This modification caters to two levels of binary variables, compared to the original local

branching in Fischetti and Lodi (2003).

Although the multi-level-variable strategy gained success in the problems of Chapters

3 and 4, it does not deliver good performance for the ACPW problem. In the previous

two research problems, when the first level variables are fixed, the feasible solution space

is reduced significantly (as feasible routes are highly dependent on the choice of flights).

In ACPW, that feasible solution space is relatively large compared to the number of first-

level variables (zj), and a promising left-subtree does not always lead to an overall optimal

solution.

To enhance our local branching implementation, two extensions have been added to

the standard local branching algorithm. The first eliminates the restriction of sequential

execution by allowing us to create new local trees before the previous one(s) are finished.

This permits us to start from multiple initial solutions created by the steps in Sections

101



5.3.3 and 5.3.4. The second extension tries to reduce the subproblem complexity by fixing

those variables that are less likely than others to change in the optimal solution.

5.5.2 Local Branching with Multiple Trees

We could easily have multiple initial solutions by the methods in Sections 5.3.3 and 5.3.4.

These solutions will generate a number of local trees from the root node. We leverage on

the multi-thread feature of Java to implement the pseudo-concurrent exploration of several

local trees. This introduces some diversifications and avoids the final solution being caught

in a local optimum. Similar to the implementation of Lichtenberger (2005), at each node

of the local branching tree, there is a single pool for subproblems where all local tree nodes

are stored. Each local tree generated by the incumbent tree node is assigned a new parallel

thread. We give promising nodes more execution time than others by assigning a tree

exploration time-threshold proportional to their lower bound, i.e. local trees with a better

lower bound will get more execution time.

This “mimics” the parallel exploration by a modification to the standard local branching

algorithm: Before a local tree is completely solved, the right (inverse) local-branching con-

straint for the rest of the search tree remains inactive. When this local tree is prematurely

terminated, that right constraint is removed from all future local trees. The detailed

implementation is illustrated in Figure 5.4, where three initial solutions are considered.

We use “pseudo-concurrent” here because CPLEX allows the building of different local

tree nodes with multiple duplicates of environment (CPXENV and CPXLP) in the im-

plementation. However, under the academic license, CPLEX restricts the implementation

102



from concurrently operating on the same object (as we would theoretically do in parallel

programming).

Figure 5.4: Local Branching with Multiple Local Trees

As indicated by Lichtenberger (2005), this kind of pseudo-concurrent exploration will

likely lead to a duplication of effort in some cases. Since it is not known in advance which

trees will actually be completely solved, right-tree constraints cannot be considered until all

the left-tree constraints have been dealt with. When a local tree is prematurely terminated,

no information about this local tree (except feasible solutions found so far) can be further

utilized: the neighborhood defined by this tree cannot be excluded from future local trees

because it still may contain the optimal solution. Therefore, whenever we branch on zj,

103



the right-tree constraint of the less-promising node is generated together with the right

tree of the promising one.

5.5.3 A Modified Relaxation-Induced Neighborhood Search Heuris-

tic

In the Relaxation-Induced Neighborhood Search (RINS) proposed by Danna et al. (2005),

it is assumed that variables having the same integer value in the incumbent solution and in

the LP relaxation are likely to be set to their optimal value. We apply this idea and embed

it in our local branching implementation. Thus, at each node of the local branching:

1. Fix a subset of variables that have the same values in the incumbent and in the

continuous relaxation.

2. Focus on the fractional variables. An MIP subproblem is solved on the remaining

variables within a given time limit.

3. If a better solution can be found, it is passed to the global MIP-search after a solution

to the MIP subproblem is found.

4. Otherwise, explore outside the neighborhood of the incumbent in the global MIP.

Therefore, at each tree node, Steps 1, 2 and 3 correspond to the left local tree (in basic local

branching), and act as an intensification step, where the more promising factional variables

are explored further. At the same time, the “less promising” integral variables of the current

104



LP optimum are ignored. This variable-fixing strategy explores a neighborhood both of the

incumbent and of the continuous relaxation, compared to reducing the neighborhood size

by decreasing the value of k in basic local branching framework. RINS not only improves

incumbents of poor quality (because it is guided by the continuous relaxation), but also

likely enhances robustness when faced with a loose relaxation. With the MIP subproblem

potentially difficult to solve, we will also impose a time limit for RINS at each node.

Therefore, this intensification step will not plunge into any difficult local optima.

Our implementation follows the framework proposed by Lichtenberger (2005), we

randomly selects from the set of all variables having the same integer values in the integral

and the LP solution. The number of fixed variables is given relative to the total number

of variables in the subproblem. In the following, let M1 denote the indices of variables

fixed to one, and M0 the indices of variables fixed to zero. (M0 +M1 thus equals the total

number of variables to be fixed). The variable-fixing process in Step 1 can be done directly

using cut (5.16). ∑
j∈M1

(1− zj) +
∑
j∈M0

zj = 0 (5.16)

For the right local branching tree in Step 4, suppose a solution is feasible outside the left

local tree. It is then true that either:

• At least one binary variable in the set of “less promising” variables has flipped its

value, or

• the Hamming distance of the new solution to the incumbent solution is greater than

k.

105



The first condition, which is complementary to (5.16), can be represented by cut (5.17).

The second condition can be combined with (5.17) into a new cut (5.18):

∑
j∈M1

(1− zj) +
∑
j∈M0

zj > 0 (5.17)

∆(z, z̄) > k − k [
∑
j∈M1

(1− zj) +
∑
j∈M0

zj ] (5.18)

where ∆(z, z̄) denotes the Hamming distance between the initial solution z̄ and the current

solution zj as defined in Equation (5.13). When one of those fixed variables flips, the right-

hand side will be less than or equal to zero. In this case, constraints (5.18) are satisfied

even if the Hamming distance is smaller than k (since that Hamming distance is always

non-negative).

In the ACPW problem, variables are more likely to take the same values in the

incumbent and relaxation, compared to other consolidation problems involving many rout-

ing decisions. Moreover, ACPW has a loose linear relaxation compared to those other

problems. Therefore, ACPW is a more suitable application for a RINS-orientated local

branching.

5.6 Computational Analysis

In this section, the computational performance of the proposed model and solution method

is evaluated. All proposed algorithms and the heuristic are coded in Java with CPLEX 11

106



as the back-end optimization solver on a laptop with i-7 Quad Core processors running at

1.6 GHz and 3GB of memory.

As the ACPW problem is relatively new and the business data from air freight for-

warders is confidential, we generated our own test cases to compare the performance of

the proposed approaches. Each such case is characterized by the number of shipments, the

number of ULDs, a range in which shipment weight is uniformly distributed, as well as a

range in which the pivot weight of ULDs is uniformly distributed. The shipment weight is

uniformly distributed in the interval [100,300]. The percentage by which UE
j exceeds the

pivot weight Uj (%UE
j vs Uj) is also taken into consideration in test case generation, where

the default value for %UE
j /Uj is 10% (UE

j = 10%Uj). The default ratio of
cEj
cj

is set to 1.2

unless otherwise specified.

Note that the sum of the maximum weights of all ULDs is set to be larger than the

total weight of all shipments, while the sum of their pivot weights differs from the total

weight of all cargo by a random amount in the interval [0, 0.02
∑

j Uj]. This follows the

same assumption of Li et al. (2009), based on the fact that the cargo weight of a ULD in

an ideal plan should be around its pivot weight; the forwarder tries to achieve this when

reserving the capacity.

5.6.1 Performance of the Branch-and-Price Algorithm

For the branch-and-price algorithm, we set a time limit of 7200 seconds. Computational

time is reported in column CPU if the algorithm is able to find the optimal solution within

107



the time threshold. The gap(%) is defined as the average gap between the best upper and

lower bounds found within the given time limit, i.e. gap = UB−LB
LB

%.

Table 5.1 shows that the branch-and-price approach is quite satisfactory when the

number of bins is small, as the algorithm is able to solve instances of up to 150 shipments.

25 instances out of 32 are solved to optimality within the two-hour limit. However, when

the number of ULDs increases to 16, the algorithm could not reach an optimal solution

within two hours and the gap between the lower and upper bounds remained relatively

large.

n N
UE
j /Uj%

10% 30%
gap(%) CPU gap(%) CPU

4

20 0 2 0 4
40 0 71 0 194
100 0 1917 0 2068
150 0 3044 0 996

8

20 0 205 0 179
40 0 426 0 802
100 0 1703 0 780
150 0 3077 0 6023

12

20 0 443 0 325
40 0 2438 0 2201
100 2.2 7200 3.1 7200
150 0 4370 1.9 7200

16

20 0 301 0 390
40 0.1 1411 0.1 2897
100 2.9 7200 0.8 7200
150 4.8 7200 2.7 7200

Table 5.1: Computational Results of the Branch-and-Price Approach on Small Instances

108



Table 5.1 also reveals that performance of the branch-and-price approach does not differ

considerably when the ratio of the over-pivot weight to the pivot weight varies. With the

remaining parameters being the same, 8 cases with
UE
j

Uj
= 10% and 8 cases with

UE
j

Uj
= 30%

are faster or achieve a lower gap.

5.6.2 Performance of the Best-First Decreasing Heuristic

Tables 5.2 and 5.3 present a comparison between the branch-and-price approach and the

best-fit decreasing heuristic. Their performance is measured against running CPLEX for

7200 seconds. The “Diff(%)” column calculates the percentage difference between the best

feasible solution of the algorithm and CPLEX, where Diff(%) =
fmethod−fcplex

fcplex
× 100%.

The “gap(%)” column displays the gap relative to CPLEX lower bound, i.e. gap(%) =

fmethod−LB
LB

. Solution times for BFDH and branch-and-price are listed side-by-side with the

CPLEX execution time. The 7200 in “CPLEX Time” column implies that CPLEX reaches

the time threshold before reaching optimum. The “*” indicates that CPLEX is running

out of memory before reaching the time threshold. The total-node-size limit is set to 2GB

for the CPLEX solver. The default tolerance gap for CPLEX is set to 0.001%.

Although the branch-and-price algorithm performed well for small instances, it cannot

find the optimal solution within the 7200-second threshold when the numbers of shipments

and ULDs increase. We resort to the BFDH of Section 5.4 for large instances. BFDH

takes a relatively short time for large instances while maintaining a relatively smaller gap

compared to CPLEX’s best feasible solution. Branch-and-price delivers better solution

quality, but with longer computational time.

109



|J
|

N
U

E j
=

1
0
%
U
j

U
E j

=
3
0
%
U
j

B
F

D
H

D
if

-
f(

%
)

B
P

D
-

iff
(%

)
B

F
D

H
ga

p
(%

)
B

P
ga

p
(%

)
B

F
D

H
T

im
e

B
P

T
im

e
C

P
L

E
X

T
im

e
B

F
D

H
D

if
-

f(
%

)

B
P

D
-

iff
(%

)
B

F
D

H
g
a
p

(%
)

B
P

g
a
p

(%
)

B
F

D
H

T
im

e
B

P
T

im
e

C
P

L
E

X
T

im
e

8

20
0.

0
0.

0
0.

0
0.

0
1
1

2
0
5

1
0

0
.0

0
.0

0
.0

0
.0

1
3

1
7
9

8
40

0.
3

0.
0

0.
3

0.
0

1
0
4

4
2
6

2
7

0
.0

0
.0

0
.0

0
.0

1
4
5

8
0
2

2
0

10
0

0.
1

0.
0

0.
1

0.
0

2
5
9

1
7
0
3

2
1
3

0
.0

0
.0

0
.0

0
.0

2
9
2

7
8
0

5
0
5

15
0

2.
8

0.
0

2.
8

0.
0

2
6
9

3
0
7
7

1
5
5
8

1
.5

0
.0

1
.5

0
.0

3
1
0

6
0
2
3

1
4
9
7

16

20
0.

0
0.

0
0.

0
0.

0
1
7
0

3
0
1

2
4

0
.0

0
.0

0
.0

0
.0

1
8
9

3
9
0

1
7

40
0.

0
0.

0
0.

0
0.

0
2
9
5

1
4
1
1

3
5

0
.0

0
.0

0
.0

0
.0

1
8
0

2
8
9
7

4
1

10
0

1.
6

2.
2

1.
6

2.
2

3
8
2

7
2
0
0

5
3
8

0
.8

3
.1

0
.8

3
.1

3
5
4

7
2
0
0

3
4
3

15
0

2.
5

0.
0

2.
5

0.
0

3
7
9

7
2
0
0

3
2
0
3

2
.6

1
.9

2
.6

1
.9

4
1
8

7
2
0
0

2
9
4
0

40

10
0

1.
5

0.
0

1.
5

0.
0

2
9
0

4
1
5
9

3
8
2
5

2
.0

0
.0

2
.0

0
.0

3
0
3

2
6
1
9

1
5
6
4

20
0

3.
1

0.
0

3.
1

0.
0

2
1
2

7
2
0
0

7
2
0
0

2
.8

0
.0

2
.8

0
.0

2
8
6

3
9
5
1

2
9
7
4

30
0

4.
9

1.
8

6.
2

3.
1

2
6
5

7
2
0
0

*
2
.1

2
.3

3
.2

3
.4

1
9
9

7
2
0
0

*
40

0
2.

8
0.

3
5.

8
3.

3
3
8
1

7
2
0
0

*
5
.8

3
.2

6
.3

3
.7

4
2
1

7
2
0
0

*

80

10
0

2.
0

0.
0

2.
0

0.
0

9
9

3
5
7
4

7
2
0
0

3
.9

0
.0

3
.9

0
.0

1
5
7

9
5
5

8
2
0

20
0

3.
5

0.
0

3.
5

0.
0

2
0
1

7
2
0
0

7
2
0
0

2
.5

1
.3

2
.5

1
.3

1
6
8

7
2
0
0

2
4
6
3

30
0

3.
6

0.
0

4.
6

0.
9

3
2
8

7
2
0
0

*
4
.4

2
.6

4
.4

2
.6

4
1
0

7
2
0
0

4
9
8
2

40
0

2.
3

3.
1

3.
6

4.
4

4
9
8

7
2
0
0

*
2
.8

2
.4

4
.4

4
.0

4
0
7

7
2
0
0

*

T
ab

le
5.

2:
C

om
p
ar

is
on

b
et

w
ee

n
B

ra
n
ch

-a
n
d
-P

ri
ce

an
d

B
F

D
H

fo
r
cE j
/c
j

=
1.

2

110



The results from Tables 5.2 and 5.3 also reveal that CPLEX takes slightly shorter

time (13% on average) for cases with higher over-pivot cost (cEj /cj = 3). There is no

significant difference in the branch-and-price solution quality for cases with different cEj /cj

ratios, although its mean execution time is 5% less than that of CPLEX. For BFDH, the

typical execution time is shorter (9.6% shorter on average) when cEj /cj = 3, and its mean

difference from CPLEX is also smaller. In the airfreight industry, the cEj /cj ratio is usually

set between 1.1 and 2. This ratio increases significantly only during peak seasons for certain

tradelanes.

5.6.3 Performance of The Two Local Branching Extensions

Tables 5.4 and 5.5 report the performance of the two extension of local branching algorithms

given in Sections 5.5.2 and 5.5.3. We use the same instances that we did for branch-and-

price and BFDH (as in Tables 5.2 and 5.3). We list the performance of local branching

with multiple trees (MultiTrees) and the relaxation-induced search (RINS) in terms of

percentage difference from the best solution that CPLEX achieves after 2 hours (“Diff(%)”).

The negative percentage figures imply that the method finds a better solution than CPLEX.

Computational results of the two local branching extensions are also compared with the

CPLEX lower bound (gap(%)).

Relative to results in Table 5.2, RINS achieves better solution quality than CPLEX,

BFDH and Branch-and-Price for cases with more than 40 ULDs and 300 shipments.

With respect to solution speed alone, the best-first decreasing heuristic can finish all

computations within 500 seconds. But its superior solution speed is compromised by its

111



|J
|

N
U

E j
=

1
0
%
U
j

U
E j

=
3
0
%
U
j

B
F

D
H

D
if

-
f(

%
)

B
P

D
-

iff
(%

)
B

F
D

H
ga

p
(%

)
B

P
ga

p
(%

)
B

F
D

H
T

im
e

B
P

T
im

e
C

P
L

E
X

T
im

e
B

F
D

H
D

if
-

f(
%

)

B
P

D
-

iff
(%

)
B

F
D

H
g
a
p

(%
)

B
P

g
a
p

(%
)

B
F

D
H

T
im

e
B

P
T

im
e

C
P

L
E

X
T

im
e

8

20
0.

0
0.

0
0.

0
0.

0
1
5

9
1

1
5

0
.0

0
.0

0
.0

0
.0

1
2

1
0
5

2
0

40
0.

0
0.

0
0.

0
0.

0
9
9

3
8
1

1
3

0
.1

0
.0

0
.1

0
.0

1
3
3

6
0
4

3
1

10
0

0.
7

0.
0

0.
7

0.
0

1
9
8

1
5
5
8

6
1
3

1
.8

0
.0

1
.8

0
.0

3
4
6

9
0
1

2
3
8

15
0

2.
0

0.
0

2.
0

0.
0

3
1
0

3
3
8
4

5
9
6

2
.9

2
.1

2
.9

2
.1

3
3
9

3
9
6
5

5
8
6

16

20
0.

0
0.

0
0.

0
0.

0
8
6

2
4
5

2
5

0
.0

0
.0

0
.0

0
.0

1
7
6

2
9
4

6
40

0.
2

0.
0

0.
2

0.
0

2
6
7

2
8
9
3

9
2
.5

0
.0

2
.5

0
.0

1
9
0

3
2
8
0

7
5

10
0

0.
0

0.
0

0.
0

0.
0

3
4
2

1
3
8
7

3
7
8

2
.6

0
.0

2
.6

0
.0

2
1
8

5
0
8
5

5
0
4

15
0

1.
9

0.
0

1.
9

0.
0

4
1
5

6
2
8
2

2
8
9
9

1
.4

0
.0

1
.4

0
.0

2
7
7

4
2
3
7

4
7
1

40

10
0

2.
4

0.
0

2.
4

0.
0

2
4
8

3
3
5
4

1
2
2
8

1
.7

0
.0

1
.7

0
.0

2
6
2

3
8
7
4

4
0
1

20
0

2.
1

0.
2

2.
1

0.
2

4
3
0

7
2
0
0

7
2
0
0

5
.1

0
.3

5
.1

0
.3

1
7
5

7
2
0
0

2
0
8
9

30
0

4.
8

0.
0

4.
8

0.
0

3
0
5

3
7
5
2

2
0
1
7

0
.8

0
.2

0
.8

0
.2

4
6
3

7
2
0
0

4
9
9
5

40
0

2.
0

0.
0

3.
0

1.
0

3
6
1

7
2
0
0

*
4
.6

1
.1

4
.6

1
.1

4
0
8

7
2
0
0

4
6
8
1

80

10
0

3.
6

0.
0

3.
6

0.
0

1
8
4

1
1
0
3

7
2
0
0

4
.0

0
.0

4
.0

0
.0

2
0
4

3
8
9
1

3
3
2
5

20
0

6.
1

1.
8

6.
1

1.
8

2
2
3

7
2
0
0

5
3
3
9

1
.3

0
.0

2
.1

0
.8

1
9
1

7
2
0
0

*
30

0
2.

7
1.

6
2.

7
1.

6
4
2
6

7
2
0
0

2
6
2
1

2
.8

2
.5

2
.8

2
.5

3
7
3

7
2
0
0

3
8
9
3

40
0

4.
7

0.
0

4.
7

0.
0

3
9
3

5
7
8
1

7
2
0
0

4
.9

2
.8

4
.9

2
.8

4
8
7

7
2
0
0

2
1
2
8

T
ab

le
5.

3:
C

om
p
ar

is
on

b
et

w
ee

n
B

ra
n
ch

-a
n
d
-P

ri
ce

an
d

B
F

D
H

fo
r
cE j
/c
j

=
3

112



|J
|

N
U

E j
=

10
%
U
j

U
E j

=
3
0
%
U
j

D
iff

(%
)

M
u

lt
i

T
re

es
(2

0m
in

)

D
iff

(%
)

R
IN

S
(2

0m
in

)

M
u

lt
i

T
re

es
ga

p
(%

)

R
IN

S
g
a
p

(%
)

C
P

L
E

X
T

im
e

(2
h

rs
)

D
iff

(%
)

M
u

lt
i

T
re

es
(2

0
m

in
)

D
iff

(%
)

R
IN

S
(2

0
m

in
)

M
u

lt
i

T
re

es
g
a
p

(%
)

R
IN

S
g
a
p

(%
)

C
P

L
E

X
T

im
e

(2
h

rs
)

8

20
0.

0
0.

0
0.

0
0
.0

1
0

0
.0

0
.0

0
.0

0
.0

8
40

0.
3

0.
0

0.
3

0
.0

2
7

0
.2

0
.0

0
.2

0
.0

2
0

10
0

1.
6

2.
9

1.
6

2
.9

2
1
3

2
.6

0
.4

2
.6

0
.4

5
0
5

15
0

2.
7

0.
5

2.
7

0
.5

1
5
5
8

3
.3

0
.4

3
.3

0
.4

1
4
9
7

16

20
1.

2
0.

0
1.

2
0
.0

2
4

0
.9

0
.0

0
.9

0
.0

1
7

40
0.

8
0.

8
0.

8
0
.8

3
5

0
.0

0
.0

0
.0

0
.0

4
1

10
0

0.
0

0.
9

0.
0

0
.9

5
3
8

2
.0

0
.1

2
.0

0
.1

3
4
3

15
0

1.
2

3.
4

1.
2

3
.4

3
2
0
3

0
.9

0
.9

0
.9

0
.9

2
9
4
0

40

10
0

1.
9

0.
4

1.
9

0
.4

3
8
2
5

2
.8

0
.6

2
.8

0
.6

1
5
6
4

20
0

1.
5

0.
8

1.
5

0
.8

7
2
0
0

1
.9

1
.4

1
.9

1
.4

2
9
7
4

30
0

1.
8

-1
.2

3.
1

0
.1

*
1
.9

-0
.8

3
.1

0
.3

*
40

0
0.

6
-2

.7
3.

6
0
.3

*
3
.5

-0
.4

4
.0

0
.1

*

80

10
0

2.
1

0.
6

2.
1

0
.6

7
2
0
0

4
.1

1
.1

4
.1

1
.1

8
2
0

20
0

3.
4

1.
9

3.
4

1
.9

7
2
0
0

4
.8

2
.3

4
.8

2
.3

2
4
6
3

30
0

-0
.5

-0
.5

0.
4

0
.4

*
1
.1

1
.1

1
.1

1
.1

4
9
8
2

40
0

-0
.4

-0
.9

0.
9

0
.4

*
2
.0

-0
.9

3
.6

0
.7

*

T
ab

le
5.

4:
C

om
p
ar

is
on

of
M

u
lt

i-
T

re
es

an
d

R
IN

S
A

p
p
ro

ac
h
es

fo
r
cE j
/c
j

=
1.

2

113



|J
|

N
U

E j
=

10
%
U
j

U
E j

=
3
0
%
U
j

D
iff

(%
)

M
u

lt
i

T
re

es
(2

0m
in

)

D
iff

(%
)

R
IN

S
(2

0m
in

)

M
u

lt
i

T
re

es
ga

p
(%

)

R
IN

S
g
a
p

(%
)

C
P

L
E

X
T

im
e

(2
h

rs
)

D
iff

(%
)

M
u

lt
i

T
re

es
(2

0
m

in
)

D
iff

(%
)

R
IN

S
(2

0
m

in
)

M
u

lt
i

T
re

es
g
a
p

(%
)

R
IN

S
g
a
p

(%
)

C
P

L
E

X
T

im
e

(2
h

rs
)

8

20
0.

0
0.

0
0.

0
0
.0

1
5

0
.0

0
.0

0
.0

0
.0

2
0

40
0.

0
0.

0
0.

0
0
.0

1
3

0
.0

0
.0

0
.0

0
.0

3
1

10
0

0.
0

0.
0

0.
0

0
.0

6
1
3

0
.1

0
.0

0
.1

0
.0

2
3
8

15
0

0.
5

0.
2

0.
5

0
.2

5
9
6

0
.4

0
.4

0
.4

0
.4

5
8
6

16

20
0.

0
0.

0
0.

0
0
.0

2
5

0
.2

0
.0

0
.2

0
.0

6
40

0.
0

1.
8

0.
0

1
.8

9
2
.2

0
.4

2
.2

0
.4

7
5

10
0

0.
8

2.
9

0.
8

2
.9

3
7
8

0
.3

1
.2

0
.3

1
.2

5
0
4

15
0

2.
4

1.
0

2.
4

1
.0

2
8
9
9

1
.3

2
.3

1
.3

2
.3

4
7
1

40

10
0

2.
1

0.
0

2.
1

0
.0

1
2
2
8

1
.9

1
.1

1
.9

1
.1

4
0
1

20
0

1.
2

1.
2

1.
2

1
.2

7
2
0
0

1
.3

0
.6

1
.3

0
.6

2
0
8
9

30
0

6.
1

0.
7

6.
1

0
.7

2
0
1
7

3
.4

0
.5

3
.4

0
.5

4
9
9
5

40
0

2.
1

-0
.8

3.
1

0
.2

*
2
.1

0
.3

2
.1

0
.3

4
6
8
1

80

10
0

2.
4

0.
6

2.
4

0
.6

7
2
0
0

1
.2

1
.2

1
.2

1
.2

3
3
2
5

20
0

4.
0

1.
5

4.
0

1
.5

5
3
3
9

2
.5

-0
.5

3
.3

0
.3

*
30

0
3.

9
0.

0
3.

9
0
.0

2
6
2
1

0
.0

3
.2

0
.0

3
.2

3
8
9
3

40
0

1.
9

1.
1

1.
9

1
.1

7
2
0
0

1
.6

1
.6

1
.6

1
.6

2
1
2
8

T
ab

le
5.

5:
C

om
p
ar

is
on

of
M

u
lt

i-
T

re
es

an
d

R
IN

S
A

p
p
ro

ac
h
es

fo
r
cE j
/c
j

=
3

114



solution quality, with an average difference of 3.6% from CPLEX for cases with n ≥ 40.

Therefore, it is advised to use branch-and-price if solution quality is pursued, and BFDH if

a fast solution is desired. In contrast, the two local branching extensions provide relatively

good balance between solution quality and speed.

Table 5.4 reveals that running the RINS algorithm in 20 minutes outperforms CPLEX’s

best solution in 7 out of 16 large cases (n ≥ 40) when UE
j = 10%Uj, and for two cases when

UE
j = 30%Uj. RINS also outperforms the multi-local-tree approach in all but two cases

when n ≥ 40. However, when the number of ULDs is low (n ≤ 16), the two local branching

extensions do not outperform CPLEX. When the ratio of cEj /cj increases to 3.0 in Table

5.5, RINS finds a better solution than CPLEX in only two cases, while the multi-local-tree

approach does not give better solutions for any of the cases.

Although RINS outperforms multi-tree when the number of ULDs is large, multi-tree

provides better or equal results compared to RINS in 19 out of 32 cases for n ≤ 16. This

is because, when the ratio between the number of shipments and number of ULDs is large,

creating parallel local trees adds extra redundancy to the computation. This also reminds

us to create multiple local trees dynamically, according to the ratio of the first-level and

second-level branching variables. When UE
j = 30%Uj, there is no substantial difference in

performance compared to when the over-pivot capacity is 10% of the pivot weight. The

gap is relatively small for cEj /cj = 3 compared to that when cEj /cj = 1.2.

In the analysis above, both the multi-tree and the RINS are based on the multi-level-

variable approach. In Table 5.6, we compare different combination of the local branching

heuristics, with or without the multi-level variables. For each combination (n, m), we

115



generated four instances and took the average. The ratio of cEj /cj was fixed at 1.2 for all

cases. The time limit for local branching operation was set to 20 minutes. Comparison

was made to CPLEX’s lower bound after 7200 seconds.

|J | N MultiLevel
Gap(%)

MultiTrees
Gap(%)

RINS
Gap(%)

MultiLevel
&
MultiTrees
Gap(%)

MultiLevel
& RINS
Gap(%)

10

20 0.2 0.3 0.1 0.0 0.0
100 4.9 1.3 8.4 0.0 0.1
200 4.8 4.0 5.8 1.1 0.7
400 6.8 3.9 3.9 4.8 1.9

20

20 0.2 2.2 0.5 0.3 0.0
100 2.8 3.1 2.9 1.3 0.0
200 2.9 4.9 3.5 2.2 0.0
400 8.1 3.7 4.2 3.0 1.4

40

20 3.9 3.5 2.0 0.0 0.2
100 3.6 2.8 2.1 1.2 1.8
200 7.0 4.0 3.8 3.3 1.4
400 9.1 3.4 4.5 2.6 1.1

80

20 5.9 1.8 0.9 1.2 0.5
100 5.0 4.1 6.1 1.0 1.9
200 6.4 3.3 6.7 2.5 2.0
400 7.7 3.5 4.9 1.9 1.3

Average 5.0 3.1 3.8 1.7 0.9

Table 5.6: Average Performance Comparison of Different Local Branching Extensions

Table 5.6 reveals that a combination of multi-level-variable and relaxation-induced

neighborhood search achieves better quality solution (on average) than other combinations.

This combination gives a mean difference of 0.9% from the CPLEX lower bound. Using

multi-local trees alone, variances are small among instances of different sizes; however,

116



the overall algorithm is slow to run, and it explores less of the solution space in a given

time threshold. If we directly run the multi-local-tree approach of Section 5.5.2 (without

taking multi-level-variable into account), the diversification is less effective for zj. Low-cost

ULDs should always be chosen greedily. However, we need to run more local trees at the

branching of xij, as the algorithm tends to get stuck at local optima at that level. A two-

level approach with a diversification focus on xij is more effective, as seen when comparing

the columns “MultiLevel” and “MultiLevel & MultiTrees”. Performance of RINS is poor

when we don’t consider two levels of binary variables. This is because, when zj has the

same integer value in the incumbent solution and in the LP relaxation, that is likely to be

the optimal value; the same conclusion seldom holds for xij.

5.6.4 Multiple ULD Classes

We also looked at problem with multiple classes of ULDs. In the following numerical cases,

each test case is characterized by three parameters: (i) the number of ULD types available:

m (ii) the number of shipments: N (iii) the number of ULDs per type: q. For every N

shipments, with the total ULD capacity remaining the same (i.e. mq=constant), we have

three values for the number of ULD types. Differences between those types are always

expressed in terms of ULD capacities Uj.

Table 5.7 reports the computational performance of our local branching (with RINS)

and that of CPLEX in two hours. When the cost cEj is closer to cj, there is a greater mean

difference of local branching with RINS than for cases with high cEj /cj ratio. When the

total number of shipments is small, our algorithm performs better when there are fewer

117



N m q
cEj /cj = 1.2 cEj /cj = 3

RINS
(15
min)

RINS
(30
min)

CPLEX
Time

RINS
(15
min)

RINS
(30
min)

CPLEX
Time

40
2 15 0.0 0.0 445 0.0 0.0 294
3 10 1.2 0.2 270 0.3 0.3 233
5 6 0.1 0.1 289 2.7 0.0 108

80
2 15 0.3 0.0 1887 2.4 0.0 925
3 10 1.1 0.8 1284 1.4 0.0 898
5 6 2.2 2.0 432 3.9 0.5 379

200
2 15 1.5 0.0 7200 0.8 -0.3 7200
3 10 1.4 0.8 6224 2.6 1.1 4045
5 6 0.9 -0.2 7200 0.8 0.8 3437

400
2 15 0.1 -0.1 7200 0.1 -0.3 7200
3 10 1.6 0.4 7200 1.0 0.0 1081
5 6 0.0 -1.0 7200 1.1 -0.1 7200

Table 5.7: Local Branching with Different Classes of ULDs

classes of ULDs. However, when the number of shipments goes up, our algorithm performs

better than CPLEX when there is a larger number of ULD classes.

5.7 Summary

In this chapter, we proposed three methodologies to solve a pivot-weight based air cargo

load-planning problem. The first one is branch-and-price that is computationally slow.

The second is a best-first decreasing heuristic that is fast and have an acceptable solution

quality.

118



Finally, in addition to the multi-level-variables extension we raised in Chapters 3 and

4, we extended the local branching heuristic to include multiple local trees and to use a

relaxation-induced neighborhood approach. The latter extension proved effective in leading

to high quality solutions in reasonable computational time. Problems with up to 400

shipments and 80 containers are proved to be solved to within 3.4% of optimality in less

than 20 minutes.

119



Chapter 6

Conclusions and Future Research

Directions

In this dissertation, we have discussed three problems that arise in the airfreight industry

and presented several solution methodologies to solve them.

In Chapter 3, we proposed a network shipment consolidation model that features the

unsplittable shipment requirement, volume weight, bumping clause, multiple origins and

flight/shipment time. We introduced a decomposition approach to solve the model. Upon

a Lagrangian relaxation, this problem is decomposed to two sets of well-known problems: a

minimum cost flow problem and a knapsack problem. For larger problem sizes, we relied on

subgradient optimization and local branching. We also applied a multi-level-variable local

branching strategy, which delivered superior computational performance. Local branching

delivered the best solution for the tightly-capacitated cases, while subgradient optimization

120



gave the better solution for loosely-capacitated cases. From the operations manager’s

perspective, the local branching algorithm proved to be most effective when total customer

demand is close to the capacity reserved from airlines. In those cases, our algorithm

achieves much faster and more accurate solutions than an MIP commercial solver such as

CPLEX.

In Chapter 4, we added more practical features to an existing network flow problem

with cross-arc costs. This resulted in a model for airfreight forwarders that helps to solve

the consolidation problem under a system-wide discount. Moreover, we extended our model

such that it is capable of solving scenarios when both a flight-leg and a system-wide discount

are offered to a freight forwarder. As practical instances of daily operation under such a

combination of discounts are of huge size, we developed a local branching heuristic that

is capable of solving such problems in a relatively short time. Branch-and-price delivered

only poor results within half an hour, for the larger cases; local branching beat branch-and-

price in both solution speed and quality. From the managerial perspective, the availability

of the double-discount reduces the average number of flights to which a freight forwarder

tender needs to tender loads. As a result of the double discount, the forwarder achieves a

subsequent saving on operational and administrative cost.

For the ACPW problem in Chapter 5, the decisions are focused on shipments to be

consolidated into ULD, as opposed to general cargo (goods that are not containerized) in

Chapters 3 and 4. We proposed a decomposition strategy that separates the problem into

each ULD. The branch-and-price approach is able to produce an exact solution for smaller

problem sizes. However, the multi-level-variable local branching approach we employed for

121



the first two topics does not work well on the ACPW. Instead, we proposed multiple local

trees and a relaxation-induced neighborhood search (mixed variable fixing) as extensions to

the basic local branching framework. We found that the relaxation-induced neighborhood

search yielded the best computational performance. From the managerial perspective,

the model we proposed for the ACPW problem satisfies an important need for airfreight

forwarders, since air cargo is containerized to a greater degree nowadays. Our BFDH and

RINS algorithm make it possible for an operations manager to obtain close-to-optimal

decision, for an entire day, within 15 minutes.

We recommend the following for future research. Our focus on the pivot-weight problem

has so far been restricted to gross weight and not volume weight. Nor we distinguish

between cargo that is loaded in the upper deck vs lower deck. It would be very promising

if this problem could be extended to either or both of these settings. Moreover, this problem

has the potential to be combined with a shipment-routing problem. We hope our work

on the pivot-weight problem can be integrated with other traditional transportation and

logistics models.

Moreover, our local branching approach can be used to efficiently handle constraints

such as incompatibility of items that should not be loaded together: Constraints such

as x1 + .... + xn ≤ l can be included in an adaptive local branching approach. In fact,

any consolidation problem with disjunctive constraints, or with constraints that can be

expressed as a linear combination of other disjunctive constraints, is able to be processed

efficiently using local branching. Future research can focus on variations of our problems

with some practical disjunctive constraints.

122



Aside from airfreight rules such as volume weight, all-unit discount and pivot weight,

another common rule in air transportation is the minimum-weight restrictions on ULDs.

This resembles a special case of the bin packing problem with minimum filling constraint

(BPPMFC), where each container should be loaded to more than a minimum threshold,

or proportional to its volume, to guarantee flight safety.

In this thesis, we have focused on the forwarder’s cost-saving decisions from an oper-

ational point of view. Another stream of revenue- and cost-saving opportunities comes

from accurate forecasting. Instead of treating the amount of reserved capacity as constant,

freight forwarders make reservation decisions at different stages of planning. In reality,

some demands are placed just eight hours before flight take-off. Hence, not all shipments

are known when the flight bookings are made by forwarders. Effectively dealing with this

dynamic nature is critical to the success of planning. Moreover, there are generally two

rounds of booking for airfreight forwarders. In Round 1, six to twelve months before the

actual departure, freight forwarders bid for cargo space. In Round 2, a few days before the

actual take-off, the freight forwarders have to confirm the allotted space, either returning

unwanted space or confirming their need for the whole allotted capacity. The remaining

capacity is available for free sale. There are two aspects we can work on in this case:

First, we could consider the booking capacity on each flight to be a decision variable with

unknown shipment information. Second, we could still make shipment routing decisions,

but with shipment information unknown.

In this thesis, all models are derived from the freight forwarder’s perspective. In

fact, cargo airlines also have their core decision-making mechanism to maximize their

123



own operating profit. From the air-carrier’s perspective, there is uncertainty in the cargo

that will be tendered. Until departure, the airlines do not know how much capacity they

have available for free sale. To ensure space on constrained flights, freight forwarders

intentionally bid on more capacity than they actually need, since most airlines allow the

return of unwanted space at little or no extra charge. The airlines add the released space to

the pool of capacity available for free sale. In addition, for planes carrying both cargo and

passengers (combination carriers), the cargo space usually contains passengers’ baggage and

cargo in the same compartment. These factors, plus weather (which affects the amount

of fuel on board the aircraft) and mail, influence how much capacity is actually available

for free sale. Finally, cargo space is constrained by two dimensions, weight and volume.

Prior to departure, however, the airline typically does not know which will be the most

restrictive.

Each of the preceding possibilities suggests that research on these topic extensions will

remain exciting for some time to come.

124



References

H. Akeb, M. Hifi, and M. E. O. A. Mounir. Local branching-based algorithms for the

disjunctively constrained knapsack problem. Computers & Industrial Engineering, 60

(4):811 – 820, 2011.

C. Alves and J. V. de Carvalho. Accelerating column generation for variable sized bin-

packing problems. European Journal of Operational Research, 183(3):1333 – 1352, 2007.

A. Amiri and H. Pirkul. New formulation and relaxation to solve a concave-cost network

flow problem. The Journal of the Operational Research Society, 48(3):278–287, 1997.

J. S. Ang, C. Cao, and H.-Q. Ye. Model and algorithms for multi-period sea cargo mix

problem. European Journal of Operational Research, 180(3):1381 – 1393, 2007.

A. P. Armacost, C. Barnhart, K. A. Ware, and A. M. Wilson. UPS optimizes its air

network. Interfaces, 34(1):15–25, 2004.

A. Atamtürk and D. Rajan. On splittable and unsplittable flow capacitated network design

arc-set polyhedra. Mathematical Programming, 92(2):315–333, 2002.

125



A. Balakrishnan and S. C. Graves. A composite algorithm for a concave-cost network flow

problem. Networks, 19(2):175–202, 1989.

C. Barnhart and S. Shen. Logistics service network design for time-critical delivery. Practice

and Theory of Automated Timetabling V Lecture Notes in Computer Science, 3616:86–

105, 2005.

C. Barnhart, C. A. Hane, and P. H. Vance. Using branch-and-price-and-cut to solve origin-

destination integer multicommodity flow problems. Operations Research, 48(2):318–326,

2000.

C. Barnhart, N. Krishnan, D. Kim, and K. Ware. Network design for express shipment

delivery. Computational Optimization and Applications, 21:239–262, 2002.

E. Bartolini and A. Mingozzi. Algorithms for the non-bifurcated network design problem.

Journal of Heuristics, 15(3):259–281, 2009.

M. Belaidouni and W. Ben-Ameur. On the minimum cost multiple-source unsplittable flow

problem. RAIRO-Operations Research, 41(3):253–273, 2007.

J. H. Bookbinder and J. K. Higginson. Probabilistic modeling of freight consolidation by

private carriage. Transportation Research Part E, 38:305–318, 2002.

G. Brønmo, B. Nygreen, and J. Lysgaard. Column generation approaches to ship scheduling

with flexible cargo sizes. European Journal of Operational Research, 200(1):139 – 150,

2010.

126



J. Carter, B. Ferrin, and C. Carter. The effect of less-than-truckload rates on the purchase

order lot size decision. Transportation Journal, 34(3):35–44, 1995.

A. Chabrier. Heuristic branch-and-price-and-cut to solve a network design problem. In

Proceedings of CPAIOR’03, Madrid, 2003.

T.-S. Chang. Best routes selection in international intermodal networks. Computers &

Operations Research, 35(9):2877 – 2891, 2008.

N. Cherfi and M. Hifi. A column generation method for the multiple-choice multi-

dimensional knapsack problem. Computational Optimization and Applications, 46:51–73,

2010.

A. Cohn, M. Davey, L. Schkade, A. Siegel, and C. Wong. Network design and flow problems

with cross-arc costs. European Journal of Operational Research, 189(3):890 – 901, 2008.

T. G. Crainic, M. Gendreau, and J. M. Farvolden. A simplex-based tabu search method

for capacitated network design. Informs Journal on Computing, 12(3):223–236, 2000.

T. G. Crainic, G. Perboli, W. Rei, and R. Tadei. Efficient lower bounds and heuristics for

the variable cost and size bin packing problem. Computers & Operations Research, 38

(11):1474–1482, 2011.

K. L. Croxton, B. Gendron, and T. L. Magnanti. Models and methods for merge-in-transit

operations. Transportation Science, 37(1):1–22, 2003.

E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced neighborhoods to

improve MIP solutions. Mathematical Programming, 102:71–90, 2005.

127



G. B. Dantzig. On the significance of solving linear programming problems with some

integer variables. Econometrica, 28(1):30–44, 1960.

Z. Degraeve and M. Peeters. Optimal integer solutions to industrial cutting-stock problems:

Part 2, benchmark results. Informs Journal on Computing, 15(1):58–81, 2003.

S. Elhedhli, L. Li, M. Gzara, and J. Naoum-Sawaya. A branch-and-price algorithm for

the bin packing problem with conflicts. Informs Journal on Computing, 23(3):404–415,

2011.

M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98(1-3):23–47,

2003.

M. Fischetti, C. Polo, and M. Scantamburlo. A local branching heuristic for mixed-integer

programs with 2-level variables, with an application to a telecommunication network

design problem. Networks, 44(2):61–72, 2004.

M. L. Fisher. The lagrangian relaxation method for solving integer programming problems.

Management Science, 27(1):1–18, 1981.

A. Frangioni. About lagrangian methods in integer optimization. Annals of Operations

Research, 139:163–193, 2005.

I. Ghamlouche, T. G. Crainic, and M. Gendreau. Cycle-based neighbourhoods for fixed-

charge capacitated multicommodity network design. Operations Research, 51(4):655–667,

2003.

G. Hadley. Non-Linear and Dynamic Programming. Addison-Wesley, New York, 1964.

128



R. W. Hall. Consolidation strategy: Inventory, vehicles and terminals. Journal of Business

Logistics, 8:57–73, 1987.

P. Hansen, N. Mladenovic, and D. Urosevic. Variable neighborhood search and local

branching. Computers & Operations Research, 33(10):3034 – 3045, 2006.

J. K. Higginson and J. H. Bookbinder. Policy recommendations for a shipment-

consolidation program. Journal of Business Logistics, 15(1):87–112, 1994.

K. Huang and W. Chi. A lagrangian relaxation based heuristic for the consolidation

problem of airfreight forwarders. Transportation Research Part C, 15(4):235 – 245, 2007.

A. H. G. R. Kan, L. Stougie, and C. Vercellis. A class of generalized greedy algorithms for

the multi-knapsack problem. Discrete Applied Mathematics, 42(2-3):279 – 290, 1993.

J. Leung, M. Dror, and G. Young. A note on an open-end bin packing problem. Journal

of Scheduling, 4(4):201–207, 2001.

L. C. Leung, Y. Van Hui, Y. Wang, and G. Chen. A 0-1 LP Model for the Integration and

Consolidation of Air Cargo Shipments. Operations Research, 57(2):402–412, 2009.

Y. Li, Y. Tao, and F. Wang. A compromised large-scale neighborhood search heuristic for

capacitated air cargo loading planning. European Journal of Operational Research, 199

(2):553 – 560, 2009.

Z. Li, J. H. Bookbinder, and S. Elhedhli. Optimal shipment decisions for an airfreight

forwarder: Formulation and solution methods. Transportation Research Part C, 21(1):

17 – 30, 2012.

129



D. Lichtenberger. An Extended Local Branching Framework and its Application to the

Multidimensional Knapsack Problem. PhD thesis, der Technischen Universitat Wien,

2005.

R. K. Martin. Large Scale Linear and Integer Optimization : A Unified Approach. Kluwer

Academic, Boston, 1999.

A. Muriel and F. Munshi. Capacitated multicommodity network flow problems with

piecewise linear concave costs. IIE Transactions, 36(7):683–696, 2004.

G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. Wiley, 1988.

D. Pisinger. Heuristics for the container loading problem. European Journal of Operational

Research, 141(2):382 – 392, 2002.

J. Puchinger, G. R. Raidl, and S. Pirkwieser. Metaboosting: Enhancing integer

programming techniques by metaheuristics. In V. Maniezzo, T. Sttzle, and S. Vo, editors,

Matheuristics, volume 10 of Annals of Information Systems, pages 71–102. Springer,

2010.

I. Rodriguez-Martin and J. J. Salazar-Gonzalez. A local branching heuristic for the

capacitated fixed-charge network design problem. Computers & Operations Research,

37(3):575 – 581, 2010.

S. Root and A. Cohn. A novel modeling approach for express package carrier planning.

Naval Research Logistics, 55(7):670–683, 2008.

130



L. Schenk and D. Klabjan. Intramarket optimization for express package carriers.

Transportation Science, 42(4):530–545, 2008.

P. Vance. Branch-and-price algorithms for the one-dimensional cutting stock problem.

Computational Optimization and Applications, 9:211–228, 1998.

C. Wallace. Mixed integer programming heuristics. PhD thesis, Carnegie Mellon University,

2010.

W. H. Wong, L. C. Leung, and Y. V. Hui. Airfreight forwarder shipment planning: A

mixed 0-1 model and managerial issues in the integration and consolidation of shipments.

European Journal of Operational Research, 193(1):86–97, 2009.

131


	List of Tables
	List of Figures
	Introduction and Motivations
	Research Problems
	Unsplittable Network Consolidation with Volume Weight
	Consolidation Problem Under System-wide Discount
	Pivot-Weight Scheme

	Thesis Outline

	Literature Review
	Airfreight Consolidation Problem
	The Multicommodity Flow Model for Consolidation of Splittable Shipments
	Network Design for the Unsplittable-Shipments Consolidation Problem
	System-wide Discount and Double Discount
	Airfreight Consolidation with Pivot-Weight
	Solution Methodology Literature
	Lagrangian Relaxation Techniques
	Branch-and-Price and Column Generation
	Local Branching


	The Unsplittable Shipment Consolidation Problem
	Problem Description
	Problem Formulation
	Solution Methodology
	The Lagrangian Relaxation Approach
	Modified Local Branching Heuristic

	Numerical Experiments
	Generation of Test Cases for Numerical Analysis
	Computational Analysis for Small-size Instances
	Computational Analysis for Lagrangian Relaxation
	Computational Analysis for Local Branching Heuristic

	Summary

	Shipment Consolidation Problem under System-wide Discount
	Problem Description
	Problem Formulation
	An Illustrative Example
	Solution Methodology for System-wide Discount
	Lagrangian Heuristic
	Branch-and-Price
	Subgradient Procedure
	Generation of Test Cases
	Numerical Analysis for Lagrangian Relaxation

	Double Discount Case
	A Mixed Local Branching Solution
	Practical Benefits of the Double Discount

	Summary

	Consolidation Problem with Pivot Weight
	Problem Description
	Problem Formulation
	Branch-and-Price
	Column Generation And Branch-and-Price
	Branching
	Generating an Initial Feasible Solution
	Lagrangian Heuristic

	A Best-Fit Decreasing Heuristic
	A Local Branching Heuristic
	The Basic Local Branching Algorithm
	Local Branching with Multiple Trees
	A Modified Relaxation-Induced Neighborhood Search Heuristic

	Computational Analysis
	Performance of the Branch-and-Price Algorithm
	Performance of the Best-First Decreasing Heuristic
	Performance of The Two Local Branching Extensions
	Multiple ULD Classes

	Summary

	Conclusions and Future Research Directions
	References

