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Abstract

In this thesis, we answer several questions about the behaviour of prover-verifier in-
teractions under parallel repetition when quantum information is allowed, and the verifier
acts independently in them.

We first consider the case in which a value is associated with each of the possible
outcomes of an interaction. We prove that it is not possible for the prover to improve
on the optimum average value per repetition by repeating the protocol multiple times in
parallel.

We look then at games in which the outcomes are classified into two types, winning
outcomes and losing outcomes. We ask what is the optimal probability for the prover of
winning at least k times out of n parallel repetitions, given that the optimal probability
of winning when only one repetition is considered is p. A reasonable conjecture for the
answer would be

∑

m≥k

(

n
m

)

pm(1− p)n−m, as that is the answer when it is optimal for the
prover to act independently. This is known to be the correct answer when k = n. We
will show how this cannot be extended to the general case, presenting an example of an
interaction with k = 1, n = 2 in which p ≈ 0.85, but it is possible to always win at least
once. We will then give some upper bounds on the optimal probability for the prover of
winning k times out of n parallel repetitions. These bounds are expressed as a function of
p.

Finally, we connect our results to the study of error reduction for quantum interactive
proofs using parallel repetition.
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Chapter 1

Introduction

We will give now an abstract description of the kind of interaction that we consider, without
giving details about the corresponding underlying theories or mathematical structures.
In our prover-verifier interaction, one individual (the prover) subjects another individual
(the verifier) to a test. Following the standard convention for two-party interactions in
quantum information, we will call them Alice and Bob, respectively. They could also
be named Arthur and Merlin, following the convention in computational complexity for
prover-verifier interactions. Of course, Alice and Bob might correspond to devices instead
of individuals in a real life instance of this kind of interaction.

The interaction corresponding to our tests is of the following form:

1. Alice prepares a question and sends it to Bob.

2. Bob responds by sending an answer to Alice.

3. The previous steps are repeated an arbitrary number of times. At any point, Alice and
Bob can use whatever memory they have of the interaction to determine what question
or answer to send.

4. Based on the last answer from Bob, as well as whatever memory Alice has of Bob’s
previous answers and her own questions, Alice assigns an outcome to the test.

An interaction is specified by the process by which Alice operates. We assume that Bob
has access to a complete description of this process. In a classical setting, the messages
exchange between Alice and Bob are purely classical, that is, they can be modelled as a
sequence of bits. The process by which Alice operates can then be modelled as a given
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probabilistic process, where the questions are selected from some probability distribution
conditioned on previous parts of the interaction, and the final decision might also involve
the use of randomness. In the quantum case, Alice’s questions might take the form of
quantum information, and so might the answers that she expects from Bob. The process
by which Alice operates is then at each step a given map from quantum states to quantum
states. This process transforms Alice’s memory and the last answer he received from Bob
to Alice’s next question and the next state of her memory. Note that this implies that
Alice’s questions can be entangled with Alice’s memory.

The behaviour of Bob is not part of the description of the test. Indeed, the questions
we explore in this thesis are mostly concerned with looking at what behaviour is desirable
for Bob in different cases. Typically Bob is allowed to perform an arbitrary probabilistic
process in the classical case, and an arbitrary quantum process in the quantum case. In
the same way as the process for Alice, this process can be conditioned on previous parts of
the interaction, and in the quantum case Bob can entangle his answers with his memory.

Note also that there is no loss of generality involved in assuming that the protocol
begins with a message from Alice. This is because we can simulate a similar protocol in
which the first message is sent by Bob with a protocol of the kind described here in which
the first message is sent by Alice, and it is an empty message.

The formalism necessary to study these interactions in a rigorous way is presented
in Chapters 2 and 3. Chapter 2 presents some useful linear algebra, optimization and
quantum information facts and terms. Chapter 3 shows how these can be applied to
obtain a quantitative description of the interactions that we are studying.

As the original results of this thesis, we answer several questions related to the repetition
in parallel of these interactions. They follow the theme of looking at the optimality for
Bob of treating different repetitions of an interaction independently when the interaction is
repeated in parallel. That is, we consider the case in which Alice instantiates n independent
copies of her test: she follows exactly the same procedure in all of the n parallel repetitions
when determining what questions to send. The processes followed to determine the outcome
of the interactions are completely independent as well.

There are several questions that one might ask concerning what is Bob’s optimal be-
haviour when a protocol is repeated several times in this way, depending on what does Bob
want to optimize. In Chapter 4, we consider the setting in which a value is assigned by Bob
to each of the outcomes, letting v denote the best expected value that he can obtain as the
outcome of an interaction. Formally speaking, and without a reference to any particular
mathematical model for our interaction, this is the supremum over all possible processes by
which Bob can operate of the expected value corresponding to the outcome of the protocol,
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when Bob follows that particular process. In both the classical and quantum models, the
supremum will always be achieved, so that it may safely be replaced by the maximum.

Now, we consider the case in which Bob is trying to maximize the sum of the values
obtained from r repetitions of an interaction. We ask then the question:

What is the optimum expected value per repetition that can be obtained for Bob when
he considers all of the n interactions?

One might think that given the fact that Alice is instantiating independently the copies
of her test, the answer to this question is v, as this is the answer when Bob acts indepen-
dently in the different repetitions. As we prove, this is indeed the correct answer.

In Chapter 5, we look at the behaviour for Bob when he only cares about obtaining
certain outcomes. Then, for a fixed choice of Alices test and a particular choice of outcome,
let p denote the optimal probability for Bob of obtaining one of those outcomes. We identify
these outcomes as the “winning” outcomes. In the same way as in the definition of v, p
is more formally defined as the supremum of the probability that Bob achieves a winning
outcome over all the processes by which Bob can operate. In the same way again as we
have for v, in both our classical and quantum models this supremum can be safely replaced
by a maximum.

When Bob is trying to optimize the average number of repetitions in which he obtains
a winning outcome, the best he can do is to play independently his optimal strategy for
achieving a winning outcome. This can be seen from assigning value 1 to the winning
outcomes and value 0 to all other outcomes, and considering our result in Chapter 4.
However, we can also consider the case in which Bob is not concerned with optimizing
the average number of repetitions in which he obtains a winning outcome, but rather with
making sure that the number of repetitions in which he obtains a winning outcome is above
a certain threshold. We ask then the question:

What is the optimum probability for Bob of achieving a winning outcome in at least k
of the n interactions?

Following the same reasoning as in the previous question, one might think that given
the fact that Alice is instantiating independently the copies of her test, the answer to this
question is

∑

k≤t≤n

(

n
t

)

pt(1 − p)n−t. The reason is that this is the answer when Bob acts
independently in the different repetitions.
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This is indeed the correct answer in the classical case. This can be proved from the
observation that an optimal strategy for Bob in a classical model is always deterministic,
and we will discuss later how it also follows as a special case of our analysis in the quantum
case.

It is also known that in the special case in which k = n, the answer to this question is
indeed

∑

k≤t≤n

(

n
t

)

pt(1− p)n−t, which in this case equals pn. In what is probably the most

significant contribution in this thesis, we show how
∑

k≤t≤n

(

n
t

)

pt(1 − p)n−t is in fact not
in general the correct answer to this question. First, we show how the proof for the case
in which k = n fails to be generalized in a straightforward way in this case. Then, we give
an explicit example of a test in which Bob can pass at least one of two repetitions with
probability 1, despite the fact that p < 1. In our example, Bob’s optimal probability of
winning for a single repetition of the interaction is cos2(π/8) ≈ 0.85.

The ability of Bob to correlate his answers can be seen as a form of hedging, as we
illustrate in a highly fictitious scenario. In our scenario, Bob is offered the opportunity
to take part in two potentially very lucrative but involving some risks games of chance,
organized by Alice. These two games are completely identical to each other, and run
independently. To earn the right to play in each of the games, Bob must contribute $1
million of his own money, and he has an 85% chance of winning if he plays optimally. For
each game he wins, Bob receives a price of $3 million, with a total $2 million gain over his
initial investment. If Bob does not win, he loses his $1 million investment.

Many people, if put in the place of Bob, would not hesitate to play both of the games,
even taking out a $2 million loan if necessary to do so. The expected gain from each of the
games is $1,550,000, and the only time that Bob loses money as an overall result is when
Bob loses in both of the games. If we treat the games independently, the chance for a loss
in both is 2.25%. However, Bob could be a highly risk-averse person. He would greatly
enjoy being a millionaire, but cannot or does not want to risk a 2.25% chance of losing $2
million. If the games run by Alice can be modelled classically, there is no way Bob can
avoid this risk. However, if the two games have a model using quantum information with
the same properties as the one in our example, Bob can be guaranteed to win in at least
one of the games, and therefore obtain at least a total $1 million gain. A choice of an
appropriate quantum strategy allows Bob to hedge his bets perfectly.

There are other settings in which quantum effects that are not possible in the classical
world have been discovered to be possible in an interaction between two parties that allows
for quantum behaviour. However, our setting differs from some of the best-known such
situations, such as the CHSH game [CHSH69] and the Mermin-Peres magic squares game
[Mer90, Per90]. In our setting, we do not have two parties collaborating to achieve a non-
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classical outcome. Instead, we have a prover-verifier setting, in which Bob is trying to
convince Alice in order to achieve the winning outcome for an interaction.

In Chapter 6, we continue examining the same question as in Chapter 5. As we said,
we establish in Chapter 5 that it is not necessarily optimal for Bob to play independently
when he is trying to win in at least a certain number of interactions. However, it still
seems reasonable to think that how well Bob can do when he is trying to win in at least a
certain number of repetitions should be somehow related to how well Bob can do when the
interaction only occurs once, and he is trying to obtain the winning outcome. For example,
it is clear that if Bob can make sure that he wins when the interaction only occurs once,
then he is capable of making sure that he wins in at least a certain number of repetitions
(since in fact, he can make sure that he wins in all repetitions). It is also possible to prove
that if Bob does not have any chance of winning when the interaction only occurs once,
then he does not have any chance of winning any number of interactions larger than zero
when the game is played several times. This follows as a special case of our analysis for the
quantum case. It can also be proved by contradiction starting from the observation that
when only one repetition of the interaction is considered, Bob could simulate the setting in
which several interactions are repeated in paralle, by simulating what would be the actions
of Alice in the fictional copies of the interaction.

It is then a reasonable aim to obtain general quantitative relations that express this
idea. With this goal in mind, we try to upper bound the optimum probability for Bob of
achieving the winning outcome in at least k of the n interactions as a function of p. We will
see how it is not hard to obtain from our formalization an upper bound of

∑

k≤t≤n

(

n
t

)

pt.

Using a more involved analysis, we obtain an improved upper bound of pk
(

n
k−1

)

.

In Chapter 7, we apply the results from the previous section to the study of error re-
duction for quantum interactive proof systems. These, generally speaking, are a particular
case of the kind of interaction that we consider here. In this new situation, there is a string
x known to Alice and Bob, which might or might not be a member of a language L.

We also have an interaction of the form that we consider in our work, such that whenever
x ∈ L Bob can pass the test with probability at least α, while whenever x /∈ L Bob can
pass the test with probability at most β < α. Note that the fact that the value of x is
known to Alice and Bob implies that they can use this value to make decisions during their
operation.

Assuming Bob is playing to maximize his chance of passing, Alice can then use the
outcome of the test to make a guess about whether x ∈ L or not. We can see that it is easy
to make a guess that will be correct with high probability whenever α is close to 1 and β is
close to 0. Error reduction corresponds then to obtaining another test with smaller β and
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larger α. In a natural conjecture for a possible way of reducing error, this new better test
simply consists of a number of independent instantiations of the original test. The new
test accepts if and only if some suitably chosen fraction of these independent tests (e.g.
α+β
2 ) lead to Bob passing the test. This would improve on the more complicated strategy

for reducing error in this situation that is known in the literature [JUW09].

If if was true that it is optimal for Bob to answer independently, that would easily prove
the correctness of this natural strategy to reduce error. Indeed, under this assumption,
the number of repetitions with a winning outcome when Bob plays optimally is described
as a binomial distribution parametrized by p and n. Using the properties of the binomial
distribution (e.g. using a Chernoff Bound), it would be then possible to prove that the
probability that the new test produces a wrong guess about whether x ∈ L decreases
exponentially fast as a function of n.

Unfortunately, our results in Chapter 5 shows that a proof method that uses the op-
timality of independent answers for Bob to prove the correctness of the natural strategy
to reduce error would start with an incorrect assumption. On the other hand, maybe it
is possible to prove the correctness of the natural strategy to reduce error while replacing
that incorrect assumption about Bob’s optimal behaviour with a weaker one. We will show
how this is indeed the case for a limited range of values of α and β (more exactly, whenever

β < 2−
H(α)

α < α), using our results from Chapter 6.
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Chapter 2

Background

In this section we provide a summary of the mathematical background needed to develop
the content of this thesis. Its main purpose is to unify the notation for the content of this
thesis, and not to be completely exhaustive, but just to highlight concepts that might be
less familiar to some readers.

2.1 Linear algebra

We establish here the notation for linear algebra terms that will be used in this thesis.
We assume familiarity with basic linear algebra concepts such as Hilbert spaces, positive
semidefiniteness and tensor products. For any finite-dimensional complex Hilbert space X
we write L (X ) to denote the set of linear operators acting on X , we write IX to denote the
identity operator acting on X , we write Herm (X ) to denote the set of Hermitian operators
acting on X , we write Pos (X ) to denote the set of positive semidefinite operators acting
on X , and we write Pd (X ) to denote the set of positive definite operators acting on X .
We write D (X ) to denote the set of density operators (positive semidefinite operators with
unit trace) acting on X .

For Hermitian operators A,B ∈ Herm (X ) the notations A ≥ B and B ≤ A indicate
that A − B is positive semidefinite, and the notations A > B and B < A indicate that
A− B is positive definite.

An inner product can be given to L (X ), defined as 〈A,B〉 = Tr(A∗B). If A,B ∈
Herm (X ), it holds that 〈A,B〉 is a real number and satisfies 〈A,B〉 = 〈B,A〉. For every
choice of finite-dimensional complex Hilbert space X and Y , and for a given linear mapping
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of the form Φ : L (X ) → L (Y), there is a unique mapping Φ∗ : L (Y) → L (X ) (known as
the adjoint of Φ) that satisfies 〈Y,Φ(X)〉 = 〈Φ∗(Y ), X〉 for all X ∈ L (X ) and Y ∈ L (Y).

We write the tensor product of a Hilbert space X with itself n times, X ⊗ X . . .⊗ X ,
as X⊗n. We often consider several Hilbert spaces, all denoted by a common symbol (say
X ), but with different subindices, corresponding to natural numbers in some range. We
write Xi...j to denote the tensor product Xi ⊗ . . .⊗ Xj of a series of these spaces spanned
by a sequence of consecutive subindices going from i to j, inclusive.

During our exposition, we slightly abuse notation by identifying the tensor product of
several Hilbert spaces with their tensor product in a different order. For example, we might
write something like TrY2(P ) = IX2 ⊗Q, where P ∈ L (X1...2 ⊗ Y1...2) and Q ∈ L (X1 ⊗ Y1).
We implicitly assume then that one of the sides in our equality is conjugated with an unitary
operator that appropriately transposes the order of the spaces in the tensor product (for
example, in this case we might conjugate TrY2(P ) with the operator that sends x⊗ z ⊗ y
to z ⊗ x⊗ y for all x ∈ X1, y ∈ Y1, z ∈ X2 ).

We define now the Choi-Jamio#lkowski representation of a linear mapping from L (X )
to L (Y). To do so, suppose dim(X ) = n and assume that a standard orthonormal basis
{vi : 1 ≤ i ≤ n} of X has been selected. With respect to this basis, one defines the
Choi-Jamio#lkowski operator J(Φ) ∈ L (Y ⊗ X ) of a linear mapping Φ : L (X ) → L (Y) as

J(Φ) =
∑

1≤i,j≤n

Φ(viv
∗
j )⊗ viv

∗
j

The mapping J is a linear bijection from the space of mappings of the form Φ : L (X ) →
L (Y) to the operator space L (Y ⊗ X ). It has the property that that Φ is completely
positive if and only if J(Φ) ∈ Pos (Y ⊗ X ), and that Φ is trace-preserving if and only if
TrY(J(Φ)) = IX [Cho75, Jam72].

Some properties of the elements in our formalism that we will use very often are the
following:

1. If A ∈ L (X1 ⊗ Y1) and B ∈ L (X2 ⊗ Y2), then TrX1⊗X2(A⊗ B) = TrX1(A)⊗ TrX2(B)

2. A ≥ B and C ≥ D implies A ⊗ C ≥ B ⊗ D for any choice of positive semidefinite
operators A,B,C and D.

3. If we have two maps Φ1 : L (X1) → L (Y1) and Φ2 : L (X2) → L (Y2), then J(Φ1⊗Φ2) =
J(Φ1)⊗ J(Φ2).
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2.2 Quantum Information

We introduce now some concepts concerning our mathematical modelling of quantum in-
formation processing. See [NC00] for a comprehensive introduction to a formal treatment
of quantum information processing.

A register is a hypothetical device that stores quantum information. Associated with a
register X is a finite-dimensional complex Hilbert space X , and each quantum state of X is
described by a density operator ρ ∈ D (X ). Qubits are registers for which dim(X ) = 2. A
measurement of X is described by a set of positive semidefinite operators {Pa : a ∈ Σ} ⊂
Pos (X ), indexed by a finite non-empty set of measurement outcomes Σ, and satisfying the
constraint

∑

a∈Σ Pa = IX (the identity operator on X ). If such a measurement is performed
on X while it is in the state ρ, each outcome a ∈ Σ results with probability 〈Pa, ρ〉.

We can also consider information stored across several registers. If these registers are
associated with finite-dimensional complex Hilbert spaces X1 . . .Xn, the finite-dimensional
complex Hilbert space associated with their joint state is X1...n. Their joint state is then
described by a density operator σ ∈ D (X1...n).

A quantum channel is a completely positive and trace-preserving linear mapping of the
form Φ : L (X ) → L (Y). This describes a hypothetical physical process that transforms
each state ρ of a register X into the state Φ(ρ) of another register Y. The set of all channels
of this form is denoted C (X ,Y). The identity channel that does nothing to a register X is
denoted IL(X ).

2.3 Semidefinite programming

Semidefinite programming is an area of optimization which has been extensively used
within quantum information theory in the last few years (see for example [CSUU07,
JJUW10, LMR+11, NPA08] for a few recent uses). More comprehensive discussions about
semidefinite programming can be found in [VB96, Lov03, dK02, BV04], for instance. We
provide here the basic definitions and theorems used in our work.

Definition 1. A semidefinite program is specified by complex finite-dimensional Hilbert
spaces X and Y , and operators Φ, A and B, where:

1. Φ : L (X ) → L (Y) is a Hermiticity-preserving linear mapping, and

2. A ∈ Herm (X ) and B ∈ Herm (Y) are Hermitian operators,
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for some choice of finite-dimensional complex Hilbert spaces X and Y .

We associate with these operators two optimization problems, called the primal and
dual problems:

Primal problem

maximize: 〈A,X〉
subject to: Φ(X) = B,

X ∈ Pos (X ) .

Dual problem

minimize: 〈B, Y 〉
subject to: Φ∗(Y ) ≥ A,

Y ∈ Herm (Y) .

The optimal primal value of this semidefinite program is

α = sup{〈A,X〉 : X ∈ Pos (X ) , Φ(X) = B}

and the optimal dual value is

β = inf{〈B, Y 〉 : Y ∈ Herm (Y) , Φ∗(Y ) ≥ A}.

(It is to be understood that the supremum over an empty set is −∞ and the infimum over
an empty set is ∞, so α and β are well-defined values in the set R ∪ {−∞,∞}. In this
thesis, however, we will only consider semidefinite programs for which α and β are finite).

One of the most useful facts about a semidefinite program is that it always holds that
α ≤ β. This is known as weak duality. The stronger condition α = β, which is known as
strong duality, does not hold for every semidefinite program. However, it is known that
there are simple conditions under which it does hold. The following theorem provides us
with an example of such conditions:

Theorem 2 (Slater’s theorem for semidefinite programs). Let (Φ, A, B) be the operators
in our definition of a semidefinite program, and let α and β be the optimal primal and dual
values for the program.

1. If the dual problem is feasible and there exists a positive definite operator X ∈ Pd (X )
for which Φ(X) = B, then α = β and there exists an operator Y ∈ Herm (Y) such that
Φ∗(Y ) ≥ A and 〈B, Y 〉 = β.

2. If the primal problem is feasible and there exists a Hermitian operator Y ∈ Herm (Y)
for which Φ∗(Y ) > A, then α = β and there exists a positive semidefinite operator
X ∈ Pos (X ) such that Φ(X) = B and 〈A,X〉 = α.
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This theorem states then in the first item that if there is a solution to the dual problem,
as well as a positive definite solution to the primal problem, then strong duality holds, and
an optimal dual solution is achievable. The second item gives us a similar condition, but
reversing the role of the primal and dual problems. And X such as the one in the first
item and a Y such as the one in the second item are called Slater points.
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Chapter 3

Mathematical formalization

We give now a presentation of the formalism that allows us to express the questions we
ask in terms of semidefinite programs. This formalism was originally developed in [GW07]
and [Gut09]. A related formalism for studying a similar kind of interaction was developed
in [CDP09].

The following definition formally defines an interaction of the kind that we described
in the introduction. The interaction is assumed to have r rounds (that is, r questions from
Alice to Bob) and t different outcomes, which are indexed from 0 to t− 1:

Definition 3. An interaction of the kind we study is defined by:

1. A series of r quantum registers in which Alice writes her questions, which are then sent
to Bob. The finite-dimensional complex Hilbert spaces associated with these registers
are denoted by X1 . . .Xr.

2. A series of r quantum registers registers in which Bob writes his answers, which are
then sent to Alice. The finite-dimensional complex Hilbert spaces associated with these
registers are denoted by Y1 . . .Yr.

3. A series of r+1 quantum registers registers that Alice uses to store her memory between
the different points of the interaction. The finite-dimensional complex Hilbert spaces
associated with these registers are denoted by Z1 . . .Zr+1.

4. A quantum state that represents the first question sent by Alice to Bob, as well as the
state of her initial memory. This state corresponds to a density matrix σ ∈ D (X1 ⊗Z1).

5. A series of r − 1 quantum channels that correspond to the process by which Alice
decides what question to ask. They produce a new question from Alice’s memory and
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ρ0 Ψ2 Ψ3 Ψ4 Ψr

Γ1 Γ2 Γ3 Γr

X1 X2 X3 X4 XrY1 Y2 Y3 Yr

W1 W2 W3 Wr−1

Z1 Z2 Z3 Z4 Zr

Wr

Zr+1

Figure 3.1: The interactions between Alice and Bob that we study

Bob’s answer from the last question. We denote them by Ψ2 . . .Ψr, with Ψi sending
elements of L (Yi−1 ⊗Zi−1) to elements of L (Xi).

6. A quantum channel Ψr+1, sending elements of L (Yr ⊗ Zr) to elements of L (Zr+1), the
memory space for Alice after she receives the last answer.

7. A projective measurement {Qi : 0 ≤ i ≤ k − 1} by which Alice decides the outcome
of the interaction. This measurement is performed on Zr+1. The positive semidefinite
operator corresponding to outcome k is given by Qk.

Note that elements 6 and 7 could be merged together in a POVM measurement, but it
will be more convenient for a later discussion to present the interaction in this way.

We formally define now the processes by which Bob can operate:

Definition 4. A possible process by which Bob can operate is given by:

1. A series of r−1 quantum registers registers that Bob uses to store his memory between
sending an answer to Alice and receiving the next question. The finite-dimensional
complex Hilbert spaces associated with these registers are denoted by W1 . . .Wr−1.

2. A series of r quantum channels that correspond to the process by which Bob decides his
answers. They produce an answer from Alice’s question and Bob’s memory. We denote
them by Γ1 . . .Γr. If r = 1, Γ1 sends elements of L (X1) to elements of L (Y1). If r > 1,
Γ1 sends elements of L (X1) to elements of L (Y1 ⊗W1), Γi for 1 < i < r sends elements
of L (Xi ⊗Wi−1) to elements of L (Yr ⊗Wr), and Γr sends elements of L (Xr ⊗Wr−1)
to elements of L (Yr).

A graphical representation of these definitions can be seen in Figure 3.1

The main result that allows us to express our questions in terms of semidefinite pro-
grams, which originally appeared in [Gut09], is the following one:
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Lemma 5. There exists operators P0, . . . , Pt−1 ∈ Pos (Y1...r ⊗ X1...r) , and a map from
the set of possible processes by which Bob can operate to Pos (Y1...r ⊗ X1...r), such that
the probability that outcome i is obtained by the behaviour of Bob corresponding to X ∈
Pos (Y1...r ⊗ X1...r) is 〈Pi, X〉.

Moreover,

1. The subset of Pos (Y1...r ⊗ X1...r) to which the possible strategies for Bob are sent is com-
posed by the elements X such that there exist X1, . . . , Xr−1, with Xi ∈ Pos (Y1...i ⊗ X1...i),
satisfying:

TrY1(X1) = IX1

TrY2(X2)−X1 ⊗ IX2 = 0
...

TrYr
(X)−Xr−1 ⊗ IXr

= 0

2. The operators P0, . . . , Pt−1 are such that there exist {P j
i ∈ Pos (Y1...j ⊗ X1...j) : 0 ≤

i ≤ t − 1, 1 ≤ j ≤ r − 1}, ρ ∈ D (X1), and {Rj ∈ Pos (Y1...j−1 ⊗ X1...j) : 2 ≤ j ≤ r},
satisfying:

∑

0≤i≤t−1

P 1
i = IY1 ⊗ ρ

TrX2(R2) =
∑

0≤i≤t−1

P 1
i

∑

0≤i≤t−1

P 2
i = IY2 ⊗ R2

...

TrXr
(Rr) =

∑

0≤i≤t−1

P r−1
i

∑

0≤i≤t−1

Pi = IYr
⊗Rr
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Figure 3.2: The map from L (X1 ⊗ . . .Xr) to L (Y1 ⊗ . . .⊗ Yr) corresponding to the actions
of Bob, in the particular case r = 3

This will allow us to express the questions we examine in the next chapters as questions
about semidefinite programs. We will not give a proof of this Lemma here. However, we
will mention the main ideas behind it. This will motivate how does the formalism apply
to the case in which an interaction is repeated several times in parallel, with Alice acting
independently. The main idea to prove this Lemma consists of looking at all the actions
of Alice together as an operator ΞA from L (Y1 ⊗ . . .⊗ Yr) to L (X1 ⊗ . . .⊗ Xr ⊗ Zr+1),
followed by a projective measurement {Qk} of Zr+1, and tracing out Zr+1. Similarly, we
look at the actions of Bob as an operator ΞB from L (X1 ⊗ . . .Xr) to L (Y1 ⊗ . . .⊗ Yr), as
can be seen in figure 3.2.Then, J(ΞB) is the object to which the actions of Bob map in
the previous lemma, and Pk is given by J

((

TrZr+1 (QkΞA)
)∗)

. The restrictions on such
operators that appear in Lemma 5 are then the conditions that J

((

TrZr+1 (QkΞA)
)∗)

and
J(ΞB) satisfy for operations ΞA and ΞB following the causal structure in our description
of an interaction, as it is proved in [GW07] and [Gut09], with the operators Xi and Rj

corresponding to the first rounds of the interaction.

Now, when we consider parallel repetition with Alice acting independently, we have
that the new operator for Alice is given by

J
((

TrZ⊗n

r+1

(

Qi1Qi2 . . . QinΞ
⊗n
A

)

)∗)

= J
((

TrZr+1 (Qi1ΞA)
)∗ ⊗ . . .⊗

(

TrZr+1 (QinΞA)
)∗)

= J
((

TrZr+1 (Qi1ΞA)
)∗)⊗ . . .⊗ J

((

TrZr+1 (QinΞA)
)∗)

= Pi1 ⊗ . . .⊗ Pin ,

using the properties of tensor products mentioned in Chapter 2. This motivates then the
following Lemma:
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Lemma 6. Consider the case in which an interaction of the kind we consider here is
repeated in parallel n times. Then, if we let P0, . . . , Pt−1 be the operators in the previous
lemma, now there is a map from the set of possible strategies for Bob to Pos

(

(Y1...r ⊗ X1...r)
⊗n
)

such that the probability that outcomes {ij : j ∈ 1 . . . n} are obtained in the n different rep-
etitions when the behaviour of Bob corresponds to X is given by 〈Pi1 ⊗ Pi2 ⊗ . . .⊗ Pin , X〉.
Moreover, the subset of Pos (Y1...r ⊗ X1...r) to which the possible strategies for Bob are sent is
composed by the elementsX such that there exist X1, . . . , Xr−1, withXi ∈ Pos

(

Y⊗n
1...i ⊗ X⊗n

1...i

)

,
satisfying:

TrY⊗n

1
(X1) = IX⊗n

1

TrY⊗n

2
(X2)−X1 ⊗ IX⊗n

2
= 0

...

TrY⊗n
r

(X)−Xr−1 ⊗ IX⊗n
r

= 0

To model the situation when only classical information is being exchanged inside this
more general model, it is enough to assume that Alice appends a completely dephasing
channel before and after each of her actions, and her measurement corresponds as well to
a set of diagonal matrices. The completely dephasing channel just makes equal to zero
all non-diagonal elements from the density matrix representing its input state, and leaves
the diagonal elements unmodified, making sure then that only classical information is
being sent. In this case, it is not hard to see that J

((

TrZr+1 (QkΞA)
)∗)

will be a diagonal
matrix, since for the terms of the Choi-Jamio#lkowski representation corresponding to a
non-diagonal input we have that the channel ΞA will map them to 0, and for all the other
ones, we have that they are mapped to a classical state, that is, a diagonal matrix. ρ and
the Ri are diagonal as well, since they can be given a similar interpretation in terms of the
Choi-Jamio#lkowski representations for the actions of Alice when we ignore her measurement
and shorten the length of the interaction, as it is shown in [GW07] and [Gut09].
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Chapter 4

Optimal expected value under
parallel repetition

We study in this chapter the situation where each outcome i ∈ {0 . . . t−1} of an interaction
is associated with a value vi, and Bob is concerned with maximizing the expected value
that he obtains from the interaction. We prove that when an interaction is instantiated
several times in parallel, it is optimal for Bob to act independently when is he trying to
maximize the expected value per instantiation.

To express this situation formally, consider a fixed interaction, described using our
formalism in Chapter 3, and a fixed process by which Bob can operate, represented by
X ∈ Pos (Y1...r ⊗ X1...r). As the probability that outcome i is obtained is 〈Pi, X〉, the
expected value obtained by Bob for an interaction when following a process represented by
X is

∑

i vi 〈Pi, X〉. Therefore, this is the objective function that Bob is trying to maximize
in the situation studied in this chapter. We obtain then that the following optimization
problem corresponds to the problem of finding the optimal strategy for Bob in the setting
where he is trying to maximize the expected value of the outcome:
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Primal Problem 1

maximize:
∑

i

vi 〈Pi, X〉

subject to: TrY1(X1) = IX1

TrY2(X2)−X1 ⊗ IX2 = 0
...

TrYr
(X)−Xr−1 ⊗ IXr

= 0

X ∈ Pos (Y1...r ⊗ X1...r) , Xi ∈ Pos (Y1...i ⊗ X1...i)

To compute the dual, we express this is in the exact same form that appears in our
definition of semidefinite program:

Primal Problem 2

maximize:

〈











0 0
0

. . .
0

∑

i viPi











,











X1

X2

. . .
X











〉

subject to:











TrY1(X1) 0
TrY2(X2)−X1 ⊗ IX2

. . .
0 TrYr

(X)−Xr−1 ⊗ IXr











=











IX1 0
0

. . .
0 0





















X1

X2

. . .
X











∈ Pos ((Y1 ⊗ X1)⊕ (Y1...2 ⊗ X1...2) . . .⊕ (Y1...r ⊗ X1...r))

Note that we are ignoring the non-diagonal blocks of the solution. The reason why
we can ignore them is that they are ignored by both the function that we are trying to
optimize and the constraint Φ of the semidefinite program. Their presence does not alter
either the set of X, {Xi} that represent feasible solutions, since for any feasible solution
to this new problem, its blocks along the diagonal will be positive semidefinite, and for
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any positive semidefinite X, {Xi}, leaving the non-diagonal blocks as zero will give us a
positive semidefinite matrix.

As Φ is represented by the action











X1

X2

. . .
X











→











TrY1(X1) 0
TrY2(X2)−X1 ⊗ IX2

. . .
0 TrYr

(X)−Xr−1 ⊗ IXr











,

its adjoint Φ∗ corresponds to the action











Y1

Y2

. . .
Y











→











Y1 ⊗ IY1 − TrX2(Y2)
Y2 ⊗ IY2 − TrX3(Y3)

. . .
Y ⊗ IYr











,

as can be verified by a simple computation.

The dual problem for our situation will correspond then to:

Dual Problem 1

minimize:

〈











IX1 0
0

. . .
0 0











,











Y
Y2

. . .
Yr











〉

subject to:











Y ⊗ IY1 − TrX2(Y2)
Y2 ⊗ IY2 − TrX3(Y3)

. . .
Yr ⊗ IYr











≥











0 0
0

. . .
0

∑

i viPi





















Y
Y2

. . .
Yr











∈ Herm (X1 ⊕ (Y1 ⊗X1...2) . . .⊕ (Y1...r−1 ⊕ X1...r))
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We can simplify this and write it as:

Dual Problem 2

minimize: Tr(Y )

subject to: Y ⊗ IY1 − TrX2(Y2) ≥ 0

Y2 ⊗ IY2 − TrX3(Y3) ≥ 0
...

Yr ⊗ IYr
≥
∑

i

viPi

Y ∈ Herm (X1) , Yi ∈ Herm (Y1...i−1 ⊗ X1...i)

Note that even if we only explicitly require Y ∈ Herm (X1, Yi) , Yi ∈ Herm (Y1...i−1 ⊗ X1...i),
it must actually be the case that Y ∈ Pos (X1) , Yi ∈ Pos (Y1...i−1 ⊗ X1...i). In the case of
Yr, this is because the fact that the last constraint is satisfied implies that Yr is ≥ than
a positive semidefinite operator. Feasibility for the second to last constraint implies then
that Yr−1 is positive semidefinite, and so on. This will actually be the case for all the dual
problems that consider in this thesis.

We prove now that both statements in Theorem 2 apply, so there are optimal primal
and dual solutions to our semidefinite program, and they have the same value. Indeed,

1. For the form of the primal problem that follows the definition of semidefinite program
(Primal Problem 2), we have that there is a positive definition solution, which can
be obtained by letting each of the diagonal blocks of our solution be an appropriate
multiple of the identity. For example, we can have:

X1 =
IY1⊗X1

dimY1
, X2 =

IY1...2⊗X1...2

dimY1 ∗ dimY2
, . . . , X =

IY1...r⊗X1...r

dimY1 ∗ dimY2 ∗ . . .dim Yr

2. For the form of the dual problem that follows the definition of semidefinite program
(Dual Problem 2), we have that there is a solution that strictly satisfies the constraint,
which can be obtained again by letting each of the diagonal blocks of our solution be
an appropriate multiple of the identity. For example, we can have:
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Yr =

(∥

∥

∥

∥

∥

∑

i

viPi

∥

∥

∥

∥

∥

+ 1

)

IY1...r−1⊗X1...r

Yr−1 = 2dimXr

(∥

∥

∥

∥

∥

∑

i

viPi

∥

∥

∥

∥

∥

+ 1

)

IY1...r−2⊗X1...r−1

Yr−2 = 4dimXr−1 dimXr

(∥

∥

∥

∥

∥

∑

i

viPi

∥

∥

∥

∥

∥

+ 1

)

IY1...r−3⊗X1...r−2

...

Y = 2r−1 dimX2 . . .dimXr−1 dimXr

(∥

∥

∥

∥

∥

∑

i

viPi

∥

∥

∥

∥

∥

+ 1

)

IX1

We will then write v to refer to the optimal value of these optimizations problems.

We consider now the situation in which n copies of the same interaction occur, with Alice
acting independently, while Bob is free to correlate his actions in the different repetitions.
Bob is trying to maximize the expected value per repetition that he achieves, with the value
of a series of outcomes being the sum of their individual values. Using the characterization
of the possible processes by which Bob can operate in a parallel repetition situation from
Lemma 6, we obtain that this corresponds to the optimization problem:

Primal Problem 3

maximize:
∑

i1,i2,...,in

1

n
(vi1 + vi2 + . . .+ vin) 〈Pi1 ⊗ Pi2 ⊗ . . .⊗ Pin, X〉

subject to: TrY⊗n

1
(X1) = IX⊗n

1

TrY⊗n

2
(X2)−X1 ⊗ IX⊗n

2
= 0

...

TrY⊗n
r

(X)−Xr−1 ⊗ IX⊗n
r

= 0

X ∈ Pos
(

Y⊗n
1...r ⊗ X⊗n

1...r

)

, Xi ∈ Pos
(

Y⊗n
1...i ⊗ X⊗n

1...i

)

Going through the same process to obtain a simplified version of the dual as in the case
with a single repetition, we have that the dual of this optimization problem is:
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Dual Problem 3

minimize: Tr(Y )

subject to: Y ⊗ IY⊗n

1
− TrX⊗n

2
(Y2) ≥ 0

Y2 ⊗ IY⊗n

2
− TrX⊗n

3
(Y3) ≥ 0

...

Yr ⊗ IY⊗n
r

≥
∑

i1,i2,...,in

1

n
(vi1 + vi2 + . . .+ vin) (Pi1 ⊗ Pi2 ⊗ . . .⊗ Pin)

Y ∈ Herm
(

X⊗n
1

)

, Yi ∈ Herm
(

Y⊗n
1...i−1 ⊗ X⊗n

1...i

)

We again have that strong duality holds, and there are optimal solutions for both the
primal and dual problems. To see this, we can adapt the forms of the primal and dual
problems in the same way that we did for the case with one single repetition, and obtain
Slater points by letting the diagonal blocks of our solutions be multiples of the identity.
We write v′ then to refer to the optimal value of these optimizations problems.

We can now formally phrase the question

Can Bob improve on his expected value per interaction when n interactions are played
in parallel, as opposed to a single interaction?

as

Is v = v′?

We will see now that the answer to this question is affirmative. Informally, it is clear that
v′ ≥ v, since if Bob just plays his optimal strategy for one repetition in an independent way,
his expected value per repetition will be the optimum expected value when only one single
repetition occurs. And indeed, let X, {Xi} represent an optimal solution to the primal
version of the optimization problem for a single repetition (Primal Problem 1). Then, I
claim that X⊗n, {X⊗n

i } represent a feasible solution to the primal optimization problem for
more than one repetition (Primal Problem 3), with value v. Indeed, using the properties
of the tensor product that we stated in Chapter 2, we have:

• If we consider a random variable V that takes value vi with probability 〈Pi, X〉, we
have that
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∑

i1,i2,...,in

1

n
(vi1 + vi2 + . . .+ vin)

〈

Pi1 ⊗ Pi2 ⊗ . . .⊗ Pin, X
⊗n
〉

=
1

n

∑

i1,i2,...,in

(vi1 + vi2 + . . .+ vin) 〈Pi1 , X〉 〈Pi2, X〉 . . . 〈Pin , X〉

=
1

n
E[nV ] =

1

n
nE[V ] = E[V ] = v

• TrY⊗n

1
(X⊗n

1 ) = (TrY1(X1))
⊗n = I

⊗n
X1

= IX⊗n

1

TrY⊗n

2
(X⊗n

2 )−X⊗n
1 ⊗ IX⊗n

2
= (TrY1(X2))

⊗n − (X1 ⊗ IX2)
⊗n

= (X1 ⊗ IX2)
⊗n − (X1 ⊗ IX2)

⊗n = 0

...

TrY⊗n
r

(X⊗n)−X⊗n
r−1 ⊗ IX⊗n

r
= TrYr

(X)⊗n − (Xr−1 ⊗ IXr
)⊗n

= (Xr−1 ⊗ IXr
)⊗n − (Xr−1 ⊗ IXr

)⊗n = 0

• As X ≥ 0 and Xi ≥ 0, X⊗n ≥ 0 and X⊗n
i ≥ 0.

It is harder to come up with an intuitive reason for why v′ ≤ v. A possible informal
argument would be that if Bob can obtain a value better than v as the expected value
per repetition, then in one of his repetitions his expected value is better than v. Then,
to obtain a expected value better than v when only one repetition is considered, he could
simulate a setting in which multiple repetitions are considered, and let the ”real” repetition
of those be the one in which he obtains a value better than v. To give a formal argument
for the fact that v′ ≤ v, we simply derive a solution to the dual problem for multiple
repetitions (Dual Problem 3) with value v. Let then Y , {Yi} represent an optimal solution
to Dual Problem 1. Then, I claim that

1

n
(Y ⊗ ρ⊗ . . .⊗ ρ+ . . .+ ρ⊗ ρ⊗ . . .⊗ Y ) ,

{

1

n
(Yi ⊗ Ri ⊗Ri ⊗Ri + . . .+Ri ⊗ Ri ⊗ . . .⊗ Yi)

}

represents a feasible solution to the dual optimization problem for more than one repetition
(Dual Problem 3) with value v. Indeed, using again the properties of the tensor product
that we stated in Chapter 2, we have:
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• Tr
(

1
n
(Y ⊗ ρ⊗ . . .⊗ ρ+ . . .+ ρ⊗ ρ⊗ . . .⊗ Y )

)

= 1
n
nTr(Y ) Tr(ρ)n−1 = Tr(Y ) = v

• For the first constraint of the dual problem, we have:

1

n
(Y ⊗ ρ⊗ . . .⊗ ρ+ . . .+ ρ⊗ ρ⊗ . . .⊗ Y )⊗ IY⊗n

1
−

TrX⊗n

2

(

1

n
(Y2 ⊗R2 ⊗ . . .⊗R2 + . . .+R2 ⊗ R2 ⊗ . . .⊗ Y2)

)

=
1

n
((Y ⊗ IY1)⊗ (ρ⊗ IY1)⊗ . . .⊗ (ρ⊗ IY1)− TrX2(Y2)⊗ TrX2(R2)⊗ . . .⊗ TrX2(R2)) + . . .

+
1

n
((ρ⊗ IY1)⊗ . . .⊗ (ρ⊗ IY1)⊗ (Y ⊗ IY1)− TrX2(R2)⊗ . . .⊗ TrX2(R2)⊗ TrX2(Y2))

≥ 0, as ρ⊗ IY1 = TrX2(R2) and Y ⊗ IY1 ≥ TrX2(Y2)

• For successive constraints, we have:

1

n
(Yi ⊗Ri ⊗ . . .⊗ Ri + . . .+Ri ⊗ Ri ⊗ . . .⊗ Y )⊗ IY⊗n

i

−

TrX⊗n

i+1

(

1

n
(Yi+1 ⊗Ri+1 ⊗ . . .⊗ Ri+1 + . . .+Ri+1 ⊗ Ri+1 ⊗ . . .⊗ Yi+1)

)

=
1

n
(Yi ⊗ IYi

)⊗ (Ri ⊗ IYi
)⊗ . . .⊗ (Ri ⊗ IYi

)

−
1

n
TrXi+1(Yi+1)⊗ TrXi+1(Ri+1)⊗ . . .⊗ TrXi+1(Ri+1) + . . .

+
1

n
(Ri ⊗ IYi

)⊗ . . .⊗ (Ri ⊗ IYi
)⊗ (Yi ⊗ IYi

)

−
1

n
TrXi+1(Ri+1)⊗ . . .⊗ TrXi+1(Ri+1)⊗ TrXi+1(Yi+1)

≥ 0, as Ri ⊗ IYi
= TrXi+1(Ri+1) and Yi ⊗ IYi

≥ TrXi+1(Yi+1)

• For the last constraint, As Yr ⊗ IYr
≥
∑

i viPi, and Rr ⊗ IYr
=
∑

i P
i we have that

(Rr ⊗ IYr
)⊗k−1 ⊗ (Yr ⊗ IYr

)⊗ (Rr ⊗ IYr
)⊗n−k ≥

∑

i1,i2,...,in

vik (Pi1 ⊗ Pi2 ⊗ . . .⊗ Pin)

Therefore,

1

n

∑

k

(Rr ⊗ IYr
)⊗k−1 ⊗ (Yr ⊗ IYr

)⊗ (Rr ⊗ IYr
)⊗n−k

≥
∑

i1,i2,...,in

1

n
(vi1 + . . .+ vin) (Pi1 ⊗ Pi2 ⊗ . . .⊗ Pin)
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Note that this implies that the answer to our question when only classical information
is allowed is positive as well, as the classical case is a particular case of the quantum one.
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Chapter 5

Optimal strategies in risk-minimizing
parallel repetition

We consider here the situation in which the outcomes are split into two groups, winning
outcomes and losing outcomes, and Bob desires to obtain winning outcomes

When Bob is trying to optimize the expected number of repetitions in which he obtains
a winning outcome, the best he can do is to play independently several copies of his optimal
strategy for achieving a winning outcome when only one repetition is considered. This can
be seen from assigning value 1 to the winning outcome and value 0 to all other outcomes,
and considering our result in the previous chapter. However, we can also consider the
case in which Bob is not concerned with optimizing the number of repetitions in which he
obtains the winning outcome, but rather with making sure that the number of repetitions
in which he obtains the winning outcome is above a certain threshold. We can ask whether
it is still optimal for Bob to play independently in this case.

To answer this question, note that we can assume without loss of generality that there
are only two outcomes, by grouping together all the outcomes that correspond to a winning
situation, and grouping also together all outcomes that correspond to a losing situation.
To express this situation formally, consider a specific description of a game in the way
presented in Chapter 3, with P0 and P1 being the operators from Lemma 5 that corresponds
to the losing and winning outcome, respectively. We have than that determining the
optimal process for Bob when he is trying to maximize the probability that he obtains the
winning outcome, and only one repetition of the interaction is considered, corresponds to
the following optimization problem:
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Primal Problem 4

maximize: 〈P1, X〉
subject to: TrY1(X1) = IX1

TrY2(X2)−X1 ⊗ IX2 = 0
...

TrYr
(X)−Xr−1 ⊗ IXr

= 0

X ∈ Pos (Y1...r ⊗ X1...r) , Xi ∈ Pos (Y1...i ⊗ X1...i)

The process of computing the dual is identical to the one one in Chapter 4, and we
obtain as a result the dual problem:

Dual Problem 4

minimize: Tr(Y )

subject to: Y ⊗ IY1 − TrX2(Y2) ≥ 0

Y2 ⊗ IY2 − TrX3(Y3) ≥ 0
...

Yr ⊗ IYr
≥ P1

Y ∈ Herm (X1) , Yi ∈ Herm (Y1...i−1 ⊗ X1...i)

We have again strong duality, with optimal solutions existing for both the primal and
the dual problem. To see this, we can just notice that these programs are a particular case
of the ones for the situation in Chapter 4. We will then denote by p the optimal value of
these semidefinite programs.

We consider now the situation in which several independent copies of the same interac-
tion occur in parallel, and Bob is trying to optimize his probability of obtaining a winning
outcome in at least k of then. In our analysis of the situation, we will use Σn

k to denote
the subset of {0, 1}n corresponding to the elements with exactly k 1s, and Σn

≥k to denote
the subset of {0, 1}n corresponding to the elements with at least k 1s. From Lemma 6, we
obtain then that this situation corresponds to the following optimization problem:
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Primal Problem 5

maximize:
∑

(i1,i2,...,in)∈Σn
≥k

〈Pi1 ⊗ Pi2 ⊗ . . .⊗ Pin, X〉

subject to: TrY⊗n

1
(X1) = IX⊗n

1

TrY⊗n

2
(X2)−X1 ⊗ IX⊗n

2
= 0

...

TrY⊗n
r

(X)−Xr−1 ⊗ IX⊗n
r

= 0

X ∈ Pos
(

Y⊗n
1...r ⊗ X⊗n

1...r

)

, Xi ∈ Pos
(

Y⊗n
1...i ⊗ X⊗n

1...i

)

The process to obtain a simplified version of the dual as in the case with a single
repetition gives us now:

Dual Problem 5

minimize: Tr(Y )

subject to: Y ⊗ IY⊗n

1
− TrX⊗n

2
(Y2) ≥ 0

Y2 ⊗ IY⊗n

2
− TrX⊗n

3
(Y3) ≥ 0

...

Yr ⊗ IY⊗n
r

≥
∑

(i1,i2,...,in)∈Σn
≥k

Pi1 ⊗ Pi2 ⊗ . . .⊗ Pin

Y ∈ Herm
(

X⊗n
1

)

, Yi ∈ Herm
(

Y⊗n
1...i−1 ⊗ X⊗n

1...i

)

We have again strong duality with optimal solutions being achieved, as can be seen in
the same way as for the problems in Chapter 4, that is, making each of the elements of
our solution be a block of a larger matrix so that we have programs in the form in which
we state the theorem for the existence of Slater points, and then letting the Slater points
correspond to multiples of the identity. We will then denote by p′ the optimal value of
these problems.

Intuitively, the value of p′ will be at least
∑

k≤t≤n

(

n
t

)

pt(1− p)n−t, since that is what a
process for Bob that repeats n independent copies of the optimal process for one interaction
would achieve. And indeed, if we let a solution to Primal Problem 4 be given by X, {Xi},
thenX⊗n, {X⊗n

i } gives us a solution to Primal Problem 5 with value
∑

k≤t≤n

(

n
t

)

pt(1−p)n−t.
We can then formally phrase the question:
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Is it optimal for Bob to play independently when trying to force a certain outcome in
at least k out of n independent parallel copies of an interaction?

as

Is p′ =
∑

k≤t≤n

(

n
t

)

pt(1− p)n−t?

This has been established in the literature to be the case when k = n [Gut09, MS07].
The way in which this is done is by letting an optimal solution to Dual Problem 4 be given
by Y, {Yi}, and then considering the solution Y ⊗n, {Y ⊗n

i } to Dual Problem 5. As the right
hand side of the last constraint is P⊗n

1 ≥ IYr
⊗Y ≥ 0, the properties of the tensor product

that we mention in Chapter 2 are enough to determine that Y ⊗n, {Y ⊗n
i } is indeed a feasible

solution, with value pn. A natural way to extend this to the case in which k < n would be
to let our solution be

∑

(i1,...,in)∈Σn
≥k

f(i1)⊗ . . .⊗ f(in),







∑

(i1,...,in)∈Σn
≥k

fi(i1)⊗ . . .⊗ fi(in)







,

where f(0) = ρ−Y , f(1) = Y , fi(0) = Ri−Yi and fi(1) = Yi. It is not clear that this would
be a feasible solution. However, if we make the assumption that all the constraints except
the last one are satisfied with equality in the Dual Problem 4 for Y ⊗n, {Y ⊗n

i }, which from
Lemma 3.13 in [Gut09] is a valid assumption to make, we will have that all the constraints
except the last one of Dual Problem 5 are satisfied by this solution. However, it is still
not clear how to prove that the proposed solution does actually satisfy the last constraint.
If at this point we could make the additional assumption that Y ≤ ρ and Yi ≤ Ri, the
proof that we will give later for the classical case would give us that the candidate we
are considering is indeed a feasible solution. However, there are cases in which it is not
possible to make this assumption, as it follows from the existence of the counterexample
to p′ =

∑

k≤t≤n

(

n
t

)

pt(1− p)n−t that we show now.

5.1 Counterexample to the independence of acting

optimally for Bob

It is indeed possible to find a simple example, with n = 2, r = 1 and k = 1, in which
the value of p is cos2(π/8) ≈ 0.85, but the optimal probability for Bob to obtain a
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winning outcome in one of at least two repetitions of the interaction is not cos2(π/8) +
2 cos2(π/8) sin2(π/8) ≈ 0.98. Instead, it is equal to 1. A single repetition of the interaction
corresponding to this example follows the following process:

1. Alice prepares a pair of qubits (X,Z) in the state

u =
1√
2
|00〉+

1√
2
|11〉 ∈ X ⊗ Z,

and sends X to Bob.

2. Bob applies a quantum channel of his choice to X, obtaining a qubit Y that he sends
back to Alice. After this action, the pair (Y,Z) will be in some particular state σ ∈
D (Y ⊗ Z).

3. Alice measures (Y,Z) with respect to the projective measurement {Π0,Π1}, where Π0

corresponds to the losing outcome, while Π1 corresponds to the winning outcome. Π0 =
I− Π1 and Π1 = vv∗, for

v = cos(π/8)|00〉+ sin(π/8)|11〉.

The probability that Bob obtains the winning outcome is

〈Π1, σ〉 = F(vv∗, σ)2,

where F(·, ·) denotes the fidelity function F(P,Q) =
∥

∥

∥

√
P
√
Q
∥

∥

∥

1
and we have the equality

from the fact that vv∗ is pure.

Now, if Bob makes σ ∈ D (Y ⊗Z) be the state after step 2, it must hold that

TrY(σ) = TrX (uu
∗) =

1

2
IZ .

It is known that the fidelity function is monotone under partial tracing, so we have
then that

F(vv∗, σ)2 ≤ F (TrY(vv
∗),TrY(σ))

2 = F(Q,R)2

for

Q =

(

cos2(π/8) 0
0 sin2(π/8)

)

and R =

(

1
2 0
0 1

2

)

.
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Computing
√
Q
√
R, we have then that

F(Q,R)2 =
∥

∥

∥

√

Q
√
R
∥

∥

∥

2

1
=

1

2
(cos(π/8) + sin(π/8))2

=
1 + sin(π/4)

2
=

1 + cos(π/4)

2
= cos2(π/8),

using the trigonometrical identity cos(α/2) =
√

1+cosα
2 in the last equality, and the identity

sin(2α) = 2 sin(α) cos(α) in the third equality. We have then that the optimal probability
for Bob of achieving the winning outcome is at most cos2(π/8) ≈ 0.85. This bound is
actually tight, since if Bob acts as the identity, he achieves the winning outcome with
probability

〈vv∗, uu∗〉2 =
(cos(π/8) + sin(π/8))2

2
= cos2(π/8).

Now, for two instantiations of the interaction described above in which Alice operates
independently, we consider what happens when Bob applies the phase flip |00〉 1→ −|00〉,
|01〉 1→ |01〉, |10〉 1→ |10〉, |11〉 1→ |11〉 on the two qubits he receives. The state he receives
is

1

2
|0000〉+

1

2
|0011〉+

1

2
|1100〉+

1

2
|1111〉

and Bob’s phase flip transforms this state to

−
1

2
|0000〉+

1

2
|0011〉+

1

2
|1100〉+

1

2
|1111〉.

Writing
w = − sin(π/8)|00〉+ cos(π/8)|11〉

we find that

−
1

2
|0000〉+

1

2
|0011〉+

1

2
|1100〉+

1

2
|1111〉 =

1√
2
v ⊗ w +

1√
2
w ⊗ v.

When Alice measures this state with respect to the measurement {Π0,Π1}, there will then
be exactly one winning outcome and one failing outcome. Bob passes (and fails) exactly
one of the two tests with certainty. The ability of Bob to correlate his answers in this way
is suggestive of a perfect form of hedging, where the risk of a loss in one game of chance is
perfectly offset the actions in a second game.
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Note that any strategy for Bob in which he does better that playing independently when
trying to win at least k times out of n will imply the existence of a hedging phenomenon,
in the sense that for this strategy there will be a k′ for which Bob will do worse than when
playing independently at winning at least k′ times out of n. This follows from our result
of Chapter 4 that it is optimal for Bob to play independently if he is trying to maximize
his expected number of wins.

5.2 Analysis in the classical case

In the classical case, it is not possible to find an example like the one we just presented. This
can be derived from our analysis of the situation using semidefinite programs, observing
first that in the classical case there exists an optimal dual solution Y, {Yi} to Dual Problem
4 in which all of the blocks in our solution are diagonal matrices. To see this, consider
an arbitrary solution Y ′, {Y ′

i } to Dual Problem 4. Now, I claim that Λ(Y ′), {Λ(Y ′
i )} is

a feasible solution with the same value, where the dephashing channel Λ sets the non-
diagonal entries of the input to zero, and leaves the diagonal entries unaltered, giving then
as the output an operator represented by a diagonal matrix. Indeed, we have that

• Tr(Λ(Y )) = Tr(Y ), since the diagonal elements of the corresponding matrices are the
same.

• Λ is a positive operator, since the diagonal elements of a positive semidefinite matrix
are non-negative. Then, as Λ commutes with the partial trace, Λ(P1) = P1, and
Λ(I⊗A) = I⊗ Λ(A) for any operator A, we have that all the constraints are satisfied.
This is because then we can write them as Λ(A − B) ≥ 0, with A ≥ B, and the
constraint being therefore satisfied.

Now that we make the assumption that Y, {Yi} correspond to diagonal matrices (re-
member that P0, P1, {Ri} and ρ do as well), we have that we can make the additional
assumption that Y ≤ ρ, Yi ≤ Ri. Indeed, consider any solution to Dual Problem 4 with
operators Y, {Yi} that correspond to diagonal matrices. Then, I claim that if we let Y ′ be
the element-wise minimum of Y and ρ, and Y ′

i be the element-wise minimum of Yi and Ri

(note that then Y ′ ≤ ρ and Y ′
i ≤ Ri) , Y ′, {Y ′

i } is a feasible solution to Dual Problem 4
with a value equal to at most the one of Y, {Yi}. Indeed, we have

• Y ′ ≤ Y , so Tr(Y ′) ≤ Tr(Y ).
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• An element along the diagonal of the matrix for Y ′ ⊗ IY1 is equal either to the element
in the same position for Y ⊗ IY1 , or to the element in the same position for ρ⊗ IY1 .

In case it is equal to the corresponding element of Y ⊗IY1 , from the feasibility of Y, {Yi}
we have that this is at least the corresponding element of TrX2(Y2), which will be at
least the corresponding element of TrX2(Y

′
2), since Y2 ≥ Y ′

2 . We have then that in this
case the element that we are considering of the matrix for Y ′⊗IY1 will be at least equal
to the element in the same position for the matrix for TrX2(Y

′
2)

In case it is equal to the corresponding element of ρ⊗ IY1, we have that it then equal to
the element in the same position for TrX2(R2). This is at least equal to the corresponding
element for TrX2(Y

′
2), from the definition of Y ′

2 . We have then again that the element
that we are considering of the matrix for Y ′ ⊗ IY1 will be at least equal to the element
in the same position for the matrix for TrX2(Y

′
2).

As we are dealing with diagonal matrices, this establishes that the first constraint is
satisfied. A similar argument (replacing Y by Yi and ρ by Ri) gives us that all other
constraints except the last one are satisfied.

• An element along the diagonal of the matrix for Y ′
r ⊗ IYr

is equal either to the element
in the same position for Yr ⊗ IYr

, or to the element in the same position for Rr ⊗ IYr
.

In case it is equal to the corresponding element of Yr⊗IYr
, from the feasibility of Y, {Yi}

we have that this is at least the corresponding element of P1.

In case it is equal to the corresponding element for Rr ⊗ IYr
, we have that as P1 ≤

Rr ⊗ IYr
, the element we are considering of the matrix for Yr ⊗ IYr

is at least equal to
the corresponding element for P1.

Making then all these assumptions about Y, {Yi}, we have that we can prove that

∑

(i1,...,in)∈Σn
≥k

f(i1)⊗ . . .⊗ f(in),







∑

(i1,...,in)∈Σn
≥k

fi(i1)⊗ . . .⊗ fi(in)







is actually a feasible solution to Dual Problem 5, deriving then that

p′ =
∑

k≤t≤n

(

n

t

)

pt(1− p)n−t,

as desired. To prove that the solution is indeed feasible, we need the following Lemma:
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Lemma 7. Assume all of A0, A1, R, B1 = A1 + R,B0 = A0 − R are positive semidefinite
operators. Then for every choice of integers n ≥ 1, k ∈ {0, . . . , n}, it holds that

∑

(i1,...,in)∈Σn
≥k

Bi1 ⊗ . . .⊗Bin ≥
∑

(i1,...,in)∈Σn
≥k

Ai1 ⊗ . . .⊗ Ain

Proof. (by induction on n)

• For n = 1, we must consider the cases k = 0 and k = 1.

For k = 0 we have

B0 +B1 = (A0 −R) + (A1 +R) = A0 + A1

and for k = 1 we have
B1 = A1 +R ≥ A1,

as required.

• For n > 1, we have

∑

(i1,...,in)∈Σn
≥k

Bi1 ⊗ . . .⊗Bin =
∑

(i1,...,in−1)∈Σ
n−1
≥k

Bi1 ⊗ . . .⊗ Bin−1 ⊗ B0

+
∑

(i1,...,in−1)∈Σ
n−1
≥k−1

Bi1 ⊗ . . .⊗ Bin−1 ⊗ B1

Applying the induction hypothesis, we obtain
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∑

(i1,...,in)∈Σn
≥k

Bi1 ⊗ . . .⊗Bin ≥
∑

(i1,...,in−1)∈Σ
n−1
≥k

Ai1 ⊗ . . .⊗ Ain−1 ⊗ (A0 −R)

+
∑

(i1,...,in−1)∈Σ
n−1
≥k−1

Ai1 ⊗ . . .⊗ Ain−1 ⊗ (A1 +R)

=
∑

(i1,...,in)∈Σn
≥k

Ai1 ⊗ . . .⊗ Ain

+
∑

(i1,...,in−1)∈Σ
n−1
k−1

Ai1 ⊗ . . .⊗ Ain−1 ⊗R

≥
∑

(i1,...,in)∈Σn
≥k

Ai1 ⊗ . . .⊗ Ain ,

as required.

Note that if we substitute the set of binary strings with at least k ones by any other
monotone subset of {0, 1}n, the proof still holds.

Using this Lemma, we can prove now the feasibility of the proposed solution to Dual
Problem 5:

• The fact that our proposed solution to Dual Problem 5 satisfies the first constraint
follows from the Lemma, with A0 = TrX2(R2 − Y2), A1 = TrX2(Y2), and R = IY1 ⊗ Y −
TrX2(Y2), with B0 being then TrX2(R2)− IY1 ⊗Y = IY1 ⊗ (ρ−Y ), and B1 being IY1 ⊗Y .
That B0 ≥ 0 follows from our assumption that Y ≤ ρ. That A1 is ≥ 0 follows from
the observation that we made before that all blocks of a feasible solution to the dual
problems that we consider have to be positive semidefinite.

• The fact that our proposed solution to Dual Problem 5 satisfies all constraints from
the second to the second last one follows from the Lemma in the same way, with
A0 = TrXi+1(Ri+1 − Yi+1), A1 = TrXi+1(Yi+1), and R = IYi

⊗ Yi − TrXi+1(Yi+1). B0 is
now IYi

⊗ (Ri − Yi), and B1 is IYi
⊗ Yi. That B0 ≥ 0 follows from our assumption that

Yi ≤ Ri. That A1 is ≥ 0 follows from the observation that we made before that all
blocks of a feasible solution to the dual problems that we consider have to be positive
semidefinite.
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• The fact that our proposed solution to Dual Problem 5 satisfies the last constraint
follows from the Lemma as well, with A0 = P0, A1 = P1, and R = IYr

⊗ Yr − P1. B0

is then P0 + P1 − IYr
⊗ Yr = IY1 ⊗ (Rr − Yr), and B1 is IYr

⊗ Yr. That B0 ≥ 0 follows
from our assumption that Yr ≤ Rr.

We have then that our proposed solution to Dual Problem 5 is feasible in the classical
case, as desired.
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Chapter 6

Quantitative bounds to hedging
phenomena

As we saw in Chapter 5, the naive upper bound for the optimum probability for Bob of
achieving the winning outcome in at least k of n independent copies of an interaction as a
function of p, his optimum probability to win when only one copy is considered, does not
actually hold. However, it is still possible to establish weaker bounds. We will do so in
this chapter, proving first a bound of

n
∑

t=k

(

n

t

)

pt,

and modifying then our method to prove a stronger bound of

pk
(

n

k

)

.

The procedure that we will follow to obtain these bounds will be based on building
a feasible solution to Dual Program 5 from an optimal solution to Dual Problem 4. Let
then Y , {Yi} represent an optimal solution to Dual Problem 4. I claim that it holds that
a feasible solution to Dual Problem 5 is given by

∑

(i1,...,in)∈Σn
≥k

f(i1)⊗ . . .⊗ f(in),







∑

(i1,...,in)∈Σn
≥k

fi(i1)⊗ . . .⊗ fi(in)







,
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where f(0) = ρ, f(1) = Y , fi(0) = Ri and fi(1) = Yi, and that this solution has value
∑n

t=k

(

n
t

)

pt. Indeed, we can see that

Tr





∑

(i1,...,in)∈Σn
k

f(i1)⊗ . . .⊗ f(in)



 =
n
∑

t=k

|Σn
t |Tr(Y )t1n−t =

n
∑

t=k

(

n

t

)

pt.

As far as feasibility is concerned, for all the conditions except the last ≥ inequality in
the Dual Problem 5, it follows that they are satisfied using the same analysis as the one
we performed in Chapter 4 to prove that our solution to Dual Problem 3 was feasible. For
the last condition, we have that as

fr(1)⊗ IYr
= Rr ≥ P1 and fr(0)⊗ IYr

= P0 + P1 ≥ P0,

then

∑

(i1,...,in)∈Σn
≥k

fr(i1)⊗ . . .⊗ fr(in) ≥
∑

(i1,...,in)∈Σn
≥k

Pi1 ⊗ . . .⊗ Pin.

This is because then the terms at the left hand side of the last constraint can be paired
to the terms at the right hand side, in such a way that the term at the left hand side is ≥
than the term at the right hand side.

To improve the analysis, one approach would be then obtaining a solution in which the
terms at the left hand side in the last constraints can still be paired with the terms at
the right hand side in this way (and the other constraints are also still satisfied), but the
trace for the operator in our solution belonging to Pos (X1) is smaller. However, attempts
at that approach have been unsuccessful so far at giving us a better value as a function
of p. A possible way of doing so would be letting Y ′, {Y ′

i } denote a solution to the dual
problem corresponding to the situation in which Bob is trying to maximize his probability
of obtaining outcome 0, and then letting f(0) be Y ′, and fi(0) be Y ′

i . Then, as

fr(0)⊗ IYr
= Y ′

r ⊗ IYr
≥ P0,

we would still have a solution that satisfies the last constraint (and as can be checked again
with an analysis similar to the one in Chapter 4, the other constraints are satisfied as well).
The value of this solution would be
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n
∑

t=k

(

n

t

)

ptTr(Y ′)n−t.

However, the value of Tr(Y ′) does not in principle bear any relationship with p, and it
might as well be 1, so this is not necessarily a better bound than the one we already
obtained.

We can try then an alternative approach, in which we assign several terms of the right
hand side in the last inequality to a term in the left hand side. For example, if we had n = 3
and k = 2, in the solution to Dual Problem 5 corresponding to our bound of

∑n
t=k

(

n
t

)

pt,
the right hand side of the last constraint would contain P0 ⊗ P1 ⊗ P1 and P1 ⊗ P1 ⊗ P1,
matched at the left hand side by Rr⊗IYr

⊗Yr⊗IYr
⊗Yr⊗IYr

and Yr⊗IYr
⊗Yr⊗IYr

⊗Yr⊗IYr
.

However, it would be enough to have Rr ⊗ IYr
⊗ Yr ⊗ IYr

⊗ Yr ⊗ IYr
at the left hand side,

since

P0 ⊗ P1 ⊗ P1 + P1 ⊗ P1 ⊗ P1 = (P0 + P1)⊗ P1 ⊗ P1 = Rr ⊗ IYr
⊗ P1 ⊗ P1

Based on this idea, we build the following solution Sn,k to Dual Problem 5, defined
recursively as a function of n and k:

• If k = 0, then the solution is Sn,k = ρ⊗n, {R⊗n
i }

• If k = n, then the solution is Sn,k = Y ⊗n, {Y ⊗n
i }

• If 0 < k < n, then the solution is

Sn,k = (ρ, {Ri})⊗ Sn−1,k

+(Y ⊗
∑

(i1,...,in−1)∈Σ
n−1
k−1

f(i1)⊗ . . .⊗ f(in−1),







Yi ⊗
∑

(i1,...,in−1)∈Σ
n−1
k−1

fi(i1)⊗ . . .⊗ fi(in−1)







)

, where the tensor product with Sn−1,k and the sum between the first row and the
second row are taken block-wise.
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Now, we have that the value of this solution is pk
(

n
k

)

. Indeed,

• If k = 0, then the value is Tr(ρ)n = p0
(

n
0

)

.

• If k = n, then the value is Tr(Y )n = pn = pn
(

n
n

)

.

• If 0 < k < n, we can use induction on n, with the base case being n = 1, covered by
the previous two cases. We have then that the value is

Tr(ρ)pk
(

n− 1

k

)

+ Tr(Y )

(

n− 1

k − 1

)

Tr(Y )k−1Tr(ρ)n−k

= pk
(

n− 1

k

)

+ p

(

n− 1

k − 1

)

pk−1 = pk
(

n

k

)

We also have that the solution is actually feasible. We prove in the same way as for
the previous solutions we consider to Dual Problem 5 that all ≥ constraints except the last
one are satisfied, using that if one of the blocks of our solution includes fi(i1)⊗ . . .⊗fi(in),
the previous one will include fi−1(i1)⊗ . . .⊗ fi−1(in) (with f instead of fi−1 if i = 2). For
the last constraint, we have that

• If k = 0, then

R⊗n
r ⊗ IY⊗n

r
= (P0 + P1)

⊗n =
∑

(i1,...,in)∈Σn
≥0

Pi1 ⊗ . . .⊗ Pin

• If k = n, then

Y ⊗n
r ⊗ IY⊗n

r
= (Yr ⊗ IYr

)⊗n ≥ P⊗n
1 =

∑

(i1,...,in)∈Σn
≥n

Pi1 ⊗ . . .⊗ Pin

• If 0 < k < n, we can use induction on n, in the same way as in our calculation of the
value of the solution. We have then that, using the fact that Sn−1,k is feasible for the
corresponding program, the value at the left hand side of the last constraint is
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≥ Rr ⊗ IYr
⊗

∑

(i1,...,in−1)∈Σ
n−1
≥k

Pi1 ⊗ . . .⊗ Pin−1

+Yr ⊗
∑

(i1,...,in−1)∈Σ
n−1
k−1

fi(i1)⊗ . . .⊗ fi(in−1)⊗ IY⊗n
r

≥ (P0 + P1)⊗
∑

(i1,...,in−1)∈Σ
n−1
≥k

Pi1 ⊗ . . .⊗ Pin−1 + P1 ⊗
∑

(i1,...,in−1)∈Σ
n−1
k−1

Pi1 ⊗ . . .⊗ Pin−1

=
∑

(i1,...,in)∈{0,1}×Σn−1
≥k

∪{1}×Σn−1
k−1

Pi1 ⊗ . . .⊗ Pin

Decomposing Σn
≥k into two subsets, the one with at least k 1s in the last n−1 symbols,

and the one with exactly k − 1 1s in the last n − 1 symbols, we have that the last
formula in our chain of inequalities is indeed

∑

(i1,...,in)∈Σn
≥k

Pi1 ⊗ . . .⊗ Pin

, so our solution to Dual Problem 5 satisfies the last constraint, as desired.
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Chapter 7

Error reduction for interactive proof
systems

An interactive proof system is a situation in which an object belonging to one of two disjoint
sets (Lyes, Lno) is known to two parties, one of which is trying to convince the other that
the object belongs in Lyes. If the object does indeed belong in Lyes, the probability that
the second individual is successfully convinced will be higher than if it does not. As it
is standard to do in theoretical computer science, we will assume that the objects in the
sets (Lyes, Lno) are modelled as binary strings. Several variations of this setting have been
widely studied in complexity theory (see e.g. [BM88, GMR89] for two foundational papers
in the area), as it is possible to defined complexity classes in terms of sets of objects for
which such an interaction exists.

The model for these interactions is similar to the one we have considered in this thesis.
In this chapter, we will then go back to referring to the party we have called Alice as the
verifier and the party we have called Bob as the prover. There will be two outcomes for
the interaction between them, one of them called the accepting outcome, and the other one
called the rejecting outcome. We say that the verifier accepts whenever the outcome of the
interaction is the accepting outcome, and that the verifier rejects whenever the outcome of
the interaction is the rejecting outcome. We also place the additional restriction that the
process by which the verifier operates must be an efficient process, so its computational
ability is restricted to quantum (or probabilistic, in the classical case) polynomial time in
the size of the shared object. The prover’s computational ability is still unrestricted.

For an interactive proof system to be good, it should be possible for the verifier to make
a reasonable guess about whether x ∈ Lyes from the outcome of the interaction. Then, we
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say that an interactive proof is valid for a problem specified by (Lyes, Lno), with parameters
α and β, β < α, whenever

1. If x ∈ Lyes, it is possible for the prover to convince the verifier to accept with probability
at least α. This is called the completeness condition, and corresponds to the condition
in formal logic that true statements can be proved. 1−α is called then the completeness
error.

2. If x ∈ Lno, the verifier always accepts with probability at most β, regardless of the
prover’s actions. This is called the soundness condition, and corresponds to the con-
dition in formal logic that false statements cannot be proved. β is called then the
soundness error.

We might have for example that α = 1/2 + δ and β = 1/2 − δ, for some small δ > 0.
However, the verifier would be able to make a better guess about whether x ∈ Lyes from
the outcome of the interaction if we had α = 1 − ε and β = ε, for a small value of ε > 0.
The process of specifying a new interactive proof system from another one in a way that
improves on the value of α and β is called then error reduction.

A natural procedure to perform for error reduction would be the same one that is
usually performed in the case of probabilistic algorithms. That is, the verifier could repeat
the interaction several times, and accept if and only if the number of accepting outcomes
that are obtained is above a certain threshold. In the situation under consideration, one
is to understand that it is important for the new verifier to run these independent tests
in parallel (as opposed to requiring the prover to respond sequentially to the individual
tests). A motivation for this comes for the fact that in the complexity classes defined in
terms of quantum interactive proofs, the number of rounds is often considered to be a fixed
constant, so one increasing the number of rounds might not be a possibility.

However, the analysis that proves that this intuitive procedure works in the case of
probabilistic algorithms relies in the fact that the analysis of the different repetitions can
be made in an independent way. It is not clear that we could do this in our analysis, since as
we saw in Chapter 5, it might not be optimal for a hypothetical prover that interacts with
many independent executions of an interactive proof system to respect the independence of
these executions when the objective of the prover is to get a number of accepting outcomes
past a certain threshold.

Note however that, as we saw in Chapter 5, in the classical case we can indeed assume
that the prover respects the independence of the executions. And it is indeed well-known in
that case that the same argument that is used for probabilistic algorithms can be extended,
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and error reduction based on parallel repetition and a threshold value computation works
perfectly for (single-prover) interactive proof systems. 1 By this we mean that not only
parallel repetition and a threshold value computation can be used for error reduction, but
that as it follows from the behaviour in the classical case that we described in Chapter 5,
we have the stronger statement that if p is the optimal probability for the original verifier
to obtain an accepting outcome for some x, then the optimal probability to cause at least
t acceptances out of k independent repetitions of the original interaction is

k
∑

j=t

(

k

j

)

pj(1− p)k−j.

Using this and standard Chernoff bounds, we have that our suggested strategy for error
reduction does quickly reduce the error. Our example in Chapter 5 shows that this perfect
behaviour for parallel repetition does not always hold in the quantum case. However, it
might still be the case that an strategy based on parallel repetition and a threshold value
computation can be used for error reduction. This would provide a simpler strategy for
performing error reduction in quantum interactive proofs that the ones that are known in
the literature [JUW09, KW00].

We will show now then, using our results from Chapter 6, that the natural procedure
that we suggest for error reduction does indeed work for a certain range of values for the
α and β parameters. More formally, we prove the following Theorem:

Theorem 8. Let the parameters α and β for a quantum interactive proof system be constant

real numbers, with 0 ≤ β < 2−
H(α)

α < α ≤ 1. Then, a strategy based on parallel repetition
followed by a threshold value computation will bring the soundness and completeness errors
below ε in O(log 1

ε
) rounds.

Proof. Let p be the optimal probability for the prover to obtain an accepting outcome with
the case, and c be a constant rational number c1

c2 strictly smaller than α (we will further
restrict the value of c later). We will let the threshold for the error reduction procedure
be k = 2cn3.

We start by looking at the completeness error, corresponding to the situation in which
x ∈ Lyes and p ≥ α. Consider an strategy for the prover which just plays the optimal
strategy for a single repetition independently in each of the independent interactions. The

1The situation is very different for multi-prover interactive proof systems, wherein the subject of parallel
repetition is complicated [Raz98, Hol09, Raz08].
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probability that this strategy obtains a given number of accepting outcomes will be given
then by a binomial distribution with parameters p and n, and this distribution follows the
Chernoff bound

P (X ≤ pn(1− λ)) ≤ exp

(

−
pnλ2

2

)

As the probability that the number of accepting outcomes falls below the threshold is
equal to the probability that it is at most cn, we have then that this probability is bounded
by

exp







−pn
(

1− cn
pn

)2

2






= exp







−pn
(

1− c
p

)2

2







As c < α ≤ p, this is an exponentially decreasing function of n, so it is indeed enough
to repeat the interaction in parallel O(log 1

ε
) times to obtain a completeness error below ε.

We look now at the soundness error, corresponding to the situation in which x ∈ Lno

and p ≤ β. Then, from our results in Chapter 6, we have that the probability that the
prover can obtain a number of accepting outcomes above the threshold is upper bounded
by

pk
(

n

k

)

To analyze this expression, we take its logarithm, which is equal to

k lg p+ lg n!− lg k!− lg (n− k)!

Now, we can obtain lower and upper bounds for lg n! =
∑n

i=1 lg i by integrating lg. The
lower bound is n lgn− n+1

ln 2 , while the upper bound is (n+ 1) lg(n + 1)− n
ln 2 . Using these

bounds, we obtain an upper bound on the previous expression of

p lg k + (n+ 1) lg(n+ 1)−
n

ln 2
− k lg k +

k + 1

ln 2
− (n− k) lg(n− k) +

n− k + 1

ln 2

= p lg k + lg(n + 1) + n lg(n+ 1)− k lg k − (n− k) lg(n− k) +
2

lg 2
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If we write k = 2cn3 =
⌊

c1
c2
n
⌋

as cn− c1n mod c2
c2

= n
(

c− c1n mod c2
c2n

)

, this is equal to

(

cn−
c1n mod c2

c2

)

lg p + lg(n+ 1) + n lg n+ n lg(1 +
1

n
)−

(

cn−
c1n mod c2

c2

)

lg n

−
(

cn−
c1n mod c2

c2

)

lg

(

c−
c1n mod c2

c2n

)

−
(

(1− c)n +
c1n mod c2

c2

)

lg n

−
(

(1− c)n +
c1n mod c2

c2

)

lg

(

(1− c) +
c1n mod c2

c2n

)

+
2

lg 2

We can see that the terms in n logn cancel each other, and the previous expression can
then be written as

n

[

c lg p+ lg(1 +
1

n
)− c lg

(

c−
c1n mod c2

c2n

)

− (1− c) lg

(

(1− c) +
c1n mod c2

c2n

)]

−
c1n mod c2

c2
lg p+ lg(n+ 1) +

c1n mod c2
c2

lg

(

c−
c1n mod c2

c2n

)

−
c1n mod c2

c2
lg

(

(1− c) +
c1n mod c2

c2n

)

that is, as

n

[

c lg p+ lg(1 +
1

n
)− c lg

(

c−
c1n mod c2

c2n

)

− (1− c) lg

(

(1− c) +
c1n mod c2

c2n

)]

+ o(n)

As n goes to infinity, the coefficient for n goes to c lg p−H(c), which will be negative
if H(c)

c
> lg p. Now, we have lg p ≤ lg β < H(α)

α
. As H(x)

x
is a continuous function in the

interval (0, 1], we can then pick c as a constant close enough to α that lg β < H(c)
c

, and

therefore H(c)
c

> lg p. We have then that there is a positive integer constant n1 and a
positive real constant λ1 such that for all n ≥ n1 , the coefficient for n in the previous
expression is upper-bounded by λ1. Taking also into account the o(n) term, we have then
that for n greater or equal than a constant n2, the logarithm of our bound of the soundness
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Figure 7.1: Graph for 2
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error is upper bounded by −λ2n for some positive real λ2, obtaining then the asymptotic
result that the soundness error can be reduced to ε in O(log 1

ε
) rounds.

We can see in Figure 7.1 that the condition β < 2−
H(α)

α is meaningful, in the sense that

there seems to be a wide range of values of β and α for which it holds that β < 2−
H(α)

α .

Indeed, it is possible to prove that 2−
H(α)

α > α/3, so for β < α/3 the condition β < 2−
H(α)

α

will hold.
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Chapter 8

Conclusion

This thesis has considered several questions related to the parallel repetition of a simple
kind of interaction, broadly centered around the relevance of correlations arising in the
quantum information theoretic versions of these interactions.

We have seen in Chapter 4 how the presence of those correlations does not affect the
optimality for Bob of acting independently in the different repetitions whenever he asso-
ciates a value to each outcome, and is trying to optimize the value obtained by repetition.
However, when Bob is trying to force a certain outcome to occur a number of times past
a given threshold, then we have seen in Chapter 5 that the correlations that are possible
between the actions of Bob for different repetitions can give rise to a strikingly non-classical
hedging type of behaviour.

Our work may have then relevance in settings considered in cryptography, where certain
protocols might very well be abstracted as tests of the sort we have considered (this is the
case, for example, for quantum money [Mol11], and quantum coin-flipping [GW07]).

The extent to which a dishonest individual can attack such protocols by correlating
independent executions is an important security consideration that some would-be cryp-
tographers might fail to consider. Our results in Chapter 5 demonstrate then that quantum
attacks to such protocols may exhibit striking non-classical and counter-intuitive proper-
ties, and should therefore be given very careful consideration.

We have then established in Chapter 6 certain quantitative bounds to the hedging
type of behaviour that we have observed. And finally, we have discussed in Chapter 7 the
connection of our results with certain techniques for error reduction in quantum interactive
proofs.
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The main three questions left open in our work and that remain to be answered are
the following ones:

1. Is it possible to improve our bounds in Chapter 6 concerning the optimum probability
for Bob of achieving a winning outcome in at least k of the n interactions?

2. If the answer to the previous question is positive, can these improvements be used to
prove that the naive way of parallel repetition discussed in Chapter 7 does always work?

3. If the answer to the previous questions is positive, how fast does the naive way of
parallel repetition reduce the error?

Ideally, there would be an exponential decay in the optimum probability for Bob of
achieving a winning outcome in a fraction of the interactions above pn, as a function of
the number of repetitions n. That would answer both of the first questions in a positive
way, and would establish that the naive way of parallel repetition does indeed reduce the
error quickly in an asymptotical sense.
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