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Abstract 

In any oil production company, one of the problems that is faced on a daily basis and 

which sometimes hinders the operation is corrosion. In the presence of dissolved oxygen in 

the water inside any vessel, tank, or pipeline, the oxygen attacks the steel to form iron 

oxides, and this result in corrosion of the steel. To prevent this, corrosion inhibitors are 

added to the oil and gas streams. These chemicals are based on aliphatic amines, which are 

soluble in water, to form a film to coat the steel and prevent it from the oxygen attacks. 

As a chemist in the laboratory, filming amines residuals should be monitored and 

optimized in order to make sure the system is protected against corrosion and that no 

excess chemical remains. This is classically done by lengthy liquid-liquid extraction of filming 

amines followed by colorimetric determination using spectrophotometry of the extract. 

SPME is an easy, rapid, and solvent free extraction technique which can be easily coupled 

with GC for separation and quantification, and is a good candidate to be used for this job. 

In this thesis, an introduction about corrosion problems and how to control and 

monitor them in the oil and gas industry will be shared, as well as a literature review about 

various methods used to determine amines in different matrices, followed by a description 

of the SPME procedure, including its theory, modes, fibers, and method development 

procedures. 

A flow-through system was used to simulate the process of flowing streams in 

pipelines during oil production and to provide unlimited sample volumes, which contributes 
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to simplifying the calculation of the distribution constant between fiber and solution. Two 

different agitation methods were compared, which are stirring and sonication, in order to 

optimize the extraction time profiles of analytes. 

A method was developed to determine amines, using a flow-through system at the 

lowest detection limit possible. Different parameters were examined such as variation of 

pH, salt addition, and sand addition. It was found that the pH of the solution has to be 

adjusted in order to get better sensitivity for the desired analytes. 

Finally, in-fiber kinetic calibration was used to calculate the concentration of 

solutions at a short extraction time. This was possible by applying the dominant desorption 

approach using the same analytes as standards in the fiber. The experiment was successful 

in shortening the extraction time from 3 hours to 20 minutes, with less than 20% variation 

in concentrations between the actual and the calculated. 
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Chapter 1 

Introduction 

1.1 Corrosion 

Corrosion is one obstacle faced by many industries such as oil, water desalination, 

and power generation. It is a result of a set of spontaneous reactions of any materials with 

the surrounding environment.1 There are many real life examples of materials deteriorating 

when exposed to certain environments. Wood rots as a result of exposure to moisture in 

the presence of microorganisms and iron rusts when exposed to water in the presence of 

oxygen. 

Corrosion in the oil industry could be responsible for operational upsets like the 

unscheduled shutdown of a facility. Leaks caused by corrosion in a pipeline or vessel might 

contaminate the environment or cause serious personal injuries to workers. Companies are 

sparing no efforts to control corrosion starting from the point of design of facilities through 

until actual operation.2 

 

1.1.1 Cost of Corrosion 

Safety in the workplace, health of workers, and the surrounding environment are 

negatively influenced by corrosion, which also impacts the financial status of operating 

companies.2 Many countries have considered this seriously and conducted studies on the 

cost of corrosion. Countries like the United States, United Kingdom, Japan, Australia, India, 
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and China have come to the conclusion that corrosion is costing each nation 1 to 5 % of its 

gross national product (GNP).2 

In 2001, a study for the cost of corrosion in the US economy was conducted and it 

was found to cost a total of $137.9 billion/year, which contributes to approximately 3.1 % of 

United‎States’‎GNP.2 

 

1.1.2 Corrosion Mechanism 

Corrosion of metallic materials (pipeline, vessel, or tank) is an electrochemical 

process that requires the presence of an electrolyte (water and dissolved species) to be 

reduced while iron is oxidized.3 At the anode, oxidation of free metallic iron from the steel 

surface occurs to produce ferrous ions (Fe2+) as per the following half reaction: 

𝐹𝑒 → 𝐹𝑒2+ + 2𝑒− 

Dissolved gases from the stream (e.g. oxygen, carbon dioxide, and hydrogen sulfide) 

act as the cathode of the cell, which is responsible for the reduction reaction. In the case of 

oxygen, the half reaction is: 

𝑂2 + 2𝐻2𝑂 + 4𝑒− → 4𝑂𝐻− 

The overall reaction of both half cells results in the formation and precipitation of 

iron hydroxide, which is insoluble in production streams: 

𝐹𝑒2+ + 2𝑂𝐻− → 𝐹𝑒(𝑂𝐻)2 
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In the presence of excess oxygen, iron will further be oxidized from Fe2+ to Fe3+ 

producing iron oxide as per the following reaction: 

2𝐹𝑒(𝑂𝐻)2 + ½𝑂2 → 𝐹𝑒2𝑂3 ∙ (𝐻2𝑂)2 

The flow of the electrons from the anode (surface of the steel) to the cathode 

(species in the solution) will result in metallic loss leading to corrosion.1,4 By having both half 

cells running smoothly, the corrosion current will continue to oxidize iron from the steel and 

ferrous ions will continue finding their way out by precipitation. The reaction will continue 

indefinitely unless it is controlled or prevented.1,3 

 

1.1.3 Methods for Corrosion Control 

Corrosion cannot be totally stopped but it can be minimized and controlled and 

there are many methods for corrosion control in the oil industry.1 

 

1.1.3.1 Cathodic Protection 

Cathodic protection (CP) is a method of controlling the corrosion of steel by 

reversing the role of the anode, which is the surface of the steel, and makes it the cathode. 

This could be accomplished by applying a direct current from an external anode that is 

attached to the body of the steel.1 The external anode is another metal like aluminum or 

zinc, which will sacrifice by losing its electrons.3 
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1.1.3.2 Protective Coatings 

The corrosion of steel or other metals by water can be prevented by the application 

of protective coatings, which are typically organic polymers like polypropylene.1 For 

maximum effectiveness, the coating must be of sufficient thickness and strength to prevent 

the water from contacting the metal. It should be uniform and continuously cover the 

internal surface of pipeline or vessel.3 

 

1.1.3.3 Oxygen Scavengers 

Oil field water systems should be designed to eliminate contact of the water with 

air. Injection water systems, hydrotesting operations, and acid stimulation jobs should be 

free of oxygen to prevent corrosion.3 The removal of oxygen could be performed by adding 

oxygen scavengers, which are reducing agents such as sulphites and hydrazine.1 

 

1.1.3.4 Materials Selection 

Corrosion resistant materials like stainless steel are an alternative to carbon steel in 

some severe environments where corrosion exists with carbon steel.3 Copper alloys, nickel-

based alloys, and non-metallic materials are all possible choices as well.1 Plastic-based 

materials like fiberglass and polyvinyl chloride (PVC) are used in low pressure flowlines and 

storage tanks.1 



 

 5 

1.1.3.5 Corrosion Inhibitors 

Corrosion inhibitors are a group of chemicals that are added to industrial systems to 

stop or slow down electrochemical corrosion reactions on metal surfaces. These chemicals 

actually coat the surface of the metal by adsorption from the aqueous phase solution or 

dispersion in the oil phase.1 Corrosion inhibitors are classified into two main categories, 

either inorganic or organic. 

The inorganic corrosion inhibitors are used mainly in utility systems such as cooling 

water, which makes them the most widely used type of inhibitor.3,4 They are crystalline salts 

of chromates, silicates, phosphates, and molybdates.1 Chromates are found to act best 

against corrosion in the recirculation of water for cooling of combustion engines and 

rectifiers.4 Nitrites are best to be used in cooling water systems because they do not 

interfere with ethylene glycol that is added as antifreeze liquids.4 Zinc salts precipitate on 

the metal surface to coat it and protect it against corrosion.1 

In the oil and gas industries, organic corrosion inhibitors are used. These are 

mixtures of organic compounds that act as surfactants.1,3 They consist of a hydrocarbon 

chain that is attached to a strongly polar functional group, usually an amine.1 The polar 

head is adsorbed on the metal surface of the pipeline and the hydrocarbon chain, which is 

hydrophobic is attracted by the oil phase in the stream.1 This distribution results in the 

formation of a thin oily layer on the inner surface of the pipeline, that provides a barrier to 

keep the corrosive water away from the metal surface.3,4 
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1.1.3.6 Types of Organic Corrosion Inhibitors 

Most organic corrosion inhibitors used in the oil and gas industry contain at least 

one nitrogen functional group to act as the polar side to be adsorbed on the metal surface. 

Following are some common organic corrosion inhibitors with their structures: 

Imidazolines: They are the most widely used class of organic corrosion inhibitors for 

general corrosion. Some types of imidazoline-based corrosion inhibitors are resistive to 

tough operational conditions at elevated temperatures under high pressure.3 

Quaternary Ammonium Salts: This class of corrosion inhibitors is mostly used in 

combination with other groups and rarely used on its own. They are characterized by the 

ability to act as biocides, which prevents bacterial growth and bio-films from forming.1,3 

Amides: Derivatization of fatty alkyl amines to amides gives another set of organic 

corrosion inhibitors which is not widely used because of their potential to negatively 

interfere with the oil water separation process. Other amides derivatized by acylation of 

amino acids are highly biodegradable and are useful to the separation process.1,3 

Fatty Amines: The last class here is fatty amines, which are the most frequently used 

organic corrosion inhibitors in the oil and gas industry.1,4 The hydrocarbon portion of 

amines could be a long chain alkyl, cyclic, or aromatic group. When introduced to the 

system, the amine portion is attached to the metal surface and the hydrocarbon portion 

forms an oily film that prevents corrosion attacks. 
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1.2 Sample Preparation 

The fundamental step of any analytical procedure is the sample preparation, which 

involves cleaning the sample matrix and transporting the target analytes to a more suitable 

matrix for instrumental analyses.5,6 This is very crucial because it leads to the achievement 

of better detection limits as compared of not having this step.5 Before obtaining any 

samples for analyses, sample preparation and a separation technique should be considered. 

The target analyte and the expected concentration govern the separation technique.7 The 

classical sample preparation method for organic pollutants was the solvent extraction prior 

to analysis, which was then replaced with solid phase extraction (SPE).5,7,8 Excessive use of 

organic solvents, which are costly and harmful to the environment, as well as extended time 

elapsed in the extraction process are two disadvantages associated with these traditional 

techniques.8 

 

1.2.1 Determination of Filming Amines Using SPE 

SPE is an exhaustive extraction technique, requiring a sorbent – usually polymer-

based, such as styrene/divinylbenzene copolymer and polyamide resin – to extract all the 

organic material from the sample.  Kusch and coworker have used SPE and derivatization to 

determine amines in water boilers at power plants.9 Approximately 10 mg of the 

investigated‎amine‎standard‎was‎dissolved‎in‎a‎solvent,‎and‎100‎μL‎of‎the‎derivatization‎

reagent trifluoroacetic anhydride (TFAA) was added. Then, the vial was sealed and placed in 
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an ultrasonic bath and agitated for 15 min at 60°C. After that, the excess solvent and 

derivatization reagent were evaporated with nitrogen, and the resultant derivative was 

dissolved in a solvent and separated in the GC using different detectors: FID, nitrogen-

phosphorous detector (NPD) and mass spectrometer.9 Also, electron impact ionization (EI), 

positive chemical ionization (PCI), and negative chemical ionization (NCI) mass spectra of 

the derivatives were presented.10,11 This method was applied successfully for the 

identification of filming amines used as corrosion inhibitors in water boilers of power plants. 

The method achieved low detection limits, but it required the use of a large amount of 

solvent. 

 

1.2.2 Direct SPME Analyses of Short Chain Amines 

Short chain amines C3 to C6 were successfully extracted using direct solid phase 

microextraction (SPME) from air using commercially available fibers polydimethylsiloxane 

(PDMS), polyacrylate (PA), and carbowax-divinylbenzene (CW-DVB) by Pan.12 The 

concentration of the standard solution used was 25 ng/mL containing different short 

amines. The flame ionization detector (FID) used was not able to detect methylamine and 

ethylamine. It was found that comparing the three fibers used, CW-DVB has the best 

extraction recovery among those tested, likely forming hydrogen bonds through the 

hydroxyl groups present in the polymer surface with the amine group.12  
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One successful derivatization reagent for amines is pentafluorobenzaldehyde 

(PFBAY), which converts amines to imines. The derivatization can be performed in the 

presence of acetonitrile and water, which will result in high sensitivity and better 

chromatographic resolution. PFBAY can only react with primary amines and previous 

studies have shown that PA was the best SPME fiber coating to extract the derivatives 

compared to others like CW-DVB.12 

 

1.2.3 Measurement of Fatty Amine Using Electrochemiluminescence 

The electrochemiluminescence (ECL) technique has been utilized in the 

measurements of residuals of ethoxylated fatty amines used in offshore drilling operations 

as a corrosion inhibitors. This technique is based on a process through which highly reactive 

species are generated from stable precursors at the surface of an electrode, and react with 

one another, producing light. Fatty amine ethoxylates that have tertiary amines were used 

as a co-reactant in the ECL sequence since they could form a radical in the reaction 

process.13 

The detection limit of this method was found to be in the range of 5 to 50 mg/L. 

Sodium hypochlorite at high pH was used to oxidize the tertiary amine group, which then 

resulted in the formation of the rhodamine-excited state. The mechanism of the reaction is 

similar to that of the following tri-n-propylamine: 

𝑅𝑢(𝑏𝑝𝑦)3
2+ − 𝑒− → 𝑅𝑢(𝑏𝑝𝑦)3

3+
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𝐶9𝐻21𝑁 − 𝑒− → [𝐶9𝐻21𝑁
∙]+ →  𝐶9𝐻20𝑁 ∙ + 𝐻+ 

𝐶9𝐻20𝑁
∙ + 𝑅𝑢(𝑏𝑝𝑦)3

3+ →∗ 𝑅𝑢(𝑏𝑝𝑦)3
2+ + 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

Where:*Ru(bpy)3
2+ is the electronically excited species capable of undergoing 

emission 

 bpy‎is‎2,20’-bipyridine 

 C9H21N is tri-n-propylamine 

This technique has some advantages, such as the reagents' solubilities in a variety of 

solvents,‎its‎low‎detection‎limits‎(≈10−18 M), and the fact that it can be easily adapted for 

field work.13 

 

1.2.4 Colorimetric Determination of Filming Amines 

The effectiveness of the organic corrosion inhibitors should be evaluated by 

monitoring their residuals in the system. The concentrations of the chemicals are frequently 

monitored at the outlet of the plant to confirm that an optimum dosage was applied right 

from the beginning. 

The classical method for that is the colorimetric determination of water soluble 

filming amine corrosion inhibitors by the reaction with bromocresol purple.14 Briefly, most 

water soluble filming amines react with bromocresol purple in a specific buffered medium 

to form a yellow complex, which is soluble in chloroform. The excess dye of the yellow 
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complex is extracted and the dye is removed with a pH 4.2 buffered wash. The chloroform 

layer is extracted with a pH 9.7 buffer solution forming a highly colored violet complex. The 

absorbance of this complex is measured at 595 nm with a spectrophotometer and 

compared against calibration standards. 

This is a lengthy and tedious job that requires many extraction steps using many 

buffer solutions as well as the establishment of a calibration curve prior to working with 

every set of samples. A rapid, easy, one step, and solvent free method is required to assist 

in quick, precise, and effective decision-making. 
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1.3 Solid Phase Microextraction 

Solid phase microextraction (SPME) is a sample preparation technique that was 

introduced in the 1990s by Professor Janusz Pawliszyn and developed in his research lab at 

the University of Waterloo.6,8,15,16,17 This technique, which can be used in the extraction of 

gases, liquids, and solids, has many advantages over other conventional extraction 

techniques like SPE and liquid-liquid extraction (LLE).16,18,19 SPME reduces the impact of 

harmful organic solvents to both humans and the environment.15,16,19 It is a rapid, simple, 

inexpensive technique that can be portable or automated and requires only small sample 

volumes.7,15,16,19 Another advantage is that SPME can easily be coupled with separation 

instruments such as gas chromatographs (GC).7,16,19 Other techniques such as high 

performance liquid chromatography (HPLC) and capillary electrophoresis (CE) can also be 

coupled but not as easily as with GC.16 

 

1.3.1 Principle of SPME 

SPME is based on the partitioning of the analyte in between the sample and a fused 

silica fiber coated with a stationary phase.8,15,16,17,18 The coating of the fiber is normally 

either a liquid or solid polymeric sorbent.8,15,16 The fiber should be exposed to the sample 

for a predetermined time, then the analyte will be adsorbed on the fiber coating until an 

equilibrium is established between both of them depending on the distribution 

coefficient.8,16,17 The thermal desorption of analytes from the fiber coating is conducted 
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simultaneously with the introduction of the fiber into a GC injector for separation and 

quantification.6,15,16,17,18 SPME has been successfully used in many applications especially in 

the field of organic environmental pollutants such as pesticides, polychlorinated biphenyls 

(PCBs), polycyclic aromatic compounds (PAHs), and volatile organic compounds 

(VOCs).15,16,17 

 

1.3.2 SPME Modes 

Two common modes of SPME are the direct immersion of the fiber in the sample 

and the exposure of the fiber to the headspace of the sample. In the direct immersion 

mode, the fiber is immersed in the sample, which is usually gas or liquid, and the liquid 

should be clean to prevent damage to the fiber. In the headspace SPME, the fiber is 

exposed to the vapor above the sample, which could be liquid or solid.6,7,16 The headspace 

mode is recommended over the direct mode for volatile samples for two main reasons: 

faster extraction caused by the higher diffusion coefficient of the gas, and longer life time of 

the fiber because it is not in contact with the sample matrix.6,7 

 

1.3.3 SPME Theory 

The amount of analyte extracted by the coating of the fiber at equilibrium is directly 

proportional to the concentration of the analyte in the sample matrix.16,17,20,21 This can be 

presented mathematically by the following equation:20 
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𝑛𝑒 =
𝐾𝑓𝑠𝑉𝑓𝑉𝑠

𝑉𝑠 + 𝐾𝑓𝑠𝑉𝑓
𝐶0 

Where: 𝑛𝑒  is the amount of analyte 

 𝐶0 is the initial concentration of the analyte 

 𝐾𝑓𝑠  is the distribution coefficient 

 𝑉𝑓  is the volume of the fiber coating 

 𝑉𝑠  is the volume of sample matrix 

For large volume samples where 𝑉𝑠 ≫ 𝐾𝑓𝑠𝑉𝑓 , as in the case of field sampling of air or 

lake water, the sample volume may be neglected, which leads to the following equation:20,21 

𝑛𝑒 = 𝐾𝑓𝑠𝑉𝑓𝐶0 

From the above equation, the extracted analyte is directly proportional to its initial 

concentration in the matrix regardless of the sample volume.16,20,21 

 

1.3.4 SPME Fibers 

Fiber selection is one of the keys for achieving higher selectivity for the targeted 

analytes.16 Only limited types of fibers are available commercially by Supelco. These cover a 

relatively good range of polar and nonpolar compounds.8,16 Other coatings are being 

developed in-house by research groups.16,19 
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1.3.4.1 Commercially Available Fiber Coatings 

The fiber core could be a fused silica, stableflex, or metal coated with thin layer of 

sorbing material with a thickness of 5 to 100 μm.‎SPME coatings can be classified according 

to their polarity, coatings type, or coating thickness.22 The most common sorbents used are 

polydimethylsiloxane (PDMS) and polyacrylate (PA). PDMS is nonpolar and used mainly for 

the extraction of nonpolar compounds like VOCs, PAHs, and BTEX. Polar organic 

compounds, such as triazines and phenols, are best extracted with PA and polyethylene 

glycol (PEG).5,6,8,16,22 

 

Table ‎1.1: Commercially available SPME fibers and their applications16,22 

Fiber Coatings Film Thickness Applications 

Polydimethylsiloxane (PDMS) 7, 30, 100 μm 
Nonpolar organic compounds such as 
some VOCs, PAHs, and BTEX 

Polyacrylate (PA) 85‎μm 
Polar organic compounds such as 
triazines and phenols 

Polyethelene glycol (PEG) 60‎μm 
Very polar and work better in 
hydrocarbon or aromatic solvents 

Polydimethylsiloxane/Divinylbenzene 
(PDMS-DVB) 

65 μm 
Bipolar, aromatic hydrocarbons and 
small volatile analytes such as 
solvents; air analysis 

Carboxen/Polydimethylsiloxane (CAR-
PDMS) 

85‎μm Bipolar, VOCs and hydrocarbons 

DVB/Carboxen-PDMS 30, 55 μm 
Bipolar with wide range of molecular 
weight analytes 
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1.3.4.2 Custom-Made Fiber Coatings 

Research groups are working on the development of new fiber coatings capable of 

extracting highly polar compounds from water matrices.16,19 The need for a new structure 

with more sample capacity leads to the development of the sol-gel technology.6,19 It is a 

process of chemically binding organic polymers such as PDMS to the inorganic silica forming 

a cross-linked network providing higher sample capacity, higher thermal stability, more 

polarity, and lower detection limits.5,15,19,23 

 

1.3.5 SPME Device 

The SPME holder is a syringe-like device modified so that it can accommodate the 

fused silica fiber, which has a cylindrical shape to fit inside the stainless steel needle. The 

fiber is mounted on the plunger of the syringe for easy exposure and retrieval of the fiber. 

This arrangement protects the fiber from damage especially during the piercing of the 

septum of the vial or the injector of the GC as well as preserving the sample.6,7,8 

 

1.3.6 On-site Implementation 

One of the advantages of SPME is the easy coupling with GC for separation and 

quantification.5,7,15 GC is a powerful separation technique with high efficiency and capability 

of coupling with many kinds of detectors.7 An automated fiber injection system was later 
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introduced, which increased applications of SPME-GC in research and industrial 

laboratories.15,19 

Most of these applications are conducted in the laboratory and only a few are 

performed in the field. The need for eliminating storage and transportation of the sample 

from the field to the lab was highlighted for cases where immediate corrective action was 

required.21 

 

On-site implementation of SPME provides accurate, precise, and faster analytical 

data that is helpful in environmental monitoring, medical investigations, and in vivo 

sampling (see Figure 1.1).21,24 

 

Figure ‎1.1: Advantages of onsite implementation18 
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1.3.7 Derivatization 

One of the interesting approaches to improve extraction and selectivity of SPME is 

by introducing a derivatization step that converts highly polar compounds to their less polar 

derivatives.15,17,19,25 Other issues associated with some analytes, such as high hydrophilicity, 

high reactivity, high volatility, and thermal instability, could be resolved with derivatization 

as well.19,23,25 Derivatization leads to increasing the recovery of the analytes, enhancing the 

method selectivity and sensitivity, and improving the detection limit when combined with 

GC.15,17,19,24,25  

There are three modes of combining derivatization with SPME (see Figure 1.2). 

Direct derivatization in the sample matrix has the most published research work; it is simply 

performed by adding the derivatizing reagent directly to the sample and then exposing the 

SPME fiber to the derivatives to extract them.15,17,25 

Figure ‎1.2: SPME derivatization approaches20 
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Derivatization in the SPME fiber coating, which is referred to as on-fiber 

derivatization in much of the literature, is the most advantageous derivatization technique 

and is performed by loading the derivatization reagent to the fiber before exposing the fiber 

to the analyte (see Figure 1.3). It is a powerful combination of extraction and derivatization 

in one step, which might be useful for onsite analyses. 15,17,24,25 

  

Figure ‎1.3: On-fiber derivatization14 
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1.4 Thesis Objective 

The current practice to determine corrosion inhibitor residuals is liquid-liquid 

extraction of filming amines followed by colorimetric determination using a 

spectrophotometer. The solvent extraction process is a lengthy procedure, and requires a 

significant amount of solvent as well as intensive labor. Exposure to too much solvent has a 

negative effect on both human health and the environment when it is disposed of. 

SPME is a rapid, easy, and environmentally-friendly sample preparation technique 

that is easily coupled to GC, a powerful separation instrument, leading to a higher 

sensitivity. It can be implemented onsite, which makes it perfect for real-life sampling, 

especially when immediate corrective action is required. 

The objective of this work is to develop and optimize an SPME method for the 

analysis of aliphatic long chain amines from a solution that has a similar matrix to that of 

industrial waste water. A flow-through system is used to generate a standard water solution 

at a constant flow rate in order to simulate flowing streams in pipelines. Finally, dominant 

desorption kinetic calibrations are used to shorten the analysis times and make the method 

practical for onsite testing. 

 

1.4.1 Target Analytes 

The targeted analytes are a group of aliphatic long chain amines that are used as 

organic corrosion inhibitors for the protection of pipelines in the oil and gas industry. They 
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mainly consist of octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, 

as well as others. These chemicals are manufactured and mixed together in certain 

compositions as per the engineering standards and the kind of water associated with the oil 

production. A typical composition can be found in the following table: 

Table ‎1.2: Composition of Armeen C26 

Chemical Formula Composition 

Octylamine C8H17NH2 7% 

Decylamine C10H21NH2 6% 

Dodecylamine C12H25NH2 48% 

Tetradecylamine C14H29NH2 19% 

Hexadecylamine C16H33NH2 9% 

Octadecylamine C18H37NH2 3% 

Others - 7% 

 

The above table contains the composition of a chemical with the commercial name 

Armeen C which is produced by Akzo Nobel Chemicals Ltd. (Mississauga, ON). The general 

formula of the composition of Armeen C is shown below: 

N

H

H
C

8-18
H

17-37
 

Figure ‎1.4: Formula of Armeen C26 

 

To work in the development of the method, three of these chemicals were ordered 

separately from Aldrich (Oakville, ON). The three amines are decylamine, dodecylamine, 

and tetradecylamine, which actually make up 75% of the composition of Armeen C as per 
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the table above. The following table contains some chemical and physical properties of 

these three amines: 

 

Table ‎1.3: Chemical and physical properties of target analytes27,28,29,30 

Chemical Formula CAS # 
M. W. 
(g/mol) 

Boiling 
Point/°C 

pKa 
Solubility (g/L) 

@ pH 7 @ pH 10 

Decylamine C10H21NH2 2016-57-1 157.3 221 10.64 554 3.3 

Dodecylamine C12H25NH2 124-22-1 185.3 259 10.63 120 0.70 

Tetradecylamine C14H29NH2 2016-42-4 213.4 291 10.62 28 0.16 

 

 

1.4.2 Sample Matrix 

Corrosion inhibitors are water-soluble chemicals that work as surfactants, since they 

have a polar hydrophilic end attached to a long chain hydrocarbon. The industrial water 

associated with the oil during production is highly saline, with total dissolved solids (TDS) of 

more than 50,000 mg/L. It also contains some suspended solids like sand particles which 

should not exceed the limit of 5 mg/L and size of 0.45‎μm as per the engineering standards. 
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Chapter 2 

Flow-Through System for the Determination of Aliphatic Amines 

and Selection of Proper Agitation Method 

2.1 Introduction 

2.1.1 The Importance of Sample Volume 

The selection of the proper sample volume is crucial in the development of an SPME 

method, because the mass extracted from the sample is dependent on the sample 

volume.22,31 However, when the sample volume is large, as in the cases of air or lake 

sampling, the amount extracted by the fiber becomes independent of the sample volume 

which makes it suitable for field sampling and onsite analyses.32,33 Equations showing these 

relationships were shared in the previous chapter. 

To make use of this simple approach, a flow-through laboratory water system was 

used to simulate the flowing streams in pipelines and provide large sample volumes. A 

liquid chromatography (LC) pump capable of generating stable flow rates ranging from 0.01 

to 9.99 mL/min was used to deliver solutions to a modified 40 mL vial that is connected to a 

waste container through Teflon tubes (see Figure 2.1). 
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2.1.2 Agitation 

Agitation is required to facilitate rapid extractions, which help in transporting the 

analytes from the bulk of the solution to the vicinity of the fiber. Choosing the best agitation 

method can help in reducing the time needed for the analytes to reach equilibrium.22,33 

There are numerous of agitation techniques available that can be used for SPME 

extraction, such as magnetic stirring, needle vibration, vial moving, flow-through stirring, 

and sonication. At high sample flow rates, the flow-through system can offer the best 

agitation; however, care must be taken to eliminate any source of contamination and to 

ensure a constant sample flow rate, which will require some additional equipment.22 

 

Figure ‎2.1: Schematic of the flow-through standard amines solution system 
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Sonication is another powerful agitation technique which can lead to a shorter 

extraction equilibration time, but the heat produced by the probe can lead to heating the 

sample and lowering the extraction efficiency.22 
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2.2 Experimental Section 

2.2.1 Material and Chemicals 

Decylamine (C10H21NH2), dodecylamine (C12H25NH2), and tetradecylamine 

(C14H29NH2) were purchased from Aldrich (Oakville, ON). HPLC grade methanol was used to 

make standards and was purchased from Caledon Laboratories Ltd. (Georgetown, ON). 

NANO-pure water that was used in the preparation of samples was obtained from 

Barnstead Ultrapure Water Systems (Dubuque, IA). Helium, nitrogen, and hydrogen were 

obtained from Praxair (Waterloo, ON) and were of ultra-high purity. High purity air was 

generated in the lab using a Whatman Zero Air Generator (Haverhill, MA). 

For the agitation experiment, an XL-2000 Sonicator was obtained from Qsonica 

(Newtown, CT), which was capable of producing power up to 20 W. 3/8”‎Fisherbrand TFE 

starburst stirring bars were used for normal agitation with a stirrer at speed of 1000 rpm 

and were obtained from Fisher Scientific (Ottawa, ON). The LC pump that was used in the 

generation of flow through system was isocratic digital pump and was obtained from 

Chrome Tech. Inc. (Apple Valley, MN). 

The 100 μm thickness PDMS coating fibers and holder assemblies used were 

purchased from Supelco (Oakville, ON) and were conditioned as recommended by the 

manufacturer. Graduated clear glass bottles (1 L) were used to prepare the solutions and 

were obtained from Cole-Palmer (Montreal, QC). Hamilton syringes that were used for 

standard preparation and injection were purchased from Hamilton (Reno, NV). Screw top 
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amber glass vials (40 mL) with PTFE/silicone septa were used for the standards preparation 

and were obtained from Supelco (Oakville, ON). 

 

2.2.2 Instrumentation 

A Varian CP-3400 GC equipped with a flame ionization detector (FID) obtained from 

J&W Scientific (Mississauga, ON) and an Optic 2 programmable-temperature vaporizing 

(PTV) injector obtained from ATAS GL (Veldhoven, Netherlands) was used for all 

experiments. The carrier gas was helium maintained at a pressure of 15 psi, and the 

detector gases flow rates were set to 300 mL/min for air, 25 mL/min for nitrogen (make-up 

gas), and 30 mL/min for hydrogen. A 1.0 mm i.d. insert liner capable of handling injections 

of less than 3 μL was used for both SPME and liquid injection and was obtained from ATAS 

GL (Veldhoven, Netherlands). 

The column used was a Restek Rtx®-5Sil MS (5% diphenyl/95 % dimethylsiloxane) 

phase, and its dimensions were 15‎m‎x‎0.25‎mm‎ID‎with‎0.25‎μm‎stationary phase thickness, 

which was purchased from Chromatographic Specialties (Brockville, ON). For the instrument 

method, the initial oven temperature was 50°C for 2.5 min, then ramped up to 280°C at the 

rate of 40°C/min. The injector temperature was programmed for solvent injection from 

50°C  to 270°C  with a rate of 600°C/min and was kept at 270°C for the fiber desorption, and 

the detector temperature was held at 300°C. 
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2.2.3 Flow-Through Standard Water Generating System 

The previously-described setup was used to generate the standard aqueous solution 

of amines. The flow rate of the LC pump was set at 5.0 mL/min. Solutions with a 

concentration of 0.1 μg/mL, prepared by adding 0.2 mL of 500 μg/mL methanolic amines 

mixture to 1 L of nano-pure water, were prepared in a 4 L bottle. The pump was then 

operated for several hours to allow the system to equilibrate before starting the 

extractions. Extracted masses were calculated from solvent injection calibration curves, and 

concentration of the amines mixture in the system was confirmed by liquid-liquid 

extraction. 
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2.3 Results and Discussion 

2.3.1 Extraction Time Profile 

Although the flow-through system provides a good means of agitation, magnetic 

stirring was used as well in order to assist in the agitation process, by placing the 40 mL 

sampling vial on a stirrer with a speed of around 1000 rpm. Then, in order to establish the 

extraction time profile, the fiber was exposed to the flowing stream in the 40 mL sampling 

vial for variable times, starting from 1 min up to 300 min. Extraction at each time was 

repeated three times and relative standard deviation was calculated, which was in the 

range of 5%. Following are charts showing the extraction time profiles:  

Figure ‎2.2: Extraction time profile of decylamine from flow-through 

system that contains amines mixture from 1 to 300 min 
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Figure ‎2.4: Extraction time profile of dodecylamine from flow-through 

system that contains amines mixture from 1 to 300 min 

Figure ‎2.3: Extraction time profile of tetradecylamine from flow-through 

system that contains amines mixture from 1 to 300 min 
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From the charts above, it can be estimated visually that decylamine needed 60 min 

to reach equilibrium, dodecylamine needed 120 min, and tetradecylamine took 180 min, 

which is a long extraction time. All desorptions were carried out at 270°C for 5 min. 

Following is a chromatogram to show peak shapes at different extraction times: 

 

2.3.2 Sonication vs. Stirring 

Another means of agitation (sonication) was introduced to help in shortening the 

equilibration time. Probe sonication produces a high power resulting in the possibility of 

solution heating which might reduce the extraction efficiency, but with the flow-through 

system, the solution is self-cooled.22 

Figure ‎2.5: Chromatogram of different peaks of different amines at different extraction times 
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There are some other limitations of using the probe sonication approach: the high 

decibel noise associated with its operation, which is above Occupational Safety and Health 

Administration (OSHA) recommended exposure levels, and the fear of damaging the fiber 

coating by the power of agitation. 

The same setup was used, and the probe sonication was used at a power of 10 W, 

instead of the magnetic stirring, with extraction times starting from 1 min up to 60 min, for 

the reasons mentioned above. The probe was placed inside the 40 mL sampling vial such 

that the tip of the probe was just below the surface of the solution and with a distance of 

1.5 cm from the exposed fiber in order to protect the fiber coating from damage that might 

occur from the power of the sonication. 

Extractions were repeated three times at different extraction times in order to build 

the extraction time profile, with RSD in the range of 5%. The following charts show a 

comparison between the results obtained from both experiments: 
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Figure ‎2.6: Comparison of extraction time profiles of decylamine using 

two different agitation techniques 

Figure ‎2.7: Comparison of extraction time profiles of dodecylamine 

using two different agitation techniques 
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It is clear from the above charts that using the probe sonication to assist in the 

agitation of the sample while extracting helped in reducing the time needed for analytes to 

reach equilibrium. For decylamine, equilibration time was reduced by about 30 min 

compared to magnetic stirring. Little improvement was observed for dodecylamine. Finally, 

for the tetradecylamine, about 80% of equilibrium extraction was in 60 min, compared to 

the 180 min required for full equilibration with stirring. 

Overall, it can be said that sonication is a powerful means of agitation, and if 

combined with the flow-through system, equilibration time can be significantly shortened. 

The limitations with using sonication, as described earlier, were the heat generated and the 

high decibel noise associated with its operation. The heat could be reduced by the flowing 

Figure ‎2.8: Comparison of extraction time profiles of tetradecylamine 

using two different agitation techniques 
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streams, and the decibel noise can be controlled by using a special box designed by the 

manufacturer of the device in order to minimize the sound. The box can fit the probe and 

the vial, but was not able to accommodate the setup that was shown in Figure 2.1. 

 

2.3.3 Variation of Fiber to Probe Distance 

In an effort to have shorter equilibration times for targeted analytes using probe 

sonication, the fiber was brought as close as possible to the probe head. This could cause 

more rapid solution agitation, which should help facilitating the mass uptake by the fiber. 

The more rapid movement of the solution with respect to the fiber, the more analytes 

present in the solution exposed to the fiber coating, and the closer the system to perfect 

agitation.22 

The extraction time profile experiment was carried out for all analytes with the fiber 

at the new position with respect to the probe head. The results were compared to those 

previously obtained with the fiber being away from the probe head. The temperature of the 

solution was monitored and was kept as low as possible, around 28°C, by modifying the 

flow rate of the LC pump which was set to 8 mL/min. The fiber coating was monitored as 

well under the microscope for any possible damage caused by the vigorous agitation of the 

sonication. Figure 2.9 shows the two positions that were tested. 
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It was noticed that bringing the fiber closer to the probe did not help in reducing the 

equilibration time, which suggests that the sonication at ~1.5 cm away from the fiber was 

enough to agitate the solution and give all analytes access to the fiber coating. If true, 

placing the probe closer or increasing the agitation of the solution will not help in reducing 

the extraction time. 

Shown below are three charts comparing extraction time profiles of the sonication 

with the two positions from the fiber. 

Figure ‎2.9: The two tested sonicator positions. (A) Having the probe at a 

distance of ~1.5 cm, and (B) having the probe at a distance of ~0.5 cm 
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Figure ‎2.11: Comparison of extraction time profiles of decylamine using 

sonication with two different probe positions 

Figure ‎2.10: Comparison of extraction time profiles of dodecylamine 

using sonication with two different probe positions 
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Figure ‎2.12: Comparison of extraction time profiles of tetradecylamine 

using sonication with two different probe positions 
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2.4 Conclusion 

The sample volume is one of the key parameters in calculating the concentration of 

samples using SPME. When the sample volume is much higher than the volume of the 

extraction phase, the calculation of the distribution constant between the fiber and sample 

becomes much simpler. Also, finding the best agitation method for a certain application is 

crucial in maintaining a shorter equilibration time. In this chapter, a flow-through system 

was used to produce large volumes of solutions for extraction in order to develop a method 

more relevant to field sampling and to minimize the loss of analytes due to adsorption on 

vessel surfaces. Equilibration time profiles for the analytes were determined using stirring 

and were compared to another powerful agitation technique, sonication. Sonication was 

very helpful in reducing the extraction time, but it has three major problems: the heat 

produced during agitation, the decibel noise which is harmful to human ears, and possible 

damage to the fiber coating. 
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Chapter 3 

SPME Method Development for the Analysis of Aliphatic Amines 

using the Flow-Through System 

3.1 Introduction 

In this chapter, SPME method development for the determination of aliphatic 

amines will be discussed using the flow-through system to generate a standard solution that 

contains the targeted analytes. The system should simulate the actual process of flowing 

streams in pipelines and provide unlimited volumes of solution, which will help in 

calculating the fiber/water distribution constant. The distribution constant will be utilized 

later in the determination of unknown solution concentrations. 

Many method development parameters were optimized, including extraction time 

profile, solution pH, solution ionic strength, sand content, and desorption conditions. The 

main factor in this experiment was the pH adjustment, which, when increased from 7 to 10, 

the amount extracted substantially increased. This was mainly because of the fact that 

amines are of basic nature, so at higher pH, more analytes will exist in the non-ionic form 

which can be extracted by the fiber coating.  On the other hand, at low pH, a large portion 

of the analytes will be ionized and will not be extracted by the fiber coating. 
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3.2 Experimental Section 

3.2.1 Chemicals and Materials 

Sodium chloride (NaCl), sodium carbonate (Na2CO3), and sodium hydrogen 

carbonate (NaHCO3) that was used to modify the solution matrix were purchased from 

Supelco (Oakville ON). 

The rest of chemicals and materials are described in section 2.2.1. 

 

3.2.2 Instrumentation 

It is the same as described in section 2.2.2. 

 

3.2.3 Preparation of Standards and Samples 

To prepare the amines mixture, approximately 50 mg each of decylamine, 

dodecylamine, and tetradecylamine were dissolved in 25 mL of methanol in order to 

prepare 2000 μg/mL stock solutions. This‎was‎diluted‎with‎methanol‎to‎500‎μg/mL‎to‎

prepare the working solutions. All samples used for the SPME method development were 

prepared by adding 0.2 mL of the 500 μg/mL‎amines mixture into 1.0 L of water, resulting in 

a 0.1 μg/mL amines solution. 
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3.2.4 Solvent Injections of Amines Mixture 

In order to calculate the masses extracted by the SPME fiber coating, detector 

response should be calibrated by direct solvent injection into the instrument and building a 

calibration curve from which the masses can be calculated. To do so, a series of standard 

solvent solutions ranging from 5 to 500 μg/mL containing amines mixtures were used to 

establish the calibration curves to be used for the calculations of the mass extracted from 

aqueous samples by the fiber. 

Each standard (1 μL ) was injected into the instrument for separation and 

quantification, which was repeated three times for every standard with relative standard 

deviation (RSD) ranging from 0.12 to 3.69%. Figure 3.1 shows the calibration curves 

obtained, along with their corresponding equations. 
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3.2.5 SPME Mode Optimization 

There are two modes of SPME: direct immersion (DI) of the fiber in the sample, and 

exposure of the fiber to the headspace (HS) above the sample. HS is preferable for volatile 

and semivolatile analytes, with the advantage of preventing the fiber from direct contact 

with the sample matrix, which could cause damage to the fiber. DI is used for non-volatile 

analytes with high boiling points because the portion of the analyte in the headspace is 

minimal.22,33 In this study, DI was chosen for all extractions, as the boiling points of the 

studied analytes ranged from 220 to 290°C. 

 

Figure ‎3.1: Solvent injection calibration curves for decylamine, 

dodecylamine, and tetradecylamine 
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3.2.6 SPME Fiber Selection 

PDMS is a non-polar liquid polymer coating which is suitable for a wide range of 

analytes, since it has similar composition to most of the capillary columns used in GCs.22,33 A 

100 μm thickness PDMS coating was chosen for this study, since it is the universal coating 

and suitable for non-polar compounds. The polarity of amines is reduced with the increase 

in the length of the hydrocarbon chain.12 
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3.3 Results and Discussion 

3.3.1 SPME Optimization 

SPME is an equilibration process, so experimental conditions must be carefully 

optimized in order to achieve quantitative results. A number of factors were investigated to 

optimize the extraction of the amine mixtures using PDMS coating in DI extraction mode. 

These factors were: the extraction time profile of analytes, the effect of ionic strength on 

extraction, selection of sample pH, desorption time profile, linearity of the method, and the 

method limit of detection (LOD). 

The solution was prepared by adding 200 mL of 500 μg/L standard solution to 

waster. Then all of these factors were optimized for the amine mixture using the flow-

through system to flow the solution at rate of 5 mL/min. All extractions were performed in 

triplicate and relative standard deviations were recorded. 

 

3.3.2 Extraction Time Profile 

Extraction time profile was determined to be 180 min and described in section 2.3.1. 

 

3.3.3 Selection of Sample pH 

Amines are bases which are easily protonated in neutral water and so become 

ionized. So, the pH of the solution should be adjusted in order to convert all species to their 
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neutral form. This can be approached by alkalizing the solution to a pH two units above the 

pKa values of the analytes in order to assure that the dominant species in the solutions are 

neutral. 22,33,34 In the case of the analytes under study, the pKa values are around 10.60 (see 

Table 3.1), so a pH adjustment should be made to approximately 12.60. However, extracting 

from solutions with extreme pH conditions, whether low or high, could damage the fiber 

coating. 

The aliphatic amines are weak bases and have general formula of (RNH2) and when 

put in solution they react with water and take up one proton to form the conjugate acid 

(RNH3
+). The equilibrium between both species in solution could be expressed by the 

following equation:35 

𝑅𝑁𝐻3
+ + 𝐻2𝑂 →    𝑅𝑁𝐻2 + 𝐻3𝑂

+ 

The acid dissociation constant is expressed as follows: 

𝐾𝑎 =
 𝑅𝑁𝐻2  𝐻

+ 

 𝑅𝑁𝐻3
+ 

=
𝐾𝑤

𝐾𝑏
 

Rearranging the equation to prepare it for the next step to be: 

 𝐻+ = 𝐾𝑎 ∙
 𝑅𝑁𝐻3

+ 

 𝑅𝑁𝐻2 
 

Taking – 𝑙𝑜𝑔 both sides results in the following: 

𝑝𝐻 = 𝑝𝐾𝑎 + 𝑙𝑜𝑔
 𝑅𝑁𝐻2 

 𝑅𝑁𝐻3
+ 
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The following table summarizes ratio of amines/conjugate acids and their impact on 

the 𝑝𝐻 and 𝑝𝐾𝑎  relationship: 

 

Table ‎3.1: Ratio of amines/conjugate acids and their impact on pH and pKa relationship 

 𝑅𝑁𝐻2 

 𝑅𝑁𝐻3
+ 

 𝑙𝑜𝑔
 𝑅𝑁𝐻2 

 𝑅𝑁𝐻3
+ 

 𝑝𝐻 = 𝑝𝐾𝑎 + 𝑙𝑜𝑔
 𝑅𝑁𝐻2 

 𝑅𝑁𝐻3
+ 

 

100/1 2 𝑝𝐻 = 𝑝𝐾𝑎 + 2 

10/1 1 𝑝𝐻 = 𝑝𝐾𝑎 + 1 

1/1 0 𝑝𝐻 = 𝑝𝐾𝑎  

 

From the above table, choosing the pH to be two units above the pH will result in 

amines to be 99% the dominant species in the solution. But when pH and pKa have the same 

value, then amines will be present in the solution with same ratio as their conjugate acid. 

The used fiber coating in this experiment is PDMS, which can handle solutions with 

pH‎in‎the‎range‎of‎2‎to‎11,‎as‎per‎the‎manufacturer’s‎recommendations. The pH was chosen 

to be 10, one unit below the upper pH limit, to prolong the life of the fiber coating. 

 

Table ‎3.2: pKa values of the targeted analytes (decylamine, dodecylamine, and tetradecylamine)30 

Analytes pKa 

Decylamine 10.64 

Dodecylamine 10.63 

Tetradecylamine 10.62 
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The buffer solution was prepared by mixing 0.025 mol/kg of sodium carbonate 

(Na2CO3) and 0.025 mol/kg of sodium hydrogen carbonate (NaHCO3), which resulted in a 

buffer solution with a pH of 10 at room temperature.30 

Solutions were prepared by adding the amine standard mixture into water without 

pH adjustment and compared with a buffered solution that has the pH of 10. In both cases, 

solutions were prepared in bulk and the system was allowed to equilibrate before the start 

of extraction. Figure 3.2 shows a comparison between both cases. 
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It can be clearly seen that the amount extracted at a pH of 10 was substantially 

increased as compared to that of the neutral conditions. This is because more analytes were 

in the non-ionic form at a pH of 10 as compared to that of neutral conditions, so more 

analytes were available for extraction by the fiber coating. pH adjustment was carried out 

for the rest of the experiments. 

 

Figure ‎3.2: Comparison of extracted masses of different amines from neutral solution and pH-

adjusted solution 
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3.3.4 Ionic Strength Optimization 

When salt is added to the solution, the ionic strength is increased resulting in 

decreasing the solubility of the organic analytes and improving the sensitivity of the 

method. This is due to the fact that aqueous solutions prefer to solvate salts rather than 

organic matters which will result in enhancing the release of analytes from the sample and 

make them available for extraction by the fiber coating. The addition of NaCl was chosen to 

adjust the ionic strength of the solution which is the most often used salt.22 

The concentration of the salt was chosen to be 5% NaCl which is the range of the salt 

present in the oil production waste water. This amount of salt was added to the buffered 

solution in order to examine the effect of combining pH adjustment and salt addition on the 

efficiency of extraction. 

In all experiments, solutions were prepared by adding the same amounts of analytes 

to water, resulting in the‎same‎concentration,‎which‎was‎0.1‎μg/mL‎of‎the‎amines‎mixture.‎

The system was allowed to run 12 hours to reach a steady state and to equilibrate before 

starting extractions. Extractions were carried out for 3 h, which is the equilibration time as 

determined earlier in chapter 2. 
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From Figure 3.3, it can be clearly seen that adding the NaCl salt to the pH-adjusted 

solution did not significantly enhanced the extraction efficiency, as compared to adjusting 

pH only without any salt added for dodecylamine and tetradecylamine. However, there was 

some enhancement in the amount extracted for decylamine. 

 

 

Figure ‎3.3: Comparison of extracted masses of different amines from neutral solution, pH 10 

solution, and pH 10 solution with 5% NaCl 
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3.3.5 Sand Effect Experiment 

 Since sand and suspended sediments are present in real samples, it was necessary 

to examine the binding effect of analytes on sand particles. It is known that any additional 

phases in the solution might compete for analytes with the extraction phase, resulting in a 

decrease of the extraction efficiency of the target analytes.22 

This experiment was designed to examine this assumption by adding 5 mg/L of sand 

particles, which is the maximum allowable sand content in waste water, to the solution. 

These particles were added to the pH-adjusted solution, which contained 5% NaCl, and 

allowed to mix properly overnight before starting extraction. 

This experiment was necessary to study the possible loss of analytes due to binding 

to the sand particles. From Figure 3.4, it can be seen that there is a slight variation between 

the amount extracted with the presence of sand and without the presence of sand. 
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In the case of decylamine, around 15% of analytes were lost during extraction, with 

RSD of 2.5 to 4.4%. For dodecylamine and tetradecylamine, variations were much less than 

that of decylamine. 3 to 8% variations were noticed, with RSD in the range of 3.3 to 8.1% so 

these variations are not likely significant. A possible reason for the bigger loss in the case of 

decylamine is because it has a shorter chain length and hence is more polar, which leads to 

possible losses due to binding to existing surfaces in the solution. 

Figure ‎3.4: Comparison of extracted masses from pH 10 solution with 5% NaCl and pH 10 

solution with 5% NaCl and 5 mg/L sand 
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3.3.6 Desorption Conditions Experiment 

Thermal desorption of extracted analytes into the GC injector ports is affected by 

many factors, like carrier gas flow rate, injector temperature, and desorption time. The 

higher the temperature, the more efficient and quicker the release of analytes from the 

fiber into the GC column is. This is mainly because the gas/coating distribution constant is 

decreased when the temperature is increased resulting in lowering the affinity of fiber 

coating to keep the analytes and therefore they are promptly released into the GC 

column.22 

The carrier gas was maintained at a constant pressure of 15 psi, and no flow rate 

control was possible due to the fact that the Optic 2 injector has no carrier gas flow rate 

control, and so only carrier gas pressure can be controlled. The other two parameters were 

varied at four different desorption conditions: two different desorption temperatures, 

250°C and 270°C, and two different desorption times, 2 min and 5 min. 

All experiments were carried out at the optimized conditions, which are: a buffered 

solution with 5% NaCl for 3 h extraction time. All extractions were done in triplicate, and 

after each desorption the fiber was placed back into the GC injector for 5 min to further 

desorb any carryovers of analytes that might not desorbed in the first place. Also, to clear 

the fiber memory and make it ready for the next extraction. 
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From Figure 3.5, It was found that 5 min of desorption at 270°C was the optimum 

desorption condition for this method, where more than 95% of the analytes were 

transferred into the column with minimum carryover of less than 5%. 

 

 

The carryover experiment was carried out by desorbing fibers for the second time 

after each initial desorption to calculate how much analytes remain on the fiber. This was 

Figure ‎3.5: Comparison of desorption conditions at 2 min at 250°C, 5 min at 250°C, 2 min 

at 270°C, and 5 min at 270°C 
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performed at desorption temperature of 270°C for 5 min. the following chart shows the 

carry over amount which was less than 5%. 

 

 

3.3.7 Linear Range and Limit of Detection 

The linearity of the PDMS coating to extract amines was determined by the analyses 

of a set of diluted solutions from the original concentration, which was 0.1 μg/mL using the 

optimized conditions. 5, 10, 25, and 50 ng/mL were used for this experiment in order to 

Figure ‎3.6: Carryover results for desorption at 270°C for 5 min 
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establish the linear curve. Each concentration was prepared separately and allowed to run 

for couple of hours in the system until it reached a steady state before starting extractions. 

Each extraction was performed in triplicate, and RSD was calculated. 

 

Table ‎3.3: Linearity of the method with calculated LOD 

Compound 
Fiber linear range 

(ng/mL, FID) 
R2 RSD % 

LOD 
(ng/mL) 

Decylamine 5 – 100 0.9967 2.0 – 4.5 0.8 

Dodecylamine 5 – 100 0.9992 3.3 – 5.3 1.3 

Tetradecylamine 5 – 100 0.9976 1.2 – 5.0 1.0 

 

 

The limit of detection (LOD) of the detector is generally defined as the lowest 

amount of analyte that could provide a signal three times the background noise of the 

blank. It can be calculated mathematically by running at least 7 extractions of a blank or the 

lowest concentration that could be detected, and then a standard deviation of these runs is 

calculated and the limit of detection would be 3 times the standard deviation. For that 

purpose, a solution containing 1 ng/mL of amines mixture was prepared, and the 

experiment was carried out at optimized conditions. Calculated LODs are listed in Table 3.3. 
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3.4 Conclusion 

In this chapter, a method was developed for the extraction of decylamine, 

dodecylamine, and tetradecylamine from water, using a flow-through system. The various 

method development parameters were carefully studied and compared in order to get the 

optimum conditions for extraction. It was found that the pH of the sample has to be 

adjusted to 10 to have approximately equal ratios of dissociated and un-dissociated amines 

in the solution. This is because of the fact that the fiber coating extracts only analytes in the 

un-dissociated form. Sand addition was performed to analyze the possible losses of analytes 

due to the presence of another extraction phase. It was found that some analytes might be 

lost if the sample contained certain amounts of sand, likely due to binding of analytes to it. 

The limits of detection of the three analytes were calculated from 7 extractions of a sample 

contacting 1 ng/mL of amines, and tabulated above. 
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Chapter 4 

In-Fiber Standard Kinetic Calibration for Shorter On-Site Analyses 

of Aliphatic Amines 

4.1 Introduction 

4.1.1 Calibration of SPME by Liquid Injection 

To calculate the absolute mass injected into the instrument, liquid injection of 

known concentrations should be carried out in order to develop a calibration curve in which 

all area counts can be converted to masses. There are many factors that should be taken 

into account, like size of the liner, the presence of wool in the liner, and the injector 

temperature program. A comparison of different scenarios was described in the literature 

which indicated that a smaller liner ID, with wool packed inside, will result in the best mass 

transfer into the column.36 

 

4.1.2 External Standard Calibration 

This is one of the traditional calibration methods mostly used for laboratory analyses 

and sometimes on-site as well. This method is simple and widely-used in SPME calibration 

by preparing a number of known standards and using SPME for extraction and introduction 

into the instrument. To use this method, all conditions must be the same for all standards as 
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well as the unknown sample. Conditions like extraction time, agitation speed, sample 

temperature, and sample matrix should be controlled.37 

The simplicity of this method makes it preferable for on-site analyses, especially for 

gaseous samples, which require a shorter equilibration time. For aqueous samples, this 

might not be the perfect calibration method since it requires longer equilibration, as in the 

case of aliphatic amines (3 hours extraction time), and so may not be feasible for field 

analyses.22 

This method was also widely used in the calculation of the concentration of the 

analytes in the flow-through system, which is required to calculate the fiber/solution 

distribution constant. Different concentrations are prepared with the same matrix 

modification and extraction/desorption conditions, and from the calibration curve 

produced, the concentration of a sample of the effluent of the flow-through system can be 

calculated.37,38 

 

4.1.3 In-Fiber Standardization 

This kind of kinetic calibration is based on the desorption of an internal standard on 

the fiber coating in order to calibrate the extraction of the target analytes from the sample 

matrix.39 Traditionally, the standard is delivered to the sample matrix, which is not practical 

for on-site sampling; however, in the in-fiber standardization approach, the standard is 

loaded onto the extraction phase and desorbed into the solution. It utilizes the fact that 
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absorption and desorption of analytes onto and from an SPME fiber coating are mirror 

images of each other under the same agitation conditions.40 Radioactive or deuterated 

internal standards might be used, but they may be either expensive or not available. The 

target analytes can be used instead, allowing desorption to calibrate for the absorption.41 

The absorption of any analyte onto an SPME liquid coating fiber can be theoretically 

described by the following equation:20 

𝑛 = 𝑛0 1 − 𝑒𝑥𝑝 −𝑎𝑡   

Where 𝑛 is the extracted amount of the analyte at time 𝑡 

𝑛0 Is the extracted amount of the analyte at equilibrium 

𝑎 is a constant describing the rate of absorption/desorption equilibrium, 

which depends on mass transfer coefficient, distribution coefficient, and the 

type of fiber coating39 

Similarly, the desorption of analytes from an SPME liquid coating fiber into the 

solution can be theoretically described by the following equation: 

𝑄 = 𝑞0𝑒𝑥𝑝 −𝑎𝑡  

Where 𝑞0 is the preloaded amount of analyte into the fiber 

𝑄 is the amount of the analyte remaining in the fiber after desorbing the 

fiber into the solution from time 𝑡20 
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Both equations can be rearranged to express the symmetry of the absorption and 

desorption of the analyte onto and from the SPME fiber coating.20 

𝑛

𝑛0
= 1 − 𝑒𝑥𝑝 −𝑎𝑡  

The left side of the equation represents the fraction of the analyte absorbed on the 

fiber after time 𝑡, and the fraction of the analyte remaining on the fiber after desorption for 

time 𝑡 can be expressed by:20 

𝑄

𝑞0
= 𝑒𝑥𝑝 −𝑎𝑡  

When 𝑎 in both equations has the same value, the sum of both equations should 

equal to 1 at any absorption/desorption time 𝑡 as follows:20 

𝑛

𝑛0
+

𝑄

𝑞0
= 1 

The above equation is true for liquid polymer SPME coatings like PDMS and PA 

because analytes are absorbed by the fiber coating. It was reported previously that when 

the amount of the standard preloaded onto the fiber is very high, pre-equilibrium 

desorption of the analyte into the sample matrix is dominant and extraction is 

insignificant.41 By preloading a much higher amount of the analyte onto the fiber than the 

amount that the fiber could potentially extract and then desorbing the fiber into the 

solution for short times, the amount of analyte that the fiber can extract at equilibrium can 

be calculated by knowing how much analyte is extracted by the fiber coating for shorter 

times by rearranging the above equation to be: 
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𝑛0 =
𝑛𝑞0

𝑞0 − 𝑄
 

 Then, by knowing the 𝐾𝑓𝑠  value, the initial concentration of the solution can be 

calculated by the following equation: 

𝐶0 =
𝑛0

𝐾𝑓𝑠𝑉𝑓
 

This approach is very helpful for on-site sampling, providing rapid analyses 

combining sampling and sample preparation in one step without the bother of external 

calibrations. 

 

4.1.4 Loading Techniques 

There are four standard loading techniques that were evaluated previously by Zhao 

et al. From those, direct transfer from the syringe onto the fiber was chosen for this 

experiment.40 This technique was performed by transferring 1 μL of the methanolic 

standard solution onto the SPME fiber coating and waiting for the full volatilization of the 

solvent in air at room temperature before desorbing the fiber either into the GC injector or 

the flowing solution. This technique is preferred for low volatility compounds, as the loss of 

standards due to vaporization should be limited. It has the advantages of simplicity, good 

reproducibility, and ease in adjusting the concentration of the loaded standards. 
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4.2 Experimental Section 

4.2.1 Chemicals and Materials 

1.5 mL Fisher brand micro-centrifuge tubes were used for LLE and were purchased 

from Fisher Scientific (Ottawa, ON). 

The rest of chemicals and materials are described in section 2.2.1. 

 

4.2.2 Instrumentation 

It is the same as described in section 2.2.2. 

 

4.2.3 Predominant Desorption for Waste Water Analysis 

The waste water of oil production has a salt content of 5% with a neutral pH. So this 

experiment was carried out using the same conditions of the waste water. By knowing the 

potential extraction efficiency of the fiber from the solution at equilibrium, the 

concentration of the preloaded analytes was chosen to be 1 μL of 10,000 μg/mL. The direct 

transfer of analytes from the syringe into the fiber technique was chosen based on the 

reasoning described earlier. Waiting time for the solvent content in the standard to 

evaporate was 5 min and was kept constant for all desorptions. The preloaded amount was 

verified by desorbing the fiber into the GC port for quantification prior to desorption in the 

flowing solution which contains the amines mixture. All extractions were repeated five 
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times using the same fiber for both extraction and desorption. The pre-equilibrium 

extraction time was chosen to be 20 min, and the same time was set for the preloaded 

analytes to desorb in the flowing solution. Desorptions and extractions were performed at 

the same time. LLE was performed in order to calculate the actual concentration of the 

amines in the solution, and was done several times throughout the experiment. 

It is worth mentioning here that the actual maximum allowable concentration of 

these analytes in industrial waste water is 5.0 μg/mL. 

  



 

 66 

4.3 Results and Discussion 

4.3.1 Calculation of Actual Concentration by LLE 

Liquid-liquid extraction (LLE) was carried out to exhaustively extract all analytes 

available in the solution and calculate the actual concentration in the system. The general 

procedure of LLE extraction of organic compounds from aqueous was taken from EPA 

3510C.42 500 mL of the effluent of the flow-through system was collected in a 500 mL 

separatory funnel and was extracted with three 30 mL portions of methylene chloride. The 

three organic layers were collected in a 125 mL Erlenmeyer flask and were allowed to 

evaporate in a water bath at room temperature with nitrogen flowing inside the flask. 

When the volume of the solvent became less than 2 mL, it was transferred into a 1.5 mL 

micro-centrifuge tube and evaporated to approximately 1.0 mL. The solvent (1‎μL)‎was 

injected into the GC for separation and quantification. 

The following table summarizes the LLE results for all extractions done during the 

experiments with their average and standard deviation (n=3): 

 

Table ‎4.1: Actual concentrations of flow-through system confirmed by LLE 

Analytes 
LLE 1 

(ng/mL) 
LLE 2 

(ng/mL) 
LLE 3 

(ng/mL) 
Average LLE 

(ng/mL) 

Decylamine 233 ± 9.1 230 ± 8.2 210 ± 19 224 ± 22 

Dodecylamine 1447 ± 19 248 ± 23 221 ± 5.2 245 ± 31 

Tetradecylamine 191 ± 4.4 153 ± 15 139 ± 8.2 161 ± 17 
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Table 4.1 shows the variation in the concentrations of the analytes throughout the 

experiment. Concentrations were quite stable for both decylamine and dodecylamine, but 

decreased for the heavier amine tetradecylamine. This indicates that tetradecylamine might 

need more time to equilibrate and become stable in the system due to its behavior as a 

surfactant. Also tetradecylamine tends to stick on the walls of the glass bottles and tubing, 

which lowers its concentration with time. This variation in the concentration contributes to 

the high error in calculating the Kfs value, and later the predicted concentration form the 

dominant desorption experiment. This should be prevented by allowing the system to 

further equilibrate in order for all active sites of the glass to get saturated with the targeted 

analytes. 

 

4.3.2 Calculation of Distribution Constant Kfs 

The equation that relates initial concentration to the amount extracted at 

equilibrium and distribution constants can be rearranged to calculate the distribution 

constant after simplifying the equation, knowing that the volume of the sample is much 

larger than the volume of the extraction phase. The equation can be rewritten into: 

𝐾𝑓𝑠 =
𝑛𝑒

𝑉𝑓𝐶0
 

Where 𝑛𝑒  is the amount extracted at equilibrium 

 𝑉𝑓  is the volume of the 100 μm thickness PDMS coating, which is 0.612 μL 
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𝐶0 is the initial concentration of each analyte confirmed by LLE 

 

The fiber was immersed in the flowing solution for three hours until equilibrium was 

reached in order to calculate the amount of analytes extracted, which was used to calculate 

Kfs value as per the above equation. The following table summarizes the results obtained for 

the extractions of amines mixtures with 5% NaCl: 

 

Table ‎4.2 : Kfs values and log Kfs of amines 

Analytes 
𝒏𝒆 

(ng) 
𝑪𝟎 

(ng/mL) 
Kfs Value log Kfs 

Decylamine 16.7 ± 0.1 224 ± 22 122 ± 12 2.1 

Dodecylamine 50.8 ± 5 245 ± 31 338 ± 54 2.5 

Tetradecylamine 543.5 ± 8 161 ± 17 55144 ± 600 3.7 

 

Table ‎4.3: Comparsion of log Kfs values at three different solution matrices with log Kow value43 

Analytes 
log Kfs 

(pH 7, no salt) 
log Kfs 

(pH 7, 5% salt) 

log Kfs 

(pH 10, 5% salt) 
log Kow 

Decylamine 2.2 2.1 3.7 3.8 

Dodecylamine 2.4 2.5 4.2 4.8 

Tetradecylamine 3.1 3.7 5.2 5.8 

 

From Table 4.3, it can be seen that the partition coefficient increases with matrix 

modification which indicates that solubility of the amines decreased as well. When adding 

5% NaCl, the solubility of the amines decreases due to the fact that the water solvates the 

salt more effectively than the amines. Also, when adjusting the pH, approximately equal 
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ratios of dissociated and un-dissociated amines are present in the solution, so more 

analytes could be extracted by the fiber coating. Table 1.3 in Chapter One shows the 

solubilities of the all targeted analytes at the two studied pHs, which decreased by two 

orders of magnitude when adjusting the pH to 10. 

 

4.3.3 Dominant Desorption 

The in-fiber kinetic calibration relationship that was shared in section 4.1.3 provides 

the basis for dominant desorption calibration. In the method, the preloaded amount was 

chosen to be more than 10 times the potential amount of analytes that the fiber could 

extract. The preloading was carried out by transferring 1 μL of the methanolic solution 

(using a micro-syringe) that contained 10,000 μg/mL of the amines mixture directly to the 

exposed 100 μm PDMS fiber and waiting until the solvent completely evaporated, then the 

fiber was exposed to the flowing solution that contained the amines mixture, and at the 

same time another fiber was placed in the flowing solution for extraction. Both fibers were 

left in the solution for 20 min and then removed and injected into the GC for desorption. 

To calculate the predicted amount of analyte that could be extracted at equilibrium, 

the equation should be rearranged to obtain 𝑛0 as follows: 

𝑛0 =
𝑛𝑞0

𝑞0 − 𝑄
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Table ‎4.4: The different parameters of the equation and the calculated masses 

Analytes 
q0 

(ng) 
n 

(ng) 
Q 

(ng) 
n0 

(ng) 

Decylamine 6663 ± 338 11.2 ± 0.3 2108 ± 73 16.4 ± 1.5 

Dodecylamine 6301 ± 371 16.2 ± 1 3714 ± 227 39.5 ± 7.9 

Tetradecylamine 5790 ± 367 69.6 ± 2 4888 ± 255 447 ± 224 

 

 

Then, by knowing 𝑛0, 𝐶0 can be calculated from the following equation: 

𝐶0 =
𝑛0

𝐾𝑓𝑠𝑉𝑓
 

Where  𝑉𝑓  is the volume of the 100 μm thickness PDMS coating, which is 0.612 μL 

 𝐾𝑓𝑠  is reported in Table 4.2 

 

Table ‎4.5: The calculated concentrations of analyte at equilibrium 

Analytes 
n0 

(ng) 
Kfs Value 

C0 

(ng/mL) 

Decylamine 16.4 ± 1.5 122 ± 12 220 ± 30 

Dodecylamine 39.5 ± 7.9 338 ± 54 191 ± 49 

Tetradecylamine 447 ± 224 55144 ± 600 132 ± 68 
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Finally, the calculated 𝐶0 can be compared to the actual concentrations of amines 

that were previously confirmed by the LLE (see Figure 4.1). 

 

Tables 4.4 and 4.5 contain averages of data based on 5 replicates and contain 

standard deviations. The final error was calculated using error propagation formulas, and it 

is large because there are many sources of error. Errors occur from LLE, equilibrium 

extraction, Kfs calculations, dominant desorption, and concentration calculation. 

  

Figure ‎4.1: Comparison between the actual and calculated concentrations of amines 
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4.4 Conclusion 

In this chapter, kinetic calibration using an in-fiber standardization technique was 

used to shorten analysis time and predict the concentration of the solution. The technique 

was previously proven in the literature, and it is suitable for field sampling and onsite 

analyses. The initial concentrations of amines were calculated from LLE, and the Kfs value 

was calculated. Then, a dominant desorption experiment was used to predict the amount 

extracted at equilibrium without the need to wait for equilibrium to be reached. From 

there, the initial concentration was calculated and found to fall within 20% or less than the 

original concentration. This variation is acceptable when it is known that analysis time was 

shortened from 3 hours to 20 minutes. 
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Chapter 5 

Conclusions 

This work has successfully demonstrated the use of SPME sampling method for the 

determination of the concentration of aliphatic amines using the flow-through system. The 

first part of the studies, focused on applicability of equilibrium SPME method for batch to 

batch sample analyses in the laboratory. Various parameters such as effect of pH and salt 

concentration were optimized in order to improve overall method sensitivity on a GC/FID 

instrument. 

The second part of the studies demonstrated the applicability of SPME method for 

onsite field analysis of aliphatic amines. The author proposed the use of a pre-equilibrium 

dominant desorption SPME method for this work. 

Application of the method to the analysis of waste water samples was not captured 

in this work because of lack of access to crude oil processing waste water. An initial request 

made to my sponsors (Saudi Aramco) was turned down due to the hazardous nature of the 

waste water which restricts shipping overseas. However, the pre-equilibrium dominant 

desorption SPME method can be easily applied to determine the concentration of aliphatic 

amines in industrial waste water systems. 
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In order to achieve SPME onsite field analyses, special tubing and a sampling vial will 

be installed offline from the main waste water pipeline with a controlled valve, as shown in 

Figures 5.1 and 5.2. 

 

There are two approaches that can be applied; in the first one (Figure 5.1), the 

sample water will initially be recycled until the system equilibrates before SPME sampling. 

For enhanced sensitivity, the pH will be adjusted in the solution reservoir onsite to 10 since 

this will not affect the main waste water pipeline. SPME extractions and desorptions will be 

performed in the sampling vial, as indicated in previous chapters. 

The second approach (Figure 5.2) will be to pre-determine the pH values of the 

waste water samples and the corresponding Kfs values. The pH range for the industrial 

waste water is 6.5 to 8.0 and contains 5% salts. With the known Kfs values at specific pH, 

sampling will be performed by first measuring the pH onsite using a hand held portable pH 

Control 

valve

Sampling 

point

Sampling 

vial

Water coming 

from the plant

Water going to 

the reservoir

Solution 

reservoir

Figure ‎5.1: The first approach to adjust the pH on-site and the required setup 
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meter device. The concentration of the aliphatic amines can then be determined for a 

particular pH of the waste water sample without having to modify the pH of the sample 

onsite. 

 

Because of the nature of the industrial waste water and the presence of other 

organic matters that would interfere with the targeted analytes, more selective detection 

systems should be used. GC/NPD can be used since it is more selective for nitrogen 

containing compounds or GC/MS can be used as well. Due to the fact that the analytes are 

very stable on the fiber after extractions, all fibers will be transported to the laboratory on 

dry ice for further analyses. This final stage of this work will be completed once the access 

to the crude oil processing waste water is possible. 

 

Control 

valve

Sampling 

point

Sampling 

vial

Water coming 

from the plant

Water going to 

the reservoir

Figure ‎5.2: The second approach, which does not require pH adjustment 
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