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Abstract

The temperature of 0◦C, the phase change point of water-ice, is among the most in-

fluential factors on the hydrology of the temperate regions that experience winter. Many

cryospheric processes, such as snow and ice melt, avalanches, freshwater ice breakup, and ice

jam floods, are triggered by the arrival of the above-0◦C air temperatures. Moreover, such

0◦C based changes can have significant cascading impacts on other parts of the physical

environment as well as related socio-economic activities. This research adopts an extensive

analytical approach to examine the changes in the sign of mean JFM (January-February-

March) and MAM (March-April-May) air temperatures, in the 0.5◦×0.5◦ land grid cells of

the Northern Hemisphere (20.25◦N-89.75◦N), during the period 1901-2009. The goal is to

identify grid cells in which JFM or MAM temperatures used to be primarily below freezing,

however, changed sign permanently some time during 1901-2009 due to an advancement in

the arrival timing of the annual above-0◦C temperature. Considering that air temperature

fluctuates and can cross 0◦C several times during the entire period of study, four different

modelling techniques are employed to detect the shift points in the trend function as well

as mean level of the time series and to determine the year when the model rises above 0◦C

(y0) in a given location. Model-specific criteria are set to determine y0 in cases of multiple

positive 0◦C crossings. The techniques applied include i) trend shift detection techniques:

Model 2 and Model 3 (Perron and Yabu, 2009b; Kim and Perron, 2009), ii) Multivariate

Adaptive Regression Splines (Friedman, 1991), and iii) the R method (Rodionov, 2004,

2006). This thesis provides a thorough discussion of these techniques and reviews their

strengths and weaknesses relative to the research goals.

In addition to y0, the time of the onset of warming that causes a time series to per-

manently rise above 0◦C (yw) is identified. The applied methods divide the entire domain

of the time series into sub-regions in which the data are approximated by polynomials

of degree zero or one. The segment which encompasses y0 is termed the ‘segment of in-

terest’ (Sinterest). The combination of Sinterest and the segment(s) with positive slope that

immediately follows Sinterest forms a section referred to as the ‘section of total warming’

(SWtotal
). The non-parametric Mann-Kendall test, following the modified trend-free pre-

whitening approach (Burn et al., 2004), is conducted to examine if the warming during

Sinterest, which causes the temperature to turn positive, is significant. The same test is

applied to SWtotal
to determine if the total warming subsequent to yw is significant. Only

the locations with significant warming during Sinterest and SWtotal
are selected. A bootstrap

iii



analysis (Cunderlik and Burn, 2002), conducted to determine the field significance of the

results, indicates that local trends are also globally significant.

A thorough comparative evaluation of all the above-mentioned techniques determines

that Model 2 is the technique that best meets the analysis goals. Analytical results indicate

that during JFM, y0 most commonly takes place in the following zones (referred to as

‘transition area’). It should be noted that only the grid cells with significant warming

during Sinterest and SWtotal
are considered: i) North America, western U.S; ii) Europe, highest

density in central Europe; iii) southwestern and central Asia, a small region consisting of

some parts of Uzbekistan, Kazakhstan, and Iran; iv) central-eastern Asia, a small area in

western China most of which lies in the Taklamakan Desert; v) easternmost Asia, some

grid cells from east-central China, South Korea, and Japan. During MAM, over North

America, the transition area of Model 2 is principally located in Canada and extends

from northeastern British Columbia to the Atlantic regions. In Eurasia, northern Europe,

European Russia, southern Russia, northern Mongolia, and northeastern China form the

great portion of the transition area. It should be noted that except for a few high-elevation

regions located in lower latitudes, the grid cells with y0 taking place during MAM are

located north of those with y0 occurring during JFM.

Results also indicate that y0 of the majority of locations occurs during the 1960-2008

interval. During MAM, the transition area of Model 2 in east-central Canada and Eurasia

exhibits a clear pattern of increase in y0 values with latitude. This characteristic is also

observed in some regions during JFM. The yw values are most commonly distributed over

the period 1901-1980 with a peak during 1960-1980. The rate of warming over Sinterest and

SWtotal
generated by Model 2 is ∼ 0.01−0.1(◦C/year). The spatial and temporal variability

in the results is believed to be related to variations in climate, elevation effects, and/or

large-scale atmosphere and ocean circulations, all of which require further evaluation for

proper attribution of effects.
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Chapter 1

Introduction

1.1 Motivation

The impact of human activities on the natural energy balance of the earth is increasingly

receiving greater attention, with a major focus on the role of greenhouse gases (GHGs).

The increased emissions of GHGs from anthropogenic activities, such as from burning fossil

fuels, are believed to be the key factor that alters the composition of the atmosphere and

radiation exchanges and ultimately, interferes with the energy balance of the earth. Given

increasing growth in population, urbanization, and industrial expansion, the production of

GHGs is likely to grow. This trend, combined with the long atmospheric lifetimes of emitted

GHGs, indicate that greater future consequences can be expected beyond those already

documented (Karl and Trenberth, 2003). Therefore, in addition to preventive actions that

should be taken to mitigate or impede further changes, it is critical that environmental and

socio-economic systems adapt to new conditions. Precise climate change adaptation plans

necessitate the assessment of the past events as well as developing effective techniques to

project future conditions.

Many analyses of climate-induced changes (temporal and spatial) still rely on relatively

simple climate variables such as air temperature, rather than complex suites of meteorolog-

ical variables (e.g., wind, pressure, humidity, short and long wave radiation) (e.g., Zhang

et al., 2000; Bonsal and Prowse, 2003; Prowse et al., 2007; Ivanov and Evtimov, 2010;

Prowse et al., 2010). Air temperature acts as an index for a complex set of heat fluxes
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(i.e., sensible, latent, radiative) that determine surface energy budgets. Hence, many hy-

drological observations are highly correlated with air temperature. For example, within

the environment of cold regions, a few days of mild above-freezing air temperature in win-

ter can initiate rapid hydrologic responses, such as rapid snowmelt, premature river ice

breakup, and ice jam floods (Beltaos, 2002; Prowse and Beltaos, 2002). Furthermore, as

temperature cools after such events, refreezing can produce relatively impermeable ice lay-

ers that can have a variety of bio-physical effects. Using winter ecology as another example

of temperature-related effects, such ice layers can make plants inaccessible to foraging ani-

mals and have been identified as one of the factors causing the population decline of some

animal and plant species (Forchhammer and Boertmann, 1993; Putkonen and Roe, 2003).

It is because of these types of examples that there is a strong interest in examining spe-

cific changes and critical shifts in air temperature, such as those related to 0◦C conditions

described next.

Although trends and variability in air temperature are well documented for the North-

ern Hemisphere, the critical phase change temperature of the cryosphere, 0◦C, has only

been the subject of a few studies (see Section 1.2). Air temperature changes around 0◦C

are most meaningful in the climate of cold regions, particularly, those characterized by

seasonal snow and ice covers, where many hydrological and ecological processes as well as

human social and economic activities are influenced by the change in the sign of temper-

ature on the annual basis. The time of spring ice breakup, autumn freeze-up, and animal

hibernation, type of precipitation (snowfall versus rainfall), road, rail, and marine trans-

portation, hydroelectric power generation, etc. are examples of the processes affected by

the arrival and retreat of sub-freezing temperatures (Bonsal and Prowse, 2003). Given that

the timing of the first positive or negative air temperatures produces such a wide range of

impacts, an assessment of how climate change has produced spatial and temporal changes

in 0◦C conditions is pre-requisite to evaluating the full scope of its historical and potential

future effects.

1.2 Related Work

Bonsal and Prowse (2003) investigated the temporal and spatial patterns of spring and

autumn 0◦C isotherm dates in Canada to evaluate the impact of global warming on them.

According to this study, the spring 0◦C isotherm is defined as the date when the mean daily

2
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temperature rises above 0◦C in a given year. Based on this approach, Duguay et al. (2006)

conducted a correlation study on the recent trends of lake ice freeze-up/breakup dates and

spring and autumn 0◦C isotherm dates in Canada. In most of the regions of the country,

strong correlations are observed. Furthermore, the temporal and spatial characteristics of

the two variables resemble each other. Since the most significant changes in temperature

have occurred in high latitudes, and various models forecast higher future warming for

these regions, Prowse et al. (2010) performed a similar 0◦C-isotherm analysis on four of

the largest Arctic flowing rivers. As they noted, the timing of ice breakup events and spring

freshet in such rivers is highly influenced by ambient air temperature. The unequal heating

along these rivers poses challenges to flood forecasting and creates risks to humans and

aquatic life. This study points to the importance of understanding spring 0◦C-isotherm

conditions as indicators of spring melt conditions in the analysis of hydrological trends.

The study by Bonsal and Prowse (2003) is focused on spring and autumn 0◦C isotherms

during the 20th century. The study area is fixed and limited to Canada, and the first

negative and positive temperatures in autumn and spring are determined for each station

by analysing the time series of mean daily temperature in a given year. The mean spring

(autumn) 0◦C isotherm date for a given station over the time period of study (e.g., the

latter half of the 20th century) is the average of all the spring (autumn) 0◦C isotherm dates

determined for the years encompassed in the entire period of study. By contrast, this thesis

focuses on two fixed time periods: i) late winter and early spring; i.e., January-February-

March (JFM), ii) spring; i.e., March-April-May (MAM). In many parts of the Northern

Hemisphere, particularly along central latitudes, JFM or MAM is the time of the year

when temperature sign changes are expected to occur and produce hydrological changes

similar to those noted above. This thesis focuses on identifying land grid cells in the

extra-tropical Northern Hemisphere (20.25◦N-89.75◦N) that have experienced permanent

changes in the sign of temperature from below 0◦C to above 0◦C during JFM or MAM, in

the period 1901-2009. The spatial resolution is 0.5◦ latitude-longitude, and the temporal

resolution is 1 year. It means that the time series for each 0.5◦× 0.5◦ grid cell comprises

109 data points, and each data point is the mean temperature of JFM or MAM for the

corresponding year. The time of permanent positive 0◦C crossing for a specific grid cell (if

it applies) is defined as the year when the primarily negative temperature turns positive.

This thesis also attempts to determine the start year of warming that eventually leads to

the temperature sign change.

Due to temperature fluctuations, the line of 0◦C is crossed more than one time during

3
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the entire period of study. Bonsal and Prowse (2003) used a 31-day moving average to

smooth such variability. The spring (autumn) 0◦C isotherm was then defined as the time

when the moving average crosses 0◦C in the positive (negative) direction. In this thesis,

four techniques are applied to model the original temperature time series. The time of

positive 0◦C crossing (y0) as well as the start year of warming (yw) are then determined

based on these models. The techniques are as follows:

• Trend shift detection techniques

These techniques are applied to detect the breaks in the trend function of a time

series. Based on the type of the shift they detect, these techniques are divided into

three categories: i) Model 1, which detects the shift in the intercept of the trend

function; ii) Model 2, which is used to test for the break in slope; iii) Model 3, which

detects the simultaneous shift in intercept and slope. The two segments of the time

series, preceding and following the break time, are modelled by ordinary least square

(OLS) regression lines. These techniques were originally developed for the analysis

of econometric time series (Perron and Yabu, 2009b; Kim and Perron, 2009). They

have, however, also been applied in the analysis of air temperature time series in the

Northern Hemisphere by Ivanov and Evtimov (2010).

Specifically, Ivanov and Evtimov (2010) applied Model 3 to the time series of annual

mean anomalies of the air temperature in the Northern Hemisphere. The study

concludes that a break occurs in 1963, and a new regime starts in 1970, after the

transitional period of 6 years. Following the approach of Ivanov and Evtimov (2010)

and due to the unique characteristics of the trend shift detection techniques, this

thesis selected Model 2 and Model 3 to analyse the temperature time series of the

Northern Hemisphere.

• Multivariate Adaptive Regression Splines (MARS)

This technique, developed by Friedman (1991), is the subset of the methods used

in adaptive computations. MARS is a hybrid of the classical spline approach and

a more modern way of partitioning data into sub-regions. Knots are predetermined

in the classical spline approach. However, MARS identifies best knot placements

automatically over the course of the process. It should be noted that only significant

knots are detected by the algorithm; for example, if a single line is the best fit, no in-

terior knot placement would occur. Nicholas J. Gralewicz (personal communication)

conducted some preliminary analyses on climate time series using MARS. Based on
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the outcomes of his assessment and inspired by the unique features of MARS, this

technique is also employed in this thesis.

• A sequential algorithm for climate regime shift detection (R method)

Developed by Rodionov (2004, 2006), this technique detects abrupt shifts in the mean

level of a time series. More than one shift point may be found by this technique. The

behaviour of most of the regime shift detection techniques deteriorates close to the

ends of time series. However, the R method is able to discover the discontinuities

that occur close to the ends of time series.

All the above-indicated techniques have some common characteristics which make them

suitable to achieve the analysis goals of this thesis:

• The algorithm of these techniques could be automated to analyse the large data set

of this research.

• The shift points are detected by the algorithms, and a priori knowledge of the time

of shifts is not required.

• The original time series are analysed by the techniques. Since it is not required to

convert the data to anomalies, the ambiguity regarding the definition of a base period

is avoided.

When the length of a time series is relatively short (a hundred or so), it is difficult to

attribute a specific function to it (Rodionov, 2006). This was the main reason that mo-

tivated the selection of a range of different methods in this thesis. This study provides

an unprecedented discussion about the techniques mentioned above. The strengths and

weaknesses of the methods are indicated in light of the research goals. The analysis of

the time series is conducted by applying all of the techniques and presenting all of their

results for comparison. Therefore, although this thesis eventually selects one technique as

the method which best suits its goals, the comparisons and results provided could act as

a helpful guide for additional research and other applications. Researchers may select one

or more of these techniques that best meets their analytical objectives and particular data

constraints of their projects.
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1.3 Research Objectives

The specific objectives and key methodological approaches of this thesis are to:

1. identify locations in the Northern Hemisphere that have experienced positive 0◦C

crossings using the above-noted modelling techniques

2. determine yw and y0 and develop criteria to identify such values in cases of multiple

crossings of the 0◦C threshold

3. determine the rate of the increase in temperature that begins at yw and leads to y0

4. test the local and global significance of the warming that results in the JFM or MAM

temperature rising above 0◦C using the non-parametric Mann-Kendall test following

a modified trend-free pre-whitening (TFPW) (Burn et al., 2004) approach and a

bootstrap analysis (Cunderlik and Burn, 2002)

5. conduct non-parametric comparisons of the results of the various methods using

two non-parametric techniques: Wilcoxon signed-rank test for paired observations

and Wilcoxon rank-sum test (Miller, 1986; Glantz, 2002; Gibbons and Chakraborti,

2003; Montgomery and Runger, 2003)

6. examine the connection between the techniques in terms of their mathematical bases

and select the best model based on the analysis results and with respect to the

research goals

7. provide rationale for the observed trends by comparing them with those from stud-

ies of temporal and spatial trends in hydrologic and cryospheric processes strongly

influenced by 0◦C conditions

1.4 Organization of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 first provides a brief sum-

mary of the studies focussed on the impact of climate change on the spatial and temporal

characteristics of the hydrological processes in cold regions. Related changes in ecosystem
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and human socio-economic activities are also discussed. The chapter then reviews the pre-

vious work with regard to non-parametric trend tests as well as the various regime shift

detection techniques used in this thesis to model the time series. Chapter 3 describes the

mathematical bases and the details of the algorithms of the techniques used in modelling,

non-parametric comparison, non-parametric trend testing, as well as the bootstrapping

technique applied in this research. Chapter 4 introduces the data used for the study. The

chapter gives some information about the source of data and how the data were collected,

homogenized, and adjusted to be the indicators of monthly climate variations. Further-

more, Chapter 4 gives an overview of the steps followed in the assessment of the final

database to fulfil the research goals. Chapter 5 provides a description of all the variables

which are examined including yw and y0. Following a technique-specific discussion about

the input arguments as well as the rules of yw and y0 determination, the results of the

corresponding method are presented in the form of descriptive tables, histograms, and

maps. The final section of Chapter 5 discusses the results and includes the mathematical

comparison of the techniques as well as description and comparison of the results depicted

by histograms and maps. This discussion leads to the choice of the most suitable model.

The section ends with providing some cryospheric evidence from the related work for the

observed spatial and temporal patterns in this thesis. Finally, conclusions are provided in

Chapter 6.

7



Chapter 2

Literature Review

2.1 Introduction

This chapter first focuses on climate change impacts on the hydrology of cold regions and

presents a brief summary of the available literature. The climate change in cold regions has

broad-scope effects observed in subsurface to atmospheric processes, vegetation and plants

to human subsystems, and so on. This chapter only aims to describe those consequences

caused by the phase change of water such as changes in the type of precipitation, floating

ice, glaciers, and permafrost. The discussion then continues with reviewing the available

literature on trend detection; the statistical tools suitable for the analysis of the behaviour

of climate data are illustrated. Due to specific characteristics of environmental data, this

section is mostly concentrated on non-parametric techniques. Following the topic of trend

analysis, the rest of this chapter provides a thorough description of the techniques that

could be applied in climate shift detection. The focus of this section is on the techniques

which could be easily automated for the analysis of large data sets.

2.2 Climate Change

Our planet receives sun’s radiation. The solar energy is partially reflected back to space

by the earth surface, aerosols, clouds, and atmospheric gases. The rest of this energy, after

undergoing several processes, eventually radiates back to space as infrared radiation at low

8
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energy (longwave radiation). The processes which cause the absorbed energy to leave and

balance the energy of the earth (+atmosphere) include i) thermals (e.g., warming of the air

surrounding the earth surface with the absorbed energy by the surface), ii) evapotranspi-

ration, iii) latent heat emitted by clouds (Kiehl and Trenberth, 1997). Greenhouse gases

(GHGs) also play a key role in the energy balance of the earth. The primary GHGs are

water vapor, Carbon Dioxide, Ozone, and trace gases such as Methane and Nitrous Oxide.

The reason behind this terminology (greenhouse gases) is that these gases partially absorb

and back-radiate the longwave energy leaving the earth which causes greanhouse effect.

Our planet would be colder without the presence of these gases.

Humans alter the atmospheric composition and interfere with the natural energy bal-

ance of the earth. The most drastic anthropogenically induced changes are caused by

GHG emissions resulted from various human activities. These activities include burning

fossil fuels that increases the concentration of Carbon Dioxide in the atmosphere. Part

of the human impact on the climate is through changes in land-use such as urbanization.

Although changes in land-use are usually regional rather than global and restricted only to

areas where people live, the effects are significant and detectable. Due to long atmospheric

lifetimes of the emitted GHGs, developing urban areas, and advancements in technology,

the recently started climate change is expected to last for a long time. Therefore, it is of

paramount importance to plan to adapt to new and upcoming conditions besides efforts

devoted to mitigating or preventing further changes. In order to make as precise plans

as possible, more studies should be conducted on the quality and quantity of changes in

the past as well as developing effective techniques to forecast future changes (Karl and

Trenberth, 2003).

2.2.1 Impacts of Climate Change on Cold Regions Hydrology

Analysing the effect of climate change on the hydrological parameters is a practically

important issue. Some of the most affected hydrological parameters in cold regions can be

listed as extent of the land ice and permafrost, sea and lake levels, degree of soil moisture,

as well as rate of ice melt, run-off, river discharge, and groundwater discharge. These

hydrological parameters in turn play a critical role in the frequency of extreme events such

as floods or drought periods and have pronounced impacts on biological and social systems.

The ‘science of climate change’ has been reviewed by a succession of assessment reports

9



2.2. Climate Change Chapter 2. Literature Review

produced by the Intergovernmental Panel On Climate Change (IPCC). The most recent

assessment report is the 4th assessment report (2007). ‘The Physical Science Basis’ is the

contribution of ‘Working Group I’ to the 4th assessment report of IPCC (IPCC, 2007).

This comprehensive report includes information on changes in the temperature of land,

air, and ocean. It provides a detailed description of the changes in glaciers, ice cover,

frozen ground, etc. caused by changes in climate. As a post-product to the 4th assessment

report (2007), IPCC produced a special report, IPCC (2008), which focuses only on the

issue of water. The report includes the details of the relationship between climate change

and water resources. It investigates the changes in climate pertinent to water such as

changes in precipitation, snow and land ice, etc. This section is a brief synopsis of the

major processes influenced by climate change in cold regions. Only the processes that

concern the study area of this research are discussed.

2.2.1.1 Precipitation

Any form of water falling from clouds is called precipitation. Studies indicate that over

the 20th century, atmospheric water vapour has increased over oceans. This is an artifact

of increases in sea surface temperatures. Therefore, the amount, frequency, intensity, and

type of precipitation are influenced by the observed changes in water vapour pressure in

the atmosphere (IPCC, 2007, 2008).

2.2.1.1.1 Change in Precipitation Amount, Intensity, and Frequency

Madden and Williams (1978) examined the 64-year (1897-1960) precipitation and tem-

perature time series of 98 stations in North America and Europe (72 and 26 stations in

North America and Europe, respectively). They reported high correlations between sea-

sonal mean temperature and amount of precipitation. The correlation observed in summer

(June, July, and August) is negative, whereas both positive and negative correlations are

observed equally in other seasons. Trenberth and Shea (2005) studied the relationship

between monthly mean surface air temperature and precipitation data that span the pe-

riod of 1979-2002 over the globe. According to this study, negative correlations appear

on land. However, high latitudes during northern cold season months (January, February,

March, April, and May) feature positive correlations. This phenomenon occurs because

providing that sufficient surface moisture is available, an increase in temperature leads to
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more evaporation. On the other hand, in extra-tropical high latitudes, there is a positive

correlation between the water holding capacity of the atmosphere and temperature. This

implies that under cold conditions, the water holding capacity of the atmosphere decreases,

which limits precipitation. It should be noted that in these regions, general increases in

precipitation are less apparent since warmer conditions lead to increased drying as well

(IPCC, 2007).

As indicated, temperature increases lead to increases in water vapour content of the

atmosphere. As one would expect, this may lead to heavy rain and snow events. Although

positive trends of total annual rainfall have been observed in the middle to northern lat-

itudes, in some regions like the Mediterranean region, studies show decreasing trends.

Alpert et al. (2002) examined 265 stations in the Mediterranean region from 1951 to 1995.

The obtained trends feature decreasing annual rainfall in spite of increasing intense daily

rainfall. Since there has been an increase in the frequency and persistence of subtropical

anticyclones, the observed changes in rainfall are associated with this phenomenon that

in turn has been caused by GHG warming. Furthermore, aerosols, which have recently

increased due to human activities, reflect part of sun’s radiation. Therefore, it takes longer

to increase the water vapour pressure of the atmosphere. This increases the potential for

heavy precipitation. On the other hand, after precipitation, it takes longer to fill the water

vapour supply of the atmosphere, which may lead to drought events (Allan and Soden,

2008). Min et al. (2011) also discussed human contributions to intensified precipitation.

According to Min et al. (2011), in the latter half of the 20th century, anthropogenically

induced increases in GHGs are very influential in the intensity and frequency of extreme

precipitation events over two-third of the grid cells in the Northern hemisphere. These

grid cells are located below 60◦N and over North America and Eurasia. Based on the

comparison of observations to the simulation results of 22 coupled climate models, Min

et al. (2010) concluded that the spatial and temporal patterns of changes in precipitation

are influenced by anthropogenically induced increases in GHGs and sulfate aerosols. Their

study area is confined to Arctic land areas located north of 55◦N, and the data span the

second half of the 20th century.

2.2.1.1.2 Change in Precipitation Form

The increase in temperature increases the probability of the change in the type of winter

precipitation. This implies that more precipitation could fall as rain instead of snow. Some
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of the most significant impacts of the change in precipitation form include: i) decrease in

snowfall: Reductions in snowfall lead to reductions in snowpacks. Snowpacks are important

water supplies in summertime, and observed droughts in some regions are the consequence

of this phenomenon (Leung and Wigmosta, 1999); ii) winter floods: The likelihood of

wintertime flooding would increase due to increased rainfall and snowmelt (caused by

warming climate) (Leung and Wigmosta, 1999); iii) mid-winter breakup and ice jams: A

few days of mild temperature in winter, particularly if it is accompanied by rainfall, can

cause quick rises in river flow. This in turn leads to premature breakup of river ice, which

has numerous socio-economic and ecological impacts such as flood events caused by ice

jams (Beltaos, 2002; Prowse and Beltaos, 2002); iv) snow avalanche formation: Rain on

snow events, which can happen as a consequence of above freezing temperatures in winter,

change the properties of the surface layers. This causes the formation of wet slabs on

snowpacks and increases the risk of snow avalanches (Schweizer et al., 2003).

Using a regional climate model, Leung and Wigmosta (1999) simulated the present-

day surface climate as well as the climate conditions under the scenario of doubled CO2

concentrations. The results indicate that under warmer conditions, more precipitation

occurs in the form of rain rather than snow. This leads to 60% and 18% reductions in

snowpacks of American River and Middle Fork Flathead River, respectively.

Zhang et al. (2000) investigated the trends of precipitation and temperature in Canada

using temperature and total precipitation data as well as snowfall to total precipitation

ratios. Results reveal increasing temperatures in southern and western Canada, whereas

negative temperature trends are observed in the northeast over the period of 1950-1998.

Total precipitation and the ratio of snowfall to total precipitation have increased over the

entire country. However, significant negative trends are reported during spring in the south

of Canada.

Arora and Boer (2001) studied the effects of global warming on the hydrology of 23

major rivers around the world. They simulated the run-off using Coupled General Circu-

lation models of Canadian Centre for Climate Modelling and Analysis. It is reported that

due to reductions in snowfall as well as early spring snowmelt, the hydrological cycles of

the rivers of middle to high latitudes (e.g., Amur, Yenisey, Lena, Ob, Volga, and Yukon)

have changed. It is also emphasized that the observed trends and changes in precipitation,

evapotranspiration, and soil moisture are not uniform all around the globe. For example,

the hydrological cycles of the low-latitude rivers (e.g., Yangtze and Ganges) are not as
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much influenced by the warmer climate as the middle- to high-latitude rivers.

In their study of effects of temperature and precipitation variability on snowpacks, in

the western United States, Hamlet et al. (2005) simulated the linear trends of April 1st

Snow Water Equivalent (SWE) using the Variable Infiltration Capacity (VIC) hydrologic

model. In order to determine the type of precipitation using the data generated by VIC

model, the following rules are set: Temperature data above 0.5◦C result in 100% rainfall

and temperature data below -0.5◦C result in 100% snowfall; a linear relation is established

between these two values. This implies that in the regions with temperatures close to 0◦C,

the probability of getting more rain than snow is higher; only small increases in temperature

could cause sign changes (from below 0◦C to above 0◦C). This in turn could lead to the

change in the type of precipitation according to the above criteria. In agreement with these

statements, IPCC (2007) reports changes in the type of precipitation observed in many

places including middle to high latitudes of the Northern Hemisphere over land.

Studying streamflow data from 89 stations in the western United States for the time

period of 1950-1999, Regonda and Rajagopalan (2005) reported that one of the factors

influencing hydrological cycles is the general increase in winter precipitation most of which

occurs in the form of rain. The observed changes are more significant in lower elevations

and in the Northwest Pacific (at elevations between 1000 and 2000 m (Leung and Ghan,

1999)); winter temperatures are closer to 0◦C in these regions, and small changes in climate

have a significant effect on the hydrology of them. Barnett et al. (2008) also studied the

hydrological changes in the time period of 1950-1999, in the western United States. It is

reported that there has been a shift in the type of precipitation, and records show more

winter precipitation in the form of rain instead of snow.

Knowles et al. (2006) studied the earlier run-off due to more precipitation falling as rain

instead of snow, in the western United States, during the time period of 1949-2004. The

study reveals a decreasing trend in the ratio of the ‘winter-total snowfall water equivalent’

(SFE) to ‘winter-total precipitation’. Similar to the previous studies, this research indicates

that these changes mostly happen in the regions with near freezing temperatures. The

most significant decreases in SFE are observed in the areas where the average of winter

wet-day minimum temperatures are above -5◦C. In these areas, average warmings of 0◦C to

3◦C have led to significant reductions in SFE. If temperatures are low enough, increasing

temperatures do not change the character of precipitation in the region.

13



2.2. Climate Change Chapter 2. Literature Review

2.2.1.1.3 Snow Cover in the Northern Hemisphere

Section 2.2.1.1.2 briefly refers to the impact of global warming on the type of precipitation;

that is, changes from primarily nival to primarily pluvial regimes have been observed which

in turn lead to smaller snowpacks. In order to study the influence of changing climate on

snow, the combined effects of precipitation and temperature should be considered. As

indicated in Section 2.2.1.1.2, due to the decreased winter precipitation occurring in the

form of snow, there is a reduction in the total winter snow accumulation. Furthermore,

warmer climate has led to shorter winters and durations of snow season as well as earlier

spring thaws (Burn, 1994, 2008). Stewart (2009) studied the impact of climate change on

snowpack and snowmelt run-off in mountainous regions during the past several decades.

The study indicates that in the global scale, mountain snowpack is influenced by both

precipitation and temperature; however, the nature of this impact is complex since it

varies based on factors such as elevation and latitude. Generally, in the middle elevations

with increased precipitation, the effect of warmer climate dominates. Therefore, decreased

snowpack and earlier snowmelt run-off are observed. On the other hand, in the high

elevations with well below 0◦C temperatures, an increase in precipitation increases snow

accumulation. According to the map of changes in SWE, in western U.S., during the time

period of 1949-2004, most of the stations exhibit significant decreasing trends in mountain

snowpack except the stations that are located in cold and high-elevation areas or regions

with an overall increase in precipitation that offsets the decrease in SWE. According to the

map of spring pulse onset in Stewart (2009), most of the stations in western U.S. experience

earlier spring pulse onset (approximately 15-20 days).

Temperature variations have a great impact on the extent of the snow-covered area

(SCA) in the Northern Hemisphere. Snow has a very high albedo (∼ 0.8 − 0.9 for fresh

snow). There are several factors affecting the albedo of snow such as depth of snow cover

and age of snow cover. The high albedo of snow has a significant impact on reflecting the

solar energy reaching the earth. Thus, it plays an important role in the energy balance of

the earth. There exists a positive feedback process which is called ‘snow albedo feedback’;

that is, the decease in snow cover due to warming leads to decreasing snow albedo. Con-

sequently, more solar energy is absorbed and temperatures increase even more (Groisman

et al., 1994). Due to the snow-albedo feedback phenomenon, there is a strong correlation

between the extent of SCA and temperature in the “latitudinal band of greatest variability

in SCA” (IPCC, 2007).
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As indicated, the duration and extent of snow cover have a significant impact on the

radiative energy balance of the globe. Additionally, the annual cycle of snow cover disap-

pearance and onset as well as the snow-free period affect soil water recharge and the active

radiation received by soil for photosynthesis. This implies that snow cover has significant

terrestrial effects which are not geographically limited to the region periodically covered

by snow (Gerland et al., 2000). Hence, climate change may potentially lead to ecosys-

tem change by spatially and temporally altering snow cover. Due to the consequences of

observed changes in snow cover, this section is devoted to the observed patterns in snow

cover.

Dye (2002) studied the annual cycle of snow cover in land areas located above 45◦N in

high altitudes of the Northern Hemisphere. The data span the time period of 1972-

2000. The study reveals that i) ‘the week of the last observed snow cover ’ has been moved

to earlier time by the rate of 3 to 5 days per decade, ii) the snow-free season has been

increased by the rate of 5 to 6 days per decade, iii) looking at the big picture, i.e., the

Northern Hemisphere as a whole, no significant shift in the beginning of snow season in

autumn (‘the first-observed snow cover in autumn’) is detected. However, in the smaller

scale, i.e., continental scale, earlier onset of snow season is observed in November in North

America, whereas SCA has been decreased in western Eurasia in October (late onset of

snow season). Brown and Mote (2009) investigated another aspect of the response of snow

cover in the Northern Hemisphere to changing climate. According to the study, snow

cover duration (SCD) is the most sensitive variable to climate change in the regions of the

Northern Hemisphere that have seasonal snow cover. Climate regime and elevation are

the two factors that influence this sensitivity. The greatest impact is observed in the snow

cover of the coastal regions with extensive snowfall. The interior regions of the continents

with relatively cold and dry winters show the least sensitivity. The study reveals that the

most significant decreasing trends of SCD over the time period of 1966-2007 are observed

in the regions with maritime climate located in middle latitudes. The seasonal mean air

temperature in these regions is close to freezing (-5◦C to +5◦C). The study notes that due

to the non-linear relationship between the duration of snow season and the rate of snow

accumulation in various elevations, the impact of increasing temperature and precipitation

on SCD of mountainous regions is complex.

In addition to the changes in the onset and disappearance time of snow season, due to

the decline in SCA in the Northern Hemisphere, month of maximum SCA has moved from

February to January, and annual mean SCA has reduced significantly (IPCC, 2007).
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In North America, snow cover has declined in the second half of the 20th century

with the greatest changes observed in western United States. Furthermore, earlier spring

thaw has been observed in west central Canada (Burn, 1994), northern British Columbia

and the Yukon Territory (Zhang et al., 2001), as well as northern Alaska (Stone et al.,

2002). Pederson et al. (2011) investigated snowpack reduction in western North America, in

Colorado, Columbia and Missouri River drainages. These regions are the key contributors

to snowmelt run-off. Using tree-ring chronology, the snowpack trends are constructed for

the past millennium. The study reveals that the observed reduction in the north of Rocky

Mountains, during the latter half of the 20th century, is unique. According to the observed

data, mean April 1 SWE anomalies are negative during the time period of 1980-2006 in

the study area.

In Eurasia, depending on the region and altitude, various trends of snow cover are

observed: Falarz (2004) studied time series of number of days with snow cover larger than

1 cm depth as well as seasonal maximum depth of snow cover for the time periods of 1948-

1997 and 1895-2002 in Poland. Snow cover has decreased slightly during the time period

of 1948-1997 in most parts of Poland except in northern Poland and mountainous regions

where increasing trends are observed in the depth and duration of snow cover. Despite the

observed trends in the second half of the 20th century, time series of the 1895-2002 period

do not show a significant decreasing trend. IPCC (2007) summarizes the observed trends

as follows: reductions in snow cover have been observed in the mountains of Slovakia and

Switzerland low-land regions of central Europe, whereas, no significant trend was detected

in Bulgaria in the time period of 1931-2000. In Finland, in the Tibetan Plateau, and the

former Soviet Union increasing trends have been observed in the maximum depth of snow;

however, the snow season has shortened. No significant trend in the depth or extent of

snow cover has been observed in western China in the latter half of the 20th century.

2.2.1.2 River and Lake Ice

River and lake ice have significant impacts on human activities. Ice also influences the

biological productivity through controlling the interaction between atmosphere and aquatic

systems (Prowse et al., 2007). Similar to snow season, the duration of river and lake ice has

undergone changes due to warmer climate that leads to decreased ice thickness. In addition

to warmer temperatures, specified reductions in snow cover greatly influence the thickness

of ice since snow has a significant insulating effect that reflects most of the radiative
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energy back to space (Duguay et al., 2003). In addition to the composition and duration

of ice coverage, the extent of ice coverage is changing. These changes, particularly in cold

regions where ice has a great impact on hydrological processes, have significant hydrological

consequences such as ice jams and flood events. Most studies (some of which are cited in

this section) focus on detecting and analysing the trends of the duration, timing, etc. of ice-

related events and associating the trends with air temperature. Besides the efforts to assess

the past trends and project future changes in water resources, it is of critical importance

to understand the relationship between climate and the dynamics of processes controlling

ice-related events. The study by Beltaos and Prowse (2009) describes how climate change

leads to the observed trends and their consequences such as ice jams and flood events

by providing detailed information on the processes involved in freeze-up, ice growth, and

breakup.

Magnuson et al. (2000) define the ‘freeze date’ as the time when the water body is

covered with ice for the first time in the corresponding year. The last observed breakup

marks the ‘breakup date’. Studying 39 rivers and lakes located all over the Northern

Hemisphere, during the time period of 1846-1995, Magnuson et al. (2000) reported later

freeze dates and earlier breakup dates. Furthermore, the rates of interannual variabilities

have increased since 1950. Looking at the smaller picture, Zhang et al. (2001) examined

streamflow data of a larger number of Canadian rivers (compared to Magnuson et al.

(2000)) with the records from the last 30 to 50 years. Although substantial variability

is observed in the breakup and freeze dates, generally, freeze dates (especially in eastern

Canada) and breakup dates (particularly in British Columbia) have shifted to earlier time.

Analysing the trends of the time period of 1951-2000, Duguay et al. (2006) reported earlier

breakup dates, particularly in western Canada, whereas no general trend was observed

in the freeze dates. The analysis of the recent records of Russian rivers reveals that the

freeze dates of the western Russian rivers have shifted towards earlier time, whereas the

eastern Siberian rivers exhibit trends toward later freeze-up. Breakup dates do not show

statistically significant trends (IPCC, 2007).

The analysis of the ice breakup events in the above-indicated studies is based on ice

cover dates. However, more precise results could be obtained using the water level charts.

In order to study the spring breakup timing and duration as well as their spatial aspects

in the Mackenzie River Basin during 1913-2002, de Rham et al. (2008) analysed two hy-

drometric variables from water level charts: breakup initiation time and maximum water

level during breakup. The study also includes the assessment of the commonly used ‘last
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B date’ (last day of ice effects) indicator. Results reveal earlier occurrence of all the events

represented by the aforementioned variables; in the upstream regions of the major tribu-

taries, spring breakup dates have moved to earlier time with the average rate of 1 day per

decade over the time period of 1970-2002.

To study how climate change influences the severity and timing of the breakup flooding

events, it is required to investigate the controlling hydroclimatic measures. The anal-

ysis of these factors leads to a better understanding of how warming climate causes the

observed spatial and temporal changes and yields better explanations than considering sim-

ple relationships between air temperature and timing of breakup. Goulding et al. (2009)

investigated some of the hydroclimatic factors in the Mackenzie Delta during 1974-2006.

The study analyses both the upstream driving force (peak discharge and rate of rise in

discharge) and downstream resistance force (downstream ice conditions and the balance

between upstream and downstream ice melt). Results reveal positive trends in pre-breakup

melt interval and freeze-up stage, whereas negative trends are observed in peak discharge,

rate of rise in discharge, and ice thickness.

In addition to spring breakup described above, changes in winter temperature can have

a significant impact on mid-winter breakup and ice jams, especially in middle latitudes

with mild winters. For instance, three mid-winter breakup events occurred in the Saint

John River (located in the boundary of New Brunswick, Canada and Maine, USA) during

1995 and 1996 (Beltaos, 2002). As indicated in Section 2.2.1.1.2, due to increases in

winter temperature, more precipitation falls as rain instead of snow. A few days of mild

temperature, particularly if it is accompanied by precipitation in the form of rain, can

cause quick rises in river flow and rapid runoff. The hydrodynamic forces associated with

the rapid runoff initiate river ice breakup. The mid-winter breakup and ice jams increase

the risk of flood events. For example, if a breakup event occurs in the upstream of a river,

and the downstream of the river is still frozen, the downstream part can form an ice dam

that leads to flooding of the upstream region of the river. Besides increasing risk of flood

events, other impacts associated with mid-winter ice breakups include problems created in

hydropower generation, navigation, and the aquatic ecosystem (Beltaos, 2002; Prowse and

Beltaos, 2002).

To analyse the impact of climate change on river ice characteristics in the future, Prowse

et al. (2010) analysed the temporal and spatial changes of spring 0◦C isotherm (Bonsal

and Prowse, 2003) in the main-stem reaches of four large northward flowing Arctic rivers:
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Lena, Mackenzie, Ob, and Yenisey. The study focuses on the regions within 2000 km

from the headwaters. Since spring 0◦C isotherm could be used as the indicator of spring

breakup dates, the study compares the contemporary mean spring isotherm (1979-2008)

to the future conditions during two time periods of 2041-2070 and 2071-2100. The results

show that mean spring isotherm (obtained from the four models used in the study) occurs

earlier by 7.5-16.5 (13.6-25.5) days in the 2050s (2080s) decades. The study notes that lower

temperatures in the river mouths at the time when the temperatures of the headwaters are

approximately 0◦C increase the risk and severity of ice jam floods.

Dibike et al. (2011a) analysed the influence of climate change on lake ice characteristics

in the cold-region portion of North America (40◦N-75◦N) using ‘Multi-year simulation

model for Lake thermo- and phytoplankton dynamics’ (MyLake). Mean breakup and

freeze-up dates over the time period of 2041-2070 are obtained by simulating the lake-ice

phenology. The simulation results indicate that the predicted warming causes ice breakup

to occur 10-20 days earlier compared to the base period of 1961-1990. Furthermore, later

freeze-up dates (5-15 days) are forecast. This indicates that the lake ice durations would be

shorter by 15-35 days. Moreover, the ice thickness would decrease by 10-30 cm. The study

reveals that freeze-up timing and maximum ice thickness are influenced by lake depth.

A similar analysis was conducted by Dibike et al. (2011b) in the Northern Hemisphere

(40◦N-75◦N) for the time period of 2040-2079 with the base period of 1960-1999. The

study reports earlier breakup dates by 10-30 days and later freeze-up dates by 5-20 days.

Therefore, a decline in the lake ice duration by 15-20 days is expected. The study indicates

a reduction in ice thickness (10-15 cm) as well.

2.2.1.3 Glaciers

Included among the indicators of climate change are glaciers and ice caps. Climate de-

termines the mass balance at the surface of a glacier; that is, how much snow and ice is

gained and lost, and during hydrological cycles, what the net change in the size of the

glacier is. In the middle to high latitudes, the hydrological cycle is defined as accumulation

in winter and consumption (oblation) in spring and summer. As discussed earlier, due to

recent changes in climate, the duration of cold season is subject to change. So is the mass

balance season for glaciers as well as the net accumulation. However, changes in glaciers

lag by a few years in the tropical mountains and a few centuries in the large glaciers on

gentle slopes (IPCC, 2007). Glacier thaws cause a significant sea level rise. This especially
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threatens low-lying areas such as Mackenzie Delta with an inundation risk which has a

significant impact on the hydrological and biological systems (Prowse and Ommanney,

1990). To understand and forecast future changes in sea level, it is important to have a

global-scale estimate of ice volume. Using a statistical method, Radic and Hock (2010)

evaluated the estimates of the volumetric magnitude of glacier systems and ice caps as well

as their sea level equivalent (SLE) on the global scale. The study reports total ice volume

of 241× 103 ± 29× 103 km3. This ice volume is the equivalent of 0.60± 0.07 m SLE. 32%

of the estimated volume belongs to glaciers in Greenland and Antarctica.

The addition of fresh water from glaciers to the oceans may cause changes in the ocean

ecosystem. The changes in the size of glaciers lead to temporal and spatial changes in the

gravitational field, ellipticity, and rate of rotation of the earth (Dyurgerov and Meier, 2005).

Moore et al. (2009) investigated the glaciers of Alaska and western Canada. The study

refers to the effects of glacier retreat. The variations in the size of glaciers may be hazardous

through the changes they cause in landform. For instance, glacial lake outburst floods may

occur due to thawing glaciers in moraine-dammed lakes. Another geomorphic hazard is the

plucked off glacial debris from valley walls. In addition to geomorphic hazards, thawing

glaciers change the temperature of streams (which particularly influences hydroecology),

concentration of suspended sediments in streams, and aquatic chemistry.

The mass balance at the surface of a glacier is influenced by the mixed effects of pre-

cipitation (particularly snow), fluxes of radiative energy, and ambient air temperature. In

the Northern Hemisphere, the air temperature has a positive correlation with spring and

summer freshet, whereas mean specific mass balance (mass balance averaged over the sur-

face area) and winter accumulation correlate negatively with the air temperature (Greene,

2005). The study by Dyurgerov and Meier (2005) reveals that significant negative mean

specific mass balances exist in northwest of USA, southwest of Canada, and Alaska. The

rate of change is large in Alaska after the mid-1990s. The mean specific mass balance ob-

served in Europe is almost zero due to significant losses and gains in the Alps and maritime

Scandinavia (northern Europe), respectively. Changes in glaciers have been observed in

the high mountainous regions of Asia as well. The fluctuation in the size of the glaciers is

highly correlated with air temperature (Greene, 2005).

Casassa et al. (2009) investigated run-off and discharge peaks in mountain basins caused

by melting of glaciers. The study indicates that run-off has reduced in some regions like

southern and central British Columbia, the central Andes in Chile, and low-middle eleva-
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tions in the Alps. The reason is the decreased snow cover and/or the great glacial mass

loss that have occurred in the past. In other regions such as northwest of British Columbia,

southwest of Yukon, high elevations in the Swiss and Austrian Alps, the Tianshan Moun-

tains, and Tibet, records show increased run-off. Under the projected warming conditions,

run-off in these regions would eventually decline. Similar trends as the above-indicated

trends in run-off are reported by Moore et al. (2009) for the glaciers of Alaska and western

Canada.

2.2.1.4 Permafrost

Prowse and Ommanney (1990) define permafrost as “the ground that is continuously below

0◦C for two years or more”. 25% of the land surface in the world is covered with permafrost

(Prowse and Ommanney, 1990). The presence of permafrost influences the streamflow

generation, catchment hydrology, as well as water drainage and storage patterns. Moreover,

the dynamics of permafrost soil is radically different from that of the soil in the above-

zero region. Therefore, it has significant impacts on land cover and all aspects of the

hydrological cycle: surface water, subsurface water, and atmosphere.

2.2.1.4.1 Permafrost Hydrology

All permafrost regions have the following characteristics despite the physically diverse

environment (IPCC, 2007):

• Permafrost acts as a low permeability layer similar to aquiclude.

• In the permafrost region, most of the hydrological processes are taking place in

the layer above the impermeable bed of permafrost. This layer thaws and freezes

seasonally and is called the ‘active layer’.

• Most of the hydrological processes on the surface of permafrost are inactive during

long and cold winters.

• The spring freshet and seasonal thawing of the active layer have a significant impact

on the surface and subsurface water system. Furthermore, it could lead to severe

flooding and erosion (Woo et al., 2008).
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2.2.1.4.2 Climate Change Impacts on Permafrost

Temperatures in the permafrost regions are increasing due to climate change. This leads

to thawing of permafrost (or thickening of the active layer) and even permanent disap-

pearance of permafrost in some regions, specifically in the areas with discontinuous and

sporadic permafrost. Syed et al. (2007) reported that permafrost degradation has ac-

celerated recently. Thawing permafrost alters the moisture and energy balance of the

ground and causes pronounced changes in hydrological processes from subsurface to the

atmosphere. This consequently leads to changes in the biological and social systems (e.g.

human subsystems) that should adapt to new conditions (Hinzman et al., 2005).

Warming of the continuous permafrost in the Northern Hemisphere has resulted in

thinning of the permafrost, and the southern boundary of the continuous permafrost has

moved northward. Kwong and Gan (1994) examined the distribution of permafrost along

the Mackenzie Highway located at the south of Great Slave Lake using hand augering

and measurement of soil temperature. They conducted the field investigation in 1988 and

compared the results to the field survey that had been conducted by Brown (1964) 26

years earlier in 1962. The study reveals that the southern boundary of sporadic discontin-

uous permafrost has moved northward in 26 years (120 km). Studying the mean annual

air temperature, they associated the detected change in the southern limit of permafrost

with the climate warming. Using three general circulation models with the assumption of

2◦C warming, Anisimov and Nelson (1996) predicted 25-44% contraction in equilibrium

permafrost in the Northern Hemisphere. According to the results from these models, the

continuous permafrost zone is expected to be more severely affected (29-67% reduction).

Anisimov and Nelson (1997) created maps of permafrost zonation in the mid-21st century,

in the Northern Hemisphere using three transient general circulation models as well as

‘frost index’ (dimensionless number to predict spatial distribution of permafrost). Models

with the assumption of doubled CO2 concentrations reveal significant reduction in equilib-

rium permafrost. Stendel and Christensen (2002) used coupled atmosphere-ocean general

circulation model ECHAM4/OPYC3 to analyse the changes in the conditions of Arctic

permafrost by the end of the 21st century. Their results indicate that there would be an

increase of 30-40% in the thickness of the active layer in the Northern Hemisphere, and

more severe changes are predicted for the northernmost locations.

Georgiadi et al. (2010) investigated the changes in run-off in the basin of one of the

Arctic rivers, Lena River, caused by warming permafrost. The study reveals an increase
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in run-off over the last 15-20 years; however, the magnitude of this increase varies across

the basin. The projection of future changes using two atmosphere-ocean global circulation

models, ECHAM4/OPY3 and GFDL-R30, indicates that more significant changes in run-

off in the basin of Lena River are expected in the 21st century compared to the 20th century.

It should be noted that the changes in the thickness of active layer have been subject to

wide experimentation. As indicated, most researchers believe that changes in permafrost

are significantly associated with the increase in temperatures. More experiments should be

conducted to accept this hypothesis; permafrost thawing is mostly influenced by summer

temperatures, whereas the recent warming is more profound in winter and spring temper-

atures. On the other hand, the high albedo of snow and its insulating properties play an

important role in the heat exchange and energy balance of the permafrost zone. Therefore,

changes in the patterns of precipitation and snow cover should be taken into account when

investigating the effects of climate change on permafrost (Zhang et al., 2005).

The hydrological and atmospheric consequences of deepening of the active layer are

summarized below:

• It causes an increase or decrease in the size of thermokarst lakes. As permafrost

thaws, the size of thaw lakes increases. However, complete degradation of permafrost

causes the lakes to drain into the ground, and the water bodies disappear. In short,

thawing permafrost has a great impact on thermokarst activities (IPCC, 2007).

• It changes the drainage patterns, intensifies flowpaths in the subsurface, leads to

greater discharges or recharges, and in short, influences the groundwater system.

Previously, not many studies were devoted to the behaviour of groundwater in per-

mafrost; however, due to permafrost thaw and disappearance of this impermeable

layer, which emerges as a serious problem, researchers are more concerned about the

patterns and consequences of permafrost degradation (Smith et al., 2007; Walvoord

and Striegl, 2007; Jacques and Sauchyn, 2009).

• In permafrost regions, ground levels or domes that are seasonally created due to ice

formation in the subsurface collapse as the active layer or permafrost thaws. This is

one of the processes that causes the increase of sediments in rivers and lakes. This

consequently results in declining stability of rivers and lakes (IPCC, 2007).
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• The degradation of the near-surface permafrost in the circumpolar Arctic, particu-

larly in the south of 70◦N, has a significant impact on the hydrology and ecology of

Arctic. Thawing permafrost influences the concentrations of organic and inorganic

matters as well as major ions transported to Arctic. It is uncertain how the concen-

trations of organic and inorganic matters would change; however, increases are pre-

dicted for the concentrations of major ions, most commonly phosphate and silicate.

All the above-indicated consequences such as changes in topography and land cover,

possibility of complete degradation of permafrost, groundwater-dominated aquatic

system, and thermokarst activities are likely to occur (Frey and McClelland, 2009).

• Boreal forests and wetlands are important features of permafrost regions. Most of

these wetlands are formed on the impermeable and permanently frozen layer in the

subsurface. Permafrost degradation increases the available water in wetlands. On the

other hand, complete thawing of the impervious strata leads to drying and drainage

of these wetlands. Both phenomena endanger the habitat of a lot of species (Prowse

and Ommanney, 1990).

• Wetlands play a key role in the carbon cycle. They are the largest contributors

of Methane to the atmosphere (Mungall and McLaren, 1990). As indicated earlier,

Methane is one of the GHGs causing the climate change. Therefore, in addition to

the impacts of wetlands on the wildlife, they indirectly influence the issue of global

warming. On the other hand, if wetlands dry and drain into the ground, the oxidation

of the organic materials will emit Carbon Dioxide which is a GHG as well (Prowse

and Ommanney, 1990).

2.2.2 Impacts of Climate Change on Engineering

Engineers are mostly concerned with the potential impacts of climate change on envi-

ronmental conditions that in turn influence the design of infrastructure such as buildings

and industrial facilities in the permafrost and coastal zones, oil, gas, and mining industry,

landfills, etc. Rising engineering issues could be listed as follows:

• The reasons for and consequences of increasing temperature in the permafrost regions

are indicated in Section 2.2.1.4. The physical properties of the soil in the permafrost

regions are highly dependent on temperature. Camill (2005) predicts the 1.4− 5.8◦C
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increase of the mean annual temperature by 2100. As a result of this warming, the

mean annual air and ground temperature would rise above 0◦C in the sporadic and

discontinuous permafrost zones over the Northern Hemisphere causing permafrost

thaw. Degradation of permafrost causes deformation characteristics and threatens

human beings with the possibility of foundation failure. Due to erosion, engineered

structures on slopes face a higher risk of subsidence. Currently, the effects of warming

permafrost on engineering are more profound and evident in the sporadic and dis-

continuous permafrost regions than the continuous permafrost zone since permafrost

is warmer and closer to the melting point of ice (0◦C) in the former (Nelson et al.,

2001; Instanes, 2006).

• Thawing ice caps and glaciers as well as expanded water due to the increased tem-

perature cause sea level rise. Increased water volumes lead to more erosion in coastal

zones since stronger wave currents hit the coast. Moreover, models predict more

intense and stronger atmospheric storms and winds. This would lead to stronger and

higher waves as well as intense and more frequent rainfalls; hence, even more erosion

and sediment movements would occur. These severe erosion events have significant

impacts on coastal villages, towns, industries, etc. (Instanes, 2006). The increase in

sea level and more intense storms increase the risk of inundation in low-lying coastal

regions like New York (SWIPA, 2011).

• Increased icebergs due to warmer temperatures in Arctic influence the oil and gas

exploration and extraction processes. In the mining operations in Arctic coastal

regions, transportation conditions greatly impact this industry. Global warming

would cause high costs of maintenance of roads, railroads, etc. which are built on

the permafrost zone (Humlum et al., 2003; Instanes, 2006).

• Thawing permafrost or the phase change of water (expansion and contraction of

water) may break the liners in the landfills. Consequently, the underground water

would be exposed to the leachate from the landfills and contaminated (Instanes,

2006).

• The advancement of industry and increasing population in some regions of Arctic

in Canada (Nunavut and Northwest Territories) increase the demand for electricity.

Furgal and Prowse (2008) indicate that the reduction in SCA and increase in snow-

free period influence hydroelectric power generation in this zone and could have
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short-term advantages. In middle latitudes with seasonal snow cover, warmer winters

and decreased snow cover and snow duration would reduce the cost of ice and snow

management. Furthermore, the cost of the maintenance of roads and bridges due

to the adverse impacts of salt and chemicals (used to control snow and ice) would

decline (NRC, 2008).

2.2.3 Large-scale Atmospheric and Oceanic Oscillations

The objective of this section is to investigate large-scale atmospheric and oceanic oscillation

patterns. It attempts to identify the links between changes in patterns of these oscillations

and the recent climate change.

The distribution of thermal energy on the earth surface is influenced by large-scale air

circulations and ocean circulations (in a smaller scale). Some of these large-scale circulation

patterns could be listed as El Nino-Southern Oscillation (ENSO), Pacific Decadal Oscilla-

tion (PDO), and North Atlantic Oscillations (NAO). There is no doubt that these patterns

significantly influence the earth climate on the annual to decadal time scale; however, the

links between recent climate change and these patterns are not clear. For example, since

1970 (during the period of high global warming), the frequency of warm-ENSO events (El

Nino) has increased. It is speculated that extreme ENSO events are caused by changing

climate; however, it may be equally true that a lower periodicity of warm-ENSO events

triggered global warming. Recent research provides an explanation for the higher incidence

of ENSO events considering the relationship between SO and PDO. When both PDO and

SO are in a warm or cold phase, more intense SO events occur, whereas the SO events are

dampened if PDO and SO are not in phase. PDO experienced a phase shift in the early

1970s and stayed in the positive phase until the winters of 1997-1998. During this period,

a high frequency of intense ENSO events was observed. Considering the high thermal

capacity of oceans as well as their slow response to changes, it seems only a matter of time

before the relationship between any of these large-scale circulations and climate change is

clarified (Rohli and Vega, 2008).

Using the data of atmospheric variables (monthly mean temperature, geopotential

height, and corresponding geostrophic wind at the pressure levels of 200, 300, 500, and

700 (hPa)), snow cover, and sea surface temperature (SST), Watanabe and Nitta (1999)

studied the changes in winter climate, after 1989, in the middle to high latitudes of the
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Northern Hemisphere on the decadal time scale. The observed changes are as follows:

Geopotential height data reveal a dipole pattern with middle latitudes and polar re-

gions on the poles. The temperature of the middle troposphere is increasing in the middle

latitudes and decreasing in polar regions. The statistical analysis of the geopotential height

data at 500 hPa is the indicator of a regime shift in 1989 over the entire Northern Hemi-

sphere. Further investigations relate the observed structure to the linear combination of

Pacific North American (PNA) and Eurasian patterns as well as NAO. The sudden shifts

of 1977 and 1989 are explained by the simultaneous occurrence of phase shifts of NAO and

PNA patterns.

Comiso (2003) examined the satellite thermal infrared surface temperature data of the

pan-Arctic. The data are recorded during the cloud free conditions and span the 1981-

2001 period. The study reports positive mean temperature trends over sea ice, in the

Northern Hemisphere. On the seasonal scale, except winter, positive temperature trends

are dominant in all of the seasons. Comiso (2003) related the recent changes in climate

to the phase change of Arctic Oscillations (AO) which is believed to be caused by the

increasing GHGs.

In their study of trends in spring and autumn 0◦C isotherm dates over Canada, Bonsal

and Prowse (2003) investigated the relationship between the observed trends and large-

scale oscillations over Pacific and Atlantic oceans. Results reveal that majority of stations

are not in phase with the large-scale oscillations. Furthermore, no evidence of an abrupt

change in the large-scale oscillations over Pacific is found to explain the observed shift

toward earlier spring 0◦C isotherm dates in the west of Canada. The study concludes

that although the large-scale oscillations have some impacts on the observed trends, they

cannot provide adequate explanation. One plausible explanation is that climatic warming

has caused the trends; however, Bonsal and Prowse (2003) note that in the two cases of

later spring isotherm dates in northeastern areas and insignificant trends during autumn,

it is not clear whether they have been caused by climatic warming. If it is assumed that

climate change has some impact on large-scale circulations, the observed trends could be

explained by ENSO and NAO and hence be indirectly related to global warming.

The following studies indicate mid-1970s, late 1980s and 1990s as the shift time for a

number of large-scale atmospheric patterns. On the other hand, temperature shifts of the

mid-1970s and late 1980s have been reported in numerous studies (e.g., Polyakov et al.,

2003; Belkin, 2009; Lo and Hsu, 2010; Powell and Xu, 2011). The synchronization of the

27



2.2. Climate Change Chapter 2. Literature Review

observed shifts in teleconnection patterns and climate anomalies supports the idea of the

existence of a strong link between them.

To study the correlation between the abundance of Pacific saury and recent climatic

changes, Tiana et al. (2004) conducted the principal component analysis (PCA) and corre-

lation analysis on climatic and oceanographic indices as well as the abundance and biolog-

ical indices of Pacific saury in the subtropical Pacific. The climatic variables include SST,

air temperature, and wind velocity. North Pacific (NP) index, AO index, and PDO index

are some of the oceanographic indices used in the analysis. The analysis of teleconnections

reveals significant regime shifts in 1987-1988 and possibly 1997-1998, in the Kuroshio re-

gion. The analysis of the abundance and biological indices of saury not only signifies the

response of Pacific saury to the detected regime shifts, but verifies the results obtained

using the above-mentioned atmospheric indices. Furthermore, it could be inferred from

this study that these large-scale patterns are responding to the recent climate change.

Rodionov and Overland (2005) applied the sequential t-test algorithm (Rodionov, 2004,

2006) to detect regime shifts of some of the large-scale patterns. 1943 and 1976-1977 were

the strongest shifts observed in PDO. Aleutian Low Pressure index, NP index, and PNA

index exhibit the most significant shift as 1976-1977. The regime shift of 1989 was mostly

conspicuous in AO index. The analysis of NP index from the Climate Prediction Center

and East Pacific index reveals that the most significant shift has occurred in 1998.

Ivanov and Evtimov (2010) investigated the following annual surface temperature anoma-

lies of the Northern Hemisphere: marine data, land air data, and combined land and marine

data. To support the results obtained from the analysis of these time series, a number of

climate indices were investigated in addition to the surface temperatures in the Northern

Hemisphere: North American index, SO index, PNA index, Atlantic Multidecadal Os-

cillation index, and PDO index. Over a large region like the Northern Hemisphere, the

polarities of the above-mentioned index series are in association with the leading patterns

of temperature anomalies.

Lo and Hsu (2010) related the synchronization of abrupt temperature changes in dif-

ferent locations of the Northern Hemisphere, in the late 1980s to the large-scale patterns.

They found a resemblance between the first empirical orthogonal function (EOF1) of the

land and sea surface temperature, in the Northern Hemisphere and the temperature fluctu-

ations associated with AO. That is, EOF1 reveals the AO-like pattern. On the other hand,

EOF2 exhibits the PDO-like pattern. According to this study, the correlation between
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EOF2 (EOF1) and the mean temperature in the Northern Hemisphere is high (low) before

the 1980s, whereas the correlation between EOF1 (EOF2) and the mean temperature in

the Northern Hemisphere is high (low) after the 1980s. Therefore, the mean temperature

in the Northern Hemisphere exhibits the PDO-like pattern before the 1980s; however, the

AO-like pattern becomes more dominant after the 1980s.

2.3 Detection of Climate Change

Temperature is among the primary indicators of climate change. There is no doubt that

examining temperature data is the most important guide to climate induced changes.

In addition to studies which directly analyse temperature data (e.g., Zhang et al., 2000;

Bonsal and Prowse, 2003; Ivanov and Evtimov, 2010; Prowse et al., 2010), many studies

associate the observed trends in other variables (e.g., snowmelt run-off pulse) with changes

in temperature (e.g., Burn, 1994; Zhang et al., 2001; Cayan et al., 2001; Dye, 2002; Stewart,

2009). The focus of this section is on introducing the techniques that could be used for the

statistical analysis and modelling of temperature regimes as well as examining regime shift

points. These rigorous statistical tools are then used to locate grid cells in the Northern

Hemisphere whose temperature has permanently risen above 0◦C during the time period

of 1901-2009 (Chapters 4 and 5).

2.3.1 Trend Detection

Trend analysis is one of the techniques used to examine the underlying patterns of time

series under study. To test whether the detected trends are significant, several statistical

tests exist. These tests fall under two main categories: parametric and non-parametric.

Kundzewicz and Robson (2004) classify the most frequently used statistical tests in the

trend analysis as follows: i) Spearman’s rho test, ii) Kendall’s tau and Mann-Kendall

test, iii) seasonal Kendall test, iv) linear regression, v) other robust regression tests: least

absolute deviation regression, M-estimate of regression, and trimmed regression.

In the analysis of the environmental data, non-parametric tests are usually preferred

over parametric techniques. The reason is that the non-parametric tests do not require

any assumption regarding the underlying distribution of the population from which data
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are obtained. Moreover, using non-parametric techniques, it is much easier to analyse

the data with missing values, tied values, serial correlation, and censored values (which

are very common in the climatic and hydrological data). Using Monte Carlo simulation,

Yue and Pilon (2004) concluded that the power of the rank-based non-parametric tests is

higher than the slope-based parametric techniques in detecting the trends of non-normally

distributed data.

As indicated, one of the frequently used non-parametric tests is the Mann-Kendall

(MK) test (Mann, 1945; Kendall, 1975; Hirsch et al., 1982). In the MK test, the null

hypothesis is the independence and randomness of data. If data are serially correlated, the

probability of type I error increases. This implies that the probability of detecting a trend

when there is no significant trend increases. This is due to the fact that the presence of

a positive serial correlation can increase the test statistic and complicate the process of

trend detection (Helsel and Hirsch, 2002).

One approach to modify the statistical tests used to detect monotonic trends in the

presence of autocorrelation is to pre-whiten or deserialize data. The procedure involves

modelling the time series with an autoregressive process. One drawback of this technique

is that sometimes, although the underlying model is deterministic, a large lag-1 serial cor-

relation coefficient is obtained. This is particularly more likely if the temporal resolution of

the data is not very high (e.g., annual). Using Monte Carlo simulation, Fleming and Clarke

(2002) concluded that the pre-whitening procedure had the potential to yield inaccurate

results; the technique introduces a positive bias in the estimation of slope. Furthermore,

the power of the test decreases using pre-whitening. Based on this conclusion, they sug-

gested not to use this method unless there is external evidence supporting the assumption

of autoregressive noise.

Yue et al. (2002) and Yue and Pilon (2003) examined cases where both deterministic and

stochastic parameters are present in time series. Their studies are particularly focused on

the cases where a linear trend is present as well as the lag-1 autoregressive process. Monte

Carlo simulation demonstrates that there is an interaction between the serial correlation

and linear trend; the estimation of the magnitude of the serial correlation is influenced

by the existence of a trend. On the other hand, the variance of the estimated MK test

statistics is affected by the presence of the serial correlation. They found that if the

positive serial correlation is removed from a time series (pre-whitening), a negative bias

would be introduced into the estimates of the existing trend; however, the impact of the
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existing trend on the serial correlation could be removed if the underlying deterministic

trend is eliminated before pre-whitening. The results of the analysis reveal that following

this procedure, the evaluated value of the lag-1 autoregressive coefficient does not differ

significantly from the true value. Following these results, Yue and Pilon (2003) developed

the trend-free pre-whitening (TFPW) approach. The TFPW technique first estimates the

monotonic trend of the time series under study and eliminates the trend. Then, pre-

whitening is applied to the trend-free time series. Yue and Pilon (2003) also emphasized

the importance of the bootstrap technique to test the global significance of the trends since

in some cases, locally significant trends do not exhibit globally significant trends.

Burn et al. (2004) applied the MK test to study the trends of several hydrological vari-

ables in the Liard River basin, in northern Canada. A slightly modified TFPW approach

developed by Yue and Pilon (2003) was used (refer to Section 3.5.2 for more details). They

also applied the bootstrapping technique to examine the cross-correlation between the time

series of the variables and test the global significance of the trends.

Following Burn et al. (2004), the modified MK test is selected to investigate the exis-

tence and quality of the temperature-time trends in this thesis. This method is preferred

over the other techniques since

• it is a rank-based non-parametric technique. No assumption is required regarding

the underlying population of the time series. Moreover, it could easily be applied to

the cases with missing, tied, or seasonal values as well as serially correlated data.

• as recommended by Kundzewicz and Robson (2004), distribution-free techniques like

resampling methods are among the most suitable techniques to analyse the environ-

mental time series. The distribution of the test statistics in the MK test is obtained

using the permutation approach, which falls under the category of the resampling

methods.

• as is inferred from the sequence of the modifications applied to the original MK test,

this technique is the most improved method among the ones indicated in this section.

2.3.2 Detecting Changes in the Means of Time Series

With increasing concern regarding the consequences of anthropogenically induced global

warming, numerous studies have been devoted to analysing the changes introduced in cli-
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matic variables and modelling the natural climate variability. The extent and particularly

the quality of the historical climate time series play a critical role in such studies.

The first step in analysing any climate time series for the change detection and modelling

purposes is to homogenize data. Conrad and Pollak (1962) described the homogeneous

time series as the series with the embedded variability only caused by climate. Bradley

and Jones (1985) categorized the inhomogeneities in the climate data as natural (caused by

abrupt climate changes) and artificial. The significant causes of artificial inhomogeneities

could be classified as follows: i) changes in instrumentation and measurement techniques,

ii) changes in the position or elevation of stations, iii) changes in observation times, e.g.,

from morning to evening, iv) changes in the techniques of mean calculation, modelling,

and data analysis over time (Barnston and Livezey, 1987; Lambert, 1990), v) urbanization

which often introduces positive bias (refer to Section 4.2.2 for detailed description of the

potential causes of inhomogeneities).

Bradley and Jones (1985) discussed the data homogenization techniques as well; how-

ever, the inhomogeneities like urbanization, which occur gradually over time, are really

difficult to remove from time series following these techniques. Based on the assessment

of gridded temperature data from the Northern Hemisphere, Jones et al. (1986) indicated

that in the analysis of temperature trends over such a large region, the inhomogeneities

introduced by urbanization could be ignored. It should be noted that the data collected

using satellites may exhibit inhomogeneities as well. For example, different satellites have

different crossing times as well as spectral windows. These factors cause discontinuities in

the recorded infrared radiation by satellites (Chelliah and Arkin, 1992).

Since discontinuities are not distinct features of available data, they are very difficult to

detect. Historical climate time series that span a rather long time are not usually homoge-

neous. To eliminate the artificial inhomogeneities, the investigation of the accompanying

metadata such as station histories may be useful; however, historically, not all the changes

in a station that eventually affect the statistical behaviour of the time series have been

recorded. Motivated by this, a number of techniques have been developed to detect the

discontinuities (artificial and natural) that have not been reported. These techniques may

be categorized as methods using reference series and techniques independent from refer-

ence series. It should be noted that the techniques described here are suitable for detecting

sharp changes in the means of time series rather than trend inhomogeneities.
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2.3.2.1 Techniques Using Reference Series

These techniques are based on the comparison of target stations against the corresponding

reference series. Some of the studies focused on these methods could be listed as Kohler

(1949), Alexandersson (1986), Portman (1993), Rhoades and Salinger (1993), Hanssen-

Bauer and Forland (1994), and Peterson and Easterling (1994). More advanced methods

dependent on reference series have also been developed such as the regression-based tech-

niques (e.g., Gullet et al., 1991; Easterling and Peterson, 1995).

The necessity of comparison to reference stations is one of the drawbacks of these

methods since i) in the case of global changes such as global warming, all the neighbouring

stations are affected as well, ii) in some situations, there are no data available from the

neighbouring stations, or there is no station within a reasonable distance from the target

station, iii) using reference series introduces another source of uncertainty into the analy-

sis, and the results of the analysis change as the underlying assumptions in constructing

reference series change.

2.3.2.2 Techniques Independent from Reference Series

Based on the above discussion, the techniques that are based on reference series cannot be

applied to detect natural climatic discontinuities since the neighbouring stations are usually

influenced by the same changes, and the usage of metadata is inapplicable. These tech-

niques are mostly suitable for the cases in which changes in instrumentation, calibration,

and time of observation lead to inhomogeneities in time series.

Lanzante (1996) proposed a method (the L method) that is independent of the external

data such as reference data and metadata, and hence, applicable to climate shift detection.

The technique uses an iterative algorithm to detect multiple discontinuities in time series.

Moreover, no assumption regarding the timing of the shifts is required. Since the technique

is a rank-based technique, it could easily be applied to cases with outliers and non-normal

distributions. Moreover, due to the iterative nature of the method, it is suitable for de-

tecting subtle changes. Comparing the L method to the method developed by Easterling

and Peterson (1995) (the EP method), Lanzante (1996) concluded that the two methods

generate comparable results.

Lanzante (1996) noted several principles that should be considered in interpreting the

results of the L method. These points are important in distinguishing between artificial
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and natural discontinuities:

• if the observed discontinuities are not detected in the neighbouring stations, this

implies that the inhomogeneities have been caused by artificial rather than natural

climatic factors.

• if similar changes are detected in the neighbouring stations in the same country as

that of the target station, however not in the surrounding stations located across the

border, the observed discontinuities may be artificial.

The main disadvantage of the L method is that to achieve a high degree of confidence in

detecting the points of discontinuity, at least 10 points of data are required. Therefore, the

uncertainty of the estimations increases close to both ends of time series. This also implies

that the technique is not suitable to detect the most recent changes since at least 10 years

should pass before the change is detected. By the time that this change is discovered, the

time series may be experiencing another shift.

The inability to detect changes close to the ends of time series is common in most of

the regime shift detection techniques. The proposed sequential algorithm by Rodionov

(2004) is capable of estimating the probability of the potential discontinuity soon after

it occurs, and it continues to monitor this probability as new points are included in the

time series. Since this technique detects any change with a minimum delay, it is able to

discover discontinuities that occur close to the ends of time series. Further advantages of

this technique are as follows:

• It is capable of detecting multiple shifts.

• As indicated earlier, it could easily be automated and used in the analysis of large

data sets.

• It can analyse the original data directly, and the technique does not necessitate the

use of anomalies. The conversion of the original data requires the determination of

a base period. By using the original data, the ambiguity regarding the definition of

a base period is avoided.

• Similar to the methods developed by Gullet et al. (1991), Easterling and Peterson

(1995), and Lanzante (1996), a priori assumptions regarding the timing of the shifts

are not required.
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• With most of the regime shift detecting techniques, if a trend exists in the time series,

it leads to false conclusions since the technique would identify the center of the time

series as the potential discontinuity. The algorithm developed by Rodionov (2004)

is robust against this problem. Having compared this technique with the L method,

Rodionov (2004) concluded that the results generated by both methods resemble

each other when no trend exists in time series; however, if inhomogeneities are su-

perimposed on existing trends, Rodionov’s (2004) method generates more consistent

results.

The first sequential algorithm developed by Rodionov (2004) assumes that observations

are not correlated. Stationary red noise processes can create long intervals during which

the data are larger or smaller than the overall mean value of the process. To avoid false

identification of these intervals as climatic regimes, Rodionov (2006) proposed a procedure

of red noise removal; i.e., a pre-whitening process was added to the previously proposed

algorithm (Rodionov, 2004). The goal of pre-whitening is to examine whether the climate

regimes can be more than just a red noise. Two key features of the procedure are i) sub-

sampling, ii) bias correction of the least square estimate of the serial correlation coefficient.

Rodionov (2006) developed a new method to correct the bias of the estimated autoregres-

sive parameter (more details can be found in Section 3.2.2). In this thesis, the combination

of the above-indicated two procedures, sequential algorithm and pre-whitening (Rodionov,

2004, 2006), is referred to as the R method.

Due to the aforementioned advantages of the R method, it has been selected as one of

the techniques to analyse the data in this study.

2.3.3 Regression Modelling

The behaviour of climate data over time could be modelled using the piecewise polynomial

fitting procedure. The basic idea of piecewise fitting is to approximate the true underlying

function by several simple (low order) parametric functions each modelling a subsection of

the entire data set. If climate time series are modelled using linear segments, based on the

changes in slope, inferences could be made about the time of climatic changes.
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2.3.3.1 Global Parametric Modelling

Parametric modelling requires a priori assumption of the true underlying function (usually

a simple function) to fit to data. The method of least squares is often used to calculate

the model parameters. Although it is possible to model even a few data points (if a

simple model is assumed), this type of modelling is of limited flexibility; only when the

behaviour of the data is close to the pre-assumed model is it likely to generate accurate

approximations.

2.3.3.2 Non-parametric Regression

In non-parametric regression, it is usually assumed that the function representing the

data is continuous and smooth. A priori assumption of the form of this function is not

required; i.e., there is no parameter to estimate, and the function is derived directly from

the data under study. In low dimensional settings (n ≤ 2, n = number of independent

variables), there are three related concepts that generalize the global parametric modelling

to non-parametric regression: piecewise parametric fitting, local parametric fitting, and

roughness penalty methods (Friedman, 1991). Spline is the most commonly used piecewise

polynomial fitting technique. This method is used to model a set of data when the data

cannot be approximated using a single polynomial. In this case, polynomials of degree q

with the first continuous derivative model the data (De Boor, 2001).

2.3.3.3 Adaptive Computation

The adaptive technique, which is a subset of the non-parametric modelling, adjusts its

strategy dynamically to allow approximating the behaviour of the data set under study.

Recursive partitioning (Morgan and Sonquist, 1963) is one of the adaptive algorithms

developed for approximating the true underlying function.

Morgan and Sonquist (1963) referred to the difficulties regarding data analysis when

there is an interaction between independent variables; however, their proposed approach

does not impose any restriction on interaction effects. The goal of their study is to develop a

technique that is capable of following the data set behaviour adaptively and improving the

approximated function step by step. The proposed model (recursive partitioning regression

model) simultaneously estimates an optimal set of subsections as well as parameters of the
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functions approximating the behaviour of data in each sub-region. First, it selects the

entire domain as the starting section. At each step, the previously existing sections are

optimally partitioned into two subsections. The functions used to model the sub-regions

are generally of low degree. For example, Morgan and Sonquist (1963) and Breiman and

Friedman (1985) used constant functions.

Breiman and Meisel (1976) and Friedman (1979) presented algorithms similar to the

technique proposed by Morgan and Sonquist (1963). The algorithms are based on adap-

tive (data-directed and dynamic) partitioning; however, the underlying function of each

subsection is approximated using linear regression.

The recursive partitioning regression is a powerful technique. If the piecewise constant

approximation (Morgan and Sonquist, 1963; Breiman and Friedman, 1985) is used, the

recursive nature of the algorithm enables the model to include the independent variables

that are influential in the local level but insignificant when the entire data set is modelled

as one region. This leads to more precise study of the independent variables impacting

the response variable. As the entire domain is partitioned into more sections, the model

becomes more local. It should be noted that the recursive partitioning algorithm that is

based on piecewise linear approximation (Breiman and Meisel, 1976; Friedman, 1979) lacks

the ability to select the influential subset of local variables; hence, it has limited power and

applicability (Friedman, 1991).

In summary, the following restrictions limit the applicability and accuracy of the recur-

sive regression partitioning (Friedman, 1991):

• One of the most important restrictions is the discontinuities in the sub-region bound-

aries. Boundary discontinuities limit the approximation precision, particularly if the

true underlying function is continuous.

• There is a limitation regarding the complexity of the functions modelling the sub-

regions. For example, as the number of coefficients of linear functions or variables of

additive functions increases, it becomes more difficult to estimate model parameters.

• The model that is eventually represented does not clarify whether the independent

variables are interacting or the model is an additive model.
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2.3.3.4 Adaptive Regression Splines

Friedman (1991) developed the multivariate adaptive regression spline (MARS) algorithm

to overcome some of the limitations associated with the existing methodology outlined in

Section 2.3.3.3. Indeed, the MARS technique is an improved and generalized version of

the recursive partitioning algorithm originally developed by Morgan and Sonquist (1963)

and Breiman and Friedman (1985). Some of the unique features of the algorithm are as

follows:

• It is powerful, accurate, and applicable to cases with the sample size (N) of 50 ≤
N ≤ 100 and dimension of 3 ≤ n ≤ 20.

• The recursive partitioning algorithm is also known as the stepwise regression tech-

nique. It should be noted that the only feature of the recursive partitioning algorithm

that introduces boundary discontinuities is the step functions included in the algo-

rithm. To solve this problem, the step functions have been replaced by continuous

functions whose first derivatives are continuous as well (Algorithm 1 of Friedman

(1991)).

• MARS is capable of handling missing values and categorical variables (e.g., gender:

male and female).

• It has a higher power in modelling the additive behaviour of data compared to the

recursive regression. It also generates more precise results if there are interactions

between a few independent variables. Furthermore, the final presentation of the

model clearly specifies which terms are additive, and which independent variables

are interacting.

Nicholas J. Gralewicz (personal communication) performed a preliminary analysis on

the climate time series using MARS. Motivated by his study and the unique characteristics

of MARS, this technique is used to model the time series of this thesis.

2.3.4 Testing Trend shifts

As indicated earlier, examining temperature data provides useful and important informa-

tion about climate induced changes. The time series of annual mean anomalies of the air
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temperature in the Northern Hemisphere seem to be non-stationary during the 20th cen-

tury. In the literature, the long-term changes are referred to as climatic changes and the

short-term changes are indeed climatic noises (Ivanov and Evtimov, 2010). A number of

studies have been devoted to analysing the nature of this non-stationary process; the goal

is to understand whether it is a trend-stationary process or a unit root process (Ivanov

and Evtimov, 2010). Perron (1989) and Hamilton (1994) discussed the hypothesis tests

of trend-stationarity versus unit root. If a time series tends to go back to the original

long-term mean after facing a change or shock, the process is trend-stationary. However,

if the series is permanently affected by the shock (e.g., moves to a new mean level), it is

a unit root process. Ivanov and Evtimov (2010) noted that the results of the hypothesis

tests of trend-stationarity versus unit root are strongly dependent on a priori assumption

of the deterministic trend. To avoid this problem, they applied the unit root test developed

by Kim and Perron (2009) in their analysis. Their analysis reveals that the nature of the

above-mentioned non-stationary process in the Northern Hemisphere is trend-stationary.

A lot of abrupt, significant, and large-scale climate changes have been recorded in the

past. Abrupt climate changes could occur due to many reasons; however, there is no doubt

that anthropogenic impacts are among the key factors increasing the likelihood of the future

abrupt changes in the climate (Alley et al., 2003). Numerous studies have referred to the

widespread and sudden climate change in the late 1980s (Kerr, 1992; Hare and Mantua,

2000; Rodionov and Overland, 2005; Lo and Hsu, 2010). Since climate can experience

abrupt shifts in addition to gradual changes, statistical tests developed to detect breaks in

the structure of time series can be applied to the problem of finding break points in the

trend function of climate time series (Ivanov and Evtimov, 2010).

In detecting structural breaks, it is of practical importance to have a test that does

not require a priori assumption on whether the noise component of a process is stationary

or contains an autoregressive unit root. On the other hand, to understand the nature of

the noise component, information about the existence of a structural break (at least at

unknown time) is required (Perron and Yabu, 2009b).

Perron (1989) developed a technique that was an improvement over the existing stan-

dard tests at the time. The null hypothesis of the procedure is unit root process, and the

alternative assumes that the process is trend-stationary. The test allows the existence of a

one-time structural break in the slope or level of the trend function. However, the break in

the test is known and selected based on some external knowledge, completely independent
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of data. This implies that Perron’s (1989) test is powerful in distinguishing the hypotheses

only if a break is present and known.

Zivot and Andrews (1992) and Vogelsang and Perron (1998) modified Perron’s (1989)

test. In their procedure, the break time is unknown and should be estimated based on

data. This implies that the estimation of the break point is ‘endogenized’. Similar to

Perron (1989), these techniques test the structural breaks in intercept, in slope, and in

both intercept and slope. The models are termed ‘crash model’, ‘changing growth model’,

and ‘crash and changing growth model’, respectively by Perron (1989). If there exists a

change in trend, both the size and power of these tests (Vogelsang and Perron, 1998; Zivot

and Andrews, 1992) can be affected by changes in slope or intercept.

Perron and Yabu (2009b) noted the necessity of developing tests of structural change

in level and/or slope that are valid regardless of the non-stationary nature of the process.

Their solution is based on their earlier work; i.e., Perron and Yabu (2009a). The study

by Perron and Yabu (2009a) is focused on determining and testing the significance of

the slope coefficient of a linear trend model without a priori knowledge of whether the

noise component is stationary (I(0)) or has a unit root (I(1)). Perron and Yabu (2009b)

extended the analysis of Perron and Yabu (2009a) to the case of testing for changes in level

or slope of the trend function of a univariate time series. The goal is to develop a test that

has the same size in both cases of I(0) and I(1). Perron and Yabu (2009b) compared their

test to Vogelsang’s (1999) test (the only test available that was valid in both cases of I(0)

and I(1)). The result of the comparison reveals that Perron and Yabu’s (2009b) test has

a higher power. If the result of Perron and Yabu’s (2009b) test indicates that there exists

a break, the time of the break can be approximated using the procedure described by Kim

and Perron (2009).

According to the sequence of the statistical tools on trend shift detection, Perron and

Yabu’s (2009b) method for testing structural breaks along with Kim and Perron’s (2009)

technique for determining the time of breaks have the potential to generate very interesting

results. Hence, in addition to the R method (Rodionov, 2004, 2006) and the MARS

algorithm (Friedman, 1991), the temperature time series in this thesis are analysed using

the above techniques.
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Methodology

3.1 Procedure Overview

The analysis of the temperature time series in this document consists of the following steps.

The selection criteria are indicated in Section 4.3.

1. The time series are analysed using the methods indicated below, and all the shifts

and break points of interest are identified.

• R method (Section 3.2)

• MARS algorithm (Section 3.3)

• trend break detection technique (Section 3.4)

2. The modified MK test (Section 3.5.1) is applied to test the significance of trends in

the sections of interest. What the section of interest is and the procedure of selecting

it are described in detail in Section 4.4.

3. To test the global significance of the trends, a bootstrap algorithm (Section 3.5.3) is

used.

4. Two non-parametric tests are employed to examine how the results vary from one

methodology to another (Section 3.6).
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3.2 R Method

The key features of the technique and the reasons for the inclusion of this method in the

analysis are described in Section 2.3.2.2. There are two main procedures involved in the

R method: i) sequential algorithm (Rodionov, 2004), ii) pre-whitening (Rodionov, 2006).

These steps are summarized in the following sections, and more details can be found in

the original studies.

Note: The R method is suitable for detecting abrupt shifts, and gradual shifts may not

be detected.

3.2.1 Sequential Algorithm (Sequential t-test)

The steps involved in detecting regime shifts are as follows:

1. The cut-off length (l) of the climate regimes is determined for the time series (Xt). l

denotes the minimum length of regimes; i.e., once a shift is detected, the magnitude

of the shift does not change for the minimum period of length l.

2. The difference (diff ) between mean values of two subsequent regimes is calculated.

diff = t

√
2σ2

l

l
(3.1)

where

t is the value of the Student’s t-distribution with the degree of freedom equal to 2l−2

and at the pre-specified significance level. σ2
l is a constant variance evaluated as the

average of the variances calculated for each section of length l.

3. xR1 is the average of the first l values of the climate time series under study. x′R2

is the expected minimum average of the next l values constructing the next climate

regime and is calculated as follows:

x′R2 = xR1 ± diff (3.2)

The above statement means that if the value of the (l+ 1)th observation (or point j)

exceeds x′R2, that point is identified as the time of a potential shift, and the algorithm
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proceeds with Step 4; however, if it falls within the boundaries indicated by Equation

3.2, the algorithm updates xR1 including the jth observation. x′R2 is then recalculated,

and the procedure continues.

4. If the climate shift takes the data to a higher level, x∗i = xi − x′R2, where xi is the

observation at point i ≥ j; otherwise, x∗i = x′R2 − xi. If these differences have the

same sign as the differences obtained at the time of the potential shift (xj − x′R2 and

x′R2 − xj, respectively), the statistical confidence of identifying j as the time of shift

increases. The regime shift index (RSI) is a variable that keeps track of changes in

the confidence level:

RSIi,j =

j+w∑
i=j

x∗i
lσl
, w = 0, 1, ..., l − 1 (3.3)

If during the entire time period of j + 1 to j + l − 1 the value of RSI remains

positive, this implies that the shift at point j is significant at the significance level

determined for the t-statistic in Step 2. At this point, xR1 is updated by calculating

the actual average of the identified regime. The calculations continue starting from

the observation at point i = j + 1, and the above steps are repeated. If the sign of

RSI changes to negative, xR1 is updated including the observation at point j, and

the analysis starts again from Step 3.

Steps 3 and 4 are repeated until all the observations are processed. Based on the steps

involved in the analysis, it is inferred that the smaller the value of l is, the more precise the

results will be since a small value of l makes it possible to detect short regimes. However,

this interpretation is not always correct. The reason is that as l decreases, the degree of

freedom (2l − 2) decreases as well. At a given significance level, this causes the value of

t-statistic to increase, and a large critical value may prevent regime detection.

3.2.2 Pre-whitening

So far, in the sequential algorithm, it has been assumed that observations are not correlated.

If data are correlated, the time series may be approximated as a stationary red noise

process using a first-order autoregressive (AR(1)) model. Red noise processes can create

long intervals (runs) during which the data are larger or smaller than the overall mean value
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of the process. If the Student’s t-test is used to test the significance of the shifts at the

change points of these runs, the test favours significant shifts. To avoid false identification

of these intervals as climatic regimes, Rodionov (2006) proposed a procedure of red noise

removal. This procedure is described in this section. After ‘pre-whitening’, the sequential

algorithm can be used to find climatic regimes.

As described above, a stationary red noise process can be approximated by an AR(1)

process:

(Xt − µ) = ρ(Xt−1 − µ) + εt
µ′=(1−ρ)µ−−−−−−→ Xt = ρXt−1 + µ′ + εt (3.4)

where

Xt represents the value of the variable under study at time t.

µ is the population mean.

ρ denotes an autoregressive parameter.

ε : N(0, σ2) is the independent and identically distributed (i.i.d.) noise component.

if |ρ| < 1, the process is stationary and one of the following cases:

• 0 < ρ < 1 → red noise process

• −1 < ρ < 0 → violet noise process

• ρ = 0 → white noise process

• ρ = 1 → random walk process

If regime shifts exist in addition to red noise, the time series should be approximated by a

more complex model as indicated below:

Xt = ρXt−1 + f ′t + εt (3.5)

where ft is the trend function at time t and f ′t = ft − ρft−1.

In order to avoid incorrectly detecting the extended intervals of red noise processes as

regime shifts, one of the following two approaches could be adopted:

Approach 1 In testing the significance of regime shifts using Student’s t-test, signifi-

cance levels are calculated considering the serial correlation of data. The method of

‘equivalent sample size’ for the t-test (Storch and Zwiers, 1999) could be used in this

case.
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Approach 2 The process is pre-whitened, and the red noise is removed using Xt− ρ̂Xt−1.

In order to calculate the lag-1 autoregressive coefficient (ρ̂) as precisely as possible,

Rodionov (2006) developed a subsampling technique. The goal of subsampling is

to avoid the uncertainty caused by using the entire data set to estimate ρ. The

subsampling technique discussed here divides the entire data set into subsamples

of size m where m ≤ l + 1

3
. ρ̂ is selected as the median of the obtained ρ̂’s for

subsamples.

Furthermore, common techniques, such as maximum likelihood estimators or the

OLS technique provide biased estimations of ρ. The bias is larger for a sample of

small size. According to Rodionov (2006), the following techniques are more suitable

to correct the bias of the OLS estimate of ρ for small samples:

1. MPK method (after Marriott, Pope, and Kendall):

ρ̂c =
(m− 1)ρ̂+ 1

m− 4
(3.6)

2. IP4 method (Inverse Proportionality with 4 corrections):

ρ̂c,1 = ρ̂+
1

m
(3.7)

ρ̂c,k = ρ̂c,k−1 +
|ρ̂c,k−1|
m

k = 2nd, 3d, 4th correction (3.8)

Using Monte Carlo simulations and examining the plots of rejection rate of H0 : no

regime shift versus lag-1 autoregressive coefficient, the study concludes that the re-

sults of the above-mentioned correction techniques are very close if m ≤ 10; however,

for large samples, the IP4 method yields more precise estimates (i.e., with less bias

and variance). Furthermore, Approach 1 has a smaller rejection rate compared to

that of the case which does not consider the serial correlation of data. However, it is

not a significant improvement over the latter.

3.3 MARS

In Section 2.3.3.4, the merits of this technique are discussed. As indicated earlier, MARS

produces smooth curves and surfaces, not the step functions of e.g., the CART method
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(Steinberg and Colla, 1995). The nature of the modification is essentially replacing the

piecewise constant approach with the piecewise linear (or higher order) approach and

removing the points of discontinuity. Nicholas J. Gralewicz (personal communication)

noted that if climate time series are modelled using linear segments, based on the changes

in slope, inferences could be made about the time of regime shifts.

The key feature of MARS is its capability of finding the right transformation points of

input variables. All input variables are scanned one at a time across their entire ranges

of values. Then, MARS uses e.g., the piecewise linear spline approach in order to identify

best possible non-linear transformations. Moreover, MARS has the capability to detect

interactions. There are some measures to protect models against over-fitting and identify

optimal models. MARS uses an approach based on ‘generalized cross validation’ (GCV)

which is essentially the framework where the entire data set is used for modelling and

identifying optimal model structure and size.

In every modelling problem, it is of key importance to approximate the dependent

variable (y) as precisely as possible given some independent variables like x1, . . . , xn. The

problem could be formulated as follows:

y = f(x1, . . . , xn) + ε (3.9)

Classical approaches, such as parametric modelling, require the analyst to search for a

model that best suits the data under study. Then, the problem turns into the problem

of trial and error, which involves steps such as model specification, diagnostic checks,

performance assessment, etc. Furthermore, it is not feasible to automate these techniques

to analyse large data sets.

In contrast to conventional approaches, modern algorithms are developed such that

they derive the underlying pattern of data based on the information acquired from the

data set itself. Among these methods, some require the modeller to input variables; then,

the function approximating the underlying structure is found by the model. Generalized

additive models (Hastie and Tibshirani, 1986) are examples that fall under this category.

Some techniques, such as MARS, on the other hand, operate independently in both variable

selection and finding the most appropriate function.
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3.3.1 Algorithm Description

The main goal of the MARS algorithm was to improve and overcome some of the limitations

of recursive partitioning regression. Therefore, to explain the MARS algorithm, first, the

modifications applied in generalization of the recursive partitioning regression to MARS

are described. Then, a summary of the steps carried out in MARS is presented. More

details are available in Section 3 of Friedman (1991).

1. Generalization of Recursive Partitioning Regression: As discussed in Section

2.3.3.4, MARS is an improved and generalized version of the recursive partitioning

algorithm originally developed by Morgan and Sonquist (1963) and Breiman and

Friedman (1985). Equations 3.10 and 3.11 represent the recursive partitioning ap-

proximation of the function f indicated in Equation 3.9:

if x ∈ Rm =⇒ f̂(x) = gm(x|{aj}p1) (3.10)

{Rm}M1 represents the discontinuous sub-regions obtained from partitioning the entire

domainD intoM sections. gm is the function used to model sub-regions. As indicated

earlier, gm could be as simple as follows (am is a constant function):

gm(x|am) = am (3.11)

The MARS algorithm changes the concept of sub-regions (gm) to the concept of basis

functions (BF). This implies that Equations 3.10 and 3.11 take the forms illustrated

by Equations 3.12 and 3.13.

f̂(x) =
M∑
m=1

amBm(x) (3.12)

Bm(x) = I[x ∈ Rm] (3.13)

where Bm denotes basis functions defined as indicator functions (I) which take binary

values: 0 (false argument) and 1 (true argument). {am}M1 are coefficients to be

estimated by the algorithm.

2. Correction of Recursive Partitioning for Boundary Discontinuities: As in-

dicated earlier, MARS solved the problem of discontinuity in the boundaries of sub-

regions. The algorithm of recursive partitioning (‘Algorithm 1’ in Friedman (1991))

47



3.3. MARS Chapter 3. Methodology

includes a step function that leads to disjoint sub-regions. In fact, this step function

is a spline BF with the order of zero. In order to adjust Algorithm 1 for discontinuity,

this spline function of zero order is generalized to higher dimensions (multivariate

spline BF’s). The degree of continuity is discussed in the study, and it suggests

that only the continuity of the approximating function as well as its first derivative

at each node is necessary; node indicates where one sub-region starts another sub-

region. These two constraints dramatically reduce the number of free parameters

that should be estimated for each sub-region.

3. Further Generalization of Recursive Partitioning Regression: The recur-

sive partitioning algorithm lacks the ability to precisely estimate the parameters of

a simple class of functions: functions with no interactions or only a few interacting

independent variables. An example of this type is additive functions. To solve this

problem, it is important to derive a good set of BF’s. The recursive partitioning,

unless there is only one independent variable, includes the BF’s with several inde-

pendent variables that lead to high-order interactions. The algorithm is designed

such that during the process the interaction order increases. As indicated, recursive

partitioning is a spline BF with the order of zero. This implies that the algorithm

only selects a small subset from the large set of BF’s that are tensor products of uni-

variate spline functions. MARS generalizes the algorithm of recursive partitioning

by including all these spline functions in the analysis. This modification results in an

algorithm with no constraint on the existing BF’s and hence, capable of producing

models with low or high degrees of interaction.

The major modifications to the recursive partitioning regression are explained above. In-

cluding those steps, the MARS algorithm is described below:

1. As discussed earlier, the underlying model in MARS is basically a hybrid of the

classical spline approach and a modern way of partitioning data into sub-regions.

Therefore, the overall model can be relatively easily described in terms of conventional

analytics. In short, the idea is that instead of writing a single regression, as many

regressions as different segments are written. Then, they are combined into one single

expression that represents all these individual segments.

2. Knots are predetermined in the classical spline approach. Instead of trying to deter-

mine knots in a kind of deterministic uniform way before running the actual process,
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MARS identifies best knot placements automatically. Only significant knots are de-

tected by the algorithm; for example, if a single line is the best fit, no interior knot

placement would occur. The search algorithm for the best knots is as follows:

To increase the computational efficiency, knots are always selected from the existing

data points and not permissible values in between. If there is only one independent

variable, and the goal is to select one knot, every data point has the potential to be

selected as this knot. Every time, after selecting a knot, the sum of squared errors

(SSE) is calculated, and eventually, a knot which yields the minimum SSE is selected.

It should be noted that due to the restriction on the number of data points required

at each step for modelling, this search algorithm may prevent knot placement close

to the end of series.

As could be inferred from the above explanation, the analysis becomes very compli-

cated if the goal is finding more than one interior knot simultaneously. In this case,

instead of looking at all possible combinations, at each step, the algorithm looks for

the strongest and best knot placement given the configuration at that stage. As

described above, the complexity of searching for a single knot is linear in the data

set size. However, if it is desired to place two simultaneous knots, the complexity

of that operation is quadratic in size, and that is already unacceptable by all algo-

rithmic requirements. Hence, to avoid this complexity, MARS adopts a sequential

algorithm. This implies that it always places one knot at a time based on the most

updated configuration. The procedure described in this step is called ‘forward knot

placement’.

3. The forward knot placement strategy is capable of recovering the true knots; however,

it also carries over a large number of knots that look important initially, but they

are not really needed. Therefore, the algorithm does not stop at a point where all

of these knots are introduced. Forward knot placement is the beginning of the next

step which is ‘backward cleaning’. The backward cleaning step revisits all the knots

the process identifies in the forward fashion and sequentially removes the knots that

are not required.

4. If there is more than one independent variable, the process of knot selection indicated

above becomes very difficult to manage. Furthermore, it is not feasible to represent

interactions with the above-mentioned knot selection strategy. These are the reasons

that explain the necessity of having BF’s as formulated by Equations 3.12 and 3.13.

49



3.3. MARS Chapter 3. Methodology

To clarify more on the idea of using BF’s in MARS, the following two expressions

are presented. These two types of BF’s could be used multiple times with a single

independent variable (x).

• Direct BF: max (0, x− c)
• Mirror image BF: max (0, c− x)

where c is a threshold, and it is taken within a certain variable range. MARS considers

constructing such BF’s with all permissible data points taken as c. Basically, c stands

for knot locations. Thus, as c varies over the range of x, a knot itself moves around.

The reason for having a mirror image BF is that a direct BF function generates a

zero slope for values less than the knot. Therefore, MARS creates BF’s in pairs

in order to complete the forward knot placement process for the flat top function.

In addition to improving the knot placement strategy, BF’s make the mathematical

and computational implementation of MARS much easier. For example, two variables

could easily be interacted by multiplying the BF’s of them. Furthermore, the analysis

of categorical variables and missing or censored values is only possible through BF’s.

In summary, first, an over-fit model is deliberately developed by adding pairs of BF’s where

each pair relates to an individual knot. Then, the model is pruned back, which is the knot

cleaning step. The backward step always removes the BF’s one at a time. This means

that once MARS moves to the pruning step, it is no longer required to keep BF’s in pairs.

In fact, having pairs would decrease the model performance if flat segments are desired.

Therefore, in the forward step both BF’s are kept, and in the backward step, those BF’s

are investigated one at a time to see which ones are more important and more influential

than the others.

It should be noted that MARS is in fact an additive model since BF’s are added

one at a time and in an additive form. Furthermore, each BF uses one variable at a time.

Therefore, by definition, it is a generalized additive model at this point. When interactions

are allowed, MARS tests the performance of the model when a new BF pair is added to the

model independently and when the same pair interacts with an already existing single BF.

Then, the algorithm selects the best performance. In fact, the model effectively penalizes

variables when they are not yet part of the model. This has a tendency to shift focus

to a smaller subset of variables, but it may also generate models that are overly difficult

to understand. This is due to the fact that all the variables that are part of the model
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would be explored in terms of all potential correlations with all the variables that have not

been selected as part of the model, and in some cases, it may produce somewhat confusing

models.

In practice, the analyst specifies an upper limit for the number of knots (more precisely,

the number of BF’s) to be generated in the forward step. That limit should be large

enough to ensure that the data structure is captured; however, it cannot be very large. If

the algorithm attempts to build a large number of BF’s, that is an equivalent of trying

to fit a multiple linear regression with a large number of terms. This is likely to cause

computational, time, and memory difficulties. It should be noted that in the forward

step, MARS does not always come back with the prespecified number of BF’s. Since BF’s

are always entered in pairs, at some point, mirror image BF’s become redundant. In this

case, MARS automatically identifies some of the BF’s as linearly dependent and eliminates

those.

There are several points to note about the MARS algorithm:

• GCV which is a penalized version of mean squared error is used for optimal model

selection.

• MARS has no intuition of its own, and it simply follows the rules of its algorithmic

structure. In some cases, it may be necessary that a modeller uses their own judge-

ment in selecting the final model. For example, if the analyst believes that the model

is over-fitting the data under study, one simple approach to avoid this problem is

to select a model with a smaller number of BF’s. However, with this approach, a

sequence of naturally generated MARS models is obtained. It is never guaranteed

that the previously existing BF’s, which led to over-fitting, would be eliminated in

the order the analyst wishes. Therefore, to eliminate specific BF’s, the modeller

themselves should identify the BF’s that are responsible for the observed undesirable

local anomalies.

3.4 Trend Shift Detection

According to Section 2.3.4, another interesting technique to be applied to the data in this

study is the trend shift detection method developed by Perron and Yabu (2009b). The
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method is introduced briefly, and further details can be found in the original paper.

The data generating process is assumed to be the following regression:

yt = x′tΨ + ut (3.14)

Below, the noise component is assumed to be an AR(1) process; however, it could be

generalized to a higher order (p) as described later in this section.

ut = %ut−1 + vt (3.15)

vt = d(L)et (3.16)

d(L) =
∞∑
i=0

diL
i,

∞∑
i=0

i|di| <∞, d(1) 6= 0 (3.17)

where t = 1, . . . , T ; T is the number of years. et is the i.i.d. noise component with the

mean and variance of 0 and σ2, respectively. r is the number of unknown parameters. Ψ

with the size of (r × 1) contains the model parameters to be estimated. xt contains the

deterministic components and is a matrix of size (r × 1). x′t is the transpose matrix of xt.

This method is based on the quasi-feasible generalized least squares (quasi-FGLS) ap-

proach. % is the sum of the autoregressive coefficients estimated using the detrended data

and following the OLS approach. −1 < % ≤ 1; hence, the noise component could be either

stationary or integrated. A super-efficient estimate of % is used if % = 1.

The null hypothesis of the test is RΨ = γ. R is a full-rank matrix with the size of

(q × r). γ is the vector of restrictions with the size of (q × 1). This implies that q = 1

when the technique tests for a structural break in intercept or slope; however, q = 2 if the

simultaneous break in slope and intercept is tested. The reader is referred to Equations

3.18 to 3.20 for more details. Throughout this section, the break date for a given λ1 ∈ (0, 1)

is determined as T1 = λ1T , and 1(.) is an indicator matrix.

As indicated in Section 2.3.4, the technique tests for 3 types of structural breaks: i)

structural break in the level (intercept) of the trend function (Model 1), ii) structural

break in the slope of the trend function (Model 2), iii) simultaneous structural break in

the intercept and slope of the trend function (Model 3). Each model is explained below:
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• Model 1

xt = (1, DUt, t)
′

Ψ = (µ0, µ0, β1)′

DUt = 1(t > T1)

 =⇒ yt = µ0 + µ1DUt + β0t+ ut (3.18)

R = [0 0 1]. Therefore, the null hypothesis of interest is µ1 = 0.

• Model 2

xt = (1, t, DTt)
′

Ψ = (µ0, β0, β1)′

DTt = 1(t > T1)(t− T1)

 =⇒ yt = µ0 + β0t+ β1DTt + ut (3.19)

R = [0 0 1], and the null hypothesis of interest is β1 = 0. As could be inferred from

Equation 3.19, there is a shift only in the slope of the trend function; hence, the

trend function is continuous at the break time.

• Model 3

xt = (1, DUt, t, DTt)
′

Ψ = (µ0, µ1, β0, β1)′

}
=⇒ yt = µ0 + µ1DUt + β0t+ β1DTt + ut (3.20)

R =

[
0 1 0 0

0 0 0 1

]
, and the null hypothesis is µ1 = β1 = 0.

After clarifying the data generating process, the rest of this section focuses on the steps

involved in the analysis:

1. % is calculated following Equation 3.21 which is a truncated autoregression of order

k:

ût = %ût−1 +
k∑
i=1

ξi∆ût−i + etk (3.21)

where ût is the estimate of the residuals computed using the regression of y on x

(Equation 3.14). An information criterion, such as Bayesian information criterion

(BIC) or Akaike information criterion (AIC) is used to estimate k, and k should be

in the range of
[
0, 12

(
T/100

)1/4]
. Therefore,

kmax = 12
( T

100

)1/4

(3.22)
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2. Matrices of regressors for OLS are constructed as follows:

Model 1

X =
[
ones(T, 1) [1 : 1 : T ]′ DUi

]
(3.23)

Model 2

X =
[
ones(T, 1) [1 : 1 : T ]′ DTi

]
(3.24)

Model 3

X =
[
ones(T, 1) DUi [1 : 1 : T ]′ DTi

]
(3.25)

3. Since the OLS estimate of % is biased, the bias is corrected using Equation 3.26:

%̂M = %̂+ C(τ̂)σ̂% (3.26)

where

τ̂ =
%̂− 1

σ̂%
(3.27)

C(τ̂) =



−τ̂ if τ̂ > τpct

IpT
−1τ̂ − (1 + r)

[
τ̂ + c2(τ̂ + a)

]−1
if −a < τ̂ ≤ τpct

IpT
−1τ̂ − (1 + r)τ̂−1 if −c1/2

1 < τ̂ ≤ −a

0 if τ̂ ≤ −c1/2
1

(3.28)

c1 = (1 + r)T (3.29)

c2 =
[
(1 + r)T − τ 2

pct(Ip + T )
][
τpct(a+ τpct)(Ip + T )

]−1
(3.30)

Ip =
p+ 1

2
(3.31)

σ̂% is the standard deviation of %̂. τpct represents a percentile of the limit distribution

of τ̂ , and the study uses τ0.99 for the unknown break dates. The values for τ0.99

could be found in Tables IV to VI of Perron (1989). p refers to the order of the

autoregression of the noise component, which is specified to be 1 above and could be

a larger value. Based on simulation results, a = 10.
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4. Truncation is applied:

%̂MS =


%̂M if |%̂M − 1| > T−1/2

1 if |%̂M − 1| ≤ T−1/2

(3.32)

The above equation implies that if the distance of %̂M from 1 is less than T−δ (δ is

determined to be 1/2 by simulation analysis), it is assigned a value of 1.

5. The test statistic is computed. Based on the nature of the error component (I(0) or

I(1)) and the type of the model selected (Model 1, 2, or 3), the form of the Wald

statistic (Andrews and Ploberger, 1994) changes.

• I(0) noise component

For all models, the Wald statistic (WRQF ) is calculated by Equation 3.33. RQF

stands for robust quasi-feasible GLS.

WRQF (λ1) =
[
R(Ψ̃−Ψ)

]′[
ĥvR(X ′X)−1R′

]−1[
R(Ψ̃−Ψ)

]
(3.33)

where Ψ̃ is estimated by applying the quasi-FGLS approach to Equation 3.14

assuming that the error component is an AR(1) process. In other words, Ψ̃ is

computed using the OLS approach in the following regression:

(1− %̃MS L)yt = (1− %̃MS L)x′tΨ + (1− %̃MS L)ut (3.34)

ĥv is obtained from Equation 3.35.

ĥv = (T − k)−1

T∑
t=k+1

ê2
tk (3.35)

êtk denotes the OLS residuals estimated using the following regression:

yt − %̃MS yt−1 = x′tΨ
∗ +

k∑
i=1

ρi∆yt−i + etk (3.36)

where Ψ∗ replaces Ψ as a result of a number of modifications indicated in the

original study.
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• I(1) noise component

Model 2

For Model 2, WRQF (λ1) is calculated by Equation 3.33 with the difference

that ĥv is computed as follows:

v̂t =
k∑
i=1

ξiv̂t−i + etk, ξ̂(L) = (1− ξ̂1L− . . .− ξ̂kLk) (3.37)

ĥv =

(T − k)−1

T∑
t=k+1

ê2
tk

ξ̂(1)2
(3.38)

Models 1 and 3

In this case, Ψ̃ has been modified to Ψ̃∗. The reader is referred to the

original paper for the details and reasons of this change.

W ∗
RQF (λ1) =

[
R(Ψ̃∗ −Ψ)

]′[
ĥvR(X ′X)−1R′

]−1[
R(Ψ̃∗ −Ψ)

]
(3.39)

Whether the test statistic of I(0) or I(1) should be used depends on the value of

%̃MS.

6. If the break time is unknown, the test statistic should be computed for all the break

date candidates (εT, . . . , (1−ε)T ). According to Table 2 of Perron and Yabu (2009b),

ε could take one of the values in [0.01, 0.05, 0.1, 0.15, 0.25].

7. Three functionals of the Wald test are available: mean, exp, and sup. However, in

the case of unknown break dates, only the exp functional of the Wald test leads to

almost equal limit distributions for both cases of I(0) and I(1). The exp functional

is calculated by Equation 3.40.

Exp−Wald = log
[
T−1

∑
exp

(
1/2 W (λ′1)

)]
(3.40)

where W (λ′1) denotes the test statistic computed as described in Step 5 using one

of the permissible break dates. The sum is obtained by repeating this calculation

across all the break dates.
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8. The value of the test statistic is compared to the critical values in Table 1 of Perron

and Yabu (2009b) to see whether the break in the trend function is significant.

The break time is approximated using the procedure described by Kim and Perron (2009).

The break date is estimated by minimizing the sum of squared residuals of Regression 5

(additive outlier (Aout) models) or Regression 7 (innovational outlier (IO) models) consid-

ering all permissible break dates. Regression 5 and Regression 7 can be found in Kim and

Perron (2009). Using IO models requires fixing the range of the transition period. Starting

from 1, the transition period is increased until the estimates of break date and model pa-

rameters become stable. The transition period of interest is the smallest value after which

the estimates do not change significantly. In the case of AO models, the transition period

is assumed to be 0.

Note: Throughout this thesis, the trend shift detection technique, described in this sec-

tion, is referred to as the ‘KPY’ method after Kim, Perron, and Yabu (Kim and Perron,

2009; Perron and Yabu, 2009b).

3.5 Trend Analysis

It is explained in Section 2.3.1 why it is preferred to base the trend analysis on the non-

parametric MK test in this study. In this section, first, the original MK test is described.

The reader is referred to Helsel and Hirsch (2002) for more details. Then, the modifications

applied to the MK test including the TFPW approach are explained according to Burn

et al. (2004). As indicated earlier, trends detected locally may not be significant globally.

Therefore, the rest of this section focuses on a bootstrap technique to test the global

significance of the trends.

3.5.1 Non-parametric Mann-Kendall Test

In order to measure the monotonic (linear and non-linear) correlation between independent

(x) and dependent (y) variables, the two-sided hypothesis test shown below is conducted.

τ represents Kendall’s tau, which measures the strength of the monotonic relationship. τ

is a rank-based parameter; hence, it is resistant against outliers, non-normally distributed

57



3.5. Trend Analysis Chapter 3. Methodology

values, and censored data points. Furthermore, P-values estimated based on the large-

sample approximations of τ are very close to the true P-values even if the sample size is

small (Helsel and Hirsch, 2002).{
H0 : There is no correlation between x and y (τ = 0)

H1 : x and y are correlated (τ 6= 0)

τ is computed as follows:

τ =
S

n(n− 1)/2
(3.41)

where n is the number of observations. S is calculated using the following formula:

S = P −M (3.42)

In order to compute S, (x, y) pairs are arranged in ascending order of x. P represents the

number of (x, y) pairs where y increases as x increases (‘concordant pairs’), and M is the

number of (x, y) pairs with increasing x while y decreases (‘discordant pairs’).

Equations 3.41 and 3.42 explain the above-indicated null hypothesis. If x and y are

independent, the number of concordant pairs is almost the same as that of discordant

pairs (i.e., τ = 0). If there exists a negative correlation between x and y, the number of

concordant pairs is expected to be less than discordant pairs (τ < 0), and vice versa.

To test the significance of τ , the permutation approach is adopted in this study for

n ≤ 10. The distribution of the test statistics under the null hypothesis is obtained by

calculating all possible values of S with a given number of (x, y) pairs for n ≤ 10. For the

values of n > 10, the distribution of the test statistics could be approximated by a normal

distribution. The test statistic for a large sample is computed as follows:

Zs =



S − 1

σs
if S > 0

0 if S = 0

S + 1

σs
if S < 0

(3.43)

where

σs =
√

(n/18)(n− 1)(2n+ 5) (3.44)
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If the value of Zs falls within the rejection range of the standard normal distribution

considering the significance level of α (i.e., |Zs| > Zcritical), the null hypothesis of τ = 0 is

rejected, and it is concluded that x and y are correlated.

In the case of large sample approximation, if there are tied x or y values, the value of

σs should be modified as follow:

σs =

√√√√√n(n− 1)(2n+ 5)−
n∑
i=1

ki(i)(i− 1)(2i+ 5)

18
(3.45)

where i is the extent of ties. ki is the number of ties with the extent of i in the entire data

set.

Mann (1945) used Kendall’s τ to test the significance of the monotonic trend when

the independent variable is time. As indicated earlier in Section 2.3.1, in order to obtain

correct P-values, the data should not be serially correlated.

If it is assumed that the monotonic relationship between y and x is linear, a robust

non-parametric line could be used to represent this relationship. In contrast to the OLS

regression, the significance of the linear dependence between x and y (i.e., whether the slope

is significantly different from 0) is not affected by the non-normal behaviour of residuals or

the presence of outliers. To estimate the slope of this non-parametric line, Theil’s approach

is applied here:

ŷ = b̂0 + b̂1x (3.46)

where

b̂1 = median
(yj − yi)
(xj − xi)

for all i < j (3.47)

i = 1, . . . , (n− 1) and j = 2, . . . , n

and

b̂0 = ymed − (b̂1)(xmed) (3.48)

where ymed and xmed are the medians of y and x data sets, respectively.

59



3.5. Trend Analysis Chapter 3. Methodology

3.5.2 Modified TFPW Approach

As indicated, one of the key assumptions of the MK test is zero serial correlation. However,

most of the temporal observations are serially correlated. Based on the sequence of studies

devoted to solving this problem (described in Section 2.3.1), a modified version of the

TFPW technique developed by Yue and Pilon (2003) is used in this study. The steps

involved in this approach are as follows (more details can be found in Burn et al. (2004)):

1. The monotonic trend of data is removed using the following formula:

ft = yt − b̂1t (3.49)

where y is the response variable at time t, and ft represents detrended observations.

2. The lag-1 serial correlation coefficient (ρ1) for the detrended data is computed. If the

serial correlation is insignificant at the significance level of α, the procedure described

in the previous section (Section 3.5.1) is applied to test the trend significance and

evaluate slope. However, if ρ1 is significant, the algorithm proceeds with the pre-

whitening step:

f ′t = ft − ρ1ft−1 (3.50)

3. The monotonic trend removed in Step 1 is added back to the detrended and pre-

whitened series (f ′t):

f ′′t = f ′t + b̂1t (3.51)

4. The MK test explained in Section 3.5.1 is applied to f ′′t .

3.5.3 Field Significance

To investigate whether the percentage of observed locally significant trends is high enough

to consider them globally significant, a field significance test is used in this study. To

determine the critical values for the distribution of the percentage of the MK tests that

are expected to reveal significant trends at the local significance level of α, a bootstrap

algorithm is applied here. The analysis steps are summarized below, and the detailed de-

scription of the algorithm can be found in Cunderlik and Burn (2002), Burn and Hag Elnur

(2002), and Burn et al. (2004).
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1. A random vector of years is constructed. The size of this vector is equal to the total

number of years the data span. The years are selected from the range permissible in

the study, and repeated entries are allowed.

2. A station-year matrix is constructed. Each column of this matrix includes all station

values that correspond to a year from the above vector. Columns are entered into

this matrix in the order specified in the above vector. If no information is available

for a station, it is left blank (NaN).

Note: The random selection of years in Step 1 eliminates any temporal trend in the

data set; however, since the information of all stations is included for a given year,

the cross correlations between stations remain intact. Therefore, the percentage dis-

tribution found following this procedure is influenced by existing cross-correlations.

3. Using the MK test specified in Section 3.5.1, the trend significance of each station

is tested at the local significance level of α; this implies that the MK test is applied

to each row of the big matrix constructed in Step 2 excluding all NaN values. Then,

the percentage of stations that exhibit locally significant trend is recorded. It should

be noted that if the number of remaining data points after removing NaN values is

less than 3, the MK test is not applicable. In this case, these stations are excluded,

and the total number of stations is adjusted accordingly.

4. Steps 1 to 3 are repeated NS times. NS is a number which is specified by the analyst.

In this study, it is equal to 10,000. By repeating the above-indicated steps NS times,

the distribution of the percentage of tests that result in locally significant trends at

the significance level of α is obtained.

5. The test statistic is the percentage of the stations with significant trends in the study

area. If this value falls in the rejection region of the distribution found above, it is

concluded that the number of locally significant trends is so high that it could not

have occurred by chance.

In order to find the distribution and critical values of the percentage of stations showing

significant increasing or decreasing trends, some additional steps are required. In Step

3, in addition to testing the significance of trends, Theil’s slope estimates are computed,

and the percentage of locations with significant trends and positive or negative slopes is
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obtained. In Step 4, the distribution and critical values for the percentage of locations

with significant increasing or decreasing trends are found.

3.6 Non-parametric Comparison Techniques

As explained in the beginning of this chapter, there are 3 different techniques employed to

examine the time series in this study. These methods follow different algorithms, and the

question arises as to how the results of them can be compared. Classical tests, such as t-

test and F-test, are parametric techniques that assume that data are random and normally

distributed. In practice and particularly with environmental data, it is really difficult to

justify the assumptions of parametric methods; hence, non-parametric or distribution-free

techniques are preferred, which require no assumption regarding the underlying distribution

of data. Among non-parametric tests, ‘Wilcoxon signed-rank test for paired observations’

and ‘Wilcoxon rank-sum test’ are the most compatible methods with the comparison goals

of this study. The methodologies are described in this section (for more details, refer

to Miller (1986), Glantz (2002), Gibbons and Chakraborti (2003), and Montgomery and

Runger (2003)); however, the clarification on why these techniques are the most suitable

ones is presented in Chapter 5, after describing the study area and obtaining analysis

results.

3.6.1 Wilcoxon Signed-Rank Test for Paired Observations

Let Yi1 and Yi2 (i = 1, . . . , n and n is the number of paired observations) be a collection

of paired observations, and Di = Yi1 − Yi2. Di is the difference between the results of two

models at the corresponding station i. µ1 and µ2 are the population means of Y1 and Y2,

respectively. The one-sided and two-sided hypothesis tests are as follows:

H0 : µ1 = µ2 µD = 0

H1 : µ1 6= µ2 µD 6= 0

or

H1 : µ1 > µ2 µD > 0

or

H1 : µ1 < µ2 µD < 0
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The assumptions of the Wilcoxon signed-rank test are as follows:

1. This technique is based on ranks. Therefore, there is no restriction on the nature

of the underlying population of Y1 and Y2 except that the distributions should be

continuous and should differ only with respect to their means; i.e., the distributions

have similar shapes. The latter is required since it guarantees that the distribution

of Di is symmetric. In the Wilcoxon signed-rank test, the input sample to the test

(the sample which is ranked and receives signs) should always be from a continuous

and symmetric population.

Note: Since it is assumed that the input population is symmetric, no tie is ex-

pected. However, ties do occur in practice, and how to handle ties is discussed in

Section 3.6.1.1.

2. The observations within each group are independent. This means that each pair (and

subsequently the difference between the paired observations) is independent of the

other pairs.

3. The level of measurement should at least be ordinal. This implies that phrases such

as ‘less than’ should be meaningful in the scale of measurement.

The steps in the analysis are as described below:

1. Di’s are computed.

2. The absolute values of these differences are ranked in ascending order (refer to Section

3.6.1.1 for the discussion on how to rank the ties).

3. The sign of the corresponding difference is attached to each rank.

4. The signed ranks are summed to obtain the test statistic W1. If Y1 and Y2 are not

statistically different, W1 should be close to zero. This implies that the sum of the

positive ranks is similar to the sum of the negative ranks.

5. The distribution of W1 is found by the permutation approach applied to signed

ranks. This implies that all possible values of W1 are computed by considering all

the combinations of signed ranks for the given ranks and sample size.
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If the sample size is larger than 20, the distribution of W1 can be closely approximated

with a normal distribution:

zW1 =
(W1 − µW1)± 0.5

σW1

(3.52)

where µW1 = 0, and σW1 could be calculated following Glantz (2002):

σW1 =

√
(n)(n+ 1)(2n+ 1)

6
−
∑
i

(ki − 1)(ki)(ki + 1)

12
(3.53)

In Equation 3.53, ki is the number of ties with the extent of i within the entire data

set. ±0.5 in Equation 3.52 is for the continuity correction. Since W1 (a discrete value)

is approximated using a continuous distribution (normal distribution), the continuity

correction should apply: −0.5 if W1 > µW1 and +0.5 if W1 < µW1 .

6. The probability of obtaining a test statistic equal to or larger than W1 associated

with the sample under study is calculated. This probability is then compared to the

probability of the critical region. If it is equal to or less than the probability of the

rejection region, the null hypothesis is rejected.

Note: W1 could also be calculated as the sum of positive or negative signed ranks. One

should be cautious to select a correct distribution and critical values for W1 in each case.

3.6.1.1 Ties in the Wilcoxon Signed-Rank Test

There are two types of ties (Miller, 1986):

1. Di’s are tied in absolute values.

2. The values of Y1i and Y2i in the specified pair i are exactly the same. Therefore,

Di = 0.

Below, each of the above cases is discussed in detail:
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1. If the observations are tied in absolute values, the average of the ranks is assigned to

each of the differences with the same absolute magnitude. This means that the ranks

that would be assigned to differences if they were slightly different from each other

are averaged, and each of these ties receives the average rank. Pratt (1959) calls

this method ‘average rank procedure’. The study emphasizes that in this case, the

distribution of the test statistics changes; i.e., one cannot use the ordinary Wilcoxon

critical values when using the average rank procedure, and the permutation approach

should be based on the averaged ranks.

2. Traditionally, the way to handle 0’s is to drop them from the analysis and adjust the

sample size. Pratt (1959) calls this approach ‘reduced sample procedure’. This is due

to the fact that 0’s provide no information about whether the variable under study

has increased or decreased. Miller (1986) calls this approach ‘conditional approach’

since 0’s are excluded, and the question of P
[
(Di > 0 |Di 6= 0) or (Di < 0 |Di 6= 0)

]
is

considered. Miller (1986) also emphasizes that this could be a worthless question to

ask if the number of 0’s is large compared to the sample size. If the large proportion

of 0’s occurs, the difference between Y1 and Y2 may be unimportant.

A more conservative approach is proposed by Pratt (1959) to handle 0’s. The pro-

cedure is described below:

(a) The absolute values of all observations including 0’s are ranked in ascending

order.

(b) The ranks of 0’s are dropped without changing the rest of the ranks, and the

sample size is adjusted.

(c) The remaining ranks receive the corresponding signs.

(d) W1 is calculated using the signed ranks.

Note: In the permutation approach, all possible signed-rank combinations of the

remaining ranks are considered, and the total number of observations is equal to the

number of observations after dropping 0’s.

3.6.1.2 Notes on Using the Wilcoxon Signed-Rank Test

Modarres et al. (2005) refer to several cautionary notes on the use of the Wilcoxon signed-

rank test to analyse the environmental data:
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• As indicated above, the null hypothesis tests whether the means of Y1 and Y2 are

the same. In reality, however, it tests whether the PDF’s of them are the same.

This clarifies the necessity of Assumption 1 of the test. If the PDF’s differ in any

parameter other than location, the use of the Wilcoxon signed-rank test to check

the equality of means may not generate correct results. This is due to the fact that

even in the case of equal means, the test would detect differences between other

parameters, such as skewnesses, variances, etc.

• When the observations within each group are correlated, the Wilcoxon signed-rank

test becomes very conservative in rejecting the null hypothesis.

3.6.2 Wilcoxon Rank-Sum Test

Let Y1 and Y2 be two independent continuous populations with means µ1 and µ2, respec-

tively. The populations of Y1 and Y2 should have the same shapes and parameters and

should only differ in their means. Now, assume Y11, Y12, ..., Y1n1 and Y21, Y22, ..., Y2n2 are

random samples selected from Y1 and Y2, respectively, with sizes n1 ≤ n2. The hypoth-

esis test is the same as that of the Wilcoxon signed-rank test. In order to perform the

hypothesis testing, the steps below are followed:

1. All n1 + n2 observations are ranked in ascending order. Ties receive the average of

the ranks that they would have if they were slightly different.

2. The test statistic (W2) is the sum of the ranks of the group with smaller size. If

n1 = n2, the sum of the ranks of either of two samples can be selected as the test

statistic.

3. In order to find the distribution of the test statistics, all possible combinations of the

ranks of the smaller group are considered.

4. If the size of the small sample is larger than 8, the distribution of the test statistics

is very similar to the normal distribution with mean

µW2 =
nS(nS + nB + 1)

2
(3.54)
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and standard deviation

σW2 =

√
nSnB(nS + nB + 1)

12
(3.55)

where nS is the size of the smaller sample, and nB stands for the size of the larger

sample.

Note: When there are identical observations, σW2 should be adjusted for the ties:

σW2 =

√
nSnB(N + 1)

12
− nSnB

12N(N − 1)

∑
i

(ki − 1)(ki)(ki + 1) (3.56)

where N = nS + nB, and ki denotes the number of ties with the extent of i within

the entire data set.

Finally, the test statistic for the normal distribution is evaluated as follows:

zW2 =
W2 − µW2

σW2

(3.57)

Similar to Equation 3.52, Equation 3.57 should be corrected for continuity:

zW2 =
|W2 − µW2| − 0.5

σW2

(3.58)

5. If the test statistic falls in the rejection area of the distribution of rank sums, it is

concluded that the two samples are statistically different.
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Chapter 4

Study Area and Data Description

4.1 Introduction

Like all research projects, the matters of greatest importance are the data required to

answer the proposed questions as well as the sources of such data. Therefore, prior to

presenting the analysis results, Chapter 4 is devoted to introducing the data used for the

study and giving an overview of the steps followed in the assessment of the final database

to fulfil the research goals. Section 4.2 describes how the data are collected, homogenized

and adjusted to be the indicators of the monthly climate variations. In Section 4.3, it is

explained which temporal and spatial subset of the large data set, introduced in Section

4.2, best suits the objectives of this research. An overview of the procedure of the data

analysis is given in Section 4.4.

4.2 Data Description

4.2.1 Data Sources

Data are obtained from the Climate Research Unit (CRU), at the University of East Anglia

(University of East Anglia Climate Research Unit, 2011). In this study, the gridded CRU

TS 3.1 data set is used. This data set includes month-by-month variation in nine climate
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variables that span the 1901-2009 period. The spatial resolution of the data is 0.5◦ ×
0.5◦ (latitude × longitude), and the data set covers the land surface throughout the entire

globe except Antarctic; i.e. 179.75◦ W to 179.75◦ E and 89.75◦ S to 89.75◦ N. This spatial

resolution of data may be unsuitable for small regions; however, for a large region under

study like the Northern Hemisphere or the entire globe, it provides sufficient information.

In this project, ‘tmp’ (Monthly Average of the Daily Mean Temperature) from the CRU

TS 3.1 data set is used to achieve the analysis goals. Prior to proceeding to describe the

data processing methodology, it should be noted that at the time of writing this thesis, the

paper on the CRU TS 3.0 data set (and CRU TS 3.1 data set which entirely supersedes

CRU TS 3.0) is in preparation; however, according to BADC (2011):

“For CRU TS 3.0: In preparation. But in the meantime, Mitchell and Jones, 2005

can be used as background information for TS 3.0. The major difference between the CRU

TS 2.1 and CRU TS 3.0 processes is that no new homogenization is explicitly performed

in the latter. Existing homogenizations in the underlying data sets, and homogenizations

performed by national meteorological agencies prior to releasing their station data, are in-

corporated.”

Based on the above quote, this thesis refers to Mitchell and Jones (2005) to understand

underlying techniques adopted in data processing.

More than 4000 weather stations distributed around the world have contributed to the

construction of the CRU TS 3.1 gridded data set. It should be noted that the number of

stations has increased over time; the earlier years of the records included fewer stations.

Therefore, the gridded estimates for the early parts of the records are more uncertain than

those for the later parts. The data have been obtained and updated from global network

of meteorological stations rather than satellites due to the following two reasons (Mitchell

and Jones, 2005):

• There are no satellite data available prior to 1970.

• The focus of the study is on the data at the surface rather than the data measured

through the depth of the atmosphere by satellites.

To extend the spatial and temporal coverage of data, information from several sources

is merged into a single database. Since consistently new information is added to this
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database, and the number of sources increases by time, quality assurance (QA) checks

should always be performed to maintain the quality of data.

QA checks are performed on each of the data sources. The QA procedure checks for

problems in the data sets such as simultaneous zeros, impossible values, duplication of data,

etc. The complete list of ‘Data Problems’ and the ‘Description of Checks’ can be found

in Menne et al. (2009). After different data sources are merged into a single database,

as indicated in Menne et al. (2009), additional climatological and spatial QA checks are

performed.

Although the CRU TS 3.1 date set includes several variables, only the temperature data

as a subset of CRU TS 3.1 are analysed in this study. The primary source for temperature

is Jones and Moberg (2003). As indicated in Mitchell and Jones (2005), the sources are

incorporated into the database in the order presented in Table 4.1 . This implies that the

sources with higher reliability should be merged in priority order.

4.2.2 Data Homogenization

As described in Section 2.3.2, factors such as changes in the time of observation, minor

station relocations, and changes in instrumentation introduce artificial inhomogeneities to

time series. The purpose of the homogenization process is to remove all the artificial dis-

continuities indicated above. The investigation of the potential causes of inhomogeneities

is discussed in detail in Menne et al. (2009) and is summarized below:

1. Inhomogeneities caused by the variation in the daily recording schedule

of observations:

The time of observation for most of the stations in the United States, for example,

has switched from sunset to morning in mid 20th century. This has led to a slight

positive bias in the data from the first half of the 20th century. To adjust the time of

observation bias, documentation and metadata of changes are required. Karl et al.

(1986) propose a technique for the adjustment of time of observation bias. The

effect of the adjustment of the time of observation bias on the data is calculated by

constructing a difference series as indicated below. For more details, refer to Menne

et al. (2009).
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Table 4.1: Data sources integrated into the CRU TS database selected for this study. The

primary source for temperature is Jones and Moberg (2003). The sources are incorporated into

the database in the order presented in the table (Mitchell and Jones, 2005).

Reference Period

Jones and Moberg (2003) 1701 - 2002

Peterson et al. (1998) 1702 - 2001

New et al. (2000) 1901 - 1999

Hahn and Warren (1999) 1971 - 1996

William Angel, Personal Communication with Mitchell and Jones (2005) 1990 - 2002

UK Met Office, Personal Communication with Mitchell and Jones (2005) 1994 - 2002

The anomaly of the adjusted monthly temperature of each station from its 1961-1990

average is calculated. The anomalies are then interpolated to obtain the desired

resolution of the latitude-longitude grids. Following this step, the area weighted

average of anomalies of each year in a given month is calculated for the entire region.

The same process applies to the unadjusted data. Finally, the difference series is

calculated as the difference between the anomalies from adjusted and unadjusted

data. The change in the mean yearly temperature relative to the raw values reported

during the change in the recording schedule could be inferred from the difference

series. This helps understand whether the adjustment of the time of observation bias

has increased or decreased the overall trend.

2. Inhomogeneities caused by other changes in data collection:

As indicated above, there are other sources of artificial shifts in the climate time

series such as relocating stations or changes in instrumentation. To adjust the bias

associated with these changes, one traditionally used procedure is the investigation

of the documented changes in the station history (Karl and Williams Jr., 1987).
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The drawback of this method is that it is unable to detect the undocumented dis-

continuities. There is another method for homogenization proposed by Menne and

Williams Jr. (2009). This method is based on the pairwise comparison of time series,

hence, is capable of detecting both documented and undocumented inhomogeneities.

The approach compares all possible (or numerous) combinations of time series in the

region. As a result of this comparison, abrupt changes (inhomogeneities) in one sta-

tion are detected compared to many other stations. The technique generates much

more reliable results when there are a lot of neighbouring stations available for a

target station to be compared to.

Mitchell and Jones (2005) apply a slightly modified version of the above-indicated

homogenization technique (Menne and Williams Jr., 2009) to CRU TS database. The

methodology used in Mitchell and Jones (2005) is summarized here. The reader is

referred to Mitchell and Jones (2005) for the detailed description of the method and

the differences between steps followed in Mitchell and Jones (2005) and Menne and

Williams Jr. (2009).

The homogenization is performed by comparing a candidate series to a reference

series constructed by examining the neighbouring series and using the correlation

method. It is worth noting that the algorithm is capable of detecting both abrupt

and gradual discontinuities; however, inhomogeneities such as urbanization, which

are widespread and have led to the gradual change in the historical data of stations,

are not eliminated. The detection of these embedded inhomogeneities is not critical.

This is due to the fact that the data are supposed to exhibit long-term monthly or

yearly changes in temperature at the earth’s surface, not changes experienced only

due to GHG emissions. Below, the iterative algorithm of homogenization is explained:

Step 1 All the stations could be used to construct reference series for the detection

of inhomogeneities. Reference series should be created for each month, rather

than the entire year. The reason is that some of the discontinuities could be

cancelled out in the annual mean since they have opposite effects during different

seasons. The attempt is to create a reference series for a given candidate using

the records from several stations (parallels); using more than one station to build

a reference series for a target station has the advantage of reducing the effect

of existing discontinuities in each of the parallels, on the final reference series.

Mitchell and Jones (2005) set the minimum and maximum number of parallels to
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2 and 5, respectively, and each calendar month could have a different number of

parallels. The lengths of data records vary among stations; therefore, to identify

neighbours to be used as parallels, the first task is to replace any missing value

in the historical records of the surrounding stations. The process of finding best

estimates for missing values is described in detail by Mitchell and Jones (2005).

Filling in any gap is necessary since difference series are used in the next step to

calculate the correlation between each candidate and the corresponding reference

series. A difference series is the year to year change in temperature (
dT

dt
). The

reason for working with difference series instead of absolute values is that in

the correlation calculation, the effect of any discontinuity in original series is

shown as the inhomogeneity occurred instantaneously, in one year. When using

difference series, missing values will be detected as discontinuities. Therefore,

missing values should be replaced prior to the next step. Furthermore, it should

be emphasized that the treatment of missing values in this step is for the sole

reason of creating reference series.

Step 2 The correlation coefficient between the difference series of a candidate station

and each of its neighbouring difference series is calculated. If it is at least 0.4, the

neighbouring difference series is selected as one of the candidates to be selected

as a parallel in Step 3. Due to the large size of data and insignificant effect of

remote stations on a given candidate station, each target station is compared to

only the closest 100 stations located within the correlation decay distance (1200

km) from it. The weight attached to each neighbouring station is the square of

its correlation coefficient with the candidate station.

Step 3 To select a set of neighbours to create a reference series, an iterative algo-

rithm is adopted. The algorithm is depicted as two flowcharts in Mitchell and

Jones (2005). After the parallels are selected for a given station and month,

they are averaged into a single reference series using their weights.

Step 4 To detect the discontinuities of each candidate station, the difference between

the time series of the candidate station and the corresponding reference series

is calculated. For each station, 12 time series of differences, one for each month,

should be obtained. The residual sum of squares (RSS) technique is used to

detect the most probable year as the time of break among all 12 months. The

reader is referred to Easterling and Peterson (1995) and Mitchell and Jones
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(2005) for more details on the RSS technique. After the discontinuity is con-

firmed for a given station, a correction factor is calculated to eliminate the

discontinuities of all months.

Step 5 After the data of a station is adjusted for the detected inhomogeneity, that

station is integrated into the final database. When merging one station into

the final database, if there is already a record associated with the station, two

records should be compared to make certain that the longest possible record is

provided for that station, and there is no duplication of data.

Steps 1 to 5 are repeated for all stations. Each time, to construct the reference series

for a station, any station with the following characteristics is allowed to be included

in the set of potential parallels:

• It has been corrected for inhomogeneities and added to the final data base.

• No inhomogeneity is detected in the previous iterations.

• The record associated with the station could be divided into independent sec-

tions using the time of potential shifts in the time series.

Mitchell and Jones (2005) name these stations ‘trusted’ stations. Following steps 1 to

5 and using trusted stations, the construction of reference series and the subsequent

comparisons to candidate stations continue until no more reference series could be

created. At this point, the ‘omissions criterion’ (λ) which was set to zero for the first

iteration is increased (5 years at each iteration). λ is defined as the number of years

of the candidate station for which there is no value in the corresponding reference

series. The process ends when λ is larger than the length of the longest station that

remains unchecked, and all the remaining unchecked stations are added to the final

database. There are two reasons for not excluding these unchecked stations:

• As could be inferred from steps 1 to 5, homogenization requires relatively long

records. Therefore, all the recent stations, specially the ones from William Angel

and UK Met Office (refer to Table 4.1), are added to the final database without

any homogenization.

• According to Mitchell and Jones (2005), most of the unchecked stations are from

the areas or time intervals with low density of information. Therefore, for the
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purpose of gridding, including these unhomogenized stations is preferred to not

having any information at all.

4.2.3 Data Grids

The data from stations should be interpolated onto a continuous surface; this continuous

surface is divided into boxes with the resolution that suits the research objectives or the

extent of the region under study. For data gridding, first, the time series of the stations

are converted into anomalies from a base period (in this case, 1961-1990). These anomalies

(instead of absolute values) are interpolated to create grids of information. Normals are

gridded in the same way. The anomaly associated with a specific grid is converted to an

absolute value by combining it with the normal associated with that grid. For more details

on the interpolation techniques, refer to New et al. (2000) and Mitchell and Jones (2005).

Stations with some missing values are included in the process as well; the missing values

of these stations are estimated by interpolating the anomalies (not the absolute values) of

the adjacent stations. There are two further steps to take prior to interpolating anomalies

onto a continuous surface:

1. Extreme values (i.e., data that are larger than three standard deviations from the

mean of the series) are excluded from the time series.

2. All the stations located within 8 (km) from a given station are integrated into a

single station. This task is mainly performed to prevent using duplicate values in the

interpolation process.

It should be noted that since normals affect all the values in the time series, they should

be calculated accurately. In the study by Jones and Moberg (2003), any station with more

than 25% of the values missing in the base period (1961-1990) is excluded, and the normal

of that station is not used in creating grids. To avoid the loss of information imposed by

this procedure, Mitchell and Jones (2005) build reference series for such stations (similar

to the homogenization method); the 1961-1990 means of the reference series are used as

the normals for the corresponding target stations.
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4.3 Study Area

As indicated in Section 1.1, the goal of this study is to find locations whose temperature

has permanently changed sign and become positive in the time period of 1901-2009 during

JFM or MAM.

As mentioned earlier in Section 4.2.1, the CRU TS 3.1 data set includes month-by-

month variation in nine climate variables which span the 1901-2009 period. Due to the

specific objective of this thesis, ‘tmp’ (Monthly Average of the Daily Mean Temperature)

is the only variable selected from the data set for the analysis. The CRU TS 3.1 data

set covers the land surface throughout the entire globe except Antarctic at relatively high

resolution: 0.5◦ × 0.5◦ (refer to Section 4.2.1 for more details). It is worth noting again

that the number of weather stations contributing to the construction of the CRU TS 3.1

data set has increased over time; the earlier years of the records included fewer stations.

Therefore, the gridded estimates for the early parts of the records are more uncertain

than those for the later parts. This thesis only investigates the grid cells located in the

extra-tropical Northern Hemisphere. The study area spans from 20.25◦N to 89.75◦N and

179.75◦E to 179.75◦W and includes a total of 46,224 grid cells. The following steps are

employed to construct the final database for this study:

1. The winter temperature for each location is evaluated as the average temperature of

the three months of January, February, and March in the corresponding year. The

spring temperature is computed as the mean temperature of March, April, and May.

2. The area that comprises grid cells whose temperature changes sign and permanently

moves above 0◦C is referred to as ‘transition area’. To identify the transition area,

the first step is to exclude all locations where the original temperature data do not

change sign during the entire time period of 1901-2009 (Rule 1 of transition area).

If the original data points of a time series are all above or below 0◦C, this implies

that using any modelling technique, the modelled series would not cross the 0◦C line.

Therefore, Rule 1 of transition area ensures that only locations are kept that have at

least one sign change in temperature over 109 years. Following this step, the number

of grid cells reduces to 6206 for winter (JFM) and 9842 for spring (MAM).

3. As indicated, from the above set, the study is concerned only with the locations that

cross the 0◦C line in the positive direction (i.e., from below freezing to above freezing)
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and remain above it. To fulfill the above requirements, Rule 2 of transition area is

defined as follows: the database constructed as the result of Rule 1 of transition

area (indicated in Step 2) is filtered to only return locations whose modelled time

series, using any modelling method, have at least one positive zero crossing, and the

last temperature (at 2009) calculated by the model is positive. Based on Rule 2 of

transition area, the final databases for winter (JFM) and spring (MAM) are obtained.

The number of grid cells generated as the output of this step differs for the three

techniques employed in this thesis (i.e., the R method (Section 3.2), MARS (Section

3.3), and the KPY method (Section 3.4)). The detailed numbers of each method are

tabulated in Chapter 5.

4.4 Data Analysis: Overview

After selecting the locations of interest following Rules 1 and 2 of transition area, the

procedure of data analysis involves the following steps:

1. Any modelling technique applied in this research (the R method, MARS, or the KPY

method) divides the entire time series into sub-regions that are polynomials of degree

zero or one. The ‘year of 0◦C crossing’ (y0) is determined as the time when the model

approximating the time series rises above 0◦C.

In the study by Bonsal and Prowse (2003), in order to find the time when the mean

daily temperature moves above or below 0◦C (0◦C isotherms), a 31-day running mean

is used. The reason is that time series of mean daily temperature fluctuate and may

cross the 0◦C line several times; hence, if the time series are smoothed with a 31-

day running mean, there would be only one 0◦C crossing. In this study, some of

the modelled time series cross the 0◦C line in the positive direction more than once.

There are several rules set to determine y0 in these cases. These rules depend on the

characteristics of each model; thus, each technique has its own set of rules, which is

indicated in Chapter 5.

2. Once y0 is determined, the segment within which this point falls is termed the ‘seg-

ment of interest’ (Sinterest). This definition is modified in the context of the R method

by virtue of its characteristics (refer to Section 5.6).
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3. In addition to y0, this study is concerned with the determination of the onset of

warming that causes the JFM or MAM temperature to rise above zero permanently.

The ‘start year of warming’ (yw) is defined as the beginning year of Sinterest.

4. To examine whether the warming that moves the JFM or MAM temperature above

0◦C is significant, the MK test is applied to the original temperature data within

Sinterest. If the sections following Sinterest have positive slopes, this implies that the

increase in temperature has not stopped after crossing the 0◦C line. In this thesis,

the region that starts at yw and consists of these consecutive segments with positive

slopes is referred to as ‘section of total warming’ (SWtotal
); the warming that occurs

during SWtotal
is called ‘total warming’ (Wtotal). Therefore, in addition to testing the

significance of the trend in Sinterest, the MK test is performed to examine the signif-

icance of the trend in SWtotal
using the original data. Furthermore, the MK test is

applied to the original data from yw to y0 to test whether a significant temperature

increase has occurred during this time period.

Note: SWtotal
is the same as Sinterest if the slope of the segment after Sinterest turns

negative.

5. To investigate whether the percentage of locally significant trends is high enough to

consider them globally significant, the field significance test described in Section 3.5.3

is applied to each technique.

Note: The original time series are used for modelling. The algorithms of the methods

applied in this study do not require the use of anomalies. In the case of the R method and

the KPY method, these techniques are capable of detecting shifts in the original data and

trend functions of time series, respectively. Therefore, no smoothing is performed either.

In the case of MARS, it is possible to use the results of running-average smoothing for

modelling. Nicholas J. Gralewicz (personal communication) compared the results obtained

from modelling the 10-year and 30-year running averages to that of the original data. The

analysis indicates that the original data yield better approximations, particularly if the

objective is to determine yw and y0.
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Chapter 5

Results

5.1 Introduction

In the previous chapter, the transition area was described. This chapter first focuses on

introducing the variables that are analysed in the transition area (Section 5.2) followed by

Section 5.3, which explains the common features of all the tables, histograms, and maps of

this chapter. The details of the different techniques including input parameters, yw and y0

determination rules, and results are provided in Sections 5.4, 5.5, and 5.6 for trend shift

detection method, MARS, and R method, respectively. To examine the global significance

of the observed trends, Section 5.7 presents the bootstrapping results. Finally, Section

5.8 concludes this chapter with the discussion on the differences between various methods,

results, best model selection, and cryospheric evidence for observed trends.

5.2 Introduction to Variables

This section describes the variables evaluated in this study. The following variables are

analysed, and detailed tables, histograms, and descriptive maps are provided to present the

results. It should be noted that due to special characteristics of the R method (indicated

in Sections 3.2, 5.6, and 5.8.1.1), the definitions of these variables are modified slightly

(refer to Section 5.6.1):
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1. yw: Described in Section 4.4

2. y0: Described in Section 4.4

3. Slope (1) or slope of the segment of interest (Sinterest, described in Section 4.4): This

is the slope of the line modelling the data within Sinterest.

4. Slope (2) or slope of the section of total warming (SWtotal
, described in Section 4.4):

This slope is calculated using Equation 5.1.

Intensity =
T2 − T1

y2 − y1

(5.1)

where, T2 is the temperature of the last year of SWtotal
(y2) which is approximated

by the model. T1 is the temperature evaluated by the model at yw (y1). The goal

of evaluating Slope (2) is to find the rate of increase in temperature over SWtotal
. If

warming stops at the end of Sinterest (i.e., if the slope of the segment following Sinterest

turns negative), SWtotal
is the same as Sinterest; hence, Slope (1) is equal to Slope (2).

However, if SWtotal
consists of more than one segment, Slope (2) yields an estimate

of the rate of the overall warming during SWtotal
. It should be noted that in the case

of trend shift detection (the KPY method), the entire time series is divided into two

sub-regions. Therefore, the maximum number of segments forming SWtotal
is two,

provided that the first segment is Sinterest, and the following segment has a positive

slope. Using the other two techniques (MARS and the R method), there may be more

than 2 segments forming SWtotal
since these methods may split the entire domain into

more than 2 parts.

5. Accumulation: Accumulation over any sub-region of a time series is evaluated by

subtracting the first modelled temperature from the last modelled temperature in

that sub-region.

6. Duration: The number of years spanned by a sub-region of a time series is called

the duration of that sub-region.

7. H: H indicates the result of the MK test. If H = 1, it implies that a significant

temperature-time trend exists, whereas H = 0 is indicative of an insignificant rela-

tionship between temperature and time. As indicated in Section 4.4, the MK test is

performed over three time periods in this study which are as follows:
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(a) From yw to y0

(b) During the segment of interest (i.e., from yw to the end of Sinterest)

(c) During warming starting from yw (i.e., from yw to the end of SWtotal
)

Note:

• As mentioned in Section 4.4, the MK test applies to the original temperature

data during the above-indicated time periods.

• In this study, all the significant temperature-time trends (H = 1) are positive.

8. Theil Slope: In order to compare the distribution of Theil slope with those of Slope

(1) and Slope (2), Theil slope (Equation 3.47) is evaluated for the period of yw− y0,

Sinterest, and SWtotal
.

9. α: This is the local significance level for detecting trends using the MK test. Through-

out this document, α = 0.05.

5.3 Introduction to Tables, Histograms, and Maps

The goal of this section is to explain the common features of all the tables, histograms,

and maps of this chapter. Each technique may include some additional concepts that are

described later in the corresponding section.

5.3.1 Tables

Tables provide detailed information on the number of grid cells selected in each step in-

volved in the preparation of the final database (refer to Section 4.3 for more details on the

final database). Moreover, they include the number of locations with yw = 1901. The only

exception is the table created for the R method (Table 5.4) since yw is not defined for this

technique (refer to Section 5.6.2). Time series are truncated at 1901. Hence, yw = 1901

may in fact refer to the warming that was initiated prior to 1901. Furthermore, the ap-

proximation of temperature in early years of the 20th century would be more precise if

more data points were available prior to 1901. Due to these reasons, it is of interest to

count locations with yw = 1901.
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When there is more than one positive 0◦C crossing, the yw and y0 determination rules

for each technique (KPY method: Rule 2a, MARS: Rule 2a) are set such that they avoid

incorrectly selecting the first segment as Sinterest if the warming over the first segment is

insignificant. Based on the method used, yw = 1901 could be interpreted as follows. Note

that to clarify more on yw and y0 determination rules and how time series are modelled,

Appendix A provides sample plots for each technique.

• the KPY method: This thesis only focuses on two types of models from this

category: Model 2 and Model 3 (Section 3.4).

– Model 2: As indicated in Section 3.4, Model 2 divides the entire time series

into two sub-regions, and the boundary of the two segments is determined by

the break date. Model 2 is continuous at the break point; hence, only one pos-

itive 0◦C crossing could occur (Sample plots can be found in Section A.1). All

the locations with yw = 1901 are the grid cells whose yw and y0 are determined

following Rule 1a (Section 5.4.2). This implies that the only positive 0◦C cross-

ing occurs at y0 which moves the time series above 0◦C. According to Rule 2 of

transition area (Section 4.3), the approximated final temperature by the model

(at 2009) should be positive. Based on the above-indicated rules, in the case of

Model 2, yw = 1901 implies that the increase in temperature starts in 1901 (or

probably some time prior to 1901). As a result of this warming, the time series

moves above 0◦C and stays above the 0◦C line.

– Model 3: As with Model 2, the entire domain of a time series is split into

two segments using Model 3. However, since the break date marks the time

when both the intercept and slope of the trend function change, the model is

not continuous at the break time (refer to sample plots of Section A.2). Due

to the discontinuous boundary, more than one positive 0◦C crossing is possible,

and Rule 2 of y0 and yw determination (Section 5.4.2) applies to these cases. In

this case, yw = 1901 refers to one of the following two cases:

1. There is only one positive 0◦C crossing which falls within the first segment

(refer to Figure A.4 as an example). In this case, due to Rule 2 of transition

area, the second segment is certainly above the 0◦C line. This implies that

the warming that may have initiated prior to 1901 causes the time series

to rise above 0◦C, and despite the structural change in both intercept and

slope at the time of break, temperature remains positive.

82



5.3. Introduction to Tables, Histograms, and Maps Chapter 5. Results

2. Both segments cross the 0◦C line in the positive direction (Figure A.7). Rule

2a indicated in Section 5.4.2 applies to this case. If as a result of following

this rule, the first segment is still selected as Sinterest, it could be concluded

that a significant increase in temperature has occurred during Sinterest. This

warming leads to the change of temperature sign. Although there is a break

in the intercept and slope of the trend function, the warming resumes, and

the temperature goes back above 0◦C after the break time.

• MARS: Similar to Model 3, yw = 1901 could be interpreted in two ways:

1. The first segment is the only segment that crosses 0◦C in the positive direction.

Figures A.9 to A.11 provide examples for this case. Most of the cases with yw =

1901 fall under this category, particularly during MAM. Due to the warming

that starts in 1901 (or some time prior to 1901), temperature turns positive.

Although temperature fluctuates afterwards, based on Rule 2 of transition area,

it stays above the 0◦C line.

2. There is more than one positive 0◦C crossing, and the first segment is selected as

Sinterest since it has the maximum slope and cumulative warming (Figure A.15).

This case includes very small subsets of JFM and MAM data sets. The most

commonly observed model behaviour is a significant warming in the beginning

of the time series that causes a 0◦C crossing. The segment is followed by some

fluctuations and a short period of negative temperature after which temperature

turns positive again and continues to increase.

The tables also reveal the number of locations with short periods of yw − y0. The

algorithm of the MK test is such that it is not applicable to the sets with less than 3 data

points. As is shown later in this document (Tables 5.1 to 5.4), in both cases of JFM and

MAM, only small subsets of the transition area fall under this category. The MK test

is applied to the time period of yw − y0 to investigate whether significant warming takes

place from yw until the time series crosses 0◦C. This time period is usually short, and

the analysis results (Figures 5.4, 5.8, 5.50, 5.55, 5.98, and 5.103) show that the increase

in temperature during this period is insignificant; however, significant warming is often

observed during Sinterest.
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5.3.2 Histograms

In order to have an impression of the distributions of the results and understand the most

frequently occurring values among grid cells, histograms are provided for the variables

introduced in Section 5.2: yw, y0, break date, accumulation, duration, Slope (1), Slope (2),

Theil slope, and H. Some of these variables are excluded in the case of the R method (refer

to Section 5.6.1).

5.3.3 Maps

Maps illustrate the spatial distributions of the variables introduced in Section 5.2. For

each variable, the map of the entire Northern Hemisphere is provided followed by more

detailed figures focussing on specific regions (e.g. North America).

As is observed in the histogram plots of y0, Slope (1), and Slope (2) (e.g., Figures

5.1 and 5.3), these histograms are denser on one end (on the left end for Slope (1) and

Slope (2) and on the right end for y0). Therefore, if the color bars of the maps of these

variables were linearly spaced, much of the interesting information on the maps would be

lost. Therefore, the following non-linear transformations are used to map the data. As a

result of these transformations, the color bars are not linearly spaced.

• Slope (1) and Slope (2)

Equation 5.2 is adopted from Carlson (1986).

Z =
(sgn x) ln(1 + µ|x|)

ln(1 + µ)
, |x| <= 1 (5.2)

where Z denotes the transformed form of x, and µ should be set to a large number

(e.g., 100, 200), which leads to a better display of the colors and variations on the

map.

• y0

Z =
exp(τ |x|)− 1

exp(τ)− 1
, |x| <= 1 (5.3)

where Z is the transformed form of x, and τ should be set to a small number (e.g.,

2, 3), which displays variations in more details on the map.
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5.4 Trend Shift Detection

In this section, following the KPY method (Kim and Perron, 2009; Perron and Yabu,

2009b) described in Section 3.4, the JFM and MAM time series are tested for structural

changes in the trend functions. As indicated earlier, the focus of this study is only on

Model 2 and Model 3 (Section 3.4) from this category.

It should be noted that the KPY method first tests for a significant structural break in

the trend function of a time series. If the test favours a significant break, the time of this

shift is evaluated. This implies that the significance test applies to all the grid cells selected

as a result of Rule 1 of transition area (Step 2 in Section 4.3). Using the locations with

significant break dates, the analysis then continues with Rule 2 of transition area (Step

3 in Section 4.3) to select locations eligible for the yw and y0 analysis. The results (not

shown here) reveal that if this procedure is followed, the number of acceptable locations

for the yw and y0 analysis decreases drastically. Particularly over North America, only

few grid cells exhibit significant shifts which could not be used for the yw and y0 analysis

according to Rule 2 of transition area. This implies that if only locations with significant

breaks were considered, no grid cell experiencing a positive sign change would eventually be

selected in North America. To be consistent with the other two methods (MARS and the

R method), this research skips the break significance testing procedure, and break times of

all the locations selected based on Rule 1 of transition area are evaluated and assumed to

be valid. Then, Rule 2 of transition area applies to these grid cells. The aforementioned

assumption is logical since the algorithms of MARS and the R method do not test the

statistical significance of shift points either.

5.4.1 Input parameters

As with other modelling techniques, there are several parameters that should be set by the

analyst:

• ε

As indicated in Section 3.4, if the break time is unknown, the permissible range of

break date candidates is (εT, . . . , (1 − ε)T ). Therefore, the smaller ε is, the larger

the range is. According to Table 2 of Perron and Yabu (2009b), ε could take one of

the values in [0.01, 0.05, 0.1, 0.15, 0.25]. ε is selected to be 0.05 in this study since
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it is small enough to allow a large range (∼1906-2004) to be examined in the break

date evaluation and is large enough not to include the points too close to both ends

of time series as candidates for shift times.

• Information Criterion

Bayesian information criterion (BIC)

• Break Date Estimation Models (IO or Aout Models)

As described in Section 3.4, the break time is the candidate that minimizes the sum

of squared residuals of Regression 5 (Aout models) or Regression 7 (IO models) of

Kim and Perron (2009). In the assessment of climate data, IO models are more

suitable since the trend shifts of climate data usually do not occur instantly as in the

case of Aout models (Ivanov and Evtimov, 2010). However, due to the following two

reasons, Aout models are used in this study:

1. Model 2 of IO type requires the assumption of no break under the null hypoth-

esis. This is contrary to the null hypothesis of Kim and Perron (2009), which

allows for a break.

2. Using IO models requires fixing the length of the transition period. Starting

from 1, the transition period is increased until the estimates of break date

and model parameters become stable. The transition period of interest is the

smallest value after which the estimates do not change significantly. In this

thesis, a large number of time series are analysed, and there are a considerable

number of grid cells whose break dates and model parameter estimates do not

stabilize by increasing the length of transition period. Therefore, Model 3 of

Aout type with no transition period is used to analyse all the JFM (6206 grid

cells) and MAM (9842 grid cells) time series.

3. Model 2 or Model 3 of Aout type are more compatible with the other two models

since in the case of MARS and the R method shifts take place instantly as well.

This leads to simpler comparisons between different techniques.

5.4.2 y0 and yw Determination Rules

In the case of Model 2 and Model 3, the following rules define y0 and consequently yw and

Sinterest:
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1. One positive 0◦C crossing

(a) First segment crosses 0◦C

• y0 : year of 0◦C crossing

• yw : start year of the first segment (i.e., 1901)

Sample plots: Figure A.1 (Model 2), Figure A.4 (Model 3)

(b) Second segment crosses 0◦C

• y0 : year of 0◦C crossing

• yw : start year of the second segment (i.e., break time)

Sample plots: Figures A.2 and A.3 (Model 2), Figure A.5 (Model 3)

2. Two positive 0◦C crossings

The rules below are only applicable to Model 3. Model 3 tests for simultaneous breaks

in intercept and slope and approximates a time series with two disjoint segments.

Therefore, it is possible to have two positive 0◦C crossings. Model 2, on the other

hand, is continuous at the break point since it only exhibits the shift in the slope of

the trend function of a time series; hence, there can be only one positive 0◦C crossing

(refer to Section 3.4 for more details).

(a) The first line has the maximum slope

• y0 : 0◦C crossing year of the line with the greatest cumulative warming

(Cumulative warming is evaluated by subtracting the modelled temperature

in the beginning of the line from the approximated temperature at the end

of the line.)

• yw : start year of the line with the greatest cumulative warming

Rule 2a is set to avoid having yw = 1901 if significant warming has not occurred

during the period of the first segment. As illustrated by Figure A.6, sometimes

when there are two 0◦C crossings, the slope of the first segment is larger than

the second segment. However, the period over which this warming takes place

is shorter, and the magnitude of cumulative warming is smaller. On the other

hand, despite its smaller slope, the second segment exhibits a larger increase

in temperature over a longer period which causes the time series to rise above

0◦C. Furthermore, the approximation of temperature in early years of the 20th
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century would be more precise if more data points were available prior to 1901.

Therefore, since the magnitude of warming is larger over the second segment,

and more data points are involved in determining the model parameters (e.g.,

slope) of the second segment, it seems more logical to select the second 0◦C

crossing as y0. If the first segment has the maximum slope and magnitude of

cumulative warming, as depicted by Figure A.7, it could be inferred that the

major warming that moves the time series above 0◦C has occurred during the

first segment. Hence, y0 is determined as the year of 0◦C crossing of the first

segment. Although the first line is followed by a break in the intercept and

slope of the trend function, the warming resumes, and the temperature goes

back above 0◦C after the break time.

(b) The second line has the maximum slope

• y0 : 0◦C crossing year of the second line

• yw : start year of the second line (i.e., break time)

Sample plot: Figure A.8

As indicated in Section 4.4, Sinterest is the segment that includes y0.

5.4.3 Model 2 Results

The results of the analysis of the temperature time series using Model 2 are presented in

this section. First, the detailed table (Table 5.1) and histograms for the JFM and MAM

time series are provided (JFM: Figures 5.1 to 5.4, MAM: Figures 5.5 to 5.8). Then, the

descriptive maps of the Northern Hemisphere (JFM: Figures 5.9 to 5.27, MAM: Figures

5.28 to 5.46) are presented to better understand the spatial distribution of the variables.

The reader is referred to Sections 5.8.3 (tables and histograms) and 5.8.4 (maps) for the

comprehensive description and discussion of the results.
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Table 5.1: Based on the analysis of the JFM and MAM time series using Model 2, the table

provides some information on the numbers of grid cells with specific characteristics described in

the left column. The input parameters are as indicated in Section 5.4.1. The reader is referred

to Section 5.3 for more details on the cases presented below.

Characteristic
Number

JFM MAM

Selected for study (following Rule 1 of transition area,

described in Section 4.3)
6206/46224 9842/46224

Last modelled temperature positive (based on Rule 2

of transition area, described in Section 4.3)
3644/6206 6365/9842

Final database: selected for the yw and y0 analysis

(based on Rules 1 and 2 of transition area)
1668/3644 2702/6365

yw = 1901 157/1668 769/2702

Duration of yw to y0 less than 3 years, MK test N/A 79/1668 125/2702

SWtotal
is the same as Sinterest 1541/1668 2145/2702
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5.4.3.1 Histograms

5.4.3.1.1 JFM
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Figure 5.1: The histograms exhibit the temporal distributions of yw, y0, and break date during

JFM. The results are obtained using Model 2, and the input parameters are as indicated in

Section 5.4.1.
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Figure 5.2: The histograms exhibit the distributions of duration and temperature accumulation

during yw − y0, Sinterest, and SWtotal
for JFM. The results are obtained using Model 2, and the

input parameters are as indicated in Section 5.4.1. The reader is referred to Section 5.2 for details

on the variables used above.
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Figure 5.3: The histograms exhibit the distributions of Slope (1) and Slope (2) for JFM. The

results are obtained using Model 2, and the input parameters are as indicated in Section 5.4.1.

The reader is referred to Section 5.2 for details on the variables used above.
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Figure 5.4: The histograms exhibit the distributions of Theil slope and H during yw−y0, Sinterest,

and SWtotal
for JFM. The results are obtained using Model 2, and the input parameters are as

indicated in Section 5.4.1. The reader is referred to Section 5.2 for details on the variables used

above.
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5.4.3.1.2 MAM
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Figure 5.5: The histograms exhibit the temporal distributions of yw, y0, and break date during

MAM. The results are obtained using Model 2, and the input parameters are as indicated in

Section 5.4.1.
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Figure 5.6: The histograms exhibit the distributions of duration and temperature accumulation

during yw − y0, Sinterest, and SWtotal
for MAM. The results are obtained using Model 2, and

the input parameters are as indicated in Section 5.4.1. The reader is referred to Section 5.2 for

details on the variables used above.
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Figure 5.7: The histograms exhibit the distributions of Slope (1) and Slope (2) for MAM. The

results are obtained using Model 2, and the input parameters are as indicated in Section 5.4.1.

The reader is referred to Section 5.2 for details on the variables used above.
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Figure 5.8: The histograms exhibit the distributions of Theil slope and H during yw−y0, Sinterest,

and SWtotal
for MAM. The results are obtained using Model 2, and the input parameters are as

indicated in Section 5.4.1. The reader is referred to Section 5.2 for details on the variables used

above.
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5.4.3.2 Maps of Model 2 for JFM
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.10: The same as Figure 5.9: zoomed in view of North America
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.11: The same as Figure 5.9: zoomed in view of Europe
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.12: The same as Figure 5.9: zoomed in view of Asia
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5.4.3.2.2 y0
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.14: The same as Figure 5.13: zoomed in view of North America
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.15: The same as Figure 5.13: zoomed in view of Europe
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.16: The same as Figure 5.13: zoomed in view of Asia
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5.4. Trend Shift Detection Chapter 5. Results

5.4.3.2.3 Slope (1)
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Figure 5.18: The same as Figure 5.17: zoomed in view of North America
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.19: The same as Figure 5.17: zoomed in view of Europe
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Figure 5.20: The same as Figure 5.17: zoomed in view of Asia
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5.4. Trend Shift Detection Chapter 5. Results

5.4.3.2.4 Slope (2)
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.22: The same as Figure 5.21: zoomed in view of North America
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.23: The same as Figure 5.21: zoomed in view of Europe
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.24: The same as Figure 5.21: zoomed in view of Asia
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5.4. Trend Shift Detection Chapter 5. Results

5.4.3.2.5 H from yw to y0
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5.4.3.2.6 H of Sinterest
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5.4. Trend Shift Detection Chapter 5. Results

5.4.3.2.7 H of SWtotal
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5.4. Trend Shift Detection Chapter 5. Results

5.4.3.3 Maps of Model 2 for MAM
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.29: The same as Figure 5.28: zoomed in view of North America
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.30: The same as Figure 5.28: zoomed in view of Europe
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.31: The same as Figure 5.28: zoomed in view of Asia
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5.4.3.3.2 y0
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.33: The same as Figure 5.32: zoomed in view of North America
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.34: The same as Figure 5.32: zoomed in view of Europe
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.35: The same as Figure 5.32: zoomed in view of Asia
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5.4. Trend Shift Detection Chapter 5. Results

5.4.3.3.3 Slope (1)
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.37: The same as Figure 5.36: zoomed in view of North America
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.38: The same as Figure 5.36: zoomed in view of Europe
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.39: The same as Figure 5.36: zoomed in view of Asia
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5.4. Trend Shift Detection Chapter 5. Results

5.4.3.3.4 Slope (2)
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.41: The same as Figure 5.40: zoomed in view of North America
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.42: The same as Figure 5.40: zoomed in view of Europe
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5.4. Trend Shift Detection Chapter 5. Results

Figure 5.43: The same as Figure 5.40: zoomed in view of Asia
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5.4. Trend Shift Detection Chapter 5. Results

5.4.3.3.5 H from yw to y0
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5.4.3.3.6 H of Sinterest
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5.4.3.3.7 H of SWtotal
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5.4. Trend Shift Detection Chapter 5. Results

5.4.4 Model 3 Results

As with Model 2, the results are presented in the form of a descriptive table (Table 5.2),

histograms (JFM: Figures 5.47 to 5.51, MAM: Figures 5.52 to 5.56), and maps (JFM:

Figures 5.57 to 5.75, MAM: Figures 5.76 to 5.94). The results are thoroughly explained

and discussed in Sections 5.8.3 (tables and histograms) and 5.8.4 (maps).

Table 5.2: Based on the analysis of the JFM and MAM time series using Model 3, the table

provides some information on the numbers of grid cells with specific characteristics described in

the left column. The input parameters are as indicated in Section 5.4.1. The reader is referred

to Section 5.3 for more details on the cases presented below.

Characteristic
Number

JFM MAM

Selected for study (following Rule 1 of transition area,

described in Section 4.3)
6206/46224 9842/46224

Last modelled temperature positive (based on Rule 2

of transition area, described in Section 4.3)
3481/6206 6147/9842

Final database: selected for the yw and y0 analysis

(based on Rules 1 and 2 of transition area)
1471/3481 2233/6147

Two positive 0◦C crossings: The first segment crosses

0◦C and has the maximum slope; i.e., Rule 2a of yw

and y0 determination applies (Section 5.4.2)

148/1471 114/2233

yw = 1901 105/1471 523/2233

Duration of yw to y0 less than 3 years, MK test N/A 41/1471 94/2233

SWtotal
is the same as Sinterest 1410/1471 1898/2233
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5.4.4.1 Histograms

5.4.4.1.1 JFM
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Figure 5.47: The histograms exhibit the temporal distributions of yw, y0, and break date during

JFM. The results are obtained using Model 3, and the input parameters are as indicated in

Section 5.4.1.
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Figure 5.48: The histograms exhibit the distributions of duration and temperature accumulation

during yw − y0, Sinterest, and SWtotal
for JFM. The results are obtained using Model 3, and the

input parameters are as indicated in Section 5.4.1. The reader is referred to Section 5.2 for details

on the variables used above.
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Figure 5.49: The histograms exhibit the distributions of Slope (1) and Slope (2) for JFM. The

results are obtained using Model 3, and the input parameters are as indicated in Section 5.4.1.

The reader is referred to Section 5.2 for details on the variables used above.
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Figure 5.50: The histograms exhibit the distributions of Theil slope and H during yw − y0,

Sinterest, and SWtotal
for JFM. The results are obtained using Model 3, and the input parameters

are as indicated in Section 5.4.1. The reader is referred to Section 5.2 for details on the variables

used above.
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Figure 5.51: The histograms exhibit the distributions of number of positive 0◦C crossings

and positive slopes after yw for JFM. The results are obtained using Model 3, and the input

parameters are as indicated in Section 5.4.1.
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5.4.4.1.2 MAM
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Figure 5.52: The histograms exhibit the temporal distributions of yw, y0, and break date during

MAM. The results are obtained using Model 3, and the input parameters are as indicated in

Section 5.4.1.

142



5.4. Trend Shift Detection Chapter 5. Results

0 20 40 60 80 100
0

50

100

150

200

250

Duration from y
w

 to y
0
 (year)

C
ou

nt

0 20 40 60 80 100
0

200

400

600

800

1000

Duration of S
interest

 (year)

C
ou

nt

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

Duration of S
W

total

 (year)

C
ou

nt

0 1 2 3 4
0

50

100

150

200

250

Model ( 3 ) Accumulation from y
w

 to y
0

( °C ) 

C
ou

nt

0 1 2 3 4 5
0

50

100

150

200

Model ( 3 ) Accumulation over S
interest

( °C )

C
ou

nt

0 1 2 3 4 5
0

50

100

150

200

Model ( 3 ) Accumulation During S
W

total

( °C )

C
ou

nt

Figure 5.53: The histograms exhibit the distributions of duration and temperature accumulation

during yw − y0, Sinterest, and SWtotal
for MAM. The results are obtained using Model 3, and

the input parameters are as indicated in Section 5.4.1. The reader is referred to Section 5.2 for

details on the variables used above.
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Figure 5.54: The histograms exhibit the distributions of Slope (1) and Slope (2) for MAM.

The results are obtained using Model 3, and the input parameters are as indicated in Section

5.4.1. The reader is referred to Section 5.2 for details on the variables used above.
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Figure 5.55: The histograms exhibit the distributions of Theil slope and H during yw − y0,

Sinterest, and SWtotal
for MAM. The results are obtained using Model 3, and the input parameters

are as indicated in Section 5.4.1. The reader is referred to Section 5.2 for details on the variables

used above.
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Figure 5.56: The histograms exhibit the distributions of number of positive 0◦C crossings and

positive slopes after yw for MAM. The results are obtained using Model 3, and the input

parameters are as indicated in Section 5.4.1.
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5.4.4.2 Maps of Model 3 for JFM
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Figure 5.58: The same as Figure 5.57: zoomed in view of North America
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Figure 5.59: The same as Figure 5.57: zoomed in view of Europe
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Figure 5.60: The same as Figure 5.57: zoomed in view of Asia
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5.4.4.2.2 y0
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Figure 5.62: The same as Figure 5.61: zoomed in view of North America
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Figure 5.63: The same as Figure 5.61: zoomed in view of Europe
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Figure 5.64: The same as Figure 5.61: zoomed in view of Asia
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5.4.4.2.3 Slope (1)
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Figure 5.66: The same as Figure 5.65: zoomed in view of North America
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Figure 5.67: The same as Figure 5.65: zoomed in view of Europe
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Figure 5.68: The same as Figure 5.65: zoomed in view of Asia
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5.4.4.2.4 Slope (2)
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Figure 5.70: The same as Figure 5.69: zoomed in view of North America
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Figure 5.71: The same as Figure 5.69: zoomed in view of Europe
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Figure 5.72: The same as Figure 5.69: zoomed in view of Asia
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5.4.4.2.5 H from yw to y0
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5.4.4.2.6 H of Sinterest
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5.4.4.2.7 H of SWtotal
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5.4.4.3 Maps of Model 3 for MAM
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Figure 5.77: The same as Figure 5.76: zoomed in view of North America
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Figure 5.78: The same as Figure 5.76: zoomed in view of Europe
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Figure 5.79: The same as Figure 5.76: zoomed in view of Asia
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5.4.4.3.2 y0
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Figure 5.81: The same as Figure 5.80: zoomed in view of North America
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Figure 5.82: The same as Figure 5.80: zoomed in view of Europe
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Figure 5.83: The same as Figure 5.80: zoomed in view of Asia
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5.4.4.3.3 Slope (1)
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Figure 5.85: The same as Figure 5.84: zoomed in view of North America
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Figure 5.86: The same as Figure 5.84: zoomed in view of Europe
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Figure 5.87: The same as Figure 5.84: zoomed in view of Asia
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5.4.4.3.4 Slope (2)
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Figure 5.89: The same as Figure 5.88: zoomed in view of North America
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Figure 5.90: The same as Figure 5.88: zoomed in view of Europe
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Figure 5.91: The same as Figure 5.88: zoomed in view of Asia

181



5.4. Trend Shift Detection Chapter 5. Results
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5.4.4.3.6 H of Sinterest
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5.4.4.3.7 H of SWtotal
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5.5 MARS

This section includes all the details regarding the application of the MARS algorithm to

the time series in this study. First the input parameters of the algorithm are introduced

(Section 5.5.1). Then, yw and y0 determination rules are described (Section 5.5.2). Finally,

Section 5.5.3 presents the descriptive table, histograms, and maps.

5.5.1 Input Parameters

A MATLAB R© toolbox provided by ARESLab (Jekabsons, 2010) is used for building MARS

models in this study. Based on practical examples and runs, it seems that the input

arguments are open to experimentation. Therefore, for every new model and situation, it

may be necessary to study the difference that it takes to run the model with different values

of the input arguments and examine which of the possibilities yields the best performance

and the best result. Due to the large number of locations under study in this thesis, it

is not feasible to investigate each case separately. On the other hand, setting the input

parameters to the most conservative values may lead to over-fitted models. Unfortunately,

it is not very helpful to test the performance of the models, generated by different sets of

input arguments, using the Leave-One-Out cross validation or k-fold cross validation since

the results of the tests are very close.

To mitigate this problem, three different sets of input parameters are used with the first

set including the most suitable values. The three sets of input parameters act as filters.

The output of the first filter (set of input parameters) is the locations with one MARS

segment. This implies that the model consists of only the intercept term, and the entire

time series is approximated by one polynomial of degree zero. The output from each set is

used as an input to the next set. The parameters are set based on the manual examination

of over 50 cases by the author and Nicholas J. Gralewicz (personal communication). These

three input sets differ in the maximum number of BF’s in the forward pass, usage of End

Span, and maximum number of BF’s in the pruned model (maximum final functions). The

input parameters are briefly explained below:

• Maximum number of BF’s in the forward pass

To have the best possible small model, it is preferable to build a big set of BF’s in the
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forward pass (a large Maximum Number of BF’s) and prune them in the backward

phase. This technique is recommended since the forward phase only looks at one step

ahead, whereas the backward phase considers all the model terms before removing

any.

Usually the default value of 21 is assigned to this parameter. However, in order to

have a higher degrees of freedom to increase the ability of the procedure to approx-

imate more complex functions (Friedman, 1991), the first and second sets of input

parameters attribute the value of 50 to this parameter. The third set assigns the

value of 100 to this input argument.

• Generalized Cross-Validation (GCV) penalty per knot

As described in Section 3.3, GCV is essentially the penalized version of mean squared

error and is used for the optimal model selection. The larger the value of GCV is,

the simpler the generated final model is. A value from the range of 2-4 is suggested

for this parameter. In the case of additive model like this study, the value of 2 is

often used.

• Maximum final functions

This parameter sets the maximum number of segments allowed in the final model. To

avoid over-fitted models and models that are too sensitive to local variances, the first

and second groups of input parameters set this value to 4, which means maximum 5

MARS segments are allowed. The third group sets this value to 5.

• Minimum Span

Minimum Span is used to prevent the algorithm from generating a model with drastic

or abrupt changes. After selecting each knot in the forward pass, the search for

the next potential knot starts after the Minimum Span interval. This argument is

set to the automatic mode, which allows the algorithm to decide on the next knot

placement.

• End Span

End Span does not allow the algorithm to consider the last End Span number of

data cases for the knot placement. This makes the technique resistant to the local

variances close to the ends of data. The End Span is disabled in the first group

of input parameters to consider the data close to the ends of series for the knot
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placement; however, the second and third classes of input are set to the automatic

mode.

• Threshold

This is one of the criteria that indicate when to quit the forward pass. The larger

this value is, the simpler the resulting model is. This is set to 10−4 for all input sets.

• Maximum Interaction

As discussed in Section 3.3, BF’s are added one at a time and in an additive fashion.

Therefore, the model is additive. Moreover, there is only one independent variable.

Thus, this parameter is set to 1, which refers to an additive model.

• Self Interaction

No self interaction is allowed in this application.

• Pruning Method

Model is set to be pruned in the backward phase.

5.5.2 y0 and yw Determination Rules

1. One positive 0◦C crossing

(a) The first segment crosses 0◦C

• y0 : year of 0◦C crossing

• yw : start year of the first segment (i.e., 1901)

Sample plots: Figures A.9 to A.11

(b) The first segment does not cross 0◦C

• y0 : year of 0◦C crossing

• yw : start year of the segment which includes y0

Sample plots: Figures A.12 to A.14

2. More than one positive 0◦C crossing

(a) The first segment crosses 0◦C and has the maximum slope
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• y0 : 0◦C crossing year of the line with the greatest cumulative warming

(among the lines that cross 0◦C in the positive direction)

• yw : start year of the line with the greatest cumulative warming

In some cases, the slope of the first segment is large due to a very short period

of warming and not a significant magnitude of warming. This segment is often

followed by some temperature fluctuations; eventually, a significant warming

takes place over a long period and moves the time series above 0◦C. Rule 2a is

set to prevent incorrect selection of the first segment as Sinterest in such cases.

Figure A.16 provides an example for this case. If both the maximum cumulative

warming and slope occur during the first segment, then the 0◦C crossing of the

first segment is accepted as y0 (Figure A.15). The reader is referred to Section

5.3 for the detailed explanation of the latter case. It should be noted that Rule

2a applies to a small number of the time series from the final database (Table

5.3).

(b) The first segment does not either cross 0◦C or have the maximum slope

• y0 : 0◦C crossing year of the segment with the largest slope

• yw : start year of the segment with the largest slope

Sample plot: Figure A.17

5.5.3 MARS Results

In this section, Table 5.3, histograms (JFM: Figures 5.95 to 5.99, MAM: Figures 5.100

to 5.104), and maps (JFM: Figures 5.105 to 5.123, MAM: Figures 5.124 to 5.142) present

the results of the analysis of the time series using MARS. The variables under study are

all introduced in Section 5.2. The reader is also referred to Section 5.3 for some notes on

the table, histograms, and maps. The results are thoroughly explained and discussed in

Sections 5.8.3 (tables and histograms) and 5.8.4 (maps).
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Table 5.3: Based on the analysis of the JFM and MAM time series using MARS, the table

provides some information on the numbers of grid cells with specific characteristics described in

the left column. The input parameters are as indicated in Section 5.5.1. The reader is referred

to Section 5.3 for more details on the cases presented below.

Characteristic
Number

JFM MAM

Selected for study (following Rule 1 of transition area,

described in Section 4.3)
6206/46224 9842/46224

At least one positive 0◦C crossing (based on Rule 2

of transition area, described in Section 4.3)
1559/6206 2637/9842

Final database: selected for the yw and y0 analysis

(based on Rules 1 and 2 of transition area)
1498/1559 2520/2637

More than one positive 0◦C crossing: The first seg-

ment crosses 0◦C and has the maximum slope; i.e.,

Rule 2a of yw and y0 determination applies (Section

5.5.2)

20/1498 16/2520

yw = 1901 88/1498 439/2520

Duration of yw to y0 less than 3 years, MK test N/A 60/1498 100/2520

SWtotal
is the same as Sinterest 1412/1498 2394/2520
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5.5.3.1 Histograms

5.5.3.1.1 JFM
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Figure 5.95: The histograms exhibit the temporal distributions of yw and y0 during JFM. The

results are obtained using MARS, and the input parameters are as indicated in Section 5.5.1.
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Figure 5.96: The histograms exhibit the distributions of duration and temperature accumulation

during yw − y0, Sinterest, and SWtotal
for JFM. The results are obtained using MARS, and the

input parameters are as indicated in Section 5.5.1. The reader is referred to Section 5.2 for details

on the variables used above.
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Figure 5.97: The histograms exhibit the distributions of Slope (1) and Slope (2) for JFM. The

results are obtained using MARS, and the input parameters are as indicated in Section 5.5.1.

The reader is referred to Section 5.2 for details on the variables used above.

192



5.5. MARS Chapter 5. Results

−2 −1 0 1 2
0

100

200

300

400

500

600

Theil Slope from y
w

 to y
0

( °C / year )

C
ou

nt

0 0.5 1
0

100

200

300

400

500

Theil Slope of S
interest

( °C / year )

C
ou

nt

0 0.5 1
0

100

200

300

400

500

600

Theil Slope of S
W

total

( °C / year )

C
ou

nt

0 1
0

200

400

600

800

1000

H from y
w

 to y
0

C
ou

nt

0 1
0

200

400

600

800

1000

H of S
interest

C
ou

nt

0 1
0

200

400

600

800

1000

H of S
W

total

C
ou

nt

Figure 5.98: The histograms exhibit the distributions of Theil slope and H during yw − y0,

Sinterest, and SWtotal
for JFM. The results are obtained using MARS, and the input parameters

are as indicated in Section 5.5.1. The reader is referred to Section 5.2 for details on the variables

used above.
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Figure 5.99: The histograms exhibit the JFM distributions of number of MARS segments

under different categories, positive 0◦C crossings, and positive slopes after yw. The results are

obtained using MARS, and the input parameters are as indicated in Section 5.5.1.

194



5.5. MARS Chapter 5. Results

5.5.3.1.2 MAM
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Figure 5.100: The histograms exhibit the temporal distributions of yw and y0 during MAM.

The results are obtained using MARS, and the input parameters are as indicated in Section

5.5.1.
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Figure 5.101: The histograms exhibit the distributions of duration and temperature accumula-

tion during yw− y0, Sinterest, and SWtotal
for MAM. The results are obtained using MARS, and

the input parameters are as indicated in Section 5.5.1. The reader is referred to Section 5.2 for

details on the variables used above.
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Figure 5.102: The histograms exhibit the distributions of Slope (1) and Slope (2) for MAM.

The results are obtained using MARS, and the input parameters are as indicated in Section

5.5.1. The reader is referred to Section 5.2 for details on the variables used above.
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Figure 5.103: The histograms exhibit the distributions of Theil slope and H during yw − y0,

Sinterest, and SWtotal
for MAM. The results are obtained using MARS, and the input parameters

are as indicated in Section 5.5.1. The reader is referred to Section 5.2 for details on the variables

used above.
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Figure 5.104: The histograms exhibit the distributions of number of MARS segments under

different categories, positive 0◦C crossings, and positive slopes after yw for MAM. The results

are obtained using MARS, and the input parameters are as indicated in Section 5.5.1.
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5.5.3.2 Maps of MARS for JFM
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Figure 5.106: The same as Figure 5.105: zoomed in view of North America
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Figure 5.107: The same as Figure 5.105: zoomed in view of Europe

202



5.5. MARS Chapter 5. Results

Figure 5.108: The same as Figure 5.105: zoomed in view of Asia
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5.5.3.2.2 y0
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Figure 5.110: The same as Figure 5.109: zoomed in view of North America
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Figure 5.111: The same as Figure 5.109: zoomed in view of Europe
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Figure 5.112: The same as Figure 5.109: zoomed in view of Asia
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5.5.3.2.3 Slope (1)
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Figure 5.114: The same as Figure 5.113: zoomed in view of North America
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Figure 5.115: The same as Figure 5.113: zoomed in view of Europe
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Figure 5.116: The same as Figure 5.113: zoomed in view of Asia
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5.5.3.2.4 Slope (2)
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Figure 5.118: The same as Figure 5.117: zoomed in view of North America
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Figure 5.119: The same as Figure 5.117: zoomed in view of Europe
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Figure 5.120: The same as Figure 5.117: zoomed in view of Asia
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5.5.3.2.5 H from yw to y0
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5.5.3.2.6 H of Sinterest
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5.5.3.2.7 H of SWtotal
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5.5.3.3 Maps of MARS for MAM
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Figure 5.125: The same as Figure 5.124: zoomed in view of North America
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Figure 5.126: The same as Figure 5.124: zoomed in view of Europe
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Figure 5.127: The same as Figure 5.124: zoomed in view of Asia
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5.5.3.3.2 y0
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Figure 5.129: The same as Figure 5.128: zoomed in view of North America
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Figure 5.130: The same as Figure 5.128: zoomed in view of Europe
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Figure 5.131: The same as Figure 5.128: zoomed in view of Asia

226



5.5. MARS Chapter 5. Results

5.5.3.3.3 Slope (1)
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Figure 5.133: The same as Figure 5.132: zoomed in view of North America
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Figure 5.134: The same as Figure 5.132: zoomed in view of Europe
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Figure 5.135: The same as Figure 5.132: zoomed in view of Asia
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5.5.3.3.4 Slope (2)
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Figure 5.137: The same as Figure 5.136: zoomed in view of North America
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Figure 5.138: The same as Figure 5.136: zoomed in view of Europe
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Figure 5.139: The same as Figure 5.136: zoomed in view of Asia
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5.5.3.3.5 H from yw to y0
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5.5.3.3.6 H of Sinterest
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5.5.3.3.7 H of SWtotal
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5.6. R Method Chapter 5. Results

5.6 R Method

The R method is the last technique applied in this research to analyse the temperature

data. As described in Section 3.2, it is a technique that detects the significant shifts in the

mean level of temperature fluctuations; hence, all the segments are polynomials of degree

zero (i.e., lines of zero slope). Due to this reason, the definitions of the variables introduced

in Sections 4.4 and 5.2 are modified. These definitions are presented in Sections 5.6.1 and

5.6.2. Similar to the other techniques, the values assigned to input arguments are provided

(Section 5.6.3) followed by the results (Section 5.6.4).

5.6.1 Definitions of the Terms Used in the R Method

1. Year of Positive 0◦C Crossing: ‘Year of Positive 0◦C Crossing’ is defined as the

time when a negative mean level modelling the original data turns positive. Before

determining the positive 0◦C crossing of interest (y0), there are several other terms

that should be defined:

2. Duration: ‘Duration’ is defined as the sum of the durations of the two mean levels

before and after the time of positive 0◦C crossing (Figure 5.143).

3. Total Duration ‘Total Duration’ is the time that elapses from the beginning of the

first negative mean level before the year of 0◦C crossing to the beginning of the first

negative mean level after the year of 0◦C crossing. If no negative mean level follows

the positive 0◦C crossing, ‘Total Duration’ ends in the final year of the time series

(Figure 5.143).

4. Accumulation: ‘Accumulation’ is the difference between the mean levels before and

after the year of 0◦C crossing (Figure 5.143).

5. Total Accumulation: ‘Total Accumulation’ is determined as the difference between

the last positive mean level in the series of consecutive positive means after the year

of 0◦C crossing and the first negative mean level before the year of 0◦C crossing

(Figure 5.143).

6. Slope (1): ‘Slope (1)’ is obtained by dividing ‘Accumulation’ by ‘Duration’.

238
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7. Slope (2): ‘Slope (2)’ is evaluated by dividing ‘Total Accumulation’ by ‘Total Du-

ration’.

Note: Throughout Section 5.6, ‘(1)’ or ‘(2)’ following any variable implies that the variable

is evaluated over the period defined as ‘Duration’ or ‘Total Duration‘, respectively.

5.6.2 y0 Determination Rules

1. If there is only one positive 0◦C crossing, y0 is defined as the time of this 0◦C crossing

(Figure A.18).

2. If there is more than one positive 0◦C crossing, the 0◦C crossing with the greatest

‘Slope (1)’ is selected as y0 (Figure A.19). It should be noted that Rule 2 applies to

a small subset of the final database (JFM: 20/1324, MAM: 38/1866).

Notes:

• Time series are modelled by lines of zero slope. Each segment represents the mean

level during the length of the corresponding constant line, and all of these segments

are discontinuous at the boundaries. Due to the characteristics of this technique, the

definition of yw as the starting year of the time period termed as ‘Duration’ results

in yw = 1901 for most of the locations in the final database. Therefore, from the

hydrological point of view, the concept of yw as indicated above is not acceptable,

and yw is omitted from the list of variables to be determined.

• Sinterest and SWtotal
are the sections that determine ‘Duration’ and ‘Total Duration’,

respectively, and include y0 (Figures A.18 and A.19).

5.6.3 Input Parameters

The R method is thoroughly explained in Section 3.2. In this research, the latest version

of the code written in Visual Basic R© for Applications (VBA) is used (Rodionov, 2007).

As indicated in Section 3.2, there are several parameters that should be set by the analyst.
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Figure 5.143: The above JFM time series is approximated using the R method. The bound-

aries are the dashed blue lines, and the time series is modelled by three segments with disjoint

boundaries. The plot graphically depicts the terms defined in Section 5.6.1.

Except the Huber’s Weight Parameter (explained below), the detailed description of all

the variables can be found in Section 3.2. This research attributes the following values to

the input parameters:

• Cut-Off length

Based on the results of some experimentations with the cut-off length (l), this pa-

rameter is set to be 20.

• Subsample size: The subsample size (m) is set to be 7 since m ≤ l + 1

3
.
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• Bias correction method

The IP4 method is selected. Since m = 7, the MPK method could be used as well.

However, with the value of m larger than 10, IP4 leads to a more precise estimation

of the lag-1 autoregressive coefficient (Section 3.2).

• Approach

Approach 2 (pre-whitening) is applied in this research to have a process that is robust

against the existence of trends and to avoid detecting false regime shifts.

• Huber’s weight parameter

In the calculation of mean levels, the algorithm described in Section 3.2 assigns the

equal weight of 1 to all data points. To eliminate the influence of outliers on the

calculation of the mean levels of climate regimes, smaller weights should be assigned

to outliers. Huber’s weight function (Huber, 2005) is used in the VBA code to handle

outliers:

weight = min
(

1,
parameter

|anomaly|

)
(5.4)

where anomaly is determined as the difference between each value and the expected

mean level of the corresponding new regime that is normalized by σl (Section 3.2).

The parameter is set to be 2 in this study.

5.6.4 Results of the R Method

As with all the other techniques used in this research, the numbers of locations with

specific characteristics are presented in Table 5.4 followed by histograms that provide

better understanding of the distribution of the results (JFM: Figures 5.144 to 5.148, MAM:

Figures 5.149 to 5.153). Finally, maps depict the spatial distribution of the results (JFM:

Figures 5.154 to 5.167, MAM: Figures 5.168 to 5.181). The results are thoroughly explained

and discussed in Sections 5.8.3 (tables and histograms) and 5.8.4 (maps).
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Table 5.4: Based on the analysis of the JFM and MAM time series using the R method,

the table provides some information on the numbers of grid cells with specific characteristics

described in the left column. The variables are as indicated in Section 5.6.1. The reader is

referred to Section 5.3 for more details on the cases presented below.

Characteristic
Number

JFM MAM

Selected for study (following Rule 1 of transition area,

described in Section 4.3)
6206/46224 9842/46224

Last segment (mean level) is positive (based on Rule

2 of transition area, described in Section 4.3)
3594/6206 5880/9842

Final database: selected for the y0 analysis (based on

Rules 1 and 2 of transition area)
1324/3594 1866/5880

Duration or Total Duration less than 3 years, MK

test N/A
0/1324 0/1866

SWtotal
is the same as Sinterest 1027/1324 1303/1866
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5.6.4.1 Histograms

5.6.4.1.1 JFM
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Figure 5.144: The histogram exhibits the temporal distribution of y0 during JFM. The result

is obtained using the R method, and the input parameters are as indicated in Section 5.6.3.
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Figure 5.145: The histograms exhibit the distributions of Duration, Total Duration, Accumu-

lation, and Total Accumulation for JFM. The results are obtained using the R method, and

the input parameters are as indicated in Section 5.6.3. The reader is referred to Section 5.6.1 for

details on the variables used above.
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Figure 5.146: The histograms exhibit the distributions of Slope (1) and Slope (2) for JFM.

The results are obtained using the R method, and the input parameters are as indicated in

Section 5.6.3. The reader is referred to Section 5.6.1 for details on the variables used above.
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Figure 5.147: The histograms exhibit the distributions of Theil slope (1), Theil slope (2), H(1),

and H (2) for JFM. The results are obtained using the R method, and the input parameters are

as indicated in Section 5.6.3. The reader is referred to Section 5.6.1 for details on the variables

used above.
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Figure 5.148: The histograms exhibit the JFM distributions of number of segments under

different categories, positive 0◦C crossings, and positive mean levels after y0. The results are

obtained using the R method, and the input parameters are as indicated in Section 5.6.3.
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5.6.4.1.2 MAM
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Figure 5.149: The histogram exhibits the temporal distribution of y0 during MAM. The result

is obtained using the R method, and the input parameters are as indicated in Section 5.6.3.
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Figure 5.150: The histograms exhibit the distributions of Duration, Total Duration, Accumu-

lation, and Total Accumulation for MAM. The results are obtained using the R method, and

the input parameters are as indicated in Section 5.6.3. The reader is referred to Section 5.6.1 for

details on the variables used above.
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Figure 5.151: The histograms exhibit the distributions of Slope (1) and Slope (2) for MAM.

The results are obtained using the R method, and the input parameters are as indicated in

Section 5.6.3. The reader is referred to Section 5.6.1 for details on the variables used above.
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Figure 5.152: The histograms exhibit the distributions of Theil slope (1), Theil slope (2), H(1),

and H (2) for MAM. The results are obtained using the R method, and the input parameters

are as indicated in Section 5.6.3. The reader is referred to Section 5.6.1 for details on the variables

used above.
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Figure 5.153: The histograms exhibit the MAM distributions of number of segments under

different categories, positive 0◦C crossings, and positive mean levels after y0. The results are

obtained using the R method, and the input parameters are as indicated in Section 5.6.3.
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5.6.4.2 Maps of the R Method for JFM
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Figure 5.155: The same as Figure 5.154: zoomed in view of North America
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Figure 5.156: The same as Figure 5.154: zoomed in view of Europe
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Figure 5.157: The same as Figure 5.154: zoomed in view of Asia
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5.6.4.2.2 Slope (1)
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Figure 5.159: The same as Figure 5.158: zoomed in view of North America
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Figure 5.160: The same as Figure 5.158: zoomed in view of Europe
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Figure 5.161: The same as Figure 5.158: zoomed in view of Asia
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5.6.4.2.3 Slope (2)
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Figure 5.163: The same as Figure 5.162: zoomed in view of North America
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Figure 5.164: The same as Figure 5.162: zoomed in view of Europe
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Figure 5.165: The same as Figure 5.162: zoomed in view of Asia
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5.6.4.2.4 H (1)
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5.6.4.2.5 H (2)
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5.6.4.3 Maps of the R Method for MAM
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Figure 5.169: The same as Figure 5.168: zoomed in view of North America
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Figure 5.170: The same as Figure 5.168: zoomed in view of Europe
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Figure 5.171: The same as Figure 5.168: zoomed in view of Asia
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5.6.4.3.2 Slope (1)
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Figure 5.173: The same as Figure 5.172: zoomed in view of North America
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Figure 5.174: The same as Figure 5.172: zoomed in view of Europe
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Figure 5.175: The same as Figure 5.172: zoomed in view of Asia
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5.6.4.3.3 Slope (2)
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Figure 5.177: The same as Figure 5.176: zoomed in view of North America
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Figure 5.178: The same as Figure 5.176: zoomed in view of Europe
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Figure 5.179: The same as Figure 5.176: zoomed in view of Asia
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5.6.4.3.4 H (1)
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5.6.4.3.5 H (2)
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5.7 Testing Global Significance

As indicated earlier in this document, a bootstrap algorithm is applied to investigate

whether the percentage of the observed locally significant trends for each technique is high

enough to consider them globally significant. The thorough description of the algorithm

is given in Section 3.5.3. All the grid cells included in the final database are used for the

analysis.

Tables 5.5 to 5.8 present the results. The tables contain the 5% critical values of

the distributions of the percentage of tests which result in locally significant trends at

the significance level of 0.05. Three types of distribution are obtained: i) ‘all trends’:

distribution of the percentage of tests which are locally significant. The significant trends

are either decreasing or increasing, ii) ‘increasing trends’: distribution of the percentage of

tests which exhibit significant increasing trends, iii) ‘decreasing trends’: distribution of the

percentage of tests which favour significant negative trends. Tables 5.5 to 5.8 also include

the P-values. For more details on how to evaluate the test statistics and P-values, refer

to Section 3.5.3. As is displayed below, except the decreasing trends, all of the trends are

globally significant.

5.7.1 Model 2

Table 5.5: Results of the bootstrap analysis for Model 2

Time JFM MAM

Data yw-y0 Sinterest SWtotal
yw-y0 Sinterest SWtotal

One-sided

5% Critical Value 0.10076 0.19185 0.16367 0.089844 0.15877 0.16247

(All Trends)

One-sided

5% Critical Value 0.067645 0.11751 0.1193 0.06218 0.11806 0.11288

(Increasing Trends)

One-sided

5% Critical Value 0.070317 0.14397 0.10132 0.059944 0.097335 0.10511

(Decreasing Trends)

One-sided P-value 0 0 0 0 0 0

(All Trends)

One-sided P-value 0 0 0 0 0 0

(Increasing Trends)

One-sided P-value 1 1 1 0.9130 1 1

(Decreasing Trends)
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5.7.2 Model 3

Table 5.6: Results of the bootstrap analysis for Model 3

Time JFM MAM

Data yw-y0 Sinterest SWtotal
yw-y0 Sinterest SWtotal

One-sided

5% Critical Value 0.12892 0.19171 0.15704 0.11223 0.17376 0.16883

(All Trends)

One-sided

5% Critical Value 0.077786 0.13052 0.10061 0.067861 0.11688 0.10748

(Increasing Trends)

One-sided

5% Critical Value 0.081006 0.11761 0.11761 0.068816 0.11285 0.11599

(Decreasing Trends)

One-sided P-value 0 0 0 0.001 0 0

(All Trends)

One-sided P-value 0 0 0 0.004 0 0

(Increasing Trends)

One-sided P-value 0.8070 1 1 0.8130 1 1

(Decreasing Trends)

5.7.3 MARS

Table 5.7: Results of the bootstrap analysis for MARS

Time JFM MAM

Data yw-y0 Sinterest SWtotal
yw-y0 Sinterest SWtotal

One-sided

5% Critical Value 0.095004 0.17058 0.15719 0.090178 0.14583 0.1503

(All Trends)

One-sided 0.060266 0.099257 0.1004 0.054362 0.093588 0.11062

5% Critical Value

(Increasing Trends)

One-sided 0.065855 0.13253 0.10827 0.051452 0.093588 0.094122

5% Critical Value

(Decreasing Trends)

One-sided P-value 0 0 0 0 0 0

(All Trends)

One-sided P-value 0 0 0 0 0 0

(Increasing Trends)

One-sided P-value 0.9550 1 1 0.8590 1 1

(Decreasing Trends)
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5.7.4 R Method

Table 5.8: Results of the bootstrap analysis for the R method

Time JFM MAM

Data Sinterest SWtotal
Sinterest SWtotal

One-sided

5% Critical Value 0.18656 0.18958 0.17738 0.20472

(All Trends)

One-sided

5% Critical Value 0.12915 0.13595 0.11951 0.12487

(Increasing Trends)

One-sided

5% Critical Value 0.11405 0.11178 0.11844 0.14148

(Decreasing Trends)

One-sided P-value 0 0 0 0

(All Trends)

One-sided P-value 0 0 0 0

(Increasing Trends)

One-sided P-value 1 1 1 1

(Decreasing Trends)

5.8 Discussion

5.8.1 Mathematical Comparison of Various Techniques

As stated earlier in Chapter 2, all the techniques used in this document have some common

characteristics that make them suitable for this research. Those features are once again

listed below:

1. They could be easily automated and used in the analysis of large data sets.

2. They can analyse the original data directly, and the techniques do not necessitate

the use of anomalies. The conversion of the original data requires the determination
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of a base period. By using the original data, the ambiguity regarding the definition

of a base period is avoided.

3. A priori assumptions regarding the timing of the shifts are not required.

Due to the relatively short length of the time series (109 years), it is difficult to attribute

a definite function to them. This was the main reason that motivated the inclusion of the

various methods to inspect the time series in this research. Before inspecting the differences

and similarities between the results generated by different techniques, it is worthwhile to

summarize the specific points that distinguish these methods and help understand their

strengths and weaknesses based on the research goals. First, key characteristics of each

technique are highlighted in Section 5.8.1.1 and summarized in Table 5.9. Then, some

insight regarding the connection between these methods and their theoretical frameworks

is provided (Section 5.8.1.2).

5.8.1.1 Key Characteristics of Each Method

• Model 2 and Model 3: As indicated in Section 2.3.4, the time series of annual

mean anomalies of the air temperature in the Northern Hemisphere seem to be non-

stationary during the 20th century. A number of studies have been devoted to in-

vestigating whether the underlying process is trend-stationary or has a unit root.

Ivanov and Evtimov (2010) applied Kim and Perron’s (2009) test to the time se-

ries of annual mean anomalies of the air temperature in the Northern Hemisphere.

They concluded that the underlying process is trend-stationary. This implies that

the long-term changes in climate follow a trend function, and short-term changes

(climatic noises) are best described by a stationary process. As indicated earlier,

an abrupt shift may occur in the slope and/or intercept of the trend function of a

climate time series. Model 2 and Model 3 detect abrupt shifts in slope and simulta-

neous shifts in slope and intercept, respectively. The data generating process is given

by Equation 3.14:

yt = x′tΨ + ut

The noise component (ut) is assumed to be an AR(1) process; however, it could be

generalized to a higher order (p) as well. Furthermore, as indicated earlier, one of

the key features of this technique is that the noise component could be described by
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either a stationary process or a unit root process. Based on Equations 3.19 and 3.20,

Model 2 and Model 3 take the following final forms:

Model 2:

yt = µ0 + β0t+ β1DTt + ut

Model 3:

yt = µ0 + µ1DUt + β0t+ β1DTt + ut

Therefore, as could be inferred from Equations 3.14, 3.19, and 3.20, time series are

modelled by a trend-stationary process with AR(1) (or higher order) noise compo-

nent.

• MARS: If a simple form of splines like the piecewise linear splines is taken, and

the right locations for knots are selected automatically, the resulting spline solution

that is required to be continuous at each knot location is called MARS. To have

a powerful knot selection algorithm that could be applied to cases with more than

one independent variable or with interactions, Friedman (1991) used the concept of

basis functions. The data generating process is illustrated by the following Equations

(Equations 3.12 and 3.13):

f̂(x) =
M∑
m=1

amBm(x)

Bm(x) = I[x ∈ Rm]

As described in detail in Section 3.3.1, the two types of BF used in the MARS

algorithm are as follows:

– Direct BF: max (0, x− c)

– Mirror image BF: max (0, c− x)

MARS considers constructing such BF’s with all permissible data points taken as c.

Basically, c stands for knot locations. An over-fit model is deliberately developed in

the forward knot placement process and is pruned back in the knot cleaning step.

• R method: As indicated in Section 2.3.2, this technique belongs to the category

of the methods that detect changes in the means of time series. This implies that
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it is suitable for detecting sharp changes in mean rather than trend inhomogeneities

in time series. The technique is capable of detecting the most recent changes (i.e.,

shifts close to both ends of time series).

As described in Section 3.2, the R method models a time series with the following

equation, which implies that the time series contains both red noise and regime shifts:

(Xt − ft) = ρ(Xt−1 − ft−1) + εt → Xt = ρXt−1 + f ′t + εt

where f ′t = ft−ρft−1. In this case, ft is a polynomial of degree zero and equal to the

mean of the regime within which it falls. The red noise is removed using Xt− ρ̂Xt−1,

and the sequential algorithm applies to Z ′t = f ′t + εt.

5.8.1.2 Examination of the Connection Between Various Methods

According to the above-mentioned points about MARS and Models 2 and 3, a close con-

nection exists between MARS and Models 2 and 3. MARS approximates time series with

polynomials of degree zero or one that are continuous at the boundaries. Models 2 and 3

assume that the long-term changes follow a linear trend, and the climatic noises could be

modelled by an auto-regressive process. According to Figures 5.99 and 5.104, the maximum

number of MARS segments among grid cells of the final database is 5 during both JFM

and MAM. Models 2 and 3, on the other hand, approximate time series with two linear

segments that are separated from each other by the break point. Model 2 is continuous

at the break time, whereas Model 3 is discontinuous at the break point since it exhibits a

shift in intercept in addition to slope.

A close examination of the histograms and result matrices of MARS reveals that the

maximum number of positive 0◦C crossing is 2 among the locations included in the final

database, during both JFM and MAM (Figures 5.99 and 5.104). Locations with 2 positive

0◦C crossings form a small subset of the final database during both JFM (185 out of 1498

locations) and MAM (216 out of 2520 locations). Therefore, most of the locations in the

final database exhibit only one positive 0◦C crossing. It is worthwhile to note that since

MARS is continuous at the boundaries, all of the locations with two positive 0◦C crossings

are modelled with more than 2 segments and most commonly with 4 segments (JFM: 177

out of 185 locations, MAM: 210 out of 216 locations). Further investigations show that

the behaviour of MARS in many locations with 2 segments resembles that of Model 2
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(Figures C.14 and C.16). Furthermore, among locations with more than two segments,

some of them are modelled as if the approximation technique is Model 3 of IO type. In all

of these cases, there is a steep segment with a short duration which indeed plays the role of

transitional period in the case of IO models. This segment leads to the simultaneous shift

in slope and intercept as with Model 3 (Figures C.12 and C.24). As will be observed later

in this section, due to all of these features, y0’s reported by Models 2 and Model 3 are close

to that of MARS. However, this conclusion cannot be extended to yw. The reason is that in

the case of Models 2 and 3, each time series is modelled with only two segments separated

by the break time. Thus, yw, which is the beginning of Sinterest, is either the break time

or 1901. However, in the case of MARS, the entire domain of the time series may be split

into more than two segments. Hence, a different yw may be reported for the time series.

Furthermore, the larger number of segments produced by MARS may affect the selection

of Sinterest, which leads to different values of yw. An example of this case is Figure C.24;

MARS models the time series with four segments, and the first and last segments cross

0◦C. The first segment has a positive slope and is followed by another segment of positive

slope. Since the first segment has a smaller slope, the last segment is selected as Sinterest.

Using Model 3, the first two segments of MARS are approximated by one line of positive

slope. This line has a larger temperature accumulation and a larger rate of increase than

the second segment. Therefore, it is selected as Sinterest. Different Sinterest’s imply different

yw’s.

At this point it should be noted that MARS is an adaptive regression technique that has

been developed to model any type of data and not necessarily time series. It is accurate

and applicable to cases with up to 20 independent variables. Furthermore, it generates

precise results if there are interactions between a few independent variables. MARS is ca-

pable of handling missing values and categorical variables as well. All these characteristics

make MARS a powerful method that could be used to model intricate situations. Since

MARS does not belong to the category of techniques used in the analysis of time series,

its algorithm does not include autoregressive terms. Hence, a more complicated path is

followed to model the data. Due to the adaptive and complex nature of the algorithm, it

requires the analyst to provide more input parameters compared to the other algorithms

used in this study, and this is one of the drawbacks of MARS. As indicated earlier, MARS

has no intuition of its own. These input arguments are open to wide experimentation.

Therefore, it may be necessary to study the difference that it takes to run the model with

different values of the input arguments and examine which of the possibilities yields the
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best performance and the best bias-variance trade-off. Due to the large number of locations

under study in this thesis, it is not feasible to investigate each case separately. To partially

offset this problem, three groups of input parameters are used in the MARS analysis (refer

to Section 5.5.1 for more details). In contrast to MARS, Models 2 and 3 as well as the R

method, which are specifically developed for the analysis of time series, require few inputs.

This makes these techniques more suitable for analysing large databases where it is not

feasible to inspect all cases one by one and modify the inputs accordingly.

According to Section 5.8.1.1, the R method has some distinct features that make it

different from MARS and Models 2 and 3. In the R method, the function of the underlying

data generating process consists of polynomials of degree zero. This is different from MARS

and Models 2 and 3, which embed linear functions of time. Another unique characteristic

(unique advantage) of the R method is its ability to detect shift points close to the ends

of time series since the analysis includes observations in sequence, and the number of

observations included in each step is not fixed a priori. MARS and Models 2 and 3 lack

this ability: Models 2 and 3 exclude some data points (based on the value of ε (Section

5.4.1)) from both ends of a time series. Due to the restriction on the number of data points

required in each step for knot placement, the behaviour of MARS deteriorates close to the

ends of time series, which could be partially controlled using the input argument ‘End

Span’ (Section 5.5.1).

Since the R method detects the sharp changes in the mean of time series, the upward

shifts that cross the 0◦C line could be directly considered as y0 candidates, and the model

requires minimum rules on the determination of y0. This implies that y0 reported by

the R method is the year of 0◦C crossing when the mean of the time series moves above

0◦C as opposed to MARS and Models 2 and 3 where the long-run path (trend function)

of temperature crosses 0◦C. Like MARS, the R method is capable of detecting multiple

shifts. However, it differs from MARS and Models 2 and 3; as described in Section 3.2,

the R method sequentially includes data points in the analysis and performs the Student’s

t-test for testing the significance of the difference between the mean levels under study in

each step.
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Table 5.9: Key features of the techniques applied in the analysis of time series

Common

1. They could be easily automated and used in the analysis of

large data sets.

2. They can analyse the original data directly, and the techniques

do not necessitate the use of anomalies. The conversion of the

original data requires the determination of a base period. By

using the original data, the ambiguity regarding the definition

of a base period is avoided.

3. A priori assumptions regarding the timing of the shifts are

not required.

Specific

Models 2 and 3

Model 2 and Model 3 detect abrupt shifts in slope and

simultaneous shifts in slope and intercept, respectively.

The data generating process is given by Equation 3.14.

The noise component (ut) is assumed to be an AR(1)

process; however, it could be generalized to a higher

order (p) as well. Furthermore, one of the key fea-

tures of the models is that the noise component could

be described by either a stationary process or a unit

root process (Kim and Perron, 2009; Perron and Yabu,

2009b).

MARS

MARS is a subset of the methods used in adaptive

computations. MARS is a hybrid of the classical spline

approach and a more modern way of partitioning data

into subregions; knots are predetermined in the clas-

sical spline approach. However, MARS identifies best

knot placements automatically. To have a powerful

knot selection algorithm that could be applied to cases

with more than one independent variable or with inter-

actions, the concept of basis functions is used (Fried-

man, 1991).

R method

The technique belongs to the category of the meth-

ods that detect changes in the mean level of time se-

ries. This implies that it is suitable for detecting sharp

changes in mean rather than trend inhomogeneities in

time series. Due the sequential nature of its algorithm,

the R method is capable of detecting the most recent

changes (i.e., shifts close to both ends of time series)

(Rodionov, 2004, 2006).
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5.8.2 Non-parametric Comparison of Results

The methodology of the non-parametric comparison techniques used in this study is pro-

vided in Section 3.6. Two methods will be used for comparing yw and y0 results generated

by MARS, Models 2 and 3, and the R method: Wilcoxon signed-rank test for paired ob-

servations and Wilcoxon rank-sum test. As could be inferred from the terminology, the

former only compares the results of the common subset of locations selected by any two

techniques. The latter, on the other hand, compares all the results obtained from one tech-

nique to the outputs of the other technique. Basically, the goal of using Wilcoxon rank-sum

test is to investigate whether both techniques generally report similar results. Sometimes,

one method selects a location for analysis, and the other method selects its neighbouring

grid cell. Wilcoxon signed-rank test excludes these locations from the analysis. However,

Wilcoxon rank-sum test has the advantage of including all these locations.

Note: All the sample sizes are larger than 20 in this study. Therefore, in the applica-

tion of Wilcoxon signed-rank test, if there is no 0 present in the vector of differences, the

distribution of the test statistic (W1) is assumed to be normal. However, if 0’s are present,

the approach proposed by Pratt (1959) to handle 0’s is followed. In this case, the distribu-

tion of W1 is found based on 100,000 random permutations from the reference distribution

of all 2n permutations (refer to Section 3.6.1 for more details).

Prior to presenting the results of the tests, the techniques are compared graphically

following the diagonal line approach (Figures 5.182 to 5.184). Each point on the figures

represents a location that has been selected by the techniques shown on the x and y axes,

and the values attributed to that location define its (x,y) coordinates on the page. The

total number of paired locations used in each case is mentioned in Table 5.10. It should

be noted that each of Figures 5.182 (JFM) and 5.183 (MAM) presents 6 double model

comparisons of y0 values. However, in the case of yw, only 3 plots are presented for JFM or

MAM (Figure 5.184). This is due to the fact that yw is not determined by the R method

and only the yw values determined by MARS, Model 2, and Model 3 are compared.
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Figure 5.182: Graphical comparison of y0 results obtained for JFM
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Figure 5.183: Graphical comparison of y0 results obtained for MAM
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Figure 5.184: Graphical comparison of yw results obtained for JFM (a, b, c) and MAM (d,

e, f)

293



5.8. Discussion Chapter 5. Results

As depicted by the plots, during both JFM and MAM, Model 2 and Model 3 generate

the most similar y0 results. This implies that in the grid cells selected as the common

subset of Model 2 and Model 3, the break times in slope (detected by Model 2) and

in both intercept and slope (identified by Model 3) as well as the slopes of the OLS lines

preceding or following the shift times are such that they lead to generally similar y0 results.

As indicated earlier, the R method detects shifts in the mean level of time series as

opposed to Model 2, Model 3, and MARS that identify trend inhomogeneities (refer to

Section 5.8.1.2 for more details on the distinct features of the R method). Therefore, the

y0 outputs from the R method differ from those of Model 2, Model 3, and MARS. Plots d,

e, and f in Figures 5.182 and 5.183 exhibit single-value trendings of the R method for y0,

i.e., the R method reports a single value as y0 of a number of locations while y0 determined

by the other technique varies over a range. These results may be due to the high spatial

coherence of the outcomes of the R method. As depicted by the y0 maps of the R method

(Figures 5.154 and 5.168), over some regions, y0 values determined by the R method are

the same or very close where other techniques report a range of values.

No close relationship between yw’s of different techniques is detected. In the plots of

Model 2 and Model 3 (Figure 5.184), data points are less scattered around the diagonal line

compared to the other plots; however, the deviation from the diagonal line is significant.

In the comparison of MARS and Model 2 or MARS and Model 3, as indicated earlier, the

reason for having rather similar y0’s and different yw’s is that Models 2 and 3 approximate

each time series with only two segments separated by the break time. Thus, yw, which is

the beginning of Sinterest, is either the break time or 1901. However, in the case of MARS,

the entire domain of the time series may be split into more than two segments. Hence,

different yw’s may be reported for the time series. In the comparison of Model 2 and

Model 3, dissimilar yw’s could be explained by different break times as is inferred from the

comparison of break time histograms (JFM: Figures 5.1 and 5.47, MAM: Figures 5.5 and

5.52). In these cases, the slopes of the regression lines that approximate data are such that

the 0◦C crossing times of the selected paired observations are close; however, the breaks

(the beginning of the lines) occur at different times. Furthermore, a close examination of

Figure 5.184 reveals that there are locations where Model 2 identifies the first segment as

Sinterest (i.e., yw = 1901), whereas Model 3 determines the second segment as Sinterest, and

vice versa. Most of these locations are located in northeastern U.S. and western China

during JFM (Figures 5.9 and 5.57) and southern Russia during MAM (Figures 5.28 and

5.76).

294



5.8. Discussion Chapter 5. Results

Table 5.10: The results of the comparison of different techniques using Wilcoxon signed-rank

test for paired observations are presented below in the form of P-values. The null hypothesis

of the test is µgroup 1 = µgroup 2 (refer to Section 3.6.1 for more details on the hypothesis test).

Time JFM MAM

Data No. Paired Observations yw y0 No. Paired Observations yw y0

MARS - Model 2 1292 0 0.0841 2199 0 0.0838

MARS - Model 3 1044 0 0.1220 1752 0 0.0698

MARS - R method 1026 N/A 0 1553 N/A 0

Model 2 - Model 3 1131 0 0.0853 1885 0 0.0506

Model 2 - R method 1162 N/A 0 1702 N/A 0

Model 3 - R method 839 N/A 0 1352 N/A 0

Wilcoxon signed-rank test for paired observations (Table 5.10) and Wilcoxon rank-sum

test (Table 5.11) produce similar results to those obtained from the graphical comparison.

Based on these tables, a few points should be highlighted: i) The null hypothesis of these

tests is the equality of the population means of the two models being compared. Therefore,

if large P-values are obtained, the tests fail to reject the null hypothesis. Hence, the results

of the two groups are considered equal in the specified significance level, ii) Wilcoxon rank-

sum test generates larger P-values in favour of the null hypothesis since it performs an

overall comparison between all results, iii) Based on the P-values, it could be inferred that

generally, different techniques produce closer y0 results during JFM than MAM, iv) Except

the P-value obtained using Wilcoxon signed-rank test during MAM, Model 3 and MARS

have the most similar y0 values (largest P-values) during both JFM and MAM.

5.8.3 Discussion on the Tabulated Results and Histograms

So far, the discussion was focussed on the comparison of different techniques in terms of

methodology and overall agreement between yw and y0 results. In this section, more in-

depth discussion on the results is provided by inspecting all the tables, histograms, and

maps presented earlier in this chapter.
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Table 5.11: The results of the comparison of different techniques using Wilcoxon rank-sum

test are presented below in the form of P-values. The null hypothesis of the test is µgroup 1 =

µgroup 2 (refer to Section 3.6.2 for more details on the hypothesis test).

Time JFM MAM

Data yw y0 yw y0

MARS - Model 2 0 0.1781 0 0.0922

MARS - Model 3 0 0.3971 0 0.2696

MARS - R method N/A 0 N/A 0

Model 2 - Model 3 0 0.2895 0 0.1080

Model 2 - R method N/A 0 N/A 0

Model 3 - R method N/A 0 N/A 0

The first point that needs to be discussed is whether the different methods used in

this study analyse approximately the same locations. This is important to explore since

only in that case is the comparison of histograms presented for each technique meaningful.

According to Tables 5.1 to 5.4, the numbers of locations in the final database selected by

the techniques are very close during JFM. The same applies to MAM. In both cases of JFM

and MAM, although the numbers are very close, the R method and Model 2 select the

minimum and maximum number of locations, respectively. Similarly, maps reveal that the

grid cells selected for the final database exhibit small variance between different techniques.

The most evident differences are as follows:

1. During JFM, using the R method, no location in northeastern U.S. fulfils the require-

ments of Rule 2 of transition area (Section 4.3).

2. During MAM, in contrast to Model 2 and MARS, no location is selected over southern

Canada using Model 3. The R method detects only a few locations in North America

based on Rule 2 of transition area for further investigations.

Since the number of locations and area of focus of different techniques are close, the

discussion continues by examining the histograms that provide summary graphs showing
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counts of locations for each variable. First, the conclusions drawn by inspecting JFM

histograms are provided followed by the investigation of the MAM time series.

5.8.3.1 JFM

1. yw

As discussed in Sections 5.8.1 and 5.8.2, the difference between yw results of the

techniques is significant. As is depicted by JFM histograms (Figures 5.1, 5.47, and

5.95), yw values do not exhibit any specific behaviour; however, several points could

be drawn from these figures:

• The analysis of the yw histogram of Model 3 reveals that two periods during

which warming in most of the locations started are the 1920s and 1960s. The

number of locations that experience the onset of warming during these two

decades is considerably larger than the numbers reported for the other decades.

In the case of Model 2 and MARS, the numbers reported for different decades

are not significantly different; however, the periods during which warming starts

in most of the locations are identified as follows:

Model 2: the 1940s and the period of 1960-1980

MARS: the 1940s and the period of 1960-1990

In both cases, 1970s contains the maximum number of locations.

• The strong resemblance of the break time and yw histograms of both Model 2

and Model 3 and the small numbers of locations with yw = 1901 indicate that

the break time is the start year of warming for most of the locations.

• Except the peak during the 1920s decade, the overall behaviours of the break

time distributions (and consequently yw histograms) of Model 2 and Model 3

are close.

• Using any modelling technique (MARS, Model 2 and Model 3), there are always

some locations with the values of yw that fall within the first decade of the 20th

century. In the case of Models 2 and 3, the first columns of the yw histograms

only contain locations with yw = 1901 (Model 2: 157 locations and Model 3:

105 locations). There are 143 locations modelled by MARS whose yw’s occur

during the 1900s decade. However, only 88 locations belong to the category of

yw = 1901. This implies that some of the models generated by MARS have
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first segments with the lengths less than 10 years followed by segments selected

as Sinterest. This is one of the undesirable properties of the MARS algorithm.

This behaviour could be partially controlled with the input parameter Minimum

Span (Section 5.5.1). To avoid introducing any bias into the modelling process

and due to the large number of locations under study, this value is set to the

automatic mode in this study. This lets the algorithm find the appropriate knot

locations. Therefore, in some cases, MARS exhibits abrupt changes. It should

be noted that another reason for this behaviour is the deterioration of the knot

placement algorithm close to the ends of the time series. The discussion on

yw = 1901 has been provided in Section 5.3.1.

2. y0

• According to Figures 5.1 (Model 2), 5.47 (Model 3), and 5.95 (MARS), the

results of Model 2, Model 3, and MARS indicate that the number of locations

experiencing the temperature sign change from negative to positive increases

exponentially during the 20th century. The results obtained from modelling the

time series using the R method (Figure 5.144) reveal that the mean levels of

most of the locations in the final database have risen above 0◦C during the last

two decades of the 20th century and the first decade of the 21st century (i.e.,

1980-2009). A very small number of locations experience earlier 0◦C crossings

of their mean levels.

• According to the y0 histogram of the R method (Figure 5.144), the mean level

of no location changes sign from negative to positive during the first decade of

the 20th century. However, the y0 histograms of MARS and Models 2 and 3

show that there are locations with y0 occurring during the 1900s decade. These

locations are categorized as follows: i) locations with yw = 1901 and a steep

first line that moves the time series above 0◦C during the first decade of the

20th century, ii) locations with yw values in the range of 1902-1910: These cases,

which are only produced by MARS, have very short first segments (3-5 years)

followed by second segments with large positive slopes. The second segments

cross 0◦C in a short time.

Note:

(a) The above-indicated model behaviours (i.e., y0 occurs in the 1900s decade)
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may be due to the very localised approximations. If more data points were

available prior to 1901, more precise models would be obtained, and it might

be concluded that the models are positive during the 1901-2009 period. It

should be noted that the numbers of locations with y0 occurring in the

1900s are 31, 28, and 24 for MARS, Model 2, and Model 3, respectively,

which are negligible compared to the large final databases.

(b) As could be interpreted from the above note, the comparison of yw and y0

histograms indicates that not all the locations with 1901 ≤ yw ≤ 1910 cross

the 0◦C line during the first decade of the 20th century.

• Although there is some ambiguity regarding the determination of y0 when a

model crosses 0◦C more than one time, the histograms (Model 3: Figure 5.51,

MARS: Figure 5.99, R method: Figure 5.148) reveal that the majority of the

locations in the final databases have only one positive 0◦C crossing accepted as

y0.

• Histograms reveal that for most of the locations SWtotal
is the same as Sinterest.

This is indicative of one of the following three situations that are mentioned in

descending order of number of locations under each group:

(a) Sinterest is the last segment.

(b) Sinterest is followed by a segment with a negative slope (MARS, Model 2,

and Model 3) or smaller mean (R method) but still above the 0◦C line. In

such cases, the increase in temperature does not continue right after Sinterest.

However, the important points are the change in the sign of temperature

as well as the fact that the segments following Sinterest remain above 0◦C.

In the case of MARS and the R method, warming may resume later or

temperature fluctuates above the 0◦C line.

(c) Sinterest is followed by a segment with a negative slope (MARS) or smaller

mean (the R method), and the model crosses 0◦C in the negative direction;

however, it turns positive in a short time.

3. Duration, Accumulation, and Slope

Figures 5.2 (Model 2), 5.48 (Model 3), 5.96 (MARS), and 5.145 (R method) are

provided to visualize the distributions of duration and accumulation over different

time periods. Since these two concepts could not be interpreted separately in the
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frame of this discussion, the histograms of their quotient (slope) are presented in Fig-

ures 5.3 (Model 2), 5.49 (Model 3), 5.97 (MARS), and 5.146 (R method). Following

conclusions could be drawn from these figures:

(a) MARS: Slope (1) and Slope (2) (Section 5.2) exhibit the exponential decay of

number of locations as slope increases. Slope (1) and Slope (2) of the majority

of the locations modelled by MARS are in the range of 0.03 − 0.06 (◦C/year)

and 0− 0.03 (◦C/year), respectively.

(b) Model 2: Slope (1) and Slope (2) (Section 5.2) exhibit positive skewness with

the mode of approximately 0.03 − 0.05 (◦C/year) and 0.01 − 0.04 (◦C/year),

respectively.

(c) Model 3: Slope (1) and Slope (2) (Section 5.2) exhibit positive skewness with

the mode of approximately 0.02− 0.05 (◦C/year).

(d) the R method: Similar to Models 2 and 3, positive skewness is observed in the

histograms of Slope (1) and Slope (2) (Section 5.6.1). The modes are approxi-

mately 0.01− 0.03 (◦C/year) in both cases.

Note: The means of Slope (1) and Slope (2) are larger using Model 3; a considerable

number of locations show Slope (1) and Slope (2) in the range of 0.1−0.15(◦C/year),

whereas, in the case of Model 2, only a very small subset of the final database exhibit

slopes larger than 0.1(◦C/year). Similar results apply to MARS; only a few locations

exceed the value of 0.15 (◦C/year). The slopes reported using the R method are

generally smaller than the other techniques. According to Figure 5.146, the number

of locations with Slope (1) and Slope (2) larger than 0.04 (◦C/year) is negligible.

4. Theil Slope

Theil slope, a robust estimate of the rate of change, is also evaluated for all the three

time periods of yw-y0, Sinterest, and SWtotal
if the model is MARS, Model 2, or Model

3 (Figures 5.4, 5.50, and 5.98). In the case of the R method (Figure 5.147), Theil

Slope (1) and Theil Slope (2) are estimated using the data points within the time

periods determined as ’Duration’ and ’Total Duration’ (Section 5.6.1). The goal is

to compare this non-parametric estimate to the parametric estimates obtained from

different techniques. The following points should be highlighted as a result of this

comparison:
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(a) Using any technique except the R method, for which yw is not defined, Slope

(1) is the slope of both time periods of yw-y0, Sinterest. However, Theil slope

estimates of these two time periods are different. Theil slope estimates of yw-

y0 are negative for some locations. However, the results of the MK test reveal

that none of the locations with negative Theil slope estimates exhibit significant

decreasing trends. The same conclusion applies to the grid cells with negative

Theil slope (1) or Theil Slope (2) in the case of the R method.

(b) The distributions of Theil slope during Sinterest and SWtotal
determined by Models

2 and 3 are very close to the distributions of Slope (1) and Slope (2). For MARS,

slight differences are observed. The distributions of Theil slope exhibit positive

skewness rather than exponential decay. However, the ranges of slopes are close.

In the case of the R method, overall, Theil slope histograms resemble those of

Slope (1) and Slope (2); however, there are a small number of locations with

negative and insignificant Theil slopes.

5. H

To understand whether significant warming has occurred during the time period of

yw-y0, Sinterest, or SWtotal
, the MK is performed using the original data within these

sections. If the magnitude of the increase in temperature is not significant during

Sinterest or SWtotal
, it implies that the observed positive 0◦C crossing (y0) may only

reflect the fluctuations of temperature. According to Figures 5.4 (Model 2), 5.50

(Model 3), 5.98 (MARS), and 5.147 (R method), generally, insignificant trends are

reported for the period of yw-y0, whereas most of the trends over Sinterest and SWtotal

are significant.

5.8.3.2 MAM

The points highlighted regarding the specific behaviours of the models, such as the discus-

sion on the y0 values in the range of 1900-1910, are explained in detail when investigating

the JFM results. In this section, only the results drawn from the MAM histograms are

presented. It is very important to note again that the MAM results apply to completely

different grid cells from those of JFM. These are the regions whose temperature is negative

during JFM from 1901 to 2009. However, the MAM temperature of these locations has

changed sign from negative to positive during the period of 1901-2009. As depicted by the
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MAM maps, these grid cells are located in higher latitudes.

1. yw

Similar to JFM, the yw histograms (Model 2: Figure 5.5, Model 3: Figure 5.51,

MARS: Figure 5.100) do not show any specific behaviour; however, the following

points should be highlighted:

• For any technique except the R method, to which yw does not apply, one of the

peaks of the yw histogram occurs during the first decade of the 20th century. In

the case of Models 2 and 3, yw’s of all the locations comprising the first columns

are equal to 1901. In addition to the 1900s decade, the following periods, which

are mentioned in ascending order of number of locations, embed the maximum

numbers of locations:

MARS: 1920s and 1960s. Based on the yw histogram of MARS, it could be

concluded that overall, in most of the locations, yw occurs in the first half of

the 20th century.

Model 2: 1920s and 1970s

Model 3: 1950s

• The form of the break time histogram of Model 3 is close to its yw histogram. In

the case of Model 2, in most of the locations, breaks occur in the latter half of

the 20th century. The same trend is not observed in the yw histogram. The large

number of locations with yw = 1901 in this case implies that the second segment

of Model 2 in the majority of locations is above 0◦C, and the first segment is

Sinterest.

• In contrast to JFM, the behaviours of the break time histograms of Models 2

and 3 are not similar.

• As indicated earlier, in the case of Models 2 and 3, the yw values of all the

locations that fall under the category of 1900-1910 are equal to 1901. However,

for MARS, 135 locations exhibit 1902 ≤ yw ≤ 1910. This implies that any

location from this category has a very short (less than 10 years) first segment

followed by Sinterest (For further details on such cases, refer to the yw section of

JFM indicated above (Page 297))

2. y0
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• The y0 histogram of MARS (Figure 5.100) illustrates that during MAM, the

number of locations whose temperatures turn positive is increasing uniformly

from the beginning of the 20th century. In both cases of Models 2 and 3 (Model 2:

Figure 5.5, Model 3: Figure 5.52), a considerable number of locations experience

y0 occurring in the first half of the 20th century. The numbers of locations

within each time category are approximately equal and half of the numbers

observed within the second half of the 20th century and the first decade of the

21st century. The most noticeable difference between the y0 histograms of the

locations analysed during JFM and MAM, using MARS and Models 2 and 3 is

that the MAM histograms do not exhibit the exponential growth observed in

the JFM case. This observation as well as the yw histograms, which are denser

in the beginning during MAM compared to JFM, may imply that although the

JFM temperatures of these locations are still negative during the past century,

warming during MAM has started from the beginning of the 20th century (or

perhaps earlier). The analysis of the JFM time series of these locations to

understand the warming trend is beyond the scope of this research. It is possible

that significant increases in temperature have occurred during JFM; however,

since the temperatures were well below 0◦C, no 0◦C crossing is observed. The

y0 histogram of the R method is similar to the JFM histogram in that the mean

levels of most of the locations in the final database have risen above 0◦C during

1980-2009. A very small number of locations experience earlier 0◦C crossings.

• As observed in the JFM histograms, except for the R method, all the techniques

show locations whose y0’s fall within the 1900s decade. All possible cases and

notes on these locations are provided in the above-indicated y0 section for JFM

(Page 298). The numbers of locations with this characteristic are still small

compared to the large final databases: 67, 118, and 138 for MARS, Model 2,

and Model 3, respectively.

• As with JFM, the majority of locations modelled by MARS, Models 3, and

the R method have only one positive 0◦C crossing accepted as y0 (Model 3:

Figure 5.56, MARS: Figure 5.104, R method: 5.153). Hence, the uncertainty

regarding the definition of y0 for locations with more than one positive 0◦C

crossing influences small subsets of the final databases.

• In most of the locations, Sinterest is the same as SWtotal
. All possible cases are

listed in the y0 section for JFM indicated in Page 299.
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3. Duration, Accumulation, and Slope

Figures 5.6 (Model 2), 5.53 (Model 3), 5.101 (MARS), and 5.150 (R method) de-

pict the accumulation and duration histograms. These two concepts are analysed

jointly as slope (Model 2: Figure 5.7, Model 3: Figure 5.54, MARS: Figure 5.102, R

method 5.151). Slope (1) and Slope (2) exhibit positive skewness using any modelling

technique. The results obtained from the slope histograms are as follows:

(a) Since in the majority of locations, Sinterest and SWtotal
are the same, the distribu-

tion of Slope (2) strongly resembles that of Slope (1). The modes of the Slope

(1) and Slope (2) histograms of MARS, Model 2, Model 3, and the R method

are approximately 0.01-0.05, 0.01-0.04, 0.03-0.07, and 0.01-0.03 (◦C/year), re-

spectively.

(b) The means of MARS, Model 2, Model 3, and the R method are approximately

0.1, 0.1, 0.15, and 0.04 (◦C/year), respectively. Similar to the JFM analysis,

modelling by the R method yields the smallest slopes.

4. Theil Slope

Figures 5.8 (Model 2), 5.55 (Model 3), 5.103 (MARS), and 5.152 (R method) illustrate

the histograms of Theil Slope. The following points should be highlighted from the

histograms:

• Some locations with negative slopes are observed in the histograms of Theil

slope over yw-y0; however, based on the results of the MK test, none of these

decreasing trends are significant. Similarly, the negative slopes in the histograms

of Theil Slope (1) and Theil Slope (2) for the R method are insignificant.

• In terms of the form of distribution, range, mode, and mean, the distributions

of Theil Slope over Sinterest and SWtotal
resemble those obtained by different mod-

elling techniques.

5. H

According to Figures 5.8 (Model 2), 5.55 (Model 3), 5.103 (MARS), and 5.152 (R

method), generally, insignificant trends are reported for the period of yw-y0, whereas

most of the trends over Sinterest and SWtotal
are significant. For more details, refer to

the discussion on H histograms indicated in Page 301.
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5.8.4 Maps

A comprehensive discussion on the maps is provided below. The discussion first focuses

on the JFM results and is followed by MAM results. Under each category, the transition

area is divided into three parts, North America, Europe, and Asia. For each continent, the

behaviour of all the techniques are compared.

5.8.4.1 JFM

• North America

Due to the high degree of spatial variability of the results, particularly those of MARS

and Model 2, over North America, the transition area in North America is divided

longitudinally into three regions: i) Western U.S.: 125◦W− 105◦W, ii) Central U.S.:

105◦W−90◦W, iii) Eastern U.S.: 90◦W−70◦W. The yw, y0, Slope (1), Slope (2), H of

Sinterest, and H of SWtotal
histograms of each of these regions are provided in Appendix

B. In addition to the visual analysis of the maps, these histograms are investigated to

make conclusions (MARS: Figures B.1 to B.3, Model 2: Figures B.8 to B.10, Model

3: Figures B.15 to B.17, R method: Figures B.22 to B.24). It should be noted that

the discussion is limited to the locations with significant warming trends over Sinterest

and SWtotal
.

1. MARS

The analysis of the results of the MK test (Figures 5.122 and 5.123) reveals

that the grid cells with insignificant warming during Sinterest and SWtotal
form

approximately half of the total locations in North America. These grid cells

are distributed (without a specific pattern) among the locations with significant

increase in temperature. Furthermore, no specific trend or spatial integrity is

observed.

– In western U.S. (total of 97 locations with significant warming), the start of

warming most commonly occurs during the 1900s, 1930s, and 1940s decades.

y0 of most of the locations is reported to be in the range of 1960-2000 (Figure

B.1) .

– Most of the grid cells in central U.S. (total of 37 locations with significant

warming) exhibit insignificant warming. The start of warming among those
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pixels with significant increasing trend takes place most commonly during

the 1920s decade. The pixels cross 0◦C (y0) later in the 1960s decade and

the time period of 1980-2009 (Figure B.2).

– In eastern U.S. (total of 48 locations with significant warming), yw of most

of the locations happens some time in the first decade of the 20th century or

during the time period of 1950-1980. The 0◦C crossing (y0) occurs during

1960-2009 (Figure B.3).

Slope (1) and Slope (2) of the majority of grid cells fall within the range of

0.004− 0.06 (◦C/year).

2. Model 2

– In western U.S. (total of 135 locations with significant warming), the start

of warming most commonly occurs during the 1940s decade. The majority

of y0’s fall within the range of 1960-2008 (Figure B.8).

– As depicted by Figures 5.26 and 5.27, most of the locations in central U.S.

exhibit insignificant warming trends. Only 39 locations show significant

increase in warming that starts in the 1960s decade in most of the grid

cells. y0’s most commonly take place after 1960 with a peak in the 1980s

decade (Figure B.9).

– Only 13 locations, majority of which are located in northeastern U.S., ex-

hibit significant warming trends that started in the 1970s decade. y0 is

distributed over the entire century with a small peak in the 1990s (Figure

B.10).

Slope (1) and Slope (2) of the majority of locations in western U.S. fall within

the range of 0.015− 0.05 (◦C/year). In central U.S., the histograms are dense in

the range of 0.04−0.05(◦C/year). In eastern U.S., no specific trend is observed.

3. Model 3

In contrast to MARS and Model 2, Model 3 detects few locations with insignif-

icant trends during Sinterest and SWtotal
(Figures 5.74 and 5.75). In other words,

it builds the segments such that the increasing trends are significant.

– In western U.S. (total of 96 locations with significant warming), warming

begins in the 1940s in most of the locations. The peak of y0 happens during
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the 1960s. A considerable number of locations experience y0 in the following

decades (Figure B.15).

– In central U.S. (total of 101 locations with significant warming), yw in the

majority of the locations occurs in the 1950s. y0 is distributed evenly during

the time period of 1960-2008 (Figure B.16). The inspection of Figure 5.62

reveals that there is a pattern in the spatial distribution of y0: the higher

the latitude is, the larger the value of y0 is.

– In eastern U.S. (total of 86 locations with significant warming), yw’s occur

during the 1950s. Similar to central U.S., y0 is distributed over the time

period of 1960-2008 and shows the same pattern as that of central U.S.

(Figure B.17).

Slope (1) and Slope (2) of the majority of locations are approximately in the

range of 0.015−0.04, 0.015−0.06, and 0.03−0.05(◦C/year) in western, central,

and eastern U.S., respectively.

4. R method

The R method selects the minimum number of locations compared to the other

techniques. Particularly, over eastern regions, it analyses only few locations (13

locations). It is worthwhile to note again that the R method detects the shifts

in the mean levels of the time series. Therefore, it produces unique results. The

reader is referred to Section 5.8.1 for detailed information on the distinct char-

acteristics of this technique. As indicated below, y0’s reported by this method,

which determines the time of sign change in mean levels, occur later compared

to the other techniques. Another point that should be highlighted is the spatial

integrity of the results.

– In western U.S. (total of 62 locations with significant warming), the means

of time series change sign from negative to positive (y0) during the 1990s

decade (Figure B.22).

– In Central U.S. (total of 41 locations with significant warming), all y0’s

occur in the time period of 1980-2009 (Figure B.23).

– Similar to the results of Model 2, only 13 locations, most commonly located

in northeastern U.S., exhibit significant warming. y0’s are distributed over

the 1920s, 1940s, 1980s, and 1990s decades with no specific pattern (Figure

B.24).
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Table 5.12: All the results indicated in Section 5.8.4.1 for North America are summarized in

the table below. * Only locations that exhibit significant warming trends are considered to draw

conclusions about the spatial distributions of yw and y0. Nt is the total number of locations in

the specified region that are in the final database. Ns is the number of locations in the subset of

Nt that experience significant increase in temperature.

Model

Regions

Western U.S. Central U.S. Eastern U.S.

N∗t N∗s yw y0 Nt Ns yw y0 Nt Ns yw y0

MARS 154 97

1900s

1930s

1940s

1960-

2000
85 37 1920s

1960s

1980-

2009

80 48

1900s

1950-

1980

1960-

2009

Model 2 191 135 1940s
1960-

2008
106 39 1960s

1980-

2000
63 13 1970s 1990s

Model 3 127 96 1940s
1960-

2008
114 101 1950s

1960-

2008
100 86 1950s

1960-

2008

R method 86 62 N/A 1990s 65 41 N/A
1980-

2009
21 13 N/A

No Pat-

tern

Except for eastern U.S. with a negligible number of locations, Slope (1) and

Slope (2) fall within the range of 0.01 − 0.02 (◦C/year) over the entire region.

Therefore, as illustrated earlier by the histograms of the R method (Section

5.6.4), smaller slopes are reported by this technique.

All the above-mentioned results are summarized in Table 5.12.

• Europe

In Europe, the region under study is confined to the longitudes of 30◦W and 45◦E

(Sections 5.4.3.2 (Model 2), 5.4.4.2 (Model 3), 5.5.3.2 (MARS), and 5.6.4.2 (R method)).

The density of the selected locations by any of the modelling techniques is higher

in eastern Europe. However, except northern Europe, the grid cells are distributed

over entire Europe. The results below are obtained by inspecting the locations with

significant increase in temperature.

1. MARS

There are 181 locations with insignificant warming during Sinterest (Figure 5.122).

Excluding these locations, 338 locations remain to investigate. As observed in
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Figures 5.107 and 5.111, in contrast to North America, yw’s and y0’s exhibit a

pattern. The two variables increase with latitude. According to Figure B.4, yw

occurs during the 1930s decade in the majority of locations. As is inferred from

the comparison of Figures 5.107 and 5.122, in most of the locations with large

values of yw (yw > 1980), warming is not significant over Sinterest. The time

of 0◦C crossing (y0) is most commonly within the range of 1940-2009 (Figure

B.4). As depicted by Figure 5.111, y0 increases in the diagonal direction from

southern Europe toward eastern Europe. In the similar fashion, Slope (1) and

Slope (2) increase from approximately 0.004 to 0.1 (◦C/year) (Figures 5.115 and

5.119).

2. Model 2

The map of yw (Figure 5.11) shows high spatial integrity. Most of 126 locations

with insignificant warming are concentrated in southern Europe, and the rest

of the grid cells (504 grid cells) exhibit significant increase in temperature over

Sinterest. According to yw histogram of Europe (Figure B.11), if locations with

insignificant warming in southern Europe and eastern Europe (Romania) are

excluded, yw of the remaining locations takes place during the 1920s and 1940-

1970; in higher latitudes, yw occurs later. The year of 0◦C crossing (y0) falls

within the time period of 1960-2008 for most of the locations. Similar to MARS,

y0 values increase from west to east in the diagonal direction. In the north of

Black Sea, in eastern Europe, y0 increases with latitude. The values of Slope

(1) and Slope (2) are in the range of 0.02 − 0.1 (◦C/year) and increase in the

same way as y0.

3. Model 3

Similar to North America, the first noticeable point is the small number of

grid cells with insignificant warming (33 out of 351 locations selected by Model

3). yw in higher latitudes occurs in the 1930s. The locations in lower latitudes

experience yw earlier in the 1920s (Figure 5.59). y0 values of most of the locations

increase from west to east and from south to north in the range of 1940-2008

(Figure 5.63). Slope (1) and Slope (2) increase with latitude from approximately

0.02 to 0.04 (◦C/year) (Figures 5.67 and 5.71).

4. R method

Over Europe, the minimum number of locations in the final database is selected

by Model 3. However, in terms of locations with significant warming, the R
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method builds the smallest subset, which contains 185 grid cells (out of 541

locations selected for the final database using the R method). Most of these

grid cells are concentrated in eastern Europe (in the north of Black Sea and

in the south of Baltic Sea) (Figures 5.166 and 5.167). y0’s of the majority of

these locations occur in the 1980s (Figure 5.156), and Slope (1) and Slope (2)

for these locations are in the range of 0.01 to 0.03 (◦C/year) (Figures 5.160 and

5.164).

Table 5.13 summarizes the results obtained using different techniques over Europe.

The comparison of Figures 5.74 and 5.122 reveals that in terms of locations selected

for the final database, MARS and Model 3 strongly resemble each other over Europe.

The advantage of Model 3 is that following Rules 1 and 2 of transition area (Section

4.3), Model 3 does not select most of the locations that are selected by MARS and

then proved to experience insignificant increase in temperature. The overall spatial

distribution of Model 2 is close to that of MARS if all the locations with significant

and insignificant warming in the map of MARS are considered. However, Model 2

approximates time series such that, particularly over Poland, the results of the MK

test favour significant increasing trends, whereas the same results are not obtained

for MARS. If all the grid cells (with significant or insignificant increasing trends)

selected by the models were considered, the spatial distribution of the R method

would be close to those of the other methods. However, the R method builds the

segments such that only in the north of Black Sea (in Ukraine) and in the south of

Baltic Sea (in Poland) is significant warming over Sinterest observed.

• Asia

The vast region of Asia is divided into three parts for the analysis: i) Southwest-

ern and Central Asia (45◦E to 75◦E), ii) Central-Eastern Asia (75◦E to 100◦E), iii)

Eastern Asia (100◦E to 150◦E). The transition area in southwestern and central

Asia covers a small region that consists of some parts of Turkmenistan, Uzbekistan,

Kazakhstan, and Iran. In central-eastern Asia, only a small region in western China

meets the criteria set by Rules 1 and 2 of transition area. This region is located in

the north of Tibet and south of Xinjiang and is surrounded by high mountains and

shows interesting results. Most of the region lies in the Taklamakan Desert, and it

will be referred to as ‘western China’ hereafter. In eastern Asia, the final database

only includes some grid cells from east central China, South Korea, and Japan. Sim-
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Table 5.13: All the results indicated in Section 5.8.4.1 for Europe are summarized in the table

below. * Only locations that exhibit significant warming trends are considered to draw conclusions

about the spatial distributions of yw and y0. Nt is the total number of locations in the specified

region that are in the final database. Ns is the number of locations in the subset of Nt that

experience significant increase in temperature.

Model
Europe

N∗t N∗s yw y0

MARS 519 338
most commonly in the 1930s:

yw increases with latitude

most commonly within the

range of 1940-2009: y0 values

increase in the diagonal direc-

tion from southern Europe to-

ward eastern Europe

Model 2 630 504
1920s and 1940-1970: yw in-

creases with latitude

1960-2008: y0 values increase

from west to east in the diag-

onal direction. In the north of

Black Sea, in eastern Europe,

y0’s increase with latitude.

Model 3 351 318
1920s in lower latitudes, 1930s

in higher latitudes

increase from west to east and

from south to north in the

range of 1940-2008

R method 541 185 N/A

1980s (Grid cells with signifi-

cant warming are concentrated

in the north of Black Sea and

south of Baltic Sea.)

ilar to the other parts of the Northern Hemisphere, only locations with significant

increasing trends are considered to make conclusions. Detailed histograms for each

region of Asia are provided in Appendix B (MARS: Figures B.5 to B.7, Model 2:

Figures B.12 to B.14, Model 3: Figures B.19 to B.21, R method: Figures B.26 to

B.28).

1. MARS

In Asia, the numbers of locations with insignificant trends over Sinterest and

SWtotal
are small (Figures 5.122 and 5.123), and these grid cells are distributed

over the entire transition area in Asia.

– In most of the locations in southwestern and central Asia as well as eastern

Asia, yw occurs during the 1970s and 1960s decades, respectively. Over

western China, first, yw increases in the west to east direction (from 1930s
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to 1970s), which is followed by a decrease (from 1960s to 1950s) (Figure

5.108).

– Over southwestern and central Asia, y0 increases with latitude. However,

no specific trend is observed in western China and eastern Asia, except

generally smaller values of y0 in the west of the region termed ‘western

China’ compared to the rest of the grid cells in that region. y0 is in the

range of 1970-2009 in Asia (Figure 5.112).

– The largest values of Slope (1) and (2) are observed in central Asia. In

the rest of the transition area, Slope (1) and Slope (2) are in the range of

0.004− 0.1 (◦C/year) (Figures 5.116 and 5.120).

2. Model 2

Most of the locations in southwestern Asia show insignificant warming over

Sinterest and SWtotal
. In central Asia, grid cells that are located in Uzbekistan do

not show significant increasing trends either (Figures 5.26 and 5.27).

– Excluding pixels indicated above, in terms of yw values, a high spatial in-

tegrity is observed in central Asia and western China. yw of the majority of

locations occurs during the 1970s decade in central Asia and western China.

Similar to the results obtained using MARS, in western China, a bell-shaped

behaviour of yw is observed. This implies that yw values increase from 1930s

(in the west) to 1970s (in the center) and decline to 1960s (in the east). In

Eastern Asia, yw occurs during the 1960s and 1980s decades in China and

during the time period of 1901-1940 in most of the locations in Japan and

South Korea (Figure 5.12).

– As with MARS, over central Asia, y0 increases with latitude. In western

China, earlier y0’s are observed in the west of that region; however, overall,

no specific trend is detected. The same conclusion applies to eastern Asia.

y0 of the majority of grid cells is in the range of 1970-2008 (Figure 5.16).

– Slope (1) and Slope (2) of most of the locations over central Asia, western

China, and eastern Asia are in the range of 0.02 − 0.15, 0.03 − 0.1, and

0.02 − 0.13 (◦C/year), respectively. It should be noted that the minimum

values are concentrated over easternmost Asia (Figures 5.20 and 5.24).

3. Model 3

Similar to other continents, most of the locations selected by Model 3 show
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significant warming in Sinterest and SWtotal
(Figures 5.74 and 5.75).

– The spatial integrity of the yw values is more significant compared to Model

2. yw in most of the locations in southwestern and central Asia, western

China, and eastern Asia occurs during the 1960s decade. It should be noted

that although the dominant decade of yw is the 1960s in western China,

similar to Model 2, distinct boundaries exist. yw most commonly occurs

during the 1920s, 1960s, and 1940s decades in the west to east direction

(Figure 5.60).

– The y0 patterns observed in Figure 5.64 are clearer than Model 2. The

values reported by Model 3 are in the range of 1960-2008. In central Asia,

y0 increases with latitude. In western China, similar to MARS and Model

2, the minimum values of y0 are concentrated in the west of the region.

– Slope (1) and Slope (2) have larger values in southwestern and central Asia

(0.02 − 0.14 (◦C/year)). Slopes are larger in western and eastern China

compared to the slopes in easternmost Asia. The values are within the

range of 0.03 − 0.1 (◦C/year) in western China with the minimum values

in the west of the region. Over eastern Asia, values generally fall within

0.06 − 0.08 (◦C/year) except the grid cells in easternmost Asia. These

locations have smaller slopes (approximately 0.02−0.04(◦C/year)) (Figures

5.68 and 5.72).

4. R method

According to Figures 5.166 and 5.167, few locations show insignificant warming

over Sinterest and SWtotal
.

– In southwestern and central Asia, the highest spatial integrity is observed

in the y0 results of the R method. The time of 0◦C crossing (y0) for almost

all the locations is in the 1990s decade. It should be noted that the pattern

observed using the other techniques (increase of y0 with latitude) is replaced

by very close values of y0 in this part of Asia. In western China and eastern

Asia, no pattern is observed, except that similar to the other techniques,

minimum values in western China are concentrated in the west of the region.

In western China and eastern Asia, y0 generally occurs in the time periods

of 1970-2000 and 1980-2000, respectively (Figure 5.157).

– As with the other parts of the Northern Hemisphere, the R method reports
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the smallest slopes. Slope (1) and Slope (2) in southwestern and central Asia

as well as eastern Asia are in the range of 0.01− 0.03 (◦C/year). Over Asia,

the minimum slopes are observed in western China (0.005−0.01 (◦C/year))

(Figures 5.161 and 5.165).

Table 5.14 summarizes the results obtained using different techniques over Asia.

5.8.4.2 MAM

Similar to JFM, only locations whose temperature exhibits significant warming over Sinterest

and SWtotal
are analysed. The numbers of locations with significant trends for all the

methods are indicated in Tables 5.15 (North America) and 5.16 (Eurasia). Furthermore,

the spatial distributions of the grid cells with significant increase in temperature over

Sinterest and SWtotal
are illustrated by Figures 5.45 and 5.46 (Model 2), 5.93 and 5.94 (Model

3), 5.141 and 5.142 (MARS), as well as 5.180 and 5.181 (R method).

• North America

1. MARS

– As depicted by Figures 5.125 and B.29, yw in many locations occurs in the

first decade of the 20th century.

– y0 increases with latitude, and it is approximately evenly distributed in the

range of 1920-2000 (Figures 5.129 and B.29).

– Slope (1) and Slope (2) are in the range of 0.005− 0.04 (◦C/year) (Figures

5.133, 5.137, and B.29).

2. Model 2

– According to Figures 5.29 and B.31, the start of warming in the majority

of grid cells is during 1900-1920. In the west-central grid cells, yw occurs in

the 1900s, and in the central-eastern locations, the values most commonly

fall within the second decade of the 20th century.
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– y0 of the majority of the west-central grid cells falls within the range of 1900-

1950, and the pattern observed in this region is not as strong as the pattern

in the central-eastern part where y0 values increase with latitude. y0 in the

central-eastern region generally takes place during 1910-2000 (Figures 5.33

and B.31). It is worth noting again that locations that experience both y0

and yw in the first few decades of the 20th century might be modelled by

positive segments if more data points were available prior to 1901.

– Slope (1) and Slope (2) of most of the locations are within the range of

0.01−0.04(◦C/year). Slopes are slightly larger in the west compared to the

east (Figures 5.37, 5.41, and B.31).

3. Model 3

– Similar to MARS and Model 2, yw values reported by Model 3 occur in the

1900s. Although there are a lot of grid cells in the center of the transition

area that do not meet the criteria set by Rules 1 and 2 of transition area,

the same pattern as Model 2 is observed; in the western grid cells, yw occurs

during the 1900s, whereas, generally, it takes place later in the east (Figures

5.77 and B.33).

– y0 is generally in the range of 1900-1940 (Figures 5.81 and B.33).

– Slope (1) and Slope (2) are reported to be in the range of 0.001−0.07(◦C/year)

(Figures 5.85, 5.89, and B.33).

4. R method

– As depicted by Figures 5.169 and B.35, few locations experience y0. y0 of

these grid cells could be categorized into two time periods of 1970s and

1990s. The selection of these grid cells may be due to the maritime climate

variability in these areas (Bonsal and Prowse, 2003).

– Slope (1) and Slope (2) of this small subset are in the range of 0.008 −
0.02 (◦C/year) (Figures 5.173, 5.177, and B.35).

Table 5.15 summarizes the above-indicated results for North America during

MAM.

• Eurasia

Prior to investigating the maps of Eurasia, it should be noted that over Eurasia,
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Table 5.15: All the results indicated in Section 5.8.4.2 for North America are summarized in

the table below. * Only locations that exhibit significant warming trends are considered to draw

conclusions about the spatial distributions of yw and y0. Nt is the total number of locations in

the specified region that are in the final database. Ns is the number of locations in the subset of

Nt that experience significant increase in temperature.

Model
North America

N∗t N∗s yw y0

MARS 594 465 1900s 1920-2000

Model 2 554 411 West:1900s, East: 1910s 1910-2000

Model 3 303 207 1900s 1900-1940

R method 79 61 N/A 1970s, 1990s

the grid cells selected based on Rules 1 and 2 of transition area are located in lower

latitudes in the eastern areas compared to the western regions. Furthermore, in

contrast to JFM with disconnected regions over Eurasia (particularly in Asia), the

transition area looks like a continuous band extending from northern Europe to

eastern Asia. This implies that more locations experience y0 during MAM. It is also

worthwhile to note again that only the locations with significant increasing trends

over Sinterest and SWtotal
are discussed below.

1. MARS

– Generally, yw occurs earlier in western regions, i.e., over northern Europe

(Sweden and Finland) and European Russia. Over Asia, in southern Rus-

sia, northern Mongolia, and northeastern China, yw increases with latitude.

Looking at the big picture, yw generally increases in the west to east direc-

tion. However, moving toward easternmost Asia from the common bound-

aries of Russia, Mongolia, and China, yw decreases. In the western regions,

yw of most of the locations is in the range of 1900-1940 . yw most com-

monly occurs in the 1950s in the grid cells located in the center and east of

the band that extends from northern Europe to easternmost Asia (Figures

5.124 and B.30).
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– According to the y0 map (Figure 5.128), a clear pattern exists; y0 increases

with latitude. The histogram of y0 values over Eurasia (Figure B.30) reveals

that y0 increases approximately uniformly from the beginning of the 20th

century.

– Slope (1) and Slope (2) are in the range of 0.005−0.1 (◦C/year). According

to Figures 5.132, 5.136, and B.30, slopes are generally smaller over northern

Europe and European Russia compared to the rest of the locations along

the band.

2. Model 2

– Similar to MARS, the highest values of yw are concentrated in the center

and east of the band extending from northern Europe to easternmost Asia.

However, a more detailed investigation reveals that the trends and values

are different from MARS. Furthermore, the spatial integrity of the results

is readily noticeable. In Europe, the value of yw decreases from west to

east, from 1980 to 1910. In Asia, yw of most of the locations occurs in

the 1970s, and generally, in a given longitude, yw increases with latitude.

In the center of the band, in southern Russia, there is a region with a

considerable number of grid cells whose yw occurs in the 1900s. Similar

to MARS, moving eastward from the common boundaries of Mongolia and

China, yw decreases (Figures 5.28 and B.32).

– The y0 pattern (increase with latitude) is clearer compared to MARS (Fig-

ure 5.32). According to the histogram of y0 for Eurasia (Figure B.32),

although the number of locations with y0 in the range of 1900-1970 is con-

siderable, the histogram is denser during the time period of 1970-2008. As

indicated above, there is a large region over southern Russia (close to the

common boundaries of Kazakhstan and Russia) where yw most commonly

occurs during the 1900s. As is depicted by the y0 map, some of the grid

cells located in this region experience y0 in the first decade of the 20th cen-

tury. This implies that these grid cells might be included in the category

of locations whose models are positive during the entire period of study if

more data points were available prior to 1901. The fact that the southern

neighbours of these pixels are modelled by positive segments supports this

idea.
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– In the majority of locations, Slope (1) and Slope (2) are in the range of

0.01−0.1(◦C/year). Slopes in the center to east of the band are significantly

larger than those of western (over Europe) and easternmost locations. It

should be noted that the region in southern Russia where yw occurs in the

1900s decade exhibits smaller slopes compared to the rest of the locations

in the center to east of the band (Figures 5.36, 5.40, and B.32).

3. Model 3

Similar to the cases indicated earlier, Model 3 builds segments such that the

minimum ratio of insignificant to significant trends over Sinterest and SWtotal
is

observed.

– According to Figure 5.76, the continuity observed using MARS and Model

2 is broken; however, similar to Model 2, the results are spatially coherent.

The 1950s is the dominant decade of yw (Figure B.34). Over European

Russia and easternmost Asia, yw takes place earlier during 1920-1940. Along

the band, most commonly over southern Russia, there are disconnected

regions with a considerable number of locations whose yw occurs in the

1900s.

– As with MARS and Model 2, y0 generally increases with latitude (Figure

5.80). As depicted by the y0 histogram over Eurasia (Figure B.34), y0 of

most of the locations occurs during the second half of the 20th century and

the first decade of the 21st century. In the region in southern Russia whose

grid cells experience yw during the 1900s decade, y0 most commonly occurs

during the 1900s decade as well.

– Slope (1) and Slope (2) of most of the locations fall within the range of

0.02 − 0.1 (◦C/year). However, along the band that extends from north-

ern Europe to easternmost Asia, the slopes of western and easternmost

regions are smaller than the central slopes, which are in the range of 0.05−
0.14 (◦C/year) (Figures 5.84, 5.88, and B.34).

4. R method

– In contrast to the other techniques, y0 exhibits no pattern (Figure 5.168).

Instead, the continuous band extending from northern Europe to eastern-

most Asia consists of approximately distinct regions of specific values of y0

(similar to the yw maps of the other techniques). Over northern Europe

319



5.8. Discussion Chapter 5. Results

and European Russia, y0 occurs during the time period of 1980-2009. In

Asia, the majority of locations fall within the category of 1990s. Similar to

Model 2 and Model 3, in southern Russia (close to the common boundaries

of Kazakhstan and Russia), there is a region that includes a considerable

number of grid cells experiencing y0 early in the first decade of the 20th

century. In easternmost Asia, rather smaller values of y0 are observed than

the majority of locations in the center and east of the band (1960-1980)

(Figure B.36). The grid cells with large values of y0 located in easternmost

Asia are in the category of the locations with insignificant increasing trends

over Sinterest and SWtotal
.

– The R method produces the smallest slopes. Slope (1) and Slope (2) are

most commonly in the range of 0.01− 0.03 (◦C/year). Slopes are generally

smaller in the west of the band compared to the center and east of it (Figures

5.172, 5.176, and B.36).

The summary of all the above-mentioned points with regard to Eurasia during

MAM is indicated in Table 5.16.

5.8.5 Picking the Best Model

The graphical comparison of the techniques reveals that the y0 results of Model 2, Model 3,

and MARS are close (Section 5.8.2: Figures 5.182 and 5.183). Furthermore, the similarity

of the y0 results of MARS, Model 2, and Model 3 is supported by Wilcoxon signed-rank test

for paired observations and Wilcoxon rank-sum test (refer to Tables 5.10 and 5.11). On the

other hand, as discussed in the previous sections (Sections 5.8.3 and 5.8.4), the histograms

and maps of JFM and MAM exhibit different results over some regions of the Northern

Hemisphere. Particularly over North America and during MAM, very significant differences

between the techniques are observed. Several points should be noted to understand and

solve this contradiction:

• The graphical comparison of any two techniques only considers the common points

selected by the two methods. Therefore, the fact that one of the techniques does

not cover the grid cells of a specific region does not influence the comparison results.

Furthermore, the approach applied to graphically compare the paired results of any
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Table 5.16: All the results indicated in Section 5.8.4.2 for Eurasia are summarized in the table

below. * Only locations that exhibit significant warming trends are considered to draw conclusions

about the spatial distributions of yw and y0. Nt is the total number of locations in the specified

region that are in the final database. Ns is the number of locations in the subset of Nt that

experience significant increase in temperature.

Model
Eurasia

N∗t N∗s yw y0

MARS 1918 1538

western regions: 1900-1940,

central-eastern locations:

1950s

uniform increase with latitude:

1900-2009

Model 2 2142 1712

Europe: west to east from 1980

to 1910, Asia: most commonly

1970s (a large region in south-

ern Russia: 1900s)

increase with latitude, 1970-

2008

Model 3 1924 1826

Europe: west to east from

1950 to 1920, Asia: most com-

monly 1950s (disconnected re-

gions with a considerable num-

ber of grid cells: 1900s)

increase with latitude, 1950-

2008

R method 1781 1418 N/A

no pattern or trend; north-

ern Europe and European Rus-

sia: 1980-2009, Asia: 1990s (a

large region in southern Rus-

sia: 1900s), easternmost Asia:

1960-1980

two techniques is not a precise statistical method. It is often used to gain some rough

idea of the difference between methods. As an example, from yw graphs (Figure

5.184), it is readily observed that yw’s are different.

• To statistically compare y0 results of the paired observations, Wilcoxon signed-rank

test for paired observations is applied. According to Table 5.10, which represents

the results of the test, although the y0 results of MARS-Model 2, MARS-Model 3,

and Model 2-Model 3 are similar at the 5% significance level, the results are different

if the significance level is assumed to be larger (e.g., 10%). As indicated earlier,

during MAM, P-values are smaller. This implies that the y0 results differ more during

MAM. Furthermore, as mentioned in Section 3.6.1.2, care must be taken in analysing

the environmental data using Wilcoxon signed-rank test. As an example, when the
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observations within each group are correlated, the test becomes very conservative in

rejecting the null hypothesis : µ1 = µ2 (Modarres et al., 2005).

• In regard to Wilcoxon rank-sum test, according to Table 5.11, large P-values are

indicative of similar results. However, even in that case, particularly during MAM,

P-values are rather small. For example, the y0 results of MARS-Model 2 and Model

2-Model 3 could be considered different at the significance level of 10%. Furthermore,

the goal of Wilcoxon rank-sum test is to investigate whether both techniques gener-

ally yield similar results. For instance, during MAM, significant differences between

Model 3 and Model 2 or MARS are observed over North America; however, over

Eurasia, the y0 patterns are similar. Therefore, in Wilcoxon rank-sum test, since

numbers are taken into account without considering the locations they refer to, the

test favours the null hypothesis of equal means in such cases.

In this research, the analysis is based on the relatively short time series. Thus, it is very

difficult to attribute definite functions to them. This was the reason that motivated the

inclusion of various methods to analyse time series in this study. The specific points that

distinguish these methods and help understand their advantages and disadvantages based

on the research goals are discussed in detail in Chapters 2 and 3. In Section 5.8.1, the

key characteristics of each technique (Section 5.8.1.1) and the connection between these

methods and their theoretical frame work (Section 5.8.1.2) are highlighted again.

As described in Sections 5.8.1.1 and 5.8.1.2, from the mathematical point of view, a

close connection exists between MARS, Model 2, and Model 3; MARS approximates time

series with polynomials of degree zero or one that are continuous at the boundaries. Model

2 and Model 3 assume that the long-term changes follow a linear trend, and the climatic

noises are modelled by an auto-regressive process. The significant differences between

the results of MARS, Model 2, and Model 3, which are depicted by the histograms and

maps over some regions of the Northern Hemisphere (Sections 5.8.3 and 5.8.4), indicate

the necessity of a more in-depth comparison between these techniques. Since the most

considerable differences are observed in North America and during MAM, an extensive

investigation is performed on the grid cells of that region to understand the underlying

reasons for observed differences.

The analysis starts with the comparison of Model 2 and Model 3. Following the as-

sessment of the results of Model 2 and Model 3, MARS will be compared to Model 2 and
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Model 3 (refer to Section 5.8.5.2). In regard to the R method, since it is conceptually

different from the other techniques, different results were expected. The final discussion

(Section 5.8.5.3) highlights some points on why the R method is included in this research

despite its distinct mathematical basis.

5.8.5.1 Model 2 versus Model 3

As indicated in Section 2.3.4, since climate can undergo abrupt shifts besides gradual

changes (Ivanov and Evtimov, 2010), statistical tests developed to detect breaks in the

structure of time series can be applied to the problem of finding break points in the trend

function of climate time series. Abrupt shifts may occur in the slope and/or intercept of

the trend function of a climate time series. Model 2 and Model 3 detect abrupt shifts in

slope and simultaneous shifts in slope and intercept, respectively. To understand which of

the two approximations is more in accord with the behaviour of the original temperature

data, three cases are considered:

• Case 1

Time series that i) are modelled by Model 3, ii) fulfil the criteria of Rules 1 and 2 of

transition area (Section 4.3), iii) have significant increasing trends over Sinterest and

SWtotal
selected by Model 3, iv) are not selected by Model 2 since either Rules 1 and

2 of transition area or trend significance over Sinterest and SWtotal
is not satisfied. In

North America, during MAM, 77 time series (out of 207 grid cells selected by Model

3: Table 5.15) have the above characteristics.

• Case 2

Time series that i) are modelled by Model 2, ii) fulfil the criteria of Rules 1 and 2 of

transition area (Section 4.3), iii) have significant increasing trends over Sinterest and

SWtotal
selected by Model 2, iv) are not selected by Model 3 since either Rules 1 and

2 of transition area or trend significance over Sinterest and SWtotal
is not satisfied. In

North America, during MAM, 281 time series (out of 411 grid cells selected by Model

2: Table 5.15) have the above characteristics.

• Case 3

If both of Model 2 and Model 3 fulfil the requirements of Rules 1 and 2 of transition

area and exhibit significant increasing trends during Sinterest and SWtotal
, these grid
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cells form this category. In North America, during MAM, the number of these time

series is 130 (out of 207 (Model 3) and 411 (Model 2)).

The analysis starts with considering all 77 time series of Case 1. All of these time series

are inspected manually and divided into the categories described below. The sample plots

of each category are presented in Appendix C. Note that in addition to Models 2 and 3,

time series are modelled by MARS and the R method to understand how the behaviours

of time series are approximated by these models and whether MARS and the R method

provide some evidence in favour of Model 2 or Model 3:

1. Since climate can undergo abrupt shifts besides gradual changes (Ivanov and Evti-

mov, 2010), Models 2 and 3 are used to detect breaks in the trend function of climate

time series. Model 3 detects simultaneous shifts in slope and intercept; hence, it is

discontinuous at the break time. Due to the discontinuity at the shift point, trivial

positive 0◦C crossings are sometimes produced by Model 3 where Model 2 segments

are entirely above 0◦C or below 0◦C. Each of Figures C.2, C.4, C.7, C.8, and C.10

illustrates one example from different categories encountered by investigating all the

time series that have the above-indicated characteristics. Note the periodic behaviour

of the time series in Figure C.8, which is partially captured by MARS. It is possible

that if more data points were available, the model approximation at Time = 2007

would be the same as Time = 1964.

2. Model 2 detects the shift in the slope of the trend function of a time series; hence,

it is continuous at the break point. Due to the continuity in the break time, Model

2 exhibits a rather smooth behaviour. In some situations where it seems that the

time series under study is best approximated by a positive or negative function,

both of Model 2 and Model 3 cross 0◦C in the positive direction. However, due to

the continuity of Model 2 at the shift time and its somewhat smooth behaviour,

the increasing trend during Sinterest is not significant. On the other hand, Model 3

approximates the time series such that both the intercept and slope change at the

break time. Therefore, it often builds segments such that the original data within

Sinterest exhibit a significant increasing trend. This point is best described by Figures

C.1, C.6, and C.9. Each of these figures provide one example from various categories

with the above-indicated features. In Figure C.1, as an example, no significant trend

is detected over Sinterest of Model 2 (1983-2009), whereas the Sinterest built by Model

3 (1972-2009) is such that a significant increasing trend is observed.
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3. In some cases, although Model 2 experiences a positive 0◦C crossing during the first

segment, it eventually goes back below 0◦C; hence, that grid cell is not selected

according to Rule 2 of transition area. Figures C.3 and C.5 provide examples of

various cases that occur under this category. As depicted by Figure C.3, MARS and

the R method approximate the time series in a similar fashion. Model 3 detects an

early 0◦C crossing similar to Model 2, which is followed by a break. Temperature

tends to increase again, however, the final decline in temperature is not captured

by Model 3. It should be noted that the fact that the R method detects similar

changes as Model 2 close to the end of the time series under this category increases

the reliability of Model 2. The reason is that as indicated earlier, one of the key

advantages of the R method is its ability to detect abrupt changes in the mean level

of a time series close to the end of the time series.

As described above, the analysis of the grid cells selected using Model 3 but not Model

2 produces results in favour of Model 2. The next step involves investigating 281 grid

cells of Case 2. These time series are modelled by Model 2 such that they meet all the

requirements of Rules 1 and 2 transition area and have significant increasing trends over

Sinterest; however, one of these characteristics is missing if they are approximated by Model

3. Various cases observed could be categorized as follows:

1. The yw and y0 determination rules for Model 3 (5.4.2) are set such that it looks for y0

within each of the two segments, and yw is determined as the beginning of the segment

that includes y0. These rules do not identify the break point that is preceded by a

negative line and followed by a positive segment as the time of positive 0◦C crossing

(similar to the R method). The reason is that it would not be feasible to determine

yw for these grid cells similar to the locations whose y0 occurs within one of the two

segments and yw is definable. Figures C.12 and C.15 provide examples of these cases.

2. A small subset of the grid cells of Case 2 includes locations whose Model 3 segments

are positive or negative. Model 2 in these cases shows early y0’s (within the first two

decades of the 20th century). As emphasized frequently, it could be assumed that

the model of these locations is positive during the entire time period of this study.

Figure C.16 illustrates one example from this category.

3. Some of the cases not selected using Model 3 experience one positive 0◦C crossing.

However, either the second segment of Model 3 crosses 0◦C in the negative direction
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(Figure C.13) or the increasing trend over Sinterest is not significant (Figure C.14). In

the former case, as is confirmed by inspecting the models produced by the R method,

the problem arises due to the discontinuity of Model 3 at the break point.

The analysis of the grid cells that are selected by only one of Model 2 and Model 3

reveals that Model 2 is more suitable than Model 3 in this research. However, one more step

should be taken before reaching the final conclusion. That is to examine the performance

of both models when both of them fulfil all the requirements of Rules 1 and 2 transition

area and have significant increasing trends over Sinterest. It is worthwhile to note again

that Model 2 and Model 3 follow two different goals; the former only looks for the time of

break in the slope of the trend function, and the latter is in search of the time when both

the intercept and slope of the trend function change. Most of the cases with similar y0

results generated by Models 2 and 3 have close break times. In some situations, although

the break times are not close, the orientation of lines is such that similar y0’s are obtained.

During JFM, since the distributions of break time are close (Figures 5.1 and 5.47) less

differences between the y0 results of the two techniques are observed compared to MAM.

Figures C.18 and C.22 provide two examples whose Model 2 and Model 3 approximations

resemble each other. Figures C.17, C.19, and C.20 are the examples of cases where different

segments are produced by Model 2 and Model 3; however, y0’s are close. The grid cells

where the performances of Model 2 and Model 3 differ could be divided into the groups

indicated below. The segments might be such that these differences do not affect the y0

results. However, the purpose of the following classification is to understand which model

provides a better approximation of the original data.

1. As indicated, in some locations, the discontinuity and level change at the break time

lead to a very localised model. Figures C.17, C.21, and C.23 are examples of such

cases. Figure C.23 illustrates how localised approximations of Model 3 may lead to

significantly different y0 results.

2. Due to the change in level as well as slope at the break time of Model 3, in some cases,

the second segment of Model 3 is not able to capture the decline in temperature that

occurs close to the end of a time series. These cases are depicted by Figures C.19 and

C.20. It is worthwhile to note again that the behaviour of Model 2 close to the ends

of time series is verified by the R method since it is capable of discovering changes

close to the ends of time series with a minimum delay.
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Based on the above discussion, it is concluded that Model 2 provides better approxi-

mations of the time series in this research compared to Model 3.

5.8.5.2 MARS versus Models 2 and 3

As indicated in Section 5.8.1.2, the behaviour of MARS in many locations with 2 segments

resembles that of Model 2 (Figures C.14 and C.16). Furthermore, among locations with

more than two segments, some of them are modelled as if the approximation technique is

Model 3 of IO type. In all of these cases, there is a steep segment with a short duration

that indeed plays the role of transitional period in the case of IO models. This segment

leads to the simultaneous shift in slope and intercept as with Model 3 (Figures C.12 and

C.24). In some situations, the larger number of segments built by MARS may affect the

selection of Sinterest. An example of this case is provided by Figure C.24; the time series

is modelled by four segments, and the first and last segments cross 0◦C in the positive

direction. The first segment has a positive slope and is followed by another segment of

positive slope. Since the first segment has a smaller slope, the last segment is selected

as Sinterest. Model 3 approximates the first two segments of MARS as one line of positive

slope with a larger rate of temperature increase and a larger accumulation than the second

segment. Therefore, Sinterest of Model 3 is the first segment.

As mentioned earlier in Section 5.8.1.2, MARS is an adaptive regression technique that

has been developed to model any type of data and not necessarily time series. It is accurate

and applicable to cases with up to 20 independent variables. Furthermore, it generates

precise results if there are interactions between a few independent variables. MARS is

also capable of handling missing values and categorical variables. All these characteristics

make MARS a powerful method that could be used to model intricate situations. Since

MARS does not belong to the category of techniques used in the analysis of time series,

its algorithm does not include autoregressive terms. Hence, a more complicated path is

followed to model data. Due to the adaptive and complex nature of the algorithm, it

requires the analyst to provide more input parameters compared to the other algorithms

used in this study, and this is one of the drawbacks of MARS. MARS has no intuition of

its own, and these input arguments are open to experimentation. Therefore, it may be

necessary to study the difference that it takes to run the model with different values of the

input arguments and examine which of the possibilities yields the best performance and

the best bias-variance trade-off. Due to the large number of locations under study in this
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thesis, it is not feasible to investigate each case separately. To partially offset this problem,

three groups of input parameters are considered in the MARS analysis (refer to Section

5.5.1 for more details). In contrast to MARS, Models 2, which is specifically developed for

the analysis of time series, requires few inputs. This makes the technique more suitable

for analysing large databases where it is not feasible to inspect all cases individually and

modify the inputs accordingly.

5.8.5.3 R method versus Other Techniques

The R method has some distinct features that make it different from the other methods.

As emphasized frequently in this thesis, the R method belongs to the category of the

methods that detect changes in the mean levels of time series. This implies that it is

suitable for detecting sharp changes in mean rather than trend inhomogeneities in time

series. Another unique characteristic of the R method is its ability to detect shift points

close to the ends of time series since the analysis includes observations in sequence, and

the number of observations included in each step is not fixed a priori. MARS and Models

2 and 3 lack this ability.

Since the R method detects the sharp changes in the mean of time series, the upward

shifts that cross the 0◦C line could be directly considered as y0 candidates. Therefore, the

model requires minimum rules on the determination of y0. This implies that y0 reported

by the R method is the year of 0◦C crossing when the mean of the time series moves

above 0◦C as opposed to MARS and Models 2 and 3 where the long-run path (trend

function) of temperature crosses 0◦C. yw is not defined for the R method due to its specific

characteristics (for more details, refer to Sections 2.3.2.2, 3.2, and 5.8.1.1).

Although the R method is conceptually different from the other techniques, it is in-

cluded in this thesis due to its unique characteristics. It is one of the advanced climate

regime shift detection techniques and presents interesting results regarding the sign of the

mean level of the temperature time series. The analysis of the time series with the R

method provides the opportunity to compare the time of positive 0◦C crossing of the mean

level and the long-run path of temperature. As depicted by the maps and histograms, in

some grid cells, the shift in the sign of mean occurs some time close to the positive 0◦C

crossing of the trend function. Furthermore, the comparison of the transition areas of dif-

ferent techniques reveals that most of the locations whose trend functions rise above 0◦C
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experience positive 0◦C crossing in the mean level as well. Most commonly the positive

0◦C crossing in mean occurs later. Another advantage of the assessment of the results of

the R method is that its algorithm is robust near the ends of time series. Hence, in some

situations, it was used to verify the behaviour of Model 2 in the initial or final years of the

time series.

5.8.5.4 Conclusion

This research is more concerned with the time of the positive 0◦C crossing of the long-run

path of temperature. Therefore, based on the discussion above, in terms of the simplicity

of input arguments as well as y0 and shift point determination, Model 2 provides the best

approximation of the temperature time series in this research.

5.8.6 Cryospheric Evidence for Observed Trends

As indicated in Chapter 2, many analyses of change (temporal and spatial) still rely on

relatively simple climate variables such as air temperature, which acts as an index for a

complex set of heat fluxes. For example, in the study by Cayan et al. (2001), the first

significant snowmelt run-off pulse of high-elevation streams in the interior western U.S. is

considered as one of the indicators of the spring onset. The study indicates that anomalous

temperature has a great impact on the first significant snowmelt. Therefore, it is of key

importance to examine critical changes in air temperature. The focus of this thesis is

on 0◦C, the point of cryospheric phase change. Cryospheric variables such as freeze and

breakup dates, timing of snowmelt, and the snow-free period are strongly influenced by

the change in the sign of temperature (Bonsal and Prowse, 2003). Duguay et al. (2006)

and Prowse et al. (2010) note that spring 0◦C isotherm could be used as an indicator of

the timing of spring breakup events. The goal of this section is to compare the observed

spatial trends of y0 with the trends reported by other studies for some of these cryospheric

variables.

Prior to examining the connection between detected trends in some cryospheric vari-

ables and the y0 results obtained in this research, the yw and y0 results of Model 2, presented

in Sections 5.8.3 and 5.8.4, are compiled below. Several points should be noted regarding

the terminology of regions:
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1. During JFM, due to the high degree of spatial variability of the results over North

America, the transition area in North America is divided longitudinally into three

regions: i) Western U.S.: 125◦W − 105◦W, ii) Central U.S.: 105◦W − 90◦W, iii)

Eastern U.S.: 90◦W− 70◦W.

2. During JFM, in Europe, the region under study is confined to the longitudes of 30◦W

and 45◦E. The density of the selected locations is higher in central Europe. However,

except northern Europe, the grid cells are distributed over entire Europe.

3. During JFM, the region of Asia is divided into three parts for the analysis: i) South-

western and Central Asia (45◦E to 75◦E), ii) Central-Eastern Asia (75◦E to 100◦E),

iii) Eastern Asia (100◦E to 150◦E). The transition area in southwestern and central

Asia covers a small region that consists of some parts of Uzbekistan, Kazakhstan,

and Iran. From central-eastern Asia, only a small area from western China meets

the criteria set by Rules 1 and 2 of transition area. This region is located in the

north of Tibet and south of Xinjiang and is surrounded by high mountains. Most of

the region lies in the Taklamakan Desert, and it is referred to as western China. In

eastern Asia, the final database only includes some grid cells from east central China,

South Korea, and Japan.

4. During MAM, the majority of grid cells in North America are located in Canada.

5. During MAM, in contrast to JFM with disconnected regions over Eurasia (partic-

ularly in Asia), the transition area looks like a continuous band extending from

northern Europe to eastern Asia. The western grid cells along the band are located

in higher latitudes compared to the eastern pixels.

Results:

• JFM

– North America

In western U.S., the start of warming most commonly occurs during the 1940s

decades. The majority of y0’s fall within the range of 1960-2008. Most of the

locations in central U.S. exhibit insignificant warming trends. Only 39 locations

(out of 106) show significant increase in warming which starts in the 1960s
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decade in most of the grid cells. y0 most commonly takes place after 1960 with

a peak in the 1980s decade. Only a few locations (most commonly located

in northeastern U.S.) exhibit significant warming trends started in the 1970s

decade. y0 is distributed over the entire century with a small peak in the 1990s.

– Europe

The map of yw shows high spatial integrity. Most of the grid cells with in-

significant warming are located in southern Europe. The remaining locations

experience yw during the 1920s and 1940-1970. In higher latitudes, yw occurs

later. y0 occurs during 1960-2008 in most of the locations. y0 values increase

from west to east in the diagonal direction. In the north of Black Sea, in eastern

Europe, y0 increases with latitude.

– Asia

Most of the locations in southwestern Asia show insignificant warming over

Sinterest. In central Asia, the grid cells that are located in Uzbekistan do not

exhibit significant increasing trends either. Excluding these pixels, in terms of

yw values, high spatial integrity is observed in central Asia and western China.

yw of the majority of locations occurs during the 1970s decade in central Asia

and western China. In western China, a bell-shaped behaviour of yw is observed.

This implies that yw increases from 1930s (in the west) to 1970s (in the center)

and declines to 1960s (in the east). In eastern Asia, yw occurs during the 1960s

and 1980s decades in eastern China and during the time period of 1901-1940 in

most of the locations in Japan and South Korea. Over central Asia, y0 increases

with latitude. In western China, smaller y0’s are observed in the west of the

region; however, overall, no specific pattern is detected. The same conclusion

applies to eastern Asia. The values of y0 of the majority of grid cells are in the

range of 1970-2008.

• MAM

– North America

The start of warming in the majority of grid cells is during 1900-1920. In

the west-central grid cells, yw occurs in the 1900s, and in the central-eastern

locations, the values most commonly fall within the second decade of the 20th

century. y0 of the majority of the west-central grid cells occurs during 1900-

1950, and the pattern observed in this region is not as strong as the pattern in
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the central-eastern part where y0 values increase with latitude. y0 in this region

generally takes place during 1970-2000.

– Eurasia

The largest values of yw are concentrated in the center and east of the band ex-

tending from northern Europe to easternmost Asia. The spatial integrity of the

results is readily noticeable. In Europe (northern Europe and European Russia),

the value of yw decreases from west to east from 1980 to 1910. In Asia, yw of

most of the locations occurs in the 1970s, and generally, in a given longitude, yw

increases with latitude. In the center of the band, in southern Russia, there is

a region with a considerable number of grid cells whose yw occurs in the 1900s.

From the common boundaries of Mongolia and China in the eastward direction,

yw decreases. y0 shows a clear pattern; it increases with latitude in a given

longitude. According to the histogram of y0 for Eurasia, although the number

of locations with y0 in the range of 1900-1970 is considerable, the histogram is

denser during the time period of 1970-2008.

Notes:

1. During JFM, the locations that experience y0 are distributed haphazardly in North

America, and weak spatial coherence is observed over this region. These patterns

may be indicative of the fact that generally, this area is not influenced by climate

change to a degree that the sign of temperature changes during JFM.

2. The temperature of the locations where both y0 and yw occur in the first few decades

of the 20th century might be approximated by positive models if more data points

were available. For example, during MAM, a subset of the grid cells located in North

America over western areas of Canada have this characteristic. A similar situation

is observed in southern Russia (close to the common boundaries of Kazakhstan and

Russia).

After compiling all the results of Model 2, the rest of this section is focussed on com-

paring its results to the outcomes from related work. This section is more concerned with

providing cryospheric evidence for the observed trends. However, it should also be noted

that according to the yw histograms of Model 2 (Figure 5.1 for JFM and Figure 5.5 for

MAM), the peaks of the histograms occur in the 1960-1980 period and the 1970s decade
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during JFM and MAM, respectively. This conclusion is in agreement with the studies that

referred to the widespread climate change in the 1970s and/or 1980s decades (e.g., Kerr,

1992; Hare and Mantua, 2000; Rodionov and Overland, 2005; IPCC, 2007; Lo and Hsu,

2010). It is worth noting again that the MAM histogram displays another peak in the

1900s decade which is due to the fact that the time series are truncated in 1901 and is not

supported by any environmental evidence (refer to Section 5.3 for more details).

According to the Model 2 (Model 3) histograms of break time during both JFM and

MAM, over the entire Northern Hemisphere (Figures 5.1, 5.5, 5.47, and 5.52), the main

peaks of the histograms occur in the 1960s-1970s (1960s) and 1970s (1950s), respectively.

These results are in accord with the results of Ivanov and Evtimov (2010). The study

applies Model 3 of IO type to the time series of annual Northern Hemisphere surface

temperature. The data span the time period of 1850-2007. Ivanov and Evtimov (2010)

report that the trend line of the time series breaks in 1963, and after the transition period

of 6 years, a new regime starts. The slope of the new regime is 3 times greater than the

slope of the first regime.

In the study by Bonsal and Prowse (2003), spring 0◦C isotherm is determined as the date

of positive 0◦C crossing of mean daily temperature. Due to temperature fluctuations, this

situation may be repeated several times. Therefore, Bonsal and Prowse (2003) calculated

the 31-day running averages of the time series under study. The 31-day running averages

of the majority of stations cross 0◦C one time. The study accepts the last positive 0◦C

crossing as spring 0◦C isotherm if there is more than one positive 0◦C crossing. For each

station, the spring 0◦C isotherm of each year is determined during the time period of 1961-

1990. The mean of these dates is accepted as spring 0◦C isotherm for the given station

during 1961-1990.

The contour plot of spring 0◦C isotherm dates over Canada is provided in Bonsal and

Prowse (2003). According to this plot, spring 0◦C crossings over the west-central and

eastern grid cells of the MAM transition area of Model 2 occur on April 15 and April 1,

respectively. According to the results of this thesis, the MAM temperature of the grid cells

located in the region approximately between April 15 and April 1 isotherms has crossed

the 0◦C line. y0 most commonly occurs within the period of 1970-2000. Therefore, there

is an inconsistency in the time of positive 0◦C crossing reported by the two studies during

MAM; Bonsal and Prowse (2003) indicates that average spring positive 0◦C crossings take

place in April during the time period of 1961-1990, in the locations selected by Model
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2. On the other hand, according to this thesis, the temperature of the majority of those

locations has permanently crossed 0◦C during the time period of 1970-2000.

This contradiction may be due to the fact that in the study by Bonsal and Prowse

(2003), the spring 0◦C isotherm of each station is determined by analysing the running

average of the time series of each year in the period of 1960-1990. Then, the average of

these values is evaluated for the given location. On the other hand, in this study, the

average of three months of March, April, and May is used for modelling. Furthermore, y0

is determined as the time when the trend function (the long-run path) of a time series or

the mean level of a time series crosses 0◦C. Beyond all of these considerations, the time

period of the study is 1901-2009. The larger the data window is, the more precise the

estimates are.

If all y0’s were in the range of 1990-2009, it would be concluded that the grid cells

located between April 15 and April 1 isotherms may have experienced y0 in the following

decades. It should be noted that the models in this study have the ability to change slope

and/or level. Therefore, it is not required to reduce the analysis window to the latter half

of the 20th century to capture abrupt shifts. Even MARS and Model 3, which are capable

of capturing abrupt shifts in level and slope, report rather early y0’s for the region during

MAM.

Burn (1994) selected a set of rivers from the west-central region of Canada to examine

the trends of Julian day of the peak spring snowmelt run-off. These time series are collected

from gauging stations in northwestern Ontario, Manitoba, Saskatchewan, and Alberta. The

final year of the period of study is 1990, and the record length varies between stations with

the median length of 37 years. The number of stations with significant decreasing trends

(in 5% and 10% significance levels) is such that it could not have occurred by chance.

Moreover, the study indicates that there is an inversely proportional relationship between

the MAM temperature and Julian day of peak flood. According to the study, the spatial

distribution of significant decreasing trends follows no specific pattern. However, these

stations are located either within the MAM transition area produced by Model 2 (with

significant trends over Sinterest and SWtotal
) or in the neighbouring regions. The study does

not provide any detail on the approximation of the Julian day of peak flood in the last year

of each station. If this day falls within the time period of March-May, the following two

conclusions could be drawn: i) Since the temperature of these locations has risen above

0◦C during MAM (based on this thesis), the changes in the spring peak flood timing lag
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behind observed increases in temperature, ii) Using Model 2, there are grid cells located

in the central region of the MAM transition area with y0 occurring in the time period of

1990-2008. Thus, the stations with the peak flood day during MAM may have experienced

y0 later during the period of 1990-2008.

Zhang et al. (2001) analysed the monthly mean streamflow data that span the time

period of 1947-1996. The study reveals that significant increasing trends are only observed

in March and April. This is indicative of an advancing spring freshet and ice breakup in

these regions. The stations with positive and significant trends are most commonly located

in British Columbia (southern British Columbia) and the Atlantic regions. According to

the results of Model 2, in southern British Columbia, the model either has permanently

risen above 0◦C some time in the 20th century or is positive during the entire time period

of study. Similar to the spring peak flood timing, there is a lag between the identified

temperature trends in this study and the hydrological events reported by Zhang et al.

(2001). The reasons for this lag could be the usage of the average temperature of March to

May and the models of the time series to determine y0. Furthermore, if the temperature

has recently crossed 0◦C in a specific region, this lag could be explained by the fact that it

takes some time before temperature changes are reflected in the cryospheric variables such

that these events take place earlier than March. In the Atlantic regions, Model 2 identifies

locations with y0 in the range of 1995-2008. Thus, it could be concluded that the spring

freshet timing in these regions has recently changed, and it occurs earlier.

The lag discussed above also exists between the results of Dibike et al. (2011a) and

this study. Dibike et al. (2011a) analysed the influence of climate change on ice-cover

characteristics (e.g., ice breakup) in North America using ‘Multi-year simulation model for

Lake thermo- and phytoplankton dynamics’ (MyLake). Mean breakup dates are obtained

by simulating the lake-ice phenology over the time period of 1979-2006. The depth of

the lake is assumed to be 20 m. The breakup dates produced by MyLake for the MAM

transition area of Model 2 are in the range of 130-140 Julian day (mid-May).

Zhang et al. (2000) investigated the ratio of snowfall to total precipitation during the

time period of 1900-1998 in Canada. Negative trends are observed in the eastern and

central regions of Canada. This complies with the observed trends on the y0 map of Model

2 during MAM (Figure 5.33). It should be noted that these trends are significant only in

the Atlantic regions. The study shows that if the time period of 1950-1998 is considered,

only the western regions of Canada exhibit significant decreasing trends. As indicated in
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Section 2.2.1.1.2, the change in the sign of temperature influences the precipitation type

(e.g., Hamlet et al., 2005; Knowles et al., 2006). In this thesis, even Model 3 and MARS,

which are capable of changing level as well as slope, do not identify locations with positive

0◦C crossings (y0) during the time period of 1950-1998 in the western regions reported to

show significant decreasing trends by Zhang et al. (2000). However, the majority of the

grid cells in the area are modelled by positive segments.

To study the impact of climate change on cold-region lakes, Dibike et al. (2011b) used

MyLake to simulate the ice-cover characteristics in the Northern Hemisphere (40◦− 75◦N)

during the time period of 1960–1999. The study detects significant negative trends (earlier)

in mean breakup dates approximately in the eastern parts of the band extending from

northern Europe to easternmost Asia in the MAM transition area of Model 2. Significant

negative trends are observed in the western areas of Canada and Alaska as well. In this

thesis, the modelled temperature is below 0◦C during both JFM and MAM over a vast

region of Alaska. However, a few locations in southern Alaska have crossed 0◦C during

MAM in the latter half of the 20th century. With regard to significant negative trends

in western Canada, as discussed above, according to Model 2, these regions are either

modelled by positive segments or exhibit positive 0◦C crossing.

Prowse et al. (2010) analysed the temporal and spatial changes of spring 0◦C isotherm

(Bonsal and Prowse, 2003) in the main-stem reaches of four large northward flowing Arctic

rivers: Lena, Mackenzie, Ob and Yenisey. The study focuses on the regions within 2000

km from the headwaters. The source of one of these rivers, Yenisey (in Russia), is in the

MAM transition area of Model 2. The transition area includes approximately 800 km from

the main-stem reach of this river. The results of Model 2 agree with Prowse et al. (2010) in

that spring 0◦C isotherm increases (in Julian day) with latitude. This implies that higher

latitudes experience later dates. Spring 0◦C isotherm increases from approximately 100 to

120 Julian day (April) within 800 km from the main-stem headwater of the river. Since

spring 0◦C crossing occurs in April, the discussion indicated above (Page 333) with regard

to the study by Bonsal and Prowse (2003) applies to this situation as well. The increase

in y0 with latitude increases the risk and severity of ice jam floods (Prowse et al., 2010).

As indicated in Section 2.2.1.3, due to recent changes in climate, the duration of cold

season is subject to change. So are the mass balance season for glaciers as well as the

net accumulation. Casassa et al. (2009) investigated run-off and discharge peaks in the

mountain basin caused by melting of glaciers. The study indicates that in some regions like
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southern and central British Columbia and low-middle elevations in the Alps, run-off has

reduced. The reason is the decreasing snow cover and/or the great glacial mass loss that

has occurred in the past. In other regions such as northwest of British Columbia, southwest

of Yukon, high elevations in the Swiss and Austrian Alps, the Tianshan Mountains, and

Tibet, records show increased run-off. The comparison between the maps of Casassa

et al. (2009) and this thesis shows that all of these regions are identified as locations that

experience y0. In northwest of British Columbia and southwest of Yukon, both of the JFM

and MAM maps of this thesis show positive 0◦C crossings. The locations with reduced

run-off in southern and central British Columbia are modelled by positive segments. As

mentioned, in Europe, Casassa et al. (2009) only focuses on the regions in Switzerland and

Austria. These regions show reduced run-off in low elevations and increased run-off in high

elevations. During MAM, in Europe (Figure 5.34), these regions are the only locations

that have recently crossed 0◦C surrounded by the grid cells with positive temperature. A

few grid cells experience y0 during JFM in these regions. The glacierized basins in central

Asia depicted by the maps of Casassa et al. (2009) are identified as the grid cells that show

recent positive 0◦C crossings during MAM (Figure 5.35). These grid cells are surrounded

by the locations whose temperature is modelled by positive segments.

The comparison of the map of permafrost extent in Frey and McClelland (2009) with

the MAM maps of Model 2 reveals that the east of the area selected in Asia based on Rule

1 of transition area (Section 4.3) is covered with isolated patches of permafrost. In Asia, in

the west of the transition area selected based on Rule 1 of transition area (60◦− 90◦E and

above 60◦N), the region is covered with isolated patches of permafrost as well as sporadic

and discontinuous permafrost. The comparison of the maps shows that most of the grid

cells located in the regions indicated above are identified with positive 0◦C crossings. In

fact, in Asia, the shape of the transition area (selected based on Rules 1 and 2 of transition

area) resembles the region covered by isolated patches shown on the maps of Lawrence

et al. (2008) and Frey and McClelland (2009). This is indicative of permafrost degradation

and deepening of the active later. Similar to Asia, in North America, the northern regions

of the transition area selected based on Rule 1 of transition area are covered with isolated

patches of permafrost as well as sporadic permafrost. However, none of these grid cells

meet the criteria set by Rule 2 of transition area (i.e., experience y0 during MAM).

The map of the active layer depth trends (1980-2002) is provided by Oelke et al. (2004)

using a finite difference model for one-dimensional heat conduction with phase change. The

comparison of this map with the JFM and MAM maps of Model 2 in Asia reveals that the
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observed trends in Oelke et al. (2004) match the observations in this thesis. In the study

by Oelke et al. (2004), the trends are only displayed over sporadic, discontinuous, and

continuous permafrost. The map reveals that the depth of the active layer has decreased

with the rate of approximately 2-8 (cm/year) in southeastern Russia, northeastern China,

and Mongolia. All of these regions experience y0 during MAM (Figure 5.35). As depicted

by the JFM map of Asia (Figure 5.16), there is an isolated region in west-central China

(located in the north of Tibet and south of Xinjiang) that includes a considerable number

of grid cells whose temperature has risen above 0◦C recently. The same area is shown

on the map of Oelke et al. (2004) as the region where the depth of permafrost has been

increasing since 1980 with the rate of approximately 2-8 (cm/year).

During JFM, in North America, the maximum number of locations whose temperature

has risen above 0◦C are found in western U.S. y0 in western U.S. has most commonly

occurred during the time period of 1960-2008 according to the results of Model 2. Numerous

studies have been devoted to examine the hydrological impacts of climate change in this

area. Some of these studies concerning our research are cited in Chapter 2, and the studies

that provide direct spatial evidence for the observed trends in this thesis are presented

below.

The hydrologic response of mountain snowpack and snowmelt to changing climate in

this region is investigated by Stewart (2009). According to the map of changes in SWE

during the time period of 1949-2004, most of the stations in western U.S. exhibit significant

decreasing trends except the stations that are located in cold and high-elevation areas or

regions with an overall increase in precipitation that offsets the decrease in SWE. According

to the map of spring pulse onset in Stewart (2009), most of the stations in western U.S.

experience earlier spring pulse onset (approximately 15-20 days).

The analysis of the elevation maps in Hamlet et al. (2005) reveals how the grid cell

selection in western U.S. is influenced by elevation. According to the JFM map (Figure

5.14), the temperature of the coastal regions (inside and outside of the area selected based

on Rule 1 of transition area) with approximately zero elevation is above 0◦C during JFM.

The spatial distribution of the locations with average SWE greater than 50 mm on April 1

(during 1916-2003) and decreasing SWE are depicted for March 1, April 1, and May 1 in

Hamlet et al. (2005). The distribution approximately matches that of the grid cells that

experience y0. This implies that warmer temperatures in these regions have influenced

snow cover and snowmelt. Studying streamflow data in western U.S. during 1950-1999,

338



5.8. Discussion Chapter 5. Results

Regonda and Rajagopalan (2005) reported a decrease in SWE and a general increase in

winter precipitation most of which occurs in the form of rain. The observed changes are

more significant in lower elevations and in the northwest Pacific (at elevations between

1000 and 2000 m (Leung and Ghan, 1999)). The reason is that winter temperatures are

closer to 0◦C in these regions, and small changes in climate have a significant effect on the

hydrology of them.

The study by Knowles et al. (2006) reveals a decreasing trend in the ratio of the

‘winter-total snowfall water equivalent’ (SFE) to ‘winter-total precipitation’ (P) in western

U.S., during the time period of 1949-2004. Similar to the previous studies, this research

indicates that these changes most commonly happen in the regions with near freezing

temperatures. If temperatures are low enough, increasing temperatures do not change the

type of precipitation in the region. The study indicates that the widespread warming in

March has caused the reduction of the ratio of SFE/P across the region. According to

this study, March temperatures over western U.S. are high enough to cause region-wide

decreases in SFE/P. However, in January, only coastal regions (very low elevations) exhibit

a decline in SFE/P. Similar to the above-mentioned studies, the study by Knowles et al.

(2006) provides cryospheric evidence for the results of this thesis during JFM; as depicted

by the JFM maps of Model 2, the JFM temperature of the west coast is positive during the

time period of 1901-2009, and as indicated above, across western U.S., y0 in the majority

of grid cells occurs during the period of 1960-2008.

During JFM, in Europe, the maximum number of grid cells are located in Poland.

According to the JFM map of Model 2, y0 shows a pattern; y0 increases from west to east

in Poland. The temperature of the western grid cells has risen above 0◦C during the 1960s

decade, whereas the temperature of the eastern regions has recently crossed 0◦C. According

to the maps of Falarz (2004), the variation coefficient of seasonal snow cover duration from

1948–49 to 1997–98, relative change (decrease) of snow cover duration from 1848–49 to

1997–98, and variation coefficient of maximum depth of snow cover in winter season from

1948–49 to 1997–98 decreases from west to east. This implies that larger variations are

observed in the western regions. This could be explained by the fact that the change in

the sign of temperature in the western grid cells has occurred earlier. It should be noted

that Falarz (2004) defines snow cover duration as the number of days with snow cover ≤ 1

cm in winter season.

The map of percentage changes in SCA between 1967–1987 and 1988–2004 in the North-
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ern Hemisphere during MAM is depicted by IPCC (2007) (Figure 4.3). In the entire North-

ern Hemisphere, the area covered with the grid cells that experience reductions in average

SCA resembles the combination of the JFM and MAM transition area (selected based on

Rules 1 and 2 transition area) in this thesis. As described in Section 2.2.1.1.3, due to

the snow-albedo feedback phenomenon, temperature variations have a great impact on the

extent of the SCA in the Northern Hemisphere (IPCC, 2007). Therefore, the consistency

between the map of changes in SCA and the maps of this thesis verifies the observed

patterns in this research.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In the temperate regions of the Northern Hemisphere, the seasonal rise of temperature

above 0◦C marks the most pronounced changes in the environment like ice breakup events,

breakage of ice dams, and spring floods; hence, it has significant impacts on hydrological

and ecological processes as well as human activities. In this thesis, an extensive analysis is

performed to locate the 0.5◦×0.5◦ land grid cells in the extra-tropical Northern Hemisphere

(20.25◦N-89.75◦N) with the mean temperature that was primarily negative during months

of JFM or MAM and changed sign in the time period of 1901-2009. Furthermore, it is

of interest to determine the year of positive 0◦C crossing (y0). Due to the high degree of

variability of temperature data, to determine y0, the time series are approximated by four

different modelling techniques: i) trend shift detection techniques: Model 2 and Model 3

(Perron and Yabu, 2009b, Kim and Perron, 2009), ii) Multivariate Adaptive Regression

Splines (MARS) (Friedman, 1991), iii) the R method (Rodionov, 2004, 2006). These models

divide the entire domain of the time series into sub-regions. The sub-regions are modelled

by the polynomials of degree zero or one. y0 is then determined as the time when the

models cross 0◦C and remain above 0◦C. The segment that includes y0 is termed ‘segment

of interest’ (Sinterest). The ‘start year of warming’ (yw) is determined as the beginning of

Sinterest, and it is the year that marks the onset of the warming that leads to the permanent

positive 0◦C crossing. The combination of Sinterest and the segment(s) of positive slope

that immediately follows Sinterest is termed the ‘section of total warming’ (SWtotal
). In some
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situations, the models may pose some challenges since they exhibit more than one positive

0◦C crossing. The rules set in Chapter 5 assisted with the determination of y0 in such cases.

The thorough analysis of the results leads to the following conclusions:

• Except a small number of grid cells in western China and the southern portion of

the Rocky Mountains in U.S., the MAM transition area is located in higher latitudes

than that of JFM. It should be noted that the grid cells in western China, whose

temperature was primarily negative during MAM and has recently risen above 0◦C,

form the outer boundary of a high-elevation region that embeds rather low-elevation

areas like the Taklamakan Desert.

• According to the graphical comparison and the non-parametric comparison tech-

niques (Wilcoxon signed-rank test for paired observations and Wilcoxon rank-sum

test), significant differences exist between the yw results of MARS, Model 2, and

Model 3. yw is determined as the beginning of Sinterest; therefore, it is influenced by

the behaviour of the models and how they determine the sub-regions (refer to Section

5.8.2 for more details). Due to the specific characteristics of the R method (Section

5.6.2), yw is not determined using this technique.

• The results of Wilcoxon signed-rank test for paired observations, which only compares

the common subset of any two techniques, indicate that although the y0 results of

MARS-Model 2, MARS-Model 3, and Model 2-Model 3 are not different at the

significance level of 5%, the results are different considering a larger significance

level (e.g., 10%). During MAM, P-values are smaller, which is indicative of larger

differences between the y0 results during MAM.

• Wilcoxon rank-sum test reveals that considering the transition area as a whole, the

y0 results of MARS-Model 2, MARS-Model 3, and Model 2-Model are similar. How-

ever, it should be noted that Wilcoxon rank-sum test compares numbers without

considering the locations they refer to. Therefore, it is not capable of detecting local

differences (over individual continents).

• Both of the above-indicated non-parametric tests favour the alternative hypothesis

of inequality of the means of the R method with the other techniques. The R method

has some distinct features that make it different from the other techniques. The y0
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reported by the R method is the time when the mean of the time series rises above

0◦C; whereas, in the case of MARS and Models 2 and 3, the long-run path (trend

function) of temperature crosses 0◦C.

• The mathematical comparison of the techniques highlights the following points:

– The R method is suitable for detecting sharp changes in the mean level of the

time series rather than trend inhomogeneities since the function of the underly-

ing data generating process consists of polynomials of degree zero. Due to the

sequential nature of the algorithm of the R method, it is capable of detecting

the shift points close to the ends of the time series.

– Model 2, Model 3, and MARS are similar in that they embed linear functions

of time. MARS approximates the time series with the polynomials of degree

zero or one, which are continuous at the boundaries. Model 2 and Model 3

assume that the long-term changes follow a linear trend, and climate noises are

modelled by an auto-regressive process.

The significant differences between the results of MARS, Model 2, and Model 3

depicted by the maps and histograms, particularly in North America and during

MAM, necessitated a thorough assessment of the plots of the grid cells in North

America to understand the model behaviour that causes the differences. Based on

this extensive investigation, it is concluded that Model 2 is more in accord with the

research objectives than Model 3. With regard to MARS, in many locations with

two MARS segments, the MARS segments resemble those of Model 2. Furthermore,

some of the models built by MARS with more than two segments resemble the

approximations of Model 3 of IO type. In such cases, there is a MARS segment with

a short duration and a relatively large slope that leads to the simultaneous shift in

slope and intercept. This segment resembles the transitional period in the case of IO

models. It should be noted that in some situations, the choice of Sinterest is influenced

by the larger number of segments built by MARS compared to Models 2 and 3. From

the mathematical points of view, MARS is a powerful method that could be used

to model complex situations. It is an adaptive regression technique that has been

developed to model any type of data, and it does not belong to the category of the

techniques specifically developed to analyse time series. Thus, an intricate algorithm

is followed to model data. This algorithm demands more input parameters compared
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to the other algorithms used in this study. It may be required to experiment with

different sets of input arguments to examine which of the possibilities leads to the

best model and the best bias-variance trade-off. This is the undesired feature of

MARS when it is applied to analyse a large data set such as was the case in this

study.

In terms of the simplicity of input arguments as well as y0 and shift point determi-

nation, Model 2 provides the best approximation of the temperature time series in

this research. It is worth noting again that the y0 determined by Model 2 is the time

of positive 0◦C crossing of the long-run path of temperature.

With regard to the R method, the mathematical comparison reveals that it is con-

ceptually different from MARS, Model 2, and Model 3. However, due to the unique

characteristics of the R method, highlighted earlier, it is selected as a suitable tech-

nique to examine changes in the mean level of the temperature time series. It is an

advanced tool to compare the changes in the sign of the mean level of the time series

to the shifts in the long-run path (trend function) of them. The assessment of the

results of the R method reveals that in many locations, the time of the positive 0◦C

crossing of the mean level is close to that of the trend function. Furthermore, the

transition areas of the R method during JFM and MAM resemble those of the other

techniques. Since the R method is capable of detecting shifts close to the ends of

time series, in some situations, it is used to verify the outcomes of Model 2 in the

initial or final years of the time series.

• The results obtained by Model 2 are presented below. Only the grid cells with

significant warming trends during Sinterest and SWtotal
are considered.

1. JFM

(a) North America

The transition area in North America is located in the contiguous U.S.

Most of the grid cells with significant warming during Sinterest and SWtotal

are located in western U.S. According to Model 2, yw and y0 of most of

these locations occur in the 1940s and during the time period of 1960-2008,

respectively. In western U.S., the rate of warming during Sinterest and SWtotal

is ∼ 0.015−0.05(◦C/year). The haphazardly distributed grid cells in North
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America and the weak spatial coherence of the results may be interpreted

such that overall, this area is not influenced by climate change to a degree

that the sign of temperature changes during JFM.

(b) Europe

In Europe, most of the grid cells are concentrated in central Europe. yw

occurs during the time periods of 1920s and 1940-1970; generally, in higher

latitudes, yw occurs later. As reported by Model 2, most of the locations

experience y0 during 1960-2008, and y0 values increase from west to east

in the diagonal direction. y0 of the grid cells in the north of Black Sea, in

eastern Europe, increases with latitude. The slopes of Sinterest and SWtotal

are in the range of ∼ 0.02− 0.1 (◦C/year) and increase in the same way as

y0.

(c) Asia

In Asia, the transition area roughly consists of three regions: i) a small

region in southwestern and central Asia, which covers some parts of Uzbek-

istan, Kazakhstan, and Iran, ii) a small area in western China, which is

located in the north of Tibet and south of Xinjiang. Most of the region lies

in the Taklamakan Desert, iii) few grid cells in east-central China, South

Korea, and Japan. yw of the majority of locations occurs in the 1970s. yw

occurs earlier (1901-1940) in easternmost locations. Model 2 reveals that

the values of y0 of the majority of grid cells are in the range of 1970-2008.

In central Asia, y0 increases with latitude; however, no specific pattern is

observed in western China and eastern Asia. The rate of warming over

Sinterest and SWtotal
is in the range of ∼ 0.02 − 0.15 (◦C/year). It should be

noted that the minimum values are concentrated over easternmost Asia.

2. MAM

(a) North America

Most of the grid cells selected by Model 2 are located in Canada and extend

from northeastern British Columbia to the Atlantic regions. yw occurs dur-

ing the 1900s and 1910s in the west-central grid cells and central-eastern lo-

cations, respectively. The west-central locations experience y0 during 1900-

1950. It is worthwhile to note that when both of yw and y0 occur in the first

few decades of the 20th century, the model could be considered positive for
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almost the whole study period. If the time series spanned a wider time win-

dow, particularly prior to 1901, a more accurate model would be obtained

for the initial years of the 20th century, and the time series of these locations

might be approximated by positive functions. y0 of the central-eastern re-

gions generally takes place during 1970-2000, and the values increase with

latitude. The rate of warming during Sinterest and SWtotal
is in the range of

∼ 0.01− 0.04 (◦C/year).

(b) Eurasia

In Eurasia, the transition area is like a continuous band extending from

northern Europe to eastern Asia. The eastern regions are lower in latitude

compared to the western grid cells. In Europe (northern Europe and Euro-

pean Russia), yw decreases from 1980 to 1910 in the eastward direction. In

Asia, yw most commonly occurs in the 1970s. The maps of Model 2 depict

that in a given longitude, y0 exhibits an increasing pattern with latitude. Al-

though a considerable number of locations experience y0 prior to the 1970s,

the histogram of Eurasia is denser during the time period of 1970-2008. The

slopes of Sinterest and SWtotal
are in the range of ∼ 0.01− 0.1 (◦C/year); the

largest slopes are observed in the central-eastern regions of the band.

Note:

According to the yw histograms of Model 2 (Figure 5.1 for JFM and Figure 5.5 for MAM),

considering the entire transition area, the peaks of the histograms occur in the 1960-1980

period and the 1970s decade during JFM and MAM, respectively. This conclusion is in

agreement with the studies that referred to the widespread climate change in the 1970s

and/or 1980s decades (e.g., Kerr, 1992; Hare and Mantua, 2000; Rodionov and Overland,

2005; IPCC, 2007; Lo and Hsu, 2010).

6.2 Future Work

This research may be extended in different directions:

• Since the distribution of thermal energy on the earth surface is influenced by large-

scale air and ocean circulations, these patterns significantly influence the earth cli-
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mate on the annual to decadal time scale. The next step of the analysis presented in

this thesis could be examining the links between large-scale atmospheric and oceanic

oscillation patterns and the observed spatial and temporal characteristics of yw and

y0. The time series of the indices may be analysed by the techniques introduced in

this thesis for any abrupt shift in the trend function or mean level.

• The focus of this thesis was on the late-winter (JFM) and spring (MAM) time series.

The analysis could be extended to other seasons to investigate if y0 has taken place

in the grid cells located in lower (higher) latitudes than the JFM (MAM) transition

area.

• The topography map of the Northern Hemisphere could be analysed to understand

the connections between the spatial characteristics depicted by the yw and y0 maps

and elevation. For example, in western U.S. or western China, the observed y0

patterns may be explained based on the elevation characteristics of the regions. Some

of these points are highlighted in this thesis; however, the thorough analysis of the

topography maps may reveal interesting outcomes.

• As indicated in Chapter 4, the CRU data (University of East Anglia Climate Research

Unit, 2011) exhibit long-term monthly or yearly changes in temperature at the earth’s

surface, not changes experienced only due to GHG emissions. Therefore, the data

embed widespread and gradual changes. Due to this reason, it is of interest to explore

if some of the observed patterns are the artefact of gradual changes like urbanization

or industrial advancement, particularly in isolated regions.

• Since the air temperature influences the timing of many hydrological processes such

as ice breakup, snowmelt, and spring streamflow, the time series of these variables

could be analysed with the techniques applied in this research to determine the shift

points. The spatial patterns of these shift dates could be compared to the y0 maps

to examine how closely they resemble each other.

• Many studies report the results of trend analyses on hydrological variables in Julian

day. Therefore, it is not feasible to directly compare these results with the outcomes

of the analysis performed using the mean temperature of three months. If the steps

involved in this thesis are applied to individual months, this helps locate grid cells

that experience y0 in a specific month. The results obtained for individual months
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could then be used to draw conclusions regarding the link between y0 and the trends

reported by the related work.

348



References

Alexandersson, H. (1986). ‘A homogeneity test applied to precipitation data’.

International Journal of Climatology, 6(6): 661–675

Allan, R. P. and Soden, B. J. (2008). ‘Atmospheric warming and the amplification

of precipitation extremes’. Science, 321(5895): 1481–1484

Alley, R. B., Marotzke, J., Nordhaus, W. D., Overpeck, J. T., Peteet, D. M., Pielke Jr.,

R. A., Pierrehumbert, R. T., Rhines, P. B., Stocker, T. F., Talley, L. D., and Wallace,

J. M. (2003). ‘Abrupt Climate Change’. Science, 299(5615): 2005–2010

Alpert, P., Ben-gai, T., Baharad, A., Benjamini, Y., Yekutieli, D., Colacino, M., Diodato,

L., Ramis, C., Homar, V., Romero, R., Michaelides, S., and Manes, A. (2002). ‘The

paradoxical increase of Mediterranean extreme daily rainfall in spite of de-

crease in total values’. Geophysical Research Letters, 29(10): 31.1–31.4

Andrews, D. W. K. and Ploberger, W. (1994). ‘Optimal tests when a nuisance pa-

rameter is present only under the alternative’. Econometrica, 62(6): 1383–1414

Anisimov, O. A. and Nelson, F. E. (1996). ‘Permafrost distribution in the Northern

Hemisphere under scenarios of climatic change’. Global and Planetary Change,

14(1-2): 59–72

Anisimov, O. A. and Nelson, F. E. (1997). ‘Permafrost zonation and climate change

in the Northern Hemisphere: results from transient general circulation mod-

els’. Climatic Change, 35(2): 241–258

Arora, V. K. and Boer, G. J (2001). ‘Effects of simulated climate change on the

hydrology of major river basins’. Journal of Geophysical Research, 106(D4): 3335–

3348

349



References

BADC (2011). NCAS British Atmospheric Data Centre, http://badc.nerc.ac.uk/view/

badc.nerc.ac.uk__ATOM__dataent_1256223773328276

Barnett, T. P., Pierce, D. W., Hidalgo, H. G., Bonfils, C., Santer, B. D., Das, T., Bala,

G., Wood, A. W., Nozawa, T., Mirin, A. A., Cayan, D. R., and Dettinger, M. D. (2008).

‘Human-induced changes in the hydrology of the western United States’.

Science, 319(5866): 1080–1083

Barnston, A. G. and Livezey, R. E. (1987). ‘Classification, seasonality and persistence

of low-frequency atmospheric circulation patterns’. Monthly Weather Review,

115(6): 1083–1126

Belkin, I. M. (2009). ‘Rapid warming of large marine ecosystems’. Progress In

Oceanography, 81(1-4): 207–213

Beltaos, S. (2002). ‘Effects of climate on mid-winter ice jams’. Hydrological Processes,

16(4): 789–804

Beltaos, S. and Prowse, T. D. (2009). ‘River-ice hydrology in a shrinking cryosphere’.

Hydrological Processes, 23(1): 122–144

Bonsal, B. R. and Prowse, T. D. (2003). ‘Trends and variability in spring and autumn

0◦C-isotherm dates over Canada’. Climatic Change, 57(3): 341–358

Bradley, R. S. and Jones, P. D. (1985). Detecting the Climatic Effects of Increas-

ing Carbon Dioxide, chapter Data bases for isolating the effects of increasing

carbon dioxide concentration. US Department of Energy, Carbon Dioxide Research

Division

Breiman, L. and Friedman, J. H. (1985). ‘Estimating optimal transformations for

multiple regression and correlation’. Journal of the American Statistical Associa-

tion, 80(391): 580–598

Breiman, L. and Meisel, W. S. (1976). ‘General estimates of the intrinsic variabil-

ity of data in nonlinear regression models’. Journal of the American Statistical

Association, 71(354): 301–307

350

http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_1256223773328276
http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_1256223773328276


References

Brown, R. J. E. (1964). ‘Permafrost investigations on the MacKenzie highway in

Alberta and MacKenzie district’. Technical report, NRC Institute for Research in

Construction; National Research Council Canada

Brown, R. D. and Mote, P. W. (2009). ‘The response of Northern Hemisphere snow

cover to a changing climate’. Journal of Climate, 22(8): 2124–2145

Burn, D. H. (1994). ‘Hydrologic effects of climatic change in west-central Canada’.

Journal of Hydrology, 160(1-4): 53–70

Burn, D. H. (2008). ‘Climatic influences on streamflow timing in the headwaters

of the Mackenzie River Basin’. Journal of Hydrology, 352(1-2): 225–238

Burn, D. H., Cunderlik, J. M., and Pietroniro, A. (2004). ‘Hydrological trends and

variability in the Liard River basin’. Hydrological Sciences Journal, 49(1): 53–67

Burn, D. H. and Hag Elnur, M. A. (2002). ‘Detection of hydrologic trends and

variability’. Journal of Hydrology, 255(1-4): 107–122

Camill, P. (2005). ‘Permafrost thaw accelerates in boreal peatlands during late-

20th century climate warming’. Climatic Change, 68(1-2): 135–152

Carlson, A. B. (1986). Communication Systems: An Introduction to Signals and

Noise in Electrical Communication. McGraw-Hill

Casassa, G., Lopez, P., Pouyaud, B., and Escobar, F. (2009). ‘Detection of changes

in glacial run-off in alpine basins: examples from North America, the Alps,

central Asia and the Andes’. Hydrological Processes, 23(1): 31–41

Cayan, D. R., Kammerdiener, S. A., Dettinger, M. D., Caprio, J. M., and Peterson, D. H.

(2001). ‘Changes in the onset of spring in the western United States’. Bulletin

of the American Meteorological Society, 82(3): 399–415

Chelliah, M. and Arkin, P. (1992). ‘Large-scale interannual variability of monthly

outgoing longwave radiation anomalies over the global tropics’. Journal of

Climate, 5(4): 371–389

Comiso, J. C. (2003). ‘Warming trends in the Arctic from clear sky satellite

observations’. Journal of Climate, 16(21): 3498–3510

351



References

Conrad, V. and Pollak, L. W. (1962). Methods in Climatology. Harvard University

Press

Cunderlik, J. M and Burn, D. H. (2002). ‘Local and regional trends in monthly max-

imum flows in southern British Columbia’. Canadian Water Resources Journal,

27(2): 191–212

De Boor, C. (2001). A practical guide to splines. Springer

Dibike, Y., Prowse, T. D., Bonsal, B., de Rham, L., and Saloranta, T. (2011a).

‘Simulation of North American lake-ice cover characteristics under contem-

porary and future climate conditions’. International Journal of Climatology, Early

View (Online Version of Record published before inclusion in an issue)

Dibike, Y., Prowse, T. D., Saloranta, T., and Ahmed, R. (2011b). ‘Response of Northern

Hemisphere lake-ice cover and lake-water thermal structure patterns to a

changing climate’. Hydrological Processes, 25(19): 2942–2953

Duguay, C. R., Flato, G. M., Jeffries, M. O., Menard, P., Morris, K., and Rouse, W. R.

(2003). ‘Ice-cover variability on shallow lakes at high latitudes: model simu-

lations and observations’. Hydrological Processes, 17(17): 3465–3483

Duguay, C. R., Prowse, T. D., Bonsal, B. R., Brown, R. D., Lacroix, M. P., and Menard, P.

(2006). ‘Recent trends in Canadian lake ice cover’. Hydrological Processes, 20(4):

781–801

Dye, D. G. (2002). ‘Variability and trends in the annual snow-cover cycle in

Northern Hemisphere land areas, 1972–2000’. Hydrological Processes, 16(15):

3065–3077

Dyurgerov, M. B. and Meier, M. F. (2005). ‘Glaciers and the changing earth system:

a 2004 snapshot’. Occasional Paper 58, Institute of Arctic and Alpine Research,

University of Colorado

Easterling, D. R. and Peterson, T. C. (1995). ‘A new method for detecting undoc-

umented discontinuities in climatological time series’. International Journal of

Climatology, 15(4): 369–377

352



References

Falarz, M. (2004). ‘Variability and trends in the duration and depth of snow

cover in Poland in the 20th century’. International Journal of Climatology, 24(13):

1713–1727

Fleming, S. W. and Clarke, G. K. C. (2002). ‘Autoregressive noise, deserialization,

and trend detection and quantification in annual river discharge time series’.

Canadian Water Resources Journal, 27(3): 335–354

Forchhammer, M. and Boertmann, D. (1993). ‘The muskoxen Ovibos moschatus

in north and northeast Greenland: population trends and the influence of

abiotic parameters on population dynamics’. Ecography, 16(4): 299–308

Frey, K. E. and McClelland, J. W. (2009). ‘Impacts of permafrost degradation on

arctic river biogeochemistry’. Hydrological Processes, 23(1): 169–182

Friedman, J. H. (1979). Lecture Notes in Mathematics, Smoothing Techniques for

Curve Estimation, volume 757, chapter A tree-structured approach to nonpara-

metric multiple regression. Springer

Friedman, J. H. (1991). ‘Multivariate adaptive regression splines’. The Annals of

Statistics, 19(1): 1–67

Furgal, C. and Prowse, T. D. (2008). From Impacts to Adaptation: Canada in a

Changing Climate 2007, chapter Northern Canada. Natural Resources Canada

Georgiadi, A. G., Milyukova, I. P., and Kashutina, E. A. (2010). Environmental Change

in Siberia: Earth Observation Field Studies and Modelling, Advances in

Global Change Research, volume 40, chapter Response of river runoff in the

cryolithic zone of eastern Siberia (Lena River Basin) to future climate warm-

ing. Springer

Gerland, S., Liston, G. E., Winther, J. G., Orbaek, J. B., and Ivanov, B. V. (2000).

‘Attenuation of solar radiation in Arctic snow: field observations and mod-

elling’. Annals of Glaciology, 31(1): 364–368

Gibbons, J. D. and Chakraborti, S. (2003). Nonparametric Statistical Inference.

Marcel Dekker

353



References

Glantz, S. A. (2002). Primer of Biostatistics. McGraw-Hill

Goulding, H. L., Prowse, T. D., and Bonsal, B. R. (2009). ‘Hydroclimatic controls

on the occurrence of break-up and ice-jam flooding in the Mackenzie Delta,

NWT, Canada’. Journal of Hydrology, 379(3-4): 251–267

Greene, A. M. (2005). ‘A time constant for hemispheric glacier mass balance’.

Journal of Glaciology, 51(174): 353–362

Groisman, P. Y., Karl, T. R., and Knight, R. W. (1994). ‘Observed impact of snow

cover on the heat balance and the rise of continental Spring temperatures’.

Science, 263(5144): 198–200

Gullet, D. W., Vincent, L., and Malone, L. (1991). ‘Homogeneity testing of monthly

temperature series: application of multiple-phase regression models with

mathematical changepoints’. Technical report, Atmospheric Environment Service

Hahn, C. J. and Warren, S. G. (1999). ‘Extended edited synoptic cloud reports

from ships and land stations over the globe, 1952-1996’. Technical report, En-

vironmental Sciences Division, Office of Biological and Environmental Research, United

States Department of Energy

Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press

Hamlet, A. F., Mote, P. W., Clark, M. P., and Lettenmaier, D. P. (2005). ‘Effects of

temperature and precipitation variability on snowpack trends in the western

United States’. Journal of Climate, 18(21): 4545–4561

Hanssen-Bauer, I. and Forland, E. J. (1994). ‘Homogenizing long Norwegian precip-

itation series’. Journal of Climate, 7(6): 1001–1013

Hare, S. R. and Mantua, N. J. (2000). ‘Empirical evidence for North Pacific regime

shifts in 1977 and 1989’. Progress In Oceanography, 47(2-4): 103–145

Hastie, T. and Tibshirani, R. (1986). ‘Generalized additive models’. Statistical Science,

1(3): 297–318

354



References

Helsel, D. R. and Hirsch, R. M. (2002). Hydrologic Analysis and Interpretation,

chapter Statistical Methods in Water Resources. United States Geological Survey

(USGS)

Hinzman, L. D., Bettez, N. D., Bolton, W. R., Chapin, F. S., Dyurgerov, M. B., Fastie,

C. L., Griffith, B., Hollister, R. D., Hope, A., Huntington, H. P., et al. (2005). ‘Evidence

and implications of recent climate change in northern Alaska and other Arctic

regions’. Climatic Change, 72(3): 251–298

Hirsch, R. M., Slack, J. R., and Smith, R. A. (1982). ‘Techniques of trend analysis

for monthly water quality data’. Water Resources Research, 18(1): 107–121

Huber, P. J. (2005). ‘Robust estimation of a location parameter’. The Annals of

Mathematical Statistics, 35(1): 73–101

Humlum, O., Instanes, A., and Sollid, J. L. (2003). ‘Permafrost in Svalbard: a review

of research history, climatic background and engineering challenges’. Polar

Research, 22(2): 191–215

Instanes, D. A. (2006). ‘Impacts of a changing climate on infrastructure: buildings,

support systems, and industrial facilities’. EIC Climate Change Technology, 2006

IEEE : 1–4

IPCC (2007). ‘Climate change 2007: The physical science basis’. Technical report,

Contribution of Working Group I to the fourth assessment report of the Intergovern-

mental Panel on Climate Change (IPCC)

IPCC (2008). ‘Climate change and water’. Technical report, IPCC (Intergovernmental

Panel on Climate Change) Technical Paper VI

Ivanov, M. A. and Evtimov, S. N. (2010). ‘1963: The break point of the Northern

Hemisphere temperature trend during the twentieth century’. International

Journal of Climatology, 30(11): 1738–1746

Jacques, J. M. S. and Sauchyn, D. J. (2009). ‘Increasing winter baseflow and mean

annual streamflow from possible permafrost thawing in the Northwest Ter-

ritories, Canada’. Geophysical Research Letters, 36(L01401): 6 PP

355



References

Jekabsons, G. (2010). ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave,

http://www.cs.rtu.lv/jekabsons/

Jones, P. D. and Moberg, A. (2003). ‘Hemispheric and large-scale surface air tem-

perature variations: An extensive revision and an update to 2001’. Journal of

Climate, 16(2): 206–223

Jones, P. D., Raper, S. C. B., Bradley, R. S., Diaz, H. F., Kellyo, P. M., and Wigley, T.

M. L. (1986). ‘Northern Hemisphere surface air temperature variations 1851-

1984’. Journal of Applied Meteorology, 25(2): 161–179

Karl, T. R. and Trenberth, K. E. (2003). ‘Modern global climate change’. Science,

302(5651): 1719–1723

Karl, T. R. and Williams Jr., C. N. (1987). ‘An approach to adjusting climatological

time series for discontinuous inhomogeneities’. Journal of Climate and Applied

Meteorology, 26(12): 1744–1763

Karl, T. R., Williams Jr., C. N., Young, P. J., and Wendland, W. M. (1986). ‘A model

to estimate the time of observation bias associated with monthly mean max-

imum, minimum, and mean temperatures for the United States’. Journal of

Climate and Applied Meteorology, 25(2): 145–160

Kendall, M. G. (1975). Rank correlation measures. Charles Griffin

Kerr, R. A. (1992). ‘Unmasking a shifty climate system’. Science, 255(5051): 1508–

1510

Kiehl, J. T. and Trenberth, K. E. (1997). ‘Earth’s annual global mean energy budget’.

Bulletin of the American Meteorological Society, 78(2): 197–208

Kim, D. and Perron, P. (2009). ‘Unit root tests allowing for a break in the trend

function at an unknown time under both the null and alternative hypotheses’.

Journal of Econometrics, 148(1): 1–13

Knowles, N., Dettinger, M. D., and Cayan, D. R. (2006). ‘Trends in snowfall versus

rainfall in the western United States’. Journal of Climate, 19(18): 4545–4559

356

http://www.cs.rtu.lv/jekabsons/


References

Kohler, M. A. (1949). ‘On the use of double-mass analysis for testing the consis-

tency of meteorological records and for making required adjustments’. Bulletin

of the American Meteorological Society, 30(5): 188–189

Kundzewicz, Z. W. and Robson, A. J. (2004). ‘Change detection in hydrological

records-a review of the methodology’. Hydrological Sciences Journal, 49(1): 7–19

Kwong, Y. T. J. and Gan, T. Y. (1994). ‘Northward migration of permafrost along

the Mackenzie Highway and climatic warming’. Climatic Change, 26(4): 399–419

Lambert, S. J. (1990). ‘Discontinuities in the long-term Northern Hemisphere

500-millibar heights dataset’. Journal of Climate, 3(12): 1479–1484

Lanzante, J. R. (1996). ‘Resistant, robust and non-parametric techniques for the

analysis of climate data: theory and examples, including applications to his-

torical radiosonde station data’. International Journal of Climatology, 16(11): 1197–

1226

Lawrence, D. M., Slater, A. G., Romanovsky, V. E., and Nicolsky, D. J. (2008).

‘Sensitivity of a model projection of near-surface permafrost degradation

to soil column depth and representation of soil organic matter’. Journal of

Geophysical Research, 113(F02011): 14 PP

Leung, L. R. and Ghan, S. J. (1999). ‘Pacific Northwest climate sensitivity simulated

by a regional climate model driven by a GCM. Part II: 2×CO2 simulations’.

Journal of Climate, 12(7): 2031–2053

Leung, L. R. and Wigmosta, M. S. (1999). ‘Potential climate change impacts on

mountain watersheds in the Pacific Northwest’. Journal of the American Water

Resources Association, 35(6): 1463–1471

Lo, T. T. and Hsu, H. H. (2010). ‘Change in the dominant decadal patterns and

the late 1980s abrupt warming in the extratropical Northern Hemisphere’.

Atmospheric Science Letters, 11(3): 210–215

Madden, R. A. and Williams, J. (1978). ‘The correlation between temperature and

precipitation in the United States and Europe’. Monthly Weather Review, 106(1):

142–147

357



References

Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone, D. M., Arai,

T., Assel, R. A., Barry, R. G., Card, V., Kuusisto, E., Granin, N. G., Prowse, T. D.,

M., Stewart K., and Vuglinski, V. S. (2000). ‘Historical trends in lake and river ice

cover in the Northern Hemisphere’. Science, 289(5485): 1743–1746

Mann, H. B. (1945). ‘Nonparametric tests against trend’. Econometrica, 13(3): 245–

261

Menne, M. J. and Williams Jr., C. N. (2009). ‘Homogenization of temperature series

via pairwise comparisons’. Journal of Climate, 22(7): 1700–1717

Menne, M. J., Williams Jr., C. N., and Vose, R. S. (2009). ‘The U.S. Historical Clima-

tology Network monthly temperature data, version 2’. Bulletin of the American

Meteorological Society, 90(7): 993–1007

Miller, R. G. (1986). Beyond ANOVA, Basics of Applied Statistics. John Wiley &

Sons

Min, S., Zhang, X., and Zwiers, F. W. (2010). ‘Human-induced Arctic moistening’.

Science, 320(5875): 518–520

Min, S., Zhang, X., Zwiers, F. W., and Hegerl, G. C. (2011). ‘Human contribution to

more-intense precipitation extremes’. Nature, 470(7334): 378–381

Mitchell, T. D. and Jones, P. D. (2005). ‘An improved method of constructing

a database of monthly climate observations and associated high-resolution

grids’. International Journal of Climatology, 25(6): 693–712

Modarres, R., Gastwirth, J. L., and Ewens, W. (2005). ‘A cautionary note on the use

of non-parametric tests in the analysis of environmental data’. Environmetrics,

16(4): 319–326

Montgomery, D. C. and Runger, G. C. (2003). Applied Statistics and Probability for

Engineers. John Wiley & Sons

Moore, R. D., Fleming, S. W., Menounos, B., Wheate, R., Fountain, A., Stahl, K., Holm,

K., and Jakob, M. (2009). ‘Glacier change in western North America: influences

on hydrology, geomorphic hazards and water quality’. Hydrological Processes,

23(1): 42–61

358



References

Morgan, J. N. and Sonquist, J. A. (1963). ‘Problems in the analysis of survey data,

and a proposal’. Journal of the American Statistical Association, 58(302): 415–434

Mungall, C. and McLaren, D. J., eds. (1990). Planet under stress: the challenge of

global change, chapter Fresh Waters in Cycle. Oxford University Press

Nelson, F. E., Anisimov, O. A., and Shiklomanov, N. I. (2001). ‘Subsidence risk from

thawing permafrost’. Nature, 410: 889–890

New, M., Hulme, M., and Jones, P. (2000). ‘Representing twentieth-century space-

time climate variability. Part II: Development of 1901-96 monthly grids of

terrestrial surface climate’. Journal of Climate, 13(13): 2217–2238

NRC (2008). ‘Potential impacts of climate change on U.S. transportation’. Trans-

portation research board special report 290, Committee on Climate Change and U.S.

Transportation, National Research Council (U.S.)

Oelke, C., Zhang, T., and Serreze, M. C. (2004). ‘Modeling evidence for recent warm-

ing of the Arctic soil thermal regime’. Geophysical Research Letters, 31(L07208):

4 PP

Pederson, G. T., Gray, S. T., Woodhouse, C. A., Betancourt, J. L., Fagre, D. B, Littell,

J. S., Watson, E., Luckman, B. H., and Graumlich, L. J. (2011). ‘The unusual na-

ture of recent snowpack declines in the North American cordillera’. Science,

333(6040): 332–335

Perron, P. (1989). ‘The great crash, the oil price shock, and the unit root hy-

pothesis’. Econometrica, 57(6): 1361–1401

Perron, P. and Yabu, T. (2009a). ‘Estimating deterministic trends with an inte-

grated or stationary noise component’. Journal of Econometrics, 151(1): 56–69

Perron, P. and Yabu, T. (2009b). ‘Testing for shifts in trend with an integrated or

stationary noise component’. Journal of Business and Economic Statistics, 27(3):

369–396

Peterson, T. C. and Easterling, D. R. (1994). ‘Creation of homogeneous composite

climatological reference series’. International Journal of Climatology, 14(6): 671–

679

359



References

Peterson, T. C., Vose, R., Schmoyer, R., and Razuvaev, V. (1998). ‘Global historical

climatology network (GHCN) quality control of monthly temperature data’.

International Journal of Climatology, 18(11): 1169–1179

Polyakov, I. V., Bekryaev, R. V., Alekseev, G. V., Bhatt, U. S., Colony, R. L., Johnson,

M. A., Maskshtas, A. P., and Walsh, D. (2003). ‘Variability and trends of air tem-

perature and pressure in the maritime Arctic, 1875-2000’. Journal of Climate,

16(12): 2067–2077

Portman, D. A. (1993). ‘Identifying and correcting urban bias in regional time

series: surface temperature in China’s northern plains’. Journal of Climate,

6(12): 2298–2308

Powell, A. M. and Xu, J. (2011). ‘A new assessment of the mid-1970s abrupt atmo-

spheric temperature change in the NCEP/NCAR reanalysis and associated

solar forcing implications’. Theoretical and Applied Climatology, 104(3-4): 443–458

Pratt, J. W. (1959). ‘Remarks on zeros and ties in the Wilcoxon signed rank

procedures’. Journal of the American Statistical Association, 54(287): 655–667

Prowse, T. D. and Beltaos, S. (2002). ‘Climatic control of river-ice hydrology: a

review’. Hydrological Processes, 16(4): 805–822

Prowse, T. D., Bonsal, B. R., Duguay, C. R., Hessen, D. O., and Vuglinsky, V. S. (2007).

‘River and lake ice’. Technical report, United Nations Environment Programme

(UNEP)

Prowse, T. D. and Ommanney, C. S. L., eds. (1990). Northern Hydrology: Canadian

Perspectives. National Hydrology Research Institute (Canada)

Prowse, T. D., Shrestha, R., Bonsal, B., and Dibike, Y. (2010). ‘Changing spring air-

temperature gradients along large northern rivers: Implications for severity

of river-ice floods’. Geophysical Research Letters, 37(L19706): 6 PP

Putkonen, J. and Roe, G. (2003). ‘Rain-on-snow events impact soil temperatures

and affect ungulate survival’. Geophysical Research Letters, 30(4): 37.1–37.4

360



References

Radic, V. and Hock, R. (2010). ‘Regional and global volumes of glaciers derived

from statistical upscaling of glacier inventory data’. Journal of Geophysical Re-

search, 115(F01010): 10 PP

Regonda, S. K. and Rajagopalan, B. (2005). ‘Seasonal cycle shifts in hydroclimatol-

ogy over the western United States’. Journal of Climate, 18(2): 372–384

de Rham, L. P., Prowse, T. D., and Bonsal, B. R. (2008). ‘Temporal variations in river-

ice break-up over the Mackenzie River Basin, Canada’. Journal of Hydrology,

349(3-4): 441–454

Rhoades, D. A. and Salinger, M. J. (1993). ‘Adjustment of temperature and rainfall

records for site changes’. International Journal of Climatology, 13(8): 899–913

Rodionov, S. N. (2004). ‘A sequential algorithm for testing climate regime shifts’.

Geophysical Research Letters, 31(L09204): 4 PP

Rodionov, S. N. (2006). ‘Use of prewhitening in climate regime shift detection’.

Geophysical Research Letters, 33(L12707): 4 PP

Rodionov, S. N. (2007). Regime Shift Detector, http://www.beringclimate.noaa.gov/

Rodionov, S. N. and Overland, J. E. (2005). ‘Application of a sequential regime shift

detection method to the Bering Sea ecosystem’. ICES Journal of Marine Science,

62(3): 328–332

Rohli, R. V. and Vega, A. J. (2008). Climatology. Jones and Bartlett Publishers

Schweizer, J., Jamieson, J. B., and Schneebeli, M. (2003). ‘Snow avalanche formation’.

Reviews of Geophysics, 41(4): 2.1–2.25

Smith, L. C., Pavelsky, T. M., MacDonald, G. M., Shiklomanov, A. I., and Lammers, R. B.

(2007). ‘Rising minimum daily flows in northern Eurasian rivers: A growing

influence of groundwater in the high-latitude hydrologic cycle’. Journal of

Geophysical Research, 112(G04S47): 18 PP

Steinberg, D. and Colla, P. (1995). ‘CART: tree-structured non-parametric data

analysis’. Salford Systems

361

http://www.beringclimate.noaa.gov/


References

Stendel, M. and Christensen, J. H. (2002). ‘Impact of global warming on permafrost

conditions in a coupled GCM’. Geophysical Research Letters, 29(13): 10.1–10.4

Stewart, I. T. (2009). ‘Changes in snowpack and snowmelt runoff for key mountain

regions’. Hydrological Processes, 23(1): 78–94

Stone, R. S., Dutton, E. G., Harris, J. M., and Longenecker, D. (2002). ‘Earlier spring

snowmelt in northern Alaska as an indicator of climate change’. Journal of

Geophysical Research, 107(D10): ACL 10–1

Storch, H. and Zwiers, F. W. (1999). Statistical Analysis in Climate Research.

Cambridge University Press

SWIPA (2011). ‘Snow, water, ice and permafrost in the Arctic (SWIPA): Exec-

utive Summary’. Technical report, Coordinated by AMAP and produced in collabo-

ration with IASC, WMO/Clic and IASSA

Syed, T. H., Famiglietti, J. S., Zlotnicki, V., and Rodell, M. (2007). ‘Contemporary

estimates of Pan-Arctic freshwater discharge from GRACE and reanalysis’.

Geophysical Research Letters, 34(L19404): 6 PP

Tiana, Y., Uenob, Y., Sudaa, M., and Akaminea, T. (2004). ‘Decadal variability in the

abundance of Pacific saury and its response to climatic/oceanic regime shifts

in the northwestern subtropical Pacific during the last half century ’. Journal

of Marine Systems, 52(1-4): 235–257

Trenberth, K. E. and Shea, D. J. (2005). ‘Relationships between precipitation and

surface temperature’. Geophysical Research Letters, 32(L14703): 4 PP

University of East Anglia Climate Research Unit (2011). ‘CRU Time Series (TS)

high resolution gridded datasets’. NCAS British Atmospheric Data Centre, http:

//badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_1256223773328276

Vogelsang, T. (1999). ‘Testing for a shift in trend when serial correlation is of

unknown form’. Tinbergen Institute Discussion Papers, https://www.msu.edu/~tjv/

trendbrk.pdf

362

http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_1256223773328276
http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_1256223773328276
https://www.msu.edu/~tjv/trendbrk.pdf
https://www.msu.edu/~tjv/trendbrk.pdf


References

Vogelsang, T. J. and Perron, P. (1998). ‘Additional tests for a unit root allowing

the possibility of breaks in the trend function’. International Economic Review,

39(4): 1073–1100

Walvoord, M. A. and Striegl, R. G. (2007). ‘Increased groundwater to stream dis-

charge from permafrost thawing in the Yukon River basin: potential im-

pacts on lateral export of carbon and nitrogen’. Geophysical Research Letters,

34(L12402): 6 PP

Watanabe, M. and Nitta, T. (1999). ‘Decadal changes in the atmospheric circulation

and associated surface climate variations in the Northern Hemisphere winter’.

Journal of Climate, 12(2): 494–510

Woo, M. K., Kane, D. L., Carey, S. K., and Yang, D. (2008). ‘Progress in permafrost

hydrology in the new millennium’. Permafrost and Periglacial Processes, 19(2):

237–254

Yue, S. and Pilon, P. (2003). ‘Canadian streamflow trend detection: impacts of

serial and cross-correlation’. Hydrological Sciences Journal, 48(1): 51–63

Yue, S. and Pilon, P. (2004). ‘A comparison of the power of the t-test, Mann-

Kendall and bootstrap tests for trend detection’. Hydrological Sciences Journal,

49(1): 21–37

Yue, S., Pilon, P., Phinney, B., and Cavadias, G. (2002). ‘The influence of autocorrela-

tion on the ability to detect trend in hydrological series’. Hydrological Processes,

16(9): 1807–1829

Zhang, T., Frauenfeld, O. W., Serreze, M. C., Etringer, A., Oelke, C., McCreight, J.,

Barry, R. G., Gilichinsky, D., Yang, D., Ye, H., Ling, F., and Chudinova, S. (2005).

‘Spatial and temporal variability in active layer thickness over the Russian

Arctic drainage basin’. Journal of Geophysical Research, 110(D16101): 14 PP

Zhang, X., Harvey, K. D., Hogg, W. D., and Yuzyk, T. R. (2001). ‘Trends in Canadian

streamflow’. Water Resources Research, 37(4): 987–998

Zhang, X., Vincent, L. A., Hogg, W. D., and Niitsoo, A. (2000). ‘Temperature and

precipitation trends in Canada during the 20th century’. Atmosphere-Ocean,

38(3): 395–429

363



References

Zivot, E. and Andrews, D. W. K. (1992). ‘Further evidence on the great crash, the

oil-price shock, and the unit-root hypothesis’. Journal of Business and Economic

Statistics, 10(3): 25–44

364



Appendix A

Sample Plots of Different Techniques

365



A.1. Model 2 Appendix A. Sample Plots of Different Techniques

A.1 Model 2
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Figure A.1: The MAM time series above is approximated using Model 2. Following Rule 1a

indicated in Section 5.4.2, y0 and yw are evaluated. The segment shaded in blue is Sinterest.
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Figure A.2: The JFM time series above is approximated using Model 2. Following Rule 1b

indicated in Section 5.4.2, y0 and yw are evaluated. The segment shaded in blue is Sinterest.
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Figure A.3: The JFM time series above is approximated using Model 2. Following Rule 1b

indicated in Section 5.4.2, y0 and yw are evaluated. The segment shaded in blue is Sinterest.
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A.2. Model 3 Appendix A. Sample Plots of Different Techniques

A.2 Model 3
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Figure A.4: The MAM time series above is approximated using Model 3. Following Rule 1a

indicated in Section 5.4.2, y0 and yw are evaluated. The segment shaded in blue is Sinterest.
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A.2. Model 3 Appendix A. Sample Plots of Different Techniques
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Figure A.5: The MAM time series above is approximated using Model 3. Following Rule 1b

indicated in Section 5.4.2, y0 and yw are evaluated. The segment shaded in blue is Sinterest.
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Figure A.6: The JFM time series above is approximated using Model 3. y0 and yw are

evaluated following Rule 2a indicated in Section 5.4.2: The first segment has a larger slope;

however, the cumulative warming is larger over the second segment. Therefore, Sinterest is the

second segment.
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Figure A.7: The JFM time series above is approximated using Model 3. y0 and yw are

evaluated following Rule 2a indicated in Section 5.4.2: The first segment has the maximum slope

and cumulative warming. Therefore, Sinterest is the first segment.
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Figure A.8: The JFM time series above is approximated using Model 3. y0 and yw are

evaluated following Rule 2b indicated in Section 5.4.2: The second segment has the largest slope

and cumulative warming. Therefore, Sinterest is the second segment.
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A.3. MARS Appendix A. Sample Plots of Different Techniques

A.3 MARS
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Figure A.9: The MAM time series above is approximated using MARS. The boundaries are

the dashed blue lines, and the time series is modelled by three segments which are continuous at

the boundaries. y0 and yw are evaluated following Rule 1a indicated in Section 5.5.2: The only

positive 0◦C crossing takes place in the first segment, and it is selected as Sinterest. Starting from

1901, temperature is constantly increasing.
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Figure A.10: The MAM time series above is approximated using MARS. The model consists

of three segments separated by the dashed blue lines. y0 and yw are evaluated following Rule 1a

indicated in Section 5.5.2: The only positive 0◦C crossing takes place in the first segment, and

it is selected as Sinterest. The increase in temperature initiates at 1901. Warming resumes in the

third segment after a short period of constant average temperature.
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Figure A.11: The MAM time series above is approximated using MARS. It is modelled by

four segments which are continuous at the boundaries. y0 and yw are determined following Rule

1a indicated in Section 5.5.2: The only positive 0◦C crossing takes place in the first segment, and

it is selected as Sinterest. Temperature moves above 0◦C at 1913. Despite some fluctuations during

the second and third segments, temperature stays above the 0◦C line, and warming resumes at

1964.
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Figure A.12: The JFM time series above is approximated using MARS. y0 and yw are deter-

mined following Rule 1b indicated in Section 5.5.2: The only positive 0◦C crossing takes place in

the second segment, and it is selected as Sinterest.
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Figure A.13: The MAM time series above is approximated using MARS. y0 and yw are

determined following Rule 1b indicated in Section 5.5.2: The only positive 0◦C crossing takes

place in the second segment, and it is selected as Sinterest.
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Figure A.14: The JFM time series above is approximated using MARS. The model consists of

four segments which are continuous at the boundaries. y0 and yw are determined following Rule

1b indicated in Section 5.5.2: The only positive 0◦C crossing takes place in the second segment,

and it is selected as Sinterest. Warming starts at 1920, and the sign of temperature changes a few

years later at 1926. Temperature remains positive despite the decreasing temperature during the

third segment. The increase in temperature resumes at 1984.
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Figure A.15: The MAM time series above is approximated using MARS. The model consists

of four segments which are continuous at the boundaries. y0 and yw are determined following

Rule 2a indicated in Section 5.5.2. There are two positive 0◦C crossings, and the first segment

has the maximum slope and cumulative warming; hence, it is selected as Sinterest. Temperature

crosses 0◦C at 1921, and for a short period during the second and third segments, temperature

turns negative. However, it goes back above 0◦C and continues to increase.
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Figure A.16: The MAM time series above is approximated using MARS. The model consists

of four segments which are continuous at the boundaries. y0 and yw are determined following

Rule 2a indicated in Section 5.5.2. There are two positive 0◦C crossings, and the first segment has

the maximum slope. However, it occurs over a short period, and the increase in temperature is

insignificant until the beginning of the fourth segment. During this segment, significant warming

takes place despite its smaller slope, and it is selected as Sinterest
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Figure A.17: The MAM time series above is approximated using MARS. The model consists

of four segments which are continuous at the boundaries. y0 and yw are determined following

Rule 2b indicated in Section 5.5.2. There are two positive 0◦C crossings which take place during

the second and fourth segments. The last segment has the maximum slope and is selected as

Sinterest. Temperature fluctuates prior to 1992, and for a few years, it rises above 0◦C. A sharp

increase in temperature starts at 1992 and continues until the end of the time series.
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A.4. R Method Appendix A. Sample Plots of Different Techniques

A.4 R Method
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Figure A.18: The JFM time series above is approximated using the R method. The bound-

aries are the dashed blue lines, and the time series is modelled by three segments with disjoint

boundaries. y0 is determined based on Rule 1 (Section 5.6.2). The segment shaded in blue is

Sinterest.
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Figure A.19: The JFM time series above is approximated using the R method. The bound-

aries are the dashed blue lines, and the time series is modelled by five segments with disjoint

boundaries. y0 is determined based on Rule 2 (Section 5.6.2). The segment shaded in blue is

Sinterest.
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B.1. JFM Appendix B. Histograms of Different Techniques for Various Regions
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Figure B.1: Histograms of the analysed variables (Section 5.2) during JFM for western U.S.

The results are obtained using MARS.
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Figure B.2: Histograms of the analysed variables (Section 5.2) during JFM for central U.S.

The results are obtained using MARS.
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Figure B.3: Histograms of the analysed variables (Section 5.2) during JFM for eastern U.S.

The results are obtained using MARS.
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Figure B.4: Histograms of the analysed variables (Section 5.2) during JFM for Europe. The

results are obtained using MARS.
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Figure B.5: Histograms of the analysed variables (Section 5.2) during JFM for southwestern

and central Asia. The results are obtained using MARS.
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Figure B.6: Histograms of the analysed variables (Section 5.2) during JFM for western China.

The results are obtained using MARS.
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Figure B.7: Histograms of the analysed variables (Section 5.2) during JFM for eastern Asia.

The results are obtained using MARS.
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B.1.2 Model 2
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Figure B.8: Histograms of the analysed variables (Section 5.2) during JFM for western U.S.

The results are obtained using Model 2.
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Figure B.9: Histograms of the analysed variables (Section 5.2) during JFM for central U.S.

The results are obtained using Model 2.
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Figure B.10: Histograms of the analysed variables (Section 5.2) during JFM for eastern U.S.

The results are obtained using Model 2.
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Figure B.11: Histograms of the analysed variables (Section 5.2) during JFM for Europe. The

results are obtained using Model 2.
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Figure B.12: Histograms of the analysed variables (Section 5.2) during JFM for southwestern

and central Asia. The results are obtained using Model 2.
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Figure B.13: Histograms of the analysed variables (Section 5.2) during JFM for western China.

The results are obtained using Model 2.
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Figure B.14: Histograms of the analysed variables (Section 5.2) during JFM for eastern Asia.

The results are obtained using Model 2.
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Figure B.15: Histograms of the analysed variables (Section 5.2) during JFM for western U.S.

The results are obtained using Model 3.
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Figure B.16: Histograms of the analysed variables (Section 5.2) during JFM for central U.S.

The results are obtained using Model 3.
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Figure B.17: Histograms of the analysed variables (Section 5.2) during JFM for eastern U.S.

The results are obtained using Model 3.
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Figure B.18: Histograms of the analysed variables (Section 5.2) during JFM for Europe. The

results are obtained using Model 3.
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Figure B.19: Histograms of the analysed variables (Section 5.2) during JFM for southwestern

and central Asia. The results are obtained using Model 3.
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Figure B.20: Histograms of the analysed variables (Section 5.2) during JFM for western China.

The results are obtained using Model 3.
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Figure B.21: Histograms of the analysed variables (Section 5.2) during JFM for eastern Asia.

The results are obtained using Model 3.
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Figure B.22: Histograms of the analysed variables (Section 5.6.1) during JFM for western U.S.

The results are obtained using the R Method.
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Figure B.23: Histograms of the analysed variables (Section 5.6.1) during JFM for central U.S.

The results are obtained using the R Method.
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Figure B.24: Histograms of the analysed variables (Section 5.6.1) during JFM for eastern U.S.

The results are obtained using the R Method.
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Figure B.25: Histograms of the analysed variables (Section 5.6.1) during JFM for Europe. The

results are obtained using the R Method.
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Figure B.26: Histograms of the analysed variables (Section 5.6.1) during JFM for southwestern

and central Asia. The results are obtained using the R Method.
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Figure B.27: Histograms of the analysed variables (Section 5.6.1) during JFM for western

China. The results are obtained using the R Method.
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Figure B.28: Histograms of the analysed variables (Section 5.6.1) during JFM for eastern Asia.

The results are obtained using the R Method.
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Figure B.29: Histograms of the analysed variables (Section 5.2) during MAM for North Amer-

ica. The results are obtained using MARS.
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Figure B.30: Histograms of the analysed variables (Section 5.2) during MAM for Eurasia. The

results are obtained using MARS.
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Figure B.31: Histograms of the analysed variables (Section 5.2) during MAM for North Amer-

ica. The results are obtained using Model 2.
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Figure B.32: Histograms of the analysed variables (Section 5.2) during MAM for Eurasia. The

results are obtained using Model 2.
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Figure B.33: Histograms of the analysed variables (Section 5.2) during MAM for North Amer-

ica. The results are obtained using Model 3.
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Figure B.34: Histograms of the analysed variables (Section 5.2) during MAM for Eurasia. The

results are obtained using Model 3.
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Figure B.35: Histograms of the analysed variables (Section 5.6.1) during MAM for North

America. The results are obtained using the R Method.
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Figure B.36: Histograms of the analysed variables (Section 5.6.1) during MAM for Eurasia.

The results are obtained using the R Method.
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Figure C.1: The MAM time series of the grid cell with latitude: 38.25◦N and longitude:

106.25◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 1 (Section 5.8.5).
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Figure C.2: The MAM time series of the grid cell with latitude: 40.25◦N and longitude:

106.25◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 1 (Section 5.8.5).
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(c) Model 3
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Figure C.3: The MAM time series of the grid cell with latitude: 52.75◦N and longitude:

119.25◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 1 (Section 5.8.5).
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Figure C.4: The MAM time series of the grid cell with latitude: 54.25◦N and longitude:

124.75◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 1 (Section 5.8.5).
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Figure C.5: The MAM time series of the grid cell with latitude: 57.25◦N and longitude:

115.75◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 1 (Section 5.8.5).
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Figure C.6: The MAM time series of the grid cell with latitude: 59.75◦N and longitude:

150.75◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 1 (Section 5.8.5).
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Figure C.7: The MAM time series of the grid cell with latitude: 60.25◦N and longitude:

151.75◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 1 (Section 5.8.5).
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Figure C.8: The MAM time series of the grid cell with latitude: 60.75◦N and longitude:

48.25◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 1 (Section 5.8.5).
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Figure C.9: The MAM time series of the grid cell with latitude: 60.75◦N and longitude:

147.25◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 1 (Section 5.8.5).

431



C.1. Case 1 Appendix C. Sample Plots Used for Picking the Best Model

1900 1920 1940 1960 1980 2000
−4

−3

−2

−1

0

1

2

3

4

5

6

Time (year)

T
em

pe
ra

tu
re

 (°
C

)

Lat: 61.25 Long: −150.75

 

 
Original Data
MARS Lines

(a) MARS

1900 1920 1940 1960 1980 2000
−4

−2

0

2

4

6

Time (year)
T

em
pe

ra
tu

re
 (°

C
)

Lat: 61.25 Long: −150.75

 

 
Original Data
OLS Line
y

break
 = 1963

(b) Model 2

1900 1920 1940 1960 1980 2000
−4

−2

0

2

4

6

8

Time (year)

T
em

pe
ra

tu
re

 (°
C

)

Lat: 61.25 Long: −150.75

 

 
Original Data
OLS Line
y

break
 = 1943

y
w

 = 1943

y
0
 = 1949

(c) Model 3
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Figure C.10: The MAM time series of the grid cell with latitude: 61.25◦N and longitude:

150.75◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 1 (Section 5.8.5).
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Figure C.11: The MAM time series of the grid cell with latitude: 37.25◦N and longitude:

106.75◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 2 (Section 5.8.5).
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Figure C.12: The MAM time series of the grid cell with latitude: 39.75◦N and longitude:

106.75◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 2 (Section 5.8.5).
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Figure C.13: The MAM time series of the grid cell with latitude: 47.25◦N and longitude:

71.25◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 2 (Section 5.8.5).
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Figure C.14: The MAM time series of the grid cell with latitude: 47.25◦N and longitude:

71.75◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 2 (Section 5.8.5).

436



C.2. Case 2 Appendix C. Sample Plots Used for Picking the Best Model

1900 1920 1940 1960 1980 2000

−2

−1

0

1

2

3

4

5

6

Time (year)

T
em

pe
ra

tu
re

 (°
C

)

Lat: 49.25 Long: −53.75

 

 
Original Data
MARS Lines
y

0
 = 1967

y
w

 = 1964

(a) MARS

1900 1920 1940 1960 1980 2000

−2

−1

0

1

2

3

4

5

6

7

Time (year)
T

em
pe

ra
tu

re
 (°

C
)

Lat: 49.25 Long: −53.75

 

 
Original Data
OLS Line
y

break
 = 1939

y
w

 = 1939

y
0
 = 1949

(b) Model 2

1900 1920 1940 1960 1980 2000

−2

−1

0

1

2

3

4

5

6

7

Time (year)

T
em

pe
ra

tu
re

 (°
C

)

Lat: 49.25 Long: −53.75

 

 
Original Data
OLS Line
y

break
 = 1968

(c) Model 3

1900 1920 1940 1960 1980 2000

−2

−1

0

1

2

3

4

5

6

Time (year)

T
em

pe
ra

tu
re

 (°
C

)

Lat: 49.25 Long: −53.75

 

 
Original Data
Mean Levels
y

0
 = 1969

(d) R Method

Figure C.15: The MAM time series of the grid cell with latitude: 49.25◦N and longitude:

53.75◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 2 (Section 5.8.5).
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Figure C.16: The MAM time series of the grid cell with latitude: 53.25◦N and longitude:

105.75◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 2 (Section 5.8.5).
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Figure C.17: The MAM time series of the grid cell with latitude: 47.25◦N and longitude:

70.75◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 3 (Section 5.8.5).
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Figure C.18: The MAM time series of the grid cell with latitude: 47.75◦N and longitude:

74.25◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 3 (Section 5.8.5).
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Figure C.19: The MAM time series of the grid cell with latitude: 55.25◦N and longitude:

121.25◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 3 (Section 5.8.5).
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Figure C.20: The MAM time series of the grid cell with latitude: 55.25◦N and longitude:

125.75◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 3 (Section 5.8.5).
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Figure C.21: The MAM time series of the grid cell with latitude: 56.75◦N and longitude:

116.25◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 3 (Section 5.8.5).
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Figure C.22: The MAM time series of the grid cell with latitude: 58.75◦N and longitude:

122.75◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 3 (Section 5.8.5).
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Figure C.23: The MAM time series of the grid cell with latitude: 60.75◦N and longitude:

145.75◦W is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 3 (Section 5.8.5).
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Figure C.24: The JFM time series of the grid cell with latitude: 28.25◦N and longitude:

100.75◦E is modelled using (a) MARS, (b) Model 2, (c) Model 3, (d) the R Method. The figure

is an example of Case 3 (Section 5.8.5).
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