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Abstract

Sampling theory studies the equivalence between continuous and discrete representa-
tions of information. This equivalence is ubiquitously used in communication engineering
and signal processing. For example, it allows engineers to store continuous signals as
discrete data on digital media.

The classical sampling theorem, also known as the theorem of Whittaker-Shannon-
Kotel’nikov, enables one to perfectly and stably reconstruct continuous signals with a con-
stant bandwidth from their discrete samples at a constant Nyquist rate. The Nyquist rate
depends on the bandwidth of the signals, namely, the frequency upper bound. Intuitively, a
signal’s ‘information density’ and ‘effective bandwidth’ should vary in time. Adjusting the
sampling rate accordingly should improve the sampling efficiency and information storage.
While this old idea has been pursued in numerous publications, fundamental problems
have remained: How can a reliable concept of time-varying bandwidth been defined? How
can samples taken at a time-varying Nyquist rate lead to perfect and stable reconstruction
of the continuous signals?

This thesis develops a new non-Fourier generalized sampling theory which takes samples
only as often as necessary at a time-varying Nyquist rate and maintains the ability to
perfectly reconstruct the signals. The resulting Nyquist rate is the critical sampling rate
below which there is insufficient information to reconstruct the signal and above which there
is redundancy in the stored samples. It is also optimal for the stability of reconstruction.

To this end, following work by A. Kempf, the sampling points at a Nyquist rate are
identified as the eigenvalues of self-adjoint extensions of a simple symmetric operator with
deficiency indices (1, 1). The thesis then develops and in a sense completes this theory. In
particular, the thesis introduces and studies filtering, and yields key results on the stability
and optimality of this new method. While these new results should greatly help in making
time-variable sampling methods applicable in practice, the thesis also presents a range of
new purely mathematical results. For example, the thesis presents new results that show
how to explicitly calculate the eigenvalues of the complete set of self-adjoint extensions of
such a symmetric operator in the Hilbert space. This result is of interest in the field of
functional analysis where it advances von Neumann’s theory of self-adjoint extensions.
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Chapter 1

Introduction

Sampling theory is the study of certain spaces of continuous functions in which there
is an equivalence between the function and a suitable collection of discretely-taken am-
plitude samples of the function. Namely, these continuous functions need to be stably
reconstructible from their sample values on a discrete set of points.

The classical example of such a function space is the space of Ω-bandlimited functions.
A function is said to be Ω-bandlimited if its Fourier transform vanishes outside the closed
interval [−2πΩ, 2πΩ]. The frequency upper bound Ω is known as the bandlimit and its
double is referred to as the bandwidth. The Fourier transform of a function φ(t), denoted
by Φ(ω), is defined to be

Φ(ω) = F
(
φ(t)

)
=

∫ +∞

t=−∞
φ(t) e−iωt dt.

The classical sampling theorem or the theorem of Whittaker-Shannon-Kotel’nikov
(WSK) [1] states that an Ω-bandlimited function φ(t) can be completely reconstructed for
all t ∈ R from its amplitudes {φ(tn)}+∞

n=−∞ on a discrete set of points with an equidistant
spacing tn+1 − tn = 1

2Ω
by the following reconstruction formula

φ(t) =
+∞∑
−∞

G
(
t, tn

)
φ(tn). (1.1)

The left hand side is a continuous function and the right hand side is a summation over its
discrete samples. The function G

(
t, tn

)
in the middle is the so-called reconstruction kernel

and it equals sinc
(
2Ω(t− tn)

)
in the case of the classical sampling theorem.

The classical sampling theorem has been attributed to E. Whittaker and J. Whittaker
in their work on interpolation and cardinal functions [3, 4, 5] and to Kotel’nikov in the

1



Russian literature [6] around the same period of time, in the 1920’s. However, it was
Shannon who realized the fundamental importance of the classical sampling theorem in
communication engineering and information theory in 1949 [1, 2]. So the classical sampling
theorem is often simply referred to as the Shannon sampling theorem. Ever since,
the classical sampling theory has found a tremendous number of practical applications
in communication engineering and signal processing. It provides a way of storing and
recovering continuous signals (music recordings on compact disks or voice signals on cell
phones) from their digital sample data. There is of course also the need for quantization
for this purpose, but quantization is secondary for the purposes of this work, and we will
not touch upon it further, except for the study of reconstruction stability in Chapter 7.

The classical sampling theory has been generalized in several directions, to include for
example, non-uniform sampling, bandpass sampling, interlaced or derivative sampling. For
a general review of the classical sampling theorem and its various generalizations, please
see the standard textbooks [7, 8, 9] or the classical review papers [10, 11, 12].

The primary goal of this thesis is to develop a new generalization of the classical sam-
pling theory which is adapted to time-varying bandwidths. This non-Fourier generalized
sampling theory uses as its mathematical engine the functional analytical theory of self-
adjoint extensions of symmetric operators with deficiency indices (1, 1) in Hilbert space.

This thesis is split into two main parts: the mathematical development and the gener-
alized sampling theory. The first part of the thesis reviews the relevant functional analyt-
ical methods in Chapter 2 and develops new results on the spectral theory of self-adjoint
extensions in Chapter 3. Readers whose main interests are in the generalized sampling
theory may skip those two chapters on mathematics and proceed directly on the general-
ized sampling theory from Chapter 4 to Chapter 8. The second part of the thesis discusses
the sampling, reconstruction, filtering, stability and interpolation of the new generalized
sampling theory for time-varying bandwidth. This part is designed to be legible also to
engineers who may not want to delve deeply into the functional analysis but who may want
to make practical use of the generalized sampling theory.

1.1 A New Generalized Sampling Theory for Time-

varying Nyquist Rates

Elements of the space of Ω-bandlimited functions possess a constant bandlimit Ω. The clas-
sical sampling theory allows perfect and stable reconstruction of continuous Ω-bandlimited
signals if the samples of the signal are taken at a rate of 1

2Ω
. This sampling rate is known

as the Nyquist rate [13]. The Nyquist sampling rate is important because it is the critical
sampling rate, above which there is redundancy in the taken samples (over-sampling) and
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Figure 1.1: Comparison of signals with constant and time-varying Nyquist rates. The red circles
indicate the discrete samples. The green dots are the sampling points, which are equidistantly
spaced in the classical sampling theory and non-equidistantly spaced in the new generalized
sampling theory.

below which one has insufficient samples to recover the continuous signal (under-sampling).
It is also the sampling rate which gives most stable reconstruction.

The classical sampling theorem is involved in most analog-digital conversion processes.
A typical example is to store a continuous music or voice signal as discrete bits in the
digital media and then to reconstruct the continuous signal later. Due to the fact that
human ears are sensitive only to the frequencies less than 20 kHz, a music signal can be
filtered to retain this bandlimit and remove all the negligible frequencies higher than 20
kHz. Then by the classical sampling theory, the filtered music signal can be completely
determined by and perfectly reconstructed from its discrete samples taken at every .025
milliseconds. The frequency range for human speech is roughly from about 50 Hz to 5 kHz.
So one often cuts off the bandlimit at frequencies much smaller than 20 kHz and samples
at a lower constant rate, e.g. in telephony.

In practice, a signal’s ‘effective bandwidth’ or ‘information density’ could vary in time.
Consider a simple example of a music signal which suddenly oscillates rapidly in a period
of time, e.g., when listening to a song with a lower pitch for a piano part and a high pitch
and overtone spectrum for a violin. The constant bandlimit of this signal calculated by
Fourier transform may be quite high due to the large frequencies needed to resolve the
sharp features that occur in that short time interval of high pitched violin activity. These
high frequency components determine the overall bandlimit Ω, despite the fact that the
signal is slower-varying most of the time. Sampling the signal at this high rate due to
the constant bandwidth can be very inefficient. It should be possible to improve sampling
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efficiency by adjusting the sampling rate accordingly.

Intuitively, such a signal can be said to obey a ‘time-varying bandwidth’ because in a
short period of time the signal contains high frequencies, while at other times, the signal
varies slowly and contains only low frequencies. Besides the examples of music signals and
speech recordings, the spatial domain for natural images also processes effectively varying
frequency contents. If one can sample and reconstruct the signal at a rate according to the
signal’s behaviour, one should be able to minimize the redundancy in the samples taken
and obtain a more efficient storage of sample values.

The bandwidth of a function is a scalar number defined by Fourier transform. Any
attempt to define the bandwidth as a function of time in the framework of Fourier analysis,
e.g. via windowed Fourier transform, is difficult and non-unique. However, the Nyquist
sampling rate, i.e., the inverse of the bandwidth, if interpreted as the critical sampling
rate between over- and under-sampling, can be defined as varying in time. One takes more
samples when the signal has higher activity and takes less samples when the signal has
slow-varying oscillations, while maintaining the ability to perfectly and stably reconstruct
the signal from these discrete samples. The bandwidth defined as the inverse of this
time-varying Nyquist rate is then well defined as a time-dependent function. The terms
‘time-varying bandwidth’ and ‘time-varying Nyquist rate’ will be used interchangeably in
this sense in this thesis, but the latter is preferred simply because it can be defined from
first principles while the term ‘time-varying bandwidth’ is only secondarily defined through
it.

Some of the key questions which have been investigated in this thesis are:

• How can a reliable concept of continuously time-varying bandwidth, or equivalently
time-varying Nyquist rate be defined?

• How can a given raw signal be pre-filtered to ensure that it is in the space of functions
possessing a desired time-varying Nyquist rate?

• How stable is the reconstruction of a signal from a space of functions of a time-varying
Nyquist rate? And, is sampling at this varying rate indeed optimal?

• Using functional analytic techniques, how can one calculate the complete set of all
Nyquist rate sampling grids for a given function space. (The result is also of purely
functional analytic interest.)

• What is the behavior of the generalized sampling methods in concrete example, such
as the Gibbs’ phenomenon?

The Shannon sampling method is usually applied in a four-step-algorithm: (1) Determining
the Nyquist rate, (2) filtering, (3) sampling, and (4) reconstruction. In this thesis, I show
that also for the generalized sampling method all these steps can be carried out.

4
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Figure 1.2: Examples of the reconstruction kernels in the classical and generalized sampling
theory.

(1) Determining the Nyquist rate: Analyze the frequency contents of the raw signals
of interest φraw(t) to choose a Nyquist rate of sampling (either constant or time-
varying). Then, the Nyquist sampling rate is specified by an increasing and infinite set
of sampling points {tn}∞n=−∞, which will here be referred to as the Nyquist sampling
grid.

(2) Filtering the raw signals: Filter the raw signal φraw(t) to obtain a signal φ(t) in
the function space in which functions possess the pre-specified Nyquist rate. The filter
operator P has the following form:

φ(t) = (Pφraw)(t) =

∫ ∞
−∞

φraw(t̂) P (t, t̂) ν(t̂) dt̂. (1.2)

(3) Taking and storing the discrete samples: Take and store samples of φ(t) at the
Nyquist rate, namely, {φ(tn)}∞n=−∞ on the Nyquist sampling grid {tn}∞n=−∞;

(4) Reconstructing the continuous signals: Reconstruct φ(t) for all t from the taken
samples {φ(tn)}n via the reconstruction formula in Eq. (1.1).

The Shannon sampling method is restricted to the constant Nyquist sampling rate with
tn+1− tn = 1

2Ω
, but the new generalized sampling method deals with time-varying Nyquist

rates. It is important to emphasize that the generalized sampling theory uses different
function spaces and different expressions for the reconstruction kernel. Functions in the
function space specified by a generally non-equidistant Nyquist sampling grid {tn}∞n=−∞
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are no longer the conventional Fourier-defined bandlimited functions with a constant band-
width.

Nevertheless, both Shannon and the generalized sampling methods take the same form
of reconstruction and filtering as in Eq. (1.1) and (1.2). Only, the expressions of the
reconstruction kernel G(t, tn), filter kernel P (t, t̂) and filter measure ν(t̂) are different. See
Figure 1.2 for an example of the reconstruction kernel G(t, tn) in the generalized sampling
method. These three functions can be expressed in terms of the pre-specified set of points
{tn}∞n=−∞ in closed form. See Section 5.2.1 for the explicit formulae and an overview of
the generalized sampling method.

The second part of the thesis builds the mechanics of Step (2) - (4), namely, the new
generalized sampling method for filtering, sampling, and reconstructing signals with time-
varying Nyquist rates. The first step of determining the Nyquist sampling grid {tn}n to
specify the frequency contents of the studied signals is dependent on the practical situation
at hand and can be analyzed with the help of time-frequency analysis tools like windowed
Fourier transform. It will not be the focus of this thesis, but a simple example can be
found in Chapter 8.

1.2 Comparison to Existing Sampling Methods

The generalized sampling theory presented in this thesis makes a new addition to the
existing sampling methods which deal with non-uniform sampling points or time-varying
bandwidth.

While the new generalized sampling theory deals with generally non-equidistant sam-
pling points, it is very different from the conventional non-uniform sampling [14, 15], be-
cause the generalized sampling theory reconstruct signals with a time-varying bandwidth.
The non-equidistant sampling points at the time-varying Nyquist rate indeed represent
the behavior of signals’ time-varying frequency contents. Traditional non-uniform sam-
pling tends to reconstruct the Fourier-defined Ω-bandlimited functions (i.e. functions with
a constant bandwidth) from non-uniformly distributed samples. In this case, the optimal
equidistant sampling points in the case of Shannon are replaced by certain non-equidistant
sampling points, and a more complicated corresponding reconstruction kernel is used. How-
ever, such reconstruction is possible only if the average sample density, more precisely, the
Beurling density, stays the same as Shannon’s constant sampling density [16]. Hence, no
efficiency is gained.

The corresponding reconstruction kernel functions associated with the non-uniform
sampling points tend to be very unstable and computationally expensive, especially given
the counterintuitive examples of super-oscillating functions [17, 18]. As concluded in [14],
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the tighter sampling points are spaced, the larger the maximum amplitude of the recon-
struction kernel function is. The amplitude tends to approach infinitely when the spacing
between adjacent points approaches zero. Hence, the non-uniform sampling points are not
optimized for the reconstruction of the Ω-bandlimited functions in terms of computational
efficiency and stability.

However, the generalized sampling theory here deals with functions that are pre-filtered
with a time-varying bandwidth. Hence, the function space in the generalized sampling
theory is no longer the space of Fourier-defined Ω-bandlimited functions. It consists of
functions already with time-varying frequency content. As a consequence, sampling points
spaced at the time-varying Nyquist rate are optimized for the reconstruction of these
functions in the sense that if any sampling point deviates from the Nyquist sampling
grid, this will deteriorate the stability of reconstruction, and adding/removing a point
from the Nyquist sampling grid will lead to redundancy/insufficiency of information for
the reconstruction. In other words, similar to the constant Nyquist rate in the classical
sampling theory, the time-varying Nyquist rate in the generalized sampling theory is the
optimized rate for stability of reconstruction and is the critical rate between over- and
under-sampling. These two points will be shown in Section 5.3 and 7.2.

Signals with time-varying frequency contents are usually characterized using the Win-
dowed Fourier Transform (Short-Time Fourier Transform) and wavelets [19, 20, 21]. How-
ever, these methods of time-frequency analysis do not naturally result in discrete-time
representations of the continuous signals.

Further, the so-found time-dependent frequency content is a local property, because it
is obtained by dividing the time domain into many intervals and analyzing the frequency
contents of the signal on each interval. However, in this way, windowed Fourier transform
and other Fourier-based time-frequency-analysis methods lead to unavoidable windowing
artifacts. Moving a sampling point locally will not affect the behavior of the reconstructed
signal elsewhere. However, the time-varying bandwidth defined in the new generalized
sampling theory is a global property, analogous to the Fourier-defined constant bandwidth
for bandlimited functions in the classical sampling theory. The overall bandwidth, while
it is a function of time, depends on the behavior of the signal on the whole real line.

Sampling theory for time-varying bandwidths has previously been considered in the
literature with two approaches. See [22] for a review of both. The first approach [23] is
based on a time-varying low-pass filter. Instead of the conventional sinc function P (t, t̂) =
sinc

(
2Ω(t − t̂)

)
in the filter kernel Eq. (1.2), this approach adds a time-dependent term

ωc(t) in the sinc filter kernel

P (t, t̂) =
sin
(
2πΩωc(t) (t− t̂)

)
2πΩ(t− t̂)

(1.3)
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to characterize the time-dependent cut-off frequency. This approach leads to a sampling
and reconstruction system that does not satisfy the property of perfect reconstruction,
although it obeys the consistent re-sampling [24], namely, the amplitudes of the recon-
structed function agree with the original function on the set of sampling points, but not
generally on the whole real line. Only the special functions of self-similar input signals
guarantee perfect reconstruction [25].

Further, the non-equidistant sampling points {tn}∞n=−∞ in this approach must be found
as solutions to ωc(tn)tn = nπ for all n. However, the generalized sampling theory in this
thesis is directly based on the given Nyquist sampling points obtained in Step (1). For a
class of signals to be studied, it is much easier to determine a set of sampling points to
represent the time-varying bandwidth of the signals, rather than to determine a continuous
function, ωc(t), for the frequency contents. For calculational purpose, it is also convenient
to deal with a set of sampling points rather than to solve for a continuous function.

Instead of a modification of the sinc function as in Eq. (1.3), the filter kernel P (t, t̂)
in the generalized sampling theory is written precisely in terms of the sampling points.
So it is a direct representation of the pre-specified time-varying Nyquist sampling rate.
See Chapter 6 for details. Most importantly, the generalized sampling theory for time-
varying bandwidth in this thesis always allows the perfect reconstruction of signals with
time-varying bandwidth.

The other existing approach [26, 27] for time-varying bandwidth is based on the so-
called time-scaling or time-warping, namely, stretching of the time axis. It considers the
signals in a form of ψ(t) = φ

[
ρ(t)

]
where φ(t) is the conventional Ω-bandlimited function

with a constant bandwidth and ρ(t) is the invertible time-warping function. So the function
ψ(t) is known as a locally bandlimited signal since it can be sampled according to the local
bandwidth which is implied by the warping function ρ(t). Thus, ψ(t) can be perfectly
reconstructed from these samples.

The best way to illustrate the difference between this approach and our generalized
sampling theory is by the reduction of Gibbs’ type of overshoot. Because the approach
of locally bandlimited signals by time-warping is only a time-axis-stretching version of
Ω-bandlimited function, the amplitudes of the Ω-bandlimited function are not changed,
but simply shifted from their locations on the time axis. Hence, it should not be possible
to suppress the amplitude of the overshoot occurring in windowing artifacts or ringing
artifact. However, the new generalized sampling theory can strongly reduce these type of
overshoots. See Chapter 8 for examples.
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1.3 Generalizing Principle and Functional Analytical

Results

To generalize the classical sampling theory, our starting point is the observation that, in the
frequency domain, if a function has a finite support in the open interval (−2πΩ, 2πΩ), then
so does its derivative. The finite open support of a function is preserved by the derivative
operator i d

dω
. Hence, the Fourier transform of a strictly Ω-bandlimited function is invariant

under the action of derivative operator. A function φ(t) is said to be strictly Ω-bandlimited
if its Fourier transform Φ(ω) vanishes outside the open interval (−2πΩ, 2πΩ) rather than
the closed interval [−2πΩ, 2πΩ]. The space of strictly Ω-bandlimited functions is a dense
subset of the space of Ω-bandlimited functions. Thus, the space of Fourier transforms of
strictly bandlimited functions is invariant under the derivative operator.

In the time domain, the derivative operator i d
dω

corresponds to the time operator T :
Tφ(t) = tφ(t). The above observation suggests us to define the space of Ω-bandlimited
functions as the closure of the invariant domain of T . No matter what bandwidth a class
of signals have, the action of the time operator T preserves that bandwidth. This is true
for the constant bandwidth in the usual Fourier sense. It should also be true for the
time-varying bandwidth if we choose a generic operator T directly in time domain.

How about the sampling and reconstruction property? The operator T in functional
analysis is what is called a simple symmetric operator with deficiency indices (1, 1). Such a
symmetric operator has a U(1)-family of self-adjoint extensions. Each self-adjoint extension
has a set of eigenvalues, which correspond to a set of Nyquist sampling points. Together,
the eigenvalues of all self-adjoint extensions of a fixed such symmetric operator T cover
the whole real line exactly once. So one is able to recover the signal at any time t. Each
eigenvalue is of a multiplicity 1. The eigenvectors of each self-adjoint extension of T form
an eigenbasis of the Hilbert space.

The sampling theorem simply states the fact that if a Hilbert space vector is known in
the eigenbasis of one self-adjoint extension of T , then the coefficients of the vector in the
eigenbases of all other self-adjoint extensions of T are also determined. The reconstruction
kernel consists of the matrix elements of the unitary transformations which map in between
the eigenbases of the self-adjoint extensions of T .

The set of Nyquist sampling points yields the critical sampling rate because the corre-
sponding eigenbasis is linearly dependent if we add more vectors and is a incomplete basis
if we remove any eigenvector from it. Further, the set of Nyquist sampling points is optimal
for the stability of reconstruction because the corresponding eigenbasis is orthogonal.

The symmetric operator T in the case of the classical sampling theorem is special be-
cause all its self-adjoint extensions have equidistantly spaced eigenvalues. However, as was
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first proposed in [28], if one chooses a generic such operator T whose self-adjoint exten-
sions possess generally non-equidistantly spaced eigenvalues, one generalizes the classical
sampling theorem for time-varying Nyquist rates.

By developing this generalized sampling theory, further, we will here obtain also new
results on the distribution of eigenvalues of self-adjoint extensions. Specifically, given
eigenvalues of one self-adjoint extension of the simple symmetric operator T with defi-
ciency indices (1, 1), we obtain a formula to explicitly calculate the eigenvalues of all other
self-adjoint extensions of T and the corresponding eigenvectors as well. This provides a
constructive completion of the abstract theory of self-adjoint extensions of these operators.
In the literature, only the particular example of differential operators on finite intervals
has been studied, but not the general case for an abstract simple symmetric operator with
deficiency indices (1, 1). See Chapter 3 for the details.

1.4 Physics Motivation

The non-Fourier generalized sampling theory is also motivated by a fundamental physics
problem namely the question of whether spacetime is fundamentally continuous or discrete.
General relativity is formulated on a smooth, differential manifold, while quantum field
theory appears to require the discreteness of spacetime. The messages from these two
most important and successful physical theories of our time are so contradictory that this
issue spawned a whole range of so-called quantum gravity theories, ranging from string
theory to the holographic principle.

As first suggested by Kempf [29], sampling theory could be a very useful mathematical
tool to solve this problem: spacetime could be both continuous and differentiable, while all
the physical fields of nature, e.g., electro-magnetic fields, are like bandlimited functions,
which possess only a finite spatial density of degrees of freedom. Physical fields could be
fully captured everywhere if we know their values on a set of discrete points which are
sufficiently dense. Therefore, spacetime could be effectively described as both continuous
and discrete similar to the equivalence between continuous and discrete representations
of information. Sampling theory could provide a mathematical framework in which both
general relativity and quantum field theory can coexist.

It has been widely suggested in quantum gravity that there exists a minimum length or
volume in nature, of the order of the Planck distance: 10−35 meters. This is because when
general relativity and quantum theory are considered together, it follows that the notion
of distance loses operational meaning at the Planck scale of 10−35 meters. If one attempts
to resolve a spatial structure with an uncertainty of less than a Planck length, then the
uncertainty principle implies a significantly large momentum uncertainty. This momentum
uncertainly is large enough to cause a curvature uncertainty which would disturb the very
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region in space that it is meant to resolve. This argument implies that there exists a
finite lower bound to the achievable uncertainty in spatial localization. Then, Kempf [29]
suggests there should be some form of an upper bound to the information density that can
be imprinted on physical fields.

This information density upper bound on physical fields is analogous to the bandwidth
cutoff of bandlimited functions. This inspires physicists to use sampling theory in quantum
gravity. However, the physical fields of nature can not be bandlimited in usual sense
because the mathematical representation of the physical fields must be coordinate-system-
independent. Hence, the physical fields cannot be bandlimited in the usual Fourier sense
in a fixed given coordinate system for the manifold. This is the original motivation to
consider a non-Fourier generalization of the classical sampling theory.

The first attempt to mathematically formulate this sampling theory in the context of
quantum gravity is by Kempf in [28]. The results in this thesis are rooted from [28], but
they are developed in a more engineering-oriented context from a perspective of sampling
theory itself. The mathematics is rigorously proven here. For more information on the
use of sampling theory in quantum gravity and its generalization to curved manifolds, see
[30, 31].

1.5 Outline of the Thesis

Some of the research results reported in this thesis have already appeared in my research
papers [32]-[38]. Some sections contain more detailed discussions on the relevant topics.
The thesis is organized as follows.

• Chapter 2 reviews the relevant functional analytical definitions and methods for self-
adjoint extensions of symmetric operators in Hilbert space. Chapter 3 states the new
mathematical results regarding the eigenvalues of these self-adjoint extensions. The
generalized sampling theory developed later is based on the mathematical results in
Chapter 3. However, readers with interests mostly in the generalized sampling theory
can proceed directly from Chapter 4 and may skip these two chapters on functional
analysis.

• Chapter 4 recapitulates the basic classical sampling theorem with a proof by Fourier
analysis which is formulated in a form suitable for the generalization. Section 4.3 pro-
vides a new functional analytical proof of the classical sampling theorem of Whittaker-
Shannon-Kotel’nikov.

• Chapter 5 states the main results of the thesis, about the generalized sampling theory.
Section 5.2.1 gives an overview of the generalized sampling theory for time-varying
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Nyquist rates, followed by more details on sampling, reconstruction and definition
of the time-varying Nyquist rate in Section 5.2. Section 5.3 shows that the time-
varying Nyquist rate is the critical rate between over- and under-sampling. Section
5.3 recovers the classical sampling theorem as a special case and Section 5.5 is the
mathematical justification.

• Chapter 6 introduces the pre-filtering formula for the generalized sampling theory
and shows that this filter operator does map the raw signals into the function space
with the pre-specified time-varying Nyquist rate. This filter operator is a projection
with an uneven measure associated with the time-varying Nyquist rate.

• Chapter 7 discusses the stability issue of the generalized sampling theory. It first
finds frame bounds between the l2-norm of the discrete samples and the L2-norm
of the continuous signals. It then shows that the time-varying Nyquist rate is the
optimal rate for stability of reconstruction.

• Chapter 8 consists of two parts. First, we modify the reconstruction kernel formula
to yield an interpolation method for finitely many non-equidistant points on a finite
interval. There are two approaches: either by appending an auxiliary extension of
equidistant points or by periodic extensions on the given finite interval. Secondly, we
use the new interpolation methods to approximate step functions. We observe that
the Gibbs’ type of overshoots which appear near a discontinuous jump point can be
significantly reduced by adjusting the sampling density locally.

• Chapter 9 includes concluding remarks and open research problems for future work.
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Chapter 2

Review of Functional Analytical
Methods

This chapter will define the mathematical notations we shall use throughout the thesis and
review the relevant functional analytical facts necessary for the mathematical development
of this thesis. The definitions and theorems in this chapter can be found in standard
textbooks on functional analysis, e.g. [39, 40, 41, 42]. Notice that textbooks of functional
analysis cover mostly topics on bounded operators, but the self-adjoint and symmetric
operators considered in this thesis are unbounded ones. In particular, we consider the self-
adjoint extensions of symmetric operators with deficiency indices (1, 1) in Hilbert space.
This class of operators was studied by the Russian mathematician M.G. Krein in 1944
[43, 44, 45] and has been published in English in 1997 [46]. The crucial difference between
the results of unbounded and bounded self-adjoint operators will be pointed out.

2.1 Linear Operators in Hilbert Space

We work in a separable complex Hilbert space, denoted by H, with the inner product
denoted by 〈·, ·〉, linear in the first argument and conjugate linear in the second argument.
Let c∗ (or sometimes c) denote the complex conjugate of a complex number c ∈ C. Then,
for any c1, c2 ∈ C and φ1, φ2, ψ ∈ H,

〈c1φ1 + c2φ2, ψ〉 = c1 〈φ1, ψ〉+ c2 〈φ2, ψ〉 ,
〈ψ, c1φ1 + c2φ2〉 = c∗1 〈ψ, φ1〉+ c∗2 〈ψ, φ2〉 .

A separable Hilbert space H is a complete inner product space with countable orthonor-
mal basis. An orthonormal set means the vectors in it are orthogonal and normalized.
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Let {e1, e2, e3, . . .} denote an orthonormal basis. Then any such orthonormal basis satisfies

H = span{e1, e2, e3, . . .} and 〈ei, ej〉 = δij.

All infinite dimensional separable Hilbert spaces are isometrically equivalent as shown in
the section 4.1, 4.2 of [47]. Examples include l2(N), L2([a, b]) and L2(R).

The orthogonal complement of a set S in the Hilbert space H is denoted by ⊥ and
defined by:

S⊥ = H	 S = {ψ ∈ H | 〈ψ, φ〉 = 0, ∀φ ∈ S} .

Proposition 4.2 in [47] states that H	 S is closed whether or not S is closed.

A set S is dense in H if the closure of S equals the whole Hilbert space H, i.e. S =
cl(S) = H. It is equivalent to say that the only vector orthogonal to S is the zero vector.
Namely, S is dense if and only if H	 S = {ψ ∈ H | 〈ψ, φ〉 = 0,∀φ ∈ S} = {0}.

Definition 1. Let D be a subset of a Hilbert space H. A map which associates each element
φ ∈ D to an element ψ ∈ H is called an operator on H with domain D. The range of
an operator T is defined as the set consisting of all ψ such that ψ = Tφ for some φ ∈ D.

For an operator T on H, we denote D(T ) or DT to be its domain and R(T ) or RT to
be its range.

An operator consists of two parts: its domain and its action on the domain. An operator
T is said to be densely defined if its domain D(T ) is a dense subset of H.

Definition 2. An operator T on H is linear if for any c1 c2 ∈ C and φ, ψ ∈ D(T ),

c1 φ+ c2 ψ ∈ D(T ) and T (c1φ+ c2ψ) = c1 Tφ+ c2 Tψ.

For all φ, ψ in H and c1, c2 ∈ H, c1 φ + c2 ψ ∈ D(T ) means the domain D(T ) is a
subspace of H. Without explicitly saying, all the operators involved in this thesis are
linear.

The norm of a vector φ in the Hilbert space H is denoted by ‖φ‖ and is defined to be

‖φ‖ =
√
〈φ, φ〉.

Definition 3. The norm of an operator T (not necessarily linear) is defined as

‖T‖ := inf {K ∈ R | ‖Tφ‖ ≤ K ‖φ‖ ∀φ ∈ D(T )} .

The operator T is said to be bounded if ‖T‖ <∞; Otherwise, T is said to be unbounded.
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For any linear operator T , the above definition is equivalent to

‖T‖ := sup { ‖Tφ‖ | φ ∈ D(T ), ‖φ‖ ≤ 1} .

A bounded linear operator is always defined everywhere in the Hilbert space H. At
least, its domain can be extended to the whole Hilbert space. However, an unbounded
linear operator on an infinitely dimensional Hilbert space H may only be meaningful on a
proper subset of H.

Theorem 3.13 of [47] states that a linear operator T on H is continuous if it is bounded
on H. But the continuity does not hold for an unbounded linear operator T . Therefore, to
ensure the images of a convergent sequence under T behaving well in terms of convergence,
we require a less restrictive condition on the operators:

Definition 4. An operator T (not necessarily linear) is closed if

φn ∈ D(T ), lim
n→∞

φn = φ, lim
n→∞

Tφn = ψ

imply that
φ ∈ D(T ) and Tφ = ψ.

Clearly a continuous operator is closed, but not the converse. For a closed operator
T , the convergence of sequence {φ1, φ2, φ3, . . .} does not guarantee the convergence of its
images {Tφ1, Tφ2, Tφ3, . . . } under T .

Definition 5. Let T , S be two operators on H. The operator S is said to be an extension
of T if

D(T ) ⊂ D(S) and Sφ = Tφ,∀φ ∈ DT .

We write T ⊂ S if the above is true.

Definition 6. Let T be an operator on H. The closure of T is defined as the minimal
closed extension of T and is denoted by T .

In other words, T is the closed extension of T which is contained in every closed
extension of T .

Example 1: Consider H = L2([a, b]) with inner product

〈f, g〉 =

∫ b

a

f(x) g(x) dx.

L2([a, b]) is the separable Hilbert space of square integrable, Lebesgue measurable complex-
valued functions on a finite interval [a, b], −∞ < a < b <∞.
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It is understood that throughout this work we are dealing with Lebesgue measurable
functions on L2([a, b]) such that f = g in L2([a, b]) if f(x) = g(x) almost everywhere on
[a, b]. In other words, if f, g ∈ L2([a, b]) differ only on a set of measure zero, then f = g in
L2([a, b]).

Let us define three operators on L2([a, b]):

Tc := i
d

dx
on the domain C1

0

(
(a, b)

)
, (2.1)

T := i
d

dx
on D and T ∗ := i

d

dx
on D∗ (2.2)

where

D := {f ∈ AC([a, b]) | f ′ ∈ L2([a, b]), f(a) = 0 = f(b)}, (2.3)

D∗ := {g ∈ AC([a, b]) | g′ ∈ L2([a, b])} (2.4)

The notation C1
0

(
(a, b)

)
denotes the set of differentiable functions that have continuous

derivatives on (a, b) and vanish at the two boundary points. The notation AC([a, b])
indicates the space of absolutely continuous functions on [a, b]. From analysis, we know that
f ∈ AC([a, b]) if and only if there exists a g ∈ L1([a, b]) such that f(x) = f(a) +

∫ x
a
g(t) dt1

and f ′ = g almost everywhere. In other words, we can differentiate f in the L2([a, b])-sense
if and only if f is absolutely continuous.

Let us discuss T ∗ first. Its domain D∗ is the largest possible set on which the action
i d
dx

is properly defined: i d
dx
f makes sense in L2([a, b]) if and only if f ∈ AC([a, b]) and

f ′ ∈ L2([a, b]). f must be absolutely continuous so that we can differentiate it. The vector
f ′ must be in H so that the image of f under i d

dx
still lies in L2([a, b]).

If we restrict the domain D∗ to D by imposing the boundary conditions g(a) = 0 = g(b),
then we obtain a different operator T . The operators T and T ∗ have different domains,
i.e., D $ D∗. But they have the same action on D, i.e., T = T ∗|D. The operator T ∗ is an
extension of T , i.e., T ⊂ T ∗.

The domain of Tc, C
1
0((a, b)), is a well-known dense subset of L2([a, b]) and it is contained

in D. Hence Tc, T , and T ∗ are all densely defined unbounded linear operators.

We can show that T , T ∗ are both closed operators, but the operator Tc is not closed.
The closure of Tc is indeed T . The proof of this result is long and irrelevant to our topic,
hence ignored here. See Section Section 4.13 and 10.3 in [40] on closed operators.

1The integral is a Lebesque integral
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2.1.1 Adjoint Operators

Let A be a bounded linear operator defined on H. Section 4.4, 4.5 in [47] shows that for
any fixed vector ψ ∈ H, the map Γ(φ) = 〈Aφ, ψ〉 defines a linear functional in H. By the
Riesz representation theorem, the functional Γ can be expressed in the form Γ(φ) = 〈φ, ψ∗〉
for a unique vector ψ∗ ∈ H.

Hence, for any vector ψ ∈ H, there exist a unique vector ψ∗ ∈ H such that 〈Aφ, ψ〉 =
〈φ, ψ∗〉 , ∀φ ∈ H. Then we can define an operator A∗ on H by A∗ψ = ψ∗ and call it the
adjoint operator of A.

Now consider a general linear operator T , not necessarily bounded. The domain of T
may be only a proper subset of H. For the inner product 〈Tφ, ψ〉 where φ runs through
D(T ), we can no longer assert that for every ψ ∈ H there is a corresponding ψ∗ such that

〈Tφ, ψ〉 = 〈φ, ψ∗〉 ∀φ ∈ DT . (2.5)

However, there exist some pairs ψ and ψ∗ such that (2.5) holds. At least, ψ = 0 = ψ∗ does.

Definition 7. For a densely defined linear operator T in H, let D∗ be the set that consists
of all ψ ∈ H such that there is a pair (ψ, ψ∗) with

〈Tφ, ψ〉 = 〈φ, ψ∗〉 ∀φ ∈ DT ,

the adjoint operator of T , denoted by T ∗, is defined to be

T ∗ψ = ψ∗ on the domain D∗.

In other words, the domain of the adjoint operator T ∗ of T is given by

D(T ∗) = {ψ ∈ H | ∃ψ∗ ∈ H such that 〈Tφ, ψ〉 = 〈φ, ψ∗〉 ∀φ ∈ D(T )}

and
〈Tφ, ψ〉 = 〈φ, T ∗ψ〉 ∀φ ∈ D(T ), ψ ∈ D(T ∗). (2.6)

It is necessary that T has a dense domain. Otherwise, for a fixed ψ, the existence of
such ψ∗ is not unique, hence T ∗ψ is not well-defined. To see this, suppose D(T ) is not
dense, so H 	 D(T ) 6= ∅. Let (ψ, ψ∗) be a pair for which Eq. (2.5) holds, then for any
non-zero vector χ in H	D(T ), 〈φ, χ〉 = 0, (φ, ψ∗ + χ) is another pair for which Eq. (2.5)
holds because

〈φ, ψ∗ + χ〉 = 〈φ, ψ∗〉+ 〈φ, χ〉 = 〈Tφ, ψ〉 ∀φ ∈ D(T ).
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Example 2: Consider the operators T and T ∗ defined in Eq. (2.2) in Example 1 on
H = L2([a, b]). The interval [a, b] is finite, −∞ < a < b < +∞. We will show that T ∗ is
indeed the adjoint of T . For now, let us temporarily denote the adjoint of T by S∗ and
show that T ∗ = S∗.

First, for any arbitrary g in D∗, ∀ f ∈ D

〈g, Tf〉 =

∫ b

a

g(x) if ′(x) dx

= (−i)
(
g(b)f(b)− g(a)f(a)

)
−
∫ b

a

(g′(x)) if(x) dx

= (−i) (g(b) 0− g(a) 0) +

∫ b

a

(ig′(x)) f(x) dx

= 〈T ∗g, f〉 .

This shows that for any g ∈ D∗, there exists a pair (g, T ∗g) satisfying (2.5). Hence, g must
be in the domain of the adjoint S∗ and S∗g = T ∗g.

Conversely, suppose that g ∈ D(S∗) with g∗ = S∗g, we will show that g is in the domain
of T ∗, i.e., g ∈ D∗, and g∗ = T ∗g.

Since g∗ ∈ L2([a, b]), we can rewrite for almost everywhere x in [a, b]

g∗(x) =
d

dx

(∫ x

a

g∗(t) dt+ C

)
= −i d

dx

([
i

∫ x

a

g∗(t) dt
]

+ C

)
= −i d

dx

( [
G(x)

]
+ C

)
where G(x) = i

∫ x
a
g∗(t) dt ∈ AC([a, b]) and C is some arbitrary constant.

Then ∀ f ∈ D, we have

〈g, Tf〉 = 〈S∗g, f〉 = 〈g∗, f〉 =

∫ b

a

g∗(x) f(x) dx

=

∫ b

a

(−i) d
dx

(
G(x) + C

)
f(x) dx

=
(

(−i)
(
G(x) + C

)
f(x)

)∣∣∣b
x=a
−
∫ b

a

(−i)
(
G(x) + C

)
f ′(x) dx

= 0 +

∫ b

a

(
−
(
G(x) + C

))
if ′(x) dx since f(a) = 0 = f(b)

= 〈−(G+ C), T f〉 .
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Hence,
〈g +G+ C, Tf〉 = 0 ∀ f ∈ DT ,

namely ∫ b

a

(
g(x) +G(x) + C

) (
i f ′(x)

)
dx = 0 ∀ f ∈ DT . (2.7)

Now, choose the constant C such that∫ b

a

(
g(x) +G(x) + C

)
dx = 0. (2.8)

Let

f0(x) =

∫ x

a

(
g(t) +G(t) + C

)
dt.

Clearly, by the choice of C as in Eq. (2.8), the function f0 satisfies the boundary conditions
f0(a) = 0 = f0(b). Hence f0 ∈ D and f0

′(x) = g(x) +G(x) + C. Substitute into Eq. (2.7)
to give

(−i)
∫ b

a

(
g(x) +G(x) + C

) (
g(x) +G(x) + C

)
dx = 0

=⇒
∫ b

a

∣∣∣g(x) +G(x) + C
∣∣∣2 dx = 0

=⇒ g(x) +G(x) + C = 0.

Hence

g(x) = −G(x)− C = −i
∫ x

a

g∗(t) dt− C.

This shows that i d
dx
g(x) = g∗(x) ∈ L2([a, b]). Further G(x) ∈ AC([a, b]), so g(x) ∈

AC([a, b]) as well. Therefore, one concludes that g ∈ D∗ and

T ∗g = i
d

dx
g = g∗ = S∗g.

Hence T ∗ = S∗, T ∗ is indeed the adjoint of T .

Proposition 1. Let T be a densely defined linear operator in H and T ∗ be its adjoint, then

1. T ∗ is a linear operator;

2. T ∗ is always closed, whether or not T is closed;

3. if T has a closure T , then T ∗ =
(
T
)∗

;
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4. if T ⊂ S, then T ∗ ⊃ S∗.

Proof of 4. For any ψ ∈ D(S∗), there exist ψ∗ = S∗ψ, such that

〈φ, ψ∗〉 = 〈φ, S∗ψ〉 = 〈Sφ, ψ〉 ∀φ ∈ D(S). (2.9)

Because D(T ) ⊂ D(S), Eq. (2.9) holds for all φ ∈ D(T ) as well, and in this case Sφ = Tφ.
Hence there is a pair (ψ, ψ∗) such that

〈φ, ψ∗〉 = 〈Tφ, ψ〉 ∀φ ∈ D(T ). (2.10)

Hence ψ ∈ D(T ∗) and T ∗ψ = ψ∗ = S∗ψ. The operator S∗ is an extension of T ∗.

Example 3: Consider the operators T , Tc and T ∗ defined in Example 1 on H = L2([a, b])
with −∞ < a < b < +∞. The operator T is the closure of Tc and T ∗ is the adjoint of
T . By the proposition above, (Tc)

∗ =
(
Tc
)∗

= T ∗. The operator T ∗ is also the adjoint of
Tc.

2.1.2 Symmetric and Self-Adjoint Operators

In finite-dimensional linear algebra, for a matrix A with non-zero determinant, its Her-
mitian conjugate matrix A∗ is defined as the complex conjugate of the transpose of A,
namely,

(A∗)ij = Aj i.

The square matrix A is called a Hermitian matrix, if

A = A∗ = (A)tr. (2.11)

So if A is a n× n Hermitian matrix, then ∀u, v ∈ Cn

〈u, Av〉 = utr Av = utr (A)tr v = (Au)tr v = 〈Au, v〉 . (2.12)

The converse if also true. Therefore, Eq. (2.12) is used as an equivalent definition of
Hermitian matrix in an n-dimensional complex vector space.

Matrices in linear algebra act like operators on the finite dimensional vector space.
When the concept of finite dimensional vector spaces is generalized to infinite dimensional
Hilbert spaces, adjoint and self-adjoint operators are the corresponding generalization of
Hermitian conjugate and Hermitian matrices. But a slight problem occurs: the two equiv-
alent definitions Eq. (2.11) and Eq. (2.12) of Hermitian matrix are no longer equivalent
in infinite dimensional Hilbert spaces. Differences arise when dealing with unbounded op-
erators. The concept of Hermitian matrices is generalized to self-adjoint operators by Eq.
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(2.11) and is generalized to symmetric operators by Eq. (2.12). Self-adjoint and symmetric
operators are the same on finite dimensional Hilbert spaces, but are different in the infinite
dimensional case. The precise definitions for both operators are given below, followed by
an example to show the connection between the two.

Definition 8. A linear operator T is said to be symmetric if

1. its domain D(T ) is dense in H, and

2. for φ, ψ ∈ D(T ),
〈Tφ, ψ〉 = 〈φ, Tψ〉 .

When the domain of a linear operator T is dense, the adjoint T ∗ is well-defined. The
second condition is equivalent to T ⊂ T ∗.

Definition 9. A linear operator T is said to be self-adjoint if

1. its domain D(T ) is dense in H, and

2. T = T ∗.

In summary, when D(T ) is dense, the linear operator T is symmetric if T ⊂ T ∗, and
T is self-adjoint if T = T ∗. Clearly, self-adjoint operators are always symmetric, but not
the converse.

Definition 10. A symmetric operator T is said to be simple if there is no subspace
invariant under T such that the restriction of T to this subspace is self-adjoint.

We now discuss the concept of the extensions of a symmetric operator. To find the
extensions of a symmetric operator, notice first that by definition, the adjoint T ∗ of a
symmetric operator T is an extension of T itself. If both T , S are symmetric and T ⊂ S,
then Proposition 1 implies that

T ⊂ S ⊂ S∗ ⊂ T ∗.

Namely, when a symmetric operator T is extended to another symmetric operator S, i.e.,
T ⊂ S, its corresponding adjoint operator that shrinks, i.e., S∗ ⊂ T ∗. Indeed, it is the
domain of the adjoint that shrinks, i.e., D(S∗) ⊂ D(T ∗). This is because the operators T ,
S and S∗ are all restrictions of the adjoint T ∗ in their respective smaller domains.

As a result, a symmetric extension S of T is the adjoint operator T ∗ restricted to a
smaller domain D(S) ⊂ D(T ∗) such that ∀φ, ψ ∈ DS,

〈Sφ, ψ〉 = 〈φ, Sψ〉 .

Further, S has the same action as T ∗ on its domain. We conclude with the following
proposition.
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Proposition 2. If T is a symmetric operator in H and D̃ is a closed subspace such that
D(T ) ⊂ D̃ ⊂ D(T ∗), then D̃ is the domain of a closed symmetric extension of T if and
only if

〈T ∗φ, ψ〉 = 〈φ, T ∗ψ〉 ∀φ, ψ ∈ D̃. (2.13)

Let T̃ denote that symmetric extension of T , then T̃ = T ∗|D̃.

When the enlarged symmetric extension S coincides with its adjoint, explicitly when
D(S) = D(S∗), the symmetric extension S becomes self-adjoint. Therefore, S is an self-
adjoint extension of T if

T ⊂ S = S∗ ⊂ T ∗.

Example 4: Consider the operators T and T ∗ defined on H = L2([a, b]) with −∞ < a <
b < +∞ in Example 1. The operator T ∗ is the adjoint of T . Because T $ T ∗, the operator
T is symmetric, but not self-adjoint.

Define a new differential operator with a periodic boundary condition:

Tp := i
d

dx
on Dp := {φ ∈ AC([a, b]) | φ′ ∈ L2([a, b]), φ(a) = φ(b)}. (2.14)

The domain Dp is the restriction of D∗ by imposing the periodic boundary condition
φ(a) = φ(b). Note that T ⊂ Tp ⊂ T ∗ since D ⊂ Dp ⊂ D∗.

By Proposition 1, T ⊂ Tp implies Tp
∗ ⊂ T ∗. So for any g ∈ D(Tp

∗), g must be absolutely
continuous and Tp

∗g = T ∗g = i d
dx
g ∈ L2([a, b]). Using this fact and integration by parts,

for any g ∈ D(Tp
∗) and ∀ f ∈ D(Tp),

〈g, Tpf〉 =

∫ b

a

g(x) if ′(x) dx

= (−i)
(
g(b)f(b)− g(a)f(a)

)
+

∫ b

a

(
i g′(x)

)
f(x) dx

= (−i)
(
g(b)− g(a)

)
f(a) + 〈Tp∗g, f〉 .

(2.15)

Because 〈g, Tpf〉 = 〈Tp∗g, f〉, it follows that

f(a)
(
g(b)− g(a)

)
= 0 ∀ f ∈ D(Tp). (2.16)

Since f(a) can be chosen arbitrary, Eq. (4) holds if and only if g(a) = g(b). Hence
g ∈ D(Tp) and Tp

∗ ⊂ Tp.

Let g be in D(Tp) instead of D(Tp
∗), the calculation in Eq. (2.15) shows that

〈g, Tpf〉 = 〈Tpg, f〉 ∀ f, g ∈ D(Tp).
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The operator Tp is symmetric, Tp ⊂ Tp
∗. Further, one concludes that Tp = Tp

∗, the operator
Tp is self-adjoint. Therefore, T ⊂ Tp = Tp

∗ ⊂ T ∗, the new operator Tp is a self-adjoint
extension of the unbounded symmetric operator T .

The problem of finding a self-adjoint extension of T is to first find a proper domain D̃
such that Eq. (2.13) holds. It follows from the Hellinger-Toeplitz theorem that if T is an
unbounded symmetric operator, its domain D(T ) can not be the whole Hilbert space H,
but only a dense subset of H. The dense domain of the symmetric operator T complicates
such a direct approach to find an extension of T .

The problem of the domain is a general issue for unbounded operators in Hilbert space.
The domains of unbounded operators are usually proper subsets of H. Hence, when forming
the composition operators of two unbounded operators, one always needs to keep track of
their domains, to check if the domain of one operator contains the range of the other.
This complicates the algebra of unbounded operators. However, the bounded operators do
not have this problem. The domain of bounded operators can be at least extended to the
whole Hilbert space. This is why the Cayley transform can help one to find the self-adjoint
extensions of symmetric operators. The Cayley transform translates symmetric operators
into isometric operators and self-adjoint operators into unitary operators. As we will see
in the next section, both isometric and unitary operators are bounded operators, so they
are much easier to be handle.

2.1.3 Isometric and Unitary Operators

Definition 11. A linear operator U is said to be isometric on D(U) if

〈Uφ, Uψ〉 = 〈φ, ψ〉 ∀φ, ψ ∈ D(U). (2.17)

An isometric operator is also referred to as an isometry.

Isometric operators preserve the length, ‖Uφ‖ = ‖φ‖ for all φ ∈ D(U). They are
bounded with ‖U‖ = 1. The domains of isometric operators are subspaces of H. Because
they are bounded, we are able to extend the domains to be the whole Hilbert space H.
When their domains and ranges are both H, they become unitary operators.

Definition 12. A linear operator U defined on D(U) = H is said to be unitary if

1. 〈Uφ, Uψ〉 = 〈φ, ψ〉 ∀φ, ψ ∈ H,

2. R(U) = H.

Proposition 3. Let U to be an isometric operator in H, then
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• U is bounded and has an isometric inverse,

• U has a closure and its closure U is also isometric

• dim
(
D(U)

)
= dim

(
R(U)

)
An isometric operator U has the same closed isometric extensions as its closure U .

Without loss of generality, we only consider closed isometric operators and their closed
extension.

Definition 13. The deficiency indices (m,n) of an isometric operator U in H are
defined as

m = dim (H	D(U)) and n = dim (H	R(U)) , (2.18)

where m,n can be any non-negative integers or infinity.

Definition 14. An isometric operator is maximal if it has no proper isometric extension.

By the definition Eq. (2.17), an isometric operator U maps an orthonormal set to
another orthonormal set. An isometric operator U is bounded by ‖U‖ = 1. The domain
and range of a close symmetric operator U are closed subspaces with the same dimensions.
However, this does not imply that the deficiency indices m and n must be identical because
we can work within an infinitely dimensional Hilbert space. Consider the right shifting
isometric operator U : (c1, c2, c3, . . . , cn, . . . ) → (0, c1, c2, . . . , cn−1, . . . ), which maps which
standard basis vector ei to ei+1. Its domain is the whole l2-space, but its range is l2 \ {e1}.
Both have the same dimension of infinity. In this example, m = 0 but n = 1.

The method to obtain an isometric extension of U , denoted by Ũ , is to find a closed
isometric map U0 from a subspace in H	D(U) to H	R(U) and append U0 to U to form

a larger isometric operator Ũ . Hence,

D(Ũ) = D(U)⊕D(U0) and R(Ũ) = R(U)⊕R(U0)

where D(U0) ⊂ H	D(U) and R(U0) ⊂ H	R(U).

Any vector φ̃ in D(Ũ) can be decomposed into φ̃ = φ+φ0 where φ ∈ D(U), φ0 ∈ D(U0) ⊂
H	D(U) and its image under Ũ is given by

Ũ φ̃ = Ũφ+ Ũφ0 = Uφ+ U0 φ0.

The idea to extend an isometric operator U is to exhaust the orthogonal complements of
its domain and range, appending the isometric maps between them to U . This is why the
deficiency indices (m,n), defined to be the dimensions of the orthogonal complements of
the domain and range of U , are important.
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If m = n, then we can find a full isometric map U0 from H	D(U) onto H	R(U). The

resulting isometric extension Ũ has both domain and range being H. So Ũ is a unitary
extension of U .

If one of its deficiency indices is zero and the other one is non-zero, then the extra
isometric map U0 does not exist because either H 	 D(U) or H 	 R(U) is {0}. The
isometric operator U has no non-trivial extension. Hence U is maximal.

Proposition 4. Let U be a closed isometric operator with deficiency indices (m,n), then

• U is unitary if and only if m = 0 = n;

• U is maximal if and only if m = 0 6= n or m 6= 0 = n;

• U has non-trivial unitary extensions if and only if m = n > 0.

2.1.4 Spectrum of Closed Operators

In functional analysis, the concept of the spectrum of an operator is a generalization of the
concept of eigenvalues for matrices. The spectrum of an operator on a finite-dimensional
vector space is precisely the set of eigenvalues. However, an operator on an infinite dimen-
sional space may have additional elements in its spectrum, and may have no eigenvalues
at all.

Let A be a densely defined closed operator in H, the spectrum of A, denoted by σ(A),
is defined to be the set of all λ ∈ C for which (A − λI) does not have a bounded inverse
defined on all of H. The operator I denotes the identity operator.

The resolvent set of A contains the points which are not in the spectrum of A and is
denoted as ρ(A). If λ ∈ ρ(A) = C \ σ(A), then the resolvent function2

RA(λ) = (λI − A)−1 (2.19)

is a well-defined bounded operator on H. A point λ ∈ C is said to be a point of regular
type of A if A− λI is bounded below.

The spectrum of the operator A can be divided into three parts, depending on how the
resolvent function in Eq. (2.19) fails to be well-defined and bounded:

σ(A) = σp(A) ∪ σc(A) ∪ σr(A). (2.20)

2This notation is different from the one for the range of an operator. The resolvent function takes a
scalar number λ as the input variable and has a subscript of the operator A; while the notation for the
range of an operator A, R(A), takes the operator A as the input variable.
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Let σp(A), σc(A) and σr(A) denote the point, continuous, and residual spectrum of A
respectively. The point spectrum σp(A) is defined as the set of all eigenvalues of A,
namely, there exists a non-zero vector φ in H such that (A − λI)φ = 0. The operator
A− λI is not injective, hence it has no inverse.

The continuous spectrum σc(A) is defined as the set of all λ such that R(A − λI) is
not closed. The residual spectrum σr(A) is defined as the set of all λ such that λ /∈ σp(A)
and R(A− λI) is not dense. For example, in quantum physics, Hamiltonian operator has

point spectrum of
{
~ω(n+ 1

2
)
}+∞
n=0

, and the position or momentum operator has purely
continuous spectrum of the whole real line.

Self-adjoint operators always possess a purely real spectrum. This includes eigenvalues.
The spectra we deal with in Chapter 3 and generally in this thesis are point spectrum,
namely, the set of eigenvalues. Symmetric operators may or may not have eigenvalues. If
they do, their eigenvalues must be real.

Unitary operators always have a non-vanishing spectrum which lies on the unit circle
in the complex plane. Isometric operators may or may not have a non-vanishing spectrum.
If they do, it must be on the unit circle in the complex plane.

2.2 The Cayley Transform and Deficiency Indices

In Section 2.1.2, we clarified the difference between symmetric and self-adjoint operators
and showed the theoretical way to extend a symmetric operator to be self-adjoint (if possi-
ble). Such a direct extension of a symmetric operator is generally unachievable because of
the dense domain. The Cayley transform helps to circumvent this issue and is a practical
tool to extend symmetric operators. The deficiency indices play crucial roles to character-
ize the types of the extensions of a symmetric operator. In this section, we will introduce
the Cayley transform and the definition of deficiency indices for symmetric operators.

A symmetric operator and its closure have the same closed symmetric extensions. With-
out loss of generality, we consider only closed symmetric operators. The same holds for
isometric operators.

The Cayley transform, defined as3

T 7→ U := (T − i) (T + i)−1, (2.21)

maps the unbounded symmetric operators to bounded isometric operators. The Cayley
transform has an analogy in the Moebius transform of complex numbers. The Moebius

3It is understood that a scalar number in an expression with operators indicates the multiplication of
the scalar number with identity operator, e.g., T + i = T + iI and T − i = T − iI.
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transform is defined as

r 7→ z :=
r − i
r + i

. (2.22)

The Moebius transform maps real numbers r to complex numbers z on the unit circle
(excluding point z = 1), |z| = 1.

Recall that the spectrum of a symmetric operator lies on the real line (if it exists),
and that the spectrum of an isometric operator lies on the unit circle in complex plane.
Therefore, if the Cayley transform is an extension of the Moebius transform to linear
operators, one would expect the Cayley transform in Eq. (2.21) to map a symmetric
operator T to an isometric operator U .

The Cayley transform of a symmetric operator T , denoted by U , has domain D(U) =
R(T + i) and range R(U) = R(T − i). The Cayley transform U maps (T + i)φ to (T − i)φ,
i.e.,

U ( (T + i)φ ) = (T − i)φ ∀φ ∈ D(T ). (2.23)

The operator U is isometric since

‖Tφ+ iφ‖2 = ‖Tφ‖2 + ‖φ‖2 = ‖Tφ− iφ‖2 .

Definition 15. Let T be a symmetric operator on H, then the operator U defined as

T 7→ U := (T − i) (T + i)−1 (2.24)

with domain D(U) = R(T + i) is called the Cayley transform of T .

Let U be an isometric operator on H with I − U one-to-one, then the inverse Cayley
transform of U is found to be

U 7→ T := i (I + U) (I − U)−1 (2.25)

with domain D(T ) = R(I − U).

The Cayley transform establishes a one-to-one correspondence between symmetric and
isometric operators. The following theorem provides the main features of the Cayley trans-
form.

Theorem 5. Let U be the Cayley transform of a symmetric operator T on H, then

• U is isometric;

• U is closed if and only if T is closed;
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• U is unitary if and only if T is self-adjoint.

Conversely, if U is an isometric operator on H and I − U one-to-one, then U is the
Cayley transform of some symmetric operator T in H and T is given by the inverse Cayley
transform Eq. (2.25) of U .

Recall that the orthogonal complements of the domain and the range of an isometric
operator U play a crucial role in determining isometric extensions of U . If U is the Cayley
transform of a symmetric operator T , then D(U) = R(T + i) and R(U) = R(T − i). This
suggests the definition of deficiency indices of a symmetric operator T to be the dimensions
of

H	D(U) = H	R(T + i) and H	R(U) = H	R(T − i).

Such definition of deficiency indices of symmetric operators is consistent with the one of
isometric operators via the Cayley transform. Recall the following definition and proposi-
tion:

Definition 16. Let T be a linear operator in H. The kernel of T , denoted by K(T ), is the
set of vectors which are mapped to 0 under T , namely,

K(T ) = {φ ∈ H | Tφ = 0} .

Proposition 6. Let A be a densely defined operator, the kernel of the adjoint of A equals
the orthogonal complement of the range of A, namely,

K(A∗) = H	R(A).

The proof can be found in [39]. This leads to the definition of deficiency spaces and
indices of symmetric operators.

Definition 17. Let T be a symmetric operator. We define

K+ = H	R(T + i) = K(T ∗ − i), n+ = dim (K+), (2.26a)

K− = H	R(T − i) = K(T ∗ + i), n− = dim (K−). (2.26b)

The subspaces (K+, K−) are called the deficiency spaces of T and their dimensions
(n+, n−) are called the deficiency indices of T .
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Constructing Symmetric Extensions of a Symmetric Operator

Given an unbounded symmetric operator T , we can use the Cayley transform to find a
symmetric extension of T . Suppose that T̃ is a symmetric extension of T . Let U and Ũ
be their Cayley transform respectively. Then both U and Ũ are isometric. The operator
Ũ is an extension of U .

Therefore, to find a symmetric extension T̃ of T , one first needs to find an isometric
extension Ũ of U . The operator U is the Cayley transform of T , which is bounded. Its
extension Ũ is obtained by appending the isometric maps between the deficiency spaces
K+ and K− to U . The inverse Cayley transform of Ũ yields the symmetric extension T̃ .
In such a way, the extension problem of unbounded operators becomes the problem of
bounded ones.

If the two deficiency spaces have the same dimension, i.e., n+ = n−, then one can
exhaust (K+, K−) simultaneously so that a unitary extension Ũ of U is obtained. Its

inverse Cayley transform, T̃ , is indeed a self-adjoint extension of T .

Of course, if n+ = 0 = n−, then K+ = ∅ = K−, which implies that the domain and
range of U are the whole Hilbert space. The Cayley transform U itself is unitary and hence
the symmetric operator T is self-adjoint.

However, when one of K+ and K− has a smaller dimension, then the smaller deficiency
space will be exhausted first. This gives a maximal isometric extension Ũ of U . Hence,
there is no unitary extension of U , and consequently, no self-adjoint extension of T either.

The deficiency indices (n+, n−) are important to characterize the symmetric extensions
of a given symmetric operator T . One concludes that

• T has non-trivial self-adjoint extensions if and only if n+ = n− 6= 0.

• T is self-adjoint if and only if n+ = 0 = n−;

• T is maximal if and only if n+ = 0 6= n− or n+ 6= 0 = n−;

The following are three examples that demonstrate all three cases.

Example 5: Consider the operators T and T ∗ with domains D and D∗ respectively on
H = L2([a, b]) as defined in Eq. (2.2), (2.3) and (2.4) in Example 1, where [a, b] is a finite
interval, −∞ < a < b < +∞.

The domain D∗ is the largest closed subspace on which i d
dx

can be defined, and D is a
closed subspace of D(T ∗) on which the vanishing boundary condition φ(a) = 0 = φ(b) is
obeyed. Let us recall some key calculation:
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〈
g, i

d

dx
f

〉
=

∫ b

a

g(x) if ′(x) dx

= −i
(
g(b)f(b)− g(a)f(a)

)
+

∫ b

a

(
i g′(x)

)
f(x) dx

= −i
(
g(b)f(b)− g(a)f(a)

)
+

〈
i
d

dx
g, f

〉
.

(2.27)

Let f be any arbitrary vector in D(T ) with boundary condition f(a) = 0 = f(b), we have(
g(b) f(b)− g(a) f(a)

)
= 0. (2.28)

Then (2.27) implies that for any f ∈ D〈
g, i

d

dx
f

〉
=

〈
i
d

dx
g, f

〉
.

Let g be any function in D, the above shows that T is symmetric; Let g in D∗, the above
shows that T ∗ is the adjoint of T . Since D $ D∗, T is not self-adjoint.

The operator T does have non-trivial self-adjoint extensions. In Example 4, we showed
that the operator Tp with domain Dp as defined in Eq. (2.14) is a non-trivial self-adjoint
extension of T . The functions in Dp obey the periodic boundary condition f(a) = f(b).
For any functions f and g in Dp, Eq. (2.28) is clearly obyed.

Now let us check the deficiency spaces and indices using the definition Eq. (2.26) in which
K± = K(T ∗∓ i). Notice that it is the adjoint operator T ∗ used to calculate the deficiency
vectors of T . The deficiency functions do not obey the vanishing boundary conditions as
the functions in the domain of T .

For any f ∈ K+ = K(T ∗ − i),

(T ∗ − i)f(x) =

(
i
d

dx
− i
)
f(x) = 0,

d

dx
f(x) = f(x),

⇒ f(x) = C1 e
x, where C1 is constant.

(2.29)

Similarly, ∀ g ∈ K− = K(T ∗ + i),

d

dx
g(x) = − g(x) ⇒ g(x) = C2 e

−x, where C2 is constant. (2.30)
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Hence,
K+ = span{ex} and K− = span{e−x}.

The operator T has deficiency indices (1, 1). This agrees with the fact that T is sym-
metric and has non-trivial self-adjoint extensions. The operator Tp is one of its self-adjoint
extensions and we will show later how to find all self-adjoint extensions of T .

Note the calculation above also holds for a = −∞ or b = +∞ or both. In these cases,
f(−∞) and f(+∞) means

f(−∞) = lim
x→−∞

f(x) and f(+∞) = lim
x→+∞

f(x).

Example 6: Consider L2-functions on the whole real line R with a = −∞ and b = +∞.
On the Hilbert space H = L2(R) = L2((−∞,+∞)), we define

T±∞ := i
d

dx
on {f ∈ AC(R) | f ′ ∈ L2(R)}. (2.31)

Because f and f ′ are square integrable on R,

lim
x→−∞

f(x) = 0 = lim
x→+∞

f(x). (2.32)

Substitute a = −∞ and b = +∞, the vanishing boundary condition f(a) = 0 = f(b) is
automatically obeyed. If the operator T is the one in Example 5 with [a, b] = (−∞,+∞),
then T = T±∞ = T ∗ = T±∞

∗. The operator T±∞ is self-adjoint. Note that Eq. (2.28) holds
for any f and g in D(T±∞).

Let us check its deficiency spaces and indices. Following the same calculation as in Eq.
(2.29) and (2.30), for any f ∈ K+, g ∈ K−,

f(x) = C1 e
x,

g(x) = C2 e
−x, where C1, C2 are constant,

but ∫ −∞
+∞

∣∣e±x∣∣2 dx = +∞.

Hence C1 e
x and C2 e

−x are not in H = L2(R) unless both C1 and C2 are zero. Therefore

K+ = span{0} and K− = span{0}.

The symmetric operator T±∞ has deficiency indices (0, 0), which agrees with the fact that
T±∞ is self-adjoint on L2(R).
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Example 7: Consider L2-functions on semi-bounded intervals (−∞, b] and [a,+∞).

First, consider the interval [a, b] = (−∞, b] where b bounded. On the Hilbert space H =
L2((−∞, b ]), we define an operator

T−∞ := i
d

dx
on {f ∈ AC((−∞, b ]) | f ′ ∈ L2((−∞, b ]), φ(b) = 0}.

With a = −∞, the interval is unbounded below. For f ∈ L2((−∞, b ]), because f and f ′

are both square integrable,
f(a) = lim

x→−∞
f(x) = 0.

The boundary condition f(a) = 0 is automatically obeyed. With a = −∞, the operator
T−∞ is the operator T in Example 5. Eq. (2.28) holds ∀ f, g ∈ D(T−∞), so T−∞ is
symmetric. Its adjoint T−∞

∗ = T ∗ acts on a domain with the boundary condition φ(b) = 0
removed. Hence T−∞ is not self-adjoint. Further, the operator T−∞ does not have self-
adjoint extensions. Because in Eq. (2.27), g(a)f(a) = 0, Eq. (2.28) holds if and only if
g(b)f(b) = 0, which implies that at least one of g(b) and f(b) equals 0, namely at least one

of f and g is in D(T−∞). Hence, there is no domain D̃ such that

D(T−∞) $ D̃ $ D(T−∞
∗) and 〈g, T−∞∗f〉 = 〈T−∞∗g, f〉 ∀ f, g ∈ D̃.

Hence, the symmetric operator T−∞ is maximal.

Let us check its deficiency spaces and indices of T−∞. Similar to Example 6, by Eq. (2.29),
(2.30) and the fact that (−∞, b] is bounded above,∫ b

−∞
|ex|2 dx < +∞,

∫ b

−∞

∣∣e−x∣∣2 dx = +∞

⇒ ex ∈ L2((−∞, b ]), but e−x /∈ L2((−∞, b ])

⇒ K+ = span{ex}, and K− = {0}.

Therefore, the symmetric operator T−∞ has deficiency indices (1, 0), which agrees with the
fact that T±∞ is maximal on L2((−∞, b ]).

Similarly, consider the interval [a, b] = (a,+∞ ] where a is bounded. On the Hilbert space
H = L2((a,+∞ ]), we define

T+∞ := i
d

dx
on {φ ∈ AC(a,+∞ ]) | φ′ ∈ L2((a,+∞ ]), φ(a) = 0}.
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A similar calculation shows that the operator T+∞ has deficiency spaces

K+ = {0} and K− = span{ex}.

Therefore T+∞ has deficiency indices (0, 1). It can be shown that T+∞ is a maximal
symmetric operator as well.

2.3 Self-Adjoint Extensions of Symmetric Operators

In this section, we will see how the Cayley transform helps to extend a symmetric operator.
In brief, the Cayley transform converts the unbounded operator problem of self-adjoint
extensions of symmetric operators to the bounded operator problem of unitary extensions
of isometric operators.

Let T be a closed densely defined unbounded symmetric operator and S be its Cayley
transform. Figure 2.1 illustrates how to extend the symmetric operator T by extending its
Cayley transform S, which is an isometry.

Figure 2.1: Using the Cayley transform to ex-
tend a symmetric operator T

An extension of the bounded isometric
operator S can be obtained by appending an
isometry between K+ and K− to S. Specif-
ically, let Sd denote an isometric operator
mapping from D(Sd) ⊆ K+ to R(Sd) ⊆ K−,
then the direct sum S⊕Sd is an extension of
S: it has a larger domain D(S)∪D(Sd) and
it has the same action as S on the smaller
domain D(S). Since S⊕Sd is isometric, the
inverse Cayley transform of S ⊕ Sd is sym-
metric and it is an extension of T .

The extension S ⊕ Sd is unitary if and
only if D(Sd) = K+ and R(Sd) = K−. For
Sd to fully exhaust both K+ and K− simul-
taneously, K+ and K− must have the same
dimension, namely, T has equal deficiency
indices, say n+ = D = n−, where D can be
0, any positive integer or infinity.

If D is a positive integer, Sd can be
any element in a U(D)-group. The unitary
group of degree D, denoted U(D), is the
group of D × D unitary matrices with the
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group operation that of matrix multiplication. Hence S has a U(D)-family of unitary
extensions, which implies that, via the inverse Cayley transform, T has a U(D)-family of
self-adjoint extensions.

2.4 The von Neumann Formulas

The Cayley transform will be the primary tool used for the key result on the eigenvalues
of self-adjoint extensions in Chapter 3 and the development of the new sampling theory in
Chapter 5. The result in this section on the von Neumann Formulas, which can be found in
[39], vol. 2, Section 80, will be used only in Section 3.3 to link the example of the differential
operators and the classical sampling theorem of Whittaker-Shannon-Kotelnikov.

For a symmetric operator T , although its domain D(T ) and its two deficiency spaces
K+, K− are neither closed nor orthogonal with respect to the regular inner product 〈·, ·〉
of H, they are closed and orthogonal with respect to the graph inner product of its adjoint
T ∗:

〈·, ·〉T ∗ = 〈·, ·〉+ 〈T ∗·, T ∗·〉 . (2.33)

One refers to such closeness and orthogonality as T ∗-closed and T ∗-orthogonal. The von
Neumann Formula states that, for a symmetric operator T , the domain of its adjoint
operator T ∗ has the following representation as the direct sum of three linear subspaces:

D(T ∗) = D(T ) ⊕T ∗ K+ ⊕T ∗ K−. (2.34)

The notation ⊕T ∗ indicates that the direct sum is with respect to the graph inner product
in Eq. (2.33). For any φ ∈ D(T ∗), it has the following unique decomposition:

φ = φ0 + φ+ + φ−, (2.35)

where φ0 ∈ D(T ), φ+ ∈ K+, φ− ∈ K−. Further,

T ∗φ = Tφ0 + iφ+ − iφ−. (2.36)

Suppose that T has positive equal deficiency indices (n+, n−) = (D,D). The symmetric

operator T has a U(D)-family of self-adjoint extensions. Let T̃ be an arbitrary self-adjoint

extension of T , and Ũ be the Cayley transform of T̃ . Then Ũ = S ⊕ Sd, where S is the
Cayley transform of T and Sd is some isometric map between K+ and K− that uniquely
defines the extension T̃ . From the inverse Cayley transform (2.25), the domain of T̃ reads:

D(T̃ ) = R(I − Ũ) =
(
(I − S)D(S)

)
⊕T ∗

(
(I − Sd)K+

)
= D(T ) ⊕T ∗

(
(I − Sd)K+

)
.

(2.37)
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Hence, any φ ∈ D(T̃ ) has a unique decomposition

φ = φ0 + (I − Sd)φ+ = φ0 + φ+ − Sdφ+ (2.38)

where φ0 ∈ D(T ) and φ+ ∈ K+. Since Sd φ+ ∈ K−, it follows from Eq. (2.35) and (2.36)

that the self-adjoint extension T̃ acts as

T̃ φ = Tφ0 + iφ+ + iSdφ+. (2.39)

As a result, the von Neumann formulas provides a decomposition of vectors in the domain
of the self-adjoint extension T̃ and the action on these elements.
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Chapter 3

Eigenvalues of Self-Adjoint
Extensions of Simple Symmetric
Operators with Deficiency Indices
(1,1)

This chapter presents the main purely mathematical results of the thesis. One will see
precisely how to extend a simple symmetric operator with deficiency indices (1, 1) using
the Cayley transform and where the eigenvalues of its self-adjoint extensions precisely
distribute on the real line. An example of such an operator, the classical differential
operator on a finite interval, can be found in Section 3.3. This chapter is based on my
paper [38].

The main results in this chapter are the explicit calculation of all of the eigenvalues of
all of the self-adjoint extensions. It provides a concrete construction in this area of abstract
functional analysis. The other papers also following [28], e.g., [48, 49, 50, 51], focus on the
analytical properties of functions in the reproducing kernel Hilbert space associated with
these Krein’s type of symmetric operators and their relation to the de Branges space.

3.1 Self-Adjoint Extensions of Simple Symmetric Op-

erators with Deficiency Indices (1,1) and the Dis-

tribution of their Eigenvalues

In this chapter, we always assume that T is a closed simple symmetric operator with
deficiency indices (1, 1) unless otherwise stated. It is also referred to as a (1, 1)-symmetric
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operator. Such a symmetric operator T must be unbounded because a bounded symmetric
operator would be self-adjoint and hence would have zero deficiency indices.

Let S be the Cayley transform of T , and φ+ and φ− denote the normalized Hilbert
space vectors spanning the one-dimensional deficiency spaces K+ and K−:

K+ = H	D(S) = H	R(T + i) = K(T ∗ − i) = span {φ+} ,
K− = H	R(S) = H	R(T − i) = K(T ∗ + i) = span {φ−} .

(3.1)

The unitary extensions of S can be formed by appending any U(1)-map between the two
one-dimensional deficiency spaces to S. Since an U(1)-group can be parameterized as ei2πα,
where 0 ≤ α < 1, one writes all the isometries from K+ onto K− as:

· 7→ ei2πα 〈·, φ+〉 φ− where 0 ≤ α < 1. (3.2)

For any vector Cφ+ in K+ where the coefficient C is a complex number, each isometry in
Eq. (3.2) maps Cφ+ to ei2παCφ− in K−. Appending these isometries to S, one obtains all
the unitary extensions of S, denoted by U(α) and enumerated by the parameter α with
0 ≤ α < 1:

U(α)(ψ) =

{
Sψ if ψ ∈ D(S),

ei2πα 〈ψ, φ+〉 φ− if ψ ∈ K+ = H	D(S).
(3.3)

Both the domain and range of U(α) are the whole Hilbert space H. Hence U(α) is unitary.
These unitary extensions have the same action as S on D(S). Their difference is only on
the one-dimensional deficiency space K+. Therefore, one has(

U(β)− U(α)
)
ψ = (ei2πβ − ei2πα) 〈ψ, φ+〉 φ− ∀ψ ∈ H, ∀ 0 ≤ α, β < 1. (3.4)

It follows from Eq. (3.4) that the family of unitary extensions {U(α) | 0 ≤ α < 1} is
periodically and uniformly continuously in terms of the parameter α. To see the continuity,
note the following:

‖U(β)− U(α)‖ =
∣∣ ei2πβ − ei2πα∣∣ . (3.5)

Clearly, for any non-zero vector ψ ∈ H,∥∥(U(β)− U(α)
)
ψ
∥∥ ≤ ∣∣ ei2πβ − ei2πα∣∣ | 〈ψ, φ+〉| ‖φ−‖
≤
∣∣ ei2πβ − ei2πα∣∣ ‖ψ‖ ‖φ+‖

=
∣∣ ei2πβ − ei2πα∣∣ ‖ψ‖ . (3.6)

The equality holds if ψ = φ+. The periodicity means that the limit returns back to the
one at α = 0 as α approaches 1 from below.
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For each α, the inverse Cayley transform of U(α), denoted by T (α), is a self-adjoint
extension of the symmetric operator T . Since S has a U(1)-family of unitary extensions,
then T has a U(1)-family of self-adjoint extensions, enumerated as

{T (α) | 0 ≤ α < 1} . (3.7)

where α is the parameter in the U(1)-maps ei2πα between the two deficiency spaces in Eq.
(3.2).

Proposition 7. Let T be a simple symmetric operator with deficiency indices (1, 1), then T
has a U(1)-family of self-adjoint extensions, which can be denoted by {T (α) | 0 ≤ α < 1}.
If one of the self-adjoint extensions of T has a purely discrete point spectrum, then all the
self-adjoint extensions have purely discrete spectra. Furthermore, each real number t is an
eigenvalue for one and only one of the self-adjoint extensions of T , and it is of multiplicity
1.

Proof. First, a self-adjoint operator does not have residual spectrum. Let T̃ denote any
self-adjoint extension extension T . If λ is in the residual spectrum of T̃ , then the operator
T − λ would not have a dense range. There would exist a vector φ in H 	 R(T − λ),

which implies that 〈(T − λ)ψ, φ〉 = 0 for all ψ in D(T̃ ). It follows that 〈Tψ, φ〉 =
〈
ψ, λ̄φ

〉
,

∀ψ ∈ D(T̃ ). So λ̄ is an eigenvalue of the self-adjoint operator T̃ , and it would have to be

real. But λ̄ = λ can not be in both point and residual spectrum of T̃ at the same time.

Under the assumption that one of the self-adjoint extensions of T has a purely discrete
point spectrum, and the fact that all self-adjoint extensions of T must have the same
continuous spectrum (Theorem 1, Section 83 in [39]), one concludes that all the self-adjoint
extensions of T must have a purely discrete point spectrum.

The symmetric operator T does not have a continuous spectrum either. If T did, then
the continuous spectrum would also be the spectrum of all its self-adjoint extensions. The
operator T does not have discrete point spectrum, namely eigenvalues, either. Since if T
did, then the eigenspace would be a subspace on which T has a self-adjoint restriction.
This would contradict the assumption that T is simple. Therefore, the spectral kernel of
the simple symmetric operator T is empty. Each real number is a point of regular type.
Then Theorem 3 in Section 83 in [39] states that for each t ∈ R, there exists one self-adjoint
extension of T for which t is an eigenvalue of multiplicity 1.

By Eq. (2.1.2), the adjoint of T , T ∗, is an extension of all self-adjoint extensions of
T . So each real number t is also an eigenvalue of T ∗ with multiplicity of at least 1. On
the other hand, since T is a symmetric operator with equal deficiency indices (1, 1) and
has no eigenvalue, Theorem 4 in Section 83 in [39] implies that the multiplicity of t as
an eigenvalue of T ∗ cannot exceed 1. Hence, each real number t is an eigenvalue of T ∗
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with a multiplicity exactly 1. Therefore, each t ∈ R, as an eigenvalue of one of self-adjoint
extensions of T , must also have a multiplicity of 1.

If t is an eigenvalue of two self-adjoint extensions of T , say, T (α) and T (β), where
0 ≤ α 6= β < 1, then they must have the same eigenvector φ because t is also the
eigenvalue of the adjoint operator T ∗ with a multiplicity of 1. It follows that t−i

t+i
and φ are

the eigenvalue and eigenvector of their Cayley transforms, U(α) and U(β). Eq. (3.4) gives

0 =
(
U(β)− U(α)

)
φ =

(
ei2πβ − ei2πα

)
〈φ, φ+〉 φ−. (3.8)

To show that 〈φ, φ+〉 6= 0, one notices that the eigenvector φ of the unitary extension can
not be in the domain of S because otherwise φ would also be an eigenvector of S, thus an
eigenvector of T as well, then T would have a self-adjoint restriction on the corresponding
eigenspace of φ. This would contradict the assumption that T is simple. Therefore, φ is
not fully in D(S). It is then not orthogonal to the deficiency vector φ+ ∈ H 	D(S). So
〈φ, φ+〉 6= 0.

It follows that ei2πβ − ei2πα = 0. So α = β. The self-adjoint operators T (α) and T (β)
are the same one. Therefore, a real number t cannot be the eigenvalue of two distinguished
self-adjoint extensions of T .

As a consequence, each self-adjoint extension of T has a purely point spectrum, which
consists of a set of eigenvalues of multiplicity 1. Together, these eigenvalues cover the real
line exactly once. For each fixed α, the eigenvalues of T (α) are real, and can be arranged
in an increasing sequence {tn(α)}n∈ I where the index set I can be −N or N or Z. The
index set could be positive or negative integers because the unbounded operator T can
be bounded either below or above, but not in both directions. The operator T can be
unbounded in either direction or both. Without loss of generality, we assume that the
self-adjoint extension is unbounded in both directions so that we imply I = Z.

Let φn(α) denote the corresponding normalized eigenvector for each eigenvalue tn(α)
of T (α). It is important to notice that one has the freedom to choose the phase of the
eigenvector φn(α). For each self-adjoint extension T (α), the set of normalized eigenvectors,
{φn(α)}n, forms an orthonormal basis of H. The self-adjoint operator Tn(α) can be written
as:

T (α) =
+∞∑

n=−∞

tn(α) 〈·, φn(α)〉φn(α). (3.9)

Correspondingly, its Cayley transform U(α) in Eq. (3.3) can be expressed in the same
eigenbasis as:

U(α) =
+∞∑

n=−∞

tn(α)− i
tn(α) + i

〈·, φn(α)〉φn(α). (3.10)
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Each eigenvalue of U(α), tn(α)−i
tn(α)+i

, is the Mobius transform of tn(α), the eigenvalue of T (α).

It is a complex number on the unit circle and φn(α) is its corresponding eigenvector.
According to the Mobius transform, since the eigenvalues of all T (α), i.e., {tn(α), 0 ≤
α < 1, n ∈ Z}, cover the real line exactly once, the eigenvalues of all U(α) together, i.e.,

{ tn(α)−i
tn(α)+i

, 0 ≤ α < 1, n ∈ Z}, cover the unit circle in the complex plane exactly once except

the point +1. Further, for each fixed α, because {tn(α)}n is in an increasing order, the

points in
{
tn(α)−i
tn(α)+i

}
n

move counter-clockwise along the unit circle in the complex plane as

n increases.

The bounded unitary operators U(α) are uniformly and periodically continuous with

respect to the parameter α. Their eigenvalues
{
tn(α)−i
tn(α)+i

}
n

must also be uniformly and

periodically continuous on the unit circle with respect to α. Therefore, the eigenvalues
{tn(α)}n are also uniformly and periodically continuous on the real line with respect to
α. Further, the norm of U(α) in Eq. (3.5) is differentiable with respect to α, since the
following limit exists

lim
β→α

‖U(β)− U(α)‖
|β − α|

= lim
β→α

∣∣ei2πβ − ei2πα∣∣
|β − α|

= lim
h→0+

∣∣ei2πh − 1
∣∣

h
= 2π

Therefore the eigenvalue of U(α), tn(α)−i
tn(α)+i

, is also differentiable with respect to α, and so is

tn(α). Hence one can define the derivative of tn(α) with respect to α as:

t′n(α) =
dtn(α)

dα
. (3.11)

The theorem in the next section states that if the eigenvalues of one self-adjoint extension
and the corresponding derivatives with respect to α are known, one can explicitly calculate
the eigenvalues of all other the self-adjoint extensions of T and obtain an expression for
the eigenvector corresponding for any of these eigenvalues.

3.2 Calculation of Eigenvalues and Eigenvectors of

the Self-Adjoint Extensions of Simple Symmetric

Operators with Deficiency Indices (1,1)

Without loss of generality, one assumes that the given self-adjoint extension of the simple
(1, 1)-symmetric operator T is T (0), the one at α = 0. One can always do so by choosing
the phase of the deficiency vector to match the given self-adjoint operator.

40



Theorem 8. Let T be a simple symmetric operator with deficiency indices (1, 1). Sup-
pose one of its self-adjoint extensions, T (0), at α = 0, has purely discrete spectrum with
no accumulation point. Each eigenvalue is of multiplicity 1. Let {tn = tn(0)}∞n=−∞ and
{φn = φ(0)}∞n=−∞ denote the eigenvalues and the corresponding normalized eigenvectors of
T (0). The coefficients of the first deficiency vector φ+ in the eigenbasis {φn}∞n=−∞ are

given as
{

fn
tn−i

}∞
n=−∞

. Then the absolute value of the constant fn = fn(0) determines the

derivative of the eigenvalue with respect to α:

t′n(0) =
dtn(α)

dα

∣∣∣
α=0

= π |fn(0)|2 . (3.12)

The eigenvalues of other self-adjoint extensions T (α) for 0 < α < 1, denoted by {tn(α)}∞n=−∞,
can be obtained by solving for t in the following equation:

t′n
t− tn

−
∑
m6=n

t′m (t− tn)

(t− tm)(tn − tm)
= π cot(πα). (3.13)

where α is the parameter in Eq. (3.2) which enumerates the U(1)-map ei2πα between the
deficiency spaces.

Let φt denote the normalized eigenvector to an eigenvalue t ∈ R. Its coefficients in the
eigenbasis {φn}+∞

n=−∞ are given by:

〈φt, φn〉 = (−1)z(t,tn)

√
t′n

|t− tn|

( ∞∑
m=−∞

t′m
(t− tm)2

)−1/2

. (3.14)

where z(t, t̂) denote the number of the eigenvalues {tn}∞n=−∞ between t and t̂ exclusively.

Further, let φt̂ denote the normalized eigenvector to another eigenvalue t̂ ∈ R, the inner
product of φt and φt̂ is given by:

〈φt, φt̂〉 = (−1)z(t,t̂)
∞∑

n=−∞

|t′n|
(t− tn) (t̂− tn)( ∞∑

m=−∞

t′m
(t− tm)2

)−1/2( ∞∑
m=−∞

t′m
(t̂− tm)2

)−1/2

.

(3.15)

Note. The significance of Eq. (3.14) and (3.15) is that the inner product of eigenvectors is
expressed solely in terms of the given eigenvalues and derivatives, {tn}+∞

n=−∞ and {t′n}
+∞
n=−∞.

Any real number t is an eigenvalue of some self-adjoint extension of T . One does not need
to know to which self-adjoint extension the eigenvector belongs, nor the specification of the
eigenvectors. This is important and due to the fact that we are working within an abstract
Hilbert space, not tied to any particular representation.
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Eq. (3.13) implies that for any fixed α ∈ (0, 1), one can obtain all the eigenvalues
{tn(α)}+∞

n=−∞ of T (α) by solving for t. There is one solution on each open interval (tn, tn+1).
Conversely, for any real number t, Eq. (3.13) also determines of which self-adjoint extension
t is the eigenvalue.

The relation, Eq. (3.12), between the derivatives of the eigenvalues and the coefficients
of the first deficiency vector expanded in the eigenbasis of the given self-adjoint extension
is true for all self-adjoint extensions.

The pre-determined set of eigenvalues {tn = tn(0)}+∞
n=−∞ and the derivative {t′n = t′n(0)}+∞

n=−∞
in the theorem obey the following three conditions to ensure that the operator T is simple
symmetric and the first deficiency vector φ+ is normalized:

t′n 6= 0 ∀n,
+∞∑

n=−∞

t′n diverges,
+∞∑

n=−∞

t′n
t2n + 1

= π. (3.16)

If the given self-adjoint extension T (0) has its eigenvalues {tn}+∞
n=−∞ and the derivatives

{t′n}
+∞
n=−∞ obeying these conditions, then so do the other self-adjoint extensions.

Proof. Let φn(α) denote the normalized eigenvector to the eigenvalue tn(α) of the self-
adjoint extension T (α) for all 0 ≤ α < 1 and φn = φn(0). The set {φn(α)}n, forms an
orthonormal eigenbasis of H. The self-adjoint operator T (0) can be expressed as

T (0) =
+∞∑

n=−∞

tn 〈·, φn〉φn. (3.17)

Notice that one has the freedom to choose the phase of φn for all n. Its Cayley transform
U(0) is given by

U(0) =
+∞∑

n=−∞

tn − i
tn + i

〈·, φn〉φn. (3.18)

Let S denote the Cayley transform of T . It is the restriction of U(0) on D(S) = H	K+:

S = U(0)|H	K+
. (3.19)

where the one-dimensional first deficiency space K+ is spanned by φ+. The first deficiency
vector φ+ is given by:

φ+ =
+∞∑

n=−∞

fn
tn − i

φn. (3.20)

The second deficiency vector φ− is the image of φ+ under the U(0) :

φ− = U(0)φ+ =
+∞∑

n=−∞

tn − i
tn + i

〈φ+, φn〉 φn =
+∞∑

n=−∞

fn
tn + i

φn. (3.21)
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All the self-adjoint extensions of T are obtained by the Cayley transform and Eq. (3.3).
The parameter α is the one in the U(1)-map ei2πα in Eq. (3.2) between K+ and K−. With
the choice of φ− in Eq. (3.21), the given self-adjoint operator T (0) is indeed the one which
corresponds to α = 0 in the enumerated one-parameter family of self-adjoint extensions of
T . Hence tn = tn(0) and φn = φn(0) are consistent for all n.

For each α in [0, 1), the self-adjoint operator T (α) has a set of eigenvalues {tn(α)}n
with multiplicity 1. Let φn(α) denote the normalized eigenvector of the eigenvalue tn(α).
One can expand φ+ in the eigenbasis {φn(α)}n as

φ+ =
+∞∑

n=−∞

ei2πα fn(α)

tn(α)− i
φn(α), (3.22)

where fn(α) is the constant coefficient to be determined later. The denominator tn(α)− i
and ei2πα are for calculation convenience as one will see later. Each fn(α) has the freedom
of the choice of its own phase. At α = 0, fn = fn(0) for all n. The expansion of φ− in
the eigenbasis {φn(α)}n is obtained by substituting ψ = φ+ into Eq. (3.3) and using Eq.
(3.10), (3.22):

φ− = e−i2πα 〈φ+, φ+〉U(α)φ+ = e−i2παU(α)φ+

= e−i2πα
∑
n

ei2πα fn(α)

tn(α)− i
(
U(α)φn(α)

)
=
∑
n

fn(α)

tn(α)− i

(tn(α)− i
tn(α) + i

φn(α)
)

=
∑
n

fn(α)

tn(α) + i
φn(α).

(3.23)

For the operator T being simple symmetric and the deficiency vector φ+ to be normalized,
the following three conditions are obeyed:

fn 6= 0 ∀n,
+∞∑

n=−∞

|fn|2 diverges,
+∞∑

n=−∞

|fn|2

t2n + 1
= 1. (3.24)

Notice that the images of vectors in the domain of T under T + i must be orthogonal to
φ+ ∈ K+. Hence the domain of T reads:

D(T ) =
{
φ ∈ D(T (0)) |

〈(
T (0) + i

)
φ, φ+

〉
= 0
}
. (3.25)

To show the first condition in Eq. (3.24) that fn 6= 0, note that because T is simple, T
does not inherit any eigenvector from T (0), i.e., φn /∈ D(T ). Therefore,

0 6=
〈(
T (0) + i

)
φn, φ+

〉
= (tn + i) 〈φn, φ+〉 = f ∗n. (3.26)
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To show the divergence in the second condition, note that since T is symmetric, D(T )
must be dense. If the following summation did not diverge,∑

n

|(tn − i) 〈φ+, φn〉|2 =
∑
|fn|2 , (3.27)

then there would exist a vector ψ ∈ H

ψ =
∑
n

(tn − i) 〈φ+, φn〉φn =
(
T (0)− i

)
φ+, (3.28)

so that for any φ ∈ D(T ),

〈φ, ψ〉 =
〈
φ,
(
T (0)− i

)
φ+

〉
=
〈(
T (0) + i

)
φ, φ+

〉
= 0. (3.29)

Hence ψ ∈ H	D(T ). The domain D(T ) would not be dense and therefore, the summation
in Eq. (3.27) must diverge.

The third condition follows from the normalization of the deficiency vector φ+ and the
expansion of φ+ in the eigenbasis {φn}n:

1 = 〈φ+, φ+〉 =
∑
n

fn
tn − i

f ∗n
tn + i

〈φn, φn〉 =
∑
n

|fn|2

t2n + 1
.

The three conditions in Eq. (3.24) are true because the operator T is simple symmetric
and φ+ is normalized. For exactly the same reason, similar conditions are also true if
one replaces {tn}n and {fn}n by any other set of eigenvalues and their corresponding
coefficients, i.e. {tn(α)}n and {fn(α)}n for any fixed α between 0 and 1.

With explicit expansion of the deficiency vectors φ+ and φ− in each eigenbasis {φn(tn)}n
in Eq. (3.22) and Eq. (3.23), one can use Eq. (3.4) to calculate the inner product of
eigenvectors φn(α) and φm(β) of any two arbitrary self-adjoint extensions T (α) and T (β),
with 0 ≤ α 6= β < 1. First, one applies U(β) on the first argument and U(α) on the second
argument in the inner product 〈φm(β), φn(α)〉:

〈
(
U(β)− U(α)

)
φm(β) , φn(α)〉

= 〈U(β)φm(β), φn(α)〉 − 〈φm(β), U(α)∗φn(α)〉

=

〈
tm(β)− i
tm(β) + i

φm(β), φn(α)

〉
−
〈
φm(β),

tn(α) + i

tn(α)− i
φn(α)

〉
=
(tm(β)− i
tm(β) + i

− tn(α)− i
tn(α) + i

)
〈φm(β), φn(α)〉

=
2 i (tm(β)− tn(α))

(tm(β) + i)(tn(α) + i)
〈φm(β), φn(α)〉 .

(3.30)
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On the other hand, apply the right hand side of Eq. (3.4) to 〈φm(β), φn(α)〉:

〈(ei2πβ − ei2πα) 〈φm(β), φ+〉 φ− , φn(α)〉
= (ei2πβ − ei2πα) 〈φm(β), φ+〉 〈φ−, φn(α)〉

= (ei2πβ − ei2πα)
(e−i2πβ f ∗m(β)

tm(β) + i

) ( fn(α)

tn(α) + i

)
=

(1− ei2π(α−β)) f ∗m(β) fn(α)

(tm(β) + i)(tn(α) + i)
.

(3.31)

Cancel out the common denominator (tm(β) + i)(tn(α) + i) in the above two equations to
give:

〈φm(β), φn(α)〉 =
(1− ei2π(α−β)) f ∗m(β) fn(α)

2 i (tm(β)− tn(α))
. (3.32)

Then the trigonometric double angle formula gives:

(1− ei2π(α−β))

2 i
=

1

2i

(
1− cos

(
2π(α− β)

)
− i sin

(
2π(α− β)

))
=

1

2i

(
2 sin2

(
π(α− β)

)
− i 2 sin

(
π(α− β)

)
cos
(
π(α− β)

))
= − sin

(
π(α− β)

)
eiπ(α−β).

(3.33)

Therefore, the inner product 〈φm(β), φn(α)〉 in Eq. (3.32) simplifies to

〈φm(β), φn(α)〉 =
sin
(
π(β − α)

)
tm(β)− tn(α)

(
eiπβfm(β)

)∗ (
eiπαfn(α)

)
. (3.34)

Now one uses the freedom of the phase of fn(α) for all n and 0 ≤ α < 1 to impose that(
eiπαfn(α)

)
is always real. But one is still free to choose it is either positive or negative.

Notice that the limit of e−iπα goes to −1 as α goes to 1. To ensure the continuity of fn(α)
as α approaches 1, fn is chosen to have an alternating sign, e.g., (−1)n. In summary, one
chooses the phase in the eigenvector φn(α) such that

fn(α) = e−iπα(−1)n |fn(α)| ∀n ∈ Z, 0 ≤ α < 1. (3.35)

Therefore, Eq. (3.34) becomes:

〈φm(β), φn(α)〉 =
(−1)m+n sin

(
π(β − α)

)
tm(β)− tn(α)

|fm(β)| |fn(α)| . (3.36)
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Fix one eigenvector tn(α) and let m = n. Because of the continuity of inner product
and the unitary extension in Eq. (3.3), the limit of the inner product 〈tn(β), tn(α)〉 as β
approaches α should be equal to 〈tn(α), tn(α)〉 = 1. Using Eq. (3.36), one has

1 = 〈φn(α), φn(α)〉 = lim
β→α
〈φn(β), φn(α)〉

= (−1)2n |fn(α)|2 lim
β→α

sin
(
π(β − α)

)
tn(β)− tn(α)

= |fn(α)|2 lim
β→α

π cos
(
π(β − α)

)
dtn(β)
dβ
|β=α − 0

(by l’Hopital’s rule)

= π |fn(α)|2
( dtn(β)

dβ

∣∣∣∣
β=α

)−1

.

(3.37)

Hence, Eq. (3.12) follows as:

t′n(α) =
dtn(β)

dβ

∣∣∣∣
β=α

= π |fn(α)|2 . (3.38)

The three conditions in Eq. (3.16) follow from Eq. (3.38) and (3.24).

One expands 〈φn(α), φn(α)〉 = 1 in the eigenbasis {φm = φm(0)}m of the given self-
adjoint operator T (0) to obtain

1 =
∑
m

〈φn(α), φm〉 〈φm, φn(α)〉

=
∑
m

(−1)2(m+n) sin2(πα)

(tn(α)− tm)2
|fn(α)|2 |fm|2

= sin2(πα) |fn(α)|2
∑
m

|fm|2

(tn(α)− tm)2
.

(3.39)

Hence, Eq. (3.38) and (3.39) give(∑
m

|fm|2

(tn(α)− tm)2

)
dtn(α)

dα
=

π

sin2(πα)
. (3.40)

A further integration with respect to α would yield Eq. (3.13). However, this must be
done carefully because of the divergence at α = 0. It follows from Eq. (3.38) that t′n(α) is
always positive. So the eigenvalue tn(α) always moves forward along the real line. Further
because of the continuity of t′n(α) and the fact that all {tn(α)}n cover the real line exactly
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once, for any α ∈ (0, 1), there is one corresponding tn(α) in each interval (tn, tn+1) for all
n. Therefore, to integrate, one fixes an arbitrary n, and re-writes Eq. (3.40) as(

|fn|2

(tn(α)− tn)2
+
∑
m6=n

|fm|2

(tn(α)− tm)2

)
dtn(α)

dα
=

π

sin2(πα)
. (3.41)

Under the assumption that the discrete spectrum has no accumulation points, there is a
minimum spacing between two adjacent eigenvalues, say δ > 0. Hence |tn − tm| ≥ |m− n| δ
for all m 6= n. Since tn(α)− tm = (tn(α)− tn) + (tn − tm), the summation over the index
m, m 6= n, converges asymptotically as

∑
m

1
(m−n)2 . The series is absolutely convergent.

Integrate with respect to α from a sufficiently small positive number ε to a real number
α ∈ (0, 1), and change the variable on the left hand side, tn(α) ∈ (tn, tn+1), to give

− |fn|2

tn(α)− tn
+

|fn|2

tn(ε)− tn
+
∑
m 6=n

(
− |fm|2

tn(α)− tm
+

|fm|2

tn(ε)− tm

)
= − cot(πα) + cot(πε).

(3.42)

As ε goes to 0+, take the Laurent expansion of both sides. For ε sufficiently small, tn(ε)−
tn → ε t′n asymptotically. Since t′n = π |fn|2 in Eq. (3.38), the second term |fn|2

tn(ε)−tn on the

left hand side asymptotically goes to π|fn|2
π ε t′n

= 1
πε

as ε → 0+. The other terms containing

tn(ε) on the left side in the summation behave well because as ε→ 0+, the limit tn− tm is
non-zero for m 6= n . On the right hand side, as ε → 0+, cot(πε) asymptotically goes to
cos(πε)
sin(πε)

= 1
πε

. Cancelling out the simple pole 1
πε

of the Laurent expansion on both sides as

ε→ 0+ gives the following:

|fn|2

tn(α)− tn
+
∑
m6=n

( |fm|2

tn(α)− tm
− |fm|2

tn − tm

)
= cot(πα). (3.43)

Hence
|fn|2

tn(α)− tn
−
∑
m6=n

|fm|2 (tn(α)− tn)

(tn(α)− tm)(tn − tm)
= cot(πα). (3.44)

Eq. (3.13) follows with t = tn(α) and t′n(α) = π |fn(α)|.

To show Eq. (3.14), one first uses Eq. (3.39) with k = n to obtain an expression of the
sin(πα) |fk(α)|-term:

sin(πα) |fk(α)| =
(∑

m

|fm|2

(tk(α)− tm)2

)−1/2

. (3.45)
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Here the sign is always non-negative because sin(πα) ≥ 0 for all 0 ≤ α < 1. Substitute
this into Eq. (3.36) for the inner product of φk(α) and φn:

〈φk(α), φn〉 =
(−1)k+n |fn|
tk(α)− tn

(
sin(πα) |fk(α)|

)
=

(−1)k+n |fn|
tk(α)− tn

(∑
m

|fm|2

(tk(α)− tm)2

)−1/2

=
(−1)k+n

√
t′n

tk(α)− tn

(∑
m

t′m
(tk(α)− tm)2

)−1/2

by Eq. (3.38).

(3.46)

The sign of the expression depends on two factors: (−1)k+n and tn(α) − tn. The sign of
(−1)k+n is the same as (−1)k−n or (−1)n−k. Let z(t, t̂) denote the number of the points
{tn}n between t and t̂ exclusively. Taking two cases:

tk(α) > tn: There are exactly n − k points between tn and tk(α) excluding the end point

tn. The overall sign is (−1)k+n = (−1)k−n = (−1)z
(
tk(α),tn

)
;

tk(α) < tn: There are exactly n−k−1 points in
(
tn(α), tk

)
, but notice the sign of tn(α)−tn

is now negative. The overall sign is still −(−1)k+n = (−1)n−k−1 = (−1)z
(
tk(α),tn

)
.

In either case, the sign of the expression agrees with (−1)z
(
tk(α),tn

)
. Hence,

〈φk(α), φn〉 = (−1)z
(
tk(α),tn

) √
t′n

|tk(α)− tn|

(∑
m

t′m
(tk(α)− tm)2

)−1/2

. (3.47)

Replacing tk(α) by t and its eigenvector φk(α) by φt gives Eq. (3.14). To calculate the
inner product of two eigenvectors φt and φt̂ of any eigenvalues t and t̂, one expands in the
given eigenbasis {φn}n and uses Eq. (3.14):

〈φt, φt̂〉 =
∑
n

〈φt, φn〉 〈φn, φt̂〉

=
∑
n

(−1)z(t,tn)+z(t̂,tn) |t′n|
|t− tn|

∣∣t̂− tn∣∣(∑
m

t′m
(t− tm)2

)−1/2 (∑
m

t′m
(t̂− tm)2

)−1/2

.

(3.48)

To determine the sign of n-th term in Eq. (3.48), one takes two cases again:
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(t− tn)(t̂− tn) > 0: when points t and t̂ are on the same side of tn, then the number
of points of {tm}m between t and t̂ is the difference of the number of points be-
tween t to tn and t̂ to tn. Hence z(t, t̂) = z(t, tn) − z(t̂, tn), and the overall sign is
(−1)z(t,t̂) = (−1)z(t,tn)−z(t̂,tn) = (−1)z(t,tn)+z(t̂,tn). The sign of (t − tn)(t̂ − tn) is the
same as |t− tn|

∣∣t̂− tn∣∣
(t− tn)(t̂− tn) < 0: when points t and t̂ are on the opposite sides of tn, then the number

of points of {tm}m between t and t̂ is the sum of z(t, tn) and z(t̂, tn) plus the excluded

point tn. Hence the overall sign is (−1)z(t,tn)+z(t̂,tn) = −(−1)z(t,t̂). The minus sign at
the front cancels out the negative sign of (t− tn)(t̂− tn).

Therefore, in Eq. (3.48), the sign of the n-th term is determined by the following:

(−1)z(t,tn)+z(t̂,tn)

|t− tn|
∣∣t̂− tn∣∣ =

(−1)z(t,t̂)

(t− tn) (t̂− tn)
. (3.49)

Substituting this into Eq. (3.48) gives Eq. (3.15). This completes the proof.

3.3 The Example of the Derivative Operator on a Fi-

nite Interval

In this section, we will discuss a concrete example of the U(1)-family of self-adjoint exten-
sions of a simple symmetric operator with deficiency indices (1, 1), namely the differential
operator on a finite interval with vanishing and periodic boundary conditions. Here, we
will not focus on the proof of the example itself, because this classical example has been
widely used in the textbooks on the topic of self-adjoint extensions of symmetric operators,
but show its relation to the general results established in this chapter.

Specifically, the U(1)-family of self-adjoint extensions in the example of differential oper-
ators are conventionally parameterized in terms of the parameter in the periodic boundary
conditions: the phase difference between the function values at the two end points has the
same form of a parametrization of a U(1)-group, namely, ei2πθ, with 0 ≤ θ < 1. How-
ever, it is important to emphasize that the parameter θ is not the same as the parameter α
which arises in the U(1)-group between deficiency spaces when using the Cayley transform.
Here we will clarify the relation between the parameters θ and α, namely, we will clarify
how the conventional boundary condition parametrization of self-adjoint extensions in this
particular example relates to the underlying general parametrization through the Cayley
transform.

Another reason to look into this example in detail is because this example directly
relates to the mathematical foundation of the classical sampling theorem. Note that the
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notation of functions in the L2
(
[a, b]

)
-Hilbert space will be changed to Φ(ω) or Ψ(ω). The

frequency variable ω is adopted here because the results will be used later to prove the
classical sampling theorem in frequency space by Fourier transform.

The Classical Example of a Differential Operator on a Finite Interval

Example 8: Consider the Hilbert space of L2[a, b] in Example 5 on a finite interval [a, b].
Let AC[a, b] be the set of absolute continuous functions on [a, b], which is dense in L2[a, b].
The set AC[a, b] is the largest set on which the action of differentiation can be defined.
Further, the image of the vector in L2[a, b] under the action of differentiation must also be
in the same Hilbert space, namely, Φ′(ω) = d

dω
Φ(ω) must be in L2[a, b].

Let T ∗, T , and T [θ], 0 ≤ θ < 2π denote the differential operators with the same action
i d
dω

, but on different domains:

D(T ∗) =
{

Φ(ω) ∈ AC[a, b] | Φ′(ω) ∈ L2[a, b]
}
, (3.50)

D(T ) =
{

Φ(ω) ∈ AC[a, b] | Φ′(ω) ∈ L2[a, b], Φ(a) = 0 = Φ(b)
}
, (3.51)

D(T [θ]) =
{

Φ(ω) ∈ AC[a, b] | Φ′(ω) ∈ L2[a, b], Φ(a) = ei2πθ Φ(b)
}
. (3.52)

The functions in D(T ∗) have arbitrary boundary condition, the ones in D(T ) vanish at the
two end points, and the functions in D(T [θ]) are subject to a periodic boundary condition
up to a phase ei2πθ, where 0 ≤ θ < 1. The parameter θ is used in a square bracket just
to distinguish from the parametrization of T (α) which arises from the Cayley transform.
Clearly,

D(T ) $ D(T [θ]) $ D(T ∗).

From Example 2 and 5, we know that the operator T is a simple symmetric operator with
deficiency indices(1, 1), and T ∗ is the adjoint of T .

Further, each operator T [θ] is a self-adjoint extension of T . To see these, write out the
definition of the adjoint Eq. (2.6) explicitly for any Φ(ω) and Ψ(ω) in D(T ∗), an integration
by parts gives the following:〈

i
d

dω
Φ(ω), Ψ(ω)

〉
=

∫ b

a

iΦ′(ω) Ψ∗(ω) dω

= iΦ(ω) Ψ∗(ω)
∣∣b
ω=a

+

∫ b

a

Φ(ω)
(
iΨ′(ω)

)∗
dω

= i
(

Φ(b)Ψ∗(b)− Φ(a)Ψ∗(a)
)

+

〈
Φ(ω), i

d

dω
Ψ(ω)

〉
.

(3.53)

Hence 〈
i
d

dω
Φ(ω), Ψ(ω)

〉
=

〈
Φ(ω), i

d

dω
Ψ(ω)

〉
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if and only if the underlined part equals zero. If Φ(ω) vanishes at the two end points, then
it is always true, namely,

〈T Φ(ω), Ψ(ω)〉 = 〈Φ(ω), T ∗Ψ(ω)〉 .

If both Φ(ω) and Ψ(ω) have the same periodic boundary boundary condition, i.e., Φ(ω),
Ψ(ω) ∈ D(T [θ]), then

〈T [θ] Φ(ω), Ψ(ω)〉 = 〈Φ(ω), T [θ] Ψ(ω)〉

because the underlined part equals

Φ(b)Ψ∗(b)− Φ(a)Ψ∗(a) = Φ(b)Ψ∗(b)−
(
eiθΦ(b)

) (
eiθΨ(b)

)∗
= 0. (3.54)

To obtain the eigenvalues {tn[θ]}n of each self-adjoint operator T [θ], one solves the following
equation for λ:

T [θ] Φ(ω) = i
d

dω
Φ(ω) = λΦ(ω). (3.55)

It gives

Φ(ω) = C e−iλω =
e−iλω√
b− a

, (3.56)

where the pre-factor C = 1√
b−a is the normalization constant. The boundary condition of

Φ(ω) in D(T [θ]) gives:

Ce−iλa = Φ(a) = ei2πθΦ(b) = ei2πθ Ce−iλb

=⇒ e−iλaeiλb = ei2πθ

=⇒ λ (b− a) = 2πθ + 2nπ = 2π(n+ θ).

(3.57)

The eigenvalues of each self-adjoint operator T [θ] are

tn[θ] =
θ + 2nπ

b− a
∀n ∈ Z, 0 ≤ θ < 2π. (3.58)

Substituting the eigenvalue into Eq. (3.56) gives the corresponding eigenvector1

Φ[θ]
n (ω) =

e−itn[θ]ω

√
b− a

=
e−i

2π(n+θ)ω
b−a

√
b− a

, a ≤ ω ≤ b. (3.59)

Each eigenvalue tn[θ] is of multiplicity 1.

1See Chapter 4 for the corresponding representations in time domain.
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This U(1)-family of self-adjoint extensions {T [θ]}n agrees with the fact that the defi-
ciency indices of the simple symmetric operator is (1, 1). In Example 5, we saw that the
deficiency spaces of T are spanned by the deficiency vectors Φ+ and Φ−:

K± = K(T ∗ ∓ i) = span {Φ±(ω)} .

Solving for the deficiency vectors, we have(
i
d

dω
∓ i
)

Φ±(ω) = 0 =⇒ d

dω
Φ±(ω) = ±Φ±(ω). (3.60)

To have

Φ+(ω) = +C+ e
+ω, C+ =

√
2/(e2b − e2a),

Φ−(ω) = −C− e−ω, C− =
√

2/(e−2a − e−2b).
(3.61)

where C+ and C− are the normalization constants. Note that C− = ea+bC+.

It is important to point out that the second deficiency vectors Φ−(ω) is chosen to be
−C− e−ω rather than the positive C− e

−ω in Example 5. This is because of the consistency
with Eq. (3.2), namely,

U(0)Φ+(ω) = Φ−(ω). (3.62)

Notice that the phase of the second deficiency vector Φ−(ω) is free to be chosen. To obey
Eq. (3.62), choose the phase of the second deficiency vector Φ−(ω) to be of the general form
of eiγ. Set Φ−(ω) = eiγe−ω temporarily. Due to Eq. (2.23), there exist a Φ(ω) ∈ D(T (0))
with Φ(a) = Φ(b) so that

(T + i)Φ(ω) = Φ+(ω) and

(T − i)Φ(ω) = U(0)
(
(T + i)Φ(ω)

)
= U(0) Φ+(ω) = Φ−(ω).

Namely, (
T + i

)
Φ(ω) = i

( d
dω

+ 1
)
Φ(ω) = Φ+(ω) = C+ e

ω,(
T − i

)
Φ(ω) = i

( d
dω
− 1
)
Φ(ω) = Φ−(ω) = ea+bC+

(
eiγe−ω

)
.

Subtracting these two equation gives

Φ(ω) =
C+

2i

(
eω − eiγ ea+be−ω

)
. (3.63)

Since Φ(ω) is in the domain of T [θ = 0], it must obey the boundary condition Φ(a) = Φ(b).
Substituting ω = a and ω = b into Eq. (8), one has

C+

2i

(
ea − eiγ eb

)
= Φ(a) = Φ(b) =

C+

2i

(
eb − eiγ ea

)
,

ea − eb = eiγ
(
eb − ea

)
.
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Hence eiγ = −1. The choice of the deficiency vectors is important later in the functional
analytical proof of the classical sampling theorem.

The Relation to the General α-parametrization of Self-Adjoint Extensions

From Section 3.2, one knows that a general (1, 1)-symmetric operator T has a U(1)-family
of self-adjoint extensions {T (α) | 0 ≤ α < 1}, where the parameter α arises from the U(1)-
map eiα between the deficiency spaces in the Cayley transform. In this particular example
of differential operator T , the set of its self-adjoint extensions {T [θ] | 0 ≤ θ < 1} are enu-
merated by the boundary condition parameter θ. These two parameterizations are different.
Here we will show a one-to-one map between the two parameters.

The α-parametrization is for general simple symmetric operators with deficiency indices
(1, 1), and the θ-parametrization is specified for the differential operator. Although T (α) 6=
T [θ] in general for α = θ, one expects a one-to-one mapping between α and θ because the
sets {T [θ] | 0 ≤ θ < 1} and {T (α) | 0 ≤ α < 1} describe the same family of self-adjoint
extensions of T . More specifically, the θ-parametrization is simply a re-parameterization of
the general α-parameterization. Therefore, there should exist a strictly monotonic function
θ = θ(α) from [0, 1) onto [0, 1) such that

T (α) = T [θ(α)] ∀ 0 < α < 1. (3.64)

To find the one-to-one correspondence between α and θ, one uses the von Neumann for-
mulas. For a fixed α, suppose that functions in the domain of T (α) are subject to the
boundary condition Φ(a) = ei2πθ Φ(b) for some θ between 0 and 1. Eq. (3.2), Eq. (3.60)
and the von Neumann formulae Eq. (2.38) give that, for any Φ(ω) ∈ D(T (α)),

Φ(ω) = Φ0(ω) + µΦ+(ω)− Sd
(
µΦ+(ω)

)
= Φ0(ω) + µΦ+(ω)− µ ei2πα Φ−(ω)

= Φ0(ω) + µC+ e
ω + µ ei2παC− e

−ω

= Φ0(ω) + µC+

(
eω + ei2πα ea+b e−ω

)
.

(3.65)

where Φ0(ω) is in D(T ) with vanishing boundary condition and µ is the coefficient of the
deficiency vector Φ+ in the deficiency space K+. Evaluate the above expression at the two
end points to give

Φ(a) = µC+

(
ea + ei2πα eb

)
, (3.66)

Φ(b) = µC+

(
eb + ei2πα ea

)
. (3.67)
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Substituting these into the boundary condition Φ(a) = ei2πθΦ(b), one has

ei2πθ =
Φ(a)

Φ(b)
=
ea + ei2πα eb

eb + ei2πα ea
. (3.68)

This equation defines a strictly increasing mapping θ = θ(α) from [0, 1) onto [0, 1). As α
goes from 0 to 1, θ increases from 0 to 1 as well.
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Chapter 4

The Classical Sampling Theory

This chapter will give a brief review of the classical sampling theorem of Whittaker-
Shannon-Kotel’nikov, followed by a new proof from a functional analytical perspective.

The classical sampling theorem, which is commonly known as the sampling theorem of
Whittaker-Shannon-Kotel’nikov (WSK), was originally discovered by E.T. Whittaker and
J.M. Whittaker on their study of cardinal series in 1929 [3, 4]. Hence, it is also called the
Cardinal Theorem of Interpolation. In the Russian literature, it was also independently
studied by Kotel’nikov in 1933 [6]. Some people even think that it goes back to Cauchy
[52]. See Chapter 1 of [7] for a great historical review.

Its practical significance was realized by Shannon in his celebrated paper [1] in 1949,
which sets the foundation of modern information theory. Therefore, the classical sampling
theorem of WSK is well-known as the Shannon Sampling Theorem in communication
engineering and information theory. This name will be frequently used in this thesis when
we deal with engineering applications as well. Its significance lies in the fact that it provides
an equivalence between discrete and continuous representations of information.

Since Shannon’s introduction, the classical sampling theorem is widely used in com-
munication engineering and signal processing. It is involved in any analogic-numerical
conversion process. Indeed, it is employed ubiquitously in modern engineering applica-
tions including CD players and cell phones.
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4.1 The Sampling Theorem of Whittaker-Shannon-

Kotel’nikov

Definition 18. A function φ(t) in L2(R) is said to be Ω-bandlimited if and only if its
Fourier transform Φ(ω) vanishes outside the closed interval [−2πΩ, 2πΩ], namely,

Φ(ω) =

∫ +∞

−∞
φ(t) e−iωt dt = 0 ∀ω ∈ [−2πΩ, 2πΩ]. (4.1)

The scalar number Ω is referred to as the bandlimit, and twice of it, 2Ω, is referred as
the bandwidth of the function φ(t).

Theorem 9 (The Theorem of Whittaker-Shannon-Kotel’nikov). A Ω-bandlimited function
φ(t) can be completely determined for all t ∈ R from its sample values on a discrete
sequence of equidistantly spaced sampling points {tn}n with tn+1 − tn = 1/(2Ω) via the
following reconstruction formula

φ(t) =
∞∑

n=−∞

G
(
t, tn

)
φ(tn). (4.2)

The function G(t, tn) is called the reconstruction kernel and it is the scaled sinc function

G(t, tn) = sinc
(
2Ω(t− tn)

)
=

sin
(
2πΩ(t− tn)

)
2πΩ(t− tn)

. (4.3)

Definition 19. The constant sampling rate at 2Ω is usually referred to as the Nyquist
sampling rate.

Definition 20. The set of sampling points at the Nyquist rate will be referred to as the
sampling grid at the Nyquist rate or Nyquist sampling grid or just simply sampling
grid.

Note. The Shannon sampling theorem does not specify the location of the sampling points,
but the spacing between two adjacent points in a Nyquist sampling grid must be 1/(2Ω).
Therefore, all possible sampling grids can be parameterized by a linear shifting parameter
θ, where 0 ≤ θ < 1, as

tn[θ] =
n+ θ

2Ω
. (4.4)

Any set of points obeying the Nyquist rate must be one of the sampling grid {tn[θ]}n for
some unique θ between 0 and 1. Hence, for an arbitrary fixed θ, the set {tn[θ]}n is a Nyquist
sampling grid on which the Ω-bandlimited functions can be perfectly reconstructed from
its values. Conversely, for any real number t, there exists a unique pair of n and θ such
that t = tn[θ].
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Note. The definition of bandlimited functions are sometimes given for L1-functions. Here
we restrict the function space to be the Hilbert space of L2-functions. The generalization
by the functional analytical theory of self-adjoint operators is for Hilbert space. Further,
most practical engineering applications deal with signals with finite energy, which are L2-
functions.

In the remainder of this chapter, one will see the conventional proof of the Shannon
sampling theorem by Fourier analysis, as well as a new proof by functional analysis.

4.2 An Elementary Proof by Fourier Analysis

The classical sampling theorem is conventionally derived using Fourier series. Its proof can
be found in most standard textbooks on sampling theory, e.g., [9, 7, 8]. However, most
of them only prove the sampling theorem on one set of Nyquist sampling points

{
n

2Ω

}
n
,

namely, the sampling grid in Eq. (4.4) with θ = 0. Here we will show a comprehensive
proof of the classical sampling theorem on all possible Nyquist sampling grids, {tn[θ]}n for
all 0 ≤ θ < 1.

First, let us set the Fourier convention we shall adopt in this thesis and review a few
important results from Fourier analysis that we shall use later. The Fourier transform used
in this thesis is in term of angular frequency ω in the non-unitary form. The unit of ω is
radians per second.

Definition 21 (Fourier transform). The Fourier transform of a function φ(t) in
time t, denoted by Φ(ω), is

Φ(ω) = F
(
φ(t)

)
=

∫ +∞

t=−∞
φ(t) e−iωt dt. (4.5)

The inverse Fourier transform is given by:

φ(t) = F−1
(
Φ(ω)

)
=

1

2π

∫ +∞

ω=−∞
Φ(ω) eiωt dω. (4.6)

Let φ(t) 
 Φ(ω) denote a function in the time domain and its Fourier transform in the
frequency domain. Here are a few important functional relationships:

φ(t− a) 
 e−iaωΦ(ω), (4.7)

| a|φ(at) 
 Φ
(ω
a

)
, (4.8)

t φ(t) 
 i
d

dω
Φ(ω), (4.9)

φ(t) ∗ ψ(t) 
 Φ(ω) Ψ(ω). (4.10)
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The notation φ ∗ ψ denotes the convolution of φ(t) and ψ(t):(
φ ∗ ψ

)
(t) =

∫ ∞
s=−∞

φ(t− s)ψ(s) ds.

Let rect(ω) denote the rectangular function which is 1 on the interval [−1
2
, 1

2
] and zero

elsewhere. The scaled rectangular function rect
(
ω
2π

)
is the Fourier transform of the sinc

function sinc(t) in time domain. To see this, take the inverse Fourier transform of rect(ω)
to get

F−1
(

rect(ω)
)

=
1

2π

∫ +∞

ω=−∞
rect

( ω
2π

)
eiωt dω let u =

ω

2π

=
1

2π

∫ +∞

u=−∞
rect(u) ei2πut 2π du =

∫ +1/2

u=−1/2

1 ei2πut du

=
1

i2πt
ei2πut

∣∣∣1/2
u=−1/2

=
1

i2πt

(
eiπt − e−iπt

)
=

1

i2πt

(
2i sin(πt)

)
=

sin(πt)

πt
= sinc(t).

Using Eq. (4.8), we have the following important Fourier pair

| a| sinc at
 rect
( ω

2πa

)
. (4.11)

Definition 22 (Fourier Series). For a periodic function f(x) with period T , f(x) can be
expressed as a Fourier series,

f(x) =
∞∑

m=−∞

cm e
i2πmx/T . (4.12)

where

cm =
1

T

∫
T

f(x) e−i2πmx/T dx. (4.13)

The integration is over any one single period of f(x) with length T .

Proof of the Classical Sampling Theorem by Fourier Analysis.

Let φ(t) be an arbitrary Ω-bandlimited function and Φ(ω) be its Fourier transform. In the
frequency domain, Φ(ω) has a finite support on the closed interval [−2πΩ, 2πΩ].

For any fixed θ between 0 and 1, let ΦT (ω) denote a periodic extension of Φ(ω) ei
θ

2Ω
ω

in the frequency domain with a period T = 4πΩ, i.e.,

ΦT (ω) =

{
Φ(ω) ei

θ
2Ω
ω ∀ω ∈ [−2πΩ, 2πΩ],

ΦT (ω + kT ) ∀ω /∈ [−2πΩ, 2πΩ], k ∈ Z.
(4.14)
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A conventional approach would simply extend Φ(ω), but it would only prove the sampling
theorem for the Nyquist sampling grid

{
tn[0] = n

2Ω

}
n

with the shifting parameter θ = 0.
To cover all the possible sampling grids {tn[θ]}n in Eq. (4.4) for all 0 ≤ θ < 1, we need to

take the 4πΩ-extension of Φ(ω) ei
θ

2Ω
ω instead.

The function Φ(ω) is a single period of ΦT (ω) up to a phase. Hence

Φ(ω) = ΦT (ω)e−i
θ

2Ω
ω rect

( ω

4πΩ

)
. (4.15)

Since ΦT (ω) is periodic with T = 4πΩ, it can be expressed as a Fourier series

ΦT (ω) =
∞∑

n=−∞

cn e
−i2πnω/T =

∞∑
n=−∞

cn e
−i n

2Ω
ω. (4.16)

The summation index in the Fourier series is replaced by its negative, i.e., n = −m, since
the periodic function is in the frequency domain rather than the time domain. Hence the
sign in the exponential ei2πmx/T in the Fourier series in Eq. (4.12) and Fourier coefficients
Eq. (4.13) are switched, but it does not change the results of the Fourier series. The
Fourier coefficient of ΦT (ω) then reads:

cn =
1

T

∫ 2πΩ

ω=−2πΩ

ΦT (ω) ei2πnω/T dω

=
1

4πΩ

∫ 2πΩ

ω=−2πΩ

(
Φ(ω) ei

θ
2Ω
ω
)
ei

n
2Ω
ω dω by Eq. (4.14)

=
1

4πΩ

∫ +∞

ω=−∞
Φ(ω) ei

n+θ
2Ω

ω dω since Φ(ω) = 0 outside [−2πΩ, 2πΩ]

=
1

2Ω

1

2π

∫ +∞

ω=−∞
Φ(ω) eitn[θ]ω dω =

1

2Ω
φ
(
tn[θ]

)
.

(4.17)

The Fourier coefficients of the periodic extension ΦT (ω) in the frequency domain turns out
to be the sampling values on a Nyquist sampling grid. The last step is the inverse Fourier
transform of φ(t) at t = tn[θ] = n+θ

2Ω
.
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Substitute Eq. (4.16) into Eq. (4.15)

Φ(ω) = ΦT (ω) e−i
θ

2Ω
ω rect

( ω

4πΩ

)
=
( ∞∑
n=−∞

cn e
− n

2Ω
ω
)
e−i

θ
2Ω
ω rect

( ω

4πΩ

)
=

∞∑
n=−∞

cn e
−i (n+θ)

2Ω
ω rect

( ω

4πΩ

)
=

∞∑
n=−∞

cn e
−itn[θ]ω rect

( ω

4πΩ

)
.

(4.18)

This is an expansion of Φ(ω) in the Hilbert space L2([−2πΩ, 2πΩ]). The inverse Fourier
transform of Eq. (4.18) gives an expression of the bandlimited function φ(t) in terms of
its sample values

φ(t) = F−1
(
Φ(ω)

)
=

∞∑
n=−∞

cn F−1
(
e−itn[θ]ω rect

( ω

4πΩ

))
=

∞∑
n=−∞

cn 2Ω sinc
(
2Ω(t− tn[θ])

)
by Eq. (4.7) and (4.11)

=
∞∑

n=−∞

( 1

2Ω
φ
(
tn[θ]

) )
2Ω sinc

(
2Ω(t− tn[θ])

)
by Eq. (4.17)

=
∞∑

n=−∞

sinc
(
2Ω(t− tn[θ])

)
φ
(
tn[θ]

)
.

(4.19)

This is precisely the reconstruction formula in the classical sampling of Whittaker-Shannon-
Kotel’nikov in Eq. (4.2) on a Nyquist sampling grid {tn = tn[θ]}n for any fixed 0 ≤ θ <
1.

4.3 A New Proof by Functional Analysis

The underlying mathematics of the classical sampling theorem is also rooted in the spectral
theory of self-adjoint extensions of symmetric operators in Hilbert spaces. The classical
sampling theorem simply states a functional analytical fact: if a Hilbert space vector is
known in one eigenbasis of a self-adjoint extension, then its coefficients in the eigenbases
of all other self-adjoint extensions are determined.

60



The coefficients in the eigenbasis coincide with the sampling values of the function, and
the Nyquist set of sampling points turns out to be the set of eigenvalues of one self-adjoint
operator.

Proof of the Classical Sampling Theorem by Functional Analysis.

Although the proof by functional analysis does not necessarily involve Fourier analysis,
it is still easier to understand the proof in frequency space. The Fourier transforms of
Ω-bandlimited functions form the function space of L2[−2πΩ, 2πΩ], which is the function
space we studied in Example 8 in Chapter 3 with the boundary points a = −2πΩ and
b = 2πΩ.

Recall that in Example 8, the differential operator T = i d
dω

acting on the set of ab-
solutely continuous functions with vanishing boundary conditions is a simple symmetric
operator with deficiency indices (1, 1). The operator T has a U(1)-family of self-adjoint
extensions, which can be denoted by {T [θ] | 0 ≤ θ < 1}. Functions in the domain of each
self-adjoint extension T [θ] have a periodic boundary condition Φ(−2πΩ) = ei2πθ Φ(2πΩ).

From Eq. (3.58), each self-adjoint extension T [θ] has a set of equidistantly spaced
eigenvalues

{
tn[θ] = n+θ

2Ω

}
n
. This is precisely the set of Nyquist sampling points. Further,

from Eq. (3.59), each eigenvalue tn[θ] corresponds to one normalized eigenfunction

Φ[θ]
n (ω) =

1√
4πΩ

e−itn[θ]ω, −2πΩ ≤ ω ≤ 2πΩ.

For a fixed θ, the set of eigenfunctions
{

Φ
[θ]
n (ω)

}
n

forms an orthonormal eigenbasis of

L2[−2πΩ, 2πΩ]. Any function Φ(ω) can be expanded in this basis

Φ(ω) =
+∞∑

n=−∞

〈
Φ(ω), Φ[θ]

n (ω)
〉

Φ[θ]
n (ω). (4.20)

Since Φ(ω) vanishes outside [−2πΩ, 2πΩ], each coefficient reads:

〈
Φ(ω), Φ[θ]

n (ω)
〉

=

∫ 2πΩ

ω=−2πΩ

Φ(ω) Φ[θ]
n (ω)∗dω

=

∫ +∞

ω=−∞
Φ(ω) Φ[θ]

n (ω)∗dω

=
1√
4πΩ

∫ +∞

ω=−∞
Φ(ω) eitn[θ]ωdω

=
2π√
4πΩ

φ
(
tn[θ]

)
by inverse Fourier transform.

(4.21)
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Hence the coefficients of Fourier transform of an Ω-bandlimited function φ(t) in the eigen-
basis coincide with the function values in time space.

The eigenfunction Φ
[θ]
n (ω) in Eq. (4.20) vanishes outside [−2πΩ, 2πΩ]. So when one

takes its inverse Fourier transform, one needs to multiply it by rect( ω
4πΩ

) first. The eigen-
function in the time domain reads:

φ[θ]
n (t) = F−1

(
Φ[θ]
n (ω)

)
= F−1

( 1√
4πΩ

e−itn[θ]ω rect(
ω

4πΩ
)
)

=
1√
4πΩ

(2Ω) sinc
(
2Ω(t− tn[θ])

)
.

(4.22)

Finally, the inverse Fourier transform of Eq. (4.20) gives exactly the reconstruction formula
in Eq. (4.2)

φ(t) =
+∞∑

n=−∞

( 2π√
4πΩ

φ
(
tn[θ]

)) ( 2Ω√
4πΩ

sinc
(
2Ω(t− tn[θ])

))
=

+∞∑
n=−∞

φ
(
tn[θ]

)
sinc

(
2Ω(t− tn[θ])

))
.

(4.23)

Of course, this formula can also be obtained directly in the time domain without Fourier
transform. In the time domain, the simple (1, 1)-symmetric operator T becomes the mul-
tiplication operator Tφ(t) = t φ(t) for any Ω-bandlimited function. Each self-adjoint op-
erator T [θ] has the same set of eigenvalues {tn[θ]}n as in the frequency space, but the
corresponding eigenfunction in the time domain becomes the sinc function in Eq. (4.22).

The coefficient of φ(t) in the eigenbasis
{
φ

[θ]
n

}
n

is identical to the one obtained in frequency

space in Eq. (4.21). Hence, the expansion of φ(t) in the eigenbasis gives the same result
as in Eq. (4.23).

Note that the result here holds if one uses the general α-parameter, since in the
particular case of the differential operator T in Example 8, the eigenvalues of each self-
adjoint extension, represented by either T [α] or T (α), always obey the Nyquist spacing,
i.e. tn+1(α)− tn(α) = 1/(2Ω).

The parameter θ arises from the periodic boundary condition of L2-functions on [−2πΩ, 2πΩ].
Hence, it is restricted to the Shannon sampling theorem. However, if we use the general
parameter α which arises from the Cayley transform, we can generalize the Shannon sam-
pling theorem. More importantly, in the generalization, we will work directly with the
time domain.
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Chapter 5

The Generalized Sampling Theory
for Time-Varying Nyquist Rates

In this chapter, we further develop a generalized sampling method for time-varying Nyquist
rates, which was first proposed by Kempf [28]. Mathematically, it is based on the func-
tional analytical theory of self-adjoint extensions established in Chapter 3. This chapter is
organized so that readers without specialized knowledge of functional analysis will under-
stand and be able to use the generalized sampling method in practice. The mathematical
proof is arranged to be at the end of the chapter in Section 5.5.

The classical Shannon sampling theory allows sampling and perfect reconstruction of
bandlimited signals at a constant Nyquist rate. However, it is clear that the effective
bandwidth, or information density of a signal could vary in time. To improve the sampling
efficiency, we generalize the classical sampling method, which allows the samples to be
taken only as often as necessary according to the behavior of the given signals, namely at
a time-varying Nyquist rate, and maintains the ability to perfectly and stably reconstruct
the continuous signals from their discrete values on the set of Nyquist sampling points.

First, we will summarize the generalized sampling method of filtering, sampling and
reconstructing signals with a time-varying Nyquist rate. Section 5.2 presents the main
results on sampling and reconstruction, which includes the calculation of the family of
generally non-equidistant Nyquist sampling grids and the explicit formula of the corre-
sponding reconstruction kernels. A precise definition of a time-varying Nyquist rate is
given. In Section 5.3, we show that this time-varying rate is indeed the Nyquist rate as the
critical sampling rate between over- and under-sampling. Section 5.4 illustrates how the
Shannon sampling theorem arises as a special case of the generalized sampling theorem.
The pre-filtering will be explored in Chapter 6. The work in this chapter is based on my
papers [32, 37].
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Figure 5.1: The General Scheme of a Sampling Method

5.1 An Overview of the Generalized Sampling Method

Figure 5.1 illustrates the general scheme of sampling theory, which usually consists of four
steps. In terms of the Shannon sampling method, each step means the following:

(S1) Pre-determine a bandlimit Ω, or equivalently, a Nyquist rate based on the frequency
analysis of the raw signals of interest φraw(t).

(S2) Filter φraw(t) to obtain a function φ(t) in the desired space of Ω-bandlimited functions.
This filtering step can be mathematically represented as a linear operator P :

φ(t) = (Pφraw)(t) =

∫ ∞
−∞

φraw(t̂) P (t, t̂) ν(t̂) dt̂. (5.1)

(S3) Store and/or transmit the samples {φ(tn)}n taken at the desired Nyquist rate.

(S4) Reconstruct φ(t) for all time t from the discrete samples via the following reconstruc-
tion formula

φ(t) =
∞∑

n=−∞

G(t, tn)φ(tn) (5.2)

where the function G(t, tn) is the so-called the reconstruction kernel.

In the Shannon sampling method, a given arbitrary raw signal φraw(t) is generally not Ω-
bandlimited1, so one needs to first pre-filter the signal with a bandlimit Ω. The bandlimit Ω
is chosen in Step (S1) so that the frequencies of φraw(t) larger than Ω are negligible. In Step
(S2), the filtered signal φ(t) gives a good approximation of the raw signal φraw(t). In the
frequency domain, Shannon’s low-pass filter P in Eq. (5.1) multiplies the Fourier transform
of φraw(t) with the rectangular function which is 1 in (−2πΩ, 2πΩ) and 0 elsewhere. In
the time domain, it is equivalent to convolving φraw(t) with a sinc function. Hence, in Eq.
(5.1), we have

P (t, t̂) = sinc
(
2Ω(t− t̂)

)
and ν(t) = 2Ω. (5.3)

1For example, a raw signal with a finite spatial support has no frequency upper bound.
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Here ν(t) indicates the constant Nyquist rate. Details of the pre-filtering step can be found
in Chapter 6.

The resulting signal φ(t) is then Ω-bandlimited. Therefore the sampling theorem, Step
(S3) and (S4), in the dashed box in Figure 5.1, applies: the samples {φ(tn)}n are taken at
the Nyquist rate, namely, on a set of points with an equidistant Nyquist spacing tn+1−tn =
1/(2Ω), the continuous Ω-bandlimited signal φ(t) is perfectly reconstructed for all time t
from its discrete sample values {φ(tn)}∞n=−∞ via Eq. (5.2). Shannon’s reconstruction kernel
is the shifted sinc function

G(t, tn) = sinc
(
2Ω (t− tn)

)
. (5.4)

In practice, sampling a signal at a constant rate is clearly not optimally efficient since an
arbitrary signal may oscillate in effect in various frequency ranges during different periods
of time. It is clear that parts of a realistic signal may possess a lower bandwidth. If one
chooses a high constant bandlimit Ω in Step (S1), then sampling the signal at the rate 2Ω
leads to wasteful redundancy.

Indeed, intuitively, within the limit of the time-frequency uncertainty relation, an ar-
bitrary signal’s ‘effective bandwidth’ or ‘information density’ can change in time. This
suggests a possibility to improve sampling efficiency by adjusting the sampling rate ac-
cording to the signal’s time-varying effective bandwidth, taking samples of a signal only
as frequently as necessary. A corresponding method for sampling and reconstruction at a
‘time-varying bandwidth’ is clearly desirable.

Therefore, the aim here is to generalize the Shannon sampling theorem, following the
sampling scheme of Figure 5.1, but for time-varying bandwidths.

To this end, we note first that the bandwidth as a function of time is ill-defined in the
framework of Fourier analysis, because the bandwidth of a signal, as the upper bound of the
signal’s Fourier transform, is simply time-independent. In principle, however, the Nyquist
sampling rate, as the critical sampling rate below which there is insufficient information to
recover the signal and above which redundance exists, can vary in time. In the generalized
sampling theory, the bandwidth will be interpreted as the inverse of the Nyquist rate, which
can then be time-dependent, and the Fourier analysis is generalized to a new functional
analytical method. The new sampling theory allows samples to be taken only as often as
necessary at a time-varying Nyquist rate, while maintaining the ability to perfectly and
stably reconstruct the signal.

In summary, the generalized sampling method generalizes the four-step sampling algo-
rithm of Shannon:

(G1) Analyze the frequency content of the raw signals of interest φraw(t) to choose a time-
varying Nyquist rate, which is to be specified by an increasing and infinite set of
sampling points {tn}∞n=−∞.
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(G2) Filter φraw(t) to obtain a signal φ(t) in the function space which will be recon-
structible at the pre-specified time-varying Nyquist rate. The filter operator P has
exact the same form as in the case of Shannon in Eq. (5.1):

φ(t) = (Pφraw)(t) =

∫ ∞
−∞

φraw(t̂) P (t, t̂) ν(t̂) dt̂. (5.5)

(G3) Take samples of φ(t) at the time-varying Nyquist rate, namely, samples {φ(tn)}n on
the Nyquist sampling grid {tn}n.

(G4) Reconstruct φ(t) for all t from the generally non-equidistantly spaced samples {φ(tn)}n.
The reconstruction formula also has the same form as Shannon’s sampling method
in Eq. (5.2)

φ(t) =
∞∑

n=−∞

G(t, tn)φ(tn). (5.6)

In Step (G1), the signal’s frequency content can be studied using, for example, win-
dowed Fourier transforms. The part of the raw signal that interests us determines what
bandwidth should be kept in a period of time. For example, when wiggles of a signal
matter in a period of time, samples are recorded at a denser rate to capture all the details.
Although the time-varying bandwidth obtained in Step (G1) is an approximation, the fil-
tering in step (G2) forces the signals to possess this pre-specified time-varying bandwidth
or equivalently the time-varying Nyquist rate. Hence the reconstruction in Step (G4) is
exact. The choice of {tn}n in Step (G1) largely determines the quality of the approxima-
tion to the raw signal. It is important, but {tn}n is chosen in accordance with the raw
input signals. It strongly depends on the application at hand. Hence, this step will not be
further investigated in generalized sampling method. However, see Chapter 8 for a simple
example of approximating a step function.

To this end, let us assume that a Nyquist sampling grid, which is an increasing, infinite
and generally non-equidistant set of sampling points {tn}n at the Nyquist rate, has been
determined in Step (G1). This set of sampling points represents the desired Nyquist rate.
The higher the sampling rate, the denser the sampling points.

Table 5.1 provides a comparison of key features of Shannon and the generalized sampling
methods. One notices that a further set of data {t′n}n arises in Step (G1). The sets {tn}n
and {t′n}n are closely related. As it will become clear later in Section 5.2.2, the optimal
t′n is difficult to determine, but an intuitive and convenient choice of t′n, which also works
very well in practice, can be specified from the sampling grid {tn}n:

t′n = C0
(tn+1 − tn−1)

2
. (5.7)
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Table 5.1: A Comparison of the Shannon and the Generalized Sampling Methods

Shannon Generalization

Pre-chosen data Ω {tn = tn(0)}n and {t′n = t′n(0)}n
Sampling points Equidistant Generally non-equidistant

Bandwidth Constant Time-Varying

Both possess a one-parameter family of Nyquist sampling grids

Notation {tn(θ)}n {tn(α)}n
Parameter 0 ≤ θ < 1 0 ≤ α < 1

Governing Eq. tn(θ) = n+θ
2Ω

t′n
t−tn −

∑
m 6=n

t′m (t−tn)
(t−tm)(tn−tm)

= π cot(πα)

Sampling and perfect reconstruction on each fixed Nyquist grid

{tn = tn(θ)}n, θ fixed {tn = tn(α)}n and
{
t′n = dtn(α)

dα

}
n
, α fixed

Filtering P (t, t̂) sinc
(
2Ω (t− t̂)

) ∑
n

(−1)z(t,t̂)|t′n|
(t−tn) (t̂−tn)

(∑
m

t′m
(t−tm)2

)− 1
2
(∑

m
t′m

(t̂−tm)2

)− 1
2

Kernel G(t, tn) sinc
(
2Ω (t− tn)

)
(−1)z(t, tn)

√
t′n

| t−tn|

(∑
m

t′m
(t−tm)2

)− 1
2

Here the normalization pre-factor C0 is given by

C0 = 2π
∑
n

tn+1 − tn−1

t2n + 1
. (5.8)

Before explaining the details of the generalized sampling theory, let us already state
the mechanics of the steps (G2), (G3) and (G4). In Step (G2), the raw signals φraw(t) are
pre-filtered via Eq. (5.5) with

P
(
t, t̂
)

=(−1)z(t,t̂)
∑
n

t′n
(t− tn) (t̂− tn)(∑

m

t′m
(t− tm)2

)−1/2 (∑
m

t′m
(t̂− tm)2

)−1/2
(5.9)

where z(t, t̂) is the total number of sampling points in {tn}n between t and t̂ exclusively,
and

ν(t) =
dα(t)

dt
.

Here for any t ∈ [tn, tn+1), the function α(t) is defined by

π cot(πα) =
t′n

t− tn
−
∑
m 6=n

t′m (t− tn)

(t− tm)(tn − tm)
. (5.10)
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Figure 5.2: Examples of the generalized reconstruction kernel G(t, tn) as functions in t on a set of
non-equidistantly spaced sampling points. Each function G(t, tn) is ‘centered’ at a different point.
The purple dots and red circles indicate the non-equidistant sampling points at the amplitude of
0 and 1 respectively. Notice the non-trivial heights of the side peaks, which differ significantly
from those of sinc functions.
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When t = tn, the right hand side of Eq. (5.10) diverges. The left hand side diverges
if α = 0. So t = tn corresponds to tn(α) with α = 0 as expected. The solution α(t)
obeys 0 ≤ α(t) < 1. The resulting signal φ(t) is in the desired function space of function
which can be sampled on the generally non-equidistantly Nyquist sampling grid {tn}n and
perfectly reconstructed from those samples as in Step (G3) and (G4). The reconstruction
formula Eq. (5.6) applies with the following generalized reconstruction kernel:

G(t, tn) = (−1)z(t, tn)

√
t′n

| t− tn|

(∑
m

t′m
(t− tm)2

)−1/2

. (5.11)

The function value at t = tm is defined to be the limit of G(t, tn) as t approaches tm for
all integer m. It is straight-forward to show that G(tn, tn) = 1 and G(tm, tn) = 0 for all
m 6= n. Figure 5.2 shows some examples of the generalized reconstruction kernel G(t, tn) as
functions in t on a set of non-equidistantly spaced sampling points. Each function G(t, tn)
is ‘centered’ at a different sampling point. The purple dots and red circles indicate the
non-equidistant sampling points at the amplitude of 0 and 1 respectively. See Section 5.2.3
for more examples.

The next section will discuss the details of the sampling and reconstruction steps, i.e.,
Step (G3) and (G4) in the dashed box in Figure 5.1. The pre-filtering step, i.e., Step (G2),
can be found in Chapter 6.

5.2 The Generalized Sampling Theory

The generalized sampling theory, which consists of the sampling and reconstruction steps,
i.e., Step (G3) and (G4), is shown below in Section 5.2.2 and 5.2.3 respectively. The proof
of these results can be found at the end of this chapter in Section 5.5. First, in Section
5.2.1, we recapitulate the Shannon sampling theorem in a formulation that is convenient
for generalization. We list all the key features of the Shannon sampling theorem, which
are to be preserved in the generalized sampling theorem.

5.2.1 Key Features of the Shannon Sampling Theorem to Emu-
late

The Shannon sampling theorem does not specify an initial point in a sampling grid at the
constant Nyquist rate, but only specifies the distance between two adjacent points in a
grid to be precisely 1/(2Ω). There are many possible Nyquist sampling grids. We can
parametrize all possible Nyquist sampling grids as the following

tn(θ) =
n+ θ

2Ω
, 0 ≤ θ < 1. (5.12)
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For later reference, we note here that this linear θ-parameterization is not the only way
to parameterize all possible sampling grids, even for the same parameter range from 0 to
1. Let θ = θ(γ) be any differentiable and strictly increasing function mapping from [0, 1)
onto [0, 1), then

tn(γ) =
n+ θ(γ)

2Ω
, 0 ≤ γ < 1 (5.13)

is also a parameterization of all the Nyquist sampling grids, namely, for any fixed value of
the parameter γ, the points in {tn(γ)}n obey the Nyquist rate spacing 1/(2Ω).

In summary, no matter which parameter value one chooses, as the parameter increases
from 0 to 1, the points in the sampling grid specified by that parameter simultaneously and
continuously move to the right on the real line, and together, the family of these sampling
grids covers the real line exactly once.

For each fixed integer n, tn(θ) in Eq. (5.12) is clearly differentiable with respect to θ

dtn(θ)

d θ
=

1

2Ω
. (5.14)

For a different parameterization tn(θ(γ)
)
, its derivative with respect to the new parameter

γ, by the Chain rule, is also proportional to the constant Nyquist rate of Shannon

dtn(γ)

dγ
=
dtn(θ)

d θ

d θ

dγ
=

1

2Ω

d θ

dγ
∼ 1

2Ω
. (5.15)

Here the
(
dθ
dγ

)
-term is independent of n. It is a constant on a fixed grid. The derivatives on

each fixed sampling grid are proportional to the Nyquist sampling rate. This observation
will suggest a definition of ‘time-varying’ Nyquist rate later in Section 5.2.4.

To this end, we recall that the Shannon sampling theorem possesses a natural one-
parameter family of Nyquist sampling grids {tn(θ)}n. Any function φ(t) in the space of
bandlimited functions can be reconstructed from its function values taken on a fixed grid,
namely, on {tn = tn(θ)}n with θ fixed. The reconstruction kernel G(t, tn(θ)) is the scaled
and shifted sinc function in Eq. (5.4). In other words, considering G(t, tn(θ)) as a function
in t, let

g(θ)
n (t) = G(t, tn(θ)), (5.16)

then for each θ, the set of functions
{
g

(θ)
n (t)

}
n

forms a basis of the space of Ω-bandlimited

functions. Most importantly, for each value of the parameter θ from 0 to 1, these bases
span the same function space. This seems obvious in the case of Shannon because these
basis functions are simply shifted sinc function with the same shape. However, as we will
see in the generalization to non-equidistant Nyquist sampling grids, this is not trivial but
achievable.
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There are two crucial properties of these sinc basis functions. First, on each grid
{tn(θ)}n, θ fixed, the function g

(θ)
n (t) interpolates through all the points in the grid

g(θ)
n

(
tm(θ)

)
= δmn. (5.17)

Secondly, the maximum value of each basis function is always 1 at the point it ‘centers’.
This is important for the stability of reconstruction.

5.2.2 The Completion of the Sampling Grids

The generalized sampling theory preserves all the properties of Shannon’s sampling theory
in the previous section. For example, it possesses a one-parameter family of sampling grids,
denoted by {tn(α)}n, where n ∈ Z and 0 ≤ α < 1. To distinguish from the linear parameter
θ used in the case of Shannon, from now on, we use the parameter α to enumerate all the
sampling grids in the generalized sampling theorem. As it will become clear later in the
proof, the parameter α is the natural choice of parameter which arises from the theory of
self-adjoint extensions in Chapter 2 and 3.

In the following, we first show what yields the one-parameter family of sampling grids
and then how the sampling grids satisfy the aforementioned properties. The properties
include that as the parameter α increases from 0 to 1, the points smoothly and simulta-
neously move to the right on the real line, and these points together cover the real line
exactly once.

In the case of Shannon, the uniform Nyquist sampling grids {tn(θ)}n are generated by
only a single number, the bandwidth Ω. The generalized sampling method requires more
specification because it has generally non-equidistant Nyquist sampling points.

Intuitively, to determine the time-varying Nyquist rate, we need at least one sampling
grid to specify the Nyquist sampling rate. Without loss of generality, one can assume that
the known grid is at α = 0, denoted by {tn = tn(0)}∞n=−∞, arranged in an increasing order.

In the case of Shannon, the constant spacing between adjacent points in one sampling
grid is the same for all Nyquist rate grids, namely, 1/(2Ω). This spacing directly relates to
the constant bandwidth. In the generalized sampling theorem, however, the local spacing
between adjacent points in one Nyquist sampling grid {tn(α)}n specified by parameter
value α might be slightly different from the one of another Nyquist grid {tn(α̂)}n specified
by α̂. This suggests another set of positive data to specify that variation at each point tn,
and we shall denote it by {t′n}n.

Of course, the sets {tn}n and {t′n}n are related. It is reasonable for practical purposes
to assume there are minimum and maximum distances between two adjacent points the
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sampling grid {tn}, namely, there exist two positive real numbers ∆min and ∆max such that
for all n

0 < ∆min < ∆tn = tn+1 − tn < ∆max. (5.18)

Further, because the spacing between adjacent sampling points directly relates to t′n, we
also assume a minimum and maximum value for t′n for all n.

To this end, assume one initial ‘data’ say at α = 0, {tn = tn(0)}n and {t′n = t′n(0)}n are
given. Arising from the theory of self-adjoint extensions Eq. 3.16 in Chapter 3, first, these
two sets must obey the normalization condition∑

n

t′n
t2n + 1

= π. (5.19)

Then the whole family of sampling grids {tn(α)}n is determined by the governing equation

t′n
t− tn

−
∑
m6=n

t′m (t− tn)

(t− tm)(tn − tm)
= π cot(πα). (5.20)

Specifically, for a fixed value of α between 0 and 1, solving the above equation for t, there
is one and only one solution for t in each open interval (tn, tn+1) for all integers n, which is
the sampling point t = tn(α). Conversely, given any real number t which is not in {tn}n,
one can find an unique pair of (n, α) such that tn(α) = t. The integer n is the largest m
such that tm ≤ t, tm ∈ {tm}m, namely, the open interval (tn, tn+1) contains t. The value
of α can be solved by substituting t and n into Eq. (5.20). Hence, for any real number t,
one can determine to which sampling grid {tn(α)} it belongs.

In addition, it is also shown in Chapter 3 that the set of positive numbers {t′n}n turns
out to be the set of derivatives of sampling points with respect to the parameter α at
α = 0. Namely, if we denote the derivative as

t′n(α) =
dtn(α)

dα
, (5.21)

then t′n = t′n(0) for all n. This observation is important. It provides a straight-forward
choice of the derivatives {t′n}n of a given sampling grid {tn}n in Eq. (5.7). The normaliza-
tion pre-factor is determined by Eq. (5.19).

The derivative t′n(α) at other sampling points tn(α) with 0 < α < 1 can be obtained
by a direct differentiation of tn(α) with respect to α. It can be shown that t′n(α) at each
tn(α) can also be calculated from the known sets {tn = tn(0)}n and {t′n = t′n(0)}n by

t′n(α) =
π2

sin2(πα)

(∑
m

t′m
(tn(α)− tm)2

)−1

. (5.22)
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To summarize, the knowledge of an ‘initial’ set of data, {tn = tn(0)}n and {t′n = t′n(0)}n,
at α = 0 specifies the whole family of sampling grids {tn(α)| 0 ≤ α < 1, n ∈ Z}. This
equivalence is important for practical purposes, because to record and store the samples
of a given signal, one only needs to do so on one Nyquist sampling grid.

This family of sampling grids obeys the following properties: as the parameter α in-
creases, the sampling grids {tn(α)}n move to the right simultaneous and continuously.
Together they cover the real line exactly once.

To see this, note that the right hand side of Eq. (5.20), cotπα, is a strictly decreasing
function. It goes to +∞ at α = 0+, and approaches −∞ at α = 1−. On the left hand
side of Eq. (5.20) is also a decreasing function in t on each open interval (tn, tn+1). Its

derivative with respect to t is −
∑

m∈Z
t′m

(t−tm)2 , which is always negative. Hence the left

hand side is strictly decreasing as well. As t → t+n , it goes to +∞ and as t → t−n+1, it
approaches −∞. Since both sides of Eq. (5.20) are differentiable and strictly decreasing
functions from +∞ to −∞, then for each α, there is one and only one t on each interval
(tn, tn+1) such that t = tn(α). As α increases from 0 to 1, t = tn(α) increases from tn to
tn+1 continuously with

lim
α→1−

tn(α) = tn+1(0). (5.23)

As will be explained later in Section 5.5, for each fixed α, the calculated sampling points
{tn(α)}n and the corresponding derivatives {t′n(α)}n specified by α all automatically obey
an analogous normalization condition Eq. (5.19) of {tn}n and {t′n}n, namely,∑

n

t′n(α)

t2n(α) + 1
= π. (5.24)

5.2.3 The Generalized Reconstruction Kernels

In the Shannon sampling theorem, the constant bandwidth Ω is crucial: it determines
the Nyquist sampling grids, the corresponding reconstruction kernel on each grid, and
the associated function space. As a comparison, in the generalized sampling theorem for
time-varying Nyquist rate, the ‘initial’ sampling grid {tn = tn(0)}n and the corresponding
derivatives {t′n = t′n(0)}n play the role of Ω. The previous section shows how these ‘initial’
data generate the whole family of Nyquist sampling grids {tn(α)}n, n ∈ Z and 0 ≤ α < 1.
This section will show the reconstruction kernel on each sampling grid and how the function
space is spanned by these basis kernel functions.

As we prove in Section 5.5, on any fixed grid, say let tn = tn(α), and t′n = t′n(α) with
α fixed, the reconstruction kernel reads:

G(t, tn) = (−1)z(t, tn)

√
t′n

| t− tn|

(∑
m

t′m
(t− tm)2

)−1/2

. (5.25)
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Figure 5.3: Generalized reconstruction kernels as functions in t on a set of arbitrarily chosen
sampling points, but ‘centered’ at different points. The green dots and red circles indicate the
sampling points at the amplitude of 0 and 1 respectively.
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Figure 5.4: Generalized reconstruction kernels as functions in t on another set of arbitrarily
chosen sampling points, ‘centered’ at different points.

Here z(t, tn) is the number of the sampling points {tm}m between t and tn exclusively.
Figure 5.3 and Figure 5.4 illustrate examples of the reconstruction kernel as a function in
t on two different non-equidistant Nyquist sampling grids {tn}n. Each plot is a function
G(t, tn) but centered at a different point tn.

As a function in t, for a fixed α, the set of functions{
g(α)
n (t) = G(t, tn(α))

}
n

(5.26)

form a set of basic composing functions, namely, any function φ(t) in the function space
can be written as a linear combination of these basis functions specified by α via the
reconstruction formula Eq. (5.6). The coefficients in this set of basis functions, of course,
coincide with the function values on the sampling grid specified by that α.
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Figure 5.5: Three examples of the generalized sinc function on three different sets of sampling
points. The first example is on a set of equidistantly spaced points. It recovers the usual sinc
kernel in the classical sampling theorem (see Section 5.4). The second and third example have
more and less sampling points respectively in the finite interval in the middle. The maximum
value in all three cases is 1.

Notice that on each fixed sampling grid, the reconstruction kernel is explicitly expressed
in terms of the points {tn}n and derivatives {t′n}n on that grid. Therefore, if one is given
an initial sampling grid {tn(0)}n and their derivatives {t′n(0)}n, one could fully determine

the set of basis functions
{
g

(0)
n

}
specified by α = 0, which in turn, specifies the function

space.

The shape of each basis function g
(α)
n (α) is quite non-trivial, see Figure 5.3. Hence it

is remarkable that the sets of these basic functions span the same function space for all
values of α.

The functions g
(α)
n (t) possess many of the properties of the sinc function in the case of
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Shannon sampling, for example, the important interpolation property2:

g(α)
n (tm(α)) = G(tm(α), tn(α)) = δmn. (5.27)

Further, g
(α)
n (t) is non-zero for all t /∈ {tm(α)}m. As t increases along the real line, the

sign of g
(α)
n (t) changes if and only if it passes a sampling point tm(α) in the grid specified

by α except for m = n, in which case, g
(α)
n (t) is positive on both intervals (tn−1(α), tn(α))

and (tn(α), tn+1(α)). In addition, g
(α)
n (t) always has its maximum value of 1 at t = tn(α).

Since g
(α)
n (t) shares these important properties of the sinc function, we will refer to it as

the generalized sinc function.

See Figure 5.5 for three more examples of the generalized sinc function on three different
sets of sampling points. We note that it should be interesting to investigate the analyticity
properties of the generalized reconstruction kernel as a function of t given that it is an
entire function in the case of Shannon.

A reparametrization changes the enumeration of the Nyquist sampling grids, but it does
not change the points in each single grid. So the function space should stay unmodified.
Hence, it is expected that the reconstruction kernel remains invariant under such an action
of reparametrization.

To see this, let {tn(γ) = tn(α(γ))}n be a reparametrization of {tn(α)}n, where α = α(γ)
is a differentiable and strictly increasing function mapping from [0, 1) to [0, 1). For each
fixed α, there is one and only one γ such that tn(γ) = tn(α) for all n, i.e., {tn(α)}n and

{tn(γ)}n represent the same sampling grid. The associated derivatives
{
t′n(α) = dtn(α)

dα

}
n

and
{
dtn(γ)
dγ

}
n

are different, but only by a constant independent of n, by the chain rule

dtn(γ)

dγ
=
dtn(α)

dα

dα

dγ
. (5.28)

Substituting the derivatives dtn(γ)
dγ

into the reconstruction kernel G
(
t, tn(γ)

)
in Eq. (5.25),

the n-independent constant
(
dα
dγ

)
which arises in the

√
dtn(γ)
dγ

-term outside the summation

cancels out the one in the numerator term dtn(γ)
dγ

inside the infinite series. Hence, G
(
t, tn(γ)

)
has exactly the same form of G

(
t, tn(α)

)
on {tn(α) = tn(α(γ))}n.

But the results in Eq. (5.20), (5.22), and (5.24) in Section 5.2.2 only hold for the
particular parameter α, which directly arises from the theory of self-adjoint extensions as
one will see later in Section 5.5.

2This interpolation property follows directly from the expression of the reconstruction kernel G(t, tn).
It is also clear in the proof of the generalized sampling theorem in Section 5.5
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Note that in the cancellation argument above, the
(
dα
dγ

)
-term can be replaced by any

constant independent of n. Hence, the reconstruction kernel G(t, tn) on a fixed sampling
grid {tn}n is independent of any scalar multiplication of the derivatives {t′n}n. This is useful
in simplifying the calculation of the reconstruction kernel. The complicated normalization
constant C0 needs not be explicitly calculated.

5.2.4 The Definition of Time-Varying Nyquist Rate

As mentioned above, a time-varying Nyquist rate is determined by one sampling grid {tn}n
and its derivatives {t′n}n. Functions in the space are then spanned by the set of generalized
sinc functions. In this section, we will provide a precise definition of the time-varying
Nyquist rate.

Let us now try to define a function N(t) which shall denote the time-varying Nyquist
rate of all the functions in the space. For consistency, N(t) must be the same for all
functions in the space and consistent with different parameterizations of the sampling
grids. Moreover, N(t) is expected to be directly related to each generally non-equidistant
sampling grid.

Similar to the case of Shannon in Eq. (5.15), the time-varying Nyquist rate N(t) must
be proportional to the derivatives {t′n(α)} on any fixed sampling grid {tn(α)}n as

N(tn(α)) ∼ t′n(α) =
dtn(α)

dα
on {tn(α)}n , α fixed. (5.29)

Of course, we cannot simply identify N(t) to be the derivative t′n(α) at a point t = tn(α),
because the derivative t′n(α) depends on the parametrization. The normalization condition
Eq. (5.24) will not even recover the case of Shannon.

A natural question that follows is what quantity can be derived from t′n(α), which obeys
the proportionality in Eq. (5.29) and be reparametrization independent? The integral of
t′n(α) over one period of the parameter α, from tn(α) to tn+1(α), will do so. To see this, let
{tn(γ)}n be an arbitrary reparametrization of {tn(α)}n where tn(γ) = tn(α(γ)). We have∫ α+1

ᾱ=α

t′n(ᾱ) dᾱ =

∫ α+1

ᾱ=α

dtn(ᾱ)

dᾱ
dᾱ

=

∫ α+1

ᾱ=α

dtn(ᾱ(γ̄))

dγ̄

dγ̄

dᾱ
dᾱ =

∫ γ+1

γ̄=γ

dtn(γ̄)

dγ̄
dγ̄

= tn+1(α)− tn(α).

(5.30)

For notational convenience, let tn(ε + 1) = tn+1(ε) and tn(ε − 1) = tn−1(ε) recursively for
all 0 ≤ ε < 1.
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We have a reparametrization independent candidate for N(t) at hand i.e., tn+1(α) −
tn(α), but to which t should it be assigned? An obvious answer is either t = tn(α + 1

2
) or

t = 1
2

(
tn(α) + tn+1(α)

)
. The former is not good because t becomes parameter dependent

again. The latter is theoretically applicable. The strict monotonicity of tn(α) and tn+1(α)
implies that around each real number t, there is exactly one interval [tn(α), tn+1(α)] centered
at t. But to obtain the value of N(t) at an arbitrary t, it requires a full calculation of
{tn(α)}n for all 0 ≤ α < 1 to find out in which interval t is centered. This is computationally
expensive and impractical. Ideally, it should suffice only to possess knowledge of one
sampling grid.

This problem is not hard to fix: instead of integrating over one period of α, we will
go through two, from tn−1(α) to tn+1(α). On this two-period-interval [tn−1(α), tn+1(α)],
tn(α) becomes a natural symmetric ‘center’ point, and we only need the knowledge of
one sampling grid to find out the Nyquist rate at the point in that grid. Specifically, the
time-varying Nyquist rate N(t) at any time t = tn(α) is then defined to be

N(tn(α)) =
1

2

∫ α+1

ᾱ=α−1

t′n(α) dα =
1

2

(
tn+1(α)− tn−1(α)

)
. (5.31)

This definition not only keeps the symmetry, but also the independence of reparametriza-
tion of sampling grids. The time-varying Nyquist rate at a point t represents the average
spacing of the sampling points at the Nyquist rate near t.

5.3 The Time-Varying Nyquist Rates as Critical Sam-

pling Rates

The function space is determined by a given Nyquist sampling grid {tn}n and the associated
derivatives {t′n}n. We also give a mathematical definition of time-varying Nyquist rate
possessed by the functions in the space. But what precisely does this Nyquist rate imply?

In the Shannon sampling theorem, the Nyquist rate at the bandwidth is the critical
rate, below which one has insufficient information to recover the signal, i.e., one is under-
sampling, and above which there is redundancy in the discrete samples, namely, one is
over-sampling. In this section, we will show that the time-varying Nyquist rate in the
generalization is again the critical sampling rate between under- and over-sampling. Hence,
the samples of functions in the function space are indeed taken only as frequently as
necessary.
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5.3.1 From the Fourier Analysis Perspective

Let us first analyze the bandlimited functions in the Shannon sampling theorem. We
started from a Fourier analysis perspective, but the aim here is to find a criterion to
distinguish between under- and over-sampling without involving the Fourier transform.

Assume that a given signal of finite energy φ(t) has a bandlimit ΩB. The aim is to
determine its Nyquist sampling rate, the critical rate between under- and over-sampling.
Assume we sample the signal at a rate higher than the Nyquist rate. Namely, the samples
are taken on a uniform grid of {tn}n with tn+1 − tn = 1

2Ω
where Ω > ΩB. So the sampling

points {tn}n are tighter than the actual Nyquist sampling rate. The variable Ω is always
larger than ΩB.

Let Φ(ω) be the Fourier transform of φ(t). Since Ω > ΩB, the ΩB-bandlimited signal
φ(t) is always Ω-bandlimited. Hence Φ(ω) vanishes outside the interval (−2πΩ, 2πΩ).
One can consider Φ(ω) as a 4πΩ-periodic function on the larger interval (−2πΩ, 2πΩ) and
expand it in a Fourier series to obtain

Φ(ω) =
1

2Ω

∞∑
n=−∞

eiωtnφ(tn).

The samples are taken on an equidistantly spaced grid, so tn = n+θ
2Ω

for some fixed θ. At
ω = 2πΩ, one has

0 = Φ(2πΩ) = eiπθ
1

2Ω

( ∞∑
n=−∞

(−1)nφ(tn)
)
.

Let Ã denote the alternating sum in the bracket above.

Ã :=
∑
n

(−1)nφ(tn) (5.32)

Then Ã = 0 for any Ω > ΩB. Namely, for any rate higher than the Nyquist rate, the
alternating sum Ã must vanish.

However, when Ω < ΩB, the ΩB-bandlimited function φ(t) may have a bandwidth larger
than (−2πΩ, 2πΩ). Forcing the Fourier transform Φ(ω) to be 4πΩ-periodic will result in
overlap near ω = ±2πΩ and hence the above alternating sum Ã will not be 0 in general.

Therefore, a general strategy to obtain the Nyquist sampling rate is to first sample
the signal at a very high rate which guarantees over-sampling (Ω >> ΩB), and lower the
sampling rate gradually, while the alternating sum Ã remains 0. Until Ω hits the fixed
threshold bandlimit ΩB, below this sampling rate, the signal φ has Fourier components.
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(a) The case of over-sampling
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(b) The case of under-sampling

Figure 5.6: Over- and under-sampling of a continuous signal

5.3.2 From a Statistical Perspective

The previous section shows a general strategy to obtain the critical sampling rate between
under- and over-sampling using an alternating sum. This section shows that the non-
Fourier alternating sum does indeed arise from a statistical perspective to conclude the
correlation among samples.

In practice, consider the two extreme cases of the alternating sum of samples taken at
equidistant points {tn}n on a long interval [t1, tN ]

ÃN :=
N∑
n=1

(−1)nφ(tn). (5.33)

First, when one extremely over-samples, the sampling points are tightly spaced so that
nearby sample values are almost the same. The terms in the above alternating sum cancel
the adjacent ones, leaving ÃN either zero as N goes to infinity or a typical sample value.

In contrast, consider the case that the sampling points are extremely widely spaced, i.e.,
that one is undersampling. Then, the sample values are essentially uncorrelated. Thus,
the alternating sum ÃN in Eq. (5.33) is an outcome of the random walk of the signal’s
amplitudes taken in the time interval [t1, tN ] and the central limit theorem in statistics
indicates that ÃN is normal distributed for large N . If the typical amplitude of the signal
is say of order one then the typical value for ÃN is on the order of

√
N .

It will be convenient to regularize the divergence ÃN ∝
√
N for N →∞ by absorbing
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it in a suitable pre-factor 1/
√
N . Let

AN =
ÃN√
N

=
1√
N

N∑
n=1

(−1)nφ(tn)

=
N∑
n=1

(−1)n
√

∆tn√
tN − t1

φ(tn)

=
1√

tN − t1

N∑
n=1

(−1)n
√

∆tn φ(tn).

(5.34)

Here tN − t1 = N ∆tn. The time interval [t1, tN ] is fixed and ∆tn is a constant sampling
spacing. In the generalization, this constant spacing ∆tn is replaced with t′n which is
time-dependent.

When under-sampling, AN goes to 1. When over-sampling, AN , as the limit of Ã
divided by

√
N , is zero. In summary, one identifies the Nyquist sampling rate as the

critical sampling rate, below which the alternating sum AN goes to 1 (in the case of under-
sampling), and above which, AN goes to zero (in the case of over-sampling), as N →∞.

5.3.3 From the Functional Analytical Perspective

Replacing the ∆tn with the derivative t′n in Eq. (5.34), with the immaterial multiplicative
constant ignored, the alternating sum

AN =
1√

tN − t1

N∑
n=1

(−1)n
√
t′n φ(tn) (5.35)

is in a form that is suitable for the generalized sampling theorem. In the generalization,
when adding and subtracting amplitudes as a random walk, there is suitably less weight
on the amplitudes when they are tighter spaced (i.e., t′n is small) and more weight on the
amplitudes when they are more widely spaced (i.e., t′n is large).

In the limit as N goes to infinity, the alternating sum Eq. (5.35) does arise from the
theory of self-adjoint extensions as one will see in Section 5.5. The alternating sum can
be shown to be zero for the functions in the space, similar to the argument in the case of
Shannon that the Ω-bandlimited functions are ΩB-bandlimited for all Ω > ΩB.

In conclusion, it implies a criterion of under- and over-sampling as in the case of Shan-
non, and further suggests an analogous method to obtain a time-varying Nyquist rate for
a given signal: one first samples the signal at an extremely high rate which guarantees
over-sampling so that AN approaches 0 as N goes to infinity, and then gradually lowers
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the rate, right before the samples start to decorrelate, namely when AN becomes of order
1. This critical sampling rate obtained is the Nyquist sampling rate of the signal. (This
approach by lowering the over-sampled rate to obtain the critical sampling rate of course is
not practical. More efficient methods could be developed by using for example windowed
Fourier transform, as commented in Step (G1) in Section 5.1. )

Later in Chapter 7, one will also see that the analogy between Shannon’s constant
Nyquist rate and our time-varying Nyquist rate is not only the critical rate between over-
and under-sampling, but also the sampling rate that gives the most stable reconstruction.

5.4 Recovering the Shannon Sampling Theorem

In this section, we will show how the Shannon sampling theorem arises as a special case
from our generalized sampling theorem.

First, it is important to point out that there is a non-trivial connection between the
α-parametrization in the generalized sampling theorem and linear θ-parametrization. We
showed the connection in Chapter 2 in the context of the self-adjoint extensions of sym-
metric operators with deficiency indices (1, 1). However here we will show this connection
from a different perspective, using only the mechanics of the generalized sampling theorem.
The calculation here to recover Shannon’s case is also a good demonstration of how the
results in Section 5.2.2 and 5.2.3 apply.

To recover the Shannon sampling theorem of constant bandlimited functions, we start
with a set of sampling points {tn}n with a constant Nyquist spacing 1/(2Ω), say for α = 0,

tn = tn(0) =
n

2Ω
. (5.36)

Because of the constancy of Nyquist sampling rate, we expect the corresponding derivatives

to be a constant. However, we can not simply assign t′n = t′n(0) = dtn(α)
dα
|α=0 to be 1

(2Ω)
=

dtn(θ)
dθ
|θ=0, the derivative with respect to θ in the case of Shannon in Eq. (5.14). This choice

of t′n would violate the normalization condition in Eq. (5.19). This non-equivalence implies
that when we recover the Shannon’s case, the linear θ-parameterization of Shannon in Eq.
(5.12) in Section 5.4 is not the specific α-parameterization in the generalized sampling
theorem, but it is a re-parametrization of α.

To find t′n = t′(0) with respect to α, let t′n = t′n(0) = C be a constant for all n and
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substitute into the normalization condition Eq. (5.19) to give

π =
∑
n

C

t2n + 1
=
∑
n

C(
n

2Ω

)2
+ 1

= C (2Ω)2
∑
n

1

n2 + (2Ω)2

= C (2Ω)2 π

(2Ω)
coth(2πΩ)

= C π 2Ω coth(2πΩ).

Here we used the following trigonometric identity for coth with z = 2Ω∑
n

1

n2 + z2
=
π

z
coth(πz).

Hence

t′n = t′n(0) = C =
1

2Ω coth(2πΩ)
= tanh(2πΩ)

1

2Ω
. (5.37)
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Figure 5.7: The same one-parameter family of sets of
equidistant sampling points in the case of Shannon with
respect to different parameter θ and α.

With this set of initial data at α = 0
in Eq. (5.36) and (5.37), one can
use the formulae in Section 5.2.2 to
obtain the whole family of sampling
grids {tn(α)}n for 0 < α < 1.

We expect the following results
of {tn(α)}n: the points in each grid
specified by a fixed α must have the
constant spacing 1/(2Ω) and the re-
sulting α-family of sampling grids
{tn(α)}n is simply a reparametriza-
tion of the {tn(θ)}n in Eq. (5.12).

To calculate t = tn(α) for 0 <
α < 1 in each interval (tn, tn+1), use
the governing equation Eq. (5.20)
in Section 5.2.2 to give
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π cot(πα) =
t′n

t− n
2Ω

−
∑
m 6=n

t′m (t− n
2Ω

)

(t− m
2Ω

) ( n
2Ω
− m

2Ω
)

= tanh(2πΩ)
( 1

2Ωt− n
−
∑
m6=n

2Ωt− n
(2Ωt−m) (n−m)

)
= tanh(2πΩ)

( 1

(2Ωt− n)
−
∑
k 6=0

(2Ωt− n)

((2Ωt− n) + k) k

)
= tanh(2πΩ) π cot(π(2Ωt− n)).

(5.38)

Here we changed the dummy variable k = m + n and used the following trigonometric
identity with z = 2Ωt− n

1

z
−
∑
k 6=0

z

(z + k)k
=

1

z
+
∑
k 6=0

( 1

k + z
− 1

k

)
=

1

z
+
∞∑
k=1

( 1

z + k
+

1

z − k
)

= π cot(πz).

(5.39)

For a fixed α, Eq. (5.38) implies that the term of (2Ωt − n) on the right hand side is
fixed as well. Let it be a constant, say θ, namely, θ = 2Ωt−n. Then this θ indeed yields a
linear parametrization of θ in Eq. (5.12) of the Shannon sampling theorem. Substituting
this into Eq. (5.38) gives

tan(πα) = coth(2πΩ) tan(πθ). (5.40)

This equation defines a one-to-one relation between θ and α. The parameter α as a
function of θ is a strictly increasing mapping from [0, 1) onto [0, 1). It is the desired
re-parametrization function. It implies that α is a reparametrization of θ.

Due to the exponential decay of the term coth(2πΩ) to 1 in Eq. (5.40), for Ω ≥ 1,
the parameters α and θ are roughly identical. Hence, for slowly-varying bandwidth, in
practice, one can use the linear θ-parametrization to approximate the α-parametrization.

With θ = θ(α) defined in Eq. (5.40), the whole family of sampling grids is given by

tn(α) =
n+ θ(α)

2Ω
. (5.41)

We can differentiate the sampling grids tn(α) in Eq. (5.41) with respect to α to obtain
t′n(α)

tn(α)

dα
=
tn(θ)

dθ

dθ

dα
=

1

2Ω

cosh(4πΩ)− cos(2πθ(α))

sinh(4πΩ)
. (5.42)

85



Here we used the Chain rule and the following from Eq. (5.40)

dθ

dα
= tanh(2πΩ)

sec2(πα)

sec2(πθ)

= tanh(2πΩ) cos2(πθ)
(
1 + coth2(2πΩ) tan2(πθ)

)
= tanh(2πΩ) cos2(πθ) + coth(2πΩ) sin2(πθ)

=
sinh2(2πΩ) (1 + cos(2πθ)) + cosh2(2πΩ) (1− cos(2πθ))

2 sinh(2πΩ) cosh(2πΩ)

=
cosh(4πΩ)− cos(2πθ)

sinh(4πΩ)
.

(5.43)

Alternatively, the derivative t′n(α) can also be calculated directly from the knowledge of
the initial ‘data’ {tn = tn(0)} and {t′n = t′n(0)}n using Eq. (5.22) in Section 5.2.2.

dtn(α)

dα
=

π2

sin2(πα)

(∑
m

tanh(2πΩ)/(2Ω)(
(n+ θ(α))/(2Ω)−m/(2Ω)

)2

)−1

=
π2(1 + cot2(πα))

2Ω tanh(2πΩ)

(∑
m

1(
(n+ θ(α))−m

)2

)−1

=
1

2Ω

1 + tanh2(2πΩ) cot2(πθ(α))

tanh(2πΩ)(1 + cot2(πθ(α)))

=
1

2Ω

cosh2(2πΩ) sin2(πθ(α)) + sinh2(2πΩ) cos2(πθ(α))

sinh(2πΩ) cosh(2πΩ)

=
1

2Ω

2 cosh2(2πΩ)− 2 cos2(πθ))

2 sinh(2πΩ) cosh(2πΩ)

=
1

2Ω

cosh(4πΩ)− cos(2πθ(α))

sinh(4πΩ)
.

(5.44)

Here Eq. (5.44) used the fact that sin2(z) + cos2(z) = 1 and cosh2(z) − sinh2(z) = 1 in
the second last step. The last step of Eq. (5.44) follows from double angle formulas. As
expected, the derivative found in Eq. (5.44) agrees with the one in Eq. (5.42).

Finally, the results in Section 5.2.2 are recovered in the special case of Shannon. To
this end, we show how the complicated general reconstruction kernel of Eq. (5.25) in
Section 5.2.3 simplifies to the sinc kernel in Eq. (5.4) on a fixed uniform sampling grid
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{tn(α)}n = {tn(θ)}

G(t, tn(α)) = (−1)z(t, tn(θ(α)))

√
dtn(θ)
dθ

dθ
dα

| t− tn(θ(α))|

[∑
m

(dtm(θ)
dθ

) (
dθ
dα

)
(t− tm(θ(α)))2

]−1/2

= (−1)z(t, tn(θ))

√
1

2Ω
coth(2πΩ)

| t− (n+ θ)/(2Ω)|

[∑
m

1
2Ω

coth(2πΩ)

(t− (m+ θ)/(2Ω))2

]−1/2

=
(−1)z(t, tn(θ))

| 2Ωt− (n+ θ) |

[∑
m

1

( (2Ωt− θ)−m )2

]−1/2

=
(−1)z(t, tn(θ))

|2Ωt− (n+ θ)|
| sin (π (2Ωt− (n+ θ))|

π

= sinc
(
2Ωt− (n+ θ))

)
= sinc

(
2Ω (t− tn(θ))

)
.

(5.45)

Here, we used the Chain rule and Eq. (5.12), (5.14), (5.40) and (5.43). In the second last
step of Eq. (5.45), we made a change of dummy variable m = n+k and used the following
trigonometric identity with z = 2Ωt− (n+ θ)(

π

sin(πz)

)2

=
∞∑

k=−∞

1

(z − k)2
. (5.46)

Therefore, the reconstruction kernel on any sampling grid {tn(α)}n, which is generated
from one initial uniform sampling grid in Eq. (5.36), indeed simplifies to the scaled and
shifted sinc reconstruction kernel in the case of Shannon. Because the reconstruction kernel
is independent of the parameterization, the same result holds by substituting the sampling
grids with the θ-parameter.

5.5 Mathematical Proof of the Generalized Sampling

Theorem

This section will lay out the mathematical proofs of the generalized sampling theorem
using the functional analytical theory of self-adjoint extensions of (1, 1)-symmetric operator
introduced in Chapter 3. Most results directly follow from Theorem 7 and 8 in Chapter 3.

Mathematical Motivation

First, we already provided a new functional analytical proof of the classical Shannon sam-
pling theorem in Section 4.3, which can be reformulated as the following: consider the
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multiplication operator T in time domain, which acts as

Tφ(t) = tφ(t). (5.47)

The set of strictly bandlimited functions is a dense set in the Hilbert space of bandlimited
functions. If φ(t) is a strictly bandlimited function, its Fourier transform Φ(ω) has a
finite support in the open interval (−2πΩ, 2πΩ). Then so does its derivative Φ′(ω) =
d
dω

Φ(ω). Because the multiplication operator T in time domain is the derivative operator
i d
dω

in frequency domain, the fact that the derivative Φ′(ω) also has a finite support in
(−2πΩ, 2πΩ) implies that Tφ(t) is strictly bandlimited as well. In other words, whatever
the bandwidth of the class of signals which we may consider, the action of T preserves
that bandwidth. This suggests to define the class of signals of bandlimited functions as
the closure of the invariant domain of the operator T .

Specifically, we saw in the frequency space that the differential operator T = i d
dω

acting
on the set of absolutely continuous functions with vanishing boundary conditions is a
simple symmetric operator with deficiency indices (1, 1). Each self-adjoint extension of
T possesses a set of equidistant spaced eigenvalues {tn}n at the constant Nyquist rate,
which is the Nyquist sampling grid. Each eigenvalue has an eigenvector. The eigenbasis of
each self-adjoint extension forms a basis of the function space. The reconstruction formula
is simply a decomposition of the function in that basis. Coincidentally, the coefficients
of the function in the eigenbasis turn out to be the function values at the corresponding
eigenvalues.

In functional analytical terms, the sampling theorem simply states the fact that if a
Hilbert space vector is known in the Hilbert eigenbasis of one self-adjoint extension of
T , then the vector’s coefficients in the Hilbert space eigenbasis of all other self-adjoint
extensions of T are also determined.

For the generalization, notice first that the usual notion of Fourier theory, which derives
the Shannon sampling theorem, does not lead to the generalized sampling method with a
time-varying Nyquist rate, because the Fourier series possess an equidistant nature. Hence
in the generalization, we completely replace the conventional Fourier analysis by the use
of the theory of self-adjoint extensions. So we work directly in time domain.

Recall that the functional analytical proof the Shannon sampling theorem in Section 4.3
is carried out in frequency domain with Fourier transform. We took the Fourier transform
and worked in the frequency space because the concrete example of the differential operator
on L2

(
[−2πΩ, 2πΩ]

)
is more well-known than the abstract theory of self-adjoint extensions

of (1, 1)-symmetric operator. However, all the calculations can be carried out without the
Fourier transform. We can simply work directly in time domain with the multiplication
operator T .

Nevertheless, the multiplication operator T in the proof of the Shannon sampling the-
orem is special because its self-adjoint extensions have equidistantly spaced eigenvalues.
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By considering a general (1, 1)-symmetric operator T , whose self-adjoint extensions have
generally non-equidistantly spaced eigenvalues, we expect the Shannon sampling theorem
to be generalized for time-varying Nyquist sampling rates.

General Setup of the Multiplication Operator T

In an abstract separable complex Hilbert space H, let T be the multiplication operator

Tφ = t φ. (5.48)

where the Hilbert space vector φ is simply an abstract Hilbert space vector. It is not yet
a function of t. The definition of φ as a function in t will be made clear later.

We know that from Section 5.2.2, two sets of predetermined numbers {tn = tn(0)}n and
{t′n = t′n(0)}n are given. The former set {tn}n is a set of sampling points at the Nyquist
rate, which are predetermined in Step (G1) depending on what Nyquist rate we require
functions in function space to possess. We assume that there is minimum and maximum
spacing between two adjacent points as in Eq. (5.18).

The set {t′n}n is independent of {tn}n. It specifies the density of the sampling points
{tn} and it is proportional to be the Nyquist rate. However, from the theory of self-adjoint
extensions, we know that t′n is the derivative, it determines how fast the sampling point
tn(α) is moving with respect to α. Hence, t′n can be best approximated by the average
spacing between adjacent points at tn in Eq. (5.7). This not only provides a practical
determination of {t′n}n from the knowledge of the given Nyquist sampling grid {tn}n, but
also agrees with the definition of the Nyquist rate in Section 5.2.4.

Such choices of {tn}n and {t′n}n satisfy the three conditions in Eq. (3.16) in Theorem 8
in Chapter 3. Hence, we can build the simple symmetric operator T with deficiency indices
exactly as in Theorem 8: let T (0) be the self-adjoint operator with eigenvalues {tn}n

T (0) =
∑
n

tn 〈·, φn(0)〉 φn(0) (5.49)

where {φn(0)}n can be any orthonormal basis of the Hilbert space H. The vector φn(0)
is the normalized eigenvector of tn = tn(0). The specification of these vectors is not
important, its representation as a function of time will be determined later.

Let U(0) be the Cayley transform of T (0). Using the set {t′n} to restrict the domain of
U(0) to obtain an isometric operator S as in Eq. (3.18) and (3.19) . The inverse Cayley
transform of S is the desired symmetric operator T .

The symmetric operator T is simple and has deficiency indices (1, 1). The (1, 1)-
symmetric operator T has a U(1)-family of self-adjoint extensions of symmetric operators,
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which can be denoted as {T (α)}n with 0 ≤ α < 1. The self-adjoint extension specified
by α = 0 is indeed the self-adjoint operator T (0) we started with in Eq. (5.49). The
self-adjoint operator T (α) has an infinite set of eigenvalues, denoted by {tn(α)}. This is
also a Nyquist sampling grid.

Proposition 7 states that, together, for all α, the set of points {tn(α) | 0 ≤ α < 1, n ∈ Z}
covers the real line exactly once. For any real number t, there is an unique pair (n, α) in
Z × [0, 1) such that t = tn(α). Each eigenvalue t = tn(α) has a normalized eigenvector
denoted by φt = φn(α).

Therefore, each Hilbert space vector φ defines a scalar-valued function φ(t), t ∈ R. The
function value at each t ∈ R is evaluated to be the inner product of Hilbert space vector φ
and the corresponding eigenvector φt of the real number t:

φ(t) = 〈φt, φ〉 = 〈φn(α), φ〉 where t = tn(α). (5.50)

Proof of the results in Section 5.2

The reconstruction formula on the given sampling grid {tn}n can be obtained by expanding
the definition of Eq. (5.50) in the eigenbasis {φn = φtn}n

φ(t) = 〈φt, φ〉 =
∑
n

〈φt, φn〉 〈φn, φ〉

=
∑
n

G(t, tn)φ(tn).
(5.51)

The left hand side is the continuous scalar-valued function φ(t) for all t, and the right
hand side has the discrete samples {φ(tn)}n on {tn}n. The reconstruction kernel G(t, tn)
is indeed the inner product of the eigenvectors in Eq. (3.14), which can be expressed in
terms of predetermined sets {tn}n and {t′n}n:

G(t, tn) = 〈φt, φn〉 = (−1)z(t,tn)

√
t′n

|t− tn|

(∑
m

t′m
(t− tm)2

)−1/2

. (5.52)

It is important to notice that the function G(t, tn) is real-valued in t. This is what one
expects: if the signal’s sample values are all real, the reconstructed signal must be real at
all t.

The set of reconstruction kernels {G(t, tn)}n form a basis of the function space. The fact
that G(t, tn) equals 0 at all sampling points except tn makes it easy to construct functions
in the space. The function values on {tn}n are free to choose. Once they are determined,
one can use Eq. (5.51) to construct all the functions in the space.
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Therefore, given the two predetermined sets {tn}n and {t′n}n, the function space is
mathematically well defined. For practical purposes, an engineer would usually obtain the
functions in the space by filtering, which will be proved later.

To find out the one-parameter family of sampling grids {tn(α)}n for 0 ≤ α < 1, note
that for a fixed α, the set of sampling points at the Nyquist rate specified by the parameter
α is the set of eigenvalues of the self-adjoint operator T (α). Hence, the governing equation
of the Nyquist sampling points Eq. (5.10) or Eq. (5.20) in Section 5.2.2 is exactly the
governing equation of eigenvalues of self-adjoint extensions Eq. (3.13) in Theorem 8.

On each fixed sampling grid, {tn(α)}n with α fixed, functions in the function space can
be perfectly reconstructed from their values on the set {tn(α)}n. Similar to Eq. (5.51),
the functions defined in Eq. (5.50) can also be expanded in the eigenbasis {φn(α)}n of the
self-adjoint extension T (α)

φ(t) = 〈φt, φ〉 =
∑
n

〈φt, φn(α)〉 〈φn(α), φ〉

=
∑
n

G
(
t, tn(α)

)
φ
(
tn(α)

) (5.53)

where the reconstruction kernel G
(
t, tn(α)

)
is the inner product of two eigenvectors φm(β)

and φn(α) with t = tm(β) for some unique m and β. Theorem 8 in Chapter 3 shows that
this inner product can be expressed in a similar form as in Eq. (5.52), which is Eq. (5.11)
or Eq. (5.25) in Section 5.2.3.

The normalization equations Eq. (5.19) and Eq. (5.24) in Section 5.2.2 follow from the
third condition in Eq. (3.16).

Proof of the results in Section 5.3

To prove the alternating sum criterion Eq. (5.34) in Section 5.3, we use the results in the
proof of Theorem 8. First, note that the domain of T is a dense set of the Hilbert space.
For any function in the function space, there must be a sequence of functions in the domain
of T arbitrary close to it. Any vector in D(T ) must obey Eq. (3.25), which implies that〈(

T (0) + i
)
φ, φ+

〉
=
〈
φ,
(
T (0)− i

)
φ+

〉
= 0 (5.54)

where φ+ is the first deficiency vector space which can be expressed in the eigenbasis {φn}n
as in Eq. (3.20). The square of its coefficients fn is the square root of the derivative t′n
divided by π as in Eq. (3.38). Hence, substitute Eq. (3.35) and Eq. (3.38) into Eq. (3.20)
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to get

φ+ =
∑
n

fn
tn − i

φn =
∑
n

(−1)n |fn|
tn − i

φn

=
∑
n

(−1)n
√

t′n
π

tn − i
φn =

1√
π

∑
n

(−1)n
√
t′n

tn − i
φn.

(5.55)

Substitute this into Eq. (5.54) to get

1√
π

〈
φ,
(
T (0)− i

)(∑
n

(−1)n
√
t′n

tn − i
φn

)〉
= 0

=⇒
∑
n

〈
φ,

(−1)n
√
t′n

tn − i
(
T (0)− i

)
φn

〉
= 0

=⇒
∑
n

(−1)n
√
t′n

〈
φ,

1

tn − i
(
tn − i

)
φn

〉
= 0

=⇒
∑
n

(−1)n
√
t′n 〈φ, φn〉 =

∑
n

(−1)n
√
t′n φ(tn) = 0.

(5.56)

This is the vanishing alternating sum up to a constant in Eq. (5.35) in Section 5.3.
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Chapter 6

Filtering in the Generalized
Sampling Method

So far, we have illustrated the sampling and reconstruction parts of the generalized sam-
pling method, namely, Step (G3) and (G4) in the dashed part in Figure 5.1. In this chapter,
we will introduce the pre-filtering part, i.e. Step (G2) in the generalized sampling method.

Although the function space with time-varying Nyquist rate is well-defined as spanned
by the generalized sinc functions, the function space is not automatically available for
practical purposes. Here we will show how arbitrary raw signals can be filtered into the
space of functions that can be perfectly represented by their non-equidistantly spaced
Nyquist samples. The results on the filter operator P here are based on my paper [36].

6.1 The Time-Varying Filter Operator

The challenge to generalize the conventional low-pass filter with constant bandwidth to
a time-varying bandwidth is that the filtering operation in Shannon sampling is done in
the frequency domain with Fourier transform, but Fourier analysis is not applicable in the
generalized sampling method.

Hence, let us first examine the low-pass filter directly in the time domain. We will then
give an intuitive derivation of the generalized version of the filter operator and then show
that this resulting filter operator does have the correct properties. Let P denote the filter
operator.

In the Shannon sampling method, since arbitrary given raw signals φraw(t) are generally
not bandlimited, one usually passes the signals through a low-pass filter, which removes all
the frequencies above the bandlimit Ω. The bandlimit Ω is chosen so that the disregarded
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frequencies are negligible. The resulting signal φ(t) approximates the raw signal φraw(t)
and is in the space of Ω-bandlimited functions.

Let φ(t) and Φ(ω) denote a signal and its Fourier transform. The filtering operation
φ(t) = (Pφraw)(t) in frequency space is

Φ(ω) = Φraw(ω) rect
( ω

4πΩ

)
.

In the time domain, this is equivalent to the convolution of φraw(t) with the sinc function

φ(t) = (Pφraw)(t) =
1

2π

∫ ∞
ω=−∞

Φraw(ω) rect
( ω

4πΩ

)
dω

= φ(t)raw ∗
(
2Ω sinc(2Ωt)

)
=

∫ ∞
t̂=−∞

φraw(t̂)
(

2Ω sinc
(
2Ω(t− t̂)

) )
dt̂.

Hence, the filter operator P can be written in the form of Eq. (5.5)

φ(t) = (Pφraw)(t) =

∫ ∞
−∞

φraw(t̂) P (t, t̂) ν(t̂) dt̂ (6.1)

where P (t, t̂) = sinc
(
2Ω(t− t̂)

)
and ν(t) = 2Ω as in Eq. (5.3).

Notice that sinc
(
2Ω(t − t̂)

)
is the sinc reconstruction kernel of t centered at t̂. To

generalize, one replaces the sinc term with the generalized reconstruction kernel G(t, t̂).
Recall that for any real number t̂, there exists an n̂ and α̂ ∈ [0, 1) such that t̂ = tn̂(α̂).
Hence, for the generalized sampling method, this suggests the following

P (t, t̂) = G
(
t, tn̂(α̂)

)
. (6.2)

Notice that P (t, t̂) = G
(
tn(α), tn̂(α̂)

)
is commutative, i.e., P (t, t̂) = P (t̂, t), because the

underlying definition of G(t, t̂) in Eq. (5.51) is the inner product of two Hilbert space
eigenvectors associated to the eigenvalues t and t̂ and the inner product is commutative.

On a fixed sampling grid, say {tn = tn(α)} with α fixed, since G
(
t, tn̂(α̂)

)
is a function

in t and it is in the function space, one can expand G
(
t, tn̂(α̂)

)
by the reconstruction

formula Eq. (5.6) and (5.11) to obtain an expression of P (t, t̂) in terms of one Nyquist
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sampling grid {tn} and {t′n}n:

P
(
t, t̂
)

= G
(
t, tn̂(α̂)

)
=
∑
n

G
(
t, tn

)
G
(
tn, tn̂(α̂)

)
=
∑
n

G
(
t, tn

)
G
(
t̂, tn

)
=
∑
n

[(
(−1)z(t, tn)

√
t′n

|t− tn|

(∑
m

t′m
(t− tm)2

)−1/2
)

(
(−1)z(t̂, tn)

√
t′n∣∣t̂− tn∣∣

(∑
m

t′m
(t̂− tm)2

)−1/2
)]

=
∑
n

[
(−1)z(t, tn)+z(t̂, tn) t′n
| t− tn|

∣∣t̂− tn∣∣
] (∑

m

t′m
(t− tm)2

)−1/2 (∑
m

t′m
(t̂− tm)2

)−1/2

= (−1)z(t, t̂)
(∑

n

t′n
(t− tn) (t̂− tn)

)(∑
m

t′m
(t− tm)2

)−1/2 (∑
m

t′m
(t̂− tm)2

)−1/2

.

(6.3)

Recall that z(t, t̂) is defined to be the number of sampling points in {tm}m between t
and t̂ exclusively. If both t and t̂ are on the same side of tn on the real line, then
(−1)z(t, tn)+z(t̂, tn) = (−1)z(t, t̂) and (t − tn)(t̂ − tn) is positive; else, if both t and t̂ are
on the opposite of tn on the real line, (−1)z(t, tn)+z(t̂, tn) is the negative of (−1)z(t, t̂), but
(t − tn)(t̂ − tn) is negative as well. Therefore, the overall sign of the n-th term above is
simplified to (−1)z(t, t̂) multiplied by the sign of (t − tn)(t̂ − tn) in the denominator. This
is Eq. (5.9) in Section 5.1.

Now, let us consider the term ν(t) = 2Ω in Shannon’s filter operator Eq. (6.1). Recall
that in Shannon sampling, (2Ω)−1 is the constant Nyquist sampling rate which controls the
spacing between the equidistant Nyquist sampling points. For the generalized sampling
method, t′n(α) = dtn(α)

dα
plays the role of 1/(2Ω). Hence, its inverse dα

dt
, which is a continuous

function in t = tn(α), can replace the (2Ω)-term in the case of Shannon. In the generalized
filter operator Eq. (6.1)

ν(t) =
dα

dt
=
(
t′n(α)

)−1
. (6.4)

The function α(t) is defined by the governing equation Eq. (5.20) of the Nyquist sampling
grids in Section 5.2.2.

Analogous to Shannon’s low-pass filter, we obtained a formula for the filter operator P
in Eq. (5.5) for time-varying Nyquist rate. The derivation is heuristic, but intuitive.

In the next section, we will verify that such a filter operator P with P (t, t̂) given in
Eq. (6.3) and ν(t) given in Eq. (6.4) indeed maps any given raw signal into the desired
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function space with a pre-specified Nyquist rate, and if one applies the filter operator on
an already-filtered signal, it results the same signal, namely, P 2 = P .

It needs to be pointed out that although the filter operator P maps functions into the
function space, it is not a projection operator in the L2-space with the usual flat measure.
In Section 6.3, we will see that the operator P is a projection operator with an uneven
measure µ(t) = dα

dt
.

6.2 Verification of the Result on Filtering

To show that the filter operator P defined in Eq. (5.5) obeys the properties of a filter
operator, namely, P maps any given raw signal into the function space of the predeter-
mined time-varying Nyquist rate and P 2 = P , we need to use the discrete and continuous
resolution of the identity in the Hilbert space. Some results from the theory of self-adjoint
extensions in Chapter 3 and Section 5.5 will be used in this and the next section.

The discrete resolution of the identity can be obtained by an expansion of the iden-
tity operator in any eigenbasis. Specifically, for any fixed α, the normalized eigenvectors
{φn(α)}n corresponding to the eigenvalues {tn(α)}n of the self-adjoint operator T (α) form
an eigenbasis. The expansion of the identity operator in this basis yields the discrete
resolution of the identity

P (t, t̂) = 〈φt, φt̂〉 =
∑
n

〈φt, φn(α)〉 〈φn(α), φt̂〉

=
∞∑

n=−∞

G
(
t, tn(α)

)
G
(
t̂, tn(α)

)
.

(6.5)

As α runs from 0 to 1, the point tn(α) runs continuously from tn(0) to tn(1) = tn+1(0)
for all n. Together, for all n and α, {tn(α)} covers the whole real line exactly once with
no gap. For each real number t, there is a unique α and a unique integer n such that
t = tn(α). Hence, one can define α = α(t) as a continuous function of t in R. Integrating
Eq. (6.5) with respect to α from 0 to 1, one has

P (t, t̂) = P (t, t̂)

∫ 1

α=0

1 dα =

∫ 1

α=0

P (t, t̂) dα

=

∫ 1

α=0

( ∞∑
n=−∞

G
(
t, tn(α)

)
G
(
t̂, tn(α)

) )
dα

=
∞∑

n=−∞

(∫ 1

α=0

G
(
t, tn(α)

)
G
(
t̂, tn(α)

)
dα
)
.

(6.6)
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For each n in Z, change the integrating variable from α to t̄. As α goes from 0 to 1, t̄ runs
from tn(0) to tn(1) = tn+1(0). Hence,

P (t, t̂) =
∞∑

n=−∞

(∫ tn+1(0)

t̄=tn(0)

G
(
t, t̄
)
G
(
t̂, t̄
) dα
dt̄

dt̄
)

=

∫ ∞
t̄=−∞

P (t, t̄) P (t̄, t̂)
dα

dt̄
dt̄.

(6.7)

As discussed in Section 6.1, due to the commutative property of inner product, the kernel
P (t, t̂) is also commutative, namely,

P (t, t̂) = G(t, t̂) = 〈φt, φt̂〉 = 〈φt̂, φt〉 = P (t̂, t). (6.8)

Now, using (6.5) and (6.7), it is straightforward to show that the linear operator P maps
L2(R)-signals into the generalized sampling function space.

To this end, recall that functions in the generalized sampling space are spanned by the
set of generalized sinc functions in G(t, tn) on any fixed grid {tn}n. Their coefficients in
this expansion are their function values on {tn}n.

Let φraw(t) be an arbitrary L2(R)-function and φ(t) = Pφraw(t). To see if φ(t) is
indeed in the function space, notice that the summation of its function value at each tn
multiplied by the basis function G(t, tn) is in the function space, because each G(t, tn) is in
the function space already. We simply need check if this summation turns out to be φ(t)
or not. Using φ(tn) = Pφraw(tn) by its definition in Eq. (5.5), it follows that

∞∑
n=−∞

φ(tn) G(t, tn) =
∑
n

(Pφraw)(tn) G(t, tn)

=
∑
n

( ∫ ∞
−∞

φraw(t̂) P (tn, t̂) ν(t̂) dt̂
)
G(t, tn)

=

∫ ∞
−∞

φraw(t̂)
(∑

n

P (tn, t̂) G(t, tn)
)
ν(t̂) dt̂

=

∫ ∞
−∞

φraw(t̂)
(
P (t, t̂)

)
ν(t̂) dt̂ using Eq. (6.5)

=
(
Pφraw

)
(t) = φ(t).

The filtered function φ(t) is a linear combination of the generalized sinc functions. Hence
P indeed maps functions into the desired function space. Further, from Eq. (6.7),

PG(t, tn) =

∫ ∞
t̂=−∞

G(t̂, tn) P (t, t̂)
dα

dt̂
dt̂ = G(t, tn).
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Hence P maps each generalized sinc function G(t, tn) to itself. Therefore, if φ(t) is a linear
combination of G(t, tn), by linearity, this also holds for φ(t), namely, Pφ(t) = φ(t). The
range of P is indeed the desired generalized function space and P 2 = P .

6.3 Projection with the Time-Varying Measure µ(t) =
dα
dt

Although the filter operator P maps the L2(R)-functions into the pre-specified function, P
is not a projection operator in the bigger L2(R)-function space with the usual flat measure.
It is straight forward to show that in general

〈Pψraw(t), φraw(t)〉 6= 〈ψraw(t), Pφraw(t)〉 . (6.9)

This is due to the time-varying bandwidth of the filtered signals. The functions in the
function space pre-specified by the Nyquist grid {tn}n and its derivatives {t′n} are scalar-
valued L2-functions, but they are the representations of the underlying abstract Hilbert
space vectors. This function space is subject to an uneven measure µ(t) = dα

dt
.

To show that P is a projection operator with this uneven measure, it suffices to show
the self-adjointness of P with the following inner product

〈ψ(t), φ(t)〉 dα
dt

=

∫ ∞
t=−∞

ψ∗(t) φ(t)
dα

dt
dt. (6.10)

This inner product has an uneven measure µ(t) = dα
dt

. Then

〈Pψ(t), φ(t)〉 dα
dt

=

∫ ∞
t=−∞

(
Pψ(t)

)∗
φ(t)

dα

dt
dt

=

∫ ∞
t=−∞

( ∫ ∞
t̂=−∞

ψ∗(t̂) G(t, t̂)
dα

dt̂
dt̂
)∗
φ(t)

dα

dt
dt

=

∫ ∞
t̂=−∞

ψ∗(t̂)
(∫ ∞

t=−∞
G(t, t̂) φ(t)

dα

dt
dt
)∗ dα

dt̂
dt̂

=

∫ ∞
t=−∞

ψ∗(t)
(
Pφ(t)

)
dt

= 〈ψ(t), Pφ(t)〉 dα
dt
.

(6.11)

Since P 2 = P , the fact that P is self-adjoint concludes that the operator P is a projection
operator onto the function space with the uneven measure µ(t) = dα

dt
which arises from the

pre-specified time-varying Nyquist rate.
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Chapter 7

The Stability of the Generalized
Sampling Theorem

A crucial question in sampling and interpolation theory is the question of stability. There
are two types of stability that are important to the generalized sampling theorem for
time-varying Nyquist rates.

First, we need to find upper and lower bounds between the L2-norm of continuous
signals with the time-varying Nyquist rate and the l2-norm of the discrete samples taken
at the Nyquist rate1. This stability issue is addressed in my paper [33] and will be discussed
in Section 7.1.

Secondly, we will show that the time-varying Nyquist rate of the function space inherits
an important stability property of the constant Nyquist rate in the Shannon sampling
theorem, namely, sampling at the Nyquist rate gives the most stable reconstruction. Any
sample point deviated from the Nyquist grid will deteriorate the stability of reconstruction.
This result is discussed in Section 7.2 and can also be found in my paper [37].

7.1 Stability: Bounds on Reconstruction Errors

The stability of reconstruction is measured by the ratio between the L2-norm of the con-
structed continuous signal φ(t) and the l2-norm of the discrete samples {φ(tn)}n. For
example, sample quantization necessarily introduces l2-errors. In the case of Shannon
sampling theory, the L2-norm of a Ω-bandlimited function φ(t) is 1

2Ω
multiplied by the

1The ordered set of discrete sample values {φ(tn)}+∞n=−∞ are treated as a sequence vector in l2 Hilbert
space with the standard l2-norm.
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l2-norm of its discrete samples {φ(tn)}n
1

2Ω
‖φ(tn)‖2

l2 = ‖φ(t)‖2
L2 . (7.1)

The boundedness of the relation between the L2-norm and the l2-norm is a safeguard for
the reconstructed signals. A finite bound between the two norms ensures the stability of
reconstruction: a square-summable set of samples will yield a square-integrable function.
Further any error in the signal’s sample leads to a bounded error in the reconstructed
continuous signals.

In the case of the generalized sampling method, the frame bounds are not tight, but in
the following, we will find the upper and lower bounds between the norms of the continuous
signal and its discrete samples.

First, we note that the l2-norm of the samples at a Nyquist sampling rate is unam-
biguously defined. The l2-norms of samples on different Nyquist sampling grids are the
same because they are the norm of the function vector in the abstract Hilbert space on
which the underlying self-adjoint operators act. The samples at the Nyquist rate are the
coefficients of the Hilbert space vector spanned in an eigenbasis, their l2-norm equals the
norm of the Hilbert space vector.

Let µ(α) be a probability density function, 0 ≤ α < 1, such that

0 ≤ µ(α) ≤ 1 and

∫ 1

0

µ(α) dα = 1. (7.2)

Then ∥∥φ(tn(α)
)∥∥2

l2
=
∑
n

|φ(tn(α))|2 ∀ 0 ≤ α < 1

=

∫ 1

α=0

µ(α)
∑
n

|φ(tn(α))|2 dα

=

∫ 1

α=0

µ(α)
∑
n

|φ(tn(α))|2 1

t′n(α)

dtn(α)

dα
dα.

(7.3)

Here we multiplied and divided by t′n(α) = dtn(α)
dα

. Now, for a fixed α between 0 and 1, we
define that

∆min(α) = min
n∈Z

t′n(α)

∆max(α) = max
n∈Z

t′n(α).
(7.4)

Using a different parametrization of α, we can make ∆min(α) and ∆max(α) arbitrarily small
and arbitrarily large for some particular values of α. In order to have a parametrization
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independent measures of t′n(α), we integrate ∆min(α) and ∆max(α) for all 0 ≤ α < 1. We
therefore define2 that

∆min =

∫ 1

0

∆min(α) dα =

∫ 1

0

(
min
n∈Z

t′n(α)
)
dα

∆max =

∫ 1

0

∆max(α) dα =

∫ 1

0

(
max
n∈Z

t′n(α)
)
dα.

(7.5)

These two quantities are independent of re-parametrization. To see this, let γ = γ(α) be
a re-parametrization of α, then, by the Chain rule,

∆min =

∫ 1

0

min
n∈Z

(tn(α)

dα

)
dα =

∫ 1

0

min
n∈Z

(tn(γ)

dγ

dγ

dα

)
dα.

Since dγ
dα

is independent of n, we can pull out dγ
dα

and change the variable of integration to
obtain

∆min =

∫ 1

0

[
min
n∈Z

(tn(γ)

dγ

)] dγ
dα

dα

=

∫ 1

0

[
min
n∈Z

(tn(γ)

dγ

)]
dγ =

∫ 1

0

∆min(γ) dγ.

Similarly ∆max is independent of reparametrization as well.

The definition of ∆min(α) and ∆max(α) in Eq. (7.5) implies the following inequality:

∆min(α) ≤ t′n(α) ≤ ∆max(α) for all n. (7.6)

Substituting this into Eq. (7.3), we have

‖φ(tn)‖2
l2 ≥

∫ 1

α=0

µ(α)
∑
n

|φ(tn(α))|2 1

∆max(α)

dtn(α)

dα
dα

=

∫ 1

α=0

µ(α)

∆max(α)

∑
n

|φ(tn(α))|2 dtn(α)

dα
dα

(7.7)

and

‖φ(tn)‖2
l2 ≤

∫ 1

α=0

µ(α)
∑
n

|φ(tn(α))|2 1

∆min(α)

dtn(α)

dα
dα

=

∫ 1

α=0

µ(α)

∆min(α)

∑
n

|φ(tn(α))|2 dtn(α)

dα
dα.

(7.8)

2The assumption of the minimum and maximum values of t′n(α) guarantees that ∆min is positive and
∆max is finite. See Eq. (5.18)
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Here both ∆min(α) and ∆max(α) are independent of the summation index n, but are α-
dependent. Now choose the probability density function µ(α) to be

µ(α) =
1

∆max

∆max(α), 0 ≤ α < 1

so that it satisfies 0 ≤ µ(α) ≤ 1 and
∫ 1

0
µ(α)dα = 1. Then we can further simplify Eq.

(7.7) to get

‖φ(tn)‖2
l2 ≥

∫ 1

α=0

µ(α)

∆max(α)

∑
n

|φ(tn(α))|2 dtn(α)

dα
dα

=

∫ 1

α=0

1

∆max

∑
n

|φ(tn(α))|2 dtn(α)

dα
dα

=
1

∆max

∫ tn+1(0)

tn(α)=tn(0)

∑
n

|φ(tn(α))|2 dtn(α)

=
1

∆max

∑
n

[ ∫ tn+1(0)

t=tn(0)

|φ(t)|2 dt
]

let t = tn(α)

=
1

∆max

∫ +∞

t=−∞
|φ(t)|2 dt

=
1

∆max

‖φ(t)‖2
L2

(7.9)

by a change of variable and using the fact that the sampling grids {tn(α)}n together cover
the real line exactly once. Similarly, if we using another density function

µ(α) =
1

∆min

∆min(α), 0 ≤ α < 1

in Eq. (7.8), we can also find a lower bound in a similar manner

‖φ(tn)‖2
l2 ≤

1

∆min

‖φ(t)‖2
L2 . (7.10)

Therefore, on any fixed Nyquist sampling grid, Eq. (7.9) and (7.10) give

1

∆max

‖φ(t)‖2
L2 ≤ ‖φ(tn)‖2

l2 ≤
1

∆min

‖φ(t)‖2
L2 (7.11)

or equivalently,

∆min ‖φ(tn)‖2
l2 ≤ ‖φ(t)‖2

L2 ≤ ∆max ‖φ(tn)‖2
l2 . (7.12)
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Therefore, we have found upper and lower bounds of the L2-norm of the continuous signal
and the l2-norm of the discrete samples. These bounds ensure that the reconstruction is
stable. Any error in the measurements of the signals’ samples leads to a bounded error in
the reconstructed continuous signals. The size of the errors is bounded by the average of
the maximum values of t′n(α).

In the case of Shannon, the frame bounds are tight. We expect the constant bounds
∆min = 1

2Ω
= ∆max as in Eq. (7.1). We have shown above that the formula of ∆min and

∆max are both parametrization independent, so we can use the linear θ-parametrization{
tn(θ) = n+θ

2Ω

}
n

∆min =

∫ 1

α=0

∆min(α) dα =

∫ 1

θ=0

∆min(θ) dθ

=

∫ 1

α=0

(
min
n

dtn(θ)

dθ

)
dθ =

∫ 1

θ=0

(
min
n

1

2Ω

)
dθ =

1

2Ω
.

(7.13)

The same result holds for ∆max. Thus, we have a tight bound in the case of Shannon as
expected.

7.2 The Time-Varying Nyquist Rates yield the Most

Stable Reconstruction in their Function Space

In the Shannon sampling theorem, the constant Nyquist rate not only happens to be the
critical sampling rate between over- and under-sampling. It also is the rate with the most
stable reconstruction. If any sampling point deviates from the Nyquist sampling grid, it
will deteriorate the stability of the reconstruction. In this section, we will show that this
is also true for the new time-varying Nyquist rate.

In the Shannon sampling theorem, one can also reconstruct the signal from a set of non-
uniform samples as long as the average sampling density is at least the constant Nyquist
rate. Specifically, let {tn}n be a set of Nyquist rate sampling points with tn+1 − tn = 1

2Ω
,

and let {τn}n be a set of sampling points with the same average (Beurling) density as {tn}n,
see [16]. Any Ω-bandlimited signal φ(t) can be reconstructed for all t from the samples
taken on both {tn}n or {τn}n via

φ(t) =
∑
n

φ(tn) sinc
(
2Ω(t− tn)

)
=
∑
n

φ(τn)Sn(t).
(7.14)
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Both the set of shifted sinc reconstruction kernel and the set of Sn(t) are bases for the
function space. As demonstrated in Yen’s paper [14], the bunching of non-uniform sampling
points in the traditional framework yields a high amplitude of the basis functions and thus
leads to an unstable reconstruction. To understand the cause of the unstability, one could
decompose the reconstruction of φ(t) from non-Nyquist samples {φ(τn)}n into two steps,
namely,

{φ(τn)}n → {φ(tn)}n → φ(t). (7.15)

In the second step, {φ(tn)}n → φ(t), the reconstruction from the Nyquist samples is known
to possess a constant norm bound 1/2Ω. Therefore, the stability of the reconstruction from
the non-Nyquist sampling grid {τn}n depends on the first step: converting the sample values
from the non-Nyquist sampling grid {τn}n to the Nyquist grid {tn}n. Let L denote such
an operator and M be its inverse.

L : {φ(τn)}n → {φ(tn)}n
M = L−1 : {φ(tn)}n → {φ(τn)}n

(7.16)

The map L can be considered as an infinite square matrix, acting on the column vector with
entries {φ(τn)}n and mapping to the column vector with entries {φ(tn)}n. In functional
analysis, it is equivalent to mapping from one normalized but non-orthogonal basis to an
orthonormal basis. The orthonormal basis corresponds to the discrete samples on {tn}n
at the Nyquist rate, while the samples on {τn}n are associated with a normalized but
non-orthogonal basis.

The stability of the operator L is measured by its condition number, denoted by κ(L).
The condition number of L is the same as the one of its inverse M = L−1 because

κ(L) = ‖L‖
∥∥L−1

∥∥ = ‖L‖ ‖M‖ = κ(M). (7.17)

The condition number of a linear operator L is always greater than or equal to 1. It equals
to 1 when L is unitary, namely, when the set {τn}n is another Nyquist sampling grid.
Therefore, the stability of reconstruction from {φ(τn)}n to {φ(tn)}n deteriorates if κ(L),
or equivalently κ(M), gets larger. When κ(M) > 1, the stability of reconstruction from
{φ(τn)}n is worse than the reconstruction at the constant Nyquist rate.

Let us now show that this is true for the generalized sampling theory for time-varying
Nyquist rates. To this end, fix a Nyquist sampling grid {tn(α)}n with a set of corresponding
derivatives {t′n(α)}n. This determines the function space with a fixed time-varying Nyquist
rate.

As the simplest case, let us assume that only one point deviates from the Nyquist rate.
Namely, let {tn}n be an arbitrary but fixed Nyquist sampling grid and t∗ be a single point
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not in {tn}n. The new non-Nyquist sampling grid {τn}n consists of the points {tn}n with
a point, say t0, replaced by t∗:

τn = tn ∀n 6= 0 and τ0 = t∗ 6= t0 ∀n. (7.18)

Evaluate φ(t) at the point t = t∗ to obtain

φ(t∗) =
∑
n

G(t∗, tn)φ(tn)

= G(t∗, t0)φ(t0) +
∑
n6=0

G(t∗, tn)φ(tn).
(7.19)

Then the operator M in Eq. (7.16) can be written in the matrix form

{φ(τn)}n =


...

φ(τ−1)
φ(τ0)
φ(τ1)

...

 =


...

φ(t−1)
φ(t∗)
φ(t1)

...

 =


. . .

...
...

...
1 0 0

· · · G(t∗, t−1) G(t∗, t0) G(t∗, t1) · · ·
0 0 1
...

...
...

. . .




...

φ(t−1)
φ(t0)
φ(t1)

...


(7.20)

with the entries:

M0,n = G(t∗, tn) ∀ n,
Mm,n = δmn ∀ n ∀ m 6= 0.

(7.21)

One can show that the operator M is normal by calculating the explicit expression of
MTMv and MMTv in l2-space and showing that MTMv = MMTv for any l2-Hilbert
space vector v = {vi}+∞

i=−∞. Because the operator M is normal, its condition number
κ(M) equals the modulus of the ratio between the maximal and minimal eigenvalues of
M . Hence, one needs to find the eigenvalues of M .

Solving the characteristic equation det(M −λI) = 0 for λ, one obtains two eigenvalues:

λmin = M0,0 = G(t∗, t0) and λmax = 1. (7.22)

The first eigenvalue λmin = G(t∗, t0) is of multiplicity of 1. It has a simple eigenvector
with entries φ(τi) = δ0i. The second eigenvalue λmax = 1 has multiplicity of infinity. Its
n-th eigenvector, n 6= 0, has the following entry: φ(τi) = δni, ∀i 6= 0 and φ(τ0) = M0,0

1−M0,n
.

Because the reconstruction kernel G(t∗, t0) ≤ 1, the first eigenvalue is the minimum one
and the second eigenvalue is the maximum one.

Therefore, the condition number of M is

κ(M) =

∣∣∣∣λmax

λmin

∣∣∣∣ =
1

|G(t∗, t0)|
. (7.23)
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This condition number, κ(M), gives a direct measure of the stability of reconstruction from
the samples on a non-Nyquist sampling grid: the larger the value of κ(M) is, the worse
the stability of reconstruction is.

By inspection of the behavior of the reconstruction kernel G(t, t0) centered at t = t0,
we observe the following:

• If t∗ = t0, then the denominator G(t∗, t0) = 1 and λ(M) = 1. This is the case
where we did not move the Nyquist sampling point point t0 at all. That is, it was the
reconstruction from the original Nyquist sampling grid. Hence, we have the minimum
condition number 1 and the reconstruction is the most stable one. Notice that since
G(t, t0) = 1 if and only if t = t0 and the maximum absolute value of G(t, t0) is 1,
the reconstruction from the Nyquist sampling grid is indeed the most stable one, and
shifting one point to anywhere will worsen the stability of reconstruction.

• The point t∗ is near t0. The value of G(t, t0) is close to 1 only in a close region
around to t = t0. Hence the less that t∗ deviates from t = t0, the better the stability
of reconstruction is.

• If t∗ = tn, n 6= 0, then the denominator G(t∗, t0) = 0 and the condition number
approaches infinity. This is the case when we have one sample short, i.e., one sampling
point in a Nyquist grid is missing. We have insufficient information to reconstruct
the signal and so the condition number becomes unbounded.

• The point t∗ is very close to another Nyquist sampling point tn, n 6= 0. The denom-
inator G(t∗, t0) is very small, close to zero. So the condition number is enormously
large and the reconstruction becomes extraordinary unstable. This agrees with the
case of Shannon as in [14]: the bunching of two sampling points destroys the stability
of reconstruction.

• Because the kernel G(t, t0) decays like 1/t as t goes to both negative and positive
infinity, one could conclude that in general the stability of reconstruction gets worse
proportional to t as t goes infinity in both directions on the real line.
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Chapter 8

Interpolation and Reducing Gibbs’
Overshoot

The generalized sampling theorem for time-varying Nyquist rates can be used to interpolate
sets of non-equidistant points in a continuous and smooth manner. The interpolation
formula can be modified for finite sets of non-equidistant points or periodic sets of non-
equidistant points. The interpolation formulae themselves in both cases can be simplified
to finite sums.

The interpolation method for non-equidistant points can be used to reduce the Gibbs’
overshoot. As is well-known, when using conventional Whittaker-Shannon interpolation,
the Gibbs’ overshoot in approximating a step function is not reducible [53]. However, using
the generalized sampling method, we choose the set of sampling points adapted to the
behavior of the function and we can show that, numerically, the new interpolation method
allows one to strongly reduce Gibbs’ overshoot. In two concrete examples of approximating
the step function and the periodic step function, the amplitude of the overshoot is reduced
by roughly 70%. The results in this Chapter are based on my papers [34] and [35].

8.1 Interpolation Method for Infinitely Many Non-

Equidistant Points

The generalized sampling theorem can be used to construct a continuous time-varying
bandlimited function interpolating samples {φ(tn)}n on an infinite set of points {tn}n.
Combining the reconstruction formula Eq. (5.6) and the kernel Eq. (5.11), the resulting
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interpolant function φ(t) is given by

φ(t) =
+∞∑

n=−∞

G(t, tn) φ(tn)

=
+∞∑

n=−∞

(−1)z(t,tn)

√
t′n

| t− tn|

( +∞∑
m=−∞

t′m
( t− tm)2

)−1/2

φ(tn).

(8.1)

The value of the derivative t′n can be calculated from the points {tn}n using Eq. (5.7)

t′n = C0
(tn+1 − tn−1)

2
(8.2)

with a normalization constant C0 given in Eq. (5.8).

For numerical computation, it is more convenient to use the following form of the
generalized reconstructional kernel: if t ∈ (tk, tk+1) for any fixed integer k, then

G(t, tn) = (−1)z(t,tn)

√
t′n

| t− tn|

( +∞∑
m=−∞

t′m
( t− tm)2

)−1/2

= (−1)k−n
√
t′n

t− tn

( +∞∑
m=−∞

t′m
( t− tm)2

)−1/2

.

(8.3)

This form of the formula simply carries out the function z(t, tn) which denotes the number
of sampling points {tm}m between t and tn exclusively. Without the absolute value over
(t− tn), the sign of the expression changes whenever t passes a sampling point tn. This is
easier in computational implementation. See Eq. (3.46) in Chapter 3 for the proof.

There are two advantages of this new interpolation method. First, different from
wavelets and polynomial interpolations, the resulting interpolant function φ(t) is continu-
ous and smooth. Second, different from the Whittaker-Shannon interpolation, the infinite
set of samples in this interpolation can be generally non-equidistantly spaced.

However, these are two major weakness as well. First, it is generally too computation-
ally expensive because the interpolation formula in Eq. (8.1) involves two infinite sums.
Second, in practical situations, only finitely many samples can be involved. People are
only interested in the interpolation of finitely many samples on a finite interval.

In the following two sections, we will show how to modify the interpolation method
in Eq. (8.1) for a set of finitely many points by appending equidistant sets of points on
both sides of the concerned interval. Such a modification also simplifies the interpolation
formula to finite sum. In addition, a similar interpolation method is obtained for periodic
samples.
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8.2 Interpolation Method for Finitely Many Non-

Equidistant Points using Auxiliary Equidistant

Extension

Given finitely many samples, say {(tk, φ(tk))}Kk=1 on a finite interval, say [a, b] with a ≤
t1 < t2 < · · · < tK ≤ b, we are interested in finding a smooth interpolation through these
samples. The interpolation formula in Eq. (8.1) is not suitable for such finite interpolation.
But one can fix this problem by auxiliary extensions of samples on equidistantly spaced
points towards both directions outside the interval.

The idea is that a set of equidistant points can simplify the reconstruction kernel to sinc
functions as in the recovery of Shannon’s sampling theorem. A finite set of non-equidistant
points with equidistant auxiliary sampling points outside the interval can be considered
as a set of equidistant points along the real line, subtracting the equidistant ones in the
given finite interval and adding the given non-equidistant ones. The resulting sum in the
reconstruction kernel should also be simplified to finite as well.

Specifically, assume the samples {tk}Kn=1 are in a closed interval [−M∆s,M∆s], where
M is some positive integer and ∆s is the unit distance between two adjacent points outside
the given interval. One is free to choose ∆s. One can choose ∆s as the average spacing
for the sampling points on the interval, or the average sampling spacing for samples that
behave regularly. The latter case means to exclude the intervals on which the signal has
extremely oscillatory activity so that one must pay special attention to, e.g., sampling at
a much higher density to capture all the sharp and unusual features.

If the given interval [a, b] is not symmetric about t = 0 on the real line, one can always
simultaneously shift all the samples to make the interval symmetric. Such a horizontal
moving of samples does not change the shape of the resulting interpolating function and
one can easily obtain the interpolating function through the original samples by horizontally
shifting the interpolating function back.

Further, if the boundary of the interval is not an integer multiplication of ∆s, one
simply enlarges the interval further to ensure the boundaries match an integer multipli-
cation of ∆s. This assumption is to simplify calculation. Of course, the calculation can
be carried out for general boundary points a, b without any of these assumptions, but the
result will not be in a closed form. It will be an expression of the derivative of the Gamma
function, which can always be carried out numerically using function psi in Matlab. How-
ever, for demonstration purposes and the example of reducing Gibbs’ overshoot later, we
will carry out the calculation with the assumptions that the boundary points are integer
multiplication of ∆s.

In such a way, one will obtain infinitely many sampling points and yield a interpolating
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function φ(t) on the whole real line. We are only interested in the part of the signal which
interpolates the given finitely many samples. So the outer summation in the interpolation
formula Eq. (8.1) is finite. Further, due to the periodic pattern of the samples outside the
given finite interval, the inner summation in Eq. (8.1) also simplifies to be finite.

To this end, the finitely many given samples {(tk, φ(tk))}Kk=1 on [−M∆s,M∆s] and the
auxiliary samples {sm}|m|>M , where we let

sm = m∆s ∀m ∈ Z,
form a Nyquist sampling grid Λ, denoted as

Λ =
{
t̃n
}
n

= {sm}−(M+1)
m=−∞

⋃
{tk}Kk=1

⋃
{sm}∞m=M+1 . (8.4)

For computational convenience, we also assume that t1 = s−M and tK = sM . If t1 and tK
are not, one can add two extra auxiliary end points s−M and sM to the original finite set
of samples, and make them the new starting and ending points for {tk}k. This simplifies
the derivatives

s′m = C0∆s ∀ |m| > M (8.5)

and

t′k = C0 ∆tk where ∆tk =
1

2

(
tk+1 − tk−1

)
∀ 1 ≤ k ≤ K. (8.6)

For notational convenience, t0 denotes s−(M+1) and tK+1 denotes sM+1. The normalization
constant C0 is given by Eq. (5.8). Recall that C0 will be eventually canceled out in the
reconstruction kernel.

With the sampling points given in Eq. (8.4) and their derivatives in Eq. (8.5), (8.6),
the generalized reconstruction kernel G(t, t̃n) in Eq. (5.11) reads:

G(t, t̃n) = (−1)z(t, t̃n)

√
t̃′n∣∣ t− t̃n∣∣

[
S(t)

]−1/2

= (−1)z(t, t̃n)

√
t̃′n

t− t̃n
1√
S(t)

(8.7)

where the infinite summation S(t) can be simplified to

S(t) =
∑
n

t̃′n

(t− t̃n)2
=

K∑
k=1

t′k
(t− tk)2

+
∑
|m|>M

s′m(
t− sm

)2

=
K∑
k=1

C0∆tk
(t− tk)2

+
∑
|m|>M

C0∆s(
t−m∆s

)2

= C0

K∑
k=1

∆tk
(t− tk)2

+ C0

[ ∞∑
m=−∞

∆s(
t−m∆s

)2 −
M∑

m=−M

∆s(
t−m∆s

)2

]
= C0

[ K∑
k=1

∆tk
(t− tk)2

+
π2

∆s
sin−2

( πt
∆s

)
−

M∑
m=−M

∆s(
t−m∆s

)2

]
.

(8.8)
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Later in Eq. (8.10), the constant C0 later cancelled out with the one in
√
t′k =

√
C0 ∆tk.

Here we used the trigonometric identity Eq. (5.46) in the recovery of the sinc kernel in
Shannon’s sampling theorem

∞∑
m=−∞

∆s(
t−m∆s

)2 =
1

∆s

∞∑
m=−∞

1( (
t

∆s

)
−m

)2 =
π2

∆s
sin−2

(
π
( t

∆s

))
. (8.9)

Now substitute the formula of the reconstruction kernel Eq. (8.7) and Eq. (8.8) into the
reconstruction formula Eq. (5.6), we can obtain the interpolating function φ(t). Remember
that since we are only interested in the interpolation through the finitely many points on
{tk}Kk=1, we only need to sum up the reconstruction kernel G(t, tk) for all k from 1 to K.
So

φ(t) =
K∑
k=1

G(t, tk)φ(tk) =
K∑
k=1

(−1)z(t, tk)

√
t′k

| t− tk|

[
S(t)

]−1/2

φ(tk)

=
K∑
k=1

(−1)z(t, tk)

√
∆tk

| t− tk|

[ π2

∆s
sin−2

( πt
∆s

)
+

K∑
l=1

∆tl
(t− tl)2

−
M∑

m=−M

∆s(
t−m∆s

)2

]− 1
2
φ(tk)

(8.10)

or in the form of Eq. (8.3) for computational convenience, if t ∈ (tk̂, tk̂+1) for any fixed

integer k̂, we have

φ(t) =
K∑
k=1

(−1)k−k̂
√

∆tk
t− tk

[ π2

∆s
sin−2

( πt
∆s

)
+

K∑
l=1

∆tl
(t− tl)2

−
M∑

m=−M

∆s(
t−m∆s

)2

]− 1
2
φ(tk).

(8.11)

This function φ(t) interpolates the given finite set of samples
{(
tk, φ(tk)

)}K
k=1

. Notice that
the summations in φ(t) are now all finite. This makes the computation of the interpolation
function applicable in practice.

Plots of the generalized sinc function in Chapter 5 are computed using this method
where only finitely many samples are non-equidistant. Unlike polynomial interpolation,
in which case the interpolant goes unbounded outside the considered finite interval, the
interpolating function φ(t) behaves reasonably outside the interpolation interval, it decays
gradually as 1

t
as t→ ±∞.

The singularities in the summation S(t) in Eq. (8.8) may need to be specially handled.
The summation S(t) has singularities on the set of sampling points, say denoted by Λ.
This can be fixed by directly assigning the values of 1 or 0 to G(t, tk) at the sampling
points without using the formula in Eq. (8.7), because we know

G
(
t̃n, tk

)
= δ(t̃n − tk) ∀ t̃n ∈ Λ.
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In addition, the trick of removing equidistant points and adding non-equidistant points
in the finite interval introduces new singular points at t = n∆s for −M ≤ n ≤ M .
In this case, we should not use the removing-then-adding-tricks, but directly carry out∑
|m|>M

s′m
t−m∆s

in S(t) in the first line of Eq. (8.8).∑
|m|>M

s′m
(t−m∆s)2

∣∣∣∣
t=n∆s

=
C0

∆s

∑
|m|>M

1

(n−m)2

=
C0

∆s

[ ∞∑
m=M+1

1

(n−m)2
+

∞∑
m=M+1

1

(n+m)2

]
=
C0

∆s

[ ∞∑
k=M−n+1

1

k2
+

∞∑
k=M+n+1

1

k2

]
=
C0

∆s

[ π2

3
−

M−n∑
k=1

1

k2
−

M+n∑
k=1

1

k2

]
(8.12)

This summation eventually simplifies to finite as well. Note here for any positive integer
L,

∞∑
k=L+1

1

k2
=
∞∑
k=1

1

k2
−

L∑
k=1

1

k2
=
π2

6
−

L∑
k=1

1

k2
.

These two special cases may become trivial for practical computation because Matlab will
simply ignore these singular points.

8.3 Interpolation Method for Finitely Many Non-

Equidistant Points using Periodic Extension

Another approach to interpolating samples on a finite interval is to make a periodic exten-
sion of the samples along the whole real line. The resulting interpolating function will be
a periodic function. In this case the infinite summations in both reconstruction kernel Eq.
(5.11) and the reconstruction formula Eq. (5.6) will simplify to finite ones as well. Hence,
we have a closed form expression of the final interpolant φ(t).

We are given N samples
{(
τk, φ(τK)

)}N
n=1

on a finite interval [0, T ). Suppose the
sampling points {τ1, τ2, . . . , τN} ⊆ [0, T ) are all arranged in an increasing order. We are
looking for a function φ(t) on [0, T ) to interpolate these samples.

To extend the samples with a period T , we define an infinite set of sampling points
{tn}n

tnN+k = nT + τk, ∀ 1 ≤ k ≤ N, n ∈ Z (8.13)
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and the function values on them

φ(tnN+k) = φ(tk) ∀ 1 ≤ k ≤ N, n ∈ Z. (8.14)

The derivatives are periodic as well

t′nN+k = τ ′k = C0∆τk where ∆τk =
1

2

(
tk+1 − tk−1

)
∀ 1 ≤ k ≤ N, n ∈ Z. (8.15)

The normalization constant C0 can be calculated by Eq. (5.8), but is canceled out even-
tually in the calculation of reconstruction formula.

Using Eq. (8.3) to calculate the reconstruction kernel, we have for any t ∈ (tk̂, tk̂+1),

k̂ fixed,

G(t, tnN+k) =
(−1)z(t, tnN+k)

√
t′k

| t− tnN+k|

[ +∞∑
m=−∞

N∑
l=1

t′mN+l

(t− tmN+l)2

]−1/2

=
(−1)k̂−(nN+k)

√
τ ′k

(t− tnN+k)

[ N∑
l=1

+∞∑
m=−∞

τ ′l
(t− τl −mT )2

]−1/2

=
(−1)k̂−k−nN

√
τ ′k

(t− tnN+k)

[ N∑
l=1

τ ′l

( +∞∑
m=−∞

1(
(t− τl)−mT

)2

)]−1/2

=
(−1)k̂−k (−1)nN

√
τ ′k

(t− tnN+k)

T

π

[ N∑
l=1

τ ′l sin−2
(π
T

(t− τl)
) ]−1/2

.

(8.16)

In the last step, we used the sine trigonometric identity Eq. (5.46) to simplify the summa-
tion in the square bracket

+∞∑
m=−∞

1(
(t− τl)−mT

)2 =
1

T 2

+∞∑
m=−∞

1(
( t−τl
T

)−m
)2 =

π2

T 2
sin−2

(
π

(t− τl)
T

)
. (8.17)

Substitute this into the interpolation formula Eq. (8.1) to obtain the periodic interpolant
φ(t), for any t ∈ (tk̂, tk̂+1), k̂ fixed,

φ(t) =
+∞∑

n=−∞

N∑
k=1

G(t, tnN+k)φ(tnN+k) =
N∑
k=1

+∞∑
n=−∞

G(t, tnN+k)φ(τk)

=
+∞∑

n=−∞

N∑
k=1

[
(−1)k̂−k (−1)nN

√
τ ′k

(t− tnN+k)

T

π

[ N∑
l=1

τ ′l sin−2
(π
T

(t− τl)
) ]−1/2

]
φ(τk)

=
T

π

N∑
k=1

[ +∞∑
n=−∞

(−1)nN

(t− tnN+k)

](
(−1)k̂−k

√
τ ′k φ(τk)

) [ N∑
l=1

τ ′l sin−2
(π
T

(t− τl)
) ]−1/2

.

(8.18)
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Using the trigonometric identity for cotangent Eq. (5.39) with z = t−τk
T

, the summation
over index n in the second square bracket can be further simplified. We assume that the
number of sampling points in each period, N , is even. So (−1)nN = 1 and

+∞∑
n=−∞

(−1)nN

(t− tnN+k)
=

+∞∑
n=−∞

1

t− τk − nT

=
1

T

+∞∑
n=−∞

1(
t−τk
T

)
− n)

=
π

T
cot
(π
T

(t− τk)
)
.

(8.19)

If N is odd, this infinite sum can be simplified to a finite sum in the form of sigma
function, which can always be numerically determined. However, its expression is lengthy
and tedious. Hence, the case for N is odd is ignored here.

As a result, for any t ∈ (τk̂, τk̂+1), k̂ fixed, the interpolant periodic φ(t) is given by:

φ(t) =
T

π

N∑
k=1

[
π

T
cot
(π
T

(t− τk)
) ] (

(−1)k̂−k
√
τ ′k φ(τk)

)[ N∑
l=1

τ ′l sin−2
(π
T

(t− τl)
) ]−1/2

=

[ N∑
k=1

(−1)k̂−k
√
τ ′k cot

(π
T

(t− τk)
)
φ(τk)

] [ N∑
l=1

τ ′l sin−2
(π
T

(t− τl)
) ]−1/2

.

(8.20)

This function φ(t) interpolates a finite set of samples
{(
τk, φ(τk)

)}N
k=1

on a finite interval
[0, T ) provided that N is even. For t outside the interval [0, T ), the function φ(t) is periodic
with a period T .

8.4 Reducing Gibbs’ Overshoot in Approximating a

Step Function

The Shannon sampling theorem is not only used for the perfect reconstruction of functions
in the space of Ω-bandlimited functions, but has also been widely used to approximate non-
bandlimited functions. However, the phenomenon of Gibbs’ overshoot occurs whenever
using Shannon’s sinc kernel to approximate a function with discontinuous jump points.
This leads to ringing artifacts in signal processing and image compression.

The simplest example to illustrate this type of overshoot is approximating the step
function H(t). See Figure 8.1.

H(t) =


1 t > 0

0 t = 0

−1 t < 0

(8.21)
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Figure 8.1: Approximations of the step function by Shannon sampling. The left panel uses a
wider sampling spacing of 1.0, while the right panel uses 0.1. The green solid line on the top
indicates the amplitude of Gibbs’ overshoot near t = 0, which is the same in both cases.

In Figure 8.1, the step function H(t) is approximated using Whittaker-Shannon interpola-
tion on a set of equidistant points

{
sn = n∆s = n

2Ω

}
n

φshannon(t) =
+∞∑

n=−∞

sinc
(

2Ω(t− sn)
)
H(sn) =

+∞∑
n=−∞

sinc
(t− n∆s

∆s

)
H(n∆s). (8.22)

The approximating function is a sum of equidistantly shifted sinc functions. The equidis-
tant sampling points are at integer multiples of the constant spacing ∆s = 1/(2Ω).

The Gibbs’ overshoot does not die out as the frequency (or bandwidth Ω) increases, but
approaches a finite limit. Figure 8.1 shows two Whittaker-Shannon interpolations using
∆s = 0.1 (on the right) and ∆s = 1.0 (on the left). Although the sampling density on the
right (∆s = 0.1) is ten times tighter than the one on the left (∆s = 1.0), the maximum
values of both approximating functions are about 1.0664 with an error of 0.001. We used
1000 terms in (5.6) in both cases. As is well known, the 6.64% difference to the original
step function H(t), i.e., Gibbs’ overshoot, can not be further reduced when using Shannon
sampling, even when increasing the bandwidth.

Next, we use the generalized sampling method to approximate H(t) on a set of non-
equidistant points adapted to the behavior of the function. The reduction of Gibbs’ over-
shoot using the new interpolation is overwhelming. See Figure 8.2.

In Figure 8.2, we approximated the step function H(t) using the generalized sampling
method. Outside the interval [−10, 10], the sampling points have the same constant spacing
∆s = 1.0 as the ones on the left in Figure 8.1. But in the neighborhood interval [−10, 10]
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Figure 8.2: Approximating the step function by the generalized sampling method with non-
equidistant sampling points. The right plot zooms in near to the jump point. The dashed line
indicates the maximum amplitude of the approximating function.

of the jump point, we adjusted the sampling density with 20 extra sampling points. As
a result, the maximum value is reduced to 1.0193, which is a 70.9% reduction in the
amplitude of Gibbs’ type of overshoot. The amplitude is subject to a numeric error of
0.001, which implies an error of 0.1% in the reduction percentage.

The plot on the right in Figure 8.2 is a zoom-in of the plot on the left near the jump
point. The solid line on the top is the amplitude of the Gibbs’ overshoot on the uniform
grid in the case of Shannon (which is 1.0664), and the dashed line indicates the amplitude
of maximum value with the new generalized sampling theorem (which is 1.0193). This
indicates that the new method could be very useful, for example, to reduce Gibbs ringing
in image compression.

To use our generalized sampling method to approximate a function, the strategy is:

1. Find a set of points {tn}n to form a sampling grid which depends on the behavior
of the function to be approximated. The sampling points have a minimum and
maximum spacing as in Eq. (5.18);

2. Set the corresponding derivatives {t′n}n from {tn}n as in Eq. (5.7);

3. Construct the approximating function using the interpolation formula Eq. (8.1).

The third step uses the corresponding interpolation method, which is Eq. (8.10) in this case
as we will see. The second step follows from the first step naturally. Hence the difficult
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task is the first step: given a function, how does one choose a suitable set of sampling
points?

In the specific problem of approximating the step function H(t), we have seen that
the uniform grid is not optimal, because the step function has a sudden change at the
jump point, i.e. a large Gibbs’ overshoot. Intuitively H(t) has infinitely large bandwidth
at t = 0, while it has zero bandwidth elsewhere. A windowed Fourier transform shows a
regularized behavior of high bandwidth at the step and decreasing bandwidth away from
the step. Recall that in the Shannon case, the constant derivative t′n ∼ 1

2Ω
is inversely

proportional to the bandwidth Ω. Hence, the constant derivatives on a uniform grid are
not matched up with the jump in H(t).

When we take samples, the derivative, which controls the sampling density, must match
the varying bandwidth. Hence, we expect to take

• more samples (at a higher rate) when the function oscillates faster, and

• less samples (at a lower rate) in the period of time with less oscillations.

Thus, for H(t), the spacing between sampling points should be small near the jump point
t = 0 where the function has a high bandwidth, and gradually increases to some constant
spacing when we sample far away from t = 0.

The simplest gradually increasing spacing is linear. Hence, we use the sampling grid
with linearly increasing spacing in approximating the step function H(t). We expect that
this non-equidistant sampling grid will yield a better approximation than the Whittaker-
Shannon interpolation because now the sampling density matches better with the behavior
of the step function H(t).

Because H(t) is anti-symmetric about t = 0, the sampling points should also be sym-
metric with respect to t = 0. Let t0 = 0 be the center sampling point, then t−k = −tk for
all k ≥ 1. From now, let us focus on finding the positive sampling points.

Assume that outside the interval [−M∆s,M∆s], we have equidistant sampling points
with a constant spacing ∆s

sm = m∆s ∀ |m| > M

where M is some positive integer. Inside this interval, we have non-equidistant sam-
pling points with linearly increasing spacing. Assume that we have K such positive non-
equidistant sampling points. Let ∆r = t1 − t0 be the first spacing between t0 and t1, and

117



δ be the linear spacing increment. Then

t1 = t0 + ∆r = ∆r,

t2 = t1 + (∆r + δ) = 2∆r + δ,

t3 = t2 + (∆r + 2δ) = 3∆r + 3δ,

...

tK−1 = tK−2 +
(
∆r + (K − 2)δ

)
= (K − 1)∆r +

1

2
(K − 1)(K − 2)δ,

tK = tK−1 +
(
∆r + (K − 1)δ

)
= K∆r +

1

2
K(K − 1)δ.

The chosen sampling grid is

{sm}−(M+1)
m=−∞

⋃
{tk}Kk=−K

⋃
{sm}∞m=M+1 .

The largest non-equidistant sampling point tK must match the equidistant sampling point
sM = M∆s, and the spacing must gradually increase to the constant spacing ∆s. Hence

tK = K∆r +
1

2
K(K − 1)δ = M∆s, (8.23)

(tK − tK−1) + δ = ∆r +Kδ = ∆s. (8.24)

The difference of 2 times Eq. (8.24) and (K − 1) times Eq. (8.24) gives

(K + 1)∆r = (2M −K + 1)∆s. (8.25)

Notice that ∆r is (and should be much) smaller than ∆s. By Eq. (8.25), this means that

(K + 1) ≥ (2M −K + 1) =⇒ M ≤ K.

The smaller ∆r, the better approximation. So we want to choose K as large as possible.
Re-write Eq. (8.25) as

K =
(2M + 1)∆s−∆r

∆s+ ∆r
= (2M + 1)− 2(M + 1)

∆s+ ∆r
∆r. (8.26)

All the terms are positive, so K < 2M + 1. The maximum possible value of K is 2M .
With K = 2M , from Eq. (8.26) we have

2(M + 1)

∆s+ ∆r
∆r = 1 =⇒ ∆s = (2M + 1)∆r.

Substituting this and K = 2M to (8.23), we have

∆r + (2M)δ = (2M + 1)∆r =⇒ δ = ∆r.
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In summary, to approximate the step function H(t) using this linearly increasing spacing
method, we pick an interval [−M∆s,M∆s] from the uniform grid with a constant spacing
∆s, and replace the uniform sampling points in that interval by a set of points whose
adjacent spacing is linearly increasing. There will be twice as many points as with the
uniform grid, i.e. K = 2M , and δ = ∆r = 1

2M+1
∆s. In other words, M and ∆s are free to

choose.

Notice that this set of sampling points is same as the one in Section 8.2, a finite set
of points with auxiliary equidistant extension. Hence, once the set of sampling points
are determined, we can use the interpolation kernel Eq. (8.7) in Section 8.2. Because
of the simplified finite sum in Eq. (8.7), the truncation error does not arise from the
reconstruction kernel in Eq. (5.25)

In Figure 8.2, the step function H(t) is approximated by this method with M = 10
and ∆s = 1.0. Comparing this grid with the uniform grid with same ∆s, we simply
replaced the equidistant sampling points on [−10, 10] by a set of non-equidistant point,
whose adjacent spacing linearly decreases toward the jump point t = 0. The maximum
value of the new approximation is reduced to 1.0193 with an error of 0.001. This gives
about 70% of reduction in Gibbs’ overshoot.

Naturally, the question arises whether one can do better with a differently spaced
non-equidistant sampling grid. Of course, we do not expect that the linear change in
sampling density yields the optimal grid spacing to match the behavior of a step function.
A more abrupt increase in sampling density toward the jump point t = 0 should match
the behaviour of the step function better, hence resulting in a better approximation. For
example, one could consider a quadratic change in sampling spacing rather than linear.
But the calculation involved in quadratic change might be very computationally expensive.
(I attempted but my computer could not carry out the numerical calculation. A faster and
more powerful computer might do.) Nevertheless, using a non-equidistant grid with a
linear change in sampling density shows a significant reduction of 70% in Gibbs’ overshoot.
This already demonstrates an advantage of the generalized sampling method.

8.5 Reducing Gibbs’ Overshoot in Approximating a

Periodic Step Function

The conventional Gibbs’ phenomenon arises in Fourier series of a piecewise continuously
differentiable periodic function with a jump discontinuity. Even as the number of terms
in the partial sum of Fourier series increases, the maximum amplitude of the partial sum
near the jump point does not die out, but approaches a finite limit over the function value.

119



(a) Using Fourier series
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(b) Using the generalized sampling method

Figure 8.3: Approximating the periodic step function with N = 24 sampling points. Samples
are denoted by x. The solid lines on the top and bottom indicate the maximum and minimum
values of Gibbs’ overshoot. The dashed lines indicate the maximum and minimum values of the
approximation by the generalized sampling theory.

In this section, we will demonstrate the interpolation method for the periodic step
function Hp(t). Surprisingly, using the same linearly increasing spacing distribution as
in the approximation of regular step function H(t) in Section 8.4, about 70% of Gibbs’
overshoot is reduced as well.

Hp(t) =



1 t ∈ (0,
1

2
)

0 t =
1

2

−1 t ∈ (
1

2
, 1)

H(t+ 1) ∀t ∈ R

(8.27)

The periodic interpolation formula is given in Eq. (8.20) in Section 8.3 in a closed form
with finite sum. Hence, the only task left is to find a finite set of interpolation points
{τk}Nk=1 in one period [0, 1) adapted to the behavior of Hp(t).

Similar to the case of the step function in Section 8.4, the reason that Fourier series on
equidistant points failed is because of, intuitively, the sudden change in the amplitude of
a step function Hp(t) at its jump points t = 0, 1

2
and 1. The function can be considered to

suddenly oscillate at an ‘infinite’ frequency in a sufficiently small neighborhood at the jump
points, namely to have an ‘infinite’ bandwidth at t = 0, 1

2
and 1. A uniform grid implies

uniform bandwidth. Intuitively, the uniform grid in the case of Whittaker-Shannon inter-
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polation is therefore not matched with the increase of bandwidth in a small neighborhood
of jump points.

We therefore choose N sampling points with non-equidistant spacings so that the small-
est spacing, (the highest bandwidth) occurs near the jump points at t = 0, 1

2
, 1, and the

spacing gradually increases away from the jump points (the bandwidth decreases). We use
the simplest such increasing change in spacing, which is linear.

Due to the symmetry of the jump points at t = 0, 1
2
, 1, we divide one period [0, 1)

into four equal subintervals with length 1
4
. On the first subinterval, [0, 1

4
), we choose K

points so that their adjacent spacing is linearly increasing. Let δ be the linear increment
in spacing, then

τ1 = 0, τ2 = δ, τ3 = 3δ, . . .

τK =
1

2
K(K − 1)δ.

(8.28)

The (K+1)th point is 1
4
. The sampling points on (1

4
, 1

2
] are a mirror image of the points on

[0, 1
4
) with respect to t = 1

4
, and the points on [1

2
, 1) repeat the ones on [0, 1

2
). Therefore,

we have in total N = 4K points on [0, 1).
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Figure 8.4: This is a zoom-in of Figure 8.3b.
The solid line on the top indicates the ampli-
tude of the Gibbs’ overshoot. The dashed line
indicates the maximum amplitude of the ap-
proximation by the new generalized sampling
theory. Roughly a 70% reduction of Gibbs’
overshoot is observed by using same number
of sampling points.

Choosing K = 6 and using the interpolation
formula in Eq. (8.20) in Section 8.3, we nu-
merically obtain the approximation of Hp(t)
in Figure 8.3b. It has the same total num-
ber of sampling points (N = 24) on [0, 1) as
in Figure 8.3a using Shannon’s method. But
its maximum amplitude is 1.0193, which is
about 70% of reduction to the overshoot.

In Figure 8.3a, Hp(t) is approximated us-
ing Shannon’s shifted sinc reconstruction ker-
nel with N = 24 sampling points on one pe-
riodic interval [0, 1). Samples are denoted by
x in the plot, and the solid line at the top
indicates the maximum value of the approxi-
mating function, which is 1.0640. Within an
error of 0.003, the 6.40% overshoot beyond
the maximum amplitude 1 of the step func-
tion Hp(t) can not be further reduced even if
we increase the sampling density.
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In Figure 8.3b, we use the same number of points N = 24 in one period, but we choose
the sampling points to match the behaviour of the step function. Intuitively, the jump
in the step function contains high frequencies. Thus more samples are taken near the
jump points t = 0, 1

2
, and 1. In this example, the maximum value of the approximation

is reduced to 1.0074 with an error of 0.0003. This is roughly a 70% reduction of Gibbs’
overshoot without increasing the number of samples, but only varying the local sample
density.

Figure 8.4 is a zoom-in of Figure 8.3b near the jump point. The dashed line on the
top indicates the maximum values of the approximating function using the generalized
sampling, while the solid line indicates the overshoot in the case of Shannon.
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Chapter 9

Conclusions and Outlook

This thesis has been concerned with a generalized sampling theory which allows one to
sample a continuous signal only as often as necessary while maintaining the ability to per-
fectly and stably reconstruct the signal from these discrete samples. The overarching idea
is that adjusting to a time-varying bandwidth will improve the sampling and information
storage efficiency. We expect that this generalized sampling theory opens up a wide range
of applications in signal processing and quantum gravity.

To this end, this thesis systematically develops and in some respects completes a new
non-Fourier generalization of the classical sampling theory for time-varying Nyquist rates.
The thesis defines and explains what we mean by ‘a time-varying Nyquist rate’ or equiv-
alently ‘a time-varying bandwidth’. Various issues regarding the sampling theory for such
time-varying Nyquist rates are studied. In particular, the thesis presents for the first time
the full algorithm of filtering, sampling and reconstruction. It also clarifies the stability of
the sampling method for time-varying Nyquist rates.

In this chapter, we will present some possible future research opportunities. Notice
that the ideas described in this chapter are immature and have not been fully investigated.
So far they are only my speculations. I welcome any suggestions from the readers on how
these ideas could be carried further.

9.1 Limit of Lagrange Polynomial Interpolation

In sampling and interpolation theory, an interesting and important question is whether
the sampling theory involving infinitely many sampling points contains, as a special case,
the case of finite interpolation. Indeed, it has been shown in [54] that the reconstruction
formula in the classical sampling theorem arises as a formal limiting case of the finite
Lagrange formula on a set of equidistantly-spaced sampling points.
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A natural question which then follows is what is the limiting case of the finite Lagrange
formula on a general set of non-equidistantly spaced sampling points? Will the reconstruc-
tion formula in the generalized sampling theorem presented in this thesis covers this case
as a special case?

First, let us recapitulate how the sinc reconstruction kernel in the classical sampling
theorem arises as the limit of Lagrange interpolation on a set of equidistantly spaced points.
Notice that in the case of the classical sampling theorem, the sinc reconstruction kernel
G(t, tn) = sinc

(
2Ω(t− tn)

)
can be rewritten in the following form

G(t, tn) =
H(t)

H ′(tn) (t− tn)
(9.1)

where

H(t) =
sin(2πΩt)

2πΩ
. (9.2)

To see why this is true on a set of equidistantly Nyquist points
{
tn = n

2Ω

}+∞
n=−∞, one uses

the fact that sin(nπ) = 1 and cos(nπ) = (−1)n.

H(t)

H ′(tn)
=

(
sin(2πΩt)

2πΩ

)
cos(2πΩ tn)

=
1

2πΩ

sin(2πΩt)

cos(nπ)
=

1

2πΩ

sin(2πΩt)

(−1)n

=
1

2πΩ

(
sin(2πΩt)(−1)n

)
=

1

2πΩ

(
sin(2πΩt)(−1)n − cos(2πΩt) 0

)
=

1

2πΩ

(
sin(2πΩt) cos(nπ)− cos(2πΩt) sin(nπ)

)
=

1

2πΩ

(
sin(2πΩt) cos(2πΩtn)− cos(2πΩt) sin(2πΩtn)

)
=

1

2πΩ
sin
(
2πΩ(t− tn

)
.

(9.3)

Hence,
H(t)

H ′(tn) (t− tn)
=

sin
(
2πΩ(t− tn

)
2πΩ(t− tn)

= sinc
(
2Ω(t− tn)

)
= G(t, tn).

Then using the Euler product representation with z = 2Ωt

sin(πz)

πt
=

+∞∏
k=1

(
1− z2

k2

)
one can obtainH(t) as the limit of Lagrange formula on the infinite set of points

{
tn = n

2Ω

}+∞
n=−∞,
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which is the right hand side of the following equation:

H(t) =
sin
(
2πΩ t)

2πΩ
= t

+∞∏
k=1

(
1− (2Ωt)2

k2

)
= t

+∞∏
k=1

(
1− t2(

k/(2Ω)
)2

)
= t

+∞∏
k=1

(
1− t2

t2k

)
= (t− t0)

+∞∏
k=1

(
1− t

tk

)(
1 +

t

tk

)
= (t− t0)

+∞∏
k=1

(
1− t

tk

)(
1− t

t−k

)
= (t− t0)

∏
k 6=0

( t− tk
t0 − tk

)
.

(9.4)

Interestingly, the generalized reconstruction kernel G(t, tn) can also be written in the
form of Eq. (9.1). Let {tn}+∞

n=−∞ denote an infinite set of non-equidistantly sampling points

with associated derivatives {t′n}
+∞
n=−∞. For any real number t in [tn, tn+1], n ∈ Z, let

H(t) = (−1)n
[ +∞∑
m=−∞

t′m
(t− tm)2

]−1/2

. (9.5)

Then

H ′(t) = (−1)n
[ +∞∑
m=−∞

t′m
(t− tm)2

]−3/2 (
−1

2

)[ +∞∑
m=−∞

t′m
(t− tm)3

] (
−2
)

= (−1)n
∑

m
t′m

(t−tm)3[∑
m

t′m
(t−tm)2

]3/2
.

When the term H ′(t) is evaluated at t = tn, the n-th term in both summations in the
numerator and denominator diverge. In the limit t → tn, the n-th term dominates the
other terms in both summations. Hence

H ′(tn) = lim
t→tn

H ′(t) = (−1)n lim
t→tn

t′n
(t−tn)3(
t′n

(t−tn)2

)3/2
=

= (−1)n lim
t→tn

t′n
(t−tn)3

(t′n)3/2

(t−tn)3

= (−1)n lim
t→tn

(t′n)−1/2 =
(−1)n√

t′n
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Therefore, for any t in [tk, tk+1), k ∈ Z,

G(t, tn) =
H(t)

H ′(tn) (t− tn)
=

(−1)k
[∑+∞

m=−∞
t′m

(t−tm)2

]−1/2

(−1)n√
t′n

(t− tn)

= (−1)k−n
√
t′n

t− tn

[ +∞∑
m=−∞

t′m
(t− tm)2

]−1/2

This is another equivalent form of the reconstruction kernel Eq. (5.11) without the function
z(t, tn) and without the absolute value sign over (t−tn) in the denominator. See Eq. (3.46)
in Chapter 3 or Eq. (8.3) in Chapter 8 for the equivalence. With the reconstruction kernel
G(t, tn) rewritten in the form of Eq. (9.1), we ask whether the reconstruction kernel in the
generalized sampling theorem provides, as a special case, the limiting case of the Lagrange
interpolation over an infinite set of sampling points {tn}+∞

−∞?

Given finitely many points
{(
tn, φ(tn)

)}N
n=−N , the Lagrange interpolation polynomial

reads

L(t) =
N∑

n=−N

Ln(t)φ(tn), (9.6)

where each Lagrange basis polynomial is

Ln(t) =
∏
k 6=n

t− tk
tn − tk

=
w(t)

wn (t− tn)
. (9.7)

It is straight-forward to see that Ln(tm) = δnm. The Lagrange basic polynomial expressed

in the form of w(t)
wn (t−tn)

is called the barycentric interpolation formula [55], in which case,

w(t) =
N∏

k=−N

(t− tk) (9.8)

and wn is a constant defined by

wn =
∏

−N≤k≤N
k 6=n

(tn − tk). (9.9)

Comparing the form of Eq. (9.1) and Eq. (9.7), we ask if the following equation is true
when we let the number of the points in {tn}Nn=−N approach infinity:

H(t)

H ′(tn)
= lim

N→+∞

w(t)

wn
(9.10)
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This might be an ambitious question, but a very important and interesting one. If it
is true, we find the limit of Lagrange interpolation over finitely many non-equidistantly
spaced points

In the case of the classical sampling theorem, it is true. Notice that in Eq. (9.4), what
we really showed is

H(t)

H ′(t0)
=

sin
(
2πΩ(t− t0)

)
2πΩ

=
w(t)

w0

(9.11)

This is indeed the special case with n = 0 and t0 = 0. Here H ′(t0) = 1. Changing the
equidistant set of points from

{
tn = n

2Ω

}
n

to
{
tn[θ] = n+θ

2Ω

}
n

with any fixed θ between 0
and 1, the calculation in Eq. (9.3) will not obviously carry through. But if Eq. (9.10) is
true, then this follows immediately.

A more precise question to ask: given an infinite set of points {tn}+∞
n=−∞, is there a

collection of derivatives {t′n}
+∞
n=−∞ so that Eq. (9.10) holds? Notice that the left hand side

of Eq. (9.10), which corresponds to the reconstruction kernel in the generalized sampling
theory, depends on two independent sets of numbers, {tn} and {t′n}n. In contrast, the right
hand side of Eq. (9.10), which involves the Lagrange interpolation, is expressed solely in
terms of the sampling points {tn}n. If there exists a collection of {t′n}n so that Eq. (9.10)
is true, then conversely, this set of {t′n}n is the ‘natural’ choice of the derivatives in the
generalized sampling theory.

To try to prove Eq. (9.10), one should start with simple cases, for example, one could
consider a set of equidistant points

{
tn = n

2Ω

}
n

with the middle point t0 shifted between
t−1 and t1 and see if Eq. (9.10) can still hold. Alternatively, one could also consider a set
of points with a periodic pattern. One could start with the one with a minimum number
of points in each period, i.e., two points in each period. In both cases, the expression of
both sides of Eq. (9.10) should be greatly simplified.

9.2 On Sturm-Liouville Operators

The first-order differential operator i d
dt

on a finite interval is a simple symmetric operator
with deficiency indices (1, 1). Such a symmetric operator has a U(1)-family of self-adjoint
extensions. Eigenvalues of each self-adjoint extension constitute a set of sampling points
and their corresponding eigenvectors form an eigenbasis, which allows the reconstruction
of functions in the space. These facts yield the generalized sampling theory in this thesis.

What is the situation with the second-order differential operator − d2

dt2
? This operator

is a simple symmetric with deficiency indices (2, 2). Hence it has a U(2)-family of self-
adjoint extensions. Eigenvectors of each self-adjoint extension form an eigenbasis. Hence,
one would also expect that a sampling and reconstruction method arises from such a
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second-order differential operator using the theory of self-adjoint extensions of symmetric
operators.

More generally, we can consider the Sturm-Liouville operator

L∗ = − d

dt
p(t)

d

dt
+ q(t) (9.12)

with the following domain

D(L∗) =
{
ψ ∈ AC([a, b]) | pψ′ ∈ AC([a, b]),−(pψ′)′ + qψ ∈ L2([a, b])

}
. (9.13)

Here p(t), q(t) are real-valued functions and p(t), q(t), 1
p(t)

are Lebesque measurable on

[a, b]. The set D(L∗) is the largest set in L2([a, b]) on which the Sturm-Liouville operator
in Eq. (9.12) can be defined. We can restrict the domain of L∗ with vanishing boundary
conditions to yield a symmetric operator

L = − d

dt
p(t)

d

dt
+ q(t) (9.14)

with the domain

D(L) = {φ ∈ D(L∗) | φ(a) = p(a)φ′(a) = 0 = p(b)φ′(b) = φ(b)} . (9.15)

One can show that this second-order differential operator L is a symmetric operator with
equal deficiency indices (n, n) where n = 0, 1 or 2 and the operator L∗ is its adjoint.

To see that L∗ is the adjoint operator of L, we evaluate the following

〈ψ, Lφ〉 − 〈L∗ψ, φ〉 =

∫ b

t=a

ψ
(
−
(
pφ′
)′

+ qφ
)
−
( (
−pψ′

)′
+ qψ

)
φ dt

=

∫ b

t=a

−ψ(t)
(
p(t)φ′(t)

)′
+
(
p(t)ψ′(t)

)′
φ(t) dt

=
[
−ψ(t) p(t)φ′(t)

]b
t=a

+

∫ b

t=a

ψ′(t) p(t)φ′(t) dt

+
[
p(t)ψ′(t)φ(t)

]b
t=a
−
∫ b

t=a

p(t)ψ′(t)φ′(t) dt

=
[ (
p(t)ψ′(t)

)
φ(t) − ψ(t)

(
p(t)φ′(t)

) ]b
t=a

= 0

(9.16)

If φ(t) is in D(L), then both φ(t) and p(t)φ′(t) vanish at the end points a, b. The above
equation always holds for any ψ(t) in D(L∗). This is only a heuristic verification that the
operator L∗ is the adjoint of L. A rigorous proof can be found in [56], Section 17.
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The fact that the symmetric operator L has equal deficiency indices follows from Theo-
rem 9.14 in [42]. To show the value of the deficiency indices n, one calculates the deficiency
space K(L∗ − i) = 0. Namely, solve for φ(t) such that

(L∗ − i)φ(t) = −
(
p(t)φ′(t)

)′
+
(
q(x)− i

)
φ(t) = 0 (9.17)

The deficiency index n is the number of linearly independent solutions in L2([a, b]) to
this second-order differential equation. The existence-uniqueness theorem says that for
any point a < t0 < b and two arbitrary constants c1, c2, this differential equation on
[a, b] has one and only one solution subject to the initial condition that φ(t0) = c1 and
p(t0)φ′(t0) = c2. So there are exactly two linearly independent solutions to Eq. (9.17). But
they may not all belong to L2([a, b]). Hence there are at most two solutions in L2([a, b]).
Therefore, the deficiency indices of the symmetric operator L is (n, n) and the non-negative
integer n is at most 2. When n = 2, there is a one-to-one correspondence between the U(2)-
family of maps between the deficiency spaces of the symmetric operator and the general
boundary conditions which make the Sturm-Liouville operator self-adjoint [57].

The Sturm-Liouville boundary value problem has been used to yield kernels for the
sampling theory of Kramer’s type [58] (another generalization of the classical sampling the-
orem) and it has been shown that such Kramer’s sampling methods possesses a Lagrange-
type interpolation expansion [59, 60]. It could be very interesting to investigate if one can
draw a connection between the Kramer’s sampling theory and the sampling theory from
the consideration of the same Sturm-Liouville operator with the same boundary conditions
but which uses the theory of self-adjoint extensions of symmetric operators.

To construct a sampling-reconstruction method using self-adjoint extensions of a sym-
metric operator L with deficiency indices (2, 2), one can start with extending the domain
of L under L∗ to obtain the symmetric extensions of L with deficiency indices (1, 1) and
then follow the same treatment in this thesis to find all the self-adjoint extensions of
the resulting symmetric operator with deficiency indices (1, 1). The eigenvalues of any
self-adjoint extension constitute a set of sampling points and the expansion in the corre-
sponding eigenbasis yields the corresponding reconstruction formula. Hence a sampling
and reconstruction method is indeed expected.

Specifically, for example, for a Sturm-Liouville operator L in Eq. (9.14), assume that
there are two linearly independent solution to Eq. (9.17), both in L2([a, b]). So the operator
L has a deficiency indices (2, 2). Define an α-family of symmetric extensions of L, denoted
by Lα, 0 ≤ α < 1, with the same action as d

dt

(
p(t) d

dt

)
+ q(t), but on the following domains

D(Lα) = {φ ∈ D(L∗) | cos(πα)φ(a) = sin(πα)p(a)φ′(a), φ(b) = 0 = p(b)φ′(b)} . (9.18)

Theorem 10.17 in [42] has shown that each operator Lα is a symmetric operator with
deficiency indices (1, 1). Further, for each fixed α between 0 and 1, we can define a family
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of self-adjoint extensions {Lα,β | 0 ≤ β < 1} where

D(Lα,β) = {φ ∈ D(L∗) | cos(πα)φ(a) = sin(πα)p(a)φ′(a),

cos(πβ)φ(b) = sin(πβ)p(b)φ′(b) }.
(9.19)

For any fixed α, it can be shown that the eigenvalues of Lα,β, denoted by {tn[α, β]}n, cover
the real line exactly once for all 0 ≤ β < 1.

Understanding the connection between Kramer’s sampling method which arises from
Sturm-Liouville boundary value problem and the self-adjoint extensions of Sturm-Liouville
operator should give direct access to the distribution of the sampling points. It might
also lead to the construction of Kramer’s sampling kernel directly from the desired set
of sampling points rather than from a specific Sturm-Liouville boundary value problem.
Namely, we construct the symmetric operator with deficiency indices (2, 2) by restricting a
self-adjoint operator with a pre-specified set of eigenvalues. In Kramer’s sampling method
rooted from a Sturm-Liouville boundary value problem, the sampling points are determined
by the given boundary conditions, one can not freely control the sampling points.

This study of spectra of self-adjoint extensions of second-order differential operators
should be very useful also in other applications. For example, in differential geometry, the
first-order differential operator i d

dt
is not covariant on curved manifolds, but the second-

order Laplacian operator ∆ = − d2

dt2
can be generalized to operate covariantly on functions

defined on a Riemannian manifold. For works on how this is used to generalize sampling
theory for curved manifolds, see R.T.W. Martin’s thesis [61].

Further, the Hamiltonian operator H = − ~2

2m
d2

dx2 + V (x) on a finite one-dimensional in-
terval is also a second-order differential operator. Subject to certain boundary conditions,
it can have self-adjoint extensions. The eigenvalues of these self-adjoint extensions con-
stitute the energy eigenvalues of the system. For example, in a crystal, Bloch discovered
that the periodicity of the potential function V (x) implies the periodicity of the eigen-wave
function φ(x) of an electron, up to a phase (See Chapter 9 of [62]). Solving the Schrodinger
equation for an electron is equivalent to solving for the eigenfunctions of the Hamiltonian
Hα on a single interval [0, L] with the periodic boundary condition ψ(L) = ei2παψ(0). Here
α is called the Bloch momentum. This α-family of self-adjoint extensions is a subset of the
U(2)-family of self-adjoint extensions of the Hamiltonian operator with vanishing boundary
conditions. The set of eigenvalues of these self-adjoint extensions constitutes the energy
bands of electrons. Because these eigenvalues do not cover the whole real line, the energy
bands of electrons have gaps, which are important for explaining the difference between
insulators, semiconductors and conductors.
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9.3 Interpolation of Functions with Discontinuities and

Spectrum with Accumulated Points

In Chapter 8, we saw that using a set of non-equidistant sampling points with sampling
density linearly increasing toward the discontinuous point at t = 0, one achieves a signifi-
cant 70% reduction of the Gibbs’ overshoot in the approximation of a step function. The
Gibbs’ reduction is useful, for example, in image compression to reduce ‘ringing’ near dis-
continuities in the images. Linear change in the sampling density probably does not yield
the optimal sampling grid in terms of reducing the Gibbs’ overshoot. One expects that a
more abrupt increasing in sampling density toward the discontinuous point t = 0 matches
the behavior of the step function better. Hence it results in a better approximation and a
further reduction of the Gibbs’ overshoot, e.g., a quadratic increasing in sampling density
should provide a reduction more than 70%. A natural question to follow would be how far
we can ultimately reduce the Gibbs’ overshoot?

The best result would be an absolute elimination of the overshoot. But this may not
be achievable since the generalized sampling method assumes a finite minimum spacing
between two adjacent points. This is rooted from the fact that the self-adjoint extension
of the symmetric operator we consider here does not have accumulated eigenvalues. It sets
a lower bound on the distance between two eigenvalues of a self-adjoint extension.

However, if one considers a symmetric operator T such that eigenvalues of its self-
adjoint extension has the accumulated point at t = r, then one should be able to reduce
the Gibbs’ overshoot near the discontinuous point t = r to an arbitrarily small amount.
In this case, one can let the eigenvalues be denoted by the union of two increasing sets as
the following{

tn
}+∞
n=−∞

⋃{
t̂n
}+∞
n=−∞, where tm < r < t̂n, tn < tn+1, t̂n < t̂n+1,∀m,n ∈ Z (9.20)

and

lim
n→−∞

tn = −∞, lim
n→+∞

tn = r−, lim
n→−∞

t̂n = r+, lim
n→+∞

t̂n = +∞. (9.21)

As long as this collection of eigenvalues obeys the conditions in Eq. (3.16), the underlying
mathematics still holds except all the formulae need to be expressed in terms of a union of
two sets of sampling points instead of one and all the summations need to be treated with
extra care on the singularity at t = r.

As a consequence, any further generalization of the generalized sampling theory should
be companied by the further development of the mathematical theory of self-adjoint ex-
tensions of simple symmetric operators in Hilbert space.
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For another example, to improve the convergence of the reconstruction kernel, one needs
to use an over-complete set of basis in the Hilbert space rather than the eigenbasis of a
self-adjoint extension. This may not only be interesting from an engineer’s perspective,
but also be of its own interest in terms of functional analytical theory. What could be
an expression of a self-adjoint extension in terms of an over-complete basis? What type
of operator is it if the operator can be decomposed in terms of an over-complete basis of
eigenvectors from different self-adjoint extensions? How to express such an operator solely
in terms of the self-adjoint extensions?

As a consequence of such a development in functional analysis, one expects to be able
to increase the convergence rate, for example, from the asymptotic convergence as 1/t to
one with 1/t2 or 1/tn, n ≥ 2. This should be achievable at a cost of increased redundancy
in the samples. The signal is sampled at a rate higher than the desired Nyquist rate. The
advantage is that we not only obtain a higher convergence rate in the reconstruction, but
also have the ability to recover lost data.

There are also other directions in which one can further extend the mathematical results
on self-adjoint extensions of symmetric operator with deficiency indices (1, 1), although
their immediate consequences in terms of sampling theory may not be clear. For example,
it could be interesting to see what if the symmetric operator is not simple? What if the
symmetric operator has continuous spectrum, in which case all its self-adjoint extensions
will inherit the continuous spectrum?

9.4 Sampling for Vector-Valued Functions and Sym-

metric Operators with higher Deficiency Indices

In this thesis, we develop a generalized sampling theory for scalar-valued functions φ(t) by
considering the symmetric operators with deficiency indices (1, 1). A further generalization
to vector-valued functions could be possible by considering the symmetric operators with
high deficiency indices (N,N), N ≥ 2. This is important in quantum gravity because
all the observed fundamental physical fields, like electromagnetic fields, are vector-valued
functions.

Recall that by the Cayley transform, a simple symmetric operator T with deficiency
indices (N,N) has a U(N)-family of self-adjoint extensions. Each element in the U(N)-
group of maps between the two N -dimensional deficiency spaces extends T to a self-adjoint
operator. This generalization is suggested by the fact that the U(N)-group is richer than
N copies of the U(1)-group.

U(1)⊗ U(1)⊗ . . .⊗ U(1) $ U(N)
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Indeed, a naive sampling theory for vector-valued functions is to treat the N -dimensional
vector-valued function as a cartesian product of N scalar-valued functions and to accommo-
date the sampling theory for scalar-valued functions on each of its components. However,
this treatment ignores the fact the the components of a vector-valued function may be cor-
related and one should be able to improve sampling efficiency by taking this into account.
Therefore, using the symmetric operators with deficiency indices (N,N), we expect to be
able to generalize the sampling theory for classes of N -dimensional vector-valued functions
which not only possess a time-varying Nyquist rate, but also prefer a direction of sampling,
varying in time.

To be precise, let us look at the case of the generalized sampling theory for scalar-valued
functions in this thesis. Let T denote the simple symmetric operator T with deficiency
indices (1, 1). Each real number t is an eigenvalue of its adjoint T ∗ with multiplicity of 1.
So there is a normalized eigenvector φt associated with each eigenvalue t. Of course, each
real number t is also an eigenvalue for one of the self-adjoint extensions of T . We define
the scalar-valued function φ(t) for each vector φ in the Hilbert space as

φ(t) = 〈φt, φ〉 ∀t ∈ R. (9.22)

If a self-adjoint extension of T has a set of eigenvalues {tn}n, then their corresponding
eigenvectors {φtn}n form an eigenbasis and the decomposition in this eigenbasis gives the
reconstruction formula

φ(t) = 〈φt, φ〉 =
+∞∑

n=−∞

〈φt, φtn〉 〈φtn , φ〉 =
+∞∑

n=−∞

〈φt, φtn〉φ(tn). (9.23)

This is a discrete representation of the scalar-valued function φ(t) on the set of sampling
points {tn}n.

By analogue, let T now be a simple symmetric operator with deficiency indices (N,N).
Its adjoint T ∗ has each real number t as its eigenvalue with multiplicity N . Of course, one
can also find a self-adjoint extension of T which has the real number t as its eigenvalue
with multiplicity of N . So for each real number t, there is a corresponding N -dimensional
eigenspace, denoted by Et. Let the following be an orthonormal basis of Et

Et = span
{
φ1
t , . . . φ

k
t , . . . φ

N
t

}
. (9.24)

Then for any vector φ in the Hilbert space, we can define a vector-valued function
−→
φ (t) as

−→
φ (t) =


φ1(t)

...
φk(t)

...
φN(t)

 =


〈φ1

t , φ〉
...〈

φkt , φ
〉

...〈
φNt , φ

〉

 (9.25)
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If a self-adjoint extension of T has a set of eigenvalues {tn}n and each eigenvalue is of
multiplicity N , then the decomposition in the eigenbasis associated to this self-adjoint

extension yields the reconstruction of
−→
φ (t) from its vector values on {tn}n. The kth-

component of
−→
φ (t) is

φk(t) =
〈
φkt , φ

〉
=

+∞∑
n=−∞

N∑
j=1

〈
φkt , φ

j
tn

〉 〈
φjtn , φ

〉
=

+∞∑
n=−∞

N∑
j=1

〈
φkt , φ

j
tn

〉
φj(tn)

(9.26)

Here φj(tn) is the jth-component of the function value at the sampling points tm. The
inner product

〈
φkt , φ

j
tn

〉
is the reconstruction kernel. This is a discrete representation of

the vector-valued function
−→
φ (t) on the set of sampling points {tn}n. A potentially very

useful sampling-reconstruction method is expected.
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