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Abstract 

Electromyographic (EMG) signal decomposition is the process of resolving an EMG signal into its 

component motor unit potential trains (MUPTs). The extracted MUPTs can aid in the diagnosis of 

neuromuscular disorders and the study of the neural control of movement, but only if they are valid trains. 

Before using decomposition results and the motor unit potential (MUP) shape and motor unit (MU) firing 

pattern information related to each active MU for either clinical or research purposes the fact that the 

extracted MUPTs are valid needs to be confirmed.  

The existing MUPT validation methods are either time consuming or related to operator experience 

and skill. More importantly, they cannot be executed during automatic decomposition of EMG signals to 

assist with improving decomposition results. To overcome these issues, in this thesis the possibility of 

developing automatic MUPT validation algorithms has been explored. Several methods based on a 

combination of feature extraction techniques, cluster validation methods, supervised classification 

algorithms, and multiple classifier fusion techniques were developed. The developed methods, in general, 

use either the MU firing pattern or MUP-shape consistency of a MUPT, or both, to estimate its overall 

validity.  

The performance of the developed systems was evaluated using a variety of MUPTs obtained from the 

decomposition of several simulated and real intramuscular EMG signals. Based on the results achieved, 

the methods that use only shape or only firing pattern information had higher generalization error than the 

systems that use both types of information. For the classifiers that use MU firing pattern information of a 

MUPT to determine its validity, the accuracy for invalid trains decreases as the number of missed-

classification errors in trains increases. Likewise, for the methods that use MUP-shape information of a 

MUPT to determine its validity, the classification accuracy for invalid trains decreases as the within-train 

similarity of the invalid trains increase. Of the systems that use both shape and firing pattern information, 

those that separately estimate MU firing pattern validity and MUP-shape validity and then estimate the 

overall validity of a train by fusing these two indices using trainable fusion methods performed better 

than the single classifier scheme that estimates MUPT validity using a single classifier, especially for the 

real data used. Overall, the multi-classifier constructed using trainable logistic regression to aggregate 

base classifier outputs had the best performance with overall accuracy of 99.4% and 98.8% for simulated 

and real data, respectively.  
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The possibility of formulating an algorithm for automated editing MUPTs contaminated with a high 

number of false-classification errors (FCEs) during decomposition was also investigated. Ultimately, a 

robust method was developed for this purpose. Using a supervised classifier and MU firing pattern 

information provided by each MUPT, the developed algorithm first determines whether a given train is 

contaminated by a high number of FCEs and needs to be edited. For contaminated MUPTs, the method 

uses both MU firing pattern and MUP shape information to detect MUPs that were erroneously assigned 

to the train. Evaluation based on simulated and real MU firing patterns, shows that contaminated MUPTs 

could be detected with 84% and 81% accuracy for simulated and real data, respectively. For a given 

contaminated MUPT, the algorithm on average correctly classified around 92.1% of the MUPs of the 

MUPT.  

The effectiveness of using the developed MUPT validation systems and the MUPT editing methods 

during EMG signal decomposition was investigated by integrating these algorithms into a certainty-based 

EMG signal decomposition algorithm. Overall, the decomposition accuracy for 32 simulated and 30 real 

EMG signals was improved by 7.5% (from 86.7% to 94.2%) and 3.4% (from 95.7% to 99.1%), 

respectively. A significant improvement was also achieved in correctly estimating the number of MUPTs 

represented in a set of detected MUPs. The simulated and real EMG signals used were comprised of 3–11 

and 3–15 MUPTs, respectively. 
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Chapter 1 

Introduction 

1.1 Preface 

An electromyographic (EMG) signal, detected during a muscle contraction, is the superposition of the 

motor unit potential trains (MUPTs) created by the active motor units (MUs) and background noise. The 

characteristics of a detected EMG signal depend on several factors such as the level of contraction, the 

shape and size of the electrode used, and the position and orientation of the electrode relative to the 

muscle fibers of the active MUs [1-4]. In addition, the characteristics of an EMG signal detected from a 

contacting muscle are related to the anatomical and physiological features of the muscle and therefore to 

its age and state of health or fatigue. Some parameters of EMG signals for normal and abnormal muscles 

are compared in Table 1.1. Consequently, analyzing EMG signals provides information that can be used 

clinically or for physiological investigation. The technique of detecting, evaluating and analyzing EMG 

signals is known as electromyography.  

Recent advances in computer technology, signal processing, and pattern recognition techniques have 

lead to the development of new techniques for extracting valuable information from the EMG signals 

detected from a muscle. Therefore, electromyography now plays a major role in physiological 

investigations and clinical examinations for either the study of motor control or the diagnosis of 

neuromuscular disorders. One such technique is EMG signal decomposition.  

EMG signal decomposition is a process by which MUPTs are extracted from an EMG signal such that 

each extracted MUPT estimates the actual MUPT generated by a single MU. The purpose of EMG signal 

decomposition is to provide an estimate of the firing pattern and MUP template of each active MU that 
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contributed significant MUPs to the composite EMG signal. EMG signal decomposition involves the 

application of digital signal processing and pattern recognition techniques and was first reported by De 

Luca and co-workers [5], [6] . Since then, various different methods have been developed to decompose 

an EMG signal, to estimate MU firing pattern statistics and MUP features, and to analyze decomposition 

results quantitatively. Figure 1.1 summarizes the decomposition results for a needle EMG signal obtained 

using DQEMG [7], a system developed at the University of Waterloo for the decomposition and 

quantitative analysis of EMG signals. The individual MUPs assigned to each MUPT are plotted on top of 

each other in a shimmer plot. In this example, the MUP template and several morphological feature 

values, along with the MU discharge patterns, instantaneous firing rates, and several MU firing pattern 

feature values for each extracted MUPT are illustrated. The obtained MUP templates and MU firing 

patterns and their estimated feature values can assist with the diagnosis of neuromuscular disorders [8-

13], the understanding of motor control [14-16], and the characterization of MU architecture[17]. 

Specifically, the shape characteristics of needle-detected MUPs can be used to aid in the diagnosis of 

some neuromuscular disorders such as myopathic and neuropathic diseases [8], [12], [13], [18]. Diagnosis 

is then facilitated by decomposing a needle detected EMG signal into its constituent MUPTs, measuring 

the features of the extracted MUPTs and finally analyzing the measured features [7], but only if the 

obtained MUPTs are valid. Before using extracted MUPTs for further investigation (either clinically or 

for physiological investigation), their validity must be determined. 

An extracted MUPT is considered valid when it accurately represents the activity of a single MU and is 

contaminated by low numbers of false-classification errors (FCEs). Alternatively, an invalid MUPT either 

Table 1.1: Some parameters of EMG signals for normal and abnormal muscles [4]. 

EMG parameter Normal Myogenic Neurogenic 

Interference pattern 

  
 

Motor unit potential 
   

 

 High Amplitude  

Large Unit Small Unit 
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represents the activity of more than one MU (i.e., it is a merged MUPT) or contains a high percentage of 

FCEs (i.e., it is a contaminated MUPT). The class label of an extracted MUPT (single, merged, or 

contaminated) can be determined using the MU firing pattern and MUP shape information provided by 

the train.  

Unfortunately, the MUP template shapes and MU firing patterns of invalid MUPTs cannot be easily 

distinguished from those of valid trains. Often, the MUP template shape of an invalid train looks similar 

to that of a valid train; nevertheless, the train does not represent the MUPs of a single MU. As such, the 

variability of MUP shapes and possibly the MU firing pattern are greater for invalid trains compared to 

valid trains. If such inaccurate information is not detected and excluded from further analysis, it could 

improperly suggest an abnormal muscle when interpreted clinically or it may contribute to scientific 

misstatements. Consequently, the first and most critical step in the quantitative analysis of MUPTs is 

assessing their validity. 

 

 

Figure 1.1: Decomposition results of an EMG signal. From left to right, the first three columns show 

the MUP template, the shimmer plot of the assigned MUPs, and the features of the MUP template of 

each extracted MUPT. The last three columns (4–6) show the MU firing pattern information for the 

extracted MUPTs. The fourth column shows the IDI histogram and corresponding statistics for each 

extracted MUPT. Finally, the last two columns show the discharge patterns, instantaneous firing rates, 

and firing pattern features for each MU. 
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 Detecting invalid trains during decomposition can assist with improving the performance of these 

decomposition methods in terms of estimating the correct number of MUPTs constituting an EMG signal 

as well as reducing the number of missed-classification errors (MCEs) and FCEs in the extracted trains. 

At the end of each pass during decomposition, invalid MUPTs are detected and then either have their 

FCEs corrected or are split into valid trains. Such corrections can help find the correct number of 

constituent MUPTs, lead to better estimates of the MUP template and MU firing pattern statistics of each 

train, and also allow more MUPs to be correctly assigned to the obtained trains (i.e., reduce MCEs) 

during the next steps of decomposition. Consequently, MUPT validation can improve decomposition 

accuracy. 

To date, MUPT validation is conducted qualitatively by an expert operator. An expert assesses the 

raster/shimmer plots of the MUPs assigned into a MUPT to decide on the MUP shape validity of the 

given MUPT [1], [7], [19-21].The accuracy of such manual MUPT evaluations, as with other methods 

that need operator supervision, depends on operator experience and skill. In addition, such evaluations are 

time consuming and cannot be practically completed in a busy clinical environment. More importantly, 

manual MUPT validation methods cannot be executed during automatic decomposition of EMG signals. 

To overcome these issues, methods need to be developed to automatically estimate the validity of a given 

MUPT. This thesis presents several methods developed to automatically estimate the validity of MUPTs 

extracted by a decomposition algorithm. 

1.2 Objectives and Approach 

This thesis concentrates on automatic validation of a given MUPT using both its MUP shape and MU 

firing pattern information. Motivation for developing automated methods to estimate the validity of 

MUPTs are to: 1) facilitate the use of EMG signal decomposition results for clinical applications of 

quantitative electromyography by providing the overall validity of MUPTs and excluding or highlighting 

invalid MUPTs; 2) assist with improving the accuracy and completeness of decomposition results. For 

this purpose, several methods based on a combination of feature extraction, data mining, cluster 

validation techniques, and supervised classification algorithms were developed and evaluated. The goal 

was to develop a fast and accurate MUPT validation system that can be used both during the 

decomposition process and after decomposition is completed. 

The effectiveness of using the developed MUPT validation algorithm to improve EMG signal 

decomposition was explored as well. During the decomposition process, the validity of extracted MUPTs 
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are determined; invalid trains are corrected and the assignment threshold for each train is adjusted based 

on the estimated validity (i.e., adaptive classification) with a goal to obtain a decomposition results such 

that the number of extracted MUPTs is correct and the extracted MUPTs have low MCE and FCE rates. 

1.3 Overview of the Thesis 

This thesis explores a verity of techniques to detect merged and contaminated MUPTs obtained by 

decomposing an EMG signal. Identifying merged MUPTs using only either MU firing pattern 

information or MUP shape information was investigated. The effectiveness of using both these two sets 

of information to determine the class label of a MUPT (merged or single) was also explored. Identifying 

contaminated MUPTs and then editing these trains automatically was another subject that was 

investigated in this thesis. Finally, it is shown that using the presented MUPT validation and MUPT 

editing algorithms during EMG decomposition will improve the decomposition results. 

   The thesis is organized as follows. Chapter 2 explains the concepts of EMG signals and EMG signal 

decomposition techniques. The steps involved with decomposition of an EMG signal, the methods 

developed for each step along with their strengths and limitations are discussed and compared. Chapter 3 

explains the concept of MUPT validation. Single, merged, and contaminated MUPTs are described in 

detail.  

The main contribution of this thesis begins with Chapter 4, where a supervised classifier developed to 

identify merged MUPTs using only MU firing patterns is described. The details of developing, training 

and testing this classifier are explained. 

Chapter 5 presents several methods constructed to determine the validity of a MUPT using only its 

MUP shape information. Detailed descriptions of the developed methods along with their evaluation 

process using simulated and real data are provided. The advantages, disadvantages, and limitations of 

each method are discussed as well. 

In Chapter 6 several algorithms that fuse the MU firing pattern and MUP shape information of a MUPT 

to estimate its validity are described. The structure of the methods and how they were evaluated using 

both simulated and real data are presented in detail.  

In Chapter 7 a method for detecting MUPTs contaminated by a high number of FCEs and then a 

method for removing the FCEs from a contaminated train are presented.  
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Chapter 8 presents a novel EMG signal decomposition system. In this chapter, the structure of a newly 

developed EMG signal decomposition system that employs the methods presented in Chapters 4-7 with 

the goal of obtaining robust performance across a variety of EMG signals is presented. The performance 

of the developed EMG decomposition system was evaluated using several simulated and real EMG 

signals and was compared with that of the decomposition system used in DQEMG. 

Finally, Chapter 9 presents conclusions and some recommendations for future work to enhance the 

performance of the system.  
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Chapter 2 

EMG Signal Decomposition 

2.1 Introduction 

This chapter presents the fundamentals of EMG signal composition followed by a detailed discussion of 

EMG signal decomposition and its evaluation. A comprehensive survey of EMG signal decomposition 

algorithms is provided. Recent advances and an up-to-date evaluation of current research and 

developments in the field of EMG signal decomposition are provided. The steps required to decompose 

an EMG signal and to evaluate the obtained MUPTs are discussed comprehensively. The methods 

developed for each step, and the evolution, strengths and limitations of these methods are discussed. 

2.2 EMG Signals 

In order to appreciate the concepts of EMG signal decomposition and its application in quantitative 

electromyography, it is important to be familiar with the composition of an EMG signal. 

An EMG signal is the sequence of voltages detected from a contracting muscle over time. The 

potentials are detected in the voltage field generated by active muscle cells or fibers of a contracting 

muscle. Each muscle is composed of muscle fibers that are innervated in groups by α-motor neurons. 

Formally, a single α-motor neuron, its axon and the muscle fibers it innervates are called a MU [2], [22]. 

Figure 2.1 shows a schematic of a MU.   

The wave of depolarization and repolarization propagating along the membrane of a muscle fibre can 

be detected as a temporally changing voltage called a muscle fiber potential (MFP) [23]. The summation 



 

8 

of the MFPs created by the spatially and temporally dispersed depolarizations and repolarizations of all of 

the fibers of a single MU is called a MUP and is given by 

MUP��t� = ∑ MFP#$#%� �t − τ#�s# (2.1) 

where )  is the number of muscle fibers in the jth MU of a contracting muscle,  *� is the temporal delay of 

MFPi(t) and  s# is a binary variable which is  "1" if  fiber + fires and is "0" if it does not fire. 

The initiation delay *� depends on the location of the neuromuscular junction of fiber + relative to the 

detection electrode and the muscle fiber conduction velocity. This parameter varies from MU discharge to 

discharge because of the variability in the time required at the neuromuscular junction of this fiber to 

depolarize its membrane and hence initiate a new MFP. This variability results in variable times of 

initiation of the MFPs of a MUP which in turn causes the shapes of the MUPs of a MU to vary from MU 

discharge to discharge [24].  The shapes of MUPs may also change due to electrode movement because 

this changes the position of the electrode relative to the fibers of the active MUs.  MUP shapes will also 

vary if some fibers of the corresponding MU do not fire (known as blocking [24]). These sources of 

 

Figure 2.1: Motor unit (copied from [22]). Note: in reality the muscle fibers of a MU are randomly 

distributed within a muscle. 
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inherent MUP shape variability, can be the cause of the most challenging problems in EMG signal 

decomposition [1], [19], [25], [26]. 

In order to maintain the force of a muscle contraction, MUs fire repetitively and generate trains of 

MUPs. The train of MUPs created by a single MU, positioned at their times of occurrence, is called a 

MUPT and is described as:  

MUPT��t� = , MUP�#�t − δ�#



#%� � (2.2) 

where M is the number of times that the  jth MU  fires, ./� is the ith firing time of MUj and   MUPji(t) is the  

i
th MUP  generated by MUj during its ith firing.  

A detected EMG signal is simply the algebraic summation of the generated MUPTs and background 

interference which includes instrumentation noise and artifacts:  

EMG�t� = , MUPT�
�

�%� �t� + n�t� (2.3) 

where N is the number of active MUs, MUPTj(t) is the MUPT generated by the jth MU, and n�t� is 

background noise.  

Figure 2.2 shows both an anatomical and physiological model for an EMG signal. In this figure, ℎ��5� 

is a filter with impulse response MUPi, and the impulses represent action potentials emerging from an 6- 

motor neuron to innervate the connected muscle fibers. 

Based on Equations 2.1 to 2.3, all active muscle fibers in a contracting muscle contribute to an EMG 

signal detected from a muscle; however, the amplitude of the MFPs of the fibers located far from the 

electrode detection surface may be attenuated below the level of the background noise. This is because of 

the distance-dependent attenuation and low pass filtering characteristics of the volume conductor external 

to the muscle fibers. Attenuation increases and the cutoff frequency of the volume conductor filter 

decreases as the distance between the electrode detection surface and the active fibers increases [2], [3]. 

Therefore, the amplitude of MUPs of active MUs with fibers located far from the electrode detection 

surface will be attenuated below the level of the background noise and consistently discriminating them 

from the noise will be difficult.  
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Two main types of electrodes are used to detect EMG signals: surface and needle electrodes. Surface 

electrodes are applied to the skin overlying a muscle. They are noninvasive, convenient to use, and do not 

cause pain. Signals detected using surface electrodes are known as surface EMG signals. Surface EMG 

signals are easy to detect, but they do not provide much information about deep muscles due to the 

filtering characteristics of the volume conduction properties of the overlying muscles and other 

subcutaneous tissues. Moreover, due to the generally large pick-up area of surface electrodes, surface 

detected signals are often contaminated by the activity of adjacent muscles (cross talk) [23], [29]. For 

diagnostic purposes it is useful to get detailed temporal and spatial information about the fibers of a MU. 

Therefore, to detect EMG signals for clinical use, indwelling electrodes such as concentric needle, 

monopolar needle, and single fiber needle electrodes inserted directly into a muscle, are used. Schematic 

representations of the various clinical electrodes are shown in Figure 2.3. Indwelling electrodes are able  

 

Figure 2.2: Anatomical and physiological model for an EMG signal (copied from [27] and [28]). 
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to detect EMG activity in deep muscles.  However, there are several disadvantages associated with their 

use.  They cause some pain when inserted, they can be difficult to suitably position within a muscle, and 

the needle and/or detection surface may move during muscle contraction. In general, signals detected 

using indwelling electrodes are known as intramuscular EMG signals.  More specifically, signals detected 

using needle electrodes are known as needle EMG signals.  

 

Figure 2.3: Schematic representations of the different clinical electrodes that are used for detecting 

EMG signals. A) single fiber needle, B) concentric needle, C ) monopolar needle, D) macro needle, 

and E) a bipolar surface electrode configuration. The shaded regions illustrate the approximate uptake 

area of each electrode relative to a typical MU territory (from [9]). 
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The characteristics of an EMG signal are largely affected by the level of contraction, the anatomical 

and physiological properties of the muscle, the physical characteristics of the electrode used to detect the 

signal as well as the position of this electrode relative to the active muscle fibers [1-3], [30], [31]. Surface 

electrodes have a larger detection surface than indwelling electrodes such that they detect MUPs created 

by many MUs with fibers similarly close to the detection surface. Therefore, EMG signals detected using 

surface electrodes are generally more complex than those detected using indwelling electrodes. EMG 

signals become more complex and larger in amplitude with increasing force of contraction (or level of 

activation) as the number of active MUs and the rate at which they fire increases and as larger MUs that 

generally produce larger MUPs are activated. 

EMG signals may contain valuable information regarding activity, state of health, and characterization 

of the muscle from which they were detected [1], [7-13], [20], [21], [32-37].  As an example, the duration 

and size of the MUP waveform of a MU can be used to study and investigate the size of the MU and/or 

the conduction velocity of its fibers [9]. The complexity of the MUP shapes of active MUs of a 

contracting muscle reflects the healthiness of the muscle being studied. Hence, feature values (shape 

characteristics) of needle-detected MUPs can be used to aid in the diagnosis of some neuromuscular 

disorders such as myopathic and neurogenic disorders [8], [10], [12], [13]. The firing patterns of 

individual MUs can be used to investigate and understand how MUs are controlled during muscle 

contraction [14], [15]. They can also be used to explore the level of abnormality in some motor neuron 

diseases. Therefore, EMG signals can provide valuable information for physiological investigation and 

clinical examinations. One effective way to extract such information is via EMG signal decomposition. 

2.3 EMG Signal Decomposition  

2.3.1 Concepts 

EMG signal decomposition resolves a composite EMG signal into its component MUPTs. This is shown 

conceptually in Figure 2.4. EMG signal decomposition is based on two assumptions. First, all of the 

MUPs of the active MUs contributing significant MUPs to a detected EMG signal can be detected. 

Second, the MUPs created by a single MU exhibit more similarity to each other than to those produced by 

different MUs. While these two basic assumptions apply to the decomposition of both surface and 

intramuscular EMG signals, the methods used to accomplish decomposition can be quite different for 

intramuscular versus surface signals. And although the decomposition of multi-channel surface EMG 
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signals is of interest and progress is being made towards being able to decompose such signals [38-42], 

this chapter focuses on the decomposition of intramuscular EMG signals because the main objective of 

this thesis is to improve the of intramuscular EMG signal decomposition results and facilitate using such 

results for clinical applications of quantitative electromyography. 

Decomposition techniques applied to intramuscular signals can be categorized as manual, semi-

automatic or automatic. The initial manual methods used visual inspection of an EMG signal shown on an 

oscilloscope or plotted on a grid paper to identify MUPTs [43], [44]. Such methods were quite tedious, 

time consuming, and inaccurate. They were only suitable for the analysis of EMG signals collected 

during low-level contractions and could not resolve superimposed MUPs. Semi-automatic methods are 

much more powerful than the manual methods and utilize many of the same techniques used in automatic 

methods [5], [6], [45]. Nonetheless, the accuracy of the results obtained by manual methods depend 

greatly on the skills and experience of the operator. With automatic methods, the process of extracting 

MUPs and sorting them into MUPTs is implemented by employing digital signal processing and pattern 

recognition techniques. In general, an automatic intramuscular EMG signal decomposition process 

includes seven steps: (1) signal acquisition, (2) signal preprocessing, (3) signal segmentation and MUP 

detection, (4) feature extraction, (5) clustering and supervised classification of detected MUPs, (6) 

 

Figure 2.4: A schematic representation of EMG signal decomposition (adapted from De Luca et. 

al. [14], [38]) 
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resolving superimposed MUPs, and (7) estimating MU firing pattern statistics and MUP templates. 

Details of each of these steps are given below. 

2.3.2 Signal Acquisition 

An inadequately detected EMG signal cannot be decomposed accurately even by using complex methods. 

The type and positioning of the electrode as well as the level of muscle contraction are parameters that 

affect the decomposability of a detected signal. Controlling and reducing artifacts such as electrode 

movement can also help with decomposition accuracy. In addition to these technical conditions, the 

subject/patient should be prepared both mentally and physically for the study. 

In general, monopolar or concentric needle or fine wire electrodes are used to acquire selectively 

detected (i.e., micro) EMG signals. If information regarding MU size and fiber spatial distribution is 

required, an indwelling macro or overlying surface electrode is used to also simultaneously acquire a 

more broadly detected (i.e., macro) EMG signal. Decomposing the micro signal into its constituent 

MUPTs and extracting the firing pattern information of the active MUs provides information that allows a 

simultaneously acquired macro signal to be analyzed using triggered averaging techniques [1], [19], [31], 

[46]. 

 The detection of a micro signal with adequate sharpness and signal-to-noise ratio (SNR) for accurate 

decomposition requires that the electrode is positioned close to the fibers of the active MUs.  Adequate 

sharpness and SNR facilitate decomposition by making it easier to discriminate between the MUPs and 

the background noise as well as between the different MUPs created by distinct MUs. One method to 

obtain a suitable electrode position is to adjust the electrode position in a minimally contracting muscle 

until the amplitude and sharpness of the detected MUPs are maximized. Once a suitable electrode 

position is found, if the decomposition algorithm to be used can process signals acquired during force 

varying contractions, signal acquisition is initiated. Otherwise, the subject is asked to increase the level of 

contraction, as isometrically as possible, to a desired level before signal acquisition is started. The desired 

level of contraction maintained during signal acquisition depends on the ability of the decomposition 

methods to be used. In general, signals detected at higher force levels will be more complex and more 

difficult to decompose. For most of the currently available decomposition methods contraction levels 

should be below 50% of maximum voluntary contraction (MVC). 

The detected continuous EMG signal acquired from a muscle using a selective indwelling electrode is 

then fed to an analog preprocessing stage to be amplified and band-pass filtered (typically10 Hz to 10 
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kHz). The signal is then sampled at a certain rate (10–50 kHz), digitized using an analog-to-digital 

converter (A/D), and stored. The sampling rate and resolution of the A/D converter are two other 

parameters that should be considered in this step. EMG signals are band limited with a maximum 

frequency of around 5 kHz, hence based on the Nyquist-Shannon sampling theorem [47], [48] the 

minimal sampling rate should be twice this frequency (i.e., 10 kHz). However, if the signal is sampled at 

this rate, an extra processing step such as interpolation will be required to obtain good temporal resolution 

for graphical display and also for comparing MUP shapes and grouping them into MUPTs. High 

sampling rates increase memory requirements, may need special hardware, and also increase 

decomposition processing time. Both literature and our own experience suggest that a sampling rate of 25 

kHz can reduce the artifacts of undersampling and also manage issues of oversampling [1], [7].  

2.3.3 Signal Preprocessing 

The signal-preprocessing step is involved with filtering the signal to remove background noise and low-

frequency information. Filtering, in addition to improving SNR, shortens MUP durations and decreases 

MUP temporal overlap.  Filtering also sharpens MUPs, increases the differences between MUPs and the 

background noise, and accentuates the differences between MUPs created by different MUs. Therefore, 

filtering improves MUP detection and classification.  In general, band-pass filters or low-pass difference 

(LPD) filters are used [49-52]. The lower cut-off frequency of the filter should be set at a value that 

makes the signal baseline more stable by suppressing low frequency noise but without seriously 

attenuating the MUP amplitudes. Likewise, the upper cut– off frequency of the filter should be set at a 

value that removes the high frequency noise and accentuates the MUP spikes but without seriously 

attenuating the MUP amplitudes.  LPD filters are easy to implement and fast; hence they are suitable for 

real-time and clinical applications. However, LPD filters are not ideal and therefore some high frequency 

noise components will pass through. Figure 2.5 shows the effect of first-order and second-order LPD 

filtering on MUP shape and discrimination. As shown, the amplitudes of the filtered MUPs are preserved, 

but the filtered MUPs have shortened durations and reduced baseline noise compared to the unfiltered 

ones.    

Recently, complex wavelets and empirical mode decomposition (EMD) methods have been applied to 

remove noise from EMG signals [53-57]. These methods, in general, include a signal decomposition step, 

a soft thresholding step, and a signal reconstruction step. These techniques may work better than LPD 

filtering for removing noise from the signal and preserving signal information. However, their processing 
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time is longer than that of LPD filtering and their results depend on several user-defined parameters such 

as the mother wavelet for the wavelet-based methods [53-56] and the denoising threshold for both the 

wavelet-based and EMD-based methods. Although for the EMD-based methods [57] the threshold is 

defined based on an estimate of the level of noise in the signal, finding a suitable region from which this 

parameter can be accurately estimated may not be easy or may need operator input. 

2.3.4 Signal Segmentation and MUP Detection 

Signal segmentation divides an EMG signal into segments containing possible MUPs that were generated 

by active MUs that contributed significantly to the detected EMG signal. Theoretically, the goal is to 

detect all MUPs generated by active MUs. However, in practice MUs with no muscle fibers close to the 

detection surface of the electrode will contribute low amplitude MUPs to the detected EMG signal. These 

low amplitude MUPs are also composed of low frequency components and are very similar in shape. 

Therefore, it is very difficult to assign such MUPs to their correct MUPTs and only MUPs of MUs that 

have a good chance of being correctly assigned should be detected in this step. Generally, this is done 

using a threshold crossing technique [1], [5-7], [25], [26], [45], [49], [50], [53-55], [58-74]. Scanning the 

raw or filtered signal for peaks that exceed a threshold produces a set of peaks that indicate candidate 

 

Figure 2.5: The effect of 1st -order and 2nd -order low pass difference filtering on MUPs (copied 

from McGill et al. [50] ). 
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MUP positions. A window centered at each identified peak is then applied to the signal and the data 

points that fall in the window are stored as a MUP. 

The detection threshold can be a user-pre-defined absolute value [5-7], [53], [62-68], or it can be 

determined based on the characteristics of the signal and the noise contaminating it [7], [49], [50], [59], 

[60], [65-68], [75]. In practice, maximum absolute value, mean absolute value, and root mean square 

(RMS) value of the signal are three characteristics that may be used to set a detection threshold value. 

The former reduces the probability of small MUPs being lost in larger MUPs, but also introduces a 

possible bias against small MUPs. In using the signal RMS value, the detection threshold is calculated as 

either a constant (typically 1.5) times the RMS value of the filtered signal[7] or a constant (typically 3) 

times the RMS value of the baseline noise of the filtered signal [49], [50], [59], [60], [65-68], [75]. It is 

obvious that higher threshold values reduce the chance of small MUPs being detected. Using low 

threshold values helps in detecting MUPs created by almost all MUs active during signal acquisition, but 

as mentioned above, assigning MUPs with small amplitude and/or only low frequency components to 

their correct MUPTs is difficult.      

The length of the window applied to the signal for selecting MUPs can be variable [54], [55], [59], 

[65], [69-71], or it can be fixed [1], [7], [19], [26], [45], [49], [50], [53], [54], [58], [66], [67], [72], [74-

82]. If a variable-length window is chosen for analysis, the length of the window is adjusted based on the 

duration of the MUPs, for which the beginning and end of the MUPs are detected by thresholding. A 

MUP begins when its sample values exceed a threshold and ends when they fall below this threshold [54], 

[55], [59], [70], [71]. If a fixed-length window is chosen for analysis, the length of the window is set to 

include a fixed duration, typically 2.5 ms [1], [7], [19], [26], [27], [72], [74], [76-78], [81-83] or 6 ms 

[58], [66], [67]. Longer windows improve MUP representation, but will increase decomposition time. 

Using a short fixed window can cause multiple detection of complex or long-duration MUPs. Although 

using a short-window simplifies clustering and classification of the detected MUPs, further analysis such 

as discovering temporal relationships between MUPTs is required to identify and merge trains that 

represent portions of multiply detected MUPs [1], [7], [19].  

Once MUPs are detected they must be aligned for subsequent analysis.  Such alignment can be 

achieved by simply using local peak values of either the raw or filtered signal or by using methods based 

on discrete Fourier transforms (DFTs) [84]. Using peak values is simple and fast, but may not perform 

well especially for MUPs with sharp peaks due to time-quantization errors [49], [84]. These time 

quantization errors can be reduced by using higher sampling rates or avoided by using DFTs to 
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interpolate between samples. Using DFTs and a Nyquist sampling rate may or may not be more 

computationally expensive than using peak values depending on the increased sampling rate used to 

reduce time quantization errors.   

2.3.5 Feature Extraction 

Typically, for pattern recognition problems, each of the given patterns is represented by a feature vector, 

which contains a number of features that are descriptive of the pattern. The number of features should not 

be too large, because of the curse of dimensionality1 [85] but should be large enough to accurately 

characterize and classify the input pattern. Generally, a parsimonious set of features that has high 

discriminant ability among the different classes is desired. The multi-dimensional space that contains all 

possible values of these features is called the feature space.  

For EMG signal decomposition, to measure the similarity of detected MUPs and sort them into 

MUPTs, the MUPs are represented by a vector of feature values. In representing a MUP using a feature 

vector, the following factors should be taken into consideration.  

• The length of the feature vector (i.e., the number of features used). 

• The processing time required to compute the feature vector values. 

• The amount of correlation between the feature values. 

• The discriminative power of the features used. 

• The effect of MUP superpositions and shape variability on the feature values. 

Ideally, a feature vector should be comprised of a low number of uncorrelated features that are 

computationally easy to compute, have high ability to discriminate between classes, and are minimally 

sensitive to the shape variability of the MUPs created by a MU.  

Until now, different features have been used to represent detected MUPs and improve decomposition 

processing time and accuracy. Raw-data (time samples) and first- or second -derivative of time samples 

[1], [5-7], [19], [25], [27], [72], [74], [76-80], [82], [86], [87], power spectrum and Fourier transform 

coefficients [45], [49], [50], [62], wavelet coefficients [53-55], [59], [59], [79], [81], [83], [88-94], and 

                                                   
1 The phrase “curse of dimensionality” describes the fact that the time and number of samples required to compute 

an approximate solution to a pattern recognition problem grows exponentially with the dimension of the feature 

space. 
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principal components of wavelet coefficients [95] are features that have been used to represent and assign 

MUPs to MUPTs. Using power spectrum coefficients [62] or wavelet coefficients of MUPs decreases the 

dimensionality of the feature space and hence may improve the processing time. Frequency-domain or 

wavelet-domain features can be more effective than time-domain features (i.e., raw-data and first- 

derivative time samples), especially when detected MUPs are contaminated by low-frequency baseline 

drift or high frequency noise [53], [59], [96]. However, power spectrum coefficients may not be able to 

properly discriminate between similar MUPs created by different MUs because phase information is lost 

during computation of the power spectrum. Using wavelet coefficients can decrease the effect of time-

quantization errors [49], [49] and MUP shape variability [1], if the wavelet coefficients of lower scales 

are skipped [53], [59]. However, these low scale coefficients reflect high frequency information and are 

useful in discriminating similar MUPs created by different MUs [95]. To utilize all of the wavelet 

coefficient frequency information and to also have a low dimensional feature space, Yamada et al.[95] 

applied principal component analysis (PCA) to all of the wavelet coefficients in order to extract features 

that discriminate between the MUPs created by the MUs. Their experimental results, using five EMG 

signals composed of up to five MUPTs, showed that using PCA-based wavelet feature selection could 

improve decomposition performance with average accuracy of 90.4% versus 89.4% for the wavelet-based 

methods.    

To speed up decomposition, a number of algorithms use a small number of easy -to- calculate features 

[65], [70], [97], instead of time-domain, frequency-domain or wavelet-domain features. Loudon et al.[65] 

represent MUPs by their morphological characteristics such as maximum peak-to-peak amplitude, 

maximum positive peak amplitude, total positive area, MUP duration, number of turns, and number of 

phases. Florestal et al. [70], [97] use a set of symbolical features to represent MUPs. These symbolical 

features are: the sequence of extrema separated by a baseline crossing, the rounded ratio of the magnitude 

of each extremum over the baseline, and the time separating each consecutive extrema pair.  

2.3.6 Clustering and Supervised Classification of Detected MUPs 

Clustering is the task of partitioning a set of unlabelled objects into several meaningful groups or clusters 

based on a measure of similarity such that objects assigned to a cluster are as similar as possible and 

objects assigned to different clusters are as different as possible. A wide variety of clustering algorithms 

have been proposed in the pattern recognition literature. Jain et al. [98], Xu and Wunsch [99], Berkhin 

[100], and Jain [101] have conducted exhaustive surveys of current clustering algorithms. Examples of 

popular clustering algorithms are K-means [101], [102], fuzzy c-means [103], [104], and the hierarchical 
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algorithm [98], [99]. In general, clustering is a difficult problem. There is no prior knowledge about the 

labels of the objects and depending on the similarity measure or algorithm used different clustering 

results are obtained for the same set of data. Moreover, finding the optimum number of clusters is a major 

challenge in clustering an unlabelled data set.  

In supervised classification [105-107], however, the clusters and some information about them are 

available. Typically, collections of pre-classified (labeled) objects are provided and the problem is then to 

label given unlabeled objects. The labeled objects, which are known as training samples, are used to train 

a classification algorithm that in turn is used to label a new unclassified object.  

The objective of the clustering and supervised classification of the MUPs detected during signal 

segmentation is to group these MUPs into sets of MUPTs such that each MUPT represents the activity of 

a MU that contributed significant MUPs to the composite signal. Therefore, each MUPT should have a 

consistent MU firing pattern and the MUPs assigned to a MUPT should be more similar to each other 

than they are to those assigned to a different MUPT. Several existing decomposition procedures are based 

solely on clustering [53], [58], [65-67], [69], [74], [91], [93], [94], [108-111]. However, generally, a 

clustering technique is followed by supervised classification [1], [2], [7], [19], [27], [54], [55], [62], [72], 

[73], [76-80], [80-82], [86-89], [112], [113] and both clustering and supervised classification tasks are 

repeated across a number of iterations. Throughout multiple iterations, the detected MUPs are assigned to 

the corresponding MUPTs until either the extracted MUPTs are stable or some termination criteria are 

met. MUP assignment is based on some measure of similarity or dissimilarity between MUP shapes 

and/or MU firing pattern consistency.  

 When clustering is to be followed by supervised classification, the goal of clustering is to provide the 

necessary initial information required for supervised classification such as estimates of the number of 

MUPTs, their prototypical MUP shapes (or templates), and their MU firing pattern statistics. To extract 

such information, a part of the signal (perhaps the initial 5 seconds or an interval with the highest intensity 

of MUPs) can be selected and MUPs contributing to this part partitioned into a number of MUPTs. 

However, neither the number of MUPTs nor their MUP templates are known beforehand. This 

information must be estimated using MUPs detected in the interval of the signal selected for clustering. 

Stashuk and Qu [74] proposed to use the MUPs detected in a 30 ms interval of maximum intensity to 

estimate the number of clusters and to set the cluster centers (MUP templates). When clustering is to be 

followed by supervised classification, the validity of the estimated number of MUPTs and their MUP 

templates extracted during clustering is more critical than assigning all of the MUPs detected in the 
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interval of the signal used for clustering. In fact, each incorrectly assigned MUP increases the probability 

of more errors during supervised classification. Therefore, superimposed MUPs can be ignored during 

clustering and the algorithm can be conservative when deciding to assign MUPs to a train.  

When supervised classification follows clustering, MUPs are assigned to their associated trains based 

on the information about the possible MUPTs provided by the clustering results. In general, these 

assignments are based on the same information as during clustering (i.e., MUP shapes and/or MU firing 

patterns). Possible steps for a supervised classification algorithm used for classification of individual 

MUPs are summarized below [1], [19], [26]: 

Step 1: Examine the results of clustering to identify false classification errors (FCEs) and 

remove these incorrectly assigned MUPs from the resulting MUPTs. 

Step 2: Estimate the MUP template and MU firing pattern statistics of each MUPT. 

Step 3: Derive MUP shape similarity assignment thresholds for each MUPT. 

Step 4: Classify unassigned MUPs to the extracted MUPTs given their MUP shape and MU 

firing pattern statistics. 

Step 5: Update the MUP template and MU firing pattern statistics of each MUPT. 

Step 6: Merge MUPTs if they represent the activity of the same MU. 

Step 7: Split MUPTs if they do not represent the activity of a single MU. 

Step 8: Repeat Steps 3 to 7 until the compositions of the MUPTs do not change.  

A supervised classification algorithm used for EMG signal decomposition should be computationally 

efficient, accurate, and perform well even with a small number of training patterns (i.e., MUPs) provided. 

The training data (i.e., MUPs) is usually provided by decomposing a portion of the given signal either 

manually or by using a clustering algorithm. Additional important attributes of a supervised classification 

algorithm are: (1) minimal use of predefined parameters; (2) the ability to merge trains with similar 

shaped MUPs; (3) the ability to assess the validity of the extracted trains; (4) the ability to detect MUPTs 

corresponding to the activity of more than one MU and to split them into valid trains; and (5) minimal 

sensitivity to any inherent MUP shape variability that may exist in the extracted trains. 

MUP shape variability is caused by interfering contributions from the MUPs of other active MUs (i.e., 

superposition), by the variability of muscle fiber conduction velocities, or by neuromuscular junction 

(NMJ) jitter. NMJ jitter is the variability in the time required at the neuromuscular junctions of a MU to 

depolarize its muscle fiber membranes [1], [19], [114], [115].  This variability results in variable arrival 

times of the constituent MFPs of a MUP at the electrode and causes the shape of the MUPs to vary from 
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MU discharge to discharge. In addition, if the electrode moves during EMG signal acquisition, the 

amplitudes and/or shapes of the MUPs may drift (i.e., become non-stationary) because this movement 

changes the position of the electrode relative to the fibers of the active MUs. MUP shape variability and 

non-stationarity can reduce decomposition accuracy and may result in the creation of trains with a large 

number of MCEs, i.e., incomplete trains.  

In addition to MUP shape variability and non-stationarity, the similarity of the MUPs from different 

MUs may also affect performance of clustering and supervised classification algorithms. In fact, it can 

result in the creation of merged or contaminated trains. A merged train results when two or more trains, 

which each represents the activity of a MU, are placed in the same train. A contaminated train contains an 

unacceptable number of FCEs. A classification algorithm must be able to discriminate between similarly 

shaped MUPs generated by different MUs. MU firing pattern information can assist with discriminating 

between these types of MUPs. 

MU firing pattern information can be used to test the validity of assignments made using MUP shape 

only, (i.e., passively) [19], [45], [49], [50], [58], [65], [74], [75], or it can be used together with shape 

information to measure the certainty in assigning a MUP to a MUPT (i.e., actively) [1], [2], [5-7], [19], 

[25-27], [68], [72], [76-79], [81], [82]. However, one should consider that MU firing pattern information 

may not be valid in all cases. It depends on the stationarity of the firing pattern and the accuracy of the 

algorithms used to estimate MU firing pattern statistics. MU firing pattern statistics may vary if the 

contraction force is varied drastically during signal acquisition. For example, during recruitment or abrupt 

changes in muscle activation, a MU may fire twice in a short period of time (10 to 20 ms) creating a so-

called doublet of closely spaced in time MUPs.  In addition, the MU firing pattern statistics of a MUPT 

estimated by the algorithm used for this purpose may not be acceptable if the level of MCEs is high or the 

inherent variability of the firing pattern of the generating MU is high. Therefore, when using MU firing 

pattern information to augment MUP shape information for assigning a MUP to a particular MUPT, all of 

these issues should be taken into consideration. To achieve desired decomposition accuracy, a 

decomposition algorithm should consider both the MUP shape and MU firing pattern sources of 

variability just discussed.  

Most of the clustering techniques developed for EMG decomposition are based on adaptations of 

general clustering algorithms such as the nearest-neighbor [1], [26], [53], [115], single linkage [54], [55], 

[91], [93], [94], [116], [117], K-means [1], [7], [26], [68], [74], fuzzy c-means [66], [67], [118], minimal 

spanning tree [54-56], [59], [65], [69], [119], [120], leader-based clustering [6], [25], and self-organizing 
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neural nets algorithm [58]. In many of these algorithms MU firing pattern information is used passively 

or actively along with MUP shape information to assign an individual MUP to the correct train.  

Regardless of the type of clustering algorithm used, three challenges face each algorithm: i) depending 

on the similarity measure used, different clustering results may be obtained; ii) the optimum number of 

clusters (��) is not known in advance; and iii) the clustering results may vary from run to run. Many of 

these algorithms use the standard Euclidian distance as a similarity measure. The calculated distance is 

then normalized by the energy of the MUP, MUP template, or a combination of both to reduce the 

sensitivity of the similarity measure to the size of the MUPs.  To find �� (optimum number of MUPTs), 

different strategies are employed. The methods that are based on single linkage concepts use a threshold 

to cut dendograms and hence estimate the number of MUPTs. The threshold can be fixed or determined 

based on MUP shape similarity, MU firing pattern consistency, or both. In K-means clustering based 

methods, �� is estimated using either the Kothari and Pitts [121] method presented for estimating the 

number of clusters in a dataset; or by counting the number of MUPs that lie in a “high activity” section of 

the signal [7], [26], [74] and then using these MUPs as initial cluster centers (MUP templates).  Having 

the number of clusters and also their centers (MUP templates) defined, the clustering results are stabilized 

and do not vary from run to run. Although various techniques have been used to address the three 

challenges mentioned above, decomposition results still depend on the threshold(s) used in these 

algorithms and accuracy may decrease for a signal having a high level of noise and/or highly variable 

MUP shapes. Therefore, the thresholds used should be somehow adjusted based on the level of noise in 

the signal. Thresholds should also be adapted to the characteristics of each extracted MUPT individually; 

a threshold for each MUPT should be derived. Moreover, the validity of any MU firing pattern 

information used should also be evaluated and then weighted based on the validation results. 

There are several decomposition methods that combine clustering with a mathematical model of each 

active segment (AcS) of the detected EMG signal [60], [109-111]. Each AcS may contains one or more 

than one MUPs. Variable-length window technique (see Section 2.3.4) is general used to segment the 

given EMG signal into several active segments. The aim of the EMG decomposition methods presented 

in [60], [109-111] is to find the innervation sequences of the active motor units for each AcS. Gut and 

Moschytz [109] used communication techniques to resolve this optimization problem efficiently. They 

used MUP shape and MU firing pattern information provided by a clustering step and a sparse-sequence 

constrained Viterbi algorithm to find the best combination of motor units for each segment. Koch and 

Loeliger [110], [111] used a graphical model of each segment and then a sum-product algorithm (belief 
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propagation) to resolve each AcS efficiently. Ge and his et al. [60] used a Tabu search algorithm and 

MUP shape and MU firing pattern information to obtain a maximum a posteriori probability-based 

estimate of the innervation sequences of the MUs for each pair of consecutive active segments. They used 

two consecutive segments instead of one to avoid dependent errors caused by local solutions of individual 

segments. The drawbacks of these methods are that they are sensitive to variation in the shape of the 

MUPs created by each MU and their computation time increases exponentially as the number of active 

motor units contributing to a detected signal increases.   

EMG signal decomposition methods that use supervised classification techniques to classify individual 

MUPs employ a variety of classification techniques such as maximum a posterior classifiers (MAPCs) 

[2], [5], [6], [108], artificial intelligence-based MAPCs [25], [122-124],  artificial neural networks [86], 

[87], fuzzy logic-based classifiers [68], [77], [78], [82], [88], [89], [125], certainty-based classifiers [1], 

[7], [27], [72], [76], [79], [80], [82], [125], matched template filter classifiers [2], [5], [6], [45], [49], [50], 

[75], and multi-classifiers [27], [79], [82], [88], [89], [125] for this purpose. All supervised classification 

methods require training data to characterize properties of each MUPT (class). The training data, which 

are sets of labeled MUPs, is usually obtained from the clustering results of a section of the signal. Others 

however, use a specific algorithm to extract this information. For example, in the NNERVE (neural 

network extraction of repetitive vectors for electromyography) algorithm developed by Hassoun et al. 

[86], [87] an auto-associative algorithm is used to extract the number of possible MUPTs and their MUP 

templates.  

Nawab et al. [25], [122-124] employed artificial intelligence techniques to improve the performance of 

the Precision Decomposition (PD) algorithm developed by LeFever and De Luca in 1982 (known as PD 

I) [5], [6]. This system which is called PD II is a new version of  PD I. PD II uses a knowledge-based 

artificial intelligence framework called IPUS (integrated processing and understanding of signals) 

[126],[127] to set the parameters of PD I automatically based on the statistics and characteristics of a 

given EMG signal. The IPUS framework also assists PD I in efficiently resolving superimposed MUPs as 

well as finding the optimum number of MUPTs comprising a given signal. Given N extracted MUPTs, 

the algorithm merges these N MUPTs to get M ≤ N trains such that the sum of within-train dissimilarity 

and between-train similarity over the M resulting MUPTs is minimized. One solution to find these M 

MUPTs is to search all possible combinations of the N given MUPTs and then choose the best set, but 

this is computationally expensive. The IPUS framework assists the algorithm by decreasing the search 

space using template energy and inter-discharge interval (IDI) information extracted from the N MUPTs. 
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It was shown that the PD II system performed well even for EMG signals detected during force-varying 

contractions.  Across the set of EMG signals used for evaluation, PD II performed better than PD I in 

terms of both computation time and accuracy. The average accuracy for PD II was 86.0 % compared to 

65.2% for PD I. Both the PD I and PD II algorithms are specifically designed to analyze multichannel 

EMG signals detected using a custom quadrifilar needle electrode that provides an EMG signal comprised 

of three channels of differential voltage [43]. Due to different spatial orientations of the fibers of a MU 

relative to the detection surfaces of the quadrifilar electrode, each channel contains a different-shaped 

MUP generated by a MU. This additional MUP shape information can improve decomposition results.  

Florestal et al. [97] also showed that the additional information provided by the use of multichannel 

recordings could improve decomposition accuracy; nevertheless decomposing multiple channel signals 

takes more time than decomposing single channel signals. 

A number of EMG signal decomposition methods that use fuzzy logic-based classifiers have been 

developed [68], [77], [78], [88], [128],[128]. Chauvet et al. [128] developed a fuzzy classifier to assign 

MUPs to extracted MUPTs based on their degree of satisfaction and degree of rejection. For each MUP, 

these two values are calculated via three trapezoidal fuzzy membership functions using MUP shape 

(peak-to-peak amplitude and MUP time samples) and MU firing pattern information. Rasheed et al. [77], 

[78], [88] used fuzzy k-nearest neighbor (k-NN) classifier to classify the detected MUPs to several 

MUPTs. Finally, Erim and Lin [68] developed a method in which MUPs are assigned by a fuzzy 

inference system that uses the raw distance, the normalized distance, and the firing time of the given 

MUP.  The raw distance is the Euclidian distance between the given MUP and the MUP template of the 

considered MUPT. The normalized distance is the raw distance normalized by the energy of the MUP. 

Given these three inputs, the fuzzy inference system determines the certainty of assigning a given MUP to 

each extracted MUPT. This MUP is then assigned to the MUPT that has the highest membership value if 

this value is above a user defined threshold. 

Certainty-based classifiers (CBC) [1], [7], [27], [72], [76], [79], [80], [82], [125] estimate a measure of 

confidence (certainty) in assigning  a MUP to one of the extracted MUPTs. The certainty algorithm 

combines both MUP shape and MU firing-pattern information to calculate the confidence of assigning a 

candidate MUP to a particular train. The certainties of assigning a candidate MUP are evaluated for the 

two trains that have the most and the next most similar MUP templates. These two trains are found by 

calculating the Euclidian distance between the candidate MUP and the MUP template of each MUPT.   
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The candidate MUP is assigned to the MUPT which has the greatest certainty value, if this value is 

greater than the certainty assignment threshold. Otherwise, the MUP is left unassigned.  

Recently, multiple classifier systems have been used to enhance classification accuracy and overcome 

limitations of individual classifiers. One approach to build such a system is through classifier fusion. 

Classifier fusion techniques applied for EMG signal decomposition [27], [79], [81], [82], [88], [89], [125] 

use a pool of base classifiers to assign  MUPs. The pool of base classifiers consists of three kinds of 

classifiers: adaptive certainty-based classifiers (ACCs) [76], [80], [88] adaptive fuzzy k-nearest neighbor 

classifiers (AFNNCs) [77], [78], [88], and adaptive matched filter classifiers (AMFCs) [27], [88]. An 

ACC is a modified version of the certainty-based classifier [1], [7], [27], [72], [76], [79], [80], [82], [125] 

where the minimum certainty threshold for each MUPT is adjusted during the decomposition process 

depending on its level of FCE [76], [80], [88] using several heuristic rules. An AFNNC uses the same 

scenario as an ACC does, but here a fuzzy k-NN classifier is used instead of the certainty-based classifier 

[77], [78], [88].  An AMFC uses the same procedure as an ACC to adjust the minimal similarity threshold 

for each MUPT [27], [88].  The AMFC, also employs both MUP shape and MU firing pattern information 

to measure the similarity between a MUP and the MUP template of a MUPT, but here the shape 

similarity between the MUP template of a MUPT and a candidate MUP is calculated using either 

normalized cross correlation [27], [88], [129] or pseudo-correlation [70]. These base classifiers use 

different types of features such as time samples, first- or second-order discrete derivative, or wavelet 

coefficients of MUPs. The decisions made by each of these classifiers are combined by classifier fusion 

schemes to make the final assignment decision. Across the EMG signal data sets used for evaluation, the 

classifier fusion approach had better average classification performance overall, especially in terms of 

reducing classification errors. 

Although results of these supervised classification techniques are promising, their performance depends 

on the parameters used and the validity of the training data provided by the clustering results. The shape 

of various classes can also affect the results of Euclidean distance-based methods such as those that use 

certainty-based classifiers; if the shapes of the classes are not hyperspheric these methods may not 

perform well. This issue can be resolved by using matched filter classifiers, k-NN classifiers, or classifier 

fusion techniques, but the processing time of the last two methods are high and hence impractical for 

clinical applications. The criteria used to merge MUPTs with similar MUPs also influence decomposition 

results. Using high threshold values results in duplication of some MUPTs while using low threshold 

values results in some invalid MUPTs. Data-driven thresholds or threshold-free methods should be 
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developed to assist with merging of MUPTs. Finally, the variability of MU firing patterns may decrease 

classification accuracy. For example, certainty-based classifiers that use both MUP shape and MU firing 

pattern information equally, may not perform well if MUs do not fire in a regular fashion or the 

contraction force changes drastically during signal acquisition. Therefore, both MUP shape and MU 

firing pattern information need to be evaluated and weighted based on their validity and variability. 

Figure 2.6 summarizes the decomposition results of a real EMG signal. In this example, the MUP 

template and several morphological feature values, along with the MU discharge patterns, instantaneous 

firing rates, and several MU firing pattern feature values for each extracted MUPT are illustrated. The 

individual MUPs assigned to each MUPT are plotted on top of each other in a shimmer plot.  

2.3.7 Resolving Superimposed MUPs 

During muscle contraction, a number of MUs are active. The number of active MUs and the rate at which 

they fire depend on the level of contraction and MU recruitment thresholds. Even though MUs fire 

independently and at similar but variable firing rates, two or more different MUs will, at some points in 

time, fire at the same time or within a sufficiently short time interval such that their MUPs will 

superimpose and overlap such that the detected potential is the algebraic summation of the individual 

MUPs from these MUs and is known as a superimposed MUP (SMUP) [7]. If a full or complete 

decomposition is required, SMUPs need to be resolved into their constituent MUPs. Resolving SMUPs is 

the process of identifying the MUPs that contributed to a SMUP  and identifying  the precise timing of 

these MUPs [1], [5], [130-136].  

Methods proposed to resolve SMUPs can be classified into two categories: sequential and modeling 

based. Sequential approaches (also known as peel-off methods) are based on matching the MUP 

templates of the extracted MUPTs, one template at a time, with the SMUP or its residual [5], [53], [66], 

[67], [117], [117], [130], [131], [134]. By measuring the matches between a given SMUP and the MUP 

template of a MUPT, the most likely MUP template is identified and subtracted (peeled off ) from the 

SMUP. The resulting waveform in then used to reveal the next MUP template by searching among the 

other remaining MUP templates. This process is usually repeated until a stopping criterion is reached.  

Modeling based approaches are based on developing a mathematical model for a SMUP [61], [135-

137]. This model is given by 
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Figure 2.6: Decomposition results of an EMG signal. From left to right, the first three columns show 

the MUP template, the shimmer plot of the assigned MUPs, and the features of the MUP template of 

each extracted MUPT. The last three columns show MU firing pattern information for the extracted 

MUPTs. The fourth column shows the IDI histogram and corresponding statistics for each extracted 

MUPT. Finally, the last two columns show the discharge patterns, instantaneous firing rates, and 

firing pattern features for each MU (from [19]). 
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SMUP = , w�S�,;< + noise@
�%�  (2.4) 

where ) is the number of extracted MUPTs, A� is the MUP template of the +th MUPT, 5� is the firing time 

of the corresponding MU and can take non integer values, and B� is a binary variable which is "1" if A�  
contributed to the SMUP and is "0" if it did not. The goal is to find T = Ct�, tD, … , t$F and W =Cw�, wD, … , w$F such that  

e�T, W� = HSMUP − , w�S�,;<
@

�%� HD
 (2.5) 

is minimized. A number of algorithms have been proposed for solving this optimization problem in an 

efficient way [61], [117], [135-138]. Some of these methods limit the number of assumed contributing 

MUPs to 2 or 3, [61], [117], [131] while the newer algorithms [135-137] resolve SMUPs consisting of up 

to six MUPs with reasonable accuracy.  

The peel-off methods are simple and fast, however they may fail to find the optimal solution because in 

each step alignment and subtraction is completed without considering the results of previous steps. Errors 

made during each step can affect subsequent steps and hence cause an incorrect or unsuccessful 

resolution of the SMUP. Moreover, these approaches do not perform well when MUPs are combined in 

such a way that their out-of-phase peaks are summed together and cancel each other (i.e., destructively 

superimposed). Alternatively, the modeling based approaches perform better than the peel-off methods in 

resolving SMUPs. However, their processing time is greater than the peel-off methods because they 

explore a large search space to find the best solution and the size of the search space increases with ). 

Therefore, when selecting a SMUP resolution algorithm, its processing time and accuracy for different 

types of SMUPs should be considered. For clinical use of EMG signal decomposition results, where only 

mean MU firing rate and MU firing rate variability are to be studied, resolving SMUPs is not necessary 

[1], [7] because the desired MU firing parameters can be estimated from incomplete discharge patterns 

[7], [139], [140]. However, for detailed studies of MU control and muscle architecture, SMUPs must be 

resolved. For such applications, accuracy and completeness is more important than the speed because an 

incomplete decomposition may provide a misleading representation of MU firing rates [25].  
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2.3.8 Estimating MUP Templates and MU Firing Pattern Statistics  

Once the decomposition process is completed, the prototypical MUP shape (MUP template) and MU 

firing pattern statistics for each extracted MUPT needs to be estimated for future analysis (especially for 

quantitative electromyography). To reduce the effect of interference from the MUPs of other motor units 

and noise when estimating the MUP template for a MUPT, different methods such as mean, median 

[141], [142], median-trimmed-mean [143], statistical [64] and interference cancelling averaging 

techniques [49], [50], [75] have been proposed. When the number of MUPs assigned to a train is large, 

mean estimation can provide a better SNR than the other methods because the SNR improves with the 

square root of the number of available MUPs. It is also the simplest method. However, if the number of 

MUPs in a MUPT is small, interference from the MUPs of other MUs can significantly affect the 

estimated MUP template. Using the median or median trimmed mean averaging techniques can reduce 

the effect of interfering MUPs. These two methods also work better than the simple mean, if the 

background noise contaminating the MUPs has a non-Gaussian distribution, such as the Laplacian 

distribution (which has been suggested to be a good model for the background noise of EMG signals) 

[61], [143]. Given the MUP template of each extracted train, its features such as (duration, peak-to-peak 

voltage, number of phases and turns, area and area to amplitude ratio) are calculated for QEMG [7], [8]. 

In Figure 2.6, MUP templates were estimated using the median trimmed mean averaging technique and 

its features were calculated using standard methods [7], [144].  

When estimating MU firing pattern statistics, to obtain accurate estimates of the mean and standard 

deviation of the IDIs of each MUPT, IDIs related to FCEs and MCEs must be excluded from the 

calculations. Stashuk and Qu [140], based on McGill's work [49], [50], [75], developed a method called 

error-filtered estimation (EFE) for this purpose. Xu and Xio [139] also proposed a method using a 

weighted matching between the IDI probability density function (PDF) and a multi Gaussian model for 

estimating IDI statistics of a train. The method proposed by Xu and Xio [139] performs better than the 

EFE algorithm, but it depends on the estimated PDF of the IDIs and is slower than the EFE algorithm.  In 

Figure 2.6 the IDI statistics of each train were estimated using the EFE algorithm. 

2.4 Summary of EMG Signal Decomposition Methods 

A chronologically ordered summary of the EMG signal decomposition algorithms discussed  is provided 

in Table 2.1. As shown, various types of electrodes (single channel or multichannel) and various signal 

processing, clustering, and supervised classification techniques have been employed in the hope of 
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developing fully automated and robust procedures for EMG signal decomposition. With the exception of 

a few methods, such as PD I [5], EMGLAB [45], and the method developed by Stashuk and DeBruin 

[62], which are semi-automatic and need operator input, all of the methods listed in Table 1 are 

automatic. In addition, most of the methods (68%) make either passive or active use of MU firing pattern 

information. 

Many of these decomposition algorithms use single linkage clustering techniques. One key factor may 

be the ability of these clustering algorithms to correctly group MUPs generated by a MU even if the MUP 

shapes are non-stationary due to electrode movement. However, single linkage clustering techniques are 

computationally expensive and therefore several decomposition algorithms such as DQEMG and the 

multiple-classifier-based techniques use a customized K-means clustering method called Shape and 

temporal -based clustering (STBC) to group MUPs. STBC uses both MUP shape and MU firing pattern 

information to cluster MUPs. In fact, in these methods, the clustering objectives are to provide accurate 

training information for supervised classification and the issue of MUP shape non-stationary is dealt with 

during supervised classification.  

Across the sets of EMG signals used for evaluation, the majority of these algorithms performed well. In 

general, the newer algorithms perform better than the older ones. For example, Yamada et al. [95] 

improved the accuracy of the wavelet-based decomposition algorithms by up to 5% by using the full set 

of MUP wavelet coefficients together with PCA. Rasheed et al. [27], [79], [82], [88], [89], [125] showed 

that multiple classifier fusion approaches using the ACC, AFNNC, AMFC, and the CBC had better 

performance in terms of both MCE rate and FCE rate than using these classifiers individually. The 

accuracies of the classifier fusion methods were 1% to 8% higher than for the classifiers used 

individually. In addition, both the AFNNC and ACC performed better than the CBC while the AFNNC 

was the best among these three classifiers. In addition, by employing artificial intelligence techniques, 

Nawab et al. [25], [122], [123] reduced the processing time and increased the accuracy of the PD I 

algorithm [5]; the average accuracy for PD II was 1.3 times of that of PD I.  

Using multichannel signals can improve the accuracy with which MUPs are assigned to MUPTs. 

Florestal et al.[97] showed that the extra information provided by additional (5-7) channels enhances 

MUP assignment accuracy with a mean improvement of 6% for the majority (78%) of the MUPTs 

extracted. However, the decomposition of multichannel signals takes more time than that of single 

channel signals. Therefore, decomposing multichannel signals may not be practical for real-time 
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applications, but it may be suitable for applications in which decomposition accuracy is more important 

than decomposition speed. 

Several methods such as PD I [5], EMGLAB [45], PD II [25], and the method developed by Stalberg 

and his co-workers [64] provide a convenient graphical interface as well as a number of automatic 

procedures for the operator to inspect and edit decomposition results. Such facilities are useful in 

improving the decomposition results of signals that are difficult to decompose. Specifically, it assists with 

decreasing FCE rates in MUPTs created by different motor units while having similarly shaped MUPs. 

Nevertheless, such improvement still depends on the skill and experience of the operator. 

2.5 Evaluating EMG Signal Decomposition Algorithms 

The performance of EMG signal decomposition algorithms should be evaluated using signals detected 

from normal and abnormal muscles during different levels of contraction and using different types of 

electrodes. Ideally, a decomposition system should be able to decompose signals composed of five or 

more MUPTs with: variable MUP shapes, frequent superpositions of MUPs, variable MU firing patterns, 

similar MUP shapes generated by two or more MUs, and MU recruitment and de-recruitment.  

In general, a decomposition system is evaluated both qualitatively and quantitatively. For qualitative 

evaluation, each MUPT is assessed using the shapes and occurrence times of the MUPs assigned to it [1], 

[19-21]. MUP shape-based validation of a MUPT is made using the raster/shimmer plots of the MUPs 

assigned to it. If the shapes of MUPs assigned to a train are consistent, the MUPT is considered valid; 

otherwise, it is considered invalid.  

Qualitative MU firing pattern-based validation of a MUPT is based on viewing its IDI histogram and 

the instantaneous firing rates of the corresponding MU versus time. MU discharges corresponding to a 

valid MUPT occur at regular intervals [1], [45], [97], [145]  (for example see MU firing patterns of 

MUPTs 1, 2, and 4 shown in Figure 2.6) . However, MU discharges corresponding to an invalid MUPT 

will not have a Gaussian shaped IDI distribution and will have large variations in its instantaneous firing 

rate plot (see the MU firing patterns of MUPT #3 shown in Figure 2.6 as an example). For full 

decomposition algorithms, in addition to consistent MU firing patterns, the residual signal created after 

subtracting classified MUPs from the composite EMG signal is also investigated. A fully decomposed 

EMG signal should have a flat residual and regular MU discharges intervals [45], [97], [145].  
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Table 2.1: Summary of developed EMG signal decomposition methods. (Methods indicated by an '*' are developed for multichannel EMG 

signals.) 

Investigators Segmentation Technique Features Used Clustering 
Algorithm 

Supervised 
Classification 

Algorithm 

MU Firing 
 patterns used 

Actively/Passively? 

Resolve 
Superpositions? 

De Luca et al. 
(PD-I)[5], [6] * 

User defined & signal 
dependent threshold for 
MUP amplitude, variable -
length window. 

Time samples –– MAP–based template 
matching 

Actively Yes 

Gerber et 
al.[61] 

Signal dependent threshold  
for MUP amplitude, 
variable-length window. 

MUP 
morphological 

features, 

Single linkage 
Minimum distance-

based template 
matching 

–– Yes 

McGill  et al. 
(EMGLAB) 
[45], [49], [50], 
[75] 
 

Signal dependent threshold 
for MUP amplitude, fixed-
length window. 

Discrete Fourier 
transform 

coefficients 

 

–– 

 

Template matching 

Passively 
 

Yes 

Stashuk  and 
De Bruin[62] 

User defined and signal 
dependent threshold for 
MUP amplitude, or fixed 
MUP slope and amplitude 
criteria, fixed-length window 

Power spectrum 
coefficients 

Initial 
information is 
provided by 

the user 

Minimum distance Actively No 

Haas and 
Meyer [116], 
[117] 

Threshold for mean slope of 
the MUPs, variable -length 
window. 

Time samples+ 
MUP 

morphological 
features 

Single linkage –– –– Yes 

Loudon et 
al.[65] 

Signal dependent threshold 
for MUP amplitude, fixed-
length window. 

MUP shape 
morphological  

features 

Minimum 
spanning tree 

–– Passively Yes 
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Table 2.1: Continued 

Investigators Segmentation Technique Features Used 
Clustering 
Algorithm 

Supervised 
Classification 

Algorithm 

MU Firing 
Patterns Used 

Actively/Passively? 

Resolve 
Superpositions? 

Stashuk et al. 
(DQEMG) [7], 
[72], [74], [146] 

Signal dependent threshold 
for MUP amplitude, or fixed 
MUP slope and amplitude 
criteria, fixed-length 
window. 

Time samples STBC Certainty-based 
classifier 

Passively during 
clustering and 
actively during 

supervised 
classification 

No 

Hassoun et 
al.[86], [87] 

Fixed-length window 
Time samples 

Artificial Neural 
Network 

Artificial Neural 
Network 

Passively No 

Stålberg et al. 
[64] * 

Fixed threshold for MUP 
amplitude and slope of the 
MUP. 

MUP shape 
morphological 

features 

–– Template matching –– No 

Nandedkar et al 
(MMA).[141] 

Signal dependent threshold  
for MUP amplitude, 
variable–length window 

Time samples –– Template matching Actively No 

Nikolic et al. 
(EMGPAD).[69], 
[147] 

Signal dependent threshold  
for MUP amplitude, 
variable–length window 

Time samples 
Minimum spanning 

tree 
–– –– Yes 

Christodoulou et 
al.[58] 

Signal dependent threshold 
for MUP amplitude, fixed-
window 

Time samples 
Self-organizing 

Neural Nets 
Minimum Euclidian 

distance 
Passively Yes 

Wellig et al.[91], 
[93], [94] Not specified 

Wavelet 
coefficients 

Single linkage –– –– No 
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Table 2.1: Continued 

Investigators Segmentation Technique Features Used 
Clustering 
Algorithm 

Supervised Classification 
Algorithm 

MU Firing 
Patterns Used 

Actively/Passively? 

Resolve 
Superpositions? 

Fang et al.[53], 
[90] 

User defend threshold for 
MUP amplitude, fixed-
window 

Wavelet 
coefficients  from 
lower frequency 

bands 

 

Nearest-neighbor 
 

–– 
Passively Yes 

Gut and 
Moschytz1[109] 

Signal dependent threshold 
for MUP amplitude, 
variable –length window 
 

Time samples Single linkage 
MAP and mathematical 

model of each AcS 
Actively Yes 

Zennaro et 
al.[59], [119], 
[120] * 

Signal dependent threshold  
for MUP, variable–length 
window 

Wavelet 
coefficients 
from lower 

frequency bands 

Minimum spanning 
tree 

–– Passively No 

Yamada et 
al.[95]  

Not specified 
PCA of wavelet 

coefficients 
Complete linkage –– –– No 

Koch and 
Loeliger [110], 
[111], [148] 

Not specified Time samples –– 

Belief propagation and  
mathematical 

model of each AcS 
Actively Yes 

Katsis et al.[66], 
[67], [118] 

Signal dependent threshold 
for MUP amplitude, fixed-
length window 

Time samples Fuzzy c-means –– –– Yes 

Ren  et al. 
[54-56] 

Signal dependent threshold  
for MUP amplitude, variable 
-length window 

Wavelet  
coefficients 

Minimum 

spanning tree 

Minimum distance 
classifier 

–– No 

Florestal et 
al.[70], [97], 
[137] 

Signal dependent threshold  
for MUP, variable–length 
window 

Symbolic features Not specified Template matching Passively Yes 
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Table 2.1: Continued 

Investigators Segmentation Technique Features Used 
Clustering 
Algorithm 

Supervised Classification 
Algorithm 

MU Firing 
Patterns Used 

Actively/Passively? 

Resolve 
Superpositions? 

Rasheed et 
al.[27], [76-80], 
[88], [89], [125] 

Signal dependent threshold 
for MUP  amplitude,    
fixed-length window 

Time samples and  
wavelet coefficients 

STBC 

Adaptive Fuzzy     k-NN, 
adaptive certainty based, 

Adaptive matched template 
filter classifiers multi 

classifiers 

Actively No 

Nawab et al. ( 
PD-II)[25], [122-
124]*  
 

Signal dependent threshold 
for MUP amplitude, 
Variable-length window 

Time samples –– 
MAP-based template 

matching  
Actively Yes 

Erim and 
Winsean*[68]  

User defined and signal 
dependent threshold for 
MUP amplitude, 
variable-length window 

Time samples K-means Fuzzy Inference System Actively Yes 

Ge et al. [60] 
Signal dependent threshold  
for MUP amplitude, 
variable-length window 

Discrete Fourier 
transform 

coefficients of 
MUPs 

Not specified 
MAPC  and a 
mathematical 

model of each AcS 
Actively Yes 
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Quantitative evaluation of a decomposition system is based on the accuracy, extent, and speed with 

which it can decompose an EMG signal. Accuracy is the percentage of correctly assigned MUPs. Extent 

refers to the number of assigned MUPs represented as a percentage of the number of detected MUPs. 

Speed refers to the processing time, which includes the time required for decomposing the acquired signal 

and also measuring MUPT parameters. Accuracy is the most important metric when evaluating a 

decomposition system, but the weight of the other two criteria depends on the area of application. For 

clinical applications, accuracy and speed are most important. While for research applications, accuracy 

and extent may be more important than the speed. Up to now three methods have been proposed to 

estimate the accuracy of an EMG signal decomposition system [19], [145], [149], [150]: i) using 

simulated signals of known compositions as a reference; ii) using real signals decomposed manually as a 

reference; iii) decomposing two EMG signals detected from two locations in a muscle during the same 

contraction and comparing results obtained thereafter. Following are the implications of these three 

evaluation methods: 

i) Using simulated data for evaluation of an algorithm is relatively straightforward. It is similar to 

estimating the accuracy of a supervised classifier, in which a dataset with known labels are 

classified and then the results are compared with the known labels. In the present context, the 

dataset is a set of simulated EMG signals of known composition. To estimate the accuracy of a 

decomposition algorithm, these signals are decomposed by the algorithm and the resultant 

MUPTs are compared with the original MUPTs. This method may provide an inaccurate 

assessment of performance because all of the factors that affect decomposition accuracy cannot 

be included in simulated data. Many EMG signal simulators have been developed [151-153], 

but none of them include all variables that fully define an EMG signal. For example, detection 

surface movement which causes MUP shape non-stationarity has a significant effect on 

decomposition results, but it has not been included in the EMG simulators developed so far. 

Moreover, the mean and standard deviation of IDIs may change during the recording of a real 

EMG signal while it is assumed constant during simulation. Therefore, an EMG signal 

decomposition algorithm may perform well when applied to simulated EMG signals, but have 

poorer performance when applied to real signals.  

ii) Using real data is analogous to using simulated data, but here the reference is being provided 

from real EMG signals decomposed manually. This technique is more practical than using 
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simulated data, but can only be executed for EMG signals detected during low-level 

contractions with good SNR. An algorithm may successfully decompose such simple EMG 

signals, but may fail to perform as well on more complex signals [149]. Moreover, the resulting 

MUPTs provided by manual decomposition depend on the similarity/dissimilarity of the MUPT 

templates, background noise, and operator skills [26]. Different decomposition results may be 

created by different operators, especially if MUs fire irregularly or MUPs of different MUs are 

relatively similar in shape.  

iii) The simultaneously-but differently detected EMG signals technique (also known as cross-

checking) [145] is currently the best method to evaluate the accuracy of an EMG signal 

decomposition algorithm. Two indwelling electrodes are placed lengthwise along the muscle 

fibres so that they detect the activity of the same pool of MUs as much as possible. Each 

detected signal is decomposed individually and then the results are compared. Usually, the time 

occurrences of all the MUPs of each MUPT common to both signals are compared. This 

approach is more realistic than the other two methods, but it needs a special electrode 

configuration and at least two channels of data acquisition. Precisely positioning the electrodes, 

if two distinct electrodes are used, is also another issue. As one electrode is positioned farther 

away from the other, it is obvious that the detected signals will be less likely to represent the 

activity of the same MUs. Moreover, it is not guaranteed that all of the MUPTs obtained by 

decomposing the two detected signals are valid. Therefore, before comparing the two 

decomposition results, qualitative validity of the resulting MUPTs needs to be confirmed.  

Qualitative evaluation of an EMG signal decomposition does not depend on the decomposition 

algorithm and the signal used. Moreover, it is useful for detecting invalid MUPTs and excluding them 

from further analysis. However, it cannot be used for comparing two or more decomposition systems, or 

for studying the accuracy of a decomposition algorithm as a function of signal parameters such as its 

decomposability and complexity. Qualitative evaluation of a decomposition result depends on operator 

experience and skill.  In addition, it is time consuming and hence cannot be practically completed in a 

busy clinical environment. To overcome the last two issues, methods needs to be developed to estimate 

validity of a given MUPT automatically.  

Quantitative evaluation of the results of an EMG signal decomposition provide performance indices 

regarding the accuracy of a given algorithm in decomposing an EMG signal. Therefore, they can be used 

for comparing different decomposition systems and for exploring decomposition accuracy as a function 
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of signal parameters. However, high decomposition accuracy estimated using the three existing methods 

does not guarantee that the algorithm will work well for all detected EMG signals. Therefore, before 

using decomposition results for either clinical or research purposes, the validity of the extracted MUPTs 

need to be assessed both qualitatively and quantitatively.   

2.6 Summary 

EMG signal decomposition is the process by which a composite EMG signal is resolved into its 

constituent MUPTs. The basic concepts about the composition of an EMG signal have been presented. 

Further, the procedures for intramuscular EMG signal decomposition are outlined along with their 

advantages and disadvantages. Methods for extracting important MUP shape and MU firing pattern 

information from the MUPTs extracted from a composite EMG signal by a decomposition algorithm have 

also been described. Such information is used for research and clinical studies based on EMG signal 

decompositions. For a review of clinical QEMG methods that are greatly facilitated by EMG signal 

decomposition see Farkas et al. [8]. Finally, qualitative and quantitative methods for evaluating EMG 

signal decompositions have been reviewed.  

EMG signal decomposition has been studied for many years. Several existing signal processing and 

pattern recognition techniques have been used to improve the decomposition accuracy of EMG signals 

detected using intramuscular electrodes. However, the performance of these methods still depends on user 

defined parameters and the complexity of the signal being decomposed. Performance therefore, can be 

improved and/or stabilized if these parameters are tuned based on both the characteristics of the signal 

being decomposed and the validity of the information extracted in previous steps/iterations of the 

decomposition. For this purpose, knowledge-based signal processing and pattern recognition methods 

should be integrated into the decomposition algorithms. Finally, methods need to be developed for 

estimating the decomposition accuracy of a decomposition algorithm applied to any given EMG signal. 
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Chapter 3 

Problem Formulation 

3.1 Introduction 

The first and most critical step in the quantitative analysis of MUPTs is assessing the validity of these 

trains because as in other pattern recognition problems errors may happen during their creation. 

Depending on the complexity of the signal being decomposed as well as the parameters and criteria used 

by a decomposition algorithm, to either assign a MUP to a train or to merge or split trains, different 

classes of MUPTs may be obtained. This chapter discusses these classes in details. The features of each 

class of MUPT that can be used to distinguish one class from the others will be discussed as well. These 

features will be used in the next chapters to developed automatic methods to determine the class label of a 

MUPT. 

3.2 MUPT Classes 

MUPTs extracted during EMG signal decomposition can be categorized by the types and numbers of 

errors made during their creation. In general, four classes of MUPTs can be defined: single, merged, 

contaminated, and incomplete. Following are a detailed discussion of these MUPTs. 

A single, or valid, train represents the firings of a single MU with an acceptable (low) number of FCEs. 

A merged train results when two or more trains, each of which represent the activity of a single MU, are 

placed together in the same train. A contaminated train is a single train that contains a high number of 

FCEs. FCEs are due to the fact that the exact shape of the MUP template of a MUPT and MU firing 

pattern statistics are not known. Therefore, when MUPs created by two or more MUs are similar they 

may be assigned to the wrong MUPTs. Finally, an incomplete train contains a high number of MCEs. 
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Incomplete trains are created due to unresolved superimposed MUPs, insufficient knowledge about the 

exact shape of the MUP template of a MUPT and its MU firing pattern statistics. The percentage of FCEs 

relative to the total number of MUPs in a train is called the FCE rate. The percentage of MCEs relative to 

the expected number of MUPs in a train is defined as the MCE rate.  

Our own experience reveals that the MUP template and firing pattern of a single MUPT with a FCE 

rate <5% can be suitably estimated using the median-trimmed-mean [143] and the EFE [140] algorithms. 

Therefore, in this thesis FCE rates ≤5% and >5% were respectively considered acceptable and 

unacceptable.   

In general, merged MUPTs and contaminated MUPTs are considered as invalid MUPTs and must be 

detected and excluded from further analysis of MUPTs obtained from decomposition of an EMG signal 

because invalid information extracted from invalid MUPTs may contribute to either clinical or scientific 

misstatements when used clinically or for physiological investigation. Moreover, identifying invalid 

MUPTs and then correcting them during EMG signal decomposition can improve decomposition 

accuracy. 

To emphasize the importance of validity of a MUPT, an example is provided in Figure 3.1. The first 

two rows show two valid MUPTs and their MUP templates and MU firing patterns. The third row shows 

the same data for an invalid train. These valid trains were obtained from decomposing a simulated EMG 

signal into its constituent MUPTs using the DQEMG program [7]. The invalid train was created by 

merging these two valid MUPTs. As shown in the third column, the instantaneous MU firing rate versus 

time plots for the invalid train provides a confused representation of the firing rates of a MU. The invalid 

MUPT has higher firing rate variability than the two valid trains shown here. The mean firing rate for this 

train is 21.1 Hz while that for the two valid MUPTs shown in the first two rows are around 10 Hz. 

Moreover, the MUP template of this invalid train has lower area than the templates of the valid trains 

shown in this figure. Clearly, such invalid trains must be excluded when using the EMG signal 

decomposition results because the invalid information extracted from these trains may contribute to either 

clinical or scientific misstatements when used clinically or for physiological investigation. Therefore, the 

most critical step in the quantitative analysis of MUPTs, obtained using either a manual or automatic 

EMG signal decomposition process, is assessing their validity. 

Several characteristics of merged, contaminated, and incomplete trains differ from that of single trains. 

Often the variability (inconsistency) of MUP shape and possibly the variability of MU firing patterns of 

merged trains are higher than that of single trains [49], [50], [75], [88], [154]. Figure 3.2, which  shows a  
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close-up of the shimmer plots for the MUPs of the valid and invalid MUPTs given in Figure 3.1 supports 

the statement that the shapes of MUPs assigned to a single MUPT are consistent while that of the merged 

(invalid) train are inconsistent. As shown, overall the MUPs of the valid MUPT are homogeneous in 

shape, but that of the merged MUPT have distinct shapes in the regions specified. Consequently, the 

within train MUP shape variability of the merged train shown in Figure 3.2 is 1.5 unit higher than that of 

the presented single train. The within train variability here is the mean squared distances between MUPs 

of the given train and its MUP template. 

 

Figure 3.1: (top two rows) Two valid MUPTs, their MUP templates (second column) and firing 

patterns (third column). Bottom row an invalid MUPT, its MUP template and MU firing pattern. It is 

clear that the invalid MUPT has higher MUP shape and MU firing rate variability than the two valid 

trains. In addition, the MUP template of the invalid train has a higher number of phases and turns than 

those of the valid trains shown. 
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                   Horz: 0.5 ms/div   Vert: 0.5 (V/S)/div 

Figure 3.2: The shimmer plots of the MUPs of the first valid MUPT (top row) and invalid MUPT 

(bottom row) presented in Figure 3.1. The circles on the plot for the invalid MUPT identify the two 

regions in which the shapes of the MUPs are inconsistent.   
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MU firing patterns of merged MUPTs also differ from those of single trains. The MU firing pattern of a 

MUPT is, in general, represented by the intervals between consecutive MUP occurrences (i.e., by its 

IDIs). Let 5�,5D,…, 5I  be the occurrence times of the N MUPs assigned to a MUPT, the corresponding 

IDIs are JKJ�, JKJD ,…, JKJIL� where JKJ� = 5�M� − 5� and  5�M� > 5� . The MU discharges corresponding 

to a single MUPT occur at regular intervals and in general, have a Gaussian-shaped IDI histogram while 

for a merged MUPT the IDIs have large variations and will not have a Gaussian-shaped IDI histogram 

(see Figure 3.3). Generally, merged MUPTs have a much lower mean relative to the mean IDI of single 

valid trains because invalid trains include more short IDIs than valid trains. Finally, merged trains have 

higher MU firing rate variability than valid trains (Figure 3.1). 

For contaminated trains, their within train MUP shape variability may or may not be higher than that of 

single (valid) MUPTs, but their MU firing rate and IDI variability will be. Specifically, the IDI 

distribution of contaminated MUPTs will not be symmetric around the mean because FCEs cause the 

number of shortened IDIs in a train to increase. As shown in Figure 3.4, the IDI distributions of the two 

contaminated MUPTs presented are skewed to the left. The percentage of short IDIs in contaminated 

 

Figure 3.3: Examples of IDI distributions of a single train (top row) compared to that of merged trains 

(middle and bottom rows). As can be seen, the number of short IDIs in the merged trains are higher 

than that in the single train, consequently the IDI distributions of merged trains are left-skewed and do 

not follow a Gaussian distribution. 
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MUPTs are, in general, higher than that in valid trains. The MU firing pattern variability of contaminated 

MUPTs may be higher than that of valid trains. For an example of a contaminated MUPT created by 

DQEMG applied to a real EMG signal, see MUPT# 3 in Figure 2.6. In this example, we can see that the 

FR–MCD (see Chapter 4), which presents the variability of the firing rate over time, for this invalid train 

is higher than that for the two first valid MUPTs.  

As FCE rate in a contaminated train increases the percentage of short IDI in the train increase and 

ultimately causing the skewness of the IDI distribution to increase; comparing the examples shown in 

Figure 3.3 for three different FCE rates (0%, 2.5%, and 12.5%) supports this claim.  

For incomplete MUPTs, the within train MUP shape variability is smaller than or equal to that of valid 

MUPTs, but the IDI distributions of the incomplete MUPTs are skewed to the right because the missing 

MUPs introduce long intervals between consecutive MUPs. Two examples of the effects of relatively 

 

Figure 3.4: Effect of FCE on the IDI distribution of a MUPT. The IDI distribution of a correctly 

decomposed train (top row); a single train, i.e. one with acceptable (2.5%) FCE (middle row); a 

contaminated train, i.e. one with unacceptable (12.5%) FCE  (bottom row). As shown, both the single 

and contaminated trains have some short IDIs and  they also each has a  left-skewed IDI distribution, 

but the left tail area of the IDI distribution of the contaminated train is greater than that of the correctly 

decomposed train and the single train. 
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small and large MCE rates on IDI histograms are presented in Figure 3.5. As shown, the MCEs skew the 

IDI distribution to the right. 

McGill [49] shows that the IDI distribution of a MUPT contaminated by some MCEs follows a multi-

modal Gaussian model as 

Ô�*� = , OQ
R

@%� �1 − OQ�@L�O�@��*� (3.1) 

where TQ is the detection probability (MCE rate=1-TQ) and ),()( 2)(
σµτ nnNP

n
≅ , U  and V are the mean 

and standard deviation of  the IDIs, respectively. Based on this model, when the detection probability 

decreases the major peak will decrease and the height of the other peaks (one at each multiple of  U) will 

 

Figure 3.5: Effect of MCE on the IDI distribution. The IDI distribution of a full train (i.e., MCE rate 

= 0%) (top row); a train with MCE rate  = 20% (middle row); a train with MCE rate = 50% (bottom 

row). It can be seen that MCEs skew the IDI distributions to the right. As MCE rate increases, the 

number of long IDIs in a train increases and ultimately the skewness (to the right) of the IDI 

distribution increases.  
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decrease (see Figure 3.6). High levels of MCE make the measurement of MU firing pattern statistics and 

the MUP template for each active MU unreliable, because the sample size is small.  

3.3   Validating a MUPT 

In general, validating a MUPT is a process of determining whether a given MUPT accurately represents 

the activity of a single MU or not. The validity of a MUPT can be defined using two different criteria: 

MU firing pattern validity, and MUP shape validity. MU firing pattern validity of a MUPT is determined 

by assessing its IDI histogram (density function) and the instantaneous firing rate of the corresponding 

 

Figure 3.6: The effect of MCE on the IDI density distribution of a MUPT (with mean IDI =100ms) 

based on the McGill model (i.e. Equation 3.1). As shown, when MCE rate increases, the major peak 

of the IDI distribution (i.e. peak at mean of IDIs) will decrease and the height of the other peaks 

(appeared at each multiple of mean of IDIs) will increase. 
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MU versus time. The goal is to assess whether a given MUPT represents the firings of a single MU or the 

merged activity of more than one MU. If the firing pattern of the train represents the firings of a single 

MU, a further analysis is required to investigate whether the estimated level of FCEs in this train are 

acceptable or not. As discussed in the previous section, the MU discharges corresponding to a valid 

MUPT occur at regular intervals and in general, have a Gaussian-shaped IDI histogram while for merged 

and contaminated MUPTs the IDIs have large variations and will not have a Gaussian-shaped IDI 

histogram. Even though some researchers have demonstrated that the IDI distribution of a MU cannot 

actually be Gaussian [155], [156], for MUPTs of MUs that are consistently recruited, the Gaussian 

density is an appropriate approximation [7], [49], [50], [75], [88], [157-159]. If an extracted MUPT 

represents the firing of a single MU and has suitably low levels of classification errors, it has MU firing 

pattern validity. As an example, all three MUPTs shown in Figure 1.1 have MU firing pattern validity. 

To determine MUP shape validity, a given train is assessed using the shapes of the MUPs assigned to 

this train. Assuming the MUPs generated by a single MU are homogeneous in shape, the MUPT under 

study can be assumed to have MUP-shape validity when its MUPs have consistent shapes. As an 

example, all three MUPTs shown in Figure 1.1 have MUP-shape validity. 

 Finally, a train can be considered valid based on a combination of its MU firing pattern and MUP 

shape validity. For example, all three MUPTs shown in Figure 1.1 and the first and second MUPTs 

presented in Figure 2.6 have both MU firing pattern and MUP shape validity. 

To date, MUPT validation in conducted qualitatively by an expert operator. The MUP shape validity of 

a MUPT is assessed by an expert using raster/shimmer plots of its assigned MUPs [1], [19-21], [26], [32]. 

MU firing pattern validity of a MUPT is determined by viewing and qualitative evaluation of its IDI 

histogram and the plots of the firing rate as a function of time. The accuracy of such qualitative MUPT 

evaluations, as with other methods that need operator supervision, depends on operator experience and 

skill. In addition, such evaluations are time consuming and cannot be practically completed in a busy 

clinical environment. More importantly, manual MUPT validation methods cannot assist with improving 

the performance of automatic EMG signal decomposition algorithms. To overcome these issues, methods 

need to be developed to automatically estimate the validity of a given MUPT. 

McGill and Marateb [160] developed a rigorous statistical method for assessing the validity of MUPTs 

extracted by decomposing an EMG signal. The evaluation results are promising, but due to the 

computational complexity of the procedures used in this method, the algorithm is only efficient for 

assessing the decomposition accuracy of 5–second–long, low-complexity signals composed of at most 6 
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MUPTs. In addition, full decomposition in required in this method. Therefore, this method neither can be 

used during decomposing nor in busy clinical environment. 

This thesis presents several automatic and fast methods to estimate the overall validity of a MUPT. The 

objective of developing such methods was to: 1) facilitate the use of intramuscular EMG signal 

decomposition results for clinical applications of quantitative electromyography by providing the overall 

validity of MUPTs and excluding or highlighting invalid MUPTs; 2) assist with improving the accuracy 

and completeness of decomposition results.  Using the characteristics of the IDI distribution, MU firing 

patterns, and within train MUP shape variability  of merged, contaminated and single MUPTs discussed 

in the previous section several methods based on a combination of feature extraction, cluster validation 

techniques, supervised classification algorithms, and multiple classifier fusion techniques was developed, 

details are presented in the next four chapters. 

3.4 Summary 

The MUPTs obtained by decomposing a given EMG signal may accurately represent the activity of a MU 

(i.e., is valid) or may not (i.e., is invalid). Invalid MUPTs must be detected and either corrected or 

excluded before using the obtained MUPTs for QEMG because the information provided by invalid 

MUPTs could improperly suggest an abnormal muscle when interpreted clinically or it may contribute to 

scientific misstatements. Fortunately, some characteristics of invalid trains (merged and contaminated 

trains) differ from those of valid trains such that these characteristics can be used to automatically 

highlight and correct merged and contaminated MUPTs. The next four chapters present several methods 

developed for this purpose.  
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Chapter 4 

Validating MUPTs using MU Firing Pattern 

Information 

4.1 Introduction 

As discussed in the previous chapter, the IDI characteristics and MU firing patterns of single trains differ 

from those of merged trains (see Figures 3.1 and 3.3). These facts motivate the development of 

supervised classifiers that use features of the IDIs and MU firing pattern of a MUPT to classify the 

MUPT.  

This chapter presents a firing pattern validity classifier (FPVC) that determines whether a MUPT 

represents the firings of a single MU or the merged activity of more than one MU. The MU firing pattern 

of a given MUPT are represented by nine features and assessed using a supervised classifier. The 

classifier used was trained using simulated data and tested using simulated and real data. The accuracy of 

the FPVC in categorizing a train correctly is 99% and 96% for simulated and real data, respectively. 

Detailed definitions and calculation methods for the features used, the composition of the classifiers 

employed, how these classifiers were trained, and the evaluation of their performances using both 

simulated and real data are presented in detail.  

4.2  Discriminative Features 

Using the occurrence times of the N MUPs assigned to a MUPT, the corresponding IDIs are calculated 

and then are represented by nine features for classification. Features were selected based on their ability 

to discriminate between single or merged trains even for incomplete trains (i.e., MUPTs with high MCE 
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rate). In calculating these features, the mean (µ) and standard deviation ( V) of the IDIs of the given 

MUPT were estimated using the error-filtering algorithm (EFE) presented by Stashuk and Qu [140].  

In the EFE algorithm, through adjusting low and high boundaries in the IDI histogram, the IDI 

distribution is divided into three regions such that the second region, which contributes to the main peak 

in the histogram, contains valid IDIs and the two other regions contain erroneous IDIs caused by FCEs 

and MCEs. The IDIs which lie in the second region are considered for estimating the mean and standard 

deviation of the IDIs of the considered MUPT. If the algorithm is able to find such a region in the 

histogram of the IDIs of a given MUPT, the train is called full. Otherwise, the train is called sparse. When 

the MCE rate is high, causing the number of MUPs in a train to be small, the MUPT will usually be 

sparse.  

Following is a description of each feature used in developing the FPVC. 

(1) CV (coefficient of variation): CV = µσ . 

(2) CVL (lower CV): CVL = µσ
L  where Lσ is the standard deviation of the IDI distribution of the 

MUPT calculated using only those IDIs with values below µ . 

(3) CVL/CVU (the ratio of lower and upper CV): CVU = µσ
U

 where 
U

σ  is the standard deviation of the 

IDI distribution of the MUPT calculated using only those IDIs with values between µ  and σµ 2+ .  

(4) PI (percentage of inconsistent IDIs): The PI for the IDIs of a MUPT is calculated by dividing the 

number of inconsistent IDIs by the total number of IDIs. An IDI is defined to be inconsistent with the 

firing behavior of a single MU if it is less than 25 ms, in a train for which µ  cannot be estimated, or 

if it is less than max(15ms, *2σµ − ); where *σ  is the standard deviation of the IDI distribution of the 

MUPT calculated using only those IDIs with values between µ  and σµ 4.2+ .  

(5) LIDIR (lower IDI ratio): The LIDIR is the number of IDIs having values less than 0.5 µ , relative to the 

number of IDIs less than µ . 

(6) 1r  (first coefficient of serial correlation): The coefficients of serial correlation for an IDI train are 

defined as [161]: 
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The first coefficient of serial correlation, 1r , indicates cases where residuals ( µ−
i

IDI ) from adjacent 

elements in a train are not independent. To decrease the effect of very long IDIs, caused by MCEs, on 

the calculated value of 1r , only IDIs less than  µ9.1  are used for estimating 1r .  

(7) Skewness: is a measure of the symmetry of a distribution. By definition, a distribution is skewed if 

one of its tails is longer than the other. Skewness of an IDI distribution is defined as: 

3
1

3)(

σ

µ

N

IDI
Skewness

N

i
i∑

=

−

=  (4.2) 

As when calculating 1r , only IDIs less than µ9.1  are used for estimating skewness. 

(8) ID rate: identification rate (i.e. the probability of detection) is inversely related to the MCE rate of a 

train and is defined as: 

IntervalFiring
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 (4.3) 

(9) IDI–MCD: mean consecutive difference of IDIs measures the average variability of consecutive IDIs. 

The sum of the absolute differences of consecutive IDIs is calculated and then divided by the number 

of IDIs used as follows[162]  
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Again, to decrease the effect of very long IDIs caused by MCEs, only IDIs less than σµ 3+  are used 

for this calculation.  

(10) FR–MCD: firing rate mean consecutive difference measures the variability in firing rate over time. 

An instantaneous firing rate (IFR) for each MUP occurrence in a MUPT was calculated by smoothing 

the firing rate with an 11- point Hamming window. Denoting IFRi as the estimated instantaneous 

firing rate at ti (the occurrence time of the ith MUP), the FR–MCD value for a given MUPT with N 

MUPs is estimated as  
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For the same reason mentioned above, IDIs greater than σµ 3+  are excluded from this calculation. 

4.3 Classification Methods 

Three classification methods were examined: Fisher discriminate analysis [105], [163], Pattern Discovery 

[164], [165], and Support Vector Machines [166], [167]. These classification methods are discussed 

briefly below. 

Fisher discriminate analysis (FDA) [105], [163] is a very simple and powerful method for either linear 

supervised dimensionality reduction or linear classification. It is also very easy and computationally 

cheap to implement, especially after training.  

Pattern Discovery (PD) [164], [165] is an associative rule-based classification method. Patterns 

discovered in training data and present in a feature vector to be classified are combined using information 

theory metrics for classification. A detailed description of how this methodology can be used for 

classification is provided by Hamilton-Wright et al. [168]. In this work, continuous data were quantized 

into 10 discrete bins per feature, and a confidence interval of 90% was used. 

Support Vector Machines (SVMs): The foundations of SVMs were developed by Vapnik  [166], [167].  

A SVM is basically a linear classifier that formulates a hyperplane to optimally separate the two classes 

under study. The optimal decision surface is constructed by maximizing the distance to the nearest 

members of the classes (i.e., maximizing the margin). A SVM minimizes an upper bound on the 

generalization error while conventional learning algorithms (e.g., neural networks) minimize the error on 

the training data [166], [167]. In fact, this feature of a SVM makes it superior to conventional learning 

algorithms. For cases where the classes are not linearly separable, a kernel is applied to map the original 

feature space into a much higher feature space presumably making the separation linear in the new space. 

In this work, a Gaussian radial basis function of the following form was used as the kernel function. 

Κ�X, XY� = ZL[\]L]^\_
 (4.6) 

where x is an input data point to the SVM, x' is the center of the kernel and ` is the width of the kernel 

and specified a priori by the user.  
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In training a SVM, in addition to ` there is another parameter which has to be selected by the user, the 

cost parameter, a. This parameter, which is also known as the regularization parameter, controls the 

tradeoff between allowing training errors and the complexity of the machine. For the objectives of this 

work, ` and a were determined experimentally using cross validation [169]. 

In addition to these three classification methods a Switching classifier, which based on some measure 

of the input pattern switches between using the FDA and SVM classification methods, was developed. 

The motivation of developing a switching classifier is to take the advantage of both the speed of FDA and 

the accuracy of SVMs and therefore increase classification speed while maintaining classification 

accuracy. The idea is the same as used in multi-classifier techniques, but the difference is that here only 

one classifier (either an SVM or an FDA classifier) is used to find the label of the given example. In 

Sections 4.5 and 4.6 it is shown using simulated data that an SVM classifier is more accurate but slower 

than an FDA classifier. Therefore, the density function of the transformed features in the Fisher space was 

assessed to determine the region for each class for which the FDA classifier has 100% accuracy. In 

classifying a given MUPT using the Switching classifier, if the transformed features fall in one of these 

two regions the label given by the FDA classifier is used, otherwise the sample is classified using the 

SVM.  

4.4 Evaluation Methodology 

Classifiers, based on the methods discussed in Section 4.3, were trained using simulated data and tested 

using both simulated and real MU firing patterns. 

For simulated data, trains of 75 IDIs, which on average correspond to EMG signals of 7.5s duration, 

were initially and independently generated using Gaussian distributions with mean IDI of 80, 90, 100, 

110, or 120 ms and CV ranging from 10% to 30%, respectively. There were 20 replicates for each (mean 

and CV) set of values generated. Up to 5% FCE and from 0% to 70% MCE (in steps of 10%) was added 

to the single trains.  Each possible pair of the generated trains (different mean, CV, false and missed 

classification rate) was then merged. On the whole, 90,000 valid trains and 90,000 invalid (merged) trains 

were generated.  

For real data, EMG signals provided by M. Nikolic of Rigshospitalet, Copenhagen, Denmark [170] 

were used. These signals, which were detected from normal, myopathic and neurogenic individuals using 

a standard concentric needle electrode during constant low level voluntary contractions, were decomposed 

using DQEMG algorithms [7]. The resulting MUPTs were assessed manually to classify MUPTs as 
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single (with consistent MUP shapes and MU firing pattern) or merged. The single MUPTs were 

contaminated by adding up to 5% FCE and up to 70% MCE in steps of 10%. To generate merged 

(invalid) MUPTs, each pair of single MUPTs was merged. In total 5,055 single trains and 73,742 invalid 

trains were generated. This real MUPT data set was then divided into ten subsets each of which contained 

506 valid and 7,375 invalid trains, respectively. 

Considering the reference MUPTs as the gold standard data, the performance of the developed MUPT 

validation system was evaluated in terms of correctly classifying valid and invalid trains.  Three accuracy 

indices were defined for this purpose: accuracy for valid trains (AV), accuracy for invalid trains (AIV), total 

accuracy (AT). These three indices are given by: 

A�% = cdefZ� gh �ij+k lmTn� og��Zo5jp oji��+h+Zkng5ij )defZ� gh �ij+k lmTn� 5Z�5Zk × 100 
(4.6) 

A��% = cdefZ� gh +)�ij+k lmTn� og��Zo5jp oji��+h+Zkng5ij )defZ� gh +)�ij+k lmTn� 5Z�5Zk × 100 (4.7) 

A� % = cdefZ� gh  lmTn� og��Zo5jp oji��+h+Zkng5ij )defZ� gh  lmTn� 5Z�5Zk × 100 (4.8) 

4.5 Results 

The classification performances of the developed MUPT classifier for both simulated and real data are 

summarized in Tables 4.1 and 4.2, respectively. Each table presents the estimated means and standard 

deviations of the three performance indices A�, A��, and A�. The numbers presented in Table 4.1 were 

obtained by running a 10–fold cross validation on the simulated data set used. The values presented in 

Table 4.2 for the real data were obtained by evaluating the classifiers trained using the entire simulated 

data on the 10 different subsets of the real MUPT data discussed in Section 4.4. The statistical 

comparison of the methods was conducted using the analysis of variance (ANOVA), at a 5% significance 

level and the Tukey-Kramer honestly significant difference test for pair-wise comparison of the mean 

values.  

Each table summarizes the accuracy of the studied classifiers for the three ranges of MCE rates studied. 

The 0% to 70% range represents the expected levels of MCE rate in trains during the final iterations of 

EMG signal decomposition or once it is completed, while the 50% to 70% or 60% to 70% ranges model 
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the early stages of decomposition when the extracted MUPTs are sparse. The aim of using these ranges 

was to study the effectiveness of these classifiers at difference stages of EMG signal decomposition.  

4.6 Discussion 

According to the results shown in Table 4.1, the overall average accuracy of the classifiers studied as a 

FPVC is greater than 95% on average. For the data with 0% to 70% MCE rate, which is the general case 

in EMG signal decomposition, the SVM has an average accuracy of 99.5%, Switching 99.5%, FDA 

99.0%, and PD 99.2%, respectively. Of these four classifiers, the SVM and Switching classifiers are the 

best performers. The accuracy of the FDA classifier is compatible with the SVM and Switching classifier, 

but the classification error for this classifier for single trains is higher which causes MUPT duplication 

during EMG signal decomposition. Based on these results and considering the runtime of the FDA 

classifier, this classifier may be preferred to the other classifiers studied for FPVC; nevertheless, the SVM 

and Switching classifiers have the highest accuracy (i.e., lowest error rates) and the Switching classifier is 

fast enough to be used both during EMG signal decomposition and once the decomposition is completed. 

The Switching classifier, with an average computation time of 7.7 ms per train, was 8 times faster than 

the SVM but 5 times slower than the FDA classifier. The processing was carried out in Matlab (The 

Mathworks, Natick, MA) on a computer with an Intel Core 2 Duo E8400 CPU (6M Cache, 3.00 GHz 

clock, 1333 MHz FSB) and 3GB of RAM.  

The classifier performance using the real data, shown in Table 4.2, was consistent with that obtained 

using the simulated data because the IDIs of the real MUs studied (diseased and normal) were for the 

most part Gaussian distributed as were the simulated IDI training values. Specifically, the results for real 

data support the claim that the Switching classifier is the best choice as a FPVC. However, compared to 

the results presented in Table 4.1, the accuracy of the classifiers for real merged trains is lower than for 

simulated merged trains. One reason for this is that the selected trains may have had some MCEs that 

occurred during decomposition. Therefore, although up to 70% MCE was added to the trains, the exact 

MCE rate may have been greater. Our experience shows that the performance of a classifier drops if the 

MCE level in a train is greater than 70%. Nevertheless, the first two columns of Table 4.2 suggest that 

overall the FDA, SVM, and Switching classifiers all have admirable performance when applied to real 

data. Therefore, by using the developed classifiers, the probability of detecting a merged train during 

evaluation of a train's firing pattern or during the final step of EMG signal decomposition is greater than 

0.98. 
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Table 4.1: The performance of the studied classifiers applied to simulated valid (single) or invalid (merged) MUPTs. In each column, individual or 

groups of methods indicated by an '*' and bolded performed significantly better than the others according to the analysis of variance (level of 

significance =5%) and the Tukey-Kramer honestly significant difference test in pair-wise comparison of the mean values. When two or more methods 

had statistically similar performance, they are all indicated by '*'.  

 Missed-Classification Error Rate 

  0% to 70%   50% to 70%  60% to 70% 

 A� (%) A�� (%) A� (%)  A� (%) A�� (%) A� (%)  A� (%) A�� (%) A� (%) 

FDA 98.8±0.1 99.2±0.1 99.0±0.1   98.1±0.1  96.5±0.1 97.3±0.1   98.0±0.2  93.9±0.4 95.9±0.2 

PD 99.3±0.1 99.1±0.1 99.2±0.1   99.1±0.1  96.1±0.2 97.7±0.1   99.2±0.1  92.7±0.3 96.0±0.1 

SVM  *99.5±0.1 *99.5±0.1 *99.5±0.1  *99.3±0.1 *97.7±0.2  *98.5±0.1  *99.4±0.1 *95.7±0.2 *97.6±0.1 

Switching  *99.6±0.1 *99.5±0.1 *99.5±0.1  *99.4±0.1 *97.7±0.2 *98.5±0.1  *99.4±0.1 *95.8±0.2 *97.6±0.1 

 

Table 4.2: The accuracy of the four studied classifiers applied to real single/merge MUPTs. As in Table 4.1, the better classifiers are identified.   

 Missed-Classification Error Rate 

  0% to 70%   50% to 70%  60% to 70% 

 A� (%) A�� (%) A� (%)  A� (%) A�� (%) A� (%)  A� (%) A�� (%) A� (%) 

FDA *99.9±0.1 *95.7±0.3 *96.0±0.2  *99.8±0.1 *93.6±0.3 *94.3±0.3    99.6±0.2  *91.6±0.5 *93.0±0.3 

PD *99.9±0.1 94.1±0.3  94.5±0.4  *99.9±0.1  90.3±0.3  91.5±0.2  *99.7±0.2  89.9±0.3 91.4±0.3 

SVM  *99.9±0.1 *95.6±0.2 *96.0±0.1  *99.9±0.1 *93.5±0.3 *94.2±0.3  *99.8±0.1 *91.7±0.3 *93.3±0.2 

Switching  *99.9±0.1 *95.6±0.2 
*95.8±0.1  *99.9±0.1 *93.5±0.2 

*94.2±0.2  *99.8±0.1 *91.5±0.4 
*92.9±0.3 
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A disadvantages of the developed FPVC is that its accuracy in detecting invalid (merged) MUPTs 

(A��) decreases as the MCE rate in the trains increases. Comparing the A�� values presented in Tables 4.1 

and 4.2 for three ranges of MCE rates supports this claim, such a trend also plotted in Figure 4.1 for the 

three classifiers evaluated for the FPVC. As shown, the A�� value for the best, the SVM, classifier 

dropped to < 60% when the MCE rate was >80%). One reason for this drop in classification accuracy is 

that the accuracy with which the MU firing pattern statistics (U and V) can be estimated and ultimately the 

estimation accuracy of the MU firing pattern features used decreases as a train becomes sparse. The EFE 

algorithm [140] that was used to estimate these two statistics works well, but for trains with high MCE or 

high CV it underestimates V and overestimates U. Therefore, for merged trains with high MCE rate the 

estimated value for CV is low and close to that of a single train while it is expected to be higher than that 

 

Figure 4.1: Accuracy of the classifiers studied for the FPVC in detecting invalid trains versus the 

MCE rate in the trains. The MCE rate represents the sparsity of the MUPT. Note: the plot for the 

Switching classifier is not given because it overlaps with that of the SVM. 
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of a single train. The other reason for the drop in A�� is that the percentage of inconsistent IDIs and FR–

MCD values for incomplete invalid trains is not as high as for full invalid trains. An example of such 

merged MUPT that was misclassified by the three classifiers studied for the FPVC is shown in Figure 4.2. 

The inconsistency of the MUP-shapes in this MUPT confirms that the train is invalid, even though it 

misclassified by the FPVC due to their high MCE rate. Therefore, both MU firing pattern information and 

MUP shape information must be used in assessing the validity of a MUPT (see Chapter 6).  

To investigate the possibility of reducing the dimension of the feature space, three different feature 

selection methods were used to rank features and to select a subset of features that maximizes the 

accuracy of the FDA classifier. Specifically, the Fisher discriminate analysis technique, in which features 

are ranked based on their separation ability between two classes, the sequential forward selection 

technique, and the sequential floating forward selection technique [171] were used. The FDA classifier 

was chosen for the feature selection consideration because it is one of the best performing classifiers and 

can be quickly trained and tested. The feature selection study, unfortunately, demonstrated that there is no 

unique subset of features that works well over the entire range of MCE rates. Furthermore, the 

effectiveness of the various features varies based on the level of MCE rate in a train.  Nonetheless, in 

general, LIDIR and CVL were the most effective features for most cases (across various rates of MCE), 

while ��was the least discriminate feature. If detecting invalid trains during the final iterations of EMG 

signal decomposition (when MCE rates in the extracted MUPTs are usually below 70%) is the objective, 

only the six features; CVL, FR–MCD, IDI–MCD, CVL/CVU, Skewness, and PI are sufficient for the 

FPVC. The aim of this work was to develop classifiers that are effective in classifying MUPTs during and 

 

Figure 4.2: An example of an invalid MUPT that was misclassified by the classifiers studied for the 

FPVC. The first column shows the shimmer plot of the assigned MUPs, the second shows the IDI 

histogram and corresponding statistics. Finally, the last columns show the discharge patterns and 

instantaneous MU firing rates.  
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after EMG signal decomposition. The classifiers should therefore be able to properly classify trains even 

when they have high MCE rates. As such, all of the features discussed in Section 4.2 were employed. 

4.7 Conclusions 

Supervised classification for automatic validation of a MUPT has been shown to correctly identify cases 

of single and merged trains. The classifier presented in this chapter, the FPVC, uses characteristics of MU 

firing patterns extracted from a given MUPT to determine whether a MUPT represents the firings of a 

single MU or the merged activity of more than one MU. Training based only on simulated firing times 

shows robust classification performance when tested on both simulated and real test data. Classifier 

construction has been shown to be best achieved through a hybrid "switching" classifier that first 

identifies the type of data and then classifies it using either the SVM algorithm or FDA, depending on 

data identification. This Switching classifier was notably better than the FDA classifier and faster than the 

SVM while as accurate as the SVM. The best-performing algorithm was significantly better than other 

algorithms studied. Considering classification speed and accuracy, the Switching classifier is the best as a 

FPVC.  

The accuracy of the developed FPVC in categorizing merged trains was very high (> 90%) for most 

cases, but it decreases as the MCE rate in trains increases which suggests the need, in some cases, for the 

combined use of MU firing pattern and MUP shape information. Nevertheless, the results suggest that 

using these classifiers will be useful as a means to improve EMG signal decomposition results, and to 

facilitate automatic validation of a MUPT.  
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Chapter 5 

Validating MUPTs using MUP Shape Information 

5.1 Introduction 

This chapter focuses on the possibility of using only MUP shape information to estimate the validity of a 

MUPT. Assuming the MUPs generated by a single MU are homogeneous in shape, the MUPT under 

study can be assumed to have MUP-shape validity when its MUPs have consistent shapes. As an 

example, the two MUPTs shown in the first two rows of Figure 3.1 have MUP–shape validity while the 

MUPT shown in the third of this figure does have MUP–shape validity. The objective of this chapter is to 

develop a robust, fast, and automated method that assesses the shape of the MUPs of a given MUPT to 

determine whether or not it accurately represent the activity of a MU or not. 

Overall, the process of EMG signal decomposition can be considered a clustering problem because 

neither the number of MUPTs (i.e., clusters) nor the labels of the MUPs are known in advance. During 

EMG signal decomposition, detected MUPs are clustered into groups called MUPTs. Therefore, the MUP 

shape validity of a MUPT extracted by a decomposition algorithm can be considered a cluster validity 

problem and the decision to be made is whether the extracted MUPT represents one cluster in terms of the 

shapes of the assigned MUPs or not.  

In this chapter, eight methods to assess the validity of an extracted MUPT using the shapes of its 

assigned MUPs were studied. The methods are based on existing cluster analysis algorithms, four are 

newly developed adaptive methods and four are existing cluster validation methods. These methods 

evaluate the shapes of the MUPs of a given MUPT to determine whether this train is valid (i.e., it 

represents the activity of a single MU) or not. The composition of these methods, their objectives and 
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how they were evaluated using both simulated and real data are presented in detail. The remainder of this 

chapter includes a summary of a group of methods proposed for determining the number of clusters in a 

data set, a discussion of MUPT validation using MUP shape information and a description of the methods 

developed for this purpose followed by Evaluation, Results and Discussion, and Conclusions sections. 

5.2 Estimating the Number of Clusters in a Data set 

Many methods have been developed to estimate the number of clusters (��) in a data set. Milligan and 

Cooper [172] and Gordon [173] provide a comprehensive survey of these methods. In general, a given 

data set first is clustered into � groups and the quality of clustering is measured using a criterion for a 

range of values of �. The best value for  �� is then estimated by identifying the value of � for which the 

criterion used is optimal. The criteria, in general, are defined based on the within-cluster dispersion (st) 

and between-cluster variability (ut) that are defined as [173]: 

 st = ∑ ∑ �v∈x<t�%� y − e���y − e��z (5.1) 

ut = , c��t
�%� e� − e��e� − e�z  (5.2) 

where y is a vector of features representing each object of the given data set, e� is the sample mean of 

the c� objects assigned to cluster a� , and e is the sample mean of the full data set. 

Most of these methods cannot be used for testing one cluster versus multiple clusters in a data set and 

hence cannot be used for assessing the validity of an extracted MUPT. Of the developed methods, only 

the gap statistic [174], prediction strength [175], jump [176], Duda and Hart [105], and Beal [173] 

methods can be applied to single-cluster problems. Therefore, these methods can be used for deciding 

whether an extracted MUPT has MUP- shape validity or not. These methods and their advantages and 

disadvantages are summarized below. 

The gap statistic [174] method estimates the number of clusters by comparing the difference (or gap) 

between st and its expected value (st#) estimated using an appropriate null reference distribution of the 

given data set. The optimal estimated number of groups is the minimum value of � which maximizes the 

gap between st and st#. Tibshirani et al. [174] proposed two methods to generate a reference data set 

for the gap statistic method. In the first method, the reference data set is sampled uniformly from the 

range of the observed values for each feature. In the second method, the reference data set is also sampled 

uniformly, but here over a box aligned with the principal components of the data. The gap statistic 
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method based on the first method is known as the gap/uni method and that based on the second method is 

known as the gap/pc method. The former is simpler than the latter but may not be as accurate because the 

latter considers the shape of the cluster in generating the reference data set and hence has a better 

estimation of st#.  

The prediction strength [175] method considers clustering as a supervised classification problem. 

Generally in a classification task to choose the best classifier for a given data set, different techniques are 

studied and then the one that has the minimum classification error for the given data set is chosen. Here, 

the clustering algorithm is run for different values of � and prediction strength (accuracy) is estimated for 

each �. The optimal estimated number of clusters is the largest � on which the prediction strength is 

maximum. To estimate the prediction strength, the data set is divided into a training and testing set and 

each set is clustered by a clustering algorithm. The testing set is also classified by the cluster centers 

given from the training set. The prediction strength is a measure of how well the cluster cores in the 

training set predict the memberships in the testing set. 

The jump method [176] applies an appropriate transformation to the curve of st  and then determines 

the largest jump in the transformed curve. The value of � associated with this jump is considered as the 

best estimate for the number of groups in the given data set. Sugar and James [176] proposed the 

following transformation for st in the jump method 

st∗ = stL} (5.3) 

where ~ is the transformation power. A typical value for ~ is k 2�  where k is the dimension of the 

feature space. Having this transformation, the jump index is given by  

�t = st∗ − stL�∗ = stL} − stL�L} ,  K=1,2,3,…, K*. (5.4) 

where s�∗ = 0 and K* is the maximum possible number of clusters in the given data set. The optimum 

number of clusters is the value of K for which �t  is maximized.  

The typical value proposed for ~ in Equation (3) does not work in general. In fact, the theoretical 

results provided by Sugar and James [176] show that  k 2�  is the best value for ~ only when the feature 

values have a multivariate independent Gaussian distribution. For feature values where this assumption is 

not valid, they suggest trying several values of  ~; however, it has been found that even a small variation 

in ~ can lead to very different results [176]. 
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The Duda and Hart (DH) method [105] tests the existence of clusters in a given data set by comparing 

its within cluster dispersion, s�, to the resulting within cluster dispersion when the data set is partitioned 

into two clusters using a clustering algorithm, sD, (These two parameters are obtained using Equation 

5.1). Assuming the feature values have a multivariate Gaussian distribution, the null hypothesis of a 

single cluster is rejected in favor of multiple clusters at an α level of significance, if  

� = − sDs� + 1 − 2�k
�2 �1 − 8��Dk���ck� �

�.� > �. 
(5.5) 

where N is the number of members in the full data set, and d is the dimension of the feature space, and � 

is defined by 6 = 100 � �√D� ZXO �− �_D � kd =R� 50 �1 − Z�h � �√D��.  (5.6) 

The Beal method [173] also assumes a multivariate Gaussian distribution for the feature values and 

rejects the null hypothesis of one cluster if  

uJ = �sD − s�sD �
��c − 1c − 2� 2D Q� − 1� > ���#�#���. (5.7) 

where the value for ���#�#��� is obtained from an �Q,�ILD�Q distribution at an α level of significance. The 

parameters N and d are as defined in Equation 5.5, and the parameter st is obtained using Equation 5.1.  

5.3 Validating a MUPT Using MUP Shape Information 

Here the goal is to assess if the MUPs of a MUPT extracted by a decomposition algorithm are 

homogeneous in terms of their shapes or not. If they are homogeneous, it is concluded that the extracted 

MUPT represents the MUPs of a single MU and the train is classified as valid; otherwise, the MUPT is 

classified as an invalid train. As discussed in the Section 5.1 above, this is a cluster validation problem 

and we need to determine whether a given MUPT represents one cluster in terms of the shapes of its 

assigned MUPs or not. MUPTs representing one cluster are considered to have MUP shape validity. The 

five methods discussed in the previous section were preliminarily evaluated for this purpose. 
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For each given MUPT, each of its MUP is represented using the 80 LPD filtered data samples centered 

about its peak value (i.e., k=80) and then the MUP shape validity of the given train was determined using 

one of the methods discussed in Section  5.2. To split the given train into two clusters, the K-means 

algorithm was used. 

The LPD filtered samples were used instead of unfiltered samples because they discriminate between 

the MUPs generated by different motor units better than the raw samples (see Figure 2.5). The 1st-order 

LPD filter [49], [50] used is, in fact, a two-point central difference algorithm [177] that acts as a 

differentiator for the lower frequencies and as a low-pass filter for higher frequencies. Given that X[)], )=1,2, ..,80 is the discrete time samples of a MUP, the LPD filtered of these time samples, p[)], are 

calculated as  

p[)] = X[) + �] − X[) − �]2 × L ×  T�  (5.8) 

where � is the skip factor and n� is the sampling interval. It is worth pointing out that a 2nd-order LPD 

filter was also evaluated for filtering the MUPs, but due to the low SNR of many of the filtered MUPs the 

accuracy obtained for classifying valid MUPTs was drastically decreased compared to the accuracy 

obtained when the MUPs are filtered using a 1st-order LPD filter. Therefore, a 1st-order LPD filter is 

preferred to a 2nd-order one.  

Preliminary tests showed that when representing MUPs using first-order discrete derivative data points, 

the Beal [173] and the DH methods [105] (each with α =0.05) do not work well in classifying valid trains 

correctly. Their accuracy for classifying a valid train correctly was only 5% while that for an invalid train 

was 99%. In contrast, when using first-order discrete derivative data points as features, the gap statistic 

[174] and jump methods [176] work much better. However, these two methods are too computationally 

complex (i.e., slow) to be used during decomposition especially for algorithms to be employed in a 

clinical environment. 

The Beal and DH methods are not accurate in classifying valid MUPTs correctly when using first-order 

discrete derivative data points as features mainly because these features are highly correlated and hence 

do not have a multivariate independent Gaussian distribution. In addition, it was discovered that both 

methods make classification errors depending on the variability of the shapes of the MUPs within a 

MUPT. For valid MUPTs with highly variable MUPs, both methods tend to conclude that the train under 

question is invalid (i.e., a false negative error). Therefore, to improve the accuracy of the Beal [173] and 
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DH methods [105]  in classifying valid MUPTs, the two issues that these methods are sensitive to (i.e., 

feature correlation and within train inherent MUP shape variability) must be resolved. 

In this work, in order to overcome these two issues and create fast and accurate methods for validating 

an extracted MUPT, new adaptive methods based on the Beal and DH methods were developed. One set 

of methods uses PCA, and the second uses gaps that exist in the shimmer plots of the MUPs assigned to 

the considered MUPT to select independent MUP features. Both sets of methods use an adaptive level of 

significance determined by the similarity of the MUPs within an extracted MUPT. Details of these 

methods are given below. 

5.3.1 Adaptive PCA-Based MUPT Validation 

These methods include three steps: 1) selecting the most effective features and estimating the effective 

dimension of the given data, 2) setting the parameter α adaptively, and 3) validating the MUPT. In the 

feature selection step, the MUPs are transformed to a new coordinate system using PCA. The first 

coordinate of this system is the principal component that accounts for the largest portion of the variance 

of the given data; the second coordinate is the principal component that accounts for the second largest 

portion of the variance of the given data and so on. By applying this transformation, the projected data is 

uncorrelated.  

The most effective features in the given data are the first   (  < 80) principal components that account 

for a specific portion, say ¡%, of the variance in the data. The value of d is the dimension of the feature 

space used to represent the MUPs of a given MUPT. The best value for the parameter ¡ was found 

empirically using simulated MUPTs (see Section 5.4 for more details). 

The value of α (i.e., the level of statistical significance) is set adaptively by first splitting a considered 

MUPT into two sub-trains using the K-means algorithm. The pseudo-correlation (PsC) between the MUP 

templates of the two sub-trains is then calculated as a measure of their similarity. Assuming �� and �D are 

80–dimensional vectors representing the templates of the resulting two sub-trains, the PsC value between 

these two templates is defined as [70]: 

T�a���, �D� = eiX ¢∑ £��,� × �D,;M� − |��,�−�D,;M�|eiX C|��,�|, |�D,;M�|F¥¦��%� ∑ eiX C|�D,�|, |�D,;M�|FD¦��%� § (5.9) 

 To mitigate the effects of sampling interval noise, when calculating PsC, t ranges from -5 to +5 

(corresponding to 0.32 ms) and the maximum value is selected. PsC has a value of "1" for two perfectly 
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matched templates and values trending towards "0" and negative values as the templates become more 

dissimilar. 

Having a PsC value, the parameter α is defined using the following empirically determined equation: 

6 = ¨0.03                     T�a ≥ 0.750.05         0.4 ≤ T�a < 0.750.1              0.3 ≤ T�a < 0.40.2                         T�a < 0.3 ® (5.10) 

The adaptive setting of α makes the algorithm less likely to reject the null hypothesis that the given 

MUPT is valid when its MUPs are very similar to each other, and more likely to reject this null 

hypothesis when the MUPs of an extracted MUPT are less similar to each other.  

Once the most effective features of the MUPs of the given train are determined, the MUPs are 

transformed into this new space and grouped into two sub-trains (clusters). Using these sub-trains, the 

parameter α is set and the given train is then validated (classified) using either the DH, or Beal criterion. 

The adaptive PCA-based MUPT validation method developed using the DH criterion is called the APDH 

method and that developed using the Beal criterion is called the APB method. 

In short, the computational steps for these two adaptive PCA-based MUPT validation methods are as 

follows: 

Step 1. Use PCA to transform the MUPs of a given MUPT into an uncorrelated space, estimate the 

effective dimension of MUPs and find the most effective MUP features. 

Split the train into two sub-trains using a K-means algorithm; calculate s� and sD using 

Equation 5.1.  

Step 2. Estimate the template of each sub-train in the original time sample feature space using the 

MUP labels obtained in Step 1. 

Step 3. Calculate the PsC between these two templates using Equation 5.9 and then determine α using 

Equation 5.10. 

Step 4. Assess the validity of the given MUPT using either the Duda and Hart or Beal  criterion. 

4.1 Using the Duda and Hart criterion [105]: if inequality 5.5 is satisfied, classify the train as 

invalid otherwise label it as valid. 

4.2 Using the Beal criterion [173]: if inequality 5.7 is satisfied, classify the given train as valid 

otherwise label it as invalid. 
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5.3.2 Adaptive Gap-Based MUPT Validation 

Similar to the PCA-based methods discussed in the previous sub-section, these methods include three 

steps: feature selection, parameter setting, and MUPT validation. The last two steps are as in the PCA-

based methods, the parameter α is set adaptively based on the similarity of the templates of the resulting 

sub-trains and either the DH [105] or the Beal criterion [173] is used for MUPT validation. However, 

here a gap-based feature selection method is used to select effective features out of the d (80) first-order 

discrete derivative data points used to represent the MUPs of a MUPT. The goal is to select samples of 

the MUPs of a MUPT that are uncorrelated and also effective for discriminating between the MUPs 

created by two different MUs. This method is based on the way a human would assess the validity of a 

MUPT using its MUP shimmer plot. A human usually visually checks the homogeneity of the MUPs 

assigned to a MUPT by inspecting the existence of any gap or obvious differences between specific MUP 

time sample values.    

The developed gap-based feature selection algorithm consists of two parts. In the first part, the 

algorithm estimates the gap values, ���, i=1, 2, .., 80, between the c MUPs assigned to a MUPT. In the 

second part, the samples with significant gap values are selected to represent these MUPs. 

To estimate the ��� values, the considered train is split into two sub-trains using a K-means algorithm 

and then their templates are calculated. Having these two templates, the raw gap value, ���#, is calculated 

as ���� = ¯��,� − �D,�¯ (5.11) 

where the 80-dimensional vectors �� and �D are defined as in Equation 5.9 above. 

The estimated raw gap values are weighted such that more attention is focused on the features for 

which the MUPs of the entire MUPT are different and less attention on those samples for which the 

MUPs do not differ from each other. For each +, the value of the weight s�� is defined based on the 

variance of the sample values (V�D� and the base line noise �°D� as follows. 

s�� = ¢max´max �����, max£k��,/¥µ , V�D >∗ °Dmax£k��,/¥ ,                        g5ℎZ�B+�Z® (5.12) 

where k��,/, j=1, 2,.., c-1 are the consecutive absolute differences between the sorted c sample values of 

the +th feature and V�D >∗ °D represents a χ2 statistics-based hypothesis test with c-1 degrees of freedom 
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at a 5% significant level. The two parameters V�D and k��,/  are computed using all of the MUPs of the 

considered MUPT. 

The idea behind this weighting is that if all the MUPs assigned to the MUPT under question are created 

by a single MU, then the variance of the +th samples of these MUPs should be close to the baseline noise 

while for those created by different MUs this variance will be greater than the baseline noise.  

Having the s�� 's, ��� is calculated as: 

��� = ¶s�� × ����   , + = 1,2, … ,80. (5.13) 

Figure 5.1(b) shows an example of the estimated gap values for an invalid MUPT that the shimmer plot 

of its MUPs is plotted in Figure 5.1(a). Each MUP is represented using its 80 first-order discrete 

derivative data points. The plot of the ��� values versus i is called a gap curve. As shown on Figure 

5.1(b), the gaps occur at the samples for which the MUPs differ from each other the most.  

Given a gap curve, the sample with maximum gap value in each active part is chosen as an effective 

feature. An active part is a segment of the gap curve with consecutive samples having gap values greater 

than the baseline noise. For example, the gap curve shown in Figure 5.1(b) includes four active parts. The 

first active part consists of samples 7 to 27, the second consists of samples 29 to 41, the third consists of 

samples 43 to 69, and the fourth consists of samples 71 to 74.  In fact, each active part represents a range 

of time sample indices in which the time sample values of the MUPs of the MUPT differ. In order to 

decrease the effect of noise, short active parts with length of less than 5 samples (i.e., 0.16 ms) are 

ignored. In this example time samples 21, 36, and 54 are chosen as the best features. The fourth active 

part was ignored. 

Finally, if the number of selected features (time samples) is less than six and the Beal criterion is to be 

used, additional samples from the gap curve are selected. Additional features, if required, are selected 

based on their gap value and also their intervals from the previous selected features. Each feature should 

have the maximum gap value among the remaining samples and also be at least eight samples (i.e. 0.26 

ms) before or after any selected features. In the example given in Figure 1, time samples 13, 46, and 62 

are additional features. All six selected time samples for this example are shown by bold stars in Figure 

1(b). If the DH criterion is to be used, only the two features with  the largest gap values are sufficient. If 

the required number of features cannot be found, the selected features are used and the algorithm 

continues with these features. These numbers of required features were found empirically to perform the  
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(a) 

 

 (b) 

Figure 5.1: A shimmer plot of a motor unit potential train (a) and its resulting gap curve (b). The stars 
show the samples selected as effective features. Time samples 21, 36, and 54 are chosen based on the 
active parts of the gap curve. Time samples 13, 46, and 62 are additional selected samples.   
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best using exemplary simulated data (see Section 5.4 for a description of the data used). If no features can 

be selected, the given train is labeled valid.  

Having selected the most effective features of the given train, the remaining steps for validating a given 

train are analogous to those presented for the PCA-based method discussed in the previous sub-section. 

Hence, the computation steps for the adaptive gap-based MUPT validation methods are similar to those 

presented for the PCA-based methods. The adaptive gap-based MUPT validation method using the Duda 

and Hart criterion [105] is called the AGDH method; and that using the Beal criterion [173] is called the 

AGB method. 

5.4 Evaluation 

The accuracies with which the four newly developed adaptive methods could categorize a given MUPT 

were estimated using both simulated and real data and compared to those of four existing methods (two 

gap statistic and two jump methods). The gap statistic methods were used for comparison because the gap 

statistic method was shown to work well in estimating the number of clusters for high dimensional data 

for both single cluster and multi-cluster data [174]. The jump methods [176]were used because the jump 

method is faster than both the gap statistic and prediction strength methods and its accuracy in finding the 

number of clusters in a data set is comparable with that of the gap statistic method. These gap statistic and 

jump methods were applied using 80 time samples as features and using a reduced number of 

uncorrelated features selected via PCA as for the adaptive PCA-based methods. The gap statistic (GS) 

and jump (J) methods using features selected using PCA are called the PCA-based gap statistic method 

(PGS) and PCA-based jump method (PJ), respectively. In total eight methods were evaluated.  

For simulated data, EMG signals were generated using EMG signal simulation algorithms that were 

developed based on a physiologically and morphologically accurate muscle model [153]. These 

algorithms create simulated needle-detected EMG signals with different complexities, such as different 

numbers of MUs, different degrees of MUP shape and/or IDI variability (represented by the amount of 

jitter and CV of IDI, respectively), and different signal intensities (represented by the average number of 

MUP patterns per second). Using these algorithms, EMG signals can be simulated similar to those 

detected from normal, myopathic and neurogenic muscles with different degrees of involvement. 

Two hundred and sixty one 30s EMG signals with different levels of intensity, ranging from 24 to 193 

pps, with MUP jitter values ranging from 50 to 150U�, with IDI variability (i.e., CV) ranging from 0.10 to 

0.45, and with various myopathic or neurogenic degrees of involvement ranging from 0 to 50% were 
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created. These data allowed us to study the performance of the developed methods related to signal 

intensity, number of trains and MUP shape variability. 

The generated signals were decomposed using the DQEMG algorithms [7]. The resulting MUPTs were 

assessed visually and classified as valid or invalid. Additional valid trains were generated by selecting 

valid MUPTs with greater than 100 MUPs and randomly splitting them into sub-trains of at least 50 

MUPs. For example, eight valid trains were created from a valid train having 210 MUPs. These eight 

trains include the original train, four trains with 50 MUPs, two trains with 100 MUPs, and one train with 

150 MUPs. Additional invalid trains that are representative of invalid trains likely to be produced by a 

decomposition algorithm were generated by merging valid trains having similar MUP templates. MUP 

template similarity was measured by estimating the PsC between the MUP templates of the two selected 

MUPTs. Two trains were merged if the PsC between their MUP templates was ≥ 0.5. In total 20,386 

MUPTs (18,000 valid and 2386 invalid trains) were generated. This data set was then divided into ten 

subsets each of which contained 1800 valid and 239 invalid trains.  

For real data, three sets of EMG signals were used: single-channel EMG signals provided by M. 

Nikolic of Rigshospitalet, Copenhagen, Denmark [170]; single-channel EMG signals provided by K.C. 

McGill, VA RR&D Ctr, Palo Alto, US [178]; and multi-channel EMG signals provided by J.R. Florestal, 

P.A. Mathieu, and K.C. McGill [97]. The first set of signals were detected from normal, myopathic and 

neurogenic muscles using a standard concentric needle electrode during constant low level voluntary 

contractions. The signals in the second set were recorded by monopolar needle electrode during low level 

isometric contractions of the brachial biceps muscles of normal subjects. The signals in the third set 

(multi-channel signals) were recorded simultaneously from the brachioradialis muscles of three normal 

subjects using six or seven pairs of fine wire electrodes during low-level isometric contractions. In using 

this data set, the signals detected by each electrode were considered as single-channel EMG signals. 

These three data sets allowed us to study the performance of the developed methods across signals 

detected using different electrodes and instruments. 

The same analysis as with the simulated data was completed using these signals. However, in analyzing 

the EMG signals provided by K.C. McGill et al. [97], [178], the results of manual decomposition 

completed by an expert investigator were used. As with the simulated data, the valid trains in these three 

data sets were split into sub-trains of at least 50 MUPs and those valid trains having similar MUP 

templates were merged to generate invalid trains. Consequently, 14,632 MUPTs (13,024 valid and 1608 
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invalid trains) were generated in total. This real MUPT data set was then divided into ten subsets each of 

which contained 1303 valid and 161 invalid trains. 

Performance of the presented methods was evaluated and compared using the three performance 

indices: accuracy for valid trains (A�), accuracy for invalid trains (A��), and total accuracy (A�). These 

three indices are defined as in Chapter 4, Section 4.5. 

5.5 Results 

The results for the eight methods studied using the simulated and real data are presented and compared in 

Tables 5.1. The results presented were produced using the parameters listed in the second column of this 

table for each method studied. These user defined parameters were determined empirically using one of 

the ten subsets of the simulated data described above. Results for gap/pc method are reported because the 

gap/pc method performed better than the gap/uni method.  

The third column of Table 5.1 shows normalized computation time, which is the processing time for 

each method normalized by that of the fastest method, the AGDH method, with an average computation 

time of 70 ms per train. The algorithms are currently encoded in Matlab (The Mathworks, Natick, MA) 

and processing was carried out on a computer with an Intel Core 2 Duo E8400 CPU (6M Cache, 3.00 

GHz clock, 1333 MHz FSB) and 3GB of RAM.  

The last six columns of both Table 5.1 show the estimated mean and standard deviation of the three 

indices A�, A��, and A� for the simulated and real MUPT data sets, respectively. The values reported for 

these three performance indices were obtained by testing each method using the ten different data subsets 

described in Section 5.4 above for each of the simulated and real data sets, respectively. In each column 

of these tables, the methods indicated by an  '*'  and also bolded had significantly better performance than 

the  others  as determined using the analysis of variance (ANOVA), at a 5% significance level and the 

Tukey-Kramer honestly significant difference test for pair-wise comparison of the mean values. Within 

groups of methods identified, performance was statistically similar. 

The results for simulated data presented in Table 5.1 suggest that the newly developed adaptive 

methods are better able to detect valid trains than the gap statistic and jump-based methods (see results 

for A�). Among the four adaptive algorithms, the two Duda and Hart  criterion based methods (APDH 

and AGDH) with average A��  ≥ 93.5% perform statistically better than the two based on the Beal  

criterion (APB and AGB).  The top three methods for classifying invalid trains (i.e., in terms of A��) were 
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Table 5.1: The parameters, normalized computation time, and accuracy of the eight methods studied for validating a MUPT using its MUP shape 

information applied to both simulated and real data. The normalized time presents the processing time for each method relative to that of the AGDH 

method with an average computation time of 70 ms per train (measures using simulated data). For each accuracy index, individual or groups of methods 

indicated by an '*' and bolded had significantly better accuracy than the others based on the analysis of variance (level of significance =5%) and the 

Tukey-Kramer honestly significant difference test in pair-wise comparison of the mean values. When two or more methods had statistically similar 

performance, they are all identified. 

 
  Simulated data  Real data 

Method Parameters Normalized 
 Time 

A� �%� A���%) A� �%)  A� �%� A���%) A� �%) 

GS - 191.3 83.0±0.4 85.7±0.8* 83.4±0.4  91.4±0.8 87.4±2.3* 91.0±0.7 

PGS ¡ = 90 69.0 92.0±0.6 63.8±0.7 88.8±0.5  93.8±0.4 84.3±2.0* 92.7±0.5 

Jump  ~ = 3 94.5 81.5±0.8 55.3±1.3 78.5±0.6  91.4±2.1 66.3±2.9 88.6±2.1 

 PJ ¡ = 50, ~ = 2 41.0 86.2±0.6 50.4±1.0 82.0±0.5  93.5±2.1 71.7±4.5 90.7±1.7 

APB ¡ = 93 2.9 92.8±0.4 64.9±1.1 89.6±0.3  95.6±0.6* 79.3±2.1 
93.8±0.6* 

APDH ¡ = 50 1.9 93.5±0.5* 72.9±0.9 91.1±0.4*  95.8±0.5* 80.7±2.1 
94.1±0.6* 

AGB - 1.2 92.2±0.3 66.5±0.8 89.2±0.3  95.0±0.6* 74.5±1.7 92.8±0.5 

AGDH  - 1.0 93.8±0.3* 73.9±1.0 91.5±0.3*  96.7±0.3* 80.4±1.2 94.9±0.5* 
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 the gap statistic, APDH, and AGDH methods. The improved ability of the gap statistic method to detect 

invalid trains was offset by its relatively poor ability (A�= 83%) for correctly detecting single trains. This 

in turn, would cause misclassification and consequently duplication of approximately 17% of the MUPTs 

created during EMG signal decomposition. Consequently, A� for the gap statistic method were not as 

high as those for the best performing APDH and AGDH methods. The multivariate statistical analysis 

showed that all of the measured accuracies (A�, A��, and A�) of the APDH and AGDH methods are 

statistically similar and these two algorithms were in the group of the top four performing methods in all 

cases for the simulated data set used in this work.  

In general, the results obtained using the real data (see the last three columns of Table 5.1) are similar 

to those presented for the simulated data. However, all of the eight methods studied performed better on 

the real data set than on the simulated data set. Both A� and A�� values estimated for the real data are 

slightly greater than the values estimated using the simulated data set. As a result, A� values were 

improved for the real data. Specifically, for real data the four newly developed adaptive methods had the 

best accuracies for detecting valid trains, while both gap statistic-based methods were most accurate in 

detecting invalid trains, followed by the AGDH, APDH, and APB methods. With respect to A�, three of 

the four newly adaptive methods (APB, APDH and AGDH) had the best performance. For all three 

performance indices A�, A��, and A� used, the performance of the three methods APB, APHD, and 

AGHD were statistically similar.  As with the simulated data, for the real data used, the APDH and 

AGDH methods had statistically comparable performances and were in the group of the top performers 

with respect to A� and A��. 

For all of the methods studied and for both simulated and real data, the majority of the valid trains 

classified as invalid had highly variable MUP shapes caused by very high jitter (around 150 μs) or high 

numbers of superpositions (from signals with high intensity). Therefore, the accuracy of these methods 

for determining valid MUPTs should be higher for trains provided by EMG decomposition algorithms, 

such as MTLEMG [70], [97],  EMGLAB [45], or EMGTools [69] that resolve superimposed MUPs. The A� values estimated for real data are greater than the values estimated using the simulated data because 

the variably of the MUPs in the real data are lower than those of the simulated EMG signals.  In fact, one 

possible reason for the improved A� values obtained for the real data may be that a subset of the real 

MUPT data used was obtained using MTLEMG [70], [97] and EMGLAB [45] and had superimposed 

MUPs resolved. 
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In addition, for all of the methods studied and for both simulated and real data, the likelihood of an 

invalid (merged) train being labeled incorrectly was dependent on the similarity of the MUP templates of 

the MUPTs used to create the invalid train. Figure 5.2 demonstrates this trend; this figure presents A�� 

values for the methods evaluated using the larger, simulated data versus the PsC between the templates of 

the two MUPTs selected for generating a merged train. The PsC value was used as a measure of the 

average similarity of the MUPs of the two trains selected to create an invalid train. As shown in Figure 

5.2, the accuracy of the studied methods in detecting merged trains decreases as the MUP templates of the 

two trains merged become more similar (PsC increases) such that A�� values decreased to less than 20% 

when the MUP templates of the MUPTs used to create an invalid MUPT have highly similar shapes (PsC 

> 0.8). An example of such merged MUPTs is shown in Figure 5.3. This is, in fact, an issue with all 

methods developed for estimating the number of clusters in a data set. Their accuracy decreases as the 

constituent clusters become less separable. This issue can be resolved by increasing ¡ in the PCA based 

methods, Y in the jump based method, or the number of selected features in the gap-based methods (AGB 

and AGDH). However, increasing these parameter values decreases the accuracy of the methods studied 

when classifying valid trains. In general, such MUPTs are hard to assess using only shape information. 

Motor unit firing pattern information can be useful in assessing such trains and labeling them correctly 

[19], [159], [179]. Probably, a reason why the A�� values estimated using the real data used were slightly 

greater than the A�� values estimated using the simulated data used is because the MUP templates of the 

extracted MUPTs selected  to generate the invalid trains were, on average, less similar for the real signals 

than for the simulated signals.  

Based on the results given in Tables 5.1 and Figure 5.2, the AGDH method is the best algorithm among 

the algorithms studied because this method is the fastest and one of the top four accurate methods in 

terms of all three performance indices used in this work. With respect to  A� and A�, the AGDH method 

is one of the most accurate methods for both the real and simulated data used. The AGDH method was 

not as accurate as the best method, the gap statistic method, in classifying invalid MUPTs, but the gap 

statistic method has the lowest A�� and is the slowest method. The performance of the APDH method is 

statistically similar to that of the AGDH. However, the APDH method is slower than the AGDH method. 

5.6 Conclusions 

Assuming MUPs generated by a single MU are homogeneous in shape (but with possibly different 

degrees of variability across different MUs), invalid MUPTs that represent the activity of more than one  
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Figure 5.2: Accuracy in detecting invalid trains (¾¿À) versus the pseudo-correlation (PsC) between 

the templates of two MUPTs merged to generate an invalid train. The parameter PsC was used to 

measure the average similarity of the MUPs of two MUPTs constituting an invalid MUPT. High 

values of PsC show the low separability between the MUPs of two trains. As the two trains 

constituting an invalid MUPT become less separable, the accuracy of the methods in detecting the 

invalid trains decreases. 
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MU can be detected as merged by assessing the homogeneity of its MUPs. Assessing MUP shape 

homogeneity can be considered as a cluster validation problem and the decision to be made is whether the 

MUPs of a MUPT represent one or more clusters. Four new adaptive algorithms for automatic MUP 

shape-based validation of MUPTs extracted by an EMG signal decomposition algorithm have been 

presented and evaluated in this chapter. These algorithms evaluate the MUP shapes of a given MUPT to 

see whether they are consistent or not. If the shapes of the MUPs assigned into a train are homogeneous, the 

train is classified as valid otherwise it is classified as invalid.  

Evaluation results using both simulated and real data show that the ability of the algorithms studied to 

correctly classify a MUPT is encouraging. For all four performance indices used in this work the two new 

algorithms developed based on the Duda and Hart criterion (APDH and AGDH) were in the group of the 

top four methods for both simulated and real data. Considering classification speed and accuracy, the 

AGDH method outperforms the other seven methods studied. For invalid trains composed from MUPTs 

with similar MUP templates, the accuracy of the developed methods in classifying invalid trains was 

73.9% for simulated data and 80.4% for real data. This accuracy, for simulated data, decreased to 20% 

when an invalid MUPT was composed of MUPTs with highly similar MUP templates, which suggests the 

need for the use of MU firing pattern as well as MUP shape information in evaluating such extracted 

MUPTs.   

 

Figure 5.3: An example of invalid MUPT that was misclassified by the presented MUP-shape 

validation methods. The first column shows the shimmer plot of the assigned MUPs, the second 

shows the IDI histogram and corresponding statistics for each extracted MUPT. Finally, the last 

columns show the discharge patterns and instantaneous firing rates for each MUPT. The variability 

and the short spikes in the firing plots reveal that the train is invalid, although the train was classified 

as a valid MUPT. 
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Chapter 6 

Validating Motor Unit Potential Train using both 

MU Firing Pattern and MUP Shape Information 

6.1 Introduction 

In the previous two chapters several methods to estimate the validity of a MUPT using either its MU 

firing pattern information or MUP shape information were presented. As discussed, the accuracy of the 

FPVC, which estimates MU firing pattern validity, in detecting invalid trains decreases as the MCE rate 

in the MUPTs increases such that this accuracy was reduced to < 60% when the MCE rate was >80% (see 

Figure 4.1). Likewise, the accuracy of the MUP-shape based validation methods presented in Chapter 5 

decreases as the separability between the trains used to create an invalid train decreases such that the 

methods failed to detect the majority (>80%) of invalid trains composed of MUPTs with highly similar 

MUP templates (see Figure 5.2). Using both the MU firing pattern and MUP shape information of a 

MUPT to estimate its validity was explored with the hope of overcoming these two issues; the 

achievements these efforts are presented in this chapter. 

6.2 A System for Estimating MUPT Validity using Cluster 

Validation and Supervised Classification Techniques 

One possible scheme for using both the MU firing pattern and MUP shape information of a MUPT in 

estimating its validity is combining the validity indices provided by the FPVC and one of the adaptive 

methods discussed in Chapter 5 using an “AND” logic; the overall procedure is shown in Figure 6.1. 

With such a MUPT validation system, a given MUPT is classified as valid if it satisfies both temporal and 
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shape criteria; otherwise, the train is labeled invalid. Using the switching classifier presented in Chapter 4 

and the two adaptive gap-based methods presented in Chapter 5, two MUPT validation classifiers were 

developed and studied. The MUPT validation system that is based on the Beal  criterion [173] is called 

the MVB method and the one developed using the Duda and Hart  criterion [105] is called MVDH 

method.  

The experimental results of evaluating the MVDH and MVB using the simulated and real reference 

data described in Section 5.4 of Chapter 5 showed that these two methods are more accurate than the 

FPVC, and the AGB and AGDH methods in correctly classifying invalid MUPTs (see Section 6.4). 

Specifically, using the MVDH and the MVB assists with improving the accuracy in classifying invalid 

MUPTs even ones having high MCE rates or composed of two valid trains with highly similar MUP 

templates (PsC> 0.7).  However, both the MVB and MVDH misclassified valid MUPTs that had inherent 

MUP shape variability caused by jitter or jiggle [1], [24], [114], [180]. Ultimately, the A� values for both 

the MVB and the MVDH were lower than that obtained for the FPVC. 

 

Figure 6.1: The procedure of the developed MUPT validation system that estimates the validity of a 

MUPT by combining its MU firing pattern validity and MUP shape validity estimated using a 

supervised classifier and a cluster validation technique. 
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The drop in the A� values of the MVB and the MVDH compared to the A� values of the FPVC reveals 

that the amount of MU firing pattern and MUP shape validity should be taken into account and weighted 

when classifying a given MUPT. The reminder of this chapter presents a system that first estimates the 

MU firing pattern and MUP shape validity of a given MUPT and then weights these amounts to estimate 

the overall validity for the MUPT. 

6.3  A SVM-based System for Estimating MUPT Validity 

Let a�represent the class of valid MUPTs and aD represent the class of invalid MUPTs, the objective of 

the developed SVM-based MUPT validation system is to estimate a posterior probability T�a�|MUPT�, 

i=1,2 for a given MUPT. For final classification (i.e., to determine the class label of a MUPT), a given 

train is classified as valid if T�a�|MUPT� > T�aD|MUPT�. To determine the T�a� |MUPT� values, both 

the MU firing pattern and MUP shapes of the MUPT are represented by several feature values which are 

then input to a supervised classification algorithm. The developed MUPT validation systems consist of 

three steps: preprocessing, feature extraction, and supervised classification. 

6.3.1 Preprocessing 

MUP preprocessing consisted of taking the first derivative of the 80 discrete time samples of a MUP 

using a two-point central difference algorithm [177]. The mathematical equation for this algorithm, which 

is also known as a 1st-order LPD filter, is given in Equation 5.8. MUP preprocessing was completed to 

increase the SNR of the MUPs, sharpen MUPs, and ultimately enhance the discrimination between the 

MUPs created by two or more different MUs but mistakenly assigned to one MUPT. An example of the 

effectiveness of using LPD filters in improving the discrimination of the MUPs created by three MUs is 

given in Figure 2.5. Details and examples of the effectiveness of using LPD filters during EMG signal 

decomposition are given in [49], [50]. For the same reason mentioned in Section 5.3,  a 1st-order LPD 

filter was preferred to the a 2nd-order LPD filter, even though the latter filter enhances the difference 

between the MUPs of different MUs better than the first filter.    

6.3.2 Feature Extraction 

Eighteen features are used to represent a given MUPT for classification. Eleven features are extracted 

from MU firing patterns and the remaining seven features are extracted from the MUPs assigned to the 

MUPT.  
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The MU firing pattern features employed are the ten features discussed in Chapter 4 along with the 

MCE rate in the given train. The MCE rate was obtained using the following first order linear model; 

details related to the development of this model are given in [179]. 

laÁ �i5Z = −108.6 × JK �i5Z + 102.4 (6.1) 

The seven features that are extracted from the MUPs assigned to the MUPT (MUP shape features) are 

defined and extracted based on the idea that the increase in the similarity of the MUP shapes of the sub-

trains created when splitting a MUPT is greater for an invalid MUPT than for a valid MUPT. In addition, 

the similarity between the MUP templates of the two sub-trains created by splitting an invalid train is less 

than that for valid MUPTs. When calculating the MUP shape features, the N filtered MUPs of the MUPT 

are grouped into two sub-trains using a K-means clustering algorithm and MUP templates are estimated 

using the median trimmed mean averaging algorithm described in [143]. This averaging technique was 

used because it provides a good estimation of the MUP template of a MUPT by reducing the effect of 

interference from the MUPs of other motor units and noise [143]. A detailed description of the MUP 

shape features and how they are calculated is given below. 

1.  cÃÄ;�Å = Æ#$ �IÇ,I_�I , where c� and cD are the number of MUPs in the resulting two sub-trains to 

which the MUPs of the given MUPT are clustered, and c = c� + cD. 

2. PsC: The pseudo-correlation between the MUP templates of the two sub-trains.  

3. PsCnorm: PsC between the MUP templates when each of these two templates is normalized using a 

min-max normalization technique [181] which transforms each sample of a template into the 0 to 1 

range. 

4. Nac: the number of active parts as determined in Chapter 5, Section 5.3.2. 

5. sÃÄ;�Å: is the ratio of s�, the sum of squared distances between each MUP of the given train and 

its MUP template, to sD, the corresponding sum of squared distances for the resulting two sub-

trains. The distances are calculated using MUP and MUP template samples corresponding to the 

maximum gap value (i.e., ���) of each of the Nac active segments. 

sÃÄ;�Å = sDs� (6.2) 

6. J-index: an index proposed by Duda and Hart [105] to test the null hypothesis of one cluster versus 

multiple clusters in a data set. The J-index is calculated using Equation 5.5, the values obtained for 
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s� and sD in feature 5, and by replacing k with Nac. 

7. Beal index (Bi): an index proposed by Beal [173] to decide if a cluster should be subdivided into 

two sub-clusters. Bi is calculated using Equation 5.6 with the same setting as for calculating the J-

index. 

6.3.3 Classification 

Two different classification schemes were evaluated to determine the validity of a given MUPT using 

both its MU firing pattern and MUP shape information: a single classifier approach, and a multiple 

classifier approach. For the single classifier scheme, a classifier uses all 18 features discussed in the 

previous section to estimate the validity of a given train. For the multi classifier procedure, the MU firing 

pattern validity and MUP shape validity of a given MUPT are determined separately using two distinct 

classifiers and then the estimated validity indices are combined by a fusion system to estimate the overall 

validity of the train under study; the overall procedure is shown in Figure 6.2. The classifier developed to 

estimate MU firing pattern validity is called the firing pattern validity classifier (FPVC). The classifier 

developed to estimate MUP shape validity is called the shape validity classifier (SVC). 

For both the single and multiple classifier approaches, SVM-based classification [166], [167] with a 

Gaussian radial basis function as the kernel function is employed. The training parameters of the SVM 

were determined experimentally via cross-validation. The equation for the kernel function and the 

description of the training parameters are as given for the FPVC in 4.3 of Chapter 4. 

The SVM-based classification was used for developing both FPVC and SVC because the SVM 

performed better than the FDA and PD classification scheme studied for estimating MU firing pattern 

validity (see Chapter 4). Likewise, the SVM outperformed the FDA, and logistic regression classifiers in 

estimating MUP-shape validity when evaluated using the simulated data experimental described in 

Section 5.4 of Chapter 5, details are given in [182]. 

The only disadvantage of using the SVM for MUPT validation is that this classifier is a binary 

classifier and does not provide posterior class probabilities for a given pattern. The objective of this work 

is to not only determine the validity of a train but also to estimate the posterior probabilities of the valid 

and invalid classes. Therefore, an extended SVM that provides such probabilities for each class is used 

[183]. The extended SVM first trains a standard SVM and then trains an additional sigmoid function to 

estimate the posterior probabilities for each class (see [183] for more details). Given x, is the input feature 
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vector representing a given MUPT in the feature space, f(x) is the un-thresholded output of a standard 

SVM. The probabilities T�a�|MUPT� and T�aD|MUPT� are given by: 

T�a�|MUPT� = 11 + exp�É�h�X� + ÉD� ; 
T�aD|MUPT� = 1 − T�a�|MUPT� 

(6.3) 

Where, É� are the parameters of the sigmoid function. In training the sigmoid function, the vector É is 

derived using a maximum likelihood estimation method such that T�a�|MUPT� is maximized for each 

MUPT in the training data [184]. 

For the single classifier scheme, the values T�a� |MUPT� provided by the SVM are used as a validity 

index for the given train and ultimately to classify the train; T�a�|MUPT�= 1 means that the train is most 

likely  valid while T�a�|MUPT� = 0 means that the train is most likely invalid. In the remainder of this 

paper, the single classifier developed to estimate the validity of a MUPT is simply called the SVM 

 

Figure 6.2: Classifier fusion technique for MUPT validation 
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validity classifier (SVMVC). For the multi-classifier scheme, however, the validity provided by the 

FPVC must be combined with the validity provided by the SVC to estimate the overall validity of the 

MUPT. For both the single classifier and multi-classifier schemes, the train is considered to be valid if the 

estimated probability T�a�|MUPT� > T�aD|MUPT�.  

Let Ω#,� be an estimate of the a posterior probabilities, T�a�|MUPT�, offered by either the FPVC or 

SVC for a given MUPT. The overall support for class a�, Ω#, is estimated  by combining Ω#,� and Ω#,D 

using a classifier fusion method Ì   (i.e., Ω#= Ì  (Ω#,� , Ω#,D). The fusion method combines the degrees of 

support for a given class (i.e., valid or invalid), estimated by the base classifiers FPVC and the SVC to 

find the overall support for each class and ultimately assign the input to the class with the largest support. 

Both trainable and non-trainable fusion methods [185] were considered.  

Average, product, and AND were studied as non-trainable fusion methods. The average and product 

fusion methods consider respectively the average and product of Ω#,� and Ω#,D as an estimation for Ω#.The 

given train is labeled valid, if Ω� >  ΩD; otherwise it is labeled invalid. The AND logic, however, 

classifies a given train as valid if Ω�,� > ΩD,� and Ω�,D > ΩD,D, otherwise the train is classified as invalid.  

In other words, the AND fusing method labels the train as valid when it has both MU firing pattern and 

MUP shape validity. The multi-classifier developed using the AND fusion method to estimate the validity 

of a MUPT is called the AND multi-classifier (ANDMC), those classifiers developed using the average 

and product fusion methods are called the average and product multi-classifiers (AVGMC and PRMC), 

respectively. 

SVM and logistic regression classifiers were studied as trainable fusion methods to aggregate the 

output values provided by the FPVC and the SVC and ultimately estimate the validity of a given MUPT. 

The Ω#,� values along with PsC and MCE rate are used as input features to a classifier that outputs the T�a�|MUPT� for the given train. The MUPT classifier which uses a SVM classifier for fusion is called the 

SVM multi-classifier (SVMMC) and the one that employs a logistic regression classifier for fusion is 

called the logistic regression multi-classifier (LRMC). 

Logistic regression is a probabilistic classification model that operates directly over the feature space 

and estimates a posterior probability for each class. If Í is a feature vector representing a given MUPT, 

the probabilities T�a�|MUPT� and T�aD|MUPT� for this train are estimated using Equation 6.3 by 

replacing f(x) with Í. The dimension of the vector É is equal to that of Í and the elements of  É are 

derived using training data via a maximum likelihood estimation method [184]. 
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6.4 Results  

As with any supervised classification problem, training and testing a developed supervised MUPT 

validation system requires reference data (i.e., MUPTs whose validity or invalidity are known a priori). 

For this work, the simulated and real reference data described in Section 5.4 of Chapter 5 were used. 

Considering the reference MUPTs as the gold standard, the performance of the developed MUPT 

validation systems was evaluated, as the methods presented in Chapters 4 and 5, in terms of correctly 

classifying valid and invalid trains. Three accuracy indices as defined in, Section 4.5 of Chapter 4 were 

employed for this purpose: accuracy for valid trains (A�), accuracy for invalid train (A�), and total 

accuracy (A�).  

Classifiers, based on the methods discussed in 6.3.3, were trained using simulated data and tested using 

both simulated and real MUPTs. The performance of the developed classifiers were compared with that 

of the MVDH and MVB. The classification performances of the developed MUPT validation techniques 

for both simulated and real data are summarized in Table 6.1 which presents the estimated means and 

standard deviations of the three performance indices A�, A��, and A�. For classifiers studied, the numbers 

presented for simulated data were obtained by running a 10-fold cross-validation on this dataset while the 

values presented for the real data were obtained by evaluating the classifiers trained using the entire 

simulated data on the 10 different subsets of the real MUPT data discussed in Section 4.5. For 

comparison, the accuracies for the AGB and AGDH algorithms that are presented in Table 5.1 are 

repeated here. For the MVB and MVDH methods, the presented accuracy values were obtained by 

evaluating these methods using the same approach as with the methods presented in Chapter 5 (see 

Section 5.4 and 5.5), but the parameter of the AGDH and AGB algorithms (minimum number of required 

features) were readjusted to achieve the best performance for both MVB and MVDH. These parameters, 

as with the methods discussed in Chapter 5, were found empirically using one set of the simulated data 

sets discussed. Statistical analysis of the results was conducted using a multivariate analysis of variance, 

at a 5% significance level and the Tukey-Kramer honestly significant difference test for pair-wise 

comparison of the mean values.  

6.5 Discussion 

The results for the simulated data, which are presented in Table 6.1, demonstrate how well the developed 

methods/classifiers can correctly predict the class label of valid MUPTs, invalid MUPTs, and ultimately 

MUPTs obtained from decomposing an EMG signal. Of the methods studied, the estimated A� values of 
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the FPVC, AVGMC, PRMC, and the SVMMC were statistically similar to each other and were higher 

than the A� values of the remaining methods/classifiers. In terms of A��, all the systems that use MU 

firing pattern and MUP shape information, except the AVGMC and the PRMC, outperformed the 

algorithms that use only MU firing pattern or MUP shape information. The MVDH, SVMVC, ANDMC, 

LRMC, and the SVMMC were the top-five methods/classifiers for correctly classifying invalid MUPTs. 

With respect to A� , the  LRMC and the SVMMC, which fuse the validities provided by the FPVC and 

the SVC using trainable fusion methods, were in the group of the top-three systems.  

In general, the results obtained using the real data are consistent with those presented for the simulated 

data. The average and product classifier fusion techniques resulted in no further improvement of 

Table 6.1: Mean and standard deviations for the accuracy of the different MUPT validation methods 

applied to both simulated and real data. In each column of the table, individual or groups of methods  

bolded and indicated by an '*' had significantly better performance than the others as determined 

using a multivariate analysis of variance, at a 5% significance level and the Tukey-Kramer honestly 

significant difference test for pair-wise comparison of the mean values. For each performance index, 

when two or more methods had statistically similar performance, they are all indentified. 

 
Simulated data  Real data 

Method A� �%� A�� �%� A� �%�  A� �%� A�� �%� A� �%� 

AGB 92.2±0.3 66.5±0.8 89.2±0.3  95.0±0.6 74.5±1.7 92.8±0.5 

AGDH 93.8±0.3 73.9±1.0 91.5±0.3  96.7±0.3 80.4±1.2 94.9±0.5 

SVC 98.6±0.2 74.0±2.7 95.7±0.4  97.1±0.5 60.0±5.9 93.1±0.9 

FPVC  99.8±0.1* 95.9±0.7 99.4±0.1  98.2±0.6 96.2±1.4 98.0±0.5 

MVDH 93.7±0.7  99.1±0.2* 96.4±0.5  95.2±0.7  99.7±0.2* 94.4±0.3 

MVB 98.2±0.2 98.6±0.3 98.4±0.2  98.0±0.6 99.1±0.3  98.3±0.3* 

SVMVC  99.3±0.2*  99.3±0.5* 99.3±0.2  97.8±0.4 91.5±2.5 97.1±0.5 

ANDMC 98.1±0.2  99.8±0.2* 98.3±0.2  95.4±0.6  99.7±0.3* 95.9±0.5 

AVGMC  99.8±0.1* 95.6±1.2 99.3±0.2   98.9±0.3* 95.8±1.4  98.6±0.3* 

PRMC  99.8±0.1* 95.7±0.8 99.3±0.2   98.9±0.2* 95.8±1.4  98.6±0.1* 

LRMC  99.4±0.2*  99.5±0.4*  99.4±0.2*  98.2±0.4  99.6±0.4*  98.4±0.3* 

SVMMC  99.7±0.1*  99.3±0.6*  99.6±0.1*  97.7±0.2  99.4±0.6* 97.9±0.2 
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A�� compared to the FPVC results, but the estimated A� values of these two classifiers were statistically 

better than the other methods studied. The AGB, AGDH methods and the SVC that use only MUP shape 

information had the lowest A��. The MVDH, ANDMC, LRMC, and the SVMMC had the highest A��. 

However, the estimated  A�� value of the SVMVC, which is based on a single SVM, decreased 

significantly compared to its performance using simulated data and was significantly lower than the  A�� values of the MFPC and the other five multi-classifiers which use both MU firing pattern and MUP 

shape information. 

For both simulated and real data, the accuracies of the AVGMC and the PRMC were almost identical 

because both methods assess the same criterion in classifying a given MUPT, even though they use two 

different methods for fusing the probabilities provided by the SVC and the FPVC. In fact, for both the 

AVGMC and the PRMC a given MUPT is classified as valid if  Ω�,� + Ω�,D > 1. 

The estimated  A� of the ANDMC, MVDH, and the MVB, which combine the MU firing pattern 

validity and MUP shape validity using an AND operation, is slightly lower than the  A�  value of  the 

methods that only use MU firing pattern and MUP shape information to estimate the validity of a given 

train. This result is caused by the number of valid MUPTs that are misclassified by base methods used to 

estimate MU firing pattern validity (e.g., the FPVC) and MUP shape validity (e.g., the AGDH and the 

AGB methods or the SVC). This is a weakness of the AND fusion operation, which does not take into 

account the amount of MU firing pattern and MUP shape validity, when classifying a given MUPT. In 

fact, the ANDMC, MVDH, and the MVB are rigorous in labeling a MUPT as valid; the MUPT must have 

both MU firing pattern validity and MUP shape validity to be considered valid. Such conservative 

classification however, resulted in an improvement in  A��. As shown in Table 6.1, the estimated AIV for 

the ANDMC (as an example) was around 25% and 3% higher than that of the SVC and the FPVC, 

respectively. The statistical analysis conducted on the results of Table 6.1 shows that the ANDMC and 

the MVDH were in the group of top- four systems in terms of  A�� for both the simulated and real data. 

Figures 6.3 to 6.4 illustrate the advantage of using both MU firing pattern and MUP shape information 

for MUPT validation (except the AVGMC and the PRMC) compared to using either one set of this 

information.  

Figure 6.3 presents  A�� values versus the PsC between the templates of the two MUPTs selected for 

generating an invalid train for the classifiers studied. The PsC value represents a measure of the average 

similarity of the MUPs of the two trains selected to create an invalid train. The results for the AVGMC 
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and the PRMC were not plotted because these two classifiers not only did not provide better   A�� values 

over the base FPVC but also performed worse than the FPVC for PsC > 0.8. As shown, MUPT validation 

systems that fuse both MU firing pattern and MUP shape information in assessing invalid MUPTs trains 

composed of two MUPTs with PsC > 0.8 improved the ability to correctly predict their class labels. The  A�� values of the methods that use both MU firing pattern and MUP shape information were > 98% for 

most cases. For the worst case scenario (high PsC), the estimated  A�� values of the ANDMC and the 

LRMC (the two classifiers with the highest  A�� values) were around 98%, which is at least 52% higher 

than that of the SVC and the AGB and AGDH methods. On average, the estimated  A�� of the ANDMC 

and the LRMC was 1.3 times of that of the SVC and the AGDH method and 1.5 times of the  A�� of the 

AGB method. 

An example of an invalid MUPT (from simulated data) composed of valid trains with high PsC is given 

in Figure 6.4. It is clear that assessing the validity of this train using only MUP shape information is 

difficult such that it was misclassified by the SVC and AGB and AGDH methods, but the  MVB, MVDH, 

ANDMC and the LRMC, which use both MU firing pattern and MUP shape information classified the 

train correctly.  

Figure 6.5, which plots  A�� values of the algorithms studied versus the MCE rate in invalid 

MUPTs, demonstrates another advantage of using both MU firing pattern and MUP shape 

information in assessing the validity of a MUPT over using just firing pattern or shape information. 

As shown,  A�� for the FPVC decreases as the MCE rate in the trains increases such that the algorithm 

misclassified around 60% of the invalid trains having a MCE rate > 80%. One reason for this drop in 

classification accuracy is that the accuracy with which the MU firing pattern statistics can be 

estimated and hence the accuracy of the MU firing pattern features used decreases as a train becomes 

sparse (see Chapter 4 or  [159] for more details). As demonstrated in Figure 6.5, the MUPT validation 

systems that use both MU firing pattern and MUP shape information (specifically the MVDH, 

ANDMC, and the LRMC) performed better than the FPVC in correctly classifying invalid trains 

having high MCE rate. For the worst-case scenario (MCE rate > 80%),  A�� for the MVDH, 

ANDMC, and the LRMC was 31%, 30%, and 15% higher than the  A�� of the FPVC, respectively, 

which is a significant improvement in detecting invalid trains especially during the early stages of an 

EMG signal decomposition. 
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Figure 6.3: Accuracy in detecting invalid trains (AIV) versus the pseudo-correlation (PsC) between 

the templates of two valid MUPTs merged to generate an invalid train. High values of PsC show the 

high similarity of the templates and ultimately low separability of the two valid MUPTs comprising 

an invalid MUPT. As shown, the systems that use both MU firing pattern and MUP shape information 

(e.g., MVB, MVDH, SVMVC, ANDMC) are more accurate in detecting invalid trains than the 

systems that employ only one source of this information in estimating the validity a given MUPT 

(AGB, AGDH, SVC, FPVC). Note: the AIV plots for several methods overlapped. 
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An example of an invalid MUPT that was misclassified by the FPVC due to its high MCE rate is given 

in Figure 6.6. The inconsistency of the MUP-shapes in each MUPT confirms that the train is invalid. This 

shape inconsistency was recognized by the SVC and the AGB and AGDH methods. Consequently, the 

train was correctly classified by the majority of the systems (e.g., the MVDH, ANDMC, and the  LRMC) 

that use both MU firing pattern and MU shape information in assessing the train. 

The ANDMC and the LRMC have several advantages over the single SVMVC. In addition to their 

higher AIV values for real data (see Table 6.1), they performed better in correctly classifying invalid trains 

with MCE rates > 75% than the SVMVC (Figure 6.5). Providing the reason for invalidity is another 

advantage of using the multi-classifier techniques over using of the single SVMVC for MUPT validation. 

Knowing that a MUPT is invalid because of its MU firing pattern or MUP shape validity can assist with 

efficient correction of invalid trains created during decomposition.   

Based on the results given in Table 6.1 and Figure 6.5, the LRMC is the best method among the 

methods studied because this classifier is one of the four most accurate methods in terms of all three 

performance indices used. The SVMMC is as accurate as the LRMC, but the LRMC is simpler and faster 

than the SVMMC. The only drawback with the LRMC is that its A�� was not as high as that of the 

MVDH and ANDMC for highly sparse invalid MUPTs (see Figure 6.5). In addition, for the FPVC used 

in the ANDMC a switching classifier presented in Chapter 4 can be used instead of the SVM. Using the 

switching classifier will improve the computation time of the ANDMC. The ANDMC is 2.4 times faster  

 

Figure 6.4: An example of an invalid MUPT that is misclassified by the AGDH and AGB methods 

and also by the  SVC, but correctly classified by both the majority of the systems that employ both 

MU firing pattern and MUP shape information (e.g.,  MVB, MVDH, ANDMC, LRMC, and 

SVMMC). The first column shows the shimmer plot of the assigned MUPs, the second shows the IDI 

histogram and corresponding statistics for the extracted MUPT. Finally, the last columns show the 

discharge patterns and instantaneous firing rates for the MUPT. 
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Figure 6.5: Accuracy in detecting invalid trains (AIV) versus the MCE rate in the invalid trains. The 

MCE rate represents the sparsity of the MUPT. The MUPT validation systems that use both MU 

firing pattern and MUP shape information (e.g., the MVB, MVDH, SVMVC, and the ANDMC) are 

more accurate in detecting invalid trains having high MCE rate (> 65%) than the methods that employ 

only one type of this information  (AGB, AGDH, SVC, FPVC) in estimating the validity a MUPT.  
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than the LRMC with average processing time of 71ms for a train. The MVDH is not preferred to the 

ANDMC because its A� value is significantly (around 5%) lower than the ANDMC. Therefore, using the 

ANDMC during the early stages of an EMG signal decomposition, when the MCE rates in the extracted 

MUPTs are high, may be more practical than using the LRMC. The LRMC can be used during the latter 

stages of EMG signal decomposition, when MCE rates in the trains are < 65%, or it can be used passively 

for post processing of extracted MUPTs after decomposition. Figure 6.7 demonstrates two examples 

showing the advantage of using the LRMC for post processing of extracted MUPTs over using of the 

ANDMC for this propose. Both MUPTs are valid even though they have high MUP shape variability due 

to high jitter values. These two valid MUPTs were misclassified by the SVC and hence the ANDMC but 

both were correctly classified by the LRMC. 

It is important to point out that the presented methods do not provide the absolute validity for a MUPT. 

They only estimate the class label of a MUPT (i.e., valid/invalid) and provide a degree of support for the 

decision made. The proposed methods are to: 1) assist with improving the accuracy and completeness of 

decomposition results; and 2) facilitate the use of EMG signal decomposition results for clinical 

applications of quantitative electromyography by excluding or highlighting invalid MUPTs. 

The developed MUPT validation classifiers can be used both during decomposition, for detecting 

invalid extracted MUPTs (i.e., actively), or after decomposition, for post-processing of the extracted 

MUPTs before using them for further analysis (i.e., passively). For passive use of the LRMC, the validity 

of each MUPT extracted by a decomposition algorithm is determined and invalid trains are excluded from 

further analysis. For active use of either the LRMC or the ANDMC, the validity of each MUPT is 

 

Figure 6.6: An invalid MUPT that is misclassified by the FPVC due to its high MCE rate, but 

correctly classified by the MVB, MVDH, ANDMC, and LRMC that estimate MUPT validity using 

both MU firing pattern and MUP shape information. The first column shows the shimmer plot of the 

assigned MUPs, the second shows the IDI histogram and corresponding statistics. Finally, the last 

column shows the discharge patterns and instantaneous firing rates for each MUPT. 
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estimated after each pass during decomposition. Invalid trains can then be split into several valid trains 

before decomposition continues. Splitting can be completed using the information provided by the FPVC 

and the SVC such that the clustering algorithm (e.g., K-means) employed for splitting is seeded based on 

the MUPs that caused either the IDI inconsistency or the MUP shape inconsistency. Having invalid trains 

corrected, more MUPs will be assigned correctly into the extracted trains. Chapter 8 reveals the 

effectiveness of using the developed MUPT validation classifiers during EMG signal decomposition.  

6.6 Conclusions 

Combining MU firing pattern and MUP shape information for automatic validation of a MUPT has been 

shown to correctly identify cases of both valid and invalid trains. In this chapter, several methods that 

fuse both the MU firing pattern and MUP shape information of a MUPT to estimate its validity are 

developed and evaluated using both simulated and real data. Overall, the methods that use only shape or 

only firing pattern information did not perform as well as the ones that use both types of information, 

 

Figure 6.7: Two examples of valid MUPTs that are misclassified by the SVC and the ANDMC but 

correctly classified by the LRMC. The first column shows the shimmer plot of the MUPs assigned to 

each MUPT; the second and third columns present the MU firing pattern information. The second 

column illustrates the IDI histogram and the last one demonstrates the discharge patterns and 

instantaneous firing rates for each MUPT. 
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especially for invalid trains. Of the methods studied, the LRMC that separately estimates MU firing 

validity and MUP-shape validity of a MUPT and then estimate the validity of the train by fusing these 

two indices using a logistic regression classifier outperformed the others in terms of computation time 

and classification accuracy (i.e., in terms of A�). However, the ANDMC performed better than the LRMC 

in correctly categorizing highly sparse invalid trains and could be used in early stages of decomposition.  
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Chapter 7 

Detecting and Editing Contaminated MUPTs during 

EMG Signal Decomposition 

7.1 Introduction 

As discussed in Chapter 3, several characteristics of the contaminated MUPTs (trains with a high number 

of FCEs) differ from that of valid trains. The IDI distributions of contaminated MUPTs are skewed to the 

left (Figure 3.4) and their MU firing pattern statistics are often underestimated due to the increased 

number of shortened IDIs while the IDI distribution of a valid train follows a Gaussian distribution. The 

percentage of short IDIs in contaminated MUPTs are, in general, higher than that in valid trains. The MU 

firing pattern variability of contaminated MUPTs may be higher than that of the valid trains. For an 

example of a contaminated MUPT created by DQEMG applied to a real EMG signal see MUPT# 3 in 

Figure 2.6. As shown, the FR–MCD, which presents the variability of the firing rate over time, for this 

invalid train are higher than that for the two first MUPTs that are valid. These facts motivate the 

development of a supervised classifier that use the features of the IDIs of a MUPT to verify the class label 

(contaminated or non-contaminated) for a MUPT.  

This chapter describes a method developed for: 1) determining whether a given MUPT is contaminated 

with a high number of FCEs and needs to be edited; 2) removing the FCEs from a contaminated train. 

Using motor unit firing pattern information provided by each MUPT, the developed algorithm first 

determines if a given MUPT is contaminated with a high number of FCEs and needs to be edited or not. 

For contaminated MUPTs, the method uses both MU firing pattern and MUP shape information to detect 

MUPs that were erroneously assigned to the train (i.e., represent FCEs). 
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As discussed in Chapter 3 (Section 3.2), our experience reveals that from a clinical perspective, an  

FCE rate of up to 5% does not have a significant effect on the estimated characteristics of MUPTs and 

MUP templates  (i.e., MU mean firing rate or firing rate variability; MUP peak to  peak voltage, duration, 

area, number of phases and number of turns). Therefore, a train with an FCE rate less than 5% is 

considered as a single (non-contaminated) train. 

7.2 A Supervised Classifier for Detecting Contaminated MUPTs 

To verify whether a given MUPT can be considered a single train or if it is a contaminated train a 

supervised classifier called here a single/contaminated classifier (SCC) was developed. The SCC uses a 

supervised classification scheme and MU firing pattern information of the given MUPT to determine its 

class label. The MU firing pattern information is represented by ten features extracted from the IDIs and 

MU firing pattern of the given MUPT. The majority of these features target the left side of the IDI 

distribution of the given MUPT, where short IDIs (i.e., the errors of interest) are reflected. The features , 

classifiers, and the training  methods employed to develop the SCC are the same as does used to develop 

the FPVC (Chapter 4). However, a different dataset was utilized to develop the SCC (see Section 7.4). 

Therefore, three classification methods were examined for developing  the SCC: FDA [105], [163], SVM 

[166], [167], and PD (Pattern Discovery) [164], [165], [168].These classifiers are briefly discussed in 

Section 4.3. 

7.3 Detecting FCEs in a Contaminated MUPT 

The FCE detection algorithm employs both MU firing pattern and MUP shape information to classify the 

MUPs of a contaminated MUPT as being either a FCE or a correct MUP assignment. Initially, 

erroneously assigned MUPs (i.e., FCEs) are detected using shape information. The goal is to detect those 

MUPs whose shape is inconsistent with the shapes of the majority of the MUPs in the MUPT. With the 

information provided by the EMG decomposition algorithm used, each MUP in the given MUPT is 

represented by a window of 80 sample points (representing an interval of 2.56 ms at a sampling rate of 

31.25 kHz) within the EMG signal band-pass filtered using a 1st –order LPD filter [49], [50]. Among 

these 80 samples, the L uncorrelated samples for which the N MUPs of the contaminated MUPT 

significantly differ from each other are selected and then used to detect FCEs using only MUP shape 

information. A gap-based feature selection algorithm was developed for finding these L features. 
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Let A = ´i�,/µI×¦� represent the N MUPs assigned to a contaminated MUPT, i�,∗ (+ th row of matrix A) includes the 80 filtered time sample of the ith MUP. By calculating the largest change, the gaps, in the 

sorted i∗,/ values, the L values with the largest gap that are also at least 8 samples (0.26 ms) apart are 

used as effective features to represent the MUPs assigned to the MUPT under study. 

Let �-dimensional vector f� denotes the � effective time samples representing the ith MUP in the given 

contaminated MUPT; the �-dimensional vector � represents the � corresponding samples of the MUP 

template of the given MUPT; and ° denotes an estimate of the root mean square value of the noise 

contaminating the MUPs. For each MUP, the percentage of shape inconsistency (PSI) and its distance 

from the MUP template (d) are calculated as: 

TAJ� = 1� ,Ðm£f�,Ñ − �Ñ − 3°¥ + m£−f�,Ñ + �Ñ − 3°¥ÒÓ
Ñ%�  

 

(7.1) 

k� = 1°D ,£f�,Ñ − �Ñ¥DÓ
Ñ%�  (7.2) 

where m�5� is the unit step function.  
 

Using ÔD statistics and the calculated values for PSIi and di, MUPs of a contaminated MUPT are 

classified into three classes based on their shape: 1) definitely a FCE if k� > ÔD��, Õ� AND PSIi > 0.8; 2) 

potentially a FCE if k� > ÔD��, Δ�; and 3) a correctly assigned MUP. 

In the second step of detecting FCEs, erroneously assigned MUPs are detected using MU firing pattern 

information. MUPs that cause IDI inconsistencies are detected and classified into three categories based 

on their firing pattern: 1) Semi-definitely a FCE if IDIi < µ-3σ; 2) potentially a FCE if IDIi < µ-2σ; and 3) 

do not know if IDIi > 2µ. Where µ and σ are the mean and standard deviation of the IDIs of the given train 

estimated using the EFE algorithm that provides accurate estimates of these IDI statistics of a MUPT 

even when contaminated by a high MCE rate [140]. 

In the third step, a MUP is classified as a FCE if it was assigned into either: 1) the definitely a FCE 

based on shape class; or 2) the potentially a FCE based on shape class AND the do not know based on 

firing pattern class; or 3) the potentially a FCE based on shape class AND the potentially a FCE based on 

firing pattern class. In addition, a MUP is labeled as a FCE if it is assigned into the Semi–definitely based 

on firing pattern and its PSI > 0.4.  Otherwise, it is classified as a correctly assigned MUP. 
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7.4 Evaluation 

Each part of the developed method was tested separately. Specifically, the three classification methods 

studied for the SCC discussed in Section 7.2 were trained using simulated data and tested using both 

simulated and real MU firing patterns. The FCE detection algorithm was tested using several MUPTs 

extracted by decomposing 43 simulated EMG signal.  

For training and evaluating the SCC, the same simulated and real MU firing patterns used for training 

the FPVC were employed (see Chapter 4, Section 4.4), but here instead of merging the obtained single 

MUPTs they were contaminated by adding up to 20% FCE and 70% MCE in steps of 1% and 10% 

respectively.  Specifically, for simulated data from 0% to 70% MCE and from 0 to 15%, including both 

acceptable and unacceptable levels of contamination, were added to the trains. For real data, up to 70% 

MCEs and up to 15% FCEs were added to the train. The simulated data set created contains 35,000 non-

contaminated trains (with an acceptable FCE rate) and 35,000 contaminated trains (with an unacceptable 

FCE rate). The real data set generated includes 21,899 non–contaminated trains and 58,162 contaminated 

trains. 

For studying the effectiveness of the FCE detection algorithm 535 MUPTs extracted from 43 EMG 

signals each of 10s length with different levels of intensity, ranging from 24 to 193 pps, with jitter values 

ranging from 50 to 150µs, and with IDI variability (i.e., coefficient of variation) ranging from 0.10 to 0.45 

generated using the  EMG signal simulator developed by Hamilton-Wright and Stashuk [153] were used. 

These data allowed us to study the performance of the developed method in relation to various degrees of 

MUP shape and IDI variability. Generated signals were decomposed using the DQEMG algorithm [7]. 

MUPs were added to each train extracted from an EMG signal at random points in time until the FCE rate 

of the train was between 5% and 20% (with 5% intervals). The added MUPs were selected randomly 

from the remaining MUPTs extracted from the same EMG signal.  

The performance of the classifiers studied for SCC was evaluated and compared in terms of correctly 

classifying contaminated and non–contaminated trains. Three accuracy indices were defined for this 

purpose: accuracy for non–contaminated trains (ANCT), accuracy for contaminated trains (ACT), total 

accuracy (AT). These three indices are given by: 

A���% = cdefZ� gh )g) − og)ie+)i5Zk lmTn� og��Zo5jp oji��+h+Zkng5ij )defZ� gh )g) − og)ie+)i5Zk lmTn� 5Z�5Zk × 100 (7.3) 



 

100 

A��% = cdefZ� gh og)5ie+)i5Zk lmTn� og��Zo5jp oji��+h+Zkng5ij )defZ� gh og)5ie+)i5Zk lmTn� 5Z�5Zk × 100 (7.4) 

A� % = cdefZ� gh  lmTn� og��Zo5jp oji��+h+Zkng5ij )defZ� gh  lmTn� nZ�5Zk × 100 (7.5) 

The performance of the developed FCE detection algorithm was evaluated using three indices: 

Sensitivity, specificity, and accuracy. These three indices are given by 

AZ)�+5+�+5p = c×ØÙØÚc×ØÙ × 100 (7.6) 

AOZo+h+o+5p = �1 − c×ØÙÚ − c×ØÙØÚcØ � × 100 (7.7) 

Ûood�iop = c×ØÙ × AZ)�+5+�+5p + cØ × AOZo+h+o+5pcz  (7.8) 

where the parameters N� , NÜ�Ý, N�, NÜ�ÝÞ, and NÜ�ÝÞ are defined as follows. 

N� : Number of MUPs that correctly assigned to the MUPT by the decomposition system used. These 

MUPs all generated by the corresponding MU and should be left in the MUPT.  NÜ�Ý: Number of FCEs added to the MUPs. N� : Total number of MUPs in MUPT; N�  = N� + NÜ�Ý. NÜ�Ý�Þ: Number of FCEs that correctly detected by the FCE detection algorithm. NÜ�ÝÞ: Number of MUPs that detected as FCE by the FCE detection algorithm (NÜ�ÝÞ ≥ NÜ�Ý�Þ  ). 

7.5 Results 

The performances of the three classification methods considered to implement the SCC for both 

simulated and real data are summarized in Tables 7.1 and 7.2, respectively. Each table presents the 

estimated means and standard deviations of the three performance indices A���,  A��, and A� for the 

three ranges of MCE rates studied. The aim of using these ranges was to study the effectiveness of these 

classifiers at different stages of EMG signal decomposition.  The values presented in Table 7.1 were 

obtained by running a 10–fold cross validation on the simulated data set used. While the values presented 

in Table 4.2 were obtained by evaluating the classifiers trained using the entire simulated data on the real 
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Table 7.1: Mean and standard deviations of the accuracy of the three studied classifiers applied to simulated MU firing patterns having acceptable and 

unacceptable FCE rate.  In each column of the table, individual or groups of classifiers bolded and indicated by an '*' had significantly better 

performance than the others as determined using a multivariate analysis of variance, at a 5% significance level and the Tukey-Kramer honestly 

significant difference test for pair-wise comparison of the mean values. For each performance index, when two or more methods had statistically similar 

performance, they are all identified. 

 Missed-Classification Error Rate 

  0% to 50%   0% to 70%  60% to 70% 

 A��� �%�  A�� (%) A� �%�  A��� �%�  A�� (%) A� �%�  A��� �%�  A�� (%) A� �%� 

FDA   80.7±0.6 *87.3±0.5 *84.0±0.4   78.1±1.0 *85.5±0.6 *81.1±0.6     71.9±2.1 *71.0±1.3 *71.4±1.2 

PD   79.6±0.8   85.8±0.5   82.7±0.2  78.0±0.9  82.4±0.3 80.2±0.4  *76.0±3.0  66.3±1.8 *71.1±2.2 

SVM *82.7±0.6   85.5±0.6    *84.1±0.6  *80.1±0.9  82.1±0.6  *81.1±0.6  *76.2±1.8 68.1±1.5 *72.1±1.1 

 

Table 7.2: The performance of the three classifiers applied to real MU firing patterns having acceptable and unacceptable FCE rate. As in Table 

7.1 above, individual or groups of classifiers that had significantly better performance than the others are identified. 

 Missed-Classification Error Rate 

  0% to 50%   0% to 70%  60% to 70% 

 A��� �%�  A�� (%) A� �%�  A��� �%�  A�� (%) A� �%�  A��� �%�  A�� (%) A� �%� 

FDA *87.4±0.4 *85.7±0.5 *86.1±0.4  *83.9±0.4 *79.2±0.8 80.8±0.5    76.7±1.1 *70.3±1.5    *72.3±0.5 

PD  82.5±0.7  82.1±0.6  82.2±0.5   *83.7±0.6   75.1±1.0 77.4± 0.8   *79.2±0.9  61.7±2.0 66.2±1.7 

SVM  84.2±0.6  83.0±0.5  83.2±0.4   *83.8±0.5   76.6±0.9 78.6± 0.6  *79.8±1.2  66.5±1.8  70.2±1.3 
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dataset when this dataset is divided in 10 different- equalize subsets. The statistical comparison of the 

methods were conducted using the analysis of variance, at a 5% significance level and the Tukey-Kramer 

honestly significant difference test for pair-wise comparison of the mean values.  

The calculated means and standard deviations across the MUPTs studied for the sensitivity, specificity 

and accuracy of the FCE detection algorithm with  � = 5, Õ = 0.01, and Δ = 0.05 are presented in Table 

7.3. These settings were empirically found to perform better based on experimentation with several 

MUPTs. 

7.6 Discussion 

Based on the results presented in Table 7.1, the SVM performs better than the FDA and PD classifiers in 

correctly classifying non-contaminated trains. On the other hand, the FDA classifier is best at correctly 

classifying contaminated MUPTs. Overall, the FDA classifier is better than the SVM and PD classifiers 

for the SCC because of the following three reasons. 1) The FDA classifier is the best classifier in terms of AT. For the data with 0% to 70% MCE rate, which is the general case, the FDA classifier has an average 

accuracy of 81.7%, while the SVM and PD classifiers had accuracy of 81.0%, and 80.2%, respectively. 2) 

The FDA classifier has the best performance in correctly classifying MUPTs with unacceptable FCE rate 

as contaminated. It is clear that misclassifying a contaminated MUPT as a single (i.e., valid) train is more 

costly than misclassifying a single train as contaminated. 3) The FDA classifier is the fastest classier 

among the three classifiers studied. Therefore, the FDA classifier is the best choice for detecting MUPTs 

contaminated with a high number of FCEs during decomposition.  

The results shown for the real data used in Table 7.2 also support the statement that an FDA classifier 

is the best choice as a SCC. As, shown for both 0% MCE and the general case, 0% to 70% MCE range, 

the FDA classifier had the highest accuracy in detecting contaminated MUPTs. For the worst case, 50% 

Table 7.3:  The performance of the FCE detection algorithm obtained using 535 MUPTs obtained 

from the decomposition of 43 simulated EMG signals. 

Sensitivity (%) Specificity (%) Accuracy (%) 

84.4±0.7 93.4±0.1 92.1±1.0 
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to 70% MCE rate range, the FDA classifier performed significantly better than the SVM and PD 

classifiers in detecting contaminated trains.  

The accuracy of the SCC in correctly classifying contaminated MUPTs decreases as the MCE rate in 

the train increases. Comparing the numbers presented for A�� in Tables 7.1 and 7.2 for three ranges of 

MCE rate reveal this fact.  

Figure 7.1 shows this trend for the three classifiers studied for the SCC. As shown, the FDA-based 

SCC (as the best classifier) correctly detected approximately only 65% of the contaminated MUPTs 

having MCE rates between 55% and 85%. A possible reason for the drop in performance of the SCC with 

increased MCE rate is that the accuracy of estimating the IDI statistics, especially the standard deviation, 

 

Figure 7.1: Accuracy of the classifiers studied for the SCC in correctly labeling a contaminated 

MUPT versus the MCE rate in the train. 
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decreases as the train becomes sparse [74]. The other reason is that the percentage of inconsistent IDIs for 

incomplete invalid trains is not as high as for full invalid trains. Figure 7.1 demonstrates another 

advantage of the FDA over the SVM and PD classifiers for developing a SCC. As shown, the FDA is 

more accurate than the other two classifiers evaluated in correctly classifying highly sparse contaminated 

MUPTs. 

The results presented in Table 7.3 show that the FCE detection algorithm can detect the majority of the 

added FCE errors and was also able to correctly classify most of the correctly assigned MUPs. However, 

for the same reason mentioned for the SCC the sensitivity of the FCE detection algorithm decreases as the 

MCE rate in the contaminated MUPTs increases (see Figure 7.2). As shown, the sensitivity of the 

algorithm for contaminated MUPTs having MCE rate between 25% and 85% was approximately 80%.  

 

Figure 7.2:  Sensitivity of the FCE detection algorithm in correctly detecting FCEs in a contaminated 

MUPT versus the MCE rate of the train. 
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Figure 7.3 illustrates the estimated values for the sensitivity of the FCE detection algorithm versus the 

similarity between the MUP template of the contaminated MUPT and an erroneously assigned MUP 

measured using the PsC [70]. As shown, the sensitivity of the algorithm decreases as the similarity 

between the incorrectly assigned MUP (i.e., the FCE) and the MUP template of the contaminated MUPT 

increases such that in the worse case (PsC = 0.8) the algorithm failed to detect approximately 78% of the 

FCEs created by MUPs that are very similar to the MUP template. Sensitivity for such cases can be 

improved by increasing Õ or classifying at least one of the two MUPs creating an IDI < µ-3σ as an FCE, 

but such an adjustment may cause specificity to decrease. Nevertheless, the performance of the algorithm 

on average is promising in terms of detecting and removing FCEs from contaminated MUPTs. 

 

Figure 7.3:  Sensitivity of the FCE detection algorithm in correctly detecting a MUP erroneously 

assigned to a contaminated MUPT versus the pseudo-correlation (PsC) between the MUP and the 

template of the MUPT. 
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7.7 Conclusions  

A robust method for detecting MUPTs contaminated by a high number of false classification errors and 

then detecting the erroneously assigned MUPs in a contaminated MUPT was presented. Evaluation based 

on both simulated and real data shows that the FDA-based SCC developed for discriminating between 

contaminated and non-contaminated MUPTs outperformed the SVM-based SCC and the PD-based SCC. 

The accuracy of the FDA-based SCC is 84% and 81% for simulated and real data, respectively. The 

FDA-based SCC, on average, correctly classified around 87.3%  and 85.7% of the contaminated MUPTs 

created by a decomposition algorithm.  

The obtained results using several simulated contaminated MUPTs also revealed that the FCE detection 

algorithm can on average detect 84.4% of the FCEs in a given MUPT. However, the accuracy of both the 

SCC and the FCE detection method decreases as the percentage of MCEs in a MUPT increases. In 

addition, the sensitivity of the FCE detection algorithm in detecting an MUP erroneously assigned 

decreases as the similarity between the MUP and the MUP template of the MUPT increases. 

Nevertheless, the overall accuracy of the method (92.1%) is encouraging and suggests using the method 

during EMG signal decomposition to improve the results or to facilitate editing extracted MUPTs. 
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Chapter 8 

EMG Signal Decomposition using MUPT Validity 

8.1 Introduction 

EMG signal decomposition is the process of resolving an EMG signal into its component MUPTs. The 

purpose of EMG signal decomposition is to provide an estimate of the firing pattern and MUP template of 

each active MU that contributed significant MUPs to the composite EMG signal. Numerous automatic 

and semi-automatic EMG signal decomposition methods, as summarized in Table 1.2 and discussed in 

Chapter 2, have been proposed. These algorithms have been shown to be able to successfully decompose 

both the simulated and real EMG signals used for their evaluation. However, the obtained results still 

depend on several factors such as the parameters used by the algorithms, the decomposability of the 

signal, and the MUP shape and MU firing pattern variability over the entire signal. In addition, the 

accuracy of an EMG signal decomposition depends on the validity of the MUPTs obtained by the 

decomposition algorithm which in turn depends on the criteria and parameters used to merge or split 

MUPTs. 

This chapter describes a newly developed EMG signal decomposition system that uses MUPT validity 

and how it was evaluated. The newly developed validity-based decomposition system is, in essence, an 

enhanced version of the decomposition algorithms of DQEMG [7]. In DQEMG, the detected MUPs are 

grouped into several MUPTs using STBC [74] and a supervised certainty-based classifier (CBC) [72]. 

The STBC algorithm is a customized K-means clustering method that uses both MUP shape and MU 

firing pattern information to cluster MUPs. In STBC, MUPTs are split or merged based on several 

heuristic criteria. Assuming the MUPTs provided by the STBC  algorithm are valid, they are augmented 
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by the CBC algorithm in which a MUP is assigned to the MUPT that has the greatest certainty value, if 

this value is greater than a certainty assignment threshold. Otherwise, the MUP is left unassigned. In the 

CBC algorithm, two MUPTs are merged if the resulting MUPT satisfies several predefined criteria but 

the MUPTs are not split nor assessed for splitting. The new validity-based decomposition system employs 

the algorithms presented in Chapters 6 and 7 to merge, split, or edit MUPTs. The new system also adjusts 

the assignment threshold for each individual MUPT adaptively based on the validity information 

extracted from the train. At the end of each classification pass through the set of detected MUPs, during 

supervised classification, the validity of each obtained MUPT is evaluated. Invalid MUPTs either have 

their FCEs corrected or are split into valid trains. In addition, during supervised classification, the 

minimum certainty MUP assignment thresholds for invalid trains are increased while the thresholds for 

valid trains are decreased (i.e., adaptive adjustment of the assignment criteria). This adjustment controls 

the minimum confidence required to assign a MUP to a specific MUPT. Details of the newly developed 

decomposition algorithms along with its evaluation using several simulated and real EMG signals are 

given in the following sections. 

8.2 MUPT Validity-based Decomposition System 

The validity-based EMG signal decomposition system decomposes a detected EMG signal off-line. The 

system consists of four major steps: signal preprocessing, MUP detection, and clustering and supervised 

classification of the detected MUPs. A brief description of the objective of each step is given in Figure 

8.1. Signal preprocessing, MUP detection, and clustering of detected MUPs are completed using methods 

similar to that in DQEMG [7]. The main contribution of this work is in the supervised classification step 

in which the user-defined parameters and heuristic criteria used in the DQEMG algorithms are replaced 

by the signal dependent parameters and several supervised classifiers, respectively. Following is a 

description of these steps. 

8.2.1 Signal Preprocessing  

The signal preprocessing step is involved with filtering the signal to improve the SNR of the signal, 

decrease MUP temporal overlap, to accentuate the differences between MUPs created by different MUs, 

and to increase the separation between MUPs and the background noise. For this purpose, a 1st-order LPD 

filter [49], [50] as defined in Equation 5.8 is employed. Figure 8.2 shows the effectiveness of LPD 

filtering of an EMG signal. As shown, filtering flattens the signal baseline and makes the MUPs into 

narrower and more recognizable spikes.  
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8.2.2 MUP Detection 

MU detection identifies the position of the MUPs in a given EMG signal. The positions of suitable MUPs 

in the filtered signal are detected using a threshold crossing technique by which the prefilterd EMG signal 

is scanned and the peaks that satisfy several criteria [7] are detected and considered as the occurrence 

times of MUPs. In general, the amplitudes of detected MUPs are higher than the baseline noise. Figure 

8.2  illustrates the segmentation procedure for an EMG signal. 

 For clustering and supervised classification, each detected MUP is represented using the 80 filtered 

data samples (i.e., 2.56 ms at 31250 Hz sampling rate), centered about its peak value (i.e., about the 

position of maximum slope of the unfiltered MUP data).  

 

Figure 8.1: The main steps of the validity–based decomposition system along with the objective 

of each step. 
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8.2.3 Clustering of the Detected MUPs 

Detected MUPs are clustered to obtain the initial information required for supervised classification such 

as estimates of the number of MUPTs, their prototypical MUP shapes (or templates), and their MU firing 

pattern statistics. To extract such information, the MUPs detected in a specified portion (a 5 second 

interval with the highest number of detected MUPs) of the EMG signal are input to the STBC algorithm 

[74] that groups the detected MUPs into several MUPTs using both firing time and shape information 

across multiple iterations. The initial estimate of the number of clusters (number of active MUs) is equal 

to the maximum number of MUPs and the initial cluster centers are the actual MUPs in the 30 ms interval 

 

 

Figure 8.2: The effectiveness of LPD filtering and the segmentation procedure for an EMG signal. A 

portion of the signal containing ten MUPs (top row). The LPD filtering results for this portion. Gray 

region shows the estimated level of baseline noise. 
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within the selected 5 second interval. Having estimates for the number of clusters and their centers, each 

detected MUP is assigned to the closest cluster, if its distance to the core of the closest cluster is smaller 

than 0.25 times that of the second smallest distance from the candidate MUP and the cluster centers. In 

STBC, a MUPT will be split into two trains if it includes a MU firing-pattern inconsistency. Similar 

MUPTs are merged if their MUP templates are close and the firing pattern of the merged MUPT satisfies 

several criteria [74]. The MUP assignment, cluster splitting, editing, and merging steps are repeated until 

the resulting MUPTs are stable. Detail of the STBC algorithm can be found in [74]. 

8.2.4 Supervised Classification of Detected MUPs 

Having the initial information about possible MUPTs provided by the clustering step, the detected MUPs 

are assigned to MUPTs using a supervised classifier. The objective here is to assign each MUP to the 

MUPT for which the MUP’s time of occurrence and shape are more consistent with respect to the MU 

firing times and MUP shapes of the selected MUPT, respectively, than to the other MUPTs. Each of the 

MUPTs should have low MCE and FCE rates and represent the activity of a single MU that contributed 

detected MUPs to the given EMG signal. In this work, a new adaptive certainty-based classifier was 

developed for this purpose. 

The certainty-based classifier [72] is a supervised classifier that combines both MUP shape and MU 

firing pattern information to calculate the confidence of assigning a candidate MUP to a MUPT. The 

candidate MUP is assigned to the MUPT that has the greatest certainty value, if this value is greater than 

a certainty assignment threshold (CAT). Otherwise, the MUP is left unassigned.  

The certainties for assigning a candidate MUP are evaluated for the two trains that have the most and 

the next most similar MUP templates. These two trains are found by calculating the Euclidian distance 

between the candidate MUP and the MUP template of each MUPT. The certainties are calculated using 

MUP shape and MU firing pattern information. MUP shape certainty includes normalized absolute shape 

certainty (a�Þ) and relative shape certainty (aßÞ). The first represents the distance from the candidate 

MUP to the template of a train, normalized by the energy of the template. The second represents the 

distance from the MUP to the most similar MUP template relative to the distance of the MUP to the next 

most similar MUP template. Assuming i/ represents the feature vector of the MUPj being classified and, �� and �D respectively represent the feature vectors of the closest and the next closest MUP template to 

MUPj, a�Þ/  and aßÞ/  are evaluated as 
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a�Þ �/ = eiX à1 − ��á��áD , 0â ;  + = 1,2 (8.1) 

aßÞ �/ = 2 − + + �−1�� ��2�D ;  + = 1,2 (8.2) 

where r# is the Euclidean squared distance between the MUP and �� and is given by 

�� = �i/ − ����i/ − ���z. (8.3) 

Firing pattern certainty, a×Ø , measures the consistency of the occurrence time of the candidate MUP 

relative to the established MU firing pattern of a MUPT. Denoting 5/  as the occurrence time of the given 

MUP (i.e., MUPj) and 5ä� and 5@�  as the occurrence times of the previous and next MUPs in MUPTi, the 

firing pattern certainty of assigning MUPj to MUPTi  (aÜ��/ ) is given by: 

aÜ��/  = aå�/ £¯5/ − 5ä�¯¥ × aå�/ £¯5/ − 5@� ¯¥ (8.4) 

Where  

aå�/ £¯5/ − 5ä�¯¥ = , 1√)
æ�

@%� exp ç− £¯5/ − 5ä�¯ − )U�¥D
2)V�D è. (8.5) 

The two parameters U� and V�  represent the mean and standard deviation of the IDIs of MUPTi estimated 

using the EFE algorithm [140]. If  U� and V� are not available or ¯5/ − 5ä�¯ > U� + 3V�, aå�/ £¯5/ − 5ä�¯¥ is 

set equal to 0.2. The value for aå�/ £¯5/ − 5@� ¯¥ is estimated as aå�/ £¯5/ − 5ä�¯¥ by replacing 5ä� with 5@�  in 

Equation 8.5. 

The firing pattern certainty function given in Equation 5 for  aå�/ £¯5/ − 5ä� ¯¥ is based on a multi-modal 

Gaussian model representing the IDI distribution of a MUPT with different levels of MCE rate. This 

model, which estimates the probability density function of the IDIs of a MUPT, is given in Equation 3.1. 

Having the shape certainties and the firing pattern certainty, the overall certainties for assigning the 

MUPj to one of the two selected MUPTs are estimated by multiplying the shape and firing pattern 

certainties as 

a�/ = a�Þ �/ × aßÞ �/ × aÜ� �/ ; i =1,2 (8.6) 

If a�/ > aéz, the candidate MUP is assigned to the MUPT which has the greatest certainty value, 
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otherwise it is left unassigned.  

In order to accommodate non-stationarity in MUP shapes, the algorithm updates the MUP templates 

with each MUP assignment. The MUP templates are calculated using a moving average for which the 

weights are the certainties with which MUPs are assigned to the MUPTs. If MUPj is assigned to MUPTi 

with certainty a�/  higher than the updating threshold (0.6 in this work) the template of MUPTi (��) is 

updated as [72]: 

� �Iêë = � � + a�/i/1 + a�/  (8.7) 

where a� is the feature vector of MUPj . 

Once each pass is completed and before decomposition continues, the validity of each extracted MUPT 

is assessed using the methods discussed in Chapters 6 and 7. Invalid trains are detected, corrected and 

have their aéz  adjusted. Trains that are classified as merged by the ANDMC or LRMC are split into valid 

trains using a K-means clustering algorithm; the single MUPTs that were classified as contaminated by 

the SCC have their FCEs corrected using the automated MUPT editing algorithm presented in Chapter 7. 

To decrease the number of MCEs and FCEs in the MUPTs, the CAT value for each MUPT is adjusted 

based on its validity (i.e., an adaptive adjustment of the assignment threshold). For invalid MUPTs (either 

merged or contaminated), the CAT is increased by a step of 0.005 while the CAT for valid trains is adjusted 

based on the PsC between the MUP template of this train and that of the closet train as follow. 

aì��íî = 0.005 + [eiX�0.02, aì�� − 0.005] × ZXO�−c�;Ã/ð� (8.8) 

Where c�;Ã is the number of iterations that the classification algorithm has passed through in assigning all 

of the MUPs and  ð is the decreasing rate of the aéz  for a valid MUPT and is given by 

ð = ¨1/3                     T�a ≤ 0.11             0.1 < T�a ≤ 0.32              0.3 < T�a ≤ 0.54                         T�a > 0.5 ® (8.9) 

The CAT value of a MUPT is not decreased or increased below 0.005 or above 0.99, respectively.  

In addition to splitting or editing invalid MUPTs, the chance of merging single MUPTs is evaluated. 

Pairs of MUPTs that have similar MUP templates are merged if the resulting train is valid. MUP template 
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similarity is measured by estimating the pseudo-correlation, the PsC value, between the MUP templates 

of the two selected MUPTs. Two trains are merged if the PsC between their MUP templates is ≥ 0.4.  

The MU firing pattern statistics of each MUPT are updated. The MUP assignment and MUPT splitting, 

editing, and merging steps are repeated until either, the maximum number of iterations is exceeded or the 

MUPTs are stable. If trains are merged or split at least one more supervised classification pass will be 

completed. 

A flowchart of the validity-based EMG signal decomposition system is presented in Figure 8.3. The 

adaptive nature of the validity-based decomposition system, which adjusts the CAT value for each MUPT 

based on the estimated validity of the train assists with improving the decomposition results in terms of 

estimating the correct number of  MUPTs represented in the set of detected MUPs and decreasing MCE 

and FCE rates in each MUPT.  

8.3 Evaluation Methodology 

The performance of the validity-based decomposition algorithm was evaluated using several simulated 

and real EMG signals. For each EMG signal, the MU discharge patterns provided either by the EMG 

signal simulator used or by a human expert operator were used as reference. Following are details of each 

data set. 

For simulated data, 32 EMG signals were generated using a physiologically-based EMG signal 

simulation algorithm [153]. This EMG signal generation tool creates simulated intramuscular EMG 

signals with different complexities such as different numbers of active MUs, different degrees of MUP 

shape and/or IDI variability (represented by the amount of jitter and CV of IDI ), and different signal 

intensities (represented by the average number of MUPs  per second (pps)). Using these algorithms, EMG 

signals can be simulated similar to those detected from normal, myopathic and neurogenic muscles with 

different degrees of involvement. 

For real data, several single-channel EMG signals provided by K.C. McGill, VA RR&D Ctr, Palo Alto, 

US [178]; and multi-channel EMG signals provided by J.R. Florestal, P.A. Mathieu, and K.C. McGill 

[97] were used. The single-channel signals were recorded using a monopolar needle electrode during low-

level isometric contractions of the brachial biceps muscles of normal subjects. The multi-channel signals 

were recorded simultaneously from the brachioradialis muscles of three normal subjects using six or 

seven pairs of fine wire electrodes during low-level isometric contractions. Of the MUs contributed to  
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Figure 8.3: Flowchart of the validity–based EMG signal decomposition system. 
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each signal, only the discharge patterns of those MUs that were selected by the expert as accurately 

identified patterns and the amplitude of their MUP templates  were >0.01V/S were considered as 

reference and used for evaluation.  For this data set, the signals detected by each electrode were 

considered as single-channel EMG signals.  

Four indices were used for evaluation: assignment rate (A�), accuracy (A�), correct classification rate 

(CC�), and error in finding the correct number of MUPTs (E�
����). These four indices are given by: 

A�% = cdefZ� gh  lmT� i��+�)Zkng5ij )defZ� gh lmT� kZ5Zo5Zk × 100 (8.10)

A�% = cdefZ� gh  lmT� og��Zo5jp oji��+h+Zkng5ij )defZ� gh lmT� i��+�)Zk × 100 (8.11)

CC�% = cdefZ� gh  lmT� og��Zo5jp oji��+h+Zkng5ij )defZ� gh lmT� kZ5Zo5Zk × 100 (8.12)

ENMUPTs= Number of extracted MUPTs - Number of expected MUPTs (8.13)

where the number of expected MUPTs equals to the number of MUPTs identified by the human expert or 

identified by the simulator as significant. 

8.4 Results and Discussion 

Performance results for the validity-based decomposition system and that of the original decomposition 

algorithms of DQEMG for both simulated and real data are summarized in Tables 8.1 and 8.2, 

respectively. For each data set, the performance for each signal used along with the mean and standard 

deviation (STD) for the performance indices over all signals is reported. Statistical comparison of the 

average values was conducted using paired t-tests (α= 0.05), while comparison of the STD values was 

conducted using F-tests (α= 0.05). 

For the simulated data set (i.e., Table 8.1), the validity-based decomposition system has significantly 

improved decomposition results in terms of all four performance indices (p < 0.00001). In addition, the 

validity-based system has lower STD for all performance measures (p < 0.02), which shows that the 

system has better overall and less variable performance. The improvement in decomposition results 

(especially CCr and ENMUPTs) increases as the complexity of the signal increases, such that for the last four  
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Table 8.1:  Characteristics of the simulated EMG signals used along with the performance of the decomposition algorithms of the DQEMG and the 
validity-based decomposition system for these signals. Note: for ENMUPTs the mean absolute value is presented. 

     

Original DQEMG 

 

Validity-based system 

Signal Intensity (pps) No. of MUPTs Jitter (ms) IDI-CV Ar  (%) Ac  (%) CCr (%) ENMUPTs   Ar  (%) Ac (%) CCr (%) ENMUPTs 

1 30.5 3 100 0.15 92.1 97.2 89.5 0 
 

98.1 98.3 96.4 0 
2 35.3 4   50 0.15 93.5 99.4 92.9 0 

 
98.6 100.0 98.6 0 

3 41.8 5 100 0.15 87.8 97.5 85.6 0 
 

97.4 97.4 94.8 0 
4 45.6 4   50 0.15 88.8 93.1 82.7 0 

 
97.8 96.4 94.3 0 

5 54.0 6   50 0.15 92.6 98.0 90.7 0 
 

97.4 99.6 97.0 0 
6 59.4 7 100 0.15 90.7 95.9 87.0 0 

 
95.8 99.6 95.4 0 

7 61.4 6  75 0.15 78.0 96.4 75.2 1 
 

93.5 98.1 91.7 0 
8 62.6 6 150 0.10 70.7 74.4 52.6 4 

 
87.7 92.0 80.6 0 

9 62.6 6 150 0.30 72.3 80.4 58.1 3 
 

90.2 88.6 79.9 1 
10 68.2 7   50 0.15 90.2 96.4 86.9 0 

 
94.6 98.4 93.1 0 

11 70.7 7 100 0.15 73.3 96.9 71.0 3 
 

95.3 98.5 93.9 0 
12 79.3 8   25 0.15 91.0 82.3 74.9 0 

 
93.6 99.1 92.8 0 

13 82.5 8 100 0.15 83.5 89.8 75.0 2 
 

90.2 95.3 86.0 0 
14 85.2 9   50 0.15 89.3 87.3 78.0 -1 

 
93.2 97.9 91.2 0 

15 88.4 9   75 0.20 98.1 68.8 67.5 -1 
 

90.5 96.3 87.1 0 
16 91.7 7  50 0.15 80.5 85.8 69.0 1 

 
87.8 95.8 84.1 0 

17 94.6 9  50 0.20 87.2 89.6 78.2 1 
 

91.3 91.5 83.5 1 
18 94.6 9 150 0.15 78.8 85.4 67.3 3 

 
91.1 90.9 82.9 0 

19 95.6 9  50 0.30 87.0 80.9 70.4 3 
 

94.3 90.6 85.5 0 
20 95.6 9  75 0.30 77.3 85.9 66.4 4 

 
88.7 86.0 76.2 1 

21 95.9 9 50 0.10 87.9 81.7 71.8 3 
 

92.7 96.2 89.1 0 
22 96.0 9 150 0.30 75.7 72.0 54.5 5 

 
90.8 85.8 77.9 1 

23 97.5 10 100 0.15 87.6 84.8 74.3 1 
 

91.8 95.8 87.9 0 
24 105.2 9  50 0.15 80.6 87.1 70.2 4 

 
91.3 97.6 89.1 0 

25 109.5 9  75 0.15 88.1 83.4 73.5 1 
 

90.6 96.7 87.6 0 
26 116.5 8  75 0.15 71.9 90.3 65.0 5 

 
88.7 96.7 85.8 0 

27 119.4 10  75 0.15 78.5 70.2 55.2 2 
 

86.3 87.5 75.5 1 
28 120.6 11  50 0.15 72.9 87.3 63.6 4 

 
87.6 90.0 78.8 1 

29 127.5 11  50 0.15 81.6 83.7 68.3 4 
 

87.6 94.7 83.0 0 
30 135.2 10  75 0.30 68.2 80.2 54.7 5 

 
88.0 88.6 78.0 1 

31 134.5 10  50 0.30 76.8 89.5 68.8 5 
 

90.7 89.5 81.1 1 
32 135.8 10 150 0.30 62.4 82.3 51.3 7   79.0 84.6 66.9 2 

Mean   
 

82.3 86.7 71.6 2.3 
 

91.6 94.2 86.4 0.3 
STD 

 
8.6 8.3 11.5 2.0 

 
4.2 4.6 7.5 0.5 
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Table 8.2: The performance of the original decomposition algorithms of the DQEMG system and the validity-based decomposition system for real 

EMG signals. Note: for ENMUPTs the mean absolute value is presented. 

   

Original DQEMG 

 

Validity-based system 

Signal Intensity(pps) No. of MUPTs Ar (%) Ac (%) CCr (%) ENMUPTs 
 

Ar (%) Ac (%) CCr (%) ENMUPTs 

1 26.7 3 100.0 100.0 100.0 0  99.8 99.8 99.6 0 
2 33.8 4 100.0 100.0 100.0 0  100.0 100.0 100.0 0 
3 48.9 5 93.0 99.9 92.9 0  97.9 100.0 97.9 0 
4 63.9 6 99.3 99.8 99.1 0  99.8 100.0 99.8 0 
5 65.4 6 99.7 100.0 99.7 0  99.6 99.8 99.4 0 
6 65.6 7 98.1 99.8 97.9 0  99.8 100.0 99.8 0 
7 65.7 7 99.8 100.0 99.8 0  100.0 100.0 100.0 0 
8 66.9 7 94.4 100.0 94.4 0  99.6 99.6 99.2 0 
9 71.7 7 84.7 99.8 84.4 1  98.6 98.7 97.3 0 
10 74.1 7 96.4 99.4 95.7 0  98.1 99.9 98.0 0 
11 79.4 8 91.7 99.4 91.2 0  97.8 99.2 97.0 0 
12 80.2 8 95.1 97.8 93.1 0  96.3 98.5 94.9 0 
13 115.8 9 94.6 98.9 93.5 0  96.6 99.7 96.3 1 
14 70.5 10 98.7 87.9 86.8 -1  99.1 99.5 98.6 0 
15 90.3 10 96.8 99.8 96.7 0  97.3 99.4 96.8 0 
16 86.6 10 96.6 99.0 95.7 0  98.1 99.2 97.3 1 
17 105.0 10 95.7 99.9 95.6 0  98.9 99.7 98.6 0 
18 116.2 10 96.4 72.3 69.7 -3  97.8 99.4 97.2 0 
19 105.8 11 95.6 98.2 93.9 0  97.7 99.1 96.8 0 
20 112.3 11 88.4 87.9 77.7 3  94.8 98.2 93.1 0 
21 112.4 11 82.7 97.0 80.2 4  91.0 95.4 86.7 0 
22 114.3 11 86.6 98.8 85.6 0  94.8 98.2 93.1 0 
23 89.7 12 99.1 61.7 61.2 -5  99.1 99.5 98.6 0 
24 120.7 12 94.6 98.6 93.3 0  97.1 99.3 96.4 0 
25 119.7 13 91.6 98.5 90.2 1  94.4 99.4 93.8 2 
26 130.3 13 90.1 98.6 88.9 1  96.6 98.9 95.5 0 
27 146.1 14 86.6 89.9 77.8 1  93.9 98.7 92.7 0 
28 152.8 14 90.1 98.6 88.9 1  93.2 98.3 91.7 0 
29 157.4 15 91.4 90.6 82.8 -1  96.1 98.8 94.9 0 
30 155.0 15 86.1 98.7 84.9 1   93.0 98.5 91.5 1 

Mean   93.8 95.7 89.7 0.8 
 

97.2 99.1 96.4 0.2 
STD 5.0 8.7 9.3 1.3 

 
2.4 0.9 3.1 0.5 
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signals, each having intensity > 134 pps, the CCr values are improved by at least 12.4 % and either Ar or Ac or both are significantly improved.  

The results presented in Table 8.1 reveal that both the validity-based system and the original 

decomposition algorithms of the DQEMG can successfully decompose EMG signals with low to 

moderate complexity and with varying MUP shapes and MU firing pattern variability. These accuracies 

may be sufficiently high for clinical application of EMG decomposition results when several 

physiological parameters, such as the MUP template and the mean firing rate for each MU, are required. 

The performance of both the validity-based system and the decomposition algorithms of the DQEMG 

decreases as the complexity of the signal increases, but the validity-based system performed better than 

the DQEMG for complex signals. In fact, the advantage of the validity-based system for relatively simple 

signals may not be as evident as for highly complex signals. As shown, for the first six EMG signals, 

which have low complexity, both algorithms correctly estimated the number of expected MUPTs and 

decomposed the signal with Ar > 93.1% and Ac > 87.1 %. However, for the last nine signals, each having 

an intensity > 100 pps, the DQEMG extracted 37 extra MUPTs (4.1 extra MUPTs/signal) while the 

validity-based developed system extracted only 6 extra MUPTs (0.7 extra MUPTs/signal). In addition, the 

average CCr for the DQEMG for these nine signals is 63.4 % while that of the validity-based system is 

80.6 % (+17.2% improvement). The significant reduction in ENMUPTs and CCr achieved using the validity-

based system for the last nine signals demonstrate the advantage of the validity-based system over the 

DQEMG.  

In general, the results obtained using the real data presented in Table 8.2 are consistent with those 

presented for the simulated data; the validity-based decomposition system outperformed the DQEMG in 

terms of the average and STD values of all four performance measures, which shows that the validity-

based system has higher overall and less variable (or more robust) performance. However, both systems 

performed better on the real data set than on the simulated data set. One possible reason is that the MU 

firing pattern and MUP shape variability in the real signals are lower than that in the simulated signals. 

The other possible reason is that the similarity between MUPs created by different MUs in the real data 

used are lower than that in the simulated data. 

Figures 8.4 and 8.5 present decomposition results for simulated EMG signal 14 for both the DQEMG 

and the validity-based system, respectively. The EMG signal used is composed of 9 MUPTs and was 

simulated to have a jitter value of 50 µs and an IDI- CV of 0.15. For each MUPT, the accuracy and 
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identification rate (ID rate) are presented. Comparing MU firing patterns plots and the accuracy and 

identification rate values presented for each train in these two figures reveals the advantages of using the 

validity-based system. As shown, both the accuracy and completeness (ID rate) of the majority of the 

trains created by the validity-based system are improved relative to those created by the DQEMG.  

Similar improvement can also be seen in the IDI histogram and MU firing rate plot of each MUPT. More 

importantly, the decomposition algorithms of the DQEMG underestimated the expected number of 

MUPTs. Two MUPTs (Trains 4 and 9 according to Figure 8.5) were mistakenly merged and reported as 

Train 4. On the other hand, the validity-based system correctly estimated the number of expected MUPTs.  

For the example shown in Figures 8.6 and 8.7  both systems correctly estimated the number of MUPTs 

composed the EMG signal used, but the MUPTs obtained using the validity-based decomposition system 

are more accurate and complete than the trains obtained using the decomposition algorithms of the 

DQEMG. With the validity-based decomposition system, the accuracy for train # 2 was improved by 11% 

and the assignment rate (ID rate) for trains 4, 5, and 6 was improved by 25%, 23%, and 39%, 

respectively. Comparing the MU firing plots (last column) for the trains obtained by these two systems 

reveals the consequence of this improvement.  

Increases in MU firing pattern or MUP shape variability can decrease the performance of a 

decomposition system. Nonetheless, for the EMG signals with relatively high jitter and IDI–CV values 

studied, the improvement gained using the validity-based system was significant.   

The DQEMG and the validity-based system are for decomposing intramuscular EMG signals mainly 

for clinical application where several physiological parameters, such as the MUP template and mean MU 

firing rate for each MUPT, are required. Since these parameters can be estimated from incomplete 

MUPTs, superimposed MUPs are not resolved by these two systems. In fact, the majority of MUPs left 

unassigned by these algorithms are superimposed MUPs. In addition, low amplitude MUPs, which are 

composed of low frequency components and created by MUs with no muscle fibers close to the electrode 

detection surface, are neither detected nor considered for clustering and supervised classification. If such 

MUPs were detected and then considered for clustering and supervised classification, the accuracies of 

both systems may not be as high as those presented in Tables 8.1 and 8.2. Finally, the accuracies of both 

DQEMG and the validity-based system for EMG signals contaminated by high levels of noise may be 

lower than the values reported for the simulated and real EMG signals used in this work. 
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Both the DQEMG and the validity-based system assume the mean and standard deviation of the IDIs of 

the MUs that contributed to the signal being decomposed did not change during signal detection. Such 

assumptions are valid for EMG signals detected during short-term isometric contraction; however, these 

assumptions may not be realistic for EMG signals detected during either force-varying or long 

contractions. Such limitations restrict the use of both DQEMG and the validity-based system for research 

applications where the decomposition of signals detected during non-isometric or long-term contractions 

are required. Nevertheless, DQEMG has been used successfully for the decomposition of intramuscular 

EMG signals detected for clinical applications [7], [8], [12], [13], [18], [20], [21], [32]. 

Validating MUPTs during EMG decomposition and correcting invalid MUPTs takes time. The average 

processing time of the DQEMG for the simulated data used was 15.9 s while that for the validity-based 

system was 23.6s; the DQEMG is approximately 1.5 times faster than the validity-based system. The 

algorithms are currently encoded in Matlab ( The Mathworks, Natick, MA) and processing was carried 

out on a computer with an Intel Core 2 Duo E8400 CPU (6M Cache, 3.00 GHz clock, 1333 MHz FSB) 

and 3GB of RAM. For both systems, the processing time is proportional to the number of MUPTs and the 

number of MUPs assigned. The average rate of increase of computation time versus intensity (pps) for 

DQEMG and the validity-based system was estimated to be 0.3 s/pps and 0.5 s/pps, respectively. 

Nonetheless, both DQEMG and the validity-based system are fast enough to be useful for clinical 

applications. 

8.5 Conclusions 

An innovative program for EMG signal decomposition has been presented. The MUPs comprising a 

given EMG signal are first detected using a threshold-based algorithm and then grouped into several 

MUPTs using STBC and a certainty-based algorithm. The developed system uses MUPT validity 

techniques to efficiently estimate the numbers of MUPTs comprising a given EMG signal by splitting 

merged MUPTs and merging MUPTs having similar MUP templates. To reduce the number of FCEs and 

MCEs in the extracted MUPTs: a) contaminated MUPTs are indentified and corrected; b) the assignment 

threshold for each train is increased or decreased based on the estimated validity of the train. The rate of 

decrease is dependent on the similarity of MUP templates between trains (i.e., adaptive classification). 

Evaluation results using several simulated and real EMG signals demonstrate that the validity-based 

system is more robust and accurate but slower than the decomposition algorithms of DQEMG. 
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Train# 1 

 

Train# 2 

 

Train# 3 

 

Train# 4 

 

Train# 5 

 

Train# 6 

 

Train# 7 

 

Train# 8 

 

Figure 8.4: Decomposition results for simulated EMG signal 14 obtained using the decomposition 
algorithms of the DQEMG. 
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Train# 1 
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Figure 8.5: Decomposition results for simulated EMG signal 14 obtained using the validity-based  
decomposition system. 
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Figure 8.6: Decomposition results obtained using the decomposotion algorithms of the DQEMG for an 

EMG signal composed of 6 MUPTs.  
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Figure 8.7: Decomposition results  obtained using the validity-based decomposition sysetm for 

the same signal of Figure 8.6. 
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Chapter 9 

Conclusions and Future Work 

9.1 Conclusions 

Decomposition of an EMG signal may result in several invalid MUPTs that do not  accurately represent 

the activity of a signal MU; such invalid MUPTs must be identified and then either corrected or excluded 

before extracted MUPTs are quantitatively analyzed. In addition, detecting and then correcting invalid 

MUPTs during decomposition can improve the results in terms of finding the correct numbers of MUPTs 

that constitute a given signal as well as decreasing the MCE and FCE rates in the extracted trains.  

Characteristics of IDI histograms, MU firing rates over time and within-train MUP shape 

inconsistencies of MUPTs extracted during EMG decomposition can be used to estimate their validity.  

The existing qualitative MUPT validation methods, which typically need human operator supervision, are 

time consuming, related to operator experience and skill, and cannot assist with improving the 

performance of automatic EMG decomposition systems. To overcome these issues, in this thesis the 

possibility of developing automatic MUPT validation algorithms has been explored. Several algorithms, 

based on pattern recognition techniques, have been developed and evaluated using both simulated and 

real data. With the methods presented in this work, the validity of a MUPT is estimated using either its 

MU firing pattern information or its MUP shape information or both types of information. Based on the 

results obtained, the methods that use only shape or only firing pattern information did not perform as 

well as the ones that used both types of information, especially for invalid trains. 
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Among the supervised classifiers developed and evaluated to estimate MU firing pattern validity of a 

train, the Switching classifier that first identifies the type of data and then classifies it using either the 

SVM algorithm or FDA, depending on data identification, showed the best performance. The accuracy of 

classifiers in categorizing invalid trains was very high (> 95%) for most cases, but it decreases as the 

MCE rate in trains increases and suggests the need, in some cases, for the combined use of MU firing 

pattern and MUP shape information.  

Classical cluster validation methods employed to estimate MUP-shape validity of a MUPT are either 

computationally complex (the gap statistic and jump methods) or inaccurate in classifying valid trains 

(the Beal and DH methods) when using 80 first-order discrete derivative data points as MUP features. 

However, the newly developed adaptive methods are sufficiently fast and accurate to be used during or 

after the decomposition of EMG signals. The fastest methods, the adaptive gap-based Duda and Hart 

method with an average computation time of 70 ms per train, had relatively high accuracy in correctly 

categorizing the MUPTs extracted during decomposition. The estimated average accuracy of this 

algorithm was 91.5% and 94.9% for simulated and real data, respectively, but the accuracy with which 

invalid MUPTs can be detected is dependent on the similarity of the MUP templates of the MUPTs 

comprising an invalid train, which suggests the need for the use of MU firing pattern as well as MUP 

shape information in evaluating such extracted MUPTs 

For the systems that use both MU firing pattern and MUP shape information to estimate the validity of 

a MUPT, the methods that separately estimate MU firing validity and MUP-shape validity and then 

estimate the validity of the train by fusing these two indices using trainable fusing methods performed 

better than the single classifier scheme that estimates MUPT validity by a SVM, especially for the real 

data used. The MVDH that combines the outputs of the FPVC and that of the AGDH using an AND 

operation had the lowest accuracy in classifying valid MUPTs. Of the fusion methods evaluated, the 

trainable techniques on average outperformed the non-trainable ones such that the LRMC in which the 

MU firing pattern validity and MUP shape validity are aggregated using a logistic regression classifier 

showed robust classification performance in classifying MUPTs (AT > 98.4%). However, the ANDMC 

which combines these two validity indices using an AND operation performed better than the LRMC for 

rejecting invalid trains, especially for invalid trains with high MCE rate. In addition, the ANDMC could 

be faster than the LRMC. Consequently, using the ANDMC during the early stages of decomposition and 
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then the LRMC during the latter stages of decomposition and/or after decomposition for post processing 

the extracted MUPTs may be the most practical way of using these two MUPT validation classifiers 

A method for detecting MUPTs contaminated with a high number of FCEs during EMG signal 

decomposition and then removing the FCEs from a contaminated train was also developed and evaluated. 

Of the supervised classifiers used to determine the class label of MUPTs (i.e., contaminated train or non-

contaminated train) the FDA showed the best overall performance with AT > 84 %. For a given 

contaminated MUPT, the FCE-detection algorithm on average correctly detected 83.4% of the FCEs and 

left 93.4% of the correctly assigned MUPs. The accuracy of the MUPs classified to a MUPT was 

estimated to be 92.1% on average. For the FDA classifier the accuracy in classifying contaminated 

MUPTs decreases as the percentage of MCEs in a MUPT increases. Likewise, the sensitivity of the FCE 

detection algorithm in detecting a FCE assigned decreases as either the similarity between the MUP and 

the MUP template of the MUPT or the MCE rate in the train increases. Nevertheless, the overall accuracy 

of both FDA and the FCE detection algorithm is promising and they can be used to improve the 

decomposition results or to facilitate editing extracted MUPTs. 

Finally, the effectiveness of using the developed MUPT validation systems and the MUPT editing 

methods during EMG signal decomposition was investigated by integrating these algorithms into a 

certainty-based EMG signal decomposition algorithm. The new validity-based decomposition system 

employs: a) the ANDMC or LRMC to merge and split MUPTs, b) the FDA-based SCC and the FCE 

detection algorithm to detect and then edit contaminated MUPTs. The system also adjusts the assignment 

threshold for each individual MUPT adaptively based on its validity and the similarity between its MUP 

template and that of the closest train. When these changes were made to the certainty-based EMG signal 

decomposition algorithm used, the decomposition accuracy was improved by 7.5% (from 86.7% to 

94.2%) on average; moreover a significant improvement was achieved in correctly estimating the number 

of MUPTs represented in a set of detected MUPs. 

9.2 Future Work 

For extending this research, several major directions as summarized below are proposed:  

1. When developing the SVM-based MUPT validation system, the best MU firing pattern and MUP-

shape classifiers were combined. Even though the developed system was both fast and accurate to 

be used during decomposition, there is a possibility that aggregating the other classifiers used in 
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this work or even existing classification techniques that were not studied here will provide a 

system as accurate as, but faster than, the current one.   

2. As discussed above, the accuracy of the FDA-based SCC classifier decreases when the MCE rate 

in a MUPT increases. Using classifier fusion techniques may resolve this issue. Using several 

MUP-shape features along with the MU firing pattern features used may also improve the 

performance of the SCC. The MUP-shape features can be extracted based on the methods 

presented for finding the outliers in a cluster [186-188] or even the methods developed for 

detecting super-imposed MUPs in a MUPT [189].   

3. The EFE algorithm underestimates σ and overestimates µ for trains with either high MCE rate or 

high CV.  Developing a new algorithm or modifying the EFE algorithm to improve the estimation 

error, especially for trains with a high MCE rate, may improve the accuracy of the SVM-based 

MUPT validation system, the FDA-based SCC, the FCE detecting algorithm, and decomposition 

results.   

4. The certainty-based classifier  only measures the confidence in assigning a MUP to the two closet 

trains found using a distance measure. Re-designing this classifier such that it provides the 

certainty values for all extracted MUPTs instead of just the first and second closest MUPTs may 

improve the decomposition accuracy. 

5. In the current validity-based decomposition system, the certainty assignment threshold for a valid 

MUPTs is decreased based the pseudo-correlation between the MUP template of this train and that 

of the closet train. Such a strategy can be used for an invalid train as well; the rate of increasing the 

assignment threshold can be adjusted based on the similarity between the MUP templates of the 

extracted trains. In addition, using other similarity measures to estimate the similarity between 

MUPTs may give better performance than the pseudo-correlation, which measures the similarity 

between the centers of the trains. When the similarity between the centers of two trains is low, 

there is no guarantee that these two trains are separate. The similarity measures proposed to 

measure the similarity between two clusters can be explored. 

6. Further analysis of the developed decomposition system, especially using clinical EMG signals 

acquired: a) from with myopathic and neurogenic muscles; b) during force-varying contractions. 
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