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ABSTRACT 

 Sarcolipin (SLN) is a small sarcoplasmic reticulum (SR) integral membrane 

protein that regulates the SR Ca2+-ATPase (SERCA).  Previous studies indicate that the 

functional interaction between SLN and SERCA is thermogenic in nature.  Recently, 

SLN knock-out (SLNKO) mice have been shown to develop excessive obesity and 

glucose intolerance when placed on a high-fat diet (HFD; 42% kcal derived from fat) 

relative to wild-type (WT) littermates, implicating SLN in diet-induced obesity.  The 

purpose of this thesis was two-fold: 1) to determine whether an excessively obese 

phenotype persists when SLNKO mice are given access to voluntary exercise, and 2) to 

determine if SLN ablation results in a deficit in skeletal muscle oxidative capacity, given 

the integral role cellular Ca2+ plays in mitochondrial metabolism.  Mice were fed either 

standard chow or a HFD for 8 weeks, and remained sedentary or given access to 

voluntary running wheels during this period.  Glucose tolerance was assessed pre- and 

post-diet, along with weight gain and adiposity.  Skeletal muscle succinate 

dehydrogenase (SDH), citrate synthase (CS), cytochrome c oxidase (COX), and 3-

hydroxyacyl CoA dehydrogenase (ß-HAD) activities were measured in the soleus (SOL) 

and extensor digitorum longus (EDL) of both chow- and high-fat fed sedentary mice.  

Both average daily running distance and total exercise volume were not different between 

WT and SLNKO mice given voluntary running wheels.  As before, sedentary SLNKO 

mice gained more mass following the HFD relative to WT counterparts (P < 0.05); 

however, no difference in mass gain existed between genotype for voluntary exercising 

mice on a HFD.  Despite this, SLNKO animals were more obese and glucose intolerant 

following high-fat feeding, regardless of activity status (P < 0.05).  Under chow-fed 
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conditions COX activity was higher in the EDL of SLNKO mice (P < 0.05), while no 

differences in SDH, CS, or ß-HAD existed between genotype in either muscle group.  

Following the HFD, no changes in mitochondrial enzyme activities within the SOL 

existed.  COX activity in the EDL remained elevated in SLNKO mice post-HFD (P < 

0.001), while ß-HAD increased in both WT and SLNKO animals relative to chow-fed 

controls (P < 0.05).  These findings suggest that increasing energy expenditure through 

voluntary activity cannot compensate for increased basal SERCA Ca2+-pumping 

efficiency during caloric excess.  Additionally, ablation of SLN does not result in a 

metabolic deficit within skeletal muscle, nor does it limit the adaptive enzymatic response 

of SLNKO mice to high-fat feeding.  Thus, the findings of this study provide further 

support of the view that SLN’s thermogenic role is the primary mechanism of diet-

induced obesity in SLNKO mice.   
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Thesis Overview 

The sarcoplasmic reticulum (SR) is the major storage site of Ca2+ within skeletal 

muscle.  Upon sarcolemmal depolarization, Ca2+ is released from the SR and into the 

cytosol where it can interact with the contractile apparatus, allowing for muscle 

contraction to occur.  In order for skeletal muscle to relax, the released Ca2+ must be re-

sequestered within the SR, a process mediated by the sarco(endo)plasmic reticulum Ca2+-

ATPase (SERCA) located within the SR membrane.  In addition to initiating muscle 

relaxation, SERCA activity is responsible for maintaining a resting Ca2+ gradient >104 

across the SR membrane (MacLennan, 1990).  Maintenance of a low cytosolic free Ca2+ 

concentration ([Ca2+]f) by SERCA is an energy-dependent process; under optimal 

conditions the stoichiometry of Ca2+ pumping into the SR lumen is 2 mol of Ca2+ per mol 

of ATP hydrolyzed by SERCA, termed a 2:1 coupling ratio.  This coupling ratio (i.e. the 

energetic efficiency of SERCA), along with SERCA activity, can be altered by the 

SERCA regulatory proteins phospholamban (PLN) and sarcolipin (SLN).  

Experiments utilizing reconstituted lipid vesicles containing various molar ratios 

of SERCA and SLN have demonstrated that the interaction between these proteins is 

thermogenic in nature (Smith et al., 2002; Mall et al., 2006).  Recently, ablation of SLN 

in mice has been shown to lead to increased susceptibility to diet-induced obesity and 

excessive whole-body glucose intolerance (Bombardier, 2010).  Protection from this 

obese phenotype in wild-type (WT) mice is believed to result from a greater energetic 

requirement by SERCA to maintain basal cytosolic Ca2+ concentration due to SLN’s 

uncoupling effect on Ca2+ uptake, as WT mice have a decreased coupling ratio relative to 

SLN knock-out (SLNKO) mice (i.e. require more energy to translocate a given amount of 
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Ca2+).   

Several important questions still remain with respect to SLNKO mice and the 

development of diet-induced obesity and excessive whole-body glucose intolerance.  

Previous analyses of SLNKO mice have only occurred under sedentary conditions.  Some 

have proposed that examination of the physiological relevance of a gene/protein towards 

a disease pathogenesis must occur under a condition of physiological stress such as 

exercise (Booth and Laye, 2009), as some transgenic mice only develop a disease 

phenotype when chronically sedentary (Huszar et al., 1997; Haskell-Luevano et al., 

2009).  Thus, it is important to examine whether the excessively obese phenotype of 

SLNKO mice following over-nutrition persists when given access to increased daily 

energy expenditure through ambulation (i.e. voluntary wheel running).   

Additionally, although excessive obesity may result from the reduced cost of 

skeletal muscle Ca2+-handling in SLNKO mice, a reduction in mitochondrial content may 

also be at play.  It is well established that Ca2+ is an important mediator of mitochondrial 

biogenesis within skeletal muscle (Chin, 2005), and that oxidative capacity is reduced in 

human obesity and type II diabetes mellitus (T2DM; Kelley et al., 2002; Boushel et al., 

2007; Holloway et al., 2007).  Additionally, mitochondrial dysfunction has been 

implicated by some as a potential cause of skeletal muscle insulin-resistance associated 

with obesity (Kelley et al., 2002).  It is unclear what role, if any, SLN ablation has on 

Ca2+ signaling and mitochondrial biogenesis, and whether or not a reduction in skeletal 

muscle oxidative capacity is at least associated with the increased susceptibility to diet-

induced obesity and reduced glucose tolerance of SLNKO mice.  Thus, the main 

objectives of this study are two-fold: 
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1) examine the effect of voluntary wheel-running on obesity and glucose tolerance in 

SLNKO mice following high-fat feeding, and 

2) examine whether ablation of SLN results in an altered skeletal muscle oxidative 

capacity under chow-fed conditions, and determine if an interactive effect  exists 

between diet (chow vs. high-fat) and genotype on skeletal muscle oxidative 

capacity. 

 

It is hypothesized that: 

1) despite access to voluntary running wheels, a phenotype difference will still exist 

in SLNKO mice following high-fat feeding, and 

2) ablation of SLN will not alter skeletal muscle oxidative capacity under both chow 

and high-fat conditions. 
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Introduction 

Obesity and Type II Diabetes Mellitus in Canada 

Obesity is a condition in which an excessive accumulation of visceral and 

subcutaneous fat results from a chronic energy imbalance, such that energy intake 

exceeds expenditure.  According to the World Health Organization (WHO), individuals 

are obese if their body mass index (BMI: kg/m2) is ≥ 30, while those with a BMI of 25-29 

are considered overweight (WHO, 2000).  Across Canada the prevalence of obesity has 

reached epidemic proportions; between 1985 and 1998 obesity prevalence has more than 

doubled from 5.6% to 14.8% (Katzmarzyk, 2002).  A recent report indicates that nearly 

35% of Canadians are overweight and that the trend of increasing obesity prevalence is 

continuing (Katzmarzyk and Mason, 2006).  Alarming still is that this rate of increase is 

more rapid in adolescents than adults (Tremblay et al., 2002).   

The rise in obesity represents a significant financial burden to the Canadian 

healthcare system; it is estimated that treating obesity and related comorbidities accounts 

for approximately 2.4% (~$1.8 billion) of total healthcare expenditures (Birmingham et 

al., 1999).  Many other diseases are associated with obesity such as various cancers, 

hypertension, cardiovascular disease, and type II diabetes mellitus (T2DM; WHO, 2000).  

Of these comorbidities, T2DM is of particular concern as approximately 90% of cases are 

linked to excessive body weight (Hossain et al., 2007).  Estimates indicate that by 2020 

the total number of Canadians with diabetes will reach 3.7 million people, most of whom 

will be classified type II, as T2DM comprises approximately 90% of total diabetes cases 

(Canadian Diabetes Association, 2009).  In Ontario alone, the prevalence of diabetes in 

2005 has already surpassed the WHO estimated global prevalence rate for 2030 
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(Lipscombe and Hux, 2007).   

T2DM is characterized by chronic hyperglycemia resulting from a diminished 

ability of insulin-sensitive tissues to respond to insulin stimulation (i.e. insulin 

resistance).  The ability of individuals to maintain euglycemia, a narrow range of plasma 

glucose concentration between 80-100 mg/dl (Boden, 2001), requires coordination 

between several tissues, including the pancreas, liver, adipose tissue, and skeletal muscle.  

Individuals with T2DM first pass through a period of pre-diabetes, defined clinically as 

having impaired fasting glucose (100-125 mg /dl) or impaired glucose tolerance (140-200 

mg/dl two hours post oral glucose challenge; Meigs et al., 2003; Greg and Kriska, 2008).  

As T2DM progresses, insulin secretion decreases due to dysfunction of pancreatic β-cells 

(i.e. insulin producing cells; Gregg and Kriska, 2008), requiring patients to regulate 

glycemia through exogenous insulin administration.  A hallmark feature of T2DM is 

skeletal muscle insulin resistance, which is believed to be a major contributor to the 

disease pathogenesis.  Although the mechanisms leading to a reduction of skeletal muscle 

insulin sensitivity are complex, lipid oversupply resulting in the accumulation of 

intramuscular triglycerides (IMTG) is a key factor. 

 

Lipid Induced Skeletal Muscle Insulin Resistance 

Skeletal muscle comprises ~40% of body mass in adult humans (Rolfe and 

Brown, 1997), and is estimated to account for 70-80% of peripheral glucose uptake in 

response to an oral glucose challenge (DeFronzo et al., 1981).  Given the absolute 

proportion of skeletal muscle to body mass and its capacity for glucose disposal, reduced 

skeletal muscle insulin sensitivity will lead to dysregulation of glycemic control.  
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Elevated plasma free fatty acids (FFAs) are believed to be a major causal factor in the 

development of skeletal muscle insulin resistance leading to T2DM.  Direct evidence for 

a role of elevated plasma FFAs have come from studies utilizing the euglycemic-

hyperinsulinemic clamp technique with concomitant lipid infusion. These studies have 

shown a reduction in peripheral insulin sensitivity with physiological elevations in 

plasma FFAs in healthy individuals (Ferrannini et al., 1983; Boden and Jadali, 1991), 

individuals predisposed to T2DM (Kashyap et al., 2003), and those who are both obese 

and have T2DM (Boden and Chen, 1995; Roden et al. 1996).  Development of insulin 

resistance with lipid oversupply is believed to result from the accretion of triglyceride and 

lipid species within skeletal muscle, which interfere directly with the insulin-signaling 

cascade. 

 Entrance of circulating FFAs into skeletal muscle is a protein-mediated process 

regulated by the integral membrane protein fatty acid translocase (FAT/CD36; Bonen et 

al., 2004a).  FAT/CD36 is sequestered within intracellular vesicles and migrates to the 

sarcolemma to increase lipid uptake in response to muscle contraction and insulin 

(Holloway et al., 2008).  Once FFAs cross the sarcolemma, they are subject to two major 

fates depending on cellular energy demand: 1) storage as IMTG or 2) mitochondrial 

oxidation.  IMTG concentration is elevated in human obesity and T2DM (Bonen et al., 

2004b; He et al., 2001), but IMTGs themselves are not believed to directly cause skeletal 

muscle insulin resistance.  Similar to obesity and T2DM, highly trained athletes show 

elevated IMTG content but are insulin sensitive (Goodpaster et al., 2001); this ‘athlete’s 

paradox’ is likely due to increased substrate turnover in trained individuals, preventing 

stagnation of IMTG and accumulation of lipid metabolites.  However, intermediates of 
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lipid metabolism including diacylglycerols (Itani et al., 2002), long-chain fatty acyl-CoAs 

(Cooney et al., 2002), and ceremides (Chavez et al., 2003) are implicated in altering post-

receptor events of insulin signaling.  In insulin resistant states, elevation of these lipid 

species inhibits intermediate and distal steps of the insulin-signaling cascade, resulting in 

reduced trafficking of glucose transporter-4 (GLUT-4) containing vesicles to the 

sarcolemma. 

An ongoing point of contention is the mechanistic origin of IMTG accumulation 

seen in obesity and T2DM.  A common observation in obese and diabetic muscle is a 

reduction in mitochondrial content (Kelley et al., 2002; Boushel et al., 2007; Holloway et 

al., 2007). Microarray analysis of human diabetic skeletal muscle has also shown a 

coordinated down-regulation of genes involved in oxidative metabolism, including the 

peroxisome proliferator activator receptor γ co-activator 1 (PGC-1), the so-called “master 

regulator” of oxidative gene expression (Patti et al., 2003).  Some have proposed that 

reduced skeletal muscle oxidative capacity or mitochondrial dysfunction (i.e. an intrinsic 

defect in the mitochondria’s ability to catabolize carbon substrate) reduces fatty acid 

oxidation, resulting in IMTG accumulation (Kelley et al., 2002; Patti et al., 2003; Lowell 

and Shulman, 2005).  However, it is yet unclear as to whether reduced mitochondrial 

content or mitochondrial dysfunction represents a cause or consequence of obesity and 

T2DM.   

Conversely, others have found mitochondrial fatty acid oxidation not to be 

impaired in both human (Bonen et al., 2004b; Boushel et al., 2007; Holloway et al., 

2007) and rodent obesity (Holloway et al., 2010).  Additionally, skeletal muscle contain 

mitochondria in excess of what is needed to supply ATP to resting cells, and a reduction 



  8

in mitochondrial content to that seen in obesity and T2DM is unlikely to limit substrate 

metabolism (Hollozy, 2009).  Instead, others propose that increased skeletal muscle lipid 

uptake results in the ectopic accumulation of IMTG.  Although total expression of 

skeletal muscle FAT/CD36 protein is unchanged in human obesity and T2DM, 

sarcolemmal FAT/CD36 content is increased and associated with a 4-fold rise in skeletal 

muscle lipid uptake (Bonen et al., 2004b).  Similar findings have also been shown in 

Zucker obese rats and Zucker diabetic fatty rats (Luiken, et al., 2001; Chabowski et al., 

2006).  Thus, mounting evidence suggests that insulin resistant muscle has an increased 

capacity to extract circulating FFAs due to a redistribution of FAT/CD36 from the 

intracellular compartment to the plasma membrane.  Methods to improve skeletal muscle 

insulin sensitivity could involve blockade of lipid entry into muscle, or increasing IMTG 

turnover by augmenting cellular energy demands.  Increasing energy demand can be 

achieved through exercise or reducing the efficiency of several ATP consuming processes 

that contribute to basal metabolism.  The latter scenario involves several adaptive 

mechanisms possessed by organisms to “waste” excess energy, including shivering and 

non-shivering thermogenesis. 

 

Mechanisms of Shivering and Non-Shivering Thermogenesis  

Adaptive thermogenesis refers to an increase in heat production (i.e. energy 

utilization) by an organism in response to changes in environmental temperature or diet 

(Lowell and Spiegelman, 2000).  The ability of an organism to alter energy expenditure 

in response to periods of food shortage/excess and temperature is an adaptive mechanism 

needed to maintain appropriate cellular energy stores and body temperature.  Metabolic 
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heat is derived from various cellular reactions including protein synthesis, ATP synthesis, 

and those needed to actively maintain cellular ions gradients.  Dysfunction in energy 

expending processes, particularly during periods of increased caloric intake, is likely to 

contribute to obesity.  Several known mechanisms exist to increase heat production, 

including skeletal muscle contraction (e.g. shivering thermogenesis) and mitochondrial 

proton leak (e.g. non-shivering thermogenesis).   

Skeletal muscle contraction/relaxation cycling is an energy-dependent process 

involving two major sites of energy consumption, namely by myosin ATPase and 

SERCA.  The electrical and mechanical processes involved in skeletal muscle excitation-

contraction (EC) coupling are complex and involve a number of protein interactions.  EC 

coupling refers to the processes linking sarcolemmal depolarization to the release of 

intracellular Ca2+ stores, resulting in actin-myosin crossbridge formation and force 

development (Dulhunty, 2006).  Upon stimulation by a motor neuron, an action potential 

travels along the sarcolemmal surface and down the transverse-tubule (t-tubule), where a 

voltage change in this region is sensed by dihydropyridine receptors (DHPRs) located in 

the t-tubular membrane.  In skeletal muscle, DHPRs physically interface with ryanodine 

receptors (RyR) located on the terminal cisternae of the SR, together forming calcium 

release units (Franzini-Armstrong and Protasi, 1997).  A voltage induced conformational 

change in the DHPRs result in the opening of RyRs, causing efflux of stored Ca2+ from 

the SR into the cytosol.   Rising [Ca2+]f enables interaction between actin and myosin 

filaments by Ca2+ binding to troponin C on the thin filament and removing the steric 

inhibition of tropomyosin.  Upon hydrolysis of ATP by myosin ATPase, crossbridge 

formation occurs between actin and myosin filaments allowing for muscle contraction 
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and heat generation.  In order for skeletal muscle to then relax, [Ca2+]f must be 

sequestered back within the SR, a process mediated by SERCA.  Although activation of 

skeletal muscle through exercise is an obvious way to utilize excess energy, several non-

shivering thermogenic mechanisms may be more important during resting and post-

prandial conditions in regulating energy balance. 

A well-characterized mechanism of adaptive non-shivering thermogenesis is that 

of mitochondrial proton leak in brown adipose tissue (BAT) mediated by uncoupling 

protein-1 (UCP-1).  UCP-1 is an inner mitochondrial membrane protein that causes 

protons to leak into the mitochondrial matrix from the intermembrane compartment, with 

energy being dissipated as heat (Klingenberg and Huang, 1999; Lowell and Spiegelman, 

2000).  Disruption of the mitochondrial H+ gradient by UCP-1 uncouples protonmotive 

force from ATP synthesis; thus, more carbon substrate must be oxidized to produce 

reducing equivalents (i.e. NADH and FADH2) and re-establish the H+ gradient, a process 

further releasing heat.  Initial examination of the UCP-1 knockout mouse indicated 

sensitivity to cold-exposure, but unexpectedly these mice did not become obese under 

chow or high-fat conditions, which was attributed to a compensatory increase in UCP-2 

within BAT (Enerback et al., 1997).  However, a recent reexamination of this model 

under thermally neutral conditions (~30ºC; i.e. temperatures at which no compensatory 

mechanisms are needed to regulate body temperature) indicate that lack of UCP-1 results 

in pronounced obesity under both chow and high-fat conditions (Feldmann et al., 2009).  

The study of BAT mitochondrial uncoupling in rodents at thermoneutrality has 

reestablished UCP-1 as a candidate gene involved in the pathogenesis of obesity.   

Until recently, humans were believed to contain no BAT past adolescence.  Using 
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fluorodeoxyglucose (FDG) positron emission tomography, humans exposed to cold show 

enhanced FDG uptake in small areas of the supraclavicular and neck regions, which is 

inhibited by β-adrenergic blockade, a known activator of UCP-1 induced thermogenesis 

(Nedergaard et al., 2007).   Subsequently, direct evidence for the presence of BAT in 

humans has come from positive staining of UCP-1 immunoreactive adipose tissue 

harvested from patients undergoing surgery for thyroid diseases (Zingaretti et al., 2009).  

Despite the now confirmed presence of BAT in man, its physiological significance in 

thermogenesis and obesity-prevention has yet to be determined.  Although BAT is 

present in small amounts, skeletal muscle comprises a large proportion of overall body 

mass, making it an important thermogenic target tissue in man. 

Skeletal muscle of humans and rodents contain UCP-3, which shares considerable 

sequence homology with UCP-1 and 2 (Vidal-Puig et al., 1997).  Similar to initial studies 

of UCP-1 knockout mice, ablation of UCP-3 in mice did not cause obesity under chow or 

high-fat conditions (Gong et al., 2000; Vidal-Puig et al., 2000); lack of a genotype 

difference in these studies is likely due to the occurrence of thermoregulatory 

compensation in the transgenic animals given that housing conditions were below 

thermoneutrality.  However, skeletal muscle-specific overexpression of UCP-3 in mice 

does attenuate the development of an obese phenotype following high-fat feeding (Son et 

al., 2004), demonstrating the importance of skeletal muscle thermogenesis in protecting 

against excessive obesity.  Several other processes within skeletal muscle may contribute 

to adaptive thermogenesis, including futile cycling of fatty acid synthesis and oxidation 

(Solinas et al., 2004), protein and metabolite phosphorylation/dephosphorylation cycles, 

and ion leakage, particularly Ca2+ leakage from the SR (Lowell and Spiegelman, 2000). 
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Ca2+ Cycling and Adaptive Thermogenesis  

The contribution of skeletal muscle Ca2+ pumping to thermogenesis is evident in 

the genetic disorder malignant hyperthermia, in which a hypermetabolic state results from 

an RyR mutation causing excessive Ca2+ release during inhalational anesthesia 

(Denborough, 1998; MacLennan et al., 1990).  Continual Ca2+ release results in the 

activation of myosin ATPase and SERCA, causing excessive contracture and heat 

generation.  Furthermore, evidence for futile cycling of Ca2+ as a thermogenic mechanism 

is seen in ‘heater’ organs of deep-sea diving fish, which are comprised of specialized 

muscle cells containing a dense t-tubular and SR network without myofiliments in order 

to regulate brain and eye temperature during diving (Morrissette et al., 2003).  Given that 

BAT is minimal in larger mammals and that the role of UCP-3 within skeletal muscle is 

incompletely understood, altering the occurrence of SR Ca2+ leakage or the energetic cost 

to pump Ca2+ may be an important mechanism of adaptive thermogenesis, and a primary 

candidate for this role is SERCA. 

SERCA pumps are SR integral membrane proteins that catalyze the ATP-

dependent transport of Ca2+ from the cytosol into the SR lumen (MacLennan, 1990).  The 

major functions of SERCAs are to initiate muscle relaxation and maintain SR Ca2+ load 

in resting cells despite a Ca2+ gradient >104 across the SR membrane (MacLennan, 1990; 

Toyoshima, 2008).  Under optimal conditions, 2 Ca2+ ions are pumped into the SR lumen 

per molecule of ATP hydrolyzed (i.e. 2:1 coupling ratio), as SERCA contains two Ca2+ 

binding sites and one ATP binding site based upon its crystal structure (Toyoshima et al., 

2000).  Several SERCA isoforms exist in mammalian muscle, with SERCA1a being 
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expressed predominantly in fast-twitch skeletal muscle, while SERCA2a is the major 

isoform found in slow-twitch skeletal muscle and the heart (Wu and Lytton, 1993; 

Tupling, 2009). 

Given that Ca2+ transport is energy-dependent and that [Ca2+]f must be maintained 

at 100 nM despite a gradient favoring SR Ca2+ efflux, SERCA activity likely plays an 

integral role in resting skeletal muscle energy expenditure.  Several studies have 

estimated or directly measured the energetic contribution of SERCA and have yielded 

results ranging from 3.4-24% of basal metabolism (Clausen et al., 1991; Hasselbach and 

Oetliker, 1983; Chinet et al., 1992; Dulloo et al., 1994).  These results suggest that a 

significant amount of SR Ca2+ leakage occurs under resting conditions that must 

continually be rectified by SERCA activity.  Since SERCA accounts for a potentially 

large proportion of resting energy expenditure, lowering its contribution may be 

implicated in the development of diet-induced obesity.  Two SERCA regulatory proteins 

have been shown to alter the energetic cost of SR Ca2+ transport, namely PLN and SLN. 

  

Regulation of SERCA by Phospholamban (PLN) and Sarcolipin (SLN) 

PLN and SLN are small SR integral membrane proteins that physically interact 

with SERCA to regulate Ca2+ uptake activity (MacLennan et al., 2003).  PLN is a 52 

amino acid proteolipid containing a larger cytoplasmic N-terminal domain anchored to 

the SR by a C-terminal transmembrane domain (Fujii et al., 1987).  SLN is a smaller 31 

amino acid proteolipid consisting of a 7 amino acid N-terminal domain, a 19 amino acid 

transmembrane domain, and a 5 amino acid C-terminal domain that protrudes into the SR 

lumen (Odermatt et al., 1997).  Expression of PLN and SLN are both tissue and species 
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specific (Babu et al., 2007; Odermatt et al., 1997; Vangheluwe et al., 2005).  In mice 

PLN protein expression is high in the ventricle, whereas SLN protein expression is 

greater in the atria and soleus (SOL), and to a lesser extent in the extensor digitorum 

longus (EDL; Vangheluwe et al., 2005; Bhupathy et al., 2007; Bombardier, 2010).  

Currently, little is known about the protein expression patterns of SLN in human tissues 

due to the absence of an antibody against human SLN.  However, Northern blot analysis 

indicates that SLN mRNA is abundant in human skeletal muscle (Odermatt et al., 1997). 

Based upon similarities in gene sequence and conserved regions in the N-terminal 

and transmembrane domains, PLN and SLN are considered to be homologous proteins 

(Odermatt et al., 1997).  When bound to SERCA, PLN and SLN reduce its apparent 

affinity for Ca2+ in cardiac (Kadambi et al., 1996; Babu et al., 2006; Gramolini et al., 

2006) and skeletal muscle (Tupling et al., 2002; Bombardier, 2010).  Additionally, a 

distinct functional feature of SLN is its ability to reduce SERCA maximal Ca2+ uptake 

activity despite increasing [Ca2+]f (Tupling et al., 2002; Bhupathy et al., 2007). 

PLN and SLN action are governed by reversible phosphorylation and 

dephosphorylation control by protein kinases/phosphatases.  Their inhibitory effect on 

SERCA is removed by protein kinase activation, resulting in their phosphorylation and 

physical dissociation from SERCA.  Cyclic-AMP dependent protein kinase (PKA) and 

Ca2+-calmodulin-dependent protein kinase II (CaMKII) are known to phosphorylate PLN 

at serine-16 and threonine-17, respectively, during ß-adrenergic stimulation (Bhupathy et 

al, 2007).  The conserved threonine-5 residue of SLN is also phosphorylated by CaMKII 

(Bhupathy et al, 2009).  Thus, during activation of Ca2+ dependent signaling pathways 

(e.g. muscle contraction, ß-adrenergic stimulation), Ca2+ handling and force 
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characteristics are improved in part by removal of the inhibitory action of PLN and SLN 

on SERCA activity.  Despite the well-documented role of PLN and SLN in mediating the 

ß-adrenergic response of the heart and cardiac contractility, less is known about their 

physiological significance in skeletal muscle, particularly under resting conditions in 

which a physical association with SERCA exists.  Recently, SLN has been implicated in 

skeletal muscle adaptive thermogenesis. 

 

SLN Ablation in Adaptive Thermogenesis and Diet-Induced Obesity 

The interaction between SERCA and SLN has been shown to be thermogenic in 

nature.  Experiments using reconstituted vesicles containing both SLN and SERCA 

demonstrate that SLN uncouples Ca2+ transport from ATP hydrolysis and increases the 

proportion of energy released as heat per mol of ATP hydrolyzed (Smith et al., 2002; 

Mall et al., 2006).  In agreement with this, the apparent coupling ratio (i.e. Ca2+ 

transported: ATP hydrolyzed) in the SOL of SLNKO mice is higher relative to that of 

WT littermates (Bombardier, 2010).  The higher coupling ratio in SLNKO mice is the 

result of lower Ca2+ ATPase activity, indicating that in the absence of SLN, SERCA 

consumes less energy to establish a given Ca2+ gradient across the SR, making it 

energetically more efficient.  At the whole-body level, increasing the energetic efficiency 

of SERCA results in a predisposition to diet-induced obesity, as SLNKO mice become 

more obese than WT littermates following an eight-week high-fat diet (Bombardier, 

2010).  SLN protein expression within SOL of WT mice also increases following high-fat 

feeding (Bombardier, 2010), suggesting that SLN is regulated partly by diet.  Increased 

SLN expression would be expected to lead to a concomitant decrease in the energetic 
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efficiency of SERCA, as this may be the major factor preventing excessive weight gain in 

WT mice following overnutrition.  Accompanying the development of excessive obesity 

in SLNKO mice is a reduction in whole-body glucose tolerance (Bombardier, 2010); 

however, whether this represents a reduction in skeletal muscle insulin sensitivity as yet 

remains unclear.  Together, these data indicate that altering basal Ca2+ handling 

energetics by reducing the energetic efficiency of SERCA through its interaction with 

SLN is a mechanism of adaptive thermogenesis.  Therefore, reduced skeletal muscle SLN 

protein expression may be a pre-disposing factor to the development of diet-induced 

obesity and T2DM.  However, it should be noted that excessive obesity in the SLNKO 

model has only been demonstrated when mice remain sedentary, which negates the 

increase in energy expenditure associated with daily ambulation.  It is not yet clear 

whether excessive obesity will persist if these mice are given access to voluntary 

exercise. 

   

Effects of Physical Inactivity on Oxidative Metabolism and Insulin Sensitivity 

The human genome was selected for its capacity to complete physical activity and 

store energy, as this would confer a selective advantage during foraging, physical 

confrontation, and periods of food shortage (Booth and Lees, 2007).  However, with the 

advent of modern technologies, a need to engage in a high volume of physical activity is 

not obligatory for survival.  Thus, the combination of a genome specialized for energy 

storage with an environment that accommodates physical inactivity and has ad libitum 

access to food, fosters the development of chronic diseases like obesity and T2DM 

(Booth et al., 2008).  Despite sedentary behaviour being a cause of chronic illness, little is 
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known about how lack of physical activity contributes to diseased states (Booth et al., 

2008).  Skeletal muscle oxidative capacity in trained cyclists and runners declines rapidly 

in the initial 20 days following 10-24 months of intense training (Chi et al., 1983).  

Additionally, cessation of physical activity elicits a rapid decline of insulin action in 

highly trained athletes, with whole-body insulin sensitivity decreasing to that of sedentary 

individuals ~1.5-2.5 days following their last exercise bout (Burstein et al., 1985; Oshida 

et al., 1991).  Despite these studies indicating that maintenance of a high mitochondrial 

content and insulin sensitivity necessitates regular physical training, little is known about 

how decreased daily physical activity, not exercise training per se, contributes to 

augmented oxidative capacity and insulin resistance of skeletal muscle.   

Booth and colleagues (Kump and Booth, 2005a/b) have utilized a voluntary 

running wheel model to mimic ambulatory activity of rodents and examine how reduced 

daily physical activity alters skeletal muscle insulin sensitivity and skeletal muscle energy 

metabolism.  Upon removing access of male Fischer-Brown Norway rats to voluntary 

activity by locking running wheels, skeletal muscle submaximal insulin-stimulated 2-

deoxyglucose uptake was reduced to that of sedentary animals after 53 hours of physical 

inactivity (Kump and Booth, 2005a).  This was accompanied by reduced insulin binding 

to the insulin receptor ß subunit, alterations in the phosphorylation status of insulin 

signaling intermediates, and reduced GLUT-4 protein expression.  Additionally, the rate 

of triacylglycerol synthesis into epididiymal fat was increased above sedentary animals 

just 10 hours following cessation of activity, and preceded increases in visceral adiposity 

with further inactivity (Kump and Booth, 2005b).  Skeletal muscle fatty acid oxidation 

decreased to that of sedentary animals after 173 hours following wheel lock, and was 
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accompanied by a similar decrease in PGC-1α mRNA expression (Laye et al., 2009).   

Together, these studies indicate that removal of daily ambulation for a short period is 

enough to acutely reduce skeletal muscle mitochondrial function and insulin sensitivity to 

that of habitually sedentary individuals.  Although the signaling mechanism(s) mediating 

the physiological changes with reduced physical activity are unclear, it is evident that 

regular daily activity is necessary for the maintenance of metabolic function and the 

overall metabolic health of an organism. 

 It is clear from the above studies that removing access to ambulation in rodent 

models can have drastic and immediate effects on normal physiological function.  Some 

have argued that in order to determine the contribution of a gene/protein to a disease 

pathogenesis, examination of that gene/protein should occur under a condition of 

physiological stress (Booth and Laye, 2009).  To this end, transgenic models may display 

divergent phenotypes under conditions of increased physical activity relative to sedentary 

counterparts.  For example, melanocortin-4 receptor knockout mice are obese, 

hyperglycemic, hyperinsulinemic and hyperphagic when sedentary (Huszar et al., 1997), 

but when given access to voluntary exercise this obese phenotype is abolished (Haskell-

Luevano et al., 2009).  Therefore, in specific instances increasing energy expenditure 

through voluntary exercise can compensate for a genetic predisposition to obesity.  Thus, 

it is of extreme interest to examine whether an excessively obese phenotype persists in 

SLNKO mice fed a high-fat diet and given access to voluntary exercise.  While physical 

inactivity can pre-dispose individuals to obesity and diabetes, so too could a reduction in 

skeletal muscle oxidative capacity or mitochondrial function (discussed above).  

Although protection from diet-induced obesity may be due to SLN’s thermogenic effect, 
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it is not known what effect, if any, SLN ablation has on skeletal muscle oxidative 

metabolism.  This is important to examine given the relationship between Ca2+ signaling 

and mitochondrial biogenesis.   

The Role of Skeletal Muscle Ca2+ in Oxidative Metabolism 

 Increases in skeletal muscle mitochondrial content (i.e. oxidative capacity) is a 

well-documented adaptation to exercise training, but the exact mechanism(s) and 

signal(s) leading to such an increase have remained elusive until relatively recent.  It is 

now understood that cellular Ca2+ plays an integral role in regulating skeletal muscle 

mitochondrial biogenesis.  Initial experiments of L6 myotubes showed increased mRNA 

expression of nuclear encoded cytochrome c after continuous treatment with the Ca2+ 

ionophore A23187 for 48 hours (Freyssenet et al., 1999).  Similarly, intermittent 

treatment of L6 myotubes with other Ca2+ mobilizing agents such as caffeine (an RyR 

agonist) resulted in increased protein expression of various mitochondrial markers 

including citrate synthase, cytochrome c, aminolevulinate synthase, cytochrome c oxidase 

subunit 1, and was accompanied by increased mitochondrial function (Ojuka et al., 2002; 

Ojuka et al., 2003).  Caffeine exposure also increased protein expression of PGC-1, 

nuclear respiratory factors-1/2, and mitochondrial transcription factor A (Ojuka et al., 

2003), of which are needed to coordinate the transcriptional activation of the nuclear and 

mitochondrial genomes.  These exercise-mimicking effects are inhibited by the addition 

of Ca2+ chelating agents such as EGTA and the RyR blocker dantrolene (Ojuka et al., 

2002; Ojuka et al., 2003).  However, the [Ca2+]f reached in these studies may be 

supraphysiological, and flooding the cytosol with Ca2+ for prolonged periods does not 

mimic the characteristic Ca2+ oscillations during electrical stimulation and exercise.   
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In vivo evidence for Ca2+-dependent signaling and mitochondrial biogenesis has 

come from several transgenic mouse models.  Mice expressing a constitutively active 

form of CaMKIV in skeletal muscle show a transition towards a more oxidative 

phenotype (Wu et al., 2002), as do mice overexpressing an activated form of the 

Ca2+/calmodulin-dependent phosphatase calcineurin (Chin, 2004).  Additionally, ablation 

of the rodent Ca2+ buffering protein parvalbumin (PV), found predominantly in fast-

twitch muscles, results in increased mitochondrial content and greater fatigue resistance 

of fast-twitch muscles (Chen et al., 2001; Racay et al., 2006).  Conversely, mice 

overexpressing PV in slow-twitch muscles show lower succinate dehydrogenase activity 

(Chin et al., 2003).  Together, these studies indicate a Ca2+-dependence of mitochondrial 

biogenesis.  Interestingly, alteration of resting (i.e. non-exercising) Ca2+-handling 

dynamics in PV transgenic mice is enough to modify mitochondrial content.  Thus, it is 

of interest to determine whether SLN ablation augments skeletal muscle oxidative 

capacity.  

Study Rationale 

Although SLN has been implicated in the development of diet-induced obesity, 

previous studies of SLNKO mice have only occurred under sedentary conditions.  In 

order to determine the functional impact SLN ablation has on susceptibility to obesity, 

further examination of SLNKO mice should occur under conditions of regular access to 

physical activity.  Additionally, it is yet unknown whether altering basal Ca2+ handling 

through SLN ablation results in an inherent defect in skeletal muscle oxidative 

metabolism.   
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Study Objectives and Hypotheses  

Objectives: 

1) examine the effect of voluntary wheel-running on obesity and glucose tolerance in 

SLNKO mice following high-fat feeding, and 

2) examine whether ablation of SLN results in an altered skeletal muscle oxidative 

capacity under chow-fed conditions, and determine if an interactive effect  exists 

between diet (chow vs. high-fat) and genotype on skeletal muscle oxidative 

capacity. 

 

Hypotheses: 

1) given that SLN reduces the energetic efficiency of SERCA under basal 

conditions, a phenotype difference will still exist in SLNKO mice having access 

to voluntary running wheels following high-fat feeding, as SLN could also reduce 

SERCA efficiency during physical activity, and 

2) ablation of SLN will not alter skeletal muscle oxidative capacity under both chow 

and high-fat conditions. 
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Methods 

Experimental Animals and Genotyping 

 Transgenic mice lacking sarcolipin (SLN-null) were generously donated by Drs. 

David MacLennen and Anthony Gramolini (University of Toronto) and used to establish 

a breeding colony at the University of Waterloo.  SNL-null mice were crossbred with 

C57BL/6J mice to generate heterozygous SLN-null breeding pairs.  Breeding pairs 

yielded homozygous sarcolipin knockout (SLNKO, -/-), heterozygous (HET, +/-) and 

homozygous wild type (WT, +/+) mice.  At four weeks of age ear clippings were taken, 

digested, and DNA was extracted for identification of mouse genotype using a 

commercially available kit (PureLink DNA Mini Kit; Invitrogen).  Extracted DNA was 

subjected to PCR for amplification of target DNA.  Briefly, ~50 ng of extracted DNA 

was added to a Taq DNA polymerase mixture (Fermentas) containing 3 mM MgCl2, 200 

µM dNTP, 10x Taq buffer (containing 750 mM Tris-HCL, 200 mM (NH4)2SO4, and 

0.1% (v/v) Tween 20), 1.5 µL Taq DNA polymerase, and 0.4 µM of appropriate forward 

and reverse primers (SLN-WT forward: 5’-TGT CCT CAT CAC CGT TCT CCT-3’, 

SLN-WT reverse: 5’-GCT GGA GCA TCT TGG CTA ATC-3’, SLNKO forward: 5’- 

GTG GCC AGA GCT TTC CAA TA-3’, SLNKO reverse: 5’- CAA AAC CAA ATT 

AAG GGC CA-3’).  DNA was placed in a thermal cycler (S1000 Thermal Cycler; Bio-

Rad) and denatured at 94ºC for 3 min, followed by 30 cycles of denaturation at 94ºC for 

30 sec, annealing at 54ºC for 30 sec, extension at 72ºC for 60 sec, and a final extension at 

72ºC for 7 min.  Amplified target DNA was then resolved by electrophoresis on a 1% 

agarose gel containing 0.013% ethiduim bromide (BioShop) and identified under UV 

light using a bio-imaging system and GeneSnap software (Syngene). 
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 Homozygous WT and SLNKO mice (3-4 months old) were housed in a 

temperature controlled room under a reverse light/dark cycle (12/12 hr) in individual 

cages and given ad libitum access to water and standard rodent chow (22/5 Rodent Diet 

8640; Harland-Tekland, Madison, WI).  All experiments were approved by the University 

of Waterloo Animal Care Committee and carried out in accordance with the Canadian 

Council on Animal Care. 

Whole-Body Metabolic Rate and Experimental Diets 

 Prior to the initiation of pre-diet whole-body metabolic measurements, mice were 

acclimated to clear plastic cages with wire mesh bottoms for one week and given ad 

libitum access to water and powdered rodent chow (22/5 Rodent Diet (w) 8640; Harlan 

Teklad, Madison, WI).  Whole-body metabolic measurements were made using a 

Comprehensive Laboratory Animal Monitoring System (CLAMS; Oxymax Series; 

Columbus Instruments, Columbus, OH).  The CLAMS is an open-circuit indirect 

calorimeter capable of measuring O2 consumption rate ( VO2), food consumption, and 

cage activity on twelve experimental animals.  Mice were housed individually in clear 

plexiglass cages (20 cm x 10 cm x 12.5 cm) in a temperature-controlled room (~22ºC) 

under a reverse light/dark cycle (12/12 hr) with ad libitum access to water and powdered 

food (as above).  Mice were acclimated to the CLAMS 24 hr before commencing 

measurements, after which data collection proceeded for 24 hr.  CLAMS measurements 

were repeated three times on three separate weeks before and after administration of the 

experimental diet (Figure 1).  Mice were not acclimated to clear plastic cages before 

commencing post-diet measurements, and those allocated to the high-fat diet (HFD) were 

given powdered high-fat food while in the CLAMS instead of standard rodent chow. 
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Figure 1. Experimental timeline (CLAMS: comprehensive laboratory animal monitoring system; GTT: 
glucose tolerance test; BM: body mass; ACT: activity; TC: tissue collection). 

 

SLNKO and WT mice were randomly assigned to dietary and activity treatments 

as outlined below (Figure 2).  The 8-week experimental diet consisted of ad libitum 

access to water and either a HFD containing 42% of kcal from fat (product TD 88137; 

Harlan Teklad, Madison, WI), or standard rodent chow, during which body mass was 

monitored weekly.  Mice allocated to the exercise groups had voluntary running wheels 

placed in their cages, while those in the sedentary groups had their running wheels locked 

throughout the diet.  Voluntary running was monitored daily with a magnetic sensor 

placed above the running wheels and wheel revolutions were recorded on an electronic 

counter.  Total exercise volume (measured as the total distance travelled over the 8 week 

diet) was determined by multiplying total wheel revolutions by the running wheel 

circumference (40 cm).  
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Figure 2. Experimental treatment design; HFD: high-fat diet; Sed: sedentary; Ex: exercise; WT: wild type; 
KO: sarcolipin knock-out. 

 

Whole-Body Glucose Tolerance Tests and Tissue Collection 

 Whole-body glucose tolerance was assessed pre- and post-diet according to Li et 

al. (2000).  Briefly, mice were fasted overnight (16 hr); running wheels of mice allocated 

to exercise treatments were also locked during the fasting period.  Following an 

intraperitoneal injection of 20% D-glucose (1g/kg body mass), venous blood (5–10 µL) 

was drawn from a tail vein and blood glucose was measured using a glucometer (Accu-

Chek Aviva; Roche Diagnostics) immediately before, and at 30, 60 and 120 min post-

injection. 

 Four hours prior to tissue collection, mice were fasted and access to voluntary 

exercise was removed.  Experimental animals were euthanized by an anesthetic overdose 

of pentobarbital sodium (0.65 mg/kg body weight) and the SOL and EDL muscles were 

immediately excised, dissected free of connective tissue and visible fat and weighed.  

Skeletal muscles were then frozen in liquid N2 and stored at -80ºC until enzymatic 

analysis (described below).  Liver, epididymal/inguinal and retroperitoneal fat pads were 

also removed, cleaned from surrounding tissues and weighed.  An adiposity index was 
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calculated from the combined masses of the epididymal/inguinal and retroperitoneal fat 

pads according to Taylor and Phillips (1996) as:  

(sum of combined fat pad masses/body mass) X 100. 

Biochemical Analysis 

 Muscle samples were homogenized 1:50 (w/v) in ice-cold phosphate-glycerol 

buffer (containing 16 mM Na2HPO4, 4 mM KH2PO4, 0.02% bovine serum albumin 

(BSA), 5 mM 2-mercaptoethanol, and 0.5 mM EDTA) using a glass homogenizer and 

stored at -80ºC.  Representative enzymes of the major biochemical pathways involved in 

energy metabolism were chosen for analysis.  These included citrate synthase (CS) and 

succinate dehydrogenase (SDH) for the citric acid cycle, cytochrome c oxidase (COX) for 

the electron transport chain, 3-hydroxyacyl-CoA dehydrogenase (ß-HAD) for ß-

oxidation, phosphofructokinase (PFK) and lactate dehydrogenase (LDH) for glycolysis, 

and hexokinase (HEX) for glucose phosphorylation.  Maximal activities of all enzymes 

except COX were measured using NAD+/NADH-linked fluorometric end-point assays at 

room temperature (~22ºC).  All samples were measured in triplicate from the same 

phosphate-glycerol homogenate.  SDH and PFK were measured on freshly homogenized 

tissue to avoid loss of enzyme activity with repeated freeze/thawing; all other enzymes 

were examined on thawed homogenate, as they are not affected by repeated thawing and 

storage at -80ºC (Chi et al., 1983; Henriksson et al., 1986).  Assay procedures for all 

enzymes except COX are published elsewhere (Chi et al., 1983; Henriksson et al., 1986).  

Total protein concentration of tissue homogenates was measured using the BCA 

procedure (Sigma).  

COX activity was measured using a reaction mixture consisting of 970 µl of 10 
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mM potassium phosphate buffer and 20 µl of reduced cytochrome C (Sigma C-2506) at 

37ºC.  The original muscle homogenate was diluted 10:1 using 10 mM potassium 

phosphate buffer, creating a total dilution of 1:500 of the original homogenate.  The 

reaction was initiated by adding 10 µl of dilute homogenate to the reaction mixture, and 

the decrease in absorbance at 550 nm was measured spectrophotometrically for 3 min.  

COX activity was calculated by using the measured slope and the millimolar extinction 

coefficient of reduced cytochrome C at 550 nm, and the units of activity per gram of 

tissue was calculated and converted to units per gram protein.   

Statistical Analysis 

 Weekly running, change in mass, glucose tolerance tests, and CLAMS variables 

were measured by 3- and 2-way repeated measures analysis of variance (ANOVA) where 

appropriate. Morphometric and enzymatic data were examined using a 2-way ANOVA.  

When appropriate, post-hoc comparisons were made using a Newman-Keuls test to 

examine specific mean difference.  A 2-tailed Student’s t-test was used to analyze basal 

(i.e. chow-fed) enzyme data and total exercise volume.  All correlations with total 

exercise volume were done using a Pearson’s correlation.  Lastly, planned comparisons 

were made using a 1-tailed Students t-test on variables previously examined by 

Bombardier (2010).  Data are presented as mean ± standard error (S.E.).  Statistical 

significance was considered at α = 0.05.  Results were considered a trend at 0.10 ≥ P > 

0.05. 
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Results 

Voluntary Running Activity and Dietary Mass Gain 

Voluntary running activity of high-fat fed animals is illustrated in Figure 3.  Both 

average daily distance (Figure 3A) and total distance travelled over 8 weeks (Figure 3B) 

were highly variable.  No differences between WT and SLNKO mice in average daily 

running existed during the 8 weeks, although there was a main effect of time (P < 

0.0001), with running activity during weeks 2 to 7 greater than week 1 (Figure 3A).  

When activity was expressed as total distance travelled (Figure 3B), no genotype 

difference existed.   
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Figure 3. Voluntary running activity of high-fat fed wild-type (WT, n = 14) and sarcolipin knock-out mice 
(SLNKO, n = 8).  A) Average daily distance run (km) over 8 weeks.  A main effect of time existed (P < 
0.0001).  B) Total distance run (km) during the 8 week diet. Values are mean ± S.E. 
 

 

Pre-diet body mass was similar between WT (n = 46) and SLNKO (n = 30) mice 

(32.3 ± 0.44 g vs. 32.0 ± 0.57 g, respectively).  Mass gain of sedentary chow-fed mice 

increased slightly over the 8 weeks (Figure 4A; main effect of time: P < 0.0001), but was 

not different between genotype.  High-fat feeding resulted in significant (P < 0.0001) 
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mass gain over the 8 weeks in both WT and SLNKO mice, with SLNKO mice gaining 

more mass than WT counterparts between weeks 2 and 8 (Figure 4A; P < 0.001).   
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Figure 4. Change in initial body mass (g) of wild-type (WT) and sarcolipin knock-out (SLNKO) mice 
during 8 weeks of a chow or a high-fat diet (HFD).  A) Sedentary mice (WT Chow: n = 11, SLNKO Chow: 
n = 7, WT HFD: n = 9, SLNKO HFD: n = 7).  B) Mice given access to voluntary running wheels (WT 
HFD: n = 14, SLNKO HFD: n = 8).  A significant main effect of time existed (P < 0.0001).  Values are 
mean ± S.E.  * Significantly different than corresponding WT (P < 0.001). 
 
 
Similar to sedentary mice, mass gain of high-fat fed mice given access to voluntary 

running wheels increased (P < 0.0001) throughout the diet, but no genotype difference 

existed (Figure 4B). 

To determine whether voluntary running could attenuate mass gain as a result of 

the HFD, high-fat fed sedentary and exercising mice were compared using a 3-way 

repeated-measures ANOVA (Figure 5).  No difference in mass gain between genotype 

was seen, although it increased over the course of the diet (main effect of time; P < 

0.001).  However, mice given access to voluntary running wheels gained less mass than 

sedentary counterparts (main effect of activity; P < 0.05).  Separate planned comparisons 

were done to determine the effect of running wheel access on mass gain within each 

genotype.  For WT mice, no differences were found over the 8 weeks; however, SLNKO 
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mice given running wheels tended to gain less mass (trend towards main effect of 

exercise: P = 0.10). 
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Figure 5. Change in initial body mass (g) during 8 weeks of high-fat feeding of wild-type (WT) and 
sarcolipin knock-out (SLNKO) mice.  Animals were sedentary (Sed) or given access to voluntary running 
(Ex).  A significant main effect of week (P < 0.0001) and activity (P < 0.05) existed, with Sed > Ex.  (WT 
Sed: n = 9, SLNKO Sed: n = 7, WT Ex: n = 14, SLNKO Ex: n = 8). Values are mean ± S.E. 
 

Adiposity and Anthropometric Measurements 

In sedentary mice, high-fat feeding significantly increased adiposity index relative 

to chow-fed controls (Figure 6A; main effect of HFD: P < 0.0001), but no genotype 

difference existed under either dietary condition.  Similarly, epididymal/inguinal fat pad 

mass was larger following the HFD (Figure 6B; main effect of diet: P < 0.05), with no 

genotype differences under either diet condition; however, planned comparisons of high-

fat fed animals (Student’s 1-tailed t-test) revealed a trend (P = 0.06) towards greater 

epididymal/inguinal fat pad mass in SLNKO mice.  Additionally, retroperitoneal fat pad 

mass was larger in SLNKO mice following high-fat feeding (Figure 6C: P < 0.01).  
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SOL mass was not different between genotype, but was greater (P < 0.05) 

following the HFD relative to chow fed controls (Figure 7A), while a trend (P = 0.10) 

towards increased EDL mass existed post-HFD (Figure 7B).  When expressed as a 

percentage of body mass, the EDL (Figure 7E) of high-fat fed mice was lower relative to 

chow fed controls (main effect of HFD: P < 0.001), while a trend (P = 0.08) towards a 

lower percentage SOL mass (Figure 7D) existed post-HFD; no differences were found 

between genotype.  Liver mass of high-fat fed mice was larger relative to chow-fed 

counterparts, with SLNKO mice having larger livers post-HFD relative to WT controls 

(Figure 7C; P < 0.01).  When expressed as a percentage of body mass (Figure 7F), 

livers of high fat fed animals comprised a larger percentage of body mass (main effect of 

HFD: P < 0.001).  There was a trend (P = 0.07) towards a dietary by genotype 

interaction, with high-fat fed SLNKO mice having a greater % liver than WT 

counterparts. 

Correlational analysis revealed no relationship between total distance run and 

adiposity index for both high-fat fed WT and SLNKO mice (Figure 7A and B); thus, 

grouped data were used to determine the effects of exercise and high-fat feeding on 

obesity.  Voluntary wheel running did not reduce adiposity in either genotype (Figure 9), 

with SLNKO mice being more obese than WT animals regardless of access to running 

wheels (Figure 9; main effect of genotype: P < 0.05). 

 



  32

Chow HFD

0

2

4

6

8

WT
SLNKO

P < 0.001

A
d

ip
os

ity
 I

n
d

ex

Chow HFD

0.0

0.3

0.6

0.9

WT
SLNKO

E
p

id
id

ym
al

/I
n

gu
in

al
 

F
at

 P
ad

 M
as

s 
(g

)

P < 0.0001

Chow HFD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

WT

SLNKO

*

R
et

ro
p

er
ito

n
ea

l F
at

 P
ad

 M
as

s 
(g

)

#

#

A

B

C

 

Figure 6. Adiposity measures of sedentary wild-type (WT) and sarcolipin knock-out (SLNKO) mice 
following 8 weeks of a chow or a high-fat diet (HFD).  A) Adiposity index (see methods for formula).  A 
significant main effect of diet existed (P < 0.001), with HFD > Chow.  B) Epididymal and inguinal fat pad 
mass (g).  A significant main effect of diet existed (P < 0.0001), with HFD > chow.  C) Retroperitoneal fat 
pad mass (g).  * Significantly different than corresponding WT (P < 0.01).  # Significantly different than 
corresponding chow (P < 0.01).  (WT Chow: n = 12, SLNKO Chow: n = 7, WT HFD: n = 9, SLNKO HFD: 
n = 7). Values are mean ± S.E. 
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Figure 7. Anthropometric measurements of sedentary wild type (WT) and sarcolipin knock-out (SLNKO) mice following 8 weeks of a chow or high-fat diet 
(HFD).  A) Soleus mass (mg).  A significant main effect of diet existed (P < 0.05), with HFD > chow.  B) Extensor digitorum longus (EDL) mass (mg).  C) Liver 
mass (g).  D) Soleus expressed as a percentage of body mass.  E) EDL expressed as a percentage of body mass.  A significant main effect of diet existed (P < 
0.001), with HFD < chow.  F) Liver expressed as a percentage of body mass. A significant main effect of diet existed (P < 0.001), with HFD > chow.  (WT 
Chow: n =12, SLNKO Chow: n = 7, WT HFD: n = 9, SLNKO HFD: n = 7).  Values are mean ± S.E.  * Significantly different than corresponding WT (P < 0.01).  
# Significantly different than corresponding chow (P < 0.05). 
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Figure 8. Relationship between total distance run (km) over 8 weeks and adiposity of A) wild type mice 
(WT; n = 13), and B) sarcolipin knock-out mice (SLNKO; n = 8) following high-fat feeding. 
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Figure 9. Adiposity index wild type (WT) and sarcolipin knock-out (SLNKO) mice that remained 
sedentary (Sed) or were given access to voluntary running wheels (Ex) during 8 weeks of high-fat feeding.  
A significant main effect of genotype existed (P < 0.05), with SLNKO > WT.  (WT Sed: n = 9, SLNKO 
Sed: n = 7, WT Ex: n = 13, SLNKO Ex: n = 8).  Values are mean ± S.E. 
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Glucose Tolerance 

Following the HFD in sedentary animals, a trend towards increased fasting blood 

glucose concentration existed (Figure 10A; P = 0.07).  Additionally, there was a trend (P 

= 0.07) towards a main effect of genotype, with fasting blood glucose being higher in 

SLNKO mice both pre- and post-HFD (Figure 10A).  High-fat feeding resulted in 

impaired whole-body glucose tolerance relative to pre-HFD values in both WT and 

SLNKO mice (Figure 10B; main effect post-HFD: P <0.001), with SLNKO mice being 

more glucose intolerant relative to WT controls, both pre- and post-HFD (main effect of 

genotype: P < 0.05).  Planned comparisons of post-HFD glucose tolerance between 

genotype (2-way repeated measures ANOVA) revealed a trend (P = 0.10) toward higher 

blood glucose in SLNKO mice, but this was not found between genotype for pre-diet 

measures.  When expressed as AUC, glucose tolerance was impaired following the HFD 

in both genotypes (Figure 10C; main effect post-HFD: P < 0.001), again with AUC 

values of SLNKO mice greater pre- and post-HFD relative to WT counterparts (main 

effect of genotype: P < 0.05).  Planned comparisons (Student’s 1-tailed t-test) revealed a 

trend (P = 0.09) towards greater AUC in SLNKO mice only post-HFD. 

Similar to sedentary animals, mice given access to voluntary running wheels 

during a HFD had higher post-diet fasting blood glucose compared to pre-diet 

measurements (Figure 11A; main effect post- HFD: P < 0.05), but no differences were 

seen between genotype.  High-fat feeding resulted in impairment of glucose tolerance in 

both WT and SLNKO mice relative to their respective pre-dietary values (Figure 11B; P 

< 0.0001); however, no genotype difference existed post-HFD.  Planned comparisons of 

post-HFD glucose tolerance measurements (2-way repeated-measures ANOVA) also 
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revealed no differences between SLNKO and WT mice.  When expressed as AUC, post-

HFD glucose tolerance was impaired relative to pre-diet measurements in both WT and 

SLNKO mice (Figure 11C; main effect post-HFD: P < 0.0001).  Planned comparisons 

(Student’s 1-tailed t-test) between genotype revealed that post-HFD AUC was greater (P 

< 0.05) in SLNKO mice compared to WT counterparts. 

To determine the effect of activity on glucose handling following high-fat 

feeding, post-diet glucose tolerance tests were compared between sedentary and 

exercising mice.  No effect of exercise on glucose tolerance existed for both WT and 

SLNKO mice (Figure 12A and B), while SLNKO mice were more glucose intolerant 

relative to WT controls, regardless of activity status (main effect of genotype: P < 0.05).  

No relationship between total distance run and post-HFD glucose tolerance (expressed as 

AUC) existed for WT mice (Figure 13A); however, a significant negative relationship 

was found in SLNKO mice (Figure 13B; P < 0.05, r2 = 0.691), with lower glucose 

intolerance seen in SLNKO mice that completed a greater volume of exercise. 
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Figure 10. Glucose handling of sedentary wild-type (WT; n = 8) and sarcolipin knock-out (SLNKO; n = 8) 
mice before (Pre) and after (Post) a high-fat diet. A) Pre- and post-diet fasting blood glucose (mM).  A 
significant main effect of pre/post existed (P < 0.05), with post > pre.  B) Pre- and post-diet whole-body 
glucose tolerance test.  A significant main effect of time (P < 0.0001) and pre/post (P < 0.0001) existed, 
with post > pre values.  C) Glucose tolerance pre and post-diet expressed as AUC. A significant main effect 
of time existed (P < 0.001), with post > pre. Values are mean ± S.E. 
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Figure 11. Glucose handling of wild type (WT; n = 13) and sarcolipin knock-out (SLNKO; n = 7) mice 
given access to voluntary running wheels and a high-fat diet.  A) Pre- and post-diet fasting blood glucose 
(mM).  A significant main effect of pre/post existed (P <0.05), with post > pre.  B) Pre- and post-diet 
glucose tolerance test.  A significant main effect of time existed (P < 0.0001), with post > pre.  C) Pre- and 
post-HFD glucose tolerance expressed as area under the curve (AUC).  A significant main effect of pre/post 
existed (P < 0.001), with post > pre. Values are mean ± S.E. 
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Figure 12. Post-high fat diet (HFD) glucose handling of sedentary (Sed) and voluntary running (Ex) wild 
type (WT) and sarcolipin knock-out (SLNKO) mice.  A) Glucose tolerance test.  A significant main effect 
of time (P < 0.001) and genotype (P < 0.05) existed, , with SLNKO > WT.  B) Post-HFD glucose tolerance 
expressed as area under the curve (AUC) of Sed and Ex animals.  A significant main effect of genotype 
existed (P < 0.05), with SLNKO > WT.  (WT Sed: n = 8, SLNKO Sed: n = 8, WT Ex: n = 13, SLNKO Ex: 
n = 7).  Values are mean ± S.E.  
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Figure 13. Relationship between total distance run (km) over 8 weeks and glucose tolerance, expressed as 
area under the curve (AUC), for high fat fed A) wild type (n = 13) and, B) sarcolipin knock-out mice 
(SLNKO: n = 7).  A significant negative relationship (P <0.05) was observed in SLNKO mice. 
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CLAMS Measurements 

Pre-dietary CLAMS measurements of all study mice are listed in Table 1.  No 

differences in body mass, average VO2, or food intake were found between genotype.  

However, total activity and dual beam activity were significantly lower (P < 0.05) in 

SLNKO mice, while a trend (P = 0.07) towards a lower RER in SLNKO mice also 

existed. 

Table 1.  Baseline CLAMS measurements of wild type (WT: n = 47) and sarcolipin knock-out (SLNKO: n 
= 31) mice. Values are mean ± S.E. 

 WT SLNKO 
Body Mass (g) 32.3 ± 0.44 32.0 ± 0.57 

 

Total VO2 (ml/kg/hr) 

 

3037 ± 41.33 
 

2966 ± 55.52 
 

Food Intake (g) 
 

4.6 ± 0.13 4.3 ± 0.20 
 

Total Activity 
 

11205 ± 361.44 
 

9916 ± 292.68* 
 

Dual Beam Activity 
 

3330 ± 163.61 
 

2842 ± 117.37* 
 

Total RER 0.97 ± 0.004 0.95 ± 0.008 
RER: respiratory exchange ratio 
* significantly different than WT (P < 0.05) 
 

Table 2 contains comparisons of post-HFD CLAMS variables for sedentary and 

voluntary exercising animals.  No differences in body mass were found between 

genotype, regardless of exercise status; however, planned comparisons between sedentary 

animals (Student’s 1-tailed t-test) indicated a trend (P = 0.06) towards greater body mass 

in SLNKO mice.  No differences between genotype were observed in total VO2, food 

intake, total activity, or dual beam activity.  Although not significant, total RER tended 

(P = 0.07) to be lower in SLNKO mice, regardless of activity status.  
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 It should be noted that post-HFD total VO2, food intake, and total RER (Table 2) 

were all lower (P < 0.05) than their respective pre-diet measurements (Table 1), 

regardless of genotype.  

 

Skeletal Muscle Metabolic Enzyme Activities 

Table 3 contains SOL and EDL metabolic enzyme activities from sedentary 

chow-fed mice.  In the SOL, no differences in the activities of HEX, PFK, SDH, CS, 

COX and β-HAD existed between genotype.  However, LDH activity in SOL was 

significantly higher (P < 0.05) in SLNKO mice compared with WT controls.  In the EDL, 

no genotype differences in the activities of HEX, PFK, LDH, CS, or β-HAD existed, 

whereas COX activity was significantly higher (P < 0.001) in SLNKO relative to WT 

mice. 

 
Table 2. Post-diet CLAMS measurements of sedentary (Sed) and voluntary running (Ex) wild type (WT) 
and sarcolipin knock-out (SLNKO) mice fed a high-fat diet (HFD). (WT Sed: n = 9; SLNKO Sed: n = 8; 
WT Ex: n = 14; SLNKO Ex: n = 8).  Values are mean ± S.E. 

 Post-HFD Sed Post-HFD Ex 
 WT SLNKO WT SLNKO 

Body Mass (g) 
 

44.7 ± 2.00 49.4 ± 2.02 45.2 ± 1.27 46.0 ± 2.41 

Total VO2 (ml/kg/hr) 

 

2585 ± 76.5 2512 ± 98.0 
 

2606 ± 70.1 
 

2466 ± 99.8 
 

Food Intake (g) 
 

3.19 ± 0.15 
 

2.64 ± 0.28 
 

2.85 ± 0.24 
 

2.85 ± 0.18 
 

Total Activity 
 

9151 ± 664 
 

9334 ± 385 
 

9699 ± 601 
 

8772 ± 486 
 

Dual Beam Activity 
 

2980 ± 268 
 

2972 ± 226 
 

3290 ± 303 
 

2421 ± 217 
 

Total RER 0.89 ± 0.010 0.86 ± 0.021 0.88 ± 0.011 0.87 ± 0.012 
RER: respiratory exchange ratio 
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Within the SOL, high-fat feeding did not alter HEX or PFK activity in WT or 

SLNKO mice (Figure 14A and B), but did decrease (P < 0.05) LDH activity by ~18% in 

SLNKO mice relative to chow-fed counterparts (Figure 14C).  In the EDL, high-fat 

feeding resulted in a trend (P = 0.07) towards greater HEX activity, but no genotype 

differences existed (Figure 14D).  PFK activity was elevated (P < 0.05) following the 

HFD in SLNKO mice, but not in WT counterparts (Figure 14E).  Lastly, LDH activity 

within the EDL was greater (P < 0.05) in high fat-fed mice relative to chow fed animals, 

but there were no differences between WT and SLNKO mice (Figure 14F).  

Mitochondrial enzyme activities within the SOL were unaltered by genotype or 

diet (Figure 15A-D).  Similarly, both SDH (Figure 16A) and CS (Figure 16B) activities 

within the EDL were not altered by genotype or diet; however, COX activity within the 

EDL was ~25% greater in SLNKO mice (P < 0.001), regardless of diet (Figure 16C).  

Lastly, β-HAD activity was ~30% higher in high-fat fed animals (P < 0.05) relative to 

chow-fed controls (Figure 16D), but no differences in activity were seen between 

genotype. 
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Table 3.  Enzyme activities of the soleus (SOL) and extensor digitorum longus (EDL) in sedentary chow-
fed wild type (WT) and sarcolipin knock-out (SLNKO) mice.  Activities are expressed as mean ± S.E. (n). 
HEX: hexokinase, PFK: phosphofructokinase, LDH: lactate dehydrogenase, SDH: succinate 
dehydrogenase, CS: citrate synthase, β-HAD: β-hydroxyacyl-CoA dehydrogenase, COX: cytochrome c 
oxidase. 

 SOL EDL 
Enzyme WT SLNKO WT SLNKO 

HEX 
 

0.31 ± 0.02 
(11) 

0.26 ± 0.03 
(7) 

0.09 ± 0.005 
(9) 

0.09 ± 0.005 
(7) 

PFK 
 

10.8 ± 1.07 
(12) 

8.25 ± 0.36 
(6) 

9.3 ± 0.59 
(11) 

9.4 ± 0.69 
(7) 

LDH 
 

50.6 ± 1.16 
(11) 

60.0 ± 3.74* 
(7) 

99.2 ± 2.34 
(11) 

98.3 ± 5.29 
(7) 

SDH 
 

3.88 ± 0.13 
(11) 

3.94 ± 0.23 
(7) 

2.8 ± 0.10 
(11) 

3.0 ± 0.35 
(7) 

CS 
 

27.5 ± 1.65 
(11) 

32.4 ± 2.85 
(7) 

15.9 ± 1.50 
(11) 

13.9 ± 2.23 
(7) 

COX 
 

1.27 ± 0.03 
(10) 

1.27 ± 0.03 
(7) 

1.0 ± 0.04 
(11) 

1.3 ± 0.09* 
(7) 

β-HAD 6.45 ± 0.78 
(10) 

6.70 ± 0.73 
(7) 

1.5 ± 0.13 
(11) 

1.4 ± 0.14 
(7) 

* significantly different than corresponding WT (P < 0.05) 
units: mmol/hr/g protein 
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Figure 14. Cytosolic enzyme activities (mmol/hr/g protein) within the soleus (SOL) and extensor digitorum 
longus (EDL) of sedentary wild type (WT) and sarcolipin knock-out (SLNKO) mice following a chow or 
high fat diet (HFD).  A) SOL hexokinase (HEX) activity.  .  B) SOL phosphofructokinase (PFK) activity.  
C) SOL lactate dehydrogenase (LDH) activity.  D) EDL HEX activity.  E) EDL PFK activity.  F) EDL 
LDH activity.  A significant main effect post-HFD existed (P < 0.05), with HFD > chow.  Sample sizes for 
each group are indicated at the bottom of each bar.  * Significantly different than corresponding WT (P < 
0.05).  # Significantly different than corresponding chow (P < 0.05).  Values are mean ± S.E. 



  45

Chow HFD

0

1

2

3

4

5

11 7 9 8

S
D

H
 A

ct
iv

ity
 

(m
m

ol
/h

r/
g 

p
ro

t)

Chow HFD

0.0

0.5

1.0

1.5

10 7 8 7

C
O

X
 A

ct
iv

ity
 

(m
m

ol
/h

r/
g 

p
ro

t)

Chow HFD

0

10

20

30

40

11 7 9 8

C
S

 A
ct

iv
ity

(m
m

ol
/h

r/
g 

p
ro

t)

Chow HFD

0

2

4

6

8

10

10 7 9 8
-

H
A

D
 A

ct
iv

ity

(m
m

ol
/h

r/
g 

p
ro

t)

A

C D

B
WT SLNKO

 

Figure 15. Soleus mitochondrial enzyme activities (mmol/hr/g protein) of sedentary wild-type (WT) and sarcolipin knock-out (SLNKO) mice following a chow 
or high fat diet (HFD).  A) Succinate dehydrogenase (SDH) activity.  B) Citrate synthase (CS) activity.  C) Cytochrome c oxidase (COX) activity.  D) ß-
hydroxyacyl-CoA dehydrogenase (ß-HAD) activity.  Sample sizes for each group are indicated at the bottom of each bar. Values are mean ± S.E. 
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Figure 16. Mitochondrial enzyme activities (mmol/hr/g protein) of the extensor digitorum longus of wild-type (WT) and sarcolipin knock-out (SLNKO) mice 
following a chow or high fat diet (HFD).  A) Succinate dehydrogenase (SDH) activity.  B) Citrate synthase (CS) activity.  C) Cytochrome c oxidase (COX) 
activity.  A significant main effect of genotype existed (P < 0.001), with SLNKO > WT mice.  D) ß-hydroxyacyl-CoA dehydrogenase (ß-HAD) activity.  A 
significant main effect of diet existed (P < 0.05), with HFD > chow.  Sample sizes for each group are indicated at the bottom of each bar.  Values are mean ± S.E.
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Discussion 

This thesis has yielded several novel insights into the SLNKO model of diet-induced 

obesity.  First, as hypothesized, SLNKO mice were more obese and glucose intolerant than WT 

counterparts following the HFD despite access to and completion of voluntary exercise (Figure 

9 and 12).  In fact, unexpectedly, no relationship was found between exercise volume and 

adiposity (Figure 8), regardless of genotype.  Second, no metabolic pre-disposition towards 

lower skeletal muscle glycolytic or oxidative capacity existed in chow-fed SLNKO mice (Table 

3).  Interestingly, SLN ablation resulted in greater respiratory chain capacity within the EDL 

(Figure 16C), a muscle with low endogenous SLN expression (Tupling et al., 2011).  Together, 

these findings lend further support to SLN’s thermogenic role as the primary mechanism of diet-

induced obesity in the SLNKO model, not a reduction in skeletal muscle oxidative capacity.  

 The initial observation that ablation of SLN results in more efficient SR Ca2+-pumping by 

SERCA led to the hypothesis that SLN has a major function in adaptive thermogenesis, the 

resultant loss of which predisposes mice to an excessively obese phenotype under conditions of 

high-fat feeding (Bombardier, 2010).  It was of interest to determine whether increasing daily 

energy expenditure through voluntary exercise could compensate for this loss during caloric 

excess, especially given that some transgenic models of obesity only display a disease phenotype 

when chronically sedentary (Huszar et al., 1997; Haskell-Luevano et al., 2009).  Daily average 

running and total exercise volume over 8 weeks were similar between WT and SLNKO mice 

(Figure 3).  Similar to other studies in mice (Davidson et al., 2006; Ikeda et al., 2006), running 

activity increased after week 1 and was maintained fairly constant thereafter.  Average daily 

running distance of WT and SLNKO mice was similar to previous reports (Lightfoot et al., 2004; 

Davidson et al., 2006; Meek et al., 2009); however, several studies have shown higher mean 
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daily running distances for male C57BL/6J mice (Lerman et al., 2002; Waters et al., 2004; De 

Bono et al., 2005).  Regardless, daily running activity observed here is within the same order of 

magnitude as previously shown.   

 Divergence in mass gain between genotype of sedentary mice only occurred under 

conditions of high-fat feeding (Figure 4A), the magnitude of which was similar to that seen by 

Bombardier (2010).  Several studies have demonstrated comparable changes in mass using 

similar high-fat diets (Li et al., 2000; Collins et al., 2004).  As expected, SLNKO mice gained 

more mass over the course of 8 weeks relative to WT mice; this is consistent with SLN’s 

thermogenic role, as more ingested calories will be needed by WT mice to maintain skeletal 

muscle resting Ca2+ homeostasis, leaving less available for storage.  When mice were given 

voluntary running access during the HFD, mass gain was similar between genotype (Figure 4B).  

Additionally, voluntary wheel running did attenuate mass gain relative to sedentary controls 

(Figure 5).  This is consistent with several studies showing a reduction in dietary mass gain with 

voluntary exercise and high-fat feeding in both mouse (Bell et al., 1995; Bradley et al., 2008; 

Vieira et al., 2009) and rat (Podolin et al., 1999).  This exercise effect appears to be driven 

mainly by weight loss in SLNKO mice.  Rodents given access to voluntary exercise often 

compensate for increases in energy expenditure by increasing caloric intake (Garland et al., 

2011).  Thus, hyperphagia may be an important compensatory control for the maintenance of 

body mass in WT mice, while activity thermogenesis may be more important in SLNKO mice 

for preventing excessive mass gain.  However, it should be noted that running activity was quite 

variable within each genotype.  As yet, it remains unclear whether the lack of a difference in 

mass gain of voluntary exercising animals would persist when matched for activity and food 

intake.  
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 Excessive mass gain of sedentary mice with high-fat feeding resulted in a marked 

increase in adiposity (Figure 6A).  Accompanying this increase was an expansion of visceral 

adipose depots (Figures 6B and C) and a concomitant increase in skeletal muscle mass (Figures 

7A and B).  Thus, the increased obesity of sedentary mice likely reflects an increase in fat mass, 

not a decrease in lean body mass.  However, unlike previously reported (Bombardier, 2010), no 

difference in post-HFD adiposity was observed between WT and SLNKO mice; this lack of a 

difference could result from the greater post-diet body mass of SLNKO mice (Table 2).  It 

should also be noted that the calculated adiposity index is a crude measure of relative body 

composition as it only incorporates select visceral fat pads.  Analysis of fat content through more 

powerful means, such as dual-energy x-ray absorptiometry, may provide greater discriminating 

power in whole-body adiposity.  Although not statistically significant, SLNKO mice were ~7% 

more obese than WT counterparts following the HFD (1-tailed t-test: P = 0.13).  Bombardier 

(2010) observed ~24% higher adiposity in SLNKO mice following high-fat feeding.  Despite 

this, visceral adipose depots (Figure 6B and C) and absolute liver mass (Figure 7C) were larger 

post-HFD in SLNKO animals.  These results are still consistent with previous findings of 

increased diet-induced obesity with SLN ablation (Bombardier, 2010).  Expansion of adipose 

tissue is a common feature in rodent models of diet-induced obesity (West and York, 1998).  

Increased visceral fat content is believed to lead to the development of metabolic syndrome 

through “spill-over” of lipids, resulting in ectopic accumulation of fat in cardiac tissue, skeletal 

muscle, and liver (Despres and Lemieux, 2006).  These findings suggest that SLNKO mice are 

more susceptible to metabolic derangements stemming from increased visceral adiposity and 

hepatic steatosis. 
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 Interestingly, although voluntary wheel running did reduce mass gain, most notably in 

SLNKO mice, no relationship was found between total distance run and adiposity for either 

genotype (Figure 8).  Several studies have shown that voluntary exercise reduces excessive fat 

mass and body fat percentage as a result of high-fat feeding (Bell et al., 1995; Bell et al., 1997; 

Bradley et al., 2008), but this is not always observed in mice (Jung and Luthin, 2010).  As 

hypothesized, SLNKO mice were more obese despite access to voluntary running (Figure 9).  

These data suggest that while voluntary exercise can reduce absolute body mass, particularly in 

SLNKO mice, it does not reduce the partitioning of calories into adipose tissue.    

Glucose tolerance is unaltered in SLNKO mice under conditions of chow feeding; 

however, a pronounced impairment results when these animals are given a HFD (Bombardier, 

2010).  In this study, high-fat feeding induced fasting hyperglycemia in both sedentary and 

exercising animals (Figures 11 and 12A), a common consequence of chronic consumption of a 

“Westernized” diet (Cordain et al., 2005).  As hypothesized, and in accordance with previous 

findings, excessive glucose intolerance occurred in SLNKO mice following high-fat feeding, 

regardless of activity status (Figures 10, 11C, and 12).  Several studies have shown comparable 

impairments in glucose tolerance using a similar HFD (Li et al., 2000; Xu et al., 2011).  While 

not directly assessed here, the observed impairment in glucose tolerance may reflect diminished 

skeletal muscle insulin-stimulated glucose uptake (i.e. insulin resistance).  Reduced skeletal 

muscle insulin sensitivity with obesity is believed to be due to elevated plasma FFAs.  Direct 

evidence for this has come from euglycemic-hyperinsulinemic clamp studies with concomitant 

lipid infusion, which show a reduction in peripheral insulin sensitivity with physiological 

elevations in plasma FFAs (Ferrannini et al., 1983; Boden and Jadali, 1991; Boden and Chen, 

1995; Roden et al. 1996; Kashyap et al., 2003).  SLNKO mice show an exaggerated increase in 
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both serum non-esterified fatty acids and LDL-cholesterol after high-fat feeding (Bombardier, 

2010).  The resultant uptake of circulating FFAs by skeletal muscle would be expected to result 

in the accretion of several lipid metabolites shown to alter insulin signaling, including long-chain 

fatty acyl-CoAs (Cooney et al., 2002), diacylglycerols (Itani et al., 2002), and ceramides 

(Chavez et al., 2003).  Activation of protein kinace C (PKC) by diacylglcerols reduces insulin 

receptor substrate-1 (IRS-1) tyrosine phosphorylation, preventing IRS-1 interaction with the 

insulin receptor (Samuel et al., 2010), while ceramides have been shown to inhibit Akt 

(Summers, 2006).  The resultant action of these lipid metabolites is preventing the translocation 

of GLUT-4 containing vesicles to the sarcolemma, reducing glucose uptake. 

While excessive insulin resistance in SLNKO mice has not been established using the 

intraperitoneal insulin tolerance test (Bombardier, 2010), this technique does not assess tissue 

specific insulin sensitivity and may be confounded by counter-regulatory homeostatic 

mechanisms (Muniyappa et al., 2008).  To circumvent these complications, future analysis of 

insulin sensitivity in these animals should be assessed by euglycemic-hyperinsulinemic clamp, as 

this is considered the “gold-standard” measure of insulin-sensitivity (Kim, 2009). 

Interestingly, no improvement of glucose tolerance occurred with activity (Figure 12), 

suggesting that the amount of exercise engaged in by the experimental animals was inadequate 

for improvements in glucose handling.  Voluntary exercise does improve glucose handling in 

rodent models of obesity, including Zucker diabetic fatty rats (Kiraly et al., 2010; Delghingaro-

Augusto et al., 2011) and Osborne-Mendel rats (Zachwieja et al., 1997).  However, it should be 

noted that obesity in these models occurs while consuming standard rodent chow.  As discussed 

above, macronutrient composition can have marked effects on glucose handling and insulin 

sensitivity, despite increased cage activity.  Consistent with the findings of this study, Ma and 
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colleagues (2010) found no improvement in glucose tolerance of voluntary exercising male 

C57BL/6J mice when fed a HFD.  Given that both adiposity and glucose tolerance are not 

improved in either genotype, the energetic cost of voluntary exercise completed by the study 

animals is not great enough to compensate for the HFD.  However, this is not to say exercise 

cannot improve diet-induced complication in glucose handling.  Xu and colleagues (2011) 

showed that forced training of high-fat fed male C57BL/6J mice resulted in improvements of 

glucose tolerance relative to sedentary counterparts.  In fact, while glucose tolerance showed no 

relationship with exercise volume in WT animals, a modest improvement with exercise was seen 

in SLNKO mice (Figure 13).  

 Improvement in glucose tolerance of SLNKO mice following voluntary exercise may be 

due to suppression of the adrenergic response to the HFD by activity.  Following high-fat 

feeding, serum epinephrine and norepinephrine are elevated in SLNKO mice (Bombardier, 

2010).  Rising catecholamines stimulate adipose tissue and skeletal muscle lipolysis (Jocken and 

Blaak, 2008), and increases BAT mitochondrial uncoupling (Collins and Surwitt, 2001), both of 

which are adaptive responses to caloric excess.  Although this coordinated adrenergic response 

will increase energy expenditure and lipid utilization, several studies have shown that 

epinephrine inhibits skeletal muscle glucose uptake (Lee et al., 1997; Hunt and Ivy, 2002).  

However, a common adaptation to physical training is a reduction in the concentration of 

circulating catecholamines during exercise (Duncker and Bache, 2008).  Given that adiposity 

was greater with SLN ablation, it is conceivable that a reduction in circulating catecholamines 

with voluntary exercise is at least partly responsible for the modest improvements in glucose 

tolerance seen in SLNKO mice.  In accordance with this, ß-adrenergic blockade with propranolol 

improves glucose tolerance of sedentary high-fat fed SLNKO mice (unpublished data).  
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However, serum catecholamines of exercising mice were not measured in this study; future 

analysis should examine this adrenergic response to voluntary exercise. 

The relationship between SERCA and SLN is thermogenic in nature (Smith et al., 2002; 

Mall et al., 2006; Bombardier, 2010).  Given that ablation of SLN reduces the energy 

requirement of SERCA Ca2+ pumping, one would expect whole-body metabolic rate to be lower 

in SLNKO mice.  However, no difference in VO2was seen between chow-fed WT and SLNKO 

animals (Table 1).  This is consistent with previous findings showing no difference in metabolic 

rate with SLN ablation (Bombardier, 2010).  Given that energy expenditure was similar between 

genotype, it is not surprising that both body mass and food intake also did not differ.  Increased 

cage activity cannot explain this lack of difference in whole-body metabolism, as SLNKO mice 

were less active during the sampling period.  Instead, thermogenic compensation likely occurs by 

other means, namely through UCP-3 expression, which is elevated in the SOL of SLNKO mice 

(Bombardier, 2010).  It cannot be ruled out that other “energy wasting” processes also contribute 

to the maintenance of metabolic rate with SLN ablation, including increased protein turnover and 

leakage of other ions (i.e. Na+, K+) requiring active transport (Lowell and Spiegleman, 2000).   

Despite SLNKO mice developing an excessively obese phenotype with high-fat feeding, 

no detectable difference in post-diet metabolic rate was observed between genotype, regardless 

of activity status (Table 2).  Previous findings show that decreases in whole-body metabolic rate 

with high-fat feeding is attenuated in WT mice, due in part to an increase in skeletal muscle SLN 

expression (Bombardier, 2010).  Thus, a diet-induced reduction of SERCA pumping efficiency 

protects WT mice from excessive obesity.  It is possible that SLN expression in this cohort of 

WT mice did not increase to levels previously seen, resulting in no detectable difference in 

whole-body metabolic rate between genotype.  However, this lack of difference in post-HFD 
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VO2can explain why the genotype disparity in adiposity and glucose tolerance were not as great 

as that shown by Bombardier (2010).  Although not significant, post-HFD VO2was ~4% lower in 

SLNKO animals; even a slight reduction in metabolic rate could result in detectable weight gain 

over a prolonged period of time, which was seen here.  Thus, the post-diet measurement period 

may not accurately reflect changes in metabolic rate that occur during the 8 weeks of high-fat 

feeding.  Additionally, no effect of voluntary running access on VO2was observed.  This finding 

is not surprising, as voluntary wheel running in rodents does not result in an increase in resting 

metabolic rate (Speakman and Selman, 2003).  Although voluntary exercise did not increase 

VO2, exercising mice, particularly SLNKO, gained less mass.  This is likely due to the increased 

energy demand of voluntary running itself, and not a training induced increase in basal 

metabolism.  Even though whole-body metabolism was similar, it was also of interest to examine 

specific pathways of energy metabolism within skeletal muscle, as this may help explain the 

susceptibility to and development of obesity with SLN ablation. 

Obesity is associated with a decrease in skeletal muscle mitochondrial content (Kelley et 

al., 2002; Boushel et al., 2007; Holloway et al., 2007).  Additionally, individuals with a family 

history of T2DM show a reduction in the expression of oxidative genes within skeletal muscle 

(Patti et al., 2003).  This has led some to propose that a reduction of oxidative capacity is an 

initiating factor in the pathogenesis of obesity and T2DM.  Given the role cellular Ca2+ plays in 

the signaling of mitochondrial biogenesis (discussed above), examination of several enzymes of 

energy metabolism in the SLNKO model was conducted.  As hypothesized, no changes in 

mitochondrial enzyme activities in the SOL were seen with SLN ablation (Table 3).  However, 

both SOL LDH and EDL COX activities were elevated in SLNKO mice.  These findings cannot 

be explained by changes in fiber-type composition, which is similar between genotype (Tupling 
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et al., 2011).  The finding that COX activity was elevated within the EDL of SLNKO mice is 

especially surprising given that SLN expression is low within the EDL of WT mice, but 

nevertheless is detectable at low levels (Tupling et al., 2011).  Currently, it is unclear whether 

increased activity reflects greater protein expression or an increase in the activation state of these 

enzymes.  Additionally, the causal link between SLN ablation and increased enzyme activity in 

these two tissue beds is unclear, although gene expression of both anaerobic glycolytic and the 

electron transport chain pathways are, in part, Ca2+-dependent (Semenza et al., 1994; Koh et al., 

2008, Freyssenet et al., 1999).  Regardless, ablation of SLN does not result in a deficit in the 

capacity of either glycolytic or oxidative energy pathways under chow-fed conditions.   

Given that excessive obesity in SLNKO mice only occurs during high-fat feeding, it was 

logical to examine these same enzymes following caloric excess.  Analysis of glycolytic 

enzymes revealed several changes with high-fat feeding, most of which were exclusive to fast-

twitch muscle.  Similar to that shown here (Figure 16A), several others have found no alteration 

of HEX activity in rodent slow-twitch muscle following a HFD (Zierath et al., 1997; Krisan et 

al., 2004); however, HEX activity was ~11% higher within the EDL (Figure 14D).  HEX exists 

in several isoforms (I-IV), of which HEXII predominates in mammalian skeletal muscle (Printz 

et al., 1997).  HEXII gene expression is regulated, in part, by insulin (Printz et al., 1993).  

Following high-fat feeding, circulating insulin concentration is increased in both WT and 

SLNKO mice (Bombardier, 2010).  Increased HEX activity observed here likely reflects 

activation by diet-induced hyperinsulinemia.  Interestingly, PFK activity was elevated post-HFD 

in the EDL of SLNKO mice only, while no change was observed within the SOL (Figure 14B 

and E).  As mentioned above, circulating catecholamines are elevated in SLNKO mice post-

HFD.  Given that epinephrine activates skeletal muscle PFK activity (Alves and Sola-Penna, 
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2003), it is not surprising that SLNKO mice show an exaggerated increase in their glycolytic 

capacity.  Lastly, high-fat feeding caused LDH activity within the EDL of both WT and SLNKO 

mice to increase (Figure 14F).  The increased LDH activity of high-fat fed mice mimics that of 

HEX, suggesting obesity results in greater anaerobic capacity within fast-twitch muscle.  

However, post-HFD RER is lower than that of chow-fed animals, indicating a greater reliance on 

lipids (Table 1 and 2).  This apparent divergent response is somewhat confusing, and the 

mechanism(s) mediating the enhancement of lactate metabolism following the HFD remain to be 

seen.  

Several studies have shown that high-fat feeding results in increased oxidative enzyme 

capacity in rodent skeletal muscle (Hancock et al., 2008; Nemeth et al., 1992; Simi et al., 1991).  

Interestingly, high-fat feeding did not alter mitochondrial enzyme activities within the SOL, 

regardless of genotype (Figure 15), while all enzymatic adaptations that did occur were specific 

to fast-twitch muscle (Figure 16).  No alterations in the activities of SDH (Figures 15A and 

16A), CS (Figures 15B and 16B), or COX (Figures 15C and 16C) were observed within the 

SOL, regardless of diet or genotype.  These findings are consistent with those of several others 

who show no change in the activities of citric acid cycle or electron transport chain markers with 

high-fat feeding in rodent slow-, or fast-twitch muscle (Miller et al., 1984; Nemeth et al., 1992; 

Shreekumar et al., 2002; Sparks et al., 2005; Gupte et al., 2009).  It should be noted that, like 

chow-fed mice, COX activity within the EDL remained elevated in SLNKO animals post-HFD.  

This gives further conformation that SLN ablation selectively increases electron transport chain 

capacity of fast-twitch muscle.  However, the mechanism(s) by which this occurs remains 

unknown. 
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Although not significant, ß-HAD activity was ~22% higher in the SOL of high-fat fed 

mice (Figure 15D).  An appreciable increase in ß-HAD activity was also seen in the EDL post-

HFD, and was similar between genotype (Figure 16D).  Several other studies have shown 

selective increases in ß-oxidative capacity of rodent slow- and fast-twitch muscle without 

concomitant changes of citric acid cycle markers following diet-induced obesity (Simi et al., 

1991; Nemeth et al., 1992).  Increased ß-oxidative capacity in response to diet is mediated by the 

nutritionally responsive peroxisome proliferator activated receptors (PPARs).  PPARs are 

endogenous receptors of lipids and lipid metabolites that, along with the “master regulator” of 

mitochondrial biogenesis PGC-1, organize the transcriptional response of nuclear and 

mitochondrial genomes in response to diet and exercise (Muio and Koves, 2007).  The induction 

of PPARs/PGC-1 leads to increased transcription of a number of oxidative genes, including those 

of ß-oxidation (Lin et al., 2005). 

In light of these findings, high-fat feeding results in a specific adaptation within skeletal 

muscle to increase the capacity for lipid oxidation only, the response of which is not limited by 

SLN ablation.  However, this is not to say Ca2+-mediated signaling is not altered in SLNKO 

mice.  Given that redundancy exists in biological signaling mechanisms, it is plausible that lack 

of an overt change in the metabolic phenotype of SLNKO animals is the result of signaling 

compensation.  Regardless, these findings lend further support to SLN’s thermogenic role in the 

development of excessive diet-induced obesity, and not through an alteration in skeletal muscle 

metabolism.   

 In summary, SLNKO mice developed excessive diet-induced obesity and glucose 

intolerance despite having access to voluntary exercise.  This suggests that increasing energy 

expenditure through activity cannot compensate for increased basal SERCA Ca2+-pumping 
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efficiency during caloric excess.  Additionally, ablation of SLN does not result in a metabolic 

deficit within skeletal muscle, nor does it limit the adaptive enzymatic response of these mice to 

high-fat feeding.  Together, this study provides further support of SLN’s thermogenic role in 

diet-induced obesity, and highlights this protein’s important role in skeletal muscle energy 

expenditure during both rest and activity. 

 

Study Limitations 

 While some argue that voluntary exercise models help to elucidate the role of a 

gene/protein in a disease pathogenesis and eliminate problems associated with unrepresentative 

levels of physical inactivity in highly active rodents (Booth and Laye, 2009), they can also 

complicate interpretation of results.  Because experimental animals were given ad libitum access 

to free running wheels, the intensity, time, and duration of voluntary exercise could not be 

standardized within and between genotype.  It is evident from both daily average running 

distance and total exercise volume that exercise activity is highly variable.  Therefore, it is 

plausible that animals at the extreme ends of completed activity may have skewed some of the 

whole body measurements (e.g. adiposity and glucose tolerance).  Additionally, while mice may 

have completed a similar volume of exercise (i.e. total distance), the time to complete this 

amount may have differed substantially; running speed would then impact the amount of muscle 

recruited during exercise and the energy systems utilized to support this activity, potentially 

exerting variable whole-body effects.  This may explain why voluntary exercise reduced mass 

gain in high-fat fed animals, while paradoxically, had no effect on adiposity.  

 Additionally, due to the experimental design, individuals from each treatment group were 

housed together in the same room at any given time.  While this makes sense to control for the 
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effects of time, it may have been problematic due to continuous noise made by the running 

wheels.  This may have elicited a greater stress response in surrounding littermates.  

Furthermore, although sedentary mice had a locked running wheel placed in their cage, it cannot 

be ruled out that climbing activity was increased.  Both of these factors may have contributed to 

the lower adiposity disparity seen between genotype, as these were not the exact housing 

conditions used by Bombardier (2010). 

Another limitation of this thesis surrounds the use of enzymatic activity, particularly 

those within the mitochondria.  It has been established in both rodents and humans that CS 

activity correlates positively with mitochondrial content (Williams et al., 1986; Wang et al., 

1999).  However, while certain mitochondrial marker enzymes may indirectly reflect 

mitochondrial abundance, the information they provide may be of little physiological relevance 

with respect to obesity and T2DM.  While skeletal muscle mitochondrial content is reduced in 

human obesity (Kelley et al., 2002; Boushel et al., 2007; Holloway et al., 2007), the 

functionality of these remaining mitochondria and their contribution to the disease pathogenesis 

are a point of contention.  Simultaneous examination of marker enzymes of ß-oxidation, the 

citric acid cycle, and electron transport chain may indicate enhancement/impairment of a specific 

pathway or proportional flux through those pathways (Rabol et al., 2006), but they are not 

surrogate measurements of mitochondrial function.  Although no reduction in mitochondrial 

content with SLN ablation was observed here, no inference into their functionality within either 

genotype can be made from enzymatic measurements alone.  Lastly, enzymatic measurements 

were taken from whole-muscle homogenates; thus, changes in subsarcolemmal and 

intermyofibrillar mitochondria could not be assessed.  It is possible that SLN ablation may have 

a greater affect on the intermyofibrillar mitochondrial population given their proximity to the SR.     
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Conclusions 

 As hypothesized, ablation of SLN resulted in excessive obesity and glucose intolerance 

following the HFD, regardless if mice remained sedentary or were given access to voluntary 

exercise.  Similar to previous results from our laboratory, sedentary SLNKO mice gained more 

mass following high-fat feeding than WT counterparts.  However, voluntary exercise did 

attenuate mass gain, most notably in SLNKO animals, but interestingly this was not 

accompanied by reduced adiposity with wheel running.  Additionally, while the HFD resulted in 

glucose intolerance in both sedentary and exercising animals, voluntary exercise did modestly 

improve glucose handling in SLNKO mice.  While these findings indicate that when paired with 

a HFD voluntary exercise may attenuate mass gain and induce modest improvement in glucose 

tolerance, susceptibility to an excessively obese phenotype in SLNKO mice remains.  Thus, the 

increased energy demand of daily ambulation cannot compensate for the reduced energetic cost 

of SERCA Ca2+-pumping with SLN ablation.   

 As expected, SLNKO animals were not predisposed to a reduced glycolytic or oxidative 

capacity within skeletal muscle.  Additionally, the development of an excessively obese 

phenotype in these animals post-HFD was not accompanied by a deficit in the capacity of these 

enzymatic markers.  In accordance with several reports, high-fat feeding resulted in an 

enhancement of ß-oxidative capacity, of which was not limited by SLN ablation.  In fact, 

SLNKO mice showed greater respiratory chain capacity within fast-twitch skeletal muscle.  

These findings were consistent with a lower RER in SLNKO mice, indicating a greater whole-

body utilization of lipids.  Taken together, these data suggest that SLN ablation does not 

negatively affect Ca2+-signaling of energy yielding pathways, and provides further support of the 
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view that SLN’s thermogenic role is the primary mechanism of diet-induced obesity in SLNKO 

mice. 

Future Directions 

 While voluntary exercise appeared to be ineffective at improving diet-induced obesity 

and glucose intolerance, further examination with this model is required.  Given that running 

activity was variable, increasing the sample size of exercising mice will improve statistical 

power and allow for potential matching between genotype based on activity level.  This latter 

point will better indicate whether a genotype difference persists, despite the completion of an 

equal amount of activity.  To circumvent problems associated with voluntary wheel running, 

utilization of a forced exercise training protocol on a motor driven treadmill would be 

appropriate.  This will allow for the precise control of exercise frequency, duration, and intensity 

between genotype.  At least one study has shown a marked reduction of diet-induced obesity, 

improved glucose tolerance and insulin sensitivity in male C56BL/6J mice with forced training 

(Xu et al., 2011). 

 Future biochemical and molecular analysis should include measurement of enzyme 

protein expression using Western blotting.  Although improvements in ß-oxidative capacity are 

likely the result of greater protein abundance given the length of the HFD, this cannot be 

conclusively determined using activity alone.  It is possible that changes in enzyme activity are 

due to post-translational modifications, which may be differentially altered in SLNKO mice.  

Western blotting will be of particular importance for COX, as increased COX activity within the 

EDL of SLNKO mice was unexpected.  The mechanism of improved respiratory chain capacity 

with SLN ablation is completely unknown from the current study.  Thus, Ca2+-dependent 
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signaling pathways within fast-twitch muscle (i.e. CAMK, calcineurin) require examination to 

help explain this finding. 

 While enzymatic activity is reflective of mitochondrial content, debate surrounds the 

functionality of skeletal muscle mitochondria and its role in the pathogenesis of obesity and 

T2DM.  Future studies of diet-induced obesity in the SLNKO model should utilize [1-14C] 

palmitate oxidation in both isolated mitochondria and whole muscle homogenates to determine 

whether SLN ablation reduces mitochondrial function.  This is particularly important, as a 

number of Ca2+-regulated genes coordinate mitochondrial biogenesis and function (Chin, 

2004/2005).  Given that several important sites involved in oxidative metabolism could limit 

mitochondrial function, including substrate uptake and catabolism, this technique would 

eliminate misinterpretation associated with examining oxidative pathways in isolation. 

 Lastly, utilization of a muscle-specific SLN overexpression model using transgenic mice 

containing a tetracycline-response element to acutely induce SLN protein expression during 

high-fat feeding would eliminate complications associated with the global SLNKO model.  This 

would also provide further support for the examination of SLN and PLN within human muscle, 

and determine whether these Ca2+-handling proteins are potential therapeutic targets for obesity 

and T2DM prevention.   
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