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Abstract

A workforce plan states the number of workers required at any point in time. Efficient
workforce plans can help companies achieve their organizational goals while keeping costs
low. In ever increasing globalized work market, companies need a competitive edge over
their competitors. A competitive edge can be achieved by lowering costs. Labour costs
can be one of the significant costs faced by the companies. Efficient workforce plans can
provide companies with a competitive edge by finding low cost options to meet customer
demand.

This thesis studies the problem of determining the required number of workers when
there are two categories of workers. Workers belonging to the first category are trained
to work on one type of task (called Specialized Workers); whereas, workers in the second
category are trained to work in all the tasks (called Flexible Workers). This thesis makes
the following three main contributions.

First, it addresses this problem when the demand is deterministic and stochastic.
Two different models for deterministic demand cases have been proposed. To study the
effects of uncertain demand, techniques of Robust Optimization and Robust Mathemat-
ical Programming were used.

The thesis also investigates methods to solve large instances of this problem; some of
the instances we considered have more than 600,000 variables and constraints. As most
of the variables are integer, and objective function is nonlinear, a commercial solver was
not able to solve the problem in one day. Initially, we tried to solve the problem by using
Lagrangian relaxation and Outer approximation techniques but these approaches were
not successful. Although effective in solving small problems, these tools were not able
to generate a bound within run time limit for the large data set. A number of heuristics
were proposed using projection techniques.

Finally this thesis develops a genetic algorithm to solve large instances of this prob-
lem. For the tested population, the genetic algorithm delivered results within 2-3% of
optimal solution.
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Chapter 1

Introduction

1.1 Workforce Planning Problems

As mentioned in the abstract, labour costs can be one of the significant costs for an

organization. Lowering these costs can help companies achieve competitive edge over

their competitors. A workforce plan states the number of workers required at any point

in time. Adopting efficient workforce plans can help organizations lower their labour

costs and achieving a competitive edge.

1.1.1 Mathematical Programming

In the literature, mathematical programming has been used to solve workforce planning

problems [1, 2, 3, 4]. In addition, these techniques form a base for many sophisticated

workforce scheduling systems used in industry.

Mathematical programming translates the strategic objectives and constraints of an

organization into equations. Examples of strategic objective function include:

• Minimization of the total number of workers;
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• Minimization of the time when workers are idle;

• Maximization of the machine or resource utilization;

• Minimization of related costs such as hiring and laying off costs, regular wage or

salary of a person, insurance and benefit related expenses.

Workforce planning problems could be constrained by the production time, due dates,

demand quantity, union regulations and/or spatial constraints of a facility. In addition,

industry specific complexities can be added resulting in new problems. Below, we present

several examples of workforce planning problems found in the literature that address

industry specific complexities using math programming.

Cyclic demand is an example of an industry specific complexity. Cyclic demand

is when the schedule repeats but the demand varies from shift to shift. Baker et al.

[1] studied the staff scheduling problem in a cyclical demand situation. They discuss

a number of practical settings where these models are applied. One of the prominent

applications is scheduling of telephone operators when demand for staff is not constant

throughout the day. Burns and Narasimhan [2] considered the cyclic staff scheduling

problem by examining a problem similar to Baker [1] but they consider limitations on

the maximum number of consecutive working days and include meal breaks.

Brusco and Jacobs [3] discussed another form of industry specific staff scheduling

problem, called the tour scheduling problem. The tour scheduling problem is the

assignment of employees to particular tours, where a tour is a schedule having specified

work start time, meal break time and days off work. In [3], Brusco and Jacobs presented

two integer programming models for the continuous tour scheduling problem containing

meal break windows, overlapping start time bands and start time intervals.

Capturing employee preferences for a particular schedule is another industry spe-

cific complexity. Arthur and Ravindaran [4] considered worker preferences in their goal
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programming based model for the nurse scheduling problem. The goals of the model

included meeting minimum staff requirement and nurses’ preference towards a particular

schedule.

1.1.2 Heuristics

There are some situations when it is impossible to find an exact solution using mathe-

matical programming. Chapter 5 of this thesis discusses this issue. For situations where

mathematical programming can not find solutions, various heuristics and algorithms are

used.

Morris and Showalter [6] presented a set covering formulation for scheduling the work

force. The objective is to minimize the number of workers for all shifts, while enforcing

the staff requirements. They use a Linear Programming (LP) relaxation based heuristic

to solve the model. Bartholdi [8] solves a cyclical work force scheduling problem using a

heuristic based on LP-relaxation techniques.

The case study described in this thesis was intractable due to the large number of

constraints and variables of the model. Martello and Toth [5] overcome a similar issue

in a bus driver scheduling problem by using a greedy algorithm. Lau [7] discussed a

shift assignment problem in which large instances were hard to solve. He reduced an

equivalent problem from a boolean satisfiability problem (3SAT) and presented a greedy

algorithm for solving some restricted version of the problem.

1.2 Problem Statement

This thesis considers a manufacturing setting with uncertain demand across several prod-

uct types. The manufacturing plant is composed of several workstations each dedicated

to a specific task. For completion, every product must follow a predetermined sequence
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of the workstations, where a set of workers are required to complete the tasks. We con-

sider a setting with two types of workers: specialized workers who are only capable of

working at a single workstation and flexible workers who are capable of working at any

workstation. Workers are hired for shift types (i.e. the first, second or third shift of the

day). Due to union regulations, workers cannot be hired and fired, thus, each worker

assigned to each shift type is available for that shift type every day in the planning

horizon.

The goal is to find a schedule that minimizes the workforce costs. Three models are

described for the deterministic demand situations. The strengths and weaknesses of each

model are highlighted. In order to cater to uncertain demand situations, approaches of

Robust Optimization and Robust Mathematical Programming have been used. The next

section details the both of the methodologies. Various models, reflecting the industry

specific needs have been presented in Chapter 4.

For large problem instances, the model became intractable. A number of heuristics

and approaches were developed in an attempt to solve the large instance. In addition,

the classical approaches Lagrangian Relaxation and Outer Approximation were applied

to the model. In the end, a Genetic algorithm based approach was successful in solving

the large instance.

1.3 Related Works

In this section, the literature is explored for related work. The section is further divided

into two subsections. The first section describes the related problems discussed by other

researchers and emphasizes the importance of cross-training of workers. Cross-training

ensures that workers are trained to work for different tasks. Therefore, cross-trained

workers are similar to the flexible workers discussed earlier. The second section is a

comprehensive list of techniques to deal with uncertainty in the parameters.
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1.3.1 Workforce Planning Models

Ernst et al. [9] presented a detailed list of personnel scheduling and rostering problems

in industry. They identified workforce planning as one of the classifications in rostering

problems. One of the aspects of their work is a discussion on task based demand model-

ing, in which the number of workers required and the duration for the particular task is

used to determine the number of staff members required. A similar philosophy has been

applied in the deterministic models of this thesis.

Tien and Kamiyama [10] took a different approach by deconstructing a generalized

manpower scheduling problem into five different but interrelated problems. A manager

can either choose the whole framework of five problems or the specific ones serving the

needs of an organization. This problem considered in this thesis can be categorized in

Temporal Manpower requirement stage as described in [10].

Glover and Mcmillian [11] presented the general employee scheduling problems. Sim-

ilar to this thesis, they have also considered two types of workers but divided them as

Full-time and Part-time workers. All of the workers considered in this thesis have a full-

time schedule, thus differentiating this problem from the one discussed in [9]. Apart from

full-time/part-time employee constraints, Glover and Mcmillian [11] have also considered

the difference in performance of the workers working on the same task and constrain-

ing the different time blocks. They implemented an integer programming approach and

solutions were applied in a real world restaurant setting.

The paper that is most similar to this thesis is by Cai and Li [12]. They considered

three types of workers in their model, where type 1 and type 2 workers have skill one and

skill two, respectively, and type 3 workers can perform both of the tasks. The cost for

assigning one worker to a particular schedule is independent of the skill type. The model

in [12] considers three different functions as objective, whereas our work considers only

a single objective of minimizing the cost. The constraints in the model in [12] refer to
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manpower demands over time, whereas the demand of product is an input to our model.

Another important difference is the decision variables. Our model outputs production

schedule (schedule determining the number of units to produce at each time point) and

the number of workers required to finish that production, whereas the model in [12]

considers feasible work schedule set (schedule telling the working days and time to start

each shift) and considers the number of workers working on that schedule. Further, Cai

and Li consider a limit on the number of workers to be hired. Our model does not limit

the number of workers that can be hired.

By considering flexible workers, this thesis highlights cross-training as an important

ideology. According to Hopp et al. [15], cross-training offers advantages along competi-

tive dimensions of cost, time, quality and variety. Iravani, Van Oyen and Sims [13] discuss

how an organization can be more flexible by implementing cross-training of the work-

ers. Brusco and Johns [14] presented a mathematical model for evaluating cross-training

configurations at the policy level. Wirojanagud et al. [16] presents a mathematical

model considering inherent differences in learning new skills and the ability to perform

tasks. They considered a different set of workers in a job shop environment. The de-

cisions to be taken are related to hiring, layoff, cross-training, the worker assignment,

and the amount of demand to be satisfied. They considered only deterministic demand

situations, whereas our work focuses on uncertain demand situations. They considered

different levels for different workers for each skill set and termed these levels as General

Cognitive Ability sets. Instead of having an aggregate demand, they considered demand

for a particular skill in a period.

1.3.2 Uncertain Demand

This thesis studies workforce planning problems having uncertain demand. According

to Jeang [18], one way to deal with uncertainty is to hire part-time workers and to pro-
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vide overtime to the existing employees. He used the above technique for scheduling

nurses in a hospital. In addition to hiring part-time and over-time workers, researchers

have mentioned mathematical techniques to deal with the uncertainty in demand. Niko-

las [19] presented various approaches to deal with uncertainty in the parameters. The

modern philosophies to handle the precarious nature of data include decision making by

minimizing the expected value of an objective function (Stochastic Programming), by

minimizing the maximum costs (Robust Optimization)[19], or by allowing infeasibility in

some constraints (Robust Mathematical Programming) [27].

Stochastic Programming

Stochastic Programming is based on minimizing the expected value of an objective func-

tion over an uncertain problem data. The standard two-stage stochastic model divides

the decision variables in two sets. The first set of the variables are independent of the

uncertain nature of the parameters, and have to be decided before random fluctuation

occurs. Once a particular realization of the parameters occur, the second set of variables,

recourse variables, are decided with an additional cost to the objective function value of

the first set of variables.

These techniques have been used in workforce planning problems. Campbell [20] used

two-stage stochastic model to schedule and allocate the cross-trained workers in a multi-

department service environment. He considered uncertainty in the demand parameter.

The first decision stage is to determine the off days for a fixed set of cross trained workers.

The recourse action in their model is to allocate the available workers to the demand

realizations. Bard, Morton and Wang [21] presented a two-stage stochastic model with

recourse to schedule and allocation of the workforce at a US Postal Service facility. The

first stage model determines the number of permanent and temporary workers required

in a regular work schedule. The second stage allocates the workers to specific shifts and

uses overtime or casual labour to satisfy excess demand.
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Robust Optimization

Robust Optimization is similar to stochastic optimization. In stochastic optimization,

we input the probability distribution and try to minimize the expected value. Instead

of the initial probability distribution, Robust Optimization considers an uncertainty set

which contains all the instances that an uncertain parameter can take and the model is

solved for the worst data case. The worst data case is the instance incurring maximum

penalty or minimum performance. The technique of Robust Optimization guarantees

a feasible solution for all data instances and chooses the solution corresponding to the

worst data case. This technique is similar to Stochastic Programming but does not

require probability distribution of the instances.

The first work on Robust Optimization is done by Soyster [22], who named the

formulation as inexact formulation. In inexact formulation, the uncertainty lies in the

constraint matrix and the instances belong to a convex set. Instead of solving for a single

instance, the convex set of all the instances is solved. The solution obtained is feasible

for all the data instances.

Ben and Nemirovsky [23] coined the term “Robust Optimization” in their paper.

They considered uncertainty sets for the data sets to be ellipsoid and involve conic

quadratic problems. As such, those methods cannot be directly applied to problems

involving integers. Kouvelis et al. [24] used Robust Optimization techniques for solving

problems considering two machine flow shop. Their model accounts for uncertainty in

the processing times and minimizes the maximum regret associated with a schedule.

Dimitrov [25], in Chapter 2 of his dissertation, applied Robust Optimization to find

an effective routing policy for a network having active congestion control policies, in an

uncertain demand environment. Their model maximizes the minimum performance. The

approach of minimizing the worst performance can convert some polynomially solvable

problems NP-Hard [26]. Berstimas [26] proposed robust formulation for integer variables
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which are flexible in terms of conservatism and computationally tractable in practical

and theoretical terms. The techniques of Robust Optimization have been applied in

portfolio optimization, supply chain management and inventory management.

Robust Mathematical Programming

Mulvay [27] presented a Robust Mathematical Programming approach for dealing with

the uncertain parameters. Instead of modeling for the worst data instance, Robust Math-

ematical Programming approach allows for infeasibility in some constraints. A penalty

term for each of the violated constraints is added to the objective function and an optimal

solution is found minimizing the penalty function. Similar to stochastic optimization,

the variables are divided into two sets, design variables and control variables. Design

variables are the variables whose optimal values are not affected by particular realization

of data. Control variables are the ones adjusted when uncertain parameters are realized.

Instead of considering a single realization, an expected value of the objective function

is calculated. Higher moment terms and penalty terms for violation of the constraints

are added to the objective function. The higher moment terms can lead to a nonlinear

objective function. In order to address the computational difficulty related to the nonlin-

ear objective function, Yu and Li [28] proposed using absolute value function in place of

having quadratic function for variance reduction. List et al. [29] applied Robust Math-

ematical Programming techniques for fleet planning under uncertainty. Instead of using

variance, they minimized the upper partial moment of order 1. For workforce schedul-

ing problems, this thesis is one of the first works to apply the Robust Mathematical

Programming approach.
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1.4 Structure of the Thesis

The thesis is divided into a number of chapters. For easy readability, this section discusses

the structure of the chapters and how the models are presented. Chapter 1 introduces

the problem and presents several real world applications related to workforce scheduling.

The chapter ends with a detailed literature review related to the problem.

Chapter 2 describe the first model to solve the problem. The chapter starts with a

deterministic model followed by two robust models. The two robust models correspond

to Robust Optimization and Robust Mathematical Programming approaches. Each of

the three models has its own set of assumptions, notation and results. In Chapter 2, we

assumed that all of the tasks required for a product can be completed simultaneously.

In the remaining Chapters we relax this assumption as it is not valid for many practical

settings.

Chapter 3 presents a deterministic model that can capture precedence relationships

between tasks. The notation and results for this model are presented in this chapter.

Chapter 4 extends the deterministic model in Chapter 3 to consider uncertainty in

demand. The chapter includes new notation for this model. In addition, this chapter

presents several cases to reflect different industry specific needs. Computational results

are presented for each case.

Chapter 5 opens with a discussion of a real world large problem instance. Classical

heuristic methods as well as an independent heuristic were tested for this instance but

were not successful. The main focus of this chapter is Genetic Algorithm based heuristic.

In order to calculate the number of workers, required for a given production schedule,

a network model is presented. This network model serve as the final step of Genetic

algorithm. The Genetic Algorithm was successful in solving the real world instance and

the results are at the end of the chapter.

Chapter 6 concludes the findings and suggest future extensions of the work.
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Chapter 2

Minimizing the worker costs model

This chapter starts with the discussion of the first mathematical model to address the

problem mentioned in section 1.2. The deterministic model determines the number of

worker hours to meet demand and demand constraints. To consider uncertainty in the

demand, two different models based on Robust Mathematical Programming and Robust

Optimization techniques are presented. In Robust Mathematical Programming model,

one of the constraints from deterministic model is allowed to be violated. The violation

is penalized by a linear penalty function and is quadratic in nature. The chapter ends

with the Minimize Maximum Penalty formulation.

2.1 Simultaneous Task Production Model

As mentioned in Chapter 1, a manufacturing setting is considered. A series of work-

stations/tasks must be visited to produce products to meet the demand. The demand

is assumed to be deterministic. We need to determine the number of specialized and

flexible workers required to make the quantity demanded of each product.

We have decided to model this problem using a task based modeling approach. For

every task, we will consider the total time required to meet the demand of all the products
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requiring that particular task. We refer to this as the task-demand hour. To calculate this

value we multiply the task duration (the processing time for one unit at the workstation)

and the total demand for the products that require that task. In this model, we assume

that the processing time at each workstation is the same for all products.

The total available hours of specialized and flexible workers assigned to each task,

should be greater than or equal to the task-demand hour of that task. This ensures

that the workers will be available to complete the production. The number of workers

required for each type can be calculated using the total available worker hours.

The model is expressed as a Mixed Integer Linear Program (MILP) and the objective

is to minimize the total worker cost. It is assumed that the cost per worker includes

hiring, firing and all other related costs. Cost associated with each type of the worker is

a parameter.

The model presented in this chapter is a simplified version of the general problem pre-

sented in Chapter 1; we acknowledge that this model has several unrealistic assumptions

and we will relax several of these assumptions later in the Thesis.

2.1.1 Assumptions for Simultaneous Task Production Model

1. The planning horizon is one time period.

2. Each product has a fixed set of tasks required to complete production.

3. Each task/workstation is visited at most once to produce each product.

4. The tasks can be completed simultaneously.

5. All workers complete tasks at the same pace.
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2.1.2 Notation: Simultaneous Task Production Model

Sets:

• Tasks: A

• Products : P

• Type of workers: Y

• Set of products that require task a : Ba.

Parameters:

• Demand of product p : dp

• Number of hours required to finish one unit of task a : ha

• Cost of one specialized worker: cs

• Cost of one flexible worker: cf

• Duration of a shift: u

Decision Variables:

• Number of specialized workers for task a: wsa

• Number of flexible workers: wf

• Number of specialized worker hours for task a: whsa

• Number of flexible worker hours for task a: whfa
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Objective Function:

min cs
∑
a∈A

wsa + cfwf (2.1)

Constraints

whsa + whfa ≥ ha
∑
j∈Ba

dj ∀a ∈ A (2.2)

uwsa ≥ whsa ∀a ∈ A (2.3)

uwf ≥
∑
a∈A

whfa (2.4)

wsa, w
f ∈ Z+ (2.5)

The objective function (2.1), is the minimization of total worker costs, which is the

sum of the total number of workers multiplied by the corresponding cost parameter. As

wf denotes the number of flexible workers for all the tasks, summation in the objective

function is only for wsa variables. Constraint (2.2) refers to the demand satisfaction. For

a particular task a, the task-demand hour is the sum of the number of units demanded

over all the products p, that require task a, multiplied by the time required to finish

task a. In order to meet demand, the total number of available worker hours should be

at least equal to the task-demand hour. Constraints (2.3) and (2.4) translate required

worker hours into number of workers required. The left hand side of constraint (2.3)

converts the number of specialized workers required for task a into hours those workers

can work in a shift u hours long. Constraint (2.4) completes this calculation for flexible

workers. Constraints (2.3) and (2.4) require that the number of workers of each type

should be greater than or equal to the number of hours required for that type. Constraint

(2.5) requires the number of workers to be integer.
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2.1.3 Implementation of Simultaneous Task Production Model

The model has been implemented in two scenarios. In Case 1, only one product and

three tasks are considered. In Case 2, three products and ten tasks are considered. The

model is solved using Excel solver for a certain set of parameters1. In both cases, the

cost of a specialized worker is less than that of the flexible worker.

2.1.4 Discussion

As the cost of a specialized worker is less than that of a flexible worker, it is logical to

have more specialized workers. The results are consistent with this statement; in Case 1

and Case 2, where the number of flexible workers is less than the specialized workers.

The model’s biggest shortcoming is that it does not capture the situations when

there are precedence relationships between tasks to produce a product. In other words,

if product production follows a particular sequence of tasks and requires certain set of

tasks to be finished before moving to the next task, this model will not produce useful

results.

2.2 Robust Mathematical Programming Model

We consider the same manufacturing setting as in deterministic model. In this section,

we extend the deterministic model and present a Robust Mathematical Programming

model to cater to the uncertainty in quantity demanded for a product. At each point

of time in the planning horizon, the demand can have any value from a set of discrete

numbers. The proposed model hedges the uncertainty in the quantity demanded and

gives a single number for the number of workers that should be hired, irrespective of the

realized demand. The hired number of workers will not be able to meet demand for some

1See “(Appendix A)” for the data sets
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instances and will be idle in other instances. To minimize the loss because of these two

factors, we propose a model based on Robust Mathematical Programming. A certain set

of constraints are allowed to be violated and corresponding penalty terms, proportional

to the amount of constraint violations, are added in the objective function. The detailed

model is explained below.

We start by defining the uncertainty set. For a particular product, the uncertainty

set contains all of its demand instances. We refer to a single possible demand instance

of a product as a situation. So the cardinality of the uncertainty set is the number of

possible demand situations of a particular product. As demand is situation based, the

appropriate parameters have to be changed in deterministic model. Constraint (2.2) of

deterministic model translates the task-demand hour into available worker hours. In

this model more than one demand situation are considered, so constraint (2.2) has to be

modified accordingly. The set of variables ψas for every task a and situation s have been

introduced for calculating the violation of demand constraint, and their squared value is

minimized in the objective function.

2.2.1 Notation: Robust Mathematical Programming Model

Sets:

All of the sets as mentioned in the deterministic model and

• Cardinality of uncertainty set of a product p: S

Parameters:

All the parameters mentioned in the deterministic model. The following parameter

is removed in this model

• Demand of product p : dp
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Instead, we add the following parameters

• Demand of product p in situation s : dps

• Probability of having a situation s : ps

• Penalty cost for constraint violation: γ

Decision Variables:

In addition to the decision variables in the deterministic model, we add the following

variables.

• Difference between the amount of worker hours for task a and the task-demand

hours for all the products requiring task a, in situation s: ψas

Objective Function:

min cs
∑
a∈A

wsa + cfwf +
∑

p∈P,a∈A,s∈S

γpsψ
2
as (2.6)

Constraints:

The constraint (2.2) is replaced by the following constraint, keeping all the other

constraints the same.

whsa + whfa − ψas = ha
∑
j∈Ga

djs ∀a ∈ A, s ∈ S (2.7)

In this model, we allow deviations in demand satisfaction constraint (2.2). In the

deterministic model, the total number of worker hours has to be at least equal to the

task-demand hours. In the Robust Mathematical Programming model the total number

of worker hours can be less than the task-demand hours. The difference between the task-

demand hours and the worker hours is captured by the variables ψas, which is minimized

in objective function (2.6). The rest of the constraints are same as deterministic model.
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2.2.2 Implementation of Robust Mathematical Programming

Model

We implemented the model in Python and solved it using CPLEX solver. The results

are presented for the one product and the three task data 2. Two separate cases are

considered. Case 1 has very low variability in the demand for different situations relative

to Case 2.

2.2.3 Results and Conclusion

Probability function wsTask1 wsTask2 wsTask3 wf Worker Costs Penalty

γ =3
p1 = 0.9, p2 = 0.1 0 0 0 0 0 16.2
p1 = 0.1, p2 = 0.9 0 0 0 1 15 3.4
p1 = p2 = 0.5 0 0 0 1 15 9

γ =13
p1 = 0.9, p2 = 0.1 0 0 0 1 15 14.04
p1 = 0.1, p2 = 0.9 0 0 0 1 15 14.733
p1 = p2 = 0.5 0 0 0 1 15 39

γ =100
p1 = 0.9, p2 = 0.1 0 0 0 1 15 108
p1 = 0.1, p2 = 0.9 0 0 0 1 15 113.13
p1 = p2 = 0.5 0 0 0 1 15 300

Table 2.1: Robust Mathematical Programming Model : Low Demand Variation Case

Table 2.1 displays the computational results for the case having low variability in

the demand values. The first column lists the different γ values considered. Different

probability functions are considered for each value of γ, as detailed in the second column.

In the second column, ps is the probability of occurrence for situation s. As only two

situations are considered, the sum of p1 and p2 should be equal to 1. The third, fourth

and fifth columns lists the number of specialized workers working on each of the three

tasks. The numbers of flexible workers hired for different values of γ and ps are listed in

the sixth column. The last columns display the total cost of the workers and the penalty

for each values of γ and ps.

2See “(Appendix B)” for the data sets
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Results in Table 2.1 show that for γ = 13, and 100, the number of workers hired

remains the same but with a different total penalty value. And the maximum value of

this penalty occurs when the probability of occurrence is equal for every situation i.e

variance is highest. This is expected as both demand situations have equal weights and

thus each constraint has an equal absolute amount of violation. But when the probability

of both situations is not equal, the constraints corresponding to the higher probable

situation have lower absolute amount of violations. For γ = 3, the model returns Zero

Production as one of the solutions. The reason for this is the low demand variability,

high probability for demand of one unit, and low penalty for constraint violation in this

instatnce.

Table 2.2, displays the computational results for the case having high variability in

demand values. Each column lists the same parameters and variables as Table 2.1, but

values correspond to Case 2.

It can be easily inferred from Table 2.2 that solution for Case 2 has a similar pattern as

Case 1, except at γ = 3. As demand variation is high, instead of having Zero Production

or hiring zero number of workers, the model chooses to hire one flexible worker. It is

also observed for this instance that when the probability function is the same the same

solution is obtained, independent of the γ values.

Probability function wsTask1 wsTask2 wsTask3 wf Worker Costs Penalty

γ =3
p1 = 0.9, p2 = 0.1 0 0 0 1 15 158.76
p1 = 0.1, p2 = 0.9 2 2 2 0 60 158.76
p1 = p2 = 0.5 1 1 1 0 30 441

γ =13
p1 = 0.9, p2 = 0.1 0 0 0 1 15 687.96
p1 = 0.1, p2 = 0.9 2 2 2 0 60 687.96
p1 = p2 = 0.5 1 1 1 0 30 1911

γ =100
p1 = 0.9, p2 = 0.1 0 0 0 1 15 5292
p1 = 0.1, p2 = 0.9 2 2 2 0 60 5292
p1 = p2 = 0.5 1 1 1 0 30 14700

Table 2.2: Robust Mathematical Programming Model : High Demand Variation Case
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2.3 Minimize Maximum Penalty Model

For the same manufacturing setting discussed at the beginning of this chapter, we present

another model based on Robust Optimization technique. As mentioned in Chapter 1,

Robust Optimization is another way to consider uncertainty in the parameters. Similar to

Robust Mathematical Programming, Robust Optimization considers an uncertainty set.

Robust Optimization models for the worst case and one way to do it is by minimizing the

maximum penalty. In this model, we also use a minimize maximum penalty approach, a

penalty value is attached to each of them for underage and overage. The objective is to

find the number of workers hired that minimizes the sum of worker costs and penalties.

2.3.1 Assumptions for Minimize Maximum Penalty Model

For having a simple problem structure, the additional assumptions for this model are:

1. For the situations when demand hours are not equal to the worker hours, we attach

penalty costs.

2. Penalties for overage and underage do not change over time.

The goal of this model is still to determine the number of specialized workers and the

number of flexible workers required. We still utilize the task-based modeling approach.

And since, demand is situation based, the task-demand hour has to be calculated for each

demand situation. The goal is to determine a single value for the number of workers to

hire, irrespective of the realized value of demand. Thus, for some demand situations the

corresponding task-demand hour will not be equal to the available worker hours. For

these situations, we need to calculate overage (number of hours in excess) and underage

(number of hours less than that of required). Both overage and underage will be penalized

with the linear functions and summed together to get total penalty. This penalty is added
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to the worker costs in the objective. In this model, the planning horizon has multiple

time periods.

In mathematical terms, the above discussion will imply the violation of constraint

(2.2). Constraint (2.2) of deterministic model translates the task-demand hour into

available worker hours. The total number of hours for all the workers can be different

than the required demand hours for every situation. This difference is penalized by

linear weight function and maximum of this penalty is minimized in the model. This is

how our approach differs from Robust Optimization, in our Minimize Maximum Penalty

approach a constraint can be violated, while with Robust Optimization guarantees a

feasible solution for all data instances.

2.3.2 Notation: Minimize Maximum Penalty Model

Sets:

• Time : T

• Tasks: A

• Products : P

• Type of workers: Y

• Number of days: E

• Number of situations on a particular day e: Se

Parameters:

• Demand value on observing situation s, for product p, on day e: deps

• Number of hours required to finish one unit of task a : ha
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• Cost of one specialized worker for task a : csa

• Cost of one flexible worker: cf

• Duration of a shift: u

• Penalty when production of product p is in excess of its demand: ηp

• Penalty when production of product p is less than the demand: βp

Decision Variables:

• Number of specialized workers required for task a, on day e, for product p : wsepa

• Number of flexible workers required on day e, for product p: wfep

• Number of specialized worker hours required for task a, on day e, for product

p : whsepa

• Number of flexible worker hours, required on day e for task a and product p : whfepa

• Penalty cost for demand situation s, s ∈ Se, on day e and product p : peneps

• Maximum penalty for product p: θp

• Number of demand hours of task a for product p less than the optimal solution on

day e, for situation s : q−epas

• Number of demand hours of task a for product p more than the optimal solution

on day e, for situation s : q+eas

• Number of flexible workers required to make product p for whole of the planning

horizon of |E| days: wfp

• Number of specialized workers for task a required to make product p,for the whole

planning horizon of |E| days: wspa
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Objective Function:

min
∑

a∈A,p∈P

csaw
s
pa +

∑
p∈P

cfwfp +
∑
p∈P

θp (2.8)

Constraints:

θp ≥ peneps ∀e ∈ E, p ∈ P, s ∈ Ses (2.9)

whsepa + whfepa − depshpa = q+epas − q−epas ∀a ∈ A, e ∈ E, p ∈ P, s ∈ Se (2.10)

peneps =
∑
a∈A

ηpq
+
epas + βpq

−
epas ∀e ∈ E, p ∈ P, s ∈ Se (2.11)

uwsepa ≥ whsepa ∀a ∈ A, p ∈ P, e ∈ E (2.12)

uwfep ≥
∑
a∈A

whfepa ∀p ∈ P, e ∈ E (2.13)

wspa ≥ wsepa ∀e ∈ E, p ∈ P, a ∈ A (2.14)

wfp ≥ wfep ∀e ∈ E, p ∈ P (2.15)

wsepa, w
f
ep ∈ Z+ (2.16)

q+epas, q
−
epas ≥ 0 (2.17)

The objective function minimizes the total worker costs and the total penalty of

either exceeding or not meeting the demand. Constraint (2.9) states that overall penalty

for product p, θp has to be at least equal to the maximum penalty over every day e and

situation s. Constraint (2.10) calculates the underage and overage of the demand hours

for every product p. Based on the constraint structure only one of q−epas and q+epas will be

non-zero. The penalty for overage in demand hours of product p, for task a is a product

of the number of units exceeding demand, q+epas on day e, and unit cost of penalty for
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overage, ηp. Similarly, the penalty for not meeting the demand is a multiplicative sum

of q−epas and βp . As stated in constraint (2.11), the total penalty for product p on day e

and situation s should be the sum of penalties for overage and underage, summed over

all tasks a.

Constraints (2.12) and (2.13) calculate the number of specialized and flexible workers

required on day e for product p. The left hand side of constraint (2.12) is the total number

of specialized worker hours required for task a, which equals the multiplication of hours in

a shift u and the number of specialized workers required for task a, wsepa. This multiplied

term should be greater than or equal to the number of specialized worker hours required

on day e at task a for product p. The left hand side of constraint (2.13) calculates the

number of flexible workers required on day e for product p as the multiplication of the

number of hours in a shift u and the total number of flexible workers required wfep. This

multiplied term should be at least equal to the flexible worker hours required on day

e for product p. Constraint (2.14) and (2.15) calculate the number of specialized and

flexible workers required for the planning horizon of E days. Constraint (2.16) states the

integer requirements of the number of workers.

2.3.3 Results and Conclusions

We implemented the model in Python and solved it using CPLEX solver. The following

results are presented for one product, one day planning horizon and requiring three tasks

to be finished. The demand of the product is one of two numbers i.e. the cardinality of

demand set is 2. We present results for two different cases, where the first case has a

very low variance in the demand values compared to the second. 3

Table 2.3 displays the computational results for the case having low variance in the

demand values. The first column lists the decision variables of this model. Subsequent

3See “(Appendix B)”
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Decision variables η = β = 5 η = 200, β = 5 η = 200, β = 20 η = β = 200 η = 5, β = 200

ws1,Task1 0 0 0 0 0
ws1,Task2 0 0 0 0 0
ws1,Task3 0 0 0 0 0

wf1 1 1 1 1 1
q+1,1,Task1,1 1 0 0.27 0 0.93

q+1,1,Task1,2 0 0 0 0 0

q+1,1,Task2,1 0.5 0.073 0 0.5 1

q+1,1,Task2,2 0 0 0 0 0

q+1,1,Task3,1 0 0 0 1 1

q+1,1,Task3,2 0 0 0 0 0

q−1,1,Task1,1 0 0 0 0 0

q−1,1,Task1,2 0 1 0.73 1 0.073

q−1,1,Task2,1 0 0 0 0 0

q−1,1,Task2,2 0.5 0.927 1 0.5 0

q−1,1,Task3,1 0 0 0 0 0

q−1,1,Task3,2 1 1 1 0 0

Table 2.3: Results for Low Demand Variance Case

columns show the values taken by these decision variables for different η and β.

Table 2.4 displays the computational results for the case with high variance in the

demand values. The columns list the value of variables for different values of η and

β. The higher values of η indicate a large penalty for excess of demand while higher β

corresponds to lower tolerance towards backorders.

Tables 2.3 and 2.4, show that when η is lower than β, the model tends to select the

solutions which result in the overage of demand. When both η and β are the same, we

get the same number of workers for both cases. From Tables 2.3 and 2.4, all the data

sets tested had a non zero penalty. When there is a low difference in demand values,

the penalty is relatively lower. Even though the cost of flexible workers is higher than

the specialized workers, the model chooses more flexible workers. Since production of

the product requires three tasks, it is cheaper to hire one flexible worker than three

specialized workers. Even though the model is effective in capturing the uncertainty of

demand, it is not useful in situations when there are precedence relationships between

the tasks to produce products.

25



Decision variables η = β = 5 η = 200, β = 5 η = 200, β = 20 η = β = 200 η = 5, β = 200

ws1,Task1 2 0 0 2 2
ws1,Task2 1 0 0 1 2
ws1,Task3 1 0 0 1 2

wf1 0 1 1 0 1
q+1,1,Task1,1 10 0 0 10 16

q+1,1,Task1,2 0 0 0 0 0

q+1,1,Task2,1 7 1.173 4.36 7 14.83

q+1,1,Task2,2 0 0 0 0 0

q+1,1,Task3,1 7 0 0 7 16

q+1,1,Task3,2 0 0 0 0 0

q−1,1,Task1,1 0 0 0 0 0

q−1,1,Task1,2 6 16 16 6 0

q−1,1,Task2,1 0 0 0 0 0

q−1,1,Task2,2 9 14.83 11.6 9 1.17

q−1,1,Task3,1 0 0 0 0 0

q−1,1,Task3,2 9 16 16 9 0

Table 2.4: Results for High Demand Variance Case
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Chapter 3

Task Precedence Relationship Model

The previous models do not capture settings when there are precedence relationships

between tasks to produce products. In this Chapter, we propose a different model that

is capable of handling precedence relationships.

We developed a new set of constraints that create the production schedule. This

set of constraints counts the number of products that are produced simultaneously at

each task at each point in time. This set of constraints also ensures that there are

enough workers available at the task to complete the scheduled production. Another

set of constraints ensure that enough of each product is produced to meet demand. For

example, if the demand of product p at the fifth hour is 10 units and it takes 2 hours to

produce the product. It is feasible to start all the production at t = 0; however this will

result in higher worker costs than if we spread the production for this product across the

first 8 periods. If all of the products began processing at t = 0, then we would need 10

workers simultaneously, however if we spread out the production so that a new product

begins every 2 hours we could use significantly fewer workers by reducing the number of

products at the same task at the same time.

The detailed model is presented in the next section. In this chapter, we present a

model for deterministic cases only. Demand uncertainty is addressed in the next chapter.
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3.1 Notation: Task Precedence Relationship Model

Sets:

• Product Types: P

• Tasks: A

• Set of time blocks (currently measured in hours) in the planning horizon: T

• Set of shifts: Q

• Set of shifts in a day: I (i.e., First, Second, Third)

Parameters:

• Demand, measured in the number of units, of product type p at time t : dpt

• Time required to complete one unit of task a, measured in hours: ha

• Total cost of one specialized worker for task a, for the entire planning horizon: csa

• Total cost of one flexible worker, for the entire planning horizon: cf

• Duration of a shift, measured in hours: u

• Cumulative completion time for task a for product type p : αpa

• Number of workers required to complete task a : na

• The shift that corresponds to time t: q(t)

• The shift type that corresponds to shift q: i(q)

Decision Variables:

• Number of flexible workers, for task a, at time t hours: wfat
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• Number of units of product type p that start production at time t: xpt

• Number of specialized workers required for task a, in shift type i: wsia

• Number of flexible workers required in shift type i: wfi

Objective Function:

min
∑
i∈I

∑
a∈A

csaw
s
ia +

∑
i∈I

cfwfi (3.1)

Constraints:

∑
p∈P

∑
k∈T:k+αpa−ha≤t<αpa+k

naxpk ≤ wsi(t)a + wfat ∀a ∈ A, t ∈ T (3.2)

∑
k∈T:k+

∑
a ha≤t

xpk ≥
∑
j≤t

dpj ∀t ∈ T, p ∈ P (3.3)

wfi(t) ≥
∑
a∈A

wfat ∀t ∈ T (3.4)

xpt, w
f
at ∈ Z+ (3.5)

wfi(t), w
s
ia ≥ 0 (3.6)

Objective (3.1) is to minimize the workforce costs. Constraint (3.2) calculates the

total number of workers needed in each shift. This is achieved by summing the required

number of units of task a, for all the products p. The precedence relationship is enforced

by αpa matrix. Figure 3.1 illustrates the constraint for a 2-product situation having

completion time as h = [1.5, 2, 2, 4], ha is the completion time of ath task, in hours. The

products have the following sequence
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• Product Type 1 order: Task1 → Task2 → Task3

• Product Type 2 order: Task2 → Task3 → Task4

Time in hours is shown horizontally. At any point in time, the number of workers

required for a task a, should be the sum of xpk. The example in the figure shows at t=

1.75 hours, two products are being processed at Task 2, one of each type. Assuming

the number of workers required to complete Task2 (nTask2) in one, this schedule would

require the number of total workers for that task to be greater than or equal to two, for

this shift. Constraint (3.3) ensures that demand is met on time, by enforcing that the

total number of demand units is less than or equal to the production (xpk). Constraint

(3.4) determines the number of specialized workers required for each shift type, by taking

the maximum number of workers required during each shif in that type. Constraint (3.5)

complete a similar calculation to determine the number of flexible workers.

3.2 Results and Conclusions

We implemented the model in Python and solved it using CPLEX solver. The results

were compared for different values of cost function for the same demand set.

Iteration csTask1 cf ws1,Task1 wf1 Optimal Solution Time (seconds)

1 10 12 6 0 60 0.15
2 15 13 0 6 78 0.28
3 8 8 6 0 48 0.289

Table 3.1: Results for Deterministic Model with Precedence

A small case was considered to check the model implementation. The data set in-

cludes one product one task and a 4-hour long shift 1. Table 3.1 display the computa-

tional results for this model. Each row of Table 3.1 depicts different costs for specialized

1See “(Appendix C)”
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Figure 3.1: Example Timeline for Product 1 and Product 2
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and flexible workers. The last column denotes the time (in seconds) taken to solve the

corresponding instance.

When the cost of a specialized worker is higher than the cost of a flexible worker, the

solution should have more flexible workers or vice-versa. From Table 3.1, it can be easily

seen that computation results are in accordance with this intuition. When both costs

are the same, the model arbitrarily chooses specialized workers over flexible workers.

Another possible solution, for the same cost values, could be a mix of both types of

workers. From equations (3.2) to (3.6), that solution can be easily verified to having

higher costs.
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Chapter 4

Robust Math Programming with

Precedence

In Chapter 3, we introduced a deterministic model to schedule the workforce in a manu-

facturing setting having a series of tasks required to finish the production. The model is

able to capture the precedence relationship in the tasks. In this chapter, we extend the

same model to handle uncertainty in demand. We propose a Robust Mathematical Pro-

gramming based formulation and discuss different cases related to the model. Each case

represents different management objectives, which are discussed in the corresponding

sections.

Uncertainty lies in every aspect of a manufacturing facility. There can be uncertainty

in the delivery time, production time, arrival of orders, production yield or demand

quantity. In this thesis, we considered uncertainty only in demand quantity. Specifically

we assume demand of a particular product can take any value from a set of possible

instances (uncertainty set) at a given point in time. The elements of the uncertainty set

are referred as demand situations.

As discussed in Chapter 1, Robust Mathematical Programming finds a fixed set of
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variables as a solution for different instances (uncertainty set) of an uncertain parameter.

If this fixed set of variables can not satisfy all the instances, a suitable penalty is attached

for violation. Implementing the similar strategy, we allowed violation of some or all of

the constraints of deterministic model in Chapter 3 and are minimizing not only the

worker costs, but also penalty for the violation. In this chapter, we implemented the

minimization of mean variance approach of Robust Mathematical Programming. For

every demand situation, the model calculates the objective function value, which is

the sum of total worker costs and penalty for constraint violations. A probability is

assigned to each situation. The objective function is to minimize the expected value and

the variance of constraint violation. This converts the Mixed Integer Program (MIP)

discussed in Chapter 3, into a Mixed Integer Non-Linear Program (MINLP). In order to

develop the models, we define the following notation.

4.1 Notation: Robust Math Programming with Prece-

dence

Sets:

• Product Types: P

• Tasks: A

• Set of time blocks (currently measured in hours) in the planning horizon: T

• Set of shifts: Q

• Set of shifts in a day: I (i.e., First, Second, Third)

• Set for number of situations: S

• Set for type of constraints: G
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Parameters:

• Demand, measured in the number of units, of product type p, at time t, in situation

s : dpst

• Time to complete task a, measured in hours: ha

• Total cost of one specialized worker for task a, throughout the planning horizon:

csa

• Total cost of one flexible worker, throughout the planning horizon: cf

• Duration of a shift, measured in hours: u

• Cumulative completion time for task a for product type p : αpa

• Number of workers required to complete task a : na

• The shift that corresponds to time t: q(t)

• The shift type that corresponds to shift q: i(q)

• Probability of having a situation s : ps

• Tradeoff vector for model robustness to solution robustness: ω

• Penalty for violation of the constraint g : ωg

Decision Variables:

• Number of flexible workers, for task a, at time t hours: wfat

• Number of units of product type p that start production at time t, for situation s:

xpst

• Number of specialized workers required for task a, in shift type i: wsia
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• Number of flexible workers required in shift type i: wfi

• Slack in the constraint type g, for situation s, task a at time t : zgats

4.2 Case 1: Violation in Number of Workers Con-

straint

In this section, we present a situation when the management is only interested in the

effects of not hiring the exact number of workers as required by the production schedule.

Since the variables xpst denote the number of units of product p to be produced at time t

in a situation s, the entire set of variables xpst can be referred as a production schedule.

Constraint (3.2) calculates the number of required specialized and flexible workers from a

production schedule. By allowing violation in constraint (3.2), we do not have to hire the

required number of workers as required by the production schedule. In situations where

backorder and inventory storage costs are lower than the worker costs, the penalty for

violating this constraint is low. In the situations where hiring different number of workers

than required by the production schedule is highly undesirable, the penalty should be

high.

In representing the above idea, we define the variables z1ats. The variables z1ats are

free and thus capture both the positive and negative violation in the constraints.

Objective Function:

min σ(wsia, w
f
i , w

f
at, xpsk) + ωρ(z1at1, z1at2, ...z1ats) (4.1)

where

σ(wsia, w
f
i , w

f
at, xpsk) =

∑
i∈I

∑
a∈A

csaw
s
ia +

∑
i∈I

cfwfi
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ρ(z1, z2, ...zs) =
∑
a∈A

∑
t∈T

∑
s∈S

psz
2
1ats

Constraints:

∑
p∈P

∑
k∈T:k+αpa−ha≤t<αpa+k

naxpsk + z1ats = wsi(t)a + wfat ∀a ∈ A, t ∈ T, s ∈ S (4.2)

Objective function (4.1) is composed of two parts. The first part σ(wsia, w
f
i , w

f
at, xpsk)

represents the total worker costs i.e., the sum of all specialized workers and flexible

workers costs. The second part, ρ(z1, z2, ...zs), is the penalty for constraint violation.

The total violation is the sum of squares of z1ats variables. In this way, both the negative

and positive violations are penalized by the same penalty. These squared terms are

multiplied by the respective probability of having situation s. The term ω1 is the unit

cost of penalty for having a constraint violation. Thus the objective function as a whole

minimizes the total worker costs and total penalty for constraint violations.

Constraint (4.2) is a relaxed version of constraint (3.2). This constraint is relaxed

in a sense because free variables are added to accommodate the difference between the

production schedule and the number of workers required to finish that schedule. Through

this constraint we are allowing for having more or less number of workers than required

by the schedule. The remaining constraints are the same as in the MIP model.

4.2.1 Results and Conclusions

We implemented the model in Python and solved it using CPLEX solver. The following

results considered two different values of ω1 for a single product, requiring one task to

finish. Two different demand situations are considered. The first situation has high

variability in the demand values across different time periods. The second situation

has very low variability across different time periods. At time t, the difference in the

demand values is much higher for situation 1 than situation 2. We have tested the
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model for different values of probability function for a particular situation. The cost of

a specialized worker is cstask1 = $10 and of flexible worker, cf = $12.

Table 4.1 displays the computational results. The first column lists the different

weights considered in the analysis. The second column lists the probability functions

considered. The number of workers corresponding to each solution is shown in the third

and fourth column. The objective function value and corresponding penalty is listed in

the fifth and sixth column.

Referring to Table 4.1, at low values of ω1, there is violation in constraints. When

the probability of having a higher demand value is high, there is zero penalty. While at

equal probabilities, the model chooses a solution corresponding to the smallest penalty

and the number of workers is closer to the number of workers required for high demand

value situations. In the situation of having high penalty for constraint violation, ω1= 70,

the number of workers hired remains the same for all the probability functions. Since

the cost of hiring flexible workers is higher than hiring specialized workers, no flexible

worker is hired in any situation.

Probability function ws1,task1 wf1 Optimal Solution Penalty

ω1 =10
p1 = 0.9, p2 = 0.1 20 0 200 0
p1 = 0.1, p2 = 0.9 17 0 188 18
p1 = p2 = 0.5 19 0 200 10

ω1 =70
p1 = 0.9, p2 = 0.1 20 0 200 0
p1 = 0.1, p2 = 0.9 20 0 200 0
p1 = p2 = 0.5 20 0 200 0

Table 4.1: Robust Mathematical Programming Model : Case 1

4.3 Case 2: Violation in Production Constraints

In this section, we discuss another scenario when the effect of having a different produc-

tion schedule than required by the quantity demanded is the main focus of study. Given
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the demand of a product p, constraint (3.3), calculates the number of units of product

p to be produced at time t. Ideally, number of units to be produced should be at least

equal to the quantity demanded. In this Robust Mathematical Programming model,

the production quantity is allowed to be different than the demand. Lower penalty for

constraint violation represents the situation when backorder and inventory costs are low

while higher penalty denotes the opposite.

In this case, we introduced uncertainty in the demand constraints, numbered as

constraint (3.3) in the previous chapter. We attach the free variables, z2pts in constraint

(3.3), to measure the violation from demand. All remaining constraints remain the same.

Objective Function:

min σ(wsia, w
f
i , w

f
at, xpsk) + ωρ(z2pt1, z2pt2, ...z2pts) (4.3)

where

σ(wsia, w
f
i , w

f
at, xpsk) =

∑
i∈I

∑
a∈A

csaw
s
ia +

∑
i∈I

cfwfi

ρ(z1, z2, ...zs) =
∑
p∈P

∑
t∈T

∑
s∈S

psz
2
2pts

Constraints:

∑
k∈T:k+

∑
a ha≤t

xpsk − z2pts =
∑
j≤t

dpsj ∀t ∈ T, p ∈ P, s ∈ S (4.4)

Again, the objective function minimizes the total worker costs and the penalty for

constraint violations. The function ρ(z1, z2, ...zs) measures the total penalty violation of

constraint (4.4). All the other constraints remaining the same, we replaced constraint

(3.3) with constraint (4.4). Constraint (4.4) allows for the total production to deviate

from demand amount. We have attached penalty for over and under production.
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4.3.1 Results and Conclusions

We implemented the model in Python and solved it using CPLEX solver. Table 4.2 shows

the computational results for this case considering the same demand data as in Case1.

For lower values of ω2, constraint violation or non zero penalty exists at a different

probability function. The highest violation is for the case when lower demand values

are more probable. Even at higher ω2 values, constraint violations do exist. Thus, the

variable set z2pts should have higher penalty.

Probability function ws1,task1 wf1 Optimal Solution Penalty

ω2 =10
p1 = 0.9, p2 = 0.1 26 0 278 18
p1 = 0.1, p2 = 0.9 18 0 230 50
p1 = p2 = 0.5 26 0 270 10

ω2 =70
p1 = 0.9, p2 = 0.1 28 0 280 0
p1 = 0.1, p2 = 0.9 26 0 274 14
p1 = p2 = 0.5 28 0 280 0

Table 4.2: Robust Mathematical Programming Model : Case 2

4.4 Case 3: Violation in Number of Flexible Work-

ers Constraint

In the previous sections we looked into the cases having violations in production and

demand constraints. This section presents a scenario regarding the hiring related deci-

sions of flexible workers. Constraint (3.4) calculates the overall flexible workers required

for all the tasks. Violation of this constraint signifies the situation when hiring of the

flexible workers is not equal to the requirement.

In this case, the uncertainty in constraint (3.4) is considered. We introduced the free

variables, z3t, representing deviation from the required number of flexible workers.

Objective Function:
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min σ(wsia, w
f
i , w

f
at, xpsk) + ωρ(z3t) (4.5)

where

σ(wsia, w
f
i , w

f
at, xpsk) =

∑
i∈I

∑
a∈A

csaw
s
ia +

∑
i∈I

cfwfi

ρ(z1, z2, ...zs) =
∑
t∈T

psz
2
3t

Constraints:

wfi(t) − z3t =
∑
a∈A

wfat ∀t ∈ T (4.6)

The terms in the objective function are the same as in Case 1. The constraints of

the model are the same as in Chapter 3, except constraint (3.4). Instead, we propose

constraint (4.6), which allows the number of flexible workers for a shift i to be different

than the sum of flexible workers for all the tasks.

4.4.1 Results and Conclusions

We implemented the model in Python and solved it using CPLEX solver for the same

demand set. The only difference is that the cost of flexible workers is lowered to $8.

Since the variables z3t are not situation specific, there are not any probability attached

to them.

Table 4.3 shows the computational results for different values of ω3. From Table 4.3, it

is evident that constraint violation (non-zero penalty) exists at much lower values of ω3.

Even when the ω3 is lower than the cost of a flexible worker, ω3= 5, the penalty is zero.

From the above observation, it seems that hiring a different number of flexible workers

than the required is advantageous only when penalty is very low. For high penalty values,

it is always recommended to hire flexible workers according to the requirement.
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ws1,task1 wf1 Optimal Solution Penalty

ω3 = 3 0 19 158 6
ω3 = 5 0 20 160 0
ω3 = 70 0 20 160 0

Table 4.3: Robust Mathematical Programming Model : Case 3

4.5 Case 4: Violation in Both Production and Num-

ber of Workers Constraints

In this case, we considered situations when demand is not met and/or the number of

workers is not enough to meet the production schedule. Given the quantity demanded,

constraint (3.3) calculates the number of units of product p to be produced at time t.

Constraint (3.2) calculates the number of specialized and flexible workers required for

task a at time t. Since demand is situation based, the effects of the violation of constraints

(3.2) and (3.3) are studied. We attach the free variables z1ats and z2pts respectively to

constraints (3.2) and (3.3). The squared value of these variables is minimized in the

objective function.

Objective Function:

minσ(wsia, w
f
i , w

f
at, xpsk) + ωρ(zgat1, zgat2, ...zgats) (4.7)

where

σ(wsia, w
f
i , w

f
at, xpsk) =

∑
i∈I

∑
a∈A

csaw
s
ia +

∑
i∈I

cfwfi

ρ(z1, z2, ...zs) =
∑
g∈G

∑
a∈A

∑
t∈T

∑
p∈P

∑
s∈S

psz
2
gapts

Constraints:
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∑
p∈P

∑
k∈T:k+αpa−ha≤t<αpa+k

naxpsk + z1ats = wsi(t)a + wfat ∀a ∈ A, t ∈ T, s ∈ S (4.8)

∑
k∈T:k+

∑
a ha≤t

xpsk − z2pts =
∑
j≤t

dpsj ∀t ∈ T, p ∈ P, s ∈ S (4.9)

The objective function is the same as explained in Case 1. The difference is in the

penalty function, where we considered the variables z1ats and z2pts. The rest of the model

is the same as the model in Chapter 3, except constraints (3.2) and (3.3). Instead, we

are considering (4.2) and (4.4) which are reproduced in (4.8) and (4.9).

4.5.1 Results and Conclusions

We implemented the model in Python and solved it using CPLEX solver. The results

are presented for different values and combinations of penalty functions for both of

the variables. Table 4.4 displays the computational results for this case. The first

column lists the different weights considered in the analysis. The second column lists the

different probability functions for each combination of weights. Referring to Table 4.4,

the lowest worker costs are when both the penalty values are lower and lower demand

values are more probable. For every combination of penalty values, the lowest worker

cost corresponds to the situation when lower demand values are more probable. Also the

penalty values are lower for these values of probability function. When the probability

of having both of the situations is equal, the penalty is highest, even though the worker

costs are not highest for this case. Depending upon the values of ωs, the corresponding

free variables are non-zero.
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Probability function ws1,task1 wf1 Optimal Solution Penalty Worker Costs

ω1 =10, ω2 = 200
p1 = 0.9, p2 = 0.1 11 15 744 454 290
p1 = 0.1, p2 = 0.9 4 10 605 445 160
p1 = p2 = 0.5 7 13 1476 1250 226

ω1 =200, ω2 = 10
p1 = 0.9, p2 = 0.1 12 13 1457 1181 276
p1 = 0.1, p2 = 0.9 4 10 1327 1167 160
p1 = p2 = 0.5 8 11 3502 3290 212

ω1 =ω2=100
p1 = 0.9, p2 = 0.1 9 17 3514 3220 294
p1 = 0.1, p2 = 0.9 4 11 3362 3190 172
p1 = p2 = 0.5 7 13 9026 8800 226

ω1 =ω2=5
p1 = 0.9, p2 = 0.1 12 11 433 181 252
p1 = 0.1, p2 = 0.9 5 7 303 169 134
p1 = p2 = 0.5 9 8 643.5 457.5 186

Table 4.4: Robust Mathematical Programming Model : Case 4

4.6 Case 5: Violation in Both Production and Num-

ber of Flexible Workers Constraint

In the last section, we studied the violation in production constraint and the constraint

calculating total requirement of the workers at time t for task a. In this section, we

study the effects of violation in production constraint and the number of flexible work-

ers constraint. Constraint (3.3) calculates the production schedule from the quantity

demanded. Violation in this constraint refers to the situation when product production

is not exactly equal to the requirement. Constraint (3.4) calculates the total number

of required flexible workers in a shift. The required number of flexible workers should

be atleast equal to the sum of their requirement over all tasks. In order to study the

combined effect of the violation in constraints (3.3) and (3.4), the free variables z2pts and

z3t are attached to the respective constraints.

Objective Function:

min σ(wsia, w
f
i , w

f
at, xpsk) + ωρ(zgat1, zgat2, ...zgats) (4.10)
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where

σ(wsia, w
f
i , w

f
at, xpsk) =

∑
i∈I

∑
a∈A

csaw
s
ia +

∑
i∈I

cfwfi

ρ(z1, z2, ...zs) =
∑
g∈G

∑
a∈A

∑
t∈T

∑
p∈P

∑
s∈S

psz
2
gapts

Constraints:

∑
k∈T:k+

∑
a ha≤t

xpsk − z2pts =
∑
j≤t

dpsj ∀t ∈ T, p ∈ P, s ∈ S (4.11)

wfi(t) − z3t =
∑
a∈A

wfat ∀t ∈ T (4.12)

The objective function is the same as detailed in Case 1. The only difference is in

the penalty function. In this case, we considered variables z2pts and z3t. The rest of the

model is the same as in Chapter 3, except constraints (3.3) and (3.4). Instead, we are

considering (4.4) and (4.6) which are reproduced in (4.11) and (4.12).

4.6.1 Results and Conclusions

We implemented the model in Python and solved it using CPLEX solver. The results

are presented for different values of the penalty function. Table 4.5 displays the compu-

tational results for this case. In Table 4.5, the lowest worker costs are for the case when

higher probability is for lower demand values. When ω2 is higher than ω3, the results

are independent of the probability distribution function.
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Probability function ws1,task1 wf1 Optimal Solution Penalty Worker Costs

ω2 =10, ω3 = 200
p1 = 0.9, p2 = 0.1 26 0 278 18 260
p1 = 0.1, p2 = 0.9 18 0 230 50 180
p1 = p2 = 0.5 26 0 270 10 260

ω2 =200, ω3 = 10
p1 = 0.9, p2 = 0.1 27 0 280 10 270
p1 = 0.1, p2 = 0.9 27 0 280 10 270
p1 = p2 = 0.5 27 0 280 10 270

ω2 =ω3=100
p1 = 0.9, p2 = 0.1 28 0 280 0 280
p1 = 0.1, p2 = 0.9 27 0 280 10 270
p1 = p2 = 0.5 28 0 280 0 280

ω2 =ω3=5
p1 = 0.9, p2 = 0.1 25 0 264 14 250
p1 = 0.1, p2 = 0.9 16 0 197.5 37.5 160
p1 = p2 = 0.5 23 0 255 25 230

Table 4.5: Robust Mathematical Programming Model : Case 5

4.7 Case 6: Violation in Both Number of Workers

and Number of Flexible Workers Constraints

In this section, we study a tradeoff between the requirement of the flexible workers ver-

sus the total number of required workers (specialized and flexible) at a single point in

time. The total number of required workers are determined by the constraint (3.2). The

constraint translates the production schedule into the number of workers required to

finish the schedule. The number of flexible workers required is determined by the con-

straint (3.4). By considering different weights for violation in each of the constraint (3.2)

and (3.4) provides more flexibility in management goals. For instance, the mangement

goals might be strict towards zero inventory but comparitively relaxed towards hiring the

required flexible workers. This instance would lead to having high penalty for the con-

straint (3.2) compared to the constraint (3.4). In order to study the constraint violation,

we introduce the free variables z1ats and z3t for constraint (3.2) and (3.4) respectively.

Objective Function:

min σ(wsia, w
f
i , w

f
at, xpsk) + ωρ(zgat1, zgat2, ...zgats) (4.13)
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where

σ(wsia, w
f
i , w

f
at, xpsk) =

∑
i∈I

∑
a∈A

csaw
s
ia +

∑
i∈I

cfwfi

ρ(z1, z2, ...zs) =
∑
g∈G

∑
a∈A

∑
t∈T

∑
p∈P

∑
s∈S

psz
2
gapts

Constraints:

∑
p∈P

∑
k∈T:k+αpa−ha≤t<αpa+k

naxpsk + z1ats = wsi(t)a + wfat ∀a ∈ A, t ∈ T, s ∈ S (4.14)

wfi(t) − z3t =
∑
a∈A

wfat ∀t ∈ T (4.15)

The objective function is as explained in Case 1. The difference is in the penalty

function, by considering variables z1ats and z3t. Instead of constraints (3.2) and (3.4),

we introduce constraints (4.14) and (4.15) respectively. Instead, we are considering (4.2)

and (4.6) which are reproduced in (4.14) and (4.15).

4.7.1 Results and Conclusions

We implemented the model in Python and solved it using CPLEX solver. The computa-

tional results for various values of probability and penalty are presented in Table 4.6. As

Table 4.6 illustrates, whenever higher weight is given to the z1ats variables, the penalty

value is zero. For very low values of ω3, the z3t variables are non-zero.

4.8 Case 7: Violation in All Three Constraint Sets

In this section, we present a case having more theoretical interest. This case considers the

violation in all the three constraints namely the number of workers constraint (3.2), the
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Probability function ws1,task1 wf1 Optimal Solution Penalty Worker Costs

ω2 =10, ω3 = 200
p1 = 0.9, p2 = 0.1 20 0 200 0 200
p1 = 0.1, p2 = 0.9 17 0 188 18 170
p1 = p2 = 0.5 19 0 200 10 190

ω2 =200, ω3 = 10
p1 = 0.9, p2 = 0.1 20 0 200 0 200
p1 = 0.1, p2 = 0.9 20 0 200 0 200
p1 = p2 = 0.5 20 0 200 0 200

ω2 =ω3=100
p1 = 0.9, p2 = 0.1 20 0 200 0 200
p1 = 0.1, p2 = 0.9 20 0 200 0 200
p1 = p2 = 0.5 20 0 200 0 200

ω2 =ω3=5
p1 = 0.9, p2 = 0.1 18 0 199 19 180
p1 = 0.1, p2 = 0.9 14 0 175 35 140
p1 = p2 = 0.5 18 0 195 15 180

Table 4.6: Robust Mathematical Programming Model : Case 6

production constraints (3.3) and the number of flexible workers constraint (3.4). Different

weights are attached to study the effects of violation in each constraint with respect to

violation in other constraint. The uncertainty is studied by attaching the free variables

z1ats, z2pts and z3t respectively to the constraints (3.2) (3.3) and (3.4) respectively.

Objective Function:

min σ(wsia, w
f
i , w

f
at, xpsk) + ωρ(zgat1, zgat2, ...zgats) (4.16)

where

σ(wsia, w
f
i , w

f
at, xpsk) =

∑
i∈I

∑
a∈A

csaw
s
ia +

∑
i∈I

cfwfi

ρ(z1, z2, ...zs) =
∑
g∈G

∑
a∈A

∑
t∈T

∑
p∈P

∑
s∈S

psz
2
gapts

Constraints:

∑
p∈P

∑
k∈T:k+αpa−ha≤t<αpa+k

naxpsk + z1ats = wsi(t)a + wfat ∀a ∈ A, t ∈ T, s ∈ S (4.17)

∑
k∈T:k+

∑
a ha≤t

xpsk − z2pts =
∑
j≤t

dpsj ∀t ∈ T, p ∈ P, s ∈ S (4.18)

48



wfi(t) − z3t =
∑
a∈A

wfat ∀t ∈ T (4.19)

xpst, w
f
at, w

f
i(t), w

s
ia ∈ Z+ (4.20)

wfi(t), w
s
ia ≥ 0 (4.21)

In this case, we introduced uncertainty in all three constraints. We allowed deviations

from the demand and also allowed the possibility of having the workers not equal to the

required number.

4.8.1 Results

We implemented the model in Python and solved it using CPLEX solver. The compu-

tation results are presented in Table 4.7 for different values of the penalty weights and

probabilities. It can be easily verified from Table 4.7 that lowest worker cost exist when

higher probability corresponds to low difference in demand values. The highest penalty

occurs when both situations are equally probable, for each combination of the weights.

Probability function ws1,task1 wf1 Optimal Solution Penalty Worker Costs

ω1 = ω2=200, ω3 = 100
p1 = 0.9, p2 = 0.1 13 2 13114 12960 154
p1 = 0.1, p2 = 0.9 6 1 9032 8960 72
p1 = p2 = 0.5 10 1 21712 21600 112

ω1 = 5, ω2= ω3 =200
p1 = 0.9, p2 = 0.1 15 0 1230 1080 150
p1 = 0.1, p2 = 0.9 7 0 693.5 623.5 70
p1 = p2 = 0.5 11 0 1330 1220 110

ω2 = 5, ω1= ω3 =200
p1 = 0.9, p2 = 0.1 14 0 1396 1256 140
p1 = 0.1, p2 = 0.9 7 0 894 824 70
p1 = p2 = 0.5 11 0 2322.5 2212.5 110

ω3 = 5, ω1= ω3 =200
p1 = 0.9, p2 = 0.1 11 4 7448 7290 158
p1 = 0.1, p2 = 0.9 4 4 6883 6795 88
p1 = p2 = 0.5 8 3 18231 18115 116

ω1 = ω2= ω3 =5
p1 = 0.9, p2 = 0.1 13 1 510.5 368.5 142
p1 = 0.1, p2 = 0.9 6 1 311.5 239.5 72
p1 = p2 = 0.5 10 0 677.5 577.5 100

Table 4.7: Robust Mathematical Programming Model : Case 7
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4.8.2 Comparison of the Cases

Tables 4.8, 4.9, and 4.10 provide the comparison of all the above cases for the same

demand data, same number and sequence of the products. We are considering a one

product case requiring three tasks to complete. For this comparison, we are assuming

that ω1 = ω2 = ω3 = ω . Table 4.8 displays the computational results for ω= 10. The

columns show variable values for the corresponding cases. Tables 4.9, and 4.10 display

the computational results for ω =150 and 200 respectively.

Tables 4.8, 4.9, 4.10, reveal that Case 7 has the lowest number of total workers for

different values of ωs. For lower values of ω1, ω2, the penalties do come into account.

At very low values of ω3, z3t variables are non-zero. For higher values of ωs, the total

number of workers is the same for all the cases except Case 7.

ws1,Task1 ws1,Task2 ws1,Task3 wf1
Case1 8 0 0 16
Case2 7 7 0 11
Case3 8 7 0 10
Case4 0 0 0 15
Case5 7 6 0 11
Case6 0 0 0 23
Case7 1 0 0 5

Table 4.8: Comparison of Cases for ω =10

ws1,Task1 ws1,Task2 ws1,Task3 wf1
Case1 8 0 0 18
Case2 8 8 0 10
Case3 8 8 0 10
Case4 0 0 0 18
Case5 8 8 0 10
Case6 0 0 0 26
Case7 1 0 0 6

Table 4.9: Comparison of Cases for ω =150

Another important observation is that number of each type of workers is same for

Case 1, 2, and 3. As explained before, infeasibility in Case 3 occurs only at low values
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ws1,Task1 ws1,Task2 ws1,Task3 wf1
Case1 8 0 0 18
Case2 8 8 0 10
Case3 8 8 0 10
Case4 0 0 0 18
Case5 8 8 0 10
Case6 0 0 0 26
Case7 1 0 0 6

Table 4.10: Comparison of Cases for ω =200

of ωs, for a single task situation.

In a practical setting, we would like to have flexibility in terms of number of workers

to be hired and also to schedule the production. In other words, it is more realistic to

consider violation in the constraints corresponding to flexible workers and production.

Thus, we compare Case 2 and Case 5 for different values of ωs. In Case 2 only demand

constraints are allowed to be violated, whereas Case 5 represents when the constraint

calculating the number of flexible workers is also allowed to be violated. Referring to

Tables 4.11, 4.12 and 4.13, a difference in both cases occurs for low values of ωs. For

the 3-task case, at moderate values of ωs, the total number of workers is the same and

penalty is zero for both cases.

Case 2 Case5

ws1,Task1 7 7
ws1,Task2 6 6
ws1,Task3 1 0

wf1 11 11
z33 0 -1
z2182 -1 0

Table 4.11: Comparison of Cases for ω = 10
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Case 2 Case5

ws1,Task1 8 8
ws1,Task2 5 6
ws1,Task3 3 2

wf1 10 10
z33 0 0
z2182 0 0

Table 4.12: Comparison of Cases for ω = 70

Case 2 Case5

ws1,Task1 8 8
ws1,Task2 6 6
ws1,Task3 2 2

wf1 10 10
z33 0 0
z2182 0 0

Table 4.13: Comparison of Cases for ω = 200
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Chapter 5

Techniques to Solve Large Problem

Instances

In this section, we tested the models of Chapter 4 on a real job-shop setting. In the first

section, we present the data involved. An overview of the different techniques used to

solve the problem is given in the next section. The chapter ends with the discussion of

Genetic algorithm based heuristic.

5.1 Case Study

We applied the model in Chapter 4 on the data provided by Thunder Tools. Thunder

Tools is a job-shop based manufacturing firm producing approximately 200 products.

The products range from automotive components to B.B.Q burners. The production

facility has a number of presses, varying in size and capacity. The annual demand for

each product varied between 250,000 to 500,000. These presses are in five different areas.

A product has a production sequence which involves these five areas. At most a product

can have three different areas in sequence. We denote the areas of Thunder Tools as

tasks in our model.
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Based on the above data and considering two demand situations, in our model had

4,642,578 variables and 2,363,040 constraints. CPLEX solver took more than 24 hours

to solve the problem (this run time is not acceptable for Thunder Tools). In some cases,

software crashed without providing a solution. The goal of this chapter is to develop a

solution approach to solve this real world instance.

5.2 Overview of the Unsucessful Techniques Used

In this section, an overview is given of the methods employed to solve the case study

data.

As mentioned in the previous section, CPLEX took longer than 24 hours to solve

the model. In order reduce the run time, we attempted to divide the problem into

two separate but related small problems. The first problem is to determine the opti-

mal production schedule, i.e., set of the variables xpst from the previous Chapter. The

production schedule was then passed into the second problem, which calculates for the

minimum number of the workers required. We tested and compared five different prob-

lems of finding xpst variables. We selected small problem instances to test our approach

on so that we could compare the solutions from this approach to the optimal solution.

Unfortunately, for the tested instances, the solution provided by these techniques was

only within 30 % of the optimal solution (as provided by CPLEX).

In the second attempt, we tested different heuristics based on classical approaches of

Lagrangian Relaxation [30] and Outer Approximation [31, 32]. For the small problem

data sets, Lagrangian Relaxation provided an optimal bound within finite number of

iterations. For the large problem instances, the heuristic did not converge quickly. The

heuristic based on Outer Approximation provided the similar results. Neither approach

provided us with high-quality solutions within the desired run time.

Next, we implemented and compared two independent heuristics. The first heuristic
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was based on the LP relaxation techniques and the second heuristic used integer cut

generation methods. For small test cases, both these heuristics provided near optimal

solutions. Moreover, the run time performance for the LP relaxed heuristic is better

than the CPLEX solver for most of the instances considered. However, both of these

heuristics were not able to solve the case study data. In the next section, we discuss a

Genetic Algorithm based heuristic that successfully solved the case study data.

5.3 Genetic Algorithm

Genetic Algorithms (GA) use the concept of evolution in order to solve large scale prob-

lems. Biological theory states that strong species have more chance in giving birth to

better offspring. The same principle is adopted to solve large scale problems. From a

set of candidate solutions, solutions having better objective function values are selected

and a series of operations are applied to obtain new solutions. In order to understand

the methodology behind Genetic Algorithms, the following terminology is presented:

• Population: Set of candidate solutions from which the parents are selected.

• Chromosome: A particular member of the population.

• Gene: A particular element of a chromosome.

• Parent: A particular solution which is selected on the basis of having a better

objective function value than the rest of the solutions. A series of operations are

applied on the parent to obtain a new solution.

• Offspring: After applying the series of operations, a new solution is obtained which

is termed as offspring.

• Crossover operations: These are the operations that are performed on the parent

solution to obtain an offspring solution.
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• Mutation: A series of operations applied on the new solution in order to get a more

diverse population than the previous population.

Genetic Algorithms contain a set of candidate solutions. Each solution of this set

is called a chromosome and a fitness value is attached to each of them. Fitness value

can be calculated as the sum of objective function values and the penalty associated

with constraint violations. Every element of a chromosome is termed as a gene. By

using certain heuristics, two chromosomes are selected as parents. Baker and Ayechew

[33] use the binary tournament process to select the chromosomes. Tanomaru [34] uses

the roulette selection method for choosing parents. A series of crossover operations are

applied on the parents, resulting in two new solutions which are termed as offspring.

Depending on the fitness value of the offspring, they are appended into the current

population set which results in a whole new set of population. This new set of population

has solutions better than the previous population set. The crossover and mutation

operations are applied to get the new offspring and continue to do so until termination

criteria are reached. The termination criteria can be based on the upper limit of the

number of iterations to perform the crossover and mutation operations or when the

whole population has converged. In order to decide if a population has converged or

not, we assume a number ψ. The ψ is problem specific. The population is said to be

converged if the following condition is met.

max{Fi} −min{Fi} ≤ ψ (5.1)

where max{Fi} is the maximum fitness value of the current population and min{Fi} is

the minimum fitness value of the current population. Equation 5.1 states that when the

difference between the maximum and minimum fitness value is less than or equal to the

ψ, it is not productive to perform more crossover and mutation operations.
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5.3.1 Application of Genetic Algorithm to Scheduling

Cai and Lee [12] have used Genetic Algorithms for solving workforce scheduling problems

in a multiple objective problem. A set of solutions representing the number of workers of

different types is considered as a population. A rank based selection method is used to

select parents. They select two chromosomes randomly and assign them ranks based on

the weights assigned to each objective function. According to the probability distribution

function, chromosomes of rank 1 are selected with the specified probability or vice-versa.

The multi point crossover is applied to the selected chromosome using a crossover mask.

If there is a one in the crossover mask, then the gene is copied from parent 1. If it is

zero, then the gene from parent 2 is copied. Mutation is applied to ensure solutions are

different from the current generation. A heuristic approach is used to ensure feasibility

of the constraints.

Baker and Ayechew [33] have employed Genetic Algorithms in vehicle routing prob-

lems. In their problem, a chromosome is the set of N customers where each gene rep-

resents the vehicle number to which each customer is assigned. The initial population

has been generated using different heuristics. A 2-point crossover method is applied to

obtain the set of new solutions. The results include the comparison of different crossover

methods for the same data set, stating the suitability of a 2-point crossover method over

a single point crossover.

Tanomaru [34] applied Genetic Algorithms with heuristic operators for staff schedul-

ing problems. In his problem, each chromosome represents the set of shifts every em-

ployee has. The roulette method is used to select the parents.

5.3.2 Application of Genetic Algorithm for the Case Study

We propose a Genetic Algorithm based heuristic for solving the large problem instances

(specifically our case study). The chromosomes in our algorithm are the production
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schedules or xpts variables and value of each of these variables are genes. The algorithm

selects the best solutions from a series of schedules. A network model, explained later in

this section, is solved for establishing the number of specialized and flexible workers from

these schedules. The penalty for overage and underage of demand is calculated as the

absolute sum of the difference in production and demand. Fi, sum of worker costs and

penalty for overage and underage, denotes the function value corresponding to schedule

i. In order to select the parent solutions, two methods have been employed separately:

the Binary tournament and the Roulette selection. The algorithms for both selection

methods are explained in the following sections.

5.3.3 Generating Initial Population

The inputs for the Genetic algorithm are the feasible production schedules that give the

candidate solutions for the number of workers. The feasible schedules is generated in

a number of ways. Below is the list of heuristics used to develop feasible production

schedules for the initial population.

• No production

One input for the feasible production schedule is zero production i.e. no production

for all the products. In this case, the worker costs will be zero but this schedule

comes with a very high penalty for not meeting the demand.

• Random demand

Another input for a feasible production schedule is to generate random numbers,

uniformly distributed between 0 and 9, for every product p and time t. the numbers

0 and 9 have been chosen empirically.

• Alternate random numbers

We generate a series consisting of 0 and a random number, uniformly distributed
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between 0 and 4, at alternate positions. The number 4 has been selected empiri-

cally.

• Equally distributed demand

It is assumed that demand for every situation s is satisfied in the same time bucket,

i.e. if for a particular product p, the demand at t = 3 hours is 10 units. The

production for t less than three hours will correspond to this demand only and the

load for production will be equally distributed in this time bucket.

5.3.4 Methods to Choose Parents

In this section, we present two methods to select the parents, the Binary Tournament

method and the Roulette selection method.

Binary Tournament

In this method, two chromosomes are selected at random. Fitness value of both is

recorded and the one with a better fitness value is selected as parent 1. Another pair of

chromosomes is selected and the one with a better fitness value is selected as parent 2.

Roulette Selection method

Roulette selection method uses a pie-chart based approach to select the parents. The

number of divisions in the pie-chart is equal to the cardinality of the population set,

where each division represents a chromosome. The area of each division is a function

of the corresponding fitness value of the chromosome. Two different functions were

employed in the roulette selection approach.

In the first approach, we used the following equation for determining the area of
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division for the ith chromosome.

Pi = (1− pi)/
∑

j∈POPULATION

(1− pj) (5.2)

where pi = (WorkerCostsi + Penaltyi)/(
∑

j∈Population

WorkerCostsj + Penaltyj)

Since the problem is having minimization in the objective function, the area corre-

sponding to each chromosome is not directly proportional to the fitness value. Equation

5.2 allows the chromosome with the higher fitness value to have the lower area in the

pie-chart.

In the second approach, we considered the maximum fitness value inside the popu-

lation. In order to allocate area to a particular chromosome, we calculate the deviation

of the fitness value of that chromosome from the maximum value. The area for each

chromosome i is calculated by the following equation:

Pi = pi/
∑

j∈POPULATION

pj (5.3)

where pi = Max{F} −WorkerCostsi − Penaltyi

The idea behind equation 5.3 is that the more the difference between the fitness value

of a particular chromosome and the maximum value, the greater should be its chance of

getting selected as a parent.

After allocating each chromosome its corresponding area in the pie-chart, we generate

a random number in the range (0, 1). Starting from the first chromosome, the cumulative

sum of area of the divisions is compared with the random number. When the cumulative

sum exceeds the random number value, the corresponding chromosome is selected as

parent. Since the chromosome having a better fitness value will have more area on the
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pie-chart, there is a greater chance that it will be selected as a parent.

5.3.5 Crossover

After selecting parents by using the Binary or Roulette selection method, the crossover

operations are applied to get new solutions. The crossover mixes genes of the two chro-

mosomes at specified positions. The following are some of the variations of crossover

operations:

• 1-point Crossover : In the single point crossover, the first half genes of the offspring

are from parent 1 and the rest are from parent 2.

• 2-point Crossover : In the 2-point crossover, two random numbers in the range

from 2 to the number of genes in a chromosome are generated. The genes that

have a position between the two random numbers are copied from parent 1 and

the rest are copied from parent 2 to get the offspring.

• Multi-point Crossover : In multi-point crossover operations, for every gene, a ran-

dom number in the range (0,1) is generated. If the random number is less than 0.5,

then the gene is copied from parent 1. Otherwise, the gene is copied from parent

2. The set of random numbers generated can be referred to as a crossover mask.

5.3.6 Mutation

Mutation is helps to provide diversity in the new generation. With the probability of

mutation pm, a randomly chosen gene of an offspring is altered. With a pre-specified

fixed probability the selected gene is changed to either 0 or a random number in the

range (1,9).
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5.3.7 Network Model for Calculating the Number of Workers

Given a schedule, a minimum cost flow approach is used to calculate the number of

specialized and flexible workers required. In this model, we introduce a source node for

every task a and another source node for flexible workers. The flow in the network is the

number of specialized workers and flexible workers. Apart from the source node, every

other node represents the time t ∈ T . The network is for a particular shift type i(t). An

example of the network is shown in Figure 5.1. We assume that there are three shifts

in a working day. The network in Figure 5.1 is for the first shift. This figure assumes

that the shift is four hours long and that there are two possible tasks. In the Figure 5.1,

the starting nodes represent the source nodes for every task and another source node for

flexible workers. The subsequent nodes represent time points. Based on the assumption

that we have the same number of workers every shift and that a shift is four hours long,

the next node is for t = 12 hours. The black solid line represents s1,Task1 workers, those

workers assigned to the first task during the first shift type. The black dashed lines

represents the movement of flexible workers that were working on Task1 at time t. The

red solid line is for the second task and the first shift type (s1,Task2). Since, the number

of specialized workers is not changing for a shift i(t), we have a single solid line flowing

back to the source node. The flexible worker can move across the tasks during a shift

and will work for one hour at that task. Thus flexible workers can flow across the tasks.

We use this network to calculate the number of flexible and specialized workers, given

a production schedule. The following sections explain this model in detail.

Sets:

As defined in Chapter 3.

Parameters:

As defined in Chapter 3.
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Figure 5.1: Network Model Illustration for Calculating the Number of Workers Required
Given the Production Schedule
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Decision Variables:

• Number of specialized workers required for task a, in shift type i: wsia

• Number of flexible workers required in shift type i: wfi

• Number of flexible workers from source node to the task a, for shift i: wfsoai(t)

• Number of flexible workers from last node, of task a, to source node, for shift i:

wffoai(t)

• For shift i(t), Number of flexible workers working at task a1 moving to task a2, at

time t: wfa1,a2,t,i(t)

Objective Function:

min
∑
i∈I

∑
a∈A

csaw
s
ia +

∑
i∈I

cfwfi (5.4)

Constraints:

source node flow

wfsoai(t) =
∑
a1∈A

wfa,a1,t,i(t) ∀a ∈ A, t ∈ {0, U, 2U} (5.5)

Last node flow

wffoai(t) =
∑
a1∈A

wfa1,a,t−1,i(t) ∀a ∈ A, t ∈ {(Q− 2)U − 1, (Q− 1)U − 1, QU − 1} (5.6)

Flow in = flow out except source and last node

∑
a1∈A

wffoa1,a,t−1,i(t) =
∑
a2∈A

wffoa,a2,t,i(t) (5.7)
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∀a ∈ A, t ∈ T/{0, U, 2U, (Q− 2)U − 1, (Q− 1)U − 1, QU − 1}

Flow at flexible source node

∑
a∈A

wfsoai(t) =
∑
a∈A

wffoai(t) (5.8)

Flow greater than equal to production

wsi(t)a + wfsoai(t) ≥ Xsumat ∀t ∈ {0, U, 2U} (5.9)

wsi(t)a +
∑
a1∈A

wfa1,a,t−1,i(t) ≥ Xsumat ∀a ∈ A, t ∈ T/{0, U, 2U} (5.10)

wfi(t) ≥
∑
a∈A

wfsoai(t) (5.11)

Objective function (5.4) states minimization of worker costs. Constraints (5.5), (5.6),

and (5.8) represent the flow balance constraints. Constraint (5.5) states that at the start

of every shift i, the number of flexible workers working at task a is equal to the number

of flexible workers moving at task a1 in the next time period, summed over all tasks

a1 ∈ A. Constraint (5.6) represents the flow of flexible workers between source node of

flexible workers and the last node of planning horizon. Constraint (5.6) states that the

number of flexible workers returning to the source node from task a is equal to the sum

of the flexible workers working at task a1 at time t − 1, summed over all tasks a1 ∈ A.

Constraint (5.8) represents the flow balancing in all the other nodes. The left hand side

of this constraint is the sum of all the flexible workers working at task a1 at time t− 1,

who moved to task a at time t. The right hand side of the constraint is the sum of all the

flexible workers who were working at task a at time t, and moved to all the other tasks.

Constraint (5.8) states that the outward flow at the source node of flexible workers, the

sum of the number of flexible workers going to all the tasks in shift i(t), is equal to the

inward flow, the sum of the number of flexible workers coming from all the tasks in shift
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i(t).

Constraints (5.9) and (5.10) represent the demand satisfaction constraints. Xsumat

calculates the number of units required for a task a at every time t. At the starting

nodes, the flow of workers constitutes only two types of variables, wsi(t)a and wfsoai(t).

For the rest of the nodes of task a, the flow of workers is from both the preceding nodes

and the nodes representing tasks other than a. Constraint (5.11) gives a final value of

flexible workers needed for a shift i(t).

5.3.8 Binary Tournament algorithm

This section details the algorithm, which uses the binary tournament method. In this

algorithm J denotes the number of iterations done. The upper limit of the number of the

iterations is assumed to be UB. Initially, POPULATION is an empty set. The algorithm

generates the initial population members and append them in POPULATION set.

1: Set J = 0 and POPULATION = {}

2: Generate the initial population

3: while {J ≤ UB OR max{Fi} −min{Fi} ≤ ψ } do

4: i = 1

5: while {i≤2} do

6: Randomly select two parent solutions

7: Check the fitness value of both

8: Select the one with the minimum fitness value

9: i = i + 1

10: end while

11: Apply a 2-point crossover to the parents selected in the previous step

12: Apply the mutation

13: Calculate the fitness value of the offsprings
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14: if {The fitness values of the offsprings are more than the parent’s} then

15: Discard the offspring solutions

16: end if

17: if {The fitness value of the offsprings lies between that of the parent’s} then

18: Append them in POPULATION

19: end if

20: Discard the solution with the maximum fitness value from POPULATION

21: J=J+1

22: end while

23: Choose the solution corresponding to the minimum fitness value function

5.3.9 Roulette Selection

This section details the algorithm that uses the Roulette selection method.

1: Set J=0 and POPULATION = {}

2: Generate the initial population

3: while {J ≤ UB OR max{fi} −min{fi} ≤ ψ} do

4: for { i in POPULATION} do

5: Pi = (1− pi)/
∑

j∈POPULATION

(1− Fj)

6: i = i+1

7: end for

8: Generate a random number r, uniformly distributed between (0,1)

9: SUM = 0

10: while { SUM ≥ r} do

11: for { i in POPULATION} do

12: SUM = SUM + Pi

13: end for
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14: RETURN i when while condition is reached

15: end while

16: Repeat the above process to generate second parent

17: Apply 2-point crossover to the parents selected in the previous step

18: Apply mutation

19: Calculate the fitness value of the offsprings

20: if { Fitness value of offsprings more than the parents} then

21: Discard the offspring solutions

22: end if

23: if { Fitness value of offsprings lies between that of the parents} then

24: Append them in POPULATION

25: end if

26: Discard the solution having maximum fitness value from POPULATION

27: J=J+1

28: end while

29: Choose the solution corresponding to minimum fitness value function

5.3.10 Implementation and Comparison

The above algorithms were implemented using Python. The performance of the Genetic

Algorithm is compared with the equivalent MINLP model, which is Case 5 from Chapter

4. The results below are for 25 products and cardinality of demand set for a product p

at time t is 2. While generating the initial random population, we have considered the

random numbers for the schedule at alternate points of time to be in the range (0, 9)

and for the schedule having values greater than or equal to zero at every point in time

to be in the range (0,4). The maximum number of tasks is three.

Table 5.1 displays the computational results of this algorithm for eleven instances.
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The second column lists the number of iterations taken by the Genetic algorithm. As

outlined in the third column, we have assumed that out of five tasks, every product needs

three tasks to finish. The fourth and fifth columns list the Genetic algorithm and MINLP

run time respectively. The sixth and the seventh columns list the solution obtained by

the Genetic algorithm and by solving the MINLP. The last column lists the optimality

gap for each instance.

Instance No. of itera-
tions to fin-
ish GA

Maximum
sequence of
the tasks

GA run
time

MINLP
run time

GA solu-
tion

Optimal
solution

Optimality
Gap

1 200 3 648.32 3377.94 2723 2748 -0.0091
2 200 3 653.12 965.67 2795 2768 -0.00975
3 200 3 649.9 1183.47 2761 2745 -0.00583
4 200 3 661.3 1668.19 2724 2841 -0.04118
5 200 3 647.17 836.54 2842 2871 -0.0101
6 200 3 677.37 1007.19 2817 2832 -0.0053
7 200 3 649.33 1853.72 2818 2801 -0.00607
8 200 3 654.85 946.15 2725 2863 -0.0482
9 200 3 649.14 1147.17 2761 2795 -0.0122
10 200 3 651.03 1019.04 2865 2805 0.01996
11 200 3 651.85 1751.11 2739 2849 -0.0391

Table 5.1: Comparison of GA with the MINLP

From Table 5.1, it can be easily verified that for all the instances considered, the

Genetic Algorithm produces solutions within 4% of the optimality. The time taken by

MINLP is less than that of the Genetic Algorithm for these data instances.Computation

time is higher for these data instances however the Genetic algorithm outperformed

MINLP for larger data instances.

While the MINLP was intractable for problems the approximate size of the Case

Study, the Genetic Algorithm converged within a few hours. Table 5.2 presents different

instances of problems that are the approximate size of the Case Study. For each instance,

demand data and processing sequence is generated randomly. The number of iterations

for each instance is set to be 200. The Genetic Algorithm was able to solve problems

the size of the Case Study problem mentioned (from Section 5.1) in less than 3 hours.

69



Instance No. of itera-
tions to fin-
ish GA

Maximum
sequence of
the tasks

GA run
time

GA solu-
tion

1 200 3 5870.3 23355
2 200 3 5796.87 23330
3 200 3 5783.05 23453
4 200 3 5865.29 22923

Table 5.2: Genetic Algorithm Solution of the Case Study Data
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Chapter 6

Conclusion and Future Direction

In this thesis, we considered a manufacturing setting with uncertain demand across

several product types. The manufacturing plant is composed of several workstations each

dedicated to a specific task. For completion, every product must follow a predetermined

sequence of the workstations, where a set of workers are required to complete the tasks.

We assumed that this production environment had two types of workers: specialized

workers who are only capable of working at a single workstation and flexible workers

who are capable of working at any workstation. Our goal was to develop techniques to

a schedules that minimized the workforce costs.

6.1 Conclusion

We began by considering the deterministic demand and developed models for two scenar-

ios: 1) when tasks can be completed simultaneously, and 2) when there are precedence

relationships between tasks. The computational results, strengths and weaknesses of

each model are discussed independently.

To handle uncertainty, models based on Robust Optimization and Robust Mathemati-

cal Programming were developed and implemented. The models extend the deterministic
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models and the results are presented for various values of the input parameters.

We attempted to use these models to solve a real-world Job-shop workforce scheduling

problem. Unfortunately, CPLEX was not able to solve these large problem instances of

our models. We implemented various approaches (Lagrangian Relaxation and Outer

Approximation and relaxation based heuristics) to solve the problem. To test each of

these approaches we used small test data sets and compared each of their results to the

results from our math models. Often these techniques did give similar solutions to our

math models for the small data sets. However, when these approaches failed to solve

problems of the same size as the Job-shop Case Study described in Section 5.1.

We implemented a Genetic algorithm based approach. We conducted analysis to

select the best approach to select parents. The computational results were very promis-

ing. The results indicated that the optimality gap between the Genetic Algorithm based

approach and our math models was less than 4% for the tested data sets. Moreover, the

Genetic Algorithm converged to solutions within hours for instances the same size as the

Case Study problem.

6.2 Future Direction

This work could be extended in many ways. Possible extensions of the models discussed

in this Thesis include capturing break times, tolerance for absenteeism and worker pref-

erence for particular shifts.

In addition, work could be done to extend this work to address with other types

of demand uncertainty. In this thesis, we only considered uncertainty in the quantity

demanded. In the future it would be important to address uncertainty in the demand

arrival, i.e., when arrival time of the demand is not known. The emergency room in a

hospital is one example of when this could occur in the service industry. Even though
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the arrival of patients is uncertain, the nurses still need to be given a schedule. This

nurse scheduling problem could relate to the work in this Thesis if one could devide the

nurses in to two categories, specialized (restricted to one task) and flexible or floaters

(capable of completing any task).

Lastly, this work can be extended by considering other types of uncertainty. Through-

out this thesis, we have assumed that workers finish work at the same pace, and that the

time to finish a task is deterministic. This is not always true in a practical setting. In

several situations, the time required to finish a task as a random number. For example,

in the construction industry, the time to finish a task is not always constant and is de-

pendent on many other factors. In manufacuturing, workers can take different amounts

of time to finish the same task. Perhaps the approaches described in the Thesis can also

be extended to address these sources of uncertainty.
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Appendix A

Results of Deterministic Model

without Precedence

Case 1: One product and three tasks.

Sets:

T ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}

A ∈ {Task1, Task2, Task3}

P ∈ {1}

Y ∈ {Flexible, Specialized}

GTask1 = {1}

GTask2 = {1}

GTask3 = {1}

Parameters:

d1 : 10units

hTask1 : 1.5hours
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hTask2 : 1hours

hTask3 : 2hours

cs : $10

cf : $20

u : 8hours

Results:

The optimal solution for this case is wsTask1 = wsTask2 = 2;wsTask3 = 3;wf = 0. The cost

will be $ 70.

Case 2: Three products and ten tasks.

Sets:

T ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}

A ∈ {Task1, Task2, Task3, Task4, Task5, Task6, Task7, Task8, Task9, Task10}

P ∈ {1, 2, 3}

Y ∈ {Flexible, Specialized}

GTask1 = {1, 3}

GTask2 = {2, 3}

GTask3 = {1, 2, 3}

GTask4 = {1, 2, 3}

GTask5 = {1, 2}

GTask6 = {1, 2}

GTask7 = {1, 3}

GTask8 = {1, 2}

GTask9 = {2, 3}

GTask10 = {1, 3}
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Parameters:

d1 : 10units

d2 : 12units

d3 : 13units

hTask1 : 1.5hours

hTask2 : 1hours

hTask3 : 2hours

hTask4 : 0.5hours

hTask5 : 2hours

hTask6 : 1hours

hTask7 : 1.2hours

hTask8 : 0.8hours

hTask9 : 3hours

hTask10 : 1.2hours

cs : $10

cf : $20

u : 8hours

Results:

The optimal solution for this case is wf = 2;wsTask1 = wsTask2 = 4;wsTask3 = wsTask9 =

9;wsTask4 = wsTask8 = 2;wsTask5 = 6;wsTask6 = wsTask7 = wsTask10 = 3. The cost for this case

is $490.
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Appendix B

Parameters for Minimization of

Maximum Penalty Model

Case 1

Sets:

T ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}

A ∈ {Task1, Task2, Task3}

P ∈ {1}

Y ∈ {Flexible, Specialized}

E ∈ {1}

Se ∈ {2}

Parameters:

d111 : 1unit

d112 : 2units

hTask1 : 1hour

hTask2 : 1hour
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hTask3 : 1hour

csTask1 : $10

csTask2 : $11

csTask3 : $12

cf : $15

u : 8hours

Case 2

Sets:

Same as in Case 1

Parameters:

All other parameters are same, except

d111 : 1unit

d112 : 17units
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Appendix C

Parameters for Deterministic Model

with Precedence

Case 1

Sets:

P ∈ {1}

A ∈ {Task1}

T ∈ {1, 2, 3, 4}

Q ∈ {1}

I ∈ {1}

Parameters:

d1,3 = 12

d1,4 = 5

hTask1 = 1 hour

u = 4 hours

α1,Task1 = 1 hour

83



nTask1 = 1
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Appendix D

Comparing Two Different Functions

in Roulette Selection

The results for comparing the two approaches used in roulette selection method

Penalty Value Method 1 Method 2

5600600 0.0998 0.176294
3135200 0.09989 0.1771

502287200 0.0838 0.0226
7196400 0.0998 0.1758
11717200 0.0996 0.1744
365913800 0.0882 0.0648
350168800 0.0887 0.0697
350168800 0.0887 0.0697
350168800 0.0887 0.0697
575355400 0.0814 0
575355400 0.0814 0

Table D.1: Comparison of Two Methods Used in Roulette Selection
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