
Thermodynamic Investigation of Human Nitric Oxide Synthase: 

Enzyme-Inhibitor Interactions 

 

 

 

 

by 

 

 

Zainab Hujee Al Hussain 

 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Science 

in 

Chemistry 

 

 

 

Waterloo, Ontario, Canada, 2012 

 

 

© Zainab Hujee Al Hussain 2012 

 



 

 ii 

AUTHOR'S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including 

any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

Zainab Al Hussain 

 

 



 

 iii 

Abstract 

Nitric oxide (NO) is produced in different mammalian tissues by nitric oxide synthase 

(NOS), which has three isoforms: neuronal NOS (nNOS), endothelial NOS (eNOS), and 

inducible NOS (iNOS). All NOS isoforms contain two domains, an oxygenase domain and a 

reductase domain. NO is an important transmitter of information between cells in many 

physiological processes; however, overproduction of this molecule may lead to health problems. 

Therefore, selective inhibition of NOS isoforms has useful therapeutic potential for treatment of 

certain diseases that can appear because of the pathological overproduction of nitric oxide. 

Producing useful isoform selective-inhibitors that bind to the active site in the oxygenase domain 

has proven to be difficult when based solely on the structure of these enzymes. Biophysical 

studies in combination with structural properties should provide better insights into isoform-

specific inhibitor development. The first step of this study was to produce and purify truncated 

versions of NOS isozymes consisting of the oxygenase domain as they contain the active site of 

the enzyme. As a result of differences between humans and other mammals in the amino acids 

found in the second and third shells/layers surrounding the active site, all the experiments were 

performed with genes coding for human proteins. The major result of this project was the 

development of an Escherichia coli (E. coli) expression system to produce large amounts of pure 

protein. This system will allow for the testing of inhibitors that bind to the active site of NOS 

enzymes. 
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Chapter 1 

Introduction 

1.1 Nitric Oxide 

Nitric oxide has been the focus of intense study since its discovery. NO plays a major role in 

physiological processes such as neurotransmission, memory, blood pressure control, and the 

immune response. The molecular basis of NO action is to alter the activity of intracellular target 

enzymes rather than to bind to a receptor that regulates transcription (Ji et al., 2009). Nitric oxide 

is a free radical compound (i.e., it has an unpaired electron) and is highly reactive (Vallance and 

Collier, 1994). In vivo, NO proliferates beyond cell walls but its effects are local within and 

between cells because NO is quite unstable and has a short half-life on only a few seconds 

(Kroncke et al., 1998). Even though nitric oxide is an extremely important regulator in many 

physiological processes in the mammalian body, it can also have negative impacts when it reacts 

with other reactive oxygen species (Huang et al., 2000). 

 

1.2 Nitric Oxide Synthase Enzymes 

The nitric oxide synthase (NOS, EC 1.14.13.39) enzymes catalyze the production of NO with L-

citrulline through two successive mono-oxygenation reactions requiring reduced nicotinamide 

adenine dinucleotide phosphate (NADPH) and molecular oxygen (Alderton et al., 2001) (Figure 

1.1). These dimeric enzymes are composed of two monomers that contain both an oxygenase and 

a reductase domain. L-Arginine is first converted by a mono-oxygenase reaction to the 

intermediate N
ω
-hydroxy-L-arginine (L-NOHA). This reaction involves oxygen insertion into the 

substrate and electrons originating from NADPH transferred to the reductase domain of the NOS 
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enzyme. The transferred electrons are shuttled from a flavin-adenine dinucleotide (FAD) to a 

flavin mononucleotide (FMN) in the reductase of one monomer and then to the heme iron in the 

oxygenase domain of a separate monomer. Upon arrival of the electrons at the oxygenase 

domain, there they interact with the heme iron (reducing Fe
3+

 to Fe
2+

) and H4B, allow it to 

activating the dioxygen bond. The second step of the NO synthesis reaction again involves the 

activation of a dioxygen molecule (Sabat et al., 2009; Daff, 2010). In the second mono-

oxygenase reaction, L-NOHA is oxidized to NO and L-citrulline.  
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2     
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NOS          NOS
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Figure  1.1: NOS catalyzed conversion of L-Arg to L-citrulline and nitric oxide, through 

intermediate N
ω
-Hydroxy-L-Arginine. This reaction occurs in the presence of molecular 

oxygen and NADPH as the electron donor for each of the mono-oxygenase steps. This figure is 

derived from (Sabat et al., 2009).   

 

1.3 Characteristics of NOS Isoforms 

NO is produced in different mammalian tissues by three known NOS isoforms: neuronal NOS 

(nNOS or NOS1), involved in neuronal signal transmission; endothelial NOS (eNOS or NOS3), 

involved in vascular endothelial cells; and inducible NOS (iNOS or NOS2), involved in the 

immune response. NOS isoforms are distinguished by their regulation and localization. For 

example, nNOS and eNOS are expressed constitutively in neurons and endothelial cells. 

However, NO is produced from these two isoforms as a signalling response, and these are 
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regulated by the intracellular concentration of Ca
2+

_dependent Calmodulin (CaM) binding. In 

contrast, iNOS is Ca
2+

 _independent, and it is expressed in many tissue cells and requires an 

immunostimulant for its expression. This isoform produces nitric oxide as a product beneficial in 

host defense in the immune response, but also its expression produces nitric oxide as a cytotoxic 

agent in immune responses or inflammatory diseases (Haitao et al., 2003; Stuehr, 1999). 

The three isoforms of mammalian nitric oxide synthase have been extensively studied and 

characterized during the last 20 years. The three isoforms have a similar domain structure. As 

shown in Figure 1.2, each NOS subunit contains two domains: an amino-terminal oxygenase 

domain and a carboxy-terminal reductase domain. The two domains are linked by a calmodulin-

binding motif. The NOS oxygenase domain contains the catalytic centre and binding sites for the 

substrates L-Arginine (L-Arg), molecular oxygen, catalytic heme, and the essential cofactor 

tetrahydrobiopterin (H4B).  Moreover, the oxygenase domains or the N-terminal regions of the 

NOS isoforms are different in length (Stuehr, 1999). The reductase domain contains binding sites 

for the cofactors flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and 

NADPH. Calmodulin binding is required for the transfer of electrons from the reductase domain 

to the oxygenase domain (Igarashi et al., 2009; Boyhan et al., 1997). NOS is active in its dimer 

form with each monomer bound to L-arginine and five cofactors: FAD, FMN, heme, 

tetrahydrobiopterin (H4B), and NADPH (Johnson, 2006). The oxygenase domain has the 

catalytic site for formation of NO.  
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Figure  1.2: Domain structures of the three human NOS isoforms.  This figure shows that all 

three isoforms share similar domain architecture. The numbers indicate the amino acid residue at 

the start and end of the oxygenase domain. The first arrow near the N-terminal indicates the 

dimer interface in the oxygenase domain, and the other arrow indicates the location of the stop 

codon. Figure 1.2 is derived from (Adrian et al., 1999). 

 

Crystal structures of the oxygenase domain of the three NOS isoforms have been analysed, and a 

number of X-ray crystal structures of dimers for iNOS, eNOS, and nNOS have been published 

(Alderton et al., 2001). The crystal structure of the heme domain shows a zinc ion at the bottom 

of the dimer interface that coordinates to four cysteine residues, two from each monomer. The 

heme component is required for dimer formation. There are conflicting reports on the role of 

H4B in the catalytic mechanism of NOS. It has been shown that the H4B is a potential electron 

donor to the heme iron, which is required for oxygen activation.  Moreover, crystal structures 

have shown that H4B binds within the dimer interface and helps to stabilize the quaternary 

structure of the active enzyme form, NOS (Figure 1.3) (Raman et al., 1998; Rafferty et al., 1999; 

Daff, 2010). 
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Figure  1.3: Active site (oxygenase domain) of Human nitric oxide synthase (PDB ID 4NOS). 

 

 

The iNOS monomer is both catalytically inactive and cannot bind to either the substrate or the 

cofactor, H4B (Crane et al., 1997). The dimer form can bind substrates and H4B and so is of 

some physiological importance (Crane et al., 1998). Therefore, a dimer form of the oxygenase 

domain is required in this project for clarification of enzymatic activities and drug-ligand 

interactions (Figure 1.4).   
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Figure  1.4: Dimer structures of Human iNOS (PDB ID 1NSI), Human nNOS (PDB ID 

3DQR), and Human eNOS (PDB ID 3NOS) shown as ribbon diagrams. The structures show 

heme, L-Arg, H4B, and Zn, which plays a role in dimer stabilization (Li et al., 2001; Matter et 

al., 2005; Fischmann et al., 1999). This figure was made using PyMOL program.  

 

Cloning of the three NOS isoforms has revealed that they share about 51-57% of the primary 

sequence identity and have an identical overall structure (Igarashi et al., 2009). In addition, the 

three dimer structures of the isoforms are very similar, about 81-93 % identical (Salerno, 2002). 
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Human eNOS and iNOS not only have the same tertiary and quaternary structure, but also a 

close similarity in the active site residues found in the oxygenase domain of the protein. This 

high degree of structural and substrate-binding site similarity among isoforms has made it very 

challenging to produce isoform-specific inhibitors. The human and murine nucleotide sequences 

are approximately 80% identical (Garcin et al., 2008).    

 

1.4 NOS and its Therapeutic Potential 

Under normal conditions, NO mediates the regulation of physiological processes. In contrast, 

uncontrolled generation of NO can cause unwanted pathologies such as septic shock, arthritis, 

diabetes, and asthma (Huang et al., 2000; Knowles and Moncada, 1994). Isoform-specific 

inhibitors of NOS enzymes have considerable therapeutic potential to combat certain diseases 

arising from NO overproduction. Enormous research efforts are taking place in this area to gain 

control of NOS within the human body. A century ago, NO was used as a cardiovascular 

medicine and vasorelaxant (Bauer et al., 1995). Recently, the majority of drug design in nitric 

oxide has been focused on NOS inhibitors. One of the biggest challenges in NOS related drug 

design is the fact that the oxygenase domains of the three NOS isoforms have very similar active 

sites (Figure 1.4). Indeed, an inhibitor must be specific to avoid undesirable side effects that 

might appear from the non-selective inhibition of the other isoforms. A major condition is 

ensuring that the inhibitory action does not affect eNOS activity, which has an important 

function in controlling blood flow and pressure. Therefore, the ideal inhibitors should inhibit NO 

over production by nNOS or iNOS that would result in pathological conditions, but should not 

disrupt NO generation by eNOS (Weber and Salemme, 2003; Grover and Wang, 2000). 
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Unfortunately, finding suitable inhibitors of the NOS isoforms has proven difficult because of 

the similarity among the active sites of the three NOS isozymes. Until now, inhibitors selective 

for NOS have been rare, of limited use and are sometimes toxic (Garcin et al., 2008). However, 

despite all the similarities between the three isoform, some subtle structural differences in the 

NOS isoforms do exist and can lead to isoform selectivity. From a chemical point of view, 

inhibitors can be divided into two categories: amino acid-based inhibitors and non-amino acid-

based inhibitors. It is possible to selectively inhibit one isoform of NOS by a simple modification 

of the guanidino group of L-Arg, in which the geometry and the size of the side chain are 

extremely important for selectivity. The underlying ideas in the design of these compounds are to 

increase selectivity and to better understand the preferred binding orientation of amino acid-

based inhibitors within the arginine binding site (Adrian et al., 1999; Salerno et al., 2002). In 

order to improve the selectivity, non-amino acid-based inhibitors of NOS have been studied and 

these groups include a continually growing list of compounds containing a carbamidine carbon 

bound to either N (guanidines), S (isothioureas) or another C (amidines) (Salerno et al., 2002; 

Fishlock et al., 2003).  Figure 1.5 briefly summarizes the two categories of NOS inhibitors. 
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Amino acid-based Inhibitors 

 

This class of derivatives divides into three groups of compounds: 

 

                  

               

         

 

 

 

Non-amino acid-based Inhibitors 

 

From a chemical point of view, these substances divide into two main groups 

 

 

Amidinic Compounds                                              Heterocyclic Compounds         

 

 

Guanidines       Isothioureas   Amidines       Indazoles         Imidazoles    

 

Figure  1.5: Classification of NOS inhibitors. This information is obtained from (Adrian et 

al., 1999; Salerno et al., 2002). 

 

Numerous NOS inhibitors have been designed for therapeutic purposes; however, there has been 

little or no success in finding the perfect one. A good example of an isoform specific inhibitor 

from the non-aminoacid-based inhibitors group is N-(3-(aminomethyl)-benzyl)acetamidine  

(1400W), which was developed by Garvey et al., (1994) (Figure 1.6). 1400W is a highly 

selective inhibitor for human iNOS versus both human eNOS and human nNOS. 1400W is 

 

Analogues of 

Tetrahydrobiopterin 

L-Arginine Analogues Dipeptides Conformationally Restricted Arginine                        

Analogues 
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bound to the heme active site through hydrogen bonds to Glu 371, an amino acid residue 

responsible for the binding with guanidino group of L-Arg (Alderton et al., 2001). The 

selectivity of this inhibitor toward iNOS can be partly attributed to the higher turnover of iNOS 

compared to eNOS and nNOS, which leads to overproduction of peroxide and irreversible heme 

damage (Li et al., 2001). However, 1400W is acutely toxic at high doses; consequently, its use 

for therapeutic purposes is limited (Ji et al., 2009). As 1400W is readily available, it will be one 

of the initial inhibitors that will be used for the present investigation since it represents a good 

example of an isoform selective inhibitor. 

Many attempts have been made to design isozyme-selective NOS inhibitors that target the active 

site in the oxygenase domain and can act as selective therapeutic agents but that do not have the 

potential for the side effects that may arise from inhibiting the other isoforms. Another 

thoroughly characterized NOS inhibitor, L-N
G
-monomethyl-L-arginine (L-NMMA), will be 

included in our investigation. This compound is an example of an amino acid-based inhibitor and 

it is reasonably potent but not selective (Maddaford et al., 2009; Silverman, 2009). This inhibitor 

is commercially available, chemically stable, water soluble, and low in toxicity. Once adequate 

quantities of the oxygenase domains of the three NOS isoforms are available, both 1400W and 

L-NMMA will be used to test our theory that important information can be gained form 

biophysical studies performed on ligands that bind to the active sites of NOS isozymes. 
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Figure  1.6: The structures of inhibitors of nitric oxide synthase. 

 

 

1.5 Structure Based Inhibitor Design 

The structure of the active sites of all three mammalian isoforms, iNOS, eNOS, and nNOS, are 

highly conserved. This is further complicated by the invariance in the composition of the active 

site residues that interact with L-arginine or the active site inhibitors. Figure 1.7 shows a 

simplified view of the active site, the residues that surround the active site and how differences 

in the outer shell residues may have a role in isoform specific binding.  Simply put, the second 

shell residues interact with the first shell and the third shell residues interact with the second 

shell residues. There are apparent isoform specific differences in the residues found in the second 

and third layers/shells surrounding the first shell residues that form the active sites of the 

different NOS isozymes (Figure 1.7). In addition, differences exist in the second and third shell 

residues for the same isoform from different mammalian species. For example, there are slight 

differences between amino acid residues in humans and mice as shown in Figures 1.7 and 1.8. 

Therefore, an isoform-selective inhibitor that displays the desired pharmacological effects in 

mice may not do so in humans (Maddaford et al., 2009; Suh et al., 1998).   This supports our 

approach of only working with the human versions of the NOS isozymes.  There are also slight 

                 L-N
G
-monomethyl-L-arginine (L-NMMA)         N-(3-(aminomethyl)-benzyl)acetamidine (1400W) 
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differences in the second and third shell residues when comparing the three human isoforms of 

NOS as shown in Figure 1.8. Consequently, taking advantage of these differences may provide 

insight into the development of isoform selective inhibitors.  

 

The anchored plasticity approach is a new method for designing such potent and selective NOS 

inhibitors (Garcin et al., 2008).  For this approach, the crystal structures of the three NOS 

isoforms are used to identify an isozyme-specific induced-fit binding that is linked to a cascade 

of conformational changes that lie outside the active site. First, an inhibitor core is anchored in a 

conserved binding pocket, and then rigid tails oriented along pathways are extended to regions 

encompassed by second and third shell residues. This approach seeks to take advantage of the 

changes in flexibility and possibly residue composition away from the active site to optimize 

differences in isoform specific protein-inhibitor interactions. This method gives the general 

principles for the design of selective enzyme inhibitors that overcome strong active site 

conservation (Garcin et al., 2008; Maddaford et al., 2009). 
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Figure ‎1.7: Amino acid residues for human iNOS and mouse iNOS involved in inhibitor 

binding. They are quite similar as indicated in this figure. The blue amino acids (A) and the two 

circles (B) indicate the slight differences between amino acid residues in active site residues 

(pink). The first-layer/shell (yellow) has almost similar residues making the selective creation of 

isoform- specific inhibitors difficult. In contrast, differences do exist between the isoforms in the 

second-layer /shell (orange) and third-layer/shell (green) residues that surround the active sites. 

Figure is derived from (Garcin et al., 2008). 

Interacts with L-Arginie  

A) 

B) 
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Figure  1.8: Amino acid sequence alignment for NOS isozymes. This figure shows the 

similarity between the three human NOS (hiNOS, heNOS, and hnNOS) as indicated by arrows. 

The residues are colored according to Figure 1.7. For all sequences, active site resides are shown 

in pink and include Glutamic (Glu), first-shell residues (yellow) include Glutamine (Gln), 

Arginine (Arg), and Tyrosine (Tyr), first shell is in contact with the inhibitor.  Second-shell 

residues (orange) include Asparagine (Asn), and third-shell residues (green) include 

Phenylalanine (Phe) and Valine (Val). The slight differences among the residues are highlighted 

in blue. The key residues are indicated above the alignment and sequences are shown for human 

(h), mouse (m), rat (r), and bovine (b) NOS isozymes. Figure is derived from (Garcin et al., 

2008). 
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1.6 Biophysical Studies 

Since NO’s discovery in biological processes in the late 1980s, extensive efforts have been made 

to develop selective inhibitors based solely on structural knowledge, but these efforts have only 

rarely been successful. Therefore, more-detailed information about substrate and inhibitor 

binding to active sites is needed. One technique that can provide further information about 

macromolecule-ligand interactions is Isothermal Titration Calorimetry (ITC). ITC is used as a 

powerful tool in drug discovery and development (Azevedo and Dias, 2008). ITC provides 

thermodynamic data that links structure with function and clarifies the relationship between 

them.  

 

 Ligand association with proteins usually involves changes in the intermolecular interaction of 

the system components, including any component that may be present, such as the protein, the 

ligand, and water (Weber and Salemme, 2003). As a result, the changes in the bonding 

interaction that occur upon ligand binding lead to changes in the reaction enthalpy and entropy as 

well, which in turn determine the free energy of ligand association. Currently, many molecular or 

drug design strategies concern the optimization of binding affinity (Leavitt and Freire, 2001). 

 

Isothermal titration calorimetry has been used extensively to measure thermodynamic parameters 

of substrate (L-Arg) binding to the oxygenase domain of NOS. The enthalpy and entropy 

determination are important in the design of high-affinity ligands and may increase the ability of 

potential inhibitors. ITC is highly sensitive, and able to measure a change in heat as small as 0.1 

µcal.  Studies of binding reactions with ITC provide, in one single experiment, the direct 
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thermodynamic parameters of the molecular interaction, such as the association constant (Ka), 

reaction enthalpy change (∆H), free energy change (∆G), entropy change (∆S), and the 

dissociation equilibrium constant (Kd) whose relationship is shown in Eq (1.1).  

 

                  (1.1) 

 The change in reaction enthalpy of an inhibitor binding to an enzyme indicates the changes in 

weak interactions, such as electrostatic interactions, hydrogen bonding, and dipole-dipole 

interactions. The entropy of reaction reflects changes in conformation and solvation 

that occur when two species combine ( ). Thus, the reaction entropy change is 

usually divided into three components that are involved when the inhibitor binds to the enzyme, 

shown in Eq (1.2) (Zakariassen et al., 2008).  

 

                (1.2) 

Generating isoform-specific inhibitors that bind tightly to the active sites is difficult with only 

structural data; however, ITC can provide thermodynamic information that is complementary to 

the structure. Assessing protein-ligand interactions is extremely important for drug development, 

and ITC experiments can be used to evaluate ligand-binding affinity. When a ligand binds to a 

protein, heat is absorbed or released. The changes in heat capacity indicate the hydrophobic 

interactions involved in binding. Figure 1.9 shows typical ITC-data; each peak represents the 

heat variation, which is proportional to the amount of binding in response to the serial addition of 

the ligand (Azevedo and Dias, 2008). 
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Figure  1.9: Typical Isothermal Titration Calorimetry (ITC) data. The inset illustrates the 

configuration of an ITC reaction cell. The reaction cell is filled with protein (red). The ITC 

injection syringe contains the ligand (green). Each peak in this figure presents the heat 

(microcalories) associated with this experiment. Figure is derived from (Azevedo and Dias, 

2008; Leavitt and Freire, 2001). 

 

An example of the use of ITC in the design of drugs is the case of cytochrome P450. Many 

studies have used ITC to predict enzyme-ligand interactions with mammalian P450 enzymes. 

The availability of such results could be a common feature of mammalian P450s defining the 

substrate selectivity and regio- and stereo specificities. ITC studies have been very useful in 

cytochrome P450 ligand binding studies. A similar approach is therefore valid for NOS as NOS 

and cytochrome P450 enzymes have similar properties. 
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1.7 Reason for studying Thermodynamic Ligand Binding of Human NOS Enzymes 

Over the past years, research has been focused on clarifying the interactions between the NOS 

enzymes and inhibitors. Studying these interactions with their high bonding affinities is 

considered an important aim in drug development. A highly purified protein was needed for the 

investigation of the thermodynamic properties of ligand binding. The project started with 

molecular biology. The amplified target fragments were cloned into PET plasmids. These vectors 

contain several important elements (e.g., lacI and T7 promoter) for production of desired protein 

when activated. Moreover, the design of this system allowed easy overexpression of a desired 

protein and control of when that expression occurs. Then the biophysical characterization of the 

human NOS isoforms was done to double check purity, size, and to calculate the concentration 

of the desire proteins. Generation of recombinant expression and purification protocols 

facilitated the use of ITC as it requires highly purified protein. 

1.8 Research Goals 

The main goals of this research project were, first, to develop a system to express and purify the 

oxygenase domains of the three human NOS isoforms. Second, to perform biophysical studies to 

characterize the recombinant NOS isoforms. Finally, to use ITC to gain knowledge of the 

thermodynamic properties of inhibitors binding to the different NOS isoforms. A better 

understanding of the biophysical properties of ligand binding to the enzyme active sites may 

pave the way for the development of better isoform-specific inhibitors. 

To achieve these goals, the following steps are required: 
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I. Develop expression systems for the oxygenase domains of human iNOS, human eNOS, 

and human nNOS isoforms, using a polymerase chain reaction (PCR), because the 

oxygenase domains contain the active site; 

II. Optimize purification procedures for the oxygenase domains by combining metal 

chelation and gel filtration chromatography for purification and to verify dimer 

formation, and 

III. Characterize the physical properties of the purified recombinant proteins. 
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Chapter 2  

Generation of Escherichia coli Overexpression Systems for the 

Production of Human NOS Oxygenase Domains 

 

2.1 Introduction 

We proposed to study only the oxygenase domain of the human NOS enzymes and therefore 

required a recombinant expression system. This was accomplished by separating the oxygenase 

domains of NOS isoforms from the reductase domains because the oxygenase domain contains 

the enzyme active site (Figure 2.1). The NOS active site is responsible for the selective binding 

of L-Arginine and the active site inhibitors planned to be used in the future of this project. The 

desired coding regions were amplified using the polymerase chain reaction (PCR) with 

specifically designed oligouncleotide primers. The mutagenesis by PCR was used to increase 

gene expression through the modification of a specific codon. Two PCR strategies were involved 

in sub-cloning the oxygenase domains. The first was polymerase chain reaction sub-cloning for 

human iNOS (hiNOS), and the second was restriction-free (RF) cloning for human nNOS 

(hnNOS) and human eNOS (heNOS). For hiNOS the restriction enzymes were needed to obtain 

the wanted fragment and to ligate it into an expression vector. As the ligation experiment was 

time consuming and difficult, another technique was used for heNOS and hnNOS: the RF 

cloning. The concept of this experiment is to insert a deoxyribonucleic acid (DNA) fragment into 

circular plasmid with no need to use restriction sites, ligation, or alterations in either the vector or 

the gene of interest (Van den Ent and Lowe, 2006). 
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Figure  2.1: Separation of the human NOS domains with a brief outline of the steps involved 

in the expression system of NOS (Newton, 1997). 

 

2.2 Experimental Techniques 

2.2.1 PCR Mutagenesis of Human iNOS Isoforms 

The human iNOS (delta70) in PcWori (8226bp) was used as template to insert into PET-30a (+) 

vector. The cloning of the human iNOS oxygenase was performed by amplifying the coding 

region for human iNOS expression vector supplied by Dr. Dipak Ghosh of Duke University. The 

Forward primer 

Reverse primer 
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expression vector for the oxygenase domain for human iNOS had already been designed in our 

laboratory by Amanda Harrop, a fourth year student. It contains a Hind III stop codon in the 

pcWori vector. Human iNOS was cloned using a PCR to create a linear DNA fragment. In PCR, 

as a general condition, the temperature went through three stages: denaturation at 94-96 ºC, 

annealing at 65 ºC, and elongation at 72 ºC. In many cases, a hot start is an important step in 

improving the specificity of PCR. The mutagenesis for hiNOS was done using a Pyrococcus 

furiosus (PFU) polymerase kit (Fermentas Molecular Biology Tools), a 10x PFU buffer with 

MgSO4, an hiNOS template, MQH2O, deoxynucleotide triphosphate (dNTP), a forward primer, 

and a reverse primer (Figure 2.2). The template DNA was human iNOS delta 70 in pcWori 

vector. The primers were designed to amplify the desired region of the hiNOS and to introduce 

restriction endonuclease recognition sites for both Hind III and a polyhistidine tag to help later 

on in the purification process. The PCR products were then run on an agarose gel, and the 

desired fragment of intact DNA was isolated from the agarose gel using the protocol as per the 

“QLAquick Gel Extraction Kit Protocol using a microcentrifuge” (QIAGEN). The desired 

product was verified by sequencing. 

 

After inserting the stop codon into the PcWori, two techniques were applied. First, the vector 

was digested with HindIII and then it was allowed to self-ligate (self-circulated). Second, the 

vector was digested with HindIII and NdeI and transformed it from PcWori vector to PET vector 

was digested with the same restriction enzymes, HindIII and NdeI, (Figure 2.3). 
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hiNOS FOR 

     

 

5' CGCAATGCCCCTCGAGCCATTGGGAGAATCCAGTGGTCCAAC 3' 

       hiNOS  REV 

     

 

5' GTTGGACCACTGGATTCTCCCAATGGCTCGAGGGGCATTGCG 3' 

       

              heNOS FOR 

     

 

5' CACCATCATCATCATCATTCTTCTGGTATGGGCAACTTGAAGAG 3' 

       

heNOS REV 

 

 

 

   

 

5' TTGTCGACGGAGCTCGAATTCGGATCATTAGATGCCGGTGCCC 3' 

       

   

  

  

hnNOS FOR 

  

 

 

 

 

 

5' CACCATCATCATCATCATTCTTCTGGTATGGAGGATCACATGTT 3’ 

       hnNOS REV 

   

 

 

 

5' TTGTCGACGGAGCTCGAATTCGGATCATTAGGTGCCTTTCCAG 3' 

       

       
Figure  2.2: Primers used for the amplification of human NOS. For hiNOS, two primers were 

used for sub-cloning the oxygenase domain from leucine (Leu)71-proline (Pro) 508. The heNOS 

primers were used to amplify the coding region from methionine (Met) 1-isoleucine (Ile) 490. 

The primers for hnNOS were used to amplify the coding region from methionine (Met) 1- 

threonine (Thr) 724. 
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Figure  2.3: The sub-cloning of the human oxygenase domain for human iNOS. The insert 

was amplified using PCR, then both the vector and insert digested with the same restriction 

enzymes (HindIII and NdeI) and the insert ligated into the vector. 

 

2.2.2 Digestion of Human iNOS to Obtain hiNOSoxy 

The human inducible nitric oxide synthase was digested with the HindIII restriction enzyme in 

order to separate the oxygenase domain in PcWori from the reductase domain. The mixture was 

placed in agarose gel 0.8 %, and the desired band cut and extracted from the gel using a gel 

extraction kit, “QIAGEN Gel Extraction Kit”. The hiNOSoxy was self-circulated using the 

ligation kit (Ferments molecular biology tools). The 10x ligation buffer, 10 mM ATP, T4 DNA 

ligase, and MQH2O were added to the hiNOSoxy and incubated overnight at room-temperature.   

2.2.3 Digestion of Human iNOS to Insert into PET30a (+) Vector 

The next step involved digesting both the insert hiNOSoxy, to get rid of the reductase domain, and 

the PET-30a (+) vector, to open up the plasmid. The hiNOSoxy was digested with Nde I and Hind 

III. An agarose gel was run and the desired band was cut out from the gel and extracted using the 
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protocol given in the “QIAGEN Gel Extraction Kit”. The hiNOSoxy (insertion) then inserted in a 

PET-30a (+) vector digested with the same restriction enzymes.  

2.2.4 Electroporation 

The ligation mixture was transferred by electroporation and expressed into E. coli XL 1 Blue 

competent cells. The mixture was placed into a water bath shaker for one hour to recover the 

cells and to allow expression of the resistance marker. The cell cultures were then plated on 

Lysogeny broth (LB) plates containing the proper selective marker gene, antibiotic resistance 

gene, for hiNOSoxy, ampicillin. The plates were incubated for 16 hours at 37 ºC.  

2.2.5 Cell Culture and Plasmid DNA Isolation 

The plates that incubated for 16 hours contained colonies. A select number of isolated colonies 

were taken from the plate using a toothpick and transferred into a test tube of LB media 

supplemented with ampicillin. All equipment was sterilized, using an autoclave, and the work 

was done aseptically. Then, the test tube was incubated and shaken at 37 ºC overnight in a water 

bath. The last step was to purify plasmid DNA from the overnight culture using a mini-prep Kit 

(Ferments molecular biology tools). The DNA obtained was then sent for DNA sequencing to 

The Centre for Applied Genomics (TCAG), Toronto. 

2.2.6  Ligation Experiment 

A ligation experiment was proposed to ligate hiNOSoxy DNA inserted into the PET-30a (+) 

vector. Successful ligation should involve a 10x ligation buffer, 10 mM ATP, T4 DNA ligase, 

MQ H2O, the insert, and the vector. The total volume of the ligation mixture was 20 µL; the 

mixture was incubated at 16 ºC overnight and then it was inactivated by heat at 75 ºC for 15 
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minutes. After that, the whole mixture was run on agarose gel 0.8% and gel extracted using a gel 

extraction kit “QIAGEN Gel Extraction Kit”. The digestions were done for hiNOS to check the 

quality of our templates. The ligation mixture was subsequently transferred by electroporation 

into competent E. coli cells, plated and purified using the mini-prep kit, Ferments molecular 

biology tools. 

2.2.7 The Sub-cloning Strategy of Human eNOS and nNOS Isoforms 

The human eNOS-pBluescript (6577bp) and human nNOS-Bluescript (7290bp) were used as 

template to insert into PET-30a (+) vector and PET-28a (+) vector. The heNOS and hnNOS in 

pBluescript I and II SK (-) were obtained from the laboratory of Dr. Philip Marsden at the 

University of Toronto. The genes of interest, heNOS and hnNOS, were amplified in a regular 

PCR, using Pyrococcus woesei (PWO) polymerase kit (Roche), a 10x PWO buffer with MgSO4, 

a human DNA template, MQH2O, dNTP, and a forward and a reverse primers (Figure 2.2).  The 

RF primers were designed specifically for this experiment, so in the end, no ligation step was 

needed. The reverse and forward primers of heNOS were used to amplify the coding region from 

methionine (Met) 1- isoleucine (Ile) 490. While the primers for hnNOS were used to amplify the 

coding region from methionine (Met) 1- threonine (Thr) 724. The PCR fragment obtained from 

the first PCR, PCR product, was considered to be a pair of primers. After amplification, PCR 

was applied again using the fragment obtained from the PCR. The PCR product was used as a 

primer in a linear amplification around circular plasmid PET-30a (+), dNTP, expand high fidelity 

buffer with Mg
+2

 (10X), water, and expand high fidelity polymerase (Roche). Once the primer 

annealed to the vector of interest, it extended in a linear amplification reaction around the 

circular vector. The PCR cycle was repeated 35 times. Time was considered in the third step 
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(elongation) in which PCR was extended to 2 minutes/kb. The PCR product was then run in 1% 

agarose gel. The last step was to digest by DpnI to cleave methylated parental DNA (Figure 2.4). 

The reaction mixture was then transferred into electro-competent cells (XL 1 Blue) and spread 

on LB plates containing the antibiotic kanamycin for heNOS.  Results were checked with some 

restriction enzymes (SmaI, EcoRI, NdeI, and NdeI+EcoRI). The same protocol was followed 

with hnNOS, except slightly differently, as the vector was (PET-28a (+)) and the primers. 

 

 

 

Figure  2.4: The RF cloning for human eNOS and human nNOS. Amplified the insert with 

specific primers by PCR, and then used the PCR product as primers to extend around the 

plasmid. The parental fragment was cut out using DpnI restriction enzyme. Figure 2.4 is derived 

from (Van den Ent and Lowe, 2006).  

2.3 Results 

2.3.1  PCR Mutagenesis of Human iNOS Oxygenase Domain 

PCR mutagenesis was performed by two stop primers at the carboxyl end of the human iNOS 

oxygenase domain (Figure 2.5). The PCR experiment produced also an amplified oxygenase 

domain of hiNOS using PFU polymerase. In agarose gel, hiNOS isoform band was visualized 
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under ultraviolet (UV) light. The agarose gel shows that the reaction was successful in producing 

an amount of hiNOSoxy with the expected length of 1340 base pair (bp), data not shown. 

 

Stop codon forward      

primer hiNOS  

 

 

5' CGAGAAGCGGAGAGACCCTGATAAGCTTCCATTGAAAGTCTTG 3' 

   Stop codon reverse 

primer hiNOS   

 

 

5' GCTTTGACCAAGATTTCAATGGAAGCTTATCAGGGTCTCCGCTT 3' 

 

Figure  2.5: Plasmid map of human iNOS (delta 70) in PcWori. A stop codon and a second 

HindIII site was introduced by the stop codon forward and reverse primers at the carboxyl end of 

the oxygenase domain. This figure also shows the forward and reverse primers used for sub-

cloning the oxygenase domain.  

Reverse Primer 

Stop codon 

primers 
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Human iNOS (delta 70) in PcWori was digested after mutagenesis with Hind III. Figure 2.6 

shows two bands which present both domains, the oxygenase domain and reductase domain. The 

target band, the oxygenase domain (hiNOSoxy), is the larger band on the gel. The oxygenase band 

was cut out from the gel, extracted and ligated. Figure 2.7 shows the ligation product at the 

expected size and without reductase domain 6300 bp.  

 

 

 

Figure  2.6: Mutated human iNOS plasmid digested by HindIII to obtain the hiNOSoxy and 

separated on 0.8% agarose gel. Lane 1: 1Kilobase DNA ladder, Lane 2: hiNOS (control/ 

undigested), Lane 3: hiNOS digest with HindIII. 

 



 

 30 

 

 

Figure  2.7: Self-circulated of Human iNOSoxy. Lane1: 1Kilobase DNA ladder, Lane2: 

hiNOSoxy, without reductase domain, of length 6300 bp, Lane 3: the original hiNOS with both 

domains, control, of length 8226bp. 

 

2.3.2 Sub-cloning of Human iNOS Oxygenase Domain 

Two steps were performed to transfer the hiNOSoxy to the PET-30a (+) vector. First, the PCR 

amplified DNA was digested with two restriction enzymes, HindIII and NdeI, and used for 

ligation into PET-30a (+) vector (Figure 2.8).  Second, the big fragment of PET-30a (+) 

 (~ 5149bp) and the small fragment of hiNOS (~ 1340bp) were cut out from the gel and extracted 

by using the “QIAGEN Gel Extraction Kit”. The products were confirmed by certain restriction 

enzymes as used to analyse purified plasmid. These enzymes specifically digest the DNA at 

certain short sequences. 
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Figure ‎2.8: Digestion of HiNOSoxy by both HindIII and Nde I. A) Lane 1: 1Kilobase DNA 

ladder, Lane 2 and 4: the PET-30a (+) vector was digested by the restriction enzymes HindIII 

and NdeI and ended up as the expected size (~ 5149bp), Lane 3 and 5: hiNOSoxy was digested by 

the same restriction enzymes, resulting in the expected sizes (~ 5000- 1900-1340bp). B) Lane 1: 

hiNOSoxy fragment after been cut out from gel and extracted, Lane 2: PET30a (+) fragment after 

been cut out from gel and extracted. 

 

2.3.3 Ligation of the Fragment of Human iNOS oxygenase domain into PET Vector 

Both the hiNOSoxy and PET30a (+) were digested by HindIII and NdeI, the desired fragments 

were cut out from the gel and extracted using the “QIAGEN Gel Extraction Kit”. The fragments 

were then run on agarose gel again to check that concentration levels remained suitable (Figure 

2.8, B). The ligation step was not easy to achieve as many attempts were made to insert the 

digested fragment into PET-30a (+) vector. A variety of conditions were attempted including 

different ratios- (insert:vector) (1:1, 3:1 and 5:1), different temperatures  (22 ºC, 16 ºC, and 4 ºC) 

, and different times (overnight, 2 hours, and 5 hours) before finding that 5:1 and 16 ºC overnight 

worked best (Table 2.1), data not shown. Target genes were cloned in PET plasmids under the 

control of bacteriophage T7 transcription, so that high yields of the desired product could be 

obtained.                 

A) 
B) 

    1                                        2 
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Table  2.1: Different ratios used in the attempted ligation of the PCR fragment of hnNOS 

into the vector                                                                                                                            

Content Quantity 

hiNOSoxy  (PCR product) 0 µL 10 µL 9 µL 15 µL 

Vector PET30a (+) 5 µL 10 µL 3 µL 3 µL 

T4 DNA ligase buffer, 10x conc 1 µL 1 µL 1 µL 1 µL 

ATP (10mM) 1 µL 1 µL 1 µL 1 µL 

MQH2O 12.5 µL 0 µL 5.5 µL 0 µL 

T4 DNA ligase 0.5 µL 0.5 µL 0.5 µL 2.5 µL 

                                                                                                                                              

2.3.4 Cell Culture and Plasmid DNA Isolation 

After mini-prep, which was used to isolate and purify our DNA from an overnight-transformed 

E. coli culture, the product was analyzed by gel electrophoresis. The target DNA was sequenced 

to verify that there were no spontaneous mutations. The desired plasmid was then ready to use in 

the protein expression process.  

2.3.5 The Sub-cloning of Human eNOS and Human nNOS 

Initially, the same protocols used for hiNOS (PCR, digestion, extraction, and ligation) were 

applied for heNOS and hnNOS, but unfortunately they did not work. That led us to use of the 

PCR technique with RF cloning (Figure 2.4) which is a simple method to insert a DNA fragment 

into any vector without the need for restriction sites and ligation. This experiment was 
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successful, showing in the gel expected amplified fragments at expected size or length without 

any apparent non-specifically amplified DNA (Figure 2.9). Human eNOS was fully verified by 

sequencing, which is usually done on DNA samples before proceeding to further steps. For 

human nNOS, sub-cloning using the primers was successful, as shown by gel electrophoresis 

(Figure 2.9). Unfortunately, several attempts were made to extend the liner amplification of 

hnNOS (the PCR product) around the PET28a (+), but they did not work.  

 

 

Figure ‎2.9: Agarose gel electrophoresis (1.0%) of the PCR amplified linear fragments for 

heNOS and hnNOS using high fidelity polymerase. Lane 1: 1Kilobase DNA ladder, Lane 2: 

heNOS ~ 1500bp, Lane 3: hnNOS ~ 2000 bp. 

 

2.4 Discussion and Summary 

In summary, having a vector that contains only the oxygenase domain is preferential for use as 

an over expression vector. A series of procedures were modified and were used in our attempts 

to insert desired gene products into suitable vectors for E. coli expression: PCR, restriction 

enzyme digestion, ligation, agarose gel electrophoresis, gel extraction, and transformation into E. 
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coli. DNA sequencing techniques can characterize DNA thoroughly; however, restriction 

enzyme analysis is a basic molecular technique as it is ideal for initial and fast sequence 

screening (Tiong et al., 2010). The restriction enzymes were used in this project to confirm the 

obtained PCR products. The primers used in the PCR were designed (1) to amplify the desired 

region of the gene, and (2) to provide restriction endonuclease recognition sites to help in the 

sub-cloning of the amplified fragments. Achieving our results was not an easy task. Amplifying 

the desired region of human NOS was challenging as we had to design several primers and to 

change the PCR conditions, for example, the annealing times or even the extension times. The 

ligation of the PCR product to the vector was also difficult as enormous effort was made to find a 

suitable temperature, time, and optimal ratio (see Table 2.1). We tried also to desalt the samples, 

PCR products, using a nitrocellulose filter prior to the electroporation to increase the ligation 

success rate, but these attempts were unsuccessful. The ligation of hiNOSoxy into the PET vector 

did not work because the restriction enzyme NdeI may have difficulty cutting near the end of a 

linear fragment. In order to avoid using ligation, RF cloning was chosen for heNOS and hnNOS 

as it requires no ligation step. This technique worked for heNOS but not for hnNOS. The forward 

and reverse primers for human nNOS were designed with an NdeI site at the 3’ end, a site that 

included the start TATG and the reverse primer encoded an EcoRI recognition site GAATTC 

(Figure 2.2). These primers were specifically designed to insert the hnNOS into the PET28a (+) 

plasmid; however, our attempts to clone hnNOS did not succeed. Human nNOS or the plasmid 

itself may not be clean enough or is contaminated and need of further purification. It was 

therefore decided to stop dealing with hnNOS and move on to the next part of the project, protein 

expression, working only with human iNOS and human eNOS. 
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Chapter 3 

Purification and Characterization of the Human NOS Recombinant 
Oxygenase Domain Proteins 

 

3.1 Introduction  

This chapter explains the techniques for development of an expression system for the human 

NOS proteins in PcWori vector and PET vector, starting with the DNA obtained and finishing 

with the purified protein products. All proteins were expressed and purified in the dimers form as 

all isoforms are active only in the dimeric state. 

The yield of protein is proportional to E. coli cell quantity. Therefore, the growth media is an 

important component of the expression systems. Examining the bacterial culture is also useful in 

optimizing the production of our recombinant protein. Optical density (OD600) of 600 nm 

wavelength light is the most common way to estimate E. coli cell density. An OD600 = 0.8 to 1.0 

usually means that the cells have reached the exponential growth phase. At this point, the vast 

majority of E. coli cells are alive and healthy and are in an ideal state to produce or express 

protein. An OD600 higher than 1.0 means the E. coli cells are entering the death phase and the 

culture consists of dead cells resulting in higher protein degradation. Generally, the OD600 value 

is an important indicator of the proper time to induce protein expression in E. coli.  

A variety of chromatographic methods were commonly used to try and purify the recombinant 

proteins. The protein was then analyzed by using absorbance spectroscopy. These approaches 

were all used in the purification and characterization of our recombinant proteins.  
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3.2 Experimental Techniques 

3.2.1 Electroporation 

The hiNOSoxy was cloned into the ampicillin resistance gene (Amp
r
) to produce hiNOSoxy in 

PCWori. The hiNOSoxy was transferred by electroporation into E. coli BL21 (DE3) cells, using 

the same protocol that was described previously. Culturing the cells was the next step and, once 

again, using the same protocol mentioned above but with slight variations, in that a well-isolated 

colony was added to 50 mL LB media supplemented with 50 µL ampicillin antibiotic and placed 

in a sterile 250 mL Erlenmeyer flask instead of a test tube. The mixture was placed into a water 

bath shaker overnight to recover the cells and allow expression of the resistance marker. For 

human eNOSoxy, the same protocol used with hiNOSoxy was employed, except that the kanamycin 

resistance gene (Kan
r
) was used instead of Amp

r 
because the heNOSoxy gene is in the PET30a (+) 

vector.  

3.2.2 Protein Expression 

For hiNOS oxy, two sterile Erlenmeyer flasks, each one containing 1 L of terrific broth (TB) 

media supplemented with 100 µg/mL of ampicillin antibiotic were prepared.  Then 10 mL of 

overnight culture were added to each of the Erlenmeyer flasks. The flasks were placed in a 

shaking incubator at 200 rpm at 37 ºC for about 3 hours until optical density (O.D600) of 0.8-1.0 

was reached. Protein expression was induced by adding 500 M of isopropyl β-D-1-

thiogalactopyranoside (IPTG), 400 µM of δ-aminolevulinic acid (δ-ALA), 100 mg of riboflavin,  

and 250 µL of trace metals (Spratt, 2008). After this step, the temperature was lowered to 25 ºC, 

and the flasks were placed in the shaker for another 40 hours, as the E. coli cells grew more 
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slowly after protein induction. Samples were taken every four hours during the 40 hour-

expression to check the highest level of expression time by SDS-PAGE gel. The final step in this 

process is harvesting the cells, using a centrifuge (in a SLA-3000 rotor) at 10 000 rpm, 4 Cº for 8 

minutes. The cells then were ready to flash freeze on dry ice and store at –80 ºC in a falcon tube. 

For human eNOSoxy, the same method but with several modifications was used for expressing 

heNOSoxy. LB media was used instead of TB media in two sterile Erlenmeyer flasks, each one 

containing 1 L of the media supplemented with 30 µg/mL of kanamycin antibiotic. These 1L 

cultures were grown at 37 ºC, 200 rpm until an O.D. at 600 nm reached 1. Expression of the 

protein was induced by adding 500 µM IPTG and harvested after 4 hours by centrifugation using 

the same conditions described previously (Rafferty el al., 1999). Samples were taken each hour 

during the expression period.  

3.2.3 Cells Lysing by Homogenizer 

An Avestin EmulsiFlex-C5 homogenizer (Ottawa, ON) machine was used to break/open the cells 

and isolate the plasmid.  The first step involved thawing the cells on ice and resuspending them 

in 200 mL of lysis buffer. The lysis buffer consisted of 40 mM Tris-HCl, pH 7.5, 10 % glycerol, 

150 mM NaCl, 1 mM L-arginine (to stabilize the protein), 3 mM ascorbic acid, 10 µM H4B (to 

stabilize the dimer), 1 mM PMSF (to avoid degradation the protein), and one pill of protease 

inhibitor cocktail tablets containing leupeptin, aprotinin, and peptstatin (protected from the 

presence of proteases during the purification). In the second step, the cells were lysed by the 

homogenizer. The lysed cells were centrifuged in a SS-34 rotor at 20 000 rpm for 30 minutes at 4 

ºC. The pellet was discarded, while the supernatant was used for the following protocol. 
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3.2.4 Protein Purification and Metal Chelation Chromatography 

Many proteins have the ability to bind to specific molecules tightly, and since our protein contain 

a poly-histidine tag, the protein were purified using ammonium sulphate precipitation, followed 

by metal chelation (Ni
+2

) chromatography. The desired protein was bound to the resin, whereas 

other substances were washed through the column. The protein could then be eluted by washing 

the column with a solution containing a high concentration of a free ligand (imidazole). This 

experiment must be carried out at 4 ºC. 

The protocol for purifying hiNOSoxy in PcWori followed that previously published by (Ghosh et 

al., 1997), with a few modifications. Ammonium sulphate was added to 35 % to clarified the 

supernatant, stirred for 45 minutes, and then centrifuged (in a SS-34 rotor) at 20 000 rpm for 30 

minutes at 4 ºC. After that, the pellet was discarded, while 55 % of the ammonium sulphate was 

added to the supernatant, once again stirred for 45 minutes and centrifuged. The ammonium 

sulphate pellets were then resuspended in 100 mL of pellet buffer consisting of 40 mM Tris-HCl, 

pH 7.5, 10 % glycerol, 1 mM L-arginine, 250 mM NaCl, and 1 mM PMSF. Before the protein 

was added to the Ni
2+

- immobilized metal ion affinity chromatography (IMAC) resin, the resin 

was charged with metal ions. The column was washed with 3 column volumes of 0.1 M NiSO4 

followed with 5  column volumes of  distilled water to remove excess metal ions. The column 

was washed with another 5 column volumes of pellet buffer, then the resuspended ammonium 

sulphate pellets were mixed with the charged Ni
2+

 resin slowly for one hour. The mixture was 

then poured back into the column and allowed to rest for 30 minutes. The column was washed 

with 5 column volumes of pellet buffer followed by 5 column volumes of 20 mM imidazole 

dissolved in 100 mL of pellet buffer. The Human iNOSoxy protein was then eluted by 50 mM 
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imidazole dissolved in 100 mL of pellet buffer and collected in 5-6 mL fractions. The eluted 

fractions were poured into dialysis tubing and dialyzed against one L of Dialysis Buffer #1 (50 

mM Tris-HCl, pH 7.5, 10 % glycerol, 5 µM L-arginine, 250 mM NaCl, 1 mM DTT, 4 µM H4B, 

3 mM ascorbic acid, and 0.1 mM PMSF). After 3 hours at 4 ºC, the protein was transferred into 

one L of Dialysis Buffer #2 (50 mM Tris-HCl, pH 7.5, 10 % glycerol, 5µM L-arginine, 100 mM 

NaCl, 1 mM DTT, 4 µM H4B, 3 mM ascorbic acid, and 0.1 Mm PMSF) and left to dialyze 

overnight at 4 ºC (Spratt, 2008). The human iNOSoxy protein was concentrated using a Vivaspin 

15-maximum spin speed and centrifuged (in a SS-34 rotor) at 10 000 rpm for 1 hour and 20 

minutes at 4 ºC. After the desired concentration was reached, the purified human iNOSoxy protein 

was aliquoted, flash frozen on dry ice, and stored at -80 ºC for further purification.  

3.2.5 SDS-PAGE and Spectroscopic Analysis 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis is a technique widely used to check 

protein purity and size. Therefore, the collected fractions from the Ni
2+

-column were verified 

using a 10 % SDS-PAGE. First, the gels were prepared with 5 mL of 30 % acrylamide, 7.5 mL 

of separating gel, and 2.5 mL of distilled water. The mixture was degassed for 5 minutes. After 

degassing, 10 % of ammonium presulfate (APS) (100 mg/mL) and 10 µL of 

tetramethylethylenediamine (TEMED) were added to increase polymerization efficiency were 

poured between two glass plates.  The stacking gel was prepared with 0.65 mL of 30 % 

acrylamide, 2.5 mL of separating gel, and 1.85 mL of distilled water. The mixture was also 

degassed, and 10% of APS (100 mg/mL) and 10 µL of TEMED were added to it.  Then the 

mixture was poured on the top of the separating gel using a comb in order to prepare the loading 

wells. Our samples were prepared, and 10 µL of each sample were mixed with a 4x loading dye 
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and heated in a water bath at 80 ºC for 15 minutes. The samples were loaded onto the gel.  The 

gel was stained with Coomassie blue dye. The purified protein was also scanned on a Varian 

Cary (Varian, Mississauga, ON) at wavelengths between 300 -700 nm, to monitor the soret 

absorbance peak that occurs at around 400 nm. The concentration of the human iNOS was 

determined using the ε397 of 72 mM
-1

 cm
-1 

(Spratt, 2008). 

3.2.6 Gel Filtration Chromatography 

Gel filtration chromatography was used for further purification after the protein was obtained 

from the metal chelation column. Gel filtration (Superdex 200 10/300 GE column) was suitable 

for the separation of monomers from dimers and from contaminants of lower molecular weight. 

The AKTApurifier (GE) chromatography system was run at a flow rate of 1 mL/min, to insure 

that the pressure did not go too high with the increase in flow rate, and the wavelength was set at 

405 nm to detect the heme; 215 nm to detect peptides, and 280 nm to detect both tyrosine and 

tryptophan residues. All the buffers in this experiment had to be filtered and degassed prior to 

use to prevent air bubbles into the resin. The column was first washed with degassed distilled 

water, followed with 200 mL of 0.5 M sodium hydroxide, 200 mL of 0.5M acetic acid, and then 

25 mL distilled water, again followed by 50 mL 0.075 M of  sodium phosphate.  Second, the 

column was calibrated by using a protein molecular mass kit containing blue dextran, beta-

amylase, alcohol dehydrogenase, and bovine serum albumin.  Third, the buffer contained 0.02 M 

of sodium phosphate buffer, pH 7.5 and 0.15 M of sodium chloride was applied to the column. 

Finally, the sample, hiNOSoxy, was applied using a 0.3 mL syringe. We tried the gel filtration 

with decrease the flow rate to 0.5 ml/min to improve the purity of protein. This experiment must 
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be carried out at 4 ºC. Once again, the 10 % SDS-PAGE was used to monitor the eluted 

fractions.  

3.3 Results 

3.3.1 Protein Expression 

The plasmid was tested for the production of hiNOSoxy protein expression under many different 

conditions, such as the period of incubation, temperature, speed of the shaker, and the 

concentration of IPTG used for induction. A successful expression of hiNOSoxy (Figure 3.1) was 

achieved after 40 hours of incubation, at 25 ºC and 200 rpm. The expression was attained also by 

using TB medium, because it is rich of nutrient medium which supports E. coli growth to the 

desired OD600. For human eNOSoxy, it was evident that the production of protein was extremely 

low when tested using SDS-PAGE (data not shown). 

  

                      

Figure  3.1: SDS-PAGE analysis of the human iNOS oxygenase domain. Expression and 

purification of target proteins from culture induced by 500 mM IPTG with 40 hours expression. 

Lane 1: protein expressed after 10 hours, Lane 2: after 12 hours, Lane 3: after 24 hours, Lane 4: 

after 40 hours, Lane 5: lysis the cells after 40 hours. The arrow indicates the hiNOSoxy at 

expected size, ~ 48 kDa. 
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3.3.2 Protein Purification and Metal Chelation Chromatography 

The purification by metal (nickel) chelation chromatography column is a suitable method for a 

first step to gain a pure protein. The proteins bind to the resin, and then eluted from the column 

by washing with a buffer containing a high concentration of imidazole. Figure 3.2, SDS-PAGE 

10 % shows proteins isolated from each step of the purification procedures. Lane 12 shows that 

only one band at expected size ~ 48 kDa is formed in the final elution step from the metal 

chelation chromatography column. Moreover, the protein was characterized by absorbance 

spectroscopy, UV-visible spectrum, which was used  to determine protein concentration, Table 

3.1. 

Table  3.1: The yield of protein (HiNOSoxy) per liter after purificatin by nickel chelation 

chromatography. 

Protein  HiNOSoxy Concentration Protein Yield (mg/2 L media) 

Trial #1 obtained  (1.5 mL) 3.6  0.27  

Trial #2  obtained (14 mL) 3.20  2.2  

Trial #3  obtained  (1.5 mL) 4.4  0.30  

Trial #4  obtained  (7 mL) 2.70  0.94  
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Figure ‎3.2: SDS-PAGE of hiNOSoxy purification and the fractions containing hiNOSoxy  

that were eluted off the Ni2+ column: Lane 1: pellet after lysis, Lane 2: supernatant after lysis, 

Lane 3: pellet 35% (NH4)2SO4, Lane 5 and 4: supernatant of 35%  (NH4)2SO4 , Lane 6: pellet 

55% (NH4)2SO4 , Lane 7: supernatant after 55% of (NH4)2SO4, Lane 8: flow through, Lane 9 and 

10: pellet buffer wash, Lane 11: 20 mM of imidazole, Lane 12: 50 mM of imidazole. The arrow 

indicates the desired protein. 
 

3.3.3 Gel Filtration Chromatography 

Gel filtration chromatography is a unique method among other chromatographic methods. It does 

not damage proteins when they pass through the column because they do not bind to the resin. 

This method is useful for determining the presence of the dimer form under non-denaturing 

conditions, in contrast to the denatured and conditions that arises with SDS-PAGE. Human 

iNOSoxy was purified and analyzed using gel filtration. This experiment is extremely important as 

ITC will be the next experiment and requires a pure and dimeric protein. Gel filtration separates 

the protein based on size so that the heme containing hiNOSoxy (a dimer) is eluted earlier than the 
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non-heme (a monomer) protein. SDS-PAGE was used to check the protein’s purity as shown in 

Figure 3.3. The fractions containing hiNOSoxy eluted off the column at a flow rate of 1 ml/min, as 

shown in Figure 3.4. The decreased of the flow rate to 0.5 ml/min improved the purity of 

hiNOSoxy, as shown on Figure 3.5, which makes it clear that the protein is pure as there are no 

contaminating proteins visible. 
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Figure ‎3.3: Gel filtration chromatography of hiNOSoxy. The pink line indicates the absorbance 

at 215 nm (peptide bond). The blue line indicates the absorbance at 280 nm (mainly tyrosine and 

tryptophan absorbance), and the red line indicates the absorbance at 405 nm (heme- signifying 

hiNOSoxy domain). This figure makes clear the high molecular weight protein eluted first from 

the column, while the low molecular weight protein eluted last, as the two arrows indicate. 

Low molecular 

weight 

 

High molecular 

weight 
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Figure ‎3.4: SDS-PAGE of hiNOSoxy purified by gel filtration. This gel shows the collected 

fractions during elution from (Superdex 200 10/300 GE) column. Lanes 1-4: resin wash; Lanes 

5-9: the beginning of the protein elution, but contains high molecular weight contaminants, 

Lanes 10-14: fractions containing dimer hiNOSoxy that were eluted off the column at the correct 

size, as indicated by the circle; Lanes 15-18: resin wash. 

 

 

 
 

Figure  3.5: SDS-PAGE analysis of hiNOSoxy protein fractions isolated by gel filtration. This 

gel shows the increase of the protein purity when slowing the flow rate to 0.5 ml/min. Lane 1 to 

3 are fractions containing hiNOSoxy dimer that were eluted off the column. 
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3.4 Discussion and Summary 

The human iNOSoxy (delta70) vector carries a deletion of the first 70 amino acids and the N-

terminal poly-histidine in the PcWori vector. This vector was expressed into E. coli BL21 (DE3) 

cells to minimize the proteolysis of hiNOSoxy during the expression process. Protein denaturing 

due to proteolysis can be a problem during the purification of the protein; however, it is most 

likely to occur after cell lysis, which disrupts the cellular organization and releases proteases. To 

limit the denaturing of our protein, a mixture of inhibitors such as leupeptin and pepstain were 

used in order to insure that all types of proteases were inhibited. Carrying out the purification 

experiments at 4 ºC has advantages in that it helps to reduce the activity of proteases. Pure 

recombinant histidine-tagged protein was obtained using metal (Ni
2+

)
 
chelation chromatography 

and the protein was eluted using an imidazole gradient. Imidazole is suitable when the expressed 

protein is unstable or denatured. Unlike metal chelation chromatography, gel filtration of 

proteins does not involve binding to the chromatography medium. It separates proteins according 

to differences in size as they pass through a resin. Samples with a very large molecule such as 

blue dextran go through the pores very quickly. Meanwhile, proteins with small molecules, such 

as bovine serum albumin, take more time to elute from the column. According to the concept of 

this technique, we observed that the dimer, a large protein, was eluted from the column first, 

while the non-dimer was eluted from the column second. The protein should be free of imidazole 

after gel filtration. The best results for high resolution fractionation from the gel filtration were 

achieved with samples that were partially purified by other types of chromatography, such as 

metal chelation chromatography (Montgomery, 2009). The dimer form of the protein was our 

goal because dimerization is essential for catalytic activity.                                                                                                              
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Chapter 4 

Summary and Future Considerations 

4.1 Summary 

The polymerase chain reaction was used to amplify the coding region for the oxygenase domain 

of the human NOS enzymes. Attempts were made to insert the amplified fragments into the 

proper vector. The protocols used in this project (Figure 2.3 and 2.4) involve the sub-cloning of 

the oxygenase domain of the three human NOS isoforms. Successful sub-cloning and expression 

were difficult to achieve, as a series of E. coli expression plasmids for the oxygenase domain 

were used in the investigation. Human NOS was purified using metal chelation chromatography, 

as the NOS protein expressed includes a coding region for a poly-histidine tag. Gel filtration was 

also used in this project for further purification process. The identities of the pure proteins were 

confirmed by using SDS-PAGE gel electrophoresis and absorbance spectroscopy. To gain a high 

yield of protein, it was worthwhile to test the vector, insertion, and culture conditions to reach 

optimal results. The development of this expression system needed many modifications as these 

steps are highly sensitive and many options were available at each step, so any small change 

might affect the results or the overall yields. Investigation of inhibitors that bind tightly to the 

active site of the human NOSoxy enzyme is the main object of the early-stage of drug discovery. 

Unfortunately, figuring out the right conditions to gain the target protein took a lot more time 

than expected. However, gaining a protein is a very valuable goal because, in the case of 

mammalian protein (e.g. NOS enzymes), the extraction from a native source is not usually 

feasible due to extremely high costs and low yields. Therefore, it was important to develop the E. 

coli expression system in order to produce adequate amounts of protein. 



 

 49 

4.2 Future Considerations 

I. Select an inhibitor for the first round of trials with known biophysical properties and 

binding constants (e.g. 1400W and L-NMMA); 

 

II. Model the active site with target ligand (inhibitor) in the core. Based on the composition 

and differences in the shells that are far away from the core/ active site residues, 

modifications/substituents will be modeled into the ligand molecule. Modification 

(i.e. bulky residues) will be incorporated onto the target ligand to exploit minor 

differences in those residues that may ultimately result in ligands with increased 

isoform selectivity; 

 

III. Generate the modified ligands and pursue biophysical characterization of the ligand 

binding to the different isoforms, and 

 

IV. Any modified ligands that show differential or increased isoform-specific binding will be 

incorporated into activity assays using the NOS holo-enzymes. 
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Appendix A: A schematic representation of the PCR amplified human NOSoxy protein 

containing a his 6 tail 
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Appendix B: The forward and reverse primers for human eNOS and human nNOS 

amplification. 
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Appendix C: Map of the PET 30a (+) vector containing the human iNOS oxygenase 

domain. The cloning of the hiNOSoxy domain was performed by amplifying the coding 

region found in a human iNOS expression vector supplied by Dr. Dipak Ghosh of Duke 

University.  Two primers were used to amplify insert a stop codon immediately after the 

coding region of human iNOS gene from residue Leu 71 to Pro508 and do not include 

the calmodulin binding domain.  The amino terminus has an NdeI site followed by 6 His 

residues before Leu71.  

 

 

 

 

 

 

 

Forward primer 

Reverse primer 

NdeI                                   HindIII 

Oxygenase domain 1340pb 

                                       Vector                                                                             Insert 
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Appendix D: Map of the PET 30a (+) vector containing the human eNOS oxygenase 

domain. The cloning of the heNOSoxy domain was performed by using human eNOS 

cDNA (PM831221) supplied by Dr. Philip Marsden of the University of Toronto.  Two 

primers were used to amplify the coding region of human eNOS cDNA from residue 

Met1 to Ile490 and do not include the calmodulin binding domain. 
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Reverse primer 
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Appendix E : Map of the PET 28a (+) vector containing the human iNOS oxygenase 

domain. The cloning of the hnNOSoxy domain was performed by using human nNOS 

cDNA (MDN75-3’-5’) supplied by Dr. Philip Marsden of the University of Toronto.  Two 

primers were used to amplify the coding region of human nNOS cDNA from residue 

Met1 to Thr724 and do not include the calmodulin binding domain.  
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