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Abstract 
 

This thesis presents an efficient self-consistent Hybrid Spectral Ray Tracing 
(HSRT) technique for analysis and design of multi-scale sub-millimeter wave 
problems, where sub-wavelength features are modeled using rigorous methods, 
and complex structures with dimensions in the order of tens or even hundreds of 
wavelengths are modeled by asymptotic methods. 

Quasi-optical devices are used in imaging arrays for sub-millimeter and 
terahertz applications, THz time-domain spectroscopy (THz-TDS), high-speed 
wireless communications, and space applications to couple terahertz radiation 
from space to a hot electron bolometer.  These devices and structures, as 
physically small they have become, are very large in terms of the wavelength of 
the driving quasi-optical sources and may have dimension in the tens or even 
hundreds of wavelengths.  Simulation and design optimization of these devices 
and structures is an extremely challenging electromagnetic problem.  The analysis 
of complex electrically large unbounded wave structures using rigorous methods 
such as method of moments (MoM), finite element method (FEM), and finite 
difference time domain (FDTD) method can become almost impossible due to the 
need for large computational resources.  Asymptotic high-frequency techniques 
are used for analysis of electrically large quasi-optical systems and hybrid 
methods for solving multi-scale problems.   

Spectral Ray Tracing (SRT) has a number of unique advantages as a candidate 
for hybridization.  The SRT method has the advantages of Spectral Theory of 
Diffraction (STD).  STD can model reflection, refraction and diffraction of an 
arbitrary wave incident on the complex structure, which is not the case for 
diffraction theories such as Geometrical Theory of Diffraction (GTD), Uniform 
theory of Diffraction (UTD) and Uniform Asymptotic Theory (UAT).  By 
including complex rays, SRT can effectively analyze both near-fields and far-
fields accurately with minimal approximations.  In this thesis, a novel matrix 
representation of SRT is presented that uses only one spectral integration per 
observation point and applied to modeling a hemispherical and hyper-
hemispherical lens.  The hybridization of SRT with commercially available FEM 
and MoM software is proposed in this work to solve the complexity of multi-scale 
analysis.  This yields a computationally efficient self-consistent HSRT algorithm.  
Various arrangements of the Hybrid SRT method such as FEM-SRT, and MoM-
SRT, are investigated and validated through comparison of radiation patterns with 
Ansoft HFSS for the FEM method, FEKO for MoM, Multi-level Fast Multipole 
Method (MLFMM) and physical optics.  For that a bow-tie terahertz antenna 
backed by hyper-hemispherical silicon lens, an on-chip planar dipole fabricated in 
SiGe:C BiCMOS technology and attached to a hyper-hemispherical silicon lens 
and a double-slot antenna backed by silica lens will be used as sample structures 
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to be analyzed using the HSRT.  Computational performance (memory 
requirement, CPU/GPU time) of developed algorithm is compared to other 
methods in commercially available software.  It is shown that the MoM-SRT, in 
its present implementation, is more accurate than MoM-PO but comparable in 
speed.  However, as shown in this thesis, MoM-SRT can take advantage of 
parallel processing and GPU.  The HSRT algorithm is applied to simulation of 
on-chip dipole antenna backed by Silicon lens and integrated with a 180-GHz 
VCO and radiation pattern compared with measurements.  The radiation pattern is 
measured in a quasi-optical configuration using a power detector.  In addition, it 
is shown that the matrix formulation of SRT and HSRT are promising approaches 
for solving complex electrically large problems with high accuracy.   

This thesis also expounds on new measurement setup specifically developed for 
measuring integrated antennas, radiation pattern and gain of the embedded on-
chip antenna in the mmW/ terahertz range.  In this method, the radiation pattern is 
first measured in a quasi-optical configuration using a power detector.  
Subsequently, the radiated power is estimated form the integration over the 
radiation pattern.  Finally, the antenna gain is obtained from the measurement of a 
two-antenna system.    
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CHAPTER 1  

 

Introduction  
 

1.1 Why Explore The Terahertz Frequency Range? 

The terahertz (THz) region of the electromagnetic spectrum lies in the gap 
between microwaves and infrared.  The terahertz gap fills the wavelength range 
from 3 mm to 30 μm (100 GHz-10 THz)[1]-[10].  Historically the terahertz gap 
had been limited by the lack of inexpensive sources, detectors and systems for 
terahertz waves. Recent advancements in the terahertz generation and detection 
techniques have made a number of applications possible.  Terahertz technology 
has been used extensively in radio astronomy, space applications, atmospheric 
research, high-resolution spectroscopy and remote sensing areas.  Recently, the 
terahertz technology has been applied to skin cancer detection [3], skin wound 
healing and scarring [4], biosensing [5], imaging of dental tissue [6][7], high-
speed wireless communication [8], pharmaceutical sciences [9] and security 
screening [10].  There are a number of reasons that the terahertz frequency range 
is desirable. These reasons include: 

• The use of THz in the biomedical imaging field attracts a great 
deal of interest because THz radiation is nonionizing and the 
imaging is noninvasive. The power levels employed in the 
submillimeter wave range are in the milliwatts and the energies are 
in the femtojoules [1] region hence, it avoids biochemical 
modifications in tissue which could be hazardous to living beings 
as it is the case with X-rays.  It is more economical than Magnetic 
Resonance Imaging (MRI).   

• Although a high water content (the absorption coefficient of 
deionized liquid water is 500 cm-1 at 3 THz or 2000 dB/cm) [1] 
does not allow the THz radiation to penetrate deep into the tissue, 
diagnostic applications have been investigated aiming at the 
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identification of skin cancer, and the detection of pre-caries 
modifications of the teeth.   

• THz Pulse Imaging (TPI) has been used to create an image of a 
human premolar where the enamel and dentine layers were 
identified using the change in the refractive index [7].  Other than 
being a nonionizing imaging modality, TPI has an advantage 
compared to X-ray imaging and MRI due to its ability to perform 
spectroscopic measurements, time-of-flight and average absorption 
information at each pixel in an image.   

• The wavelength regime is appropriate for imaging since the 
diffraction limited spot size is consistent (1.22λ0=366 μm at 1 
THz) with the resolution of a decent computer monitor (~70 
dots/in.) 

• At THz frequencies, the terahertz signals can pass through tissue 
with only Mie or Tyndall scattering (proportional to f 2) rather than 
a much stronger Rayleigh scattering (proportional to f 4) that 
dominates optical and IR ranges. 

• The energy levels in the THz range are consistent with in the 
discrete molecular vibrational modes in liquids, proteins and solids 
[1].  Astronomers, space scientists and molecular chemists have 
mapped thermal emission lines for a wide variety of light-weight 
molecules, since much spectroscopy information is found in this 
THz region of the EM spectrum.  Since the terahertz signal is 
remote and nondestructive, this is a fast and powerful method for 
label-free DNA sequencing using change in the index of the 
refraction when the DNA in the solution is hybridized [11]. 

• In the pharmaceutical industry, applications of THz include non-
destructive and non-invasive tablet coating analysis and drug 
counterfeiting detection.   

• The atmospheric opacity limits radar and communications 
applications at terahertz frequencies, but wireless indoor 
communication with data rates in the tens of gigabits per second 
are possible if small and efficient THz transmitters are developed.  
At the THz range, a secure communication with attenuation 
outside the target area is promising with small antenna sizes 
integrated on a THz chip to take advantage of large bandwidth of 
the THz carriers.   
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• Commercial companies such as Picometrix in the US and Teraview  
in the UK have commercialized the THz time-domain 
spectroscopy or the T-ray imaging system for in situ measurements 
of a transmitted or reflected terahertz energy incident upon a small 
sample to reveal spectral content, refractive index determination, 
amplitude and phase, and sample thickness information.  The T-
Ray Science in Canada has developed a dual mode THz 
spectrometer that can work in either a pulsed or continuous wave 
setup to diagnose skin cancer using a new platform of portable 
scanning devices.  These devices can be used in medical offices, 
skin care clinics, and on-site skin cancer screening stations. 

• THz has the potential to provide a very large bandwidth for future 
gigabit THz communication systems.  One can expect that wireless 
short-range communication networks will soon push towards the 
THz frequency range as systems that operate at several 100 GHz 
are being developed.  The current research is on the line-of-sight 
indoor propagation modeling system analysis for future multi 
gigabit THz communication [15].  The systems would require 
highly directive antennas operating in short-range to compensate 
for the high free space attenuation.   

Efficient computation techniques for electrically large structures are 
required for propagation modeling in communication systems, and the 
spectroscopic and imaging for biomedical applications such as skin cancer 
detection and dental imaging. Most of the systems in THz require a multi-
resolution analysis to model the electrically small antennas that interact with the 
electrically large structures such as lenses, mirrors and biological samples.  
Hybrid methods for the analysis of a millimeter wave and THz systems are thus 
needed for the analysis of complex structures of a few 10λ to 1000λ interacting 
with sub-wavelength structures such as a dipole antenna.   
 

1.2 The Computational Methods for Electrically Large 
Complex Structures  

 
Quasi-optical devices are used in imaging arrays for sub-millimeter and 

terahertz applications, THz Time-Domain Spectroscopy (THz-TDS), high-speed 
wireless communications, and space applications to couple terahertz radiation 
from space to a hot electron bolometer.  These devices and structures, despite 
being as physically small they have become, are very large in terms of the 
wavelength of the driving quasi-optical sources and may have dimensions in the 
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tens or even hundreds of wavelengths.  The simulation and design optimization of 
these devices and structures is an extremely challenging electromagnetic problem.  
The analysis of these complex electrically large unbounded wave structures using 
rigorous methods such as the Method of Moments (MoM), the Finite Element 
Method (FEM), and the Finite Difference Time Domain (FDTD) method can 
become almost impossible due to the need for large computational resources.  
There are two main categories for the analysis of electrically large quasi-optical 
systems, which are the asymptotic high-frequency methods, and the hybrid 
methods. 
 

Asymptotic High-Frequency Methods  
 
The analysis of electrically large structures such as the lens antennas at 

millimeter-wave and terahertz ranges, the reflector antennas at microwave 
frequency ranges, and the characterization of the radio propagation channel in an 
indoor environment have been performed by using high-frequency asymptotic 
techniques. These structures are prohibitively large for the use of rigorous 
numerical methods due to the size of the computational domain.  Asymptotic 
methods such as the ray-tracing technique based on  Geometrical Optics (GO) 
[27][28] and Physical Optics (PO) [29][30] are effective in modeling electrically 
large structures for far-field calculations at high frequencies, and require much 
less computation resources at the expense of accuracy.  The focus of our research 
is on ray-based asymptotic techniques and their application to the hybrid methods.  

For field problems at high frequencies, the separation of the variables 
often converges too slowly to be of practical interest.  Integral equations require 
at least 10 points per λ0 to achieve acceptable accuracy, or 1000 points per 3

0λ  
[31].  Geometrical optics and physical optics avoid these lengthy computations.  
At high frequencies, the field diffracted by a scatterer and observed at a given 
point does not depend upon the field at every point on the surface of the scatterer, 
but rather only on the field in the vicinity of certain points of the object called 
diffraction points.  The diffraction appears as a local phenomenon. Due to 
localization, a ray can be defined as the trajectory between a point of diffraction 
and the point of observation. There the field propagating along the direction of the 
ray looks like a plane wave and the variation of the field is relatively slow in the 
direction perpendicular to the ray.  The GO is thus based on rays that obey the 
laws of reflection and refraction in accordance with Fermat’s principle. 

The shortcomings of the GO is that it predicts vanishing fields in the 
geometrical shadow regions and contradicts experimental observations such as 
Young`s experiment [31].  The Geometrical Theory of Diffraction (GTD), 
introduced by Keller [32], overcame this shortcoming by adding the contribution 
of diffracted rays, such as in the case of diffraction by edges, which penetrate the 
shadow region.  In the theory of the GTD [32][33], the phase varies linearly with 
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the travelling distance along a ray and the power is converged in a tube of rays.  
Keller [32] used an exact solution of scattering from simple shapes, known as 
canonical problems, to derive GTD expressions for diffracted fields.  Since the 
diffracted field carried by the ray depends on the local properties of the incident 
field and local interaction with the object, the original scatterer is replaced with a 
canonical object whose local geometrical and physical properties are identical to 
those of the original scatterer.  Examples of canonical problems include the plane 
wave reflection and refraction at an infinite planar dielectric surface, the half-
plane and wedge solutions, and scattering by a circular cylinder, and sphere.  The 
key step in the GTD is to find the rays that are predominant contributors to the 
diffracted field and to evaluate the field along each ray using the GTD diffraction 
coefficients.  Diffraction coefficients derived from the canonical problem are 
multiplied with the incident ray at the point of diffraction to produce the initial 
value of the field on the diffracted ray.  The GTD diffraction coefficients are non-
uniform and invalid in the transition region adjacent to the shadow boundary 
where the diffracted field plays a significant role in edge and convex surface 
diffraction. The fields computed by the GTD are infinite on caustics and 
discontinuous on the light-shadow boundaries.   

The Uniform Asymptotic Theory (UAT) [35] and Uniform Theory of 
Diffraction (UTD) [36] were developed to resolve the aforementioned issues with 
the GTD.  The UTD departs from the pure ray optical field approximation to 
correct the shortcoming of the GTD within the shadow boundary transition region 
and reduces the GTD outside to this transition region.  Kouyoumjan and Pathak 
[36] begin with an ansatz for the diffracted field based on the uniform solution of 
the wedge with the planar faces using the Pauli-Clemmow method.  By 
considering the wedge, which is locally tangent to the wedge with curved faces at 
the diffraction point, the divergence factor of the diffracted wave is extended to 
the case of a curved edge that is illuminated by a local planar wave.  The total 
field is the sum of the incident and reflected GO fields, and the field diffracted by 
the edges.  In order for the diffracted field to compensate the jump discontinuity 
of the incident and reflected fields across their shadow boundaries, the arguments 
of the Fresnel functions in the expressions of the diffraction coefficients are 
modified to satisfy the continuity of the total field across the shadow boundary.  
High frequency diffraction by the regular convex Perfect Electric Conductors 
(PEC) using different ansatz have been extensively researched by Pathak et al. 
[38][40] and  Mittra and Safavi-Naeini [39].   

Lee and Deschamps [37] derived the UAT solution constructed from the 
uniform solution of the wedge with planar faces by using the Van de Waerden 
method.  They introduced detour parameters corresponding to the detour that the 
phase makes along the path followed by the diffracted ray.  The uniform 
asymptotic solution of the total field is obtained by extending the divergence 
factor of the diffracted wave to the case of a curved edge that is illuminated by a 
locally plane wave, and by generalizing the detour parameters to the 3D 
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geometries of the wedge and incident wave.  The diffraction coefficients are non-
uniform Keller coefficients, and the reflected field is an extension of the GO 
through the continuity of the phase and the amplitude.  As the detour parameters 
approach zero, the singularity of the Fresnel functions evaluated at the detour 
parameters are compensated by the corresponding singularities of the diffraction 
coefficients in the neighborhood of the direct field’s the shadow boundary for the 
continuity of the total field.  The uniform asymptotic solution is continuous across 
both the incident and reflected shadow boundaries and becomes identical to the 
non-uniform solution far from the shadow boundaries.  For the UAT solution, the 
continuity of the derivatives of the field is satisfied unlike the UTD, where a slope 
diffraction coefficient has to be introduced as a corrective term [41].  The UAT 
yields an asymptotic expansion that includes the terms O(k-1/2) since the UAT 
solution finds a term that depends upon the derivative of the reflected field in the 
direction normal to the shadow boundary [42].  The UTD with slope diffraction 
coefficients of the incident and reflected field can obtain a solution equivalent to 
the UAT.  The UTD is more convenient than the UAT since it is neither necessary 
to extend the surface nor find fictitious rays with the UTD.   

 
Hybrid Methods 

 
Modern communication systems typically utilize electrically small 

antennas mounted on a comparatively electrically large platform such as a car or 
an airplane.  From modeling THz integrated antennas, quasi-optical system, and 
large microwave and millimeter wave antennas to accurately modeling an indoor 
millimeter wave and THz propagation close to the complex discontinuities, the 
hybrid methods that combine rigorous numerical methods such as the Method of 
Moments (MoM), Finite Element Method (FEM), and/or Finite-Difference Time-
Domain (FDTD) with asymptotic methods are needed to model the entire 
structure.  A number of hybrid methods have been developed over the years to 
tackle this class of problems, where the complex PEC or dielectric structures have 
a pronounced effect on the electrical characteristics such as the radiation patterns.   

Hybrid methods are broadly categorized as either ray-based or current-
based techniques.  Ray-based techniques such as the MoM-GTD[43], [44] 
provide a considerable speed advantage, but are quite difficult to implement for 
an arbitrary and complex object.  In contrast, the current-based methods such as 
the MoM-PO[45][46] and the FEM-PTD [47], that attempt to determine the 
equivalent surface currents that represent an object are inherently capable of 
modeling irregular geometries given a good approximation of the current.  A 
hybrid method based on the combination of the ray tracing and the FDTD method 
was developed for accurate modeling of the indoor radio wave propagation 
[48],[49].  The technique uses ray tracing to analyze the wide areas and FDTD to 
model areas close to complex discontinuities., where it incorporates the reflection, 
refraction and diffraction by solving Maxwell’s equation in the time-domain.  The 
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technique has also been applied using the FDTD method to study the effects of 
inhomogeneities inside walls and small indoor structural features.  

Next we consider paraxial Gaussian beams, which are very good 
approximations for laser sources and attractive candidates as an elementary beam 
for the modeling of the propagation in open structures.  This is due to their finite 
extent. Gaussian beam tracing and the Gaussian beam modes propagation 
schemes have been investigated and reported for the modeling of quasi-optical 
and photonic systems in the literature[16]-[25].  The Complex Source Point (CSP) 
representation together with Complex Ray Tracing methods has been used for 
optical systems.  Felsen et. al [17]-[21], who have done the most extensive 
research on this method, traced the rays originating from a source point to a 
typical observation point.  The source is then transformed to a point in the 
complex plane and the propagation of a Gaussian beam is modeled by rays 
originating from this complex point.   

The combination of the Gabor Expansion and the Gaussian beam tracing 
can handle a relatively large class of structures.  The GBT fails when the waist of 
the beam is larger than the radii of curvature of the surface or wavefront.  The 
input to the quasi-optical system such as aperture fields over a plane is expanded 
in terms of a set of elementary Gaussian beam functions based on the Gabor 
series [22]-[26].  These however, methods cannot handle structures very small in 
terms of wavelengths and periodic structures.  In [50], the combination of the 
Gaussian Beam Tracing (GBT) technique with a Gabor type expansion and the 
hybridization with the FDTD method for the analysis of photonic structures is 
introduced.  The hybridization of the FDTD method with the Gaussian Beam 
Expansion/Tracking method has been introduced to model the structures that are 
very small in terms of wavelength, and periodic structures such as diffraction 
gratings.   

The focus of the present research will be on the hybridization of the ray-
based asymptotic techniques and the MoM-PO will be used to compare and verify 
the results. 
 

1.3 Motivations for Using Hybrid Spectral Ray Tracing  
 
As stated above, for multi-resolution sub-millimeter problems, where the 

sub-wavelength features have to be modeled using rigorous methods, and the 
complex structures with dimensions in the order of tens or even hundreds of 
wavelengths are modeled by asymptotic methods, Spectral Ray Tracing (SRT) 
has a number of unique advantages.  The SRT method has the advantages of the 
STD.  By decomposing the arbitrary wave into plane waves, the STD can model 
the reflection, refraction and diffraction of an arbitrary wave incident on a 
complex structure, which is not the case for the GTD, UTD and UAT.  By 
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including complex rays, the SRT can effectively analyze both near-fields and far-
fields accurately.  Although the current-based methods such as the PO are 
effective for the far-field analysis of electrically large irregular shaped structures, 
the current integrations involved compared to the proposed SRT using matrix 
representation, which requires only one spectral integration per observation point 
regardless of the shape of the arbitrary 3D structure.  The PO technique is not as 
effective as the SRT for near-field analysis.   

In simulating the far-field and near-field of a structure, the SRT method 
has many advantages compared to other computational methods such as: 

 
• The SRT can solve unbounded and open problems easily without 

having to numerically model the space around scattering objects 
and radiating boundaries 

• The electric fields remain finite at caustic points  

• It is effective in modeling electrically large structures with 
arbitrary 3D surfaces 

• The method can employ a simple ray tracing technique or be 
generalized to include the UAT and UTD diffraction theories 

• The SRT can model conductors and homogeneous dielectrics 
including the reflection, refraction and diffraction 

• The SRT saves the computer CPU time and memory 

• Since the media is linear, the solution and ray tubes obtained by 
the SRT for a particular structure can be interpreted as the transfer 
function of the structure.  The transfer function of the structure can 
be re-used for the analysis of multi-antenna systems, for different 
frequencies, and optimization.   

The hybridization of the SRT with rigorous methods such as the MoM and 
the FEM is the main focus of this research.   

 

1.4 Thesis Organization  

The objective of this research is the formulation and application of the 
hybridization of the SRT with the FEM and the MoM for the analysis of complex 
structures such as integrated lens antennas and scattering from biological media 
such as a tooth in the THz region.   

In Chapter 2, the SRT technique is introduced and reviewed for the 
analysis of an arbitrary 3D structure.  The SRT solution is also derived from the 
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electromagnetics theory of reciprocity.  The underlying concept of this theory is 
presented where a general incident field or electric field in the source plane that 
can be represented as a superposition of plane waves for both homogeneous and 
inhomogeneous types.  A ray concept is used for modeling the field propagation 
in free space and its transformation by curved interfaces.  The spectral samples of 
the plane waves are descretized in 3D and represented as ray tubes that leave the 
source plane and reach the observation point.  The GO was applied to these ray 
tubes, where they undergo reflection, refraction and diffraction.  The advantages 
and disadvantages of the SRT are also discussed.   

In Chapter 3, a novel matrix representation of the SRT is presented and 
applied to the modeling of a hemispherical and hyper-hemispherical lens, 
respectively.  The main focus is on the hybridization of the SRT using 
commercially available FEM and MoM software.  A computationally efficient 
Hybrid SRT method is proposed, where the hybridization of the FEM or the MoM 
with the SRT is a contribution to this research.  The various versions of the 
Hybrid SRT method such as the FEM-SRT, and the MoM-SRT, are compared and 
validated through a comparison of the radiation patterns with the Ansoft HFSS for 
the FEM method, the FEKO for the MoM, the Multi-level Fast Multipole Method 
(MLFMM) and the PO, via the simulation of a bow-tie terahertz antenna backed 
by hyper-hemispherical silicon lens, and a double-slot antenna backed by silica 
lens.  The HSRT algorithm is applied to the simulation of an on-chip dipole 
antenna backed by silicon lens and integrated with a 180-GHz VCO and the 
measurements are compared. 

Chapter 4 describes the experimental setup for the antenna 
characterization of an embedded on-chip antenna in the mmW/THz range. 

Chapter 5 has the experimental setup for the material characterization of a 
tooth and dental caries for imaging purposes.  It also includes a continuous-wave 
THz imaging setup for a polyethylene cylinder and a cross-section of a tooth.  In 
addition, the transmission simulation obtained using the HSRT is compared with 
the TLM method.  

In Chapter 6, concluding remarks are made and future works discussed. 
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Figure 1.1   Schematic of Thesis organization.  
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CHAPTER 2  

The Spectral Ray Representation of a 

Planar Source Field  

2.1 Introduction 

The analysis of complex electrically large structures using the Method of 
Moments (MoM), the Finite Element Method (FEM), and the Finite Difference 
Time Domain (FDTD) method can become prohibitive due to the need for large 
computational resources.  The asymptotic methods discussed in Chapter 1 require 
much less computation resources at the expense of accuracy and are effective in 
modeling electrically large structures for far-field calculations at high frequencies.   

As a general asymptotic formulation of the EM scattering by a complex 
object, Spectral Ray Tracing (SRT)[60]-[62] was first proposed for modeling 
quasi-optical systems.  The SRT is an alternative for a reliable and accurate 
computation of the electromagnetic field in the near-field and far-field regions of 
large structures that use much less computational resources compared with 
numerical methods.  In this chapter, for the first time the SRT is derived from the 
Electromagnetics Reciprocity theory and Parseval’s theorem.  The SRT is based 
on the Spectral Theory of Diffraction (STD) [31] introduced by Mittra et al..  The 
underlying concept of this theory is that a general incident field or electric field in 
the source plane can be represented as a superposition of the plane waves of both 
the homogeneous and inhomogeneous type.  A ray representation is used for 
modeling the field propagation in free space and the reflection, refraction, and 
diffraction by the curved interfaces.  The incident field spectrum is sampled by 
plane wave rays, which will form tubes that leave the source plane and reach the 
observation point.  The GO, GTD and/or more advanced versions of the 
diffraction theories such as the UTD are applied to these rays, where they undergo 
reflection, refraction and diffraction.  For the transmission through an interface, 
the transmitted field is approximated by components parallel and perpendicular to 
the incident plane, to the product of the Fresnel transmission coefficient and a 
divergence factor. 
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The spectral ray representation of the planar source field is given in 
Section 2.2, followed by the derivation of the SRT solution in Section 2.3.  The 
discretization of the Plane Wave Spectrum (PWS) integrals in 3D is given in 
Section 2.4, and finally the advantages and disadvantages of the SRT discussed in 
Section 2.5. 

2.2 The Foundation of SRT 

In this section, we represent the field radiated from a known planar source 
at  z = 0 in terms of spectral rays (see Fig. 2.1(a)).  Suppose the tangential electric 
fields ( , ,0), ( , ,0)x yE x y E x y  at the source plane are given.  The electric field at 
any point in the half-space z > 0 is calculated using the known field in the plane z 
= 0, which serves as a boundary condition.  Through the Fourier transform, F , of 
the electric field over the plane z = 0,  ( , )x x yE k k�  and ( , )y x yE k k�  represent the 
Fourier transform of ( , ,0)xE x y  and ( , ,0)yE x y , and we are able to write [34] 

 
Omitting the factor j te ω , the electric field components Ex and Ey at point  
P(x,y, z > 0) are found as a plane-wave superposition   

where ( , , )x y zk k k=k  is the wave vector with 2 2 2 2
x y zk k k k π
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= + + = =k  and 

λ  is the wavelength of the propagating field.   
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We denote ( , )x x yE k k�  and ( , )y x yE k k�  as the x- and y-components 
respectively, of the electric field’s Plane Wave Spectrum (PWS).  Assuming 
Gauss’ Law holds,  once we use Eq. 2.3 and Eq. 2.4 to obtain ( , , )xE x y z  and 

( , , )yE x y z  at point ( , , 0)P x y z > , employing Maxwell’s equations gives the 
remaining component ( , , )zE x y z , and the components 

( , , ), ( , , ) and ( , , )x y zH x y z H x y z H x y z  of the magnetic field at the observation 

point ( , , 0)P x y z > .  Thus, the two scalar angular spectra ( , )x x yE k k�  and 

( , )y x yE k k�  completely describe the field throughout the half-space z > 0 [34].  
The component ( , , )zE x y z  is calculated the following way [88] 

where 

is the PWS of the component along z.   
To do the numerical calculation, the integral Eq. (2.3), Eq. (2.4) and Eq. 

(2.5) have to be discretized.  The discretization is introduced using the notion of 
ray (see Appendix 3).   

The objective of the method is to find the field everywhere.  For this 
purpose, we first expand the source field in terms of the rays which are obtained 
from the discretization of the spectrum of the source.  The second step, is tracing 
the rays from the source to the observation point and the sum contribution of the 
rays that pass through the observation point.  In step two, since it is difficult to 
determine the rays that reach the observation point, based on reciprocity we 
launch the rays backward (backward ray launching) from the observation point.   

In the next section, we start with the backward wave launching concept. 
 

2.3 Derivation of SRT Solution [96] 

 
The SRT has two main steps.  The first step consists of a plane wave 

expansion of the known source distribution in free-space, and the second step is 
the backward ray tracing.  

To describe the first step, it is assumed that the equivalent source currents 
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ˆS n= ×J H  and ˆS n= ×M E  located over the source plane are known.  The 
equivalent source is placed on a Perfect Electric Conductor (PEC) to suppress the 
radiation from (1)

sJ .  The SRT solution for the free-space case is derived from the 
electromagnetics reciprocity between the following problems.  In Problem 1, the 
source at the aperture plane (1)

sM  produces fields (1) (1)and E H  at observation 0rG .  

In Problem 2, the source (2)
0 0ˆ ( )I lρ δ= −J r rG G

 is placed at observation P and we 

denote the field produced by this source as (2) (2)( , , ) and ( , , )x y z x y zE H . Note 
that ρ̂  is an arbitrary complex unit vector, which represents the desired 
polarization at the observation point. 

 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Figure 2.1: Two field systems (a) Problem 1 and (b) Problem 2. 

 
The reciprocity relation between these two field systems yields:  
 

0r
G

(1) (1)( , , ), ( , , )x y z x y zΕ H

(1) ˆ2 ( , ,0)s tn x y= − ×M E

0r
G

(2)
0 0ˆ ( )I lρδ= −J r rG G

(2) (2),E H
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Since the source is over a planar surface, the L.H.S. of Eq. (2.7) becomes  

The R.H.S. of Eq. (2.7) is  

The magnetic field in the far-zone produced by an infinitesimal dipole (source in 
Problem 2) at the observation point is  

Substituting Eq. (2.10) into Eq. (2.8) we get [96] 

where sin 1θ = (paraxial) and 0R = −r r  2 2 2
0 0 0( ) ( ) ( )x x y y z z= − + − + − .   

Then we directly apply Parseval’s theorem at the source plane to convert 
Eq. (2.11) to a Fourier domain integral.  For this purpose, using the plane wave 
representation, [29] 

one may find the following Fourier transform  

at z = 0.  Therefore Eq. (2.11) becomes [96] 
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where 2 2 2
z x yk k k k= − − .   

An important issue, which could potentially become a computationally 
complex problem, is to find the particular ray tubes (spectral rays) that pass 
through or strongly contribute to the total field at a given observation point.  A 
highly effective solution, which is based on backward ray launching, has been 
introduced [88][96].  In this approach, to find all the central rays of the tubes 
which pass through the observation point, a large number of rays are launched 
from the observation point in all possible directions.  These rays are traced back 
towards the source using a simple GO method.  The end segments of these rays in 
the proximity of the source provide an accurate estimate of the spectral directions 
in the source plane wave spectrum.  These directions correspond to the proper 
directions of the plane wave emanating from the source, which would evolve into 
ray tubes passing through the observation point.   

In the SRT method, the integral Eq. (2.14) is approximated by a finite 
summation over a large number of spectral samples.  The Tube of Paraxial Rays 
(TPRs) [27][28] are introduced as samples of the spectrum.  So we do a numerical 
integration of Eq. (2.14) with each plane wave direction given by,  

where  and m nφ θ are the azimuth and elevation angles in spherical coordinates, 
respectively.  The projection of the spherical surface differential as seen in Fig.2.2 
and Fig. 2.3 on the x yk k  plane associated with ,

ˆ
m nk  is 

0 0 0
(1)

0 2
ˆˆ ˆ( ) ( , )

4

z x yjk z jk x jk y

t x y x y
z

k en k k dk dk
k

ρ φ
π

− − −+∞ +∞

−∞ −∞

= ×∫ ∫E r � iE (2.14)  

,
ˆ ˆ ˆ ˆ[cos( )sin( ) ,  sin( )sin( ) ,  cos( ) ]m n m n m n nφ θ φ θ θ=k x y z  (2.15)  

2
2 ( , ) sin(2 )

2t n n m
kd m n d dθ θ φ=k

G
 (2.16)  
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( , )x x yE k k�

yk

xk

k

2
,( , )t m nΔ k

,( , )( )x t m nE k�

2
,( , ) ,( , )( )x t m n t m n

volume

E

≈

Δk k� i

 
Figure 2.2:  The spectrum xE�  is a function of xk  and yk  and the volume 

differential 2
,( , ) ,( , )( )x t m n t m nE ×Δ
G G� k k , where the surface differential 

2
,( , )t m nΔ
G
k  is multiplied by the amplitude of ,( , )( )x t m nE

G� k  in the direction of 

,( , )t m n

G
k .   The volume represents the field ,( , )x m nEΔ  along  x transported by 

the rays of the PWS in the direction of ( , )m n

G
k .   
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Figure 2.3:  The rays of the PWS arrive at point P(x,y,z) in the direction 
G
k  

of the middle ray and surrounded by four vectors 1 2 3 4, , , and 
G G G G
k k k k  in the 

spatial and spectral domains.   
 

 
Then Eq. (2.14) becomes 

where the  spectrum ( )t tk
G�E  is the spectrum of the source.  Substituting Eq. 

(2.16) into Eq. (2.17) we have  
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0
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t x y

m n
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(2.19)  

Spectral Domain 

Spatial Domain 
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Eq. (2.19) is the SRT solution for the case of homogenous space.  For propagating 
plane waves, 2 2 2

,( , ) ( ) ( )z m n x yk k m k n k= − Δ − Δ  and for evanescent waves, 
2 2 2

,( , ) ( ) ( )z m n x yk j m k n k k= − Δ + Δ − .   

In step 2, the free space rays travel through various interfaces, where they 
experience reflection, refraction and diffraction.  The contribution of each 
individual plane wave in Eq. (2.19) to the total field at the observation point is 
found by the Physical Optics (PO) and stationary phase method.  To this end let 
us consider one particular plane wave impinging upon the first interface.  Due to 
this incident wave, the PO sources are placed on this interface, and generates the 
transmitted and reflected waves.  Stationary Phase Method (SPM) is applied to 
the PO integral to find the contribution of the aforementioned incident plane wave 
at the observation point.  It can be shown that the SPM expression is in the form 
of a ray tube (“Spectral Ray”) with a ray path identical to what is predicted by the 
GO and Snell’s law with a divergence factor including the radii of curvature of 
the transmitted/reflected ray phase front (See Appendix 3).  The same procedure 
is repeated at every intervening interface between the source and observation 
point.   

The total field at the observation point is therefore the sum of the 
contributions of all the ray tubes as expressed below: 

Where ( , )m nT  is the Fresnel transmission coefficient and l is the ray path length for 
each TPR interacting with interface.  The TPRs are formed with a middle ray 
along wave vector k

G
 and four other rays around it.   

To summarize, in this section we have derived the SRT solution using the 
reciprocity theorem and Parseval’s theorem.  The main two steps of SRT 
described before can be casted in a 3-step procedure.  This 3-step procedure is 
outlined as follows:   
1) Plane wave spectral decomposition of the source field  
2) For a given observation point P, find the ray paths from the observation point 
to the source plane using backward ray launching (See Appendix 2 for 
Transformation of the Rays of PWS due to Reflections and Refractions)  
3) For each ray path determine the corresponding contribution to complex field at 
P.   
 The first step (spectral integral discretization) will be detailed in the next 
section. 
 

2

0 ,( , ) 00

1
0 ( , ) ( , )4

2
,( , )

( ) ( , ) ( )

                    y z m nx

x x x y m n m n
m n

jn k y jk zjm k x
t m n

E E m k n k T DF l

e

π

− Δ −− Δ

Δ Δ

⋅ ⋅Δ

∑∑r

k

�� i

 
(2.20)  
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2.4 The Discretization of the PWS Integrals in Three 
Dimensions  

 
The discretization of the integral permits the numerical calculation for the 

case where we do not have the analytical solution of the integral. The 
discretization happens to be the only method of evaluation [51].  The availability 
of the analytical solution is a definite advantage over the numerical solution at the 
point since it is rapid and has better precision.  To discretize the Eq. (2.3), Eq. 
(2.4) and Eq. (2.5) we use [60][62] 

where 
 

In Eq. (2.21) to Eq. (2.23), xkΔ and ykΔ  are the integration increments in the 

x yk k  plane, and ( , )x ym k n kΔ Δ  for ,m n∈]  covers the x yk k -plane.  In practice 

the variations of m and n are such that 2 2( ) ( )x ym k n k kΔ − Δ ≤  and so we neglect 
the evanescent fields.  

This section presents the notion of the ray solution of the PWS intergrals’ 
discertization in 3-D.  The Eq. (2.21) to Eq. (2.23) produce the three components 
of the electric field at point ( , , )P x y z .  When rewriting the equations for one 
fixed coordinate (m,n) we have  

, ,( )( , , ) ( , ) x y z m nj m k x m k y k z
x x x y x y

m n
E x y z E m k n k e k k

+∞ +∞
− Δ + Δ +

=−∞ =−∞

Δ Δ Δ Δ∑ ∑ ��

 

(2.21)

, ,( )( , , ) ( , ) x y z m nj m k x m k y k z
y y x y x y

m n
E x y z E m k n k e k k

+∞ +∞
− Δ + Δ +

=−∞ =−∞

Δ Δ Δ Δ∑ ∑ ��

 

(2.22)

, ,( )( , , ) ( , ) x y z m nj m k x m k y k z
z z x y x y

m n
E x y z E m k n k e k k

+∞ +∞
− Δ + Δ +

=−∞ =−∞

Δ Δ Δ Δ∑ ∑ ��

 

(2.23)

2 2 2
, , ( ) ( )z m n x yk k m k n k= − Δ − Δ  (2.24)
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Eq. (2.25) represents the field that is transported by a ray of PWS in three 
dimensions that arrives at point ( , , )P x y z  in the direction 

, , ,( , , )m n x y z m nm k n k k= Δ Δk  and with the phase , ,x y z m nm k x n k y k zΔ + Δ + , and the 

amplitudes ( , )x y x x yk k E m k n kΔ Δ Δ Δ� , ( , ) andx y y x yk k E m k n kΔ Δ Δ Δ�  

 ( , )x y z x yk k E m k n kΔ Δ Δ Δ�  for the components x, y, and z respectively.  Fig. 2.4 
presents a ray in space xyz, with a corresponding direction in the spectral domain 

x y zk k k  and the surface differential x yk kΔ Δ .  The phase at point P is ,m n ik r   
where ,m nk  is the direction wave vector of a ray and r  is the distance from the 
origin to P.  The discretization from Eq. (2.21) to Eq. (2.23) is in Cartesian 
coordinates.  In three dimensions the discretization in spherical coordinates is 
more practical.  Therefore ,

ˆ
m nk  is a function of m and n as in Eq. (2.15), where  

{ }( . ) ,( , ) ,( , ) ,( , )ˆ ˆ ˆ( , , ) ( , , ) , ( , , ) , ( , , )

ˆ                        { ( , )

ˆ                              ( , )

                           

m n x m n y m n z m n

x y x x y

x y y x y

x y z E x y z x E x y z y E x y z z

k k E m k n k x

k k E m k n k y

Δ = Δ Δ Δ

= Δ Δ Δ Δ +

Δ Δ Δ Δ +

�

�

E

, ,( )ˆ   ( , ) } x y z m nj m k x n k y k z
x y z x yk k E m k n k z e− Δ + Δ +Δ Δ Δ Δ ×�

 

(2.25)  
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(a)                                                   (b) 

Figure 2.4:  (a) A PWS ray arrives at point P(x,y,z) in the direction ,m nk ,  
        in 3-D and (b) a ray in spectral domain kxkykz [60][62].   

mφ  and nθ  represent the azimuth and elevation angles in spherical coordinates 
and  

The surface differential within the plane x yk k  in the direction of ,m nk  is given in 
Eq. (2.16).  The vector ,( , )t m nk  represents the transverse component of ,m nk in the 

x yk k  plane, and the surface differential element 2
,( , )t m nd k  is the surface covered 

by the vector ,( , )t m nk  in the x yk k  plane because of the change of the direction 

,m nk .  2
,( , )t m nd k  is a scalar variable. In effect, it is the surface differential 

0 2

0
2

m

n

φ π
πθ

≤ <

≤ <
 

 

x yk kΔ Δ  
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,( , )t m n
dsk  in the x yk k -plane through the change in the direction of vector ,( , )t m nk  in 

this plane.  
In order to ameliorate the precision of the numerical calculations of the 

integrals, one takes the surface differential 2
,( , )t m nd k  around ,( , )t m nk  such that the 

vector ,( , )t m nk  is from the origin to the middle of that surface.  We define four 
vectors 1,( , ) 2,( , ) 3,( , ) 4,( , ), ,  and m n m n m n m nk k k k  that surround the vector ,m nk .  The 
directions of these vectors are: 

 

and , ,
ˆ

m n m nk= ⋅k k  is from Eq. (2.15).  Fig. 2.5 shows the transverse components 
of the five vectors in the x yk k -plane, and Fig. 2.6 presents the associated rays in 
free-space xyz and also in the spectral domain kx,ky,kz.  

1,( , ) ˆcos sin ,
2 2

ˆ ˆ                 sin sin , cos
2 2 2

m n
m n m n

m n n
m n n

d dk x

d d dk y k z
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⎛ ⎛ ⎞ ⎛ ⎞= − −⎜ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝

⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎠

k
 

(2.26)

2,( , ) ˆcos sin ,
2 2

ˆ ˆ                 sin sin , cos
2 2 2

m n
m n m n

m n n
m n n

d dk x

d d dk y k z

φ θφ θ

φ θ θφ θ θ

⎛ ⎛ ⎞ ⎛ ⎞= + −⎜ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝

⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − − ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎠

k
 (2.27)
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2 2

ˆ ˆ                 sin sin , cos
2 2 2
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m n n
m n n

d dk x
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ˆ ˆ                 sin sin , cos
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m n
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Figure 2.5:   The transverse vector components 1,( , ) ,  m nk 2,( , ) ,m nk  3,( , )m nk  

4,( , )and m nk   and the surface differential 2
,( , )t m nd k  is covered by the 

vectors in the x yk k -plane.  The transverse component ,( , )t m nk  is placed at 

the center of 2
,( , )t m nd k  [62].   

Given ( ), , ,( , ) ,( , )ˆ ˆ,t m n x m n y m nk x k y=k , the x, y, and z components of the 
electric field are found by 

The equations (2.30) to (2.32) define a volume differential placed underneath the 
functions ( ) ( ) ( ), , , and ,x x y y x y z x yE k k E k k E k k� � � , respectively, for the direction 

( ) 2
,( , ) ,( , ) ,( , )x m n x t m n t m nE E dΔ = ×� k k  (2.30)

( ) 2
,( , ) ,( , ) ,( , )y m n y t m n t m nE E dΔ = ×� k k  (2.31)

( ) 2
,( , ) ,( , ) ,( , )z m n z t m n t m nE E dΔ = ×� k k  (2.32)
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,( , )t m nk .  Fig. 2.2 shows the volume differential for the case of ( ),x x yE k k� .  
Summing up the rays of the PWS as in Eq. (2.20), we find the total electric field 
at point P(x,y,z) is: 

Given ( ),( , )x t m nE� k  and ( ),( , )y t m nE� k , the component ( ),( , )z t m nE� k  is obtained 
using Eq. 2.6. 

 

Figure 2.6:    A ray of PWS arrives at point P(x,y,z) in the direction ,m nk  
in free-space xyz and in the spectral domain kxkykz [62].   

The SRT enables the calculation of near-fields, and Eq. (2.33) consists of 
the sum total of the evanescent and non-evanescent rays of the PWS, which 
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propagate in +z direction and arrive at point P(x,y,z).  The region 2 2
x yk k k+ >  in 

the x yk k –plane correspond to the evanescent fields and their total effect is: 

 
where 

The ,nkρ  and mφ  are the polar coordinates of , ,m nρk  in the x yk k –plane  

with 

and 

The surface differential element is equal to  

The PWS calculated using Eq. (2.1) and Eq. (2.2) are in the general 
complex variables and as a consequence, the x, y, and z field components 
transported by the rays of the PWS are complex.  From Fig. 2.4 the vector 

( , )m nΔE  has Cartesian components ( , )x m nEΔ , ( , )y m nEΔ  and ( , )z m nEΔ  that contain 
the terms of the phase.  The terms of phase have been added to the factor of time 

j te ω  to define the polarization of the rays of the PWS be it linearly, circularly or 
elliptically polarized.   
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(2.34)

, , , ,ˆ ˆ( cos( ) , sin( ) )m n n m n mk x k yρ ρ ρφ φ=k  (2.35)

1
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d d
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, , 1 ,1 with 

2 2
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n n
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ρ ρ ρ

−
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+
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, , , ,m n n m nd k d dkρ ρ ρφ= × ×k . (2.39)
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2.5 Discussion of Advantages and Disadvantages of SRT 

In simulating the far-field and near-field of a structure, the SRT method 
has many advantages compared to other computational methods such as: 

 
• The SRT can solve unbounded and open problems easily without 

having to numerically model the space around scattering objects 
and radiating boundaries. 

• The electric fields remain finite at caustic points.  

• Effective in modeling electrically large structures with arbitrary 
3D surfaces. 

• The method can employ a simple ray tracing technique or be 
generalized to include the UAT and UTD diffraction theories. 

• The SRT can model conductors and homogeneous dielectrics 
including reflection, refraction and diffraction. 

• It saves the computer CPU time and memory. 

• Since the media is linear, the solution and ray tubes obtained by 
the SRT for a particular structure can be interpreted as the transfer 
function of the structure.  The transfer function of the structure can 
be re-used for the analysis of multi-antenna systems, for different 
frequencies, and optimization.   

 
The shortcomings of the SRT, some of which are addressed in this research, are:  

 

• To apply the SRT, the field distribution over the source plane 
containing the antenna should be known beforehand.  It is difficult 
or impossible to obtain this knowledge from the SRT directly.   

• Thorough ray tracing modules are needed to trace rays in complex 
structures. 

• Not appropriate for modeling inhomogeneous media and the 
formulation in [60][62] does not model lossy media. 

• Difficult to calculate input impedance  and current distribution of 
an antenna with a complex structure, or a variation in the current 
distribution in the source plane due to the geometry of the complex 
structure.  
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• The SRT is not easily applicable to the resonance analysis as in 
[82].  However, in many practical cases, these resonances may not 
have any significant effect on radiated field. 

• The size of the analyzed objects must be 4λ and up in terms of the 
wavelength. 

• It cannot model complex multi-layer structures with sub-
wavelength features, like an antenna, being close to large complex 
dielectric structures such as lens, and prisms. 

 

2.6 Conclusions 

In summary, in this chapter we have derived SRT solution using 
reciprocity theorem and Parseval’s theorem.  The discretization of the PWS 
integrals in three dimensions was presented followed by discussion of the 
advantages and limits of SRT.   

The hybridization of the SRT with rigorous numerical solvers such as the 
MoM, and the FEM to determine the field over the source plane is proposed in 
Chapter 3.  If the field distribution on the source plane varies due to the geometry 
of the structure, then the SRT can find the new radiated field quickly.  The 
antenna parameters such as the input impedance, directivity, and antenna 
efficiency can readily be calculated using a hybridization of the SRT.   
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CHAPTER 3  

 
Proposed Hybrid Spectral Ray Tracing 

Techniques  
 

3.1 Introduction 
 
Hybrid techniques are reliable and accurate computational methods to 

model multi-scale problems with complex discontinuities while exploiting the 
effectiveness of asymptotic methods.  For problems where sub-wavelength 
features have to be modeled using rigorous methods, and complex structures with 
dimensions in the order of tens or even hundreds of wavelengths modeled by 
asymptotic methods, Spectral Ray Tracing (SRT) has a number of unique 
advantages.  By including complex rays, SRT can effectively analyze both near-
fields and far-fields accurately.  Current-based methods such as PO are effective 
for the far-field analysis of electrically large and irregular shaped structures. 
However, the required current integrations are complex when compared to the 
proposed SRT using a matrix representation, which requires only one spectral 
integration per observation point regardless of the shape of the arbitrary 3D 
structure.  The PO technique is also not as effective as SRT for near-field 
analysis.   

SRT is based on the plane wave decomposition of the source field or a 
known current distribution [60].  The spectral samples of the plane waves are 
represented as ray tubes that leave the source plane and reach the observation 
point.  The GTD, UTD or Uniform Asymptotic Theory (UAT)[35][37] are 
diffraction theories that are applied to these rays, where they undergo reflections, 
refractions, and diffractions.  At the observation point, all the contributions from 
these rays are summed up to determine the total field. 

In this chapter, a novel matrix representation of the SRT method, and 
Hybrid SRT (HSRT) methods based on a combination of MoM or FEM with SRT 
are proposed.  For the first time, the SRT method is compared to the FEM 
computational technique employing commercial Ansoft HFSS[63].  Unlike the 
previous work [60]-[62] where it was only compared to PO, GO and 
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measurements.  The comparison uses the simulation of the terahertz Gaussian 
beam propagation through a hemispherical lens.  We compared the computational 
time and accuracy of the SRT response with that of the HFSS through the 
convergence analysis.   

A computationally efficient self-consistent Hybrid SRT method is 
proposed where the hybridization of FEM or MoM with SRT is a contribution to 
this research.  The various versions of the HSRT method such as the FEM-SRT, 
and the MoM-SRT, are compared and validated with commercial software Ansoft 
HFSS for the FEM method, FEKO for the MoM, the Multi-level Fast Multipole 
Method (MLFMM) and PO via simulation of a bow-tie terahertz antenna backed 
by hyper-hemispherical silicon lens.  It is shown that the MoM-SRT is more 
accurate than the MoM-PO and comparable in speed.  The FEM-SRT method was 
able to accurately solve a double-slot antenna problem 77 times faster than the 
FEM exploiting the parallel processing.  In addition, it is shown that the matrix 
formulation of SRT and HSRT is a promising approach for solving complex 
electrically large problems with high accuracy.   

3.2 The Fast Analysis of Terahertz Integrated Lens Antennas 

At terahertz frequencies, hyper-hemispherical silicon lens antennas are 
used to couple the terahertz radiation from the photoconductive antennas to free 
space.  The lens and antenna have to be optimized for various applications such as 
in the terahertz radiation coupling from space to a Hot Electron Bolometer (HEB) 
[64].  In simulating the far-field and near-field radiation patterns of the lens 
antennas, the SRT method has many advantages compared to other computational 
methods. Like being easily adapted for optimization, and being able to solve 
unbounded and open problems easily. Unlike the FEM and FDTD methods, both 
are required numerically model the space around scattering objects and radiating 
boundaries. 

3.2.1 SRT APPLICATION TO HYPER-HEMISPHERICAL LENS 

In SRT, rays are introduced not as a result of the stationary phase 
condition [27],[31] or the stationary optical length with respect to small variations 
of the path, but rather as samples of the spectral plane waves.  Suppose the source 
plane is the xy-plane at z = -d, then we calculate the 2D Fourier transform to get 

( , )x x yE k k  and  ( , )y x yE k k   
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An j te ω  time dependence is assumed and the spectrum is discretized using 
rays along 

G
k ,  and θ φ .  For the hyper-hemispherical lens, backward-ray 

launching is applied to determine the ray paths from the observation point O to 
the source plane.  Due to reciprocity, this is the same path as from the source 
plane to the observation point.  We then apply a different technique than in the 
past to determine the corresponding complex field amplitudes for each ray as we 
consider the pulse.  In order to do backward-ray launching, we calculate 

max , d  and dφ φ θ
→

 as the function of the order of reflection (OR) [62][88].  Then 
set miniφ φ=  and 1id dφ φ= .   

 
 
Figure 3.1:   The geometry of the hyper-hemispherical lens for tracing the  

                             backward launched ray in the φ  plane, courtesy of [62]. 
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Fig. 3.1 shows the hyper-hemispherical lens geometry in the φ  plane.  For 
a hyper-hemispherical lens, the minimum and maximum angles along θ  are given 
by the parameters defined in Fig. 3.1: 

where 
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and min, 1iθ +  and max, 1iθ +  are found from Eq. (3.4) and Eq. (3.5).  Fig. 3.2 shows 

the rays launched backward from the observation point (θ, 0φ = D ) to the source 
plane, where each ray samples the spectral domain of the source. 
 

 
 
Figure 3.2:   Rays are launched backward from the observation point (θ, 0φ = D )  
         to the source plane, where each ray samples the  
         spectral domain of the source [88]. 
 
 
Matrix Representation of SRT [88] 
 
A matrix-formulation of SRT is implemented in Matlab [65], where the spectral 
rays along θ  are computed simultaneously to reduce the computation time.  The 
contours of the Tube of Paraxial Rays (TPR), 2,ˆ

iMz  and the ray directions of the 
matrix representations corresponding to a hyper-hemispherical structure are 
calculated as: 
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where 

and , 2iN
i

θ ×∈ℜM

 

is a matrix, i is the index for ith φ  component, i = 1,2,.., Nφ .   
For the rays hitting the spherical portion of the lens, 

where 

For the cylindrical part, the middle ray vector is given by  
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where 

and , , ln 2
, ln

i cyN
i cy

θ ×∈ℜM  is a matrix, i is the index for ith φ

 

component, i = 1,2,.., 
Nφ .  minθ  is the minimum angle that the ray is incident on the cylindrical section 
and sphθ  is the minimum angle that strikes the spherical section of the hyper-
hemispherical structure.  For the spherical part, the middle ray vector is given by   

where 

2, , ln , , ln , , ln , , ln , , ln

, , ln

ˆ ˆ ˆcos( )sin( ) sin( )sin( )

ˆ                  cos( )
i i i i i

i

m cy m cy m cy m cy m cy

m cy

x y

z

=

+
Mz +M M M M

M

φ θ φ θ

θ
 

  (3.24)  

 

, , ln

1
2

, , ln
1
2 ( 1) 1

i

i cy

i i

m cy

i i N

d

d
θ

φ φ

φ φ
− ×

⎡ ⎤+
⎢ ⎥= ⎢ ⎥
⎢ ⎥+⎣ ⎦

M #φ  
(3.25)  

 

, , ln

1
min, 1 ln,2

3
min, 1 ln,2

, , ln
3

, ln,2
1

, ln,2 ( 1) 1

i

i cy

i cy i

i cy i

m M cy

sph i cy i

sph i cy i N

d

d

d

d
θ

θ θ

θ θ

θ θ

θ θ

+

+

− ×

⎡ ⎤+
⎢ ⎥

+⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

#θ . 

(3.26)  

2, , , , , , , , , ,

, ,

ˆ ˆ ˆcos( )sin( ) sin( )sin( )

ˆ                  cos( )
i i i i i

i

m sph m sph m sph m sph m sph

m sph

x y

z

=

+
Mz +M M M M

M

φ θ φ θ

θ
 

  (3.27)  



CHAPTER 3   PROPOSED HYBRID SPECTRAL RAY TRACING TECHNIQUES 
 

 36

After the formulation of the matrix with the geometry information about 
the complex structure, we determine the trajectories of the TPRs through the lens.  
Figures 4.3 and 4.4 show the spherical and cylindrical segmentation of the TPR, 
for rays launched along θ simultaneously for each φ .  For each TPR, we stored 
the ray directions and backward launched rays in a matrix.  Matlab[65] Code for 
the matrix storing the ray parameters is as follows: 
_________________________________________________________________ 

Ref_Mat_m(Ref_Or_cnt,1,:) = Lp_phi_sph_m/n1*n_ref; 
vec_R_m_x = cos(alpha2_m).*vec_n_m_x + sin(alpha2_m).*u1mx 
Ref_Mat_m(Ref_Or_cnt,2,:) = vec_R_m_x;    
Ref_Mat_m(Ref_Or_cnt,3,:) = vec_R_m_y;  
Ref_Mat_m(Ref_Or_cnt,4,:) = vec_R_m_z; 
Ref_Mat_m(Ref_Or_cnt,5,:) = x_inc_sph_m;  %Location of where ray hits sphere 
Ref_Mat_m(Ref_Or_cnt,6,:) = y_inc_sph_m; 
Ref_Mat_m(Ref_Or_cnt,7,:) = z_inc_sph_m; 
Ref_Mat_m(Ref_Or_cnt,8,:) = u1mx; Ref_Mat_m(Ref_Or_cnt,9,:) = u1my; 
Ref_Mat_m(Ref_Or_cnt,10,:) = u1mz; Ref_Mat_m(Ref_Or_cnt,11,:) = u2mx; 
Ref_Mat_m(Ref_Or_cnt,12,:) = u2my; Ref_Mat_m(Ref_Or_cnt,13,:) = u2mz; 
Ref_Mat_m(Ref_Or_cnt,14,:) = vec_n_m_x;  % Normal vector to surface 
Ref_Mat_m(Ref_Or_cnt,15,:) = vec_n_m_y; Ref_Mat_m(Ref_Or_cnt,16,:) = 
vec_n_m_z; Ref_Mat_m(Ref_Or_cnt,17,:) = alpha1_m(1,:); 
Ref_Mat_m(Ref_Or_cnt,18,:) = 1;     % Index for surface 1(Sphere) 
Ref_Mat_m(Ref_Or_cnt,19:21,:) = X_para_R;  
Ref_Mat_m(Ref_Or_cnt,22:24,:) = X_para_i; 
Ref_Mat_m(Ref_Or_cnt,25:26,:) = [T_para;T_perp];  %Tranmission Coefficient 
_________________________________________________________________________ 
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Figure 3.3:   The 
12,ˆ Mz  TPR contour in the ( , )θ φ  plane, courtesy of [62].  In the 

proposed implementation in Matlab[65], the matrix is divided into 

12, , lnˆ cyMz  and 
12, ,ˆ sphMz , the cylindrical and spherical parts.  For the 

matrix representation of SRT, all TPR along θ are computed using 
matrix operations at once.   
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Figure 3.4:   The matrix 2,ˆ
iMz  TPR in the ( , )θ φ  plane [62] and the 2,ˆ

im Mz vector, 
which is the middle ray of the matrix. 

Summing up all the ray contributions we find the total electric field at point 
O(x, y, z): 

where 
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3.2.2 Algorithm to Calculate the Integral of the Spectrum [88] 

 
Step 1 Enter parameters of the lens, point of observation P and order of 

reflection OR.   

Step 2 Calculate max , d  and dφ φ θ
→

 as function of OR.   

Step 3 Set i = 0, 0totalE =
G

, miniφ φ=  and 1id dφ φ= .   
 

Step 4 Calculate the next iterate 2,ˆ
iMz  and ,2, imz M

G
.   

 
Step 5 Determine the trajectories of the TPRs through the lens.   
 
Step 6 If these TPRs depart the z=-d plane go to Step 7.  
 
Step 7 Calculate ,2,( )

jmE z M
G

, field created by the TPRs, and       

,2, ,2, ,2,( ) ( ) ( )
i i jm m mE z E z E z= +M M M

G G G
.   

 
Step 8 Calculate ,2,( )

itotal total mE E E z= + M
G G G

.   
 
Step 9 Find 1i i idφ φ φ+ = + ,  Set i = i+1.   
 
Step 10 If maxiφ φ>  then store totalE

G
, else go to Step 4.   

 
The algorithm is implemented in Matlab[65]. 

3.2.3 Comparison of the FEM with the SRT [88] 

The SRT method is compared with the FEM by the simulation of the 
terahertz Gaussian beam propagation through a hemispherical lens. The Terahertz 
Gaussian beam propagation through a silica ( 3.8rε = ) dielectric hemispherical 
lens is simulated using the SRT and the FEM.  In order to simulate the lens using 
the FEM in Ansoft HFSS[63], the radius of the hemispherical lens is set to R = 5 
mm.  The lens bottom at z =0 mm is a Perfect Electric Conductor (PEC).  Fig. 3.5 
shows the geometry of this lens. 
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Figure 3.5:   The geometry of the 5 mm radius (7.3λ) hemispherical lens. 

 
A Gaussian beam is incident on the z = 0 mm plane and polarized along 

the x direction  

where  0 1 V/mE = , the beam waist of 0 2 mmw =  and ( , ) 0yE x y = .  The focal 
point is (0, 0, 0 mm).  The operating frequency is 112.5 GHz.  The corresponding 
spectral distribution is given by: 

Fig. 3.6 shows the simulation results for a far-field E-plane radiation 
pattern of the hemispherical lens antenna with a Gaussian source using:  i) a 
Geometrical Optics (GO) approximation, ii) the SRT method with no multiple 
reflections and iii) the Ansoft HFSS[63].  Fig. 3.7 shows the SRT and GO 
solutions for a mm hyper-hemispherical silica lens (d = 12.84 mm) with R = 25.  
The SRT algorithm is implemented in Matlab [65].  The observation points used 
were 0 90θ≤ ≤D D .  The GO is simulated using spherical waves that originated 
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from the center of the source plane, which are refracted at the lens surface and 
arrived to the observation point.  The wavefront of the refracted rays are 
calculated using a divergence factor and the curvature matrix of a spherical 
surface.  The HFSS FEM simulation took 1 hour, 48 minutes and 12 seconds on a 
PC with the Intel Centrino Duo 2.4 GHz processor and 4 GB of RAM.  The SRT 
took 3 minutes and 52 seconds on the same PC to obtain the result in Fig. 3.6.  
The L2 norm difference between the SRT and HFSS responses is 2SRT FEM−R R  
is 0.1312.  Convergence analysis shows that increasing the ray density from 
72,000 to 1 million, results in a reduction from 10-5 to 2 ×10-7 in the norm of the 
difference between Ex response of successive iterations.  Thus SRT is 
computationally fast compared to the FEM method for solving quasi-optical EM 
problems.   
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Figure 3.6:  The E-plane far-field, Ex  radiation pattern in dB and phase of 

                           electric field obtained using SRT for the R = 5 mm  
                           hemispherical lens with 3.8rε =  [88]. 

 
 
 

SRT (-●-) 
 GO ( · ) 
 HFSS  (-o-) 



CHAPTER 3   PROPOSED HYBRID SPECTRAL RAY TRACING TECHNIQUES 
 

 42

 
 

-30 -25 -20 -15  -10 -5 0 5 10 15 20  25  30
-40 

-35 

-30 

-25 

-20 

-15 

-10 

-5 

0
R

ad
ia

tio
n 

Pa
tte

rn
 in

 d
B
 

-270

-180

-90

0

90

180

270

P
ha

se
 in

 D
eg

re
es

 

θ (degrees)  
 
Figure 3.7:  The E-plane far-field, Ex radiation pattern in dB and phase of 

                           electric field obtained using SRT and GO for the R = 25 mm 
                           hyper-hemispherical silica lens (d = 12.84 mm)[88].   

 
In backward launching rays, the density of the rays along the θ  direction 

is determined by bwrld
Nθ

πθ = , where Nθ  is varied for 12 iteration indices.  The 

values of Nφ  and Nθ for the case of convergence analysis of increasing ray 
density along θ  are shown in Table 3.1. 

 
 
      TABLE 3.1: Iteration index vs. ray density  

i 1 2 3 4 5 6 7 8 9 10 
Nθ  36 72 144 260 360 560 760 860 1360 1860 

 
 
Let ( )i

θR be the magnitude of the far-field electric field along the  x-
direction (Ex) at the current iterate i with a specified number of rays launched 

 SRT (-●-) 
 GO ( -×- ) 
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along θ .  Then ( ) 2i
θR  is the L2 norm of the normalized vector.  Figures 3.8 and 

3.9 show the convergence of the magnitude and phase of the electric field.   
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Figure 3.8:   The converges of the magnitdude of far-field Ex as the ray density  

                        is increased.  
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Figure 3.9:  The converges of the phase of far-field Ex as the ray density  

                            is increased.  
 
Our method is also more accurate than the Shooting and Bouncing Ray 

(SBR) method because the SRT does approximation in the spectral domain and 
can include complex rays for near-field analysis.  For example, the SRT can 
model lossy media easily by adding an attenuation factor to the spectral rays.  
From Fig. 3.6, the GO response does not match the SRT and HFSS responses 
because the lens’ surface is in the near-field of the source.  A SRT with zero-order 
of reflection predicts the phase variation over the angle θ much better than the GO 
and the results are closer to the HFSS.  The use of parallel processing would 
greatly accelerate the computational time of the SRT. 
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3.3 HYBRIDIZATION OF SPECTRAL RAY TRACING  

In the proposed rigorous Hybrid SRT (HSRT) method, the spectral ray 
method is combined with a rigorous numerical solver to model complex multi-
layer structures with sub-wavelength features or an antenna close to large 
complex dielectric structures such as lens, and prisms.  The proposed Hybrid SRT 
(HSRT) method is simple to implement and can also deal with the diffraction of 
an arbitrary wave, where the incident wave is decomposed into plane waves. 

The hybridization of spectral ray tracing with the Finite Element Method 
(FEM) and the Method of Moments (MoM) is essential because to apply the SRT, 
the field distribution or current distribution over the source plane containing the 
antenna should be known beforehand. Usually, an analytical expression for the 
field distribution in the source plane might not be a problem.  In addition, a 
typical quasi-optical system may contain structures that cannot be analyzed using 
the SRT such as multi-layer structures with sub-wavelength features, or a planar 
antenna close to large complex dielectric structures such as lens and prisms.  
Special material such as left handed material or anisotropic material cannot be 
handled accurately using the SRT, because the SRT assumes the structure’s 
material is homogenous and isotropic.  The general HSRT method then uses the 
MoM, the FEM, or the FDTD to determine the field over the source plane.  The 
structures with complex discontinuities and/or sub-wavelength features are 
isolated from the rest of the problem in a virtual box. The scattering and 
diffraction effects are simulated using rigorous numerical solvers.  The amplitude 
and phase of the fields obtained using commercial FEM and/or MoM solvers in 
the virtual box are connected to the rest of the problem by applying boundary 
conditions.  Then the SRT uses these field solutions as a starting point for the 
plane wave decomposition, where the SRT is applied for the rest of the complex 
electrically large structure.  Fig. 3.10 shows the structures analyzed using FEM 
and/or MoM surrounded by virtual boxes for an integrated lens antenna example.   

The reasons that the SRT method is advantageous in the hybridization 
with the rigorous numerical methods are as follows: 

1) The SRT can calculate near-field and far-field without any 
approximations and includes the complex rays for accurate 
analysis of the complex electrically large structures over a wide 
range of frequencies.  The GO and the PO on the other hand are 
effective for far-field calculations at high frequencies. 

2) The SRT is based on the Spectral Theory of Diffraction (STD)[31] 
and so it can deal with the diffraction of an arbitrary wave, where 
the incident wave is decomposed into plane waves.   
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3) The SRT has the advantage compared to the FEM and the FDTD 
in being able to solve unbounded and open problems easily 
without having to numerically model the space around scattering 
objects and radiating boundaries. 

4) Since the SRT is based on ray tracing techniques, it can exploit the 
mature area of ray tracing, such as Non Uniform Rational Basis 
Spline (NURBS) surfaces and Monte Carlo ray tracing methods to 
effectively model arbitrary 3D structures. 

3.3.1 Hybrid Spectral Ray Tracing (HSRT)[96]  

The HSRT technique has in general the following stages.  The first stage 
is to determine the source near-field using a numerical rigorous method like the 
FEM or the MoM.    In the second stage the SRT method is applied.  Then in the 
third stage, we correct (or update) the near-field distribution of the source using 
the rays coming back towards the source and thus repeat stages 2, 3 until it the 
solution converges.   

Figure 3.10 is used to describe the method in more detail through its 
application to a particular example of radiation from a planar antenna attached to 
a lens.  First, the near-field of a planar antenna such as a bow-tie antenna will be 
obtained using a rigorous method applied to a simplified configuration consisting 
of the antenna element and its immediate surroundings (the region bounded by 
dotted line in Fig. 3.10).  Then the SRT will be applied to the aforementioned 
near-field to find fields everywhere.   

 
Figure 3.10:   The Integrated lens antenna with structures that are analyzed 

                     by rigorous numerical methods surrounded by virtual boxes.   
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Stage 1:  In this step, the planar antenna is replaced with equivalent 

surface currents ˆS n= ×J H  and ˆS n= ×M E

 

induced by an impressed 
electromagnetic field [29] at the interior boundary between the source and the 
complex electrically large multi-layer dielectric.  

The Electric-Field Integral Equation (EFIE) is employed to find the 
tangential field over the boundary between the source plane and the large 
dielectric.  In this initial step the lens is replaced by an infinite dielectric half 
space.  The EFIE is  

Where 'R = -r r  is the distance between any source element and observation 
point S∈r .  The EFIE Eq. (3.34) is solved for an unknown source current J  
over z = -d plane in terms of the known primary (impressed) source field tan

iE .  A 
commercial numerical solver like the FEKO MoM [73] or the HFSS FEM [63] 
can be used at this initial stage (See Fig. 3.11).   

The EFIE Eq. (3.34) is used in an iterative procedure to find the accurate 
source current and the radiated field.  The initial incident field is the impressed 
source field tan,0

iE , which will be used as the known excitation in Eq. (3.34).  
EFIE is then solved for the unknown source current J

 

using any existing 
commercial solver.   

Stage 2:  The SRT will be applied to J

 

 to find the fields everywhere 
including those reflected or scattered back towards the source.  The latter fields 
will be added to the initial surface source field over z = -d to produce an updated 
planar source field.   

Stage 3: The updated source field will be used.  These Neumann iterative 
steps will be repeated until desired precision defined by 

( 1) ( )
tan tan

( )
tan

j j

j

+ −E E

E

� �

�
 is achieved.  

The whole iterative solution process is described in Fig. 3.12.  The iterative 
technique is similar to [46] but the initial approximation for the incident near-field 
or current distribution over the boundary of the electrically large region is 
obtained using a full-wave simulator.  The effect of the reflected spectral rays is 
included by adding the contributions to the spectral component of the source 
field.   

Going back to the example illustrated in Fig. 3.10, first, the initial source 
field due to the near-field radiation from the planar antenna is found by solving 
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the EFIE using a MoM solver or a FEM solver in a lossless dielectric half-space 
(See Fig. 3.11).   

 

12.9rε =

11.9rε =

0.15 mm

 
 
Figure 3.11:   The planar layered structure used to find the initial near- 

 field distribution of the THz or the millimeter-wave planar antenna that  
 radiates to an electrically large dielectric  (refer to area surrounded by 
 dotted line in Fig. 3.10 ).  The substrate is LTG-GaAs and 
 the dielectric half-space is silicon ( 11.9rε = ). 

 
The near-field over the z = -d plane becomes the initial near-field 

distribution used as a boundary field distribution to solve the electrically-large 
dielectric structure using the SRT.  The tangential field must be continuous across 
the boundary between the Low-Temperature-Grown (LTG)-GaAs substrate with a 
height of 150 μm (region 1) and an electrically-large hyper-hemispherical silicon 
lens (region 2).  The boundary condition is:   

Which has already been included in the numerical (MoM or FEM) solution of the 
planar antenna.  In the next step, the boundary fields expressed in Eq. (3.35) are 
used to find the PWS of the source.  The z-component of the electric field over the 
source plane is not used in the spectral ray extraction process.  Instead, the z-
component of the spectrum is computed using Eq. (3.3).  Then the Fourier 
transform is calculated as: 

 
(1) (2)

(1) (2)

( , , ) ( , , )

( , , ) ( , , )
x x

y y

E x y d E x y d

E x y d E x y d

− = −

− = −
 (3.35)  
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And ( )z tE
G� k  is obtained using Eq. (3.3).  This is followed by stage 2, which is the 

application of the SRT algorithm formulated to include multiple-reflections.  The 
matrix-formulation of the SRT was proposed in Section 3.2.1, where the spectral 
rays along θ , are computed simultaneously to reduce computation time.  The SRT 
can be applied for an arbitrary large complex structure.   

total =
G
E 0 min maxiφ φ φ= = −

1, 1, 0, 0id d i j pφ φ= = = =

t otal
G
E

( 1)
tan,  and j

total
+G �E E

1 ,  Set 1i i id i iφ φ φ+ = + = +

( 1) ( )
tan tan

1( )
tan

j j

j
ε

+ −
>

� �

�
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E
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G
E
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Figure 3.12:  Schematic of the HSRT algorithm process [96]. 
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3.3.2 HSRT Algorithm to Calculate Integral of the Spectrum [96]  
 
In this section the HSRT algorithm is presented in detail. 
 

Step 1 Define the source and antenna structure in a dielectric half-space 
with the dielectric constant of the lens or other structure that is in 
proximity to the antenna.  Enter the geometry parameters of the 
electrically large structure, the point of observation P and the order 
of reflection OR.   

Step 2 Simulate the structure using MoM or FEM.   

Step 3 Extract the spectral rays by calculating the spectrum of the Electric 
field over the source plane.  Extract the spectral rays by calculating 
PWS of the source (0)

tanE  using GPU. 

Step 4 Calculate max ,d  and dφ φ θ
→

 as function of OR.   

Step 5 Set i = 1, j = 0, p = 0, 0total =E , miniφ φ=  and 1id dφ φ= .   

Step 6 Launch rays backward from observation point along θ for each ϕi 
component.  Calculate the next iterate 2, ,ˆ

i sphMz  , 2, , lnˆ
i cyMz and 

corresponding middle ray directions ,2,ˆ
im Mz .   

Step 7 Determine the trajectories of the TPRs through the electrically-
large complex dielectric structure.   

 
Step 8 If these TPRs depart the z=-d plane go to Step 9 else go to Step 7.  
 
Step 9 Calculate ,2,( )

pmzE M , the field created by the TPRs, and 

,2, ,2, ,2,( ) ( ) ( )
i i pm m mz z z= +E E EM M M .  The spectrum of the near-

field obtained using the MoM or FEM method in the source plane 
is employed to calculate ,2,( )

pnear mzE� M . 

Step 10 Set p = p+1.  If p > OR, calculate ,2,( )
itotal total mz= +E E E M , and 

update near-field ( 1) ( )
tan tan ,2,( )

p

j j
near mz+ = +E E E� � �

M  else go to Step 6.   

 
Step 11 Find 1i i idφ φ φ+ = + ,  Set i = i+1. 
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Step 12 If maxiφ φ≤ , go to Step 6. 

Step 13 If 
( 1) ( )
tan tan

1( )
tan

j j

j
ε

+ −
>

E E

E

� �

�  , continue j = j+1 and go to Step 5, else store 

totalE . 
 

The Neumann iteration process continues until user-defined convergence 
parameter is met, and i  denotes an appropriate vector norm.   

 

3.4 Applications of the Hybrid Method  

3.4.1 THz integrated Bow-Tie Antenna [90][96] 

A bow-tie antenna backed by a silicon ( 11.9rε = ) dielectric hyper-
hemispherical lens is used to simulate the THz transmitter-receiver link in free-
space.  The advantages of the bow-tie antenna are its simple design and broad-
band impedance.  The planar bow-tie antenna covers a surface area of 3.466 mm 
× 2 mm and is placed on a 150 μm thick LTG-GaAs ( 12.9rε = ) substrate.  In the 
setup, an edge-coupled or vertically-coupled traveling-wave photomixer 
integrated with a CoPlanar Stripline (CPS) [66] is simulated at the operating 
frequency of 100 GHz.  The opening angle of the bow-tie is 60o.  The CPS line 
has a strip width of 20 μm and a gap of 10 μm.  The substrate is then backed by a 
10 mm diameter hyper-hemispherical Si lens with a 0.84 mm cylindrical 
extension as shown in Fig. 3.10.  Fig. 3.13 shows the geometry of the planar bow-
tie antenna and coordinate system used in this thesis.  The x-axis points along the 
axis of the dipole and the z-axis is the optical axis.   

 



CHAPTER 3   PROPOSED HYBRID SPECTRAL RAY TRACING TECHNIQUES 
 

 52

 
(a) 

 
(b) 

Figure 3.13:   The geometry of the 5 mm radius hyper-hemispherical lens 
            backed by bow-tie antenna (a) in 3D space and (b) the fabricated THz  
            bow-tie antenna on LTG-GaAs shown from the back [90][96].   

 
Although the radiation pattern from the bow-tie antennas has been studied 

experimentally and theoretically [67]-[70], there is no closed-form expression for 
either a free-space bow tie or a bow tie on a dielectric substrate.  The bow-tie 
pattern with and without the lens has been measured by a number of researchers 
[71].   

The spatial variation of the THz beam has been studied using a bow-tie 
antenna for the THz-TDS [71].  Measurements of the angular radiation patterns 
from the lens-coupled terahertz antennas fabricated on photoconductive substrates 
such as a 90ᴼ bow-tie antenna are described in [71].   The radiation pattern of the 
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free-space antenna is modified by the presence of a high-dielectric substrate.  As 
with the dipole antennas, most of the radiated energy from a bow-tie antenna on a 
high dielectric substrate is directed into the substrate [67].   

In [71], the radiated field using a dipole radiation pattern is employed 
instead of a finite-element analysis of the bow-tie. Noting that the bow-tie is not 
dramatically dissimilar to that of a conventional dipole pattern [67].  Here the 
authors run a FEM and MoM simulation to find the near-field radiation pattern of 
the bow-tie antenna.  The small refractive index discontinuity at the interface of 
the GaAs substrate and silicon lens is neglected and the entire structure is 
assigned the refractive index of silicon.  Once the field on the inner surface of the 
substrate lens is found, the external field is calculated by accounting for the 
refraction through the surface without considering the multiple-reflections and 
diffraction through the finite exit aperture of the substrate lens.  The diffraction 
through the finite aperture due to the lens is described by a Fresnel-Kirchoff 
diffraction calculation [72].  In [71], the vector nature of the field is neglected, so 
no information about the polarization of the diffracted wave can be obtained.   

The proposed HSRT approach, the FEM-SRT and the MoM-SRT 
techniques, model the THz propagation through free-space including polarization 
information.   

 
 

The Application of HSRT: The FEM-SRT Technique [90] 
 
The planar bow-tie antenna including the CPS line in the dielectric half-

space is modeled using the FEM in Ansoft HFSS[63] to find the near-field 
distribution in the aperture plane z = -d.  Considering the lens and substrate as a 
planar layered medium which is transversely unbounded with respect to the z 
axis, it is possible to utilize 2-D Fourier transform to convert any field component 
in the spatial domain to its corresponding component in the spectral domain.  The 
planar layered structure used for finding the near-field of the bow-tie antenna on 
the LT-GaAs substrate and backed by silicon lens is shown in Fig. 3.10.  The 
TEM mode of the CPS is excited at the operating frequency of 100 GHz.  
Although the CPS line can be excited in HFSS, another proposed model excites 
the antenna using a lumped voltage source across the gap with a width of 

10g mμ λ= � .  This is beneficial since the CPS TEM mode electric field is 
produced by a nonlinear photocurrent impressed on the LTG-GaAs slab and free-
space interface.  This can be used in an optimization procedure to determine the 
radiated field and power due to the photocurrent.  The solution procedure 
proceeds from the assumption that a THz wave is exciting a CPS line.   

The simulation time to find the near-field was 26 minutes and 2 seconds 
requiring 4.34 GB of RAM on a PC with an Intel Centrino Duo 2.4 GHz 
processor and 6 GB of RAM.  Once the near-field distribution in the plane z = -d 
is found, 2-D Fourier transform finds the field in the spectral domain.  Fig. 3.14 
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shows the complex magnitude of the total electric field in the plane z = -d, for the 
case of a bow-tie antenna feed by a CPS line. Fig. 3.15 shows the total electric 
field distribution when using a lumped voltage source at the feed.  The real and 
imaginary components of the electric vector field are obtained from the HFSS and 
employed in the proposed HSRT algorithm.   

The HSRT algorithm is implemented in Matlab [65] and exploits the 
parallel processing.  In the proposed method, the k-domain is discretized along ρ  

and φ  for values of 2 2 and  such that x y x y ek k k k k k+ < + , where ek  is added to 
include some evanescent waves in the PWS and store it in the Look-Up Table 

(LUT).  The authors set 
200

ek kdkρ
+

=  and rad
360

d πφ = .  This is done in order to 

include rays that sample the spectral domain at the edge of the set of all real 
propagating wave vectors.  If the spectrum is unavailable, the generation and/or 
availability of the LUT increases the memory usage but decreases the 
computational time to find the inverse Fourier transform.  When a ,m n

G
k  vector 

samples the spectral domain and if the value is not found in the LUT, the 
functional value is linearly interpolated from the LUT data.   

The execution time to solve the bow-tie antenna system was 14 hours 33 
minutes and 36 seconds on an Intel Centrino Duo 2.4 GHz processor and 6 GB of 
RAM, with a memory requirement of10.96 GByte of RAM.  In HFSS [63], for 
designs with voltage sources, current sources, or incident waves, ΔW  , the 
difference in the relative scattering energy error between the successive adaptive 
meshing passes for all tetrahedral is used as the convergence criteria.  It measures 
the stability of the computed field values from iteration to iteration.  As the 
solution converges, ΔW  approaches zero.  The HFSS solution in Fig. 3.16 
converged with a delta energy of ΔW  = 0.058679.  Once the near-field is found, 
the HSRT FEM-SRT method is run for a reflection order of zero in Matlab[65].  
The execution time can reduce to 330 seconds and with only a 520 MByte of 
RAM requirement.  This includes the Matlab overhead memory requirement.   
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(a) 

 
(b) 

Figure 3.14:  The (a) complex magnitude of the Ex field distribution 
over the aperture plane z = -d of the bow-tie antenna with 
the CPS line feed simulated at 100 GHz and (b) the E-plane far- 
field radiation pattern in polar coordinates for the bow-tie in 
Si dielectric half-space [90].   



CHAPTER 3   PROPOSED HYBRID SPECTRAL RAY TRACING TECHNIQUES 
 

 56

 
 
 
Figure 3.15:   The total electric near-field distribution for the bow-tie 

antenna feed by a discrete port and simulated 
using FEKO MoM [73].   
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(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Figure 3.16:   The (a) E-plane far-field, Ex radiation pattern for the bow-tie 

antenna backed by Si hyper-hemispherical lens with FEM-
SRT and HFSS responses, and (b) the radiation pattern of 
total E field in polar coordinates from HFSS.   
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The Application of HSRT: The MoM-SRT Technique 
 
Similar to the FEM-SRT method, one first finds the near-field distribution 

over the aperture plane using a MoM solver [73] for a bow-tie antenna of finite 
length and infinitesimal thickness that is placed on a lossless infinite dielectric 
half-space as in Fig. 3.11.  Then employ the HSRT algorithm outlined in  Section 
3.3.2. 

Fig. 3.17 shows the simulation results for the far-field E-plane radiation 
pattern of the lens antenna backed by a bow-tie antenna using the MoM-SRT 
hybrid method with the order of reflection of zero, one and two.  The response is 
verified with the Physical Optics (PO) simulation, the MoM simulation, and  
MLFMM simulation with FEKO[73].  The MoM-SRT and FEM-SRT algorithm 
are implemented in Matlab, where the observation points are 60 60θ− ≤ ≤D D .   

-60 -40 -20 0 20 40 60

-30

-25

-20

-15

-10

-5

0

θ (degrees)

R
ad

ia
tio

n 
P

at
te

rn
 in

 d
B

 

 

MoM-SRT (OR=0)
MoM-SRT (OR=2)
FEKO MoM-PO
FEKO MoM

 
 
Figure 3.17:   The E-plane far-field total electric field radiation pattern in 
dB of the electric field obtained using MoM-SRT for the R = 5 mm hyper- 
hemispherical silicon lens ( 11.9rε = , d = 0.84 mm).  The simulation  
includes the application of MoM-SRT hybrid approach for different 
reflection orders and the simulation results for the Physical Optics (PO), 
and the Method of Moment (MoM).  
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The FEKO MoM simulation to find the near-field of the bow-tie antenna 
in a half-space took a CPU time of 1 hour, 33 minutes and 34 seconds with two 
processes running in parallel on a PC with an Intel Centrino Duo 2.4 GHz 
processor and 6 GB of RAM.  The near-field and far-field obtained from the 
aforementioned simulation is used by the PO, the SRT and the MoM to simulate 
the hyper-hemispherical lens.  The FEKO PO simulation of the lens structure took 
1 minute and 53 seconds on the same PC with two processes running in parallel.  
The MoM technique took an additional 19 minutes to simulate the lens structure, 
while MLFMM took 13 minutes and 31 seconds on the same PC.  The HSRT took 
4 minutes and 52 seconds for the reflection order of zero and 7 minutes and 47 
seconds for the reflection order of 2 on the same PC exploiting GPU parallel 
processing to obtain the result in Fig. 3.17.  For this particular example, the 
FEKO PO assumes that the lens surface is in the far-field of the antenna, which is 
valid only for lenses with a large diameter w.r.t. wavelength, and therefore the 
computation time is fast because only non-evanescent waves have been taken into 
consideration. The HSRT takes all rays evanescent and non-evanescent into 
consideration and provides accurate result for wide-range of lens diameter. The 
HPBW is 12 degrees.   

Table 3.2 shows the comparison between the L2 norm difference of side-
lobe levels obtained by the various methods.  Let 

2MoM−E E  be the L2 norm 

of the difference between E . The normalized magnitude of the total electric 

field in the E-plane obtained using the method shown in Table 3.2, and MoME .  

MoME  is the normalized magnitude of the total electric field in the E-plane 
obtained using the MoM.  Table 3.3 shows the maximum relative error 
comparison for the various methods. 

TABLE 3.2 
COMPARISON OF HYBRID-SRT METHOD WITH OTHER METHODS 

 APPLIED TO THE BOW-TIE ANTENNA EXAMPLE  

Method  L2 Norm Difference* 
2MoM−E E  

FEKO MoM  0 
FEKO MLFMM  0.00221 

FEKO PO  0.05398 
MoM-SRT (OR=0)  0.05820 
MoM-SRT (OR=1)  0.05823 
MoM-SRT (OR=2)  0.04021 

   
          * The difference between the side-lobe levels  
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The MoM-SRT is shown to be accurate especially when the Order of 
Reflection (OR) is increased.  The HSRT is computationally fast compared to the 
FEM and is compared in this paper with the MoM method for solving quasi-
optical problems.  Table 3.4 compares the computation time and memory 
requirements for the various methods applied to the bow-tie antenna backed by a 
silicon lens.  The near-field evaluation computation time is not included in table.  

The HSRT algorithm exploits two GPUs (NVIDIA GeForce GTX 295 
(576 MHz) graphics card with 1792 MB GDDR3 RAM) for parallel processing 
implementation using Jacket [74] .  Jacket is a GPU engine for Matlab [65].   

Jacket enables standard Matlab code to run on any NVIDIA GPU by 
introducing new data types to Matlab, which enables it to do computations on the 
GPU.  It allows a gain in accuracy by increasing the ray density with less cost to 
computation time.  The existing code is fully optimized to take advantage of 
GPU.  

TABLE 3.4 
COMPARISON OF COMPUTATION TIME FOR  

FAR-FIELD ANALYSIS OF BOW-TIE LENS ANTENNA STRUCTURE 

Method* 
Physical 
Memory 

Requirement** 

CPU/GPU 
Time 

FEKO MoM 2.457 GB 19 min 
FEKO MLFMM  585.473 MB 13 min 31 sec 

FEKO PO 13.68 MB 1 min 53 sec 
MoM-SRT (OR=0) 494 MB 4 min 52 sec 
MoM-SRT (OR=1) 520 MB 4 min 52 sec 
MoM-SRT (OR=2) 531 MB 6 min 32 sec 

          * Applied after required near-field analysis. 
            ** MATLAB requires 298 MB of RAM without algorithm.   

TABLE 3.3 
COMPARISON OF MAXIMUM RELATIVE ERROR BETWEEN HYBRID-SRT 

METHOD AND OTHER METHODS  

Method  
Maximum Relative Error  

MoM

MoM

−E E
E

 

FEKO MoM  0 
FEKO MLFMM   0.00517 
FEKO MoM-PO  0.13862 

MoM-SRT (OR=0)  0.13725 
MoM-SRT (OR=2)  0.09685 

* The relative error between the side-lobe levels. 
   MoM solution is most accurate.  
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3.4.2 THz Integrated Dipole Antenna [96] 
 
The HSRT approach is also applied to find the radiation pattern of an on-

chip dipole antenna backed by silicon lens and integrated with a 180-GHz VCO 
using SiGe:C BiCMOS technology.  The technique first involves, modeling the 
source using the MoM, the MLFMM, or the FEM in a lossy dielectric half-space 
including the Si piece.  As a particular example, the radiation from a planar 
antenna attached to a lens as shown in Fig. 3.18 is considered. 

Following the aforementioned procedure in Section 3.3, first, the current 
distribution on the planar antenna is found.  The near-field over the z = -d plane 
becomes the source field or the current distribution for SRT.  A dipole antenna is 
set on a silicon substrate ( 11.9, 5 S/mrε σ= = ) and to the back of a high-resistive 

silicon ( 311.9, 5 10 S/mrε σ −= = × ) dielectric hyper-hemispherical lens. It is then 
simulated at a frequency of 181 GHz.  The schematic of the setup is shown in Fig. 
3.18(a).  The on-chip dipole antenna is shown in Fig. 3.19.  The silicon piece is 
10 mm × 10 mm and has a thickness of 0.5 mm. 

The cylindrical extension length is 0.84 mm and the radius R = 5 mm.  
The lens bottom at the z = -d mm plane is the source plane, where the near-field is 
determined at the z = -d plane, with a lossy Si substrate with a thickness of 0.25 
mm and a half-space with highly resistive Si similar to Fig. 3.11.  The effect of 
the lens on the near-field distribution of source is included and the resulting 
spectrum of source ( , )x x yE k k�  as shown in Fig. 3.20.   

The Hybrid SRT algorithm applied to the same problem exploits two 
GPUs (NVIDIA GeForce GTX 295 (576 MHz) graphics card with 1792 MB 
GDDR3 RAM) for parallel processing is implemented using Jacket[74].  Fig. 3.20 
shows the simulation results for the far-field H-plane of the THz dipole antenna 
backed by silicon lens.   
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(a) 

 
(b) 

Figure 3.18:   The geometry and (a) schematic diagram of the lens 
antenna system along its coordinates, and (b) the FEKO mesh for 
the 5 mm radius hyper-hemispherical lens backed by a dipole 
antenna and Si piece.  
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(a) 

 
(b) 

Figure 3.19:  (a) A die photo of the fabricated VCO integrated with the 
on-chip dipole antenna and (b) a transmitter head consists of Si lens and 
carrier PCB attached to a XY linear stage for precise positioning. 
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(a) 

 
(b) 

 
Figure 3.20:  The spectrum (a) ( , )x x yE k k�  and (b) ( , )y x yE k k�

 of near-field 
for the THz dipole antenna backed by Silicon lens.  The effect of the lens 
is included in the near-field distribution.  
  
The normalized measured radiation pattern obtained using the Golay cell 

is shown in Fig. 3.21.  The HSRT result is verified with the MLFMM simulation 
with FEKO[73], and the measurements the observation points are 20 20φ− ≤ ≤D D .   
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The FEKO MLFMM simulation time was 1.566 hours on a PC with an Intel Dual 
Core 2.4 GHz processor, 6 GB of RAM, and 2 processes running in parallel. 
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Figure 3.21:   The Normalized H-plane far-field of the total electric field 
radiation pattern in dB obtained using the Hybrid MoM-SRT for the R = 5 
mm hyper-hemispherical silicon lens ( 311.9, 5 10  S/mrε σ −= = × , d = 
0.84 mm).  The Radiation pattern measured at 181 GHz and θ=90° plane 
(Vcc=2.5 V, Vctr=1.6 V).  The HSRT ray density was set at 600 along ϕ x 
600 along θ for a total of 360,000 rays launched. 
 
The simulation included an aluminum metallic back-plate requiring 3.493 

GB of RAM.  The simulated half-power beam width was 14.1o while it measured 
at 13.6 degrees.  The dipole antenna was aligned so the feed was at the center of 
the lens.  The maximum gain found by simulation was 17.8 dB and the measured 
gain of the dipole with Si lens antenna is found to be Gt = 17.1 dBi using a 
superheterodyne setup described in Chapter 5.  The HSRT (OR=4) took 8 minutes 
on the same PC exploiting GPU after finding the spectrum of the near-field 
distribution using the FEKO MLFMM method in the z=-0.84 mm plane.  Fig. 
3.22 shows the simulated 3D plot of the antenna gain with and without the Si lens 
and chip carrier obtained using FEKO.   
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(a) 

 
(b) 

Figure 3.22:   The simulated 3D plot of the THz dipole antenna gain (a) 
with and (b) without the Si lens and chip carrier obtained using FEKO 
[73].   
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3.4.3 THz Integrated Double-Slot Antenna  
 

The twin-slot antennas coupled to CoPlanar Waveguides (CPW) and the 
double-slot antennas placed at the focus of the dielectric lens are used for quasi-
optical detectors that are used in atmospheric and astronomical instruments in the 
sub-millimeter and THz frequency range.  A double-slot antenna is set on the 
back of a silica ( 3.8rε = ) dielectric hyper-hemispherical lens and simulated at a 
frequency of 112.5 GHz.  The cylindrical extension length is d = R/n, where n = 
1.949 is the refractive index and the radius R = 5 mm.  The size of the lens was 
chosen in order to simulate the lens using FEM in Ansoft HFSS [63].  The lens 
bottom at z = -d mm is a Perfect Electric Conductor (PEC).  Fig. 3.23 shows the 
geometry of the double-slot antenna and the lens.  The dimensions of the double-
slot antenna are 1.3 mm, 0.7 mm and 40 μm.L S W= = =  The electric field 
distribution in the slot is given by [30] 

where 0 0
0

1 2, =  and 
2 2

r
m

Lk k k yε π
λ

+
= × ≤ .  ( ) 1U x =  for interval 2 2,W W−⎡ ⎤⎣ ⎦ . 

 
Fig. 3.24 shows the E-plane radiation pattern and Fig. 3.25 shows the H-

plane radiation pattern for the double-slot antenna.  The simulation includes 
application of the FEM-SRT hybrid approach for different reflection orders and 
the simulation results for the HFSS FEM, FEKO MoM and SEMCAD FDTD 
methods.  The convergence of the total electric field amplitude and the L2 norm 
difference between successive E-field iterates is shown in Fig. 3.26.   

The reflection order of the rays represents the number of times the rays 
have been reflected inside the lens.  It is seen that the hybrid SRT technique 
converges to within an error of 10-11 after 14 times reflected rays contribution is 
considered.   
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(a) 

 
(b) 

 
Figure 3.23:  (a) A schematic of a double-slot antenna printed at the back 
of a hyper-hemispherical lens and (b) the FEKO mesh for the double-slot  
antenna backed by the lens. 
 
The FEM-SRT method is compared with the full HFSS simulation.  The 

near-field of the aperture plane was found after simulating the slot antenna 
structure in the dielectric half space using FEM.  The FEM HFSS simulation of 
the double-slot antenna in half-space employing symmetry took 1 minute and 34 
seconds on a PC with an Intel Centrino Duo 2.4 GHz processor and 6 GB of 
RAM.  After the near-field in the aperture plane is found, the time taken by the 
FEM-SRT was 3 minutes and 41 seconds for the reflection order of zero and a ray 
density of 72,000, and 7 minutes and 31 seconds when the ray density is increased 
to 720,000.  The time taken when the reflection order increases to 2 is 6 minutes 
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and 32 seconds.  The time includes time taken to compute the Fourier transform 
using LUT and Graphics Processing Unit (GPU).  It took 35 min. and 31 sec. with 
reflection order of 6 and a ray density of 4.32 million.  When increasing the ray 
density from 72 000 to 72 million the norm of the difference between the |E| 
response of successive iterates is reduced from 4×10-5 to 3×10-7.   

The FEM HFSS simulation took 8 hours and 56 minutes on the same PC 
without parallel processing.  In Ansoft HFSS, for designs with voltage sources, 
current sources, or incident waves, ΔW , the difference in the relative scattering 
energy error between successive adaptive meshing passes for all tetrahedra, is 
used as the convergence criteria [63].  It measures the stability of the computed 
field values from iteration to iteration.  As the solution converges, ΔW  
approaches zero.  The HFSS solution in Fig. 3.24 and 3.25 converged with a delta 
energy of ΔW = 0.0043024.  The FEKO MoM simulation of the double-slot 
antenna and lens took 2 hours and 17 minutes with two processes running in 
parallel and 5.106 GB RAM requirement.   

Table 3.5 compares the computation time and memory requirements for 
the various methods applied to the double slot antenna example.  The FEKO 
MoM, and MLFMM methods were simulated on the same PC with two processes 
running in parallel.  Although the Matlab has overhead in memory, the HSRT 
methods require much less memory than FEM, MoM and MLFMM, and are 
comparable in accuracy to these methods.  Thus the HSRT methods are 
computationally fast compared to FEM and MoM for solving electrically large 
and multi-scale quasi-optical EM problems.   
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(b) 

Figure 3.24:  (a) The E-plane (ϕ = 0ᴼ) far-field total electric field radiation 
patterns in dB of double-slot antenna with lens and (b) the E-plane for 
angles between -20ᴼ to 20ᴼ of the electric field obtained using FEM-SRT 
for the R = 5 mm hyper-hemispherical silica lens ( 3.8rε = , d = 2.565 
mm).   
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(b) 

 Figure 3.25:   (a)The H-plane (ϕ = 90ᴼ) the far-field total electric field 
radiation patterns in dB of a double-slot antenna with lens and (b) the H-
plane for angles between -20ᴼ to 20ᴼ of electric field obtained using FEM-
SRT for the R = 5 mm hyper-hemispherical silica lens ( 3.8rε = , d = 
2.565 mm).   
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(b) 

Figure 3.26:   The  convergence of the (a) total far-field E-field amplitude 
and (b) the difference between successive E-field amplitudes calculated by 
the HSRT method at observation angle ( 0.05 , 0θ φ= =D D ) for slot antenna 
on the   R = 5 mm hyper-hemispherical silica lens.   
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3.5 Spectral Ray Tracing for Modeling Pulse Propagation 
[92] 

 
Most THz spectroscopic measurements and imaging are done using the 

pulsed setup similar to the one shown in Fig. 3.27.  In this case, the SRT would 
have to be formulated for modeling millimeter and THz pulse propagation 
through a quasi-optical system.   

We consider the large-aperture dc-biased terahertz photoconductive 
antenna shown in Fig. 3.28.  The current distribution in the active region of the 
LTG-GaAs substrate can be modeled as a current sheet.  In the presence of a dc 
bias, the photo-generated carriers in the photoconductor produce a transient 
surface photocurrent, which radiates an electric pulse with terahertz frequency 
components in its frequency spectrum into the photoconductor and free space.  
The hyper-hemispherical silicon lens is then added to prevent the radiation from 
being trapped inside the photoconducting film by the total reflection [77].   

 

TABLE 3.5 
COMPARISON OF COMPUTATION TIME FOR  

FAR-FIELD ANALYSIS OF DOUBLE-SLOT LENS ANTENNA STRUCTURE 

Method 
Physical 
Memory 

Requirement** 
CPU/GPU Time 

FEKO MoM 5.106 GB 2 hours 17 min 
HFSS FEM 8.74 GB 8 hours 56 min 

FEKO MLFMM 594 MB 15 min 55 sec 
FEKO PO 16.53 MB 3 min 07 sec 

FEM-SRT (OR=0) 516 MB 3 min 41 sec 
FEM-SRT (OR=2) 519 MB 6 min 32 sec 
FEM-SRT (OR=4) 586 MB 9 min 52 sec 
     ** MATLAB requires 298 MB of RAM without algorithm.   
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Figure 3.27:  The experimental setup for the Pulsed/CW measurement of 
the THz link, the Tx is a bow-tie antenna backed by Si hyper-
hemispherical lens and the Rx is a dipole antenna backed by Si hyper-
hemispherical lens.   

DCV+

DCV−

( )s tJ

y

x  

Figure 3.28:  A large-aperture dc-biased terahertz photoconductive antenna placed 
on a hyper-hemispherical silicon lens and excited by a short pulse laser.  
V is the applied bias voltage and sJ  is the induced surface current.   
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The generated traveling-wave photocurrent can be modeled as a current 
sheet at z = 0 flowing in the direction of the DC bias electric field and be written 
as: 

where ( )p t  is the terahertz pulse generated by illuminating the photoconductor 
by a laser.  The generated surface photocurrent, ( )s tJ , can be represented in 
terms of the equivalent surface conductivity, ( )s tσ , the dc bias electric field, dcE , 
and the electric near-field in the LTG-GaAs substrate, ( )near tE , as shown: [78] 
 

where e is the electron charge, and nμ  and pμ  are the field-dependent electron, 
and the hole mobilities N(t) and P(t) are the electron and hole concentrations, 
respectively.  In [78], it was found that the radiated field from a large-aperture 
terahertz photoconductive antenna, placed on a hyper-hemispherical silicon lens 
and excited by a short pulse laser is saturated when the photo-conductivity 
exceeds a threshold value defined by the permittivity of the photoconductor 
material. 

The extension of modeling the integrated lens antenna system involves 
modeling the THz communication link. There, a THz pulse is generated using a 
femtosecond laser interacting with a photoconductor such as a LTG-GaAs, and 
propagating through free-space. Since the lens or complex structure media 
interacting with the antenna are linear, the solution and ray tubes obtained by SRT 
for a particular structure can be interpreted as the transfer function of the 
structure.  The transfer function of the structure can then be re-used for the 
analysis of multi-antenna systems, or for different frequencies to simulate pulse 
propagation. The aim of this component of the research would be to formulate the 
SRT algorithm for the pulse propagation and model the hyper-hemispherical lens.  
The measurement setup has a bow-tie transmitter antenna, which was presented in 
Section 3.4.1 and the receiver is an 80 μm dipole antenna with a 6 μm gap on a 
625μm GaAs substrate backed by a 10 mm hyper-hemispherical lens. The 
proposed hybrid SRT approach along with the new formulation would be used to 
find the near-field in the source plane and then in free-space.   

In this section, the Spectral Ray Tracing (SRT) method was formulated for 
a pulsed system to model the Terahertz (THz) propagation of a pulse through a 
lens antenna system. A large-aperture dipole antenna example is then used to 

 0 ˆ( , ) ( ) ( )s t J z p t xδ=J r  (3.38)  
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demonstrate the technique. Given the pulsed photocurrent waveform, the large-
aperture dipole antenna gap is pumped with femtosecond optical pulses that have 
energy greater than the bandgap of GaAs.  The free electrons and holes are 
accelerated by the bias field and decay with a time constant determined by the 
carrier lifetime. The radiated electric field at a distance greater than the 
wavelength of the radiation is proportional to the time derivative of the pulsed 
photocurrent. Fig. 3.30 shows the spectrum of the measured pulse generated by a 
large aperture dipole transmitter in setup similar to Fig. 3.27.  The spectral 
samples from 87.90 GHz to 0.9 THz of the pulse are filtered or taken to be the 
contributing components for applying SRT.  The observation point is located 
inside the lens, however, it is still in the far-zone of the large aperture antenna. 
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Figure 3.29:   The pulse from a large aperture dipole antenna in time domain [92]. 
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Figure 3.30:   The spectrum of the pulse from a large aperture dipole antenna in 
     the frequency domain.   
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Figure 3.31:   The phase in angles of the signal for the range from 87.90 GHz to 
0.9 THz of the pulse from a large aperture dipole antenna.   
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In the past, SRT had been implemented for the continuous wave 
simulation of electrically large antenna structures. Since SRT is efficient in 
finding the accurate E-field and radiation pattern at a specified frequency, it was 
employed to formulate a technique applicable to a pulse source propagating 
through a lens structure. A number of relevant frequencies from the spectrum of 
the source are used to find the current distribution or near-field distribution using 
the dielectric half-space and the planar antenna. The current distribution or the 
near-field distribution can be used for simulating the SRT at the specific 
frequencies. The aim is to develop a technique that would efficiently utilize 
parallel processing and SRT.  The electric field including the phase in the time 
domain at observation point O(x,y,z) is: 

Step 1 Given the spectrum of the source pulse p(t); find the significant 
ranges of frequencies to sample that contribute to the pulse.  If the 
pulse is given in time domain, take the Fourier transform and store 
the n complex number samples.  For example, the spectral samples 
from 87.90 GHz to 0.8 THz are used with n = 50 for the 
simulation. 

Step 2 The planar antenna structure using a half-space is simulated using 
MoM or FEM for each frequency, with a voltage source of an 
amplitude of 1V to find the near-field distribution at the boundary 
between the lens and substrate.  (During implementation, this is 
done in parallel).   

Step 3 Apply SRT using the near-field distribution for the source with 
0 1 V/mE = .   

Step 4 Take the inverse Fourier transform of n contributions with the 
complex amplitude.   

 

Spectral Ray Tracing Formulation for Pulse Propagation 

Given the near-field distribution ( , , , )x y d ω−
G
E  over the aperture plane z = 

-d, for each sample frequency ω :  

The 2D Fourier transform is calculated to get ( , )x x yE k k  and ( , )y x yE k k  

( , , ) ˆ ˆ ˆ( ) ( ) ( )O x y z x y zE t E t E t= + +
G
E x y z  (3.40)  

ˆ ˆ ˆ( , , , ) ( , , ) ( , , ) ( , , )x y zx y d E x y d E x y d E x y dω− = − + − + −x y z
G
E  (3.41)  
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First backward-ray launching is applied to determine the ray paths from 
the initial Plane Wave Spectrum (PWS) through O.  We then applied a different 
technique than the one used in the past to determine the corresponding complex 
field amplitudes for each ray as we considered the pulse.  In order to do 
backward-ray launching, we calculated max ,d  and dφ φ θ  as a function of the 
Order of Reflection (OR).  Then set miniφ φ=  and 1id dφ φ= .  If these TPRs depart 
the z=-d plane, instead of calculating the field created by the TPRs for a single 
frequency, we found the p partial vectors with a complex magnitude: 

where 

and ,( , )p m nDFω  is the total divergence factor calculated for an angular frequency 

pω .  The Fourier transform of the pulse source was given by:  

Using the property *( ) ( )X f X f= − , we obtained the frequencies spectrum as in 
Fig. 3.30.  Taking the normalized signal ( )X f  in dB and only considering the 
signals that are above -45 dB, we obtained the complex amplitude and phase for 
the range 87.90 GHz to 0.8207 THz.  At p frequencies we have: 
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Applying the convolution,  

where 

Going back to the example of the large-aperture photoconductive antenna, 
assume the pulse p(t) in Eq. (3.38) is known and take one frequency component of 
the spectrum j te ω  , applying the boundary conditions, the aperture distribution to 
be in the plane z=0 [79],  

Here the 0η  is the intrinsic impedance of free space and rε  is the relative 
dielectric constant of the photoconductor.  The corresponding plane wave 
spectrum becomes  

And  

where a= 10 mm and the gap b=5 mm. 
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Figures 3.32 and 3.33 show the far-field electric field response in the time 
domain at the observation point, with a distance of 61 cm. This is due to large-
aperture dc-biased terahertz photoconductive antenna placed on hyper-
hemispherical silicon lens.  Figures 3.34 and 3.35 show the SRT simulated the 
far-field radiation pattern for the 4 mm by 5 mm aperture at 87.9336 GHz and 
102.5892 GHz.  The simulated radiation pattern obtained using SRT for the THz 
photoconductive antenna with a 4 mm by 1 mm aperture size is shown in Figures 
3.36 to 3.37. This is followed by the far-field electric field in the time domain as 
simulated at different observation angles as shown in Fig. 3.38.  The attenuation 
of the pulse and the pulse shape distortion, such as the observation angle is 
changed from broadside, is similar to the measurements of the radiation pattern 
for a bow-tie with 90 degree opening angle [71].  The simulated directivity is 
shown in Fig. 3.39.  
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Figure 3.32:  The far-field Ex electric field in the time domain at the observation  
point ( , , ) (61 ,0 ,0 )r cmθ φ = D D  is due to large-aperture dc-biased 
terahertz photoconductive antenna placed on a hyper-hemispherical 
silicon lens excited by a short pulse laser.   
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Figure 3.33:   The far-field Ex electric field in the time domain at the observation 
point ( , , ) (61 , 20 ,0 )r cmθ φ = D D  due to a large-aperture dc-biased 
terahertz photoconductive antenna placed on a hyper-hemispherical 
silicon lens excited by a short pulse laser.   
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Figure 3.34:   The E-plane far-field, Ex, radiation pattern in dB and the phase of 

the electric field obtained using SRT for the R = 5 mm Si ( 11.9rε = ) 
hemispherical lens backed by a large-aperture dc-biased terahertz 
photoconductive antenna at 87.9336 GHz.   
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Figure 3.35:  The E-plane far-field, Ex, radiation pattern in dB and the phase of 

electric field obtained using SRT for the R = 5 mm hemispherical lens 
with 11.9rε =  for a large-aperture dc-biased terahertz photoconductive 
antenna at 102.5892 GHz.   
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Next we consider a large aperture dipole antenna with aperture dimensions 
of 4 mm × 1 mm.   
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Figure  3.36:   The E-plane far-field, Ex, radiation pattern in dB and the phase of 

the electric field obtained using SRT for the R = 5 mm hemispherical 
lens with 11.9rε =  for a large-aperture (4 mm × 1 mm) dc-biased 
terahertz photoconductive antenna at 87.9336 GHz.   
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Figure 3.37:   The E-plane far-field, Ex,  with the radiation pattern in dB and the 

phase of the electric field obtained using SRT for the R = 5 mm 
hemispherical lens with 11.9rε =  for a large-aperture (4 mm × 1 mm) 
dc-biased terahertz photoconductive antenna at 102.5892 GHz.   
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Figure 3.38:   The E-plane far-field, Ex in the time domain obtained using SRT for  

the R = 5 mm hemispherical lens with 11.9rε =  for a large-aperture 
(4 mm × 1 mm) dc-biased terahertz photoconductive antenna at 
different angles of observation [92]. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
32

34

36

38

40

42

44

46

frequency (THz)

D
ire

ct
iv

ity
 (d

B)

 
Figure 3.39: The directivity vs. frequency for the E-plane far-field. 
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3.6 Limitations of HSRT  

The HSRT algorithm assumes the electrically large region to be modeled using 
SRT is smooth and refractive index continuous without edges.  The HSRT 
algorithm in its present form can not model electrically abrupt discontinuities 
such as wedges, but by applying GTD to spectral rays we can model wedges and 
edges.  The HSRT method assumes Eq. (3.1) to (3.3) hold for the spectrum of the 
source, e.g. we are dealing with a charge-free region.   

The HSRT algorithm is applicable, similar to SRT, for size of the analyzed 
objects in terms of wavelength of a few wavelength and up.  If the size of the lens 
or object to be analyzed is below 3λ, then for HSRT to work we have to introduce 
complex rays [16][17] which makes the ray tracing more complex.  So for sizes 
less than a few wavelength, it is recommended to use rigorous numerical solvers.   

3.7 Conclusions 

In this chapter, I describe and present a computationally efficient self-consistent 
Hybrid Spectral Ray Tracing (HSRT) methods, MoM-SRT, FEM-SRT and 
MLFMM-SRT, which require one spectral domain integration step for each 
observation point.  The MLFMM-SRT and MoM-SRT methods are compared 
with measurements and commercially available Method of Moments (MoM) 
software, Multi-level Fast Multipole Method (MLFMM) AND Physical Optics 
(PO) via simulation of a bow-tie terahertz antenna backed by hyper-hemispherical 
silicon lens and an on-chip dipole lens antenna. The E-plane radiation pattern of 
an edge-coupled traveling-wave photomixer integrated with a bow-tie antenna 
backed by a hyper-hemispherical lens was obtained using the MoM-SRT method.  
HSRT method is also applied to an on-chip planar THz dipole antenna lens 
structure integrated with a VCO fabricated in SiGe:C BiCMOS technology.  The 
use of GPU parallel processing greatly accelerates computational time of HSRT 
and SRT.    

In Chapter 4, the method for gain measurement and experimental setup for the 
on-chip dipole antenna and lens system is presented.  In this method, the radiation 
pattern is first measured in a quasi-optical configuration using a power detector. 
Subsequently, the radiated power is estimated from the integration over the 
radiation pattern.  The antenna gain is obtained from measurement of a two-
antenna system.  The experimental results of applying this method on an on-chip 
planar dipole attached to a hyper-hemispherical silicon lens are demonstrated.   
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CHAPTER 4  

 
The Experimental Setup for the Antenna 

Characterization of an Embedded On-chip 

Antenna in the mmW/THz Range  

 
The on-chip antenna simplifies the packaging and eliminates the pad and 

bonding parasitics from the high frequency nodes of the circuit such as the 
receiver input and the transmitter output, and it improves the system performance.  
However, the major challenge is the characterization of such on-chip antennas at 
the mmW/THz range of frequency.  The waveguide based wafer prober is more or 
less a common setup for this type of measurement, and is now available 
commercially for frequencies below 500 GHz even though the instrument may be 
quite expensive and not accessible to many groups. 

In this chapter, a simple method for the gain measurement of an embedded 
antenna is presented.  The experimental results from applying this method on an 
on-chip planar dipole integrated with a 180-GHz VCO in SiGe:C BiCMOS 
technology, and attached to a hyper-hemispherical silicon lens is demonstrated.  
In the method, first, the radiation pattern is measured using a high sensitivity 
power detector or Golay Cell.  Subsequently, the radiated power is estimated from 
the integration over the radiation pattern. Then, the antenna gain is measured in a 
two-antenna system using an open-ended waveguide as the receiving antenna, and 
a spectrum analyzer and harmonic mixer as the receiver.  
 

4.1 Antenna Design and Simulations [97] 

Fig. 4.1 shows the schematic of a planar dipole antenna connected to a 
Voltage Control Oscillator (VCO) via a transmission line integrated on a single 
chip.  The oscillator was designed for the target frequency of around 180 GHz and 
tuning range of 5 GHz. The output of the VCO is differential with the impedance  
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Figure 4.1:  The schematic of a dipole antenna connected to a VCO via 
                    transmission line.   

of 100 Ω.  The circuits were designed in 0.13 µm using SiGe:C BiCMOS 
technology from IHP with npn-HBTs featuring fT /fmax=250/300 GHz.   

The dipole antenna was designed on a silicon substrate with the thickness 
of 250 µm and a resistivity of 20 Ω-cm. The substrate then, is attached from the 
back side to a high resistivity hyper-hemispherical silicon lens with a radius of 5 
mm and an extension of 0.84 mm to reduce the loss due to the surface wave 
modes in the substrate, and to increase the antenna gain. 

For the initial design of the half-wavelength dipole, the silicon lens 
attached to the antenna substrate can be approximated by a half-space medium, 
since its radius is large compared to the wavelength (by almost 10 times).  This 
approximation enables one to use the Method of Moment (MoM) as a fast and 
full-wave design tool for optimizing the geometry of the planar dipole based on 
the input impedance and resonance frequency requirements 

Fig. 4.2 shows the simulated input return loss of the optimized planar 
dipole on half-space silicon obtained from MoM using ADS Momentum (a 
commercial EM simulator).  As seen in Fig. 4.2, the bandwidth at 10 dB return 
loss of100 GHz and around center frequency of 220 GHz.  In this simulation, the 
width and total length of the dipole are 20 µm and 345 µm, respectively, and the 
feeding transmission line is CoPlanar Strip (CPS) with the width and spacing of 
10.4 µm and 10.0 µm, respectively.  The metal strip is made from 2µm-thick 
aluminum. Besides substrate loss, a loss tangent of 0.001 is also considered for 
the half-space. 

Although half-space approximation gives fairly accurate results for the 
input impedance of the antenna, the geometry of the silicon lens should be 
included in the simulations for the study of far-field characteristics such as the 
radiation pattern. 
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Figure 4.2:  Simulated input return loss of the planar dipole on  
                    half-space silicon. 
 
 
For a fast analysis of the combined planar dipole and silicon lens, we 

apply the HSRT method outlined in Chapter 3.  The advantage of the HSRT 
method is that it can be applied for an arbitrary large complex structure very 
efficiently. 

Applying the Hybrid SRT algorithm for the structure shown in Fig. 
3.18(a), the configuration of the chip substrate attached to the silicon lens through 
a high resistive silicon piece that is 10 mm × 10 mm with a thickness of 0.5 mm, 
and a known field at the source plane.  The Si piece is used as the carrier for easy 
handling of the chip.  The chip substrate size is 0.8 × 0.6 mm2 and the thickness is 
0.25 mm.  Fig. 3.21 shows the normalized far-field distribution (radiation pattern) 
in the H-plane. The ray density in the HSRT method was set to (600 along ϕ x 
600 along θ) for a total of 360,000 rays launched.  In Fig. 3.21 the results for 0, 
2nd and 4th orderof multiple-reflection are compared.  Increasing the order to 
more than 4 has a small impact on the radiation pattern because of the dielectric 
loss.  In Fig. 3.21, the results obtained from HSRT are also compared with those 
obtained from the Multilevel Fast Multipole Method (MLFMM) using FEKO[73] 
and is also a measurement result. 

Fig. 3.22(a) shows the simulated 3D plot of the antenna gain with the Si 
lens and chip carrier obtained using FEKO.  The maximum directivity and gain 
are 20.85 dB and 17.80 dB, respectively, along the z-axis. The radiation 
efficiency is calculated to be around 49.55%. Fig. 3.22(b) shows the simulated 3D 
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plot of the antenna gain without the Si lens and chip carrier obtained using FEKO. 
In this case, the maximum directivity and gain are 3.6 dB and -0.6 dB, 
respectively, whereas the gain along z-axis is calculated as -7.5 dB. The radiation 
efficiency without the silicon lens is around 38%. It is evident from Fig. 3.23 that 
the impact of the silicon lens on the improvement of the gain and radiation 
efficiency is considerable. 
 

4.2 Measurement Approach 
 

Fig. 3.19(a) shows a photo of the fabricated chip. It includes a VCO 
integrated with a planar dipole antenna through the CPS transmission line.  The 
silicon piece is attached to a carrier PCB, where the bias and control voltage pads 
on the chip are wire bonded to the PCB terminals.   

To have precise control over the position of the chip during the 
alignments, the PCB board is attached to an XY linear translation stage as shown 
in Fig. 3.19(b).  After that the silicon lens sits on the backside, and a second 
translation stage (not shown) is used to slide the Si lens against the Si piece very 
precisely. Using two translation stages gives the flexibility of adjusting the chip 
and silicon lens independently. 

We characterized the on-chip antenna using both the quasi-optical and 
superheterodyne setups.   

4.2.1 Quasi-optical Setup 
 
Fig. 4.3 illustrates a schematic of the quasi-optical setup along with a 

photo of the lab setup.  In the setup, the transmitter head is placed on a rotational 
stage which facilitates the measurement of the radiation pattern.   

The radiated field from the on-chip dipole is coupled to the free space 
through the silicon lens. A bi-convex spherical lens collects and focuses the 
incoming beam on the input aperture of a Golay cell.  The Golay Cell is an 
optoacoustic power detector featuring a very high sensitivity and a wide spectrum 
range of 0.02-20 THz. It is equipped with a 6 mm diameter polyethylene input 
window that provides high transparency at frequencies up to 20 THz.  The bi-
convex spherical lens is made of polished Tsurupica with the clear aperture of 45 
mm and a focal length of 50 mm. 

To block the thermal radiation generated by the DC power dissipation in 
the device (Vcc = 2:5 V; Icc = 30 mA), a THz low pass filter is placed in front of the 
focusing lens. The THz low-pass filtering window gives above a 95% 
transmission at the mm-wave range whereas the transmission reduces to below 
0.1% at IR range. 
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(a) 

 
(b) 

Figure 4.3:  (a) The schematic diagram of the quasi-optical setup 
                 (b) The quasi-optical test bench.[97] 
 
A mechanical chopper placed right after the transmitter head modulates 

the beam at a 20 Hz chopping frequency. The output voltage of the Golay cell is 
detected by a lock-in amplifier with a reference signal synchronized with a 
chopping frequency. Using the lock-in amplifier substantially reduces the 
interference due to ambient radiations.   

Using the quasi-optical setup and by having the responsivity of the Golay 
cell, the received power at the Golay cell was measured to be around -15.7 dBm 
 (27 µW) which includes all the transmission losses of the components along the 
propagation path. It should be noted that in the alignments, the height and the 
azimuthal orientation of each component, the position of the device, the silicon 
lens and the location of the Golay cell were carefully optimized for obtaining the 
maximum detected power.  Next to the radiated power estimation, the radiation 
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pattern of the planar dipole with a silicon lens was measured by a quasi-optical 
setup as shown in Fig. 3.21. 

In the quasi-optical setup, the ratio between the received power by the 
Golay cell, Pr, and the total radiated power from the transmitting antenna, Pt, is 
given as: 

where F(ϕ, θ) is the normalized measured radiation pattern using the Golay cell.  
The solid angle for the portion of the power captured by the Golay cell, 0Ψ , is 
calculated from the geometry of the setup and the clear aperture of the focusing 
lens.  The ratio is found after the integration in Eq. (5.1) to be 0.73.  Since the 
received power was measured Pr = 27 µW, the total radiated power is estimated to 
be Pt = 37.2 µW or -14.3 dBm. 

4.2.2 The Superheterodyne Setup 
 

Fig. 4.4 illustrates a schematic of the superheterodyne setup along with a photo 
of the lab setup. In this setup, the transmitter head is placed in front of an open 
aperture of a WR-5 rectangular waveguide through which the coupled radiation is 
transmitted to a Harmonic Mixer (the M05HWD model from Oleson Microwave 
Labs (OML)) as the RF signal.  The RF frequency of the harmonic mixer can be 
in the range of 140-220 GHz, and is down converted to an IF frequency with a LO 
frequency up to 18.6 GHz.  The nominal LO power level is specified as 12-15 
dBm.  The Input LO signal and the output IF signal in the harmonic mixer shares 
the same SMA connector, and are separated by an external diplexer.  The external 
diplexer is connected to the harmonic mixer through a coaxial cable.  We used a 
PSA spectrum analyzer (E4448A model from Agilent) to monitor the signal 
spectrum.  The PSA spectrum analyzer has the external mixing option to extend 
the measurement frequency up to 325 GHz, and provide a LO signal (3.05-6.89 
GHz, up to +20.5 dBm) and a bias current (±10 mA) for the harmonic mixer. 

Fig. 4.5 shows the measured spectrum of the received signal. The 
spectrum shows a signal with the center frequency of 181.5 GHz and a -88.8 dBm 
power. It should be noted that the conversion loss of the harmonic mixer (≈55 dB) 
is included in the power reading. 
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(a) 

 
(b) 

Figure 4.4:  (a) The schematic diagram of the superheterodyne setup 
                    (b) The superheterodyne test bench.[97] 
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Figure 4.5:  The measured spectrum of the 180-GHz VCO. The 
conversion loss of the harmonic mixer is included in the power reading. 
 

Considering Friis transmission formula, 22( / 4 )r
r t r t

t

P G G RP λ π= ⋅a a , 

where 33.8 dBmrP = −
 
and 14.3 dBmtP = −  (as measured by the quasi-optical 

set-up) are the received and transmitted power, respectively.  ra  and ta are 
polarization unit vectors of receiving and transmitting antennas, respectively. 

7 dBirG =  is the gain of the open-ended waveguide measured in a separate set-
up using two identical WR-5 open-ended waveguides, with

 
1.65 mmλ =  is the 

wavelength and R = 20 mm is the distance between the Si lens and open-ended 
waveguide, we estimated the gain of the dipole with Si lens antenna to be 

17.1 dBitG =  which is in a good agreement with the simulated gain (17.8 dB) 
given in Fig. 3.22(a). 

 

4.2.3 Measurement Uncertainty [97] 
 

Table 4.1 shows the limiting errors on the measured antenna gain, Gt due to the 
following uncertainties.  The uncertainty in the antenna gain measurement is 
determined by considering various sources of error in the measurement procedure.  
The main sources of error in the measurement method are the uncertainty in the 
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calibration of the power meter in the quasi-optical setup, uncertainty in the gain 
accuracy of the receiving antenna in the superheterodyne setup.  There is also 
uncertainty in the harmonic mixer characteristics such as conversion loss and RF 
input return loss, uncertainty in the radiation efficiency of the transmitting 
antenna, misalignment between two antennas, possible violation of far-field 
condition, and existence of scattering and multiple reflections in the 
superheterodyne setup.   

 

4.3 Conclusions 
 

In this chapter, we present a simple method for gain measurement of an 
embedded on-chip antenna where the feeding network is not accessible.  This 
method only needs a sensitive power detector, and does not depend on expensive 
instrumentation such as wafer prober and network analyzer in mmW/THz range.  
The measured gain is compared with simulations on an on-chip planar dipole 
fabricated in SiGe:C BiCMOS technology and attached to a hyper-hemispherical 
silicon lens.  A radiated power of around 40 µW and measured gain of 17 dB is 
obtained at 180 GHZ for this antenna structure.   

 

TABLE 4.1 
LIMITING ERRORS ON THE MEASURED ANTENNA GAIN Gt  

 

Gr 
Efficiency  
ηt ± 5% 

Misalignment 
 ± 1o 

± 0.1 dB ±0.3 dB ±0.2 dB 
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CHAPTER 5  

 
The Experimental Setup and 

Application to the Material Characterization 

for Imaging Purposes  
 

A THz imaging modality built upon the coherent THz interactions with a 
tooth is appealing because the radiation is non-ionizing and unlike X-rays, non-
invasive.  There are a number of benefits to be offered in dental imaging by a 
technique that has a high sensitivity to dental caries. Since current techniques do 
not offer comprehensive information concerning the different types of caries at 
the required level of sensitivity and specificity.  X-ray imaging is not only 
inadequate, but raises safety concerns for children due to the use of ionizing 
radiation in regular screening.  The dielectric characterization of a tooth from 0.5 
to 1.5 THz had been conducted in [76].  The THz application to dental imaging 
was proposed using a pulsed setup [6].   Since the dielectric characterization 
measurements of tooth material properties especially those concerning loss is not 
readily available below 500 GHz in the literature. One of the objectives of this 
research is to establish the characteristic properties of the enamel and dentine at 
millimeter-wave and terahertz frequencies. As well as being able to differentiate 
between the enamel, dentine, pulp, dental caries, and crown.  One expects a low 
absorption of millimeter-waves and THz in tooth material.   

The dielectric characterization and the spectroscopic measurements of the 
different tooth samples, enamel, root dentine, and dental caries that were obtained 
from a dentist, was conducted for the frequency range from 94.996 GHz to 
176.282 GHz using a Backward Wave Oscillator (BWO) in transmission-mode.   

HSRT is an effective method for the simulation of the THz (sub-
millimeter-wave) imaging, and the characterization setup and processes.  The 
HSRT is compared for the transmission image with the Transmission Line Matrix 
(TLM) method.   

There are pulsed and continuous-wave THz photomixing spectroscopy, 
and imaging setup using photoconductive a source and detector available at the 
Microwave and Terahertz Photonics Integrated System Lab (MISL) of CAIRS 
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(Centre for Intelligent Antenna and Radio Systems).  A Backward-Wave 
Oscillator (BWO) is also available for imaging and spectroscopy.  The MISL 
supports far reaching research in the area of millimeter-wave and THz photonics 
with an emphasis on the THz applications in the pharmaceutical and life sciences, 
DNA sequencing, and communications.  The high-power Backward-Wave-
Oscillator (BWO) and frequency multiplier sources have a range from 95 GHz 
to1.6 THz with an output power in the range of 1 µW-100 mW.  A femto-second 
short pulse laser that has an average power greater than 2.5 W, a wavelength of 
690-1020 nm, with a pulse duration of <100 fs, and 80 MHz repetition rate is 
used to generate the THz by interacting with a photoconductive antenna for the 
pulsed spectrometer and imager.  Both the electro-optic and photoconductive 
detection setup are available at the MISL. Fig. 3.27 shows the experimental setup 
for the pulsed/CW THz spectroscopy and imaging without the sample and 
focusing lens. For the case of imaging and spectroscopy, a sample holder is 
placed on a motorized stand at the focus of the two focusing lenses placed 
between the off-axis mirrors.  Other than the mirrors, the following equipment is 
available for use in the setup: 

• Tunable CW laser, with a wavelength of 780 nm ± 10 nm, an 
output power of 500 mW, with free-space and fiber coupled 
options  

• Femtosecond-short pulse laser, with a wavelength of 690-1020 nm, 
a pulse duration of <100 fs, a 80 MHz rep rate, and an average 
power of >2.5 W  

• DSP digital lock-in amplifier, with a 1 mHz to 102 KHz frequency 
range, and >100 dB of dynamic reserve  

• Low-noise current amplifier,  with a 5 fA/Hz1/2 input noise 
In this chapter, the BWO is used for the CW spectroscopy and imaging of the 
polyethylene and tooth biological samples.   
 

5.1 The Experimental Setup for Spectroscopic Measurement 
 
In this section, the interaction of the THz wave with the lens, a 

polyethylene sample and a biological media such as tooth is considered.  The 
dielectric characterization and spectroscopic measurements of different tooth 
samples, obtained from a dentist was conducted for the frequency range from 
94.996 GHz to 176.282 GHz using backward wave oscillator (BWO) in 
transmission-mode.  Fig. 5.1 shows the schematic of the slab to be measured 
using BWO.  The system is based on a millimeter wave BWO combined with  
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Figure 5.1:   (a) The simplified schematic layout of the slab sample, source 

and detector for transmission mode measurements.   
 
frequency multipliers and a broadband Pyroelectric detector.  The system setup 
for the measurement was done in consultation with Dr. Daryoosh Saeedkia.  I also 
would like to thank Quantum Dental and Dr. Mitra Doherty for making the tooth 
samples available for the research. 

A backward-wave oscillator-based spectroscopy as shown in Fig. 5.2 is 
employed to measure the power passing through a sample. Relatively transparent 
materials were prepared in the form of a flat parallel slab or disc, the 
transmittance is an oscillating function of the frequency due to multiple 
reflections of the EM wave on the sample interface. The refractive index can be 
evaluated from the distance between two maximum points in the wave, and the 
absorption index can be evaluated from the amplitude of the transmittance level 
of in the peak.  The complex transmittance can be expressed as: 

where 
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And , ,n k and d  are the refractive index, absorption index and the thickness of a 
sample.  α  is proportional to , , ,  and n T R Eθ , which is the power transmittance, 
the power reflectance, the phase , and the loss factor of the transmitted wave.  The 
complex dielectric constant is * jε ε ε′ ′′= +  and * jμ μ μ′ ′′= +  is the complex 
magnetic permeability.  Thus the spectra, ( )T ν  is measured using the data 
acquisition control and the Epsilon 2004 software for every frequency.  The 
BWO-based quasi-optical spectrometer is used to measure the power passing 
through a sample.   

Fig. 5.2 shows the BWO as the source of the tunable monochromatic 
radiation, with a frequency range of 94 GHz to 2 THz, and is labeled 1.  The 
Teflon Plano-convex lens (labeled 2) with a diameter of 30 mm and a focal length 
of 100 mm, (labeled 2 in Fig. 5.2), collimates the radiation coming out of the 
BWO into a plane-parallel beam.  The same lens at the detector side focuses the 
radiation onto the detector.  The Teflon dielectric constant is 1.96 at 520 GHz. 

The next element in the quasi-optical spectrometer is the chopper, (labeled 
3 in Fig. 5.2), it modulates the amplitude of the radiation with a stabilized 
frequency of 23 Hz. The thin-film Mylar attenuator, (labeled 4 in Fig. 5.2), is used 
to reduce the intensity of the radiation when the output signal is close to or 
exceeds 10V, with four fixed independent frequency rates of 30%, 10%, 3% and 
1% attenuation.  The highest output signal value of the registration system is 10V 
so the attenuator is used to decrease this maximum value to a range of 3 to 7 V.   

The polished bi-convex Tsurupica lens (labeled 5 in Fig. 5.2) focuses the 
collimated beam onto the tissue sample.  The bi-convex spherical lenses have an 
external diameter of 2” and a clear aperture of 45 mm with a focal length of 50 
mm.  The Tsurupica was chosen as the material to use because it is highly 
transparent in THz and visible in the spectral ranges.  The test would be 
conducted at a temperature of 22oC or 295 K with a 56% relative humidity, which 
are the conditions in the MISL lab.   
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(a) 

 
(b) 

 
(c) 

 Figure 5.2:   (a) The schematic layout of the quasioptical Spectrometer for 
the transmission mode measurements.  The components are numbered and 
were described above, (b) the sample holder on a motor controlled by 
LabView[75], and (c) the BWO.  
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A sample holder is also designed for this particular application of 
dielectric characterization, which is described below: 

o The planar samples of the biological tissue such as the tooth slices 
samples are placed on specially made sample containers with 
plane-parallel transparent Mylar walls.   

o The sample holder(s) are 2-in diameter aluminium circular plates 
with a rectangular cavity at the center.  The rectangular hole is 
then covered by a thin layer of stretched Mylar with a thickness of 
0.2 mm on both sides of the tissue so that the tissue is held 
between the Mylar walls.  The dimension of the bolt is 1/8”– 32 x 
1/2”.  The screws that hold the stainless steel frame are 4-40 small 
screws. 

o The design for the sample holder is shown in Figure 5.3. 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 5.3:   The aluminium plates are precisely cut to place a 
biological tissue sample size for millimeter and sub-millimeter 
wave quasi-optical spectroscopy measurements.   

 

 

 



CHAPTER 5   EXPERIMENTAL SETUP AND APPLICATION TO MATERIAL  
                        CHARACTERIZATION FOR IMAGING PURPOSES  

 

 102

5.1.1 Characterization of the Tooth Samples  

The objective of the experiment is to determine the variations in the 
transmission coefficient and attenuation of the various tooth materials. The 
enamel, dental caries, and root samples as shown in Fig. 5.4, are held between the 
Mylar walls and placed on polyethylene, which is used in calibration 
measurements. The polyethylene thickness was 2.79 mm with a diameter of 13.70 
mm.  The measured refractive index of polyethylene was 1.96.  The enamel 
thickness of sample 1 was 1.70 mm with a size of about 6.04 mm × 7.43 mm. The 
enamel sample 2 has a small section of caries on it and has a thickness of 1.49 
mm, and the root thickness was 0.69 mm and the dental caries’ thickness was 1.52 
mm.   
 

   
    (a)     (b)          (c) 
Figure 5.4:   The tooth samples, (a) enamel sample, (b) root, (c) dental 

            carries sample. 

The power transmitted through the sample was measured using the signal 
in the voltage and the responsivity (V/W) curve for the pyroelectric detector at a 
modulation frequency of 23 Hz.  The power was low at below 105 GHz due to the 
responsivity, and so, significant information could not be obtained.  The range of 
the transmitted power was from 3 to 100 mW.   

Repeated measurements and averaging is used to reduce the uncertainty in 
the measurements due to misalignment, vibrations in the optical system, minor 
variation in the power generated by the BWO, and change in the moisture content 
of the samples.  Figures 5.5 to 5.9 show the attenuation coefficient and 
transmission coefficient measurements for the human dental samples. The 
measurements show that the dental caries absorb more THz radiation than the 
enamel but the dentine has higher attenuation coefficient for frequencies between 
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141.27 GHz and 148.793 GHz than the dental caries. The average transmitted 
power was 41.5 mW for the enamel. The minimum attenuation was found to be 
16.04±7 dB/cm (1.604±0.7 dB/mm) for the enamel tissue at 133.62576 GHz, with 
a corresponding minimum attenuation of 20.67±7 dB/cm (2.07±0.7 dB/mm) for 
the dentine, and 48.17±7 dB/cm (4.82±0.7 dB/mm) for the dental caries. Near-
field imaging at this frequency or using a broadband signal centered at this 
frequency would enable the best penetration into the enamel tissue.  Previous 
measurements [76] show similar results for the refractive index of the enamel, 
with a deviation of approximately 7% and a value of 3.06 ± 0.09 for frequencies 
between 0.5 THz to 1.5 THz.  In addition, the spectra information can 
complement an image obtained at higher frequencies than at the millimeter and 
sub-millimeter ranges.  Table 5.1 summarizes the results for the minimum 
attenuation for the various materials.    

The contrast between the different parts of tooth shows that the CW THz 
imaging is possible, especially at frequencies where there is a low attenuation 
such as 133.6 GHz.  

 

 
                              frequency (GHz)  

 
Figure 5.5:  The transmission coefficient for the enamel sample.   
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                              frequency (GHz)  

(a) 

 
                              frequency (GHz)  

(b) 
Figure 5.6:  The transmission coefficient for the (a) dentine from the root 
and (b) the dental caries.   
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                         frequency (GHz)  

Figure 5.7:  The measured attenuation coefficient of the enamel. The 
values shown are within ± 7 dB/cm. 

 
                         frequency (GHz)  

Figure 5.8:  The attenuation coefficient of the root dentine.   
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                         frequency (GHz)  

Figure 5.9:  The attenuation coefficient for the dental caries sample.   

 

 
 
 
 
 
 
 

TABLE 5.1 
ATTENUATION PROPERTIES OF TOOTH MATERIAL 

Tooth 
Material 

Minimum 
Attenuation α 

(dB/mm) 
Frequency (GHz)

Enamel 1.604±0.7 133.6 

Dentine 2.07±0.7 133.6 

Dental 
caries 4.82±0.7 133.6 
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The main achievements of the spectroscopic measurements of tooth is that 

it gives us an indication and values of refractive index and attenuation values for 
the various materials of tooth under study for imaging purposes.  The changes in 
the refractive index of enamel, dentine, and dental caries as well as change in the 
attenuation coefficient in theses materials at the mm-Wave and THz range can be 
exploited for imaging of teeth.  

The material properties of the tooth at 133.626 GHz is shown in Table 5.2 
and can be used in the CAD model, where the region of the tooth that is above the 
gums is illuminated by a Gaussian beam and the field is measured everywhere.  
The modeling of the spherical lens and the tooth that includes the effect of the 
curvature and the multi-layer 3D structure using a commercial simulator and SRT 
will be considered in the future for the continuous-wave setup. 

 

TABLE 5.2 
ELECTRICAL PROPERTIES OF TOOTH AT THZ RANGE 

Tooth 
Material 

Refractive 
index n [76] rε  Attenuation α 

(dB/mm) tan δ 

Enamel 3.06 9.364 1.604  0.937 

Dentine 2.57 6.605 2.07  3.221 
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5.2    Terahertz Imaging Setup  

For a coherent THz beam incident on the tooth sample, SRT is promising 
in modeling the local interaction of the THz beam with the tooth sample.  In the 
transmission mode imaging, an image is formulated based on the transmitted 
beam after multiple reflections and refraction through the sample.  At 1.2 THz 
range, with a wavelength of 250μm or less, the curvature matrices would work 
with some curvature of the tooth being more than 6 mm.  Since the tooth is large 
compared to the wavelength, SRT is suitable for modeling THz propagation 
through it assumes the material properties of the enamel and dentine vary slowly 
over the wavelength.  I would like to thank Dr. Daryoosh Saeedkia, Mohammad 
Neshat, and Bahar Davoudi, for the collaboration on the imaging setup and 
discussion.   

The quality of a THz imaging system is determined by its diffraction limit, 
alignment and focus beam.  Diffraction manifests itself in the bending of the beam 
around small obstacles, and the spreading out of the beams past small openings 
with dimensions comparable to the wavelength of the beam. In order to find the 
diffraction, the Fraunhofer diffraction equation for a circular aperture is used [80]  
due to the circular aperture employed in the experiment. 

Where q = 2 2ξ η+  is the radius in the aperture plane and 2 2
x yf fρ = +  is the 

radius in the spatial frequency domain.  For the unit-amplitude plane wave 

incidence on the aperture, the Bessel function 1(2 )J wqB circ A
w w

π ρ
π ρ

⎧ ⎫⎛ ⎞ =⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 and 

the intensity distribution has an Airy pattern[80] 

Or
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1
0
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θθ
θ

⎡ ⎤= ⎢ ⎥⎣ ⎦
, where J1 is the Bessel function of the first kind of 

order one and A = πw2, where w is the radius of the circular aperture.  The radius 
of the main lobe of the Airy disk represents the limit of the resolution for the 
diffraction-limited system 
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where z is the distance between the aperture and image plane and D is the size of 
the aperture.   

5.2.1    Experimental Setup [93] 

Fig. 5.10 shows the THz CW transmission mode measurement setup using 
the focusing lenses.  A BWO combined with frequency multipliers is used to 
generate the THz at 840 GHz with a modulation frequency of 30 Hz with the 
average power of 50 μW.  The frequency of 840 GHz was chosen because the 
BWO power spectrum has a maximum around this frequency.  A Teflon Plano-
convex lens with a focal length of 10 cm is used to collimate the beam generated 
from the BWO and is then focused using the polished Bi-convex Tsurupica lens 
with focal length of 45 mm as shown in Fig. 5.10.   

 

 
 

Figure 5.10:  The THz CW imaging measurement setup available at MISL. 

5.2.2    Transmission-mode Imaging of Tooth [93] 

The THz transmission imaging of the premolar tooth sample, which is a 
cross-section of the root with dentine and pulp at the center, was conducted at 840 
GHz.  A 6x frequency multiplier was used to generate a THz beam at 840 GHz 
with a Golay cell being used instead of a pyroelectric detector.  The optical 
chopper was set at 30 Hz and the DC current source for the multiplier was set to 
12 mA.  The image is obtained via a raster scan by moving the motors of the XY 

1.22 zr
D
λ

=  (5.5)
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stage using LabView and using Matlab to acquisition data from the Lock-in 
amplifier.   

 
The corresponding measured point spread function is shown in Fig. 5.11.  

The scan time was 2 minutes per line and the resolution was set to 0.25 mm.  Fig. 
5.12 shows the THz image alongside the visible image of the cross-section of the 
tooth.  It shows that the Mylar wall and polyethylene holding the tooth slice has a 
high transmittance while the tooth dentine and pulp have high absorption.   
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Figure 5.11:  The measured Point Spread Function along horizontal x-axis 
                          at 840 GHz.   
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(b) 

Figure 5.12:  The THz image of the cross-section of the tooth shown at 
840 GHz based on the transmitted power, and the signal strength 
measured in volts and (b) a visible image of the cross-section of the tooth 
along side the corresponding THz image. 
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5.2.3    The Beam Profile in a Continuous-wave  Imaging Setup 

We assume the THz beam generated by the BWO and propagating 
through the multiplier waveguide has the form of a Gaussian beam. First, a 
Gaussian beam profile without astigmatism is assumed to find the beam profile, 
and the lens is approximated as a thin lens without aberrations to calculate the 
beam waist. The beam profile is useful in enhancing the image resolution such as 
the one in Fig. 5.12.  The focus beam for the CW imaging setup is then measured 
to find the beam profile and size.  The Gaussian beam is a solution to the paraxial 
Helmholtz equation and the complex amplitude of the Gaussian beam traveling 
along the z-direction is given as [81] 

Where 1

0
( ) tan zz

z
ξ − ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 is the phase delay of the wavefront in comparison to a 

plane wave or spherical wave, and 

0z  is the Rayleigh range, W0 is the waist radius and R(z) is the wavefront radius 
of the curvature.  The Gaussian beam resembles a plane wave at the beam center 
and a spherical wave with a phase delay at large z.  The Gaussian beam has its 
maximum curvature at 0z , where the beam radius is 2  times greater than the 
radius at the beam waist. The intensity on the beam axis is half its peak value and 
the phase is retarded by 45 degrees relative to the phase of a plane wave.  The 
intensity is given by [81] 
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And the beam intensity drops from a pick value on the beam axis to 

2
0

( ,0) 1 0.1353I
I e
ρ

= ≈  at the beam waist 0Wρ = .  Fig. 5.11 shows the 

measurement of the intensity of the beam transmitted through a pinhole located at 
the focus of the beam ( ,0)I ρ which is plotted along the horizontal position at 840 
GHz. The beam width is found experimentally by measuring the distance from the 
beam axis to where the value of the normalized intensity and is about 0.1353[81].  
The beam waist was measured to be 1.77 mm at 840 GHz (see Fig. 5.11).   

The beam waist is calculated based on the Gaussian beam assumption at 
the focus by using the principle of beam shaping using a lens.  The BWO 
waveguide is placed at the focus of lens 2 in Fig. 5.2 and a collimated beam with 
a Rayleigh range of z1 propagates to the focusing lens 5.  The resulting 
transmitted beam is focused with a smaller beam waist at distance z0 given by 
[81] 

Where f is the focal length of the lens and W1 is half of the spot size of the 
incident collimated beam, and the spot size of the collimated beam  2W1 is at least 
equal to the diameter of the lens D.  The focal length of the lens is f = 10 cm, and 
n = 1.52.  It is found that 12 2.5 W cm=  through the measurements by putting an 
aperture before lens 5 and finding the smallest size of the pinhole for which the 
detected signal would stay equal to its maximum value.  Using Eq. (5.11), z1 is 

found using W1 and Eq. (5.12) gives the beam waist 0
1

42 1.82 
2

fW mm
W

λ
π

≅ = . 

After a 2D raster-scan of the intensity of the focused beam is transmitted 
through the quasi-optical system, the intensity is measured and after 
deconvolution we obtain the beam profile.  The maximum signal obtained without 
the sample before deconvolution is 3.324 mV corresponding to 1.375 μW at (5 
mm, 5 mm) .  Fig. 5.13(a) shows the intensity of the focused beam generated by 
BWO. The lens system followed by the deconvolved beam profile of the THz 

2 2
0

0 2
2( , ) exp

( ) ( )
WI z I

W z W z
ρρ

⎡ ⎤⎡ ⎤
= −⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
. (5.10)

1
0 2

11 ( / )

WW
z f

=
+

 (5.11)

0 2
11 ( / )

fz
f z

=
+

 (5.12)



CHAPTER 5   EXPERIMENTAL SETUP AND APPLICATION TO MATERIAL  
                        CHARACTERIZATION FOR IMAGING PURPOSES  

 

 114

source in free-space is shown in Fig. 5.13(b).  The BWO source is linearly 
polarized along y.  Fig. 5.13(b) shows the average measured transmitted power 
through a 2-mm diameter circular aperture without a sample after deconvolution 
at 840 GHz. 

Deconvolution is needed to compensate for the effect of the circular finite 
aperture that is used to scan the focal plane.  Deconvolution was implemented in 
Matlab [65] and found the 3dB beam width is 1.2933 mm with a beam waist that 
is 1.83 mm along x.  

 

     
                            (a)                                                    (b) 

Figure 5.13:  Measured (a) intensity of focused beam, and (b) deconvolved 
                        beam profile of THz source in free-space.  [93] 

 

5.2.4    The THz Imaging of a Cylindrical Object [91][93] 

Section 5.2.1 and 5.2.3 are used to show the design setup and imaging 
procedure.  As an example, I have considered a polyethylene cylinder placed 
between the 2 mm diameter circular aperture and the Tsurupica lens.  Since tooth 
sample geometry can be modeled by a cylinder with various layers, I have chosen 
a cylindrical shape for the object under study.  The aperture is on a XY motorized 
stage that is controlled using LabView [75] for raster-scan imaging.  The Lock-in 
amplifier obtains the signal from the Golay Cell detector at the other end of the 
setup and the data is acquired using Matlab[65] for imaging purposes.  The 
responsivity of the Golay cell at 840 GHz is 2416.64 V/W.  Using the quasi-
optical spectrometer, the polyethylene material was found to have 2.3075rε =  
and tanδ= 1.109e-3 at 840 GHz.  Eq. (5.4) and Eq. (5.5) are used to determine the 
diffraction limit of the imaging setup and the intensity distribution for the circular 
aperture.  The cylinder dimensions are a diameter of 12.85 mm or 24λ, and the 
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height is 20 mm and placed 20 mm from Lens 2.  The effect of the cylinder is 
observed.  The motor speed is 0.1 mm/s, that is determined by the resolution of 
100 μm.  After proper alignment, the scan time at a scanning frequency of 8 Hz 
took 1 min 41 sec. per line or a total time of 3 hours for an imaging area of 10 mm 
× 10 mm.  The intensity passing through the lenses, sample and the aperture is 
measured using the Golay cell.  The Lock-in amplifier has an auto-phase feature 
that calibrates the phase of the in-phase component of the measured signal with 
the signal coming from the optical chopper. The imaging process is performed by 
sampling the focal plane field.  This is carried out by a pin hole.  For a plane-
wave incident on the aperture, the Fraunhofer diffraction equation is [80] 

Where q  is the radius in the aperture plane, J1 is of the first kind Bessel function 
with an order of one, and ρ is the radius in the spatial frequency domain.  This is 
used to determine the simulated point spread function used for deconvolution.  
The intensity distribution for the circular aperture with a plane wave incidence is 
an Airy disk, where w is the radius of the circular aperture.  The Airy disk pattern 
of the intensity is considered for plane-wave incident on the aperture.  This is 
used in the deconvolution process.   

 
The experimental setup for the THz propagation through a cylinder is 

shown in Fig. 5.14.   After a 2D raster scan, the maximum signal obtained after 
the transmission through cylindrical sample is 0.456 mV or 0.189 μW with a SNR 
of 17.6dB at the focal plane.  The focal plane along z was adjusted to compensate 
for the change of the focused beam due to the cylinder.  Fig. 5.15 shows the 
measured beam profile after the transmission through the cylindrical polyethylene 
sample with a 3dB beam width of 1.2125 mm or a beam waist of 1.725 mm along 
x.  When compared to the case for free-space, the beam waist shrunk by 5.74% 
along x and expanded along y becoming more astigmatic.  The power loss due to 
the circular aperture is 0.6867 μW, and the power loss due to scattering and losses 
after transmission through the cylinder was 1.1695 μW or ratio of 0.15.   
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Figure 5.14:  Experimental setup for THz Propagation through a cylinder.  

 

  

Figure 5.15:  Measured deconvolved beam profile with and 
      without sample in μW. 
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The second experimental setup for the CW Imaging of the polyethylene 

cylinder is shown in Fig. 5.16.  The cylinder is put at a focal plane. The 
polyethylene cylinder height is 20 mm and diameter is D = 12.85 mm. The 
measured THz image of polyethylene cylinder at 840 GHz is shown in Fig. 5.17. 

 
 

 
Figure 5.16:  The THz CW imaging of Polyethylene cylinder. 

 

 
Figure 5.17:  The THz image of Polyethylene cylinder. 
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5.3    The Comparison of the Transmission Image of the 
Cylinder Using the HSRT and Transmission Line Matrix 
(TLM) Method [94] 

 
In this section, we consider the problem of the THz propagation through 

inhomogeneous cylindrical structures. The Transmission Line Matrix (TLM) 
[83]-[86] method is applied to the THz range to exploit its advantages in 
modeling inhomogeneous media, lossy media, nonlinear devices [87]  and meta-
materials. It has been implemented in 3D and 2D cases. In this section, the THz 
propagation through an infinitely long electrically large homogeneous isotropic 
cylinder is modeled employing 2D TLM and 2D SRT for THz applications.  In 
addition, the effect of adding a hole in the cylindrical sample is examined.    

For electrically large homogenous structures, 2D Spectral Ray Tracing 
(SRT) is applied by extending the 3D SRT formulated for this kind of 2D 
Gaussian-beam–cylinder scattering problem.  The 2D SRT is advantageous since 
it is fast for electrically large structures and homogeneous regions. In addition, it 
can be incorporated in a hybrid approach with 2D TLM.  The methods are then 
compared and verified using the Finite-Difference Time-Domain (FDTD) 
method.   

 

5.3.1    The Two-Dimensional Transmission Line Matrix  
   Method (2D TLM)  
 
The 2D TLM algorithm is applied for modeling the Terahertz (THz) 

Gaussian beam propagation through a cylindrical structure. The TLM is a time-
domain space-discretizing method in which the dynamics of the EM field is found 
by applying Huygens’ Principle [85].   

The TLM is applied to model the THz TMz-mode propagation through a 
cylinder. The 2D TLM algorithm for the case of the TM-mode uses shunt nodes 
and involves a sequence of scattering and connection steps.  For each node, the 
total node voltage is given as: 

Where the incident sinusoid 1
i

kV on line 1 and the source sinusoid i
k sV  at k-th time 

step, are scattered according to, 
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The admittance ˆˆ ˆ4 s sY Y G= + +  and the normalized capacitive stub admittance is 

given by ˆˆ 4( 1), 0s r sY Gε= − =  . The loss is added in the TLM method by 

introducing a lossy stub with 1
ˆ

s
TL

lG
Z
σ
−

− Δ
= , where the characteristic impedance of 

each link line is TLZ .  Another advantage of TLM is that the scattering matrix is 
equal to its inverse, implying that time reversal and time reversal radar-based 
imaging algorithms can be achieved by only reversing the process without 
changing the algorithm [86].  The structure and computation region is shown in 
Figs. 5.18 and 5.19.  A TEM absorbing boundary condition is used to truncate the 
solution space. The input signal or incident field is a Gaussian beam given by 

In the space domain and modulated with exponential 

In the time domain,  the source is located at xi = x0 plane and 0ω λ= . 
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5.3.2    Numerical Examples of TLM and SRT Techniques 
 

To verify the accuracy of the proposed method we start with the 
application of homogenous circular cylindrical geometry structures, as shown in 
Fig. 5.18. 

The far-field interaction with an infinitely long inhomogeneous circular 
polyethylene cylinder that has a radius of 10λ and 2.3rε = , was evaluated using 
2D TLM. The |Ez| total electric field is shown in Fig. 5.19.  The simulation was 
for a Gaussian beam propagation through a lossless 2D cylinder with a beam 
width of 2λ or w0=λ.  For comparison, the electric field for the TMz mode 
propagation at 860 GHz is simulated using 2D SRT, which is a fast asymptotic 
method. The 2D TLM and 2D FDTD[50] used for the 1500 points observations 
made a line of x = 14 mm as shown in Fig. 5.20.  The amplitude matching for the 
various methods is important especially for SRT and FDTD methods as we can 
only obtain amplitude intensity information from our imaging setup.  The phase 
information cannot be obtained using the Golay Cell.  The source in this study is a 
Gaussian beam located at a plane 7 mm from the center of the cylinder.  A 
Gaussian beam is incident on the x = 0.5 mm plane, 3.5 mm from the cylinder. It 
is polarized along the z direction as in Eq. (5.17), where 0 1 V/mE = , the beam 
waist of 0w λ=  and ( , ) 0yE x y = .   

The corresponding spectral distribution is given by: 

The Gaussian source, Eq. (5.17) and Eq. (5.19) has beam width of 2λ or w0=λ.   
The cylinder is 10λ or with an approximate radius of 3.5 mm and the source is 3.5 
mm from the cylinder.   
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Figure 5.18:  The geometry of cylindrical structure and SRT backward launched  

        rays that hit the cylinder in the xy-plane is shown.  Here the x = 0 is 
        source plane and x = 14 mm is the observation plane.   

 

O 
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Figure 5.19:  The |Ez| total electric field shown is obtained from the 2D TLM 
           simulation for Gaussian beam propagation through a lossless 

                         2D cylinder with a beam width of 2λ or w0=λ. The cylinder has  
                         R=3.5 mm ≈ 10λ  and the source is 3.5 mm from the cylinder. 
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(b) 

Figure 5.20:  The (a) magnitude and (b) phase of Ez obtained from 2D SRT,  
                        2D TLM and 2D FDTD simulations of Gaussian beam propagation  
                        through a 2D cylinder. The location of observation is 14 mm from 
                       the source. 
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For the TLM simulation of the cylinder with a hole, the maximum number 
of time steps is K = 5,000. An absorbing boundary condition applied to a 
computation region of a 860 × 860 cell, and dl = 17.4 μm, where the 
discretization is 20 cells/wavelength. The elementary time step is dt = 4.11×10-5 
ns. It took 4 hours on a PC with an Intel Centrino Duo 2.4 GHz processor and 6 
GB of RAM.  The magnitude of the electric field for Gaussian beam propagation 
through a cylinder is shown in Fig. 5.21.   

 

 
 

Figure 5.21:  The magnitude of the total electric field Ez obtained after the 2D 
TLM simulation for the Gaussian beam propagation, w0=λ, through a 7 mm 
diameter cylinder with a circular hole diameter of 2 mm at the center.   

 
Fig. 5.22 shows the E-field distribution for the Gaussian beam propagation 

through a lossy cylindrical dielectric at 860 GHz.  The TLM method is used for 
solving the direct problem in the inverse scattering problems. A problem of a 
cylinder with holes with different sizes was introduced. Fig. 5.23(a) shows the 
dielectric profile under study for THz imaging and Fig. 5.23(b) shows the 
magnitude of Ez obtained from the 2D TLM simulation.   
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Figure 5.22:  The (a) magnitude of Ez obtained from the 2D TLM simulation for 
                        the Gaussian beam propagation,w0=λ, through a lossy polyethylene  
                        cylinder (εr = 2.3075, σ = 0.01 S/m).  (b) The 2D TLM lossy vs. 
                        lossless case at x = 11 mm.   
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The 2D TLM and SRT codes were implemented using Matlab[65].  The 
time taken for the 2D SRT simulation was 7 minutes and 43 seconds with 210 
backward rays launched, and 1500 observation points on the same PC with an 
Intel Centrino Duo 2.4 GHz processor and 6 GB of RAM.  The TLM method took 
10 hours for the resolution of 34.8 cells/wavelength, and 10,000 time steps. 
FDTD took 11 hours to simulate on the same PC. The discretization for FDTD 
was 34 samples per wavelength with the maximum number of time steps being 
20,000. A PML absorbing boundary condition is applied around the computation 
region with 100 PML cells.  

 

5.4    Conclusions  
 
In this chapter, a transmission-mode measurement for CW THz imaging 

of polyethylene cylinder and cross-section of tooth is conducted using BWO. The 
beam profile of THz beam generated by a BWO was measured at the focal plane 
of a CW imaging system and the effect of electrically-large polyethylene cylinder 
on the beam profile examined. It was found that the focused beam becomes 
astigmatic and has more of an elliptical beam profile. THz transmission-mode 
CW imaging of a cross-section of premolar tooth sample with dentine and enamel 
was conducted at 840 GHz.   

A two-dimensional Transmission Line Matrix (2D TLM) method is 
applied in the terahertz (THz) range to simulate wave propagation and scattering 
inside and around an inhomogeneous cylinder.  The 2D TLM is applied for 
cylinders of 10λ in size giving accurate magnitude and phase results as compared 
to FDTD.  The direct solution obtained using 2D TLM can be used for THz image 
reconstruction and hybrid 2D TLM and 2D SRT techniques for future study.   
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(b) 

Figure 5.23:  The (a) dielectric profile of the structure to the image and (b) the 
magnitude of Ez obtained from the 2D TLM simulation for the Gaussian beam 
propagation, w0=λ, through a cylinder with a circular hole with diameter of 2.72 
mm and elliptical hole with a diameter of 1.6 mm along x and 4.16 mm along y. 
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CHAPTER 6  

Summary of Contributions and Future Work 
 

 

6.1 Summary of Contributions 

In this chapter the main contributions of our research and the major topics 
presented in this thesis are summarized. In this thesis, I have studied and 
investigated asymptotic methods for the computation of electrically large 
structures, Spectral Ray Tracing (SRT), terahertz integrated antennas, and 
biomedical applications of terahertz technology.  SRT is an alternative for reliable 
computation of the electric field in the near-field and far-field without any 
approximation to solve an electrically large structure, while using less 
computational resources.  A novel matrix representation of the SRT method is 
proposed, which requires only one spectral domain integration step for each 
observation point. SRT was compared with the rigorous Finite Element Method 
(FEM) and Geometrical Optics (GO) through the simulation of the terahertz 
Gaussian beam propagation through a hemispherical lens. The proposed method 
is also more accurate than Shooting and Bouncing Ray (SBR) method because 
SRT does approximation in the spectral domain and can include complex rays for 
near-field analysis. The GO response does not match SRT and HFSS responses 
because the lens surface is in the near-field of the source. SRT with a zero-order 
of reflection predicts the phase variation over angle θ much better than GO and 
the results are closer to the FEM simulations using Ansoft HFSS.  The SRT 
method was able to accurately solve the problem 30 times faster than FEM.  In 
addition it is effective in modeling quasi-optical systems including near-field 
analysis and promising for modeling the THz propagation through a biological 
media such as a tooth.   

A rigorous computationally efficient self-consistent Hybrid SRT method 
is proposed to model complex multi-layer structures with sub-wavelength 
features, like an antenna close to large complex dielectric structures such as a lens 
or prisms.  The Hybrid SRT (HSRT) is simple to implement and unlike the 
Uniform Theory of Diffraction (UTD), and the Uniform Asymptotic Theory 
(UAT) it can deal with the diffraction of an arbitrary wave, where the incident 
wave is decomposed into plane waves.   
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The main contributions of this research have been: 
 

• Reduction of SRT technique through novel matrix representation 
and comparison with FEM [88]. 

• A theoretical derivation of Spectral Ray Tracing from the 
Electromagnetics Reciprocity Theory [96]. 

 
• The proposed complexity reduced SRT was then combined with 

MoM and FEM methods to constitute the new hybrid SRT 
algorithm, which enables the analysis of multi-scale millimeter-
wave and terahertz integrated lens antennas [90][96]. 

 

• The extension of HSRT method to model lossy media to account 
for conductivity losses in lenses used in terahertz antennas. [96]. 

 
• The modeling of the THz receiver-transmitter link in free-space 

using the SRT method and its linkage with the THz device models 
developed by other researchers in CIARS [92].   

 
• As part of group work, an on-chip dipole integrated antenna with 

VCO around 180 GHz was designed and characterized [97].  A 
new simple method to characterize the gain and radiation pattern 
of an embedded on-chip antenna is presented [97], where the 
feeding network is not accessible. This method only needs a 
sensitive power detector, and does not depend on expensive 
instrumentation such as wafer prober and network analyzer in the 
mmW/submmW range. 

 
The HSRT algorithm was implemented in Matlab exploiting two GPUs for 

parallel processing.  The various versions of the Hybrid SRT method such as 
FEM-SRT, and MoM-SRT are compared and validated with commercial software 
Ansoft HFSS for the FEM method, FEKO for MoM, the Multi-level Fast 
Multipole Method (MLFMM) and Physical Optics (PO) via simulation of a bow-
tie terahertz antenna backed by hyper-hemispherical silicon lens. The radiation 
patterns of an edge-coupled traveling-wave photomixer integrated with a bow-tie 
antenna, and a double-slot antenna backed by a hyper-hemispherical lens is 
obtained using MoM-SRT and FEM-SRT.  It is shown that the MoM-SRT is 
more accurate than MoM-PO and comparable in speed.   

The HSRT method is also applied to an on-chip Terahertz dipole antenna 
lens structure integrated with a VCO in SiGe:C BiCMOS technology backed by a 
silicon lens.  The conductivity of the silicon lens was modeled by HSRT.   
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The FEM-SRT method was able to accurately solve a double-slot antenna 
problem 77 times faster than FEM by exploiting parallel processing. The HSRT 
technique can be employed in an optimization loop to design antennas and other 
quasi-optical devices because it is computationally fast and accurate. Since the 
media of the systems modeled is linear, the solution and ray tubes obtained by 
SRT for a particular structure can be interpreted as the transfer function of the 
structure. The transfer function of the structure can then be re-used for the 
analysis of multi-antenna systems. In addition, it is shown that the matrix 
formulation of SRT and HSRT is a promising approach for parallel processing 
and solving complex electrically large problems with high accuracy. The use of 
GPU parallel processing greatly accelerates computational time of HSRT and 
SRT.   

A transmission-mode measurement setup for the continuous wave and 
pulses THz imaging and spectroscopic imaging is developed in the Microwave 
and Terahertz Photonics Integrated Systems Lab (MISL). As an important 
application of interest in this lab, the dielectric characterization and spectroscopic 
measurements of different tooth samples, enamel, root dentine, and dental caries 
obtained from a dentist was conducted for the frequency range from 94.996 GHz 
to 176.282 GHz using a Backward Wave Oscillator (BWO). For the stated 
frequency range, 133.62576 GHz showed the least absorption by the enamel and 
dentine tissue samples. The measurements show that dental caries absorb more 
THz radiation than enamel but dentine has higher attenuation coefficient for 
frequencies between 141.27 GHz and 148.793 GHz than the dental caries.  The 
average transmitted power was 41.5 mW for the enamel. The minimum 
attenuation was found to be 16.04±7 dB/cm for the enamel tissue at 133.62576 
GHz, with a corresponding minimum attenuation of 20.67±7 dB/cm for the 
dentine, and 48.17±7 dB/cm for the dental caries.  Near-field imaging at this 
frequency or using broadband signal centered at this frequency would enable the 
best penetration into the enamel tissue. The THz raster-scan imaging of a cross-
section of tooth was also performed at 840 GHz.   
 
 
6.2 Future Work 

Accurate modeling of a THz transmitter-receiver link to model pulse 
propagation in free-space is important for modeling the emerging THz 
technologies in communications and imaging. This model includes The Tx, Rx 
antenna.  The use of Hybrid SRT, by combining rigorous techniques to model a 
vertically-coupled traveling-wave photomixer integrated with a co-planar stripline 
and bow-tie antenna on LTG-GaAs, or a photoconductive dipole antenna on a 
GaAs substrate, as well as SRT for the analysis of the complex electrically large 
system including the hyper-hemispherical lens, and off-axis parabolic mirrors are 
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important research tasks that need to be performed in the next stage. Once the the 
THz link measurement setup including the bow-tie antenna as a transmitter with 
the hyper-hemispherical lens, dipole antenna with the same lens as a transmitter, 
and the off-axis mirrors is complete, the measurements of the received pulse 
would be used to improve the HSRT model.   

This research can be extended in many ways. Some of the proposed areas 
for future research are listed below: 

 
• SRT is not easily applicable to resonance analysis as in [82].  

Developing HSRT for dielectric resonators and electrically small 
lens with size of a wavelength or few wavelengths is important.   

• Fully Coupling impressed source in rigorous numerical solver such 
as MoM with reflected wave coming from electrically large 
structure by solving MoM in presence of reflected field in addition 
to the impressed source (loading effects) will enhance the accuracy 
of the model. 

• Thorough Ray Tracing modules are needed for tracing rays in 
irregularly shaped complex structures. 

 
• SRT could be formulated and implemented to model the THz 

propagation through biological samples such as homogeneous 
version of a tooth sample using electrical properties measured in 
Chapter 5, which is electrically large. It would be a forward model 
for the use in inverse-scattering problems and/or imaging with sub-
wavelength resolution. 
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APPENDIX 1:  Geometrical Optics 

Geometrical optics (GO) is based on ray tracing methods.  Ray methods 
deal with the evaluation of fields at high frequencies where parameters of the 
medium vary little over a wavelength.  A ray is the idealization of a very narrow 
beam of light and is defined as the trajectory between a point of diffraction and 
the point of observation.  In free space or in homogeneous regions, the rays are 
observed to be straight lines along which the light propagates.  The propagation of 
geometrical optical rays is governed by Fermat’s principle, which states that the 
ray from point ro to point r is the curve C joining these two points for which 
optical distance 0( , )S r r  or integral [27] 

is minimum or the optical path, ds ndσ= , is stationary.   

 
Figure A1.1:   The geometrical optic ray from point r0 to point r is a curve C that 

makes S(C), Eq. (A1.1), a minimum.   

According to geometrical optics, the phase variation along a ray C 
propagating between two points is the product of the wave number k and distance 
between these two points, or 0 0( , )k S r r×  is the phase of ray C from point r 
connected to the phase at point r0.  0 2 /k π λ=  is the free-space wave number.  
When n(r) is a smooth function of r it can be shown that the condition Eq. (A1.1) 
implies that the ray C satisfies a differential equation.  If n(r) is discontinuous, 
two rays are generated, one reflected and one refracted according to Snell’s law.  
For example, if k  is the tangent vector of length onk  at the point ( )r σ  on C 

determines the rate at which the tangent to C rotates or the curvature of C.  Given 
the initial direction of the ray at point ro, the ray is found by integrating Eq. 
(A1.2). 

( )
C

S C ndσ= ∫  (A1.1)  

0
d k n
dσ

= ∇
k  (A1.2)  
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Denoting 0( , )S r r  by ( )S r , the phase 0 ( )k S r×  must be continuous at the 
point of diffraction, except at the point of contact of the ray with its envelope, 
called a caustic.  These usually occur at a focus, where an infinite number of rays 
converge to form an image, or on the caustic surfaces to which all rays are 
tangent.  A caustic exhibits a jump discontinuity and the simple theory predicts an 
infinite amplitude [27][33]. 

One of the laws of geometrical optics is power conservation used to find 
the amplitude of the field once we find the system of rays throughout a system or 
phase of the field.  Figure A1.2 shows the tube of rays close to a ray and intensity 
law[27][28][31].  The power carried by a tube of rays is proportional to the square 
of the field amplitude and is conserved along a tube of rays.  The amplitude of the 
ray field is inversely proportional to the square root of the cross-sectional area of 
the tube of rays.   

 

Figure A1.2:    The tube of rays emanating from point r0.  Intensity law:  
      1 1 2 2I d I d I dΩ∑ = ∑ = Ω , Courtesy of [27][62]. 

The Intensity Law 

The intensity I, expressed by the energy crossing, per unit time, a unit surface 
element normal to the ray, is  

where A is the field amplitude with a factor that depends on the quantity (E or H) 
used to describe the field, /v c n=  is the velocity at which the energy in the field 
moves along the rays.  In Fig. A1.2, the small cross sections of areas 1d ∑  

2I A v=  (A1.3)  
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through r1 and 2d ∑  through r2.  If I1 and I2 are the intensities at r1 and r2, 
respectively, the conservation of energy is expressed by the relation [27] 

The third law of geometrical optics is the conservation of polarization 
where the field is conserved along a ray.  Using the laws of geometrical optics, we 
can calculate the field at each point of a ray once it is known at the point of 
diffraction.  At the point of diffraction, the diffracted field can be expressed as a 
vector which, can be written as a 2 × 2 matrix operating on the incident field 
vector called the diffraction coefficient [31].   

 

A1.1 The Eikonal Equation 

Maxwell’s equations in time harmonic form for homogeneous media are  

with constitutive relations andμ εB = H  D = E .  The concept of GO is 
introduced by using the Helmholtz equation.  The scalar Helmholtz equation in a 
source free medium of index of refraction n  

For a homogeneous medium, one solution is a plane wave je− k ri .  When the 
medium is inhomogeneous and varies little over a wavelength, ray theory 
generalizes the plane wave concept and solution of Eq. A1.5 as a product of a 
rapidly-varying phase and a slowly varying amplitude introduced by Sommerfeld 
and Runge [31][53][54]  

where S is a real phase function and A is complex amplitude.  Inserting Eq. A1.6 
into Eq. A1.5 we get 

1 1 2 2I d I d∑ = ∑  (A1.4)  

( ) ( )
( ) ( )

( ) 0
( ) 0

j
j
ωμ
ωε

× = −
× =
⋅ =
⋅ =

E r H r
H r E r

B r
D r

∇
∇
∇
∇

 

 

2 2 2
0 ( ) 0u k n u∇ + =r  (A1.5)

0 ( )( ) ( , ) jk S
oU A k e−= rr r  (A1.6)

0 2 2 2 2 2 2
0 0 0 02 ( ) 0jk Se A jk A S jk A S k n A k A S− ⎡ ⎤∇ − ∇ − ⋅ + − =⎣ ⎦∇ ∇ ∇  (A1.7)
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using property 2 2 2( ) 2AB A B A B A∇ = ∇ + ⋅ Β+ ∇∇ ∇ .  For 1/k being small or in the 
high frequency limit, 0k →∞ ,  

Letting the coefficients of the various powers of k0 be zero in Eq. A1.8 results in 
the eikonal equation  

where S is the eikonal or wavefront surface.  And the transport equation for m= 0  

And for m > 0  

These equations contain all the laws of the geometrical optics for scalar waves.   
Using vector notation in free-space, the transport equation becomes   

Since 0∇ =Ei  and inserting in the Luneberg-Kline asymptotic expansion 

we have for m = 0 

From the transport equation, if A0 is a Cartesian component of u0, Eq. A1.10 
becomes 2

0( ) 0A S∇⋅ ∇ =  and the flux in a tube of rays is conserved, 
2 2

0 0( ) ( ) (0) (0)z zΣ = Σu u .  The transport equation is solved using the ray 

coordinate system, where z is along the ray and 1X̂  and 2X̂  are the principle 
directions of the wavefront.  The Laplacian in this coordinate system is  

0 0 1 22
0 0

1 1( , ) ( ) ( ) ( ) ...A k A A A
jk k

= + − +r r r r  (A1.8)

2 2S n∇ =  (A1.9)

2
0 02 0A S A S∇ + ⋅ =∇ ∇  (A1.10) 

2 2
12m m mA S A S A −∇ + ⋅ = ∇∇ ∇ . (A1.11) 

2
0( 2 0S S∇ + ⋅ =u∇ ∇) . (A1.12) 

( )

0
( ) ( ) ( ) ( )

M
jkS r m M

m
m

r e jk r o k− − −

=

= +∑E u , (A1.13) 

0 0S∇ ⋅ =u . (A1.14) 
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where 1
1

1 zh
R

= + , 2
2

1 zh
R

= + , and h =1, and R1 and R2 are the principal radii of 

curvature along 1X̂  and 2X̂ .  Since S is constant on a wavefront, 
1 2

0,S S
x x
∂ ∂

= =
∂ ∂

 

so  

Along a ray, 

And the transport equation Eq. A1.10 becomes 

Thus 0 1 2

0 1 2

( )
(0) ( )( )

A z R R
A R z R z

=
+ +

 and 

Eq. A1.19 shows the divergence factor and the field amplitude is conserved in a 
tube of rays.   
 

A1.2 Ray Tracing 
 

The surfaces on which ( )S r  is constant are called wave surfaces or 
wavefronts.  Rays are the orthogonal trajectories of the wavefronts.  At any point 
r, the vector of length 0 ( )k n r tangent to the ray is 

2 1 2 2 1

1 2 1 1 1 2 2 2

1 h h h h h hS S SS
h h h z h z x h x x h x

⎧ ⎫⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎛ ⎞∇ = + +⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
. (A1.15) 

2

1 2

1 1S
R z R z

∇ = +
+ +

. (A1.16) 

0
0 0

dAS A z A
dz

∇ ⋅∇ = ⋅∇ =  (A1.17) 

0
0

1 2

1 12 0dA A
dz R z R z

⎛ ⎞
+ + =⎜ ⎟+ +⎝ ⎠

. (A1.18) 

1 2
0 0

1 2
( ) (0)

( )( )
R Rz

R z R z
=

+ +
u u . (A1.19) 

( ) 0 ( )r k S r= ∇k  (A1.20)  
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As consequence of Eq. (A1.20),the rays are everywhere normal to the wavefront 

[27] 

Eq. A1.22 is the eikonal equation derived in Appendix A1.1.  The phase varies as 
it would for a plane wave with wave vector k  in the vicinity of r, thus the field is 
locally a plane wave.  The rays that are near an axial ray are called paraxial and 
are said to form a pencil [31].  By finding the variation of the cross section of a 
Tube of Paraxial Rays (TPR) within the pencil, we can deduce the intensity 
variation of the field along the axial ray[27].  The rays of TPR are normal to 
family of wavefronts and in uniform regions, where all rays are straight lines.  In 
the neighborhood of the axial ray Oz, we can represent the wavefront through 
point O by the second-degree equation [27] 

where 1 2[ ]Tx x=x  is the transverse position vector represented by its 
components (x1, x2) with respect to an orthonormal frame of reference, and Q is a 
2 × 2 symmetric matrix called the curvature matrix [27][28].  Eq. A1.22 is an 
approximation to the wavefront.  Fig. A1.3 shows the wavefront of the TPR.  By 

calculating the gradient of 1
2

T Q⋅z + x x , the vectors normal to wavefront are 

obtained in the directions of propagation of paraxial rays.  We obtain the normal 
vector ˆ Qz + x , where it is a unit vector along z direction and whose component 
transverse to the direction z is Qξ = x .  The matrix Q  has two orthogonal 
eigenvectors, 1 2 and X X , such that  

for i = 1 and 2.  In general, 1R and 2R  are the principal radii of curvature, and the 
planes 1ẑX  and 2ẑX  are the principal planes.  The rays of the TPR in the planes  

0 ( )k n r=k  (A1.21) 

2 2( ) ( )S r n r∇ =  (A1.22) 

1
2

T Q= −z x x  (A1.23) 

1
i i

i
Q

R
X = X  (A1.24) 
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Figure A1.3:   Wavefront for tube of paraxial rays (TPR) at point O with axis Oz.   

     Courtesy of [27][62].  

1ẑX  and 2ẑX  converge respectively at points F1 ( 1z R= − ) and F2 ( 2z R= − ).  The 
points F1  and F2.  If 1 2R R R= = , the phase surface in the vicinity of O is a 
sphere of radius R centered at z R= − .  The rays of TPR (rays close to O) may be 
considered to meet (approximately) the two focal lines of direction 2X  through 

1F  and direction 1X  through 2F .   
Fig. A1.4 shows a TPR composed of four rays with a rectangular cross 

section.  Given the transverse surface at point z is ( )zΣ .  For a TPR with the focal 
points 1 1z F R= = −  and 2 2z F R= = −  , from Fig. A1.4 [27], we have  

where ( )zΣ  and ( )OΣ  represent the transverse surface cross section of TPR at 
points z and O.   

1 2

1 2

( )( )( )
( )

R z R zz
O R R

+ +Σ
Σ

=  (A1.25) 

 
Wavefront 

 
TPR 

z 



 

 139

 

Figure A1.4:   A TPR with the variation of the cross section, courtesy of [27][62].  

The focal points of TPR are the caustic points.  The intensity varies as  

and the amplitude is proportional to the square root of the intensity.  The ratio Eq. 
A1.25 may be negative and as consequence the amplitude will sometimes be 
imaginary.  The reason is that the phase changes by 2

π  of the TPR crossing a 
focal line.  At point z, the curvature matrix Q, referred to the principal axes 1X  
and 2X  is  

Therefore, the variation of Q with z can be represented by 

( )
( )

z

O

I O
I z

Σ
=
Σ

 (A1.26) 

1

2

1 0

10

R z
Q

R z

⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥+⎣ ⎦

. (A1.27) 

1 1 1 0
( ) ( )

0 1
Q z Q O z− − ⎡ ⎤

= + ⎢ ⎥
⎣ ⎦

 (A1.28) 
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holds in any system of axes, orthogonal or not.  From Eq. A1.25 and Eq. A1.27, 
we obtain  

For a TPR, since the paraxial rays are almost parallel to the axis Oz, the 
phase of the field at point x  in the plane z =0 is obtained by adding the phase at 
point O and 1

2
Tk Q⋅x x  neglecting higher order terms.  The phase at any point  

( , )r z= x  when x  is small is ( )kS r  with  

and Q(z) given by Eq. A1.28.  The intensity and phase, Eq. A1.29 and A1.30, of 
the field propagating in a TPR, where 1 2det( ( )) 1/Q O R R= , is then 

In Eq. A1.31, we suppose ( )Ou  and ( )Q O  are known and calculate Q(z) using 
Eq. A1.28 and S(r) using Eq. A1.30.  For our application ( )ru  is the electric field 
E .  The second term of Eq. A1.31 is the factor of divergence DF after using Eq. 
A1.28 it becomes  

 

A1.3 Refraction At A Curved Dielectric Interface [27][28][34] 
 

Figure A1.5 presents an incident TPR, the surface,Σ ,the reflected and 
refracted TPR.  First we examine the TPR refraction and consider TPR reflection 
as a special case of refraction.  We utilize a principle of phase matching which is 
a direct consequence of Snell-Descartes’ law states the phase of the refracted TPR 
at every point of the surface Σ  is the same as that in the incident TPR.  Let the 
axis ˆiOz  of the axial ray of the incident TPR, TPRi , and n̂  the normal vector to 
the surface at point O.  The angle 1α  is the angle between them ( n̂  and ˆiOz ).  We 
are then able to model approximately the surface Σ  around O using the equation  

( ) det( ( )) ( ) det( ( ))z Q z O Q OΣ × = Σ × . (A1.29) 

1( ) ( )
2

TS r z Q z= + ⋅x x  (A1.30) 

1
2

( )det( ( ))( ) ( )
det( ( ))

jkS rQ zr O e
Q O

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
u u . 

(A1.31) 

1 2

1 1( )
1 1

DF z
z z
R R

= ×
+ +

. 
(A1.32) 
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where O=r r  is the vector which is linked to point O at point r on the surface.  If 
1 2ˆ ˆ,u u represent orthonormal vectors,  1 1 2 2ˆ ˆt t= +t u u  is the projection of r  unto the 

plane L tangent Σ  at origin O.  QΣ  is the curvature matrix of Σ  at point O.  The 
phase of the incident TPR is ( )ik S r×  where 

The curvature matrix ( )i iQ z  depends on iz  but here we suppose that 
( ) ( )i i iQ O Q z�  for iz  in the neighborhood of O.   

 

Figure A1.5:   A TPR with wavefront curvature Qi refracted at a curved surface 
Σ .  The reflected and refracted TPR have associated wavefront 
curvature matrices Qr and QR, courtesy of [62]. 

We express the vector ( )r t  on the surface Σ , and inside the coordinate 
( , )izx  of incident TPR as follows 

( )1 ˆ( )
2

T QΣ= −r t t t t n  (A1.33) 

1( ) ( )
2

T
i iS z Q O= +r x x  (A1.34) 
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where Θ  is the transformation matrix that transforms from coordinate 1 2ˆ ˆ[ ]Tu u  

to coordinate 1 2ˆ ˆ[ ]Tx x , Θt  is the projection of the vector t  on the plane 0iz =  
and 

is the projection of ˆiz  on the plane L tangent to Σ .  The components ˆ ˆj j iv = ⋅u z , 
where j = 1,2.   

Plane L

O

Surface Σ

iTPR 1α

Plane 0iz =

1x̂

tΘ
x r

t

1û
ˆiz

n̂

iz

w

2 2ˆ ˆ=x u

 

Figure A1.6:   A TPR incident at a curved surface Σ .  2 2=x u    The vector t  is 
in the direction of 1u [27].   

As seen in Fig. A1.6, the plane iz Ow  is the plane of incidence.  The vector 

2 2ˆ ˆ=x u  is perpendicular to the plane iz Ow , and 1 1ˆ ˆ,u x  are in the plane ˆˆ( , )iz n  
making the angle 1α  between them and   

And the matrix Θ  becomes 

( ) =Θr tx t  (A1.35) 

( ), ( ) 1
1 cos( )
2

T
iz Q αΣ= ⋅ −r t v t t t  (A1.36) 

1 1 2 2ˆ ˆv v= +v u u . (A1.37) 

1 2ˆ ˆ ˆi= ×x u z . (A1.38) 
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In general Θ  is given by  

And Substituting Eq. A1.36 into Eq. A1.34 for S(r ) we obtain 

where  

Eq. A1.41 is very important to determine the phase ( )ik S r×  of the TPR incident 
on the surface Σ .  The phase constitutes two terms, the linear term is Lk ⋅ = ⋅v t k t  
where Lk  is the projection of the axial wave vector ˆo ik z  vector on the tangent 
plane L, and the second term is quadratic defined by 2 2×  symmetric matrix Γ . 

The phase of the refracted TPR in passing through the surface Σ  is 
represented by ( )R Rk S r×  and  

where 

and RQ  is the curvature matrix of the refracted TPR and RΘ  is the same as Eq. 
A1.39 but with 1α  replaced with 2α .  In general, it is obtained by Eq. A1.40, 
where 1 2ˆ ˆ( , )x x  is replaced by ,1 ,2ˆ ˆ( , )R Rx x  that is a coordinate in the plane normal 
to ˆRz .  ˆRz  is the unit vector in the direction of the refracted TPR.   

The principle of phase matching is applied to both the linear and quadratic 
terms at every point of Σ  and so the phases of the incident TPR and refracted 
TPR coincide. We can write   

1cos( ) 0
0 1
α⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Θ . (A1.39) 

1 1 1 2

2 1 2 2

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ
⋅ ⋅⎡ ⎤

= ⎢ ⎥⋅ ⋅⎣ ⎦

x u x u
x u x u

Θ . (A1.40) 

( )1( )
2

TS = ⋅ + Γr v t t t  (A1.41) 

1cos( )TQ Q αΣΓ = −Θ Θ . (A1.42) 

1( )
2

T
R R RS = ⋅ + Γr v t t t  (A1.43) 

2cos( )T
R R R RQ Q αΣΓ = −Θ Θ  (A1.44) 

R L=k k  (A1.45) 

R Rk kΓ = Γ  (A1.46) 
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The condition Eq. A1.45 is Snell’s law applied to the axial ray 

where n2 and n1 represent the indices of refraction for the second and first 
medium.  The second Eq. A1.46 indicates the transformation of the curvature  

Eq. A1.48 is important because it permits us to calculate the wavefront of the 
refracted TPR, in presence of the wavefront of incident TPR and of the matrix of 
curvature of the surface. 

The wavefront of the reflected TPR is obtained using Eq. A1.51, setting 
Rk k= , and replacing 2α  by 1π α−  and 

where rQ  is the matrix of curvature of reflected TPR.  Eq. A1.48 and Eq. A1.49 
give us the matrices of curvature RQ  and rQ  at the points 

Once RQ  and rQ  are determined from Eq. A1.48 and Eq. A1.49, the eigenvectors 
or principal directions of the wavefront, and their eigenvalues or principal 
curvatures can be found [28][33]  The radius of curvature of refracted TPR and 
reflected TPR are the solutions of the quadratic equations given by  

In order to find the factors of divergence of the refracted and reflected rays we use 
Eq. A1.32 and replace 1 2and R R  by the radius of curvatures 

1, 2, 1, 2,,  and ,R R r rR R R R . 
If one knows the wavefront TPR, Tube of Paraxial Rays, incident on a 

surface dielectric together with angle of incidence 1α  as seen in Fig. A1.5, one 
can find the wavefronts of the reflected and refracted TPR by the following steps: 
 

2 2 1 1sin( ) sin( )n nα α=  (A1.47) 

2 1( cos( ) cos( ))T T
R R R R i Rk Q k Q k k Qα α Σ= + −Θ Θ Θ Θ  (A1.48) 

12cos( )T T
r r r iQ Q Qα Σ= −Θ Θ Θ Θ  (A1.49) 

( )
( )

1, 2, 1, 2 2, 2

1, 2, 1, 2 2, 2

ˆ ˆ ˆ ˆ ˆ ˆˆ,            and   

ˆ ˆ ˆ ˆ ˆ ˆˆ,            and   

R R R R R R

r r r r r r

Q

Q

→ = × =

→ = × =

x x x u z x u

x x x u z x u
 

(A1.50) 

1, 2, 2
1 1, :      - ( ( )) det( ) 0 R R R RR R trace Q Q

RR
+ =  (A1.51) 

1, 2, 2
1 1, :      - ( ( )) det( ) 0 r r r rR R trace Q Q

RR
+ =  (A1.52) 
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Step 1 Get the directions of reflected and refracted TPR by using Snell’s 
Law (applied to the axial ray of the incident TPR). 

 
Step 2 Get the plane of incidence ziOw plane, (see Fig. A1.6), and specify 

the orthonormal vectors ( 1 2ˆ ˆ,u u ) from the tangent plane L such that 

1̂u  is in the plane of incidence and 2 1ˆ ˆ ˆu n u= × .   
 
Step 3 The matrix of curvature of the wavefront of the incident TPR iQ  is 

found given the vector 1 2( , )x x  using Eq. A1.23 and Eq. A1.24, 
and calculate Θ  using Eq. A1.40.  When choosing 

2 2 1 2ˆ ˆ ˆ ˆ ˆ and ix u x u z= = ×  and use Eq. A1.39. 
 
Step 4 Calculate Q∑  using Appendix A1.4.  For spherical and cylindrical 

surfaces we have 

where 

Step 5 Calculate RΘ  using  
 

  where 2 2 1 1sin( ) sin( )n nα α= . 
Step 6 Calculate rΘ  using  

,

1 0

10
sph

RQ

R

∑

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (A1.53) 

, ln

1 0

0 0
cyQ R∑

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

�  (A1.54) 

1 2
ln

1 2

ˆ ˆ ˆ ˆ
ˆ ˆˆ ˆcy

u u u u
z u z u
φ φ⋅ ⋅⎡ ⎤

= ⎢ ⎥⋅ ⋅⎣ ⎦
A  (A1.55) 

2cos( ) 0
0 1R
α⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Θ  (A1.56) 
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Step 7 Calculate rQ  using Eq. A1.49 and RQ  using Eq. A1.48. 
 
Step 8 Calculate the radius of curvature of the refracted TPR using Eq. 

A1.51 and reflected TPR using Eq. A1.52.   
 
Step 9 Calculate RDF  and rDF  using Eq. A1.32.   
 
Step 10 Utilize the following equations to calculate the electric field at the 

observation point:   
 

where  and T R  are Fresnel coefficients of parallel and 
perpendicular polarization as in Appendix 1, b and c are  the 
distances from the observation point to point O over the surface  
for the case of refraction and reflection, respectively. And ( )i Ou  is 
the incident field at point O.   

 

A1.4 Calculation of Matrix of Curvature for the Surface [28] 
 
At point of incidence O on surface, the following two vectors  are in the 

plane L of Fig. A1.6 

where ˆ ˆ ˆ( , , ) x y z are evaluated at reference point.  The matrix of curvature QΣ
�  is 

given in terms of the base vectors 1 1( , ) x yr r  by [28][33] 

where 

1cos( ) 0
0 1r
π α−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Θ . (A1.57) 

ˆ( ) ( ) ( )

ˆ( ) ( ) ( )

Rjk b
R R R i

jkc
r r r i

bz DF b T e O

cz DF c R e O

−

−

= × × ×

= × × ×

u u

u u
.

(A1.58) 

1

1

ˆ ˆ
ˆ ˆ

x x

y y

x f z
y f z

= +

= +

r
r

 (A1.59) 

1 1 1 1 1 1 1 1
2

1 1 1 1 1 1 1 1

1 e G f F f E e F
Q

f G g F g E f FΣ
− −⎡ ⎤

= ⎢ ⎥− −Δ ⎣ ⎦
�  (A1.60) 
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and the vector normal n̂  is  

In the equations, ( )respectively  x yf f  is the partial derivative of ( , )f x y  relative 

to ,xx yyf f  and xyf   are the second-order derivatives of ( , )f x y , where 
( , )z f x y=  defines the surface Σ .  The matrix of curvature QΣ  expressed with 

respect to 1 2ˆ ˆ( , )u u  is  

where 

 

 

 

 

( )
1

2 2 21 x yf fΔ = + + +   

2
1 1 xE f= +   

1 x yF f f=   

2
1 1 yG f= +   

1
1

1
1

1
1

xx

xy

yy

e f

f f

g f

−

−

−

= −Δ

= −Δ

= −Δ

 
 

( )1ˆ ˆ ˆ ˆx yn f x f y z= − − +
Δ

 (A1.61) 

1Q A Q A−
Σ Σ= �  (A1.62) 

1 1 1 2

1 1 1 2

ˆ ˆ
ˆ ˆ

x x

y y

u u
A

u u
⋅ ⋅⎡ ⎤

= ⎢ ⎥⋅ ⋅⎣ ⎦

r r
r r

. (A1.63) 
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A1.5 Fresnel Coefficients of Transmission and Reflection  

The direction of the electric field E  is along the axial ray of the TPR and 
perpendicular to k .  In order to find the Fresnel coefficients, we calculate the 
projection of the electric field on the plane of incidence and the plane 
perpendicular to the plane of incidence, apply respective parallel polarization and 
perpendicular polarization, E&  and E⊥ .   Fresnel’s transmission and reflection 
coefficients are given by 

where 

and 2

1

nn
n

=  is the relative refractive index [28].  Then we multiply E⊥  and E&  by 

the coefficients to find the parallel and perpendicular components of the field of 
reflected and refracted rays.  The components are perpendicular to the direction of 
propagation of the ray.  The bases choices for example are the parallel and 
perpendicular components of the incident field, reflected and refracted fields 
defined as    

1 2
1

T
n Y

= ×
+&  (A1.64) 

2
1

T
Y⊥ =

+
 (A1.65) 

1
1

YR R
Y⊥

−
= =

+&  (A1.66) 

2

1

2

1

cos( )1          for parallel polarization          
cos( )
cos( )           for perpendicular polarization
cos( )

n
Y

n

α
α
α
α

⎧
⎪⎪= ⎨
⎪
⎪⎩

 

(A1.67) 
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ˆ ˆ ˆ               
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E x u z u z
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 (A1.68) 

, , 2 , 2

, , , 2

ˆ ˆ               
The refracted field ˆ ˆ ˆ( )        

R R i

R R R i R

E u T E u
E x T E u z

⊥ ⊥ ⊥ ⊥= =⎧
⎨ = = ×⎩ & & & &

E
E

 (A1.69) 

, , 2 , 2

, , , 2

ˆ ˆ               
The reflected field ˆ ˆ ˆ( )         

r r i

r r r i r

E u R E u
E x R E u z

⊥ ⊥ ⊥ ⊥= =⎧
⎨ = = ×⎩ & & & &
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A1.6 Discussion of Advantages and Disadvantages  
 

Geometrical optics (GO) was an asymptotic method established long 
before the advent of Maxwell`s equations based upon the intuitive notion of rays 
that obey the laws of reflection and refraction in accordance with Fermat`s 
principle.  Similar to PO, it is effective in modeling electrically large structures 
for far-field calculations at high frequencies.  The disadvantages of GO is that, in 
contradiction to experimental observations, it predicts vanishing fields in the 
geometrical shadow regions.  The theory of GO is for instance unable to 
reproduce the interference fringes of Young`s double slit experiment.   

The GO ray-tracing method is enhanced by uniform asymptotic diffraction 
theories such as the Geometrical Theory of Diffraction (GTD), Uniform 
Asymptotic Theory (UAT), Uniform Theory of Diffraction (UTD).   GTD was 
introduced to overcome the shortcoming of GO.  It added the contribution of 
diffracted rays, especially those diffracted by the edges, that penetrate in the 
shadow zone.  In common with GO, the phase varies linearly along a ray in GTD 
and power in a tube of rays is conserved.  Employing the postulate that the 
diffracted field carried by a ray depends only on the local properties of the 
incident field and that of the object where it intercepts the ray, we can calculate 
each contribution to the diffraction by replacing the original scatterer with a 
canonical object for which the solution of the diffraction problem is known or can 
be easily solved [31].  The application of GTD is straightforward once the 
diffraction coefficient, which is defined as the ratio of the diffracted and incident 
ray fields, is found.  So in practice, it is only necessary to identify the rays that are 
major contributors to the diffracted field and evaluate the field along each ray 
using GTD diffraction coefficients.   
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APPENDIX 2:  Physical Optics 

 
The scattering of E and H by a convex perfectly conducting scatter is 

formulated as shown in Fig. A2.1 [53].  The scatterer is of simple shape with 
distinguished illuminated and shadow zones.  The physical optics (PO) 
approximation considers the scatterer to be large electrically and the current 
density on the illuminated side is given by  

and zero on the shadow side. 
 
 
 
 
 
 
 

Figure A2.1:   The physical equivalent for scattering from perfect electric 
conductor (PEC) with light-shadow boundary.   

Using the current density Eq. A2.1, the vector potential is given as  

In the far-zone,  

In the direction of u and the scattered field is  

where 

ˆ2 i
S n= ×HJ  (A2.1)  
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−∫ ∫
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The PO approximation shortcomings include that the transition from light to 
shadow is abrupt, while it should be continuous and that the curvature of the 
surface is neglected.  The method fails in the presence of edges and vertices so 
physical theory of diffraction (PTD) was introduced to amend shortcomings [53]. 

 

A2.1 Application to Integrated Lens Antennas 

Rutledge et al. [52] pioneered the use of substrate lens coupled to a planar 
antenna.  Integrated antennas placed on dielectric lens with the same dielectric 
constant as the planar antenna substrate avoid power loss due to substrate modes.  
Dielectric lens come in various shapes such as hemispherical, hyper-
hemispherical  and ellipsoidal and adopted for millimeter-wave and terahertz 
applications from optics [52].  At terahertz frequencies, hyper-hemispherical 
silicon lens antennas are used to couple the terahertz radiation from 
photoconductive antennas to free space.   

Filipovic et al. [30] and [55]-[59] applied geometrical optics/physical 
optics (GO/PO) methods to lens antenna design.  In [30], the radiation patterns of 
a double-slot antenna on a silicon dielectric lens are computed using GO ray-
tracing inside the dielectric lens and PO electric and magnetic field integration on 
the spherical dielectric surface.  The analysis is applicable to planar antenna 
designed on dielectric lens and first decomposes the fields for a given ray into 
parallel/perpendicular components at the lens-air interface.   
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Figure A2.2:  The extended hemispherical lens used for the 

       geometric optics/physical optics technique [30]. 
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The equivalent electric and magnetic current densities [55] are calculated just 
outside the spherical surface using the GO electric field and magnetic fields 

ˆs n= ×J H  and ˆs n= ×M E , where n̂  is the normal to the interface.  The far-field 
transverse electric field is equal to  

where N and L are defined as  

where s′  is the closed surface just outside the lens, r′  is the distance from the 
origin of the coordinate system to the equivalent electric and magnetic currents, r  
is the distance from the origin to the far-field point, and ψ  is the angle between r  
and r′  as in Fig. A2.2. 
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jkrjke
rθ φ θη
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cosjkr
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cosjkr
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APPENDIX 3:  Spectral Ray Tracing 

 

A3.1 Physical Optics and Backward Ray Launching 
 

 The first step in Spectral Ray Tracing (SRT) consists of plane wave 
expansion of known source distribution in free-space.  The SRT solution for free-
space case is derived from electromagnetics reciprocity theorem and is given by  

In step 2, the free space rays travel through various interfaces, where they 
experience reflection, refraction and diffraction[27][28].  The contribution of each 
individual plane wave in Eq. (A3.1) to total field at observation point is found by 
physical optics (PO) and stationary phase method (SPM).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A3.1 The plane wave incident on interface S1. 
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Let us consider one particular plane wave impinging upon an interface S1.  The 
PO sources, due to this incident wave, are placed on this interface generating the 
transmitted and reflected waves.  

where 0 2 0 1
ˆ and = .s s sR ψ ε ε= − − + kG G G G Gir r r r r   Substituting the phase term 

into fast-varying part of the integral in Eq. A2.2 we get 

SPM is applied to PO integral to find the contribution of the aforementioned 
incident plane wave at the observation point.   

where 
1 2

0,
x x
ψ ψ∂ ∂

= =
∂ ∂

 and H is the Hessian of ψ .  After inserting the expansion 

Eq. A3.4 into Eq. A3.3 we obtain [27] [31] 
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 is slowly varying and the SPM expression is in the 

form of ray tube with a ray path identical to what is predicted by GO and Snell’s 
law and divergence factor including radii of curvature of the transmitted QR / 
reflected Qr ray phasefront.  The total field Eq. A3.1 at the observation point is 
therefore expressed below: 
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where ( , )m nT  is the Fresnel transmission coefficient and l = 0 s−r rG G  is the ray path 
length for each ray tube interacting with interface.   

 

A3.2 The Transverse Vectors that Sample the PWS [62] 
 
Four vectors 1,( , ) 2,( , ) 3,( , ) 4,( , ), ,  and m n m n m n m nk k k k  which surround the vector 

,m nk .  The directions of these vectors are  
 

and ,m nk  is from Eq. 2.12. 
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Figure A3.2   The transverse vector components 1,( , ) ,  m nk 2,( , ) ,m nk  3,( , )m nk  

4,( , )and m nk   and the surface differential 2
,( , )t m nd k  covered by the 

vectors in the x yk k -plane.  The transverse component ,( , )t m nk  is placed 

at the center of 2
,( , )t m nd k  [62].   

Transformation of The Rays of PWS due to Reflections and Refractions  
 

For any system, the rays of the PWS undergo multiple refractions and 
reflections before arriving at the point P.  For example,  Fig. A3.3 represents one 
lens with index of refraction n2, enclosed by two surfaces 1Σ  and 2Σ , located 
between the source and the point P in the middle index of refraction n1.  In order 
to find the trajectory of rays of PWS, which would be able to reach the point P 
after leaving the plane z = 0, it is necessary to launch the TPR depending on all 
the directions that leave from point P and follows Snell’s law.  Each TPR is 
composed of four outer rays and one central ray.  Fig. A3.3 shows such one TPR.  
The points 0 1 2 3, , ,P P P P  and 4P  are the points of passage of TPR before arriving at 
point P.  The positions of these points depend on the direction of departure at 
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point P,  and m nφ θ  as in Eq. 2.12.  For this reason we have these five points 

0, , 1, , 2, , 3, ,, , ,m n m n m n m nP P P P and 4, ,m nP .  Once one finds the directions of the four 

vectors using Eq. 3.14  to Eq. 2.17, we calculate 2
,( , )t m nd k  using Eq. 2.13, and the 

field of TPR at point 0, ,m nP  as  

0, ,,2
, 0, , , , , ,( , )ˆ ˆ ˆ( ) { ( ) ( ) ( ) } m nm nj OP

m n m n x m n y m n z m n t m nP E x E y E z d e
→

− ⋅= + + × ×� � � ku k k k k
 

The field propagates in the k direction and arrives at point 1, ,m nP  on the surface 
Σ , and corresponding incident field at point 1, ,m nP  is 

followed by equation for field at point 2, ,m nP   

where 

is the divergence factor.  In order to calculate the radii of curvature 
1, ,1, , 2, ,1, , and R m n R m nR R ,  we find curvature matrix ,1, ,R m nQ  using Eq. A1.48 with  

,1, ,i m nQ  determined by the wavefront of , 1, ,( )i m n m nPu , which is a plane  

Then Eq. A1.51 gives us 1, ,1, , 2, ,1, , and R m n R m nR R .   
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Figure A3.3:   A lens with two surfaces 1∑  and 2Σ  with the source in the xy-
plane and the point of observation P.   

The matrix of curvature of the incident TPR at point P2,m,n , Qi,2,m,n , is found by 
Eq. A1.28 by replacing Q  with ,1, ,R m nQ  and z by 1, , 2, ,m n m nP P

JJJJJJJJJJJG
.  At point 2, ,m nP  we 

have one reflection and the corresponding matrix of curvature of the reflected 
TPR is obtained using Eq. A1.48 and replace iQ  by ,2, ,i m nQ  and QΣ  by 

2 ,2, ,m nQΣ . 

Once the curvature ,2, ,r m nQ  is found, the radius of curvature 1, ,1, , 2, ,1, , and r m n r m nR R  
are found by Eq. A1.52.  The divergence factor at point 3, ,m nP  is 

The incident field at point 3, ,m nP  is obtained by  

2, , 3, ,
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The incident field at point 4, ,m nP  is  

4, ,
, ,4, , 4, , , , 4, ,( ) ( )

R P Pm n
jk

m n R m n m n i m n m nP DF e P
− ⎯⎯⎯⎯⎯→

= × × ×u T u  

And the electric field at point P is  

0, ,,2
, 0, , , , , ,( , )ˆ ˆ ˆ( ) { ( ) ( ) ( ) } m nm nj OP

m n m n x m n y m n z m n t m nP E x E y E z d e
→

− ⋅= + + × ×� � � ku k k k k
 

where , 0, ,( )m n m nPu  is the total electric field in Cartesian coordinates at point 

0, ,m nP . 
 
 

(A3.19) 

(A3.20) 
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