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Abstract

The automatic recognition of human actions in video is of great interest in many applications
such as automated surveillance, content-based video summarization, video search, and indexing.
The problem is challenging due to a wide range of variations among the motion pattern of a given
action such as walking across different subjects and the low variations among similar motions
such as running and jogging.

This thesis has three contributions in a discriminative bottom-up framework to improve the
multi-resolution analysis and classification of the motion patterns in video for better recognition
of human actions.

The first contribution is the introduction of a novel approach for a robust local motion feature
detection in video. To this end, four different multi-resolution temporally causal and asymmetric
filters of log Gaussian, scale-derivative Gaussian, Poisson, and asymmetric sinc are introduced.
The performance of these filters is compared with the widely used multi-resolution Gabor fil-
ter in a common framework for detection of local salient motions. The features obtained from
the asymmetric filtering are more precise and more robust under geometric deformations such
as view change or affine transformations. Moreover, they provide higher classification accuracy
when they are used with a standard bag-of-words representation of actions and a single discrim-
inative classifier. The experimental results show that the asymmetric sinc performs the best. The
Poisson and the scale-derivative Gaussian perform better than log Gaussian and that better than
the symmetric temporal Gabor filter.

The second contribution is the introduction of an efficient action representation. As the
salient features at different spatial and temporal scales characterize different motion information,
a multi-resolution action signature is developed for a more discriminative video representation.

The third contribution is on the classification of different human actions. To this end, an en-
semble of classifiers in a multiple classifier systems (MCS) framework with a parallel topology
is utilized. This framework can fully benefit from the multi-resolution characteristics of the mo-
tion patterns in the human actions. The classification combination concept of the MCS has been
then extended to address two problems in the configuration setting of a recognition framework,
namely the choice of distance metric for comparing the action representations and the size of
the codebook by which an action is represented. This implication of MCS at multiple stages of
the recognition pipeline provides a multi-stage MCS framework which outperforms the existing
methods which use a single classifier.

Based on the experimental results of the local feature detection and the action classification,
the multi-stage MCS framework, which uses the multi-scale features obtained from the temporal
asymmetric sinc filtering, is recommended for the task of human action recognition in video.
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Chapter 1

Introduction

Humans can easily detect and recognize the type of actions performed by individuals in a video.
The automated recognition of human actions such as ”walking”, ”running”, and ”hand waving”
is however a challenge in computer vision. An action is a sequence of movements of the limbs
performed by a single person. Human actions usually have some predictable nature such as
periodicity in walking or running.

Automated human action recognition is important in many video analytic applications such
as activity analysis for automated surveillance, elderly home monitoring, video retrieval, video
summarization, and human-computer interaction. For security applications, for example, au-
tomatic recognition of suspicious activities such as loitering, fighting, abandoning a bag, and
entering into a restricted zone is helpful for security personnel. For a home monitoring appli-
cation, an automatic action recognition system can be utilized in an assistive technology system
purpose to provide feedback on the health condition of the elder by looking at the changes in the
pattern of daily activities or by sending a help signal to the emergency station if the elder falls
on the ground. In the web technology, the popularity of multimedia share environments such as
Youtube and the social networks on the internet demand the search by visual query, indexing,
and video summarization in which the human action recognition and retrieval is a fundamental
task towards semantic description of the video contents.

The difficulty in automating the action recognition task is due to a number of challenges.
There exist high variations in motion patterns across different individuals. That is, different peo-
ple walk differently and even an individual walks differently with different moods. Moreover,
the motion patterns of actions such as running and jogging are similar and hence, their discrim-
ination is difficult. In addition, variations due to camera zooming or shaking, perspective view
change, and illumination changes can cause more challenge to automatically interpret the scene.
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This thesis will describe novel tools for improving computer-aided human action recogni-
tion. The new techniques are proposed for a bottom-up human action recognition system. The
contributions are in three stages of the process: (1) low-level feature extraction, (2) mid-level
action representation, and (3) high-level action classification. First, a new approach for robust
feature extraction in a real-time video is proposed (Chapter 3). This approach is inspired by
the motion perception models from biological vision research. The next contribution is on the
introduction of a multi-resolution action encoding which provides a more discriminative action
representation for better discrimination of similar motions (Chapter 4). The third contribution is
on using a multiple classifier systems to retain the motion characteristic of low-level features all
the way to the classification stage and hence, obtain a higher classification rate (Chapter 5).
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Chapter 2

Background

2.1 Overview of existing methods

Different criteria can be adopted for the categorization of the general motion patterns in video.
According to Polana and Nelson [102], a motion pattern in a video can be from one of three major
categories: (1) Structured motions which include actions or activities such as human walking or
animals flying. These types of motions are temporally periodic and have compact structure, (2)
Isolated events such as opening a door, starting a car, or throwing a ball which are isolated simple
motions with no temporal repetition, and (3) the statistical motions which are temporal (or dy-
namic) textures such as flowing water, smoke, or fluttering leaves. There is a statistical regularity
in these motion patterns but the spatial and temporal extent of the motion is indeterminate.

According to Guerra-Fillho and Aloimonos [42, 43], there exist three different spaces and
correspondingly three different languages to represent an action. (a) The visual space, (b) The
motor space, and (c) The natural language (i.e., linguistic) space. Humans use a visual language
to see and understand actions, use a motor language to produce an action, and use a natural lan-
guage to talk about actions. Motivated from the developments in the natural language processing
and speech processing literature, the authors developed the phonology, morphology and syntax of
these different languages as well as their relationships. In their human activity language (HAL),
an action is represented by the structure of a sentence using four lexical categories of noun, ad-
jective, verb, and adverb. One however should note that the range of actions in the visual space,
for example, might differ from those in the motor or the linguistic space. For example, there
is not a direct visual evidence for a lot of verbs such as ”thinking”, ”feeling”, and ”affording”,
and hence, there is not a one-to-one mapping of the verbs with the visual actions. Moreover,
the definitions might not necessarily be equivalent across these three spaces. This inequivalence
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is much more for the actions compared to the objects for which there exist only two spaces of
visual and linguistic. To give an example, an ”apple” and a ”heart” are close in the visual space
of objects, but they are quite different in the linguistic/semantic space.

In the human action/activity recognition literature [2, 19, 22, 25, 53, 68, 112, 131], however,
there is not a well-defined hierarchy/taxonomy of human activities or a clear definition of human
actions. Different publications used action, activities, or events interchangeably. This thesis uses
a four sub-categories of human motions in video to make them distinguishable from each other
(Fig. 2.1):

1. A local motion event such as moving arms which has a determinate space and time exten-
sion.

2. Atomic actions such as walking or running are performed by a single person and do not
necessarily require a context to be specified.

3. An activity has a context and it describes (a) the interaction of an individual with the
objects in the environment such as swinging a golf club or (b) the interaction of multiple
people with each other such as payment at the cashier desk.

4. A global event such as a marriage or people playing soccer is a large-scale phenomenon.

In a chronological order, a local motion event might span just in a fragment of a second while
a global event such as the soccer game might take an hour or more. This hierarchical of human
motions is just a sample categorization which satisfies the purpose of this thesis. From now on,
the focus will be on atomic actions.

Human action recognition in video can be generalized into two different approaches [3, 104]:
top-down and bottom-up. A top-down approach requires foreground segmentation and explicit
motion modeling for human detection and tracking [4, 16, 17, 53, 92, 94]. In a constrained
environment, a top-down approach works fine if the body parts are quite visible and there is
not significant geometric/photometric variations, background or camera motion, clutter, and oc-
clusion [104]. For processing of videos captured under real-world situations such as Youtube
videos or low quality (e.g., low frame-rate and low-resolution) surveillance videos, a bottom-up
approach [25, 68, 122, 129] is more promising as it does not require explicit video segmentation
and body limb tracking. Bottom-up approaches are thus more universal and attractive for a wider
range of applications. For action recognition, they can be used in a wider scales from near-field
to far-field situations. The focus of this thesis is on the bottom-up approach. In this chapter, we
mainly introduce the components of this approach. Each component is then discussed in detail
in subsequent chapters in which the related literature review is provided.
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Figure 2.1: Hierarchy of human motions. Note that high-level motion patterns such as global
events take longer and context is an important component of their description. The focus of this
thesis is on atomic actions.

2.2 Bottom-up methods

A typical bottom-up approach performs the video analysis task using motion features. Mo-
tion features characterize the variations in the sequence of images. The global motion features
such as motion history image/volumes [23, 128] or histogram of optical flow [17] have not been
demonstrated to be reliable in the presence of occlusion, clutter, and noise [68, 104]. Moreover,
decomposed motion templates require background subtraction to extract the optical flow which
is not a reliable measure in presence of fast foreground motions, camera/background motions,
or occlusion and clutter. In contrast, local motion features which correspond to local events are
more robust under these situations and hence, more attractive for motion analysis. In the video
of an action, for example, the local salient motion features occur when there is a change in the
motion of a body limb [25, 67]. Intuitively, the time when and the location where a body limb
changes its motion direction is a salient local motion event.

Drawing inspiration from the promising performance of local salient spatial features in the
object recognition literature [84], the extraction of spatio-temporal salient features has been of
interest for action recognition [25, 67, 97, 129]. These features are the low-level visual cues
from the sequences of the frames (Fig. 2.2). An intermediate representation of human actions
can thus be obtained by grouping these low-level features into visual words. A statistical mea-
sure such as the frequency of appearance of the features in an action is then the action signature.
This representation of an action in a video is referred to as a global bag-of-words (BOW) rep-
resentation [25, 68]. Using a supervised classification approach, a discriminative classifier such
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Figure 2.2: Different components of a discriminative bag-of-words (BOW) framework for hu-
man action recognition. Chapter 3 explains the salient motion feature extraction (module A).
Chapter 4 explains the action representation using visual words and the action signature (module
B). Chapter 5 describes different classification approaches (module C).

as support vector machine (SVM) can then use the signatures of different actions to learn the
decision boundaries for the classification of different motion patterns. An unsupervised classifi-
cation approach, such as a probabilistic latent semantic analysis (pLSA) [95] can use the BOW
representation of different actions to learn a model for each actions. One might use a structural
pLSA [135] to model the temporal relationship among the features or use a hidden conditional
random fields (HCRF) [124] to learn the hidden body parts. The structural pLSA is a generative
model and differs from a discriminative SVM classifier. In essence, the discriminative classifier
performs directly a maximum likelihood (ML) estimation, while a generative model performs
a maximum a posteriori (MAP) estimation [24]. Fig. 2.2 shows the components of a typical
discriminative BOW framework which is considered as the baseline method for this thesis. One
should note that the design of each component is not independent from the other components and
an overall understanding of the whole recognition framework is necessary before choosing any
specific approaches for each component. More specifically, the choice of action representation
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or classification might require specific features. For example, a dynamic system modeling might
require (spatial) feature detection at each frame, while a global BOW representation of video is
obtained from the spatio-temporal features.

2.2.1 Spatio-temporal salient features

A local motion event occurs in a space-time volume centered at a spatio-temporal key/interest
point. The event is then described using the characteristic appearance and motions of the object
in the local volume. The detection and description of the local space-time volumes are usually
referred to as salient feature extraction [25, 68, 129]. In a recognition task such as action classi-
fication, to address the variability in the spatial size and temporal interval of an action performed
by different people or even an individual, the video events should be detected at multiple spatial
and temporal scales [68, 129].

Most of the existing spatio-temporal salient feature detectors and descriptors are the extension
of their counterparts from a still image. For feature detection, for example, Laptev et al. [67, 80]
extended the 2D Harris corner detector [12] to video to detect where and when the sub-actions
start and stop (Fig. 2.3). Willems et al. [129] extended 2D Hessian blob detection to 3D to detect
3D ellipsoid-like shapes in a video. The information theoretic salient feature of Kadir et al. [51]
has been extended to time domain in [97] for a sparse representation of the video content. Dollar
et al. [25] proposed ”cuboids” which occur at the salient motion points in the video. For feature
description, for example, Scovanner et al. [111] extended the descriptor of a 2D scale-invariant
feature transform (SIFT [84]) to video. This 3D SIFT descriptor is the histogram of oriented
gradients (HOG) in space and time. To compute this histogram, the local volume of the salient
feature is divided into 4×4 non-overlapped sub-windows. The spatio-temporal oriented gradients
of all sub-windows are then sorted in order to provide the final 3D SIFT histogram of the feature.
The overlapped sub-windows version of this histogram is referred to as a 3D HOG [57] which
is the extension of its counterpart from a still image, a 2D HOG [22]. A combination of HOG
and HOF (histogram of optical flow) [68] is also used to describe the characteristic appearance
and motion information in the feature’s volumetric extension. In [68], the extension of local jets
(i.e., steerable nth-order gradients) to the video domain is used to describe the characteristics of
a salient feature. The Haar wavelet coefficients are the descriptor used for 2D SURF (speed-up
robust features) [9] and has been extended to the video in [129].

A comparative study of some of these spatio-temporal feature detectors and descriptors and
a method for dense sampling of features has been published by Wang et al. [122] for human
action classification. Without any motion analysis, dense sampling considers the salient features
to be at the nodes of a regular grid with a given spatio-temporal resolution. The dense sampling
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Figure 2.3: The input is a video of a person performing a ”boxing” action. As depicted in [68],
a 3D Harris method detects the local space-time volumes (filled dark ellipsoids) in the video in
which the sub-actions start or stop.

method did not perform better than the salient features on the recognition of atomic actions.
However, in the dense sampling approach, some of the features are from the moving background
by which some contextual information on where the actions are happening is encoded. This is
believed to be a possible explanation why dense sampling performed better for the recognition
of actions such as sports actions in which the context is a significant clue. The authors then
concluded that the dense sampling method performs better on the real world videos, but not on
simple videos. There are two critiques on the experimental setting of this paper which make
the final conclusion of this study not valid. The most serious problem is that the number of
scales at which the salient features have been detected varies from one feature to another. More
specifically, the cuboids have been detected at just one spatio-temporal scale, the 3D Harris
corners at twelve spatio-temporal scales (six spatial and two temporal scales), and the 3D Hessian

8



features and the dense sampling have also been detected at multiple scales. The performance of
the cuboids is very much close to that of other multi-scale features or dense sampling. With
this consideration in mind, it is expected that the multi-scale cuboids should perform better than
the other feature detectors. The second critique is that the action classification accuracy is just
one measure on the performance evaluation of the feature detectors. More fundamental measures
such as the precision and the reproducibility under different geometric variations is a requirement
for robustness evaluation of feature detectors. In addition to these experimental critiques, as we
will show in this thesis (Section 3.7.4), using a proper temporal asymmetric filtering, one can
detect salient features which perform better than dense sampling not only on simple datasets
such as KTH, but also on real-world dataset such as UCF sports action dataset [107]. These
results contradict the generalization that has been made in [122]. In fact, our finding shows
that one can obtain high accuracy using a set of sparse salient features detected using a proper
temporal filter such as asymmetric sinc (Section 3.3.2).

2.2.2 Action representation

Video salient features of a unique action performed by different people or the same person might
vary due to appearance and motion difference. To reduce some of these intra-class variations and
provide a more robust matching at the later stage of action recognition, similar salient features
are grouped in a similar cluster. The collection of these clusters for all action types provides a
dictionary (or a code book) of action prototypes, referred to as visual words [68]. During training,
the system learns the dictionary of the visual words by which an action can then be represented.
A typical and simple representation of an action is the global BOW representation. Instead of a
global BOW representation, one might directly feed the set of features of a video to a classifier
for matching [68]. The BOW representation originated from natural language processing for
document classification [60] and has been widely used for visual recognition systems as well [83,
68]. The global BOW is an orderless representation as it does not consider any spatial or temporal
relationship among the salient features in the action modeling. To incorporate some spatial and
temporal localization of the features, Marszalek et al. [88] proposed to consider several channels
of BOW representation localized at different spatio-temporal extents of the video. The set of
channels that jointly provides a better discrimination of actions in the training is then considered
to be used as the final multi-channel classification at the testing stage.

2.2.3 Action classification

The support vector machine (SVM) classifier has been widely used for the classification of hu-
man action using a discriminative bottom-up approach [25, 68, 122]. Most of these recognition
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frameworks use a single SVM classifier for discrimination of motion patterns. The standard ap-
proach for performing a multi-class classification problem is considered to be the one-against-all
approach [21, 119]. With the promising performance of multi-channel action representation [88]
versus the single global BOW representation, Weinland et al. [127] developed a more dense sam-
pling of these channels to better handle the partial occlusions and the view changes. In this exten-
sion, the collection of bounding boxes around the person of interest (i.e., the foreground volume)
is first obtained. The foreground volume is then divided into densely distributed overlapping
sub-volumes to each of which a separate SVM classifier is assigned. In an adaptive weighting
approach, the sub-volume which is occluded contributes less in the final decision making.

2.2.4 Limitations of the existing bottom-up methods

A typical bottom-up discriminative action recognition is a serial multi-stage process in which
the performance of each stage is affected by the previous stage(s). More specifically, the low
level features that feed into a bottom-up framework play a significant role in an appropriate
representation of different actions and finally in the recognition performance. An appropriate
discriminative representation of different actions should definitely help the classifier to provide
a better estimation of the class label.

Generally speaking, video analysis methods are an extension of their counterparts in image
analysis. The solutions to many problems in the video action recognition task have been sig-
nificantly inspired by similar approaches in the image object recognition task. Establishment of
a new video analysis approach on a well-studied method of object recognition is an advantage.
However, one should note that the time domain is different from the spatial domain [77]. The
limitations of the existing discriminative bottom-up approaches for the action recognition are
explained according to the major components of such a framework (Fig. 2.2) as follows.

1. Feature extraction. The extraction of features which are discriminative and robust is a
crucial step for the task of action classification. To this end, the detection of foreground
salient features which are reproducible under geometric/photometric variations is the first
step. The features should also capture the characteristics of the motions of interest, such
as local periodicity in walking or running. The literature of spatio-temporal salient fea-
ture extraction suffers from a similar comprehensive study as in the case of spatial salient
features [90, 89] to evaluate the robustness of the features. Moreover, the existing methods
consider the 2D+t video signal as a 3D object and hence, they apply similar spatial filters
to the temporal domain. Considering the nature of time and motion which are different
from the space and the shape structures, this treatment might not be valid.
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2. Action representation. Despite the extraction of salient motion features at different spatial
and temporal scales, existing methods do not explicitly benefit from the motion informa-
tion across different scales. For example, in the BOW representation, either the motion
redundancy across different spatio-temporal scales is removed when the scale-invariant
features [67, 68, 70, 129] are used or it is implicit in the representation when the features
of all scales are blindly combined [122]. A possible source of confusion of actions such as
running and jogging with relatively similar motion patterns might be due to the fact that the
motion characteristic of the feature is buried in the action representation. In fact, consid-
ering the high intra-class variations and the low inter-class variations of human motions, a
multi-resolution analysis of actions should be a requirement. A multi-resolution approach
can represent the salient motion features at different scales. The hypothesis is that the
multi-resolution representation explicitly benefits from the full range of motion character-
istics which exist across scales. It should thus provide an over-complete representation
with a potentially better discrimination power.

3. Action classification. Most of the existing discriminative approaches use a single SVM
classifier for the action discrimination [68, 129, 122, 112]. In these methods, the multi-
scale salient features are combined at the early stage of the process. This treatment dose not
retain the multi-resolution characteristics of the motion patterns and hence, the classifier
dose not have access to this explanatory information. Note that the average motion pattern
of ”jogging” and ”running” are quite similar and hence, their coarse-scale motion features
are probably similar. However, the fine-scale motion features of these actions should be
different. One possible explanation on the low performance of most of existing methods is
that they feed mixture of all of these features into a classifier, directly. The classifier can
not use the discrimination power of the features at different scales.

2.3 Problem statement

The objective of this thesis is to develop a robust algorithm to recognize human actions in video.
For conciseness, the focus is on a scenario in which single person performs an atomic action.
The type of actions of interest varies from moving a body limb such as a ”hand waving” to whole
body movements such as ”walking”, ”running”, and ”diving”. As a bottom-up discriminative ap-
proach does not perform the difficult task of video segmentation, the human action recognition
is formulated as a classification problem. In this context, action recognition refers to the label-
ing of an unknown action with a set of predefined classes. There are three main requirements
that should be considered in the design of such a system. The low-level salient feature extrac-
tion method should provide robust and good quality features for motion encoding. The action
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representation and classification method should address the high intra-class variations within a
unique action type and the low inter-class variations among different actions with similar motion
patterns. Moreover, the system should not require explicit parameter settings at different stages
of the recognition framework such as the choice of similarity metric by the classifier for the
comparison of the representation of two videos.

2.4 Thesis contributions

This thesis introduces a biologically-inspired approach for robust local motion event detection
and a multi-resolution analysis approach to improve action recognition accuracy. These con-
tributions are briefly listed here to justify new approaches to address the problems of a typical
existing discriminative bottom-up action recognition framework.

2.4.1 Robust salient feature extraction

Existing methods of salient spatio-temporal feature extraction treat the time domain in the same
manner as the spatial component and use a 3D filtering on the 2D+t video signal. Time causality
is a significant characteristic which makes the time domain different from the non-causal spatial
domain. Despite the theoretical discussion of time-causal multi-resolution video filtering in the
literature of scale-space theory [59, 81, 30, 115], these developments have not been used by the
action recognition community. Causal and asymmetric filtering is consistent with the function-
ality of the motion receptive fields in the human visual systems [1, 35, 115, 125]. This thesis
promotes the use of asymmetric temporal filtering for robust motion feature detection. The hy-
pothesis is that the consistency of asymmetric filtering with biological vision should provide a
better motion representation and hence, a better local motion event detection.

This thesis adopts three existing time-causal multi-resolution filters for the salient feature
detection task. In addition, a brand new asymmetric video filtering is developed. To this end,
the classical model of Perona-Malik [100] for anisotropic diffusion filtering in a still image is
extended to the time domain with the causality of time as the boundary constraint. The resulting
kernel is an asymmetric sinc for the time-causal domain.

A comprehensive set of experiments to test the precision of the detected salient features
and their reproducibility under different geometric variations such as affine transformation and
view/scale changes have been performed. The results show that the salient features detected
using an asymmetric temporal filtering are more robust than those detected using the widely used
symmetric Gabor filtering. Moreover, these features provide higher action classification accuracy
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in a standard BOW recognition framework. Based on these results, the use of an asymmetric sinc
filtering is recommended for local salient motion feature detection in video.

2.4.2 Action modeling using multi-resolution BOW representation

Most of the existing bottom-up approaches do not characterize the multi-resolution nature of
human motions in the action representation. This thesis promotes the use of multi-resolution
action representation in which the motion information across multi-scale salient features are
retained for a better action representation. The hypothesis is that since this representation fully
benefits from the motion redundancy across scales of different features, it should provide more
discriminative action encoding. In this setting, the action signatures of the features at different
spatio-temporal scales are concatenated in order to obtain a multi-resolution action signature.
This way the fusion of multi-resolution motions from the low-level of features is moved to the
intermediate level of action representation. The experimental results on the discrimination of
human actions shows that this approach provides a more discriminative representation of similar
motions such as ”running” and ”jogging” and hence, it improves the classification accuracy.

2.4.3 Action classification using multiple classifier systems

Existing discriminative human action recognition approaches typically use a single classifier on
the multi-scale salient features. This thesis introduces the multiple classifier systems (MCS) as
an alternative classification approach. The MCS shifts the fusion of multi-resolution motion in-
formation across multi-scale salient features to the last stage of classification. This retainment
of the motion information at the higher level of classification should empower the MCS to more
easily discriminate similar actions. In this setting, a separate classifier with the features of each
scale is used. Consequently, the MCS benefits from the estimation of several classifiers to pro-
vide a more reliable decision. The experimental results show that an MCS framework provides
higher classification accuracy. Moreover, this thesis introduces a multi-stage MCS framework to
address the problem of the choice of distance metric and the choice of the length of the dictio-
nary of the visual words over which different actions are defined. Consequently, this multi-stage
MCS framework is recommended as a robust multi-resolution analysis for the human action
classification.
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2.5 Structure of the thesis

Based on the contributions of this thesis on the three main components of a discriminative
bottom-up action recognition, the next three chapters will focus on these components. Chap-
ter 3 explains in more details the limitations of existing approaches in salient feature extraction
in video. Later in the same chapter, the use of asymmetric temporal filtering versus symmetric
temporal filtering is promoted. A comprehensive set of experiments are presented on the validity
of this hypothesis that the asymmetric filtering provides more robust and informative features.
Chapter 4 presents the importance of an explicit multi-resolution analysis for the action represen-
tation. It will be shown how a simple independent treatment of the motion features can provide
a more discriminative action representation. Chapter 5 introduces the use of MCS for better
estimation of action types using a combined classification approach. The MCS is then utilized
at multiple stages of the recognition framework to address the choice of dictionary length and
the choice of action similarity matching. This simple idea is a significant jump towards a sys-
tems that is less sensitive to the parameter tuning. In fact, a unified framework in Chapter 6 is
presented which benefits from all the improvements that have been made in the previous sections.
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Chapter 3

Spatio-temporal salient feature extraction

The focus of this chapter is on salient feature extraction. In general, spatio-temporal salient fea-
tures capture the important changes in the scene [67, 98]. Salient feature extraction is the first
low-level process (module A in Fig. 2.2) in a standard BOW representation for discriminative ac-
tion recognition. The performance of the subsequent operations is therefore related to the quality
of these features. The detection of features which are robust under geometric or photometric
variations is therefore crucial. Moreover, the features should be informative in terms of encoding
relevant information about the motions of interest.

In this chapter, we break down the salient feature extraction into feature detection (Sec-
tion 3.1.1) and feature description (Section 3.1.2). The main contribution of this chapter is the
introduction of an improved temporal filtering approach for local motion detection from which
more robust to geometric deformations and more informative (i.e., leading to better classifica-
tion results) local salient features are detected in a video. Moreover, a data-driven measure for
removing weak features is introduced which replaces the hard thresholding measures.

3.1 Literature review

A salient feature should be distinct in both space and time. For example, a corner is distinct
in space as it has high derivative value in both horizontal and vertical direction. The change
in motion direction (i.e., high temporal derivative) makes a point distinct in time. Moreover,
a robust salient feature should be re-detected under geometric deformations such as view/scale
changes or affine transformation [68, 90]. Salient features such as the start/stop of an action
in a video [67] (Fig. 2.3) are examples of such low level visual cues which are widely used
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for a compact representation of human motions in a video. A salient feature extraction method
consists of feature detection and feature description. The detection component localizes where
the salient feature occurs in the video. The description characterizes the appearance and motion
information of the feature. The descriptor is chiefly used for the correspondence (e.g., in object
recognition [84, 89]) and it is useful for action recognition correspondence as well [68]. To
account for the variations in temporal duration and frequency of a unique action performed by
different subjects, salient features should be detected at different spatial and temporal scales.

3.1.1 Multi-scale salient feature detection

A multi-scale salient feature detector performs three main steps: (1) spatio-temporal multi-
resolution representation of the video signal, (2) saliency map construction, and (3) non-maxima
suppression. At a given scale, the local maxima in a spatio-temporal local volume of the saliency
determines where a salient feature occurs in space and time. Depending on the type of the
feature of interest, existing detectors incorporate different saliency structural or motion maps
(Section 3.4). Most of the spatio-temporal feature detectors are the extension of their spatial
salient feature detector and hence, they are looking for salient structures in a video. A 3D Harris
corner detector [67], 3D Hessian ellipsoid detector [129], 3D SIFT [6, 34] are examples of the
type of features which are directly obtained by extending their 2D counterparts. The saliency
map of these feature detectors can thus be referred as ”structured-based saliency map”. As the
main characteristic of the video signal is the motion, Dollar et al. [25] proposed temporal Gabor
filtering to detect ”cuboids” which occur at locations with salient motion energy (Fig. 3.1). From
this perspective, the cuboids detector is an example that uses a ”motion-based saliency map” to
detect the local spatio-temporal salient features in a video. In the rest of this section, we briefly
review some of these feature detectors.

Laptev et al. [68] extended the Harris corner detection from a still image to a video signal
to localize moving structures at their moments of non-constant motion. To this end, the original
video signal u(x, y, t) is scaled using a spatial Gaussian Gσ and a temporal Gaussian kernel Gτ

using the convolution operation L = Gσ ∗ Gτ ∗ u. The autocorrelation matrix A = dLT × dL
is then computed from the spatio-temporal derivative vector dL = [Lx Ly Lt]

T . To compute
the second-order approximation for the local distribution of gradients within a spatio-temporal
neighborhood, matrix A is integrated within a spatio-temporal Gaussian window.

M = G2σ ∗G2τ ∗ A = G2σ ∗G2τ ∗

 L2
x LxLy LxLt

LyLx L2
y LyLt

LtLx LtLy L2
t

 (3.1)
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Figure 3.1: Typical ”cuboids” features [25] occur when there is a significant motion energy at a
point in space and time. The cuboids are then overlapping local space-time volumes in the video.

Using the eigenvalues λ1, λ2, λ3 of the Harris matrix M , one can compute the spatio-temporal
corner map C in which pixels with high level of cornerness are magnified and the rest are sup-
pressed (α = 0.005).

C = det(M)− α(trace3(M)) = λ1λ2λ3 − α(λ1 + λ2 + λ3)
3 (3.2)

Another example of extending a 2D salient feature detector to video is the 3D ellipsoid detector.
Willems et al. [129] used the trace of a 3D Hessian matrix H of a video signal (3.3) as a saliency
map to find where salient features occur. Points with the highest level of saliency in their spatio-
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temporal neighborhood are selected as the center of the salient ellipsoids.

H =

 Lxx Lxy Lxt
Lyx Lyy Lyt
Ltx Lty Ltt

 (3.3)

A widely used example of motion-based salient features is the cuboids [25] which occur at points
with salient motion energy. To this end, the video signal is first smoothed with a Gaussian
filter with standard deviation of σ. The smoothed video is then filtered with a Gabor filter with
quadrature pair of even Keven

τ and odd Kodd
τ at the temporal scale of τ . The energy of the filtered

video R(x, y, t;σ, τ) = (Gσ ?q
even
τ ?u)2 +(Gσ ?q

odd
τ ?u)2 is the motion saliency map. Searching

in a local spatio-temporal window (x, y, t) of the motion map provides the local maxima which
identifies the location of the salient features in the video.

3.1.2 Feature description

A feature descriptor characterizes a salient feature using the neighbor pixels in its scale extension.
As the descriptor is chiefly used for the correspondence, it should be informative, distinctive, and
robust to illumination changes, noise, and rotation [89]. There are several spatio-temporal fea-
ture descriptors for encoding the shape and motion information. Descriptors carry the shape
and motion changes of the salient features in their spatio-temporal extensions. For example,
the Histogram of Optical Flow (HOF) [73] gives the motion change, the Histogram of Oriented
Gradient (HOG) [22] provides the spatial appearance changes, local jets (nth-order derivative)
encode different spatial and temporal gradients around the feature points [50], and the trajectory
of features provides the temporal pattern of movement [98]. Laptev and Lindeberg [68, 69] com-
pared different feature descriptors and their combinations. They concluded that an appropriate
feature descriptor should carry both shape and temporal information. Scovanner [111] extended
the spatial SIFT descriptor to video and showed that the 3D SIFT descriptor as a spatio-temporal
histogram of oriented gradients outperforms the stack of just the spatial histograms or just the
temporal histograms. In this section, we explain the 3D SIFT descriptor as it has been shown to
be more effective relative to the other descriptors [111, 122].

The 3D SIFT descriptor encodes the shape and motion using the spatial and temporal orien-
tated gradients. A 3D volume of the salient feature is partitioned into 4 × 4 × 4 sub-windows.
The orientation of the spatio-temporal gradients is utilized to compute the histogram of each
sub-window. The histogram of sub-windows are then concatenated. To reduce the effect of illu-
mination change, the contribution of each orientation in the histogram is weighted by its magni-
tude. Moreover, the orientations are aligned by the dominant spatial and temporal orientations.
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A similar approach has been used in the 3D Histogram of Oriented Gradient (3D HOG [57]) with
overlapping sub-windows.

For simplicity in presentation, Fig. 3.2 shows the division of spatio-temporal window into
2 × 2 × 2 instead of 4 × 4 × 4 sub-windows in the actual implementation by Scovanner et
al. [111]. Each pixel has a magnitude m3D and two spatial and temporal orientations (θ, φ). Any
pixel (x′, y′, t′) in spatio-temporal window around the center point (x, y, t) weighs the histogram
by its 3D magnitude of gradient (m3D) and a Gaussian kernel centered in the feature position
(3.7). The peak of the histogram gives the dominant orientations (θmax, φmax). For rotation
invariancy, the orientation of each pixel is deducted from the dominant orientation before ap-
plying its contribution in the histogram. A more precise version of this descriptor which more
accurately computes the 3D orientations has been introduced in [6, 34].

m3D(x, y, t) =
√
u2x + u2y + u2t , (3.4)

θ(x, y, t) = arctan (uy/ux), (3.5)

φ(x, y, t) = arctan (ut/
√
u2x + u2y) (3.6)

hist(iθ, iφ) = m3D(x′, y′, t′)e
−((x−x′)2+(y−y′)2+(t−t′)2)

2σ2 (3.7)

In the next section, we explain different processes required for feature detection in more
detail.

3.2 Salient motion feature detection

Salient motion features such as cuboids have shown better performance compared to structured-
based features such as 3D corners for action representation [25, 82, 95, 122]. From now on, the
focus in this thesis will be on the components of this motion feature detector that can be used
as a baseline. Fig. 3.3 shows the operations required for local salient motion feature detection.
In this framework, more specifically, we focus on the multi-resolution temporal filtering from
which the motion saliency map is constructed. The existing methods are limited to performing
a symmetric non-causal 3D video filtering, while we promote the use of asymmetric and causal
temporal filtering for better feature detection. Asymmetric temporal filtering is consistent with
the physiology and functionality of the visual receptive fields [35, 115]. In the following sections,
we explain different modules of a local motion feature detector, namely the scale-space video
filtering in Section 3.3, the saliency map in Section 3.4, and the non-maxima suppression in
Section 3.5.
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Figure 3.2: 3D SIFT descriptor computation [111]. The spatio-temporal volumetric extension
of the features is divided into 4 × 4 × 4 sub-windows. For simplicity, this figure shows the
2 × 2 × 2 sub-windows. A histogram of the spatio-temporal oriented gradients for each sub-
window is computed. The histograms are then concatenated in order to construct the final 3D
SIFT descriptor.

3.3 Scale-space video filtering

Scale-space theory provides a multi-resolution representation of a signal to detect features at
different sizes, from the pixel level to the semantic level [126]. The Gaussian kernel is the
standard choice for linear scale-space construction for a still image [8]. In this construction, the
structures of the image are more smoothed with the increase in the scale size. In this context,
scale refers to the window through which the signal is observed (e.g., the standard deviation of
the Gaussian kernel). Gaussian smoothing is consistent with the functionality of the human’s
early vision system for a spatial multi-resolution representation [75, 76, 77, 130].

A scale-space representation of a video signal can be obtained using linearly separable spatial
and temporal scale-space filtering. In the literature of spatio-temporal salient feature detection,
the norm is to use 2-D Gaussian filters [84, 90] with different standard deviations in the spatial
directions. Temporally, a variety of approaches have been used. For example, for 1-D temporal
filtering, Laptev et al. [68] used a Gaussian, Willems et al. [129] used a Gaussian approximation,
and Dollar et al. [25] used a Gabor filter. These temporal filters are all non-causal and symmet-
ric. However, biological vision has demonstrated that a motion perception model with causal
and asymmetric temporal filtering [1, 35, 109, 115, 125] is more consistent with the electrophys-
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Figure 3.3: Salient motion feature detection procedure. The input to the system is a video and
the output is a set of local salient motion features. A typical detector filters the video signal
u(x, y, t) by a spatial Gaussian filter G(x, y;σ) and quadrature pair temporal filters. The local
maxima in the spatio-temporal energy mapR represent local salient features. Section 3.3 focuses
on different temporal scale-space filters (solid red box).

iological data of the visual sensitivity to motion and the physiology of the LGN cell and the
cortical V1 simple cell receptive fields [115]. Asymmetric temporal kernels has been proven to
be more efficient than a symmetric kernel for video segmentation as well [123]. In scale-space
theory of computer vision, also, several time-causal scale-space kernels have been theoretically
developed [30, 59, 81, 115], but have not yet been utilized by the action recognition community.

To clarify the terminology, from now on, filtering is referred to as the operation in which
the signal is convolved with a kernel. In this context, the kernel is a weighting function with
different compact supports. In the following sections, we first explain the spatial Gaussian scale-
space theory and then, we introduce both non-causal symmetric and asymmetric causal temporal
kernels. We argue that even if the delay of a symmetric filtering is not an issue, the question of
proper temporal filtering and the choice between asymmetric versus symmetric filtering should
be investigated. We hypothesize that due to consistency with the human visual system, the asym-
metric causal filters should capture more relevant features for the representation of human actions
in video and, and hence, provide better video filtering for salient feature detection. Our experi-
ments in Section 3.7 support this hypothesis.
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3.3.1 Spatial scale-space filtering

A physical process that can explain scale-space filtering is a diffusion equation (3.8) with a
(time-like) scale variable s and a diffusivity g (in general, g can be a tensor [126]). The diffusion
equation is obtained from the continuity equation stating that evolution of the image throughout
the scales is due to the divergence of the gradient’s concentration (∇u). With a constant diffu-
sivity, the laplacian of the image (∆u) provides a linear diffusion equation. In fact, the linear
smoothing (3.9) of an image u0(x, y) at different scales s can be obtained by its convolution (∗)
with a Gaussian kernel (3.10) with varying standard deviations σs =

√
2s (the pixel location is

denoted by (x, y)).

∂u/∂s = div(g.∇u) = g∆u (3.8)

u(x, y; s) = (Gσs ∗ u0)(x, y) (3.9)

Gσs(x, y) =
1

2πσ2
s

e
−x

2+y2

2σ2s (3.10)

In addition to physical diffusion-based construction of spatial scale-space, Gaussian scale-
space has also been extracted using an axiomatic approach [77]. These axioms require the
continuity of the scale-space representation, its positiveness, translation invariancy, and scal-
ing covariance. Moreover, the local maxima (zero-crossing) should not be created as the scale
increases [126]. This constraint of Gaussian scale-space representation assures a unique corre-
spondence between the structures in the higher scales to the finer scales.

Duits et al. [27, 28] followed the axiomatic approach of the spatial scale-space theory and
showed that the Poisson scale-space is an alternative to the Gaussian scale-space theory. In fact,
Poisson and Gaussian scale-spaces are related by an intermediate representation of the fractional
power of (minus) the spatial Laplacian operator (3.11). The free parameter α in this represen-
tation examines the nature of the distribution that a particle undergoes to redistribute its energy
with its neighbors. In the case of α = 1, the Gaussian scale-space and in the case of α = 1/2,
the Poisson scale-space can be derived (note that for the simplicity, here the conduction g is
normalized to one).

∂u/∂s = −(−∆)αu (3.11)

Felsberg et al. [31, 32] developed the (complex) monogenic scale-space in which the real
part contains the Poisson scale-space and the imaginary part is the flow of the image. Gilboa
et al. [39] was inspired from the fusion of (imaginary-valued) Schrodinger’s equation of a free
particle with a (real-valued) diffusion equation to provide another type of complex scale space.
In this case, a complex-valued conductivity resulted in the presence of Gaussian scale-space in
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the real part and a (scaled) Laplacian of Gaussian in the imaginary part. In a more general case,
the Laplacian Beltrami operator can better capture the variations on the manifold and hence it is
useful for structure preserving multi-resolution filtering and color image processing [55, 54, 26].

In the literature of salient feature detection in a still image or in a video, the Gaussian scale-
space filtering has been widely used [68, 77, 84, 129]. The other above-mentioned scale-space
filters found their application for image enhancement or denoising in which a non-linear and
an anisotropic diffusion filtering is performed [126]. As we are interested in the detection of
local motion features for which proper temporal filtering is crucial, we restrict ourself to use
the Gaussian filtering for spatial scale-scale filtering and focus on the choice of proper temporal
scale-space filtering. One research direction is to evaluate the performance of other spatial scale-
space filtering for the feature detection which is beyond the scope of this thesis.

3.3.2 Temporal scale-space filtering

For the temporal filtering of a video signal, one can use a non-causal symmetric or a causal
asymmetric kernel. In this section, we review existing non-causal kernels and three asymmetric
causal kernels from scale-space literature for salient feature detection. We then develop a brand
new asymmetric time-causal filtering using circuit theory. The objective is then to examine the
role of causality and asymmetry in temporal filtering of a video for salient feature detection.
We hypothesize that due to consistency with the human visual system, the asymmetric causal
filters should capture more relevant features for the representation of human motions in video
and hence, provide better video filtering for salient feature detection.

We highlight three research questions regarding the role of causality and symmetry of the
temporal filtering in key point detection and action classification in video.

1. How does the symmetry/asymmetry of the temporal filter affect the performance of salient
feature detection? What is the role of the causality of the temporal filter in salient feature
detection? Precision tests are performed in Section 3.7.2 to answer these questions.

2. How is the quality of salient features using different temporal filters affected by geometric
changes? This question is addressed using reproducibility tests in Section 3.7.3.

3. How successful are salient features generated using different temporal filters for action
classification? This research question is examined in Section 3.7.4.
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Symmetric non-causal kernels

The isotropic diffusion for temporal smoothing of a video requires access to both past and future
frames. Similar to the spatial domain, the temporal scale-space is obtained by convolving the
signal with a temporal Gaussian kernel (3.12) with a scale of τ .

Gτ (t) =
1√
2πτ

e−
t2

2τ2 (3.12)

Laptev et al. [70] and Willems et al. [129] used this Gaussian filtering to extract spatio-temporal
Harris and Hessian features at multiple scales. Dollar et al. [25] used a temporal Gabor filter to
capture motions at a given frequency. In the frequency domain, the Gabor filter is the shifted
version of a Gaussian to a central frequency w0 and hence, it is a band-pass filter. The shift in
the frequency domain is obtained by multiplying the temporal Gaussian kernel with a complex
function e−jw0t resulting in a symmetric even and odd kernels.

Geven
τ (t) = cos(ω0t)e

− t2

2τ2 (3.13)

Godd
τ (t) = sin(ω0t)e

− t2

2τ2 (3.14)

Logarithmic Gaussian kernel

To address time causality, Koenderink [59] and then Romeny et al. [115] mapped the time domain
to the natural logarithmic domain. The causal interpretation of the time axis is thus obtained by
sampling the time in a logarithmic fashion. In this case, the half-line from the past time t to
the current time t0 is mapped to a line by logarithmic transformation. Prior to the logarithmic
mapping, the time difference (t0 − t) is normalized by the time scale τ to make a dimensionless
variable µ (3.15). The Gaussian kernel is then applied in the new logarithmic domain (3.16).
Note that due to inversion of the time direction in the convolution, a time-causal filter is actually
applied to the past frames, and hence, there is no need to introduce a delay.

µ = ln (
t0 − t
τ

) (3.15)

GL
τ (t, t0) =

1√
2πτ

e
−µ2

2τ2 (3.16)
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Poisson kernel

Lindeberg and Fagerstrom [81] developed a 2D+t scale-space theory with causal time. The
spatial kernel is a Gaussian, but for the time domain, the Poisson kernel (3.17) is suggested as
the canonical temporal scale-space of a causal discrete signal. The Poisson kernel is obtained
from the cascade of ”n” truncated exponentials. The mean and variance of the Poisson kernel are
equal to λ = τ and n denotes discrete time. Note that the shape of the Poisson kernel varies by
changing the temporal scale and hence, the Poisson is not scale covariant. This can be interpreted
as non-stationarity of the kernel in the scale direction.

Pλ(n) =
λne−λ

n!
(3.17)

In biological vision, Fourtes et al. [35] modeled the functionality of an axon in the Limulus
visual system using a Poisson kernel. The derivative of Poisson kernel has been utilized to fit
with the data representing the temporal contrast sensitivity of the human visual system [125] and
to compute the well-received opponent-based motion perception model [1].

Scale-derivative Gaussian kernel

Lindeberg [78] and Fagerstrom [29] extended the axioms of spatial scale-space theory to the
spatio-temporal domain. They removed the symmetry requirement for the time domain, added a
time causality constraint, and kept the other axioms of spatial scale-space theory (i.e., continuity,
positivity, non-enhancement of local maxima, translation invariance, and scaling covariance).
Fagerstrom [30] then developed a closed-form solution by considering a convenient value for a
free parameter α which determines the kernel shape. He then argued that in temporal smoothing,
one should use the temporal memory (scale-space) rather than the actual past frames. For the
choice of α = 1/2, the signaling equation (3.18) as a dual evolution equation for the time-causal
diffusion is obtained. The local generator for time-causal scale-space on this new space results
in a kernel (3.19) which is proportional to the scale-derivative of a Gaussian kernel.

∂u

∂t
=
∂2u

∂τ 2
, lim

τ−→0
u(t, τ) = u(t) , u(0, τ) = 0 (3.18)

GD
τ (t) =

τ e
−τ2
4t

√
4π t3/2

= −2∂τGt(τ) , t > 0 (3.19)

25



In contrast to the Poison kernel which is not scale covariant and the log Gaussian kernel which
uses the logarithmic time domain (i.e., it is inhomogeneous), the scale-derivative Gaussian uses
linear time domain and it is scale covariant.

Asymmetric sinc

We model the scale-space filtering of a 2D+t video signal using circuit theory [35, 41, 38], but
considering the time causality. To this end, the circuit representation of an image is extended
to a time-causal video signal from which we derive the corresponding spatio-temporal diffusion
equation. This formulation gives a brand new asymmetric multi-resolution kernel for time-causal
video filtering. The circuit representation has been already used for modeling biological systems
and the filter design in image processing. In biological vision literature, Fourtes [35] modeled
the functionality of an axon in the Limulus’s visual system by its segmentation into several
stages. Each stage is then modeled as anRC circuit connected to the next stage by an amplifying
or isolating unit. In terms of the electrical analogue, they conclude that there are about ten
stages of low-pass filters. In image processing, Grady [41] used the circuit analogy to derive the
equation of random walk for image segmentation. Perona and Malik [100] provided a circuit
representation for implementation of an anisotropic diffusion on a still image.

In our filter design, a digital image is viewed as a graph network in which each pixel x is
a node connected to the neighbor pixel by a resistance R (Fig. 3.4). The brightness u at each
pixel is the charge on a capacitor C. The flux of the brightness between each two adjacent pixels
depends on their relative brightness. To extend this model to a 2D+t video signal, we consider the
effect of the potential of the corresponding pixel from the immediate past frame on the potential
evolution at the current frame. This consideration is modeled as an external conductance R−1ext.
From Kirchhoff’s Laws (3.20-3.23), we can therefore derive the diffusion equation as the change
of the brightness at each pixel at a given (time-like) diffusion scale s. The potential at this pixel
is denoted by u(x, t; s) and the current by i(x, t; s).

i(x, t; s) = (u(x, t; s)− u(x− dx, t; s))/R1 (3.20)
i(x+ dx, t; s) = (u(x, t; s)− u(x+ dx, t; s))/R2 (3.21)

iext = (u(x, t; s)− u(x, t− dt; s))/Rext (3.22)

i(x, t; s) + i(x+ dx, t; s) + Iext + C
∂u(x, t; s)

∂s
= 0 (3.23)
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Consider R1 = R2 = R and the per unit quantities, R = rdx, Rext = rextdt, C = cdx, and
Iext(x, t; s) = iext(x, t; s)dx. Substitute equations 3.20- 3.22 in the KCL equation (3.23). At the
limit dt −→ 0 and dx −→ 0, the KCL equation results in the spatio-temporal diffusion equation
(3.24).

∂u(x, t; s)

∂s
=

1

rc

∂2u(x, t; s)

∂x2
− 1

rextc

∂u(x, t; s)

∂t
(3.24)

Figure 3.4: Modeling spatio-temporal (1D+t) diffusion using a RC circuit. The brightness
u(x, t; s) denotes the potential charge on the capacitor C at node x at the current time t and
current diffusion scale s. A pixel is connected to the neighbor spatial pixel by a resistor R and to
temporal past neighbor pixel (green resistor) by Rext.

This equation is consistent with the observation of Lindeberg [81] in that the variation of a
signal with respect to scale (∂u

∂s
) should be proportional to its second-order derivative in space

(∂
2u
∂x2

), but first-order derivative in time (∂u
∂t

). For a 2D spatial network of pixels, (x, y), the
second-order spatial derivative ∂2

∂x2
is replaced with a 2D Laplacian ∆ = ∂2

∂x2
+ ∂2

∂y2
.

To obtain a closed form solution for the equation (3.24), we consider constant value con-
ductances and capacitance. This consideration results in a linear diffusion. However, the spatial
diffusion is isotropic while the temporal diffusion is anisotropic due to the prohibition to dif-

27



fuse to the future. Moreover, there is a linear interaction between internal forces (i.e., spatial
concentration gradients) and external forces (i.e., temporal gradient).

The solution of the equation (3.24) is obtained using the Fourier transform. Consider Ũ(wx, wy, wt; s)
as the (discrete-time) Fourier transform of u(x, y, t; s) with respect to pixel coordinates X =
(x, y, t), in which (wx, wy, wt) are the corresponding spatial frequencies and temporal frequency.
Consider α = 1/rc and β = 1/rextc which are related to the diffusivity in space and time.

1. Apply a Fourier transform to the equation (3.24).

∂Ũ

∂s
= [−α(w2

x + w2
y)− β(jwt)]Ũ (3.25)

2. Solve the ordinary differential equation knowing that Ũ(wx, wy, wt; 0) = Ũ0 is the Fourier
of the current original image at the finest scale u(x, y, t; 0) = u0.

dŨ

Ũ
= [−α(w2

x + w2
y)− jβwt]ds (3.26)

Ũ = [e−α[w
2
x+w

2
y ]se−jβwts]Ũ0 (3.27)

3. Using the convolution theorem, the inverse Fourier transform of the equation (3.27) pro-
vides the convolution (?) of the original image sequence u0 with the (discrete analogue of)
spatial Gaussian kernelGwith standard deviation σ =

√
2αs and a causal asymmetric sinc

as the temporal kernel q(t; τ) with temporal scale τ = βs. The S(t) denotes the Heaviside
step function.

u(x, y, t;σ, τ) = G ? q ? u0 , G(x, y;σ) =
e−

x2+y2

2σ2

2πσ2
, q(t; τ) = sinc(t− τ) S(t) (3.28)

The spatial Gaussian kernel is symmetric and non-causal and the temporal kernel is an asymmet-
ric sinc function due to causality and shift of the peak to the temporal scale τ . Note that if we
release the causality constraint and allow the diffusion to the future frames as well, we will have
the second-order temporal derivative in equation (3.24) and hence, a temporal Gaussian kernel.

An insight into the temporal part of the Fourier transform in (3.27) suggests that if we
consider the stability criteria of |wtτ | < 1, we can actually use the Taylor approximation of
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e−jwtτ ∼ 1/(1 + jwtτ) and hence, approximate the temporal kernel with a truncated exponential
function (E(t, τ) = e−t/τS(t)/τ ) for a continuous signal. The stability constraint shows that for
small time scales, higher temporal frequencies are captured and vice-versa. As explained in [81],
the truncated exponential is the base for the derivation of the Poisson kernel (3.17).

To detect salient features, after scale-space filtering, a saliency map should be computed for
each spatio-temporal scale. Despite the linearity of scale-space video filtering, the saliency map
construction usually requires non-linear filtering. The local maxima in the saliency map are the
salient features (Fig. 3.3). In the next sections, we explain the motion saliency map and introduce
a data driven approach to retain the stronger salient features after non-maxima suppression.

3.4 Saliency map

The saliency map is constructed based on the characteristics of the feature of interest. From
a biological point-of-view, a saliency map is the response of the video signal to a local filter
applied to surrounding volume of a pixel in order to mimic the functionality of the receptive field
of the early visual cortex [37]. From biological vision [1, 125, 112], a motion map should be
phase insensitive to provide a response independent of the phase of the motion stimulus and be
constant for a periodic motion. To obtain a phase insensitive motion map, we perform quadrature
pair filtering for motion computation. The quadrature can be seen as the pairs of adjacent simple
cells in the visual cortex [103]. A complex receptive field can therefore have these quadratures in
the real and imaginary parts. Moreover, the motion response should be the same for two stimuli
with opposite contrast but similar motion [1]. The latter requirement ensures a similar response
for a white foreground against dark background and vice versa. To obtain a contrast-polarity
insensitive motion map, we consider the magnitude of the motion response.

3.4.1 Phase insensitivity

To obtain a phase-insensitive motion response, we have two options: complex quadrature pair
filtering and derivative filters, which are considered to be quasi-quadrature. There are two reasons
that the complex quadrature filters are preferred over the quasi-quadrature derivative filters: (1)
the complex quadrature pair filters provide better localization than the derivative filters [58]; and
(2) The complex quadrature pair filtering is straightforward by multiplying the original kernel
with a complex exponential term of e−jw0t. This is the way Gabor filter is obtained from the
Gaussian. In contrast, for the computation of derivatives of an asymmetric filter, one should
take into account the shape of the filter [79]. According to Lindeberg [79], it is more natural to
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compute the derivatives of a time-causal kernel with respect to a transformed axis (3.29). This is
due to skewness of a time-causal kernel.

t′ = φ(t) (3.29)

The transformation function φ should be a monotonically increasing function such as a self-
similar logarithmic transformation (3.30) or a self-similar power law (3.31).

t′ = log(t/t0) (3.30)

t′ = tα (3.31)

Figure 3.5 shows the temporal smoothing kernels with their first- and second-order deriva-
tives as reported by Lindeberg [79] (Fig.15). Note that the first-order derivatives (second column)
have two peaks and the change of the time variable does not change the position of the peak (third
and fourth rows in the second column). However, the second-order derivative changes qualita-
tively. In fact, the second-order derivative with respect to the original time axis (last column of
the second row) has two peaks and one interior zero crossing, while its counterpart with the time
transformed variable makes three peaks with two interior zero-crossings (the last column of the
third and fourth rows) which shows similar behavior as a second-order derivative of a scale-space
kernel (last column of the first row).

Due to the simplicity and better localization of the quadrature pair filtering, we consider this
filtering scheme to address the phase insensitivity requirement for the motion computation. The
quadrature filters for each of the temporal kernels (qeven and qodd) provide a band-pass filter
centered at w0 = 1/2τ . For the asymmetric sinc, we however use the Hilbert transform h(t) =
1
πt

[125] to compute its quadrature pair qh(t; τ) = q(t; τ) ? h(t) due to the derivative nature of
this filter.

Fig. 3.6 shows the quadrature pair of the Gabor and the complex scale-derivative Gaussian,
log-Gaussian, Poisson, and asymmetric sinc. These complex filters are used for multi-resolution
representation of the video and hence feature detection (See Fig. 3.3).The even and odd Gabor
filters are symmetric and non-causal, while the other filters are causal and asymmetric. Note
that the Poisson tends to decay faster and the scale-derivative Gaussian has the longest tail. The
magnitude of the frequency response of these filters are shown in Fig. 3.7. Note the different
shape of these filters; the asymmetric filters have wider bandpass than the symmetric Gabor. The
scale-derivative GaussianGD has the sharpest decay from the central frequency. The asymmetric
sinc is the closest filter to an ideal band-pass filter.

30



Figure 3.5: The temporal smoothing kernels with their first- and second-order derivatives as
reported by Lindeberg [79] (Fig.15). In figure, same function φ(t; τ) is used to describe each
of the scale-derivative Gaussian functions. The first row is the time-shifted Gaussian and its
derivatives. The scale-derivative Gaussian kernel and its derivatives are plotted in the second
row for the original time variable and its derivative with respect to the self-similar transformed
time are plotted in the third and fourth rows.
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Figure 3.6: Quadrature pair of Gabor G and complex form of log-Gaussian GL, Poisson P ,
scale-derivative Gaussian GD, and asymmetric sinc S filters at temporal scale of τ = 6. The
left column shows the even filters and the right column shows the odd filters. The horizontal
axis shows the time. Only the Gabor filters are symmetric and non-causal. The causal filters are
asymmetric.

Note that there is no guarantee that a subject performs with the same motion pattern in dif-
ferent periods of a given action such as walking. The imperfection of the motion pattern requires
a reasonable band-pass filter with high weight at the central frequency, but at the same time
a longer tail so that it can capture more neighbor frequencies. This requirement is in support
of causal asymmetric kernels which have a longer tail in the frequency domain and show this
behavior better than the non-causal symmetric Gabor. A longer tail band-pass filter does not
attenuate the signal as much at higher frequencies or passes more energy and hence, it results in
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less smoothing of fast motions.

3.4.2 Contrast-polarity insensitivity

To obtain a contrast-polarity insensitive motion map, we use the sum of the square filter responses
of the quadrature filters which corresponds to the local energy of the video signal in the spatio-
temporal extent of the filters.

The salient motion map from which feature are detected is defined as R = R(x, y, t;σ, τ) =
(Gσ ? q

even
τ ? I)2 + (Gσ ? q

odd
τ ? I)2 for the spatio-temporal scale of (σ, τ). This energy-based

saliency map highlights the points with local periodic motion and hence, it is more suitable for
action-related salient feature detection [25, 122].

3.5 Non-maxima suppression

As the local salient features are centered at point with high level saliency, we need to perform
non-maxima suppression on the saliency map to localize the salient features (Fig. 3.3). To this
end, the neighborhood of each pixel in all spatio-temporal directions is searched to find points
with the highest saliency value. These points localize the salient fetaures. Having detected the
local maxima, existing methods [25, 68] usually apply a hard thresholding on the local maxima
to remove the weak noisy local maxima and, consequently, retain stronger salient features.

Instead of hard thresholding to remove weak features, a data-driven measure for removing
the noisy local maxima is introduced here. In the robust estimation and anisotropic diffusion
filtering literature [10], this threshold is estimated using the median absolute deviation (MAD)
for statistical noise removal. This operation is performed in two steps. First, those maxima that
have an energy level higher than the MAD of the energy of the whole video R (i.e., MADR

in equation 3.32) are kept as initial salient features. Second, another level of thresholding is
performed based on the MAD of the saliency values of the initial salient features to remove
weaker salient features. Once the salient features are detected, due to the peak shift in the causal
kernels, the central time at which salient features occur is compensated accordingly. That is,
if the peak of the kernel is at τ0, the time coordinate of the salient features is deducted by this
amount. This compensation addresses the illusion in the motion map [33] which is the result of
having a peak not at the origin.
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Figure 3.7: Magnitude of the Fourier transform of the complex form of the four temporal filters
(Gabor G, log-Gaussian GL, Poisson P , and scale-derivative Gaussian GD) with τ = 6 and
ω0 = 1/2τ = 0.083. Note that the three asymmetric filters ( GL, P,GD) have wider bandpass
than the symmetric Gabor filter G.

MADR = α median(|R| −median(|R|)) (3.32)

The constant value α = 1.4826 normalizes the MAD to that of a normal distribution with zero-
mean and unit variance for which MAD = 1/α [10].

3.6 Scale-invariant features

The scale-invariant spatio-temporal salient features [68, 129] were of interest due to the success
of their counterparts for object encoding in a still image. In fact, in the absence of any prior
knowledge about the size of the objects in an image, the scale-invariant features are the local
visual cues that are utilized to match a query image with a test image under a possible scale
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change. Scale-invariant salient features [84] are widely used in image analysis for applications
such as object detection or object recognition. Detection of an scale-invariant feature requires an
intrinsic scale estimation in which the feature is quite distinctive from its neighbors.

For video analysis, different approaches have been used to determine the intrinsic scale of the
features. A straightforward way of detecting scale-invariant features is to extend the search do-
main of the feature detection to the scales direction as well [84, 129]. For spatio-temporal scale-
invariant features, the search (i.e., non-local maxima suppression) should thus be performed in
five directions (x, y, t, σ, τ). One might use other measures such as the Laplacian which is the
trace of Hessian matrix [129] as a measure to compute the intrinsic scale of features. In this case,
the intrinsic scale is the scale in which the salient feature has the maximum Laplacian value.
The scale-invariant features provide a sparse representation of video contents, but they were not
successful for discriminative representation of different motion patterns [88, 129]. In fact, as the
scale selection approaches are heuristic [88], some of the motion information is thrown away.
Moreover, the removal of motion redundancy from the set of features for action representation
might not necessarily be useful for their discrimination [45, 129]. A unique representation might
however require to retain all the salient features (Section 4.3).

3.7 Experiments

In this section, the methodology used to evaluate the performance of different temporal filters
in local feature detection is described. The evaluation is based on three quantitative measures:
precision score, reproducibility score, and action classification accuracy. The precision score
and reproducibility score show the accuracy and robustness of the detected salient features and
the action classification accuracy determines how informative the salient features are for action
representation.

3.7.1 Methodology

To examine the performance of different temporal scale-space filters for salient feature detec-
tion, the set of spatio-temporal scales, the dataset, and the salient feature matching used in the
quantitative measures must be defined.
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Spatio-temporal scales

To experiment with the salient feature detection performances, a set of spatial (σx = σy = σi)
and temporal scales (τi) must be defined. We consider nine different spatio-temporal scales in
which σ is in pixels and τ is in frames. The scale generation formula (3.33) is similar to the
approach used by 2D SIFT [84]. Note that the minimum spatial scale σ0 = 2 pixels determines
the maximum spatial frequency of 0.5 cycles/pixel. With 25 frames per second, the maximum
temporal frequency of 12.5 cycles/sec is obtained at τ = 2 frames.

σi = (
√

2)i σ0 , τi = (
√

2)i τ0 , i ∈ {0, 1, 2} (3.33)

Data sets

To provide quantitative results, video samples with ground truth are required. More specifically,
segmented videos of the same action taken under different views, clutters, and occlusions for
the precision and robustness dataset are required. For the evaluation of the feature detectors, we
used the robustness and classification datasets of the Weizmann dataset [11] for which the ground
truth has been provided. For the action classification test, we used the Weizmann classification
dataset, the KTH [110] dataset, and the UCF sports dataset [107].

The Weizmann robustness dataset [11] consists of two sets: ”deformations” and ”view-
point”. The former set consists of ten videos of ”walking” with high variations in the motion
pattern in the presence of clutter and occlusion with a non-uniform background. The ”view-
point” set is the ”walking” action performed at different horizontal views from the camera (0o

to 81o with 9o intervals). Figures 3.8 and 3.9 show sample frames from these sets. The tests
on these videos can show the performance of different temporal filters when there exists partial
clutter, occlusions, and non-rigid deformations. This dataset is a relatively easy dataset for the
classification task and perfect classification on this dataset has been reported already. We use this
dataset as part of our proof for the concept.

The Weizmann classification dataset [11] consists of ten different human actions: run,
jumping-jack (jack), jump-forward-on-two-legs (jump), jump-in-place (pjump), wave-two-hands
(wave2), wave-one-hand (wave), gallop sideways (side), bend, skip, and walk. Each action is
performed by at least nine different people in front of a fixed camera. Each of the 93 video clips
lasts about two seconds at 25Hz with an image frame size of 180×144. Fig. 3.10 shows a sample
frame from each action. Having different action types by different people in this dataset, the
performance of different temporal filters for the salient feature detection and action classification
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can be evaluated. For the action classification, a leave-one-out approach is considered for the
training and testing.

The KTH data set [110] consists of six actions (running, boxing, walking, jogging, hand
waving and hand clapping). Twenty-five different subjects perform each action in four different
scenarios: indoors, outdoors, outdoors with scale change (fast zooming in/out) and outdoors with
different clothes. This data set contains 600 video samples in total. Each clip lasts between 10
to 15 seconds and is sampled at 25Hz with an image frame size of 160× 120. Fig. 3.11 shows a
sample frame from each action. This dataset is challenging due to fast camera zooming, strong
shadows, and low resolution (blurry) video samples. According to the initial citation [110], the
video samples are divided into a test set (9 subjects: 2,3,5,6,7,8,9,10, and 22) and a training set
(the remaining 16 subjects).

The UCF sports dataset [107] includes actions such as diving, golf swing, kicking, lifting,
riding horse, run, skate boarding, swing baseball, and walk with 150 video samples collected
from Youtube website. Fig. 3.12 shows a sample frame from each action. This dataset is more
challenging due to diverse ranges of views and scene changes with a moving camera. The sample
videos are taken from a real-world scenarios with clutter and partial occlusion. Similar to the
setting in [122], we increase the data samples by adding a horizontally flipped version of each
video sample to the dataset. For each video sample, both its original version and its flipped
version are removed from the training set when learning the classifier. We use a leave-one-out
setup and test on the original video samples.

Figure 3.8: One sample frame from each of ten videos of the Weizmann robustness (deforma-
tions) dataset [11]. Different subjects ”walk” under different occlusions/clutters in front of a
fixed camera.
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Figure 3.9: One sample frame from each of ten videos of the Weizmann robustness (view-point)
dataset [11]. The subject ”walks” with different view angles in front of a fixed camera.

Salient feature matching

To obtain a quantitative measure to determine whether a salient feature from one filter corre-
sponds to a salient feature from another filter, a volumetric similarity measure is used. Two
salient features are assumed to capture the same information if they have sufficient volumetric
intersection. Fig. 3.13 shows a sample scenario in which disjoint and overlapped spatio-temporal
salient features are drawn. If the volumetric intersection of two salient features is sufficient, they
are considered to correspond. If pi is a salient feature in the original video, and pj the sample
salient feature in the tested (e.g., rotated) video, the regional similarity pij between i and j as
the intersection of the two volumes over the union of the volumes (pij =

pi
⋂
pj

pi
⋃
pj

) is computed.
The radii of the volume around a salient feature is considered three times its spatio-temporal
scale [129] (i.e., 3σ × 3σ × 3τ ). Note that we intentionally do not compare the salient features
based on their descriptor, as our intention is to compare the salient feature detectors not the de-
scriptors. The matching of the features under different views however requires the descriptor
correspondence due to asynchrony across different views. This case is explained in more detail
in Section 3.7.3.
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Figure 3.10: A sample frame from each action of the Weizmann classification dataset [11]. At
least nine subjects perform ten different actions in front of a fixed camera.

Figure 3.11: A sample frame from each action of the KTH classification dataset [110]. Twenty-
five subjects perform six different actions under four different scenarios. Note the strong shadow
(in ”jogging”), zooming (in ”boxing”), and blur (in ”running”) in this dataset.

Precision score

The precision score is the ratio of the number of detected salient features from the foreground
(true positive) to the number of all detected salient features. This measure determines how well
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Figure 3.12: A sample frame from each of nine videos of the UCF sports dataset [107]. This
dataset consists of several sports actions including diving, golf swing, kicking, lifting, riding
horse, run, skate boarding, swing baseball, and walk.

a method can detect salient features which are from the foreground and not the background. A
point is considered as a false positive detection (i.e., from the background), if the 3D volumetric
intersection of the salient feature is less than a threshold with the available foreground volume. In
determining the threshold, we should consider two main factors. (1) The spatial Gaussian filter-
ing introduces a blurring and degradation of feature’s localization (i.e., dislocation) [100, 126].
More specifically, at higher scales with more smoothing, distinct features might merge [63]. (2)
the salient features are usually close to the silhouettes’ boundary of the subject and hence, they
have less intersection with the foreground volume. We thus consider 20% volumetric intersection
threshold for reporting results, but the relative results are insensitive to this choice (Fig. 3.15).
Note that the main motions in the video samples of the Weizmann classification dataset are from
the moving person. As there is no video segmentation and there is not any specific parameter
for removing non-relevant motions, the feature detector might find some false positives from the
so-called background.

Reproducibility score

Reproducibility measures the ability to detect the same salient features under changes in view,
spatial scale, and affine transformations. The reproducibility score is defined as the ratio of
the number of re-detected salient features (summed between the original video and the video
recorded under different settings) to the total number of salient features detected in both videos.
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Figure 3.13: Salient features are plotted according to their spatio-temporal scales in a 3D plot
showing (x, y, t) axes. Salient feature matching is based on whether two salient features are
considered to correspond if they have sufficient volumetric intersection in their spatio-temporal
extensions.

Action classification

To evaluate the quality of the detected salient features for action recognition, classification can
be used. Classification provides a basis to relatively compare the five different temporal filtering
techniques. A standard discriminative BOW approach is used for the classification [25, 68]. This
classification approach satisfies our purpose which is performance comparison of the features.
However, one should note that the BOW is order-less and does not take into account the spatial
or temporal relationships among the features. A more promising approach would be to use, for
example, a HCRF [124] or structured pLSA [135] to model these relationships. We explain this
consideration in Section 7.2.1.

Here, three sets of experiments answer the research questions highlighted in Section 3.3.2.
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3.7.2 Research question 1: Precision tests

Precision in classification dataset

Fig. 3.14 shows the precision score for each action type and for different spatio-temporal scales
on the Weizmann classification dataset [11]. The results show that the asymmetric filters detect
more true positives than the symmetric Gabor filter. Note that the filtering of the fast temporal
changes in the ”run” or ”jump” actions results in more dislocation due to the increase of uncer-
tainty in temporal correlation in these actions. This dislocation results in the detection of fewer
true positives as Fig. 3.14(a) shows. The coarse scale results in a lower precision (Fig. 3.14(b)).
This is due to the fact that wider kernels result in more smoothing of the structures and hence,
more dislocation [126]. To ease the presentation of the scales in the plots, we show the rounded
scales in the figures (e.g., scale σ = 2.82 is rounded to σ = 3).

As Figure 3.15 shows, varying the volumetric intersection threshold generates results that are
relatively consistent. Here, the Gabor has the least precision and the asymmetric sinc performs
the best. The Poisson and scale-derivative Gaussian perform the second best. The performance
of the log Gaussian is higher than the symmetric Gabor filter, but less than the other asymmetric
filters.

Fig. 3.19-3.22 show the salient features detected using different temporal filters as local 3D
space-time volumes in the video. For clarity, 2D projection of these features on different frames
have been shown in Fig. 3.23-3.24. The main observation is that the asymmetric filters detect
more salient features and different features than the symmetric Gabor filtering.

Precision in robustness dataset

Fig. 3.16 shows the precision score for each cluttered video and for different spatio-temporal
scales on the Weizmann robustness dataset [11]. As Fig. 3.16(a) shows, the asymmetric sinc has
the best overall performance. The asymmetric filters performs better than the Gabor filter, except
in the video when a person walks with a dog, the Gabor performs slightly better than the log
Gaussian. This shows that the asymmetric filters detect fewer false positive salient features than
symmetric Gabor filtering under irregular motion patterns, clutter, and occlusion. Fig. 3.16(b)
shows the better overall precision of the asymmetric filters compared with the Gabor filter at
different spatio-temporal scales.
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The role of causality and symmetry

To better understand the role of causality and asymmetry on feature detection, we experimented
with (a) shifting the peak of each causal kernel to the origin to create a non-causal (but asymmet-
ric) version and (b) right-shifting the Gabor to create a causal filter. For conciseness, we do not
report the results here as similar precision results were obtained between the original and shifted
versions for each of the causal and non-causal (Gabor) filters. This observation makes sense as
the convolution commutes with translation meaning that the time-shift in the convolution kernel
enforces just a time-shift in the output which can be compensated accordingly.

f(t) ? g(t) = y(t) =⇒ f(t) ? g(t− t0) = y(t− t0) (3.34)

One should note that different temporal kernels have different tails, even though they use the
same standard deviation. To better differentiate the role of asymmetry and the tail, we performed
an experiment with three synthetic kernels derived from the Gaussian function which is the en-
velope of the symmetric Gabor filter. Fig. 3.17 shows a synthetic asymmetric kernel in which
each side of the kernel is a truncated Gaussian with different standard deviations (3.35).

g(t) = Gσ1S(−t) +Gσ2S(t) (3.35)

where the Gσ is a Gaussian function with standard deviation of σ and the S(t) is the Heaviside
step function. The ratio α = σ1

σ2
controls the skewness of the kernel. We applied the precision

test on the classification dataset with different values of the skewness, α = 1 is the standard
Gaussian function, α = 0 (i.e., σ1 = 0) makes a one-sided Gaussian kernel, and α < 1 (i.e.,
σ2 > σ1)produces an asymmetric kernel with skewness towards the times before the peak. We
then multiply the complex exponential term with each kernel (Section 3.4) and used it in our
common framework (Fig. 3.3) for the local feature detection.

Table 3.1 presents the average precision score for different synthetic filters. Note that the
asymmetric filter performs the best. The causal filter performs better than the symmetric Gabor
filter as well. This results show that the asymmetry is the main reason why the four introduced
asymmetric filters (i.e., log-Gaussian, scale-deriv. Gaussian, Poisson, and asymmetric sinc) per-
form better than the symmetric Gabor filter. However, the performance difference among the
asymmetric filters is due to their shape and tails.

Research question 1: Conclusion

To answer the research question 1 regarding the effect of causality and symmetry of a temporal
scale-space kernel for salient feature detection, the precision tests show that a non-causal sym-
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Table 3.1: Precision score for synthetic filters. The score is averaged over all nine spatio-temporal
scales and all video samples from the Weizmann classification dataset [11]. Note that the asym-
metric filter performs the best. The causal filter performs better than the symmetric Gabor filter
as well.

Temporal filter α Precision score
Symmetric Gabor 1 0.648

Causal Gabor 0 0.711
Asymmetric Gabor 2/3 0.757

metric temporal kernel just enforces a delay in the system and does not impact the performance
of salient feature detection. The key distinction is that the asymmetric filters outperform the sym-
metric filter. More specifically, the left-skewed kernels such as the asymmetric sinc, Poisson, and
scale-derivative Gaussian have a better performance for action-related salient feature detection
compared with the less-skewed log Gaussian. All of these four asymmetric kernels perform bet-
ter than the symmetric kernel of the Gabor. Better overall performance of asymmetric filters
can be due to decaying slower than the Gabor filter (Fig. 3.7). In fact, the motion pattern in a
real-world natural videos is not perfectly periodic from one cycle to another during performance
of a given action by an individual. Slow decay of asymmetric filters can better capture this mo-
tion imperfection by passing more temporal frequencies than the ideal Gabor filter. Keeping the
higher temporal frequencies in the band-pass asymmetric filters means less motion smoothing
and better preservation of the the salient motions. This results in less dislocation of the salient
motion features and hence, fewer false positive detection.

Number of detected salient features

To compare the computational cost and the encoding capability of different temporal filters is
important to evaluate the number of detected salient features. As the number of frames is not the
same for all the videos, we report the normalized number of the salient features in one second
of the video. The normalization is obtained by the division of the number of detected salient
features over the number of frames. The result is then multiplied by the frame rate (i.e, 25Hz)
to achieve the number of salient features per second. As Fig. 3.18 shows, the number of salient
features detected using Gabor filtering is usually fewer than asymmetric temporal filters. Log-
Gaussian and scale-derivative Gaussian detect the most salient features distributed mainly around
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body limbs with significant motions in an action. Intuitively, detecting more salient features
provides a more complete representation and hence, a better information encoding. Moreover,
denser features have higher chance to be re-detected under different geometric deformations
and hence, their matching rate will be higher. As can be seen in Fig. 3.18(a), fewer salient
features are detected in actions such as ”bend” and ”wave” which are performed in place. More
salient features are detected at actions such as ”run” and ”walk” in which the whole body is
moving. As expected, fewer salient features are detected with a spatial and/or temporal scale
increase, especially when the temporal scale increases (Fig. 3.18(b)). If we consider the number
of salient features as an indicator of local extrema, the decrease in number of salient feature with
spatial/temporal scale increase is consistent with the non-creation of local extrema axiom in the
scale-space theory [77].

3.7.3 Research question 2: Reproducibility tests

View change

To test the reproducibility under different camera view angles, the Weizmann robustness (view-
point) dataset [11] was used. Due to asynchrony of video frames under view change, the vol-
umetric intersection for salient feature matching cannot be directly computed. We therefore
describe a salient feature using a 3D SIFT descriptor [111] and use this feature vector for match-
ing salient features similar to 2D SIFT matching [84]. As Fig. 3.25 shows, the Gabor filter has
the lowest robustness compared to the asymmetric filters. The asymmetric filters can reproduce
around 70% of the same salient features up to about 60o in view change, while the Gabor can
barely reproduce half of them.

Spatial scale change

Spatial scale change occurs when the camera’s distance from the action or zooming might vary.
To test, we generate video samples at three different spatial (sub-sampling) scales {1/2, 1/3, 1/4}
for each of the 93 video samples in the Weizmann classification dataset [11]. The original frame
size of 180× 144 is therefore shrunk into 45× 36 for the maximum spatial sub-sampling of 1/4.
Results in Fig. 3.27 show that, on average, Gabor performs better than asymmetric filtering un-
der spatial scale sub-sampling. The scale-derivative Gaussian and Poisson filters perform slightly
better than the asymmetric sinc and log-Gaussian filter. In actions with limited moving parts such
as ”one/two hand waving” or ”bend”, Gabor performs better. In actions such as ”walk”, ”pjump”
and ”jump”, the Poisson performs better than Gabor. One possible explanation is that the sym-
metric temporal filtering is more responsive to symmetric structures which are better preserved
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under spatial sub-sampling. Fig. 3.26 shows the shape change of the asymmetric Poisson and
the symmetric Gaussian which is the cover of the Gabor filter. As can be seen, the shape of a
Poisson kernel changes significantly with increase in the sub-sampling factor, while the shape of
a symmetric Gaussian kernel is preserved under sub-sampling.

Affine transformation

To evaluate the effect of in-plane rotation, we generated synthetic rotated videos using a spatial
rotation transformation Arot (3.36) applied on all frames of a video. Eight videos were created
from a single video using the 93 video samples from the classification dataset [11], rotating from
−60o to +60o with an interval of 15o. In total, 744 rotated videos were generated. For salient
feature matching, the detected salient features in the rotated video are rotated back in the original
video domain to compute the relevant volumetric intersection with the salient features of the
original video. As can be seen in Fig. 3.28, the asymmetric sinc filter performs better than the
other kernel. The other symmetric filters are slightly better than the symmetric Gabor filter.

Arot =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(3.36)

To test the reproducibility under in-plane shearing, we used the vertical shearing factor of
α set to {0, 0.2, 0.4, 0.6} and the horizontal shearing factor of β set to {0, 0.2, 0.4, 0.6} as part
of shearing transformation matrix Ashear (3.37). This generates 15 synthetic sheared videos
(excluding (0, 0)) from each of 93 videos of the Weizmann classification dataset [11]. In total,
1395 sheared videos are compared with the 93 original videos.

Ashear =

[
1 α
β 1

]
(3.37)

The reproducibility score under shearing transformation decreases more in the actions with
limited movements (Fig. 3.29(a)). We visually observed that the shape change due to shearing
in the frames of actions with limited body limbs movement such as bending or one-hand waving
is much more that this change in fast motions such as jump in place (pjump) or jump. As
expected, the reproducibility decreases with increase in shearing (Fig. 3.29(b)). The asymmetric
filters show better performance compared with the symmetric Gabor filter. The asymmetric sinc
performs the best.
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Research question 2: Conclusion

Based on the result of reproducibility tests, to answer the research question 2, we can say that the
salient features which are detected using the asymmetric temporal filters are more robust under
view change or affine transformation, compared to those salient features detected using temporal
symmetric Gabor filtering. The Gabor filter provides better robustness under spatial scale change
as the symmetric shape are better kept the same under sub-sampling compared to the asymmetric
shapes. To summarize the experimental results of precision and reproducibility, Table 3.2 shows
the performance averaged over all scales and all action types. As can be seen, except for scale
change, the asymmetric filters perform better than symmetric Gabor filter. Among asymmetric
filters, the asymmetric sinc performs the best. Poisson and scale-deriv. Gaussian show better
overall performance than the log Gaussian filtering. As can be seen in Fig.3.18, asymmetric
sinc detects fewer features while its performance is the best, overall. The Gabor also detects
fewer features than the other asymmetric filters such as Poisson, while its performance is less
compared to those asymmetric filters. This observation shows that detection of denser or sparser
set of features might not be directly related to the performance of the features. The robustness of
the features is related to the type of features they detect. In fact, there are more asymmetric-type
motions than symmetric type in the human actions. The asymmetric temporal filters are thus
more precise in modeling these type of motions than a symmetric filter.

3.7.4 Research question 3: Action classification

In this experiment, we use the Weizmann classification dataset [11] and the KTH dataset [110].
For a fair comparison, we fix all the components of the standard discriminative BOW frame-
work [25, 68, 112] and change just the temporal filter.

We applied both causal and non-causal temporal filtering to detect local salient features at a
given spatio-temporal scale. We then used a 3D SIFT descriptor [111] as the feature descriptor.
This descriptor gives a normalized histogram of the spatio-temporal orientations of gradients and
hence, both appearance and motion of the salient feature are encoded in the descriptor.

The salient features from all of the actions in the training set and all spatio-temporal scales
are quantized into visual words, K-means was performed 10 times and the result with the lowest
error was kept, consistent with the experimental setting used in [25, 122].

We experimentally set the number of clusters to 200 for the Weizmann dataset. For the
KTH and UCF sports datasets, we set it to 1000 consistent with the setting in [122]. We used
both nearest neighbor (NN) classifier and SVM [21, 119] as the classifier. The SVM does not
show improvement over NN classifier on the Weizmann dataset due to small number of training
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samples. SVM however slightly improves the NN classifier on the KTH and UCF sports datasets.
For conciseness, we thus report the classification accuracy of NN for the Weizmann dataset and
the SVM for the KTH and UCF sports datasets. To compare two action signatures Si and Sj ,
we used χ2 distance metric (3.38) for the NN classifier on the Weizmann classification dataset
with leave-one-out setting and the radial basis function (5.8) (RBF) for the SVM classifier on the
KTH dataset with training/testing setting mentioned by the initial paper [110]. For the UCf sports
dataset, we used similar experimental setting as [122] in which horizontally flipped version of
each original sample is added to the training set and a leave-one-out setting for testing. We used
the LibSVM library [15] to learn the parameter γ of the RBF function using cross validation.

Dχ2(Si, Sj) =
1

2

(Si − Sj)2

Si + Sj
(3.38)

KRBF (Si, Sj) = e−γ|Si−Sj |
2

(3.39)

As Table 3.2 shows, the classification accuracy of using salient features detected using a
temporal Gabor filter is the lowest. The asymmetric sinc provides the best results. For the
Weizmann and the KTH datasets, the Poisson and scale-derivative Gaussian perform the second
best. The performance of the log Gaussian is higher than the symmetric Gabor filter, but less than
the other asymmetric filters. For the UCF sports dataset, the log-Gaussian performs the second
best.

Fig. 3.30 shows the confusion matrices for action recognition on the Weizmann classification
dataset [11] using the features detected by different temporal filters. Note that all methods have
difficulty discriminating ”skip” from ”run”. This is due to the similarity of motion patterns of
these fast motions in this dataset. All asymmetric filters perform better than Gabor and the
asymmetric sinc is the best.

Fig. 3.31 shows the confusion matrices for action recognition on the UCF sports dataset [107]
using the features detected by different temporal filters. Note that all methods have difficulty
discriminating some actions due to wide view change or scene changes in the video samples.
The asymmetric sinc performs the best compared to other temporal filters.

Research question 3: Conclusion

The action classification experiment shows that the asymmetric temporal filters provide salient
features that better encode actions and generate higher classification results. As the asymmet-
ric temporal filters provide more precise salient features with higher robustness under geometric
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Table 3.2: Summary of the evaluation tests of different temporal filters for salient feature de-
tection and action classification, averaged over all scales and all video samples. Bold numbers
represent the highest performance. Note that overall the asymmetric sinc performs the best.

Temporal filters
Test Type Gabor [25] Log

Gaussian
Scale-deri.
Gaussian

Poisson Asym.
sinc

Precision

classification
(Sec. 3.7.2)

64.8 % 72.4 % 74.7 % 74.7 % 79.6 %

robustness
(Sec. 3.7.2)

91.9 % 93.9 % 93.5 % 93.6 % 96.1 %

Reproducibility

view change
(Sec. 3.7.3)

55.5 % 70.7 % 69.3 % 73 % 73.4 %

scale change
(Sec. 3.7.3)

50.7 % 43.9 % 47.3 % 47.1 % 45.2 %

rotation change
(Sec. 3.7.3)

86.6 % 88.9 % 87.8 % 87.8 % 93.3 %

shearing change
(Sec. 3.7.3)

84.1 % 86 % 86.7 % 86.8 % 91.8 %

Recognition

Weizmann
(Sec. 3.7.4)

91.1 % 91.5 % 93.5 % 93.5 % 95.5 %

KTH
(Sec. 3.7.4)

89.7 % 91.1 % 90.2 % 91.7 % 94.3 %

UCF sports
(Sec. 3.7.4)

73.3 % 87.3 % 74.7 % 82.7 % 91.7 %

deformations (except for scale change), better performance for action representation and action
classification was expected and did occur. The experimental results (Table 3.2) show improve-
ment of asymmetric filtering over symmetric Gabor filter. The action classification test on the
KTH dataset with camera zooming shows that the asymmetric filters perform better than Gabor
due to better overall precision and robustness, even though the Gabor filter performs better under
spatial scale change. The action classification in a more realistic scenario such as UCF sports
dataset shows the better performance of an asymmetric temporal filtering over a symmetric Ga-
bor filtering for good quality salient feature detection in video.

As Table 3.2 shows, action classification improves simply by changing the symmetric tem-
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poral filter to asymmetric filters, under a standard discriminative BOW framework. There are
many action recognition schemes that we could have used, some superior to the BOW that we
used. However, the focus of this chapter is on the quality of the features and the choosing an
appropriate action recognition method is left to future chapters. Without video segmentation and
with a similar BOW setting, our 95.5% accuracy on the Weizmann dataset is comparable with
the method in [40] with 83.7% and in [111] with 82.6%. Similarly, we obtained 94.3% accuracy
on the KTH dataset which is comparable with 84.3% using 3D Hessian features [129], 88.3%
accuracy using dense features [106], and 92.1% accuracy using 3D Harris features [122]. More-
over, our 91.5% accuracy on the UCF sports dataset is much better than the accuracy obtained
using the dense sampling [122] with 85.6%, the unsupervised feature learning [72] with 86.5%,
and the dense trajectory [44] with 88.2%. Considering the sparsity of asymmetric sinc filtering
(Fig. 3.18), our results are in contrast to the previous observations about better performance of
dense sampling/trajectories, showing the importance of proper temporal filtering for robust and
informative key point detection.

3.8 Conclusion

Existing salient feature detection methods utilize just the symmetric non-causal temporal fil-
ters. In this section, we introduced three asymmetric causal temporal scale-space kernels of
Log Gaussian, Poisson, and Scale-derivative Gaussian. Moreover, we developed a brand new
time-causal kernel of asymmetric sinc. We evaluated the role of asymmetry and causality of the
temporal kernels on salient feature detection. A comprehensive study in terms of precision of the
detected salient features, the reproducibility score under different geometric deformations, and
action recognition task have been performed. We used both Weizmann classification and robust-
ness data sets for the robustness tests and the Weizmann classification, the KTH, and the UCF
sports dataset for the action classification purpose. The results show that asymmetric temporal
filtering provides more precise and more robust (except under scale change) salient features than
symmetric Gabor filtering. Moreover, the non-causality just enforces a temporal delay in the
system and symmetry does not improve the performance. Among all the kernels, the asymmetric
sinc has the best performance.

In a standard discriminative BOW framework, we obtained higher action classification ac-
curacy using the salient features detected with asymmetric temporal filtering. However, the
improved performance in feature detection permits us to explore unique representation and clas-
sification strategies. In the next Chapter (Section 4.3), we propose multi-resolution action repre-
sentation which better encodes the motions compared to the global BOW representation that we
used in this section. Moreover, in Chapter 5, we propose the multiple classifier systems which
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improves the classification accuracy compared to the single classifier that we used in this section.
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(a) Precision score for each action type using all scales

(b) Precision score for each scale for all action types

Figure 3.14: Precision test on the video samples of the Weizmann classification dataset [11]. (a)
The result for each action type is averaged over all samples at nine spatio-temporal scales and
the bar shows the variance. Note that the precision of all filters reduces at faster motions such as
run. (b) The horizontal axis shows the nine spatio-temporal scales. The results are averaged over
93 video samples. Note that the precision is reduced by a spatial and/or temporal scale increase.
The asymmetric sinc performs the best. The other asymmetric filters perform better than the
symmetric Gabor filtering.
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Figure 3.15: Precision test for different thresholds on the Weizmann classification dataset [11].
Note that the symmetric Gabor kernel has a lower performance compared with the asymmetric
kernels. More specifically, the asymmetric sinc performs the best.
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(a) Precision score for each action type using all scales

(b) Precision score for each scale for all action types

Figure 3.16: Precision test on the video samples from the Weizmann robustness (deformations)
dataset [11]. (a) The horizontal axis represents the ”walking” action cluttered in different sit-
uations. The result for each action type is averaged over nine spatio-temporal scales. (b) The
horizontal axis shows nine spatio-temporal scales. Note that overall asymmetric filters perform
better than symmetric Gabor filter. The asymmetric sinc performs the best.
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Figure 3.17: Synthetic asymmetric kernel. The ratio α = σ1
σ2

controls the skewness of the kernel.
The kernel with α = 1 is the standard Gaussian function, α = 0 (i.e., σ1 = 0) makes a one-sided
Gaussian kernel, and α < 1 produces an asymmetric kernel with skewness towards the times
before the peak.
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(a) Average number of salient features for each action type using all scales

(b) Average number of salient features for each scale for all action types

Figure 3.18: Average number of salient features per second on the Weizmann classification
dataset [11]. (a) The result for each action type is averaged over all samples at nine spatio-
temporal scales and the bar shows the variance. Note that fewer salient features are detected for
actions performed in place (e.g., bend, pjump). (b) The result for each spatio-temporal scale is
averaged over 93 video samples. With a spatial and/or temporal scale increase, the number of
salient features is reduced.
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Figure 3.19: 3D local volumes of the motion features at scale σ = 4 and τ = 4 detected using
different temporal filtering (Gabor (first-row), log Gaussian (second-row, left), scale-derivative
Gaussian (second-row, right), Poisson (third-row, left), and asymmetric sinc (third-row, right)) in
the video of ”jumping” from the Weizmann data set [11]. The volumes show the spatio-temporal
extension of the features. Note that different features are localized at different locations in the
video volume.
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Figure 3.20: 3D local volumes of the motion features at scale σ = 4 and τ = 4 detected using
different temporal filtering (Gabor (first-row), log Gaussian (second-row, left), scale-derivative
Gaussian (second-row, right), Poisson (third-row, left), and asymmetric sinc (third-row, right)) in
the video of ”running” from the Weizmann data set [11]. The volumes show the spatio-temporal
extension of the features. Note that different features are localized at different locations in the
video volume.
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Figure 3.21: 3D local volumes of the motion features at scale σ = 4 and τ = 4 detected using
different temporal filtering (Gabor (first-row), log Gaussian (second-row, left), scale-derivative
Gaussian (second-row, right), Poisson (third-row, left), and asymmetric sinc (third-row, right))
in the video of ”boxing” from the KTH data set [110]. The volumes show the spatio-temporal
extension of the features. Note that different features are localized at different locations in the
video volume.

59



Figure 3.22: 3D local volumes of the motion features at scale σ = 4 and τ = 4 detected using
different temporal filtering (Gabor (first-row), log Gaussian (second-row, left), scale-derivative
Gaussian (second-row, right), Poisson (third-row, left), and asymmetric sinc (third-row, right))
in the video of ”running” from the KTH data set [110]. The volumes show the spatio-temporal
extension of the features. Note that different features are localized at different locations in the
video volume.
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Figure 3.23: 2D projection of the local motion features at scale σ = 2 and τ = 2 detected using
different temporal filtering (from top row to bottom row: (a) Gabor, (b) log Gaussian, (c) scale-
derivative Gaussian, (d) Poisson, and (e) asymmetric sinc) in the video of ”jumping jack” from
the Weizmann data set [11].
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Figure 3.24: 2D projection of the local motion features at scale σ = 3 and τ = 2 detected using
different temporal filtering (from top row to bottom row: (a) Gabor, (b) log Gaussian, (c) scale-
derivative Gaussian, (d) Poisson, and (e) asymmetric sinc) in the video of ”running” from the
Weizmann data set [11].
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(a) Reproducibility score for different views using all scales

(b) Reproducibility score for each scale for all action types

Figure 3.25: View-change reproducibility test. (a) The horizontal axis represents the ”walking”
action performed at different view angles with the camera. The result for different views is
averaged over all samples at nine spatio-temporal scales. As was expected, the performance
decreases by an increase in the view angle. Asymmetric filters can reproduce about 70% of the
salient features up to 60o view change, while Gabor cannot reproduce even half of that. (b) The
horizontal axis shows nine spatio-temporal scales and the bar shows the variance.
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Figure 3.26: Shape change of a symmetric Gaussian kernel and an asymmetric Poisson ker-
nel under sub-sampling. From top to bottom, the kernels are sub-sampled by a factor of 2,3,
and 4, respectively. Note that the shape of the Gaussian (left column) is preserved under sub-
sampling, while the shape of the Poisson (right column) varies significantly with increase in the
sub-sampling scale.
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(a) Reproducibility score for each action type using all scales

(b) Reproducibility score for each scale for all action types

Figure 3.27: Spatial scale-change reproducibility test. (a) The reproducibility score for each
of ten action types is averaged over all samples of the action and over 3 sub-sampling scales
{1/2, 1/3, 1/4}. Each bar shows the associated variance. (b) For each of 3 sub-sampled scales,
the reproducibility score is averaged over 93 video samples. Note that for both (a) and (b), the
Gabor filtering performs better than the other filters.
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(a) Reproducibility score for each action type using all rotations

(b) Reproducibility score for different rotation angles for all action types

Figure 3.28: Rotation reproducibility test. This plot shows the reproducibility score (3.7.3) of
different temporal filters under a rotation transformation of the video samples of the Weizmann
classification dataset [11]. (a) The reproducibility score for each of ten action types is averaged
over all samples of the given action and over 8 rotation angles [−60o, 60o]. The variances are too
small to illustrate. (b) The result for each of 8 rotation angles is averaged over 93 video samples.
Note that the asymmetric filters, specially the asymmetric sinc, perform better than the Gabor
filter under different rotation angles.
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(a) Reproducibility score for each action type using all shearings

(b) Reproducibility score for different (vertical, horizontal) shearings

Figure 3.29: Shearing reproducibility test. This plot shows the reproducibility score (3.7.3)
of different temporal filters under a vertical and horizontal shearing of the video samples of
the Weizmann classification dataset [11]. (a) The reproducibility score for each of ten action
types is averaged at 15 shearing transformations (combination of 4 vertical and 4 horizontal
shearing){(0.2, 0), (0.4, 0), ..., (0.6, 0.6)}. (b) The result for each of 15 shearing transformations
(excluding (0, 0)) is averaged over 93 video samples. Note that the asymmetric sinc performs
the best and the Poisson and scale-derivative Gaussian filters perform slightly better than Gabor
under shearing transformation.
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(a) Using Gabor kernel

(b) Using log Gaussian kernel (c) Using scale-derivative kernel

(d) Using Poisson kernel (e) Using asymmetric sinc kernel

Figure 3.30: Confusion matrices on the Weizmann classification dataset [11]. The scale-space
representation for the salient feature detection is obtained using spatial Gaussian kernel and dif-
ferent temporal kernels.Note that symmetric Gabor filter confuses ”skip”, ”jump”, and ”run” with
each other and other asymmetric filters have difficulty discriminating ”skip” from ”run”. This
is due to the similarity of motion patterns of these fast motions in this dataset. All asymmetric
filters perform better than Gabor and the asymmetric sinc is the best.
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(a) Using Gabor kernel

(b) Using log Gaussian kernel (c) Using scale-derivative kernel

(d) Using Poisson kernel (e) Using asymmetric sinc kernel

Figure 3.31: Confusion matrices on the UCF sports dataset [107]. The scale-space representation
for the salient feature detection is obtained using spatial Gaussian kernel and different temporal
kernels. Note that asymmetric since provides higher classification accuracy.
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Chapter 4

Action representation

This chapter focuses on the action representation (module B in Fig. 2.2) in a standard discrim-
inative BOW framework. Having detected spatio-temporal salient features at multiple scales
(Section 3), the question is how to combine them to obtain a more descriptive and discriminative
action representation. This question is important as the classifier uses this representation to dis-
criminate different action types and higher action classification is the objective of a recognition
framework. In this chapter, we propose a multi-resolution action signature approach. To this
end, the features of all scales are retained. There is therefore motion redundancy among features
which occur very close to each other and have significant overlap in their volumetric extensions.
The multi-resolution action signature explicitly benefits from the motion redundancy across dif-
ferent scales of salient features. We compare this representation with two existing approaches in
which the action signature is computed using scale-invariant features or the combined redundant
motion features. We show that the multi-resolution action signature provides a better descriptive
and discriminative representation of actions and hence, a higher action classification accuracy.

4.1 Literature review

Action representation is a mid-level modeling of the video contents. Depending on which char-
acteristic of the motion is modeled, this representation might require specific treatment at or after
the low-level feature extraction. For example, the scale invariant or redundant features might be
of interest for the action representation. Due to the intra-class variations in the motions of a
unique action, a robust incorporation of the salient features in the action representation requires
that the features be clustered into visual words. The set of visual words constitutes the dictio-
nary or the vocabulary over which an action is represented. A typical action representation is
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a histogram representing the frequency of the appearance of the features in a video. This rep-
resentation shows a global statistical representation of the features and referred to as a BOW
representation [68, 82, 118]. There are several methods that incorporate the structural informa-
tion such as the spatial or the temporal relationships among the features during the clustering
stage to obtain a more descriptive representation of the actions. Liu and Shah [47] computed the
clusters of the video words by merging the clusters produced by the K-means algorithm and then
using the spatio-temporal pyramid matching and spatial correlogram to include the structural in-
formation. Jiang and Ngo [133] developed a visual ontology based on the WordNet, a textual
ontology which is widely used for text retrieval. An action representation with implicit spatial
and temporal localization of features is developed by Marszalek et al. [88] using a multi-channel
SVM approach. To this end, multiple channels of the BOW representation with different spatial
and temporal extensions are constructed at different locations in the foreground volume. Liu et
al. [48] constructed a semantic visual vocabulary. To this end, they used motion salient features
of cuboids [25] to obtain a coarse localization of the regions of interest (ROI). They then incorpo-
rate the ROIs for the clustering of the static salient features into the vocabulary. Chen et al. [18]
revised K-means to incorporate the spatial localization of the features in the construction of the
dictionary. Wang and Mori [124] used a hidden conditional random field model to associate the
features to implicit body parts. Zhang and Gong [135] used the temporal relationship of the shape
features using a structural probabilistic latent semantic analysis framework. Wang et al. [134]
developed a dictionary of frame-words by incorporating the global frame features instead of local
visual words. Ryoo and Aggarwal [86] used Allen’s taxonomy of spatial and temporal relation-
ships between two events such as before, after, and during to describe the structural relationship
of salient features.

The incorporation of structural information provides a more descriptive dictionary, but adds
to the complexity of the framework. The global BOW is simple, efficient, and general enough
to be applied directly to different application domains with minimum changes. In this thesis, a
global BOW representation of the video is used. Here, we briefly explain different operations
that a method performs to construct a global BOW representation of an action. Two standard
approaches for action signature construction are then introduced.

Global BOW action representation

A typical BOW action representation requires the learning of the dictionary of visual words. The
inputs to the system are the salient features extracted from the video samples. A salient feature F
is localized at (x, y, t) with spatio-temporal scale of (σ, τ) and is described by a feature descriptor
such as a 3D SIFT [111] of size D × 1. Fig. 4.1 shows the operations for a typical BOW action
representation at the training and testing stages. In the training stage, the systems learn the
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Figure 4.1: The bold dark box shows the typical operations that are performed to obtain a BOW
representation of an action. At the training stage, the transformation matrix for projecting the
features into a lower dimensional space and the dictionary of visual words are learned. The video
of an action is represented by its signature which is the frequency of the salient features. The
signatures of different actions are used for the classification.

dictionary from the set of features extracted from all action types. Here, these operations are
briefly explained in order.

1. Dimensionality reduction. To improve the further matching process of the features and
reduce the computation cost [118], the features’ dimension should be reduced. In a linear
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setting, the transformation matrix A maps each feature descriptor of dimension D × 1 to
d× 1 (d < D).

fd×1 = ATd×DFD×1 (4.1)

Dimensionality reduction requires learning of the transformation matrix A with d × D
dimension using the features from the training video samples. Assume that the feature
number i in the video sample j ∈ {1, 2, ..., Jc} of action type c ∈ {1, 2, ..., C} from
the training set is denoted by F c

ij . The set of features of a video sample is represented
by V c

j = [F c
1j, F

c
2j, ..., F

c
njj

] in which the number of features nj varies from one video to
another depending on the speed of the motion and the length of the video stream. Matrix
X contains the collection of all features from all video samples from the training set.

X =
[
V 1
1 , ..., V

1
J1
, V 2

1 , ..., V
2
J2
, ..., V C

1 , ..., V
C
JC

]
(4.2)

Using principle component analysis (PCA) [13], we obtain a linear projection of the data
X to a reduced domain using the eigenvectors of the data distribution. To this end, the
mean is first removed from the feature matrix (X̃ = X − mean(X)). A singular value
decomposition (SVD) [13] can then decompose the data X̃ = UΣW T .

[U,Σ,W ] = SV D(X̃) (4.3)

Each column of the square matrix UD×D is an eigenvector. For dimensionality reduction,
the d dominant eigenvectors form the projection matrix AD×d = U(:, 1 : d).

2. Dictionary learning. The reduced-dimension salient features extracted from the video
samples of all actions in the training set are grouped using a clustering method such as
K-means [25, 122]. The clustering method splits the features into k clusters with the hope
that the features with similar characteristic appearance and motion are grouped together.
Each cluster is a visual word (or an action prototype) and the set of these clusters forms
the dictionary (or code book) of the visual words. One however should note that the set of
action prototypes are not necessarily the genuine set from which the action are generated.

3. Action signature. A global BOW representation of a video is the term frequency of ap-
pearance of the detected salient features. This signature is a normalized histogram and the
bins of the histogram are the learnt visual words. The contribution of each salient feature
in the histogram is to the closest visual word with a weight wij that can be computed using
a term frequency measure (4.4) (where Nj is the total number of features in the video j
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and Nij counts the number of features from the cluster i). The signature Scj of the video j
is thus a k × 1-length vector from an action type c.

wij =
Nij

Nj

(4.4)

In the testing stage, the learnt projection matrix A is used to reduce the dimensionality of
the features’ descriptor. The action signature of the test video is the term frequency of its salient
features over the learnt dictionary of visual words. Depending on whether the salient features are
scale-invariant or redundant features, a different action signature is obtained.

In a discriminative approach, at the training stage, the action signatures of different actions
are fed into a classifier such as a SVM [21] to learn the decision boundaries. At the testing stage,
the test signature is categorized as a specific class based on the its statistical similarity with the
signatures of the training videos.

4.2 Action signatures

Depending on whether scale-invariant features or a complete set of features at multiple spatio-
temporal scales are used for the action representation, different action signatures with different
discrimination power are obtained.

4.2.1 Signature of scale-invariant features

A feature maybe best described in its intrinsic scale [59, 81], so one might keep the salient
features just at their intrinsic scales [67, 68, 129] and remove them if they appeared in any
other scales (Section 3.6). The set of scale-invariant features provides a sparse representation of
the video contents. An action signature of a scale-invariant feature might loose its discrimination
power [129]. This is due to the fact that the scale selection approach is heuristic [88] and some of
the motion features might be incorrectly discarded which may result in the loss of discriminative
information.

4.2.2 Signature of redundant features

To avoid the inherent artifact of scale selection [88], one might keep all the salient features [122]
and not perform the post-processing scale-invariance operation. This might result in appearance

74



of features at the same point, but at different spatial or temporal scales. This provides a more
redundant representation of the motion information in the video and possibly provide a better
reproducibility in the matching of the test videos with those in the training. Note that the contri-
bution of the features at any scale in the action signature can be similar or weighted based on a
prior knowledge such as more discriminative power of fine-scale features.

In the next section, we introduce a multi-resolution approach for action signature construction
which keeps the motion resolutions of redundant features in the signature to provide a higher
discrimination power.

4.3 Multi-resolution action signature

The salient motion features at different spatio-temporal scales encode different characteristics of
the motion pattern and might have inherent motion redundancy. For example, the running action
contains many motion features occurring simultaneously at different spatio-temporal scales. The
entire body gyrates to the running beat while the arms sway in a synchronized fashion. It is
quite possible that if only one scale feature was chosen at a spatio-temporal location, these two
components, which are essential for defining the action of running, would not be both kept for
the classification stage. This is the reason to retain all spatio-temporal features for the action
representation and the eventual classification into action recognition. Moreover, the coarse-scale
features are more descriptive of average motion patterns, while the fine-scale features capture
the details of the motions. For example, actions such as running and jogging have a similar
average motion pattern with potentially similar coarse-scale features. The fine-scale features
should however provide a better discrimination of these motions (Fig. 4.2). We therefore propose
to treat the features of each scale separately and construct an action signature for each individual
scale. This choice is motivated by the benefit of motion redundancy across different scales,
the elimination of heuristics in scale selection of features with inherent artifacts [88], and the
usefulness of multi-resolution analysis [45].

The multi-resolution action representation has drawn inspiration from the texture recognition
literature [49, 99, 105]. In this literature, the features generated as part of a multi-resolution
decomposition of the image provided promising results in improving the classification accu-
racy. These techniques benefit from the redundancy of information across different scales for
better discrimination of different textures. Similarly, as the redundancy of motion information
is utilized in the multi-resolution signature, we expect to obtain higher classification accuracy.
Fig. 4.3 shows the concatenation of the action signatures to obtain a multi-resolution action sig-
nature. Note that the dictionary of a given scale is constructed from only the features of that
specific scale.
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Figure 4.2: Comparing the action signature of a sample video of ”jogging” and a sample video
of ”running” from the KTH dataset [110]. As can be seen (from top to down), the χ2 distance
(3.38) decreases as temporal scale of the features increases (for conciseness, the spatial scale is
fixed to σ = 2 in this figure). The signature of combined features gives a small difference which
might result in confusion. In a multi-resolution analysis approach, one can use the signature of
all spatio-temporal scales (See Fig. 4.3).

4.4 Experiments

4.4.1 Methodology

We use the cuboids feature detector [25] (Section 3.1.1) and 3D SIFT descriptor [111] (Sec-
tion 3.1.2) which have shown promising performance for action representation [111, 122]. Sim-
ilar to the experimental setting in Section 3.7.1, the salient features are detected at nine different
spatio-temporal scales. To quantize the salient features into visual words, we perform the K-
means clustering with random seed initialization ten times, for each k, and keep the result with
the lowest error. The number of clusters k is a parameter of choice from 100 to 1000 with interval
of 100. We then construct the corresponding action signature as the L1-normalized frequency of
the occurrences of the features in an action. Note that the Weizmann classification dataset [11]
has temporal scale change, but not the spatial scale change since the person does not noticeably
change their size relative to the camera frame. The KTH dataset [110] has both spatial scaling
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and temporal scaling. The temporal scaling is due to the change in duration of performing an ac-
tion by different people. A nearest neighbor (NN) classifier is used on the Weizmann dataset [11]
and an SVM classifier is used on the KTH dataset [110]. In the implementation, we consider the
multi-resolution action signature as a single component for matching of the action signatures.
Due to possible spatial and/or temporal scale change in the motion pattern of a test video with
that of the training videos, the signature of given scale of test video might be better matched
with the signature of another scale of a training video sample. One might therefore perform the
search for the best match for the signature of each scale and then find the best overall match of a
multi-resolution signature.

Figure 4.3: In a multi-resolution action signature, the action signature of all scales are concate-
nated in order. The combined feature space is then fed into a single classifier.
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4.4.2 Results

This section provides the experimental results of action classification using different action sig-
nature approaches.

Figure 4.4 shows the average classification accuracy as function of number of visual words
in the dictionary on the (a) Weizmann and (b) KTH data sets using multi-resolution action signa-
ture. The problem with a multi-resolution action signature is that with an increase in the number
of scales or the length of the action signatures, their serial concatenation results in a high dimen-
sional action signature with a potential decrease in the classification. That is, for the Weizmann
dataset, consider a dictionary with 500 clusters of visual words, for example. With nine spatio-
temporal scales, the multi-resolution action signature is a 9 × 500 = 4500 dimensional vector.
As can be seen in Fig. 3.18(b), on average, there is less than 30 salient features per second and
hence, less than 60 features in a typical two-second video sample. And, there is at most ten video
samples for each class of actions. The classification accuracy might degrade due to the curse of
dimensionality problem [49], as there might not be enough sample features for each cluster of
visual words at the training stage. The multi-resolution action signature is also quite sparse and
a proper distance metric plays a significant role in the matching of the signatures. Reducing the
dimensionality of the feature space might not be however helpful as the motion discrimination
power of the feature space might reduce, and consequently, the classification accuracy might
degrade. In fact, there is a trade off as the classification accuracy degrades due to both the curse
of dimensionality problem and the low dimensional feature space. This problem is less obvious
in the KTH dataset as there more samples features from different clusters due to longer video
sequences (between 10 to 15 seconds) and more number of videos (64 samples for the training)
from each action classes.

Table 4.1 shows the average action classification accuracy on different data sets for three
different strategies in utilizing multi-scale salient features. As can be seen, the multi-resolution
action signature performs better than the action signature of using redundant features. Moreover,
the performance of using an action signature of scale-invariant features is the lowest. This shows
that removing the motion redundancy across different features to obtain a sparser representation
of the video contents does not help the discrimination of motions.

Fig. 4.5 shows the confusion matrices for action recognition on the Weizmann classification
dataset [11] using different action signatures. Note that all methods have difficulty discriminating
”skip” from ”run” or ”jump”. This is due to the similarity of motion patterns of these fast motions
in this dataset. The multi-resolution action signature performs the best. Fig. 4.6 shows this
comparison for the KTH dataset [110]. As can be seen, the multi-resolution action signature
performs better in this dataset as well. More specifically, the multi-resolution action signature
significantly performs better than the other type of action signatures, providing more evidence
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why we should retain all the features and use a multi-resolution analysis approach. Note that
there exist both temporal scaling and spatial scaling in the KTH dataset. Fig. 4.7 shows the
confusion matrix for the UCF sports dataset [107] for the case in which the redundant features,
the scale-invariant features, or a multi-resolution action signature has been used for the action
representation. Again, the multi-resolution action signature provides the highest classification
accuracy.

Table 4.1: Average classification accuracy on different data sets. Note that the multi-resolution
action signature outperforms the approaches which use the scale-invariant features or combined
redundant features. The average is over 30 runs. The standard deviations are in order of 10−3
and are not reported here.

Classification Type KTH Weizmann UCF sports

Single classifier

with scale-invariant features
(Sec. 4.2.1)

89.1 % 90.2 % 71.3 %

with redundant features
(Sec. 4.2.2)

89.7 % 91.1 % 73.3 %

with multi-resolution action signature
(Sec. 4.3)

93.4 % 91.6 % 75.6%

4.5 Conclusion

In this chapter, we introduced the concept of multi-resolution action signature to provide a more
discriminative action representation. We showed that retaining the multi-scale features and en-
coding the motion resolution in the action signature results in an improvement of action classi-
fication. The high dimensional multi-resolution action signature may potentially suffer from the
curse of dimensionality, when there is not enough samples for each visual words at the train-
ing stage. In the next chapter, we propose the multiple classifier systems approach to solve this
problem.
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(a) Classification accuracy on the Weizmann dataset

(b) Classification accuracy on the KTH dataset

Figure 4.4: The classification accuracy using multi-resolution action signature versus the num-
ber of visual words in the dictionary on the (a) Weizmann and (b) KTH data set. The last bar
shows the average accuracy over all classifiers. The highest accuracy on the Weizmann datast
is obtained with a dictionary with 100 or 200 visual words. A possible explanation of decrease
in accuracy at 300 or 500 is that there might not enough samples of non-zero clusters of visual
words, and hence, the curse of dimensionality might occur.

80



(a) Using scale-invariant features (b) Using combined redundant features

(c) Using multi-resolution action signature

Figure 4.5: Confusion matrices for action classification on the Weizmann classification
dataset [11] using (a) an action signature of scale-invariant features, (b) an action signature of
combined redundant features, and (c) a multi-resolution action signature. Note that the multi-
resolution action signature performs the best.
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(a) Using scale-invariant features (b) Using combined redundant features

(c) Using multi-resolution action signature

Figure 4.6: Confusion matrices for action classification on the KTH dataset [110] using (a) an
action signature of scale-invariant features, (b) an action signature of combined redundant fea-
tures, and (c) a multi-resolution action signature. Note that the multi-resolution action signature
performs the best. Moreover, it discriminates similar actions such as ”jogging” and ”running”
much better than the other action signature types.
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(a) Using scale-invariant features (b) Using combined redundant features

(c) Using multi-resolution action signature

Figure 4.7: Confusion matrices for action classification on the UCF dataset [107] using (a) an
action signature of scale-invariant features, (b) an action signature of combined redundant fea-
tures, and (c) a multi-resolution action signature. Note that the multi-resolution action signature
performs the best.
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Chapter 5

Action classification

This chapter introduces a multiple classifier systems (MCS) framework as an alternative to exist-
ing classification approaches which use a single classifier [25, 68, 122] for human action recog-
nition (module C in Fig. 2.2). In this framework, the features of each spatio-temporal scale are
treated independently and fed into a separate classifier. The final decision is then made by com-
bining the results of all classifiers. This way, we hypothesize that the MCS provides a better
approach for the combination of multi-scale salient features. We then demonstrate that the MCS
framework can address the problem of choosing the proper length for the dictionary of visual
words at the action representation level and the choice of a distance metric for the action sig-
nature matching at the classification stage. These considerations are based on the reformulation
of the problem of choosing a single appropriate parameter for the recognition task to use a set
of parameters and then combine the results. Consequently, we introduce the multi-stage MCS
framework as a parameter-free multi-resolution analysis action recognition scheme.

5.1 Literature review

In a systematic design of a discriminative action recognition framework, the choice of the clas-
sifier scheme affects the choice of the features and/or the choice of the action representation
approach. Most of the existing discriminative bottom-up action recognition approaches use a
single SVM classifier to discriminate different actions from each other [25, 68, 112]. In this
setting, the salient features of different spatio-temporal scales are combined together at the be-
ginning of the action representation level. Consequently, a single action signature is fed into the
classifier. In Chapter 3, we showed that using robust salient features can improve the final classi-
fication accuracy. In Chapter 4, we showed the importance of the multi-resolution representation
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of human motions for a better classification. In this chapter, we mainly focus on the choice of
the classification approach.

In the existing method [25, 68, 112, 122], the support vector machine (SVM) classifier has
been widely used for human action recognition. Here, we briefly explain this classifier.

5.1.1 Support vector machine (SVM)

SVM has been widely used for classification of different visual categories [25, 68, 82]. The
original SVM has been proposed for a binary classification problem. In the case of multiple-class
classification, the efficient approach of one-against-all can be used [21, 119]. In this approach a
separate SVM is learnt for each individual class. The problem then breaks down into a binary
classification problem in which the training samples of a given class are the positive samples and
the rests are the negative samples. During testing, a test sample is fed into all SVMs and the
one with higher classification accuracy determines the class label. Here, we briefly explain the
binary SVM for the classification of two classes.

Consider the problem of separating a set of training samples (x1, y1), (x2, y2), ..., (xn, yn),
where xi ∈ <N is a feature vector (in our case, x is the action signature S) and each sample
is assigned to one of two classes yi ∈ {+1,−1}. Let’s assume that the two classes can be
separated using a hyperplane1 w.x − b = 0, in which w is the normal vector, perpendicular to
the hyperplane, and b/|w| is the offset of the hyperplane from the origin along the normal vector.
In absence of any prior knowledge about the distribution of the data, the optimum hyperplane is
the one which has the longest distance to the closest data of both classes (so-called functional
margin) [21, 119]. The maximum-margin hyperplane assures the lowest bound on the expected
generalization error 2 of the classifier. To maximize the distance (2/|w|), we need to minimize
|w|/2. The objective is then to find the optimal values of w and b using the following constrained
optimization problem.

min
w,b

1

2
||w||2 subject to yi(w.xi − b) ≥ 1 ∀i = 1, ..., n. (5.1)

Using the non-negative Lagrange multipliers αi, the problem is stated as

min
w,b

max
αi
{1

2
||w||2 −

n∑
i=1

αi[yi(w.xi − b)− 1]} (5.2)

1A hyperplane separates the feature space into two parts. For example, a line is a hyperplane in a 2D space or a
plane is a hyperplane of a 3D space.

2The generalization error is usually defined as the expected value of the square of the difference between the
learned function and the exact target (mean-square error).
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The corresponding αi must be set to zero for those points that can be separated as yi(w.xi− b)−
1 > 0. This include most of the points. The points with non-zero αi value are referred to as the
support vectors. By standard quadratic programming [21, 119], the normal vector is computed
as the linear combination of the training data.

w =
n∑
i=1

αiyixi (5.3)

The support vector lies exactly on the margin yi(w.xi− b)−1 = 0. The offset b can be computed
accordingly.

w.xi − b = 1/yi = yi ⇐⇒ b = w.xi − yi (5.4)

A more robust estimation of the offset is however obtained as the average over all NSV support
vectors.

b =
1

NSV

NSV∑
i=1

(w.xi − yi) (5.5)

In the case where two classes are not linearly separable, one can map the data from <N to
a high dimensional data space H by x → Φ(x) in which the data become linearly separable.
Computing such a mapping is not always possible as the feature space could be an infinite-
dimensional space. The representer theorem [119] shows that w =

∑n
i=1 αiyiΦ(xi). Instead

of direct minimization over w, the optimization can be done for the α. The decision rule is thus
f(x) = sgn(

∑n
i=1 αiyiΦ(xi).Φ(x)−b). In return, as we are interested in computing just the inner

product, we can use a Mercer kernel1 K such that K(xi, x) = Φ(xi).Φ(x). This turn around is
usually referred to as the kernel trick. A non-linear SVM finds an optimum hyperplane in the
feature space as

f(x) = sgn(
n∑
i=1

αiyiK(xi, x)− b) (5.6)

Most of αi’s are zero; those with non-zero value are the support vectors. Among different Mercer
kernels, the linear, RBF (Gaussian), sigmoid, (histogram) intersection [87], and exponential χ2

kernels (5.7-5.11) have shown promising performance for the comparison of two samples x and z
for different visual recognition tasks [22, 25, 46, 52, 68, 112, 110]. One however should note that
choosing the right kernel is application dependant and the fine tuning of the parameters might be

1A Mercer kernel is positive semi-definite, meaning that all of the eigen values of its kernel matrices are non-
negative. The use of a Mercer kernel insures that the optimization problem is convex and there is a unique solution
for that [21, 119].
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required. Instead of learning these parameters [120], we choose another approach based on the
MCS. Here, we list the Mercer kernels that will be used in Section 5.2.3 for this purpose.

KLinear(x, z) = xT z =
∑
i

xizi (5.7)

KRBF (x, z) = e−γ|x−z|2 = e−γ
∑
i |xi−zi|2 (5.8)

KSig(x, z) = tanh(axT z + r) (5.9)

KInter(x, z) =
∑
i

min(xi, zi) (5.10)

Kχ2(x, z) = e−γχ
2(x,z) , χ2(x, z) =

∑
i

|xi − zi|2

|xi + zi|
(5.11)

5.1.2 Design of the classification system

There are several factors that directly affect the design of a classification scheme. Among those,
the dimensionality of the feature space (i.e., the number of clusters in our case), the type of
the classifier, the type of distance metric, and the number of training samples play a significant
role in the final classification result. There are some generally accepted priors such as a better
performance of SVM with a high-dimensional (nonlinear) feature space, non-suitability of a
Euclidean distance for a non-Euclidean feature space such as normalized histograms, or possibly
low performance of a SVM with very few training samples. These considerations help in the
design of a classification system, but they cannot be generalized for all data types.

For the configuration of a bottom-up human action recognition system, we focus on three
parameters that affect the final classification accuracy. These parameters are aside from the
direct effect of the robust salient features on the classification accuracy.

1. The choice of the classification approach. Most existing methods use a single clas-
sifier [25, 68, 112, 122]. In Section 4.3, we argued why a multi-resolution analysis on
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the multi-scale motion features should provide a more discriminative action representa-
tion. More specifically, we introduced the multi-resolution action signature which shows
improvement over the (single-level) action signatures. The potential curse of the dimen-
sionality problem of the multi-resolution action signature might degrade the classification
accuracy (Fig. 4.4). The multi-resolution action signature is also fed into a single classi-
fier. Here, the objective is to determine whether a single classifier or a set of classifiers can
better characterize the multi-resolution nature of the human motions.

2. The choice of the dictionary length. The feature vector which is fed into the classifier is
the action signature with the same dimension as the number of visual words (i.e., action
prototypes) in the dictionary. Actions are better represented using a bigger dictionary with
more detailed motion information. A typical classifier might however be sensitive to the
dimensionality of the feature space considering the number of training samples, for exam-
ple. Therefore, it is not definite that a dictionary with a larger/smaller number of action
prototypes provides a better action representation and classification for different actions
performed in different scenarios. This is due to the fact that the learnt dictionary is not
necessarily the genuine set of action prototypes that has been used in performance of an
action. In addition, in discrimination of similar motions such as running and jogging, a
bigger dictionary is more discriminant as it has action prototypes with more detailed mo-
tion characteristics. In the discrimination of actions such as walking and running, a small
set of action prototypes should be sufficient. Considering the computational cost and the
constraint on the number of training samples, the proper choice of the dictionary length
is an open problem. Finding the right number of action prototypes is an open problem
in pattern recognition for clustering methods [91]. There are few approaches such as gap
statistics [116], jump method [114], or the prediction strength method [117] to automat-
ically find the number of clusters. The problem however is that no specific algorithm
perform well on all data types and with all clustering methods, and hence, makes them
application dependant.

3. The choice of a distance metric. A good classifier requires a distance metric that properly
captures the statistical difference between the representations of similar/dissimilar actions.
The choice of distance metric is not trivial as it directly affects the learning of the decision
boundaries and hence, the classification performance. Knowledge of the data statistics
helps in choosing the right distance metric. For example, the Euclidean distance is not
a proper distance metric to compare two normalized histograms [17]. In action recogni-
tion literature, the exponential χ2 and the radial basis function (RBF) are among the most
widely used distance metrics for the comparison of the BOW action signatures using a
SVM classifier [25, 68, 122]. The linear kernel is a special case of the RBF kernel [52].
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The sigmoid function is a popular kernel due its wide use in neural networks. The sigmoid
kernel is however quite sensitive to the parameter tuning [74]. The behavior analysis of this
kernel in [74] shows that a specific range of parameters (a > 0 and r < 0 in equation 5.9)
is more suitable for this kernel. More specifically, the kernel is not positive semi-definite,
but it is conditionally positive definite when r is small enough. In this case, when a is
close to zero, the sigmoid behaves like an RBF kernel. However, the RBF kernel typically
performs better and hence, it is usually recommended as a typical kernel for the SVM.
The (histogram) intersection kernel has also shown promising performance in the visual
recognition [87]. The RBF, sigmoid, and exponential χ2 kernels have a scale parameter to
be tuned, while the linear and intersection kernels are parameter free and hence, attractive
from the computational cost point of view.

For clarification, we use both terminologies of distance metric and similarity kernel according
to the context. In essence, the distance metric is the opposite of the similarity kernel. For
matching of the patterns in a classifier, two patterns are from the same category if they have the
least distance or the maximum similarity, statistically. Moreover, we use the term ”dictionary
length” and the ”number of clusters” of the visual words interchangeably.

In the next section, we introduce an MCS approach to address the above-mentioned problems
of choice in the existing discriminative approaches.

5.2 Multiple classifier systems (MCS)

An MCS framework uses a combination of classifiers to provide a decision which potentially
outperforms the decision of the best classifier. In fact, there are two reasons for using a combina-
tion of classifiers: efficiency and accuracy. In a large scale classification problem with complex
patterns, one requires an efficient classification approach. In a hierarchical classification setting,
for example, one uses a coarse-to-fine approach for the gradual reduction of the set of possible
classes. To classify a test pattern, one starts with a simple and cheap classifier with possibly a
low-dimension feature space to reduce the number of possible classes to which the pattern might
belong. Using a high dimensional feature space with a more complex classifier, the set of pos-
sible classes is then narrowed down to one. Higher accuracy is another objective of designing
a pattern recognition system using combination of classifiers. One classifier might be designed
to perform very well for a subset of patterns using a given feature set. Another classifier might
perform better for another subset of patterns with another feature set. This suggests that a combi-
nation of classifier designs with potentially complementary information about different patterns
should provide higher accuracy [56].
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Figure 5.1: In existing bottom-up action classification methods [68, 129, 122], the features of
all scales are fed into a single classifier (solid red block). In this chapter, we propose the MCS
framework to benefit from the motion redundancy across different scales for better action classi-
fication. In our MCS framework, the most common class label across the classifiers of different
scales is the final decision.

There are two main factors in the configuration setting of an MCS. First, the classifiers are
complementary, which means that the set of miss-classified actions by one classifier is differ-
ent from that of the other classifiers. Moreover, the classifiers which use different feature sets
obtained from different measurement modalities are more complementary. Second, the combi-
nation rule must be carefully selected to most effectively fuse the classifier decisions.

The design of an MCS is based on a decision optimization or a coverage optimization ap-
proach [65]. The decision optimization approach finds the proper combining rule for a given
ensemble of classifiers. The coverage optimization finds a proper construction of an ensemble of
classifiers to be used with a given combining rule. The approaches for the combination of clas-
sifiers [56, 65, 101, 108] are different in terms of (a) the type of output they combine (abstract
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level, ranking level, or measurement level), (b) the system topology (serial, parallel, or hybrid),
and (c) the degree of a priori knowledge they use. Fig. 5.2 shows the taxonomy from which
different approaches might be derived for the classifiers combination.

• Output type. In an abstract-level combination method, the top candidate estimated by
each classifier is used. In a ranked-level combination method, the entire ranked list of
candidates is used. A measurement-level combination method uses the confidence level of
each candidate in the ranked list.

• System topology. A combination method might use one of three topologies of serial, par-
allel, or hybrid. In a serial topology, the classifiers are arranged in cascade and the output
of each classifier is the input to the classifier at the next stage. In a parallel topology, the
outputs of all classifiers are combined in parallel. A hybrid topology uses both configura-
tions.

• Prior knowledge. A non-parametric classifier combination method does not require any
kind of a priori information on the set of classifiers. In contrast, a parametric method
requires information at the level of each individual classifier or on the behavior of the
entire set of classifiers.

The MCS has shown promising performance in a variety of applications such as texture anal-
ysis [49], identity recognition using different biometric modalities [56], and remote sensing [7].
When the input pattern of the classifiers are independent, a MCS is expected to perform better
than each individual classifier in the set. This is due to the fact that the collective behavior of the
classifiers has more information [101]. For details on the bounds on the the generalization error
of combined classifiers refer to [61, 62, 66].

In the next subsections, we introduce an approach to use MCS framework for the combination
of multi-scale features, the choice of dictionary length, and the choice of distance metric. We
investigate the performance of a MCS classification approach knowing that the feature sets which
are feed into individual classifiers in the framework are not independent across spatio-temporal
scales, different dictionaries, or distance metrics.

5.2.1 MCS for the combination of multi-scale features

The salient features at different spatio-temporal scales capture different motion characteristics.
Instead of combining these features at the action representation level, a MCS framework keeps
the motion information all the way up to the classification stage. In this framework, the features
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Figure 5.2: A taxonomy for the classifier combination can be expressed in terms of (a) the type
of outputs they use, (b) the system topology, and (c) whether they require any prior information.
The solid boxes show the approaches that we consider in this thesis: a non-parametric abstract-
level classifier combination method in a parallel topology.

of each scale are treated as a separate observation of an action and a separate classifier provides an
estimation of the class label accordingly. The classifiers at different scales are then combined for
the final decision. The observation is that the set of actions which are misclassified by the clas-
sifier of a given scale is probably different from those misclassified by a classifier from another
scale. This suggests that the set of all classifiers should provide a complementary information
about different actions and hence, a consensus decision should provide a higher accuracy.

Fig. 5.3 shows the confusion matrices on the KTH dataset when a nonlinear (RBF) SVM
classifier used the features of only one spatio-temporal scale. For each scale, a dictionary with
400 visual words was learnt from the features of that specific scale. As can be seen, each
classifier has different performance on different actions. For example, the classifier which used
the features at scale (4,3) perfectly recognized the ”hand clapping” action while its performance
was the worst for the classification of ”walking”. The classifier that used the features at scale (4,4)
had the highest accuracy in the recognition of ”walking”, but it had difficulty recognizing ”hand
clapping”. Moreover, it had the least performance recognition ”running”, while the classifier of
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scale (3,2) performed much better on this action. This observation is in support of the evidence
that different classifiers perform differently for different actions, and hence, a collection of the
classifiers should perform better. In fact, as Fig. 5.4 shows, indeed the classifier combination of
a MCS with a simple majority voting scheme outperforms all other nine classifiers.

Fig. 5.1 shows our MCS framework in a parallel topology which combines the classifiers at
their abstract-level. Note that the salient features at different scales have overlap and hence, their
action signatures are not independent. It is not therefore guaranteed that MCS always performs
better than the best classifier. In Section 5.2.1, we show the experimental results showing that the
MCS still preforms better than the existing methods which use a single classifiers. Note that there
is an overlap among the salient features at different scales, and hence, their action signatures are
not independent. It is not therefore guaranteed that the MCS always provides higher accuracy
than the best individual classifier.

The independent treatment of the features of each of the scales in our MCS framework dif-
fers from the boosting approaches that use multiple classifiers [85]. For example, an adaptive
boosting algorithm (AdaBoost [132]) uses a set of weak classifiers on the whole set of features
to improve the classification accuracy. In this algorithm, the subsequent classifier focuses on the
misclassified instances. AdaBoost is sensitive to noisy data and outliers. Our MCS approach is
quite general and can use an AdaBoost classifier as its base classifier.

5.2.2 MCS for the combination of multi-length dictionaries

The choice of dictionary and its length determines the descriptiveness of the action representa-
tion. Most of the existing methods set the length of the dictionary (i.e., the number of clusters
of the visual words) experimentally. As can be seen in Fig. 5.5 and Fig. 5.6, different classifiers
with different distance metrics perform differently with dictionaries with different lengths. We
reformulate the problem of choosing a proper dictionary length to using a set of dictionaries with
different lengths and then combining them using a MCS.

5.2.3 MCS for the combination of multiple distance metrics

The choice of distance metric directly affect the classification accuracy. Learning or selecting
the best distance metric reduces the generality of the classifier. We reformulate the problem of
choosing the proper distance metric to use a set of distances and then use a MCS to combine the
classification results of different distance metrics. We perform separate classification using each
individual distance metric and then combine the results using a MCS to make the final decision
about the class label.
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Figure 5.3: Confusion matrices for classification on the KTH dataset when a nonlinear (RBF)
SVM classifier uses the features of just a single spatio-temporal scale (From top to bottom, left
to right: nine spatio-temporal scales are (2,2), (2,3), (2,4), (3,2), (3,3), (3,4), (4,2), (4,3), (4,4)).
Note that each classifier performs differently for different actions. For example, note the two last
confusion matrices (bottom left). The classifier which uses the features of scale (4,3) perfectly
recognizes the ”hand clapping” action, while its performance is worse for the recognition of
”walking”. In contrast, the classifier of scale (4,4) has the highest accuracy rate in recognition
of ”walking”, but it is not that successful to recognize the ”hand clapping” action. As the MCS
uses a combination of classifiers, the collective behavior of the classifiers should provide higher
accuracy.

Note that our approach for combination of kernels is an alternative approach to the multiple
kernel learning (MKL) approach [120]. The MKL framework learns a linear combination of a
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Figure 5.4: This plot shows the average classification accuracy on the KTH dataset when a
nonlinear (RBF) SVM classifier uses the features of only one spatio-temporal scale. The two last
bars show the mean of the nine classifiers and the performance of a MCS. The MCS performs
the majority voting on the prediction of all nine classifiers. Note that the MCS outperforms all
the individual classifiers.
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predefined finite set of kernels to obtain the final kernel. For a classification task, our approach
treats each kernel independently and uses a separate classifier for each kernel. The results of the
classifiers are then combined for the final decision. In contrast, the final kernel of MKL feed
into a single classifier. Moreover, the MKL requires learning of the weights αi to determine the
contribution of each kernel (K(x, z) =

∑M
m=1 αmK(x, z; θm)). The MKL might be susceptible

to the overfitting problem similar to any learning algorithm, specially when the feature space of
the testing pattern is quite different from the training ones.

5.3 Multi-stage MCS

In the previous section, we introduced the classification combination to address three parameters
of an action recognition system. More specifically, classification combination is introduced for
(a) proper combination of multi-scale features, (b) the choice of the length of dictionary in an
action representation, and (c) the choice of distance metric for the classification stage. We argue
that a MCS which combines the decision of multiple classifiers at each stage can improve the final
classification accuracy. Intuitively, a framework which integrates all of the MCSs of different
stages should provide a more comprehensive information about different actions, and hence,
it should provide higher classification accuracy. This multi-stage MCS framework is a more
general framework for MCS which does not require explicit parameter setting or learning.

5.4 Experiments

5.4.1 Methodology

As a multi-resolution classification approach, the MCS gains its higher discrimination power
by fully exploiting the multi-resolution characteristics of the motion patterns. In this thesis, we
consider a simple but an efficient classifier combination approach. Our MCS framework uses
a non-parametric abstract-level combination method in a parallel topology with a SVM or NN
classifier as a base classifier (Fig. 5.1). The abstract-level combination method uses a voting
scheme such as majority voting and it is less complex than the methods which use a compli-
cated weighting scheme. This way the MCS’s computational cost is linear with the number of
classifiers. Moreover, due to the correlation of the salient features of different scales, they are
not independent input features, and hence, the majority voting is more appropriate than other
combination rules such as product rule [56]. The parallel topology opens an avenue towards a
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sequential prediction-correction approach for an efficient analysis of human actions. In this ap-
proach, the classifier that uses the fine-scale salient features can provide an initial prediction of
the class label quickly. As the system now has more time available, it extracts more features at
coarser scales and corrects the previous estimation. The non-parametric combination strategy is
more general and applicable for our framework as we did not consider any priors about the clas-
sifiers. From now own, we consider the majority voting of the parallel classifiers as the baseline
and leave the other choices as the future research. Note that the majority voting however requires
odd number of classifiers, to ensure there is no deadlock. One can instead use the confidence
level of the classifiers to turn around this problem.

We used the KTH dataset [110], the Weizmann classification dataset [11], and the UCF sports
dataset [107] for the evaluation of different salient features for the action classification. The
salient features of cuboids [25] are detected at nine different spatio-temporal scales as described
in Section 3.7.1. Consequently, a MCS combines the decision of nine base classifiers for the
final decision. For each scale, a separate dictionary is learnt using the features of just that scale.
The length of the dictionary (i.e, the number of clusters of visual words) varies from 100 to 1000
with an interval of 100. For the NN classifier, we used a χ2, a Euclidean, or an L1 (Manhattan)
distance metric. The SVM classifier uses a linear, an RBF, a sigmoid, an intersection, or a χ2

kernel.

5.4.2 Results

In this section, we present the results of action recognition accuracy using a MCS framework to
address the question of multi-scale feature combination, the choice of dictionary length, and the
choice of distance metric for action matching.

MCS for the combination of multi-scale features

Fig. 5.5 shows the average action classification accuracy on the KTH dataset [110] when multi-
scale features are fed into a MCS framework. The results are shown for different dictionary
lengths and different kernels. Generally speaking, a SVM classifier with the RBF, χ2, or the
intersection kernel perform slightly better than a SVM classifier with a linear or a sigmoid kernel.
The general theme on the performance of the MCS on this dataset is that the larger dictionaries
might perform better. More specifically, to obtain an accuracy above the mean, a dictionary with
at least 600 visual words is required.

Fig. 5.6 shows the average action classification accuracy on the Weizmann dataset [110]
when multi-scale features are fed into a MCS framework. The results are shown for different
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dictionary lengths and different distance metrics. Generally speaking, a NN classifier with the
χ2 or the L1 distance metric performs better than the once which uses the Euclidean distance.
The low performance of the Euclidean distance is due to the fact the action signature which are
normalized histogram are not lie in a Euclidean space. The general theme of the NN classifier
on this dataset is that the smaller dictionaries might perform better.

One important point from comparison of Fig. 5.5 and Fig. 5.6 is that the observation of one
experiment should not be generalized to another experiment. More specifically, while the big-
ger dictionary with a SVM base classifier provides a better classification on the KTH dataset,
a smaller dictionary with an NN classifier performs relatively better on the Weizmann dataset.
Several factors explain this observation. (1) The temporal and spatial variations in the sample
videos of the KTH dataset are much more than those at the Weizmann dataset. More specifi-
cally, the motion patterns of ”jogging” and ”running” in the KTH dataset are relatively similar.
A bigger dictionary can better capture finer motion patterns and hence, it can give a better dis-
crimination power to an action model. Moreover, there exists fast zooming in the sample video
sequence for the KTH dataset. The video samples of the Weizmann data set are captured in front
of a fixed camera which removes the challenges due to spatial variations. (2) The NN classifier
typically performs better with low-dimension feature space. The SVM classifier however works
fine for a high-dimension nonlinear feature space. (3) The SVM might not perform well under
small training sample sizes. That is the reason why we choose a NN classifier for the Weizmann
dataset with at most ten video samples of each action.

Table 5.1 compares the average classification accuracy using different classification approaches
on the KTH dataset [110], the Weizmann dataset [11], and the UCF sports dataset [107]. Note
that the MCS obtains higher classification accuracy by combining the base classifiers of the fea-
tures at different scales. The other approaches use a single classifier with scale-invariant features,
redundant features, or a multi-resolution action signature (see Section 4.2 for details on single
classification approaches).

MCS for the combination of multi-length dictionaries

We reformulate the problem of choosing or learning the proper length of the dictionary (i.e., the
right number of clusters of the visual words) into using a set of different lengths of dictionaries
and then combine the results. Fig. 5.7 shows the classification accuracy on the KTH dataset
when a classifier combination is performed on the results of classifiers with different dictionary
lengths. The figure shows this experiment when different kernels have been utilized by the SVM
base classifier. Using the classifier combination approach, one can obtain a performance of at
least equal to the mean which is independent of the choice of the dictionary length. Higher
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Table 5.1: Average classification accuracy on different data sets. Note that the MCS obtains
higher classification accuracy than the other approaches which use a single classifier. For the
KTH and the UCF sports datasets, the base SVM classifiers use the RBF kernel and for the
Weizmann dataset, the base NN classifiers use a χ2 distance metric.

Classification Type KTH Weizmann UCF sports

Single classifier

with scale-invariant features
(Section 4.2.1)

89.1 % 90.2 % 71.3%

with redundant features
(Section 4.2.2)

89.7 % 91.1 % 73.3%

with multi-resolution action
signature (Section 4.3)

93.4 % 91.6 % 75.6%

MCS
for combination of multi-
scale features (Section 5.2.1)

94.2 % 96.4 % 77.3 %

classification accuracy is obtained when the base SVM classifier uses a sigmoid or an RBF
kernel, compared to when the SVM uses an intersection kernel. The performance of χ2 and
linear kernels is in between.

Fig. 5.8 shows the classification accuracy of combining MCS classifiers with different dictio-
nary lengths on the Weizmann dataset. Note that the results when the base NN classifiers use a
L1 distance metric is always greater than or equal to the mean. With a χ2 distance, the classifier
combination approaches 100% accuracy, but it then drops to just above 95%. With a Euclidean
distance, the classifier combination accuracy could exceed the mean, but its performance is still
lower than those which use a L1 or a χ2 distance.

MCS for the combination of multiple distance metrics

The classification performance is directly affected by the choice of the distance metric it uses to
compare different patterns. Fig. 5.9 shows the average classification accuracy on the KTH dataset
when the SVM base classifiers of the MCS use five different kernels. As can be seen, there is not
a single distance metric (i.e., similarity kernel in the case of SVM classifier) that performs the
best at all dictionary lengths and for all classification approaches. In fact, with a given dictionary,
one distance metric might perform the best while it performs the worst with another dictionary.
For example in this figure, the RBF kernel provides the lowest accuracy using a dictionary with
100 clusters of visual words, while it provides the highest classification accuracy with a 400-
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cluster dictionary. It is therefore not trivial to determine which distance metric performs best
with a given length dictionary and a given classifier. In the same figure, the accuracy when a
MCS combines the results of multiple MCS classifiers with different distance metrics are shown
as well. The last bar on the horizontal axis shows the average accuracy over the dictionary length.
This bar shows that the combination of the results of different kernels performs better than each
individual kernel.

Fig. 5.10 shows the average classification accuracy for the Weizmann dataset when a NN
classifier uses different distance metrics including a χ2 (3.38), a Euclidean (equation 5.12 with
p = 2), or an L1 (Manhattan) metric (equation 5.12 with p = 1). As the last bar shows, for
this dataset, the χ2 kernel performs slightly better than the combination scheme. The low perfor-
mance of the Euclidean distance is in support of the fact that this distance is not a proper metric
for the histogram comparison (see Section 5.1.2).

Dp(x, z) = |x− z|p =
∑
i

|xi − zi|p (5.12)

Multi-stage MCS

Table 5.2 shows the average classification accuracy on different data sets using multi-stage MCS.
For the KTH and the UCF sports data sets, with five different kernels and ten different dictionar-
ies, the multi-stage MCS combines fifty MCS classifiers which use the SVM base classifier. For
the Weizmann dataset, with three different kernels and ten different dictionaries, the multi-stage
MCS combines thirty MCS classifiers which use the NN base classifier. Note that the multi-stage
MCS obtains higher classification accuracy than the average of the MCSs for all three data sets.

Table 5.2: Average classification accuracy on different data sets using multi-stage MCS. Note
that the multi-stage MCS obtains higher classification accuracy than the average of the MCSs.

Data set Base classifier Scheme Classification accuracy (%)

KTH SVM
Multi-stage MCS 95.05 %
Mean of MCSs 93.94 %

Weizmann NN
Multi-stage MCS 95.35 %
Mean of MCSs 94.11 %

UCF sports SVM
Multi-stage MCS 78.6 %
Mean of MCSs 77.6%
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To show an example of the efficiency of a multi-stage MCS, Fig. 5.11 shows the action
classification accuracy using this approach when just two kernels are combined. The combination
is performed for two kernels of linear and RBF for the base SVM classifier. In this figure, the
horizontal axis shows the number of MCSs that have been combined. Up to ten in the horizontal
axis shows the results of combining the MCSs which use a linear SVM base classifier with ten
different dictionaries. The next ten show the classification accuracy when the MCSs with the
RBF SVM base classifier are also included in the combination. Note that when all the MCSs are
combined, the classification accuracy reached to the maximum accuracy that all the MCSs could
provide. This is a fundamental improvement in terms of independency of the multi-stage MCS
from the choice of distance or the dictionary length. Moreover, the multi-stage MCS could reach
to the accuracy of the best classifier even though the feature sets fed into the classifiers are not
independent.

Fig. 5.12 shows the confusion matrix of different MCSs and their combination on the KTH
dataset. Two sets of MCSs with ten different dictionaries use linear and RBF kernels in their
SVM base classifier. Note that when the multi-stage MCS is performed to combine the de-
cision of all twenty MCSs (Fig. 5.12(c)), the final decision is better than each set of MCSs
(Fig. 5.12(a), 5.12(b)). More specifically, this combination helps better discrimination of actions
such as ”jogging” which is quite similar to the ”running” in the KTH dataset.

5.5 Conclusion

In this section, we proposed a MCS approach for multi-resolution action classification. In this
approach, the features of each individual spatio-temporal scales are treated separately and con-
sequently fed into a separate base classifier. A simple but efficient classifier combination based
on majority voting provided us with a higher classification accuracy than the existing approaches
that use a single classifier. In fact, the collective behavior of the features are better captured
using a MCS framework. We further extended the idea of classifiers combination to address the
problems of the dictionary’s length and the choice of distance metric. In fact, instead of selection
or learning, we performed separate classification for each individual dictionaries with different
lengths. We then combined the results for the final decision. A similar approach has been used
for the combination of classifiers which use different distance metrics. This approach provided
us with a classification accuracy higher or equal to the mean of all classifiers. We also proposed
the multi-stage MCS framework which unifies different MCSs at different stages of human action
recognition framework for further improvement of the classification accuracy. The multi-stage
MCS is a parameter-free multi-resolution action recognition framework.
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Figure 5.5: MCS on the KTH dataset using SVM base classifiers with different kernels (from
left to right, top to bottom: linear, RBF, sigmoid, intersection, and chi-squared). The dashed line
shows the mean over different dictionary lengths. The main observation here is that the choice
of kernel and dictionary length is not trivial. See Table 5.1 for the comparison of a MCS with
other classification approaches.
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Figure 5.6: MCS on the Weizmann dataset using NN base classifiers with different distance
metrics (χ2, Euclidean, and L1). The dashed line shows the mean over different dictionary
lengths. The main observation here is that the choices of distance metric and the dictionary
length are not trivial. See Table 5.1 for the comparison of a MCS with the other classification
schemes.
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(a) Linear kernel

(b) RBF kernel (c) Sigmoid kernel

(d) Intersection kernel (e) χ2 kernel

Figure 5.7: Combination of MCS classifiers with multi-length dictionaries on the KTH
dataset [110]. Note that a sigmoid and then an RBF kernel (second row) has a better discrimina-
tion power than the other kernels.
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(a) χ2 distance

(b) Euclidean distance (c) L1 distance

Figure 5.8: Combination of MCS classifiers with multi-length dictionaries on the Weizmann
dataset [11]. Note that a L1 kernel have a better discrimination power than the other kernels as
it keeps the final results greater or equal to the mean. Note that the mean of χ2 and L1 is higher
than that of Euclidean distance.
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Figure 5.9: Average classification accuracy using MCSs with different kernels on the KTH
dataset. The last bar shows the mean over the clusters. Note that the combination of kernels
provides a better overall performance.
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Figure 5.10: Average classification accuracy using MCSs with different distance metrics on the
Weizmann dataset. Here, the base NN classifier uses a χ2, a Euclidean, or an L1 distance metric.
The last bar shows the mean over the clusters. The combination of distances provides a higher
overall classification accuracy than the Euclidean and L1 distances, but slightly lower than the
χ2. Note to the low performance of the Euclidean distance.
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Figure 5.11: Multi-stage MCS on the KTH dataset. The results of two sets of MCSs are combined
using a multi-stage MCS. The first ten MCSs use ten different dictionary lengths with a linear
kernel for the SVM base classifier. The next ten MCSs use the RBF kernel. The sold blue line
shows the increase of accuracy when all the MCSs are combined using a multi-stage MCS. Note
that the multi-stage MCS could reach to the performance of the best MCS.
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(a) Linear kernel (b) RBF kernel

(c) Combined linear and RBF kernels

Figure 5.12: Confusion matrices of using different MCSs and a multi-stage MCS on the KTH
dataset. The base SVM classifiers use a linear kernel (a) or an RBF kernel (b). The MCSs of
different dictionaries are combined. In (c), using a multi-stage MCS, the MCSs with different
dictionaries and two kernels of linear and RBF kernel are combined. Note that the multi-stage
MCS performs better and it can better recognize the ”jogging” which is similar to ”running”.
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Chapter 6

Multi-stage MCS with new features

This chapter integrates the approaches which are introduced in the previous chapters for different
components of an action recognition system. It is of interest to see the performance of an action
recognition system which uses a set of robust salient features, a proper action representation, and
an appropriate classification approach. This requires a comprehensive comparison of different
approaches introduced in the previous chapters. In Chapter 3, we introduced a new temporal
multi-resolution filtering approach for robust local salient feature detection in video. In Chap-
ter 4, we introduced the concept of multi-resolution analysis of human motion patterns using a
multi-resolution action signature. In Chapter 5, we investigated the design of a new multi-stage
MCS as a parameter-free multi-resolution framework. In this chapter, we briefly highlight the
findings of the previous chapters and then provide the experimental results of using a multi-stage
MCS framework for the human action recognition using multi-scale features extracted from both
symmetric and asymmetric video filtering.

6.1 New salient features

Chapter 3 introduced the asymmetric temporal filtering for a multi-resolution representation of a
video signal for the salient feature detection. More specifically, four asymmetric temporal filters
of Poisson, asymmetric sinc, scale-derivative Gaussian, and log Gaussian are compared with the
symmetric Gabor filter. Using a common local feature detection framework, we showed that an
asymmetric temporal filtering provides salient features which are more precise and more robust
compared to those obtained from the symmetric Gabor filtering. Moreover, the features detected
using the asymmetric filters provided us higher classification accuracy when they are fed into a
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standard bottom-up discriminative recognition framework. In fact, our novel asymmetric sinc
filtering performed the best. Poisson and scale-derivative Gaussian performed better than the log
Gaussian. All of these asymmetric filters perform better than the symmetric Gabor filter.

6.2 Multi-stage MCS

In Chapter 4, we argued that a multi-resolution motion analysis is required to better represent an
action. A multi-resolution action signature provides us a higher classification accuracy using a
standard single classification approach. Due to dimensionality problem of the multi-resolution
signatures, we introduced the MCS framework (Section 5.2.1) which improves the classification
accuracy. In Section 5.3, the MCS has been further extended to multi-stage MCS to address the
proper approach for the combination of the multi-scale features, the length of the dictionary by
which an action is described, and the choice distance metric for comparing the action signatures.
The multi-stage MCS is a parameter-free framework which improves the overall classification
accuracy compared to those methods which use a single classifier.

6.3 Experiments

6.3.1 Methodology

We use a multi-stage MCS framework (Section 5.3) to compare the performance of different
salient features. The salient features are detected after a multi-resolution temporal filtering of the
video using a symmetric Gabor, an asymmetric sinc, a Poisson, a scale-derivative Gaussian, or a
log Gaussian filter. The spatial filter is a 2D Gaussian. The video signal is filtered at three spatial
and three temporal scales. The salient features are therefore detected at nine spatio-temporal
scales similar to the setting in Section 3.7.1. Similar to the configuration setting in Section 4.4.1,
a dictionary of visual words for each spatio-temporal scale is computed. The number of clusters
of the visual words varies from 100 to 1000 with interval of 100. In the design of the multi-
stage MCS, the base SVM classifiers are used for the KTH and UCF sports datasets and the
NN classifiers are used for the Weizmann dataset. The SVM might use five different similarity
kernels including a linear, the RBF, a sigmoid, an intersection, or a χ2 kernel (equations 5.7-
5.11). The NN classifiers might use three different distance metrics of χ2, Euclidean, or L1.
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6.3.2 Results

Table 6.1 shows the average classification accuracy using a multi-stage MCS framework with
features detected using five different temporal filters of the Gabor, log Gaussian, sclae-derivative
Gaussian, Poisson, and an asymmetric sinc filter. The results are shown for the Weizmann, the
KTH, and the UCF sports datasets.

From Section 3.7.4, we have seen that the features detected using asymmetric temporal filter-
ing of the video provide higher classification accuracy when they are fed into a single classifier.
When the features are fed into a multi-stage MCS framework, we have different observation.
From Table 6.1, we see that the asymmetric sinc performs the best and the performance of Gabor
exceeds the other asymmetric filters. One possible explanation is that the base classifiers which
use the features of an asymmetric filter such as scale-derivative Gaussian on the KTH dataset
are not as complementary as those of Gabor. This might be due to high correlation among the
features of different scales or the fact that dictionaries with different sizes might not that much
complementary to describe different characteristics of an action. Consequently, the gain in using
multiple classifiers using asymmetric features of log Gaussian or the scale-derivative Gaussian
is not as the asymmetric sinc or the Gabor. As we stated in section 5.2, the MCS performs op-
timum when the features of the base classifiers are independent and complementary. However,
one should note that the multi-stage MCS outperforms single classifier for all five types of fea-
tures. Using a multi-stage MCS framework, in summary, the asymmetric sinc performs the best
in all three datasets. On KTH dataset, the Gabor is the second best and on the Weizmann the
Gabor and the scale-derivative Gaussian are the second best. On the UCF sports dataset, the log
Gaussian is the second best and the performance of the Gabor is the least.

Table 6.1: Average classification accuracy on the Weizmann, KTH, and UCF sports data sets
using multi-stage MCS. The accuracies are shown for features detected using five different tem-
poral filters. Note that the asymmetric sinc has the best performance in all three datasets.

Classification Type KTH Weizmann UCF sports

Multi-stage MCS

Gabor 95.05 % 95.35 % 78.7 %
Log Gaussian 93.75 % 93.02 % 90.7 %

Scale-deri. Gaussian 92.8 % 95.35 % 82 %
Poisson 93.5 % 93.02 % 85.3%

Asymmetric sinc 95.7 % 98 % 96.7 %

Fig. 6.1, Fig. 6.2, and Fig. 6.3 show the confusion matrices using multi-stage MCS classi-
fication framework on the Weizmann classification dataset [11], on the KTH dataset [110], and
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on the UCF sports dataset [107], respectively. The scale-space representation for the salient fea-
ture detection is obtained using spatial Gaussian filter and different temporal filters of a Gabor, a
log Gaussian, a scale-derivative Gaussian, a Poisson, and an asymmetric sinc. In the Weizmann
dataset, the motion pattern of the ”skip” and ”run” is similar. In the KTH dataset, the motion pat-
tern of ”running” and ”jogging” are quite similar. In the UCF sports dataset, the most confusion
is between motion pattern of ”run” and ”riding”. Generally speaking, all the filters have difficulty
discriminating these similar motion patterns. However, in all three dataset, the asymmetric sinc
can better discriminate these similar actions and provides the highest classification accuracy.

6.3.3 Comparison with existing methods

This thesis introduced a new approach to detect robust salient features and a new approach for
multi-resolution action classification using the multi-stage MCS. In a common framework for
detection and classification, these contributions have been fairly compared with the existing
methods in in Table 3.2 and Table 4.1, respectively. However, a direct comparison of the fi-
nal classification results with other methods in the action recognition literature is not trivial. This
is because different publications consider different experimental settings such as the choice of
dictionary length, the similarity kernel, or the classification scheme even though they used the
same data sets.

Here, we provide Table 6.2 just for showing where our contributions stand in comparison with
the state-of-the-art methods for human action recognition on the KTH [110] and Weizmann [11]
data sets. The intention is not to show all possible publications in this field. Different methods
in Table 6.2 might use (a) different feature detectors or descriptors, (b) the video segmentation,
and (c) different classification frameworks. For example, the hidden conditional random fields
method utilized by Wang and Mori [124] is much more complex than the simple BOW modeling
and it performs background subtraction to compute motion fields. Similarly, the local SVM
approach by Weinland et al. [127] requires video segmentation and computation of the 3D HOG
at densely distributed locations within the foreground volume. It is not therefore fair to directly
compare these methods with our method which uses a simple global BOW representation of
sparse local motion features and does not require video segmentation.

Our intention is not to advocate the report of the best result for a comparison. For example,
as Fig. 5.10 shows, we also obtained perfect classification of the actions in the Weizmann dataset
using the baseline cuboids [25] (features detected by the temporal Gabor filtering) when a MCS
with 200 visual words in the dictionary and a χ2 or aL1, or our combined distance MCS approach
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(a) Using Gabor kernel

(b) Using log Gaussian kernel (c) Using scale-derivative kernel

(d) Using Poisson kernel (e) Using asymmetric sinc kernel

Figure 6.1: Confusion matrices on the Weizmann classification dataset [11] using multi-stage
MCS classification framework. The scale-space representation for the salient feature detection is
obtained using spatial Gaussian filter and different temporal filters.Note that all the filters have
difficulty discriminating ”skip” from ”run”. This is due to the similarity of motion patterns of
these fast motions in this dataset. The asymmetric sinc performs the best.
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is used. We also obtained perfect classification on this dataset using the features of an asymmetric
sinc with a MCS framework with 100 visual words in the dictionary and a χ2 distance metric.

Without video segmentation and with a similar BOW setting, we obtained 93.3% accuracy
on the KTH dataset which is comparable with 84.3% using 3D Hessian features [129], 88.3%
accuracy using dense features [106], and 92.1% accuracy using 3D Harris features [122]. More-
over, our 96.7% accuracy on the UCF sports dataset is much better than the accuracy obtained
using the dense sampling [122] with 85.6%, the unsupervised feature learning [72] with 86.5%,
and the dense trajectory [44] with 88.2%. Considering the sparsity of asymmetric sinc filtering
(Fig. 3.18), our results are in contrast to the previous observation about better performance of
dense sampling in realistic scenario [122], showing that the quality of salient features is more
important than the number of salient features. Even though the salient features from background
might provide some contextual information, they might be harmful in discrimination of different
activities as well. In fact, our results on the KTH and UCF sports shows the importance of sparse
salient feature detection and effectiveness of asymmetric temporal filtering for robust and good
quality salient feature detection.

6.4 Conclusion

In this section, we compared the performance of different salient features in a new classification
framework of multi-stage MCS. The main observation is that for all type of features, the multi-
stage MCS provides higher classification accuracy than the existing classifiers (See Table 3.2 and
Table 4.1). We also show that the multi-stage MCS provides comparable results with the existing
state-of-the-art methods in the literature. The simplicity and being parameter-free are the main
advantages of using multi-stage MCS compared to more complex recognition frameworks.
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Table 6.2: Comparison of different state-of-the-art methods for human action recognition on the
KTH [110], Weizmann [11], and the UCF sports [107] data sets. Note that not all of the methods
listed here use a similar experimental setting. For the multi-stage MCS, we report the results
when the features detected from the scale-space representation of the video using an asymmetric
sinc filtering. We could obtain the best performance of 95.7% on the KTH dataset and 96.7%
on the UCF sports dataset. On the Weizmann dataset, the asymmetric since obtains perfect
classification using a MCS with 100 visual words in the dictionary and a χ2 distance metric. The
average performance using multi-stage MCS is however 98%.

Method KTH actions Weizmann actions UCF sports
Multi-stage MCS 95.7 % 98 % 96.7 %
Wang et al. [44] 94.2 % - 88.2 %

Le et al. [72] 93.9 % - 86.5 %
Wang et al. [122] 92.1 % - 85.6 %

Wang and Mori [124] 92.5 % 100 % -
Weinland et al. [127] 92.4 % 100 % -

Zhang et al. [136] 91.33 % 92.89 % -
Klaser et al. [57] 91.4 % 84.3 % -

Liu and Shah [47] 94.16 % - -
Zhao and Elgammal [137] 91.7 % - -
Rapantzikos et al. [106] 88.3 % - -

Willems et al. [129] 84.3 % - -
Dollar et al. [25] 81.2 % - -

Schuldt et al. [110] 71.7 % - -
Ali et al. [5] - 92.6 % -

Goodhart et al. [40] - 83.7 % -
Scovanner et al. [111] - 82.6 % -
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(a) Using Gabor kernel

(b) Using log Gaussian kernel (c) Using scale-derivative kernel

(d) Using Poisson kernel (e) Using asymmetric sinc kernel

Figure 6.2: Confusion matrices on the KTH dataset [110] using multi-stage MCS classification
framework. The scale-space representation for the salient feature detection is obtained using
spatial Gaussian filter and different temporal filters. Generally speaking, all the filters have dif-
ficulty discriminating ”jogging” from ”running”. This is due to the similarity of motion patterns
of these fast motions in this dataset. The asymmetric sinc has the best overall performance and
it also could better discriminate these actions.
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(a) Using Gabor kernel

(b) Using log Gaussian kernel (c) Using scale-derivative kernel

(d) Using Poisson kernel (e) Using asymmetric sinc kernel

Figure 6.3: Confusion matrices on the UCF dataset [107] using multi-stage MCS classification
framework. The scale-space representation for the salient feature detection is obtained using
spatial Gaussian filter and different temporal filters. The asymmetric sinc has the best overall
performance and it can better discriminate different actions.
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Chapter 7

Conclusion and future research

7.1 Conclusion

This thesis introduced three contributions to improve the human action recognition in video us-
ing a discriminative bottom-up method. First, an asymmetric temporal filtering (Chapter 3) was
introduced for a robust salient motion feature detection. Second, a multi-resolution action repre-
sentation using a multi-resolution signature was introduced in Section 4. Finally, a multi-stage
multiple classifier systems (MCS) (Chapter 5) was introduced as a parameter-free classification
framework for a multi-resolution analysis of human actions.

For robust local salient feature detection, three asymmetric temporal filters of log Gaussian,
scale-derivative Gaussian, and Poisson from the scale space theory and a brand new filter of
asymmetric sinc were compared with the widely-used temporal symmetric Gabor filter. By ex-
amining the precision score and the reproducibility scores under geometric deformations such
as view change or affine transformations, the features which were obtained using an asymmetric
temporal filtering had shown better performance compared with the features obtained from the
symmetric temporal Gabor filtering. Moreover, the asymmetric features were more informative
than the symmetric features as they provided higher classification accuracy with a standard bag-
of-words representation and a single discriminative classifier. In all experiments, except spatial
scale changes, the asymmetric filters performed better than the symmetric temporal Gabor filter-
ing. Among the asymmetric filters, our novel asymmetric sinc performed the best for precision,
reproducibility, and classification accuracy.

For a proper discrimination of human actions, an efficient MCS framework with a parallel
topology has been introduced. This framework better encodes the multi-resolution characteristics
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of the motion patterns in different human actions. Using non-parametric classifiers and a simple
majority voting for the classifiers combination, the MCS framework has been generalized to
provide a better differentiation of different human actions. This general classifier combination
approach has been then extended to address two other problems, namely the choice of a distance
metric and the number of visual words in the dictionary/codebook. This way MCS had been
applied at different stages of the recognition process, from low-level feature combination, to
mid-level action representation, and high-level classification. This multi-stage MCS provides
improved classification accuracy, and it is free of experimental selection/tweak for the choice of
distance metric or dictionary length.

In Section 6.3.2, we compared the performance of the multi-stage MCS using features de-
tected from different asymmetric/symmetic temporal filters. The multi-stage MCS outperforms
the single classifier no matter which feature is being used. However, the performance with fea-
tures obtained from an asymmetric sinc filtering is the highest on all three datasets of the Weiz-
mann, the KTH, and the UCF sports dataset. Based on the experimental results on the feature
detection and action classification, the multi-stage MCS framework which uses the multi-scale
features obtained from the asymmetric sinc filtering is recommended for the task of human action
recognition in video.

We introduced the concept of time-causal and asymmetric temporal filtering for robust local
salient feature detection in video. One should note that the spatial and temporal causality of the
local events in video is also important for proper modeling of the human motions. In the next
section, we highlight a new approach to address this problem and other future directions that one
can take to extend this thesis.

7.2 Future directions of this research

Both introduced concepts of asymmetric temporal filtering and the multi-stage MCS classifi-
cation require more theoretical and experimental analysis. Here, some of the future research
directions to extend the approaches introduced in this thesis are explained briefly.

7.2.1 Action modeling using a dynamic bag-of-words

In Section 4.1, we explained that the global BOW representation of an action is an order-less
representation and does not take into account any spatial or temporal relationship among the
features. The structural constraints and the order of movements of different body limbs are
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Figure 7.1: The observation matrix Y shows the probability of appearance of the visual words at
each time instant in a video. The probability is maximum at the time of feature’s occurrence and
will degrade according to the temporal scale of the visual words.

important information in modeling the human motions. Intuitively, incorporation of this infor-
mation in the action modeling should provide a better discriminative action representation and
classification. There are some methods such as HCRF [124] which model the spatial structures
and the structured pLSA [135] which incorporates the temporal relationships in the action mod-
eling. In general, the dynamic Bayesian networks are the graphical models capable of modeling
both spatial and temporal structures in time-series data [64, 93, 131].

Here, we introduce a novel system-theoretic approach for this modeling. In this approach,
each action is modeled as a linear/non-linear dynamic system observed through the dynamic
BOW representation (Fig. 7.1). Using a dynamic system identification method, one can then
differentiate different actions from each other. The input to the system is the sequence of visual
words which are extracted using the bottom-up feature extraction approach. The system theoretic
modeling of the actions is a top-down approach. Therefore, this framework is a unification of the
bottom-up and top-down approaches for human action recognition.

In a system theoretic formulation of the human actions, the temporal evolution of the visual
words Y = {y1, y2, ..., yt, ..} in an action is modeled using a linear dynamic system. The system
is governed by a set of (hidden) states x ∈ <n and is observed through the visual words y ∈ <m.
A linear dynamic system (LDS) is then formulated as follows.

xt+1 = A xt + ωt, ω ∼ ℵ(0, Q) (7.1)
yt = C xt + νt, ν ∼ ℵ(0, R) (7.2)
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in which, the inaccuracy of the linear modeling of the relations between the observation yt
and the hidden states xt is modeled by the observation noise νt. The system noise ωt models
the uncertainty of the linear dynamic modeling of the hidden states. These noise models are
assumed to be from normal distributions with different standard deviations. The parameters of
the system are the dynamic model A ∈ <n×n, the observation model C ∈ <m×n, and the noises
covariance matrices R and Q. The state of the system is initialized at x0. In a compact form, we
can represent an LDS system with L = (A,C,Q,R, x0). Note that the standard LDS is related
to probabilistic graphical models [93].

Having learnt different LDS systems for different actions, the objective of the classification
of an unknown action is to find the best LDS match to the LDS of the unknown action. In
order to determine the difference between two LDS systems, different distance metrics can be
used. Among those, three main distance metrics are: 1) algebraic metrics such as the Binet-
Cauchy kernel [121], 2) geometric distances based on subspace angles between the observability
subspaces of the LDSs [20] , and 3) the information theoretic metrics like the KullbackLeibler
divergence [14].

The Binet-Cauchy kernels, for example, can compare two dynamic systems [121]. From the
family of these kernels, the trace kernel KTrace compares the distance between two zero-mean
LDS systems L = (A,C,Q,R, x0) and L′ = (A′, C ′, Q′, R′, x′0). If two LDS systems have the
same underlying and independent noise processes, the closed form of the trace kernel can be
defined as [121]:

KTrace(L,L
′) = xT0 Px0 +

λ

λ− 1
trace(QP +R) (7.3)

in which P =
∑

t λ
tAT (t)CTC ′A′(t). If λ|A||A′| << 1, then P is the solution of the Sylvester

equation P = λATPA′ + CTC ′. Note that the trace kernel KTrace(L,L
′) depends on the

initial states of the two LDS systems. In action recognition task, however, an initial state
independent metric is required as it does not matter when an action starts. An initial state-
independent alternative of the Binet-Cauchy kernel such as the maximum singular value kernel
(Kσ(L,L′) = σmax(P )), or the determinant kernel (Kd(L,L

′) = det(P )), or the the initial
state-independent trace kernel (Kt(L,L

′) = Trace(P )) should thus be used [121].

A non-linear dynamic system (NLDS) should better model human actions as the underlying
motions of the body limbs are non-rigid. One might also consider a nonlinear relationship be-
tween the measurement model and the observation (i.e., Φ(yt) = C xt). One can thus use the
kernel PCA [17] for the decomposition of the variation of the observation matrix and a non-linear
form of the similarity kernel for system matching.
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7.2.2 Nonlinear scale-space filtering

In Section 3.3, consistent with the existing literature, we used a spatial Gaussian filtering for
spatio-temporal salient feature detection. For the time domain, we introduced four different
causal and asymmetric temporal filters in addition to the widely used the symmetric Gabor fil-
ter [25]. We then showed that the scale-space representation of the video signal which is filtered
by an asymmetric filtering is more reliable for the salient feature detection than that of a sym-
metric temporal filtering. However, all of these spatial and temporal filters are linear, meaning
that the conceptually meaningful structures such as edges [126] and salient motions [113] might
be blurred and delocalized. The delocalization of these important structures might result in the
false positive detection of salient features no matter which saliency criteria is used. To address
this problem, one need to develop a non-linear (scale-space) filtering approach which prevents
both spatial and temporal dislocations.

For a non-linear scale-space filtering, adaptive non-linear smoothing functions should be
used so that they can control the smoothing and hence prevent blurring and delocalization of the
important structures. More specifically, instead of a constant diffusion in equation 3.24, the edge-
stopping gs and motion-stopping gt functions (7.4) can control the energy redistribution in the
scale-space filtering. This way the smoothing at high spatial gradients∇us, corresponding to the
edges, and at high temporal gradients ∇ut, corresponding to the salient motions, is minimized.
In contrast, the smoothing is maximized at homogeneous regions where the gradient values are
lower than a threshold λ. The non-linear scale-space filtering has been widely used in the image
processing literature for image restoration, enhancement and feature extraction [126]. Among
different choices, the non-linear stopping functions (7.4) in anisotropic diffusion literature [100]
or the Tukey error norm [10] in robust estimation are the most widely used ones. One can there-
fore use these non-linear functions in the spatio-temporal diffusion equation (3.24) by replacing
them with the constant conduction terms. Note that this PDE is time-causal meaning that the
temporal diffusion is unilateral to just the past frames. It is hence different from the straightfor-
ward extension of spatial anisotropic diffusion to the temporal domain [36] which requires both
past and future frames. One can also use this extension with the fusion with the Schrodinger’s
equation [39] to derive a time-causal complex scale-space filter.

gr(|∇ur|) = 1/(1 + (|∇ur|/λr)2) , r ∈ {s, t} (7.4)

Note that in our framework of action recognition the exact location of the features have not
been used. Moreover, small dislocation of the features should not be that much important. This
is because the descriptor of the salient features are incorporated for the further processing and
the descriptor is usually computed in a relatively wide region around the feature. Aside from
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the fact that a non-linear filtering should produce fewer false positive detection, in registration
tasks such as structure from motion, the well-localized features are essential and directly affect
the performance.

7.2.3 Optimized MCS

In Section 5.2, we introduced the MCS as a multi-resolution analysis approach in which the
salient features of each individual scale is fed into a separate classifier. The decision of all clas-
sifiers are then combined for the final decision making. For testing, the current implementation
of the MCS determines the class label k∗ ∈ {1, ..., K} for the features of a given scale using the
corresponding scale’s classifier. That is the action signature Si computed using the features of
scale i are fed into only the classifier fi and this classifier finds the class label c for this action
signature. This implementation works fine when the video samples of a given action are captured
at similar distance to the camera and with similar motion speeds, in both training and testing. In
real world scenario, the spatial and temporal scales of the testing videos might not be the same
as the training video samples or even those in the training set might be captured at different
speeds or from different distance from the cameras. More specifically, the action signature Si
might have a better match in another spatio-temporal scale j∗ in which j∗ ∈ {1, ..., i, .., n}. That
is the probability that the classifier f ∗j determines for the most probable class label of Si is the
maximum among those probabilities that the other classifiers can find the best match. This way
the MCS will be optimized to perform a better combination on the classifiers.

j∗ = argj maxP (fj|Si) (7.5)

P (fj|Si) = max
k
P (f cj |Si) , ∀c ∈ {1, ..., C} (7.6)

Since the features of finer scales are computed faster and are typically more discriminative
than those of coarser scales (See Fig. 5.4 for the performance decrease with increase in the
temporal scale), one might start with a sequential search to find the best match for the action
signatures. When the classifier f ∗j finds the best match for the signature of a given scale, it is
removed from the list of classifiers. One might consider different priors or heuristics to constraint
the search for the best classifier f ∗j , such as the list of classifiers for the Si which is computed
from features of spatio-temporal scale (σm, τn) can include five neighbor classifiers trained using
the features of immediate neighbors (m = i± 1, n = i± 1). This policy may avoid the poorest
classifier being assigned to the coarsest scale. Moreover, it is more efficient, specially when there
are many expensive classifiers to be searched. Note that the idea of searching for the optimum
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matching of signatures can be applied to the multi-resolution action signature (Section 4.3) as
well.

7.2.4 Combined symmetric-asymmetric features

The local salient features obtained from an asymmetric temporal filtering of the video signal
are different from those obtained from a symmetric temporal filtering. Moreover, both type of
features had shown promising performance for human action recognition task. Intuitively, a com-
bination of both types of features should provide a more complete representation of the video and
possibly better encoding and differentiation. The combination of symmetric and asymmetric fea-
tures should provide a more dense sampling from the video contents, and thus, it might provide
higher reproducibility score. Higher classification accuracy is therefore expected with the cost
of more computation time.

7.2.5 Experiments and data sets

A general problem in the literature of human action recognition is that different publications
consider different experimental settings even though they used the same data sets. This makes the
direct comparison of different methods sometime difficult. Moreover, the problem with a well-
defined training/testing setting is that a fair judgement on the performance of different methods
is not possible. Possibly a better approach is to use different training/testing proportions in
which samples are randomly divided. In addition, there is not that much of attempt to perform
recognition across different datasets. That is training is performed on one dataset and testing on
another data set. This way, a ranking of datasets might be obtained. To do this, one might want
to start with the set of actions which is common across multiple datasets.

The three datasets of the Weizmann [11], the KTH [110], and the UCF sports that have
been used in this thesis are among the standard datasets introduced to the literature of action
recognition. In the Weizmann dataset, the camera is fixed and the body limbs are visible. The
KTH dataset is more challenging. The video samples in this dataset were captured in both indoor
and outdoor with variations such as fast zooming, blurring, illumination changes, and occlusion
of the body limbs with cloth. In both Weizmann and the KTH datasets, however, the background
is simple and there is only one person performing a single action. In addition, both Weizmann
and KTH data sets contain multiple cycles of different actions. Test on more challenging data
sets with possibly several people and more natural background is an important step towards
better understanding of the behavior of different features and classifier approaches. The UCF
sports dataset is one realistic example of this type of datasets that we used in this thesis.
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There are several data sets designed for different objectives. For example, the INRIA Xmas
Motion Acquisition Sequences (IXMAS [128]) contains videos of thirteen daily-live motions
performed by a singe actor each three times and captured under different views. The HOHA
(HOllywood Human Actions) datasets contain video clips of different human actions from the
Hollywood movies. The first version of this dataset (HOHA1 [71]) contains 233 video samples
of eight actions and the second version (HOHA2 [88]) contains 12 classes of human actions and
10 classes of scenes. This dataset has over 3669 video clips, approximately 20.1 hours of video
in total. There are some clutters, background movements, occlusions, multiple people, and non-
periodic actions in the HOHA data sets. In addition to these challenges, the VIRAT dataset [96]
has been recently released for the surveillance applications with both ground camera videos and
aerial videos captured with wide ranges of spatial and temporal resolutions, with 230Hz frame
rates and 10-200 pixels in person-height. The VIRAT dataset is a first attempt towards large scale
dataset for the human action recognition.
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