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Abstract 

As Our understanding of chemical processes increases the models created to describe 
them also increase in complexity. These models usually consist of sets of differential 
equations, containing multiple response variables which are a function of multiple input 
or design variables and a potentially !arge number of parameters. In most cases the 
equations are nonlinear in the inputs and parameters, and must be solved by numerical 
integration. An example of such a model is the Watpoly polyxnerization model (Gao and 
Penlidis, 1996 and 1998) developed in the polymer research group at  the University of 
Waterloo- To be able to use these models effectively the parameters that they contain 
have to be known. 

The bulk of the literature dealing with parameter estimation has only considered 
small models. At present in estimating parameters for large process models, there are 
two shortcornings in the existing knowledge about parameter estimation. The first is, how 
effective is the present parameter es tirnation me tliodology when applied to large models, 
and the second is, can any advantage be gained from considering the parameter estimation 
problem as a whole. This work will try to address this limitation, by revisiting the 
parameter estimation process and developing a protocol for the estimation or updating 
of the pararneters within process models. 

The projected use of the parameter estimation protocol is as part of a model based 
experimentation program. Therefore it considers actual experimental conditions, where 
the number of experiments that can be carried out is limited due to the expense of 
performing experiments and analysis. 

In the development of a parameter estimation protocol al1 of the steps of the parameter 
estimation will be revisited. .The parameter estimation steps are: parameter sensitivity 
analysis, statistical design of experiments, estimation of parameters and confidence re- 
gions. Where these four steps correspond to answering the following questions; 

1. 1s it possible to estirnate the parameters with the chosen responses and which 
response or responses will provide the most information? 

2. At what conditions (i.e. temperature, conversion, initial feed composition) should 
the data in the experirnent be collected? 

3. What is the best method to estimate the pararneters with the data that was col- 
lected? 

4. How good are the parameters that were estimated? 

Of the parameter sensitivity analysis methods available it was found that the best 
method to present sensitivity information is a plot of the gradient values of the responses 
with respect to the parameters. The gradients are normalized and plotted as a function 



of independent variables such as initial feed composition, time or conversion. This is 
performed so that responses of different magnitudes and different measurement errors 
can be compared to each other. 

In designing experiments the D-optimality criterion is generally used. One of the 
implernentation challenges in designing experiments is local optima. One possible method 
found to deal with this difficulty, is to provide the optimization algorithm with a good 
initial guess that is based on the information provided by the gradient plots. 

To estimate the parameters with multiple responses the Determinant criterion is used. 
When estimating multiple parameters in a large mode1 a large number of local optima 
can exist. To overcorne this difficulty, different approaches are available, such as a robust 
optimization algorithm (e-g. simulated annealing) or the use of multiple starting points. 

Confidence regions of the parameter estimates d l  provide a measure of the quality 
of the parameter estimates. The true shape approximate level confidence regions were 
found to be an adequate compromise between information provided and computation 
required. It was found that the true shape joint confidence regions can be incorrect if 
multiple responses are used and the sample size is small. 

The parameter estimation protocol is a series of actions or steps that can be followed 
in the course of obtaining parameter estimates. By following these actions the overall 
parameter estimation procediire can be more efficient and some pitfalls such as local 
optima and incorrect confidence regions, may be clealt with in an appropriate manner. 
To illustrate the application of the protocol, three case studies are presented. These 
case studies illustrate some of the probiems tliat rnay be encountered in the parameter 
estimation process and how the proposed protoçol can aid in overcorning them. 
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Chapter 1 

Introduction 

As our underst anding of chemical processes increases the models crsated to describe 

them also increase in complesity. These models usually consist of sets of differential 

and algebraic equations, containing multiple respoIise variables which are a function of 

multiple input or design variables and a potentially large number of parameters. In 

most cases the equâtions are rionlinear in the inputs and parameters, and must be solved 

by numerical integration. An example of such a rnodel is the Watpoly polymerization 

model (Gao and Penlidis, 1996 and 19118) developed in the polymer research group a t  the 

University of Waterloo. To be able to use tliese nioclels effectively the parameters that 

they contain have to be known. 

The case studies presented in the bulk of the literature dealing with parameter es- 

timation have onIy considered small models. -4 srnclll model has less parameters, less 

equations and can frequently be solved analytically. An example of a 'small' model is 

the A to B to C model that represents the sequence of first order irreversible chemical 

reactions of A producing B and B producing C (Bates and Watts, 1998). The use of small 

models in the parameter estimation literature in the past is due to the limited computing 

power that was available. Therefore to make the problems tractable small models were 

used which often had analyticâl solutions available. 

The problem of nonliiiear parameter estimatioii lias been adclressed by a number of 

authors, including the early work by Box and Draper (1965) in the development of the 
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determinant criterion, to more recently where there are a number of texts that discuss the 

subject such as Seber and Wild (1989), Bates and Watts (1988) and Bard (1974). These 

tests provide a general discussion of the theory associated with nonlinear parameter 

estimation and show how it has evolved from the linear case. Various issues in the 

different steps of parameter estimation have also been addresseci by Duever and Penlidis 

(1998), Bartus (1987), Klaus (19811, Box et al. (1973) and Hemker and Kok (1993) 

arnong others. While a number of ûuthors discuss the individual steps of parameter 

estimation in detail, there is very little discussion of the how the steps are related. 

In estimating parameters for large process models, a t  present there are two shortcom- 

ings in the existing knowledge about parameter estimation. The first is, how effective 

is the present parameter estimatiori methodology mhen applied to large models, and the 

second is, can any advantage be gained from considering the parameter estimation prob- 

lem as a whole. Therefore to address this limitation, the objective of this work was to 

revisit the parameter estimation process and to develop a protocol for the estimation 

or updating of the parameters within process rnodels. The protocol was then tested by 

using it in several case studies to estimate parameters in the Watpoly pol_vmerization 

modelling package. 

This research into the development of a protocol for estimation of parâmeters within 

large models is part of the larger research program being performed in the poIymer 

research group a t  the University of Waterloo. The objective of this work is to develop a 

set of tools to support a model-based experimentation approach. The mode1 in this case 

is not only a store of information but an integral part of the research process of proposing 

various hypothesis, wbich are then experimentally t-erified. 

In the development of a parameter estimation protocol a11 of the steps of the parameter 

estimation mil1 be revisited. The parameter estimation steps are: parameter sensitivity 

analysis, statistical design of experiments, estimation of parameters and confidence re- 

gions. Each of these steps correspond to answering one of the following questions: 
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1. 1s it possible to estimate the parameters with the chosen responses and which 

response or responses will provide the most information? 

2. At what conditions (Le. temperature, conversion, initial feed composition) should 

the data in the experiment be collected? 

3- What is the best method to estirnate the parameters with the data that was col- 

lected? 

4. How good are the parameters that mere estirnateds? 

The projected use of the parameter estimation protocol is as part of a model based 

experimental program. In this work sirnulated esperiments will rnirnic actual experi- 

rnents. In practice the number of experiments that c m  be carried out is limited due to 

the expense of perforrning experiments and analysis. In the case studies 'actua,lY experi- 

ments with a Iimited number of trials will be simulated by using the model to simulate 

the responses and then adcling reasoriable esperiine~ital errors. In this work it is assurned 

that the model is correct and the error that is aclcled to the simulation responses repres- 

ents only the variation associated with reproduçibility (i.e. experirnental error). If it  is 

suspected that the model is not correct, then trials for testing lack of fit should be in- 

cluded in the experiment design. The focus of this work was on the parameter estimation 

process and hence model lack of fit \vas not considered. 

The parameter estimation protocol is a series of steps that should be followed in the 

course of obtaining parameter estimates. By following these steps the overall parameter 

estimation procedure can be made more efficient and some pitfalls such as local optima, 

and inaccurate confidence regions çan be dealt mith in an appropriate manner. Each of 

the four parameter estimation steps will be discussed in a separate chapter, which will be 

followed by three case studies to illustrate the proposed parameter estimation protocol. 

The first step in the parameter estimation process is a sensitivity analysis and will 

be discussed in Chapter 2. Sensitivity analpis will identify which of the responses will 
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provide the most information about the chosen parameters. This is achieved by per- 

turbing the parameters and examining the change in the responses. This is equivalent 

to  calculating the g~adient of the response with respect to the parameters as shown in 

equation 1 - 1. 

Sensitivity analysis can be broadly divided into ttvo areas, global and local. Local sens- 

itivity is equal to the gradient a t  a point, whiIe global sensitivity will obtain an average 

rneasure of sensitivity over a space of points. Of the available methods for sensitivity ana- 

lysis, plotting of the gradient values was found to be the best approach. This approach 

provides a significant amount of information while siill being simple to interpret. 

The second step of parameter estimation is the design of experiments and will be 

discussed in Chapter 3. The objective in the design of esperiments is to create a n  

experiment that \vil1 maximize the information about the parameters from the data 

collected. The criterion used in this work is the D-optimality criterion, developed by Box 

and Lucas (1959) and extended to the multirespoiise case by Draper and Hunter (1966) 

and Atkinson and Hunter (1968). The D-optimality criterion is shown in equation 1.2. 

det [(V'V) - ' ] 

Where V is the matrix of gradient values of the responses with respect to the parameters 

evaluated a t  the experiment trial points. The application of this criterion to large models 

is a difficult task, as the resultant optimization problem will in general have a large 

number of local optima. One method to overcome this problem, is to  use the information 

obtained from the sensitivity analysis. How this information is obtained and used will 

be discussed. 

The  third step in the parameter estimation process is the estimation of the parameter 

values from the data collected and will be discussed in Chapter 4. The principal criterion 

used in this thesis is the determinant criterion developed by Box and Draper (1965) and 
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shown in equation 1.3, where Z is the rnatrix of deviations. 

The optimization problem in parameter estimation was found to be very challenging due 

to the large number of local optima that were found and the computational expense 

of working with large rnodels. Unfortunately no simple, generic solution was found to 

overcome these problems. However a set of recommendations is given that  will allow the 

researcher to deal with the problem of local optima. 

The last step in parameter estimation is the calculation of joint confidence regions of 

the parameter estimates and is discussed in Chapter 5 .  Confidence regions will provide 

an indication of the uncertainty that is present in the estimated parameters and thus are 

a reflection of the quality of the parameter estimates. They also allow for a cornparison 

of parameter estimates from different experiments. In the generation and interpretation 

of these confidence regions a number of guidelines are presented as some limitations exist 

in their use that are not readily apparent. An example is the limitation of the current 

theory for the generation of confidence regions when the sample size is small and multiple 

responses are used. The confidence regions obtairied under these conditions can be much 

smaller than the true confidence regions whicli caIi be obtained from a Monte Car10 

analysis. 

The proposed protocol for parameter estimation is illustrated in Chapter 6 with three 

case studies involving the estimation of parameters in the Watpoly model, which is a 

polymerization simulation model based on a mechanistic consideration of the poIymeriz- 

ation process. These cases will illustrate some of the problems that may be encountered 

in the parameter estimation process and how the proposed protocol can aid in overcom- 

ing them. The conclusions and recommendations for future work will then be presented 

in Chapter 7. 

Throughout this thesis the terrns 'true parameter value', 'initial parameter value', 

'parameter value', 'input variable' and 'response variable' will be used. Ta clarify their 
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use within this thesis, they are defined in the following manner. The term 'parameter' 

will refer to a d u e  within a mode1 that represents a physical or chernical constant, 

such as reaction rate or rate of diffusion. Since in this thesis the experiments will be 

simulated, the %rue parameter values' will refer to the parameter values used to generate 

the response values. The 'initial parameter value' will refer to the value used as the 

starting point within an optimization or the values used to design experiments. This value 

will be different from the true value as defined above. -4n 'input variable' is a variable 

manipulated by the researcher, such as the initial feed composition or the temperature. 

-4 'response variable' is a variable that would normally be measured by a researcher such 

as the final composition, the molecular weight of a polymer, or the reaction rate. 



Chapter 2 

Sensit ivity Analysis 

2.1 Introduction 

The goal of sensitivity analysis is to determine Iiow a response will be affected by a 

parameter perturbation. In the parameter estimation process this information is used to 

answer the following related questions. 

1. Can we estimate a parameter, Bi, using the response yj'? 

2. Which response will provide the most information about a chosen parameter? 

One of the major difficulties in conducting s sensitivity analysis with nonlinear models, 

is that values of the unknown parameters are required. This is a common limitation of 

working with nonlinear models, and numerous methods have been developed to minimize 

this effect of unknown parameters. 

A number of different methods have been developed to perform a numerical sensitiviw 

analysis and are discussed in section 2.2. The approach of these methods can be generally 

divided into global or local sensitivity. -4 more detailed cornparison and discussion of 

global and local sensitivity is given in section 2.3. Of the available methods for sensitivity 

analysis, in this work gradient plots were found to be the best approach and will be 
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discussed in section 2.4. This section will discuss the implementation and interpretation 

of the gradient plots and an example will be presented to illustrate the method. 

2.2 Sensitivity Analysis Review 

A number of different methods esist to perform a sensitivity analysis. A review of 

sensitivity analysis in general is given by Va.jda et al. (WEI), Marlmssen and Distephano 

(1982), Rabitz et al. (1983), Sulieman (1998) and Seber and Wild (1989). The objective 

of al1 of these methods is to identi@ which of the responses within a model will provide 

the most information about a given set of parameters. This is achieved by perturbing 

one of the parameters at a given set of coriditions (i.e. values of the inputs and other 

parameters) and examining the corresponding effect in the response. This effect can be 

quantified by calculating the numerical gradient of the model response with respect to 

the parameter of interest, Oi, at the chosen parameter values and process conditions, as 

shown in equation 2.1. Where f (x, Bi) is the model response and x is the set of input 

variables. 

(2-1) 

examination of the gradient 

the chosen parameter values 

The simplest method of sensitivity analysis involves an 

values. This is usually achieved by plotting the gradients at 

and process conditions versus one of the independent variables sudi as initial composi- 

tion or time for a dynamic response. As the mode! being used becomes more complex 

and the number of parameters and responses to be considered increases, the amount of 

information that needs to be analysed inçreases considerably. To overcome this, various 

methods to summarize the sensitivity information have been proposed. 

To compare the sensitivity of two responses to a given parameter using gradient 

values, the response magnitude and rneasurement error have to be taken into account. If 
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this is not done the sensitivity analysis will be biased. An example of this bias wouid be 

the case where two responses have the same gradient values, but the measurement error 

of one of the responses is much larger than the other. If the measurement error is not 

considered the responses would be considered equal based on their gradient values. But 

the response with the srnaller measurernent error will provide more information about the 

parameter. To remove this bias, the gradient vaiue is divided by the standard deviation 

of the response measurement error, ore,,, as shown in equation (2.2). The normalized 

gradient is discussed further in section 2.4.2. 

In performing a sensitivity analysis a further point to consider is the uniqueness of 

the response. By this we mean if both parameter H l  and O2 affect response yl in the 

same manner, then it will not be possible to determine which parameter produced the 

change in yi. Thus the two parameters BI and will not be observable (Le. estimable) 

together and if considered individually (i.e. the other is fixed), their estimates will be 

highiy correlated. 

Global sensitivity methods address two difficulties in sensitivity analysis. The first is 

that the parameters are unknown but are required for the analysis if a nonlinear mode1 is 

used. The second is the difficulty of interpreting the large volume of information that may 

exist if point gradient values are used. Global sensitivity methods obtain an 'average' 

sensitivity value over the chosen range of parameter values and proçess conditions. By 

averaging the sensitivity values over a range of parameter values and a range of input 

variables, the uncertainty due to the unknown parameter values is decreased. A further 

advantage is that the sensitivity analysis is surnniarized in a k w  values and therefore is 

easier to interpret. 

The simplest form of global sensitivity is obtained by calculating a numerical av- 

erage of the gradient values over a defined parameter and input variable space. The 

implementation of t his global sensitivity mesure  irivolves the following steps. 
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1. Define a range of certainty for each of the parameters (Le. the likely minimum and 
maximum paramet er values). 

2. Define a range for each of the input variables. 

3. Discretize each of the parameter and input variable ranges into ni steps, where 
2 = l...k. 

The above steps will produce a discretized parameter and input variable space with 
k N points, where N = ni=, ni. The global sensitivity value of this space is obtained by 

taking the average of the absolute gradient values at each point in the grid, as shown in 

equation 2.3. 

N is the total number of points in the grid, j is the grid index, 1 fj(x, 0) is the 

change in the response a t  the j-tli point in the grid that çovers the desired parameter 

and process condition ranges, and AB is the parameter perturbation. Although simple to 

calculate this approach will not reveal if any parameter interaction exist. To overcome 

this Pierce et al. (1981) propose a more sophisticated approach bcised on modulating the 

parameters a t  given frequencies and then performing a Fourier analysis of the responses. 

A cornparison of four global sensitivity methods was performed by Markusen and Di 

Stefano (1982), and they determined that iiitegration of the gradient curves is the best 

approach for large models. 

A related technique to global sensitivity is the global structural identifiability. The 

objective of these methods is to determine if n parameter can be estimated (Le. is 

observable) with a given set of responses assuming no measurement error is present. These 

methods have been used primarily with cornpartmental models in the pharmacokinetic 

field. The various methods are discussed by Chappell et al. (1990), Chappell and Godfrey 

(1992) and Seber and Wild (1989) among others. Vajda et al. (1989) compare the 

linearization, power series expansion and similarity transform approaches to sensitivity 
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analysis with an emphasis on chernical kinetic modelling. Ljung and Glad (1994) propose 

a method based on differential aIgebra that shows how global structural identifiability 

is determined if the given model structure c m  be rearranged as a linear regression. A 

limitation of al1 of these methods is that they only determine if a parameter is observable 

with a given response. They do not consider the quality of this observability as the 

response measurernent error is not considered in the analysis. With this limitation and 

the requirement of algebraic manipulation, this approadi was not considered a feasible 

option to use with the type of models considered in this thesis. 

A further application of sensitivity analysis is as a sçreening method to determine 

which parameters are the most sigriificant. This is usually achieved by performing a 

fractional factorial type of experiment on the model where the experiment factors are 

the model parameter values and the experiment responses are the changes in the model 

responses. This type of sensitivity analysis using different types of factorial experiments is 

discussed by Andres (1997) (fractional factorial designs) , DeWit (1997) (Plakett-Burman 

designs) and Rahni et al. (1997) (factorial designs). This approach to sensitivity analysis 

is only applicable to the initial stages of a model investigation where it is not known 

which parameters are the rnost important, and is rlot applicable as part of a parameter 

estimation process as considered in t his t hesis. 

The numerical aspect of calculating gradients in a sensitivity analysis for a dynamic 

model has been addressed by a iiumber of authois such as Leis and Kramer (1985), 

Leis and Kramer (1988), Caracotsios and Stewart (1985) and Guay and McLean (1995) 

among others. Guay and McLean present a method of obtaining the gradient values 

while solving the system of differential equations ancl a method to obtain the second 

order sensitivity values. In calculating the gradient, the change in the response (Le. 

Ay) is obtained by running the simulation twice and taking the difference between the 

two sets of results. If the gradients can be obtained in only one simulation p a s ,  by 

extracting them from the ODE solver while the differential equations are being solved, 
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then the overall computation time required to obtain the gradient plots is decreased by 

half. 

2.3 Global and Local Sensitivity 

sensitivity can be broadly subdivided into two areas, local and global sensitivity- Local 

sensitivity is the gradient value of a response with respect to a parameter at  a given set 

of conditions (Le. input conditions and O ther parameter values), while global sensitivity 

is an 'average' sensitivity value over a given range of conditions. Which of these two 

approaches is best as part of the parameter estimation protocol will be addressed in this 

section, where the advantages and disadvantages of each approach will be discussed. 

Global sensitivity has two advantages. The first is its ease of interpretation, as i t  

surnmarizes ail of the sensitivity information for the chosen response into one value. 

The second advantage is that by covering a range of parameter vaiues it will reduce the 

amount of uncertainty in the sensitivity analysis due to the true parameter values being 

unknown. The disadvantage of a global sensitivity measure is that it will not provide any 

information about the location of the sensitivity. This information about the location 

and distribution of the sensitivity was found to be very useful in the design of experiments 

as described in Chapter 3. 

Local sensitivity has the advantages of providing both the location of the sensitivity 

information and a greater understanding of the parameterlresponse relationships in the 

model. Its disadvantages are twofold: The first is that the sensitivity values are de- 

pendent on the parameter, and input variable values. The second is that the amount of 

data that has to be analysed increases significantly as the number of parameters and/or 

responses considered increases. To deal with these limitations, an effective method is to 

plot the gradients versus the input variable at different parameter values. This allows 

the researcher to quickly analyse the gradient data with a visual inspection of each plot. 

More detail on the implementation of this approach arid how it is part of the parameter 
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estimation protocol is given in section 2.4. 

To illustrate the difference between local and global sensitivity and how information 

can be lost by using an average (Le. global) sensitivity value an example will be presented. 

In this example the global and local sensitivities will be calculated for two responses 

with respect to the parameter rl in the bütch copolymerization of Styrene / Methyl 

Methacrylate at  a run time of tliirty minutes. The sarnpling- time of thirty minutes was 

chosen arbitrarily here, as only the effect of initial feed composition is being considered 

in this example and not sampling time. The responses used are copolymer composition 

(FI) and the cumulative triad fraction of mononierl-monomerl-monomerl (AlI l ) .  The 

input variable which is changed is the initial mole fraction of Styrene in the feed. 

The local sensitivity analysis involves calculating the g~adients of the two responses 

with respect to the parameter T L  a t  difîerent values of the independent variable. This 

information is then summarized by plot ting the gradient values versus the independent 

variable. These plots are shown in Figure 2.1, where the horizontal axis is the initial 

mole fraction of Styrene and the vertical a i s  is the normalized gradient value as given 

by equation 2.2. A visual inspection of the gradient curve of the triad fraction and 

copolymer composition, indicates that the triad fraction will provide more information 

about the parameter due to its larger gradient values in general. A further piece of 

information that can be obtained, is at what initial feed composition will the information 

be maximized. This occurs where the absolute g~adient vdues are the largest, which is 

when the initial feed is near 0.8 mole fraction Styrene for both curves. 

The global sensitivity value is obtained by averagi~ig the gradient values over the range 

of the independent variable (0.1 mole fraction Styrene to 0.9 mole fraction Styrene). This 

results in global sensitivity values of 8.9 for the triad fraction and of 2.8 for the copolyrner 

composition. From these values we can conclude ttiat the triad fraction -4111 contains 

more information about the parameter 7-1 than copolyrner composition, due to its larger 

value, but not at what initial feed to sarnple. 



initial mole fraction of Styrene in the feed 

Figure 2.1: Gradient curves with respect to the parameter rl in the copolymer system 

Styrene/Methyl Methacrylate at 30 minutes. 
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In general, as shown in the above example both local and global sensitivity will indic- 

ate which of the responses will provide the m x t  information. Only local sensitivity will 

indicate where this information is Iocated. This is a significant asset, as this information 

was found to be very useful in the design of experiments. 

2.4 Gradient Plots 

2.4.1 Overview 

This section wiIf discuss hom plots of the gradient data can be used to perform a parameter 

sensitivity analysis and in what other areas of the parameter estimation process can this 

information be used to make the overail process more efficient. This method was found 

to be an adequate compromise between the amount of information provided and ease of 

analysis. A description of the method and how to interpret the information provided will 

be given and highlighted with an example. 

As discussed in the previous section, using local sensitivity information is a better 

approach as it  provides insight into the location and distribution of the information 

about the parameter values. However, the use of local sensitivity is accompanied with 

the challenge of how to effectively present a large arnount of information (Le. the large 

number of gradient values) in a manner that is easy to interpret while still containing 

the desired information. 

The most effective way to present the sensitivity information is to plot the gradient 

values with respect to input variables (i.e. process conditions) such as sampling time or 

initial feed composition. This approach produces a large number of graphs to interpret, 

but the interpretation can be accomplished quickly and easily. When plotting the gradient 

values versus one input variable, a 2D graph is produced and if two input variables are 

used a 3D graph is produced. Examples of these plots are shown and discussed in section 

2.4.3. The difference between the 2D and 3D plots is in the type of information that is 
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provided. The 3D plot will show the interaction effect that two input variables have on 

the gradient, while the 2D plot is better at comparing different responses to determine 

which will provide more information about a parameter. If more than 2 input variables 

are to be considered then multiple 3D plots can be generated. In analyzing the gradient 

plots the goal is to identie regions where the gradients have large values. 

Section 2.4.2 will discuss issues in the generation of the gradient plots. How to 

interpret the plots is discussed in section 2.4.3. 

2 -4.2 Implementation 

In plotting the gradient values for analysis a number of issues arise, such as; how to  com- 

pare different responses; how to compare the observability of two different parameters; 

and how to determine the quality of a response. The methods to address these issues 

will be described next. 

To compare multiple responses to determine which response will provide the most 

information about a parameter, a direct cornparison of the gradient values is not usually 

feasible. This is due to the different measurement errors that may exist and/or the 

different scales of the responses. To account for this, the gradient values are normalized 

by dividing them by the standard deviation of the measurement error, or,, as originally 

shown in equation 2.2 and repeated in equation 2.4 below for the readers convenience. 

The value of oT,, is obtained based on prior experience with a giwn type of analysis and 

is assumed to be constant (i-e. Iiomoscedastic). If or,,, is not constant then its variance 

should be accounted for by using different values of O,,, as required. 

Normalized Gradient = 
Af (x, O i )  
hoi gr, 

It is not possible to compare the observribility of two or more parameters using the 

normalized gradients given by- equation 2.4 if the parameters are of different orders of mag- 

nitude. For example, in the system Styrene / Methyl Methacrylate, it might be of interest 
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to determine which of the two parameters, the reactivity ratio (rl = 0.5) or the activation 

energy in the Arrhenius expression for the rate of propagation ( k , , ~ - , ,  - 7700), is more 

observable using the response of copolymer composition. -4 direct cornparison of the nor- 

malized gradient values is not adeqiiate. This is because the normalized gradient value 

as given by equation 2.4 is the number of meiisiirement error standard deviations a re- 

sponse will change for a unit change in the parameter. This unit change in the parameter 

will distort the normalized gradient values due to the different scales of the parameters. 

To deal with this, the normalized gradient values are mu1tipIied by a percentage of the 

parameter value, as shown in equation 2.5. Ten percent is used in the equation below, 

this value was chosen arbitrarily and any small value (Le. less than 30%) c m  be used. 

Normalized Gradient = Af (XY ai) (o.1oï) 
%?sp 

( 2 - 5 )  

When the gradients are plotted versus two input variables it was found to be useful 

to also generate a contour plot of the gradient surface. This, as well as the ability to 

rotate the gradient surface plot to view it a t  different angles, makes the plot easier to 

interpret. An example of a normalized gradient plot and accompanying contour plot for 

two responses are shown in Figures 2.2 and '2.3 i r i  the riest section. 

2.4.3 Interpretation 

To best describe how to interpret information provided by the gradient plots an example 

d l  be used. The following example uses the Watpolÿ mode1 to simulate the copolymer- 

ization of Styrene / Methyl Methacrylate a t  65 OC , with the initiator AIBM-VAZO-64 

a t  a 0.25 weight percent loading and the simulation options listed in Appendix A. The 

parameter of interest is the reactivity ratio rl and the responses that are considered are 

conversion and copolymer composition. 

Figures 2.2 and 2.3 show the gradient plots and gradient contours for parameter T I  

with respect to time and initial feed composition for the responses of conversion and CO- 

polymer composition, respectively. It was found that it is useful to generate the contour 
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initial mole fraction Styrene 
V u 

time (min.) 

100 200 300 400 500 600 700 800 900 
time (min.) 

Figure 2.2: Gradient plot of the conversion response with respect to the parameter 

r l  versus sampling time and initial feed composition for the system Styrene / Methyl 

Methacrylate. 
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100 200 300 400 500 600 700 800 900 
time (min.) 

Figure 2.3: Gradient plot of the composition response with respect to the parameter 

TI  versus sampling time and initial feed composition for the system Styrene / Methyl 

Met hacrylate. 
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plot of the gradient surface, as this aids in the interpretation of the data. The raggedness 

in the surface plot and the contour plot is a numerical artifact of the resolution used 

in their generation. In both figures the vertical a i s  of the 3D plot is the normalized 

gradient value, while the horizontal axes are the reaction time and the initial feed com- 

position. The gradient value was normalized by dividing it by the response measurement 

error standard deviation and multiplying it by a percentage of the parameter value, as 

discussed in the previous section and shown in equation 2.5. To determifie where the 

experiment trials should be placed, large values of the gradients, either positive or neg- 

ative, are desired. As this indicates a region where the response is very sensitive to the 

chosen parameter. An examination of the 3D gradient plot for the response of conversion 

indicates a valley (i.e. an area of large negative gradient values) where the information 

is maximized. This valley begins at 300 minutes and a low Styrene feed composition and 

continues to 900 minutes and a high styrene feed composition. An analysis of the gradi- 

ent plot of the copolymer composition response (Figure 2.3) yields a similar observation, 

except that the area of high observability is a ridge instead of a valley (Le. large positive 

values of the gradient) and the ridge is also mucli riarrower. 

Determining the location of the large gradient values will indicate the best areas to 

sample. By examining the size of the normalized gradient values it is possible to determine 

the amount of information that is present in the response. Therefore it is possible to 

obtain a qualitative indication of the number of trials (either replicated or unique) that 

will be required to estimate the parameters. If the largest absolute normalized gradient 

values are small (Le. < l), this is an indication that a large nurnber of replicates may be 

required due to the low level of information provided by the responses 

The argument could be presented that while the gradient plots will provide a lot 

of information about the individual pararneter/response relationships, very little will be 

learned about the correlation between parameters (Le. how a change in the value of one 

parameter will affect the observability of another parameter). To counter this argument, 
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a sensitivity andysis was found to be best used as an exploratory tool that will guide the 

researcher in the correct direction and is not meant to answer al1 of the questions about 

a parazneter's estimability. This is an acceptable approach, since parameter correlation 

will be taken into account by the experiment design criterion. The sensitivity analysis of 

the designed experiment will then tell the researcher how sensitive the design is to the 

parameter values. More details on the experiment design and a sensitivity analysis of it 

is described in Chapter 3. 



Chapter 3 

Design of Experiment s 

3.1 Introduction 

This chapter will discuss experirnent design for large nonlinear dynamic models. The 

models used are assumed to be correct and the objective of the experiment is defined 

as 'the estimation of a set of parameters'. This objective may exist due to the desire 

to improve a set of parameter estirnates (Le. decrease the size of the confidence region 

of the current parameter estimates) to decrease the confidence region of the model pre- 

diction. Another reason may be to expand the mode1 to a similar systern with different 

components, a new rnonomer within a polymerization model for exarnple. 

A riumber of different criteria have been used to design experiments for parameter 

estimation in nonlinear models. A listing of the most common design criteria is given in 

Table 3.1. A further discussion of these criteria cari be found in a number of sources, such 

as Atkinson and Donev (1992), Shaw (1994), Chaudhuri and Mykland (1993), Atkinson 

(1996), Draper and Pukelsheim (1996) and Ford et al. (1989). Atkinson and Donev 

present a more theoretical discussion of the criteria while Shaw h a .  a more applied focus 

and provides a cornparison of the criteria as applied to a 

Of the design criteria available, the criterion chosen 

number of nonlinear test cases. 

is D-optimality. This criterion 
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Criterion 

D-op timal 

&optimal 

Eoptimal 

G-optimal 

Quadratic 
D-optimal 

Reference 

Wald (1943), 
Box and Lucas (1059) 

Atkinson and Donev (1992) 

-4tkinson and Donev (1992) 

Atkinson and Donev (1992) 

Hamilton and Watts (1985), 
O'Brien (1992) 

Villa (1990) 

Criterion to be minimized 

trace[(vtv) -']t 

m u .  eigenvalue of [(VrV) 

r n a .  variance of the predicted response 
over the range of interest 

Quadratic approximation to the joint con- 
fidence region 

true sliape joint confidence region 

experiment trial points 

Table 3.1: Criteria used in the design of parameter estimation esperiments for nonlinear 
models 

is used since it will minimize the hypervolume of the linearized joint confidence region 

using multiple responses, and has been used previously by other researchers in the design 

of experirnents for the estimatiori of parameters in nonlinear models. 

Background on the D-optimdity criterion is discussed in Section 3.2 and is followed 

by a general discussion of the implementation of the criterion in Section 3.3. Section 3.4 

describes a diagnostic procedure to determine how sensitive the designed experiment is 

to the initiai pararneter estimates. 

3.2 D-optimality: Background 

The D-optimality criterion for the design of esperiments was initially proposed by Wald 

(1943). The motivation behind the developrnent of this criterion was to minimize the 

volume of the elliptical joint confidence region of the pararneter estimates. For a linear 
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mode1 , given by: 

Y = x p  

p is a vector of parameters, is the matrisu of regressor variables and Y is â vector of 

predicted values. The volume of the joint confidence region of the parameter estimates 

is proportional to IX"XI-~/~. Therefore Wald proposed maximizing the determinant of 

(Xfx), as this would result in parameters with the smallest confidence regions and the 

srnailest amount of uncertainty (note: maxirnizirig IS'SI is equivalent to minimizing 

' x ~ )  Box and Lucas (1959) extended this to nonlinear models by replacing the 

X matrix by the derivative matrix VO. The D-optimality criterion applied to nonlinear 

models is given by: 

max ( 1  VofVO 1 )  (3 -2) 

Vo is the gradient or Jacobian evaluated a t  the initial parameter values ( O 0 )  given by: 

In the D-optimality criterion estension derived by Box and Lucas, they consider the 

case where the number of trials in the experiment is equal to the number of parameters 

(Le. n = p). Draper and Hunter (1966) extended this to the case mhere N runs have 

already been performed and it is desired to design n additional runs. This extension 

was developed based on a Bayesian approaçh where the previous N runs provide prior 

knowledge for the future n runs. 

The criterion as given by equation 3.2 is for the single response case. Box and Draper 

(1965), and Draper and Hunter (1966) extended the D-optimality criterion to the mul- 

tiresponse case as shown in equation 3.4. 

Where is the gradient matrix of response i (equation 3.3) evaluated at O0 and crij is 

the ij-th element of the inverse of the covariance màtrix of the r responses. 
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A property of D-optimality is that D-optimal designs are invariant to any non- 

degenerative transformation applied to the mode1 parameters, such as scaling. A further 

property of D-optimaIity is that a D-optimal design is equivalent to a G-optimal design 

(Le. a design that minimizes the maximum variance of the predicted response) as shown 

in Kiefer and Wolfowitz (1960), and Kiefer (1974). This equivalence theorem has only 

been proven for linear models where the design points span a continuous space. 

In using the D-optimality çriterion to design experiments the following assumptions 

are made: 

1. 

2. 

3 - 

How 

The expectation surface is close to linear in the neigliborhood of the initial para- 

meter values, therefore the linear approximation to the joint confidence region is 

adequate 

The initial parameter values are close to the true parameter values, therefore the de- 

signed experiment will also be a good experiment for estimating the true parameter 

values. 

The measurernent errors are homoscedastic. 

the above assumptions affect the impiemeiitation of the D-optimality criterion is 

discussed in section 3.3.1 

The standard D-optirnality criterion uses the gradient matrix V O ,  which is used in the 

first order (Le. linear) approximation of the parameter estimate joint confidence region. 

Conditions exist where this approsimation may not be adequate for nonlinear models. 

To address this limitation, Hamilton and Watts (1985) extended the joint confidence 

region approximation by including a second order term in the gradient expression. This 

extension requires the residuals of the future measurements and the measurement error. 

Since these values are not known at the design stage, Hamilton and Watts assume a value 

for the measurement error and set the residuals to zero. In making these assumptions the 

D-optimal quadratic criterion becomes less sensitive to changes in the initial parameter 
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values, but is dec ted  by the method of parameterization and is very sensitive to the 

magnitude of the rneasurement error (Hamilton and Watts, 1985). Whether it is a 

better implementation of the D-optimality criterion is dependent on the value of the 

rneasurement error. If the error is too large very poor designs will result and there 

appears to be no single way of determining if a given value of the measurement error is 

too large for the D-optimal quadratic criterion to be used safely (Seber and Wild, 1989; 

Hamilton and Watts, 1985). O'Brien (1992) further extended the quadratic D-optimality 

criterion as proposed by Hamilton and Watts to inclucle n + 1 points in the design. This 

modified design has the advantage of being able to test for mode1 fit mhich is not possible 

with the original criterion of Hamilton and Watts, ivhere the number of support points 

(Le. unique trials in the experiment design) eqiials the number of parameters to be 

estimated. 

3.3 Designing D-optimal Experiments 

This section will discuss the irnplementatiori of the D-optimdity criterion to design ex- 

periments. A number of difficulties can be encouritered while designing esperiments for 

nonlinear models. These may be due to one or more of the foilowing reasons. 

1. The assumption that the parameter values used to derive the experiment design 

are close to the true values and that the difference between the parameter values 

used and the true values will not adversely affect the quality of the experiment. 

2. The assumption that the Iinear approxirnatiorr of the joint confidence region used 

in the experiment design criterion is an adequùte representation of the true joint 

confidence region 

3. The presence of locally optimal experiments. 
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How the above difficulties affect the design of esperiments d l  be discussed in the 

sections that follow. While no method will guarantee that the globally optimal experi- 

ment is found, the proposed methodology will provide a systematic framework that is an 

improvement over a less forma1 empirical approüch. 

The numerical aspect of the design of experiments will not be addressed directly, 

as  the focus of this work is the general procedure and the statistical assumptions that 

are made in designing experiments. A discussion of the numerical aspect of the design 

of experiments is given by -4tkinson and Donev (1992), though they focus on linear 

models. In the design of experiments optimization plays a significant role due to the 

difficulty of local optima. This difficulty is not a. particular characteristic of the design 

of experiments, but exïsts in a number of other fields. Therefore the performance of the 

optimization algorithm was not addressed, other than to choose a robust algorithm. A 

general overview of optimization methods can be found in a number of texts such as 

Fletcher (1987) and Press et al. (1989). 

The next three subsections will discuss the effect that the assumptions have on the 

D-optirnality design calculation, local optima in designing experiments and other imple- 

mentation issues. 

3.3.1 Assumptions Made in Using D-optimality 

In implementing the standard D-optimality cri terion, tliree assumptions are made. If 

these assumptions are not valid the quality of the designed experiment can be detri- 

mentally affected. The first assumption is that the volume of the joint confidence region, 

considered to be proportional to Ivo'voI-'/~, is an adequate approximation of the volume 

of the true joint confidence region. This assumption is based on the mode1 being linear 

in the neighborhood of the parameter values. The second assumption is that the para- 

meter values used to design the experiment are close to the true parameter values. This 

assumption is made because the experiment design is a function of the parameter values 
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and may change with a change in the parameter values. The third assumption is that the 

measurement errors are homoscedastic- To deal with the situation that one or more of 

the assumptions made are not valid, vanous methods are available and will be discussed 

below. 

The third assumption is the easiest to cleal witii. If the measurement error is not 

homoscedastic, the model can be transformed so the error becomes homoscedastic or a 

diagonal matrix of weights can be used in the D-optimality criterion as described by 

Seber and Wild (1989, pg. 251). 

If the first assumption, that the linearized joint confidence region is adequate, is not 

valid two different approaches have been proposed. The first is to extend the gradient 

equations to include second order terms, (Hamilton and Watts, 1985). The benefits of 

this modification is offset by its otlier lirnitatio~is as cliscussed in Section 3.2. The second 

method is to use the true shape joint confidence region (Le. X-optimality, Villa, 1990). 

This would represent the ideal case as it would çonsider al1 of the nonlinearity present 

in the model. The current limitation of this criterion is that with the current computing 

power available, it is not feasible to implement if the number of parameters is large (Le. 

greater than 3 or 4) or if the model is computationally espensive to evaluate. If this 

assurnption is not satisfied, then the designed experiment will be sub-optimal. 

Failure of the second ûssurnption, that the parameter values used are close to the true 

parameter values, can be dealt with by a number of different approaches. All of these 

will either rninimize the effect of the unknown parameters or reveal it, so that appro- 

priate action may be taken. The first approach will rninimize the effect of the unknown 

parameter values by the use of a robust design criterion. This family of criteria take a 

conservative approach and strive to generate an experiment that, although suboptimal 

a t  the initial set of parameter estimates, will be good over a range of parameter values. 

An example is the m i n i m a  criterion proposed by Pronzato and Walter (1988). This 

criterion will try to obtain the best 'worst case', within a specified parameter range. To 
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achieve this the following two step optimization is used. 

1. Given an experiment, the parameter values are varied within a pre-specified range 

until the D-optimal criterion is minirnized (Le. the worst case). 

2. Using the worst case parameter values from step 1, the sampling conditions are 

varied until the D-optimal criterion is maximized (Le. the best case). 

The experiment from step two is then used in step one and the above two steps 

are repeated until convergence is achieved (Le. the parameter values and the D-optimal 

experiment do not change at  the chosen tolerance between iterations). -4 limitation of this 

method is choosing appropriate pararneter ranges. Since the design is highly dependent 

on the ranges of the parameter values, a very poor experiment may result if the parameter 

ranges are too large. Alternatively, if the pararneter ranges are too small, an experiment 

will be obtained which is not sufficiently robust- 

The second approach to dealing with unknown parameter values and the simplest to 

use, is a sequential experiment design. This is analogous to the iterative approach of 

mode1 development. This method can be applied to the standard D-optimality criterion 

in two ways. 

1, An independent D-optimal experiment is desigied at  each step of the investigation, 

where the current estimates of the parameter values are used in the design of the 

next set of trials. 

2. -4 Bayesian approaçli is taken, where tliere is forma1 use of the prior knowledge 

about each of the pararneter estimates arid their distribution in the design of the 

next experiment. 

A third approach is to perform a sensitivity imalysis of the experiment design with 

respect to the parameter values. This uill provide the experimenter with information 

about the change in quality of the design with diariges in the parameter values. The 
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procedure to  perform the designed experirnent sensitivity analysis is described in Section 

3.4. 

While no simple solution was found to deal with the problem of unknown parameter 

values, the sensitivity analysis will indicate how sensitive the given design is to the initial 

parameter values. Therefore the experimenter will have an idea of the risk associated 

with the given D-optimal design and can choose to niodify the design to reduce this risk. 

How to best modify the experiment so that it is less sensitive to the initial parameter 

values is case dependent. As a guide to gerierating a more robust experiment, a list of 

possible approaches is given below. 

Design multiple experimeuts using different parameter values and make the final 

design a compilation of al1 of the designs. This can be achieverl from a visual 

inspection of the different experiment designs to identify general regions where the 

trials are placed. Then the trials of the arnalgarnated design are placed in these 

regions. 

Use one of the robust criteria, such as the m i n i m a  criterion. 

0 In the experirnent design process a number of locally optimal experiments are usu- 

ally found. If the best experiment found is too sensitive to the parameter values 

used to design it (i.e. the cluality of the expriment becornes very poor when eval- 

uated using parameter values mithin the prior u~içertainty range of the parameter 

values), then one of the other locally optimal experiments found should be con- 

sidered, as it may be more robust to the uricertainty in the parameter values. 

If a more robust design cannot be found, it is feasible to accept the current D-optimal 

experiment and the risk of i t  being inefficient, as the first part of a sequential parameter 

estimation process. 

When designing experiments, selecting the best approach is very case dependent. 

Unfortunately no method is available that will indicate a priori which approach is best. 
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The method chosen in this work is to use the D-optimality criterion combined with a 

sensitivity analysis of the designed experiment to the parameter values. This approach 

has the advantage of being simple to irnplement while providing information about the 

quality of the experiment. 

3.3.2 Local Optima 

When designing experiments for the estimation of parameters in large models (as defined 

in the introduction) multiple local optima are usuaily present. This problem is not 

limited to the large models considered in this thesis but has also been observed with 

smaller nonlinear models. It was found that in general the magnitude of this problem is 

correlated to the size of the model, the nurnber of responses used, the number of trials 

in the experiment and the number of parameters to be estimated. 

To deal with local optima in the search for a global optimum a number of methods 

are available. These nlethods can only guarantee very good local optima, since there is 

no practical rnethod that will always find the global optimum when working with large 

problems- 

If the problem is considered from an  optirnization viewpoint, then the use of an 

algorithm that has been shown to work weil wheri multiple local optima are present 

should be used. Simulated annealing is one such algorithm and it has been shown to 

work very well with problems such as the traveling salesman problern where a large 

nurnber of local optima exist (Press et al., 1989). The disadvantages of this rnethod are 

that  it requires a greater number of function evaluations t han other optimization rnethods 

and two tuning parameters need to be determined. How well the algorithm works is a 

function of the tuning parameters refered to as, the 'initial temperature' and the 'rate of 

cooling', and they are case specific. Further details about this method can be found in 

Press et al. (1989). 

Another approach to dealing with local optima alid perhaps the simplest is to design 
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multiple experiments, each with a different initial parameter values, and to then choose 

the best experiment. A limitation of using this method is the difficulty of determining how 

may different starting points should be used. -4 guideline used by the author to choosing 

this number is to design from p to 2p  experiments ivith different initial points, where p 

is the number of parameters. The decision if more experiments should be designed, is a 

function of the number and distribution of unique local optima that are found. -4s an 

aid to making this decision the following guidelines are proposed. 

1. If al1 of the experiments found are cliffereut but tlieir criterion values are similar, 

any of the experiments is féasible and whiuli one is chosen should be based on the 

results of a sensitivity analysis to the parameters. 

2. If a subset of experiments is found thât are similar, have similar criterion values and 

include the best experiment, any of the experiments in the subset can be chosen. 

3. If ail of the experiments found are different and their criterion vdues span a broad 

range, further experiments should be designed. If the esperiment distribution does 

not change with the design of further experiments, the best experiment should be 

chosen. 

4. If the best experiment is found more than once, it should be chosen. 

The above are only guidelines used by the author based on experience. -4lthough this 

approach is simple to apply it performs poorly if a large number of local optima exist 

and the method can be computàtionally espensive if a lot of different initial points are 

needed. There is also the difficulty of choosing an experiment if the results obtained are 

like point 3 above, which was found to be the cornmon case. 

-4nother possible solution to deal with local optima is to provide the optimization 

algonthm with a very good initial starting point that is hopefully in the neighborhood 

of the global optimum or a very good local optimum. This good initial starting point is 
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based on the information obtained from the sensitivity analysis described in Chapter 2, 

and has been found to work very well with the large models that are considered in this 

work. The reason why this approach is successful in generating a good initial starting 

point, is because the D-optimality criterion is a function of the gradients of the responses 

with respect to the parameters (Le. the V 0  matrk) .  Therefore by choosing locations 

where the gradient values are the largest, the niaximization of the IVO'VOI term mil1 

usually start a t  large values. The proposed method hiils beeri found in general to produce 

very good experiments, but it is not guaranteed to always do so. 

To best describe the proposed method of liow to generate a good initial starting point 

based on the sensitivity information, an example will be presented. This example will 

involve the estimation of the penultimate reactivity ratios (Le. QI,  732, ~2~ rz2, SI and 

s2) for the system Styrene/Methyl Methacrylate usirlg the responses of copolymer com- 

position, cumulative triad fractions and conversion. The polymerization \vas simulated 

a t  60 degrees Celsius and a 0.01 mol/L loadirig of tlie iriitiator AIBME. The designed 

experiment had 12 trials and the sample time mas k e d  a t  300 minutes. In designing the 

experiment for this case it  \vas found that multiple optima existed, since each starting 

point that was tried resulted in a unique Locally optimal esperiment. Figure 3.1 shows 

a sarnple of the locally optimal experiments that were found, where each row of circles 

represents an experiment and each circle represents an individual trial. The horizontal 

axis is the initial feed compositiori of styrene as a mole tfâçtion for a given trial. For 

instance, the esperirnent represented by the tow of circles with a criterion value of 251 

(second from the bottom), has trials with the following feed compositions in mole frac- 

tions of styrene [ 0.16, 0.18, 0.36, 0.43, 0.59, 0.64, 0.68, 0.74, 0.75, 0.75, 0.77, 0.771. A 

value proportional to  the experiment D-optimality criterion is also given to the right of 

each row and wiil be referred to as the criterion value in the remainder of this discussion 

(the experiments are sorted by quality, where a larger criterion value indicates a better 

experiment) . 
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0.3 0.4 0.5 0.6 0.7 
initial mole fraction of Sty in the feed 

Figure 3.1: A sample of locally optimal experiments for the estimai;ion of 6 parameters 

using a 12 trial experiment 
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Of the experiments s h o w  in Figure 3.1, the best experiment found with a criterion 

value of 405 was obtained by using the information obtained from the sensitivity analysis 

to establish starting values for the optimization. The case where the initial values used 

in the optimization are an even distribution of points was also performed, and resulted 

in an esperiment with a criterion value of 344. This experiment is the middle of the of 

the set of experiments found, with respect to esperiment quality. The remainder of the 

experiments, except for the bottom one, were obtained using a random initial guess for 

the starting vahe. 

The bottom row in Figure 3.1 is an experirrieiit witli evenly spaçed initial feed com- 

positions from 0.1 to 0.9 mole fraction. This esperiment was included as a comparison 

of the empirical approach to the designed experirnent approach. A comparison of the 

criterion values, 262 for the evenly spaçed esperiment versus 405 for the designed exper- 

iment, indicates that the designed esperiment is better. Though how much better the 

designed experiment is versus the empirical one is cannot be determine based solely on 

the criterion values. Other factors that should be considered when performing the com- 

parison are: The effect of the uncertainty in the parameter values, which d l  affect the 

robustness of the experiment, and that the criteriori value is proportional to the volume 

of the linearized confidence region not the true confidence region. -4 further discussion 

on how to compare experiments is given in Section 3.4. 

The best experirnent was obtained using the gradient information to generate the op- 

timization starting values. These values were obtained from an inspection of the gradient 

plots shown in Figure 3.2. This figure shows the sensitivity plots of the responses with 

respect to the parameters rli, Tu, r 2 ~ ,  T ~ ~ ,  SI and s2 at  300 minutes. The initial points are 

piaced in areas where the response information is maximized. To determine where the 

amount of information from a response is maximized the areas where the gradient curves 

have the largest absolute magnitude are identified, as this is where the response is most 

sensitive to the parameter values. For example, this occurs near an initial feed of 0.8 
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mole fraction styrene for the parameter rll with the responses of copolymer composition 

(FI )  and cumulative triad fractions Al11  and -4211- For the parameter 7-22 it occurs near 

an initial feed of 0.2 mole fraction styrene with the responses of copolymer composition 

(F I )  and the triad fractions A222 and -4122. 

The determination of the point of most information is not always as straightfonvard 

as for the parameters rll and r22- If the gradient plots for the parameters r12 and 7-21 

are examined we can see that there is a region of liigh sensitivity for initial feeds from 

0.4 to 0.6 mole fraction styrene. If we look a t  the gradient plots for the parameter sl we 

can see that for any initiai feed value less that 0.6 mole fraction styrene, the information 

will be maximized, while for the parameter sa the smaller the mole fraction of styrene 

the better. in general, if the determination of the set of initial values is arnbiguous, then 

several different sets of values shodd be used. 

Based on the gradient plots the initial values cliosen for the optirnization were (0.2, 

0.2, 0.5, 0.5, 0.8, 0.8, 0.2, 0.2, 0.5, 0.5, 0.8, 0.8). A combination of only three distinct 

values was used in the initial starting point for this case, as it is sufficient that the 

initial trials are in the neighborhood of the gradient d u e  maxima. This is because the 

information from the gradient plots does not take iuto account the correlation between 

responses or between parameters, while the D-optimality criterion does. 

3.3.3 Implementation Notes 

This section will briefly list some of the observations made by the author in the process 

of designing experiments for the various cases studied. 

The gradient information was used to  choose an initial guess for the experiment 

design optimization algorithm. Multiple initial guesses were tried if the information 

distribution in the gradients indicated that a range of sampling conditions were 

feasible and as a double check to ensure that a good experiment was obtained. 
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initial mole fraction of fl (StyJ 

initial mole fraction of fl (Sty) 

-0 0.5 1 
initial mole fraction of fl (Sty) 

Figure 3.2: Gradient plots to generate an initial point for the experiment design optim- 

ization aigorithm 
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In implementing the multiresponse D-optimality criterion as given by equation 3.4, 

the off diagonal measurement covariance values (Le. oij) were assumed to be zero, 

while for the diagonal values of the covariance matriv (i-e. uii), the square root of 

l/cii is included in the normalized gradient values that make up the Vo matrïx. 

Therefore the term cii (which in this case is eclual to 1/cii) is included in the term 

VO'VO. This simplification is only possible because the off-diagonal terms in the 

covariance rnatrix are assumed to be zero. 

The optimization algorithm used wns a moclified simples algorithm included in the 

Matlab optimization toolbos, the function fmins .m. This routine is very robust 

and could be used on a range of problems without intervention by the user. Though 

it is very slow to converge, it was felt tha t  the advantages of robustness outweighed 

the slow convergence. 

3.4 D-opt imal Experiment Sensitivity Measure 

The objective in performing a sensitivity analysis with respect to the parameter values on 

the designed experiment is to determine the cjuality of the chosen design over the range 

of possible parameter values. This ünalysis is recomrnended since the initial parameter 

values will rarely be equal to the true parameter values. If the quality of the experiment 

design is highly sensitive to the parameter values, theri the designed experiment can 

result in pararneter estimates with a low level of uncertainty being obtained. 

To determine how sensitive the choseri experirnent is to the parameter values it is 

desired to see how the design criterion d l  change as the parameter values change. By 

calculating the D-optimal criterion value of the chosen experiment with different para- 

meter values, it is possible to obtain a qualitative meaure of how well the  experiment will 

perform with different parameter values. One issue in applying this method is deciding 

how much of a change in the criterion value is large enough to warrant a reevaluation 
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of the experiment design. Based on the author's experience, a rough guide is that if 

the criterion (normalized to one dimension from n-dimensions, see section 3.4.1) over a 

significant portion of the parameter space are less than 50 

-4n effective method to summa,rize the experiment efficiency over a range of parameter 

values is to plot the D-optimality criterion of the designed experiment using a range of 

parameter values- If the number of parameters is greater than three this approach is no 

longer feasible, and a two-step approach is proposed. The first step is to caicülate the 

D-optimality criterion over the parameter values arranged in a factorial layout, where 

the minimum and maximum feasible parameter values are the high and low values in the 

factorial experiment. The objective of the first step is to act as a screening design to 

determine where in the parameter space the chosen experiment will be inefficient. The 

second step is to focus on this area of the parameter space, by adding more points to 

obtain more information about the experiment efficiency. An example of this approach 

is given in case study 1, Section 6.3.3. 

To illustrate why the designed experiment sensitivity analysis is an important and 

useful diagnostic in determining the quality of the designed experiment an example will 

be presented. The following simulation example involved the estimation of the reactivity 

ratios (rl and r2) for the system Styrene/Methyl Met hacrylate. The polymerization 

simulation was carried out using the conditions given in Appendix B. The response used 

was copolmer composition and there are four trials in the experiment design. The 

initial values used by the experiment design optimization routine were obtained using 

the information provided by the gradient plots as described in section 3.3.2. The four 

trial experiment that was designed based on the initial values from the gradient plot is 

shown in Table 3.2, and will be referred to as the 'high conversion' experirnent. 

Another experiment nras also designed using initial values based on the conventional 

approach, the Tidwell-Mortimer method, (Tidwell and Mortimer, 1965). Using these 

values a low conversion experiment, that is a local optimum, was found. This experiment 
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high 
conversion 

low 
conversion 

Initial feed 1 Sarnpling time 1 Criterion 1 

Table 3.2: Experiment designs and their D-optimal criterion values for the estimation of 
the reactivity ratios 

(mol fr. Styrene) 
0.20 

is shown in Table 3.2 and will be referred to as the 'iow conversion' experiment. A 

comparison of the two experiments based on the criterion values indicated that the high 

conversion experiment is a much better experiment as its criterion value is approximately 

sk ty  time larger than that of the low conversion experiment. 

A sensitivity analysis was then performed on the high conversion experiment, where 

the D-optimality criterion was calculated using the chosen experiment over the parameter 

space. Since there are only two parameters to be estimated the D-optimality criterion 

was plotted as a function of the parameter values and is shown in Figure 3.3. In the 

upper plot of this figure the horizontal axes are the two parameters to be estimated and 

the vertical axis is the log of the criterion value. To facilitate the analysis, the log of the 

criterion values is used to compress the data and a contour plot of the surface is included 

(bottom plot). By examining Figure 3.3 we can see that the chosen experirnent is good 

for a band of parameter values that correspond to a ridge across al1 values of rz and 

near a value of 0.55 for r l .  For parameter values to the left of the ridge (Le. r1 < O-5), 

the chosen experiment is very poor as the criterion values decreases by five orders of 

magnitude from the ridge values. Thus if the true parameter values were in this range 

the chosen experiment would be very poor. While to the right of the ridge (Le. r l  > 0.6) 

(minutes) 
475 
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the experiment is still very poor but the decrease is not as large as to the left. A further 

observation is that the high conversion experirnent is ouly sensitive to the rl parameter, 

since the ridge spans al1 of the values of rn considered. 

As a comparison, the experiment design sensitivity analysis was performed on the low 

conversion experiment. The resultant D-optimality criterion surface is shown in Figure 

3.4. The vertical axis of the upper plot is again the log of the D-optimal criterion value 

and the horizontal axes are the parameter values. The axes scaleç for both Figures 3.3 and 

3.4 are the same so that a direct visual comparison can be made between the figures. The 

most important feature of Figure 3.4 is that the surfixe is flat. This implies that the low 

conversion experiment is not v e v  sensitive to the parameters within the chosen ranges. 

While the 'low conversion' experiment is not as good as the 'high conversion' experiment, 

it is much more robust (due to the flatness of the sensitivity surface). Therefore which 

experiment is used depends on how well the parameter values are known a priori. In this 

case, if the chosen parameter ranges used in the figure represented the uncertainty in the 

parmeters, then it is recommended t hat the low conversion exp eriment be used. 

3.4.1 Comparing Experiments 

The experiment sensitivity analysis requires tliat a number of experiments are compared. 

This is a very difficult task to accomplish as the common approach worild be to  linearly 

associate a change in the criterion value with a change in quality of the  parameter es- 

tirnates. That is, if the criterion value doubles, tlie esperiment would be twice as good 

and the parameter estimates obtained woukl be twice as good. This is not correct as 

the D-optimality criterion is inversely proportional to the pdimensional hypervolume of 

the linearized joint confidence region and a doubling of the criterion does not result in 

parameter estimates that are twice as good. Therefore the following method is proposed 

as an alternative to the direct comparison of criterion values. l'hile this rnethod makes 

a number of assumptions, it is intended as a qualitative meilsure that is intuitive and 
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Figure 3.3: The D-optimal design criteriori of the 'liigh conversion' esperiment over the 

feasible parameter space 
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Figure 3.4: The D-optimal design criterion of the 'low conversion' experiment over the 

feasible parameter space 
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easy to interpret. 

In perforrning a comparison of the different experiments obtained by spanning the 

parameter space, it is more intuitive to compare a value that is proportional to the 

standard deviation of the parameter estirnates than the experiment criterion value which 

is inversely proportional to the volume of the linearized joint confidence region. Since the 

parameter standard deviation within a set of parameters can Vary widely, it is desired to 

obtain a value that can be used for the comparison of experiments. To achieve this the 

following approximation is used. If it is assurned that the parameter estimate joint con- 

fidence region is a p-dimensional spheroid ~~rhose volume is proportional to  the criterion 

value, then the radius of this spheroid will be proportional to the criterion value to the 

power of (2). This radius is then proportional to a value that can be referred to as a 

generdized standard deviation of the parameter estimates. This value (Le. the radius) 

- i s  a crude approximation but has  theadvantag-e of rnaking the sensitivity ânalysis much 

easier to interpret. This is açhieved beçause we are çomparing a value that is linearly 

proportional to the standard deviation of the parameter estimates. Therefore if this value 

doubles, the uncertainty range of the parameter estimates will double. While this sens- 

itivity analysis method makes a number of assumptions it is a feasible approach which 

is intended t u  be used as a qualitative mesure  of how the quality of the esperiment will 

change as the parameter values change. it's application is shown in al1 three of the case 

studies discussed in Chapter 6. 
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Parameter Estimation 

The objective in nonlinear parameter estimation is to obtain a set of parameter values 

that are robust and show the least possible uricertainty and correlation. This can be a 

very dlfficuIt t%3Tto aTcoqlZhand-5-fiE€ionOff iï number-f Factors, which- anaffec t  

the quality of the parameter estimates to different degrees. The principal factors are, the 

mode1 structure, the quality of the rneasurements and the experiment design. Parameter 

estimation problem has been addressed bÿ a number of authors such as Biegler et al. 

(1986), Bilardello (1993), Stewart et al. (1992), Watts (1994) and Ziegel and Gorman 

(1980) for example. 

To estimate the parameters different criteria can be used. In Section 4.1 a listing of 

available criteria is given, as well as a discussion of the determinant criterion and the 

multiweighted least squares criterion (MWLS) . The methodology of parameter estimation 

is discussed in Section 4.2. This includes a discussion of the optimization methods that 

c m  be used and the specific problems of local optima and correlation in the parameter 

estimates. 
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Estimation Criteria 

Various criteria can be used for the estimation of parameters using multiple responses. 

A listing of available criteria is given in Table 4.1. A11 of these criteria are related in two 

ways. First, they are al1 a function of the residuals and second, they are al1 based on the 

same assumptions about the rnodel and the error structure, as outlined below. 

1. The model structure is correct. 

2. The errors from trial to trial are independent of one another, within a trial they are 
assumed to be normally distributed with a mean of zero and a constant covariance 
mat+. 

3. The measurement error is additive. 

4. The measurement error is 1~omosced;zstic 

The validity of the above assumptions is usuaily tested by an analysis of a plot of the 

residuals and a plot of the predicted and measured values. A failure of any of the above 

assumptions can result in erroneous parameter estimates. To deal with this failure the 

folIowing rnethods are available; 

if 1 is violated, residual plots çün be used to Iielp adjust the rnodel structure 

if 2 is violated, transformation of the data, (Bos and Cox , 1964) or a Time Series 
Analysis can be used, (Box and Jenkins: 1976) 

a if 3 is violated, transformation of the data (Box and Cox, 1964) or the model is 
required 

if 4 is violated, transformation of the data or use of an error mode1 with heterosce- 
dastic regression are required (Bed and Sheiner, 1988; Welsh et al., 1994) 

-4lthough the criteria in Table 4.1 are al1 related, tliere are distinct differences in their 

application and the assumptions that they further make. The least squares criterion is 

the oldest and most widely used criterion for parameter estimation in nonlinear rnodels. 

When used in multi response parameter estimation it makes the further assumption that 

the magnitude of the measurement error of each response is similar. If this assumption 
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Criterion 

l e s t  squares 

weighted least squares 

LI-Nom 

det erminant 

MWLS 

Reference 

Seber and Wild (1989) 

Seber and Wild (1989) 

Oberhofer (1982) 

Box and Draper (1965) 

Oxby (1997) 

Table 4.1: Criteria for multiresponse parameter estimation 

is not valid then a bias will exist in the parameter estimates obtained. To overcome this, 

the weighted ieast squares criterion was developed, where the weight for each response 

is usually the inverse of the standard deviation of the response measurement error. A 

limitation of weighted least squares is that the measurement error variance is required 

and it  is usually assumed that there is no measurement error correlation. -4 detailed 

discussion of the Ieast squares and weightecl l e s t  squares criteria can be found in a 

number of statistical texts, such as Seber and Wild (1989). An extension of the least 

squares criterion is the LI-Norm criterion. It takes the sum of the absolute deviations 

instead of the squared deviations. It was deveioped as a robust criterion to outliers, 

as it  will be affected to a lesser degree by outliers than least squares. Its properties, 

assumptions and use are discussed by Oberhofer (1982) and Gonin and Money (1985)- 

The determinant and MWLS criteria are discussed in sections 4.1.1 and 4.1.2 respectively- 

The criterion chosen for the bulk of the simulation studies is the determinant criterion. 

It was chosen since it handles multiple responses when the response error covariance 

matrix is not know, which is the usual case. -4 limitation of the determinant criterion, is 

that it may not be appropriate when the sample size is small, as shown by Oxby (1997). 

To overcome this small sample size limitation Oxby (1997) proposes the use of the MWLS 

criterion. 
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4.1.1 Determinant Criterion 

The most popular criterion used to estimate parameters from multiple responses is the 

determinant criterion as discussed by Box and Draper (1965). This section Ml1 present 

the derivation of the determinant criterion from a Bayesian approach. Its properties and 

application will also be discussed. 

The determinant criterion was developed by Box and Draper (1965) using a Bayesian 

argument, though it can also be derived using a likelihood approach as described by 

Bates and Watts (1988), for example. The following is a description of the derivation of 

the determinant criterion using a Bayesian approach. Given the general multiresponse 

rno del. 

YUi = fi(zu7B) + Cui ; i  = 1. .  .T ,U  = 1 .. .TL (4-1) 

where, i is the response number froni 1 to T :  .u is the observation number from 1 to n, 

gui is the rneasured data point of trial v and response i, f i (xU,  O )  is the expected value 

of response i at conditions x,, L, is the set of input variables for observation u, 6 is 

the vector of parameters, and clri is the random normally distributed error associated 

with the data point ui. TO illustrate how the above general mode1 relates to the model 

used in the case studies, y would be responses used such as conversion, composition and 

radical concentration; s would be input variables such as the initial feed composition 

or sampling time; and 8 represents the parameters in the model such as kfTn act-eng and 

kfmpre-,,,, these parameters are part of the Arrhenius expression for the rate constant 

of radical t r a d e r  to monomer (k,,). Further information about these parameters can 

be found in the model description, Section 6.2. 

Let the covariance matrix of the responses y;, where i = 1 to r ,  be 

0 1 1  0 2 2  " '  0 1 r  

0 2 1  0 2 2  " '  0 2 r  

- .  

o r 1  2 - - -  gr, 
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and 

C-1 - 
. - 

- {ffij}-l = f fzJ  

Where C-' is the inverse of the covariance matrix and 0'3 is the i j-th element of C-'. If 

the covariance m a t ~ x  of the responses were known, then the likelihood function would 

be a monotonic function of the quadratic forrn 

Where vij is the sum of the product of the devi-iations of responses i and j given by: 

Using a Bayesian approach and assuming that  the observations y,i are independent 

frorn trial to trial, the likelihood is given by 

Minimization of equation (4.5) is equivalent to meiglited least squares. Assuming that 0 

and C-' are independent, the prior distribution for t1iese parameters c m  be expressed 

In tiieir development Box and Draper (1965) assume that a locally uniform prior may be 

used for O ,  

~ ( 0 )  0; do (4.7) 

They use the invariance theory of .Jeffreys (1061) to produce a noninformative prior for 

C-l, 
rC1 @-') p-' (i (4-8) 

The posterior pdf of the parameters, equation (4.9, is obtained by cornbining the likeli- 

hood (equation (4.5)) with the noninformative priors for B and C-l (equations (4.7) and 
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p(e, C-11 y)de n daii (2n)-i"'l C-1 1 i(n-'-1) ( -- x x V, dd II da" (4.9) 
l T  

2 i=i j=i 

We are interested in 0 not C-', and therefore to obtain the marginal distribution for 0, 

we must integrate out C-'. This is achieved by cornparing the right hand side of equation 

(4.9) to the Wishart distribution, (Box and Tiao 1973). This leads to the following: 

where C is the normalizing constant and V is the matrix of the elernents U i j ,  obtained 

frorn equation 4.4. 

'U11 " '  

- .  . (4.11) 

- 
Thus to  obtain the parameter estirnates the right sicle of Equation 4.10 is maximized, 

which corresponds to minimizing IVI, the determinant of the dispersion matrix. Bates 

and Watts (1988) use the notation of Z to represent the matrut of deviations, given by: 

Therefore the V used by Box and Draper corresponds to Z'Z used by Bates and Watts. 

The Z notation will be the one used in this thesis, The determinant criterion has a 

number of favourable properties as outlined by Box and Tiao (1973). These properties 

are: 

the expectation function can be linear or nonlinear 

the parameters can be common to more than one response 

the design variables can be common to more than one response 

the responses used can be rescaled or a iixiear combination of responses can be used 
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The application of the determinant criterion is discussed a t  length by Bates and Watts 

(1988). They discuss numerical stability issues sudi as taking the QR decomposition of 

the Z matrix so that the determinant of Z'Z is numericaIly easier to calculate (Le. more 

nurnerically stable). They also discuss different optimization met hods to obtain the 

parameter estimates, such as the Newton-Raphson and Levenberg-hlarquardt methods. 

It was found that these optirnization rnethods, wliile performing well on smaller nonlinear 

parameter estimation problems, were not suitable to the type of problems considered in 

this thesis. This is due to the large nurnber of local optima that are present. 

Oxby (1997) found that the use of the determinant criterion can result in poor parameter 

estimates when the sample size is small. To cleal with this limitation he proposed a 

new criterion, the hilultivariate Weighted Least Squares (MWLS) criterion. He shows, 

using Monte Carlo simulations, that the proposcd criterion is a more robust criterion for 

multiresponse parameter estimation if a smaI1 sample size is used. As the sample size 

increases, the difference in quality (Le. hou. well the criterion can estimate the parameter 

values) between MWLS and the determinant criterion decreases and eventually becomes 

zero. Then as the sample size increases further the determiriant criterion becomes a better 

estimator. Oxby observed tliat the magnitude of the ciifference in quality between the 

MWLS criterion and the determinant criterion is case dependent. He suggests that the 

MWLS criterion be used for al1 cases when the sarnple size is small. -4 detailed discussion 

of the development of the criterion and its properties are given L>v Osby (1997). A brief 

description of the implementation of the criterion follows. 

The MWLS criterion is a two step process where the algorithm iterates between the 

two steps until convergence is obtained (Le. the parameter values do not change at 

the desired tolerance between iterations). In the first step, the mode1 parameters (@ 

are obtained by changing the parameter values so that the weighted sum of squared 
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deviations is minimized, shown in equation 4.13). 

min. tr [Z(O) W Z  ( O ) ' ]  (4.13) 

Where Z(6) is the matrix of residuals as defined in equation 4.12 and W is a diagonal 

rnatrix of weights where each of the elernents corresponds to a response. The W matrix 

is obtained in the second step of the algorithm. Therefore for the first iteration, where 

calculated values of the W matrix are not available, the W matrix is set to the identity 

matrix. The elements of the W matrix are obtained using equation 4.14. 

Where ~ ( 8 )  is the matrix of residuals using the parameter estirnates obtained in step 

one, equation 4.13, and n is the nurnber of rneasurements per response. Equations 4.13 

and 4.14 are then iterated to convergence. 

The major difference between the determinant criterion and MLWS is that the MWLS 

criterion is more robust, with respect to parameter estimates, when the sample size 

is small. Oxby (1997) provides a detailed esplariation of why this occurs. A simple 

explanation of the determinant criterion's poor performance is due to its assumptions that 

the residual covariance m a t h  is equal to the error covariance matrix. When the sample 

size is small the residual covariance ma t rk  will likely be a poor approximation of the 

error covariance matrix, thus producing poor parameter estimates. A further difference 

bettveen the criteria, is that the MWLS is more expensive to compute. In general, the 

computation time required for one iteration of the MW-LS criterion is approximately 

equal to that required for the whole determinarit criterion, though the MWLS criterion 

wili usually converge in less than ten iterations. 
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4.2 Estimating Parameters 

This section will discuss some of the practical aspects of irnplementing the determinant 

criterion related to local optima, parameter correlation and ill-conditioning of the de- 

terminant matrix. In general it was found that the parameter estimation problem is a 

difficult optimization problem that requires a robust optimization algorithm. The  dif- 

ferent optimization methods considered are discussed in Section 4 -2.1. The particulâr 

problems of local optima and parameter correlation are addressed in Sections 4.2.2 and 

4.2.3, respectively. 

4.2.1 Optimization Met hods 

For the estimation problem considered in this thesis, involving relatiwly large numbers 

of response variables and parameters, it was foiirid that a robust optimization method 

is required because the objective fuiiction surface is very complex eshibiting ridges and 

multiple local optima. In general, the large iiumber of local optima present can trap in a 

local minimum most of the classical algoritiims tliat follom a downhill path, such as the 

Newton-Raphson or BFGS algorithms. 111 general the only time that these algorithms 

will succeed is if the initial guess is such that ttiere is no local optima in the algorithm's 

path. This can be the case when the initial guess is very close to the estimated parameter 

values. 

The  problem of parameter correlation wliile riot directly causing the optimization 

algorithm to produce erroneous results, c m  result in slow convergence or instability 

in the  algorithm. This is because the parameter correlation will cause a steep curved 

valley to  occur on the objective fuuncction surface, which is a classic optimization problem 

(e.g. the Rosenbrock function; Fletcher, 1987). Wliile methods have been developed 

that  will adequately deal with the curved valley, they are not adequate to deal with 

the optimization problem in question due to the ridges and multiple local optima also 
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present in the objective function surface. Further considerations to take into account in 

the choice of an optimization algorithm are the high dimensionality of the problem if 

multiple parameters are to be estimated, and the espense of function evaluations of a 

large model. 

In choosing an optimization method al1 of the above characteristics of the problem 

need to be taken into account. These characteristics make this a difficult optimization 

problem, as a method is required that is both robust with respect to local optima and 

that will minimize the number of function evaluations required- These two requirement 

are contradictory Methods that are robust to local optima usually require a large number 

of function evaluations, while methods that are very efficient in minimizing the number 

of function evaluations do not perform well when local optima are present. 

In choosing an optimization algorithrn, the objective was to obtain good parameter 

estimates in a reasonible amount of time. To achieve this the simplex method and 

simulated annealing were used. Most of the time tlie simplex algorithrn was used as it is 

the faster of the two, though it  is less robust to local optima. 

In the simplex method a triangle of p + 1 clime~isions in the objective function space, 

where p is the number of parameters to be estirnated, is used. This triangle is then 

moved along the objective function surface by flipping, and resizing as required so that 

the new points chosen always result in a deciease in tlie objective function. A more 

detailed description of the algorithm and the details of its implementation are given by 

Press et  al. (1989). 

The simulated annealing alg-orithm is very robiist to the folding in the objective 

function surface and can deal reasonably well with the problem of local optima due to 

the nature of the alg~iitlim. In the simulated mnealing algorithm, a random step within 

the defined parameter boundaries is chosen from the current point and the objective 

function is calculated. If the point is better, it is kept and becomes the current point. 

If i t  is worse, it may still be kept with a given probability. The  size of the step and the 
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probability of accepting a worse step are decreased as the optimization proceeds. The 

initial values of the step and probability of accepting a worse step: and their rate of 

decrease, are determined by the optimization tuning parameters. 

The limitations of the simulated annealing algorithm are that it is computationally 

expensive due to the large number of function evaluations that it requires, and that 

two tuning paranleters have to be set witliin the optimization algorithm. VVhile the 

algorithm may perform well with the default tuning parameters, this is case dependent 

and its performance d l  v a l  -4 more detailed description of the algorithm and the 

details of its implementation are given by Press et al. (1989). 

In using any algorithm the best that can be adiieved is to obtain a very good local 

optimum, that hopefully is the global optimum. LVhile with smaller models it is possible 

to determine if the global optimum was obtainecl, this is not possible with large models. 

4.2.2 Local Optima 

Multiple local optima can occur when estimating parameters in âny nonlinear model, 

though it was found that they were the riorm ~vheri  esti~nating parameters in large models. 

To illustrate the magnitude of the problem of local optima mith large models, an example 

will be presented. 

This example is taken from the first case st,iicl_v, a simulation of Styrene homopoly- 

merization where five parameters are estimated. The objective function surface is a five 

dimensional surface in this example. By fking al1 of the parameters a t  the point estimate 

values and varying only one parameter at a time, a cross section of the objective function 

surface along the axis of the chosen parameter is obtained. -4 cross section with respect 

to the parameters kIm .,,-,, and k1,,,,-,,, was generated. These parameten are part 

of the Arrhenius expression for the rate constant of chain transfer to  monomer. Further 

information about these parameters can be found in the model description given in Sec- 

tion 6.2. Figures 4.1 and 4.2 show a slice through the objective function surface while 
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varying the parameters kfmacL-,, and kf,,-ev. In these figures, the horizontal axis 

is the value of the parameter being vx-ïed, the vertical axis is the criterion value of the 

objective function and the circle indicates the parameter point estimate. Both plots have 

been truncated on the vertical axîs at  a criterion value of 1400 and 1500, respectively. 

The convoluted surface and local optima create numerous difficulties for rnost optimiz- 

aiion algorithms. In this case the sirnplex algorithm did not perform that well, as seen 

by the location of the point estimates. 

An inspection of Figures 4.1 and 4.2 reveals that a large number of local optima are 

present and that the point estimate has converged to a local optimum. This observation 

provides valuable information about the magnitude of the optirnization problem and 

therefore wilI suggest a course of action in obtairiing the parameter estimates. In this 

case the large number of local optima suggests tlie use of an optimization algorithm 

that is more robust to local optima, such as simulated annealirig. This optimization 

method might be more effective in tlie long ruri even though it is not as efficient as 

the simplex algorithm. The large number of local optima also indicates that some type 

of diagnostic should be run on any local optimum found. This diagnostic, such as the 

generation of cross sections of the criterion surface as shown in figures or an  evaluation 

of the criterion in the neighborhood of found optimum, will indicate to the researcher if 

further optimization is required to obtain the parameter estimates. 

4.2.3 Parameter Correlation 

Parameter correlation can make the parameter estimation problem more difficult. This is 

because i t  usually produces a curved valley in the objective function surface when working 

with nonlinear rnodels. A number of factors can cause the parameter estimates to be 

correlated. This may be due to the quality of the data collected (i.e. the experiment 

design), or the model structure. In certain cases it is possible to identiS the model 

structure that is causing the parameter correlatio~i, such as an Arrhenius relationship, 
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Figure 4.1: A cross section of the objective function surface, while varying kfmpre-ezp 
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k!rn act-eng 1o4 

Figure 4.2: A cross section of the ol~jective fuiiçtion surface, while wrying kfmact-eng 



Chapter 4. Parameter Estimation 59 

tvhile in other cases it is not readily apparent. To deal with parameter correlation a 

number of options are available. If the correlation is due to rnodel structure the model 

can be reparameterized. If it is due to the data, more data at  different locations or from 

different responses can usually reduce the amount of correlation, (Bos and Draper, 1965). 

While parameter correlation can make it difficult to obtain independent parameter 

estimates, it should be noted that if only a good prediction from the model is desired, 

then the correlation of the parameter estimates may not be a significant problem. 

To illustrate how parameter correlation can affect the parameter estimation process, 

an esample will be given. This esample is based on the estimation of the parameters 

I.ppre-.lp and k, .,---,,, within the Watpoly rnodel for the simulation of Styrene homo- 

polymerization. section of the objective function surface to estirnate the parameters is 

shown in Figure 4.3. In this figure, the horizontal axes are the values of the parameters 

and the vertical a,wis is the log of the criterion value. The log of the criterion was taken 

to compress the vertical to show more of the surface features. An inspection of 

Figure 4.3 reveals two characteristics tliat tvill make the parameter estimation process 

very difficult. The first is the very steep curved valle'., and the second are the multiple 

rows of peaks parallel to the steep valley (these rows of peaks are actually ridges and 

appear as peaks due to the resolution of the data used to generate the surface). The r o m  

of peaks will produce local optima where the optimization algorïthms can get stuck. 
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Kp pre-exp 

Figure 4.3: -4 plot of the objective function surface, while varying kp p..-,,p and k, 
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Confidence Regions 

Whenever pararneter estimates are obtained there is a given amount of uncertainty in 

these estirnates. Some of the possible reasons for tliis uncertainty are, the experiment 

design, the measurement error, the number of data points and the observability of the 

parameters. 

To examine the uncertainty in a given set of pararneter estimates, the joint confid- 

ence regions of the parameter estimates must be obtai~ied. In analysing the amount of 

uncertzinty, the use of joint confidence regions is recommended over individual para- 

meter confidence bounds, since the confidence bourids will in general overestimate the 

uncertainty present in the parameter estimates (Draper and Guttman, 1995). 

When nonlinear models are used, the joint confidence regions can be obtained in a 

number of different ways. These are: 

a linear approximation (i.e. ellipsoidal rcgions) 

a true shape, approximate confidence level 

a true shape, true confidence level 

The above methods are listed in increasing order of accuracy wwhich also corresponds t o  

an increasing amount of computation required. 
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Section 5.1 will discuss the different methods amilable for obtaining confidence re- 

gions and review the theory A discussion of the issues in using true shape approximate 

confidence level confidence regions with multiple responses is given in Section 5.2. This 

section wilI present the case when the joint confidence regions obtained are a t  a confid- 

ence level that is very different than the expected confidence level. To illustrate this, two 

examples will be presented and discussed. Obtaining the joint confidence regions can 

be a difficult ta&. Section 5.3 will discuss the implernentation of methods for obtaining 

confidence regions. 

5.1 Background Theory 

This section will review the theory of confidence regions. Only an  overview w i l  be 

presented, as the detailed proofs and discussion can be found in various sources such as, 

Seber and Wild (1989) and Bates and Watts (1988); for esample. 

As an introduction to confidence regions, the linear case will be presented. The 

nonlinear and multiresponse cases are direct extensions of it. Given the linear mode1 

where y is a vector of measured responses, il;- is the design matrix, fl  is the vector of 

parameters to be estimated and E is a vector of Cid norrnally distributed errors, the least 

squares estirnate of 8, 0, is tlien given by 

Under the above assumptions, the estimator of 0, is normally distributed with a covari- 

ance matrix given by 02(X1X)-' and the (1 - a)  joint confidence region is then given 

by 

(p - B)'X'X(P - P )  5 p s2 F ( p ,  n - p, a )  (5.3) 



Chapter 5. Coddence Regions 63 

where n is the number of trials, p is the number of parameters and F(p,  n - p, a) is the 

value of the F distribution a t  a confidence level a with n and n - p degrees of freedom. 

The estimate of the measurernent error variance (Le. s2) is given by 

where ~(6) is the residual sum of squares. 

In equation 5.3 the F distribution is used because the terms { ( P  - ,@'X"X(P - b)}  
and {s2) are both assumed to be x2 distributed ~vi th  p and n - p degrees of freedorn, 

respectively Therefore their ratio mil1 be F distributed. To obtain the exterior surface 

of the joint confidence region a t  a given confidence level, the right hand side of equation 

5.3 is fixed and the Left hand side is solved for d l  possible parameter values. The joint 

confidence region that is produced will be a h\.perellipsoid with dimensions equal to 

the number of parameters considered. Note that points on or inside the hyperellipsoid 

represent plausible values of P. Normally, if more than two parameters are estimated, 

then a two parameter conditional joint confidence region is calculated. This confidence 

region is obtained by fising the remaining parilmeters at tlieir point estimate values. 

Then the confidence contour is obtained by solving for the set of values of the two chosen 

parameters that satisfy the equality in equation 5.3. 

The nonlinear case is a direct extension of the liriear case and will be discussed next. 

Given the nonlinear model, 

= f (x, O * )  + E; 

where y is the measured value, f (z, O * )  is the mode1 response and E is the measurement 

error, the estimate of 8 is obtained by minirnizing the sum of squared deviations given 

b y: 

s(&) = [y - f (z, &)]'[y - f (z, 811 
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~ ( 8 )  defines a p dimensional surface and is referred to as the 'sum of squares surface'. If 

the assumption is made that in the neighbourhood of 8 a linear Taylor series expansion 

is an adequate approximation of the sum of squares surface, then the joint confidence 

region of the estimated parameters is given by: 

Where V is the ma t rk  of first derivatives, or Jacobian, of the model f (xi; O )  with respect 

to the parameters, given by: 

The above V matrix is andogous to the -Y rnatris in the linear case. If the linear 

approximation is adequate then the ellipsoid generatecl by equation 5.8 mil1 be an accurate 

representation of the true joint confidence regions. Tlie Iinear approximation of the sum 

of squares surface may not be adequate due to the intrinsic curvature andior parameter- 

eEects curvature present. An analysis of this curvature is discussed by Clarke (1987)' 

Cook and Goldberg (19986) and Cook and Witmer (1985). If the linear approximation 

is used, a test to deterrnine if it is adequate shoiild 11e carriecl out. To accomplish this, 

Bates and Watts (1980) propose the use of profile-t plots. These plots will show the 

curvature of the primary avis of the joint confidence region. If the linear approximation 

is adequate then the profile-t plot will not deviûte significantly frorn a straight line. If 

the linear approximation is not adequate, as shown by the profile-t plots, then the joint 

confidence region is obtained using equation 5.10: (Beale, 1960). 

The above equation wiIl produce the true sliape of the confidence region but only at the 

approximate confidence level. 

The nonlinear multiple response case is nri estexisiori of the single response case presen- 

ted previously. If a multiresponse model with n trials and m responses is used, 
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the linear approximation of the joint confidence region is given by, 

where R is the Hessian of the objective function (i-e. 12'21) with respect to  8 evaluated 

at 8, and where Z is the matrix of deviations giwn by, 

The exact shape approximate level joint confidence region is given by, 

The true shape and true confidence level regions can be obtained using ttvo methods. 

The first is based on the likelihood function and involves two steps. The first step is 

to  integrate the area under the likelihood frinction from negative to positive infinity. 

This will allow the determination of the likelihood value that corresponds to the desired 

confidence level. The second step involves taking the contour of the likelihood function 

surface at the likelihood value determined in step one. -2 practical modification of this 

approach is to integrate from parameter values tliat produce very low likelihood values 

on each side of the parameter point estimate. A limitation of this approach t o  obtain the 

confidence regions is that is can easily becorne infeasible if the nurnber of parameters is 

large. This is due to the amount of cornputation required. 

The second method that can be used to obtain true shape, true level joint confidence 

regions is based on a Monte Car10 type approach like the Gibbs sampler (Cassela and 

George, 1992). A limitation of this approach is similar to that of the previous method 

in that the amount of computation required with large models may be too large to be 

practical. Although i t  can be significantly less than that required with the integration 

method. 

A further point to consider when analysing confidence regions, is that confidence 

regions are a function of the quality of the da ta  and the observability of the parameters. 
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For a given experirnent design, the quality of the data obtained between experiments 

can Vary. Therefore the shape of the joint confidence region will be different for different 

experiments. This effect is amplified if the number of sample points in the experiment 

is small, the parameters are not very observable, or the measurement error is large. To 

illustrate this, the joint confidence regions of the two parameters in the biological oxygen 

demand (BOD) mode1 used in Bates and Watts (1958) nlll be shown. The BOD mode1 

is given below. 

f (x, 6) = BL(l - e-O") (5.15) 

Where x is the time in days, and O1 and O2 are the parameters to be estimated. Based on 

the sarne experiment design, five different sample data sets with different measurement 

errors were generated. For eacll of these clata sets. parameter estimates and their joint 

confidence regions were obtained. These corifidence regions are shown in Figure 5.1. The 

true parameter values are indicated by the circle: and the stars are the parameter point 

estimates from each data set. -4s caIi be observeci frorn Figure 5.1, the size and shape of 

the joint confidence region can Vary by a large amourit with different data sets. Therefore, 

if confidence regions are used as a measüre of qiiality in a simulation analysis, a large 

number of confidence regions should be ge~ieratecl. If' only a couple of confidence regions 

are used, due to chance the i~icorrect conclusiori inay be derived. 

5.2 Issues in Using True Shape Confidence Regions 

With Multiple Responses 

When parameter estimates are obtained: joint confidence regions are used to determine 

the quality of the estimates. For nonlinear models i t  is recommended that the true shape 

approximate level joint confidence region be obtained. This approach is recommended as 

the true shape will take into account the nonlineürity of the mode1 and the approximate 

level is used to significantly reduce the computation required if large models are used. 
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Figure 5.1: Joint confidence regioiis of five different cases, of the parameters Ol and 82 in 

tlie BOD model. 
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A limitation of the true shape approxîmate Ievel joint confidence region method when 

multiple responses are used, is tliat the confidence level of the joint confidence region 

obtained can be significantly different than espected when the sample size is small. This 

difference can be up to 70 percent as obsemed in case studies- Therefore, thete is a 

failure of the confidence region theory to accuratery represent the uncertainty present in 

the parameter estimates. 

To explain why the confidence region theory faiIs t'or small sample sizes when multiple 

responses are used a description of the steps in the derivation of equation 5.14, the 

equation that defines the parameter confidence regions, will be presented. This wili show 

the assumption that is made which \vas found to be iiot valid in the esamples considered 

for small sample sizes. 

As a starting point in the derivation of equation 5.14, the derivation of the determinant 

criterion will be presented as outlined in Box and Tiao (1973). Given the nonlinear model. 

A Bayesian argument can be used to obtain the posterior distribution of (8, C-l), where 

noninformative priors are used for B and C. The resulting posterior distribution is shown 

below. 

To remove the C-1 term, the above equation is çompared to the Wishart distribution. 

This simplifies the above equation to the following. 

The matrix V in the above equation corresponds to the Z'Z matrix and C is a normalizing 

constant so that the sum of the probabilities is one. In deriving the above equation the 

assumption that C-' is Wishart distributed is made. Therefore the joint confidence 
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region of the parameter estimates is given by. 

which is X 2  distributed with p degrees of freedom. If the measurement error is estimated 

then the above becomes. 

which is F distributed with p and TL - p degrees of freedom. 

The reason why the level of the confiderice region is not near the expected level when 

multiple responses are used, is because equation 5.30 is not F distributed for small sample 

sizes. Small here was found to be when n is less than or equal to 213, where p is the number 

of parameters estimated. Equation 5.20 is assurnecl to be F distributed because both the 

numerator and denominator are assumed to be X2 distributed. This assumption is made 

because the measurement error in the model is assumed to be normally distributed. 

Monte Carlo studies showed equation 5.20 to deviate from being F distributed as the 

sample size decreased. Though if only one respoiise i ~ ~ a s  iised then equation 5-20 \vas 

found to be F distributed for al1 sample sizes. Tlie Monte Carlo studies also showed 

that for large sample sizes, the numerator and denominator in equation 5.20 were not x2 
distributed but their ratio was F distributed. 14%'; ttiis ocçurs and why equation 5.20 in 

not F distributed with a small sample size iri not clear. 

To illustrate the failure of the Joint confidence region formula (Le. equation 5.14), two 

examples will be presented. The first will consider the classic A + B + C reaction, used 

by various authors such as Bos and Draper (1965) for esample. This example was used as 

it is similar to the type of models considered in this work but is much smaller, therefore 

allowing various Monte Carlo studies to be easily performed. The second example is 

based on case study two as outlined in Section 6.4. This esample will show how the 

calculation of the joint confidence region fails with a large model. 

A further consideration wtien generating confidence regions for parameter estimâtes 

obtained with the determinant criterion with multiple responses is the degrees of freedom 
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of the parameter estimates. In this case we have n observations per response, m responses 

and the number of parameters is p. Different values for the degrees of freedom have 

been proposed. Bard (1974) states that n m  - IJ should be used, while Bates and Watts 

make a case for n - p .  Oxby (1997) addresses this issue and discusses the limitations 

of the values proposed by Bard and by Bates and Watts. He states that any simple 

expression mil1 be an approximation and therefore its validity will be case dependent. Of 

the two possibilities he recornmends the use of Bard's (1974) nm - p value over Bates 

and Watts n - p value, mhich he considers too coriservative. In examining the failure of 

the approximate level true shape joint confidcnce region theory, both measure of degrees 

of freedom were considered and both showed similar results. 

The ABC mode1 has been used rnany tirnes in the literature and represents the general 

sequence of first order irreversible chemical reaction as shown in equation 5.21, where A, 

B and C are chemical compounds and kl and k2 are the reaction rate constants. 

A % B % C  (5.21) 

The A to B to C reaction can be described by the following set of differential equations. 

4-41 - = -El - kl [A] erp - 
dt BT 

The ABC rnodel was used in the simulation study since it  is nonlinear, has multiple 

responses and is small enough so that various Monte Carlo studies can be easily run. A 
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further advantage of the ABC mode1 is that an analytical solution exists to the differential 

equations, and this makes its use in this context much simpler. 

To better understand the behaviour of the joint confidence region of the parameter 

estimates when multiple responses are used a number of Monte Carlo simulation studies 

were performed. These exarnined the effect of the number of trials and the number of 

responses used on the joint confidence regions of the parameters. 

Each Monte Carlo study generated 10000 sample data sets. Each data set was gener- 

ated by adding a norrnally distributed error with a mean of O and standard deviation of 

0.05 to the true response values. Using this sample data the parameters were estimated 

using the determinant criterion. It is was then determined if the true pararneter values 

occurred within the true shape joint confidence region of the pararneter estirnates, ob- 

tained using equation 5.20, at  different levels of confidence. This procedure was repeated 

10000 tirnes in each Monte Carlo study and various Monte Carlo studies were run with 

different numbers of trials. For the simulation the parameter values of kl and k2 and the 

experiment design, are the same as those used by Bates and Watts (1988), and are given 

below. The Bates and Watts design is an empiricd design and the four trial design is 

obtained by removing two of the points. 

r parameter values, kL = 0.5 and k2 = 0.2 

sampling times for the 6 trial Bates and Watts experirnent, 0.5, 1, 2, 4, 8 and 16 

minut es 

r sampling times for the 4 trial Bates and Watts esperiment, 0.5, 2, 8 and 16 minutes 

Table 5.1 shows how often the true parameter values were in the joint confidence 

region, expressed as a percentage, for the cases of four and six trials. The confidence 

regions were generated at three different confidence levels, 99, 95 and 50 percent. It is 

expected that with repeated sampling the true values of the parameter would fali inside 

the joint confidence regions at  a percentage equal to the confidence level. From the results 
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number of I 1 triais 

1 confidence level 1 

Table 5.1: Percent of the time in 10000 trials, that the true parameter values of the ABC 

mode1 were within the calculated confidence region of the parameter estimates, when the 

standard deviation of the measurernent error was 0.05. 

in the table we can see that the true confidence level of the joint confidence region in 

the four tnal case is much smaller than the expected value. To determine if the obselved 

results were due to the measurement error, the case study was repeated with different 

magnitudes of the measurement error and sirnilar results were found. The only observed 

effect was that an increase in the error, increased the difference between the observed 

confidence level and the expected confidence level. In the above Monte Carlo studies 

the experiment design used to estimate the parameters was similar to the one used by 

Bates and Watts (1988). This design is not optimal. If a D-optimal experiment with two 

support points a t  2.2 and 6.6 utes is used, these points are replicated two and three 

times for the four and six trial experirnents, and the Monte Carlo study is repeated using 

an optimal experiment design based on the true parameter values. The results obtained 

are similar to those obtained using the design from Bstes and Watts (1988). 

To gain an understanding of why the results in Table 5.1 were obtained, the distri- 

bution of the terms given by equations 6.25, 6.26 and 6.27 were generated for the four 

response and six response cases. 



Chapter 5. Confidence Regions 73 

The first tmo terrns are expected to be X2 distributed while the third is expected to 

be F distributed. 

'''- pi ' p  term for the four trial case of the ABC Figure 5.2: Distribution of the ( I  l,,,&~(,-,)l 

example (circles), and the F distribution with (2,2) degrees of freedom (solid line) . 

Figure 5.2 shows the distribution of equation 6.27 for the four trial case. The circles 

are the distribution that was obtained based on the Monte Carlo study and the solid line 
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is the F distribution with (2,2) degrees of freedom. The vertical axis is the probability 

density of the F distribution and the horizontal axis is the F value. The difference in 

the two distributions is what caused the discrepancy obtained in Table 5.1- 

The above analysis was repeated for the six trial case. Tt was found that the ratio of 

the terms IZfZ(/(n -p) to ((2'21 - 12'21) /n is closer to being F distributed. Therefore the 

observed confidence level is closer to the expected confidence level. When the distribution 

of the individual terms was examined, it was found that they were not x2 distributed. 

Why the ratio is then F distributed is unclear. 

5.2.2 Case Study 2 

This example is based on case study two as described in section 6.4. It involved the 

estimation of five parameters using five responses in the IVatpoly model. The system 

that was simulated is the copolymerization of Styrene and Methyl Methacrylate. 

This example will show that the failure of the joint confidence region theory also 

occurred in the large mode1 used in this thesis. Due to the size of the model, only 177 

cases were run in the Monte Car10 study. This study as in the previous example involved 

generating sample data sets and obtaining parameter estimates from them. Then it 

was detennined if the true parameter values were within the true shape joint confidence 

region obtained using equation 3.20. The results obtained are shown in Table 5.2, and 

are similar to those obtained in the ABC example. As in the ABC example, the level of 

the joint confidence region is significantly diffcrent than the expected level. 

1 1 confidence level 1 

Table 5.2: Percent of the time in 177 trials, thât the true parameter values in Case Study 

2 were within the calculated confidence region of the parameter estimates. 
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5 .Z.3 Discussion 

The failure of the joint confidence region t h e o l  when the number of trials is small and 

multiple responses are used has to be taken into account when parameter estimation is 

being carried out. When confidence regions are used as  a measure of the uncertainty in 

the parameter estimates, the situation can occur that a greater amount of confidence may 

be associated with the parameter estimates thau is appropriate. This can detrimentally 

affect any later actions that depend on these results such as mode1 discrimination or the 

confidence region of the mode1 predictions. 

From the Monte Carlo studies in both examples it was found that using multiple 

responses will only affect the confidence region. The parameter estimates are not affected, 

and as expected better parameter estimates are obtained if multiple responses are used. 

Therefore it is still recommended to use multiple responses for parameter estimation, but 

caution should be exercised in the iriterpretation of the joint confidence regions obtained. 

5.3 Contouring algorithm 

In the previous section a number of different rnetiiods to obtain the joint confidence 

region of a set of parameter estimates were discussed. It was found that the true shape 

confidence regions approach was the best dioice due to the nonlinearity that is present 

in the type of models considered. 

This section will discuss the practical aspect of how to obtain the joint confidence 

regions. Two possible methods d l  be presented, the first is based on the algorithm 

proposed by Dhib and Oxby (1998) which will produce a very accurate joint confidence 

region. The second was developed by the autlior and is an adaptation of the simplex 

optimization method. 

The true shape joint confidence region is obtained using equation 5.10, which is re- 
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produced below for the readers convenience. 

The above equation when used is usuaIIy rearranged into the form shown below with the 

right hand side being constant. 

If the single response case is used: then s(&) is eqiial to the surn of the squared deviations, 

while for the rnultiresponse case ~ ( d )  is equal to IZ'ZI. In using equation 5.29 to generate 

a ttvo parameter joint confidence region, the parameter values that represent the contour 

are obtained by fixing the first parameter and solving for the second. The first parameter 

is then incremented and the procedure is repeated. This method can become nümerically 

unstable if a region of the contour is reached where a small change in the first parameter 

results in a large change in the second parameter. Normally when this region is reached 

the second parameter is held coristürit while the fitst is solvecl for. While this is a possible 

solution, it has the limitations that operator intervention is required and the process can 

be slow due to the optimization that is required to obtain each point on the contour. This 

problem is compounded if the objective func tiori surface is convoluted and the function 

evaluations are very expensive. 

The method proposed by Dhib and Oxby (1998) is an adaptive algorithm that follows 

the contour. This is achieved by taking a step from the current point and searching for 

the contour along a path that is perpendicular to the step taken. Tlieir algorithm works 

well since it will adapt its step size basecl on the curvature of the contour and use a 

search direction that is perpendicular to the arc created by the last three points along 

the contour. Its limitation is that it can be cornputationally expensive if a large number 

of contour searches are required (Le. if a large number of points are required to define the 

contour, such as in an area of high curvature). Tlie author has also found that it can be 
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numerically unstable in certain case studies performed. This was due to the significant 

amount of convolution present in the objective function surface. 

The method proposed by the author will follow the contour thus minimizing the 

number of function evaluations required. In general it d l  usually require less function 

evaluations than the method proposed by Oxby and Dhib. The only limitation is that 

the resolution of the confidence region and the Iimits on the parameter values have to be 

selected a priori. 

The algorithm is similar to the simplex optimization algorithm in that a shape is 

flipped in the required direction to achieve the objective (minimization in the simplex 

and follotving the contour in the çontouring algorithm) . The algorithm will start at  the 

point estimate values, move horizontally until it finds the contour, and then move a box 

along the contour until al1 of the contour is found. The aIgorithm was used to generate 

al1 of the confidence regions in the case studies given in Chapter 6. 

The steps of the contouring algorithm are as follows: 

1. define the parameter ranges and the desiretl resolution of the contour 

2. create a matrix to store a grid based on the parameter ranges, where the step size 

in the grid is equal to the contour resolution 

3. starting at  the grid square that contains tlie point estimate, move in a horizontal 

direction until the contour is crossed 

4. calculate the points of the grid-square and store in the grid matrix 

5 .  determine the direction in which to fiip the square 

6. if we are a t  the starting grid-square stop, else go to step 4 

7. based on the data storecl in the grid rnatris gerierate the contour, (tlie contour  .m 

function in Matlab can be used to extract the contour from the grid matrix) 
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The contouring algorithm was written as a Matlab function, and the Matlab source 

code is provided in Appendix B. Documentation in the sourcecode will desciibe the details 

of the algonthm such as, how it chooses direction in which to flip the square, or what to 

do if the grid boundary is encountered. 
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Case Studies 

6.1 Introduction 

This chapter will give a description of the polyrnerization model used and discuss three 

case studies. The case studies presented wiU liigiilight the four principal steps of the 

parameter estimation proçess and the diEerent problems that rnay be encountered when 

estimating parameters within large models. Whih eacli of the four parameter estimation 

steps will be described in each case study, each case study will focus on one or two of 

the steps. 111 the case studies tliere are a nurnber of common aspects to all, such as 

the generation of sarnple data and optimization algorithm used. These will be discussed 

below. 

The polymerization moclel usecl in the case stiiclies lias beeri extensivelÿ tested with 

experimental data, and has beeii found to perform d l .  Tlierefore the simulated data 

obtained from it is mry representative of the data tliat would be obtained from a labor- 

atory experirnent. In the case studies, the data was simulated by adding an error to the 

response values given by the model. This error was normally distributed with a mean 

of zero and a response rneasurement error standard cleviation as specified in each of the 

case studies. The magnitude of the measurement error for each response was determined 
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from experimental studies reported in the literature (Dube and Penlidis, 1996; D'Agni110 

et al. 1998), and from discussions with other esperienced researchers (McManus, 1999). 

The sensitivity analysis in each of the case studies was carried out by an analysis of 

the gradient values as outlined in Chapter 2. In the interpretation of the gradient plots, 

only a sample of the plots generated will be presented in each case study, and for each 

case study the sensitivity analysis is summarized iu a table in the sensitivity analysis 

subsection. The plots that are not shown in the case studies sections are included in 

Appendix C. 

The D-optimality criterion and the fmins algorithm, as discussecl in Chapter 3, were 

used to design the experiments in al1 of the case studies. The parameter estimates 

were obtaioed using the Determinant criterion and the f mins optimization algorithm as 

discussed in Chapter 4. 

Joint confidence regions of the parameter estirnates were obtained as outlined in 

Chapter 5. If p parameters are estimated, the joint confidence region is a p dimensional 

spaçe. Since it is not possible to view this space if p is greater than three, two parameter 

joint confidence regions are generated in the case studies. -4 limitation of these regions 

is that  they are conditional confidence regions and thus are a function of the other 

parameter estimates, where a change in the other parameter estimates may result in a 

change in the conditionai confidence region. 

-4 general description of the model used in the case studies is given in the next section. 

This is followed by the three case studies and a summary of the observations from the 

case studies. 

6.2 Mode1 Description 

The model used in the case studies is the Wxtpoly polymerization model, (Gao and 

Penlidis, 1996 and 1998). This is a mechanistic model for the simulation of free radical 

homopolymerization and copolymerization, that bas been tested extensively by compar- 
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ison with experimental studies. .4s an introduction to the model an overview of poly- 

merkation reaction kinetics is presented and is followed by a general discussion of the 

model. This includes a listing of the input variables and responses, and a description of a 

selection of equations from the model. This description will illustrate how the estirnated 

parameters and responses used in the case studies are integrated within the model and 

how they are related to each other. 

6.2.1 Polymerization Reaction Kinetics 

In free radical polymerization there are three priricipûl steps; initiation, propagation and 

termination. In the following description of tliese steps the assumption is made that only 

the terminal monomer unit on the growing polymer chain affects the reaction rate. The 

polymerization model based on this assumption is referred to as the 'terminal' model. In 

the description that follows of the tliree polymerizatiori steps, the notation indicates 

a radical chain n monomer units long and ending mith nioriomer type i. The principal 

steps in polymerization kinetics are: 

Initiation; decomposition of the initiator I iiito two primary radicals &-,*, that further 

react with the monomer to form a radical of cllain length one, where i is the 

type of rnonomer. 

I -I ?Ri,,* (6.1) 

Rn a +Mi 2 Rllia (6.2) 

Propagation; growth of the radical chain by the addition of monomer units. 

Termination; the two radical cliains form either one polymer chain of their combined 

length or two polymer chains of the respective radical chain lengths. 
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Termination can also occur by transfer to monomer as shown below. 

6.2.2 Mode1 Equat ions 

The following is a listing of the relationships that are part of the Watpoly mode1 (Gao 

1999). Only a subset of the relationships and equations are presented here, as the object- 

ive is to provide the reader with an oven-iew of the rnodel and the parameters estimated 

in the case studies. 

Initiation 

Rate of initiation 

RI = 2 f k d [ I ]  

where [Il is the initiator concentration, 4 is the rate constant of initiator decom- 

position and f is the initiator efficiency, which is a function of temperature and is 

expressed using an -Arrhenius relationship: 

where R is the gas constant and T is the reaction temperature. The parameters 

fpre -crp  and facl-eng will be estimated in Case Study 1. 

When the radical steady-state hypothesis is used, the total radical concentration, 

[Rm], is given by, 

Propagation 
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Rate of copolymerization 

l$, = kp[il/f] [Ra] 

where [Ml is the total concentration of nionomers and [Re] is the concentration of 

radicals. The pseudo-kp in the above equation is given by, 

where kpll and li,,, are the homopolymerization rate constants, kpla and kp21 are 

the cross propagation rate coristants, f l  alid f.L are the mole fractions in the reacting 

mixture of monomer 1 and 2, respectively, and and q52a are the mole fractions 

of radical type I and 2, respectiveiy, given by, 

If the total free volume is less tlian the criticd free volume for propagation the kp,  

values are adjusted using the following relationsiiip, 

where BBmi is the rate of decrease of k,, with free volume for monomer i, VI is 

the total free volume and I/>cTi, is the critical free volume for propagation. The 

parameter BBmi will be estimated in Case Stiidies 2 and 3. 

Terminat ion 

Rate of termination 

where ktll and kt22 are the homo-termination rate constants, kt12 is the cross- 

termination rate constant and [&.] is the concentration of radical type i. 
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The pseudo-rate constant for chain transfer to monomer k f m  is given by, 

where kfm, ,  and kfm,  are the rate constants for chain transfer to monomer 1 and 

2, respectively, and k fml ,  and kfm2, are the rate constants for cross-chain transfer 

to monomer. The klm,, parameters are a functiou of temperature and determined 

using an Arrhenius relationship. 

[ -k /mi j  act-eng/mI k f m  1 )  = kfmij p-e-ezpe (6.16) 

The parameters kfm,  ,,,-,, and kfm,  (icr-erirr will be estimated in Case Study 1. 

Free volume 

The monomer free volume is given by, 

where VFmi is the free volurne of monorner i ,  lmi is the total volume of monomer 

i in the reaction mixture, V+ is the total volume of the reaction mixture, ami is 

the variation of free volume with temperature for monomer i, T is the reaction 

ternperature, S<lmi is the g l a s  transitiori ternperature of monomer i and Vfmi is 

the constant of free volume with temperature for monomer i. The parameter ami 

will be estimated in Case Studies 1, 2 and 3. 

The polymer free volume is given by, 

where VFp is the polymer free volume, Vi, is the total volume of polymer in the 

reaction mixture, VT is the total volume of the reaction mixture, ol, is the variation 
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of free volume with temperature for polymer, T is the reaction temperature, Tgp is 

the g l a s  transition temperature of polymer and I/j, is the constant of free volume 

with temperature for polymer and will be estimated in Case Study 1. 

T g p  is obtained from the following relationship, 

where PM, PiMÎM2 and PMI M2 are the pro babilities of the ccrresponding sequences 

of monomer 1 (Ml) and moriomer 2 (ibL2), MTM, and IVkI2 are the weight fractions 

of monomer 1 and 2, and T g w i  is the glass transition temperature of the altern- 

ating copolymer. The T g h f , n f 2  parmeter  is estimated in Case Study 3 and the 

T g M t  parameter which is equal to the Sgp parameter in a homopolyrnerïzation is 

estimated in Case Study 2. 

Composition 

The instantaneous copolymer compositio~l is given by, 

where T I  and r2 are the reactivity ratios and f i  and fs are the mole fractions of 

free monomer 1 and monomer 2. 

The mole fractions are a function of the moles of monomer, which is a function of 

the rate of propagation, the rate of termination and the radical concentration. 

Triad fractions 

The instantaneous triad fractions are given by: 
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Molecular weight distribution 

The moments of the rnolecular weight distribution are given by, 

where r and ,8 are given by: 

r =  (?kt [Ra]' + klu [Ml [Re]) 
1 (LX,, 

\y dt  

In using the Watpoly model only part of its capabilities were used. -411 of the 

simulations studies were carried out in batch reactor mode a t  isothermal conditions. Of 

the avctilable responses from the Watpoly model, the following responses were used in 

the case studies. 

- conversion 
- polymer composition 
- radical concentration 
- number average molecular weight 
- weight average molecular weight 
- polyrnerization rate 
- triad fractions 
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6.3 Case Study 1 

6.3.1 Description 

This case study will describe the estimation of five parameters within the Watpoly mode1 

for the horaopolymerization of Styrene using five responses. -4 listing of the estimated 

parameters is given in Table 6.1. The responses used and their respective measurement 

error standard deviations (or,,,) are given in Table 6.2. 

6.3.2 Sensitivity Analysis 

The sensitivity analysis was performed with respect to the five parameters listed in Table 

6.1, and is summarized in Table 6.3. In this table the comments column is a summary 

of the observability of each parameter, where any a r e s  of large or small gradient values 

(Le. good or poor observability) are identified. As an example, at the top of Table 6.3, 

for the parameter kf, and the response of conversion the comrnents column states 

'65 OC , max. at 820 min., 75 OC , max. at 450 min., better observability at 65 OC '. This 

area corresponds to the area of large gradient values as shown in Figures 6.1 and 6.2. 

To illustrate the sensitivity analysis procedure, the analysis mith respect to the para- 

meter kf, a,-t-,g will be described. Figures 6.1 and 6.2 show the gradient values for al1 

of the responses with respect to k f m  a,-,g at 65 OC and 75 OC respectively, plotted 

versus time in minutes. These temperatures were chosen, as they represent a range of 

typical operating temperatures. In these plots the horizontal stxis is time and the vertical 

axis is the normalized gradient value. The gradient values were normalized by dividing 

by the standard deviation of the response measurement error as given in Table 6.2 and 

discussed in Chapter 2. 

Go od  parameter observabili ty is determi~ied by locating areas where the absolute 

normalized gradient values are large. Figure 6.1 shows the gradient plots for kt, 

at 65 OC . The gradient values have been plotted on three separate graphs to allow for 
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Parameter Description 

activation energy in Arrhenius expression for the rate of 
radical t ransfer to monomer (cal/mol) 

pre-exponential factor in Arrhenius expression for the 
rate of radical transfer to monomer (L/mol min) 

activation energy in Arrhenius expression for initiator 
efficiency (cal/mol) 

pre-exponential factor in Arrhenius expression for initi- 
ator efficiency (-) 

constant of free volume with temperature for p o l p e r  
(free volume units/K) 

Table 6.1: Parameters estimated in case study 1 

Response 

conversion 

Mn 

M W  

rate 

radical conc. 

Meclsurement error 

standard deviation (or,,,) 

Table 6.2: Measurement enor standard deviation (ore,,) of the 

study 1 

responses used in case 
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Ktm act-eng sensitivity to conversion 

Kh act-eng 
sensitivity to Mn(-) and MW( ...) 

time 

Ktrn act-eng 
sensitivity to rate(-) and radical conc.( ...) 

500 
time 

Figure 6.1: Gradient plots with respect to the parameter k fm .,+,,, at 65 OC . 
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Figure 6.2: Gradient plots with respect to the parameter kt, .=t-,,, at 75 O C  . 
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easier interpretation. The top graph contains the response of conversion, the middIe graph 

contains the responses of number average molecular weight (Mn) and weight average 

molecular weight (Mt,,), and the bottom graph contains the responses of rate and radical 

concentration. In al1 of the graphs the normalized gradient values have been clipped a t  

a value of 20. This is performed to rnaintain the resolution of the graphs and to aid 

interpretability. An examination of al1 the graphs indicates the presence of a peak of 

varying width near 800 minutes. Therefore al1 five responses will provide a good level 

of information about the parameter at that point. A comparison of al1 of the responses 

indicates that the Mn and A&,, are the best responses to use. This is due to the broadness 

of the peaks. By broadness it is meant that the peak width is significant, so that large 

gradient values occur over a wide range of sampling times. Al1 of the responses maximize 

the arnount of information they contain in the area when time is equal to 800 minutes. 

This time corresponds to the auto-accelaration phase of the polymerization. This can be 

seen by examining the plot of conversion versus time shown in Figure 6.3. In this plot 

the vertical axis is conversion, where 1.0 indicates 100% conversion, the horizontal axis is 

time and the solid and dashed lines represent the conversion profiles a t  65 OC and 75 OC 

, respectively. The auto-acceleration section is the steep section of the conversion versus 

time curve (Le. from 420 to  480 minutes for the 75 O C  curve). 

An analysis of the gradient plots at 75 O C  shomn in Figure 6.2 indicates similar results 

as a t  65 O C  . The differences are that the gradient peaks have moved to 450 minutes, 

which corresponds to the auto-accelaration section at 75 OC as shown in Figure 6.3. A 

second difference is that the magnitude of the observability has decreased, due to the 

smaller peak size. 

The sensitivity analysis was performed with the açsumption that the initial values 

of the parameters were adequate. This assumption may not be valid and the second 

part of the sensitivity analysis is to test it by determining the effect a change in the 

parameter values will have on the gradient plots. Figure 6.4 for example shows the effect 
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Figure 6.3: Plot of conversion versus time for the liornopolymerization of Styrene, solid 

line 65 OC , dashed line 75 OC . 
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of changing the value of kf, ad-,, on the gradient of the conversion response at 65 OC . 

The axes are similar to the axes of the gradient plots describes earlier. The three gradient 

curves tha t  are shown were calculated using three different values of /cf, a,-mg (12000, 

13426 and 15000, labelled -4, B and C, respectively). These values represent the possible 

range of kfm and were chosen based on an examination of the value of k f m  .+,, 
for other similar systems. An inspection of the graph reveals that the obsembility 

decreases significantly as the value of the parameter increases. Although the general area 

of maximum observability (i.e. where the absolute gradient value is largest) does not 

rnove, it becomes smaller. Therefore a measurement taken at  450 minutes will provide 

less information about the parameter as the parameter value increases, but will be the 

best location to take samples nonetheless. 

Figure 6.5 shows the affect of changing the value of VI, on the gradient of the con- 

version response at 65 OC . The three curves that are shown were calculated using three 

different values of Iff, (0.020, 0.025 and 0.030, labelled -4, B and C, respectively). These 

values represent the possible range of Vj0 and were chosen based on an examination of the 

value of VD for other similar systems. .4n examination of the graph reveals that as the 

value of the parameter changes the peak size and its location change. Good observability 

is available with al1 three peaks due to their large size, but the location of maximum 

observability moves as the pararneter values change. This indicates tha t  the designed 

experiment mil1 change as different pararneter values are used. Since the area of max- 

imum observability occurs in a very sharp peak, this will result in a rapid decrease in the 

amount of information provided by the conversion response if the sampling time deviates 

by a small amount from the optimal value. This cleviation from the optimal sarnpling 

time can occur if the parameter values used to design the experiment are different from 

the estimated parameter values. Therefore the designed experiment will be very sensitive 

to the values of VI, used (i.e. the experiment will not be robust to the VI, parameter 

uncertainty) . 
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Figure 6.4: Effect of changing the value of k fm on the gradient plot of conversion 

at 65 OC , where k f m  equals 12000(.4), 13426(B) and 15000(C) 
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Figure 6.5: Effect of changing the value of VIo 011 the gradient plot of conversion at 65 

OC , where VI, equals 0.020(.4), 0.025(B) and 0.030(C) 
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[ Parameter 7 Responst 
conversior 

rate 
radical conc. 

conversion 

M n  

M W  

rate 

radical conc. 

conversion 

M n  

M W  

rate 

radical conc. 

conversion 
Afn 

MW 
rate 

:adicd conc. 
conversion 

A& 

M W  

rate 

nadicd conc. 

Comnients 
65 OC , max. at 820 min-, 75 OC , mau. at 450 min., better obsem- 
ability at 65 OC 
65 OC , max. a t  820 min., 75 OC , max. a t  450 min,, very good 
observability a t  both temperatures, better a t  65 OC 
65 OC , max. a t  820 min-, 75 OC , max. a t  450 min., very good 
observability at both temperatures, better a t  65 OC 
65 OC , rnax. a t  800 min., 75 OC , max. at 450 min. 
65 OC , max. a t  800 min., 75 OC m a x  at 450 min- 
65 OC , mm. at 850 min., 73 OC , max. at  460 min., sharp peak a t  
both temperatures 
65 OC , m a x  a t  850 min-, 75 OC , max. at  460 min., s h a q  peak a t  
both temperatures 
65 OC , max. a t  850 min-, 75 OC , max. at 460 min., s h q  peak a t  
both temperatures 
65 OC , m a x  at 850 min., 45 OC , m a x  at 460 min., sharp peak a t  
both temperatures 
65 OC , m a -  a t  850 min-, 75 OC , m a x  at 460 min., s h a q  peak at 
both temperatures 
65 OC , max. a t  850 min.: 75 OC , max. at 460 min., sharp peak at 
both temperatures and very poor observability 
65 OC , max. a t  850 min., 75 OC , mzu. at 460 min., sharp peak a t  
botii temperatures and very poor observability 
65 OC , max, a t  850 min., 75 OC , mau. at 460 min., sharp peak a t  
both temperatures and very poor observability 
65 OC , max. at 850 rnin., 75 OC , max. at  460 min., sharp peak a t  
both temperatures and very poor observability 
65 OC , mau. at 850 min., 75 OC , max at 460 min., sharp peak a t  
both temperatures and very poor ob~e~vability 
65 OC , mau. at 850 min., 75 OC , m a x  at 460 min. 
65 OC , max. a t  850 min., 75 OC , max. at 460 min. 
65 OC , nrau. at 850 min., 15 OC , max. at 460 min. 
65 OC , max. a t  850 min., 75 OC , max. at  460 min- 
65 OC , mau. a t  850 min., 75 OC , max. at 460 min. 

65 OC , m a x  a t  850 min., 75 OC , max. at 460 min., poor observab- 
ility a t  lom conversion 
65 OC , m a -  a t  830 rnin., 75 OC , m a x  at 460 min., poor observab- 
ility at low conversion 
65 OC , max. a t  850 min., 75 OC , ruax. at  460 min., poor obser~xb- 
ility a t  low conversion 
55 "C , max. a t  850 min., 75 OC , ma.. . at 460 min., poor observab- 
ility a t  low conversion 
55 OC , max. a t  850 min., 75 OC , max. at 460 rnin., poor observab- 
ility at low conversion 

Table 6.3: Summary of the sensitivity analysis 



Chapter 6. Case Studies 

6.3.3 Experiment Design 

The objective of experiment design was to find an experiment that would maximize 

the amount of information provided about the parameter values. The experiment was 

designed using the D-optimality criterion as ciiscussed in Chapter 3. Since a subset 

of the parameters to be estimated are within an -4rrhenius expression, two different 

temperatures were used in the experiment. The size of the experiment was chosen to be 

10 trials, with 5 trials at 65 O C  and 75 OC , respectively. The value of 10 was chosen, as 

it is twice the number of parameters. 

In designing the optimal experiment it was found tliat a large number of local optima 

existed, as a different experiment was obtained with each different initial starting point 

used. To deal with the local optima three different approaches were tried. The first was 

based on ififormation provided by the sensitivity analysis, the second was to randomly 

choose 10 points within the tirne range of 100 to 900 minutes, and the third, included 

as a comparison, was to try evenly spaced points. Table 6.4 shows a sample of initial 

points used for the optimization from the three approaches used and the criterion value of 

the experiment that was obtained from each set of initial points. Using the information 

provided by the sensitivity analysis produced the experiments with the largest criterion 

values (i.e. the best experiments). Random initial points produced experiments of a 

wide range in quality. When evenly spaced points were used the optimization algorithm 

did not converge, even though a number of different attempts were made by decrsasing 

convergence tolerance andior changing the optimization algorit hm parameters. The best 

experiment found is shown in Table 6.5. 

To determine how sensitive the experiment design is to the initial parameter values 

a sensitivity analysis of the designed experiment, shown in Table 6.5, was performed. 

This was accomplished by caiculating the criterion value of the designed experiment 

using pararneter values that span the feasible parameter space. To span this space the 

parameter values were perturbed according to a factorial experiment arrangement. The 
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1 source of 1 initiai values 1 designed experiment 1 
1 initial values 1 1 criterion value 1 

Table 6.4: Initial values used by the optimization algorithm and the criterion of the 
experiment obtained 

sensitivity 
analysis 

information 

random 

evenly 
s ~ a c e d  

Table 6.5: The best esperiment design obtained 

430, 440, 450, 460, 470, 
820, 830, 840, 850, 560 
450, 450, 450, 450, 450, 
830, 830, 830, 830, 530 
500, 500, 500, 400, 400: 
800, 800; 900, 900, 900 
114, 284, 455, 465, 458; 
585, 709, 757, 813, 860 
214, 424, 428, 592, 690, 
733: 514,833, 837, 848 
100, 200, 300, 400, 500, 
600, 700, 800. 900, 900 

sampling tirne (min.) 
415, 431, 446, 459, 473 
840, 850, 855, 860, SG5 

3.28e37 

2.32e37 

1.1 le33 

6.85e31 

1.37e35 

did not converge 

crit,erion value 
3.28e37 
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paramet er Low level High level 

Table 6.6: High and low levels of the parameters used in the experiment sensitiviw 

andysis. 

high and low levels of the parameter values used to span the parameter space are given 

in Table 6.6. These values were obtained based on prior experience and an examination 

of the parameter values of similar systems. 

To determine how the quality of the experiment changes over the parameter space the 

criterion values or the radius measure as described in Chapter 3 can be used. While the 

radius measure is an approximation, it is easier to perforrn a çomparison using i t  than the 

criterion value. This is because the radius mesu re  is linearly proportional to the average 

uncertainty in the individual parameter estimates (i.e. if the radius measure decreases by 

half, the uncertainty in the individual parameter estimates will decrease by half). This 

quality makes the radius a more intuitive measure that simplifies the experiment design 

sensitivity analysis. It is important to remember that due to the assumptions made in 

its development, discussed in Chapter 3, the radius is intended to be used only as a 

qualitative measure when comparing designed esperiments. 

The results of the experiment sensitivity analysis are given in Table 6.7. This table 

shows the perturbed parameter values, in a factorial format, and the corresponding values 

of the radius of the confidence region spheroid. The experiments are sorted in decreasing 

order of quality (Le. increasing radius or standard deviation of the parameter estimates). 

The 1 s t  six values are assigned values of 'inf ' as the D-optimality criterion was evaluated 
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to be zero. The original experiment as designed is indicated by a star on the right hand 

side of its radius value. An examination of the values in Table 6.7 indicates that  given 

the chosen parameter ranges, the qua& of the experiment will decrease by more than 

two orders of magnitude for more than half of the test points. This may be due to any 

of the following reasons: 

the parameter ranges chosen for the sensitivity analysis are too large 

a the experiment design is very sensitive to the parâmeter values used 

one or more of the parameters has become 'practically' unobservable (i.e. its con- 

fidence region is very large) 

To determine the effect of the chosen parameter ranges, the sensitivity analysis was 

repeated with smaller parameter ranges, a plus/minus ten percent change in al1 of the 

parameter values. This decreased the sensitivity of the design but there were still three 

orders of magnitude difference between the value of the radius at the initial parameter 

values and a t  the worst location. Further informatiori about how sensitive the design is 

to the parameter values can be inferred by esamining how the gradient plots change with 

a change in the parameter values, as show11 in the previous section with the analysis of 

Figures 6.4 and 6.5. To determine if one of the parameters lias become 'practically' unob- 

servable and is biasing the experiment sensitivity analysis, the analysis should be repeated 

with the chosea parameter kept constant at the initial value used. If the criterion values 

change significantly when the analysis is repeated, tlien the chosen parameter is causing 

the experiment design to significantly decrease in quality. Therefore the experiment is 

not robust to the uncertainty in the given parameter. 

Based on the results of the designed experiment sensitivity analysis i t  is possible 

that the designed experiment will not be a very useful experiment if the true parameter 

values are very different from the values used to design the experiment. At this point 

two courses of action are available. The first is to redesign or modify the experiment so 
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Paramet er values Radius 

Table 6.7: Results of the designed experiment sensitivity analysis 
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that it is more robust, and the second is to perform the experiment as designed and then 

to perforrn further experiments once better parameter estimates have been obtained, i.e. 

to  follow a sequential, iterative approach. Which approach to take would be decided 

by an examination of the amount of risk that the researcher is willing to accept in the 

performing the experiment and at  what stage of the overall parameter estimation process 

is at (i-e. at the initial exploratory stage or near the end and just improving the parameter 

values). 

6.3.4 Parameter Estimation 

For the estimation of the parameters the determinant criterion was used as discussed in 

Chapter 5 .  This critenon was used due to its favorable properties, and the optimization 

algorithm used was the fmins algorithm. To estimate the parameters various initial 

estimates were used for the optimization algorithm. Unfortunately each of the estimates 

resulted in a local optimum that was very near the initial guess. It cvas suspected that this 

was due to insufficient trials in the experiment. To test this the parameters were estimated 

with two and five times the number of trials in the experiment. With the increased 

number of trials the local optima were still present and the optirnization problem was 

similar to the original case. A different optimization algorithm was then investigated. 

The algorithm that was tried is the genetic optimization algorithm, (Yao, 1994; Moros, 

1996), though it too found local optima. The MWLS criterion as discussed in Section 

5.1.2 was also implemented. Unfortunately it did not produce results that were different 

from the determinant criterion. 

To obtain a better understanding why the parameter estimation was not working it 

was attempted to estimate different subsets of the five parameters. What was discovered 

from this part of the investigation is that the parameters within the two Arrhenius 

relationships (Le. k f m  k f m  pre-e=pi and f,,-ap) were the source of the 

problem. When the Arrhenius parameters for either klm or f were estimated, very 
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different local optima would still be found. Although the mode1 predictions using the 

parameter values from the local optima were reasonable. 

The generai Arrhenius expression is shown in equation 6.29. 

where A is the pre-expanential factor: E is the activation energy, R is the ideal gas 

constant and T is the temperature. Inspection of the equation reveals that for a given 

temperature there is a set of activation energies and pre-exponential factors that will pro- 

duce the same rate value. Tlierefore it mas suspectecl that the experiments as run did not 

have a sufficiently large temperature difference to  adequately estimate the parameters. To 

examine tliis possibility, Figure 6.6 shows a plot of k ~ ,  versus kfm The ho- 

rizontal axis is the activation energy and the vertical avis is the log of the pre-exponential 

factor. The two lines represent the set of activation energy and pre-exponential factor 

values that produce the same rate value a t  a fixed temperature. The solid line is for 

65 OC and the dashed line is for 75 OC . The two lines cross ât the true value of the 

activation energy and the pre-exponential factor: shown by a circle on the plot. Included 

in the plot are al1 of the point estimates frorn the local optima obtained in the simulation 

studies, shown as stars. An inspection of the plot reveals that the temperature difference 

used in the experiment resulted in the two temperature lines being close together. This 

may contribute to the problem of local optima that was found. 

6 3 . 5  Confidence Regions 

To determine the quality of the parameter estimates, confidence regions need to be gen- 

erated. In general the joint confidence region is a p dimensional space, where p is equal 

to the number of parameters estimated. Since it is not possible t o  view this space if p 

is greater than three, joint confidence regions of two parameters are usually obtained. 

It should be remembered that these regions are conditional confidence regions at fixed 
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act-eng 

Figure 6.6: Plot of the estimated parameter values of the k f m  Arrhenius expression; stars 

are locally optimal estimates and the circle indicates the true values 
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Table 6.8: Estimated parameter values 

Table 6.9: Experiment design used in the parameter estimation 

temperature 

values of the other parameters, and that they \vil1 change with a change in the values of 

the other parameters. 

The confidence regions are based on the parameter estimâtes given in Table 6.8, 

obtained from the experiment given in Table 6.9. Tlie values that correspond to the 95 

percent confidence contour were obtained using equation 5.14 from Chapter 5. 

A set of conditional joint confidence regions of the estimated parameters are given 

in Figures 6.9, 6.10 and 6.11. These figures are orily a subset of al1 of the possible 

joint confidence regions tha.t can be generated. If the parameter values are not changed 

from the point estimates then there are five choose two (Le. 10) possible parameter 

combinations for which confidence regions can be generated. 

Figure 6.9 shows the 95% joint confidence region of the Arrhenius parameters for kf,. 

The star indicates the point estimate. The confidence region is banana shaped and is 

not closed at the top of the plot. To determine if the joint confidence region is closed or 

open for the k fin ,,-,, parameter, a cross section of the confidence region was obtained 

a t  increasing values of the kJ, p,e-ezp parameter. The joint confidence region was found 

sampling t ime I 
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to still be open at  a value of 100e9, therefore it May be considered to be open, or very 

large, indicating a very poor parameter estimate for the kfm ,,-ezp parameter. 

Figure 6.10 shows the 95% joint confidence regiori of the Arrhenius parameters for f .  

The star indicates the point estimate. The confidence region indicates a good pararneter 

estimate for f,,-,,, but a poor estirnate for fa+,,,, as the contour appears to be open 

on the left and right hand sides of the plot. Negative values of were not considered 

feasible and the contour was still open a t  a value of 100 for fact-,,,. This poor estimate 

of fa,---,, is a reflection of the low level of information provided by the responses used 

in the gradient plots as sliown in Figures 6.7 and 6.8. An examination of these figures 

indicates that the normalized gradient values are very small for most of the responses. 

The radical concentration provides most of the information about the pararneter where 

the gradient value has a mry sharp peak at  850 min. at 65 OC and at 480 min. a t  75 "C 

. The largest normalized gradient value is -1.5 for the response of radical concentration 

at 850 min. and 65 OC . While this value is largest for this parameter in general it is a 

small normalized gradient value, and an indication that a large number of trials will be 

required to obtain good estimates of the parameter. 

Figure 6.11 shows the 95% joirit confidence region of the parameters for VI, and 

k jm act-ene- The star indicates the point estimate. The confidence region is very nonlinear 

and appears closed except for the area at the bottom of the graph. 

An important point to remember is that joint confidence regions will only indicate the 

arnount of uncertainty present in the parameter estimates based on the point estirnates 

obtained and the shape of the objective function surface in the neighborhood of those 

estimates. Therefore, if a local optimum is found, the confidence region is for the local 

optimum. To explore this, a cross section of the objective function surface was generated. 

This was obtained by calculating the objective function values over a range of values of 

the k f m  acr-ms  parameter. A plot of this cross section is shown in Figure 6.12. The 

horizontal axis is the parameter value, the vertical axis is the objective function value, 
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Figure 6.7: Gradient plots with respect to the parameter fa+,, at 65 OC . 

- 
C 

al -1 
2 
U J  

3 -1.5 
.- - 
lu 

C 

-2.5 

-3 

- . .  . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

- .  . . . . . . . . . . . . . . . . . . . . .  ;. . . . . . .  ;. . . . . . . . . . . . . . .  '. . . . . . . . . . . . . . .  : .  

-2-.-...- . . . . . . . . . . . . . . . . . . . . .  :.......:.......:...................... 

- . - - - .  . . . . . . . . . . . . . . . . . . . . . . .  . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

O 100 200 300 400 500 600 700 800 900 1000 
tirne 

x 104 fact-eng 
sensitivity to Mn(-) and MW( ...) 

2 

0 
c. 
c 
al 
ü 
2 -2-. 
CJ] 

2 
N 

*- - 
-4 

E 
O e: 

-6- 

-8 

. . . .  

1 I 1 I I 1 1 1 1 

-su:.-:::;-.'.-.'.- '.'.' ' . ' . ' f  '.'.' ' - '.':'.-.'.- ' ' ' ' ?  " -: - ' -:.- - , - , -  -:.-.: 

. C -  . . - . - - - 
.. . . . . .  . . . .  . . . . .  . . . . .  . . - . .  . . .  ; . . - : . .  ;... . . . * ; - .  .:. ..:. . . . . . . . . . . . . . . . . .-  Y...... - - - -  

. - - - 
& - - -  . - .  
. - - .  ......... - - - . . . .  : . . . . . . .  : . . . . . . .  : . . . . . . .  : . . . . . . . .  : . . .  . .  : . . . . . . . . . . . . . . . . .  . . . . - . . .  - 
. - - * _ - .  
. - - - 
. - - .  - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . . . . . - . . . . . . . - . . . . . . . . . . . . . . . . . . . . . . - - ; . . . . . . . . . . . -  

1 I I 1 I 1 I 1 1 

. . . . .  .:. .- 

. . - .  . . . . . . . -  

.- 

1 1 1 I 1 I I I 

O 100 200 300 400 500 600 700 800 900 1000 
time 

'act-mg sensitivity to rate(-) and radical conc.( ...) 

I 



Chapter 6. Case Studies 

tirne 

fact-eng sensitivity to Mn(-) and MW( ...) 

fact-eng sensitivity to conversion x 104 

time 

fact-eng 
sensitivity to rate(-) and radical conc.( ...) 

-0.5-. - 
c 
a -1 

-1.5 
N - - 
lu 
g 
E 
-2.5 

-3 

time 

Figure 6.8: Gradient plots with respect to the parameter fact-,, at 73 degrees Celsius. 
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the star is the point estimate and the horizontal dotted line indicates the criterion value 

that corresponds to a 95 percent confidence level. This plot revealed that the point 

estimate obtained is a local minimum and that a number of other local minima exist, 

illustrating the difficulty of the optimization problem. 

Figure 6.9: 95 percent confidence region for the parameters kt, oc--eng and kf, p r e - e w  
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Figure 6.10: 95 percent confidence region for the parameters fact - en9 and fpre - exp 
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Figure 6.11: 95 percent confidence region for the parameters kJm and Vf0 
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Figure 6.12: Plot of the criterion value versus klm act-enrr 
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6.4 Case Study 2 

6.4.1 Description 

This case study will describe the estimation of three parameters within the Watpoly 

mode1 for the homopolymerization of Styrene using five responses. A listing of the es- 

timated parameters is given in Sable 6.10. The responses used and their respective 

measurement error standard deviations (or,,) are given in Table 6.11. 

6 -4.2 Sensitivity Analysis 

The sensitivity analysis was performed with respect to the three parameters listed in 

Table 6.10, and is summarized in Table 6.12. In this table the comments column is 

a summary of the observability of each parameter, where any areas of large or srnall 

gradient values (i-e. good or poor observability) are identified. As an example, at  the top 

of Table 6.12, for the parameter am and the response of conversion the comments column 

states 'broad peak a t  850 min.'. This area corresponds to the area of large gradient values 

as shown in Figure 6.13. 

To illustrate how parameter observability can differ between two parameters the sens- 

itivity analysis of the parameters a, and BBm will be compared. The gradient plots 

with respect to these parameters are shown in Figures 6.13 and 6.14, respectively. In 

these plots the horizontal axis is time and the vertical a i s  is the normalized gradient 

value. The gradient values were normalized by dividing by the standard deviation of the 

response measurement error, as given in Table 6.11, and by multiplying by a percentage 

of the parameter value, as discussed in Chapter 3. 

The level of a parameter's observability is determined by the magnitude of the nor- 

malized gradient values. To maximize parameter observability, trials should be perforrned 

in the area where the absolute normalized gradient values are largest. An examination of 

the gradient plots for the parameter ru,, shown in Figure 6.13, indicates that the gradient 
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Parame ter Description 

variation of free volume 115th temperature for monomer 
(free volume units/K) 

rate of decrease of $ with free volume (L/mol min per 
free volume unit) 

g las  transition temperature of the polymer (K) 

t For a homopolymerization TgM, = T g p  

Table 6.10: Parameters estirnated in case study 2 

Response 

conversion 

M n  

kfw 

rate 

NIeasurcment error 

standard deviation (a,-,,) 

0.025 

10000 

10000 

0.001 

25% 

Table 6.11: Measurement error standard deviation (a,,,,) of the responses used in case 

study 2 
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Figure 6.13: Gradient plots with respect to the parameter & at 65 degrees Celsius. 
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BBm sensitivity to conversion 

time 

BBm sensitivity to Mn(-) and MW( ...) 

time 

time 

BBm sensitivity to rate(-) and radical conc.( ...) 

Figure 6.14: Gradient plots with respect to the parameter BBm at 65 degrees Celsius. 
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the gradient plots for the parameter a,, shown in Figure 6.13, indicates that the gradient 

values are maximized between 800 and 900 minutes. The gradient values are also greater 

than 20 for a wide range of sampling times. This indicates that there is a large region of 

time a t  which a large arnount of information about the a, parameter is available. 

The gradient plots of the BBrn parameter are given in Figure 6.14. -4n inspection 

of Figure 6.14 reveals that the gradient values are almost zero for à11 of the low and 

medium conversion phase of the polymerization, less than 550 minutes. Low and medium 

conversion is defined as conversion before the clutoacceleration effect, and is identified 

from a plot of conversioa versus time for the polymerization, as shown in Figure 6.15. 

In Figure 6.15 the vertical axis is conversion, where 1.0 indicates 100% conversion, and 

the horizontal axis is time. The auto-acceleration section is the steep section of the 

conversion versus time curve (Le. from 800 to 850 minutes). The  BBm parameter does 

become observable once high conversion is reached. The laclc of observability of the BBm 

parameter a t  the low and medium conversion is espected, as BBm is a parameter related 

to a phenornenon that only takes effect once hi& conversion is reâched and the rate of 

polymerization becomes diffusion controlled. 

To determine the effect of changing the BBm parameter values on the sensitivity 

analysis, gradient plots were generated for clifferent values of BBm. Figure 6.16 shows 

the gradient plots for the Mu response a t  values of 0.9, 1.0 and 1.1 for BBm. An 

inspection of the plot indicates tliat the location of observability will not change as 

the value of BBm changes, only the level of observability will change. Therefore the 

experiment design using the response of MT,  will not be affected by uncertainty in the 

value of the BBm parameter. This is contrast to the parameter Vf, in case study one, 

where the location and magnitude of the observability changed with a change in the 

parameter values (Figure 6.5). 



Chapter 6. Case Studies 

Figure 6.15: Plot of conversion versus time for the liomopolymerization of Styrene, a t  65 

degrees Celsius 

rate 
radical conc. 

conversion 

radical conc. 
conversion 

radical conc. 

Parameter 

%Tz 

very large gradient values a t  time > 800 min 
very large gradient values at  time > 700 min 
no observability at < 850 min, poor observability at > 850 min 
no observability at < 850 min, poor observability at > 850 min 
no observability at < 850 rniri, poor observability at > 850 min 
no obser-vability at < 850 inin, poor obsembility at > 850 min 
no observability at < 850 min, very good observability at > 850 min 

broad peak at 850 min 
peak a t  850 min 
broad peak at 850 min 
broad peak at 850 min 
very large gradient values at time > 700 min 

Table 6.12: Summary of the sensitivity analysis 

Response 1 Cornments 
conversion 

Mn 
MW 

broad peak at 850 min 
broad peak at 850 min 
broad peak at 850 min 
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Figure 6.16: Effect of changing the va!ue of BBm on the gradient plot of f !  at  65 

degrees Celsius, where BBm equals 0.9(A). l.O(B) and l.l(C) 
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6.4.3 Experiment Design 

The objective of experiment design \vas to find an experiment that would maximize 

the amount of information provided about the parameter values. The e'cperiment was 

designed using the D-optimality criterion as cliscrissed in Chapter 3. The size of the 

experiment was chosen to be 10 trials. 

In designing the optimal experiment, as espected, local optima were found. To deal 

with this, experiments were designed using the information provided in the sensitivity 

analysis to obtain the initial values for the optirnization algorithm. A sample of the 

designed experiments is shown in Table 6-13. T h l e  6.13 gives the initial values used 

in the optimization algorithm, the final experiment obtained, i ts criterion value and the 

radius. The radius is given as a qualitative mesu re  to compare the experiment design, 

as discussed in Chapter 4. In the table three experiments are given, where the first two 

were designed using initial values bztsed on the sensitiviQ analysis information, and as a 

comparison the third experiment designed by the author based soleiy on an inspection 

of the gradient plots. Once again, when comparing experiments it can be misleading 

to compare the design criterion values directly as they are proportional to the volume 

of the linearized joint confidence region. Therefore it would be mideading to Say that 

the best experirnent is 2.5 times better that the author's experiment. Using the radius 

approximation method the radius of the author's experiment and the best experiment are 

50757 and 59371, respectively. Therefore this analysis illustrates that the best experiment 

is only approxirnately 20 percent better. 

6.4.4 Parameter Est irnat ion 

For the estimation of the parameters the determinant criterion was used as discussed in 

Chapter 4 and the optimization algorithm used was the fmins algorithm. To estimate 

the parameters various initial estimates were used for the optimization algorithm. It was 

observed that each of the initial parameter values used in the optimization produced a 
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initial values used 
in the optimization (min.) 

600 700 800 850 900 

designed experiment 
trialsp 1 criterion value  

Table 6.13: Initial values used by the optimization algorithm, the designed experiment 
and its criterion value 

local optimum, where the parameter values obtained were close to  the initial guess or were 

considered poor estimates. ,4 set of parameters cvas considered poor if its criterion value 

was much larger than the best criterion values obtained to date and/or if the parameters 

are in a region deterrnined to be not feasible based on prior knowledge. To illustrate the 

variability of the parameter estimates obtained due to the local optima, a sample of the 

initial and estimated parameter values as well as the criterion value obtained are given 

in Table 6.14. 

I initial values 
s imuyion 1 a8, 0.001 ,., 

TSM, 383.15 
simulation am 0.0015 

2 E B m  1 1.5 

T ~ M I  400 
simulation a, 0.001 

3 BBm 1.5 
TLIM~ 390 

0.0015 

350 

final values cri terion 

Table 6.14: Local optima from the parameter estimation 
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To illustrate why all of the local optima are occurring, a part of the criterion sux-f~ce 

was generated. Since the criterion surface is three dimensional, to generate a 2D surface 

the Tgicl, parameter was L ~ e d  at the point estimate and the remaining two parameters 

were varied. The generated surface is shown in Figure 6.17, where the horizontal axes 

are the parameters a, and BBm and the vertical mis is the logarithm of the criterion 

values. The logarithm of the criterion values was used to cornpress the vertical scale 

to improve the presentation of the criterion surface. An examination of the criterion 

surface indicates two ridges that w5I.l result in local optima. These two ridges are parallel 

to the BBm parameter axis and occur near a value of 1.04e-03 and 1.02e-02 of the a;, 

parame t er. 

To deal with the problem of local optima two different approaches were attempted. 

The first was to use the optimization algorithm of simulated annealing that is robust to 

local optima, as discussed in Chapter 4. The second uras to evaluate the quality of 500 

starting points using the criterion value, and to use the point with the smallest criterion 

value as the starting point for the fmins algorithm. The parameter point estimates 

obtained from the two methods as well as the true parameter values are given in Table 

6.15. The simulated annealing method obtained the best parameter estimates but i t  

was more çomputationally expensive. The method required 8867 function calls versus a 

typical 150-300 for the fmins algorithm and 697 for the 500 guess rnethod, 100 function 

evaluations required approximately 8 min to cornplete on a Pentium III, 500 MHz. 

true values 
0.001 

1.0 
370.0 

a m  

BBm 
T9hf1 

criterion 

Table 6.15: Parameter estimates and true values 

simulated anneaiing 
0.00100 
1.00103 
378.2 

3.2795e-005 

500 guess 
0.00097 
0.95519 
369 -2 

2.0499e-002 
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Figure 6.17: A sarnple of the criterion surface, varying the parameters a, and BBm 

while TgM, is fixed 



Chapter 6. Case Studies 124 

6.4.5 Confidence Regions 

The confidence regions obtained are based on the parameter estimates given in Table 

6.16, which have been obtained from the experiment given in Table 6.17. The value that  

corresponds to the 95 percent confidence contour was obtained using equation 6.13 from 

Chapter 6. 

Table 6.16: Estimated parameter values 

-4 sample of the conditional joint confidence regions of the estimated parameters are 

given in Figures 6.18, 6.19 and 6.20. These figures are only a subset of dl of the possible 

joint confidence regions that can be generated. 

Figure 6.18 shows the 95% joint confidence region of the parameters a, and BBm. 

The star indicates the point estimate. The confidence region is not closed at the top 

of the plot. So determine if the joint confidence region is closed or open for the BBm 

parameter, a cross section of the confidence region space was obtained at increasing 

values of the BBm parameter. The joint confidence region was found to still be open at 

a value of 5000, therefore it may be considered to be open, or very large, indicating a 

poor parameter estimate for the BBm parameter. 

Figure 6.19 shows the 95% joint confidence region of the parameters a, and T g M l .  

The star indicates the point estimate. The confidence region is not closed a t  the top 

of the plot. To determine if the joint confidence region is çlosed or open for the Tgwl 

sampling time (min.) 

626, 657, 766, 841, 849, 849, 891, 898, 925, 959 
A 

Table 6.17: Experiment design used in the parameter estimation 
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parameter, a cross section of the confidence region space was obtained a t  increasing 

values of the T g M ,  parameter. The joint confidence region was found to still be open a t  

a value of 1000, therefore i t  may be considered to be open, or very large, indicating a 

poor parameter estimate for the T g M ,  parameter. 

Figure 6.20 shows the 95% joint confidence region of the parameters am and BBm at 

different values of the T g M r  parameter. The star indicates the point estimate. The three 

confidence regions were obtained a t  values of 370.0, 374.2 and 380.0 for T g M l ,  and are 

labeled A, B and C, respectively. The three confidence regions are similar in shape but 

are shifted with respect to the a, parameter. This indicates that the marginal confidence 

region for the a, parameter is significantly larger thau the conditional confidence region 

indicates. Therefore to use the conditional confidence region as a representation of the 

overall a, parameter uncertainty ivill be grossly misleading. For the BBm parameter 

there is not much change and the conditional confidence region may be representative of 

the marginal confidence region. 

In the generation of the true shape approximate level confidence regions the assump- 

tion is made that the ratio given in equation (6.20), reproduced below, is F distributed. 

As shown in Chapter 5 if multiple responses are used this assumption may not be correct. 

To test if this assumption is valid in this case study a Monte Car10 simulation was carried 

out. This simulation involved the generation of sets of data  tvith 10 and 5 trials from 

which the parameters were estimated. In order to avoid the problem of local optima 

in the estimation, the true values were used as the initial values for the optimization 

algorithm. 

Confidence region theory states that upon repeated sampling the true parameter 

values will occur within a 90 percent parameter estimate confidence region, 90 percent 

of the time. The results of the Monte Cado study are shown in Table 6.18. This table 

indicates the percent of the time that the true parameter values were found within the true 
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Figure 6.18: 95 percent confidence region for the parameters a, and BBm 
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Figure 6.19: 95 percent confidence region for the parameters or, and TgMi 
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Figure 6.20: 95 percent confidence region for the parameters a, and BBm at different 

values of Tgnn , ,  where Tg,, equals 370.0(1\), 374.2(B) and 380.O(C) 
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shape approximate level confidence region of the parameter estimates. The theoretical 

confidence level is the expected percent of the time the true values will occur within the 

true shape approximate level confidence region, and the actual confidence level is the 

percent of the tirne that they did occur. 

From Table 6.18 we can see that the difference between the theoretical and actual 

confidence level is very large when the sample size is five, thus indicating that the as- 

sumption that the ratio in equation 6.30 is F distributed is not valid. When the sample 

size is ten, the difference between the theoretical and actual is much srnaller, and can 

be considered acceptable. As this small difference can be attributed to the confidence 

region being at an approximate confidence level. 

Since the actual confidence level for the five trial case is much smaller than the 

theoretical, the true shape confidence regions obtained for any parameter estimates will 

be misleading as they will indicate a level of confidence that is much larger than is true. 
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6.5 Case Study 3 

6.5.1 Description 

This case study will describe the estimation of five parameters within the Watpoly mode1 

for the copolymerization of Styrene / Methyl Methacrylate using five responses. A list- 

ing of the estimated parameters is given in Table 6.19. The responses used and their 

respective measurement error standard deviations (q,,,) are given in Table 6.20. 

6.5.2 Sensitivity Analysis 

In this case study the sensitivity analysis was performed with respect to two independent 

variables, time and initial feed composition. With two independent variables the gradient 

values produce a surface. This surface is illustrated in Figures 6.21 and 6.22 where the 

gradient surface of the conversion response with respect to the pararneters am and 

TgMiMz is shown. In these figures both a plot of the gradient surface and a contour of 

this surface is given. In the surface plots the horizontal axes are time and initial feed 

composition and the vertical axis is the normalized gradient value. The gradient values 

were normalized by dividing by the standard deviation of the response measurement error 

(a,.,,), as given in Table 6 -20, and then multiplied by a percentage of the parameter value, 

as discussed in Chapter 2. In the contour plots the horizontal axis is tirne, the vertical 

axis is initial feed composition and the normalized gradient contour line spacing is equal 

to four normalized gradient units. 

A parameter's observability is determined by locating areas where the absolute nor- 

malized gradient values are large. The gradient surface for the parameter cr, ~1 is shown 

in Figure 6.21. An examination of this figure reveals a valley (where the absolute gradient 

values are maximized) that runs diagonally from a feed concentration of 0.1 and a time 

of 300 minutes to a feed concentration of 0.8 and a time of 900 minutes. The start of 

this valley can be seen in the surface plot but the valley is more apparent in the contour 
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Parameter 

variation of free volume urith temperature for monomer 
1 (free volume units/K) 

variation of free volume with temperature for monomer 
2 (free volume units/K) 

rate of clecrease of kp with free volume of monomer 1 
(L/mol min per free volume unit) 

rate of deçrease of k, with free volume of monomer 1 
(L/mol min per free volume unit) 

g l a s  transition temperature of the alternating copoly- 
mer (K) 

TabIe 6.19: Parameters estimated in case study 3 

Response 

conversion 

composition 

A& 

kfw 

rate 

radical conc. 

triad fractions 

Measurement error 

standard deviation (D,.,,,) 

0.025 

0.025 

10000 

10000 

0.001 

25% 

0.1 

Table 6-20: Measurement error standard deviatio~i (ore,) of the responses used in case 
study 3 
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al 
0.8 

C 
a 0.7 
G s 0.6 .- 
C 

0.5 
'C- 

1 O0 200 300 400 500 600 700 800 900 
time (min.) 

Figure 6.21: Gradient plots with respect to the parameter ai, MI 
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initial mole fraction Styrene time (min.) 

100 200 300 400 500 600 700 800 900 
time (min-) 

Figure 6.22: Gradient plots with respect to  the parameter TgwlM2 
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plot. A fûrther observation is that the absolute gradient vaiues are largest in the area, 

as seen in the contour plot, above the valley where the initial feed is larger than 0.5 and 

the sampling time is greater than 700 minutes. 

The gradient surface for the parameter TgIKilw2 is shown in Figure 6.22. An exam- 

ination of this figure reveals a ridge (where the absolute gradient values are maximized) 

that runs diâgonally from a feed concentration of 0.1 and a time of 300 minutes to a feed 

concentration of 0.8 and a time of 900 minutes. -4 further observation, as  seen in the 

contour plot, is that to the right of the ridge there is a valley, from an initial feed of 0.3 

to  0.5 and a sampling time greater than 700 minutes: where the gradient values are large. 

In both of the above sensitivity analysis there is an area of large gradient values that 

occur from a feed concentration of 0.1 and a time of 300 minutes to a feed concentration 

of 0-8 and a time of 900 minutes. This corresponds to the area of autoacceleration for the 

copo2ymerization carried out at different feed concentrations as shown in Figure 6.23. In 

this surface plot the vertical axis is conversion, where 1.0 indicates 100% conversion, and 

the horizontal axes are time and initial feed composition. The auto-acceleration section 

is the steep cliff face of the conversion versus time surface, from a composition of 0.1 and 

a time of 300 minutes to a feed composition of 0.9 and a time of 900 minutes. 

A summary of the information obtained from the gradient plots is given in Table 6.21. 

In this table the comments column is a summary of the observability of eaçh parameter, 

where any areas of large or small gradient values (i-e. good or poor observability) are 

identified. As an example, a t  the top of Table 6.21, for the parameter a, and the 

response of conversion the comments column states 'ridge from 0.1 feed and 300 min. to 

0.8 feed and 900 min., the ridge widens as the feed increases'. This area corresponds to 

the area of large gradient values as shown in Figure 6.21. 

In using the information in Table 6.21 to generate an initial guess for the experiment 

design algorithm the best general area for each parameter was identified. This is shown 

in Table 6.22. 
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initial mole fraction Styrene time (min.) 

100 200 300 400 500 600 700 800 900 
tirne (min-) 

Figure 6.23: Plot of conversion versus time for the copolymerization of Styrene / Methyl 

Methacrylate 
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Parameter 

am M l  

M I  

Response 
conversion 

composition 
fifn 

M W  

rate 

radical conc. 

seq. length M l  

seq. length M l M  1 
seq. Iength Ml&f l M  1 

seq. length M2 

seq. length M2M2 

seq. length M2h12M2 

conversion 
composition 

fifn 

rate 

radical conc. 

seq. length hf 1 

seq. length MlAf1 
seq. length M l M l M l  

seq. length 1\/f 2 

seq. length M2M2 

seq- length M2M2A4-2 

Comments 
ridge from 0.1 feed and 300 min- to 0-8 feed and 900 min., the 
ridge widens as the feed increases 
sharp ridge from 0.2 feed and 500 min. to 0.6 feed and 800 min. 
ridge from 0.1 feed and 300 min. to 0.8 feed and 900 min., the 
ridge widens as the feed increases 
ridge from 0.1 feed and 300 min. to 0.8 feed and 900 min., the 
ridge widens as the feed increases and values are larger after the 
ridge (Le. Iarger time) 
ridge from 0.1 feed and 300 min. to 0.8 feed and 900 min., the 
ridge widens as the feed increases and values are Iarger before 
the ridge (i.e. smaller time) 
a rapid increase in values from 400 to 600 min. with very large 
d u e s  a t  time > 600 min for all feeds 
sharp ridge frorn 0.3 feed and 600 min. to 0.8 feed and 900 min., 
poor obsemability elsewhere 
same as for seq. iength M l  
sarne as for seq. length lVf 1 
sharp ridge from 0.2 feed and 500 min. to 0.6 feed and 800 min., 
poor obsenrability elsewhere 
sharp ridge frorn 0.3 feed and 600 min- to 0.7 feed and 900 min., 
poor observability elsewhere 
sharp ridge from 0.3 feed and 600 min. to 0.6 feed and 800 min., 
poor observability elsewhere 
ridge from 0.1 feecl and 300 min- to 0.8 feed and 900 min. 
sharp ridge froni 0.2 feed and 500 inin. to 0.5 feed and 700 min. 
ridge from 0.1 feed and 300 min. to 0.8 feed and 900 min., 
values are larger with smaller feed values 
ridge fiorn 0.1 feed and 300 min. to 0.8 feed and 900 min., the 
ridge widens as the feed increases and values are larger after the 
ridge (Le. larger time) 
ridge from 0-1 feed and 300 min. to 0.8 feed and 900 min,, the 
ridge widens as the feed increases and values are larger before 
the ridge (Le. smailer time) 
a rapid increase in values dong the diagonal band of 0.1 feed 
and 200 min to 0.9 feed and 800 min. with very large values to 
the right of the band (Le. larger time) 
sharp ridge frorn 0.3 feed and 600 min. to 0.8 feed and 900 min., 
poor observability elsewhere 
sarne as for seq. length A-1 1 
same as for seq. length M l  
sharp ridge from 0.2 feed and 500 min. to 0.6 feed and 800 min., 
poor observability elsewhere 
sharp ridge from 0.3 feed and 600 min. to 0.7 feed and 900 min., 
poor observability elsewhere 
sharp ridge from 0.3 feed and 600 min. to 0.6 feed and 800 min., 
Door observabilitv eIsewhere 

Table 6-21: Summary of the sensitivity analysis 
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Response 

conversion 

composition 

Mn 
&f ,', 

rate 

radical conc. 

seq. lengtb MI 

seq. length M l M  1 

seq. length M l M l M l  

seq. length hl 2 

seq. length M2M2 

seq, iength M2M2M2 

conversion 

composition 
n/r, 
M W  

rate 
radical conc. 

seq. length M l  

seq. length M l  Ml 
seq. length M l M l M l  

seq. length fi1 2 

seq. length Ad2 M 2 

seq. length M2M2M2 

Comments 

a band boni 0.1 feed and 400 min. to 0.8 feed and 900 min., 
where there is no observability to the left (i.e. smaller tirne) 
and poor observability to the right (Le, larger the)  
same as conversion escept very poor observability to the right 
of the ridge 
sarne as composition 
same as conversion except very rnzginal observability to the 
right of the ridge 
very sharp rid& frorn 0.3 feed and 600 min. to  0.8 feed and 900 
min., poor observability elsewhere 
a ridge £iom 0.1 feed and 400 min. to 0.8 feed and 900 min., 
wïth good observability to the right (Le. larger tirne) 
an increase in observability to the right of the line fiom 0.2 f e d  
and 500 min. to 0.8 feed and 900 min., no observability to  the 
Ieft of the Iine , mith a peak at 0.4 feed and 900 min 
same as seq. length Ml,  except two smaller peaks at 0.3 feed 
and 900 min and 0.6 feed and 900 min 
same as seq. length M l ,  exep t  a smailer peak at 0-4 feed and 
900 min and 0.7 feed and 900 min 
an increase in observability to the right of the line fiom 0.1 feed 
and 400 min. to 0.7 feed and 900 min., no observability to the 
left of the line , with a peak at 0.3 feed and 900 min 
same as seq. length 1142, escept tmo smaIler peaks at 0-45 feed 
and 900 min 
an increase in observability to the right of the Iine fiom 0.1 feed 
and 350 min. to 0.6 feed and 800 min., no observability t o  the 
left of the line , with a peak at 0.35 feed and 900 min 
very sharp small ridge from 0.1 feed and 400 min. to  0.9 feed 
and 900 min., poor observability in general 
same as conversion 
same as conversion 
same as conversion e-xcept marginal observability to  the  right of 
the ridge cuid a t  lom feed 
sarne as conversiori 
very sharp ridge from 0.1 feed and 400 min. to 0.9 feed and 900 
min., with good observability to the right (Le. larger tirne) 
poor observability to the right of the line from 0.3 feed and 600 
min. to 0.9 feed and 900 min. with a peak at 0.3 feed and 900 
min , no observability to the left of the line , 
sarne as seq- length M l ,  e-ucept peak a t  0.2 feed and 900 min 
same as seq. length M 1, except peak a t  0.3 feed and 900 min 
an increase in observability to the right of the line f h m  0.1 feed 
and 400 min. to 0-5 feed and 700 min. with a peak a t  0.2 feed 
and 900 min , no observability to the left of the line , 
s ane  as seq. lengtli A C ? ,  exept  two smailer peaks at 0.45 feed 
and 900 min 
a small ridge a t  0-1 feed and 500 to 900 min with poor observ- 
ability in general 

Table 6.21 Cont'd. : Summary of the sensitivity analysis 
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conversion 

composition 

Mn 

rate 

radical conc. 

seq. lengtb Ml 

seq. Iength M l h l l  

seq. length M l M l M l  
seq. length M2 

seq. length M2M2 
sea. ienprth M2M2M2 

Comments 
wide ridge £tom 0.1 feed and 400 min- to  0.8 feed and 900 min., 
a valley to the right of the ndge with a max. obsernbility a t  
0.4 feed and 900 min 
sharp ridge from 0.1 feed and 400 min- to 0.8 feed and 900 min., 
poor observability elsewhere 
ridge from 0.1 feed and 400 min. to  0.8 feed and 900 min., a 
small valley to the right of the ridge with an max. observability 
a t  0.4 feed and 900 min 
ridge kom 0.1 feed and 400 min. to 0.9 feed and 800 min., good 
observability to the right of the ridge with a peak a t  0.6 feed 
and 900 min. 
ridge ffom 0.1 feed and 400 min- to 0.9 feed and 900 min., the 
ridge widens as the feed increases 
a rapid increase in values in a band from 0.1 feed and 400 min 
to 0.9 and 700 min. with very large values to the right of the 
ridge 
sharp ridge fiom 0.2 feed and 500 min. to 0.8 feed and 900 min., 
poor observability to the left, a mound to the left with a peak 
a t  0.4 feed and 900 niin. 
same as M l  except two smaller peaks a t  0.6 feed and 900min 
and 0.3 feed and 900 miu 
same as M l  except a srnaller peak at 0.4 feed and 900mui 
sharp ricige from 0.1 feed and 400 min- to 0.7 feed and 800 min., 
poor observability to the left,a hollow to the right with a peak 
a t  0.4 feed and 900 min 
same as M l  except a smaller peak at 0.4 feed and 900min 
same as M l  except a smaller peak at 0.4 feed and 900min 

Table 6.21 Cont'd. : Surnmary of the sensitivity analysis 

Parameter 

Table 6.22: General areas of best observability 

Area of best observability 

am 

a, M 2  

BBmMl 

BBmMz 

TgM, 

feed > 0.6 time > 700 min 

feed < 0.4 tirne > 600 min 

feed < 0.5 time > 700 min 

feed < 0.4 time > 700 min 

feed > 0.5 time > 700 min 
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Therefore based on this information the following 6 trial experiment or initial point for 

the experiment design is obtained; a feed of 0.3 mole fraction Styrene and a sampling time 

of 750, 800 and 850 minutes, and a feed of 0.8 mole fraction Styrene and a sampling time 

of 750, 800 and 850 minutes. A conservative approach was taken in the determination 

of areas of best observability in that the sliarp pezks in the gradient plots were not 

considered. The author has found that sharp peaks in the gradient plots can be sensitive 

to the parameter values (i.e. their location can change with a change in the parameter 

values). 

6.5.3 Experiment Design 

Initially the size of the experiment to design was chosen to be 12 trials, but  with 12 trials 

the optimization was found to be too slow to converge. To speed up convergence the 

design problem was simplified by reducing the experiment to 6 trials, tha t  will be replic- 

ated to obtain a 12 or 18 trial esperiment. This simplification decreased the optimization 

from 24 to 12 variables and significantly reduced the computation required. 

The best experiment found using the optimization routine is given in Table 6.23 along 

with an experiment that nras designed by the author from an inspection of the gradient 

plots. The design criterion values as well as the confidence region volume radius for each 

experiment are given. The radius is an approximation used to compare the experiments 

and is described in Chapter 3. A comparison of the radii indicates that  the designed 

experiment is much better than the experiment designed by inspection. 

An examination of the designed experiment reveals that the two points at a feed of 

0.68 and 0.70 mol fraction Styrene occur very near the autoacceleration region, which 

corresponds to a sharp peak in the gradient values for most of the responses. The 

experiment sensitivity to these two points çan be tested by moving the sampling time a t  

these two compositions. If the sarnpling time for the two points is set to 700 minutes, the 

criterion decreases considerably and a radius of 1.28e-4 is obtained, which is much closer 
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designed 
experiment 

inspection 
experiment 

trials criterion value 
Sty feed (mol fr.) 

0.36 

radius 
time (min.) 

701 

Table 6.23: Designed experiments for case study 3 

to the experiment designed by inspection. To further test the experiment sensitivity an 

induction time of 100 minutes was assumed. This would result in the autoacceleration 

occurring 100 minutes later than predicted and effectively decreasing al1 of the sarnpling 

times by 100 minutes. The criterion of this experiment also decreâses considerable and 

a radius of 3.34e-5 is obtained. This drop iri quality reveals the sensitivity of the design 

experiment to the location of the points near the autoacceleration curve. Since sarnple 

points near this curve may be difficult to obtain, the designed experiment may not be 

as good in application as its criterion value (or radius) would indicate. The effect of 

induction time on the inspection experiment uras also exarnined. With an induction 

tirne of 100 minutes, the criterion value increased and a radius of l.7le-4 was obtained, 

resulting in a better experiment. 

6.5.4 Parameter Estimation 

The parameters were estimated with the responses listed in Table 6.20 and the experiment 

designed by inspection given in Table 6.23. This experirnent design was used because it 
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Table 6.24: Estimated parameter values 

parameter 

a, 

cause it is computationaly faster since for each criterion evaluation the simulation needs 

to be mn at only two initial feed compositions versus six in the optimal experiment (Le. 

this design is three time faster to simulate). 4 s  in the previous cases local optima were 

found to be a problem and the sirnulated annealing algorithm was found to work mll ,  

though it was very expensive computationally ( 10 hours on a Pentium III, 500). The 

parameter estimates obtained and the. true values are given in Table 6.24. 

The effect of using different responses and different numbers of trials on the quality 

of the parameter estimates was investigated. To perform t his investigation the estim- 

ated parameter confidence regions obtained using different conditions cannot be used. 

Because as shown in Chapter 5 ,  these confidence regions can Vary significantly with the 

estimate 

0.000994 

same experiment design but different sets of parameter data. Therefore a Monte Carlo 

approach is required to deal with the variance in the confidence regions. 

The Monte Carlo study involved estimating the parameters using different responses 

true vdue 

0.001 

and nurnber of trials. Ten master sample data sets were generated that contained al1 of 

the responses used and 18 trials. The sample data sets used in each run were chosen as a 

subset of the master sample data sets. The sample data for each run was generated in this 

rnanner so that each of the runs would be identical in their area of overlap. By overlap it 

is meant that if an 8 and 12 trial experiment are compared, the 1 2  trial experiment will 

be the sarne as the 8 trial experiment plus 4 additional trials. Therefore , any differences 
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case- 1 

case-2 

case-3 

case-4 

case-5 

case-6 

case-7 

number of 

trials 

rate, 5 radical concentration, 6 copolymer composition, 7 triad fractions 

Table 6.25: Description of the runs used in comparing the effect of different responses 

and/or number of trials on the parameter estimates 

in the parameter estimates obtained would be due to the extra responses or trials and 

not due to different error values within comrnon sarnple points. The parameters in each 

case were estimated using the fmins optimization function and with the true parameter 

values as the initial values for the optimization. The true parameter values were used to 

overcome the problem of local optima and to speed up the estimation procedure. 

The different cases that were considered are listed in Table 6.25. This table gives the 

case name, the nurnber of trials in the case and the responses used. The responses are 

coded and an explanation of the response code value is provided a t  the bottom of the 

table. 

The experiments used in the-runs are based on the experiment designed by inspection 

and given in Table 6.23. For the 12 and 18 trial experiments the experiment was replicated 

two and three times respectively. For the 8 trial mperiment the two trials at 800 minutes 

were replicated. In each of the Monte Carlo runs, 10 sets of parameter estimates were 
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obtained. To analyze the results of the different runs, the parameter values obtained were 

plotted and a visual inspection was perforrned. These plots are shown in Figures 6.24, 

6.25 and 6.26. In these figures four subplots are shown, where in each of the subplots the 

parameter point estimates of two parameters are plotted versus each other. The subplots 

are analogous to a joint confidence region plot of the two parameters. The analysis is 

carried out by cornparing the distribution of the point estirnates, i-e. tightIy grouped 

versus spread out. The plots as used are a crude measure due to only 10 points being 

used per run. For a more refined analysis, a much larger number of data sets would 

have to be used, so that the true shape aild true level marginal confidence regions of the 

parameters are ob tained. 

Figure 6.24 is a comparison of the case-1 (O j , case-3 (*) and case-û(o) . These cases have 

18, 12 and 8 trials respectively and include al1 of the responses except triad fractions. 

There appears to be no clear difference between the 18 and 12 trial runs (case4 and 

case-3). This may be due to a saturation of information a t  12 trials where the extra 

trials (trials 13 to 18) provide little additional information about the parameters, when 

compared to the initial 12. A comparison of case-3 alid case-6, with 12 and 8 tnal 

respectively, indicates that a difference does esist. This difference is most apparent in 

the lower left subplot of a, versus Tghf,,%. Therefore the addition of the extra four 

trials is worthwhile with the chosen experiment, as they will significantly decrease the 

joint confidence region of the parameter estirnates. 

The effect of adding the triad fraction response is shown in Figure 6.25. This figure is 

a plot of case-6 and case-7. Both cases have 8 trials and case-7 includes the triad fraction 

response. An inspection of the subplots reveals that only the estimates of the BBmMl 

and BBmhfz parameters are affected, shown in the top right subplot. This was expected 

as the sensitivity analysis indicated that very littie information was provided about the 

other parameters by the triad fraction response. The B Bm parameter estimates improved 

significantly with the addition of the triad fraction response. The improvement can 
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Figure 6.24: Exarnining the effect the number of trials has on the parameter estimates, 

with case-l(o) 18 trials, case-3(*) 12 trials and case-6(o) 8 trials 
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be seen by the tightly grouped estimates for case-7 when compared to case-6. This 

improvement in the parameter estimates did not occur in the corresponding 12 and 18 

trial runs, case-3 versus case-4 and case-l versus case-:! respectively- Therefore, only if 

the nurnber of trials is less than 12 will a benefit be obtained by the inclusion of the triad 

fraction response in the estimation of the BBmMl and B BmM2 parameters. 

Figure 6.26 is a plot of case-4 and case-5, wliere the effect of radical concentration 

and polymerization rate on the parameter estimates was examined. Both runs have 12 

trials, case-4 has al1 of the responses and case-5 has al1 of the responses except radical 

concentration and polymerization rate. An inspection of the subplots indicates that the 

distribution of the parameter estimates is similar for both case-4 and case-5. Therefore 

the responses of radical concentration and rate did not improve the quality of the para- 

meter estirnates when the experiment has 12 trials. This was surprising as the sensitivity 

analysis indicated that a lot of information wouid be provided by these responses. Why 

this did not occur may be due to the experiment used or to the infornation saturation 

effect observed in the cornparison of runs case-1, case-3 and case-6 (Figure 6.24). 

The above examples have shown how parameter estimation simulation studies can be 

used to compare how different responses and different numbers of trials in the experiment 

will affect the quality of the parameter estimates. 

6.5.5 Confidence Regions 

The parameter estirnate confidence regions are based on the parameter estimates obtained 

from an 18 trial experiment based on the design by inspection replicated three times. The 

parameter point estimates obtained are given in Table 6.26. The approximate level, true 

shape, conditional joint confidence regions for the parameter estimates were obtained 

using equation 5.13 from Chapter 5. 

A sarnple of the conditional joint confidence regions of the estimated parameters are 

given in Figures 6.27 and 6.28. Figure 6.27 shows the 95% joint confidence region of the 
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0.95 1 1 .O5 
alp ham-M 1 

Figure 6.25: Examining the effect of including the triad fraction response on the para- 

meter estimates, with case-ô(circ1e) no triad fractions and case-7(r) triad fractions 
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Figure 6.26: Exarnining the effect of including the radical concentration and polymeriz- 

ation rate on the parameter estimates, with case-4(circle) al1 responses and case-5(star) 

no radical concentration and polymerization rate responses 
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parameter 

am Mi 

am M2 

BBmIbf i 

B B ~ M ~  

~ J M ,  A42 

estimate true value 

Table 6.26: Estimated parâmeter values 

parameters a, M~ and TgMLM,, mhere the star indicates the point estimate. Figure 6.28 

shows the 95% joint confidence region of the parameters BBmMl and T g M l M z ,  where the 

star indicates the point estimate. 

Figure 6.29 shows the 95% joint confidence region of the parameters a, ~1 and a, ~2 

at  different values of the TgMlld., parameter. The star indicates the point estimate. The 

three confidence regions were obtained at values of 360.0, 368.1 and 375.0 for T g M l M z ,  and 

are labeled -4, B and C, respectively. The three confidence regions are similar in shape 

but are shifted with respect to the a, M l  parameter. This indicates that the marginal 

confidence region for the am parameter is significantly larger than the conditional 

confidence region indicates. Surprisingly though, there is Iittle shift of the confidence 

region with respect to the a, M 2  parameter. 
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Figure 6.27: 95 percent confidence region for the parameters a, MI and TgMiM2 
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Figure 6.28: 95 percent confidence region for the parameters BBmMl and TgMlMZ 
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Figure 6.29: 95 percent confidence region for the parameters a,, and ru, M~ at different 

values of T g M 1  M2i  where TgMi equals 360.0 (A), 368.1 (B) and 375.0 (C)  



Chapter 7 

Concluding Remarks 

7.1 Conclusions 

In the previous chapters a protocol for the estimation of parameters in large dynamic 

models has been presented. Eacb of the four parameter estimation steps mere discussed 

and three case studies were shown to illustrate the parameter estimation methodology. 

The major points of the parameter estimation protoçol will be summarised in the para- 

graphs that follow. 

In performing a sensitivity analysis i t  was shown how local sensitivity can be much 

more useful than a global measure due to the additional information that it provides. A 

limitation in using local sensitivities is the large volume of data that may be present. It 

was shown that by using gradient plots and normalizing the gradient values the analysis 

of local sensitivity rneasures is simplified. -4n addecl benefit of using the gradient plots 

is that they can provide guidance in the design of ari optimal experiment. 

The experiment design process is a difficult optimization problem that was shown to 

be plagued with local optima. It i.as found that if the initial gusss in the optirnization 

is based on the information provided by the gradient plots a very good experiment will 

be found. This approach was found to perform much better that multiple starting points 
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or using a robust optimization algorithm. 

When designing experiments for nonlinear models the parameter values are required. 

Since these values are unknown and the values used d l  rarely be equal to the true values 

(in practice never), the design may be ver-  poor for other values of the parameters. 

Therefore, how sensitive the design is to a change in the parameter values needs t o  

be determined. A method was presented on how to perform this analysis so that the 

robustness of the design can be determined, 

In estimating the parameters a significant problem  vas the number of local optima 

that were found. It was also noted that the number of local optima increased with an 

increase in the mode1 complexity Guidelines were presented to deal with this problem 

and the simulated annealing algorithm was found to work well. 

Confidence regions are a measure of the uncertainty in the parameter estimates. 

Therefore they should be generated to obtain a measure of the quality of the para- 

meter estimates. When more that two parameters are estimated, the confidence regions 

obtained are usually the conditional joint confidence region of two parameters. It was 

shown that these conditional confidence regions c m  underestimate the true marginal 

confidence regions of the parameter estimates. 

Box and Draper (1965) showed that improved parameter estimates can be obtained if 

multiple responses are used. They showed this improvement by the significant decrease in 

the joint confidence regions that occurred with each extra response that \vas added. The 

author has found that the joint confidence regions generated when multiple responses 

are used and the sample size is small can be much srnaller than the true joint confidence 

regions. A sample size is considered small if i t  is equal to 2 p ,  where p is the number 

of parameters. Therefore using the joint confidence regions in these circumstances d l  

indicate that a much greater level of certainty in the parameters exists than is true. 

This does not imply that the parameter estimates are not improved with the use of extra 

responses. Through Monte Carlo studies it was found that use of multiple responses does 
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improve the parameter estirnates, it is only the confidence regions that are an incorrect 

representation of the parameter uncertainty. 

Since the true shape joint confidence regions for two parameters can be numerically 

difficult to  obtain. The author has developecl an algorithm that is both robust and 

efficient in O btaining the joint confidence regions. 

The problem of parameter estimation in large models has been investigated and the 

above observations have been made. In performing the investigation a number of issues 

arose that were not addressed. These are outlined in the nedut section and can act as a 

starting point for further work in this area. 

7.2 Future Work 

In the course of this research a ~iumber of issues arose that were not addressed. These 

issues represent a starting point for an extension of the research presented in this thesis. 

The D-optirnality criterion for the design of esperiments is a measure proportional 

to the volume of the linear joint confidence. It should be investigated if this is appropri- 

ate, not in the sense that it accurately represents the uncertainty in the parameters of a 

nonlinear mode1 (as i t  is known that in most cases i t  cloes not) , but whether it is propor- 

tional to it (therefore the best esperiment wiIl liave the smallest linear joint confidence 

region and the srnallest true joint confidence region). If this is true then the D-optimality 

criterion is appropriate even though it uses the linear joint confidence region. If it is not, 

then perhaps some measure can be developed to determine the difference between an 

experiment designed using linear versus true joint confidence regions. 

In the design of experiments the physical çost of obtaining a given response was as- 

sumed to be equal for all responses. This in generaI in not true and the experiment 

design criterion should take this into ûccount. A method was also presented to determ- 

ine how sensitive the experiment design is to a perturbation of the parameter values. 

Therefore there is the potential to extend the experiment design criterion to a mixture 
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of criteria that would include the cost of a response as well as the experiment sensitivity 

to perturbations in the parameter values. 

En the parameter estimation process the problems of local optima, conditional con- 

fidence regions, and the failure of the confidence region t h e o y  when multiple responses 

and a small sample size are used, were noted. A relatively new development, the Gibbs 

Sampler (Casella and George, 1992; Garcia-Cortes and Sorensen, 1996), is a promising 

approach to solving many of these issues. Although a t  the present time it  requires fur- 

ther development in its implementation (so that it is more computationally efficient), to 

be applicable to the types of problems proposed in this thesis in particular on how to 

efficiently sample the conditional posterior distributions. 

It \vas shown that the joint confidence regio~is can be incorrect when using multiple 

responses and the sarnple size is less than 2 p  where p is the number of parameters. Based 

on this observation the folIowing questions present themselves. 

Es the model prediction confidence region also incorrect if multiple responses are 

used and if so, to what degree? 

Kow is the experirnent design process affected, since it is based on the linearized 

joint confidence region volume of the parameter estirnates? 

How is the mode1 discrimination process affected: since most model discrimination 

methods are a function of the model prediçtion confidence region or the parameter 

estirnates joint confidence region? 



Appendix A 

Nomenclature 

A l l l ,  A112, A212 

A222, A221, A121 

A i j k  

BBm 

fact-eng 

cumulative triad fraction of rnonomer-1-centered triads 

cumulative triad fraction of monomer-2-centered triads 

instantaneous fraction of monomer-j-centred triads with sequence ijk 

rate of decrease of Ic, with free volume of monomer (L/mol min per free volume 

unit) 

normalizing constant 

activation energies in the -4BC model 

mole fractions of monomer 1 and 2 in the CO-monomer feed 

copolymer composition, mole fraction of monomer one 

initiator efficiency 

a nonlinear model 

activation energq. in the Arrhenius expression for f, initiator efficiency 

pre-exponential factor in the Arrhenius expression for f ,  initiator efficiency 

an initiator molecule 

reaction rate constants in the ABC model 

initiator decomposition rate constant (s-l) 

overall rate constant for transfer to monomer (L/(mol s)) 

activation energy in the Arrhenius expression for kf, 



pre-exponentid factor in the Arrhenius expression for kf, 

overdl propagation rate constant (L/(mol s)) 

activation energy in the Arrhenius expression for the rate of propagation 

pre-exponential factor in the Arrhenius expression for the rate of propagation 

overall termination rate constant (L/(mol s))  

monomer i 

number average molecular weight 

weight average molecular weight 

number of trials 

number of sarnple points 

moles of initiator 

moles of monoiner bound in the copoljmer 

number of parameters 

polyrner molecule containing 71. moxiomer units 

f i s t  three moments of the polymer molecular weight distribution 

monomer reactivity ratios in the penultimate model 

reactivity ratios 

ideal gas constant 

concentration of radicals (mol/L) 

a radical of chain length i, ending in monomer j 

a primary radical fonned by the decomposition of the initiator 

a free radical chain containing 7~ monomer units 

radical reactivity ratios in the penultimate model 

estimate of the variance 

residuai sum of squares a t  

residual sum of squares a t  6 
temperature 

g l a s  transition temperature of monomer i (K) 

g l a s  transition temperature of the alternating copolymer of monomer i and 

rnonomer j (M) 



glass transition t emperature of the polymer (IC) 

sum of the product of the residuals of responses i and j 

mat* of the elements uij 

matrix of gradient values of the response with respect to the parameters evd- 

uated at the trial points in the experiment design; and volume (L) in the 

polymerization mode1 in section 6.2 

t o td  tlee volume 

critical free volume for propagation 

constant of hee volume with temperature for rnonomer (free volume units/K) 

constant of free volume with temperature for polymer (fiee volume units/K) 

fiee volume of monorner 

volume of monomer 

volume of polyrner 

volume of reacting mixture 

diagonal matr-ix of weights used in the MWLS criterion 

weight fraction of monomer i 

matrix of regressor variables, or the design matrix 

independent variable in a mode1 

vector of responses 

model response 

matrix of residuals 

Greek Letters 

a significance level 

a, variation of free volume with temperature for monomer (free volume 

units/K) 

B a parameter in a Iinear model, and a parameter in the calculation of 

the moments of the molecular weight distribution in the polyrnerization 

model section 6.2 



the proportion of free radical chains terminating by disproportionation 

a parameter in the caiculation of the moments of the molecular weight 

distribution 

parameter in a nonlinear mode1 

covariance matrix 

variance 

23-th element of the response covariance matri\: 

ij-th element of the inverse of the response covariance matriv 

standard deviation of the response measurement error 

measurement error 

hessian of the objective function m-ith respect to the parameters 

mole fraction of radical type i 

Superscripts 

Superscripts indicate the condition of the variable. 

an estimate based on sample data 
- an  initiai estimate based or1 prior knowledge 

* a true value 

Mi regarding monomer i 



Appendix B 

The following is a listing of the simulation options used with the Watpoly model for the 
examples in Chapter 2 and 3. 

Initial t emperature 
Heat transf e r  paramet er 
Temperature Case 
Solution end tixne 
Numerical solut ion spacing 
Induction t ime 
Conversion lirnit 
Tolerance parameter 

65 C 
1.00 Cal/K min 
Isothermal 
960 min. 
5 min 
O min 

O. 999 
4 

Diffus ion controlled propagation Ex] 
Diffusion controlled termination LX] 
Residual terminat ion mode1 CRNGl 
SSH for radicals [XI 
Polymer Tg Johnston 



Appendix C 

The following is a copy of the Matlab source code for the algorithm to obtain the joint 
confidence region contour. The algorithm is coded as a function where the contour Ievel, 
parameter range, grid resolution, and name of the function that will return the criterion 
value are passed. The function can either rettirn the data collected or plot the joint 
confidence region contour. 

contour-bf f unction 

======x----E===-====___- =====--====--=====--====--=== ========= 
algori thm t o  f i n d  t he  confidence contour of a s e t  of parameter 
es t imates .  by f inding t h e  contour and then fo l l ov ing  it by f l i i p i n g  
a box of funct ion evaluations i n  the appropriate  d i r r e c t i o n  

x-range = [x-min, x-step, x-maxl range and s t e p  s i z e  of f irst parameter 
y-range = [y-min, y-step, y-max] range and s t e p  s i z e  of second parameter 
point  = point  estirnate values of t he  tvo  parameters 
contoilr-level = value of contour 
func-name = funct ion t h a t  v i l 1  r e t u rn  the c r i t e r i o n  value vhere the  t vo  

paraneter  values are passed t o  it a s  a vec tor  
[c r i te r ion]  = f  unc-name I ( [parameter 1, parameter 21 

NOTE: t h i s  funct ion requires  the  update-cmat m-file 

t h e  loca t ion  of t he  square as  it moves along is defined by t he  
t op  l e f t  hand corner ( the square index poin t ) .  The o ther  po in ts  
i n  t h e  square a r e  alvays r e l a t i ve  t o  t he  index po in t  and i n  t he  
o r i en t a t i on  a s  shovn belov 

1 2 (1  is t h e  index point)  
4 3 

func t ion  ~=contour,bf~x,raage,y~r~ge,point,contour~level,f~c~n~e~ 

~fun~,name='abc,crit~~olf': 

%contour,lsvel = 0.0001; 



% parameter point estimate 
%point(l)=.4 ; 
%point (2)= .3 ; 

% setup alorithm values, i-e. ranges, and step sizes 
x-min = x-range (1) ; 
x-max = x-range (3) ; 
y-min = y-range (1) ; 
y-max = y-range(3) ; 

x-val = x-min:x-step:x,max ; 
y-val = y,min:y,step:y,max; 

x-mat = ones(y-num. l)*x,val; 
y-mat = (ones (x-num. 1) *y,valI1 ; 

% find location of square vith the point estimate 
box,x=ceil( (point (1) -x-min) /x-step) ; 
bo~-y=ceil((point(2)-y,rnin)/y~step); 

% assign dummy values to starting box index 
box,start= CO, 01 ; 

% get criterion value at box corners 1 and 2 
crit,mat=update,cmat (1. box-x , box-y ,x-val. y-val. crit-mat. func-nme) : 
crit-mat=update,cmat (2, box-x, box-y ,x-val, y-val, crit-mat , fu~c-name) ; 

% loop to move the box in the x-direction until ue find the contour or plot edge 
% =>assuming that the curent crit-mat value is less than the contour,level 
uhile (crit,mat(box-y,box-x+l) < contour-level) 8 (box-x < x-num-1) 
box,x=box,x+l; 

crit,mat=update,cmat (2 ,boxXx ,box-y, x-val, y-val, crït-ma% ,func-name) ; 
end 
box-index = 2; 

% get points 3 and 4 in the box on the contour or edge 
crit,mat=update~cmat(3,box~x,boxXy,xX~a1,yYva1,crit~mat,f~c~name); 
crit~mat=update,cmat(4.box,x,box,b~~Xy,~~va1,y~va1,~rit~mat,f~n~~name); 

% test if ue are on a contour or edge 
if (crit,mat(box,y,box,x) < contour,levei) .k ... 

(crit-mat(box,y,box,x+l) < contour-level) 8 ... 
(crit,mat(box,y+l,box,x+l) < contour,level) & ... 
(crit-mat (box,y+t ,box,x) < contour-level) 

% on an edge 
edge = 1; 
movedir = 'doni ; 

elseif (crit-mat (box-y, box-x) > contour-level) 8 . . . 
(crit,mat(box,y,box,x+l) > contour-level) & ... 
Ccrit,mat(box,y+l,box,x+l) > contour-level) & ... 



(crit,mat(box,y+l. box-x) > contour,level) 
% error! contour smaller than box step resolution 
disp('Error! the contour is smaller than the resolution of the') 

disp ( a chosen axis step sire') 
return 

else 
% on a contour 
edge = 0; 

end 

% main loop to move the box along the contour on the criterion surface 
vhile 1 

box-move = 0; 

if edge == O 

svitch box-index 
case 1 

if crit-mat (box-y ,box,x)>contour,level L crit-mat (box-y , box-x+l) <contour,level 
if box-y > 1 

% move box up and get points 1 and 2 
box,y=box,y-1; 
crit,mat=update,cmat(l.box~x.box~y,x,~al,y~val.crit~mat,func,name): 
crit,mat=update-cnat(2,box-~,bo~,y,~-va~,y-v~~.c~it-~at.f~~c-n~~~): 
box-move = 1; % the box has moved 

else 
edge = 1; 
movedir = >rightJ; 

end 
else 

box,index=2; 
end 

case 2 
% move box right and get points 2 arid 3 
if crit~mat(box,y,box,x+l)>contour_level & crit~mat(box,y+l,box,x+l)<contour,level 

if box-x < x-num-1 
% move box right and get points 2 and 3 
box-x=box-x+l; 
crit,mat=update-cmat (2 .box-x , b o ~ ~ y ,  x-val. y-val. crit-mat f u c - n a e )  ; 
crit-matrupdate-cmat (3. box-x . b o ~ ~ y  a x-val. y-val cric-mat, f UrK-name) ; 
box-move = 1; % the box has moved 

else 
edge = 1; 
movedir = 'doun ' ; 

end 
else 

box_index=3 ; 
end 

case 3 
if crit-mat (box-y+l , box,x+l) >contour,level & crit-mat(box-y+l . box-X) <contour_level 

if box-y < y-num-1 
% move box dovn and get points 3 and 4 
box-y=box,y+l; 
crit~mat=update~unat(3,box,x.box,y,x,val.~,val,crit,mat.fun~,~~e); 
crit,mat=update,cmat(48boxb~,bo~~y,~~~a1,yYval,~rit~mat,f~~Cname~; 
box-move = 1; % the box has moved 

else 
edge = 1; 
movedir = 'left ' ; 



end 
else 

box-index=4; 
end 

case 4 
if c r i t - m a r ; ( b o ~ , y + l , b ~ ~ , ~ ) > ~ o n t ~ ~ l e v e l  â crit,rnat(box,y,box~x)<contour,level 

if box-x > 1 
% move box left and get points 1 and 4 
box,x=box,x-1; 
crit,mat=update,cmat(l,box~x~box~y,x~val,y~val,crit~mat,fm~~n~e); 
crit-mat=update,cmat(4,Eox-x, box-y .x-val. y-val .crit-mat .func,name) ; ; 
box-move = 1; % the box has moved 

else 
edge = 1; 
movedir = 'up a ; 

end 
else 

box-fndex=l; 
end 

end % end of svitch box-index 

else % move d o n g  the edge until we find the contour again 
suitch movedir 

case 'right' 
if box-x C x-num-1 

box-x = box-x +l; 
crit~mat=update,cmat(2.box~x,box~y,xXval,y~val,crit~mat,f~~~n~e~; 
box-move = 1; % the box has moved 
if crit-mat(1,box-x+l) > contour-level 

crit,mat=update~cmat(3,box,x,box~y.x~val,y,val.crit~mat,func,name); 
crit-mat=update-cmat (4, box,x , b o ~ ~ y ,  x-val , y-val , cric-nat , f unc-name) ; 
edge = 0; 
box-index = 2; 

end 
else 

movedir = 'doun a ;  
end 

case 'dom ' 
if box-y < y-num-1 

box-y = box-y +l; 
crit,mat--update,cmat(3,b0~~x,bo~~y,~~va1,y~va1,~rit~mat,f~n~~n~e~; 
box-move = 1; % the box has moved 
if crit-mat (box,y+l, box-x+ll > contau-level 

c r i t ~ m a t = u p d a t e ~ c m a t ( 1 . 5 o x ~ x , b o x ~ y , x ~ v a ~ e ~ ;  
crit-mat=update,cmat (4, box-x, box-y , x-val, y-val , cri=-nïat , func-name) ; 
edge = 0; 
box-index = 3; 

end 
else 

movedir = 'left ' ; 
end 

case 'left ' 
if box-x > 1 

box-x = box-x - 1; 
crit,mat=update,cmat(4,box~x,boxFri+,mat=update,cmat(4,box,*,box,y,x,valy,x~val,y~val,crit~mat,f~c~n~e~; 
box,move = 1; % the box has moved 
if crit-mat (box,y+l , box-x) > contour-level 

crit,mat=update,cmat (1, box-x,box,y ,x-val, y-vaï,crzt-mat ,func-name) ; 
crit,mat=update-crnrtt (2, box-x, box-y ,x-val, y-val, crit-mat ,func-name) ; 



edge = 0; 
box-index = 4; 

end 
else 

movedir = a up ' ; 
end 

case 'up ' 
if box-y > 1 

box-y = box-y - 1; 
crit,mat=update~crnat(l.box~x,box,y,x~va~,y~val.crit~mat,fmc~n~e~; 
box-move = 1; % the box has moved 
if crit,mat(box-y,box-x) > contour-level 

crit~mat=update~cmat(2,box,x.box~y,x~val.y~val,crit~mat,func~name); 
crit,mat=update,cmat(3,box~x.box,y.x~val.y,val,crit,mat,func~name); 
edge = 0; 
box-index = 1; 

end 
else 

movedir = #rightJ; 
end 

end %end of svitch 

end %end of if edge = O 

if box-move == 1 k[box,x.box,y] -- box-start 
% ve are at the starting point 
break 

elseif box-start == [O .O] ; 
% Save starting point so ve knov when to stop 
box-start=Cbox,x . box-y1 ; 

end 

end % end of main loop Ci .e. while 1) 

% get rid of zeros in the contour matrix 
for i=l:y,num 

for j=l:x,num 
if crit,mat(i,j) == O 

crit-mat(i,j) = NaN; 
end 

end 
end 

~~nto~ll~(~,mat.y-mat.crit-mat,Cconto~~~evel, contour-levell) 
hold on 
plot(point<l) .point(21. '- '1 
plot3(x,mat, y-mat ,crit-mat. 'r . a ) 
hold off 



function ~crit,matl=update,cmat (box-peint ,box,x. box-y ,x-val ,y-val, crit-mat . f unc-name) 

loud = 0; 

s v i t  ch box-po int 
case 1 

if crit-mat (box-y .box,x) == O 
para,val=Cx,val (box-x) , y-val (box-y) 1 ; 

crit-mat (box-y , box-x) = eval( Cf une-name, ' (paraaval) ' 1 ) ; 

if loud = I 
plot (box-x.box,y*(-1) .>o> 1 
end 

end 

case 2 
if crit-mat (box-y ,box,x+l) == O 

if loud == 1 
plot (box,x+l , box-y* (-1) , 'o' ) 
end 

end 

case 3 
if crit-mat(box-y+l ,box-x+l) == O 

para,val=Cx,val(b~~~x+l) ,y,val(box,y+ï) ] ; 
crit-mat (box-y+l ,box,x+l) = evalC Cfunc-name , ' (paraaval)>] ) ; 

if loud == 1 
plot(box,x+L. (box-y+l) *(-LI, 'o') 
end 

end 

case 4 
if crit,mat(box~y+l,box-x) == O 

para,val= Ex-valCbox-x) , y-val(box-y+l)l ; 
cri%-mat (box,y+l, box-x) = eval( Cf une-name , ' (para-val) ' 1 ) ; 

if loud == L 
plot (box-x, (box,y+l) * (-1) , O ) 
end 

end 

end % end of suitch 



Appendix D 

Al1 of the gradient plots obtained in the case studies are available as a package of encap- 
sulated postscript files. Within this package there is a readme . t x t  text file that contains 
a listing and desctiption of ail of the gradient pIots contained tvithin it. 

A copy of the package can be obtûined by contacting either Prof. T.A. Duever or 
Prof. A. Penlidis at  the follotving address: 

Department of Chernical Engineering 
University of Waterloo 
Waterloo, Ontario 
Canada 
N2L 3G1 
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