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Abstract

As our understanding of chemical processes increases the models created to describe
them also increase in complexity. These models usually consist of sets of differential
equations, containing multiple response variables which are a function of multiple input
or design variables and a potentially large number of parameters. In most cases the
equations are nonlinear in the inputs and parameters, and must be solved by numerical
integration. An example of such a model is the Watpoly polymerization model (Gao and
Penlidis, 1996 and 1998) developed in the polymer research group at the University of
Waterloo. To be able to use these models effectively the parameters that they contain
have to be known.

The bulk of the literature dealing with parameter estimation has only considered
small models. At present in estimating parameters for large process models, there are
two shortcomings in the existing knowledge about parameter estimation. The first is, how
effective is the present parameter estimation methodology when applied to large models,
and the second is, can any advantage be gained from considering the parameter estimation
problem as a whole. This work will try to address this limitation, by revisiting the
parameter estimation process and developing a protocol for the estimation or updating

of the parameters within process models.
The projected use of the parameter estimation protocol is as part of a model based

experimentation program. Therefore it considers actual experimental conditions, where
the number of experiments that can be carried out is limited due to the expense of

performing experiments and analysis.
In the development of a parameter estimation protocol all of the steps of the parameter

estimation will be revisited. The parameter estimation steps are: parameter sensitivity
analysis, statistical design of experiments, estimation of parameters and confidence re-
gions. Where these four steps correspond to answering the following questions;

1. Is it possible to estimate the parameters with the chosen responses and which
response or responses will provide the most information?

2. At what conditions (i.e. temperature, conversion, initial feed composition) should
the data in the experiment be collected?

3. What is the best method to estimate the parameters with the data that was col-
lected?

4. How good are the parameters that were estimated?

Of the parameter sensitivity analysis methods available it was found that the best
method to present sensitivity information is a plot of the gradient values of the responses
with respect to the parameters. The gradients are normalized and plotted as a function

iv



of independent variables such as initial feed composition, time or conversion. This is
performed so that responses of different magnitudes and different measurement errors
can be compared to each other.

In designing experiments the D-optimality criterion is generally used. One of the
implementation challenges in designing experiments is local optima. One possible method
found to deal with this difficulty, is to provide the optimization algorithm with a good
initial guess that is based on the information provided by the gradient plots.

To estimate the parameters with multiple responses the Determinant criterion is used.
When estimating multiple parameters in a large model a large number of local optima
can exist. To overcome this difficulty, different approaches are available, such as a robust
optimization algorithm (e.g. simulated annealing) or the use of multiple starting points.

Confidence regions of the parameter estimates will provide a measure of the quality
of the parameter estimates. The true shape approximate level confidence regions were
found to be an adequate compromise between information provided and computation
required. It was found that the true shape joint confidence regions can be incorrect if
multiple responses are used and the sample size is small.

The parameter estimation protocol is a series of actions or steps that can be followed
in the course of obtaining parameter estimates. By following these actions the overall
parameter estimation procedure can be more efficient and some pitfalls such as local
optima and incorrect confidence regions, may be dealt with in an appropriate manner.
To illustrate the application of the protocol, three case studies are presented. These
case studies illustrate some of the problems that may be encountered in the parameter
estimation process and how the proposed protocol can aid in overcoming them.



Acknowledgements

I would like to express my sincere gratitude and thanks to my supervisor Professor
Tom Duever, and to Professor Alex Penlidis. As the completion of this thesis would not
have been possible if it were not for the support and guidance that I received from them.
In particular I would like to thank them for their patience with my struggles and their
encouragement and support when things were not going well.

I would also like to thank my friends and colleagues at Waterloo, for their support
and all of the good times.

vi



Contents

1 Introduction
2 Sensitivity Analysis
2.1 Introduction . . . . . . . . . . . . e
2.2 Sensitivity Analysis Review . . . . . . .. ... ... ...
2.3 Global and Local Sensitivity . . . . . .. . . . ... ... ... .. ...
24 Gradient Plots. . . . . . . . . . . . . ... ..o
2.4.1 Overview . . . . . . . . e e e e e
2.4.2 Implementation . . . . . . . . .. . . .. .. ... ...
2.4.3 Interpretation . . . . . . . . . ... ... ... .. ...,
3 Design of Experiments
3.1 Introduction . . . . . . . . . . . .. . e e e
3.2 D-optimality: Background . . . . . . ... .. ... ... ... ...
3.3 Designing D-optimal Experiments . . . . . . . . .. ... .. .. .....
3.3.1 Assumptions Made in Using D-optimality . . .. ... ... ...
332 LocalOptima . . . . . . . . . . .. . . . e
3.3.3 Implementation Notes . . . . ... .. ... ... . ........
3.4 D-optimal Experiment Sensitivity Measure . . . . . . . . . ... .. ...
3.4.1 Comparing Experiments . . . .. . .. ... ... .. .......
4 Parameter Estimation
4.1 Estimation Criteria . . . . . . . . . . ... .. ... ... ... ...
4.1.1 Determinant Criterion . . . . .. . . . ... ... .. ... ....
4.1.2 MWLS . . . . e e
4.2 Estimating Parameters . . . . . . . . ... .. oL o000
4.2.1 Optimization Methods . . . . ... ... ... .. .........
422 LocalOptima . . . . . . . . ... . ... oo
4.2.3 Parameter Correlation . .. . ... ... .. .. ... .......

vii



5 Confidence Regions 61

51 Background Theory . . . . . . . . . . . .. .. L 62
5.2 Issues in Using True Shape Confidence Regions With Multiple Responses 66
521 ABCExample. . . . . . . . . . .. oo oo 70

522 CaseStudy 2 . . . . . . . ..o 74

5.2.3 DISCUSSION . . « « « v o vt v e e e e e e e e e e e e e e e e e e 75

5.3 Contouring algorithm . . . . . . . . . ... ... oo 75

6 Case Studies 79
6.1 Introduction . . . . . . . . . . . C c o e e e e e 79
6.2 Model Description . . . . . . . . - . ..o e e 80
6.2.1 Polymerization Reaction Kinetics . . . . . . . .. ... ... ... 81

6.2.2 Model Equations . . . . . . . . .. ..o 82

6.3 CaseStudy 1 . . . . . .« o i i i e e e 87
6.3.1 Description . . . . . . . .. .. e 87

6.3.2 Sensitivity Analysis . . . . . . . .. ..o oo 87

6.3.3 Experiment Design . . . . . . . .. . ... ... .. 97

6.3.4 Parameter Estimation . . . . . .. ... .. ..o oo 102

6.3.5 Confidence Regions . . . . . . . .. ... ... ... 103

6.4 CaseStudy 2 . . . . - . . . 113
6.4.1 Description . . . . . . . . ..o 113

6.4.2 Sensitivity Analysis . . . . . . . . . ..o oo 113

6.4.3 Experiment Design . . . .. . . .. ... .. ... .. 120

6.4.4 Parameter Estimation . . . . . . . . ... ... 120

6.4.5 Confidence Regions . . . . . . . .. . .. ... ... ... 124

6.5 CaseStudy 3 . . . . . . . o e 130
6.5.1 Description . . . . . . . . ... 130

6.5.2 Sensitivity Analysis . . . . . . . .. ..o 130

6.5.3 PExperiment Design . . . . .. . ... ... . ... ... ... 139

6.5.4 Parameter Estimation . . . . . . . . . .. ..o 140

6.5.5 Confidence Regions . . . . . . . . .. ... ... ... ... 145

7 Concluding Remarks 152
71 Conclusions . . . . . . o i e e e e e e e e e e e e e e e e e e e e 152
7.2 Future Work . . . . . . . L L e e e e e e e e 154
Appendix A, Nomenclature 156
Appendix B 160
Appendix C 161

vili



Appendix D 167

Bibliography 168

ix



List of Tables

3.1

3.2

4.1

5.1

5.2

6.1
6.2

6.3
6.4

6.5
6.6

6.7
6.8
6.9
6.10
6.11

6.12
6.13

Criteria used in the design of parameter estimation experiments for non-
linearmodels . . . . . . .. ..o
Experiment designs and their D-optimal criterion values for the estimation
of the reactivity ratios . . . . . . . . ... ... ...

Criteria for multiresponse parameter estimation . . . . . . ... ... ..

Percent of the time in 10000 trials, that the true parameter values of the
ABC model were within the calculated confidence region of the parameter

estimates, when the standard deviation of the measurement error was 0.05.

Percent of the time in 177 trials, that the true parameter values in Case
Study 2 were within the calculated confidence region of the parameter
estimates. . . . . . . . L L L e e e e e e e e e

Parameters estimated incasestudy 1 . . . . . ... ... ... .. .. ..
Measurement error standard deviation (orsp) of the responses used in case
study 1. . . . . . L e e
Summary of the sensitivity analysis . . . . . . . .. ... ... .. ....
Initial values used by the optimization algorithm and the criterion of the
experiment obtained . . . . . . . ... ... oL Lo
The best experiment design obtained . . . . . . . .. .. ... ... ...
High and low levels of the parameters used in the experiment sensitivity
analysis. . . . . . ... e e e e e e
Results of the designed experiment sensitivity analysis . . . . .. .. ..
Estimated parameter values . . . . . . . . ... ... ... ... ...,
Experiment design used in the parameter estimation. . . . . . . . . . ..
Parameters estimated incasestudy 2 . . . . . . . ... ... ... ...
Measurement error standard deviation (oresp) Of the responses used in case
study 2. . . L L e e e e e e e
Summary of the sensitivity analysis . . . . . .. ... ... ... ... ..
Initial values used by the optimization algorithm, the designed experiment
and its criterion value. . . . . . . . . ... ... Lo oo

23

40
47

72

74
88

88
96



6.14
6.15
6.16
6.17
6.18
6.19
6.20

6.21
6.22
6.23
6.24
6.25

6.26

Local optima from the parameter estimation . . . . . . . . . . ... ... 121
Parameter estimates and true values . . . . . . ... . ... ... .. .. 122
Estimated parameter values . . . . . . . . ... ... L. 124
Experiment design used in the parameter estimation. . . . . . . . . . .. 124
Estimated parameter values . . . . . . . . ... .. ... 129
Parameters estimated incasestudy 3 . . . . . . . .. ... ... 131
Measurement error standard deviation (c,.sp) of the responses used in case

study 3. . . - . . e e e 131
Summary of the sensitivity analysis . . . . . . . .. ... ... .. ... 136
General areas of best observability . . . . . . . . ... ... ... ..... 138
Designed experiments for case study 3 . . . . . ... ... ... 140
Estimated parameter values . . . . . . . . ... ..o 141
Description of the runs used in comparing the effect of different responses

and/or number of trials on the parameter estimates . . . . . .. . . ... 142
Estimated parameter values . . . . . . .. .. .. ... .o 148

Xi



List of Figures

2.1

2.2

2.3

3.1

3.2

3.3

3.4

4.1
4.2
4.3

5.1

5.2

6.1
6.2
6.3

Gradient curves with respect to the parameter r in the copolymer system
Styrene/Methyl Methacrylate at 30 minutes. . . . . .. . ... ... ... 14
Gradient plot of the conversion response with respect to the parameter r;
versus sampling time and initial feed composition for the system Styrene
/ Methyl Methacrylate. . . . . . . . . .. ... ... L. 18
Gradient plot of the composition response with respect to the parameter r;
versus sampling time and initial feed composition for the system Styrene

/ Methyl Methacrylate. . . . . . . . . . ... ... ... L. .. 19
A sample of locally optimal experiments for the estimation of 6 parameters
using a 12 trial experiment . . . . . . . . .. ... Lo 34
Gradient plots to generate an initial point for the experiment design op-
timization algorithm . . . . . . . . . .. ..o 0oL 37
The D-optimal design criterion of the ‘high conversion’ experiment over
the feasible parameter space . . . . . . . . .. ..o 42
The D-optimal design criterion of the ‘low conversion’ experiment over the
feasible parameter space . . . . . . . .. . ..o o e 43

A cross section of the objective function surface, while varying kfmpre—ezp 97
A cross section of the objective function surface, while varying kfm act—eng 98
A plot of the objective function surface, while varying k&, pre—ezp a0d kp act—eng 60

Joint confidence regions of five different cases, of the parameters §; and 6

inthe BODmodel. . . . . ... ... ... .. 00 67
Distribution of the W term for the four trial case of the ABC
example (circles), and the F distribution with (2,2) degrees of freedom
(solid line). . . . . . . . . . .. e 73
Gradient plots with respect to the parameter &fm act—eng at 65 °C . . . . 89
Gradient plots with respect to the parameter kjm gei—eng at 75 °C . . . . 90
Plot of conversion versus time for the homopolymerization of Styrene, solid
line 65 °C,dashedline75 °C . . . . . . . .. . . ... 92



6.4

6.5

6.6

6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

6.18
6.19
6.20

6.21
6.22
6.23
6.24

6.25

6.26

6.27
6.28
6.29

Effect of changing the value of kfy, gct—eng On the gradient plot of conversion

at 65 °C , where kfm qct—eng €quals 12000(A), 13426(B) and 15000(C) . . 94
Effect of changing the value of V}, on the gradient plot of conversion at
65 °C , where V}, equals 0.020(A), 0.025(B) and 0.030(C) . . ... ... 95

Plot of the estimated parameter values of the ks, Arrhenius expression;

stars are locally optimal estimates and the circle indicates the true values 104
Gradient plots with respect to the parameter fy;—eng at 65 °C . . . . . . 107
Gradient plots with respect to the parameter f,;—eng at 75 degrees Celsius. 108
95 percent confidence region for the parameters kfmn act—eng aBd kfm pre—ezp 109

95 percent confidence region for the parameters fact — eng and fpre —ezp110
95 percent confidence region for the parameters kfm act—eng and Vi, . . . 111
Plot of the criterion value versus kym act—eng - - - =« = = - 0 0 e 0. e - 112
Gradient plots with respect to the parameter «,, at 65 degrees Celsius. . 115
Gradient plots with respect to the parameter BBm at 65 degrees Celsius. 116

Plot of conversion versus time for the homopolymerization of Styrene, at
65degrees Celsius . . . . . . . . ... Lo 118
Effect of changing the value of BBm on the gradient plot of M, at 65
degrees Celsius, where BBm equals 0.9(A), 1.0(B) and 1.1(C) . ... .. 119
A sample of the criterion surface, varying the parameters o,, and BBm
while Tgar, isfixed . . . . . . .. oo 123
95 percent confidence region for the parameters o, and BBm . . . . .. 126
95 percent confidence region for the parameters o, and T'gar, - . - . . . 127
95 percent confidence region for the parameters ¢,, and BBm at different
values of T'gar,, where Tgar, equals 370.0(A), 374.2(B) and 380.0(C) . . . 128
Gradient plots with respect to the parameter o, a1 - - - - - - - -« . . . 132
Gradient plots with respect to the parameter Tgar,ar, - - - - - - - - - . . 133
Plot of conversion versus time for the copolymerization of Styrene / Methyl
Methacrylate . . . . . . . . . . Lo 135
Examining the effect the number of trials has on the parameter estimates,
with case-1(0) 18 trials, case-3(*) 12 trials and case-6(¢) 8 trials . . . . . 144
Examining the effect of including the triad fraction response on the para-

meter estimates, with case-6(circle) no triad fractions and case-7(x) triad
fractions . . . . . . . . . . L L e e e e e e e e e e 146
Examining the effect of including the radical concentration and polymer-
ization rate on the parameter estimates, with case-4(circle) all responses
and case-5(star) no radical concentration and polymerization rate responses147
95 percent confidence region for the parameters o, a1 and Tganng, - - - 149
95 percent confidence region for the parameters BBmys; and Tgannr, - - 150
95 percent confidence region for the parameters a, v and am an at dif-
ferent values of T'garar,, Where Tgar ar, equals 360.0(A), 368.1(B) and
375.0(C) . . . . e e e e e 151



Chapter 1

Introduction

As our understanding of chemical processes increases the models created to describe
them also increase in complexity. These models usually consist of sets of differential
and algebraic equations, containing multiple response variables which are a function of
multiple input or design variables and a potentially large number of parameters. In
most cases the equations are nonlinear in the inputs and parameters, and must be solved
by numerical integration. An example of such a model is the Watpoly polymerization
model (Gao and Penlidis, 1996 and 1998) developed in the polymer research group at the
University of Waterloo. To be able to use these models effectively the parameters that
they contain have to be known.

The case studies presented in the bulk of the literature dealing with parameter es-
timation have only considered small models. A small model has less parameters, less
equations and can frequently be solved analytically. An example of a ‘small’ model is
the A to B to C model that represents the sequence of first order irreversible chemical
reactions of A producing B and B producing C (Bates and Watts, 1998). The use of small
models in the parameter estimation literature in the past is due to the limited computing
power that was available. Therefore to make the problems tractable small models were
used which often had analytical solutions available.

The problem of nonlinear parameter estimation has been addressed by a number of

authors, including the early work by Box and Draper (1965) in the development of the
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determinant criterion, to more recently where there are a number of texts that discuss the
subject such as Seber and Wild (1989), Bates and Watts (1988) and Bard (1974). These
texts provide a general discussion of the theorv associated with nonlinear parameter
estimation and show how it has evolved from the linear case. Various issues in the
different steps of parameter estimation have also been addressed by Duever and Penlidis
(1998), Bartus (1987), Klaus (1981), Box et al. (1973) and Hemker and Kok (1993)
among others. While a number of authors discuss the individual steps of parameter
estimation in detail, there is very little discussion of the how the steps are related.

In estimating parameters for large process models, at present there are two shortcom-
ings in the existing knowledge about parameter estimation. The first is, how effective
is the present parameter estimation methodology when applied to large models, and the
second is, can any advantage be gained from considering the parameter estimation prob-
lem as a whole. Therefore to address this limitation, the objective of this work was to
revisit the parameter estimation process and to develop a protocol for the estimation
or updating of the parameters within process models. The protocol was then tested by
using it in several case studies to estimate parameters in the Watpoly polymerization
modelling package.

This research into the development of a protocol for estimation of parameters within
large models is part of the larger research program being performed in the polymer
research group at the University of Waterloo. The objective of this work is to develop a
set of tools to support a model-based experimentation approach. The model in this case
is not only a store of information but an integral part of the research process of proposing
various hypothesis, which are then experimentally verified.

In the development of a parameter estimation protocol all of the steps of the parameter
estimation will be revisited. The parameter estimation steps are: parameter sensitivity
analysis, statistical design of experiments, estimation of parameters and confidence re-

gions. Each of these steps correspond to answering one of the following questions:
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1. Is it possible to estimate the parameters with the chosen responses and which

response or responses will provide the most information?

2. At what conditions (i.e. temperature, conversion, initial feed composition) should

the data in the experiment be collected?

3. What is the best method to estimate the parameters with the data that was col-

lected?
4. How good are the parameters that were estimated?

The projected use of the parameter estimation protocol is as part of a model based
experimental program. In this work simulated experiments will mimic actual experi-
ments. In practice the number of experiments that can be carried out is limited due to
the expense of performing experiments and analysis. In the case studies ‘actual’ experi-
ments with a limited number of trials will be simulated by using the model to simulate
the responses and then adding reasonable experimental errors. In this work it is assumed
that the model is correct and the error that is added to the simulation responses repres-
ents only the variation associated with reproducibility (i.e. experimental error). If it is
suspected that the model is not correct, then trials for testing lack of fit should be in-
cluded in the experiment design. The focus of this work was on the parameter estimation
process and hence model lack of fit was not considered.

The parameter estimation protocol is a series of steps that should be followed in the
course of obtaining parameter estimates. By following these steps the overall parameter
estimation procedure can be made more efficient and some pitfalls such as local optima,
and inaccurate confidence regions can be dealt with in an appropriate manner. Each of
the four parameter estimation steps will be discussed in a separate chapter, which will be
followed by three case studies to illustrate the proposed parameter estimation protocol.

The first step in the parameter estimation process is a sensitivity analysis and will

be discussed in Chapter 2. Sensitivity analysis will identify which of the responses will
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provide the most information about the chosen parameters. This is achieved by per-
turbing the parameters and examining the change in the responses. This is equivalent
to calculating the gradient of the response with respect to the parameters as shown in
equation 1.1.

Af(l', 91)
s (L.1)

Sensitivity analysis can be broadly divided into two areas, global and lecal. Local sens-

Gradient =

itivity is equal to the gradient at a point, while global sensitivity will obtain an average
measure of sensitivity over a space of points. Of the available methods for sensitivity ana-
lysis, plotting of the gradient values was found to be the best approach. This approach
provides a significant amount of information while still being simple to interpret.

The second step of parameter estimation is the design of experiments and will be
discussed in Chapter 3. The objective in the design of experiments is to create an
experiment that will maximize the information about the parameters from the data
collected. The criterion used in this work is the D-optimality criterion, developed by Box
and Lucas (1959) and extended to the multiresponse case by Draper and Hunter (1966)

and Atkinson and Hunter (1968). The D-optimality criterion is shown in equation 1.2.
det[(V'V)™!] (1.2)

Where V is the matrix of gradient values of the responses with respect to the parameters
evaluated at the experiment trial points. The application of this criterion to large models
is a difficult task, as the resultant optimization problem will in general have a large
number of local optima. One method to overcome this problem, is to use the information
obtained from the sensitivity analysis. How this information is obtained and used will
be discussed.

The third step in the parameter estimation process is the estimation of the parameter
values from the data collected and will be discussed in Chapter 4. The principal criterion

used in this thesis is the determinant criterion developed by Box and Draper (1965) and
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shown in equation 1.3, where Z is the matrix of deviations.
min|Z'Z| (1.3)

The optimization problem in parameter estimation was found to be very challenging due
to the large number of local optima that were found and the computational expense
of working with large models. Unfortunately no simple, generic solution was found to
overcome these problems. However a set of recommendations is given that will allow the
researcher to deal with the problem of local optima.

The last step in parameter estimation is the calculation of joint confidence regions of
the parameter estimates and is discussed in Chapter 5. Confidence regions will provide
an indication of the uncertainty that is present in the estimated parameters and thus are
a reflection of the quality of the parameter estimates. They also allow for a comparison
of parameter estimates from different experiments. In the generation and interpretation
of these confidence regions a number of guidelines are presented as some limitations exist
in their use that are not readily apparent. An example is the limitation of the current
theory for the generation of confidence regions when the sample size is small and multiple
responses are used. The confidence regions obtained under these conditions can be much
smaller than the true confidence regions which can be obtained from a Monte Carlo
analysis.

The proposed protocol for parameter estimation is illustrated in Chapter 6 with three
case studies involving the estimation of parameters in the Watpoly model, which is a
polymerization simulation model based on a mechanistic consideration of the polymeriz-
ation process. These cases will illustrate some of the problems that may be encountered
in the parameter estimation process and how the proposed protocol can aid in overcom-
ing them. The conclusions and recommendations for future work will then be presented
in Chapter 7.

Throughout this thesis the terms ‘true parameter value’, ‘initial parameter value’,

‘parameter value’, ‘input variable’ and ‘response variable’ will be used. To clarify their
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use within this thesis, they are defined in the following manner. The term ‘parameter’
will refer to a value within a model that represents a physical or chemical constant,
such as reaction rate or rate of diffusion. Since in this thesis the experiments will be
simulated, the ‘true parameter values’ will refer to the parameter values used to generate
the response values. The ‘initial parameter value’ will refer to the value used as the
starting point within an optimization or the values used to design experiments. This value
will be different from the true value as defined above. An ‘input variable’ is a variable
manipulated by the researcher, such as the initial feed composition or the temperature.
A ‘response variable’ is a variable that would normally be measured by a researcher such

as the final composition, the molecular weight of a polymer, or the reaction rate.



Chapter 2

Sensitivity Analysis

2.1 Introduction

The goal of sensitivity analysis is to determine how a response will be affected by a
parameter perturbation. In the parameter estimation process this information is used to

answer the following related questions.
1. Can we estimate a parameter, 6;, using the response y;?
2. Which response will provide the most information about a chosen parameter?

One of the major difficulties in conducting a sensitivity analysis with nonlinear models,
is that values of the unknown parameters are required. This is a common limitation of
working with nonlinear models, and numerous methods have been developed to minimize
this effect of unknown parameters.

A number of different methods have been developed to perform a numerical sensitivity
analysis and are discussed in section 2.2. The approach of these methods can be generally
divided into global or local sensitivity. A more detailed comparison and discussion of
global and local sensitivity is given in section 2.3. Of the available methods for sensitivity

analysis, in this work gradient plots were found to be the best approach and will be
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discussed in section 2.4. This section will discuss the implementation and interpretation

of the gradient plots and an example will be presented to illustrate the method.

2.2 Sensitivity Analysis Review

A number of different methods exist to perform a sensitivity analysis. A review of
sensitivity analysis in general is given by Vajda et al. (1989), Markussen and DiStephano
(1982), Rabitz et al. (1983), Sulieman (1998) and Seber and Wild (1989). The objective
of all of these methods is to identify which of the responses within a model will provide
the most information about a given set of parameters. This is achieved by perturbing
one of the parameters at a given set of conditions (i.e. values of the inputs and other
parameters) and examining the corresponding effect in the response. This effect can be
quantified by calculating the numerical gradient of the model response with respect to
the parameter of interest, 6;, at the chosen parameter values and process conditions, as
shown in equation 2.1. Where f(z,#6;) is the model response and x is the set of input

variables.

Af(:l:: 61)
AY;

The simplest method of sensitivity analysis involves an examination of the gradient

Gradient = (2.1)

values. This is usually achieved by plotting the gradients at the chosen parameter values
and process conditions versus one of the independent variables such as initial composi-
tion or time for a dynamic response. As the model being used becomes more complex
and the number of parameters and responses to be considered increases, the amount of
information that needs to be analysed increases considerably. To overcome this, various
methods to summarize the sensitivity information have been proposed.

To compare the sensitivity of two responses to a given parameter using gradient

values, the response magnitude and measurement error have to be taken into account. If
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this is not done the sensitivity analysis will be biased. An example of this bias would be
the case where two responses have the same gradient values, but the measurement error
of one of the responses is much larger than the other. If the measurement error is not
considered the responses would be considered equal based on their gradient values. But
the response with the smaller measurement error will provide more information about the
parameter. To remove this bias, the gradient value is divided by the standard deviation
of the response measurement error, o,esp, as shown in equation (2.2). The normalized

gradient is discussed further in section 2.4.2.

Af(z,6)
A Sk AT 2.9
Ab; Oresp (2:2)

Normalized Gradient =

In performing a sensitivity analysis a further point to consider is the uniqueness of
the response. By this we mean if both parameter ¢, and 6, affect response y; in the
same manner, then it will not be possible to determine which parameter produced the
change in y;. Thus the two parameters #; and 6, will not be observable (i.e. estimable)
together and if considered individually (i.e. the other is fixed), their estimates will be
highly correlated.

Global sensitivity methods address two difficulties in sensitivity analysis. The first is
that the parameters are unknown but are required for the analysis if a nonlinear model is
used. The second is the difficulty of interpreting the large volume of information that may
exist if point gradient values are used. Global sensitivity methods obtain an ‘average’
sensitivity value over the chosen range of parameter values and process conditions. By
averaging the sensitivity values over a range of parameter values and a range of input
variables, the uncertainty due to the unknown parameter values is decreased. A further
advantage is that the sensitivity analysis is summarized in a few values and therefore is
easier to interpret.

The simplest form of global sensitivity is obtained by calculating a numerical av-
erage of the gradient values over a defined parameter and input variable space. The

implementation of this global sensitivity measure involves the following steps.
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1. Define a range of certainty for each of the parameters (i.e. the likely minimum and
maximum parameter values).

2. Define a range for each of the input variables.

3. Discretize each of the parameter and input variable ranges into n; steps, where
i=1...k.

The above steps will produce a discretized parameter and input variable space with
N points, where N = [I¥_| n;. The global sensitivity value of this space is obtained by
taking the average of the absolute gradient values at each point in the grid, as shown in
equation 2.3.

N I Afz (:,9)
j=1

N 5 (2:3)

Global Sensitivity =

N is the total number of points in the grid, j is the grid index, Af;(z,6) is the
change in the response at the j-th point in the grid that covers the desired parameter
and process condition ranges, and A# is the parameter perturbation. Although simple to
calculate this approach will not reveal if any parameter interaction exist. To overcome
this Pierce et al. (1981) propose a more sophisticated approach based on modulating the
parameters at given frequencies and then performing a Fourier analysis of the responses.
A comparison of four global sensitivity methods was performed by Markusen and Di
Stefano (1982), and they determined that integration of the gradient curves is the best
approach for large models.

A related technique to global sensitivity is the global structural identifiability. The
objective of these methods is to determine if a parameter can be estimated (i.e. is
observable) with a given set of responses assuming no measurement error is present. These
methods have been used primarily with compartmental models in the pharmacokinetic
field. The various methods are discussed by Chappell et al. (1990), Chappell and Godfrey
(1992) and Seber and Wild (1989) among others. Vajda et al. (1989) compare the

linearization, power series expansion and similarity transform approaches to sensitivity
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analysis with an emphasis on chemical kinetic modelling. Ljung and Glad (1994) propose
a method based on differential algebra that shews how global structural identifiability
is determined if the given model structure can be rearranged as a linear regression. A
limitation of all of these methods is that they only determine if a parameter is observable
with a given response. They do not consider the quality of this observability as the
response measurement error is not considered in the analysis. With this limitation and
the requirement of algebraic manipulation, this approach was not considered a feasible
option to use with the type of models considered in this thesis.

A further application of sensitivity analysis is as a screening method to determine
which parameters are the most significant. This is usually achieved by performing a
fractional factorial type of experiment on the model where the experiment factors are
the model parameter values and the experiment responses are the changes in the model
responses. This type of sensitivity analysis using different types of factorial experiments is
discussed by Andres (1997) {fractional factorial designs), DeWit (1997) (Plakett-Burman
designs) and Rahni et al. (1997) (factorial designs). This approach to sensitivity analysis
is only applicable to the initial stages of a model investigation where it is not known
which parameters are the most important, and is not applicable as part of a parameter
estimation process as considered in this thesis.

The numerical aspect of calculating gradients in a sensitivity analysis for a dynamic
model has been addressed by a number of authors such as Leis and Kramer (1985),
Leis and Kramer (1988), Caracotsios and Stewart (1985) and Guay and McLean (1995)
among others. Guay and McLean present a method of obtaining the gradient values
while solving the system of differential equations and a method to obtain the second
order sensitivity values. In calculating the gradient, the change in the response (i.e.
Ay) is obtained by running the simulation twice and taking the difference between the
two sets of results. If the gradients can be obtained in only one simulation pass, by

extracting them from the ODE solver while the differential equations are being solved,
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then the overall computation time required to obtain the gradient plots is decreased by

half.

2.3 Global and Local Sensitivity

Sensitivity can be broadly subdivided into two areas, local and global sensitivity. Local
sensitivity is the gradient value of a response with respect to a parameter at a given set
of conditions (i.e. input conditions and other parameter values), while global sensitivity
is an ‘average’ sensitivity value over a given range of conditions. Which of these two
approaches is best as part of the parameter estimation protocol will be addressed in this
section, where the advantages and disadvantages of each approach will be discussed.

Global sensitivity has two advantages. The first is its ease of interpretation, as it
summarizes all of the sensitivity information for the chosen response into one value.
The second advantage is that by covering a range of parameter values it will reduce the
amount of uncertainty in the sensitivity analysis due to the true parameter values being
unknown. The disadvantage of a global sensitivity measure is that it will not provide any
information about the location of the sensitivity. This information about the location
and distribution of the sensitivity was found to be very useful in the design of experiments
as described in Chapter 3.

Local sensitivity has the advantages of providing both the location of the sensitivity
information and a greater understanding of the parameter/response relationships in the
model. Its disadvantages are twofold: The first is that the sensitivity values are de-
pendent on the parameter, and input variable values. The second is that the amount of
data that has to be analysed increases significantly as the number of parameters and/or
responses considered increases. To deal with these limitations, an effective method is to
plot the gradients versus the input variable at different parameter values. This allows
the researcher to quickly analyse the gradient data with a visual inspection of each plot.

More detail on the implementation of this approach and how it is part of the parameter
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estimation protocol is given in section 2.4.

To illustrate the difference between local and global sensitivity and how information
can be lost by using an average (i.e. global) sensitivity value an example will be presented.
In this example the global and local sensitivities will be calculated for two responses
with respect to the parameter 7; in the batch copolymerization of Styrene / Methyl
Methacrylate at a run time of thirty minutes. The sampling time of thirty minutes was
chosen arbitrarily here, as only the effect of initial feed composition is being considered
in this example and not sampling time. The responses used are copolymer composition
(F1) and the cumulative triad fraction of monomerl-monomerl-monomerl (A111). The
input variable which is changed is the initial mole fraction of Styrene in the feed.

The local sensitivity analysis involves calculating the gradients of the two responses
with respect to the parameter 7, at different values of the independent variable. This
information is then summarized by plotting the gradient values versus the independent
variable. These plots are shown in Figure 2.1, where the horizontal axis is the initial
mole fraction of Styrene and the vertical axis is the normalized gradient value as given
by equation 2.2. A visual inspection of the gradient curve of the triad fraction and
copolymer composition, indicates that the triad fraction will provide more information
about the parameter due to its larger gradient values in general. A further piece of
information that can be obtained, is at what initial feed composition will the information
be maximized. This occurs where the absolute gradient values are the largest, which is
when the initial feed is near 0.8 mole fraction Styrene for both curves.

The global sensitivity value is obtained by averaging the gradient values over the range
of the independent variable (0.1 mole fraction Styrene to 0.9 mole fraction Styrene). This
results in global sensitivity values of 8.9 for the triad fraction and of 2.8 for the copolymer
composition. From these values we can conclude that the triad fraction A111 contains
more information about the parameter r; than copolymer composition, due to its larger

value, but not at what initial feed to sample.
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Figure 2.1: Gradient curves with respect to the parameter | in the copolymer system
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In general, as shown in the above example both local and global sensitivity will indic-
ate which of the responses will provide the most information. Only local sensitivity will
indicate where this information is located. This is a significant asset, as this information

was found to be very useful in the design of experiments.

2.4 Gradient Plots

2.4.1 Overview

This section will discuss how plots of the gradient data can be used to perform a parameter
sensitivity analysis and in what other areas of the parameter estimation process can this
information be used to make the overall process more efficient. This method was found
to be an adequate compromise between the amount of information provided and ease of
analysis. A description of the method and how to interpret the information provided will
be given and highlighted with an example.

As discussed in the previous section, using local sensitivity information is a better
approach as it provides insight into the location and distribution of the information
about the parameter values. However, the use of local sensitivity is accompanied with
the challenge of how to effectively present a large amount of information (i.e. the large
number of gradient values) in a manner that is easy to interpret while still containing
the desired information.

The most effective way to present the sensitivity information is to plot the gradient
values with respect to input variables (i.e. process conditions) such as sampling time or
initial feed composition. This approach produces a large number of graphs to interpret,
but the interpretation can be accomplished quickly and easily. When plotting the gradient
values versus one input variable, a 2D graph is produced and if two input variables are
used a 3D graph is produced. Examples of these plots are shown and discussed in section

2.4.3. The difference between the 2D and 3D plots is in the type of information that is
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provided. The 3D plot will show the interaction effect that two input variables have on
the gradient, while the 2D plot is better at comparing different responses to determine
which will provide more information about a parameter. If more than 2 input variables
are to be considered then multiple 3D plots can be generated. In analyzing the gradient
plots the goal is to identify regions where the gradients have large values.

Section 2.4.2 will discuss issues in the generation of the gradient plots. How to

interpret the plots is discussed in section 2.4.3.

2.4.2 Implementation

In plotting the gradient values for analysis a number of issues arise, such as; how to com-
pare different responses; how to compare the observability of two different parameters;
and how to determine the quality of a response. The methods to address these issues
will be described next.

To compare multiple responses to determine which response will provide the most
information about a parameter, a direct comparison of the gradient values is not usually
feasible. This is due to the different measurement errors that may exist and/or the
different scales of the responses. To account for this, the gradient values are normalized
by dividing them by the standard deviation of the measurement error, o,,p, as originally
shown in equation 2.2 and repeated in equation 2.4 below for the readers convenience.
The value of oy, is obtained based on prior experience with a given type of analysis and
is assumed to be constant (i.e. homoscedastic). If or.sp is not constant then its variance
should be accounted for by using different values of g,.sp as required.

Af(xw H‘i)

4
A91: Oresp (2 )

Normalized Gradient =

It is not possible to compare the observability of two or more parameters using the
normalized gradients given by equation 2.4 if the parameters are of different orders of mag-

nitude. For example, in the system Styrene / Methyl Methacrylate, it might be of interest
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to determine which of the two parameters, the reactivity ratio (r; = 0.5) or the activation
energy in the Arrhenius expression for the rate of propagation (&, act—eng = 7700), is more
observable using the response of copolymer composition. A direct comparison of the nor-
malized gradient values is not adequate. This is because the normalized gradient value
as given by equation 2.4 is the number of measurement error standard deviations a re-
sponse will change for a unit change in the parameter. This unit change in the parameter
will distort the normalized gradient values due to the different scales of the parameters.
To deal with this, the normalized gradient values are multiplied by a percentage of the
parameter value, as shown in equation 2.5. Ten percent is used in the equation below,

this value was chosen arbitrarily and any small value (i.e. less than 30%) can be used.
Af(z,6;)

.16; .
Aei Oresp (D ) (2 5)

Normalized Gradient =

When the gradients are plotted versus two input variables it was found to be useful
to also generate a contour plot of the gradient surface. This, as well as the ability to
rotate the gradient surface plot to view it at different angles, makes the plot easier to
interpret. An example of a normalized gradient plot and accompanying contour plot for

two responses are shown in Figures 2.2 and 2.3 in the next section.

2.4.3 Interpretation

To best describe how to interpret information provided by the gradient plots an example
will be used. The following example uses the Watpoly model to simulate the copolymer-
ization of Styrene / Methyl Methacrylate at 65 °C , with the initiator AIBM-VAZO-64
at a 0.25 weight percent loading and the simulation options listed in Appendix A. The
parameter of interest is the reactivity ratio r, and the responses that are considered are
conversion and copolymer composition.

Figures 2.2 and 2.3 show the gradient plots and gradient contours for parameter r;
with respect to time and initial feed composition for the responses of conversion and co-

polymer composition, respectively. It was found that it is useful to generate the contour
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plot of the gradient surface, as this aids in the interpretation of the data. The raggedness
in the surface plot and the contour plot is a numerical artifact of the resclution used
in their generation. In both figures the vertical axis of the 3D plot is the normalized
gradient value, while the horizontal axes are the reaction time and the initial feed com-
position. The gradient value was normalized by dividing it by the response measurement
error standard deviation and multiplying it by a percentage of the parameter value, as
discussed in the previous section and shown in equation 2.5. To determine where the
experiment trials should be placed, large values of the gradients, either positive or neg-
ative, are desired. As this indicates a region where the response is very sensitive to the
chosen parameter. An examination of the 3D gradient plot for the response of conversion
indicates a valley (i.e. an area of large negative gradient values) where the information
is maximized. This valley begins at 300 minutes and a low Styrene feed composition and
continues to 900 minutes and a high styrene feed composition. An analysis of the gradi-
ent plot of the copolymer composition response (Figure 2.3) vields a similar observation,
except that the area of high observability is a ridge instead of a valley (i.e. large positive
values of the gradient) and the ridge is also much narrower.

Determining the location of the large gradient values will indicate the best areas to
sample. By examining the size of the normalized gradient values it is possible to determine
the amount of information that is present in the response. Therefore it is possible to
obtain a qualitative indication of the number of trials (either replicated or unique) that
will be required to estimate the parameters. If the largest absolute normalized gradient
values are small (i.e. < 1), this is an indication that a large number of replicates may be
required due to the low level of information provided by the responses

The argument could be presented that while the gradient plots will provide a lot
of information about the individual parameter/response relationships, very little will be
learned about the correlation between parameters (i.e. how a change in the value of one

parameter will affect the observability of another parameter). To counter this argument,
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a sensitivity analysis was found to be best used as an exploratory tool that will guide the
researcher in the correct direction and is not meant to answer all of the questions about
a parameter’s estimability. This is an acceptable approach, since parameter correlation
will be taken into account by the experiment design criterion. The sensitivity analysis of
the designed experiment will then tell the researcher how sensitive the design is to the
parameter values. More details on the experiment design and a sensitivity analysis of it

is described in Chapter 3.



Chapter 3

Design of Experiments

3.1 Introduction

This chapter will discuss experiment design for large nonlinear dynamic models. The
models used are assumed to be correct and the objective of the experiment is defined
as ‘the estimation of a set of parameters’. This objective may exist due to the desire
to improve a set of parameter estimates (i.e. decrease the size of the confidence region
of the current parameter estimates) to decrease the confidence region of the model pre-
diction. Another reason may be to expand the model to a similar system with different
components, a new monomer within a polymerization model for example.

A number of different criteria have been used to design experiments for parameter
estimation in nonlinear models. A listing of the most common design criteria is given in
Table 3.1. A further discussion of these criteria can be found in a number of sources, such
as Atkinson and Donev (1992), Shaw (1994), Chaudhuri and Mykland (1993), Atkinson
(1996), Draper and Pukelsheim (1996) and Ford et al. (1989). Atkinson and Donev
present a more theoretical discussion of the criteria while Shaw has a more applied focus
and provides a comparison of the criteria as applied to a number of nonlinear test cases.

Of the design criteria available, the criterion chosen is D-optimality. This criterion

22



Chapter 3. Design of Experiments 23

Criterion | Reference Criterion to be minimized

D-optimal | Wald (1943), det[(V'V)~1]t
Box and Lucas (1959)

A-optimal | Atkinson and Donev (1992) | trace[(V'V)~!]t

E-optimal | Atkinson and Donev (1992) | max. eigenvalue of [(V'V)~!]t

G-optimal | Atkinson and Donev (1992) | max. variance of the predicted response
over the range of interest

Quadratic | Hamilton and Watts (1985), | Quadratic approximation to the joint con-
D-optimal | O’Brien (1992) fidence region

X-optimal | Villa (1990) true shape joint confidence region
t V is the matrix of gradient values of the response with respect to the parameters evaluated at the

experiment trial points

Table 3.1: Criteria used in the design of parameter estimation experiments for nonlinear
models

is used since it will minimize the hypervolume of the linearized joint confidence region
using multiple responses, and has been used previously by other researchers in the design
of experiments for the estimation of parameters in nonlinear models.

Background on the D-optimality criterion is discussed in Section 3.2 and is followed
by a general discussion of the implementation of the criterion in Section 3.3. Section 3.4
describes a diagnostic procedure to determine how sensitive the designed experiment is

to the initial parameter estimates.

3.2 D-optimality: Background

The D-optimality criterion for the design of experiments was initially proposed by Wald
(1943). The motivation behind the development of this criterion was to minimize the

volume of the elliptical joint confidence region of the parameter estimates. For a linear
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model , given by:
Y =X (3.1)

B is a. vector of parameters, X is the matrix of regressor variables and Y is a vector of
predicted values. The volume of the joint confidence region of the parameter estimates
is proportional to |X’X|~'/2. Therefore Wald proposed maximizing the determinant of
(X'X), as this would result in parameters with the smallest confidence regions and the
smallest amount of uncertainty (note: maximizing |X’X| is equivalent to minimizing
|X'X|~1/2). Box and Lucas (1959) extended this to nonlinear models by replacing the
X matrix by the derivative matrix V°. The D-optimality criterion applied to nonlinear

models is given by:
maz(|[VIV?|) (3.2)

V° is the gradient or Jacobian evaluated at the initial parameter values (6°) given by:

o Af(x,6)
Ve = 28 . (3.3)

In the D-optimality criterion extension derived by Box and Lucas, they consider the
case where the number of trials in the experiment is equal to the number of parameters
(i.e. n = p). Draper and Hunter (1966) extended this to the case where NV runs have
already been performed and it is desired to design n additional runs. This extension
was developed based on a Bayesian approach where the previous N runs provide prior
knowledge for the future n runs.

The criterion as given by equation 3.2 is for the single response case. Box and Draper
(1965), and Draper and Hunter (1966) extended the D-optimality criterion to the mul-
tiresponse case as shown in equation 3.4.

i Zr: a.ij‘/iolv}o

i=1j=1

max (3.4)

Where V/° is the gradient matrix of response 7 (equation 3.3) evaluated at §° and o¥ is

the ¢5-th element of the inverse of the covariance matrix of the r responses.
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A property of D-optimality is that D-optimal designs are invariant to any non-
degenerative transformation applied to the model parameters, such as scaling. A further
property of D-optimality is that a D-optimal design is equivalent to a G-optimal design
(i.e. a design that minimizes the maximum variance of the predicted response) as shown
in Kiefer and Wolfowitz (1960), and Kiefer (1974). This equivalence theorem has only
been proven for linear models where the design points span a continuous space.

In using the D-optimality criterion to design experiments the following assumptions

are made:

1. The expectation surface is close to linear in the neighborhood of the initial para-
meter values, therefore the linear approximation to the joint confidence region is

adequate

»o

The initial parameter values are close to the true parameter values, therefore the de-
signed experiment will also be a good experiment for estimating the true parameter

values.
3. The measurement errors are homoscedastic.

How the above assumptions affect the implementation of the D-optimality criterion is
discussed in section 3.3.1

The standard D-optimality criterion uses the gradient matrix V°, which is used in the
first order (i.e. linear) approximation of the parameter estimate joint confidence region.
Conditions exist where this approximation may not be adequate for nonlinear models.
To address this limitation, Hamilton and Watts (1985) extended the joint confidence
region approximation by including a second order term in the gradient expression. This
extension requires the residuals of the future measurements and the measurement error.
Since these values are not known at the design stage, Hamilton and Watts assume a value
for the measurement error and set the residuals to zero. In making these assumptions the

D-optimal quadratic criterion becomes less sensitive to changes in the initial parameter
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values, but is affected by the method of parameterization and is very sensitive to the
magnitude of the measurement error (Hamilton and Watts, 1985). Whether it is a
better implementation of the D-optimality criterion is dependent on the value of the
measurement error. If the error is too large very poor designs will result and there
appears to be no single way of determining if a given value of the measurement error is
too large for the D-optimal quadratic criterion to be used safely (Seber and Wild, 1989;
Hamilton and Watts, 1985). O’Brien (1992) further extended the quadratic D-optimality
criterion as proposed by Hamilton and Watts to include n + 1 points in the design. This
modified design has the advantage of being able to test for model fit which is not possible
with the original criterion of Hamilton and Watts, where the number of support points
(i.e. unique trials in the experiment design) equals the number of parameters to be

estimated.

3.3 Designing D-optimal Experiments

This section will discuss the implementation of the D-optimality criterion to design ex-
periments. A number of difficulties can be encountered while designing experiments for

nonlinear models. These may be due to one or more of the following reasons.

1. The assumption that the parameter values used to derive the experiment design
are close to the true values and that the difference between the parameter values

used and the true values will not adversely affect the quality of the experiment.

2. The assumption that the linear approximation of the joint confidence region used
in the experiment design criterion is an adequate representation of the true joint

confidence region

3. The presence of locally optimal experiments.
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How the above difficulties affect the design of experiments will be discussed in the
sections that follow. While no method will guarantee that the globally optimal experi-
ment is found, the proposed methodology will provide a systematic framework that is an
improvement over a less formal empirical approach.

The numerical aspect of the design of experiments will not be addressed directly,
as the focus of this work is the general procedure and the statistical assumptions that
are made in designing experiments. A discussion of the numerical aspect of the design
of experiments is given by Atkinson and Donev (1992), though they focus on linear
models. In the design of experiments optimization plays a significant role due to the
difficulty of local optima. This difficulty is not a particular characteristic of the design
of experiments, but exists in a number of other fields. Therefore the performance of the
optimization algorithm was not addressed, other than to choose a robust algorithm. A
general overview of optimization methods can be found in a number of texts such as
Fletcher (1987) and Press et al. (1989).

The next three subsections will discuss the effect that the assumptions have on the
D-optimality design calculation, local optima in designing experiments and other imple-

mentation issues.

3.3.1 Assumptions Made in Using D-optimality

In implementing the standard D-optimality criterion, three assumptions are made. If
these assumptions are not valid the quality of the designed experiment can be detri-
mentally affected. The first assumption is that the volume of the joint confidence region,
considered to be proportional to [VV°|~/2| is an adequate approximation of the volume
of the true joint confidence region. This assumption is based on the model being linear
in the neighborhood of the parameter values. The second assumption is that the para-
meter values used to design the experiment are close to the true parameter values. This

assumption is made because the experiment design is a function of the parameter values
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and may change with a change in the parameter values. The third assumption is that the
measurement errors are homoscedastic. To deal with the situation that one or more of
the assumptions made are not valid, various methods are available and will be discussed
below.

The third assumption is the easiest to deal with. If the measurement error is not
homoscedastic, the model can be transformed so the error becomes homoscedastic or a
diagonal matrix of weights can be used in the D-optimality criterion as described by
Seber and Wild (1989, pg. 251).

If the first assumption, that the linearized joint confidence region is adequate, is not
valid two different approaches have been proposed. The first is to extend the gradient
equations to include second order terms, (Hamilton and Watts, 1985). The benefits of
this modification is offset by its other limitations as discussed in Section 3.2. The second
method is to use the true shape joint confidence region (i.e. X-optimality, Villa, 1990).
This would represent the ideal case as it would consider all of the nonlinearity present
in the model. The current limitation of this criterion is that with the current computing
power available, it is not feasible to implement if the number of parameters is large (i.e.
greater than 3 or 4) or if the model is computationally expensive to evaluate. If this
assumption is not satisfied, then the designed experiment will be sub-optimal.

Failure of the second assumption, that the parameter values used are close to the true
parameter values, can be dealt with by a number of different approaches. All of these
will either minimize the effect of the unknown parameters or reveal it, so that appro-
priate action may be taken. The first approach will minimize the effect of the unknown
parameter values by the use of a robust design criterion. This family of criteria take a
conservative approach and strive to generate an experiment that, although suboptimal
at the initial set of parameter estimates, will be good over a range of parameter values.
An example is the minimax criterion proposed by Pronzato and Walter (1988). This

criterion will try to obtain the best ‘worst case’, within a specified parameter range. To
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achieve this the following two step optimization is used.

1. Given an experiment, the parameter values are varied within a pre-specified range

until the D-optimal criterion is minimized (i.e. the worst case).

[\

Using the worst case parameter values from step 1, the sampling conditions are

varied until the D-optimal criterion is maximized (i.e. the best case).

The experiment from step two is then used in step one and the above two steps
are repeated until convergence is achieved (i.e. the parameter values and the D-optimal
experiment do not change at the chosen tolerance between iterations). A limitation of this
method is choosing appropriate parameter ranges. Since the design is highly dependent
on the ranges of the parameter values, 2 very poor experiment may result if the parameter
ranges are too large. Alternatively, if the parameter ranges are too small, an experiment
will be obtained which is not sufficiently robust.

The second approach to dealing with unknown parameter values and the simplest to
use, is a sequential experiment design. This is analogous to the iterative approach of
model development. This method can be applied to the standard D-optimality criterion

in two ways.

1. An independent D-optimal experiment is designed at each step of the investigation,
where the current estimates of the parameter values are used in the design of the

next set of trials.

2. A Bayesian approach is taken, where there is formal use of the prior knowledge
about each of the parameter estimates and their distribution in the design of the

next experiment.

A third approach is to perform a sensitivity analysis of the experiment design with
respect to the parameter values. This will provide the experimenter with information

about the change in quality of the design with changes in the parameter values. The
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procedure to perform the designed experiment sensitivity analysis is described in Section
3.4.

While no simple solution was found to deal with the problem of unknown parameter
values, the sensitivity analysis will indicate how sensitive the given design is to the initial
parameter values. Therefore the experimenter will have an idea of the risk associated
with the given D-optimal design and can choose to modify the design to reduce this risk.
How to best modify the experiment so that it is less sensitive to the initial parameter
values is case dependent. As a guide to generating a more robust experiment, a list of

possible approaches is given below.

e Design multiple experiments using different parameter values and make the final
design a compilation of all of the designs. This can be achieved from a visual
inspection of the different experiment designs to identify general regions where the
trials are placed. Then the trials of the amalgamated design are placed in these

regions.
e Use one of the robust criteria, such as the minimax criterion.

e In the experiment design process a number of locally optimal experiments are usu-
ally found. If the best experiment found is too sensitive to the parameter values
used to design it (i.e. the quality of the experiment becomes very poor when eval-
uated using parameter values within the prior uncertainty range of the parameter
values), then one of the other locally optimal experiments found should be con-

sidered, as it may be more robust to the uncertainty in the parameter values.

If a more robust design cannot be found, it is feasible to accept the current D-optimal
experiment and the risk of it being inefficient, as the first part of a sequential parameter
estimation process.

When designing experiments, selecting the best approach is very case dependent.

Unfortunately no method is available that will indicate a priori which approach is best.
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The method chosen in this work is to use the D-optimality criterion combined with a
sensitivity analysis of the designed experiment to the parameter values. This approach
has the advantage of being simple to implement while providing information about the

quality of the experiment.

3.3.2 Local Optima

When designing experiments for the estimation of parameters in large models (as defined
in the introduction) multiple local optima are usually present. This problem is not
limited to the large models considered in this thesis but has also been observed with
smaller nonlinear models. It was found that in general the magnitude of this problem is
correlated to the size of the model, the number of responses used, the number of trials
in the experiment and the number of parameters to be estimated.

To deal with local optima in the search for a global optimum a number of methods
are available. These methods can only guarantee very good local optima, since there is
no practical method that will always find the global optimum when working with large
problems.

If the problem is considered from an optimization viewpoint, then the use of an
algorithm that has been shown to work well when multiple local optima are present
should be used. Simulated annealing is one such algorithm and it has been shown to
work very well with problems such as the traveling salesman problem where a large
number of local optima exist (Press et al., 1989). The disadvantages of this method are
that it requires a greater number of function evaluations than other optimization methods
and two tuning parameters need to be determined. How well the algorithm works is a
function of the tuning parameters refered to as, the 'initial temperature’ and the 'rate of
cooling’, and they are case specific. Further details about this method can be found in
Press et al. (1989).

Another approach to dealing with local optima and perhaps the simplest is to design
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multiple experiments, each with a different initial parameter values, and to then choose
the best experiment. A limitation of using this method is the difficulty of determining how
may different starting points should be used. A guideline used by the author to choosing
this number is to design from p to 2p experiments with different initial points, where p
is the number of parameters. The decision if more experiments should be designed, is a
function of the number and distribution of unique local optima that are found. As an

aid to making this decision the following guidelines are proposed.

1. If all of the experiments found are different but their criterion values are similar,
any of the experiments is feasible and which one is chosen should be based on the

results of a sensitivity analysis to the parameters.

2. If a subset of experiments is found that are similar, have similar criterion values and

include the best experiment, any of the experiments in the subset can be chosen.

3. If all of the experiments found are different and their criterion values span a broad
range, further experiments should be designed. If the experiment distribution does
not change with the design of further experiments, the best experiment shouid be

chosen.
4. If the best experiment is found more than once, it should be chosen.

The above are only guidelines used by the author based on experience. Although this
approach is simple to apply it performs poorly if a large number of local optima exist
and the method can be computationally expensive if a lot of different initial points are
needed. There is also the difficulty of choosing an experiment if the results obtained are
like point 3 above, which was found to be the common case.

Another possible solution to deal with local optima is to provide the optimization
algorithm with a very good initial starting point that is hopefully in the neighborhood

of the global optimum or a very good local optimum. This good initial starting point is
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based on the information obtained from the sensitivity analysis described in Chapter 2,
and has been found to work very well with the large models that are considered in this
work. The reason why this approach is successful in generating a good initial starting
point, is because the D-optimality criterion is a function of the gradients of the responses
with respect to the parameters (i.e. the V° matrix). Therefore by choosing locations
where the gradient values are the largest, the maximization of the |V*V°| term will
usually start at large values. The proposed method has been found in general to produce
very good experiments, but it is not guaranteed to always do so.

To best describe the proposed method of how to generate a good initial starting point
based on the sensitivity information, an example will be presented. This example will
involve the estimation of the penultimate reactivity ratios (i.e. 7,712, 721,722, S1 and
s9) for the system Styrene/Methyl Methacrylate using the responses of copolymer com-
position, cumulative triad fractions and conversion. The polymerization was simulated
at 60 degrees Celsius and a 0.01 mol/L loading of the initiator AIBME. The designed
experiment had 12 trials and the sample time was fixed at 300 minutes. In designing the
experiment for this case it was found that multiple optima existed, since each starting
point that was tried resulted in a unique locally optimal experiment. Figure 3.1 shows
a sample of the locally optimal experiments that were found, where each row of circles
represents an experiment and each circle represents an individual trial. The horizontal
axis is the initial feed composition of styrene as a mole fraction for a given trial. For
instance, the experiment represented by the row of circles with a criterion value of 251
(second from the bottom), has trials with the following feed compositions in mole frac-
tions of styrene [ 0.16, 0.18, 0.36, 0.43, 0.59, 0.64, 0.68, 0.74, 0.75, 0.75, 0.77, 0.77]. A
value proportional to the experiment D-optimality criterion is also given to the right of
each row and will be referred to as the criterion value in the remainder of this discussion
(the experiments are sorted by quality, where a larger criterion value indicates a better

experiment).
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Of the experiments shown in Figure 3.1, the best experiment found with a criterion
value of 405 was obtained by using the information obtained from the sensitivity analysis
to establish starting values for the optimization. The case where the initial values used
in the optimization are an even distribution of points was also performed, and resulted
in an experiment with a criterion value of 344. This experiment is the middle of the of
the set of experiments found, with respect to experiment quality. The remainder of the
experiments, except for the bottom one, were obtained using a random initial guess for
the starting value.

The bottom row in Figure 3.1 is an experiment with evenly spaced initial feed com-
positions from 0.1 to 0.9 mole fraction. This experiment was included as a comparison
of the empirical approach to the designed experiment approach. A comparison of the
criterion values, 262 for the evenly spaced experiment versus 405 for the designed exper-
iment, indicates that the designed experiment is better. Though how much better the
designed experiment is versus the empirical one is cannot be determine based solely on
the criterion values. Other factors that should be considered when performing the com-
parison are: The effect of the uncertainty in the parameter values, which will affect the
robustness of the experiment, and that the criterion value is proportional to the volume
of the linearized confidence region not the true confidence region. A further discussion
on how to compare experiments is given in Section 3.4.

The best experiment was obtained using the gradient information to generate the op-
timization starting values. These values were obtained from an inspection of the gradient
plots shown in Figure 3.2. This figure shows the sensitivity plots of the responses with
respect to the parameters 711, 713, 721, 722, 51 and sp at 300 minutes. The initial points are
placed in areas where the response information is maximized. To determine where the
amount of information from a response is maximized the areas where the gradient curves
have the largest absolute magnitude are identified, as this is where the response is most

sensitive to the parameter values. For example, this occurs near an initial feed of 0.8
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mole fraction styrene for the parameter r;; with the responses of copolymer composition
(F1) and cumulative triad fractions A111 and A211. For the parameter 79, it occurs near
an initial feed of 0.2 mole fraction styrene with the responses of copolymer composition
(F1) and the triad fractions A222 and A122.

The determination of the point of most information is not always as straightforward
as for the parameters ry; and r93. If the gradient plots for the parameters r15 and 793
are examined we can see that there is a region of high sensitivity for initial feeds from
0.4 to 0.6 mole fraction styrene. If we look at the gradient plots for the parameter s; we
can see that for any initial feed value less that 0.6 mole fraction styrene, the information
will be maximized, while for the parameter s, the smaller the mole fraction of styrene
the better. In general, if the determination of the set of initial values is ambiguous, then
several different sets of values should be used.

Based on the gradient plots the initial values chosen for the optimization were (0.2,
0.2, 0.5, 0.5, 0.8, 0.8, 0.2, 0.2, 0.5, 0.5, 0.8, 0.8). A combination of only three distinct
values was used in the initial starting point for this case, as it is sufficient that the
initial trials are in the neighborhood of the gradient value maxima. This is because the
information from the gradient plots does not take into account the correlation between

responses or between parameters, while the D-optimality criterion does.

3.3.3 Implementation Notes

This section will briefly list some of the observations made by the author in the process

of designing experiments for the various cases studied.

e The gradient information was used to choose an initial guess for the experiment
design optimization algorithm. Multiple initial guesses were tried if the information
distribution in the gradients indicated that a range of sampling conditions were

feasible and as a double check to ensure that a good experiment was obtained.
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Figure 3.2: Gradient plots to generate an initial point for the experiment design optim-

ization algorithm
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e In implementing the multiresponse D-optimality criterion as given by equation 3.4,
the off diagonal measurement covariance values (i.e. o;;) were assumed to be zero,
while for the diagonal values of the covariance matrix (i.e. o), the square root of
1/0: is included in the normalized gradient values that make up the V° matrix.
Therefore the term o (which in this case is equal to 1/0y;) is included in the term
VoVe. This simplification is only possible because the off-diagonal terms in the

covariance matrix are assumed to be zero.

e The optimization algorithm used was a modified simplex algorithm included in the
Matlab optimization toolbox, the function fmins.m. This routine is very robust
and could be used on a range of problems without intervention by the user. Though
it is very slow to converge, it was felt that the advantages of robustness outweighed

the slow convergence.

3.4 D-optimal Experiment Sensitivity Measure

The objective in performing a sensitivity analysis with respect to the parameter values on
the designed experiment is to determine the quality of the chosen design over the range
of possible parameter values. This analysis is recommended since the initial parameter
values will rarely be equal to the true parameter values. If the quality of the experiment
design is highly sensitive to the parameter values, then the designed experiment can
result in parameter estimates with a low level of uncertainty being obtained.

To determine how sensitive the chosen experiment is to the parameter values it is
desired to see how the design criterion will change as the parameter values change. By
calculating the D-optimal criterion value of the chosen experiment with different para-
meter values, it is possible to obtain a qualitative measure of how well the experiment will
perform with different parameter values. One issue in applying this method is deciding

how much of a change in the criterion value is large enough to warrant a reevaluation
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of the experiment design. Based on the author’s experience, a rough guide is that if
the criterion (normalized to one dimension from n-dimensions, see section 3.4.1) over a
significant portion of the parameter space are less than 50

An effective method to summarize the experiment efficiency over a range of parameter
values is to plot the D-optimality criterion of the designed experiment using a range of
parameter values. If the number of parameters is greater than three this approach is no
longer feasible, and a two-step approach is proposed. The first step is to calculate the
D-optimality criterion over the parameter values arranged in a factorial layout, where
the minimum and maximum feasible parameter values are the high and low values in the
factorial experiment. The objective of the first step is to act as a screening design to
determine where in the parameter space the chosen experiment will be inefficient. The
second step is to focus on this area of the parameter space, by adding more points to
obtain more information about the experiment efficiency. An example of this approach
is given in case study 1, Section 6.3.3.

To illustrate why the designed experiment sensitivity analysis is an important and
useful diagnostic in determining the quality of the designed experiment an example will
be presented. The following simulation example involved the estimation of the reactivity
ratios (r; and r3) for the system Styrene/Methyl Methacrylate. The polymerization
simulation was carried out using the conditions given in Appendix B. The response used
was copolymer composition and there are four trials in the experiment design. The
initial values used by the experiment design optimization routine were obtained using
the information provided by the gradient plots as described in section 3.3.2. The four
trial experiment that was designed based on the initial values from the gradient plot is
shown in Table 3.2, and will be referred to as the ‘high conversion’ experiment.

Another experiment was also designed using initial values based on the conventional
approach, the Tidwell-Mortimer method, (Tidwell and Mortimer, 1965). Using these

values a low conversion experiment, that is a local optimum, was found. This experiment
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Initial feed Sampling time | Criterion
(mol fr. Styrene) (minutes)
0.20 475
high 0.20 475 8917
conversion 0.30 580
0.30 580
0.20 5
low 0.20 5 169
conversion 0.80 5]
0.80 5

Table 3.2: Experiment designs and their D-optimal criterion values for the estimation of
the reactivity ratios

is shown in Table 3.2 and will be referred to as the ‘low conversion’ experiment. A
comparison of the two experiments based on the criterion values indicated that the high
conversion experiment is a much better experiment as its criterion value is approximately
sixty time larger than that of the low conversion experiment.

A sensitivity analysis was then performed on the high conversion experiment, where
the D-optimality criterion was calculated using the chosen experiment over the parameter
space. Since there are only two parameters to be estimated the D-optimality criterion
was plotted as a function of the parameter values and is shown in Figure 3.3. In the
upper plot of this figure the horizontal axes are the two parameters to be estimated and
the vertical axis is the log of the criterion value. To facilitate the analysis, the log of the
criterion values is used to compress the data and a contour plot of the surface is included
(bottom plot). By examining Figure 3.3 we can see that the chosen experiment is good
for a band of parameter values that correspond to a ridge across all values of 72 and
near a value of 0.55 for r,. For parameter values to the left of the ridge (i.e. 7, < 0.5),
the chosen experiment is very poor as the criterion values decreases by five orders of
magnitude from the ridge values. Thus if the true parameter values were in this range

the chosen experiment would be very poor. While to the right of the ridge (i.e. r, > 0.6)
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the experiment is still very poor but the decrease is not as large as to the left. A further
observation is that the high conversion experiment is ouly sensitive to the r; parameter,
since the ridge spans all of the values of r, considered.

As a comparison, the experiment design sensitivity analysis was performed on the low
conversion experiment. The resultant D-optimality criterion surface is shown in Figure
3.4. The vertical axis of the upper plot is again the log of the D-optimal criterion value
and the horizontal axes are the parameter values. The axes scales for both Figures 3.3 and
3.4 are the same so that a direct visual comparison can be made between the figures. The
most important feature of Figure 3.4 is that the surface is flat. This implies that the low
conversion experiment is not very sensitive to the parameters within the chosen ranges.
While the ‘low conversion’ experiment, is not as good as the ‘high conversion’ experiment,
it is much more robust (due to the flatness of the sensitivity surface). Therefore which
experiment is used depends on how well the parameter values are known a priori. In this
case, if the chosen parameter ranges used in the figure represented the uncertainty in the

parameters, then it is recommended that the low conversion experiment be used.

3.4.1 Comparing Experiments

The experiment sensitivity analysis requires that a number of experiments are compared.
This is a very difficult task to accomplish as the common approach would be to linearly
associate a change in the criterion value with a change in quality of the parameter es-
timates. That is, if the criterion value doubles, the experiment would be twice as good
and the parameter estimates obtained would be twice as good. This is not correct as
the D-optimality criterion is inversely proportional to the p-dimensional hypervolume of
the linearized joint confidence region and a doubling of the criterion does not result in
parameter estimates that are twice as good. Therefore the following method is proposed
as an alternative to the direct comparison of criterion values. While this method makes

a number of assumptions, it is intended as a qualitative measure that is intuitive and
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easy to interpret.

In performing a comparison of the different experiments obtained by spanning the
parameter space, it is more intuitive to compare a value that is proportional to the
standard deviation of the parameter estimates than the experiment criterion value which
is inversely proportional to the volume of the linearized joint confidence region. Since the
parameter standard deviation within a set of parameters can vary widely, it is desired to
obtain a value that can be used for the comparison of experiments. To achieve this the
following approximation is used. If it is assumed that the parameter estimate joint con-
fidence region is a p-dimensional spheroid whose volume is proportional to the criterion
value, then the radius of this spheroid will be proportional to the criterion value to the
power of (‘2'—;). This radius is then proportional to a value that can be referred to as a
generalized standard deviation of the parameter estimates. This value (i.e. the radius)
- --is-a-crude approximation -but-has-the-advantage of making the sensitivity analysis-much
easier to interpret. This is achieved because we are comparing a value that is linearly
proportional to the standard deviation of the parameter estimates. Therefore if this value
doubles, the uncertainty range of the parameter estimates will double. While this sens-
itivity analysis method makes a number of assumptions it is a feasible approach which
is intended to be used as a qualitative measure of how the quality of the experiment will
change as the parameter values change. It’s application is shown in all three of the case

studies discussed in Chapter 6.
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Parameter Estimation

The objective in nonlinear parameter estimation is to obtain a set of parameter values

that are robust and show the least possible uncertainty and correlation. This can be a

very difficult task to accomplish and is a function of & number of factors, which can-affect

the quality of the parameter estimates to different degrees. The principal factors are, the
model structure, the quality of the measurements and the experiment design. Parameter
estimation problem has been addressed by a number of authors such as Biegler et al.
(1986), Bilardello (1993), Stewart et al. (1992), Watts (1994) and Ziegel and Gorman
(1980) for example.

To estimate the parameters different criteria can be used. In Section 4.1 a listing of
available criteria is given, as well as a discussion of the determinant criterion and the
multiweighted least squares criterion (MWLS). The methodology of parameter estimation
is discussed in Section 4.2. This includes a discussion of the optimization methods that
can be used and the specific problems of local optima and correlation in the parameter

estimates.

45
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4.1 Estimation Criteria

Various criteria can be used for the estimation of parameters using multiple responses.
A listing of available criteria is given in Table 4.1. All of these criteria are related in two
ways. First, they are all a function of the residuals and second, they are all based on the

same assumptions about the model and the error structure, as outlined below.

1. The model structure is correct.

2. The errors from trial to trial are independent of one another, within a trial they are
assumed to be normally distributed with a mean of zero and a constant covariance
matrix.

3. The measurement error is additive.

4. The measurement error is homoscedastic

The validity of the above assumptions is usually tested by an analysis of a plot of the
residuals and a plot of the predicted and measured values. A failure of any of the above
assumptions can result in erroneous parameter estimates. To deal with this failure the

following methods are available;
e if 1 is violated, residual plots can be used to help adjust the model structure

e if 2 is violated, transformation of the data, (Box and Cox , 1964) or a Time Series
Analysis can be used, (Box and Jenkins, 1976)

e if 3 is violated, transformation of the data (Box and Cox, 1964) or the model is
required

e if 4 is violated, transformation of the data or use of an error model with heterosce-
dastic regression are required (Beal and Sheiner, 1988; Welsh et al., 1994)

Although the criteria in Table 4.1 are all related, there are distinct differences in their
application and the assumptions that they further make. The least squares criterion is
the oldest and most widely used criterion for parameter estimation in nonlinear models.
When used in multi response parameter estimation it makes the further assumption that

the magnitude of the measurement error of each response is similar. If this assumption
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Criterion

Reference

least squares

weighted least squares
L;-Norm

determinant

MWLS

Seber and Wild (1989)
Seber and Wild {1989)
Oberhofer (1982)

Box and Draper (1965)
Oxby (1997)

Table 4.1: Criteria for multiresponse parameter estimation
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is not valid then a bias will exist in the parameter estimates obtained. To overcome this,

the weighted least squares criterion was developed, where the weight for each response

is usually the inverse of the standard deviation of the response measurement error. A

limitation of weighted least squares is that the measurement error variance is required

and it is usually assumed that there is no measurement error correlation. A detailed

discussion of the least squares and weighted least squares criteria can be found in a

number of statistical texts, such as Seber and Wild (1989). An extension of the least

squares criterion is the L;-Norm criterion. It takes the sum of the absclute deviations

instead of the squared deviations. It was developed as a robust criterion to outliers,

as it will be affected to a lesser degree by outliers than least squares.

Its properties,

assumptions and use are discussed by Oberhofer (1982) and Gonin and Money (1985).

The determinant and MWLS criteria are discussed in sections 4.1.1 and 4.1.2 respectively.

The criterion chosen for the bulk of the simulation studies is the determinant criterion.

It was chosen since it handles multiple responses when the response error covariance

matrix is not know, which is the usual case. A limitation of the determinant criterion, is

that it may not be appropriate when the sample size is small, as shown by Oxby (1997).

To overcome this small sample size limitation Oxby (1997) proposes the use of the MWLS

criterion.
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4.1.1 Determinant Criterion

The most popular criterion used to estimate parameters from multiple responses is the
determinant criterion as discussed by Box and Draper (1965). This section will present
the derivation of the determinant criterion from a Bayesian approach. Its properties and
application will also be discussed.

The determinant criterion was developed by Box and Draper {1965) using a Bayesian
argument, though it can also be derived using a likelihood approach as described by
Bates and Watts (1988), for example. The following is a description of the derivation of
the determinant criterion using a Bayesian approach. Given the general multiresponse
model.

yui=fi(-'cu79)+€ui :Z’=1...T,'U.=1..-n (4'1)

where, 7 is the response number from 1 to r, u is the observation number from 1 to n,
Yy; 1S the measured data point of trial v and response i, f;(z,,0) is the expected value
of response 7 at conditions z,, z, is the set of input variables for observation u, & is
the vector of parameters, and €,; is the random normally distributed error associated
with the data point ui. To illustrate how the above general model relates to the model
used in the case studies, y would be responses used such as conversion, composition and
radical concentration; = would be input variables such as the initial feed composition
or sampling time; and @ represents the parameters in the model such as kg act—eng and
k fm pre—ezp, these parameters are part of the Arrhenius expression for the rate constant
of radical transfer to monomer (k). Further information about these parameters can
be found in the model description, Section G.2.

Let the covariance matrix of the responses y;, where 2 = 1 to r, be

o111 012 *°* Oir

021 022 --° Our

= : _— : = {0y} (4.2)
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and
Tt={oy} Tt =
Where -1 is the inverse of the covariance matrix and o% is the 7j-th element of ¥7!. If
the covariance matrix of the responses were known, then the likelihood function would
be a monotonic function of the quadratic form
Z Z Uij O (4.3)
i=1 j=1

Where v;; is the sum of the product of the deviations of responses ¢ and j given by:

Ui = 3 (Yui — Fi(Tu. 0)] [Yuj — Fi(€u, 6)] (4.4)
u=l
Using a Bayesian approach and assuming that the observations y,; are independent
from trial to trial, the likelihood is given by

p(yld, £71) = (2r) """ |Et F exp (——szu ) (4.5)

i=1 j=I

Minimization of equation (4.5) is equivalent to weighted least squares. Assuming that 6

and X! are independent, the prior distribution for these parameters can be expressed
as:

p(6,=7") = p()p(=™) (4.6)

In their development Box and Draper (1965) assume that a locally uniform prior may be

used for 4,
p(8) o< db (4.7)
They use the invariance theory of Jeffreys (1961) to produce a noninformative prior for
=1,
p(Z™) o [T (4.8)
The posterior pdf of the parameters, equation (4.9), is obtained by combining the likeli-

hood (equation (4.5)) with the noninformative priors for § and £~! (equations (4.7) and
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(4.8)).

p(6, 7 y)do [] do¥? o (2m) =[S 3= Vegp (—% S v o—ff) do [Jdo (4.9)
1

= i=1j=

We are interested in # not 27!, and therefore to obtain the marginal distribution for 6,
we must integrate out . This is achieved by comparing the right hand side of equation

(4.9) to the Wishart distribution, (Box and Tiao 1973). This leads to the following:
p(6ly) = C [V~ (4.10)

where C is the normalizing constant and V is the matrix of the elements v;;, obtained

from equation 4.4.

v=| : . (4.11)

Thus to obtain the parameter estimates the right side of Equation 4.10 is maximized,
which corresponds to minimizing |V|, the determinant of the dispersion matrix. Bates

and Watts (1988) use the notation of Z to represent the matrix of deviations, given by:
zZ=Y — f(x,8) (4.12)

Therefore the ¥V used by Box and Draper corresponds to Z'Z used by Bates and Watts.
The Z notation will be the one used in this thesis. The determinant criterion has a
number of favourable properties as outlined by Box and Tiao (1973). These properties
are:

e the expectation function can be linear or nonlinear

e the parameters can be common to more than one response

e the design variables can be common to more than one response

e the responses used can be rescaled or a linear combination of responses can be used
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The application of the determinant criterion is discussed at length by Bates and Watts
(1988). They discuss numerical stability issues such as taking the QR decomposition of
the Z matrix so that the determinant of Z’Z is numerically easier to calculate (i.e. more
numerically stable). They also discuss different optimization methods to obtain the
parameter estimates, such as the Newton-Raphson and Levenberg-Marquardt methods.
It was found that these optimization methods, while performing well on smaller nonlinear
parameter estimation problems, were not suitable to the type of problems considered in

this thesis. This is due to the large number of local optima that are present.

4.1.2 MWLS

Oxby (1997) found that the use of the determinant criterion can result in poor parameter
estimates when the sample size is small. To deal with this limitation he proposed a
new criterion, the Multivariate Weighted Least Squares (MWLS) criterion. He shows,
using Monte Carlo simulations, that the proposed criterion is a more robust criterion for
multiresponse parameter estimation if a small sample size is used. As the sample size
increases, the difference in quality (i.e. how well the criterion can estimate the parameter
values) between MWLS and the determinant criterion decreases and eventually becomes
zero. Then as the sample size increases further the determinant criterion becomes a better
estimator. Oxby observed that the magnitude of the difference in quality between the
MWLS criterion and the determinant criterion is case dependent. He suggests that the
MWLS criterion be used for all cases when the sample size is small. A detailed discussion
of the development of the criterion and its properties are given by Oxby (1997). A brief
description of the implementation of the criterion follows.

The MWLS criterion is a two step process where the algorithm iterates between the
two steps until convergence is obtained (i.e. the parameter values do not change at
the desired tolerance between iterations). In the first step, the model parameters (8)

are obtained by changing the parameter values so that the weighted sum of squared
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deviations is minimized, shown in equation 4.13).
min. tr[Z(0)W Z(6)'] (4.13)

Where Z(68) is the matrix of residuals as defined in equation 4.12 and W is a diagonal
matrix of weights where each of the elements corresponds to a response. The W matrix
is obtained in the second step of the algorithm. Therefore for the first iteration, where
calculated values of the W matrix are not available, the W matrix is set to the identity

matrix. The elements of the W matrix are obtained using equation 4.14.

W = [d'iag. (M)] i » (4.14)

n
Where Z(#) is the matrix of residuals using the parameter estimates obtained in step
one, equation 4.13, and n is the number of measurements per response. Equations 4.13
and 4.14 are then iterated to convergence.

The major difference between the determinant criterion and MLWS is that the MWLS
criterion is more robust, with respect to parameter estimates, when the sample size
is small. Oxby (1997) provides a detailed explanation of why this occurs. A simple
explanation of the determinant criterion’s poor performance is due to its assumptions that
the residual covariance matrix is equal to the error covariance matrix. When the sample
size is small the residual covariance matrix will likely be a poor approximation of the
error covariance matrix, thus producing poor parameter estimates. A further difference
between the criteria, is that the MWLS is more expensive to compute. In general, the
computation time required for one iteration of the MWLS criterion is approximately
equal to that required for the whole determinant criterion, though the MWLS criterion

will usually converge in less than ten iterations.
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4.2 Estimating Parameters

This section will discuss some of the practical aspects of implementing the determinant
criterion related to local optima, parameter correlation and ill-conditioning of the de-
terminant matrix. In general it was found that the parameter estimation problem is a
difficult optimization problem that requires a robust optimization algorithm. The dif-
ferent optimization methods considered are discussed in Section 4.2.1. The particular
problems of local optima and parameter correlation are addressed in Sections 4.2.2 and

4.2.3, respectively.

4.2.1 Optimization Methods

For the estimation problem considered in this thesis, involving relatively large numbers
of response variables and parameters, it was found that a robust optimization method
is required because the objective function surface is very complex exhibiting ridges and
multiple local optima. In general, the large number of local optima present can trap in a
local minimum most of the classical algorithms that follow a downhill path, such as the
Newton-Raphson or BFGS algorithms. In general the only time that these algorithms
will succeed is if the initial guess is such that there is no local optima in the algorithm’s
path. This can be the case when the initial guess is very close to the estimated parameter
values.

The problem of parameter correlation while not directly causing the optimization
algorithm to produce erroneous results, can result in slow convergence or instability
in the algorithm. This is because the parameter correlation will cause a steep curved
valley to occur on the objective function surface, which is a classic optimization problem
(e.g. the Rosenbrock function; Fletcher, 1987). While methods have been developed
that will adequately deal with the curved valley, they are not adequate to deal with

the optimization problem in question due to the ridges and multiple local optima also
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present in the objective function surface. Further considerations to take into account in
the choice of an optimization algorithm are the high dimensionality of the problem if
multiple parameters are to be estimated, and the expense of function evaluations of a
large model.

In choosing an optimization method all of the above characteristics of the problem
need to be taken into account. These characteristics make this a difficult optimization
problem, as a method is required that is both robust with respect to local optima and
that will minimize the number of function evaluations required. These two requirement
are contradictory. Methods that are robust to local optima usually require a large number
of function evaluations, while methods that are very efficient in minimizing the number
of function evaluations do not perform well when local optima are present.

In choosing an optimization algorithm, the objective was to obtain good parameter
estimates in a reasonable amount of time. To achieve this the simplex method and
simulated annealing were used. Most of the time the simplex algorithm was used as it is
the faster of the two, though it is less robust to local optima.

In the simplex method a triangle of p + 1 dimensions in the objective function space,
where p is the number of parameters to be estimated, is used. This triangle is then
moved along the objective function surface by flipping, and resizing as required so that
the new points chosen always result in a decrease in the objective function. A more
detailed description of the algorithm and the details of its implementation are given by
Press et al. (1989).

The simulated annealing algorithm is very robust to the folding in the objective
function surface and can deal reasonably well with the problem of local optima due to
the nature of the algorithm. In the simulated annealing algorithm, a random step within
the defined parameter boundaries is chosen from the current point and the objective
function is calculated. If the point is better, it is kept and becomes the current point.

If it is worse, it may still be kept with a given probability. The size of the step and the
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probability of accepting a worse step are decreased as the optimization proceeds. The
initial values of the step and probability of accepting a worse step, and their rate of
decrease, are determined by the optimization tuning parameters.

The limitations of the simulated annealing algorithm are that it is computationally
expensive due to the large number of function evaluations that it requires, and that
two tuning parameters have to be set within the optimization algorithm. While the
algorithm may perform well with the default tuning parameters, this is case dependent
and its performance will vary. A more detailed description of the algorithm and the
details of its implementation are given by Press et al. (1989).

In using any algorithm the best that can be achieved is to obtain a very good local
optimum, that hopefully is the global optimum. While with smaller models it is possible

to determine if the global optimum was obtained, this is not possible with large models.

4.2.2 Local Optima

Multiple local optima can occur when estimating parameters in any nonlinear model,
though it was found that they were the norm when estimating parameters in large models.
To illustrate the magnitude of the problem of local optima with large models, an example
will be presented.

This example is taken from the first case study, a simulation of Styrene homopoly-
merization where five parameters are estimated. The objective function surface is a five
dimensional surface in this example. By fixing all of the parameters at the point estimate
values and varying only one parameter at a time, a cross section of the objective function
surface along the axis of the chosen parameter is obtained. A cross section with respect
to the parameters kfp, got—eng @0d Kfrppre—ecp Was generated. These parameters are part
of the Arrhenius expression for the rate constant of chain transfer to monomer. Further
information about these parameters can be found in the model description given in Sec-

tion 6.2. Figures 4.1 and 4.2 show a slice through the objective function surface while
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varying the parameters kfm act—eng a0d kfmpre—ecp- In these figures, the horizontal axis
is the value of the parameter being varied, the vertical axis is the criterion value of the
objective function and the circle indicates the parameter point estimate. Both plots have
been truncated on the vertical axis at a criterion value of 1400 and 1500, respectively.
The convoluted surface and local optima create numerous difficulties for most optimiz-
ation algorithms. In this case the simplex algorithm did not perform that well, as seen
by the location of the point estimates.

An inspection of Figures 4.1 and 4.2 reveals that a large number of local optima are
present and that the point estimate has converged to a local optimum. This observation
provides valuable information about the magnitude of the optimization problem and
therefore will suggest a course of action in obtaining the parameter estimates. In this
case the large number of local optima suggests the use of an optimization algorithm
that is more robust to local optima, such as simulated annealing. This optimization
method might be more effective in the long run even though it is not as efficient as
the simplex algorithm. The large number of local optima also indicates that some type
of diagnostic should be run on any local optimum found. This diagnostic, such as the
generation of cross sections of the criterion surface as shown in figures or an evaluation
of the criterion in the neighborhood of found optimum, will indicate to the researcher if

further optimization is required to obtain the parameter estimates.

4.2.3 Parameter Correlation

Parameter correlation can make the parameter estimation problem more difficult. This is
because it usually produces a curved valley in the objective function surface when working
with nonlinear models. A number of factors can cause the parameter estimates to be
correlated. This may be due to the quality of the data collected (i.e. the experiment
design), or the model structure. In certain cases it is possible to identify the model

structure that is causing the parameter correlation, such as an Arrhenius relationship,
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while in other cases it is not readily apparent. To deal with parameter correlation a
number of options are available. If the correlation is due to model structure the model
can be reparameterized. If it is due to the data, more data at different locations or from
different responses can usually reduce the amount of correlation, (Box and Draper, 1965).

While parameter correlation can make it difficult to obtain independent parameter
estimates, it should be noted that if only a good prediction from the model is desired,
then the correlation of the parameter estimates may not be a significant problem.

To illustrate how parameter correlation can affect the parameter estimation process,
an example will be given. This example is based on the estimation of the parameters
kppre—ezp and kpact—eng, Within the Watpoly model for the simulation of Styrene homo-
polymerization. A section of the objective function surface to estimate the parameters is
shown in Figure 4.3. In this figure, the horizontal axes are the values of the parameters
and the vertical axis is the log of the criterion value. The log of the criterion was taken
to compress the vertical axis to show more of the surface features. An inspection of
Figure 4.3 reveals two characteristics that will make the parameter estimation process
very difficult. The first is the very steep curved valley, and the second are the multiple
rows of peaks parallel to the steep valley (these rows of peaks are actually ridges and
appear as peaks due to the resolution of the data used to generate the surface). The rows

of peaks will produce local optima where the optimization algorithms can get stuck.
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Chapter 5

Confidence Regions

Whenever parameter estimates are obtained there is a given amount of uncertainty in
these estimates. Some of the possible reasons for this uncertainty are, the experiment

design, the measurement error, the number of data points and the observability of the

parameters.

To examine the uncertainty in a given set of parameter estimates, the joint confid-
ence regions of the parameter estimates must be obtained. In analysing the amount of
uncertainty, the use of joint confidence regions is recommended over individual para-
meter confidence bounds, since the confidence bounds will in general overestimate the
uncertainty present in the parameter estimates (Draper and Guttman, 1995).

When nonlinear models are used, the joint confidence regions can be obtained in a

number of different ways. These are:
e linear approximation (i.e. ellipsoidal regions)
e true shape, approximate confidence level
e true shape, true confidence level

The above methods are listed in increasing order of accuracy which also corresponds to

an increasing amount of computation required.

61
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Section 5.1 will discuss the different methods available for obtaining confidence re-
gions and review the theory. A discussion of the issues in using true shape approximate
confidence level confidence regions with multiple responses is given in Section 5.2. This
section will present the case when the joint confidence regions obtained are at a confid-
ence level that is very different than the expected confidence level. To illustrate this, two
examples will be presented and discussed. Obtaining the joint confidence regions can
be a difficult task. Section 5.3 will discuss the implementation of methods for obtaining

confidence regions.

5.1 Background Theory

This section will review the theory of confidence regions. Only an overview will be
presented, as the detailed proofs and discussion can be found in various sources such as,
Seber and Wild (1989) and Bates and Watts (1988), for example.

As an introduction to confidence regions, the linear case will be presented. The

nonlinear and multiresponse cases are direct extensions of it. Given the linear model
y=XF+¢€ (5.1)

where y is a vector of measured responses, X is the design matrix, £ is the vector of
parameters to be estimated and ¢ is a vector of 7id normally distributed errors, the least

squares estimate of (3, ,3, is then given by
B=(X'X)"' X"y (5.2)

Under the above assumptions, the estimator of 3, is normally distributed with a covari-
ance matrix given by o?(X'X)™! and the (1 — «) joint confidence region is then given
by

(8- BYX'X(B~B) <ps®Flp,n—p,a) (5.3)
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where n is the number of trials, p is the number of parameters and F(p,n — p, ) is the
value of the F' distribution at a confidence level a with n and n — p degrees of freedom.

The estimate of the measurement error variance (i.e. s2) is given by

st = S(8) (5.4)
n—p
where S(B) is the residual sum of squares.
S(8) =y — =B)'ly — 28] (5.5)

In equation 5.3 the F distribution is used because the terms {(8 — B)'X'X(8 — B)}
and {s?} are both assumed to be x* distributed with p and n — p degrees of freedom,
respectively. Therefore their ratio will be F distributed. To obtain the exterior surface
of the joint confidence region at a given confidence level, the right hand side of equation
5.3 is fixed and the left hand side is solved for all possible parameter values. The joint
confidence region that is produced will be a hyperellipsoid with dimensions equal to
the number of parameters considered. Note that points on or inside the hyperellipsoid
represent plausible values of 8. Normally, if more than two parameters are estimated,
then a two parameter conditional joint confidence region is calculated. This confidence
region is obtained by fixing the remaining parameters at their point estimate values.
Then the confidence contour is obtained by solving for the set of values of the two chosen
parameters that satisfy the equality in equation 5.3.

The nonlinear case is a direct extension of the linear case and will be discussed next.

Given the nonlinear model,

y=f(z,0%) +¢ (5.6)

where y is the measured value, f(z,6") is the model response and ¢ is the measurement
error, the estimate of § is obtained by minimizing the sum of squared deviations given
by: )

S@) = ly - f(z.0)ly — f(z.0)] (5.7)



Chapter 5. Confidence Regions 64

S(f) defines a p dimensional surface and is referred to as the ‘sum of squares surface’. If
the assumption is made that in the neighbourhood of @ a linear Taylor series expansion
is an adequate approximation of the sum of squares surface, then the joint confidence

region of the estimated parameters is given by:
6 —6)'V'V(6—6) <ps*F(p,n —p,c) (5-8)

Where V is the matrix of first derivatives, or Jacobian, of the model f(z;, #) with respect

to the parameters, given by:

v, = E’f—(a;ﬂ (5.9)
The above V' matrix is analogous to the X matrix in the linear case. If the linear
approximation is adequate then the ellipsoid generated by equation 5.8 will be an accurate
representation of the true joint confidence regions. The linear approximation of the sum
of squares surface may not be adequate due to the intrinsic curvature and/or parameter-
effects curvature present. An analysis of this curvature is discussed by Clarke (1987),
Cook and Goldberg (19986) and Cook and Witmer (1985). If the linear approximation
is used, a test to determine if it is adequate should be carried out. To accomplish this,
Bates and Watts (1980) propose the use of profile-t plots. These plots will show the
curvature of the primary axis of the joint confidence region. If the linear approximation
is adequate then the profile-t plot will not deviate significantly from a straight line. If

the linear approximation is not adequate, as shown by the profile-t plots, then the joint

confidence region is obtained using equation 5.10, (Beale, 1960).
S(6) — S(f) < ps’ Flp,n—p,a) (5.10)

The above equation will produce the true shape of the confidence region but only at the
approximate confidence level.
The nonlinear multiple response case is an extension of the single response case presen-

ted previously. If a multiresponse model with n trials and m responses is used,

Yui = fi(Tu,0) + € ,i=1...m, u=1...n (5.11)
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the linear approximation of the joint confidence region 1s given by,
2] IQ 5 P)
6-0)5(0—-6)<ps Flp,n—pa) (5.12)

where (2 is the Hessian of the objective function (i.e. [Z'Z]|) with respect to 8 evaluated

at é, and where Z is the matrix of deviations given by,
Zwi = Yui — fi(Zu,8) ,i=1...m, u=1...n (5.13)
The exact shape approximate level joint confidence region is given by,
|Z'Z| -1Z2'Z) < ps® F(p,n — p,c) (5.14)

The true shape and true confidence level regions can be obtained using two methods.
The first is based on the likelihood function and involves two steps. The first step is
to integrate the area under the likelihood function from negative to positive infinity.
This will allow the determination of the likelihood value that corresponds to the desired
confidence level. The second step involves taking the contour of the likelihood function
surface at the likelihood value determined in step one. A practical modification of this
approach is to integrate from parameter values that produce very low likelihood values
on each side of the parameter point estimate. A limitation of this approach to obtain the
confidence regions is that is can easily become infeasible if the number of parameters is
large. This is due to the amount of computation required.

The second method that can be used to obtain true shape, true level joint confidence
regions is based on a Monte Carlo type approach like the Gibbs sampler (Cassela and
George, 1992). A limitation of this approach is similar to that of the previous method
in that the amount of computation required with large models may be too large to be
practical. Although it can be significantly less than that required with the integration
method.

A further point to consider when analysing confidence regions, is that confidence

regions are a function of the quality of the data and the observability of the parameters.
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For a given experiment design, the quality of the data obtained between experiments
can vary. Therefore the shape of the joint confidence region will be different for different
experiments. This effect is amplified if the number of sample points in the experiment
is small, the parameters are not very observable, or the measurement error is large. To
illustrate this, the joint confidence regions of the two parameters in the biological oxygen
demand (BOD) model used in Bates and Watts (1988) will be shown. The BOD model
is given below.

f(z,0) = 6,(1 — e "% (5.15)

Where z is the time in days, and 8, and 6, are the parameters to be estimated. Based on
the same experiment design, five different sample data sets with different measurement
errors were generated. For each of these data sets. parameter estimates and their joint
confidence regions were obtained. These confidence regions are shown in Figure 5.1. The
true parameter values are indicated by the circle, and the stars are the parameter point
estimates from each data set. As can be observed from Figure 5.1, the size and shape of
the joint confidence region can vary by a large amount with different data sets. Therefore,
if confidence regions are used as a measure of quality in a simulation analysis, a large
number of confidence regions should be generated. If only a couple of confidence regions

are used, due to chance the incorrect conclusion may be derived.

5.2 Issues in Using True Shape Confidence Regions
With Multiple Responses

When parameter estimates are obtained, joint confidence regions are used to determine
the quality of the estimates. For nonlinear models it is recommended that the true shape
approximate level joint confidence region be obtained. This approach is recommended as
the true shape will take into account the nonlinearity of the model and the approximate

level is used to significantly reduce the computation required if large models are used.
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A limitation of the true shape approximate level joint confidence region method when
multiple responses are used, is that the confidence level of the joint confidence region
obtained can be significantly different than expected when the sample size is small. This
difference can be up to 70 percent as observed in case studies. Therefore, there is a
failure of the confidence region theory to accurately represent the uncertainty present in
the parameter estimates.

To explain why the confidence region theory fails for small sample sizes when multiple
responses are used a description of the steps in the derivation of equation 5.14, the
equation that defines the parameter confidence regions, will be presented. This will show
the assumption that is made which was found to be not valid in the examples considered
for small sample sizes.

As a starting point in the derivation of equation 5.14, the derivation of the determinant

criterion will be presented as outlined in Box and Tiao (1973). Given the nonlinear model.
Yui = fi(Ty,0) + € ,i=1l...ru=1...n (5.16)

A Bayesian argument can be used to obtain the posterior distribution of (8, 1), where
noninformative priors are used for § and X. The resulting posterior distribution is shown

below.

.. .. 1 1 1 I .. ..
p(9,a’3|y)d9Hd9U o (27) " E | FRT=D g (—; Z l-uij a-zJ) dBHdazj (5.17)

= i=l 5=

To remove the £~! term, the above equation is compared to the Wishart distribution.

This simplifies the above equation to the following.
p(bly) =C [V =C|Z'Z|"*" (5.18)

The matrix V' in the above equation corresponds to the Z’Z matrix and C is a normalizing
constant so that the sum of the probabilities is one. In deriving the above equation the

assumption that £~! is Wishart distributed is made. Therefore the joint confidence
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region of the parameter estimates is given by.

in[p(8ly)] — Inlp(Oly)] = (1221 - |Z'Z))/p (5.19)

which is x? distributed with p degrees of freedom. If the measurement error is estimated
then the above becomes. o
1Z2'Z| - 12'Z])/p

= (5.20)

which is F' distributed with p and n — p degrees of freedom.

The reason why the level of the confidence region is not near the expected level when
multiple responses are used, is because equation 5.20 is not F’ distributed for small sample
sizes. Small here was found to be when 7 is less than or equal to 2p, where p is the number
of parameters estimated. Equation 5.20 is assumed to be F' distributed because both the
numerator and denominator are assumed to be x? distributed. This assumption is made
because the measurement error in the model is assumed to be normally distributed.
Monte Carlo studies showed equation 5.20 to deviate from being F' distributed as the
sample size decreased. Though if only one respouse was used then equation 5.20 was
found to be F distributed for all sample sizes. The Monte Carlo studies also showed
that for large sample sizes, the numerator and denominator in equation 5.20 were not x?
distributed but their ratio was F distributed. Why this occurs and why equation 5.20 in
not F distributed with a small sample size in not clear.

To illustrate the failure of the joint confidence region formula (i.e. equation 5.14), two
examples will be presented. The first will consider the classic A —+ B — C reaction, used
by various authors such as Box and Draper (1965) for example. This example was used as
it is similar to the type of models considered in this work but is much smaller, therefore
allowing various Monte Carlo studies to be easily performed. The second example is
based on case study two as outlined in Section 6.4. This example will show how the
calculation of the joint confidence region fails with a large model.

A further consideration when generating confidence regions for parameter estimates

obtained with the determinant criterion with multiple responses is the degrees of freedom
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of the parameter estimates. In this case we have n observations per response, m responses
and the number of parameters is p. Different values for the degrees of freedom have
been proposed. Bard (1974) states that nm — p should be used, while Bates and Watts
make a case for n — p. Oxby (1997) addresses this issue and discusses the limitations
of the values proposed by Bard and by Bates and Watts. He states that any simple
expression will be an approximation and therefore its validity will be case dependent. Of
the two possibilities he recommends the use of Bard’s (1974) nm — p value over Bates
and Watts n — p value, which he considers too conservative. In examining the failure of
the approximate level true shape joint confidence region theory, both measure of degrees

of freedom were considered and both showed similar results.

5.2.1 ABC Example

The ABC model has been used many times in the literature and represents the general
sequence of first order irreversible chemical reaction as shown in equation 5.21, where A,

B and C are chemical compounds and &, and &, are the reaction rate constants.

AS BEC (5.21)

The A to B to C reaction can be described by the following set of differential equations.

a4 —E 5
el ky[Alezp BT (5.22)
dB] -E, -k,

7 A'I[A]esz—T ko[ Blexp RT (5.23)
dc] —E,

7 ka2[Blezp BT (5.24)

The ABC model was used in the simulation study since it is nonlinear, has multiple

responses and is small enough so that various Monte Carlo studies can be easily run. A
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further advantage of the ABC model is that an analytical solution exists to the differential
equations, and this makes its use in this context much simpler.

To better understand the behaviour of the joint confidence region of the parameter
estimates when multiple responses are used a number of Monte Carlo simulation studies
were performed. These examined the effect of the number of trials and the number of
responses used on the joint confidence regions of the parameters.

Each Monte Carlo study generated 10000 sample data sets. Each data set was gener-
ated by adding a normally distributed error with a mean of 0 and standard deviation of
0.05 to the true response values. Using this sample data the parameters were estimated
using the determinant criterion. It is was then determined if the true parameter values
occurred within the true shape joint confidence region of the parameter estimates, ob-
tained using equation 5.20, at different levels of confidence. This procedure was repeated
10000 times in each Monte Carlo study and various Monte Carlo studies were run with
different numbers of trials. For the simulation the parameter values of k; and &k, and the
experiment design, are the same as those used by Bates and Watts (1988), and are given
below. The Bates and Watts design is an empirical design and the four trial design is

obtained by removing two of the points.
e parameter values, k&, = 0.5 and &k, = 0.2

e sampling times for the 6 trial Bates and Watts experiment, 0.5, 1, 2, 4, 8 and 16

minutes
e sampling times for the 4 trial Bates and Watts experiment, 0.5, 2, 8 and 16 minutes

Table 5.1 shows how often the true parameter values were in the joint confidence
region, expressed as a percentage, for the cases of four and six trials. The confidence
regions were generated at three different confidence levels, 99, 95 and 50 percent. It is
expected that with repeated sampling the true values of the parameter would fall inside

the joint confidence regions at a percentage equal to the confidence level. From the results
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number of | confidence level
trials 99 95 50

4 28.0 | 25.4 | 11.2

6 92.3 | 81.6 | 32.2

Table 5.1: Percent of the time in 10000 trials, that the true parameter values of the ABC
model were within the calculated confidence region of the parameter estimates, when the

standard deviation of the measurement error was 0.05.

in the table we can see that the true confidence level of the joint confidence region in
the four trial case is much smaller than the expected value. To determine if the observed
results were due to the measurement error, the case study was repeated with different
magnitudes of the measurement error and similar results were found. The only observed
effect was that an increase in the error, increased the difference between the observed
confidence level and the expected confidence level. In the above Monte Carlo studies
the experiment design used to estimate the parameters was similar to the one used by

Bates and Watts (1988). This design is not optimal. If a D-optimal experiment with two

support points at 2.2 and 6.6 gginutes is used, these points are replicated two and three

times for the four and six trial experiments, and the Monte Carlo study is repeated using
an optimal experiment design based on the true parameter values. The results obtained
are similar to those obtained using the design from Bates and Watts (1988).

To gain an understanding of why the results in Table 5.1 were obtained, the distri-
bution of the terms given by equations 6.25, 6.26 and 6.27 were generated for the four

response and six response cases.

|Z'Z|/(n — p) (5.25)
(12'z|-12'Z))/p (5.26)
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(122 —|2'Z))/p
1221/ (n — p)

(5.27)

The first two terms are expected to be x? distributed while the third is expected to
be F' distributed.
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Figure 5.2: Distribution of the Ll%%%i:/i%)ﬂ term for the four trial case of the ABC

example (circles), and the F distribution with (2,2) degrees of freedom (solid line).

Figure 5.2 shows the distribution of equation 6.27 for the four trial case. The circles

are the distribution that was obtained based on the Monte Carlo study and the solid line
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is the F' distribution with (2,2) degrees of freedom. The vertical axis is the probability
density of the F' distribution and the horizontal axis is the F' value. The difference in
the two distributions is what caused the discrepancy obtained in Table 5.1.

The above analysis was repeated for the six trial case. It was found that the ratio of
the terms | Z'Z|/(n—p) to (|Z'Z|—|Z'Z|) /n is closer to being F distributed. Therefore the
observed confidence level is closer to the expected confidence level. When the distribution
of the individual terms was examined, it was found that they were not x? distributed.

Why the ratio is then F' distributed is unclear.

5.2.2 Case Study 2

This example is based on case study two as described in section 6.4. It involved the
estimation of five parameters using five responses in the Watpoly model. The system
that was simulated is the copolymerization of Styrene and Methyl Methacrylate.

This example will show that the failure of the joint confidence region theory also
occurred in the large model used in this thesis. Due to the size of the model, only 177
cases were run in the Monte Carlo study. This study as in the previous example involved
generating sample data sets and obtaining parameter estimates from them. Then it
was determined if the true parameter values were within the true shape joint confidence
region obtained using equation 5.20. The results obtained are shown in Table 5.2, and
are similar to those obtained in the ABC example. As in the ABC example, the level of

the joint confidence region is significantly different than the expected level.

confidence level
expected | 99 | 95 50
observed | 72 | 60 31

Table 5.2: Percent of the time in 177 trials, that the true parameter values in Case Study

2 were within the calculated confidence region of the parameter estimates.
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5.2.3 Discussion

The failure of the joint confidence region theory when the number of trials is small and
multiple responses are used has to be taken into account when parameter estimation is
being carried out. When confidence regions are used as a measure of the uncertainty in
the parameter estimates, the situation can occur that a greater amount of confidence may
be associated with the parameter estimates than is appropriate. This can detrimentally
affect any later actions that depend on these results such as model discrimination or the
confidence region of the model predictions.

From the Monte Carlo studies in both examples it was found that using multiple
responses will only affect the confidence region. The parameter estimates are not affected,
and as expected better parameter estimates are obtained if multiple responses are used.
Therefore it is still recommended to use multiple responses for parameter estimation, but

caution should be exercised in the interpretation of the joint confidence regions obtained.

5.3 Contouring algorithm

In the previous section a number of different methods to obtain the joint confidence
region of a set of parameter estimates were discussed. It was found that the true shape
confidence regions approach was the best choice due to the nonlinearity that is present
in the type of models considered.

This section will discuss the practical aspect of how to obtain the joint confidence
regions. Two possible methods will be presented, the first is based on the algorithm
proposed by Dhib and Oxby (1998) which will produce a very accurate joint confidence
region. The second was developed by the author and is an adaptation of the simplex
optimization method.

The true shape joint confidence region is obtained using equation 5.10, which is re-
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produced below for the readers convenience.
S(6) —S) <ps* F(p,n—p,a) (5.28)

The above equation when used is usually rearranged into the form shown below with the

right hand side being constant.
S(0) = S(0) + ps*F(p,n — p, ) (5.29)

If the single response case is used, then S (é) is equal to the sum of the squared deviations,
while for the multiresponse case S (é) is equal to |Z'Z|. In using equation 5.29 to generate
a two parameter joint confidence region, the parameter values that represent the contour
are obtained by fixing the first parameter and solving for the second. The first parameter
is then incremented and the procedure is repeated. This method can become numerically
unstable if a region of the contour is reached where a small change in the first parameter
results in a large change in the second parameter. Normally when this region is reached
the second parameter is held constant while the first is solved for. While this is a possible
solution, it has the limitations that operator intervention is required and the process can
be slow due to the optimization that is required to obtain each point on the contour. This
problem is compounded if the objective function surface is convoluted and the function
evaluations are very expensive.

The method proposed by Dhib and Oxby (1998) is an adaptive algorithm that follows
the contour. This is achieved by taking a step from the current point and searching for
the contour along a path that is perpendicular to the step taken. Their algorithm works
well since it will adapt its step size based on the curvature of the contour and use a
search direction that is perpendicular to the arc created by the last three points along
the contour. Its limitation is that it can be computationally expensive if a large number
of contour searches are required (i.e. if a large number of points are required to define the

contour, such as in an area of high curvature). The author has also found that it can be
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numerically unstable in certain case studies performed. This was due to the significant
amount of convolution present in the objective function surface.

The method proposed by the author will follow the contour thus minimizing the
number of function evaluations required. In general it will usually require less function
evaluations than the method proposed by Oxby and Dhib. The only limitation is that
the resolution of the confidence region and the limits on the parameter values have to be
selected a priori.

The algorithm is similar to the simplex optimization algorithm in that a shape is
flipped in the required direction to achieve the objective (minimization in the simplex
and following the contour in the contouring algorithm). The algorithm will start at the
point estimate values, move horizontally until it finds the contour, and then move a box
along the contour until all of the contour is found. The algorithm was used to generate
all of the confidence regions in the case studies given in Chapter 6.

The steps of the contouring algorithm are as follows:
1. define the parameter ranges and the desired resolution of the contour

2. create a matrix to store a grid based on the parameter ranges, where the step size

in the grid is equal to the contour resoiution

3. starting at the grid square that contains the point estimate, move in a horizontal

direction until the contour is crossed
4. calculate the points of the grid-square and store in the grid matrix
5. determine the direction in which to flip the square
6. if we are at the starting grid-square stop, else go to step 4

7. based on the data stored in the grid matrix generate the contour, (the contour.m

function in Matlab can be used to extract the contour from the grid matrix)
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The contouring algorithm was written as a Matlab function, and the Matlab source
code is provided in Appendix B. Documentation in the sourcecode will describe the details
of the algorithm such as, how it chooses direction in which to flip the square, or what to

do if the grid boundary is encountered.



Chapter 6

Case Studies

6.1 Introduction

This chapter will give a description of the polymerization model used and discuss three
case studies. The case studies presented will highlight the four principal steps of the
parameter estimation process and the different problems that may be encountered when
estimating parameters within large models. While each of the four parameter estimation
steps will be described in each case study, each case study will focus on one or two of
the steps. In the case studies there are a number of common aspects to all, such as
the generation of sample data and optimization algorithm used. These will be discussed
below.

The polvmerization model used in the case studies has been extensively tested with
experimental data, and has been found to perform well. Therefore the simulated data
obtained from it is very representative of the data that would be obtained from a labor-
atory experiment. In the case studies, the data was simulated by adding an error to the
response values given by the model. This error was normally distributed with a mean
of zero and a response measurement error standard deviation as specified in each of the

case studies. The magnitude of the measurement error for each response was determined

79
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from experimental studies reported in the literature (Dube and Penlidis, 1996; D’Agnillo
et al. 1998), and from discussions with other experienced researchers (McManus, 1999).

The sensitivity analysis in each of the case studies was carried out by an analysis of
the gradient values as outlined in Chapter 2. In the interpretation of the gradient plots,
only a sample of the plots generated will be presented in each case study, and for each
case study the sensitivity analysis is summarized in a table in the sensitivity analysis
subsection. The plots that are not shown in the case studies sections are included in
Appendix C.

The D-optimality criterion and the fmins algorithm, as discussed in Chapter 3, were
used to design the experiments in all of the case studies. The parameter estimates
were obtained using the Determinant criterion and the fmins optimization algorithm as
discussed in Chapter 4.

Joint confidence regions of the parameter estimates were obtained as outlined in
Chapter 5. If p parameters are estimated, the joint confidence region is a p dimensional
space. Since it is not possible to view this space if p is greater than three, two parameter
joint confidence regions are generated in the case studies. A limitation of these regions
is that they are conditional confidence regions and thus are a function of the other
parameter estimates, where a change in the other parameter estimates may result in a
change in the conditional confidence region.

A general description of the model used in the case studies is given in the next section.
This is followed by the three case studies and a summary of the observations from the

case studies.

6.2 Model Description

The model used in the case studies is the Watpoly polymerization model, (Gao and
Penlidis, 1996 and 1998). This is a mechanistic model for the simulation of free radical

homopolymerization and copolymerization, that has been tested extensively by compar-
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ison with experimental studies. As an introduction to the model an overview of poly-
merization reaction kinetics is presented and is followed by a general discussion of the
model. This includes a listing of the input variables and responses, and a description of a
selection of equations from the model. This description will illustrate how the estimated
parameters and responses used in the case studies are integrated within the model and

how they are related to each other.

6.2.1 Polymerization Reaction Kinetics

In free radical polymerization there are three principal steps; initiation, propagation and
termination. In the following description of these steps the assumption is made that only
the terminal monomer unit on the growing polymer chain affects the reaction rate. The
polymerization model based on this assumption is referred to as the ‘terminal’ model. In
the description that follows of the three polymerization steps, the notation R, ;e indicates
a radical chain » monomer units long and ending with monomer type 7. The principal

steps in polymerization kinetics are:

Initiation; decomposition of the initiator 7 into two primary radicals R;.e, that further
react with the monomer to form a radical of chain length one, R, ;e, where 7 is the

type of monomer.

IXoR, e (6.1)
R, o +M; -kﬂi IRy ;e (6.2)
Propagation; growth of the radical chain by the addition of monomer units.

R, ;e +M; Frg Ruyyje (6.3)

Termination; the two radical chains form either one polymer chain of their combined

length or two polymer chains of the respective radical chain lengths.

Rmi®+Roie ¥ Puwn or P+ P, (6.4)
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Termination can also occur by transfer to monomer as shown below.

i

Kfm,
R,m,i ) +le —’ P, + Rj. (65)

6.2.2 Model Equations

The following is a listing of the relationships that are part of the Watpoly model (Gao
1999). Only a subset of the relationships and equations are presented here, as the object-
ive is to provide the reader with an overview of the inodel and the parameters estimated

in the case studies.
Initiation

Rate of initiation

R; = 2fky[I] (6.6)

where [I] is the initiator concentration, k, is the rate constant of initiator decom-
position and f is the initiator efficiency, which is a function of temperature and is

expressed using an Arrhenius relationship:
f = fpre—e:c'pe[_jud_ﬁe"g/m] (67)

where R is the gas constant and 7" is the reaction temperature. The parameters

fore—ezp and foct—eng Will be estimated in Case Study 1.

When the radical steady-state hypothesis is used, the total radical concentration,

[Re], is given by,

[Re] = (M> . (6.8)

Propagation
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Rate of copolymerization
R, = ky[M][Re] (6.9)
where [M] is the total concentration of monomers and [Re] is the concentration of

radicals. The pseudo-k, in the above equation is given by,
kp = kpir @ f1 + kpiodr @ fo + kporda @ fi + kpoada @ fo (6.10)

where kp;; and kpgo are the homopolymerization rate constants, kp2 and kps; are
the cross propagation rate constants, f; and f, are the mole fractions in the reacting
mixture of monomer 1 and 2, respectively, and ¢;e and ¢,e are the mole fractions
of radical type 1 and 2, respectively, given by,

¢ * — klefl
1

= 6.11
kpar fu + hpiafo ( )

kpl'.’f“.!
b2 kpar fi -+ kp1afa ( )

If the total free volume is less than the critical free volume for propagation the k;,;

values are adjusted using the following relationship,

—BBmi( "’57- Vf:rit )]

kp,; = k,,ije[ (6.13)

where BBm; is the rate of decrease of k, with free volume for monomer ¢, Vs is

the total free volume and Vj_ ., is the critical free volume for propagation. The

crit

parameter BBm,; will be estimated in Case Studies 2 and 3.
Termination
Rate of termination
R; = k1 [Rye)? + 2kiz[ Ry @] [Roe] + kioa[Roe)? (6.14)

where k;;; and ki are the homo-termination rate constants, k;o is the cross-

termination rate constant and [R;e] is the concentration of radical type :.
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Transfer to monomer

Free

The pseudo-rate constant for chain transfer to monomer &y, is given by,

kfm = kfmuq,)l L fl + kfmlqul L f'.? + kf1n21¢2 L fl + kaH.22¢2 e f2 (6-15)

where ks, and kfm,, are the rate constants for chain transfer to monomer 1 and
2, respectively, and kjpn,, and ks, are the rate constants for cross-chain transfer
to monomer. The kfn,; parameters are a function of temperature and determined

using an Arrhenius relationship.

—k my; act—en RT
kfmij =kfmijpre—e:zp€[ fmij act—eng/ ] (616)

The parameters Kfm,; pre—exp aDA Kfm,; act—eng Will be estimated in Case Study 1.
volume

The monomer free volume is given by,
Vem: = Viom; + @ (T — Tyins ) (Vin / V1) (6.17)

where Vg, is the free volume of monomer %, 14,, is the total volume of monomer
7 in the reaction mixture, Vr is the total volume of the reaction mixture, oy, is
the variation of free volume with temperature for monomer ¢, 7 is the reaction
temperature, Tgm; is the glass transition temperature of monomer 7 and Viom, is
the constant of free volume with temperature for monomer 7. The parameter o,

will be estimated in Case Studies 1, 2 and 3.

The polymer free volume is given by,
Vip = Viep + (T — Tp) (V3/ V1) (6.18)

where Vg, is the polymer free volume, V}, is the total volume of polymer in the

reaction mixture, V7 is the total volume of the reaction mixture, a, is the variation
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of free volume with temperature for polymer, T is the reaction temperature, T'gp is
the glass transition temperature of polymer and Vy,, is the constant of free volume

with temperature for polymer and will be estimated in Case Study 1.

Tgp is obtained from the following relationship,

L _ W Py | Wt Prsass War, Puyar, + War, Patsas,
Tgp T9M1 TgM_: TgNI;M-_)_
where Pug,ar,, Par,m, and Pas ar, are the probabilities of the corresponding sequences

(6.19)

of monomer 1 (M;) and monomer 2 (M;), Wy, and Wy, are the weight fractions
of monomer 1 and 2, and Tgar, ar, is the glass transition temperature of the altern-
ating copolymer. The Tgar, ar, parameter is estimated in Case Study 3 and the
T g, parameter which is equal to the T'gp parameter in a homopolymerization is

estimated in Case Study 2.
Composition

The instantaneous copolymer composition is given by,

F, = i+ fifs

= 6.20
Y LT (6.20)

where 7; and 7, are the reactivity ratios and f; and f5 are the mole fractions of

free monomer 1 and monomer 2.
The mole fractions are a function of the moles of monomer, which is a function of
the rate of propagation, the rate of termination and the radical concentration.

Triad fractions

The instantaneous triad fractions are given by,

22
32421 fifa + f2

;4111 = (621)

rifife (6.22)

44211 = A0 = 55 ;
r2fE+2rfifs + f3
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f3
rifE+2r fifo + /2

A =
Molecular weight distribution

The moments of the molecular weight distribution are given by,

idVQQ _ idl\rp 4 g
VvV dt vV dt \

2

<

1dVQ, _ 1dN,

Vi odt |V dt
1dVQ, _ 1dN, (27 +30
Vodt V dt (('r+/)’)2)

where 7 and 3 are given by,

_ (L= )k[ReP?

1 dN, p
VvV odt

g
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(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

In using the Watpoly model only part of its capabilities were used. All of the

simnulations studies were carried out in batch reactor mode at isothermal conditions. Of

the available responses from the Watpoly model, the following responses were used in

the case studies.

- conversion

- polymer composition

- radical concentration

- number average molecular weight
- weight average molecular weight
- polymerization rate

- triad fractions
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6.3 Case Study 1

6.3.1 Description

This case study will describe the estimation of five parameters within the Watpoly model
for the homopolymerization of Styrene using five responses. A listing of the estimated
parameters is given in Table 6.1. The responses used and their respective measurement

error standard deviations (oresp) are given in Table 6.2.

6.3.2 Sensitivity Analysis

The sensitivity analysis was performed with respect to the five parameters listed in Table
6.1, and is summarized in Table 6.3. In this table the comments column is a summary
of the observability of each parameter, where any areas of large or small gradient values
(i.e. good or poor observability) are identified. As an example, at the top of Table 6.3,
for the parameter kfm qct—eng @nd the response of conversion the comments column states
‘65°C , max. at 820 min., 75°C , max. at 450 min., better observability at 65°C ’. This
area corresponds to the area of large gradient values as shown in Figures 6.1 and 6.2.

To illustrate the sensitivity analysis procedure, the analysis with respect to the para-
meter Kfm act—eng Will be described. Figures 6.1 and 6.2 show the gradient values for all
of the responses with respect to ks, 4et—eng at 65 °C and 75 °C respectively, plotted
versus time in minutes. These temperatures were chosen, as they represent a range of
typical operating temperatures. In these plots the horizontal axis is time and the vertical
axis is the normalized gradient value. The gradient values were normalized by dividing
by the standard deviation of the response measurement error as given in Table 6.2 and
discussed in Chapter 2.

Good parameter observability is determined by locating areas where the absolute
normalized gradient values are large. Figure 6.1 shows the gradient plots for kfm act—eng

at 65 °C . The gradient values have been plotted on three separate graphs to allow for
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Parameter | Description

activation energy in Arrhenius expression for the rate of

k fm act—eng
radical transfer to monomer (cal/mol)

pre-exponential factor in Arrhenius expression for the

k fm pre—ezp
rate of radical transfer to monomer (L/mol min)

Sact—eng activation energy in Arrhenius expression for initiator
efficiency (cal/mol)

fore—ezp | pre-exponential factor in Arrhenius expression for initi-
ator efficiency (-)
Viop constant of free volume with temperature for polymer

(free volume units/K)

Table 6.1: Parameters estimated in case study 1

Response Measurement error
standard deviation (gresp)
conversion 0.025
M, 10000
M, 10000
rate 0.001
radical conc. 25%

Table 6.2: Measurement error standard deviation (oresp) of the responses used in case

study 1



Chapter 6. Case Studies

Kfrn act-eng sensitivity to conversion
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Figure 6.1: Gradient plots with respect to the parameter kfm act—eng at 65 °C .
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Kim acte ng SENSitivity to conversion
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Figure 6.2: Gradient plots with respect to the parameter kfm, gct—eng at 75 °C .
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easier interpretation. The top graph contains the response of conversion, the middle graph
contains the responses of number average molecular weight (M,) and weight average
molecular weight (M,,), and the bottom graph contains the responses of rate and radical
concentration. In all of the graphs the normalized gradient values have been clipped at
a value of 20. This is performed to maintain the resolution of the graphs and to aid
interpretability. An examination of all the graphs indicates the presence of a peak of
varying width near 800 minutes. Therefore all five responses will provide a good level
of information about the parameter at that point. A comparison of all of the responses
indicates that the M,, and M, are the best responses to use. This is due to the broadness
of the peaks. By broadness it is meant that the peak width is significant, so that large
gradient values occur over a wide range of sampling times. All of the responses maximize
the amount of information they contain in the area when time is equal to 800 minutes.
This time corresponds to the auto-accelaration phase of the polymerization. This can be
seen by examining the plot of conversion versus time shown in Figure 6.3. In this plot
the vertical axis is conversion, where 1.0 indicates 100% conversion, the horizontal axis is
time and the solid and dashed lines represent the conversion profiles at 65 °C and 75 °C
, respectively. The auto-acceleration section is the steep section of the conversion versus
time curve (i.e. from 420 to 480 minutes for the 75 °C curve).

An analysis of the gradient plots at 75 °C shown in Figure 6.2 indicates similar results
as at 65 °C . The differences are that the gradient peaks have moved to 450 minutes,
which corresponds to the auto-accelaration section at 75 °C as shown in Figure 6.3. A
second difference is that the magnitude of the observability has decreased, due to the
smaller peak size.

The sensitivity analysis was performed with the assumption that the initial values
of the parameters were adequate. This assumption may not be valid and the second
part of the sensitivity analysis is to test it by determining the effect a change in the

parameter values will have on the gradient plots. Figure 6.4 for example shows the effect
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Figure 6.3: Plot of conversion versus time for the homopolymerization of Styrene, solid

line 65 °C , dashed line 75 °C .
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of changing the value of ks, gct—eng On the gradient of the conversion response at 65 °C .
The axes are similar to the axes of the gradient plots describes earlier. The three gradient
curves that are shown were calculated using three different values of ks, act—eng (12000,
13426 and 15000, labelled A, B and C, respectively). These values represent the possible
range of K fm act—eng, and were chosen based on an examination of the value of kfm act—eng
for other similar systems. An inspection of the graph reveals that the observability
decreases significantly as the value of the parameter increases. Although the general area
of maximum observability (i.e. where the absolute gradient value is largest) does not
move, it becomes smaller. Therefore a measurement taken at 450 minutes will provide
less information about the parameter as the parameter value increases, but will be the
best location to take samples nonetheless.

Figure 6.5 shows the affect of changing the value of Vy, on the gradient of the con-
version response at 65 °C . The three curves that are shown were calculated using three
different values of V}, {(0.020, 0.025 and 0.030, labelled A, B and C, respectively). These
values represent the possible range of Vf, and were chosen based on an examination of the
value of Vj, for other similar systems. An examination of the graph reveals that as the
value of the parameter changes the peak size and its location change. Good observability
is available with all three peaks due to their large size, but the location of maximum
observability moves as the parameter values change. This indicates that the designed
experiment will change as different parameter values are used. Since the area of max-
imum observability occurs in a very sharp peak, this will result in a rapid decrease in the
amount of information provided by the conversion response if the sampling time deviates
by a small amount from the optimal value. This deviation from the optimal sampling
time can occur if the parameter values used to design the experiment are different from
the estimated parameter values. Therefore the designed experiment will be very sensitive
to the values of Vj, used (i.e. the experiment will not be robust to the V}, parameter

uncertainty).
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Figure 6.4: Effect of changing the value of k., oer—eng On the gradient plot of conversion
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| Parameter | Response | Comments |
Krmact — eng conversion | 65 °C , max. at 820 min., 75 °C , max. at 450 min., better observ-
ability at 65 °C
M, | 65 °C , max. at 820 min., 75 °C , max. at 450 min., very good
observability at both temperatures, better at 65 °C
M, | 65 °C , max. at 820 min., 75 °C , max. at 450 min., very good
observability at both temperatures, better at 65 °C
rate | 65 °C , max. at 800 min., 75 °C , max. at 450 min.
radical conc. | 65 °C , max. at 800 min., 75 °C , max. at 450 min.
kfm pre—ezp conversion | 65 °C , max. at 850 min., 75 °C , max. at 460 min., sharp peak at
both temperatures
M, | 65 °C , max. at 850 min., 75 °C , max. at 460 min., sharp peak at
both temperatures
M, | 65 °C , max. at 850 min., 75 °C , max. at 460 min., sharp peak at
both temperatures
rate | 65 °C , max. at 850 min., 75 °C , max. at 460 min., sharp peak at
both temperatures
radical conc. | 65 °C , max. at 850 min., 75 °C , max. at 460 min., sharp peak at
both temperatures
fact — eng conversion { 65 °C , max. at 850 min., 75 °C , max. at 460 min., sharp peak at
both temperatures and very poor observability
M, | 65 °C , max. at 850 min., 75 °C , max. at 460 min., sharp peak at
both temperatures and very poor observability
M, | 65 °C , max. at 850 min., 75 °C , max. at 460 min., sharp peak at
both temperatures and very poor observability
rate | 65 °C , max. at 850 min., 75 °C , max. at 460 min., sharp peak at
both temperatures and very poor observability
radical conc. | 65 °C , max. at 850 min., 75 °C , max. at 460 min., sharp peak at
both temperatures and very poor observability
fpre ~ezxp conversion { 65 °C , max. at 850 min., 75 °C , max. at 460 min.
M, | 65 °C , max. at 850 min., 75 °C , max. at 460 min.
M, | 65 °C , max. at 850 mnin., 75 °C , max. at 460 min.
rate | 65 °C , max. at 850 min., 75 °C, max. at 460 min.
radical conc. | 65 °C , max. at 850 min., 75 °C , max. at 460 min. J
V¥o conversion | 65 °C , max. at 850 min., 75 °C, max. at 460 min., poor observab-
ility at low conversion
M, | 65 °C , max. at 850 min., 75 °C , max. at 460 min., poor observab-
ility at low conversion
M, | 65 °C , max. at 850 min., 75 °C , max. at 460 min., poor observab-
ility at low conversion
rate | 65 °C , max. at 850 min., 75 °C , max. at 460 min., poor observab-
ility at low conversion
radical conc. | 65 °C , max. at 80 min., 75 °C , max. at 460 min., poor observab-

ility at low conversion

Table 6.3: Summary of the sensitivity analysis
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6.3.3 Experiment Design

The objective of experiment design was to find an experiment that would maximize
the amount of information provided about the parameter values. The experiment was
designed using the D-optimality criterion as discussed in Chapter 3. Since a subset
of the parameters to be estimated are within an Arrhenius expression, two different
temperatures were used in the experiment. The size of the experiment was chosen to be
10 trials, with 5 trials at 65 °C and 75 °C , respectively. The value of 10 was chosen, as
it is twice the number of parameters.

In designing the optimal experiment it was found that a large number of local optima
existed, as a different experiment was obtained with each different initial starting point
used. To deal with the local optima three different approaches were tried. The first was
based on information provided by the sensitivity analysis, the second was to randomly
choose 10 points within the time range of 100 to 900 minutes, and the third, included
as a comparison, was to try evenly spaced points. Table 6.4 shows a sample of initial
points used for the optimization from the three approaches used and the criterion value of
the experiment that was obtained from each set of initial points. Using the information
provided by the sensitivity analysis produced the experiments with the largest criterion
values (i.e. the best experiments). Random initial points produced experiments of a
wide range in quality. When evenly spaced points were used the optimization algorithm
did not converge, even though a number of different attempts were made by decreasing
convergence tolerance and/or changing the optimization algorithm parameters. The best
experiment found is shown in Table 6.5.

To determine how sensitive the experiment design is to the initial parameter values
a sensitivity analysis of the designed experiment, shown in Table 6.5, was performed.
This was accomplished by calculating the criterion value of the designed experiment
using parameter values that span the feasible parameter space. To span this space the

parameter values were perturbed according to a factorial experiment arrangement. The
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source of initial values designed experiment
initial values criterion value
sensitivity | 430, 440, 450, 460, 470, 3.28e37
analysis 820, 830, 840, 850, 860
information | 450, 450, 450, 450, 450, 2.32e37
830, 830, 830, 830, 830
500, 500, 500, 400, 400, 1.11e33
800, 800, 900, 900, 9060
random 114, 284, 455, 465, 488, 6.85e31
585, 709, 757, 813, 860
214, 424, 428, 592, 690, 1.37e35
733, 814, 833, 837, 848
evenly 100, 200, 300, 400, 500, did not converge
spaced 600, 700, 800, 900, 900

Table 6.4: Initial values used by the optimization
experiment obtained

algorithm and the criterion of the

criterion value
3.28e37

sampling time (min.)
415, 431, 446, 459, 473
840, 850, 855, 860, 865

Table 6.5: The best experiment design obtained
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parameter | Low level | High level
Efm act—eng 8000 18000
kfm pre—ezp | 6.00€d 6.00ell
fact—eng | -1000 0
Spre—ezp 0.1 1.0
Viop 0.020 0.030

Table 6.6: High and low levels of the parameters used in the experiment sensitivity

analysis.

high and low levels of the parameter values used to span the parameter space are given
in Table 6.6. These values were obtained based on prior experience and an examination
of the parameter values of similar systems.

To determine how the quality of the experiment changes over the parameter space the
criterion values or the radius measure as described in Chapter 3 can be used. While the
radius measure is an approximation, it is easier to perform a comparison using it than the
criterion value. This is because the radius measure is linearly proportional to the average
uncertainty in the individual parameter estimates (i.e. if the radius measure decreases by
half, the uncertainty in the individual parameter estimates will decrease by half). This
quality makes the radius a more intuitive measure that simplifies the experiment design
sensitivity analysis. It is important to remember that due to the assumptions made in
its development, discussed in Chapter 3, the radius is intended to be used only as a
qualitative measure when comparing designed experiments.

The results of the experiment sensitivity analysis are given in Table 6.7. This table
shows the perturbed parameter values, in a factorial format, and the corresponding values
of the radius of the confidence region spheroid. The experiments are sorted in decreasing
order of quality (i.e. increasing radius or standard deviation of the parameter estimates).

The last six values are assigned values of ‘inf’ as the D-optimality criterion was evaluated
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to be zero. The original experiment as designed is indicated by a star on the right hand
side of its radius value. An examination of the values in Table 6.7 indicates that given
the chosen parameter ranges, the quality of the experiment will decrease by more than
two orders of magnitude for more than half of the test points. This may be due to any

of the following reasons:
e the parameter ranges chosen for the sensitivity analysis are too large
e the experiment design is very sensitive to the parameter values used

e one or more of the parameters has become ‘practically’ unobservable (i.e. its con-

fidence region is very large)

To determine the effect of the chosen parameter ranges, the sensitivity analysis was
repeated with smaller parameter ranges, a plus/minus ten percent change in all of the
parameter values. This decreased the sensitivity of the design but there were still three
orders of magnitude difference between the value of the radius at the initial parameter
values and at the worst location. Further information about how sensitive the design is
to the parameter values can be inferred by examining how the gradient plots change with
a change in the parameter values, as shown in the previous section with the analysis of
Figures 6.4 and 6.5. To determine if one of the parameters has become ‘practically’ unob-
servable and is biasing the experiment sensitivity analysis, the analysis should be repeated
with the chosen parameter kept constant at the initial value used. If the criterion values
change significantly when the analysis is repeated, then the chosen parameter is causing
the experiment design to significantly decrease in quality. Therefore the experiment is
not robust to the uncertainty in the given parameter.

Based on the results of the designed experiment sensitivity analysis it is possible
that the designed experiment will not be a very useful experiment if the true parameter
values are very different from the values used to design the experiment. At this point

two courses of action are available. The first is to redesign or modify the experiment so
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Parameter values Radius
kfm act—eng kfm pre—eTp fact-eng fpre—e:cp Vfop
6.00E+05 8000 0.03 1 -1000 0.00009
6.00E+11 18000 0.03 1 -1000 0.00013
6.58E+08 13426.8 0.025 0.6 0 0.00018
6.00E+05 8000 0.02 1 -1000 0.00113
6.00E+11 18000 0.02 1 -1000 0.00185
6.00E+11 18000 0.03 1 0 0.01091
6.00E+05 8000 0.03 1 0 0.02416
6.00E+11 18000 0.02 0.1 -1000 0.05707
6.00E+05 8000 0.02 0.1 -1000 0.11868
6.00E+05 18000 0.03 1 -1000 0.13634
6.00E+11 18000 0.02 1 0 0.18124
6.00E+11 18000 0.03 0.1 -1000 0.21363
6.00E+05 8000 0.02 1 0 0.27330
6.00E+05 8000 0.03 0.1 -1000 0.28605
6.00E+05 18000 0.02 1 -1000 0.34334
6.00E+11 8000 0.03 1 -1000 3.30209
6.00E+11 8000 0.02 1 -1000 5.93090
6.00E+11 18000 0.03 0.1 0 6.85350
6.00E+11 18000 0.02 0.1 0 6.94367
6.00E4+05 18000 0.02 0.1 -1000 7.55549
6.00E+05 8000 0.03 0.1 0 8.98383
6.00E+05 8000 0.02 0.1 0 9.21568
6.00E+05 18000 0.03 1 0 18.68176
6.00E+05 18000 0.02 1 0 42.46608
6.00E+05 18000 0.03 0.1 -1000 | 238.99123
6.00E+05 18000 0.03 0.1 0 | 3812.12697
6.00E+05 18000 0.02 0.1 0 | 4874.87872
6.00E+11 8000 0.02 0.1 -1000 inf
6.00E+11 8000 0.03 0.1 -1000 inf
6.00E+11 8000 0.02 0.1 0 inf
6.00E+11 8000 0.03 0.1 0 inf
6.00E+11 8000 0.02 1 0 inf
6.00E+11 8000 0.03 1 0 inf

Table 6.7: Results of the designed experiment sensitivity analysis

101



Chapter 6. Case Studies 102

that it is more robust, and the second is to perform the experiment as designed and then
to perform further experiments once better parameter estimates have been obtained, i.e.
to follow a sequential, iterative approach. Which approach to take would be decided
by an examination of the amount of risk that the researcher is willing to accept in the
performing the experiment and at what stage of the overall parameter estimation process
is at (i.e. at the initial exploratory stage or near the end and just improving the parameter

values).

6.3.4 Parameter Estimation

For the estimation of the parameters the determinant criterion was used as discussed in
Chapter 5. This criterion was used due to its favorable properties, and the optimization
algorithm used was the fmins algorithm. To estimate the parameters various initial
estimates were used for the optimization algorithm. Unfortunately each of the estimates
resulted in a local optimum that was very near the initial guess. It was suspected that this
was due to insufficient trials in the experiment. To test this the parameters were estimated
with two and five times the number of trials in the experiment. With the increased
number of trials the local optima were still present and the optimization problem was
similar to the original case. A different optimization algorithm was then investigated.
The algorithm that was tried is the genetic optimization algorithm, (Yao, 1994; Moros,
1996), though it too found local optima. The MWLS criterion as discussed in Section
5.1.2 was also implemented. Unfortunately it did not produce results that were different
from the determinant criterion.

To obtain a better understanding why the parameter estimation was not working it
was attempted to estimate different subsets of the five parameters. What was discovered
from this part of the investigation is that the parameters within the two Arrhenius
relationships (i.e. kfm act—eng, Kfm pre—ezps Sact—eng @D fpre_ezp) Were the source of the

problem. When the Arrhenius parameters for either ks, or f were estimated, very
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different local optima would still be found. Although the model predictions using the
parameter values from the local optima were reasonable.

The general Arrhenius expression is shown in equation 6.29.
k=Axe E/IRT (6.29)

where A is the pre-exponential factor, E is the activation energy, R is the ideal gas
constant and T is the temperature. Inspection of the equation reveals that for a given
temperature there is a set of activation energies and pre-exponential factors that will pro-
duce the same rate value. Therefore it was suspected that the experiments as run did not
have a sufficiently large temperature difference to adequately estimate the parameters. To
examine this possibility, Figure 6.6 shows a plot of kjm act—eng Versus kfm pre—ezp- The ho-
rizontal axis is the activation energy and the vertical axis is the log of the pre-exponential
factor. The two lines represent the set of activation energy and pre-exponential factor
values that produce the same rate value at a fixed temperature. The solid line is for
65 °C and the dashed line is for 75 °C . The two lines cross at the true value of the
activation energy and the pre-exponential factor, shown by a circle on the plot. Included
in the plot are all of the point estimates from the local optima obtained in the simulation
studies, shown as stars. An inspection of the plot reveals that the temperature difference
used in the experiment resulted in the two temperature lines being close together. This

may contribute to the problem of local optima that was found.

6.3.5 Confidence Regions

To determine the quality of the parameter estimates, confidence regions need to be gen-
erated. In general the joint confidence region is a p dimensional space, where p is equal
to the number of parameters estimated. Since it is not possible to view this space if p
is greater than three, joint confidence regions of two parameters are usually obtained.

It should be remembered that these regions are conditional confidence regions at fixed
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Figure 6.6: Plot of the estimated parameter values of the ks, Arrhenius expression; stars

are locally optimal estimates and the circle indicates the true values
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Efm act—eng | 12682
kfm pre—ezp | 3-311E8
fact—eng | 0.0114
fpre—ezp 0.503

Viop 0.0196

Table 6.8: Estimated parameter values

temperature sampling time
65 840 850 855 860 865
75 415 431 446 459 473

Table 6.9: Experiment design used in the parameter estimation

values of the other parameters, and that they will change with a change in the values of
the other parameters.

The confidence regions are based on the parameter estimates given in Table 6.8,
obtained from the experiment given in Table 6.9. The values that correspond to the 95
percent confidence contour were obtained using equation 5.14 from Chapter 5.

A set of conditional joint confidence regions of the estimated parameters are given
in Figures 6.9, 6.10 and 6.11. These figures are only a subset of all of the possible
joint confidence regions that can be generated. If the parameter values are not changed
from the point estimates then there are five choose two (i.e. 10) possible parameter
combinations for which confidence regions can be generated.

Figure 6.9 shows the 95% joint confidence region of the Arrhenius parameters for &sp,.
The star indicates the point estimate. The confidence region is banana shaped and is
not closed at the top of the plot. To determine if the joint confidence region is closed or
open for the k¢m pre—esp Parameter, a cross section of the confidence region was obtained

at increasing values of the Kfm pre—exp parameter. The joint confidence region was found
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to still be open at a value of 100e9, therefore it may be considered to be open, or very
large, indicating a very poor parameter estimate for the kfm pre—erp Parameter.

Figure 6.10 shows the 95% joint confidence region of the Arrhenius parameters for f.
The star indicates the point estimate. The confidence region indicates a good parameter
estimate for fpre—ezp, but a poor estimate for fuci—eng, as the contour appears to be open
on the left and right hand sides of the plot. Negative values of f,c—eng Were not considered
feasible and the contour was still open at a value of 100 for fsct—eny- This poor estimate
of fact—eng is a reflection of the low level of information provided by the responses used
in the gradient plots as shown in Figures 6.7 and 6.8. An examination of these figures
indicates that the normalized gradient values are very small for most of the responses.
The radical concentration provides most of the information about the parameter where
the gradient value has a very sharp peak at 850 min. at 65 °C and at 480 min. at 75 °C
. The largest normalized gradient value is -1.3 for the response of radical concentration
at 850 min. and 65 °C . While this value is largest for this parameter in general it is a
small normalized gradient value, and an indication that a large number of trials will be
required to obtain good estimates of the parameter.

Figure 6.11 shows the 95% joint confidence region of the parameters for V., and
k tm act—eng- The star indicates the point estimate. The confidence region is very nonlinear
and appears closed except for the area at the bottom of the graph.

An important point to remember is that joint confidence regions will only indicate the
amount of uncertainty present in the parameter estimates based on the point estimates
obtained and the shape of the objective function surface in the neighborhood of those
estimates. Therefore, if a local optimum is found, the confidence region is for the local
optimum. To explore this, a cross section of the objective function surface was generated.
This was obtained by calculating the objective function values over a range of values of
the Kfm act—eng Parameter. A plot of this cross section is shown in Figure 6.12. The

horizontal axis is the parameter value, the vertical axis is the objective function value,



Chapter 6. Case Studies

normalized gradient

normalized gradient

fact-eng sensitivity to conversion

O T - — 1 1 ! ! T

- i

500 600 700 800
time

g sensitivity to Mn(-) and Mw(...)

900

2 T 1 I ] ! E l. 1)

- e z
.9 - - .
3 : : :
S o Do Tl T
=] " Z R
8 : : R
g_4_.,....;....,..; ..................................................... E;--AE ........
] - . = -
< : : = .
- T T R e
i i i i i i i
100

400 500 600 700 800

time
sensitivity to rate(~) and radical conc.(...)

300

f
act-eng

05 ; S ! ! ! ! ; %
U T WU W W O U WO TS O 1 O
_1- ................................................ ........ ........
% 1(;7 260 360 430 530 680 750 aéo égc;Jo

time

Figure 6.7: Gradient plots with respect to the parameter fic—eng at 65

1000

1000

107



Chapter 6. Case Studies 108

<10~ fm_eng sensitivity to conversicn

0 = ‘ } 3

F;* L L 14 13
_0.5 - e e e e e e e e e e e it i s e -
_1 T I T ) -

normalized gradient
L
4
T

i i

0 100 200 300 400 500 600 700 800 900 1000

time
< 107 fact—eng sensitivity to Mn({~) and Mw(...)

2 1] T 1 ! ! T T 1 T
E O._ O ol h’?&: ......................................
B S
> D=
'8_2__....;,.»..;..,.......‘.......t....:: ......................................... p
N =
® z
£ z
2 I
C_4_. ................................... :: ...........................................

_ ; : L : : :

i i i
0 100 200 300 400 500 600 700 800 300 1000

. time R
fac[_eng sensitivity to rate(-) and radical conc.(...)

0.05 ! ! ' T T T l T T

.

[
ty

EEEEREER
Yo,

normalized gradient

0 100 200 300 400 500 600 700 800 900 1000
time

Figure 6.8: Gradient plots with respect to the parameter fict—eng at 75 degrees Celsius.



Chapter 6. Case Studies 109

the star is the point estimate and the horizontal dotted line indicates the criterion value
that corresponds to a 95 percent confidence level. This plot revealed that the point
estimate obtained is a local minimum and that a number of other local minima exist,

illustrating the difficulty of the optimization problem.
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6.4 Case Study 2

6.4.1 Description

This case study will describe the estimation of three parameters within the Watpoly
model for the homopolymerization of Styrene using five responses. A listing of the es-
timated parameters is given in Table 6.10. The responses used and their respective

measurement error standard deviations (0resp) are given in Table 6.11.

6.4.2 Sensitivity Analysis

The sensitivity analysis was performed with respect to the three parameters listed in
Table 6.10, and is summarized in Table 6.12. In this table the comments column is
a summary of the observability of each parameter, where any areas of large or small
gradient values (i.e. good or poor observability) are identified. As an example, at the top
of Table 6.12, for the parameter o, and the response of conversion the comments column
states ‘broad peak at 850 min.’. This area corresponds to the area of large gradient values
as shown in Figure 6.13.

To illustrate how parameter observability can differ between two parameters the sens-
itivity analysis of the parameters «,, and BBm will be compared. The gradient plots
with respect to these parameters are shown in Figures 6.13 and 6.14, respectively. In
these plots the horizontal axis is time and the vertical axis is the normalized gradient
value. The gradient values were normalized by dividing by the standard deviation of the
response measurement error, as given in Table 6.11, and by multiplying by a percentage
of the parameter value, as discussed in Chapter 3.

The level of a parameter’s observability is determined by the magnitude of the nor-
malized gradient values. To maximize parameter observability, trials should be performed
in the area where the absolute normalized gradient values are largest. An examination of

the gradient plots for the parameter «,,,, shown in Figure 6.13, indicates that the gradient
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Parameter | Description

O, variation of free volume with temperature for monomer
(free volume units/K)

BBm rate of decrease of k, with free volume (L/mol min per
free volume unit)

Tgu,t glass transition temperature of the polymer (K)

t For a homopolymerization Tgar, = Tgp

Table 6.10: Parameters estimated in case study 2

Response Measurement error
standard deviation (Cresp)
conversion 0.025
M, 10000
M, 10000
rate 0.001
radical conc. 25%

Table 6.11: Measurement error standard deviation (oyesp) Of the responses used in case

study 2
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Figure 6.13: Gradient plots with respect to the parameter «,, at 65 degrees Celsius.
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Figure 6.14: Gradient plots with respect to the parameter BBm at 65 degrees Celsius.
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the gradient plots for the parameter o, shown in Figure 6.13, indicates that the gradient
values are maximized between 800 and 900 minutes. The gradient values are also greater
than 20 for a wide range of sampling times. This indicates that there is a large region of
time at which a large amount of information about the «,, parameter is available.

The gradient plots of the BBrn parameter are given in Figure 6.14. An inspection
of Figure 6.14 reveals that the gradient values are almost zero for all of the low and
medium conversion phase of the polymerization, less than 850 minutes. Low and medium
conversion is defined as conversion before the autoacceleration effect, and is identified
from a plot of conversion versus time for the polymerization, as shown in Figure 6.15.
In Figure 6.15 the vertical axis is conversion, where 1.0 indicates 100% conversion, and
the horizontal axis is time. The auto-acceleration section is the steep section of the
conversion versus time curve (i.e. from 800 to 850 minutes). The BBm parameter does
become observable once high conversion is reached. The lack of observability of the BBm
parameter at the low and medium conversion is expected, as BBm is a parameter related
to a phenomenon that only takes effect once high conversion is reached and the rate of
polymerization becomes diffusion controlled.

To determine the effect of changing the BBm parameter values on the sensitivity
analysis, gradient plots were generated for different values of BBm. Figure 6.16 shows
the gradient plots for the M, response at values of 0.9, 1.0 and 1.1 for BBm. An
inspection of the plot indicates that the location of observability will not change as
the value of BBm changes, only the level of observability will change. Therefore the
experiment design using the response of M, will not be affected by uncertainty in the
value of the BBm parameter. This is contrast to the parameter V}, in case study one,
where the location and magnitude of the observability changed with a change in the

parameter values (Figure 6.5).
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| Parameter |  Response | Comments
(o conversion | broad peak at 850 min
M, | broad peak at 850 min
M,, | broad peak at 850 min
rate | very large gradient values at time > 800 min
radical conc. | very large gradient values at time > 700 min
BBm conversion | no observability at < 850 min, poor observability at > 850 min
M, | no observability at < 850 min, poor observability at > 850 min
M, | no observability at < 850 min, poor observability at > 850 min
rate | no observability at < 850 min, poor observability at > 850 min
radical conc. | no observability at < 850 min, very good observability at > 850 min
Tonr, conversion | broad peak at 850 min
M, | peak at 850 min
M,, | broad peak at 850 min
rate | broad peak at 850 min
radical conc. | very large gradient values at time > 700 min

Table 6.12: Summary of the sensitivity analysis
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Figure 6.16: Effect of changing the value of BBm on the gradient plot of M, at 65
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6.4.3 Experiment Design

The objective of experiment design was to find an experiment that would maximize
the amount of information provided about the parameter values. The experiment was
designed using the D-optimality criterion as discussed in Chapter 3. The size of the
experiment was chosen to be 10 trials.

In designing the optimal experiment, as expected, local optima were found. To deal
with this, experiments were designed using the information provided in the sensitivity
analysis to obtain the initial values for the optimization algorithm. A sample of the
designed experiments is shown in Table 6.13. Table 6.13 gives the initial values used
in the optimization algorithm, the final experiment obtained, its criterion value and the
radius. The radius is given as a qualitative measure to compare the experiment design,
as discussed in Chapter 4. In the table three experiments are given, where the first two
were designed using initial values based on the sensitivity analysis information, and as a
comparison the third experiment designed by the author based solely on an inspection
of the gradient plots. Once again, when comparing experiments it can be misleading
to compare the design criterion values directly as they are proportional to the volume
of the linearized joint confidence region. Therefore it would be misleading to say that
the best experiment is 2.5 times better that the author’s experiment. Using the radius
approximation method the radius of the author’s experiment and the best experiment are
50757 and 59371, respectively. Therefore this analysis illustrates that the best experiment

is only approximately 20 percent better.

6.4.4 Parameter Estimation

For the estimation of the parameters the determinant criterion was used as discussed in
Chapter 4 and the optimization algorithm used was the fmins algorithm. To estimate
the parameters various initial estimates were used for the optimization algorithm. It was

observed that each of the initial parameter values used in the optimization produced a
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initial values used designed experiment
in the optimization (min.) trials criterion value | radius
600 700 800 850 900 584 588 849 843 960 2.93e28 55523
600 700 800 850 900 621 692 850 885 924
700 750 800 850 900 626 766 925 841 960 4.38e28 59371
725 775 825 875 925 657 850 849 892 898
600 650 700 800 825 1.71e28 50757
850 875 900 925 950

Table 6.13: Initial values used by the optimization algorithm, the designed experiment
and its criterion value

local optimum, where the parameter values obtained were close to the initial guess or were

considered poor estimates. A set of parameters was considered poor if its criterion value

was much larger than the best criterion values obtained to date and/or if the parameters

are in a region determined to be not feasible based on prior knowledge. To illustrate the

variability of the parameter estimates obtained due to the local optima, a sample of the

initial and estimated parameter values as well as the criterion value obtained are given

in Table 6.14.

| | initial values | final values | criterion |
simulation | o, 0.001 0.001011
1 BBm 1.0 1.02 1.8142e-3
Tonm, 383.15 383.49
simulation | a, 0.0015 0.00102
2 BBm 1.5 1.147 8.2264e0
T g, 400 390.23
simulation | o, 0.001 0.00102
3 BBm 1.5 1.542 1.7217el
Ty, 390 396.94
simulation | ay, 0.0015 0.00107
4 BBm 0.5 0.536 2.7695e6
T g, 350 418.71
Table 6.14: Local optima from the parameter estimation



Chapter 6. Case Studies 122

To illustrate why all of the local optima are occurring, a part of the criterion surface
was generated. Since the criterion surface is three dimensional, to generate a 2D surface
the Tgpr, parameter was fixed at the point estimate and the remaining two parameters
were varied. The generated surface is shown in Figure 6.17, where the horizontal axes
are the parameters ¢,, and BBm and the vertical axis is the logarithm of the criterion
values. The logarithm of the criterion values was used to compress the vertical scale
to improve the presentation of the criterion surface. An examination of the criterion
surface indicates two ridges that will result in local optima. These two ridges are parallel
to the BBm parameter axis and occur near a value of 1.04e-03 and 1.02e-02 of the an
parameter.

To deal with the problem of local optima two different approaches were attempted.
The first was to use the optimization algorithm of simulated annealing that is robust to
local optima, as discussed in Chapter 4. The second was to evaluate the quality of 500
starting points using the criterion value, and to use the point with the smallest criterion
value as the starting point for the fmins algorithm. The parameter point estimates
obtained from the two methods as well as the true parameter values are given in Table
6.15. The simulated annealing method obtained the best parameter estimates but it
was more computationally expensive. The method required 8867 function calls versus a
typical 150-300 for the fmins algorithm and 697 for the 500 guess method, 100 function

evaluations required approximately 8 min to complete on a Pentium III, 500 MHz.

simulated annealing | 500 guess | true values
Ctrn 0.00100 0.00097 0.001
BBm 1.00103 0.95519 1.0
Tgu, 378.2 369.2 370.0
criterion 3.2795e-005 2.0499e-002

Table 6.15: Parameter estimates and true values
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6.4.5 Confidence Regions

The confidence regions obtained are based on the parameter estimates given in Table
6.16, which have been obtained from the experiment given in Table 6.17. The value that
corresponds to the 95 percent confidence contour was obtained using equation 6.13 from

Chapter 6.

Qm BBm Tng
0.00099 | 1.052 | 374.2

Table 6.16: Estimated parameter values

A sample of the conditional joint confidence regions of the estimated parameters are
given in Figures 6.18, 6.19 and 6.20. These figures are only a subset of all of the possible
joint confidence regions that can be generated.

Figure 6.18 shows the 95% joint confidence region of the parameters ¢, and BBm.
The star indicates the point estimate. The confidence region is not closed at the top
of the plot. To determine if the joint confidence region is closed or open for the BBm
parameter, a cross section of the confidence region space was obtained at increasing
values of the BBm parameter. The joint confidence region was found to still be open at
a value of 5000, therefore it may be considered to be open, or very large, indicating a
poor parameter estimate for the BBm parameter.

Figure 6.19 shows the 95% joint confidence region of the parameters o, and T'gs,.
The star indicates the point estimate. The confidence region is not closed at the top

of the plot. To determine if the joint confidence region is closed or open for the T'gay,

sampling time (min.)

626, 657, 766, 841, 849, 849, 891, 898, 925, 959

Table 6.17: Experiment design used in the parameter estimation
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parameter, a cross section of the confidence region space was obtained at increasing
values of the T'gys, parameter. The joint confidence region was found to still be open at
a value of 1000, therefore it may be considered to be open, or very large, indicating a
poor parameter estimate for the T'g,,, parameter.

Figure 6.20 shows the 95% joint confidence region of the parameters ¢, and BBm at
different values of the T'gys, parameter. The star indicates the point estimate. The three
confidence regions were obtained at values of 370.0, 374.2 and 380.0 for T'gys,, and are
labeled A, B and C, respectively. The three confidence regions are similar in shape but
are shifted with respect to the ¢, parameter. This indicates that the marginal confidence
region for the a,, parameter is significantly larger than the conditional confidence region
indicates. Therefore to use the conditional confidence region as a representation of the
overall ¢, parameter uncertainty will be grossly misleading. For the BBm parameter
there is not much change and the conditional confidence region may be representative of
the marginal confidence region.

In the generation of the true shape approximate level confidence regions the assump-

tion is made that the ratio given in equation (6.20), reproduced below, is F’ distributed.

[12'Z1-12'Z\|/p

s2

(6.30)

As shown in Chapter 5 if multiple responses are used this assumption may not be correct.
To test if this assumption is valid in this case study a Monte Carlo simulation was carried
out. This simulation involved the generation of sets of data with 10 and 5 trials from
which the parameters were estimated. In order to avoid the problem of local optima
in the estimation, the true values were used as the initial values for the optimization
algorithm.

Confidence region theory states that upon repeated sampling the true parameter
values will occur within a 90 percent parameter estimate confidence region, 90 percent
of the time. The results of the Monte Carlo study are shown in Table 6.18. This table

indicates the percent of the time that the true parameter values were found within the true
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number of theoretical actual
trials confidence level | confidence level
5 50 14
90 39
95 48
10 50 80
90 97
95 99

Table 6.18: Estimated parameter values

shape approximate level confidence region of the parameter estimates. The theoretical
confidence level is the expected percent of the time the true values will occur within the
true shape approximate level confidence region, and the actual confidence level is the
percent of the time that they did occur.

From Table 6.18 we can see that the difference between the theoretical and actual
confidence level is very large when the sample size is five, thus indicating that the as-
sumption that the ratio in equation 6.30 is F' distributed is not valid. When the sample
size is ten, the difference between the theoretical and actual is much smaller, and can
be considered acceptable. As this small difference can be attributed to the confidence
region being at an approximate confidence level.

Since the actual confidence level for the five trial case is much smaller than the
theoretical, the true shape confidence regions obtained for any parameter estimates will

be misleading as they will indicate a level of confidence that is much larger than is true.
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6.5 Case Study 3

6.5.1 Description

This case study will describe the estimation of five parameters within the Watpoly model
for the copolymerization of Styrene / Methyl Methacrylate using five responses. A list-
ing of the estimated parameters is given in Table 6.19. The responses used and their

respeciive measurement error standard deviations (o .sp) are given in Table 6.20.

6.5.2 Sensitivity Analysis

In this case study the sensitivity analysis was performed with respect to two independent
variables, time and initial feed composition. With two independent variables the gradient
values produce a surface. This surface is illustrated in Figures 6.21 and 6.22 where the
gradient surface of the conversion response with respect to the parameters a., 1 and
Tgn,m, 1s shown. In these figures both a plot of the gradient surface and a contour of
this surface is given. In the surface plots the horizontal axes are time and initial feed
composition and the vertical axis is the normalized gradient value. The gradient values
were normalized by dividing by the standard deviation of the response measurement error
(0resp), as given in Table 6.20, and then multiplied by a percentage of the parameter value,
as discussed in Chapter 2. In the contour plots the horizontal axis is time, the vertical
axis is initial feed composition and the normalized gradient contour line spacing is equal
to four normalized gradient units.

A parameter’s observability is determined by locating areas where the absolute nor-
malized gradient values are large. The gradient surface for the parameter o, a1 is shown
in Figure 6.21. An examination of this figure reveals a valley (where the absolute gradient
values are maximized) that runs diagonally from a feed concentration of 0.1 and a time
of 300 minutes to a feed concentration of 0.8 and a time of 900 minutes. The start of

this valley can be seen in the surface plot but the valley is more apparent in the contour
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Parameter | Description

Cn M1 variation of free volume with temperature for monomer
1 (free volume units/K)

Q. M2 variation of free volume with temperature for monomer
2 (free volume units/K)

BBmys | rate of decrease of k, with free volume of monomer 1
(L /mol min per free volume unit)

BBmy, | rate of decrease of k, with free volume of monomer 1
(L/mol min per free volume unit)

TgamM, | glass transition temperature of the alternating copoly-
mer (K)

Table 6.19: Parameters estimated in case study 3

Response Measurement error
standard deviation (oresp)

conversion 0.025

composition 0.025

M, 10000

M, 10000

rate 0.001

radical conc. 25%
triad fractions 0.1

(sequence length distr.)

Table 6.20: Measurement error standard deviation (0resp) Of the responses used in case
study 3
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plot. A further observation is that the absolute gradient values are largest in the area,
as seen in the contour plot, above the valley where the initial feed is larger than 0.5 and
the sampling time is greater than 700 minutes.

The gradient surface for the parameter Tgas, a7, is shown in Figure 6.22. An exam-
ination of this figure reveals a ridge (where the absolute gradient values are maximized)
that runs diagonally from a feed concentration of 0.1 and a time of 300 minutes to a feed
concentration of 0.8 and a time of 900 minutes. A further observation, as seen in the
contour plot, is that to the right of the ridge there is a valley, from an initial feed of 0.3
to 0.5 and a sampling time greater than 700 minutes, where the gradient values are large.

In both of the above sensitivity analysis there is an area of large gradient values that
occur from a feed concentration of 0.1 and a time of 300 minutes to a feed concentration
of 0.8 and a time of 900 minutes. This corresponds to the area of autoacceleration for the
copolymerization carried out at different feed concentrations as shown in Figure 6.23. In
this surface plot the vertical axis is conversion, where 1.0 indicates 100% conversion, and
the horizontal axes are time and initial feed composition. The auto-acceleration section
is the steep cliff face of the conversion versus time surface, from a composition of 0.1 and
a time of 300 minﬁtes to a feed composition of 0.9 and a time of 900 minutes.

A summary of the information obtained from the gradient plots is given in Table 6.21.
In this table the comments column is a summary of the observability of each parameter,
where any areas of large or small gradient values (i.e. good or poor observability) are
identified. As an example, at the top of Table 6.21, for the parameter o, a1 and the
response of conversion the comments column states ‘ridge from 0.1 feed and 300 min. to
0.8 feed and 900 min., the ridge widens as the feed increases’. This area corresponds to
the area of large gradient values as shown in Figure 6.21.

In using the information in Table 6.21 to generate an initial guess for the experiment
design algorithm the best general area for each parameter was identified. This is shown

in Table 6.22.
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[ Parameter | Response | Comments ]
Qm M1 conversion ridge from 0.1 feed and 300 min. to 0.8 feed and 900 min., the
ridge widens as the feed increases
composition sharp ridge from 0.2 feed and 500 min. to 0.6 feed and 800 min.
M, ridge from 0.1 feed and 300 min. to 0.8 feed and 900 min., the
ridge widens as the feed increases
M, ridge from 0.1 feed and 300 min. to 0.8 feed and 900 min., the
ridge widens as the feed increases and values are larger after the
ridge (i.e. larger time)
rate ridge from 0.1 feed and 300 min. to 0.8 feed and 900 min., the
ridge widens as the feed increases and values are larger before
the ridge (i.e. smaller time)
radical conc. a rapid increase in values from 400 to 600 min. with very large
values at time > 600 min for all feeds
seq. length M1 sharp ridge from 0.3 feed and 600 min. to 0.8 feed and 900 min.,
poor observability elsewhere
seq- length M1M1 same as for seq. length A{1
seq. length M1IM1M1 | same as for seq. length M1
seq. length M2 sharp ridge from 0.2 feed and 500 min. to 0.6 feed and 800 min.,
poor observability elsewhere
seq. length M2M2 sharp ridge from 0.3 feed and 680 min. to 0.7 feed and 900 min.,
poor observability elsewhere
seq. length M2M2M?2 | sharp ridge from 0.3 feed and 600 min. to 0.6 feed and 800 min.,
poor observability elsewhere
Cm M2 conversion ridge from 0.1 feed and 300 min. to 0.8 feed and 900 min.
composition sharp ridge from 0.2 feed and 500 min. to 0.5 feed and 700 min.
M, ridge from 0.1 feed and 300 min. to 0.8 feed and 900 min.,
values are larger with smaller feed values
M, ridge from 0.1 feed and 300 min. to 0.8 feed and 900 min., the
ridge widens as the feed increases and values are larger after the
ridge (i.e. larger time)
rate ridge from 0.1 feed and 300 min. to 0.8 feed and 900 min., the

radical conc.

seq. length M1
seq. length M1AL1
seq. length M1IM1M1
seq. length M2
seq. length M2M?2

seq. length M2M2M2

ridge widens as the feed increases and values are larger before
the ridge (i.e. smaller time)

a rapid increase in values along the diagonal band of 0.1 feed
and 200 min to 0.9 feed and 800 min. with very large values to
the right of the band (i.e. larger time)

sharp ridge from 0.3 feed and 600 min. to 0.8 feed and 900 min.,
poor observability elsewhere

same as for seq. length M1

same as for seq. length M1

sharp ridge from 0.2 feed and 500 min. to 0.6 feed and 800 min.,
poor observability elsewhere

sharp ridge from 0.3 feed and 600 min. to 0.7 feed and 900 min.,
poor observability elsewhere

sharp ridge from 0.3 feed and 600 min. to 0.6 feed and 800 min.,
poor observability elsewhere

Table 6.21: Summary of the sensitivity analysis
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[ Parameter | Response | Comments |
BBmgn conversion a band from 0.1 feed and 400 min. to 0.8 feed and 900 min.,

where there is no observability to the left (i.e. smaller time)
and poor observability to the right (i.e. larger time)
composition same as conversion except very poor observability to the right
of the ridge
Mn same as composition
M same as conversion except very marginal observability to the
right of the ridge
rate very sharp ridge from 0.3 feed and 600 min. to 0.8 feed and 900
min., poor cbservability elsewhere
radical conc. a ridge from 0.1 feed and 400 min. to 0.8 feed and 900 min.,
with good observability to the right (i.e. larger time)
seq. length M1 an increase in observability to the right of the line from 0.2 feed
and 500 min. to 0.8 feed and 900 min., no observability to the
left of the line , with a peak at 0.4 feed and 900 min
seq. length M1M1 same as seq. length M1, except two smaller peaks at 0.3 feed
and 900 min and 0.6 feed and 900 min
seq. length M1M1M1 | same as seq. length M1, except a smaller peak at 0.4 feed and
900 min and 0.7 feed and 900 min
seq. length M2 an increase in observability to the right of the line from 0.1 feed
and 400 min. to 0.7 feed and 900 min., no observability to the
left of the line , with a peak at 0.3 feed and 900 min
seq. length M2M?2 same as seq. length M2, except two smaller peaks at 0.45 feed
and 900 min
seq. length M2M2M?2 | an increase in observability to the right of the line from 0.1 feed
and 350 min. to 0.6 feed and 800 min., no observability to the
left of the line , with a peak at 0.35 feed and 900 min
BBm s conversion very sharp small ridge from 0.1 feed and 400 min. to 0.9 feed
and 900 min., poor observability in general
composition same as conversion
M, same as conversion
M, same as conversion except marginal observability to the right of
the ridge and at low feed
rate samne as conversion

radical conc.
seq. length M1
seq. length M1IM1
seq. length M1IM1M1
seq. length M2
seq. length M2M?2

seq. length M2M2M?2

very sharp ridge from 0.1 feed and 400 min. to 0.9 feed and 900
min., with good observability to the right (i.e. larger time)
poor observability to the right of the line from 0.3 feed and 600
min. to 0.9 feed and 900 min. with a peak at 0.3 feed and 900
min , no observability to the left of the line ,

sarne as seq. length M1, except peak at 0.2 feed and 900 min
same as seq. length M1, except peak at 0.3 feed and 900 min
an increase in observability to the right of the line from 0.1 feed
and 400 min. to 0.5 feed and 700 min. with a peak at 0.2 feed
and 900 min , no observability to the left of the line ,

same as seq. length A2, except two smaller peaks at 0.45 feed
and 900 min

a small ridge at 0.1 feed and 500 to 900 min with poor observ-
ability in general

Table 6.21 Cont’d. : Summary of the sensitivity analysis
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| Parameter | Response Comments ]
T o, M, conversion wide ridge from 0.1 feed and 400 min. to 0.8 feed and 900 min.,
a valley to the right of the ridge with a max. observability at
0.4 feed and 900 min
composition sharp ridge from 0.1 feed and 400 min. to 0.8 feed and 900 min.,
poor observability elsewhere
M, ridge from 0.1 feed and 400 min. to 0.8 feed and 900 min., a
small valley to the right of the ridge with an max. observability
at 0.4 feed and 900 min
My ridge from 0.1 feed and 400 min. to 0.9 feed and 800 min., good
observability to the right of the ridge with a peak at 0.6 feed
and 900 min.
rate ridge from 0.1 feed and 400 min. to 0.9 feed and 900 min., the

radical conc.
seq. length M1
seq. length M1M1
seq. length M1MI1M1

seq. length M2

seq. length M2M2
seq. length M2M2M12

ridge widens as the feed increases

a rapid increase in values in a band from 0.1 feed and 400 min
to 0.9 and 700 min. with very large values to the right of the
ridge

sharp ridge from 0.2 feed and 500 min. to 0.8 feed and 900 min.,
poor observability to the left, a mound to the left with a peak
at 0.4 feed and 900 min.

same as M1 except two smaller peaks at 0.6 feed and 900min
and 0.3 feed and 900 min

same as M1 except a smaller peak at 0.4 feed and 900min
sharp ridge from 0.1 feed and 400 min. to 0.7 feed and 800 min.,
poor observability to the left,a hollow to the right with a peak
at 0.4 feed and 900 min

same as M1 except a smaller peak at 0.4 feed and 900min
same as M1 except a smaller peak at 0.4 feed and 900min

Table 6.21 Cont’d. : Summary of the sensitivity analysis

Parameter | Area of best observability
O M1 feed > 0.6 time > 700 min
O M2 feed < 0.4 time > 600 min

BBmy | feed < 0.5 time > 700 min

BBmyo | feed < 0.4 time > 700 min

T g, ms, feed > 0.5 time > 700 min

Table 6.22: General areas of best observability
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Therefore based on this information the following 6 trial experiment or initial point for
the experiment design is obtained; a feed of 0.3 mole fraction Styrene and a sampling time
of 750, 800 and 850 minutes, and a feed of 0.8 mole fraction Styrene and a sampling time
of 750, 800 and 850 minutes. A conservative approach was taken in the determination
of areas of best observability in that the sharp peaks in the gradient plots were not
considered. The author has found that sharp peaks in the gradient plots can be sensitive
to the parameter values (i.e. their location can change with a change in the parameter

values).

6.5.3 Experiment Design

Initially the size of the experiment to design was chosen to be 12 trials, but with 12 trials
the optimization was found to be too slow to converge. To speed up convergence the
design problem was simplified by reducing the experiment to 6 trials, that will be replic-
ated to obtain a 12 or 18 trial experiment. This simplification decreased the optimization
from 24 to 12 variables and significantly reduced the computation required.

The best experiment found using the optimization routine is given in Table 6.23 along
with an experiment that was designed by the author from an inspection of the gradient
plots. The design criterion values as well as the confidence region volume radius for each
experiment are given. The radius is an approximation used to compare the experiments
and is described in Chapter 3. A comparison of the radii indicates that the designed
experiment is much better than the experiment designed by inspection.

An examination of the designed experiment reveals that the two points at a feed of
0.68 and 0.70 mol fraction Styrene occur very near the autoacceleration reéion, which
corresponds to a sharp peak in the gradient values for most of the responses. The
experiment sensitivity to these two points can be tested by moving the sampling time at
these two compositions. If the sampling time for the two points is set to 700 minutes, the

criterion decreases considerably and a radius of 1.28e-4 is obtained, which is much closer
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trials criterion value radius
Sty feed (mol fr.) | time (min.)

designed 0.36 701
experiment 0.37 821 1.9478e52 5.9026e-6

0.24 857

0.89 673

0.70 838

0.68 873

inspection 0.30 750
experiment 0.30 800 9.4773e33 4.0025e-4

0.30 850

0.80 750

0.80 800

0.80 850

Table 6.23: Designed experiments for case study 3

to the experiment designed by inspection. To further test the experiment sensitivity an
induction time of 100 minutes was assumed. This would result in the autoacceleration
occurring 100 minutes later than predicted and effectively decreasing all of the sampling
times by 100 minutes. The criterion of this experiment also decreases considerable and
a radius of 3.34e-5 is obtained. This drop in quality reveals the sensitivity of the design
experiment to the location of the points near the autoacceleration curve. Since sample
points near this curve may be difficult to obtain, the designed experiment may not be
as good in application as its criterion value (or radius) would indicate. The effect of
induction time on the inspection experiment was also examined. With an induction
time of 100 minutes, the criterion value increased and a radius of 1.71e-4 was obtained,

resulting in a better experiment.

6.5.4 Parameter Estimation

The parameters were estimated with the responses listed in Table 6.20 and the experiment

designed by inspection given in Table 6.23. This experiment design was used because it
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parameter | estimate | true value
Qm M1 0.000994 0.001
Cm M2 0.001018 0.001
BBmys 1.0052 1.00
BBm o 1.0506 1.00
Tgum, mr, 362.6 363

Table 6.24: Estimated parameter values

cause it is computationaly faster since for each criterion evaluation the simulation needs
to be run at only two initial feed compositions versus six in the optimal experiment (i.e.
this design is three time faster to simulate). As in the previous cases local optima were
found to be a problem ard the simulated annealing algorithm was found to work well,
though it was very expensive computationally ( 10 hours on a Pentium III, 500). The
parameter estimates obtained and the true values are given in Table 6.24.

The effect of using different responses and different numbers of trials on the quality
of the parameter estimates was investigated. To perform this investigation the estim-
ated parameter confidence regions obtained using different conditions cannot be used.
Because as shown in Chapter 5, these confidence regions can vary significantly with the
same experiment design but different sets of parameter data. Therefore a Monte Carlo
approach is required to deal with the variance in the confidence regions.

The Monte Carlo study involved estimating the parameters using different responses
and number of trials. Ten master sample data sets were generated that contained all of
the responses used and 18 trials. The sample data sets used in each run were chosen as a
subset of the master sample data sets. The sample data for each run was generated in this
manner so that each of the runs would be identical in their area of overlap. By overlap it
is meant that if an 8 and 12 trial experiment are compared, the 12 trial experiment will

be the same as the 8 trial experiment plus 4 additional trials. Therefore , any differences
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run name | number of responses used'
trials
case-1 18 1 2 3 4 5 6
case-2 18 1 2 3 4 5 6 7
case-3 12 1 2 3 4 5 6
case-4 12 1 2 3 4 5 6 7
case-5 12 1 2 3 6 7
case-6 8 1 2 3 4 5 6
case-7 8 1 2 3 4 5 6 7

t 1 conversion, 2 number average molecular weight, 3 weight average molecular weight, 4 polymerization

rate, 5 radical concentration, 6 copolymer composition, 7 triad fractions
Table 6.25: Description of the runs used in comparing the effect of different responses

and/or number of trials on the parameter estimates

in the parameter estimates obtained would be due to the extra responses or trials and
not due to different error values within common sample points. The parameters in each
case were estimated using the fmins optimization function and with the true parameter
values as the initial values for the optimization. The true parameter values were used to
overcome the problem of local optima and to speed up the estimation procedure.

The different cases that were considered are listed in Table 6.25. This table gives the
case name, the number of trials in the case and the responses used. The responses are
coded and an explanation of the response code value is provided at the bottom of the
table.

The experiments used in theruns are based on the experiment designed by inspection
and given in Table 6.23. For the 12 and 18 trial experiments the experiment was replicated
two and three times respectively. For the 8 trial experiment the two trials at 800 minutes

were replicated. In each of the Monte Carlo runs, 10 sets of parameter estimates were
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obtained. To analyze the results of the different runs, the parameter values obtained were
plotted and a visual inspection was performed. These plots are shown in Figures 6.24,
6.25 and 6.26. In these figures four subplots are shown, where in each of the subplots the
parameter point estimates of two parameters are plotted versus each other. The subplots
are analogous to a joint confidence region plot of the two parameters. The analysis is
carried out by comparing the distribution of the point estimates, i.e. tightly grouped
versus spread out. The plots as used are a crude measure due to only 10 points being
used per run. For a more refined analysis, a much larger number of data sets would
have to be used, so that the true shape and true level marginal confidence regions of the
parameters are obtained.

Figure 6.24 is a comparison of the case-1(0}, case-3(x) and case-6(c). These cases have
18, 12 and 8 trials respectively and include all of the responses except triad fractions.
There appears to be no clear difference between the 18 and 12 trial runs (case-1 and
case-3). This may be due to a saturation of information at 12 trials where the extra
trials (trials 13 to 18) provide little additional information about the parameters, when
compared to the initial 12. A comparison of case-3 and case-6, with 12 and 8 trial
respectively, indicates that a difference does exist. This difference is most apparent in
the lower left subplot of oy, a1 versus Tgas, ar,- Therefore the addition of the extra four
trials is worthwhile with the chosen experiment, as they will significantly decrease the
joint. confidence region of the parameter estimates.

The effect of adding the triad fraction respounse is shown in Figure 6.25. This figure is
a plot of case-6 and case-7. Both cases have 8 trials and case-7 includes the triad fraction
response. An inspection of the subplots reveals that only the estimates of the BBmn
and BBms, parameters are affected, shown in the top right subplot. This was expected
as the sensitivity analysis indicated that very little information was provided about the
other parameters by the triad fraction response. The BBm parameter estimnates improved

significantly with the addition of the triad fraction response. The improvement can
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be seen by the tightly grouped estimates for case-7 when compared to case-6. This
improvement in the parameter estimates did not occur in the correspending 12 and 18
trial runs, case-3 versus case-4 and case-1 versus case-2 respectively. Therefore, only if
the numger of trials is less than 12 will a benefit be obtained by the inclusion of the triad
fraction response in the estimation of the BBmys, and BBm, parameters.

Figure 6.26 is a plot of case-4 and case-5, where the effect of radical concentration
and polymerization rate on the parameter estimates was examined. Both runs have 12
trials, case-4 has all of the responses and case-5 has all of the responses except radical
concentration and polymerization rate. An inspection of the subplots indicates that the
distribution of the parameter estimates is similar for both case-4 and case-5. Therefore
the responses of radical concentration and rate did not improve the quality of the para-
meter estimates when the experiment has 12 trials. This was surprising as the sensitivity
analysis indicated that a lot of information would be provided by these responses. Why
this did not occur may be due to the experiment used or to the information saturation
effect observed in the comparison of runs case-1, case-3 and case-6 (Figure 6.24).

The above examples have shown how parameter estimation simulation studies can be
used to compare how different responses and different numbers of trials in the experiment

will affect the quality of the parameter estimates.

6.5.5 Confidence Regions

The parameter estimate confidence regions are based on the parameter estimates obtained
from an 18 trial experiment based on the design by inspection replicated three times. The
parameter point estimates obtained are given in Table 6.26. The approximate level, true
shape, conditional joint confidence regions for the parameter estimates were obtained
using equation 5.13 from Chapter 5.

A sample of the conditional joint confidence regions of the estimated parameters are

given in Figures 6.27 and 6.28. Figure 6.27 shows the 95% joint confidence region of the
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parameter | estimate | true value
Cm M1 0.001006 0.001
G M2 0.001010 0.001

BBman 0.9183 1.00
BBmo 1.1606 1.00
Tng Mo 368.06 363

Table 6.26: Estimated parameter values

parameters o, a1 and T'gp, ar,, where the star indicates the point estimate. Figure 6.28
shows the 95% joint confidence region of the parameters BBms and T gar, ar,, where the
star indicates the point estimate.

Figure 6.29 shows the 95% joint confidence region of the parameters ¢, ar1 and am a0
at different values of the T'gas, s, parameter. The star indicates the point estimate. The
three confidence regions were obtained at values of 360.0, 368.1 and 375.0 for T"gas, as,, and
are labeled A, B and C, respectively. The three confidence regions are similar in shape
but are shifted with respect to the «,, s, parameter. This indicates that the marginal
confidence region for the «,, a2 parameter is significantly larger than the conditional
confidence region indicates. Surprisingly though, there is little shift of the confidence

region with respect to the «,, a» parameter.
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Chapter 7

Concluding Remarks

7.1 Conclusions

In the previous chapters a protocol for the estimation of parameters in large dynamic
models has been presented. Each of the four parameter estimation steps were discussed
and three case studies were shown to illustrate the parameter estimation methodology.
The major points of the parameter estimation protocol will be summarised in the para-
graphs that follow.

In performing a sensitivity analysis it was shown how local sensitivity can be much
more useful than a global measure due to the additional information that it provides. A
limitation in using local sensitivities is the large volume of data that may be present. It
was shown that by using gradient plots and normalizing the gradient values the analysis
of local sensitivity measures is simplified. An added benefit of using the gradient plots
is that they can provide guidance in the design of an optimal experiment.

The experiment design process is a difficult optimization problem that was shown to
be plagued with local optima. It was found that if the initial guess in the optimization
is based on the information provided by the gradient plots a very good experiment will

be found. This approach was found to perform much better that multiple starting points
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or using a robust optimization algorithm.

When designing experiments for nonlinear models the parameter values are required.
Since these values are unknown and the values used will rarely be equal to the true values
(in practice never), the design may be very poor for other values of the parameters.
Therefore, how sensitive the design is to a change in the parameter values needs to
be determined. A method was presented on how to perform this analysis so that the
robustness of the design can be determined.

In estimating the parameters a significant problem was the number of local optima
that were found. It was also noted that the number of local optima increased with an
increase in the model complexity. Guidelines were presented to deal with this problem
and the simulated annealing algorithm was found to work well.

Confidence regions are a measure of the uncertainty in the parameter estimates.
Therefore they should be generated to obtain a measure of the quality of the para-
meter estimates. When more that two parameters are estimated, the confidence regions
obtained are usually the conditional joint confidence region of two parameters. It was
shown that these conditional confidence regions can underestimate the true marginal
confidence regions of the parameter estimates.

Box and Draper (1965) showed that improved parameter estimates can be obtained if
multiple responses are used. They showed this improvement by the significant decrease in
the joint confidence regions that occurred with each extra response that was added. The
author has found that the joint confidence regions generated when multiple responses
are used and the sample size is small can be much smaller than the true joint confidence
regions. A sample size is considered small if it is equal to 2p, where p is the number
of parameters. Therefore using the joint confidence regions in these circumstances will
indicate that a much greater level of certainty in the parameters exists than is true.
This does not imply that the parameter estimates are not improved with the use of extra

responses. Through Monte Carlo studies it was found that use of multiple responses does
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improve the parameter estimates, it is only the confidence regions that are an incorrect
representation of the parameter uncertainty.

Since the true shape joint confidence regions for two parameters can be numerically
difficult to obtain. The author has developed an algorithm that is both robust and
efficient in obtaining the joint confidence regions.

The problem of parameter estimation in large models has been investigated and the
above observations have been made. In performing the investigation a number of issues
arose that were not addressed. These are outlined in the next section and can act as a

starting point for further work in this area.

7.2 Future Work

In the course of this research a number of issues arose that were not addressed. These
issues represent a starting point for an extension of the research presented in this thesis.

The D-optimality criterion for the design of experiments is a measure proportional
to the volume of the linear joint confidence. It should be investigated if this is appropri-
ate, not in the sense that it accurately represents the uncertainty in the parameters of a
nonlinear model (as it is known that in most cases it does not), but whether it is propor-
tional to it (therefore the best experiment will have the smallest linear joint confidence
region and the smallest true joint confidence region). If this is true then the D-optimality
criterion is appropriate even though it uses the linear joint confidence region. If it is not,
then perhaps some measure can be developed to determine the difference between an
experiment designed using linear versus true joint confidence regions.

In the design of experiments the physical cost of obtaining a given response was as-
sumed to be equal for all responses. This in general in not true and the experiment
design criterion should take this into account. A method was also presented to determ-
ine how sensitive the experiment design is to a perturbation of the parameter values.

Therefore there is the potential to extend the experiment design criterion to a mixture
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of criteria that would include the cost of a response as well as the experiment sensitivity
to perturbations in the parameter values.

In the parameter estimation process the problems of local optima, conditional con-
fidence regions, and the failure of the confidence region theory when multiple responses
and a small sample size are used, were noted. A relatively new development, the Gibbs
Sampler (Casella and George, 1992; Garcia-Cortes and Sorensen, 1996), is a promising
approach to solving many of these issues. Although at the present time it requires fur-
ther development in its implementation (so that it is more computationally efficient), to
be applicable to the types of problems proposed in this thesis in particular on how to
efficiently sample the conditional posterior distributions.

[t was shown that the joint confidence regions can be incorrect when using multiple
responses and the sample size is less than 2p where p is the number of parameters. Based

on this observation the following questions present themselves.

e Is the model prediction confidence region also incorrect if multiple responses are

used and if so, to what degree?

e How is the experiment design process affected, since it is based on the linearized

joint confidence region volume of the parameter estimates?

e How is the model discrimination process affected, since most model discrimination
methods are a function of the model prediction confidence region or the parameter

estimates joint confidence region?
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Nomenclature

Alll, A112, A212
A222, A221, A121

Aijr
BBm

C
BB
fi, f2
F1

f

f(z,6)
fact—eng
fpre—ezp
I

k1, ks
kq

kim

kfm act—eng

cumnulative triad fraction of monomer-1-centered triads

cumulative triad fraction of monomer-2-centered triads

instantaneous fraction of monomer-j-centred triads with sequence 25k

rate of decrease of kp with free volume of monomer (L/mol min per free volume
unit)

normalizing constant

activation energies in the ABC model

mole fractions of monomer 1 and 2 in the co-monomer feed

copolymer composition, mole fraction of monomer one

initiator efficiency

a nonlinear model

activation energy in the Arrhenius expression for f, initiator efficiency
pre-exponential factor in the Arrhenius expression for f, initiator efficiency
an initiator molecule

reaction rate constants in the ABC model

initiator decomposition rate constant (s~})

overall rate constant for transfer to monomer (L/(mol s))

activation energy in the Arrhenius expression for ks,
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kfm pre—ezp
kp

kp act—eng

kp pre—ezp

ki

M;

M,

M,

7

Qo, @1, Q2
T11,7T21,7T12,722
Ty,

R

(Re]

Ry,

Rine

Rne

S1,S2

52

5(8)

5(6)

T

Tgm,

Tgrs; M;

pre-exponential factor in the Arrhenius expression for kfm

overall propagation rate constant (L/(mol s))

activation energy in the Arrhenius expression for the rate of propagation

pre-exponential factor in the Arrhenius expression for the rate of propagation

overall termination rate constant (L/(mol s))
monomer i

number average molecular weight

weight average molecular weight

number of trials

number of sample points

moles of initiator

moles of monomer bound in the copolymer

number of parameters

polymer molecule containing 7 monomer units

first three moments of the polymer molecular weight distribution
monomer reactivity ratios in the penultimate model
reactivity ratios

ideal gas constant

concentration of radicals (mol/L)

a radical of chain length 7, ending in monomer j

a primary radical formed by the decomposition of the initiator
a free radical chain containing n monomer units
radical reactivity ratios in the penultimate model
estimate of the variance

residual sum of squares at B

residual sum of squares at 6

temperature

glass transition temperature of monomer 7 (K)

glass transition temperature of the alternating copolymer of monomer ¢ and

monomer j (K)



Tgp

Vij

158

glass transition temperature of the polymer (K)

sum of the product of the residuals of responses 7 and j

matrix of the elements v;;

matrix of gradient values of the response with respect to the parameters eval-
uated at the trial points in the experiment design; and volume (L) in the
polymerization model in section 6.2

total free volume

critical free volume for propagation

constant of free volume with temperature for monomer (free volume units/K)
constant of free volume with temperature for polymer (free volume units/K)
free volume of monomer

volume of monomer

volume of polymer

volume of reacting mixture

diagonal matrix of weights used in the MWLS criterion

weight fraction of monomer 1

matrix of regressor variables, or the design matrix

independent variable in a model

vector of responses

model response

matrix of residuals

Greek Letters

significance level

variation of free volume with temperature for monomer (free volume
units/K)

a parameter in a linear model, and a parameter in the calculation of
the moments of the molecular weight distribution in the polymerization

model section 6.2



the proportion of free radical chains terminating by disproportionation

T a parameter in the calculation of the moments of the molecular weight
distribution
6; parameter in a nonlinear model
3 covariance matrix
¢? variance
oij ij-th element of the response covariance matrix
o7 ij-th element of the inverse of the response covariance matrix
Oresp Standard deviation of the response measurement error
€ measurement error
Q hessian of the objective function with respect to the parameters
¢;e mole fraction of radical type ¢
Superscripts

Superscripts indicate the condition of the variable.

an estimate based on sample data
an initial estimate based on prior knowledge
a true value

regarding monomer ¢

1

9



Appendix B

The following is a listing of the simulation options used with the Watpoly model for the
examples in Chapter 2 and 3.

Initial temperature 65 C
Heat transfer parameter 1.00 Cal/K min
Temperature Case Isothermal
Solution end time 960 min.
Numerical solution spacing 5 min
Induction time 0 min
Conversion limit 0.999
Tolerance parameter 4
Diffusion controlled propagation {x]
Diffusion controlled termination [x]
Residual termination model [RNG]

SSH for radicals [x]
Polymer Tg Johnston
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Appendix C

The following is a copy of the Matlab source code for the algorithm to obtain the joint
confidence region contour. The algorithm is coded as a function where the contour level,
parameter range, grid resolution, and name of the function that will return the criterion
value are passed. The function can either return the data collected or plot the joint
confidence region contour.

Y —
%4

% contour_bf function

A

%

% algorithm to find the confidence contour of a set of parameter

4 estimates, by finding the contour and then following it by fliiping

% a box of function evaluations in the appropriate dirrection
% [O=contour_bf(x_range,y_range,point,contour_level,func_name)

% x_range = [x_min, x_step, x.max] range and step size of first parameter
% y_range = [y _min, y_step, y.max] range and step size of second parameter
% point = point estimate values of the two parameters

% contour_level = value of contour

% func_name = function that will return the criterion value where the two

A parameter values are passed to it as a vector

% [criterion]=’func_name’{[parameter 1, parameter 2])

% NOTE: this function requires the update_cmat m-file

% 00/01/14

% the location of the square as it moves along is defined by the
% top left hand corner (the square index point). The other points
% in the square are always relative to the index point and in the
% orientation as shown below

% 12 (1 is the index point)
% 4 3

function [J=contour bf(x_range,y_range,point,contour_level,func_name)
%func_name=’abc_crit_wolf’;

%contoux_level = 0.0001;
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% parameter point estimate
%point(1)=.4 ;
%peint(2)=.3 ;

% setup alorithm values, i.e. ranges, and step sizes
x_min = x_range(1)
x_max = x_range(3)
y_min = y_range(1l)
y.max = y_range(3)

v e e w

x_step = x_range(2) ;
y-step = y_range(2) ;

x_val = x_min:x_step:x_max;
y-val = y_min:y_step:y_max;

x.num = length(x_val);
y_num = length(y_val);

crit_mat = zeros(y_num,x_num);

x_mat = ones(y_num,1)*x_val;
y_mat = (ones(x_num,1)*y_val)’;

% find location of square with the point estimate
box_x=ceil((point(1)-x_min)/x_step);
box_y=ceil((point(2)-y_min)/y_step);

7% assign dummy values to starting box index
box_start=[0,0];

% get criterion value at box cornmers 1 and 2
crit_mat=update_cmat(l,box_x,box_y,x_val,y_val,crit_mat,func_name);
crit_mat=update_cmat(2,box_x,box_y,x_val,y_val,crit_mat,func_name)};

7% loop to move the box in the x-direction until we find the contour or plot edge

% =>assuming that the current crit_mat value is less than the contour_level

while (crit_mat{box_y,box_x+1) < contour_level) & (box_x < x_num~1)

box_x=box_x+1;
crit_mat=update_cmat(2,box_x,box_y,x_val,y_val,crit_mat,func_name);

end

box_index = 2;

7 get peints 3 and 4 in the box on the contour or edge
crit_mat=update_cmat(3,box_x,box_y,x_val,y_val,crit_mat,func_name);
crit_mat=update_cmat(4,box_x,box_y,x_val,y_val,crit_mat,func_name);

% test if we are on a contour or edge
if (crit_mat(box_y,box_x) < contour_level) & ...
(erit_mat(box_y,box_x+1) < contour_level) & ...
(crit_mat{box_y+1,box_x+1) < contour_level) & ...
(erit_mat(box_y+1,box_x) < contour_level)
% on an edge
edge = 1;
movedir = ’down ?’;

elseif (crit_mat(box_y,box_x) > contour_level) & ...
(crit_mat{box_y,box_x+1) > contour_level) & ...
(crit_mat(box_y+i,box_x+1) > contour_level) & ...
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(crit_mat(box_y+1l,box_x) > contour_level)
% error! contour smaller than box step resolution
disp(’Error! the contour is smaller than the resolution of the’)
disp(’ chosen axis step size’)
return

else
% on a contour
edge = 0;

end

% main loop to move the box along the contour on the criterion surface
while 1
box_move = 0;

if edge ==

switch box_index
case 1
if crit_mat(box_y,box_x)>contour_level & crit_mat(box_y,box_x+1)<contour_level
if box_y > 1
% move box up and get points 1 and 2
box_y=box_y-1;
crit_mat=update_cmat(1.box_x,box_y,x-val,y_val,cric_mat.func-name);
crit_mac:update_cmat(2.box_x.box_y.x_val,y_val,crit_mat.func_name);
box_move = 1; % the box has moved
else
edge = 1;
movedir = ‘right’;
end
else
box_index=2;
end

case 2
% move box right and get points 2 and 3
if crit_mat(box_y,box_x+i)>contour_level & crit_mat(box_y+1,box_x+1)<contour_level
if box_x < x_num-1
% move box right and get points 2 and 3
box_x=box_x+1;
crit_mat=update_cmat(2.box-x.box_y,x_val,y_val,crit_mat,func_name);
crit_mat=update_cmat(3.box_x.box_y,x_val.y_val,crit_mat.func_name);
box_move = 1; % the box has moved
else
edge = 1;
movedir = ’down ’;
end
else
box_index=3;
end

case 3
if crit_mat(box_y+1,box_x+1)>contour_level & crit_mat(box_y+1l,box_x)}<contour_level

if box_y < y_num-1
% move box down and get points 3 and 4
box_y=box_y+1;
crit_mat=update-cmat(3.box_x.box_y,x_val.y_val,crit_mat,func_name);
crit_mat=update_cmat(4,box_x,box_y,x_val.y,val,crit_mat.func_name):
box_move = 1; % the box has moved

else
edge = 1;
movedir = ’left ’';



end
else

box_index=4;

end

case &

if crit_mat(box_y+l,box._x)>contour_level & crit_mat(box_y,box_x)<contour_level
if box_x > 1

% move box left and get points 1 and 4

box_x=box_x-1;
crit_mac=update_cmat(1,box_x,box_y,x_val.y_val,crit_mat.func_name):
crit_mat=update-cmat(4.box_x.box_y,x_val_y_val,crit_mat.func-name);;

box_move = 1; % the box has moved

else

edge = 1;
movedir = ’up '

end
else

box_index=1;

end

end % end of switch box_index

else /. move along the edge until we find the contour again
switch movedir
case ‘right’
if box_x < x_num-1

box_x = box_x +1;

crit_mac=update_cma:(2,box_x,box_y,x_val,y_val.crit_mat.func_name):

box_move = 1; % the box has moved

if crit_mat(l,box_x+1) > contour_level
crit_mat=update_cmat(3,box_x,box,y,x_val.y_val,crit_mat,func,name);
crit_mat=update_cmat(4.box_x,box_y,x_val,y_val.crit_mat,func_name);

edge = 0;
box_index = 2;
end
else
movedir = ’down ’;
end
case ’'down ’

if box_y < y_num-1

box_y = box_y +1;

crit_mat=update_cmac(3.box_x,box_y,x‘val,y_val,crit_mat.func_name):

box_move = 1; 7% the box has moved

if crit_mat(box_y+1,box_x+1) > contour_level
crit_mat=update_cmat(l,box_x,box_y,x_val,y_val,crit_mat,func_name);
crit_mat=update_cmat(4,box_x,box_y,x_val,y_val,crit_mat,func_name);
edge = 0;
box_index = 3;

end

else

movedir = ’left ’;

end

case

‘left

if box_x > 1

box_x = box_x - 1;

crit.mat=updace_cmat(4,box_x,box_y.x_val,y_val,crit_mat.func_name);

box_move = 1; % the box has moved

if crit_mat(box_y+1,box_x) > coatour_level
crit_mat=update_cmat(l,box_x,box_y,x_val,y_val,crit_mat,func_name);
crit_mat=update_cmat(2,box_x,box_y,x_val,y_val,crit_mat,func_name);
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edge = 0;
bex_index = 4;
end
else
movedir = ’‘up o+
end
case ’up '

if box_y > 1
box_y = box_y - 1;
crit_mat=update_cmat(l,box_x,box_y,x_val,y_val,crit_mat,func_name);
box_move = 1; % the box has moved
if crit_mat(box_y,box_x)} > contour_level
crit_mat=update_cmat(2,box_x,box_y,x_val,y_val,crit_mat,func_name);
crit_matzupdate_cmat(s.box_x.box_y.x_val,y,val,crit_mat.func_name);
edge = 0;
box_index = 1;
end
else
movedir = ‘right’;
end

end Yend of switch
end %end of if edge == 0O

if box_move == 1 &[box_x,box_y] == box_start
7% ve are at the starting point
break
elseif box_start == (0,0];
% save starting point so we knov when to stop
box_start=[{box_x,box_y];
end

%crit_mat

end % end of main loop (i.e. while 1)

% get rid of zeros in the contour matrix
for i=1:y_num
for j=1:x_.num
if crit_mat(i,j) == 0
crit_mat(i,j) = NaN;
end
end
end

contour(x_mat,y_mat,crit_mat, [contour_level, contour_levell)
hold on

plot(point(1),point (2}, =)

plot3(x_mat,y_mat,crit_mat,’r.’)

hold off
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A
A
% updata_cmat function

% function called by the contour_bf algorithm to get a point
% in the moving square

function [crit_mat]=update_cmat(box_pcint,box_x,box_y,x_val,y_val,crit_mat,func_name)
loud = O;

switch box_point
case 1
if crit_mat(box_y,box_x) ==
para_val=[x_val(box_x),y_val{box_ y)];
crit_mat(box_y,box_x) = eval([func_name,’(para_val)’]);

if loud == %
plot(box_x,box_y=*(-1),70’)
end

end

case 2
if crit_mat(box_y,box_x+1) ==
para_val=[x_val(box_x+1),y_val(box_y)]:
crit_mat(box_y,box_x+1) = eval([func_name,’(para_val)’]l);

if loud == 1
plot(box_x+1,box_y*(-1),’0’)
end

end

case 3
if crit_mat(box_y+l,box_x+1) ==
para_val=[x_val(box_x+1),y_val(box_y+1)];
crit_mat(box_y+1,box_x+1) = eval([func_name,’(para_val)’]);

if loud == 1
plot{box_x+1, (box_y+1)*(-1),’0°)
end

end

case 4
if crit_mat(box_y+1,box_x) == 0
para_val={x_val(box_x),y_val(box_y+1)];
crit_mat(box_y+1,box_x) = eval([func_name,’{para_val)'l);

if loud == 1
plot(box_x, (box_y+1)*(-1),’0")
end

end

end % end of switch

return



Appendix D

All of the gradient plots obtained in the case studies are available as a package of encap-
sulated postscript files. Within this package there is a readme . txt text file that contains
a listing and desctiption of all of the gradient plots contained within it.

A copy of the package can be obtained by contacting either Prof. T.A. Duever or
Prof. A. Penlidis at the following address:

Department of Chemical Engineering
University of Waterloo

Waterloo, Ontario

Canada,

N2L 3G1
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