
Optimization of Power Systems with 
Voltage Security Constraints 

by 

William D. Rosehart 

A thesis presented to the University of Waterloo 
in fdf i lhent  of the 

thesis requirement for the degree of 
Doctor of Philosophy 

in 
Electrical and Computer Engineering 

Waterloo, Ontario, Canada 2000 

@William D. Rosehart, 2000 



National Library Bibliothéque nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibtiographic Services seivices bibliographiques 
395 WeUington W88t 395. rue Wellington 
Ottawa ON K1A O N 4  Ottawa ON K I  A ON4 
Canada Canada 

The author has granted a non- 
exclusive licence dowing the 
National Library of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microfoxm, 
paper or electronic formats. 

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts f?om it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur a accordé une licence non 
exclusive permettant à la 
Bibliothèque nationale du Caflilda de 
reproduire, prêter, distribuer ou 
vendre des copies de cette thèse sous 
la fome de miciofiche/nlm, de 
reproduction sur papier ou sur fonnat 
électronique. 

L'auteur conserve la propriété du 
droit d'auteur qui protège cette thèse. 
Ni ia thèse ni des extraits substantiels 
de celle-ci ne doivent être imprimés 
ou autrement reproduits sans son 
autorisation, 



The University of Waterloo requires the signatures of d persons using or photocopying 
this thesis. Please sign below? and give addcess and date. 



As open access market principles are applied to power systems, significant changes in 
their operation and control are occurring. In the new marketplace, power systems are 
operating under higher loading conditions as market influences demand greater attention 
to operating cost versus stability rnargins. Since stability continues to be a basic require- 
ment in the operation of any power system, new tools are being considered to analyze 
the effect of stability on the operating cost of the system, so that system stability can be 
incorporated into the costs of operating the system. 

In this thesis, new optimal power flow (OPF) formulations are proposed basecl on 
multi-objective methodologies to optimize active and reactive power dispatch while max- 
imizing voltage security in power systems. The effects of minimizing operating costs, 
minimizing reactive power generation and/or maximizing voltage st ability margins are 
analyzed. Results obtained using the proposed Voltage Stability Constrained OPF for- 
mulations are compared ancl analyzed to suggest possible ways of costing voltage security 
in power systems. 

When considering voltage stability margins, the importance of system modeling be- 
cornes critical, since it has been demonstrated, based on biiurcation analysis, that model- 
ing c m  have a significmt effect of the behavior of power systems, especially at high loading 
levels. Therefore, this thesis also examines the effects of detailed generator models and 
several exponential Ioad models. Furthermore, because of its i d ~ ~ e n c e  on voltage st ability, 
a Static Var Compensator mode1 is also incorporated into the optimization problems. 
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Introduction 



1.1 Background 

As open access market principles are applied to power systems, significant changes in 

their operation and control are occurring. In the new marketplace, power systems are 

operating under higher loading conditions as market influences demand greater attention 

to operating cost versus stability margin. Since stability continues to be a basic require- 

ment in the operation of any power system, new tools are being considered to analyze 

the effect of stability on the operating cost of the system, so that system stability can be 

incorporated into the costs of operating the system. 

1.1.1 Optimization Techniques 

As systems are being operated with reduced stability margins [l, 21, there has been several 

new voltage collapse events throughout the world [1,2]. Thus, the incorporation of voltage 

stability criteria in the operation of power systems has become essentid [3]. In recent 

years, the application of optimization techniques to voltage stability problems has been 

gaining interest. It is possible to restate many voltage collapse problems as optimization 

problems. Alt hough bifurcation methods are very well developed, the use of op timization 

based techniques has many advantages, including the ability to incorporate limits and 

determine control actions on certain system variables to improve the stability margin [4, 

5 ,  61. New voltage stability analysis techniques have been introduced using optimization 

methods in voltage collapse analysis (e-g., [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 171). 



Possible applications of optimization techniques to voltage collapse 

cussed in [4]. In [SI, an Interior Point (IP) optimization technique is used 

analysis are dis- 

to determine the 

optimd generator settings that maxirnize the distance to voltage collapse. In [6]; applica- 

tions of optimization techniques to voltage collapse studies are presented with theoretical 

and some numericd analysis. Furthermore, [6] includes a technique to incorporate voltage 

stability into traditional optimal power flow (OPF) formulations. In [IO], optimal shunt 

and series compensation parameter settings are calculated to maximize the distance to 

a saddle-node bifurcation which c m  be associated, in some cases, with voltage collapse. 

In [Il],  a voltage-collapse point computation problem is formdated as an optimization 

problem, allowing the use of optimization techniques and tools. In [12], the reactive power 

margin from the point of view of voltage collapse is determined using Interior Point (IP) 

methods; the authors used a barrier function to incorporate limits. In [13], the authors 

determine the closest bifurcation to the current operating point on the hyperspace of 

bifurcation points. -4 similar approach is taken in [14] where the direct method wLch 

traditionally has been used to determine bifurcation points (181, is reformulated as an 

optimization problem. In [15], the maximum loadability of a power system is examined 

using Interior Point methods. 

Voltage stability has long been accepted as an important aspect of power system anal- 

ysis. With open-market principles being applied to many systerns, the value of security is 

now receiving more attention. In [19], a Monte-Carlo assessment of the value of system 

security is presented, primarily considering security issues due to unplanned outages. In 

[20], a procedure for VAR planning is given that incorporates stability analysis. In [S, 91, 

a two stage approach is taken to determine candidate buses for reactive power support 

based on a proposed optimization technique to determine the voltage stability limit con- 

sidering some constraints at the current operating point and the point of collapse. A 

formulation to incorporate transient stability into an OPF formulation is given in [16]. 

Finally, in ['il, several Voltage Stability Constrained Optimal Power Flow (VSC-OPF) 

formulations are proposed considering both the current loading point and the maximum 

loading point into the formulation, so that voltage stability margins can be considered in 



the OPF problem. 

1.1.2 Modeling 

In voltage stability and bifurcation analysis of power systems, detailed system models have 

been shown to have a significant effect on the equilibrium points and their characteristics 

[21,22]. The differences among equilibrium points become more apparent when a system is 

heavily loaded and the devices approach their operating limits. Traditional models, where 

generators are modeled using limits on reactive power, real power, and voltage magnitudes, 

may fail to provide an accurate representation of the power system in certain conditions. 

In [22], reactive power limits axe shown to play a significant role in discrepancies between 

detailed and non-detailed generator models. Generator ratings and limits in non-detailed 

models are incorporated using limits on their voltage and power levels, whereas detailed 

models tend to place limits on the armature current and field voltage, as these accurately 

reflect the actual operating limits of the machine. In [1'7], generator excitation limits are 

incorporated into an optimization based maximum distance to collapse formulation. 

In [21], the effects of various loading models on the occurrence of saddle-node bifur- 

cations are presented. In [SI, the effects of load modeling in optirnization based voltage 

stability studies are discussed. 

The application of Flexible AC Transmission Systems (F'ACTS) controllers, which are 

based on power electronic switches, in power systems has been increasing [23]. These con- 

trollers provide reactive power compensation, which can increase the maximum transfer 

capability of a power netwosk [24, 251. Steady-state models for the S tatic Var Compen- 

sator (SVC) FACTÇ controller, presented in [24], allows for their incorporation into both 

load flow analysis and optimization. 



1.2 Research Motivation and Objectives 

As loading levels in a power system increase, the stability margin, Le., the distance to col- 

lapse, generally decreases. Control actions can be taken to increase the available transfer 

capability of the system, but this may result in increased operating costs. These increased 

costs may be considered as the costs of enforcing voltage stability constraints. 

The main motivation of the thesis is to examine how to incorporate voltage stability 

criteria into a traditional OPF problem to account for the stability "level" of the system 

while considering operating costs. Most optimization based voltage stability analysis 

methods (e-g., [15, 261) consider o d y  the stability margin. Incorporating operating costs 

and voltage stability criteria into one integrated formulation dows one to account for 

stability into the overd operating costs. 

When considering voltage stability margins the importance of system modeling be- 

cornes critical, since it has been demonstrated, based on bifurcation analysis, that model- 

ing can have a significant effect on the behavior of poa-er systems [21, 22, 271, especially 

at high loading levels. Therefore, in this research, a detailed generator model and several 

static load models are incorporated into OPF formulations. Furthennore, because of its 

influence in voltage stability? a S tatic Var Compensator (SVC) model is also incorporated 

into the OPF formulations. 

From the above discussions, the main objectives of the thesis research are as follows: 

Extending the maximum distance to collapse algorithm (e-g., [15, 261) to consider 

feasibility and limits at both the current operating point and the collapse (maxi- 

mum) loading point. This d o w s  for the examination of voltage colIapse through 

both saddle-node bifurcations [18, 25, 291 and limit-induced bifurcations [30]. 

Development of Voltage Stability Constrained Optimal Power Flow (VSC-OPF) 

formulations that incorporate voltage stability margins to consider the iduence of 

stability on the traditional OPF problem. 



hcorporation of detailed generator models in the OPF ând VSC-OPF formulations 

to improve the accuracy of the sys tem's model. Since equilibriurn points are effectecl 

by modeling clifferences, especidy when systems become heavily loaded and gener- 

ator limits are approached, the accurate representation of these Limits, particularly 

armature current and field voltage limits, in the OPF and VSC-OPF formulations 

is considered and analyzed, 

Incorporation of exponential load models into both the OPF and VSC-OPF formu- 

lations to study the effect of load modeling on the characteristics of the solutions 

ob tained from these problems. 

Incorporation of a load-flow model of the Static Var Compensator (SVC)? a Flexible 

AC Transmission System controller, into the OPF and VSC-OPF formulations to 

analyze its effect on these problems. 

Implementation of the proposed formulations by testing them using severd systems 

to gain insight into their characteristics and how limits effect the solutions. 

1.3 Implementation Met hods 

The OPF and VSC-OPF problems are solved using a Predictor-Corrector Prirnal-Dual 

Logxithmic Bmier Interior Point (IP) method. This method has been successfully ap- 

plied to optimal power flow problems and has been shown to be very efficient [31, 321. 

The Predictor-Corrector IP method was implemented using a combination of MAPLE 

[33] and MATL AB [34] programming. S ystem models are constructed symbolically in 

MAPLE, then differentiation tools in MAPLE are used to calculate the vectors and ma- 

trices required for the optimization method. The set of equations describing the models 

are exported to text files using an export tool in MAPLE [33], and axe then modified into 

MATLAB format using a script file written in MATLAB to form data files. MATLAB rou- 

tines were written to access the data files to generate the required vectors and matrices 



for numerical analysis; sparse matrix routines are used to manipulate and store the data. 

Ait hough, this method of implementing the proposed dgorithms and models has limita- 

tions when dealing with a large system, it is extremely well suited to investigate different 

models since derivatives, partial derivatives, and Jacobians can all be symbolically formed 

in MAPLE . 

1.4 Outline of the Thesis 

The remaining chapters of the thesis are organized as folloms: 

Chapter 2 provides a generic formulation of the Optimal Power Flow (OPF) problem. 

This is followed by an introduction to the nonlinear Iaterior Point method 

used to solve the problems considered in t his thesis. 

Chapter 3 gives some of the basic components of Voltage Stability, presented with 

illustrative examples, focusing f i s t  on saddle-node and then on limit- 

induced bifurcations. Two traditional bifurcation analysis methods, con- 

tinuation and direct methods, are reviewed. Finally, the chapter includes 

an examination of some existing optimization based approaches used for 

voltage stability analysis. 

Chapter 4 presents several of the main research contributions of the thesis. First, a 

modification of the Maximum Distance to Collapse problem is presented 

along wit h a generic non-linear op timization formulation to incorporate 

voltage stability into a traditional OPF problem. Second, an analysis to 

determine when the maximum loading point of the system will correspond 

to a saddle-node bifurcation, based on the application of the maximum 

distance to collapse problem and the KKT optimality conditions [35] is 

given. Third, five novel VS C-OPF formulations are presented together 



with a discussion of the advantages and disadvantages of each formula- 

tion. The resdts obtained from applying the Modified Maximum Distance 

to Collapse problem and the wious  VSC-OPF problems to several test 

systems are presented and discussed. 

Chapter 5 presents the remaining research contributions of the thesis. A detailed 

generator model, different static load models and a Static Var Compen- 

sator (SVC) model are proposed for inclusion into the OPF and WC-OPF 

formulations. -4 discussion on the results obtained from solving the OPF 

and VSC-OPF problems for several test systems that include the different 

models is presented. 

Chapter 6 summarizes the work presented in the thesis. The main contributions of 

the thesis zlre highlighted, and a list of potential research directions to 

study further the issue of the incorporation of stability criteria into OPF 

problems is given. 



Optimal Power Flow and 

Optimization Techniques 



2.1 Introduction 

The OPF problem introduced in the exly 1960's by Carpentier has grown into a powerfid 

tool for power system operation and planning. In general, the OPF problem is a nonlinear 

programming (NLP) problem that is used to determine the "optimal" control parameter 

settings to minimize a desired objective function, subject to certain system constraints 

[36, 37, 381. Because of the restructuring of porver system utilities [39], different OPF 

problems are now being considered. Furthermore, there has been great interest in voltage 

stability issues and their possible relationship with optimization methods [4, 5, 10, 11, 12, 

13, 151. 

The development of numerical andysis techniques and algorithms, particularly Interior 

Point (IP) methods, allows large and difficult problems to be solved with reasonable 

computationd effort [37, 401. Porver systems are one of the meas rvhere IP methods have 

been successfully applied (e.g., [37, 41, 42, 43, 441). 

The objective of this chapter is to briefly introduce the OPE' problem and provide a 

description of the Interior Point (IP) method used for solving the NLP problems presented 

in this thesis, 

The remainder of the chapter is structured as follows: First, the OPF problem is 

briefly introduced. Then, a Primal-Dud Interior-Point (PD-IP) method is presented and 

is extended to a Predictor-Corrector Interior Point (PC-IP) method. Since the main 

contribution of this thesis focuses on voltage stability constrained optimal power flow 



formulations, the IP methods used here are briefly described, giving the appropriate 

references where details of the optimization 'problems and solution techniques can be 

found. 

2.2 Optimal Power Flow 

With the introduction of diverse objective functions, the OPF problem represents a variety 

of optimization problems [3S], which includes, for example, active power cost optimization 

and active power loss minimization [37]. OPF problems are generally formulated as 

nonlinear programming problems (NLP) as follows: 

where generally F(x) : Rq -t Rm represents the load flow equations, H(x) : Rq RQ Rp 

usually stands for transmission line limits, with lower and upper limits represented by H 
and H, respectively. The vector of system variables, denoted by x E P, typically includes 

voltage magnitudes and angles, generator power levels and transformer t ap set tings; Lower 

and upper limits of the system variables, X, are given by x - and X, respectively. The map- 

ping G(x)  : 8P RP -f is the fimction that is being minimized and c â n  include, for example, 

total losses in the system and generator costs. Once formulated, the problern can be 

solved using Interior Point (IP) methods [32, 451, Sequential Linear Programrning (SLP) 

or Sequential Quadratic Programming (SQP) [44, 46, 471. SLP and SQP formulations 

can Le solved using well developed Linear and Quadratic Interior Point methods [44, 461. 

When applying SLP and SQP methods, convergence has been shown to be dependent 

on a number of factors, such as good initial conditions and step size control [47]. For 

the problems considered in this thesis, a direct nonlinear Interior Point method is used. 



The algorithm presented and used for solving the NLP is based primarily on the method 

presented in [3l, 32, 411. 

2.3 Logarit hmic-Barrier Interior Point Met hod 

NCP has experienced major developments over the past decade, largely due to the ad- 

vruicements in Interior Point methods [35]. In this section, a formulation for the Logarithmic- 

barrier IP method for a NLP with equality and inequality constraints is presented. A 

detailed analysis of the method can be found in many references including [31, 411. For 

simplicity, the bounds x - 5 x 5 X in (2.1) are assumed to have been incorporated in 

H < H(x) 5 -- 

2.3.1 Associated Problem and Optimality Conditions 

The first step in solving (2.1) using the Logarithmic-Barrier IP method (which wiU then 

be exkended to the Predictor Corrector approach) is to transform the existing inequality 

constraints into equality cons traints by introducing strictly positive slack variables si ; s2 E 

%P. Thus, the original problem can be re-written as 

From (2.2) an associated problem is formed by introducing a logarithmic barrier term 

to the objective function to enforce the strict positivity constraints on sl and s î .  



min 

s.t* : 

where pk represents the positive barrier pûrameter at the kth iteration. This parameter 

is monotonically decreased to zero as the iteration number, k, increases. Equation (2.3) 

c m  then be re-written to reduce the number of nonlinear terms as follows: 

min 

s.t. : 

In order to op t imdy solve (2.4) for a h e d  pk, the Lagrangian function L,(v)  is first 

defined as 

where v := Lx; si; sz; 7; vl; vz] is introduced for ease of presentation, and y E Wm and 

VI, vz E gZP are Lagrangian multipliers vectors, often c d e d  the dual variables [41]. 



The first-order Karush-Kuhn-Tucker (ICKT) optimality conditions [35] d e h e  the min- 

imum of (2.5) with the following necessaq conditions [32, 351 : 

where n := (1,1,1, .. . l)T is a vector of ones of appropriate size, and SI = diag(sL) and S2 = 

diag(s2). The function diag(s) : R* + P X P  forms a diagonal matrix with the ith diagonal 

term equal to the ith element in the vector s, and JF(x) E W X q  and JH(x) E Rpxq are the 

Jacobians of F(x) and H(x), respectively, i-e, JF(x) = DXF(x) and JH(x) = DxH(x). 

To reduce the nurnber of nonlinear components, the second term is scaled by S1 and the 

third by S2, yielding 

This system has the following interpretation: The first term, along with (vl, vl + v2)  > 0, 

ensures dual feasibility; the second and third terms are the y-complementarity conditions; 

and the fourth through sixth terms, dong with (sL , s2) > 0, ensure primal feasibility. 

The steps to solve the nonlinear system defined by (2.7) are as follows: For a set of pkl 

one step of the Newton direction is taken, then the step length in the Newton direction is 



calcdated and the miables are updated. The algorithm terminates when the primal, dual 

and the complementarity conditions [32] f d  below predetermined tolerances; otherwise, 

k is incremented, the barrier puameter p" is decreased, and a new Newton direction is 

determinecl- DiEerent schemes exist for reducing p and scaling the Newton step depending 

on the type of problem. In the implementation written, the barrier parameter was reduced 

based on an estirnate of the decrease in the complementarity gap [31]. 

2.4 Higher Order Primal-Dual Int erior Point 

Algorit hms 

-4lthough the Interior Point method reviewed in the previous section can solve large 

problems [31], numerical difficulties due to nonlinearities and long running times [5]  led 

to the implementation of a Predictor-Corrector Interior Point method. 

The main concept behind the Predictor-Corrector method is to incorporate higher 

order information to improve the accuracy that the Newton Step takes to solve the KKT 

conditions. A brief overview of the Predictor-Corrector method developed to solve the 

nonlinear optimization problems proposed in this thesis follows. More details can be found 

in [31, 321. 

2.4.1 Predictor-Corrector Interior Point Met hods 

The derivation of the Predictor-Corrector method follows the same steps as the Primal- 

Dual method up to the KKT conditions written in equation (2.7). Instead of applying 

one Newton step to (2.7) to estimate an approximate solution from the current point 

v = ly; sl ; sz;  7; VI;  u2] , a new point 



is defined as being on the central path, i-e., the exact solution to equation (2.7) for pk. The 

equations defining this point on the central path, determined by substituting (p l  + Au) 

in place of u in (2.7), is written as 

where VxL,(x) = DXG(x) - J~(x)*? + J ~ ( ~ ) * U ~ ;  Tl := diag(v~) ,  and T2 := diag(v2) 

and F~ (-) E Rm and HL(-) € Rp represent the quadratic terms of F(.) and H(-), respec- 

tively. FinaJly, VXL,(X) E 919 represents the Hessian of L,(w) with respect to X. The 

second order terms F ~ ( A ~ ) ,  JF(x),  H ~ ( A ~ ) ,  and JH(x) are only included if F(x) and 

H(x) are quadratic [31]. 

The full step Au ob tained from (2.9) consis ts of three components, generdly expressed 

as [31] 

where the Av, ,, AvCen, and Au,,, are defined by the f is t ,  second, and third right-hand 

side vectors of (2.9), respectively. The first component , the aiLe-sc&ng direction, Au, f ,  

is a pure Newton direction (for pk = O), and is responsible for reduction in the objective 



function. The second component, Au,,,, is a centering direction and is used to keep the 

solution away fÏom the boundary of the feasible region. Findy, the third component, 

Au,, is a corrector direction that it used to compensate for some of the nonlinear terms 

in the fie-scaling direction. 

A good approximate solution to (2.9) is obtained by first calculating the predictor 

step when dropping the p terms and the A terms from the right-hand side of (2.9): Le., 

Av = Au, f .  The fidl step, 4 v  = Au, ff + 4vCen + 4vc0r7 is then approximately 

solved using the target value for the barrier parameter and the solution obtained from 

the predictor step to approximate the nonlinear A terms in the right-hand side of (2.9). 

The variables are then updated and the solution is tested for convergence. 

2.5 Summary 

In this chapter, an introduction to the OPF problem is presented. This is followed by a 

derivation of two IP methods used to solve non-linear problems like the OPF problem. 

Both IP methods use a logarithmic function to move the solution obtained at each iteration 

towards the optimal solution while enforcing inequali ty constraints. The second method, 

the Predictor-Corrector IP method, incorporates higher order information to improve 

the accuracy of the method. Since, the OPF formulations proposed in this thesis are 

highly non-linear, the Predictor-Corrector method was implemented to solve ail O PF 

problems in this thesis. The implementation uses a combination of MAP LE and -MATLAB 

programming . 



Voltage Stability 



3.1 Introduction 

Several voltage collapse events throughout the world show that power systems are being 

operated close to their stability limits (e-g., [l] ). This problern can only be exacerbated by 

the application of open market principles to the operation of power systems, as stability 

margins are being reduced even further to respond to market pressures. Since the overd 

stability limit can be closely âssociated with the voltage stability of the network, this 

chap ter presents an overview of voltage s tability and some analysis techniques. 

A review of bifurcation analysis is presented fist ,  focusing on some of the basic con- 

cepts and terminology. Characteristics of saddle-node bifurcations are then presented, 

along with an overview of limit induced bifurcations and t k i r  effect on system stabil- 

rons are ity. Two traditional tools used to analyze and determine the location of bif~ncat: 

discussed, and a review of some of the existing work in the application of optimization 

techniques to voltage stability analysis is presented. 

3.2 Bifurcation Analysis 

Nonlinear phenomena, especially bifurcations, have been shown to be responsible for a 

variety of stability problems in power systems (e.g., [48]). In porticular, the lack of post 

contingency equilibrium points, typicdy associated with saddle-node and limit-induced 

bifurcations, have been shown to be one of the main reasons for voltage collapse problems 



in power systems [3]. 

In general, bifurcation points can be basically defined as equilibrium points where 

changes in the "quantity" and/or "quality" of the equilibria associated with a nonlinear 

set of dynamic equations occur with respect to slow varying parameters in the system 

[lS]. Since power systems are modeled by sets of nonlinear differential equations, w i o u s  

types of bifurcations are generically encountered as certain sys tem parameters mry- 

A typical power system model used for stability studies c m  be represented by a set 

of differential-algebraic equations (DAEs). These models are linearized at equilibrium 

points to determine their steady state stability using eigendue analysis. Of interest is 

where the system goes from being stable to unstable, from being unstable to stable, or 

where the number of equilibrium points change with respect to a bifurcation parameter. 

These bifurcations are mathematically characterized by one of the system eigentdues 

becoming zero (saddle-node; traascritical and pitchfork bifurcation), by a pair of complex 

conjugate eigenvalues crossing the imaginary axis (Hopf bifurcation) or by eigenvalues 

changing when control limits are reached (limit-induced bifurcation). 

The differential-algebraic equations used to model the power system are typically of 

the form: 

where z E RN is a vector of the differential variables, y E IR" is a vector of algebraic 

variables, and X E !FIf is any parameter in the system that changes slowly, moving the 

system from one equiiibrium point to another. Equilibrium points are the values 20, y0 

ancl Xo where the rate of change of each state variable is zero, Le., 



Equilibrium implies the system is at "rest" but does not imply stability. 

When the Jacobian D,f,(-) of the algebraic constraints in (3.2) is non-singular along 

system trajectories, the system mode1 can be reformulated as [29]: 

where h(-)  may be formed symbolicdy or nurnerically fiom fa(-). If the Jacobian of 

the algebraic constraints becomes singular, then the model used to describe the system 

becomes invalid. In this case, the original mode1 can be modified to consider dynamics 

ignored in the original model, resulting in the transformation of some algebraic constraint s 

into differential equations [29, 491. 

Two paths to instability are considered in this research. The f is t ,  saddle-node bi- 

furcations, is characterized by local equilibrium disappearing for further increases in the 

bifircation parameter. The second, limit-induced bifurcations, is characterized by equi- 

libria disappearing due to chmging system models whea system limits are encountered. 

Both forms of bifurcations are described below, with illustrative examples. 

3.3 Saddle-node Bifurcations 

Saddle-node bifurcations are characterized by two equilibrium points, typically one stable 

and one unstable, merging for a parameter value X = A,; the resdting equilibrium point 

has a simple and unique zero eigenvalue of DZs 1 [1S , 29, 501. If the two merging equilibria 

CO-exist for X < A,, the two equilibrium points locally disappear for X > A,, or vice 

versa; hence, these are local bifurcations. The following conditions hold for saddle-node 

bifurcations [18] : 



Figure 3.1: Generator-infinite bus system. 

1. The point is an equilibriiim point, i.e., s(z, A )  = 0. 

2. The Jacobian of the function s(z, A) with respect to z at the bifurcation point 

(z,,X,), has a unique zero eigenvalue. 

3. At the saddle-node point, two branches of equilibria intersect and "disappear" be- 

yond the saddle-node. 

Saddle-node bifurcations are mathematically defined using transversality conditions 

[18, 25, 29, 481. If the transversality conditions are met, then the system is at a saddle- 

node bifurcation. These conditions for a saddle-node bifurcation are 

where w and v E RN are normalized right and left eigenvectors of the Jacobian of s(z, A), 

Dzsl.. The subscript * is used to denote a bifurcation point. The first condition, implies 

the Jacobian matrix is singular, the second and third conditions ensure that there is no 

equilibria near (z.,X,) for X > A. or X < A., depending on their sign, and a "quadratic" 

shape. 

Example: 

The two-bus lossless system shown in Figure 3.1 is used here to illustrate saddle-node 

bifurcations. Using the classical second order dynamic mode1 for the generator [25], the 



system equations are 

& = 
1 

( P m  - Perec - Du) 
mriinert ia 

where n/Iinerti, is the machine inertia, D is the machine damping, w is the angular frequency 

of the generator, and 6 is the generator bus voltage ongle with respect to the infinite bus. 

B y definition, the infinite bus will have a constant voltage regardless of the poiver delivered 

to it, or absorbed from it. The mechanical power Pm is used as the bifurcation parameter, 

Le.: X = Pm, and the electrical power transmitted through the transmission line Pelec is 

defmed as 

A i n e  

Letting zl = 6: zt = w,  &Iinertia = 0.1, D = 0.1, -Yiin, = 0.5, IV,.,I = 1, and = 1, 

then equations (3.10) con be re-written as 

The Jacobian of (3.12) with respect to z = [zl z2IT is 

Figure 3.2 illustrates equilibrium values of 6 for different values of A. As can be seen for 

X = 2.0, the lower and upper cuves of equilibrium points merge, and no equilibrium exist 

for values of X > 2.0. The upper branch of equilibrium corresponds to stable equilibria 

and the bottom brnnch corresponds to unstable equilibria. The point 6 = x / 2  corresponds 

to a singular system Jacobian (3.13). The normdized right and left eigenvectors at this 

point are given by 

r 



Figure 3.2: Bifurcation diagram for generator-infinite bus example. 

The three transversality conditions for a sadde-node bifurcation (3.7-3.9) are met, Le., 

Saddle-node bifurcations are generally considered generic, that is, they are "expected" 

to occur in nonlinear systems that do not present a 'Lspecial" structure [2S, 481. For exam- 

ple, if loading changes of a povver system are used to represent the bifurcation parameter 

A, saddle-node bifurcations would be expected for certain values of A. 

In the following section, the effect of limits restricting the space of feasible solutions 

and hence leading to limit-induced bifurcations is considered. 



3.4 Limit-Induced Bifurcations 

Although saddle-node bifurcations can be shown to be generic in power systems, limits, 

especially generator reactive power limits, may restrict the space of feasible solutions and 

thereby voltage collapse may be induced by limits as opposed to a saddle-nade bifurcation 

[51, 521. This has a major effect on "measuring" the distance to voltage collapse since the 

voltage collapse may occur not by a saddle-node but rather by reactive power limits, Le., 

limi t-induced bifurcations. 

Limit induced bifurcations as analyzed in [5l]? occur in power flow equations when 

generator models are changed from constant voltage and active power models, to constant 

active and reactive power models on encountering reactive power limits. The change in 

models corresponds to a different set of equations; and it is found, in some cases? that the 

new equations are unstable at the current operating point. Both the original model and 

the "limit induced" mode1 have the same equilibrium point when the limit is encountered 

but have different bifurcation diagrams. In the case where the system becomes unstable 

at the limit, the equilibrium point is on the unstable portion of the "limit induced" 

bifurcation diagram. It is also possible that the system remains stable when the limit 

is encountered since the equilibrium point may be on the stable portion of the "limit 

induced" model's bifurcation diagram. Figure 3.3 illustrates these two possibilities. 

When the generator voltage control used in practice, which is the reason for this 

"switching", is considered fully, only the equilibrinm branches in bold in Figure 3.3 esist. 

The higher voltage conditions on the limited system branch in Figure 3.3(a) are not fea- 

sible since the control would recover from its reactive power limits and would therefore 

"switch" back to the original system model. If the condition in Figure 3.3(b) is encoun- 

tered, the system looses voltage contr~l and collapses. The latter is very similar to a 

saddle-node bifurcation condition, alt hough the system Jacobian is not singular in this 

case. This phenomena is not considered in [51]. 



(a) Stable Limit Point 

(b) Unstable Limit Point 

Figure 3.3: Illustration of limit induced instability. 
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Figure 3.4: Bifurcation diagram for generator-infinite bus example. 

Example: 

The two-bus lossless system shown in Figure 3.1 is used to illustrate limit-induced bifur- 

cations by adding a reactive power limit. In Figure 3.4, two bifurcation diagrams have 

been drawn. The "unlimited systern" diagram is the sane  as in Figure 3.2 and corre- 

sponds to the original system with the generator modeled as a constant voltage source. 

The "limited system" diagram corresponds to the set of equilibrium points obtained when 

the generator is modeled as a constant reactive power source, i.e., the generator terminal 

voltage is "free" to change. 

The "limited system7' mode1 is formed by combining the differential equations (3.10) 

and the load flow equation describing the reactive power supplied by the generator: 

where Q,,, = Qrimii is set to 1.4 p.u. Equilibrium points of the "limited system" are 

defined using (3.10), with & and W equd to zero, and the algebraic equation (3.18). The 

system has two differentid variables (6 and w )  and one algebraic variable (Tio,,). 



With the reactive power limit, the maximum loading point of the system corresponds 

to a limit-induced bifurcation of the kind depicted in Figure 3.3(b). 

3.5 Bifurcation Analysis Methods 

Two traditional methods to analyze bifurcations are the continuation and direct methods 

[lS, 521. Continuation methods systematically increase the loading level or bifurcation 

parameter, until a bifurcation is detected. Therefore, not only is the bifurcation or point 

of collapse determined, but also the set of equilibrium points the system goes through 

to arrive at the bifurcation point. The continuation method can be used to detect any 

type of bifurcation without great diEculties [45,52, 53, 541. Direct methods, on the other 

hand, solve the set of algebraic equations used to define the bifurcation point, directly 

solving for the point at which the system collapses. Direct methods have been successfully 

applied to determine the exact location of saddle-node in power systems [5S, 551. However, 

these methods present serious diEculties when used to locate other types of bifurcations 

[45]. For both methods, it is assumed that the bifurcation parameter is a scalar: which 

typicdy corresponds to a given direction of load increases in power system models. 

3.5.1 Continuation Methods 

Continuation methods are iterative numerical techniques used to detect bifurcations by 

tracing the bifurcation diagram and indirectly detecting any bifurcations. Since these 

methods have been extensively studied (e-g., [IS, 52, 53, 54, 56]), only a brief revieiv is 

presented here. 

In powr  systems, continuation methods typically trace the voltage profile of the sys- 

tem up to the maximum loading point of the system. These methods have the advantage 

that more information is obtained about the system behavior, but they may be compu- 

tationally expensive, especidy in large systems [3]. 



S tep 

Figure 3.5: Illustration of continuation algorit hm. 

Continuation methods are generally composed of two or three steps. The first part is 

a predictor step, the second is a corrector step and the third is a parameterization step. 

The last step can be omitted in some algorithms. The predictor and corrector steps are 

illustrated in Figure 3.5. From an initid solution (zo , Xo ) , a step Az, and change 4 X  of the 

parameter are h s t  determined. From the new point, zi = a0 + Az, the new equilibrium 

point, 2 2 ,  is calculated. A parameterization is used to ensure that the Jacobian used in 

the continuation method does not become singulâr at a saddle-node bifurcation. 

There are several techniques to implement the predictor, corrector and parameteriza- 

tion steps (e-g., [18, 26, 561). A brief description of one implementation of the three steps, 

based on [lS, 561, follom-s: 



Predictor and Paramet erization 

Given an initial operating point, the predictor step c m  be determined by computing the 

tangent vector to the bifurcation manifold at this point, as follows: 

where Elo is the partid derivative of the system equations with respect to the parameter 

A: and D,s(zo, Xo)  is the system Jacobian calculated at the initial point. The constant 1 is 

used to control the step "size" . The new vector zl and puameter value A l  are calculated 

The tangent predictor method has the disadvantage that near the collapse point, the 

Jacobian D,s(zo, Xo ) becomes ill-conditioned. To avoid this problem, a parameterization 

step can be applied, where the parameter X is exchanged with the variable in z that 

presents the largest value in Az. 

Because of the highly nonlinear behavior of the Jacobian's eigenvalues in power system 

problems, parameterization is not generally required to ob tain good results, when step 

cutting is incorporated into the corrector step [52, 561. Observe that once the continua- 

tion algorithm rnoves past a saddle-node or lirnit-induced bifurcation, the sign of AX in 

equation (3.20) must be changed to trace to lower portion of the bifurcation diagram. 

Alternative predictor steps include the arc-length method and the secant methods 

[3, 18, 541. The arc-length method is based on representing z and X at the equilibrium 

points as a h c t i o n  of the arc-length of the bifurcation manifold. The secant method, 



on the other hand, approximates the tangent vector dz/dA using two or more previously 

determined points on the bifurcation manifold. 

Corrector Step 

Using the new vector and parameter value found in the previous step, a corrector step is 

used to find a new point that is on the bifurcation manifold. This is found by solving the 

following set of equations: 

ivhere c(z, A) is a scalar equation. The f i s t  equation in (3.24) insures that the new 

solution is an equilibrium point. Since s(z, A) has a singular Jacobian at a saddle-node 

bifurcation, the second scdar equation represents a phase condition that parantees a 

non-singular Jacobian of the corrector equations [3]. One possible condition is to define 

a perpendicular vector to 4z as follows [52, 571: 

where AX and Az axe the solutions of the predictor step. Initial guesses for z and X are 

zi and XI, respectively, which usually result in good convergence characteristics [56]. 

3.5.2 Direct Methods 

Since saddle-node bifurcations are considered generic, it is possible to consider only a sub- 

set of the transversality conditions to compute them. Therefore, saddle-node bifurcations 

can be directly determined using the following set of equations [52, 551 : 



where w is a normalized right eigenvector. Since these methods are fomulated to deter- 

mine saddle-node bifurcations, they cannot be used to determine a limit-induced bifiirca- 

tion, as  the singularity condition is not met in this case. 

3.6 Optimization Based Voltage Stability Analysis 

Recently, optimization-based techniques have been introduced to analyze voltage stability 

and determine system settings to maximize the distance to voltage collapse. These tech- 

niques are based on traditional bifurcation analysis methods and optinization techniques. 

In this section, a review of previously proposed optimization techniques for voltage 

stability studies is presented. First, a generic eqlanation of the system model used in 

optimization based analysis is provided, followed by a discussion on how independent vari- 

ables (control variables) effect bifurcation diagrams (stability limits) . The op timization 

formulation corresponding to the Direct Method is given with an extension for maximum 

loadability analysis. Findy,  the Maximum Distance to Saddle-node Bifurcation problem 

is discussed. 

3.6.1 System Mode1 

For this thesis, a s t at ic model for the power sys tem of the form 

is used, where the vector x E Rn represents the systern's dependent variables, normally 

non-generator bus voltage magnitudes and angles, reactive power levels of generators 

when using PV generator models, and red and reactive power levels of the slack bus 

generator. The vector p E Rm represents the independent variables in the system; in a 

simple model, this would include generator active power settings and terminal voltage 

levels. The parameter X E R+ represents the loading factor in the system, generally 



Figure 3.6: Bifùrcation diagram for the IEEE 14bus system. Bus 11 voltage level versus 

loading level, (A) ,  for two settings of the independent variables. 

referred to as the bifurcation parameter [45]. Typicdy, the loading factor is used to 

model the direction of load increase in the system. 

In Section 3.3, saddle-node bifurcations are defined using differential and algebraic 

equations used to model a system. Equation (3.27) is assumed to correspond to the 

steady state equations of this model. 

3.62  Effects of Control Parameters on Bifurcation 

Diagrams 

In this section, the effect of changing independent variables (control variables) on the 

operation of power systems from the point of view of voltage stability is presented. As 

independent variables are varied, the system effectively moves from one bifurcation dia- 

gram to another. This is shown in Figure 3.6 using the l 4 b u s  system whose corresponding 

single line diagram shown in Figure 3.7. 
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Figure 3.7: Single line diagram of the IEEE 14bus system. 



In Figure 3.6, the per unit voltage level at Bus 11 is plotted versus the loading level 

A for two different settings of the independent variables. The maximum loading point of 

the system is increased by changing the power output of the non-slack bus generators and 

raising generator voltage settings, resulting in a different bifurcation diagram. Figure 3.6 

also shows that setting independent variables to maximize the distance to collapse results 

in different operating points for all loading levels (i-e., all other values of A,). Therefore, 

when applying techniques to maximize the distance to collapse, the effect of the control 

va,riabies at the current operating point should be considered. 

Bifincation diagrams c m  also be varied by changing other parameters in the system, 

such as shunt capacitance Ievels and transformer tap settings. 

3.6.3 Optimization Based Direct Method 

Çimilar equations and solutions for bifurcation studies can be obtained as the traditional 

Direct Method (3.26) by using an optimization formulation [Il, 15, 551. For example, by 

s tating the problem as: 

min -A, 

s.t.: F(x,,p, A,) = O 

where A. is the value of the loading parameter (bifurcation parameter) at the maximum 

loading point. For a given value of p, the solution can be found using the Lagragian of 

(3.28): 

where 7 corresponds to the Lagrangim multiplien, c d e d  the dual variables. The local 

optimal solution of (3.28) is found by satisfying the f is t  order necessary KECT optimality 



conditions [35] : 

BL , a 
A,) - 1 = O 

d A 

where the above equations have the same form as the Direct Method equations (3.26). 

Therefore, weU d e h e d  optimization routines can be utilized to obtain the bifurcation 

point, by stating the problem as an  optimization problem. 

3.6.4 Maximum Distance to Collapse Problem 

The optimization-based Direct Method can be modified to detemine the values of the 

independent variables (control variables) that maximize the distance to voltage collapse. 

Thus, let us consider the maximum distance to collapse problem: 

min -A, 

s.t.: F(x,, pl A,) = O 

p l p l P  

Limits on x, have been excluded to simplify the problem, and lower and upper limits on 

the independeat variables p are given by the vectors p - and p, respectively. The inequality 

constraints may be incorporated into the objective function using a logarithmic barrier 

term as follows: 

The solution c m  then be determined üsing the related Lagrangian fûnction 



Figure 3.8: Generator-infinite bus single Line diagram. 

where 7 corresponds to the Lagrangian multipliers, c d e d  the dual miables. The optimal 

solution is defined by the KKT first-order optimality conditions [35]: 

where 11 = [l, 1, 1, ... , 1IT of appropriate size. These equations are very similar to the 

equations used in the Direct Method as outlined in Section 3.5. Specifically, the fourth 

equation in (3.34) guarantees an equilibrium point, whereas the first equation guarantees 

a singular Jacobian of the power system model. Therefore, the proposed variation will 

determine a point of collapse and the d u e  of independent variables that will moximize 

A,. 

Exarnple: 

The difference between the original Direct Method and the optimization-based method is 

illustrated with the following exarnple: Consider a single generator connected through a 



losskss transmission fine to a network modeled as an infinite bus as shown in FiDrne 3.3. 

The generator terminal voltage V,, is the only independent variable (control variable) 

p, and is in i t idy set to unity. It is assumed in this example that the generator terminal 

voltage will be constant for all loading conditions. The value of XI;,. is set to 0.1 p.u., 

and the value of Ge, can be set to 1.0 + 0.1 p.u. Finally, the generator power output 

Pgen is used as the bifurcation parameter A, with the dependent variables of the system 

being the generator voltage angle and reactive power (6,  Q,,). The system of equations 

governing the operation of this system are: 

where XI ine  is the transmission line impedance, and V, is the voltage magnitude of the 

i d n i t e  bus. Since the &st equation is independent of Qgen and no limits are considered 

for Q,,, only the first equation in (3.35) is needed to h d  the maximum loading point. 

Using the Direct Method, discussed in Section 3.5, the maximum value of P,, is 

found to be 10 p-u., with the original terminal voltage setting of Vgen = 1.0 p.u. Using 

the optimization formulation given by (3.31), the maximum value of PPn is found to be 

11 p-u., with a corresponding terminal voltage setting of 1.1 p.u. Both problems found a 

point of collapse, but formulation (3.31) is such that it also maximizes the value of the 

loading parameter at the bifurcation. 

3.6.5 Maximum Distance to Saddle-node Bifurcation 

Based on bifurcation theory and optimization techniques, two formulations are presented 

in this section that determine the optimal control to rnaximize the distance to a saddle- 

node bifurcation. Sever al different algori t hms have been proposed in the literature based 

on the saddle-node bifurcation transversality conditions (e-g., [4, 5, 101). The objective of 



the problem is to increase the value of the loading parameter A, at the bifixcation, thus, 

increasing the distance from the current operating point to this critical value. 

One form of the h/laximumDistance to Saddle-node Bifurcation problem can be stated 

as an optimization problem as foUoWs: 

min -+(Ap - A*):! 

set. : F(x., p, A-) = O 

D:F(X.? p, X.)W = O 

where w is the left eigenvector and is assumed to be a properly normalized nonzero vec- 

tor. The current value of the bifurcation parameter is given by A, and its value at the 

saddle-node bifurcation is denoted as A,. The second equality constraint is used to explic- 

itly define the maximum loading point as a saddle-node bifurcation. This formulation, 

including the quadratic objective function, was used in [5, 101. 

The next step is to incorporate feasibility of the current operating point. This has 

the advantage that, as independent variables (control variables) are changed to maximize 

the distance to collapse, bounds cari be incorporated into the present operating point. 

Therefore, the modified Maximum Distance to Saddle-node Bifurcation problem may be 

written as: 



Figure 3.9: 3-bus system single line diagram. 

where p, 2 p is used to map the control variables p, at the current operating point, into 

the collapse point to account for certain system changes (e-g., generation changes modeled 

using a distributed slack bus), and the subscripts p denotes the present or current loading 

level. Since x, is noiv introduced in the nonlinear programming problem, minimum and 

maximum constraints c m  be placed on all system variables. Observe that this fomulation 

fails if the system collapses due to a liniit-induced bifurcation. 

Example: 

The above two problems are applied to the three bus system shown in Figure 3.9. Applying 

the maximum distance to saddle-node bifurcation formulation, a maximum loading A, = 

8.5 is found. Adding constraints on the current operating point (modified maximum 

distance to saddle-node bifurcation formulation) results in an optimal A. = 7.4. The 

difference in the two results is attributed to the fact that incorporating constraints on 

the current operating point reduces the space of feasible solutions. In both cases, the 

maximum loading point corresponded to a saddle-node bifurcation. 

3.7 Summary 

In this chapter, an introduction to voltage stability and bifurcation analysis is presented. 

Traditional methods used to determine bifurcations are given and extended to optimiza- 



tion based approaches. The problems axe then reformulated, fiom finding the maximum 

loading point for a given set of control variables, to maximizing the &stance to collapse. 

Finally, the concept of considering both the current loading point aad the collapse point 

in the problem is briefly introduced. 



Voltage Stability Constrained 

Optimal Power Flow 



4.1 Introduction 

Voltage stability problems in power systems rnay occur for a variety of reasons, from 

voltage control problems with Automatic Voltage Regdators (.WR) and Under-Load Tap- 

Changer (ULTC) transforrners, to instabilities created by different types of bifurcations. 

Several conference proceedings (e-g., [59,60? 611) summarize many of the voltage stability 

problems, and discuss techniques and models proposed by researchers relating to the area 

of bifurcation theory. As loading levels in a system increase, the stability margin decreases. 

Generally, control actions can be taken to increase the available transfer capability of the 

system, but this may result in increased costs. These increased costs may be considered 

as the operational cost of enforcing a voltage stability constraint. 

This chapter presents a numerical analysis of applying optimization techniques to 

proposed voltage stability constrained Optimal Power Flow problems. Numerical analysis 

using the IEEE 57-bus and 118-bus systems are presented to highlight the char-acteristics 

of these problems. The single line diagrams for the 57-bus and 118-bus system are shown 

in Figures 4.1 and 4.2, respectively; the data for these systems was based on data provided 

in [62J. Emphasis is given to change in generator cost when including voltage stability 

criteria in the OPF. 

This chapter is structured as follows: First, a general formulation to combine OPF and 

voltage stability is given. A modification to the Maximum Distance to Collapse problem 

that includes constraints and feasibility of the current operating point is presented. in 



Figure 4.1: Single line diagram of the 57-bus system. 

addition, several Voltage S tability Constrained-Op timal Power Flow (VS C-OPF) formu- 

lations are presented, followed by an analysis of the results obtained from applying the 

formulations to the two test systems. Finally, a summary of the main results presented 

in this chapter is given. 
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Figure 4.2: Single line diagram of the 118-bus system. 



4.1.1 OPF and Voltage Stability Criteria 

A general OPF problem that incorporates voltage stability criteria can be mitten as 

where the subscripts p and * indicate the current and collapse points, respectively. The 

function G ( x P ,  p, A,, A,), is the objective function to be minimized, which includes an 

OPF component, such as production costs or losses, and a voltage stability component. 

The OPF component may be dependent on (x,,p,X,), whereas the voltage stability com- 

ponent is generally a function of A. and possibly of A,. It is assumed that the inequality 

constraints can be separated into constraints at the current and collapse points. The 

lower and upper limits on the power system independent or control variables p are given 

by p - and jT, respectively. Finally, p, 2 p is used to map the coctrol variables at the cur- 

rent operating point, defined by p7 into the collapse point to account for certain system 

changes (e-g., generation changes modeled using a distributed slack bus). 

It is important to highlight the fact that in (4.1), X stands for only one parameter 

instead of several, contrary to what is proposed in [13], Le., the optimization is done in 

a particular direction of load change. This is not a problern, given that the optimization 

would be typicdy done several times a day during the operation of the system, as in 

the case of any other OPF procedure. This assumption simplifies the numerical solution 

process of the optimization problem, which is already a difficult numerical problem, given 

the highly nonlinear behavior of the system constraints and the effect of limits associated 



wit h the inclusion of the collapse conditions. 

Depending on the definition of the objective function G(-) in (4.1), one can pursue 

different optimization strategies and hence obtain solutions to a variety of distinct prob- 

lems. 

4.1.2 Lirnit-induced Versus Saddle-node Bifurcations 

Using a Logarithmic Barrier approach [32], the first order KKT optimality conditions to 

problem (4.1) is given to demonstrate when the maximum loading point is defined by 

a Limit-induced bifurcation or a saddle-node bifurcation. Using slack variables, problem 

(4.1) can be rewritten as 

where si, sz, SJ, s4 E %P m d  SS, SG E Wm are the prima1 non-negative slack variables used 

to trmsform the inequality constraints to equâlities. The non-negativity constraints are 



incorporated into the objective function using a logarithmic barrier terms as follows: 

where p is the barrier parameter and s[i] represents the ith element of the vector S. The 

Lagrangian function of the modified barrier problem (4.3) is then defined as 

where 7 1 , ~ ~  E Rn, vl, u2, VQ, ~4 E %* mcl Cl ,  Cz E Sm are the Lagrange multipliers. The 

vector y = (x., x,, L , p ,  si, s2, s3, s4, sg, sg ,71 ,72 ,  YI, u ~ , u ~ , u ~ , ~ ~ , ~ ~ )  is introduced to simplie 

the expression. The Karush-Kuhn-Tucker (KKT) first-order necessaq conditions are used 



to define the local minimum of equation (4.3), 

where Si through S6 are diagonal matrices with elernents of the corresponding vector si 

through s6 on the diagonal; 1 E %* is a vectors of ones; ând 

Vx. L = r r ~ , , ~ ( x . ,  pz, A.) - (& + ~,T)D~.H(x=) 
vx,~ = ~ x , ~ ( x p , p , ~ p , ~ = )  +yT~,~(xp,p,Xp) 

-(vT + 4 ) ~ x . ~ ( x p )  
V A .  L = D**G(xp,p, A,, A*) - 7;~x*~(x*,P., A.) 

v P ~  = G(X,,P,A~,X.) -TTD,=F(X~~P,AP) 

- 7 3 , ~ ( x * ,  p*, A*) - Cl + Cz 



The issue of collapse due to limit-induced bifurcation versus saddle-node bifurcation 

can now be explained as follows: The first condition in (4-5), V,,L,  includes the Jaco- 

bian of the systern mode1 at the maximum loading point multiplied by 7 2 ,  which can be 

considered to be equident  to an eigenvector of a Jacobian. Therefore, the fkst condition 

corresponds to a singulas Jacobian if (vr + ~:)D,*H(X.) = O; this would imply that, 

if one assumes that D,.H(x.) is non-singular (which is typicdy the case when Limits 

directly on x are being enforced, i-e. DX*H(x=) is an identity matrix), the dependent 

variables are not a t  their limits, since u3 and uq are zero when their corresponding lirnits 

are not active. If dependent variables of the critical point are at their limits, then y3 and 

v4 may become non-negative, Le., the load flow Jacobian may be non-singular. If us and 

v4 a.re non-negative. which implies that locally the objective function could be improved 

if the limits are not enforced, the system has reached a limit-induced bifurcation point. If 

limits are reached and u3 and v4 remain zero, this implies that the limits are not locally 

limiting an improvement to the objective function and hence the system has reached a 

saddle-node bifurcation point. 

The above derivation demonstrates when the inequality constraints can be separated 

based on the dependent and independent variables of the load flow rnodel, the maximum 

loading point may be a limit-induced point only  when constraints based on the dependent 

variables become active. The independent variables p being at their limits, do not directly 

affect the type of bifurcation. Furthemore, if the system collapses through a saddle-node 

bifurcation and limits on dependent variables are active, (4.5) imp1ies that the Lagrangian 

multipliers associated with this limit are zero. Therefore, for the particular bifurcation, 

removing the lirnit that is active will not affect the bifurcation. 

4.1.3 Modified Maximum Distance to Collapse 

The Maximum Distance to Collapse problem with constraints incorporated on the current 

and critical loading point [5, 61 is a paxticular example using optimization techniques to 



enhance voltage stability. This problem can be mitten as 

min -(A- - Ap) 

F(x., p., A.) = O 

This OPF maximizes the distance to a saddle-node or limit-induced bifurcation. Including 

the current loading point into the constraints ensures that, when independent variables 

are calculated to maximize the distance to voltage collapse, feasibility and inequality 

constraints at the current loading point are met [6]. For example, increasing generator 

voltage magnitude settings generally increases the distance to collapse but, under lighter 

loading conditions, the increased levels may lead to over-volt ages. Incorporat ing the cur- 

rent operating point into the optimization problem can eliminate this problem; however, 

it also reduces the space of feasible solutions. 

Example: 

Reactive Power limits are added to the two-bus example from Section 3.6.4, illustrated in 

Figure 3.8, and rnodeled with equations (3.35) to demonstrate the ability of the maximum 

distance to bifurcation algorithm to converge to limit induced bifurcations. Again, the 

generator terminal voltage (independent variable) is restricted to 1.0 f 0.1 per unit but 

Q,, is now limited to the range -4.0 5 Q,, 5 4.0 per unit. The dependent variables 

for the system are the generator voltage angle and reactive power (6, Q,,,). Using the 

maximum distance to collapse formulation, with limits on Qge,, the maximum loading 

point is found to be 8.06 per unit which is lower than the value of 11 per unit found when 

no reactive power limits where included. At the critical point, Qge, is at the upper limit. 



4.2 VSC-OPF Formulations 

With the current loading point included into the optimization problem, i t  is possible to 

incorporate voltage stability criteria into an OPF formulation at the "cment" operating 

point x,. As the operating point moves closer to a voltage collapse or bifurcation point, 

Le., as x, approaches x., more emphasis must be placed on maximizing voltage stability 

as opposed to minimizing operating costs. 

An initial approach to t his problem consisted of introclucing voltage stability indices 

in the objective function as indicators of the proximity to voltage collapse, as explained 

in [5];  However, since voltage stability indices present rather nonlinear characteristics, 

especidy when limits a.re considered, this technique did not produce adequate results. 

In order to incorporate voltage stability constraints into a traditional OPF formulation, 

the following five formulations are proposed: 

Hybrid VSC-OPF Formulation 

Linear Combination VS C-OPF Formulation 

Fixed Stability Margin VSC-OPF Formulation 

Goal Programming VSC-OPF Formulation 

VSC-OPF with Reactive Power Pricing Formulation 

In each of the above formulations, the clifference between A, and A, is used as an 

"exact" measure of the distance to collapse. For the f i s t  formulation, the (A. - A,) mea- 

sure is used to automatically shift the weighting between cost minimization and voltage 

stability security depending on the current system conditions p. This formulation tends 

to emphasize voltage stability when the system is closer to a collapse point, but there is 

no direct control on the relative weighting assigned to stability versus costs, so there is 

no way to guarantee that this will actudly occur. 



The second formulation uses a Linear Combination [35] approach to incorporate volt- 

age stability criteria into a traditional OPF objective. This requires that aJ1 the objective 

functions be defined using some common unit; thus, since the original objective is to min- 

imize the cost of the system, a C'value77 must be added to account for the level of stability 

of the system. At higher loading levels, more weight or value can be given to the stability 

portion, emphasizing the importance of stability. The disadvantage of this technique is 

in determining the "weights" of stability versus costs. 

The motivation behind the third formulation, the Fixed Stability Margin fo~mulation, 

is to introduce a fxed inequality coastra.int that prevents the stability margin of the 

system to be below a given value. The disadvantage of this approach is that at higher 

loading levels, the desired stability margin may be more than what the system can provide, 

yielding convergence pro blems. 

In the fourth formulation, concepts from goal programming zre used [35]. In tradi- 

tional goal programming, a goal or value is assigned to each component in the objective 

function. The problem is then formulated to minimize the difference between the values 

of each of the components in the objective function and their goal or desired value. This 

technique works well for incorporating the voltage stability criteria, but does not incor- 

porate minimization of cost appropriately. Therefore, the goal progamming approach is 

only applied to the voltage stability component of the problem and the economic cost 

component is incorporated using a linear combination approach. 

The b a l  formulation incorporates a reactive power cost. Reactive power limits are 

often associated with voltage collapse and their inclusion into the OPF c m  be used to 

assign a value to reactive power support. 

In the following sections, the above five formulations are discussed in greater detail. 



4.2.1 Hybrid VSC-OPF Formulation 

Since the maximum loading point of the system is a variable in the optimization problem, 

it is possible to accurately use a measure of the distance to collapse as an automatic way 

of shifting the weighting between cost minimization and the voltage collapse margin. The 

motivation behind this formulation is illustrated with the following example. Consider a 

problem with the objective function 

where both K(-) and L(-) are strictly positive functions. The objective function can be 

minimized both by minimizing K(-) or maximizing a(.). Therefore, if K(-) is replaced by 

generator operating costs and L(-) is replaced by the stability margin, the solution to the 

problem would try to maximize the distance to collapse and minimize costs. The arnount 

of emphasis placed on minimizing cost versus increasing the stability margin is automatic 

a.id problem dependent. Thus, the following formulation is proposed: 

where g ( - )  represents a traditional OPF objective function. The scalar @ is introduced to 

reduce some numerical problems as the function '2:) tends to infinity as A, approaches 

A.. Nevertheless, if the curent loading point A, is at the bifurcation point A,, the algo- 

rithm will fail since the inverse of A, - A, is infinity. Although, it is unlikely that A, = A., 



some numerical problems may occur if they are "closen. If the system is effectiveiy at A., 

then a strict maximum distance to voltage collapse algorithm should be utilized. 

4.2.2 Linear Combination VSC-OPF Formulation 

In this formulation, the distance to collapse is directly incorporated into the objective 

function, Le., 

"n w1 dx,, p, A,) - wz (A. - A,) 

Observe that this requires the introduction of two weighting factors wl and wz to balance 

the emphasis placed on maximizing stability, i.e., (A. - A,), versus minirnizing costs, which 

are represented by g(x,, p, X p )  in (4.9). Generdy, w must be significantly larger than 

w I ,  as the relative clifference in the magnitudes of each term in the objective function 

is large, with w + w z  = 1 to normalize their values. Values obtained from previous 

OPF and Maximum Oistancc to Collapse andysis cm be used to determine reasonable 

d u e s  of w and w2 at different loading conditions. A disadvantage of this formulation 

is that at higher loading levels, the stability margin (A. - A,) decreases, resulting in less 

emphasis being placed on stability in the objective function. Furthermore, in the Linear 

Combination formulation, it is not possible to set a value for the voltage stability margin. 



4.2.3 Fixed Stability Margin VSC-OPF 

An alternative approach to assigning a cost to voltage stability is to include a voltage 

st ability inequality constraint as follows: 

where AXmin represents the minimum acceptable margin of stability for the system and is 

defined by the system operator. An advantage of the Fixed Stability Margin formulation 

versus the Linear Combination formulation is that choosing a value for LU,, may be 

easier for the sys tem operator than choosing appropriate weighting factors. This is because 

a minimum acceptable margin of stability has a more physicd meaning. 

A disadvantage of the Fixed Stability Margin formulation is that it may be possible 

to define a stability margin for which there is no solution to the optimization problem, as 

the stability margin may be greater than what the system can provide. 

4.2.4 Goal Programming VSC-OPF Formulation 

The limitations of the Linear Combination and Fixed Stability Margin formulations can 

be overcome using Goal Programming, where a desired "goal", AX,, can be explicitly 

declared for the voltage stability margin. In this case, the formulation is defined as: 



where the relative weights wl, wz and WJ are used to vary the emphasis put on the desired 

stability margin, and the new variables pl, ,B2 > 0, which are minimized, depend on the 

stability rnargin. If pi and ,û2 are equal to zero, then the stability margin equals the 

desired value AX,. 

In the above formulation, the stability margin (A. - A,) can be less or greater than 

the desired margin AX,, depending on the proximity of the system to collapse and the 

relative weights. A disadvant age of the God Programming formulation is determining 

appropriate d u e s  for the relative weights. 

4.2.5 VSC-OPF wit h Reactive Power Pricing Formulation 

The final formulation consists of modifying (4.11) to add reactive poiver pricing to the 

previous formulation based on a possible market environment (e-g., [63]). Here, it is 

assumed that generator companies are asked to operate at a given power factor, and if 

they deviate from it due to system conditions, additional costs must be paid by either the 



Company or the Market Operator; this is based on how some markets currently operate 

(e-g., Italy). Hence, goal prograrnming is used to minimize the Merence bettveen the 

actual power factor of each generator and its desired power factor as follows: 

where the desired power factor is represented by p f ;  n, represents the number of generators 

in the system; w 1,2,3,4 are weights used for varying the relative emphasis on operating cos ts, 

stability rnargin and power factor (reactive power costs); and B3 and p4 axe vectors used 

for measuring the clifference between the actual and the desired power factors for each 

generator. The formulation is such that generators would try to operate close to the 

desired power factor; otherwise, a penalty cost is automatically assigned. A disadvmtage 

of this formulation is determining appropriate values for the relative weights, especially 

for the reactive power support. 



4.3 Numerical Analysis 

The &Iaximum Distance to Collapse and Voltage Stability Constrained OPF (VSC-OPF) 

formulations presented in Section 4.2 are tested on two sample systems, the f is t  based 

on the IEEE 57-bus system and the second based on the 118-bus test systeni [62, 641. -4 

number of simulations are performed to andyze how the ciment loading point and system 

limits influence the optimal solution. Based on the algorithm presented in Chapter 2, 

a nonlinear Predictor-Corrector Interior Point method written in MATLAB is used to 

perform the numerical analysis. Simulations are performed considering various operational 

limits at both the current operating point p and the collapse point *. 

4.3.1 Modified Maximum Distance to Collapse Formulation 

Including constraints on the current loading point p in the Maximum Distance to Collapse 

formulation resulted in different "optimum" solutions depending on the value of A,. The 

results of solving this op timization problem for the 57-bus and 11s-bus system are depicted 

in Figures 4.3 and 4.4, respectively, where changes in A. versus A, are depicted. Observe 

that, as expected, the presence of operational limits reduces the maximum loading margin 

of the system (r versus o in Figures 4.3 and 4.4), and that the generator limits dominate 

over voltage limits (O versus x in Figures 4.3 and 4.4). Figure 4.4 illustrates one of 

the principle disadvantages of considering both the current and criticd loading point in 

one formulation (notice some points missing on the plots). For some loading points, no 

solution to the optimization problern coulcl be found. This is attributed to the higlily 

non-linear nature of the problem, especially when limits are considered at the critical 

loading point. 

Enforcing operational limits at the collapse point * results in a lower A., as one woulcl 

expect , since generator limits, particdarly reactive power limits, are the main limiting 

factor ( O  versus * in Figure 4.3); this is consistent with the type of results that one 

would typicdy obtain in voltage stability studies. At low values of A,, upper limits on 



Figure 4.3: Maximum loading versus current operating point using the Maximum Distance 

to Collapse problem for the 57-bus test system. The symbols x, O, and x correspond to 

solutions for the system with no limits, generator P and Q Limits, and both bus voltage 

Limits and generator P and Q limits, respectively, at the maximum loading point; operational 

limits are always enforced at the current aperating point. 



Figure 4.4: Maximum loading versus current operating point using the Maximum Distance 

to Collapse problem for the 118-bus test system. The symbols *, O,  and x correspond to 

solutions for the system with no limits, generator P and Q limits, and both bus voltage 

limits and generator P and Q limits, respectively, at the maximum loading point; operational 

Limits are always enforced at the current operating point. 



Figure 4.5: Change in voltage magnitude at Bus 30 versus Xp for the 57-bus test system. 

bus voltages become active, resulting in lower values of A., with the opposite happening 

at higher values of A,. This phenornena is clearly illustrated on Figure 4.5, where the 

p.u. voltage magnitude at different loading levels is given for a non-generator bus (Bus 

30) of the 57-bus system. At lower loading levelso the voltage tends to go to the upper 

limit, limiting the set points of generators nearby; at higher loading values, generator set 

points are raised, as upper voltage limits are not a problem. 

If the reactive power limits on the generators become active the problem calculates 

maximum loading points that correspond to limit-induced bifurcations; the power flow 

Jacobian is not singular in this case, confirming the analysis presented in Section 4.1.2. 

For active and non-active reactive power limits, a cornparison of generator reactive power 

levels is given in Table 4.1 (where A, = 0.95). In the case where no reactive power 

limits are enforced at the maximum loading point, the system collapses via a saddle-node 
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Table 4.1: Results of reactive power limits on various system variables for the 57-bus system 

(at A, for Xp = 0.95 ) 

/ Parameter Wiihoui Renctive 1 WithReactive 

Qgenl 

Qgenz 

bifurcation, on the other hand, when reactive power limits are enforced, several generators 

reach reactive power limits at the maximum loading point, and in this case, the mâ,Uimum 

loading point corresponds to a limit-induced bifurcation. 

Qgeni. 

4.3.2 Hybrid VSC-OPF Formulation 

Power Limits (p.u.) 1 Power Limits (p-u.) 

The Hybrid formulation was applied to both test systems. A plot of the generation costs 

versus the current loading point for the 57-bus system is shown in Figure 4.6. Furthermore, 

Figure 4.7 is a plot of the maximum loading point versus the current loading point for 

the 57-bus system. The solution for the Hybrid VSC-OPF problem when applied to the 

57-bus system shows some similar characteristics as the Modified Maximum Distance to 

Collapse problem. Upper limits, on non-generator bus voltages, at the current loading 

point limit the maximum distance to collapse, but these limits are relaxed as the current 

loading point increases, dowing for an increased stability margin. 

1.2649 

0-8993 

indicates the parameter is at its limit 
3.0348 

To get a better idea of how the added voltage security criteria dec ts  the generation 

costs, and thus be able to give a "dollar value" to voltage security, the costs obtained 

1.5975 

0 -5000' 

-0.2828 



Figure 4.6: Generation costs versus current operating point applying the Hybrid VSC-OPF 

problem for the 57-bus test system. The symbols *, O,  and x correspond to solutions for the 

system with no Iimits, generator P and Q lirnits, and both bus voltage limits and generator 

P and Q limits, respectively, on the maximum loading point; operational limits are always 

active on the current operating point. 



Figure 4.7: Maximum loading point versus current operating point applying the Hybrid 

VSC-OPE' problem for the 57-hus test system. The symbols *, O ,  and x correspond to 

solutions for the system with no limits, generator P and Q limits, and both bus voltage limits 

and generator P and Q limits, respectively, on the maximum loading point; operational 

limits are always active on the current operating point. 



with the Hybrid VSC-OPF formulation are compared to those obtained by using the 

&laxirnum Distance to Collapse procedure and the standard OPF for the 57-bus system 

in Figure 43. The Maximum Distance to Collapse problem resulted in the highest costs 

at each loading level, followed by the OPF with Voltage Stability, with the traditiond 

OPF giving the lowest operating costs? as one would expect. Observe that the proposed 

OPF with Voltage Stability tends to automaticdy shift the optimization importance from 

costs to maximum distance to collapse as the loading level increases. Hence, the i L ~ ~ ~ t 7 7  of 

voltage security would be simply given by the difference between the minimum OPF costs 

and those produced by the proposed optimization technique. At higher loading levels, the 

difference between the three sets of solutions decreases as the feasible space of solutions 

is also decreased due to system and stability limits. 

To better understand how the automatic shift on the proposed OPF with Voltage 

Stability technique affects the system security, a comparison of the values of A, at different 

loading levels for all optimization problems considered is plotted in Figure 4.9 for the 57- 

bus system. The Maximum Distace to Collapse formulation consistently calculated a 

lrtrger A. for ail cases. The "srnail" clifferences in A. are due to the fact that active 

power limits of generators basically define this value, as discussed in the previous section; 

furthemore, the corresponding "large" differences in cos ts indicate t hat this sys tem is 

rather sensitive to its generation patterns. The maximum loading point for the solutions 

obtained using the traditional OPF formulation were calculated using the continuation 

method in the software package UWPFLOW [65] .  

One disadvantage of the Hybrid VSC-OPF problem, is that there is no direct way to 

control the amount of emphasis placed on stability versus cost minimization. The "lack" of 

direct control on the emphasis placed on stability enhancement versus cost minimization is 

illustrated by examining the maximum loading point versus the current loading point for 

the 57-bus system when applying the Modified Maximum Distance to Collapse problem 

and the Hybrid VSC-OPF problem shown in Figure 4.9. For most loading levels there is 

little difference in the maximum loading point for the two methods. But this difference 



Figure 4.8: Generator cost versus current operating point for the 57-bus test system with 

operationai limits on both the current and maximum loading point. The symbols *, O, and 

x correspond to solutions for the system solved using the traditional OPF problem, Hybrid 

VSC-OPF problem and Modified Maximum Distance to Collapse problem, respectively. 



Figure 4.9: Maximum loading point versus current operating point for the 57-bus test 

system with operational limits on both the current and maximum loading point. The 

symbols *, O, and x correspond to solutions for the system solved using the traditional 

OPF problem, Hybrid VSC-OPF problem and Modified Maximum Distance to Collapse 

problem, respectively. 



Figure 4.10: Operating cost s versus weighting factor w 1 for the Linear Combination formu- 

lation applied to the 57-bus test system for Xp = 0.9. 

does result in significant cost differences. If the system operator wanted a solution with 

more emphasis on cost minimization, the Hybrid VSC-OPF wodd not be the appropriate 

tool. 

4.3.3 Linear Combinations VSC-OPF 

The multi-objective Linear Combination formulation was applied to both test systems. 

The effect on cost and stability margin for different values of one of the weighting factors 

at a given d u e  of A, for the 57-bus system are shown in Figures 4.10 and 4.11. As the 

factor w l  is increased, more emphasis is placed on operating costs and less on stability 

margin, as expected. 



Figure 4.11: Maximum loading versus weighting factor w i  for the Linear Combination 

formulation applied to the 57-bus test system for A, = 0.9. 
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Figure 4.12: Operating costs versus current operating point for the Linear Combinations 

formulation, Maximum Distance to Collapse and traditional OPF for the 57-bus test system. 

Figures 4.12 and 4.13 depict the results obtained from applying the Linear Combi- 

nation formulation7 the Maximum Distance to Collapse and the traditional OPF to the 

57-bus system. As expected, the solutions obtained from the Linear Combinations formu- 

lation are bozrnded by the solutions obtained from the Maximum Distance to Collapse and 

normal OPE'. At lower values of w h  the Linear Combination solutions tend to go to the 

Maximum Distance to Collapse solutions, whereas at higher values of w 1 these solutions 

approach the OPF solutions. As illustrated in Figure 4.14, the ll&bus system exhibited 

similar characteristics as the 57-bus system. 

The disadvantage of the Linear Combinations formulation is illustrated in Figure 4.13. 

Observe that there is a loading point, which varies with the values of the weighting factors, 

where the algorithm solution basically switches over from maximizing stability margins 
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Figure 4.13: Maximum loading point versus current operating point for the Linear Combi- 

nations and Maximum Distance to Coilapse formulations for the 57-bus test system. 
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Figure 4.14: Operating costs versus current operating point for the Linear Combination 

and traditional OPF formulations for the 118-bus test system. 



Fixed Stability Margin VSC-OPF 1 x OPF 

Figure 4.15: Cost versus current operating point for the Fixed Stability Margin and tradi- 

tional OPF formulations for the 118-bus test system. 

to rninimizing costs. This is putly related to the difference between A, and A, becoming 

smder  at higher loa&ng levels; therefore, the emphasis of this term in the objective 

b c t i o n  decreases. 

4.3.4 Fked Stability Margin VSC-OPE' 

The third set of numerical analysis involves applying the Fixed Stability Margin formula- 

tion to both test systems. Recall that this method is basically an OPF where a minimum 

stability margin is ensured. 

For both test systems, a minimum stability margin AX,, = 0.1 p-u. is used. In 

general, the algorithm found a solution that ensured this constraint; however, this resulted 



in higher operating costs. A cornparison of the operating costs of the Ils-bus system versus 

current loading point for the Fixed Stability Margin and traditional OPF formulations is 

shown in Figure 4.15. Observe that the difference in the total operating costs increases as 

the loading increases, due to the fact that a minimum stability maïgin is being enforced, 

which becornes a dominant constraint as the system gets closer to collapse. 

4.3.5 Goal Programming VSC-OPF 

The next set of numerical analysis involt-es applying the Goal Programming fomulation to 

both test systems. Recall that the idea is to define a stability margin that is not a binding 

constraint, but that if violated, increases the objective function cost. As illustrated in 

Figure 4.16, the Goal Programming formulation shifted the importance of cost as wl  

increased. As the loading level is increased, the cost of maintainhg the desired minimum 

stability margin increases? and, eventually, for constant values of all weighting factors w 

the minimum stability margin is reduced to zero. Wlen less weight is placed on cost and 

greater weight is placed on stability, Le., for smaller values of w i ,  the minimum stability 

margin is maintained, as shown in Figure 4.17. It is found in the numerical analysis that 

wz does not greatly effect the solution of the probtem, which is to be expected, since there 

is no benefit in having a stability margin greater than the desired value (this tends to also 

result in greater operating costs) . 

Similar results were obtained for the 118-bus system. 

4.3.6 VSC-OPF with Reactive Power Pricing 

The final set of numerical analysis involves applying the Goal Programming formulation, 

which is probably the best compromise for a VSC-OPF, considering reactive power costs 

to both test systems. In this case, the idea is to add a penalty to the objective function 

if generators are not operated at the desired porver factor. Figures 4-18 and 4.19 depict 

the results obtained for operating cost and maximum loading point, and are somewhat 
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Figure 4.16: Cost versus current operating point for the Goal Programming (w2 = 0.001, 

u3 = 1 - w l )  and traditional OPE' formulations for the 57-bus test system. 
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Figure 4.17: Maximum loading point versus current operating point for the Goal Pro- 

gramming (w2 = 0.001, ws = 1 - w i ) ,  traditional OPF and Maximum Distance to Collapse 

formulations for the 57-bus test system. 
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Figure 4.18: Cost versus current operating point for the Goal Programrning formulation 

considering reactive power costs (wz  = 0.001, ws = 1 - w 1, w4 = ws = 0.3) and traditional OPF 

formulation for the 57-bus test system. 
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Figure 4.19: Maximum loading point versus current operating point for Goal Programming 

formulation considering reactive power costs (u2 = 0.001, w3 = 1 - wi, w4 = w5 = 0.3), 

traditional OPF and Maximum Distance to Collapse formulations for the 57-bus test system. 



similar to the results obtained when applying the Goal Progr;i.mming formulation without 

including reactive power costs. Thus, costs increase with loading and larger weighting on 

the stability margin, and as the system is Ioaded, the formulation puts more emphasis on 

cos t minimization than on maintaining a given s tability margin, as enforcing this margin 

becomes more expensive. However, observe that when the reactive power costs become 

dominant with respect to the other two terms in the objective function7 i.e.7 for srnaller 

d u e s  of w i ,  it leads to higher operating costs. 

4.4 Cost of Voltage Stability 

From the results presented in the previous section, a dollar value can be assigned to 

the cost of incorporating voltage stability. For example, Figure 4.20 shows the change 

in operating cost for the 57-bus system when solving the Modified Maximum Distance 

to Collapse formulation versus the tradition OPF problem when enforcing f d  operating 

Limits at the maximum loading point. 

In this case, the cost of cansidering o d y  stability is highest at lower loading levels, 

since the "space" of feasible solutions is larger in this case, allowing for the greatest 

difference between the two solutions. Figure 4.21 illustrates the percentage difference in 

operating costs and stability margin, for the same two formulations. Frorn Figure 4-21, it 

c m  be seen that the large percentage increase in cost at lower loading points versus higher 

loading levels does not correspond to a significantly larger increase in stability rnargin. 

This is attributed to the sensitivity of the cost to changes in the active power settings of 

the generators. 

A more appropriate approach to incorporating voltage stability would be to use one of 

the proposed VSC-OPF formulations. Figures 4.22 and 4.23 show the change in operating 

cost and percent change in operating cost when using the Fixed Stability Malgin VSC- 

OPF formulation versus the traditiond OPF. In this case, a fixed stability margin of 

0.1 p-u. was used. As shown in the figures, the "cost" of incorporating this stability 
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Figure 4.20: Difference in operating cost (solid line) when applying the Maximum Distance 

to Collapse formulation ( x )  versus a traditional OPF (*) formulation for the 57-bus systern. 



Figure 4.21: 

- cost 
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Percent change in operating costs (solid line) and stability margin (dashed 

line) when applying the Maximum Distance to Collapse formulation versus a tradi tional 

OPF formulation for the 57-bus system. 
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Figure 4.22: Difference in operating cost (solid Iine) when applying the Fixed Stability 

Margin VSC-OPF formulation ( x ) versus a traditional OPF (*) formulation for the 57-bus 

system. 

margin, is significantly less than the case where no economic cost was incorporated into 

the formulation. 

4.5 Numerical Implementation 

Several disadvant ages were encountered wit h the implement ation used in performing the 

numerical aaalysis presented in the previous section. The use of MAPLE to symbolically 

form the vectors and matrices required for the optimization method proved to be relatively 

slow. The execution of the "data files" was also slow because of the size of the matrices 

to be formed. But the implementation allo~ved for a flexible analysis of different models 



Figure 4.23: Percent change in operating costs when applying the Fixed Stability Margin 

VSC-OPF formulation versus a traditional OPF formulation for the 57-bus system. 



and formulations. In order to improve the running time, the problems could be solved 

directly using sparse matrix methods with no symbolic calculations. 

-4 second numerical problem encountered was the stability of the IP method. Because 

of the highly nonlinear coupling between the current point and maximum point, some 

convergence problems occurred, which were reflected in missing points in sorne of the 

figures presented in the chapter. Dynamically varying some of the parameters in the 

interior point method may leading to improvements in the convergence. 

4.6 Summary of Results 

This chapter demonstrates that voltage stability and OPF studies cas be performed con- 

currently, proposing and comparing a variety of methodologies to d o w  operat ors to carry 

out this task in an electricity market environment. It is shom that incorporating voltage 

stability into a traditional OPF problem con result in higher operating costs, and hence 

the proposed OPF formulations c m  be used for "pricing" voltage security. The results 

show the importance of including the curent loading point in optimization procedures 

used for voltage stability analysis, as limits on this point significantly influence these types 

of studies. Finally, the chapter proposes a feasible way to include reactive power costs 

in an OPF formulation, which could be a very usefid tool in the operation of electricity 

market S. 

-4s the proposed OPF formulations include stability constraints, a possible enhance- 

ment to these techniques would be to improve the steady state system models used, so 

that accuracy can be improved at higher loading conditions. Furthemore, since the pro- 

posed tools may have a direct application in the operation of electricity markets, other 

representations of active and reactive power "costs" could be analyzed. 



Power System Modeling 



5.1 Introduction 

As open access market principles axe applied to power systems, an increased emphasis 

on using accurate OFF dgorithms arises. Power systems wiU have to be operated under 

higher loading conditions as market influences dernand greater attention to operating 

cost versus stability margin. It is shown in [21, 22, 661 that traditional power flow models 

may fail to accurately represent power systems in voltage stability studies. Hence, this 

chapter examines the effects of det ailed generator models, exponential load models and 

Static-Var Compensators (SVC) in voltage Stability Constrained Optimal Power Flow 

(VSC-OPF) problems. The various VÇC-OPF problems considered are basecl on the 

problems presented in Chapter 4. 

This chapter is structured as follows: In Sections 5.2,5.3 and 5.4 the detailed generator, 

exponential load and SVC models axe given. Numerical results of applying an Interior 

Point method to the several VSC-OPF problems are given in Section 5.5. The problems 

are the applied to the 57-bus, and 118-bus systems. Findy, Section 5.6 summarizes the 

main results presented in this chapter. 

5.2 Generator Mode1 

As loading levels in power systems increase: the effect of generator modeling in the results 

obtained in systems analysis increases. Simplified models seldom incorporate nonlinear 



characteristics and device limi ts properly. The usual treatment of generators using con- 

stant power and fked voltage (PV) buses with reactive power limits may lead to unreliable 

resdts in voltage stability analysis. Since limits on the m a t u r e  cwrent and field voltage 

accurately reflect the true limits of generators, their inclusion in the standard power flow 

equations will enhance the system model used in voltage s tability s tudies. 

The model of the synchronous generator used in this section is based on the detailed 

model presented in [67, 6S]. It is assumed that the field current is proportional to the 

magnitude of the induced voltage and that saturation can be neglected. The following 

equations are used to describe the d q - a d  generator model written in a reference frsme 

using the rotor's mgular velocity [67]. 

where Ef is the field voltage, Id m d  Ip axe the direct and quadrature components of the 

asmature current Ia, Vd and Vi  are the direct and quadrature components of the terminal 

voltage Vien and Ra, rid and X, are the m a t u r e  resistance and direct and quadrature 

synchronous reactances, respectively. The real and imaginary power injected into the 

transmission system by the generator is given by P,,, and Q,,, respectively. 

5.2.1 Generat or Limit s 

In this section, the relationship between traditional PV generator models and the proposed 

model for optimal power flow studies is considered. This is best done by examining the 



limits of generators and how these lunits affect the two models. 

There are several basic limits of a spchronous generator that are expressed as ratings 

of the machine. Typical ratings include voltage magnitude, field current, apparent power, 

power factor, frequency, and speed. The frequency and speed ratings are not discussed 

here, since the models considered are steady state phasor models and assume that the 

machine is operating at synchronous frequency and speed. The relationship between 

the other ratings is briefly reviewed below to demons trate the relationship between the 

proposed and traditional rnodels and how limits for these models are selected. A more 

detailed explanation of the characteristics and ratings of generators can be found in several 

text books (e-g., [25, 69, 701). 

The terminal voltage rating of a machine is dependent on the system to which it is 

connected, and its winding insulation. Typically, the terminal voltage magnitude is set 

between 0.9 p.u. and 1.1 p.u. 

The two main windings in the machine, the armature and field windings must be 

protected fkom overheating. The heating of the -mature winding, which is mainly due 

to copper losses, is given in p.u. by PheDting = 1IaI2R,, where Ra is the mmature winding 

resistance. Therefore, the protection of the armature winding results in a limit on the 

m a t u r e  current magnitude l1,l. If the terminal voltage is considered constant, the - - 
m a t u r e  current effectively sets the apparent power rating of the generator, i.e., S = ViI,' 

In the same manner, the maximum allowable heating of the field winding sets the 

maximum field current. Since the field voltage El is directly proportional to the field 

current, the field winding limit can be expressed as a limit on El. 

Synchronous generator capability c w e s  [25, 26, 691 can be used ta graphicdy illus- 

trate the limits and their relationship. These cuves depict the reactive power versus the 

real power of the generator, assuming an unsaturated, round-rotor machine characterized 

by & = & = X. Figure 5.1 illustrates a capability curve, including various limits. A 



Figure 5.1: Capability curve for synchronous generator. 

detailed discussion of the formulation of capability curves can be found in [25, 261. 

The maximum and the minimum armature current and field voltage are defined ac- 

cording to 

Ira min 1 - - 
IE/ m m  I 

where the above limits are based on the modified capability cuve  shown in Figure 5.2. 

The terminal voltage & was set to the minimum voltage Limit, for the generator bus, to 

insure that when the detailed model was used, both the maximum active and reactive 

power limit could be reached for all acceptable voltage settings. Since there is no one-to- 

one mapping between the limits for the proposed model and the traditional mode1 for d 

loading levels, this approximation is adequate to demonstrate the differences in the two 

models . 



Figure 5.2: Implemented capability curve for synchronous generator. 

5.3 Load Models 

Because of the use of "aggregating" methods to determine load models, standard PQ 

(constant real and reactive power) models may not accurately reflect the characteristic of 

the system in all  cases. In this section, different static load models that express the active 

and reactive powers of loads as a function of the voltage magnitude at the load bus are 

considered. 

Sevesal voltage dependent load models have been analyzed in voltage stability studies 

(e-g., [21, 261). In this section, the e-qonential load model is presented for use in an OPF 

formulation. The exponential load model represents the power demand of the load to its 

terminal voltage using exponential equations, generally expressed as: 



where Po , Qo are the reference real and reactive powers consumed at a reference voltage 

I/o. The exponents QI and pz depend on the type of load that is being represented. The 

following standard static load representations are derived directly from equation (5.3) 

with the proper choices of pl and p2. 

Constant impedance load model: The power m i e s  directly with the square of the 

voltage magnitude (,ol = ~2 = 2). 

Constant curent load model: The power varies directly with the voltage magnitude 

(QI = e2 = 1)- 

Constant power load model: The power does not vary with changes in the voltage 

magaitude (el = ~2 = 0). 

Static Var Compensator (SVC) 

Since the early eighties, advances in Flexible AC Transmission Systems (FACTS) con- 

trollers in power systems have led to their application in improving stability of power 

networks [23]. Several s tudies analyzing the application of FACTS controllers for voltage 

and angle stability have been reported in the literature (eg., [24, '711). 

The effect of the Static Var Compensator (SVC) FACTS controller on the economic 

operation and voltage stability of the network is the principle motivation behind incor- 

porating the SVC into the proposed OPF formulations. The fast response of SVCs make 

them ideal for not just voltage stability improvements but also for cost reduction. The 

steady state model proposed in [24] is used for incorporating the SVC into the mrious 

VSC-OPF problems, and is briefly reviewed here. 

The basic steady state model of the SVC presented in this section is based on rep- 

resenting the controller as a variable impedance [24]. The Fixed Capacitor (FC) with a 

Thyristor Controlled Reactor (TCR) configuration of the SVC is used in this analysis. 



Figure 5.3: Cornmon structure for SVC. 

The structure of this configuration is illustrated in Figure 5.3. The controller is composed 

of a fxed capacitor, h e d  reactor and a bi-directional thyristor valve, composed of two 

thyristors. 

If it is assumed that the SVC bus voltage is sinusoidal, a Fourier analysis on the 

inductor curent waveform can be used to demonstrate that the fked reactor and bi- 

directional valve can be modeled as an equivalent variable inductance X, [24]. The value 

of this impedance is a function of the thyristor firing angle of the TCR and is then given 

as 

7T 
X" = _YL 

S ( T  - QI) + sin 2a 

where fi is the fundamental frequency reactance of the inductor without thyristor control 

and CY is the firing angle of the valves with respect to the positive zero crossing of the 

controller voltage. The total equivalent impedance of the controller Xe is given as 

where XC is the impedance of the fixed capacitor. Equation (5.5) is found by taking the 

parallel combination of &Yu and Xc. The mode1 incorporated in this section is written 

in tenns of the equivalent susceptance, Be = -1/X,, rather than the corresponding 

reactance equations, based on numerical performance as discussed in (24, 711- 



Figure 5.4: SVC steady state circuit representation. 

The SVC is usually connected to the transmission system through a step-down trans- 

former, which can be treated as other transfomers in the system. A steady state circuit 

representation of the connection of the SVC throuph a step-down transformer is illustrated 

in Figure 5.4, where is the magnitude of the voltage at the bus w-hich the SVC controls, 

Vsvc is the voltage across the controller, XTH is the impedance of the step-down trans- 

former, and Qsvc is the reactive power that the SVC injects into the power network. 

The magnitude of Qsvc can be determined using the SVC voltage and the equivalent 

impedance, 

Qsvc = v&,& (5 .6)  

The typical steady state control of the SVC is depicted in Figure 5.5. This control law 

can be represented as 

where VREF is a reference voltage for the controller, X s ~  is the SVC control slope and 

a,;, and CY,,, represent the lower and upper limits on the firing angle. The SVC curent,  

Isvc, can be expressed as 



Figure 5.5: Typical steady state V-1 characteristics of a SVC. 

Based on the mode1 reviewed in this section, the SVC c m  be modeled in a power flow 

environment as 

In terms of Optimal Power Flow formulation, the set of equations (5.9) introduces 

four new dependent variables and one additional independent variable. The dependent 

variables are the current Isvc, the reactive power Qsvc, the firing angle a, and the 

eqGvalent conductance Be. The independent variable is the voltage reference V ~ F .  



5.5 Numerical Analysis 

The effect of incorporating the detailed generator model, static load models, and the 

SVC mode1 into the VSC-OPF problems from Chapters 3 and 4 is analyzed by applying 

these problems to the 57-bus and 11s-bus test systems. To determine both the general 

characteristics of the models and the effect of limits and loading conditions on the models, 

the analysis is done at several loading points, with and without limits on generation and 

bus voltage magnitudes. 

The nonlinear Predictor-Corrector Interior Point method: presented in Chapter 2, is 

used to perform the numerical analysis. 

5.5.1 Detailed Generator Mode1 

The difference between the detailed generator model and the traditional (PV) model is 

first compared for a traditional OPF problem. A plot of the cost versus loading level ivhen 

using the two models for the 57-bus system is shown in Figure 5.6. For all loading levels 

the costs for the two models are similar, but at higher loading levels, as reactive power 

limits for the PV generator model become active, the detailed generator rnodel has a lower 

cost. This characteristic is shown in Figure 5.7, which is a plot of the percentage difference 

in operating costs when using the two generator models. This behavior corresponds to 

a better incorporation of machine limits directly into the system model. It is noted that 

the traditional rnodel does provide a conservative estimate and that, in most cases, the 

generator set-points were similar. However, the difference in cost is very small when 

compared to the total operating costs. 

The detailed generator model was incorporated into the formulations presented in 

Chapters 3 and 4. A summary showing the maximum loading value found by solving the 

Maximum Distance to Collapse formulation for the 57-bus system is given in Table 5.1. 

In each case, using the detailed generator model gave a higher maximum loading level, 

however, as generator active power lirnits tend to become active before voltage limits, 



Figure 5.6: Cost versus current loading point for the 57-bus system when minimizing cost. 

The * and Q symbols indicate the use of the PV model and the detailed generator model 

respectively. 



Figure 5.7: Difl'erence in operating costs between the detailed generator model and the 

traditional PV generator model for the 57-bus system. 



Table 5.1: Maximum Loading (A,) for the 57-bus system found by applying the Maximum 

Distance to Collapse formulation using the detailed generator model 

Parameter 

Only Generator 

Limits 

Operational 

Limits 

including voltage limits in the problem did not affect the maximum loading point. The 

higher loading point for the detailed model is attributed to the relaxation of reactive limits 

due to Limits on the armature current and field voltage. The maximum loading point for 

both models was limited by active power limits, which explains why both models have 

similar values of A,. 

A plot of the maximum loading level (A,) versus the current operating point (Ap) 

when applying the Modified Maximum Distance to Collapse formulation is sho~vn in 

Figure 5.5. The Modified Maximum Distance to Collapse formulation (equation (4.6)) 

considers both the maximum and the current operating point, whereas the ~laximum 

Distance to Collapse formulation only considers the maximum loading point. In general, 

for all loading levels, the PV and detailed generator mode1 have similar characteristics, but 

using the detailed generator model resulted in a higher maximum loading level until a fked 

upper limit of A. = 1.537. For both models, at lower loading levels, upper voltage limits for 

some non-generator buses at the current operating point limited rôising generator voltage 

settings, which in turn reduced the maximum loading level. As the current loading level 

is increased, these bus voltages decrease, allowing the generator voltage settings to be 

increased which in turn results in a higher maximum loading level. For the PV generator 

models, reactive power limits dso limit the maximum loading level. For both models, 



Figure 5.8: Maximum loading versus curent loading point for the 57-bus system when 

solving the maximum distance to collapse formulation. The symbols * and 0 indicate the 

use of PV and the detailed generator models, respectively. 



limits on active power eventually define a fixed upper limit on the maximum loading 

level, resulting in approximately the same maximum loading level (A,). 

The effect of solving the other VSC-OPF formulations proposed in Chapter 4 using the 

detailed generator model, resulted in similar characteristics as was observed in Section 4.3, 

except that using the detailed generator model results, in general, in higher maximum 

loading levels, as expected. 

5.5.2 Exponential Load Models 

In traditional voltage stability analysis, constant impedance and current load models tend 

to have Iarger stability margins than cons tant power or current models. This is at tributed 

to the fact that the actual power consumption of the load decreases as the bus voltage 

decreases for both constant current and impedance models, resulting in a less stressed 

system. For the analysis presented in this section, load increases for all loading models, 

are given as: 

where A is the bifurcation or loading parameter and Pfmd and Qfwd use defined from 

equations (5.3). 

The different load rnodels are fisst incorporated into a traditional OPF problem, Le., 

voltage stability is not considered in this case. A plot of the cost versus loading level 

using the three load models for the 57-bus system is shown in Figure 5.9. For all loading 

levels the constant impedance model results in the lowest cost, followed by the constant 

current model, and ha l ly  the constant power model. Generator voltage settings for the 

constant current/irnpedance models tend to be set low, to reduce the amount of power 

absorbed by the loads. With the constant power load model, the generator voltage levels 



Figure 5.9: Cost versus current loading point for the 57-bus system when solving the 

traditional OPF problem. The symbols +, O, and O indicate the use of constant power, 

current and impedance models, respectively. 

tend to be set higher to reduce losses in the lines. The relative costs for the three models 

do not change greatly ivith increased loading. 

-4s shown in Figure 5.10, incorporating the three load models into the traditional OPF 

problem for the 118-bus system results in similar characteristics as for the 57-bus system. 

The different load models are then incorporated into the Voltage Stability Constrained 

OPF formulations presented in Chapters 3 and 4. A summary showing the maximum 

loading values obtained by solving the Maximum Dis tance to Collapse formulation for 

both the 57-bus and 118-bus systems is given in Tables 5.2 and 5.3. For both systems, 

when considering only generator lirnits at the critical point, using a constant impedance 

model gave the highest maximum loading level followed by the constant current model, 



Figure 5.10: Cost versus current loading point for the l lbbus  system when solving the 

traditional OPF problem. The symbols +, O, and O indicate the use of constant power, 

current and impedance models, respectively. 
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Table 5.2: Maximum Loading A, for the 57-bus system found for the Maximum Distance 

to Collapse formulation. 

I II Constant II Constant 1 Impedance 1 Current 

Only Generator 

Limits at A, 

Operational 

Constant 

Power 

load 

Limits at A, 

then the constant power model, as expected. 

load 

3.8923 

An interesting result observed from these tables is the effect of voltage limits on the 

value of the maximum loading level. For example, for the 11s-bus system, the difference 

between the results obtained for the three load models is greatly reduced when bus voltage 

Limits are also placed on the maximum loading point. Furthermore, for the 57-bus system, 

when voltage limits are included in the problem, the maximum loading point A. for the 

constant power loads is slightly greater t h m  when using constant current load model. This 

behavior can be explained as follows: When the load is modeled using voltage dependent 

models, the solution to the problem tends to lower terminal voltages, due to the fact 

that lower bus voltages result in less power consumption. However, when lower limits are 

placed on the magnitude of bus voltages, some generator voltage settings must be raised, 

resulting in increased real and reactive power demand, which leads to generator power 

limits becoming active, limiting A.. Therefore, a "balance" condition is reached for the 

voltage dependent loads, between the increases in A, from reduced power consumption 

with reduced voltages, and decreases in A. when voltages have to be increased to maintain 

minimum values. 

2.1285 

1 .MO3 

Next, the Modified Maximum Distance to Collapse formulation is used for the two 

test systems. Figures 5.11 and 5.12 are plots of the maximum loading level A. versus the 

1.5295 



Table 5.3: Maximum Loading A, for the 118-bus system found for the Maximum Distance 

to Collapse formulation, 

1 Lirnits at A, 

/ Limits at A. 

Constant Constant 

Impedance Current 

Constant 

Power 

load 

current operating point A, for the 57-bus and l lSbus  systems when applying the Modified 

Maximum Distance to Collapse formulation with full operating limits at the maximum 

loading point. For al1 three load models, the maximum loacling level A. increases as 

the current operating point A, is increased, a characteristic observed and explained in 

Chapter 4 for constant power loads. The behavior of the voltage dependent loads (constant 

current and impedance loads) is due to the interaction between limits becoming active 

and the voltage dependency of the loads. When using these loacl models, the solution to 

the problem tends to lower voltage levels to reduce the power levels of the loads. However, 

bus voltages reaching lower limits, at the maximum loading point A., force increases in 

voltage set tings at the current operating point, resulting in some non-generator buses at 

the current operating point reaching upper voltage limits, similar to the behavior observed 

when using constant power load models. 

The effect of limits on the behavior of the Modified Maximum Distance to Collapse 

formulation is futher illustrated by modifying the b i t s  of the 57-bus system. The 

modified limits are based on the limits used in [31]. Generally, the modified 57-bus system 

has higher maximum voltage limits and reduced lower voltage limits. Fiuthermore, some 

of the reactive power limits are higher, but the reactive power limit for the generator at 

Bus 1 is substantially reduced. No changes were applied to the active power limits. 



Figure 5.11: Maximum loading versus current loading point for the 57-bus system when 

rnaximizing the distance to coilapse. The symbols +, O, and 13 indicate the use of constant 

power, current and impedance models, respectively. 



Figure 5.12: Maximum Ioading versus current loading point for the 118-bus system when 

maximizing the distance to collapse. The symbols f, O, and 0 indicate the use of constant 

power, current and impedance models, respectively. 



Figure 5.13 illustrates the results obtained by applying the Modified Maximum Dis- 

tance to Collapse formulation to the modified 57-bus system with only generator real and 

reactive potver limits at the maximum loa&ng point. For lower loading levels, d three 

load models, exhibit similar behavior as the original system. However, as the current 

loading point is increased, the maximum distance to collapse starts to decrease for the 

constant current and constant impedance models. This behavior can be explained as fol- 

lows: Whea using constant current and impedance models, lower limits on the voltage at 

the current loading level tend to limit the maximum distance to collapse. As the loading 

level increases, generator voltage levels have to be increased to prevent voltage levels at 

non-generator buses from becoming too low at the current point. But increased generator 

voltage levels result in increased reactive power output from the generators (especially at 

the maximum loading point). The increased reactive power demand results in a lower sta- 

bility margin as reactive power limits are reached (generator at Bus 1). For the constant 

current and constant impedance models, all the solutions obtained without voltage limits 

on the maximum loading point had one load bus voltage at a minimum set ting. For any 

increases in load, this bus voltage would drop below an acceptable operating level. When 

using the constant power load model, power limits at the maximum operating point are 

reached at A, = 0.9 per unit limiting any further increases in the maximum loading point. 

The effect of incorporating operational Limits on the maximum loading point A. is 

shown in Figure 5.14 (for the modified 57-bus system) when solving the Modified Max- 

imum Distance to Collapse formulation. For all three load models, incorporating lower 

voltage limits at the maximum loading point results in lower values of A,, but ensures that 

al1 loading points between the current and the maximum operating level are acceptable 

operating points. \men using constant impedance load models, at low loading levels, sim- 

ilar characteristics as before are observed. A limit on a generator's reactive power output 

at the maximum loading point is reached at A, = 0.85, and no further irnprovernents can 

be made to optimize the maximum loading point, with the maximum distance to collapse 

rernûining constant for larger values of A,. For the constant current model, al l  generator 

reactive power upper limits are reached with the generator settings at the initial loading 



Figure 5.13: Maximum loading versus current loading point for the modified 57-bus system 

when maximizing the distance to collapse with generator red  and reactive power limits at 

the critical point. The symbols +, O, and O indicate the use of constant power, current and 

impedamce models , respect ively. 



Figure 5.14: Maximum ioading versus current loading point for the modified 57-bus system 

when maximizing the distance to collapse with operating lirnits at the critical point. The 

symbols f, O, and Cl indicate the use of constant power, current and impedance models, 

respectively. 



point, causing the value of A. to remain constant for all remaining values of A,. The 

negative dope of A. versus A, does not appear, because no voltages a t  the curent loading 

point are at lower limits, as that would imply that those bus voltages would be belon- 

their operating limit at the critical loading point. 

5.5.3 Static Var Compensator 

Finally, the power flow SVC model is incorporated into both the traditional OPF and the 

VSC-OPE' formulations. A SVC mode1 was placed at Bus 31 of the 57-bus system using 

the SVC data presented in [71]. The single line diagram of the 57-bus system is given 

in Figure 4.1. The SVC was placed based on an analysis of the eigenvectors associated 

with the zero eigenvalue (saddle-node bifurcation) the system experiences at high loading 

levels [71]. 

Figure 5.15 shows the clifference in total operating costs for the 57-bus system with the 

SVC controller in the system versus no SVC when solving the traditional OPF problem. 

As expected, the effect of the SVC on reducing operating costs is more significant at 

higher loading levels . 

The effect of the SVC controller on the maximum loading level of the system when 

solving the Morlified Maximum Distance to Collapse formulation witb no limits being 

enforced at the maximum loading point is illustrated in Figure 5.16. As depicted, the SVC 

si~hficantly increases the loâdability of the system. Figure 5.17 shows the results obtained 

when enforcing limits at the maximum loading point for the Modified Maximum Distance 

to Collapse formulation. For all loading points the SVC enhances the stability margin, 

but the amount of irnprovement decreases because of limits. This further illustrates the 

significant &ct of limits on these types of problems. 

Incorporating the SVC controller into the various VSC-OPF problems resulted in 

similar characteristics as observed in Section 4.1.3, except that using the SVC model 

results in higher maximum loading levels and reduced costs, as expected. Figure 5.18 is a 



Figure 5.15: Difference in total o~erating costs with a SVC placed at Bus 31 of the 5'7-bus 

system versus no SVC when solving the traditional OPF problem. 



Figure 5.16: Difference in maximum loading point with a SVC placed at Bus 31 of the 

57-bus system versus no SVC when solving the Modified Maximum Distance to ColIapse 

formulation with no limits at the maximum loading point. 



Figure 5.17: Difference in maximum loading point with a SVC placed at Bus 31 of the 

57-bus system versus no SVC when solving the Modified Maximum Distance to Collapse 

formulation with operating limits at the maximum loading point. 



Figure 5.18: Difference in total operating costs with a SVC placed at Bus 31 of the 57- 

bus system versus no SVC when solving the Fixed Stability Margin VSC-OPF formulation 

(dashed fine) and the traditional OPF problem (solid Line) with operating limits at the 

maximum loading point. 

plot of the reduction in the total operating costs by incorporatiiig the SVC into the Fixed 

Stability Margin VSC-OPF formulation. The difference in the total operating costs when 

solving the traditional OPF problem is included in Figure 5.15 to demonstrate that when, 

considering both stability and operating costs , the benefits of incorporating the SVC are 

greater. 

5.6 Summary of Results 

In this chapter, a detailed generator mode1 is incorporated into various voltage stability 

constrained optimal power flow problems. The results are compared to those obtained by 



using a traditional OPE' formulation. The use of a detailed generator model resulted in 

higher s tabili ty margins. 

Three static load models are analyzed when applied to OPF and VSC-OPF problems. 

The characteristics of the Load models axe analyzed using various examples in order to 

demonstrate the effects of limits. The lowering of generator voltage settings to recluce 

generator power output d e n  using constant impedance and constant curent load models, 

indicates the need to include fidl operating limits on the clment and the maximum loading 

point. 

Finally, a load flow SVC model, is incorporated into both the traditional OPF problem 

and the VSC-OPF formulations. It was shown that incorporating the SVC resulted in 

lower operating costs, especially at higher loading levels. As expected, the W C  improved 

the maximum loading point, but limits at the maximum loading point reduced these 

stability "gains". 



Conclusions 

II? 



6.1 Summary and Contributions 

This thesis proposes a w i e t y  of formulations to perform voltage stability and optimal 

power fiow s tudies concurrently. 

In Chapter 2, the Optimal Power Flow problem is presented. Both a Primd-Dual 

Interior-Point and a Predictor-Corrector Interior Point method for non-linear optimization 

problems are presented to solve the OFF and Voltage S tability Cons trained OPF  problems 

presented in this thesis. 

In Chapter 3, concepts and terminology of bifurcation analysis are described. Two 

traditional techniques for bifurcation analysis are presented. Issues related to optimization 

based approaches to voltage stability analysis, including the system mode1 and the efTect 

of control parameters axe discussed. Finally, an optimization based approach is extended 

to formulate the Maximum Distance to Collapse and Maximum Distance to Saddle-node 

Bifurcation problems. 

In Chapter 4, several methods for "pricing" voltage security in OPF formulations are 

proposed by incorporating voltage stability into traditional OPF problems, demonstrating 

its effect on operating costs. The results show the importance of including the current and 

maximum loading points in optimization procedures used for voltage stability analysis, 

as limits on these points significmtly influence these types of studies. Furthermore, a 

method to include reactive power costs in an OPF pmblem is proposed. This form-dation 

can be a very usefd tool in the operation of electricity markets. 



Finally, in Chapter 5, a detailed generator model is incorporated into mious stability 

constrained optimal power flow problems. The results are compared to those obtained 

using a traditional OPF formulation- Furtherrnore, three load models are analyzed when 

applied to OPF and VSC-OPF problems. The characteristics of the load models are 

analyzed to demonstrate the effects of lirnits. 

The main contributions of the thesis can be summarized as: 

Development of Voltage Stability Constrained Optimal Power Flow (VSC-OPF) 

formulations to incorporate voltage stability margins. The following VS C-OPF for- 

mulations are proposed: 

1. Hybrid VSC-OPF Formulation 

2. Linear Combination VSC-OPF Formulation 

3. Fixed Stability Margin VSC-OPF Formulation 

4. Goal VSC-OPF Formulation 

It was demonstrated that incorporating voltage stability into a traditional OPE' 

problem results in higher operating costs. 

Development and implementation of a technique to incorporate reactive power pric- 

ing in electricity systems. This formulation and the Goal VSC-OPF formulation 

demonstrate methods to incorporate voltage stability and reactive power pricing in 

the operation of power systems. 

The inclusion of the cirrrent and maximum loading levels in optimization forrnula- 

tions for voltage stability asalysis. The importance of this formulation is demon- 

strated by showing the iduence of b i t s  at  the current and maximum loading 

points on these types of studies. 

Incorporation and analysis of detailed generator models, voltage dependent load 

models, and a Static Var Compensator model into the OPF and WC-OPE' formu- 

lations. 



6.2 Directions for Future Work 

Interes ting directions for future work focus around the incorporation of the proposed 

VSC-OPF formulations in an electricity market environment. This would involve the 

determination of the stability costs in the operation of a power systern, which is of great 

interest in t hese market S. 

The non-lineâr interior point method written for the current research can be modified 

to allow for the investigation of the use of the Lagrangian Multipliers as indicators of the 

LLcost" of stability with regards to some puameter limits. The use of Lagrangian Multi- 

pliers and the VSC-OPF formulations may also be used to determine placement locations 

for reactive support ând FACTS controllers. Furthermore, since the proposed tools may 

have a direct application in the operation of electricity madcets, other formulations of 

active and reactive power "costs" could be analyzed. 
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