
Efficient Trust Region Subproblem
Algorithms

by

Heng Ye

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2011

c⃝ Heng Ye 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The Trust Region Subproblem (TRS) is the problem of minimizing a quadratic (possibly non-
convex) function over a sphere. It is the main step of the trust region method for unconstrained
optimization problems. Two cases may cause numerical difficulties in solving the TRS, i.e., (i) the
so-called hard case and (ii) having a large trust region radius. In this thesis we give the optimality
characteristics of the TRS and review the major current algorithms. Then we introduce some
techniques to solve the TRS efficiently for the two difficult cases. A shift and deflation technique
avoids the hard case;, and a scaling can adjust the value of the trust region radius. In addition, we
illustrate other improvements for the TRS algorithm, including: rotation, approximate eigenvalue
calculations, and inverse polynomial interpolation. We also introduce a warm start approach and
include a new treatment for the hard case for the trust region method. Sensitivity analysis is
provided to show that the optimal objective value for the TRS is stable with respect to the trust
region radius in both the easy and hard cases. Finally, numerical experiments are provided to show
the performance of all the improvements.

iii

Acknowledgements

I would like to thank my supervisor, Prof. Henry Wolkowicz for his guidance and support during
my graduate studies. I would like to thank my readers Prof. Stephen Vavasis and Prof. Thomas
Coleman for their time. I would also like to thank Dr. Marielba Rojas for providing and revising
the LSTRS software.

iv

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Outline of Results . 1

2 Optimality Conditions 2

3 Survey of Several Current Algorithms 7
3.1 The MS Algorithm . 8

3.1.1 The Easy Case . 8
3.1.2 The Hard Case . 10

3.2 The GLTR Algorithm . 11
3.3 The SSM Algorithm . 13
3.4 The Gould-Robinson-Thorne Algorithm . 14
3.5 The RW Algorithm . 16

3.5.1 Techniques Used for Maximizing k(t) . 19
3.5.2 Flow Chart . 23

4 Simple Scaling for the TRS 25
4.1 Scaling . 25
4.2 How Scaling Affects Optimal t∗ . 26
4.3 How to Choose the Best Scalar . 27
4.4 The Gradient and Hessian of k̂(r, t) . 29

5 Shift and Deflation 33

6 Other Improvements and Analysis of the Algorithm 35
6.1 Rotation Modification . 35
6.2 Inverse Polynomial Interpolation . 36
6.3 Approximate Eigenvalue Calculation . 38
6.4 Sensitivity Analysis . 39
6.5 Error Analysis on t∗ . 41

6.5.1 How ∆t Affects λ∗ . 41
6.5.2 How ∆t Affects k∗ . 42
6.5.3 How ∆t Affects k′(t∗) . 43
6.5.4 How ∆t Affects q∗ . 44

7 Application to Unconstrained Optimization 45
7.1 Modification for the Hard Case . 46
7.2 Warm Start . 47

v

8 Numerical Experiments 48
8.1 Scaling . 48
8.2 Shift and Deflation . 48
8.3 Rotation Versus the RW Algorithm . 50
8.4 Inverse Polynomial Interpolation . 51
8.5 Approximate Eigenvalue Calculation . 51
8.6 Revised RW Algorithm Versus LSTRS . 53
8.7 Hard Case (Case 2) with Multiple Smallest Eigenvalue 53
8.8 Results on Unconstrained Optimization Problems . 55

9 Conclusion 57

References 58

vi

List of Tables

1 Revised RW Algorithm vs fminunc . 56

vii

List of Figures

1 ∥x(λ)∥ in Easy Case . 5
2 ∥x(λ)∥ in Hard Case (Case 2) . 5
3 Newton Step in MS Algorithm . 9
4 Safeguarding Newton Step in MS Algorithm . 10
5 k(t) in Easy Case . 17
6 k(t) in Hard Case . 18
7 Bracketing Newton’s Method . 20
8 Triangle Interpolation . 21
9 Vertical Cut . 22
10 Linear Interpolation . 22
11 t(r) . 26
12 Upper Bound and Lower Bound of t When r = 1 (Not Scaled) 28
13 Upper Bound and Lower Bound of t When r = 1000 28
14 Upper Bound and Lower Bound of t When r = 1/1000 29
15 Inverse Polynomial Interpolation . 37
16 Scaling; Varying n; Density= 0.01; Easy Case . 49
17 Shift and Deflation; Varying n; Density= 0.01; Hard Case (Case 2) 49
18 Rotation vs RW; Varying n; Density= 0.01; Easy Case 50
19 Rotation vs RW; Varying Density; n = 1000; Easy Case 51
20 Inverse Polynomial Interpolation; Varying n; Density= 0.01; Easy Case 52
21 Approximate Eigenvalue Calculation; Varying n; Density= 0.01; Easy Case 52
22 Revised RW vs LSTRS; Varying n; Density= 0.01; Easy Case 53
23 Revised RW vs LSTRS; Varying n; Density= 0.01; Hard Case (Case 2) 54
24 Revised RW Algorithm; Varying m; n = 10000, Density= 0.01; Hard Case (Case 2) . 55

viii

1 Introduction

We are concerned with the following quadratic minimization problem, called the trust region sub-
problem

(TRS)
q∗ = min q(x) := xTAx− 2aTx

s.t. ∥x∥2 ≤ s2. (1)

Without loss of generality, we assume that A ∈ Rn×n is a symmetric matrix,1 a ∈ Rn, s ∈ R++ are
given, and x ∈ Rn is the unknown variable. Here, ∥x∥ :=

√
xTx is the Euclidean ℓ2 norm.

Solving the TRS is the main step of the trust region method for unconstrained minimization.
Precisely, it gives the step of each iteration in the trust region method. Moreover, it has many other
applications in e.g., regularization, sequential quadratic programming, and discrete optimization.

One of the main contributions of this thesis is a modified approach for solving the TRS that
involves a simple scaling. We analyze how different scalars can affect the so-called RW algorithm
[24], and suggest several methods to select the best scalar. Moreover, the scalar can also be viewed
as another parameter, and this gives rise to a new approach for solving the TRS. Besides the
scaling, we also study the shift and deflation step introduced in [13], which enables us to obtain an
equivalent TRS with a positive semi-definite matrix A if the so-called hard case holds. Therefore,
it can be solved efficiently using preconditioned conjugate gradients. The solution to the original
TRS can then be easily recovered by taking a primal step to the boundary.

Moreover, new techniques are also introduced to improve the efficiency of the algorithm, in-
cluding rotation, inverse polynomial interpolation and approximate eigenvalue calculations. The
performance of such techniques are all illustrated by numerical tests. Furthermore, we provide a
sensitivity analysis for TRS, and show that, under certain assumptions, the optimal value of the
objective function is stable with respect to perturbations in the trust region radius.

We conclude by showing how our revised algorithm behaves within the trust region method;
and, we also introduce two modifications to the method: (i) updating the radius in a different way
if the hard case occurs; and, (ii) using warm starts when a step is not taken. These modifications
not only improve the stability, but they also improve the efficiency of the trust region method.

1.1 Outline of Results

We continue in Section 2 and give a brief review of the optimality conditions of the TRS. Then,
in Section 3 we provide a survey of many of the current algorithms: the MS algorithm, [21], the
GLTR algorithm [15], the SSM algorithm [17], the Gould-Robinson-Thorne algorithm [16], and the
RW algorithm [13, 24]. In Section 4, we introduce the concept of scaling and how it can apply to
the RW algorithm. In Section 5, we show how shift and deflation are applied to the algorithm to
prevent the hard case (case 2). In Section 6, other techniques and sensitivity analysis are provided,
followed by the application of the algorithm on unconstrained optimization in Section 7, and the
numerical tests in Section 8.

1If A is not symmetric, then we can always replace A by (A+AT)/2; and, an equivalent problem with a symmetric
matrix is obtained.

1

2 Optimality Conditions

The optimality conditions for the TRS are described by the following theorem:

Theorem 2.1. x∗ is a solution to TRS if and only if for some (Lagrange multiplier) λ∗ ∈ R, we
have

(A− λ∗I)x∗ = a
A− λ∗I ≽ 0, λ∗ ≤ 0

}
dual feasibility

∥x∗∥ ≤ s primal feasibility
λ∗(s− ∥x∗∥) = 0. complementary slackness

(2)

where A− λ∗I ≽ 0 denotes that A− λ∗I is positive semi-definite.

Throughout the thesis, we define that (x∗, λ∗) solves the TRS if and only if x∗ and λ∗ satisfy
the optimality conditions.

These optimality conditions were developed by Gay [14] and Moré and Sorensen [21]. We
presented it above in (2) using the modern primal-dual paradigm, see e.g., [13, 24, 29] and [8, 15].
However, it should be mentioned that an earlier result related to the optimality condition of the
TRS is the S-lemma developed by Yakubovich in 1971, [32]. This lemma was originally motivated
by showing whether a quadratic (in)equality is a consequence of other (in)equalities. It has extensive
applications in quadratic and semi-definite optimization, convex geometry and linear algebra. It
can be shown that the optimality conditions of the TRS can also be derived from the S-lemma,
see e.g., [23].

Lemma 2.1. (S-lemma [23]) Let f , g: Rn → R be quadratic functions and suppose that there is
an x̄ ∈ Rn such that g(x̄) < 0. Then the following two statements are equivalent.

(i) There is no x ∈ Rn such that

f(x) < 0, g(x) ≤ 0.

(ii) There is a number λ ≤ 0 such that

f(x)− λg(x) ≥ 0 ∀x ∈ Rn.

For completeness, we now show how to use the S-lemma to prove the optimality conditions of
the TRS.
Proof: (of Theorem 2.1 using S-lemma)
Let

q∗ := q(x∗), f(x) := q(x)− q∗, g(x) := xTx− s2, s > 0.

If x∗ is the minimizer of the TRS, then we know that ∥x∗∥ ≤ s. Since x∗ is the minimizer, we get
q(x) ≥ q(x∗) = q∗, and so we conclude g(x) ≤ 0 =⇒ f(x) ≥ 0. Therefore, there is no x ∈ Rn such
that f(x) < 0 and g(x) ≤ 0. Now, according to the S-lemma, ∃λ∗ ≤ 0 such that

2

L(x) = f(x)− λ∗g(x) ≥ 0, ∀x ∈ Rn.

Since L(x) is bounded below, we get ∇2L(x) ≽ 0, and we have

A− λ∗I ≽ 0.

If ∥x∗∥ = s, then
L(x∗) = q(x∗)− q∗ − λ∗(∥x∗∥2 − s2) = 0.

In addition, since L(x) ≥ 0∀x ∈ Rn, we have x∗ ∈ argminL(x), and ∇L(x∗) = 0, which gives

(A− λ∗I)x = a.

If ∥x∗∥ < s, then
L(x∗) = q(x∗)− q∗ − λ∗(∥x∗∥2 − s2) = λ∗(s2 − ∥x∗∥2).

Since λ∗ ≤ 0, s2 − ∥x∗∥2 > 0, we have L(x∗) ≤ 0. However, L(x) ≥ 0 ∀x ∈ Rn, then we know
L(x∗) = 0 and

λ∗ = 0.

Similarly as in the case of ∥x∗∥ = s, since x∗ minimizes L(x), we conclude that ∇L(x∗) = 0. Then,
we have

(A− λ∗I)x = a.

This completes the proof of necessity of the optimality conditions.
For sufficiency, suppose that x∗ and λ∗ satisfy all the optimality conditions in (2). Let

L(x) = f(x)− λ∗g(x)
= q(x)− q∗ − λ∗(xTx− s2).

Since
∇L(x∗) = (A− λ∗)x∗ − a = 0,

∇2L(x∗) = A− λ∗I ≽ 0,

we know
x∗ ∈ argminL(x).

Also, because λ∗(∥x∗∥2 − s2) = 0, we conclude that ∀x ∈ Rn,

L(x) ≥ L(x∗) = q(x∗)− q∗ − λ∗(∥x∗∥2 − s2) = 0.

According to S-lemma, we know that if g(x) ≤ 0 (i.e., xTx ≤ s2), then f(x) ≥ 0, which means
q(x) ≥ q(x∗). Therefore, x∗ solves the TRS.

Even though the optimality conditions are well known, standard algorithms have numerical
difficulties solving the TRS when the hard case occurs; we now describe this case. Let λmin(A)
be the smallest eigenvalue of A. From the optimality conditions, we know that λ∗ ≤ λmin(A).

3

Throughout the thesis, we define x(λ) = (A−λI)†a, where † denotes the Moore-Penrose generalized
inverse, i.e.,

x(λ) =

(A− λI)−1a if λ < λmin(A)
(A− λI)†a = argmin ∥x∥

s.t. x ∈ argmin ∥(A− λI)x− a∥ if λ = λmin(A).

Note that the optimality conditions imply that (A − λ∗I)x = a is always consistent, so that
x ∈ argmin ∥(A− λI)x− a∥ can be replaced by (A− λI)x = a in the case that λ∗ = λmin(A). Let
A = QΛQT be the spectral decomposition of A, then we can see that when λ < λmin(A),

∥x(λ)∥2 = ∥(QΛQT − λI)−1a∥2
= ∥Q(Λ− λI)−1QTa∥2
= ∥(Λ− λI)−1QTa∥2

=
∑n

i=1
γ2
i

(λi−λ)2
,

(3)

where λi is the ith smallest eigenvalue of A, and γi is the corresponding component of QTa.
Therefore, when λ < λmin, ∀i = 1, ..., n, we have λi − λ > 0, and so ∥x(λ)∥ = ∥(A − λI)−1a∥ is
a monotonically increasing function for λ ∈ (−∞, λmin(A)). When ∃i such that λi = λmin and
γi = Q(:, i)Ta ̸= 0, i.e., at least one of the γi corresponding to the smallest eigenvalue is non-zero,
we have ∥x(λ)∥ → +∞, as λ→ λmin(A). Therefore, there is a unique λ∗ satisfying the optimality
conditions (see Figure 1):

∥x(λ∗)∥ = ∥(A− λ∗I)−1a∥ = s, λ∗ < λmin(A).

This is called the easy case.
However, if a ∈ R(A − λmin(A)I) (the orthogonal complement to the eigenspace for λmin),

then there exists x(λmin(A)) such that (A − λmin(A)I)x(λmin(A)) = a. If ∥x(λmin(A))∥ > s, we
know that λ∗ < λmin(A) because ∥x(λ)∥ is strictly increasing when λ < λmin(A) and x(λ

∗) = s <
∥x(λmin(A))∥. This is called the hard case (case 1).

On the other hand, it is possible that ∥x(λmin(A))∥ ≤ s (see Figure 2). In such case, we need
to let λ∗ = λmin(A). When λ∗ = λmin(A) = 0 or ∥x(λ∗)∥ = s, then complementary slackness
holds with x∗ = x(λ∗). However, if neither of the two conditions holds, then we need to find
z ∈ N (A − λ∗I) (which is not unique) such that ∥x(λ∗) + z∥ = s. Because z ∈ N (A − λ∗I), we
have (A − λ∗I)(x(λ∗) + z) = a + 0 = a, and therefore the optimality conditions are satisfied with
x∗ = x(λ∗) + z. This is called the hard case (case 2). This description of the hard case appears
in [13]. The different cases amplify on the definition given in e.g., [14, 21] where the hard case is
characterized by the condition a ∈ R(A − λmin(A)I) and ∥x(λmin(A))∥ ≤ s, i.e., only hard case
(case 2) is considered hard case.

Hard case problems are often considered more difficult to solve in the literature. The hard case
(case 2) results in the solution to the TRS to be non-unique, i.e., we have an ill-posed problem in
the Tikhonov sense, [31]. Moreover, many algorithms are trying to find the value of λ∗ such that

λ∗ ≤ 0, λ∗ < λmin(A), ∥(A− λ∗I)−1a∥ = s. (4)

If the hard case (case 1) occurs, λ∗ can still be found by standard root finding algorithms like
Newton’s method. However, if the hard case (case 2) occurs, λ∗ = λmin(A), and therefore (A −

4

Figure 1: ∥x(λ)∥ in Easy Case

−2.2 −2.15 −2.1 −2.05 −2 −1.95 −1.9 −1.85 −1.8
0

20

40

60

80

100

120

λ

||x
(λ

)|
|

x(λ)
λ

min
(A)

s

Figure 2: ∥x(λ)∥ in Hard Case (Case 2)

−2.2 −2.15 −2.1 −2.05 −2 −1.95 −1.9 −1.85 −1.8
0

20

40

60

80

100

120

λ

||x
(λ

)|
|

x(λ)
λ

min
(A)

s

5

λ∗I)−1a is indeed not defined. Therefore, for most algorithms for solving the TRS, some other
techniques usually have to be exploited to handle the hard case (case 2). More details will be given
in Section 3.

However, in our algorithm we exploit the special structure of the hard case (case 2) and, in
fact, show that the hard case problems are usually the easier problems to solve. This result will be
shown in Section 5 and Section 8.

6

3 Survey of Several Current Algorithms

In spite of its simple structure, there have been an enormous number of methods proposed that
solve the TRS efficiently. Many of the algorithms try to solve the problem iteratively, since no
explicit solution is known. Moreover, though the existence of the hard case has been well studied,
not all the methods are able to handle it properly. We now give a brief introduction of the major
algorithms.

In 1981, Gay (see [14]) proposed the optimality conditions for the TRS and used an iterative
algorithm to solve it based on Newton’s method. Newton’s method is safeguarded by an upper
bound and a lower bound in each iteration in order to maintain positive definiteness of the Hessian
of the Lagrangian, and so the algorithm converges to the solution. Moreover, the secular equation
is introduced to achieve fast convergence. In the paper, it is also discussed that the hard case may
occur, which would cause the algorithm to fail. However, it does not treat the hard case efficiently.

In 1983, More and Sorensen (see [21]) modified Gay’s algorithm and proposed the so-called MS
Algorithm, which remains one of the classic methods for solving the TRS. Special properties of the
Cholesky factorization are exploited in each iteration to make the algorithm more efficient. Most
importantly, the algorithm is able to detect a possible hard case and take advantage of it. This is
done by making λ approach λmin(A) and take a primal step to the boundary in each iteration if
∥x(λ)∥ < s. i.e., find z ∈ N (A− λmin(A)I) such that ∥x(λ) + z∥ = s.

The previous two methods both involve matrix factorization in each iteration, and hence can
not take advantage of sparse or structured matrices. In 1994, Rendl and Wolkowicz (see [24]) and
Sorensen (see [28]) used different approaches to reformulate the problem to an equivalent parametric
eigenvalue problem, and therefore sparsity can be exploited if Lanczos type methods (see [4] and
[27]) are used to compute the eigenvalues and eigenvectors. Precisely, the matrix A is only used as
a multiplication operator on a vector, while no factorization is needed.

In 1993, Ben-Tal and Teboulle (see [2]) used the double duality (second dual) approach to derive
that the TRS is always equivalent to a convex optimization problem. This convex problem is a
special case of the TRS where the matrix A is diagonal. Moreover, the results can be extended to
quadratic minimization problems with two-sided (possibly indefinite) quadratic constraints.

In 1995, Tao and An (see [30]) applied the Difference of Convex Functions Algorithm (DCA) to
solve the TRS. However, one of the big problems with this algorithm is that it cannot guarantee
global convergence.

In 1999, Gould, Lucidi, Roma and Toint (see [15]) presented the generalized Lanczos trust region
method (GLTR). It is based on the truncated Lanczos method but uses the information of the whole
Krylov subspace generated in the previous iterations. This method can also exploit sparsity, but it
fails to handle the hard case.

Also, Rojas, Santos and Sorensen (see [25]) presented the Large-Scale Trust-Region Subproblem
method (LSTRS), which is a revision of the Sorensen method (see [28]). The algorithm is matrix-
free in the sense that the matrix is only used as a multiplication operator on a vector. Also, it uses
a different interpolating scheme and introduces a unified iteration that includes the hard case.

In 2000, Hager (see [17]) proposed the sequential subspace method (SSM). There are two phases
in this algorithm, where the first phase is very similar to the GLTR algorithm, which is only
used to generate an initial guess. In the second phase, the problem is solved over a subspace
which is adjusted in successive iterations. However, instead of the Krylov subspace, the algorithm
constructs a subspace with dimension 4, so that in each iteration the problem is easy to solve and
global convergence is also guaranteed (see [18]).

7

In 2001, Ye and Zhang (see [33]) studied the so-called extended trust region subproblem. It
is the minimization of a quadratic function subject to two quadratic inequalities. It shows that
the semi-definite programming relaxations of the extended trust region subproblems are exact in
some special cases (which include the TRS), in the sense that the optimal values of the relaxation
problems are equal to the original problems. As a consequence, polynomial time procedures can be
obtained to solve these optimization problems.

In 2009, Gould, Robinson and Thorne (see [16]) made another revision to the MS Algorithm.
Instead of Newton’s method, which is only a second order model, the new algorithm uses high-order
polynomial approximation and inverse interpolation to improve the accuracy of each iteration. The
hard case can also be solved efficiently.

Erway, Gill and Griffin (see [11]) also proposed the Phased-SSM algorithm , which is based on
the SSM algorithm. It is different from the SSM by adding an inexpensive estimate of the smallest
eigenvalue of the matrix and a parameter to control the tradeoff number of iterations and number of
matrix-vector multiplications. Moreover, a regularized Newton’s method generates an accelerator
direction in the low-dimensional subspace used in the second phase.

Also, in 2011, Lampe, Rojas, Sorensen and Voss made another modification to the LSTRS (see
[19]). Improvements are mainly achieved by using the nonlinear Arnoldi method to solve the eigen-
value problem. This modification is able to make use of all the information of the eigenvalues and
eigenvectors from the previous iterations. Numerically, this modification is shown to significantly
accelerate the LSTRS.

In the following sections, we provide a detailed review of the MS algorithm, the GLTR algorithm,
the SSM algorithm, the Gould-Robinson-Thorne algorithm, and the RW algorithm.

3.1 The MS Algorithm

Generally speaking, this algorithm (see [21]) solves the optimality condition equation ∥x(λ)∥ =
∥(A−λI)−1a∥ = s by Newton’s method, unless the hard case is indicated by the current minimum
estimate lying in the interior of the trust region. In each iteration, a Cholesky factorization is used
to calculate Newton step, which is also the main cost of this algorithm. In addition, a safeguarding
scheme is exploited to ensure the conditions A−λI ≽ 0 (i.e., λ ≤ λmin(A)) and λ ≤ 0 are satisfied.
When the hard case is detected, (i.e., a ∈ R(A − λmin(A)I) and (A − λmin(A)I)

†a < s), a primal
step to the boundary is taken.

3.1.1 The Easy Case

From (3), we know that

∥x(λ)∥2 =
n∑

i=1

γ2i
(λi − λ)2

.

This function is an extremely non-linear function with respect to λ, especially when λ is close to
λmin(A), and results in low convergence rate and poor performance when using Newton’s method.
To fix this problem, we can replace the function by 1

∥x(λ)∥ and alternatively solve the equivalent
equation

Ψ(λ) =
1

∥x(λ)∥
− 1

s
= 0, (5)

which is well known as the secular equation. The details of the algorithm is shown in Algorithm 3.1:

8

Algorithm 3.1. Main Steps of the MS Algorithm
Suppose λk < 0 and λk < λmin(A); perform the following steps until the algorithm terminates:

1. Factorize A− λkI = LLT by Cholesky factorization.

2. Calculate x such that LLTx = a.

3. Calculate y such that Ly = x.

4. Update λk+1 = λk −Ψ(λk)/Ψ
′(λk) = λk − (∥x∥∥y∥)

2(∥x∥−s
s).

Figure 3: Newton Step in MS Algorithm

−4 −3.5 −3 −2.5 −2 −1.5 −1
−12

−10

−8

−6

−4

−2

0

2

4

6

8

λ

ψ
(λ

)

ψ(λ)

ψ(λ)=0

tangent line

λ
k
, ψ(λ

k
)

Newton estimation

From the graph of the function Ψ(λ), we know that when λk is in the interval (λ∗,min(0, λmin(A))),
then Newton’s method monotonically converge to λ∗ (see [8] and Figure 3). However, when λk is
less than λ∗, the next iteration in Newton’s method has poor performance (see Figure 4). Therefore,
the following safeguarding scheme in Algorithm 3.2 is used:

Algorithm 3.2. Safeguarding Scheme
Initialize λL = −∞, λU = min(0, λmin(A)).

1. If Ψ(λU) > 0, then the minimum lies in the interior or the hard case occurs, stop.

2. If Ψ(λk) < 0 and λk < λU , replace λU by λk.

3. If Ψ(λk) > 0 and λk > λL, replace λL by λk.

4. If λk > λU , replace λk by λU ; if λk < λL, replace λk by λL.

9

Figure 4: Safeguarding Newton Step in MS Algorithm

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
−12

−10

−8

−6

−4

−2

0

2

4

6

λ

ψ
(λ

)

ψ(λ)

ψ(λ)=0
tangent line

λ
k
, ψ(λ

k
)

λU

If λU = 0 and Ψ(λU) > 0, we know that λ∗ = 0 and the minimum is in the interior. Therefore,
x∗ = A−1a. If λU = λmin(A) and Ψ(λU) = 1

∥x(λU)∥ −
1
s > 0, i.e., the possible hard case occurs. How

the hard case is handled is described in the following Section 3.1.2. Except for these 2 situations,
the algorithm converges to the optimal dual variable λ∗.

3.1.2 The Hard Case

The MS algorithm handles the hard case efficiently. As mentioned above, when a possible hard
case is detected, we already have an x such that ∥x∥ < s and (A−λmin(A)I)x = a. We need to find
a z ∈ Rn such that (A − λmin(A)I)z = 0 and ∥x + z∥ = s. Since the main steps of the algorithm
involve the dual variable λ, this is usually called taking a primal step to the boundary. Notice that
because x ∈ R(A − λmin(A)I) and z ∈ N (A − λmin(A)I), we have x⊥z and ∥x+ z∥ = ∥x∥+ ∥z∥.
How we find z is illustrated by the following:

Theorem 3.1 ([21]). Suppose

A− λI = LLT , (A− λI)x = a, λ ≤ 0.

If
∥x+ z∥ = s, ∥LT z∥2 ≤ σ(∥LTx∥2 − λs2),

then
|q(x+ z)− q(x∗)| ≤ σ|q(x∗)|.

where σ is a scalar, and x∗ is the optimal solution to the TRS.

10

Therefore, if we can find z such that ∥LT z∥2 ≤ σ(∥LTx∥2− λs2) with a σ sufficiently small, we
know that x+ z is near optimal.

Even though the MS algorithm is able to solve the TRS in both the easy case and the hard case,
there are some problems with the algorithm. First of all, in each iteration, a Cholesky factorization
is used, which is too expensive for large-scale problems. In addition, sparsity cannot be exploited
(even if the original matrix is sparse, the factorizations are generally dense due to fill-in). Secondly,
if λ∗ is less than but very close to min(0, λmin(A)), we call it the almost hard case. If this occurs,
the interval (λ∗,min(0, λmin(A))) is small so that it is extremely difficult to find a λ in this interval.
At last, if λmin(A) ≤ 0, when λ is approaching λmin(A), the matrix A−λI becomes more and more
ill-conditioned, which also causes computational difficulties.

3.2 The GLTR Algorithm

One of the difficulties in solving the TRS is that we need to search for x in Rn, which might have
large dimension. Many algorithms try to reduce the computation cost by obtaining an approximate
solution in a smaller space (e.g., the Cauchy point method and the dogleg method, see [8]). Among
all such methods, the generalized Lanczos trust region algorithm (see [15]) is remarkable. It solves
the problem in a Krylov subspace and keeps expanding it until a satisfactory solution is obtained.
In each iteration, it’s equivalent to solving a TRS with a tridiagonal matrix, where the computation
cost is comparatively low and the structure of the matrix can also be exploited.

In order to understand this method more clearly, we first introduce the Steihaug-Toint algorithm.
It successively solves the following problem:

min q(x) = xTAx− 2aTx
s.t. ∥x∥ ≤ s

x ∈ Kk,
(6)

where
Kk = span {a,Aa,A2a, ...Ak−1a},

until the solution reaches the trust region boundary. Here, Kk is also widely known as the Krylov
subspace generated by the matrix A and the vector a. However, as long as the solution touches or
moves across the boundary, the algorithm terminates, even if the current iteration does not actually
solve the problem. The GLTR can be viewed as an modification to the Steihaug-Toint method, so
that it still works when the solution lies in the interior of the trust region.

The Lanczos method is one of the important methods used to generate a basis of the Krylov
subspace and calculate the eigenvalues, see Algorithm 3.3.

Algorithm 3.3. Lanczos Method
Given a matrix A and a vector a, initialize t0 = a,w−1 = 0. for j = 0, 1, ..., k, perform the following
steps:

1. γj = ∥tj∥.

2. qj = tj/γj.

3. δj = qTj Aqj.

4. tj+1 = Aqj − δjqj − γjqj−1.

11

It follows that (see [9])
Kk = span {q0, q1, ..., qk}

QT
kQk = I

AQk −QkTk = γk+1wk+1e
T
k+1

where Qk = [q0, q1, ..., qk] and Tk is a tridiagonal matrix such that

Tk =

δ0 γ1
γ1 δ1

...
δk−1 γk
γk δk

 .

However, it’s observed that such a basis and decomposition can also be obtained from the
conjugate gradient method, Algorithm 3.4:

Algorithm 3.4. Conjugate Gradient Method
Given a matrix A and a vector a, initialize g0 = a, p0 = −g0, and for j = 0, 1, ..., k, perform the
following steps:

1. αj = gTj gj/p
T
j Apj.

2. gj+1 = gj + αjApj.

3. βj = gTj+1gj + 1/gTj gj.

4. pj+1 = −gj+1 + βjpj.

We can obtain the Lanzcos vectors qk and matrices Tk with (see [35])

qk = gk/∥gk∥

Tk =

1
α0

−
√
β0

α0

−
√
β0

α0

1
α1

+ β0

α0
−

√
β1

α1

−
√
β1

α1

1
α2

+ β1

α1

...

1
αk−1

+
βk−2

αk−2
−
√

βk−1

αk−1

−
√

βk−1

αk−1

1
αk

+
βk−1

αk−1

.

In addition, another advantage of the preconditioned conjugate gradient method is that if q(x) is
convex in the space Kk+1, the minimizer of the next iteration can be easily calculated by:

xk+1 = xk + αkpk,

where x0 = 0 and xk is the minimizer of the k-th iteration. Finally, the vector gk+1, obtained as a
part of the computation process, is exactly the gradient of q(x) at the point x = xk+1. Therefore,
if gk+1 = 0 or its value is sufficiently small, we know that it is already optimal and the algorithm
terminates.

12

Having all the previous results in hand, we are now ready to describe the algorithm. In each
iteration, we perform the preconditioned conjugate gradient method and use the results to obtain
the Lanczos vectors and matrices. Then we solve the following problem:

hk = argmin hTTkh− 2γ0e
T
1 h

s.t. ∥h∥ ≤ s. (7)

Notice that this is a problem in k-dimension, where k is usually much smaller than n. Moreover,
since the matrix Tk is tridiagonal, we know that (7) can be easily solved by many other algorithms,
where the special structure of the matrix can also be exploited. For instance, we can simply use the
MS algorithm to solve the problem, in which the Cholesky factorization is the main cost. But when
the matrix is tridiagonal, the Cholesky factorization becomes much faster, making the algorithm
much more efficient.

Once (7) is solved, we see that the minimizer of the problem:

min xTAx− 2aTx
s.t. ∥x∥ ≤ s

x ∈ Kk

can be obtained by

xk = Qkhk.

Since xk is the solution to the TRS in the space Kk, we may consider it to be an approximate
solution to the original problem. However, we also need to know how good this approximation is,
which means the optimality condition equation (A − λkI)xk = a has to be checked. This can be
done by the following equality:

∥(A− λkI)xk − a∥ = γk+1|eTk+1hk|.

Therefore, when this value is sufficiently small, the algorithm terminates and xk at the current
iteration is the solution we are looking for. The algorithm also gives the error of the solution,
which allows the user to obtain a solution with desired accuracy.

However, this algorithm cannot handle the hard case, even though the authors in [15] present
several results showing how to detect it.

3.3 The SSM Algorithm

Hager [17] developed a similar method to GLTR, which is called the sequential subspace method
(SSM). There are two phases in this algorithm, where the first phase is very similar to the GLTR
algorithm, and it is only used to generate an initial guess. In the second phase, the problem is solved
over a subspace which is adjusted in successive iterations. However, instead of the Krylov subspace,
the algorithm constructs a subspace with dimension 4, so that in each iteration the problem is easy
to solve and global convergence is also guaranteed.

In each iteration, suppose (xk, λk) is the current estimate we have, such that ∥xk∥ = s is
satisfied. We first use the sequential quadratic programming to obtain a descent direction.

min qSQP (z) = (xk + z)TA(xk + z)− 2aT (xk + z)
s.t. xTk z = 0.

(8)

13

It can be proved that this optimization problem is equivalent to the following system of equations:

xSQP = xk + z (9a)

λSQP = λk + ν (9b)

(A− λkI)z + νxk = a− (A− λkI)xk (9c)

xTk z = 0. (9d)

Then, we move to the main step of the iteration —— solving the TRS over a subspace Sk. i.e.,

min q(x) = xTAx− 2aTx,
s.t. ∥x∥ ≤ s

x ∈ Sk,
(10)

where Sk = span {xSQP , xk, a−Axk, vmin}. xSQP is obtained from (9a), and vmin is the eigenvector
corresponding to λmin(A). There are several reasons for constructing Sk this way. xSQP is the
minimizer to (8), and so it is an approximate solution to the TRS. By including xk, it guarantees
that the value of the objective function can only decrease in each iteration. a− Axk, which is the
gradient of the objective function, is one of the steepest descent directions when the first-order
optimality condition is not satisfied. The eigenvector corresponding to the smallest eigenvalue
dislodges the iterates from a non-optimal stationary point. We also need to include this vector to
keep A− λkI positive definite (or positive semi-definite).

Also, even though we can obtain the solution of the primal variable xk+1, it is usually too
expensive to calculate the optimal value of the dual variable λk+1 directly. Therefore, in order to
obtain an estimate for the dual variable λk+1, we choose it such that the residual of the optimality
conditions is minimized. i.e.,

λk+1 := argmin g(λ) = ∥(A− λI)xk+1 − a∥. (11)

This algorithm is shown to be effective when the easy case holds and the problem is non-
degenerate (i.e., λ∗ is much less than λmin(A)). When the hard case or almost hard case occurs,
some modifications are also introduced to improve the effectiveness of the algorithm.

3.4 The Gould-Robinson-Thorne Algorithm

The Gould-Robinson-Thorne (GRT) algorithm [16] is building on the work of the MS algorithm,
aiming at finding the root of the secular equation with fewer iterations. This improvement is
achieved by using high-order polynomial approximation to the secular equation. This method is
proved to be both globally and asymptotically super-linearly convergent.

Since our goal is to find a pair of x∗ and λ∗ satisfying the optimality conditions, recall that
(A− λI)x = a is always consistent and we define:

x(λ) = argmin ∥x∥
s.t. (A− λI)x = a.

(12)

In addition, we define:
π(λ, β) := ∥x(λ)∥β.

14

Therefore, in order to obtain the optimal solution, we need to solve the equation:

π(λ, β) = sβ (13)

for any β ̸= 0. For example, π(λ,−1) is indeed the secular equation in the MS algorithm, which is
used to expedite Newton’s method. Actually, it has also been shown that when β = −1, Newton’s
method gives the best approximation to the equation. The main improvement of this algorithm is
that if we let β = 2 and define:

π(λ) := ∥x(λ)∥2,

then how the derivatives of π(λ) can be calculated recursively is shown by the following theorem.

Theorem 3.2. Suppose (A − λI) is positive definite, then for k = 0, 1, ..., the derivatives of π(λ)
satisfy

π(2k+1)(λ) = 2αk(x
(k))T (λ)(x(k+1))(λ)

π(2k+2)(λ) = αk+1(x
(k+1))T (λ)(x(k+1))(λ)

where

(A− λI)x(k+1)(λ) = −(k + 1)x(k)(λ)

αk+1 =
2(2k + 3)

(k + 1)
αk.

Therefore, after knowing the derivatives of π(λ), we can use the Taylor series to approximate the
function, which gives a better estimated solution to the equation than Newton’s method. Moreover,
the process can be further controlled by the following result:

Theorem 3.3. Suppose λ < min(λmin(A), 0), and let

πk(δ) = π(λ) + π(1)(λ)(δ) + ...+
1

k!
π(k)(λ)(δk)

be the k-th order Taylor series approximation to π(λ+ δ).
Then, when δ > 0,

π(λ+ δ) ≤ πk(δ), when k is even,

π(λ+ δ) ≥ πk(δ), when k is odd.

When δ < 0,
π(λ+ δ) ≥ πk+1(δ) ≥ πk(δ), for all k.

Therefore, in each iteration, an estimated solution as well as the upper bound and lower bound
of the solution can be obtained by finding the root of the Taylor series, i.e., a high-order polynomial
equation. The paper claims that by doing this, it takes much less iterations (usually 2 to 3) to
obtain an accurate solution than the classic MS algorithm. The hard case can be handled similarly
as the MS algorithm.

15

3.5 The RW Algorithm

To understand the RW Algorithm [24], we first consider a slightly different problem, which we
denote as TRS=:

(TRS=)
q∗ = min q(x) = xTAx− 2aTx

s.t. ∥x∥ = s.

The relation between TRS and TRS= is illustrated by the following theorem.

Theorem 3.4 ([24]). Suppose x̄ is the solution to the TRS= with the optimal dual variable λ∗.
If λ∗ < 0, then x̄ is the solution to min(q(x) : ∥x∥ ≤ ∥s∥). If λ∗ ≥ 0, then x̄ is the solution to
min(q(x) : ∥x∥ ≥ ∥s∥).

Therefore, if we can solve TRS= with a negative optimal dual variable, then we know it’s also
the solution to the TRS. On the other hand, if the optimal dual variable is not negative, we know
that the unconstrained minimizer of q(x) is inside the trust region (otherwise, x̄ can not be the
solution to min(q(x) : ∥x∥ ≥ ∥x̄∥)). In such case, we can obtain x∗ = A−1a by conjugate gradient
method.

To solve the TRS=, we start by homogenizing the problem. Since we already know that strong
duality holds for this problem (see [8]), we can obtain that:

q∗ = min
∥x∥=s

xTAx− 2aTx

= min
∥x∥=s,η2=1

xTAx− 2ηaTx

= max
t

min
∥x∥=s,η2=1

xTAx− 2ηaTx+ t(η2 − 1)

≥ max
t

min
∥x∥2+η2=s2+1

xTAx− 2ηaTx+ t(η2 − 1)

≥ max
t,λ

min
x,η

xTAx− 2ηaTx+ t(η2 − 1) + λ(∥x∥2 + η2 − s2 − 1)

= max
r,λ

min
x,η

xTAx− 2ηaTx+ r(η2 − 1) + λ(∥x∥2 − s2)

= max
λ

(max
r

min
x,η

xTAx− 2ηaTx+ r(η2 − 1) + λ(∥x∥2 − s2))

= max
λ

min
x,η2=1

xTAx− 2ηaTx+ λ(∥x∥2 − s2)

= max
λ

min
x
L(x, λ)

= q∗,

(14)

where r = t+ λ, and L(x, λ) = xTAx− 2aTx− λ(∥x∥2 − s2) is the Lagrangian of the TRS=.
Now we know all of the above expressions are equal, and so

q∗ = max
t

min
∥x∥2+η2=s2+1

xTAx− 2ηaTx+ t(η2 − 1).

If we define

z :=

(
η
x

)
, D(t) :=

(
t −aT
−a A

)
and

k(t) := (s2 + 1)λmin(D(t))− t, (15)

16

then
q∗ = max

t
min

∥z∥2=s2+1
zTD(t)z − t = max

t
k(t).

Therefore, the TRS= is equivalent to the unconstrained optimization problem maxt k(t). To solve
this problem efficiently, we need to study more properties of the function:

k(t) = (s2 + 1)λmin(D(t))− t.

It can be shown that λmin(D(t)) is a concave function for t (see [24]), and k(t) is also a concave
function (see Figure 5 and Figure 6). It can also be shown that lim

t→∞
λmin(D(t)) = λmin(A),

lim
t→−∞

λmin(D(t)) = t. Therefore, the asymptotic behavior of k(t) can be illustrated as follows:

k(t) ≈ (s2 + 1)λmin(A)− t, when t→∞
k(t) ≈ s2t, when t→ −∞.

In addition, the properties of the derivative of k(t) is also the key to maximizing it. If we let

Figure 5: k(t) in Easy Case

−260 −240 −220 −200 −180 −160 −140 −120 −100
−310

−300

−290

−280

−270

−260

−250

−240

−230

t

k(
t)

k(t)

t*, k(t*)

y(t) :=

(
y0(t)
w(t)

)
be the normalized eigenvector for λmin(D(t)), where y0(t) ∈ R is the first

component. It can be shown that (see [24]):

k′(t) = (s2 + 1)y0(t)
2 − 1.

When k(t) is differentiable, if t∗ = argmax
t
k(t), then

k′(t∗) = 0,

17

Figure 6: k(t) in Hard Case

−2 0 2 4 6 8 10 12

x 10
4

−2

0

2

4

6

8

10

12
x 10

7

t

k(
t)

k(t)

t*, k(t*)

y0(t
∗) =

1√
s2 + 1

.

However, we may lose differentiability if λmin(D(t)) has more than one normalized eigenvector,
i.e., its multiplicity is greater than 1. The following theorem shows the properties of the eigenvectors
for λmin(D(t)) (see [13]):

Theorem 3.5. Let A = QΛQT be the spectral decomposition of A. Let λmin(A) has multiplicity i
and define

t0 := λmin(A) +
∑

k∈{j|(QT a)j ̸=0}

(QTa)2k
λk(A)− λmin(A)

.

Then:
1. In the easy case, λmin(D(t)) < λmin(A) and λmin(D(t)) has multiplicity 1.
2. In the hard case,
(a) for t < t0, λmin(D(t)) < λmin(A) and λmin(D(t)) has multiplicity 1,
(b) for t = t0, λmin(D(t)) = λmin(A) and λmin(D(t)) has multiplicity i+1,
(c) for t > t0, λmin(D(t)) = λmin(A) and λmin(D(t)) has multiplicity i.

Moreover, we have the following theorem showing how x∗ and λ∗ can be calculated from t∗.

Theorem 3.6. Let t∗ = argmaxt k(t), y(t
∗) =

(
y0(t

∗)
w(t∗)

)
be the normalized eigenvector for

λmin(D(t∗)), where y0(t
∗) is the first component.

18

If λmin(D(t∗)) < 0, then

x∗ =
w(t∗)

y0(t∗)

λ∗ = λmin(D(t∗))

is the solution to the (TRS).
If λmin(D(t∗)) ≥ 0, then the minimizer is in the interior of the trust region, and so

x∗ = A−1a

λ∗ = 0

is the solution to the (TRS).

3.5.1 Techniques Used for Maximizing k(t)

We define the range of ”good side” and ”bad side” for the variable t as follows:
If k′(t) < 0 (t > t∗), then we say t is on the good side.
If k′(t) > 0 (t < t∗), then we say t is on the bad side.
The reason why it is defined like this is quite simple: if we can find a t such that t < t0 and t > t∗

(on the good side), then the hard case does not occur.

Bracketing Newton’s Method
Since the second derivative of k(t) involves the second derivative of the smallest eigenvalue in

a large-scale parametric matrix, it is too expensive to calculate. Therefore, the classic Newton’s
method, which aims at finding the root of k′(t), is not feasible in our situation. But the bracketing
Newton’s method ([20]) can be used to maximize k(t).

Suppose we already have an upper bound and a lower bound of k∗ = maxt k(t), denoted by kup
and klow respectively, and the value of t is tj in the current iteration. Assume α is a constant in
(0, 1). We define

Mj := αkup + (1− α)klow.

Then we use Newton’s method to solve the equation k(t)−Mj = 0 for one iteration (see Figure 7).
i.e.,

t+ = tj − k(tj)−Mj

k′(tj)

=
(s2+1)λmin(D(tj))−Mj

(s2+1)y20(tj)−1

where t+ is the estimate of the next iteration.
However, it is observed that k(t+) > k(tj) is not guaranteed to be true, and so in some iterations,

we may not have an improvement on the value of k(t). But still, when this happens, it gives us
some information about the bounds of k∗. Precisely, we define our steps as follows:
When k(t+) > k(tj),

tj+1 = t+

19

Figure 7: Bracketing Newton’s Method

−52 −51.5 −51 −50.5 −50 −49.5 −49 −48.5 −48
−104

−102

−100

−98

−96

−94

−92

−90

t

k(
t)

k(t)
upper bound of k(t)
tangent line
newton step
newton step

klow = k(t+).

When k(t+) ≤ k(tj),
tj+1 = tj

kup =Mj .

Global convergence and superlinear convergence is proved in [20], as long as k(t) is a concave
function and is bounded above, which is obviously true in our situation. However, the approxima-
tion given by this technique is not quite ideal, and therefore it is only used when other techniques
fail.

Triangle Interpolation
Suppose in the past few iterations, we already have values of t on both the good side and the

bad side, i.e., a tg such that k′(tg) < 0 and a tb such that k′(tb) > 0. We can find the secant lines
on these two points, and set the intersection of them to be our new approximation t+. Precisely,
we solve the following linear equations:

q − k(tg) = k′(tg)(t+ − tg)

q − k(tb) = k′(tb)(t+ − tb)

where q and t+ are unknown variables. By doing this, if t+ ∈ (tb, tg), then not only t+ is a new
approximation, we can also conclude that q is an upper bound of k(t), and therefore we have q ≥ k∗
(see Figure 8).

However, we should also be aware that t+ is not always in (tb, tg). When t+ < tb or t+ > tg,
the triangle interpolation fails.

20

Figure 8: Triangle Interpolation

−52 −51.5 −51 −50.5 −50 −49.5 −49 −48.5 −48
−104

−102

−100

−98

−96

−94

−92

−90

−88

t

k(
t)

k(t)
tangent line
tangent line
upper bound of k(t)

new estimate

Vertical Cut
Suppose we have two values of t , a tg such that k′(tg) < 0 and a tb such that k′(tb) > 0,

and further more k(tg) < k(tb), then we can use vertical cut to reduce the interval of the t value.
Concretely, we solve the equation

k(tg) + k′(tg)(t− tg) = k(tb).

This is the intersection of the secant line on (tg, k(tg)) and the line k = k(tb) (see Figure 9). The
value of t must be in (tb, tg) and it’s also on the good side.

On the other hand, if k(tb) < k(tg), we can also do it similarly by solving the equation

k(tb) + k′(tb)(t− tb) = k(tg).

Inverse Linear Interpolation
Since k′(t) = (s2 + 1)y0(t)

2 − 1, the following two equations are equivalent.

k′(t) = 0,

ψ(t) =
√
s2 + 1− 1

y0(t)
.

Therefore, we can use inverse linear interpolation on ψ(t). We approximate the inverse function of
ψ(t) to be a linear function, i.e.,

t(ψ) = aψ + b.

21

Figure 9: Vertical Cut

−52 −51.5 −51 −50.5 −50 −49.5 −49 −48.5 −48
−104

−102

−100

−98

−96

−94

−92

−90

t

k(
t)

k(t)
vertical line
tangent line
new estimate

Figure 10: Linear Interpolation

−3 −2.5 −2 −1.5 −1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

ψ
 (

t)

ψ(t)
linear approximation
ψ(t)=0
current steps
next estimate

22

So if two points (t1, ψ1) and (t2, ψ2) are given, we can calculate the coefficient of the linear inverse
function and obtain a new estimate of t by t(ψ) = t(0) = b (see Figure 10).

Notice if the value of t of two points are on the same side (both on the good side or both on
the bad side), the estimate must be on the good side. However, if they are on different sides, then
the estimate must be on the bad side. Also, in the hard case, when t > t0, ψ(t) is not defined, and
therefore if the value of t we obtained is greater than t0, we can not use this technique. However,
we do not know if the hard case occur or not, unless we have a point on the good side. Therefore,
when we have no points on the good side, this is indeed an extrapolation, which may result in an
irrelevant approximation. So we should not use this technique at all until we have at least one
point on the good side.

3.5.2 Flow Chart

Algorithm 3.5. The RW Algorithm

1. Initialize
Estimate λmin(A), the upper bound and the lower bound of µ∗ and t∗. (i.e., µup, µlow, tup,
tlow)

2. The Main Loop
While (tup− tlow > tol t) & (µup−µlow > tol µ) & (|k′(t)| > tol dk) & (optimality condition is
not satisfied)
Take Steps to Maximize k(t)

(a) Update t by midpoint (i.e., t = (tup + tlow)/2).

(b) Update t by bracketing Newton’s method.

(c) If we have points on both the good side and the bad side,

i. update µup and t by triangle interpolation;

ii. update tup or tlow by vertical cut.

(d) Update t by inverse linear interpolation.

3. Updates
Calculate λmin(D(t)) and y(t) with the new value of t.
If λmin(D(t)) > 0, then the minimizer is in the interior of the trust region,
calculate x∗ = A−1a by preconditioned conjugate gradient method, then the algorithm termi-
nates.
Update the value of µup, µlow, tup, tlow, k(t), k

′(t), etc.

Remark 3.1. 1. In the steps taken to maximize k(t), the value of t is updated only if the new
estimated t+ satisfies tlow < t+ and t+ < tup. Otherwise, the value of t is not changed.

2. All the techniques are used to update the value of t if it’s applicable. The order of the tech-
niques used is (i) bracketing Newton’s method; (ii) triangle interpolation; (iii) vertical cut;
(iv) inverse linear interpolation. Since the latter techniques are considered to have better ap-
proximations than the former ones, the value of t can be overwritten by the latter techniques.

23

3. From the review of the existing algorithms, we can divide them into two types. One is trying
to solve λ∗ based on Cholesky factorization, while the other one is based on Krylov methods,
where sparsity and structure can be exploited. Also, we can find that the hard case problems
usually can not be solved by ordinary routines, and so most algorithms have special techniques
to handle the hard case once it is detected.

24

4 Simple Scaling for the TRS

4.1 Scaling

Unlike scale-free optimization methods such as Newton’s method, trust region methods are scale
sensitive. However, simple scaling does not affect the trust region subproblem. In this section, we
show that although a theoretically equivalent TRS can be obtained by simple scaling, this process
can have significant effect on the RW algorithm. We can take advantage of this fact to improve
the algorithm and obtain better results. Moreover, scaling can also give rise to some different
approaches to solve the TRS.

Suppose r > 0 is a scalar. We can obtain an equivalent trust region subproblem:

(TRSr)
q̂∗ = min q̂(x) := xT Âx− 2âTx

s.t. ∥x∥ ≤ ŝ, (16)

where

Â = r2A, â = ra, ŝ =
1

r
s.

Lemma 4.1. Let S = {x|q(x) = q∗, ∥x∥ ≤ s} be the solution set of (TRS), Ŝ = {x|q̂(x) = q̂∗, ∥x∥ ≤
ŝ} be the solution set of (TRSr), then

q∗ = q̂∗,
1

r
S = Ŝ,

where 1
rS = {1rx|x ∈ S}.

Proof: If x∗ ∈ S is an optimal solution to (TRS), then q∗ = q(x∗) and ∥x∗∥ ≤ s. Therefore,
∥1rx

∗∥ ≤ 1
rs = ŝ, and so 1

rx
∗ is a feasible solution to (TRSr). Then we have

q∗ = q(x∗) = q̂(
1

r
x∗) ≥ q̂∗. (17)

Also, if x̂∗ ∈ Ŝ is an optimal solution to (TRSr), then we know that rx̂∗ is feasible for (TRS), and
so

q̂∗ = q̂(x̂∗) = q(rx̂∗) ≥ q∗. (18)

Combining (17) and (18), we have q∗ = q̂∗.
Moreover, ∀x∗ ∈ S, ∥1rx

∗∥ ≤ ŝ, and from (17) we know that q̂(1rx
∗) = q∗ = q̂∗. Therefore, 1

rx
∗ is

an optimal solution to (TRSr), and so 1
rS ⊆ Ŝ. On the other hand, ∀x̂∗ ∈ Ŝ, x̂∗ = r(1r x̂

∗), where

rx̂∗ ∈ S. Therefore, ∃x∗ ∈ S such that x̂∗ = 1
rx

∗, and so we have 1
rS ⊇ Ŝ. The result 1

rS = Ŝ
follows.

We now consider r as a parameter in our algorithm; and, we let R =

(
1 0T

0 rI

)
, and define

D(r, t) :=

(
t −raT
−ra r2A

)
= RD(t)R.

25

Then the function k(t) in the RW algorithm can be viewed as a bivariate function:

k̂(r, t) :=

(
s2

r2
+ 1

)
λmin(D(r, t))− t, ∀r > 0.

Since k̂(r, t) is a concave function with respect to t, we have maxt k̂(r, t) is equivalent to solving
dk̂
dt = 0, when k̂(r, t) is differentiable. Moreover, observe that for any fixed r̄ > 0, we have

max
r>0,t

k̂(r, t) = max
t
k̂(r̄, t) = q∗.

Therefore, we know that ∀r > 0, there is a unique t∗ (which depends on r) such that k̂(r∗, t(r∗)) =
q∗. As a result, the optimal value of t can be viewed as a function of r, i.e., t∗ = t(r) (see Figure 11).

Conjecture 4.1. t∗ = t(r) is a decreasing and concave function with respect to r.

Figure 11: t(r)

0 2 4 6 8 10 12

x 10
4

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

11

r

t*

4.2 How Scaling Affects Optimal t∗

1. The initialization of the upper bound and the lower bound of t in (TRS) is given by (see
[24]):

tlow = λmin(A)−
∥a∥
s
, tup = λmin(A) + s∥a∥.

Therefore, in the scaled problem (TRSr), the upper bound and the lower bound become:

26

tlow = λmin(r
2A)− r2 ∥a∥

s
, tup = λmin(r

2A) + s∥a∥.

2. We can see that the initial interval of t is (see Figure 12):

tup − tlow = (s+
r2

s
)∥a∥. (19)

The RW algorithm keeps searching for the optimal value of t in this interval and updates the
upper bound and the lower bound iteratively, until the interval is smaller than the tolerance
or some other stopping criteria are met. As a result, under the same accuracy, the smaller
the initial interval is, the faster the algorithm converges. Therefore, from (19) we know that
we can decrease the initial interval of t and accelerate the algorithm by decreasing the value
of r. As r → 0, (tup − tlow)→ s∥a∥.

3. Observe from the graph that when r increases, t∗ is also moving towards tup (see Figure 13).
In the first iteration of the algorithm, we don’t have any points available, and the midpoint
method is the only technique performed. Hence when t∗ is close to tup, it is ”far away”
from tlow, and so the first estimation of t (the midpoint of tup and tlow) is on the bad side.
Conversely, if r is small, the first estimation of t is on the good side (see Figure 14). Based
on this observation, the following three strategies may be used to improve the algorithm.

(a) Set r to be large, and start searching for t∗ from tup.

(b) Set r to be small, and start searching for t∗ from tlow.

(c) Find a ”good” estimation of r so that t∗ is almost the midpoint of tup and tlow.

4.3 How to Choose the Best Scalar

How the scalar affects the algorithm is complicated, but we can still have some other choice of
r which is motivated by accelerating the convergence rate for maximizing k(t). Recall that the
asymptotic behavior of k(t) is

k(t) ≈ (s2 + 1)λmin(A)− t, when t→∞
k(t) ≈ s2t, when t→ −∞.

Therefore, we can have the asymptotic behavior of k′(t)

k′(t) ≈ −1, when t→∞
k′(t) ≈ s2, when t→ −∞.

If we set r = s, the radius of the scaled problem becomes s/r = 1, and so the shape of k(t) is more
symmetric because k′(t) ≈ 1 for t sufficiently small and k′(t) ≈ −1 for t sufficiently large. This can
significantly improve the performance of the triangle interpolation for maximizing k(t). Numerical
results are given in Section 8 to provide the performance of this choice of scalar.

27

Figure 12: Upper Bound and Lower Bound of t When r = 1 (Not Scaled)

−100 0 100 200 300 400 500
−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

t

k
(
t
)

k(t)

Lower bound

Upper bound

Figure 13: Upper Bound and Lower Bound of t When r = 1000

−7.5 −7 −6.5 −6 −5.5 −5 −4.5

x 10
6

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

t

k
(
t
)

k(t)

Lower bound

Upper bound

28

Figure 14: Upper Bound and Lower Bound of t When r = 1/1000

−50 0 50 100 150 200 250 300 350 400 450
−7

−6

−5

−4

−3

−2

−1

0

1
x 10

5

t

k
(
t
)

k(t)

Lower bound

Upper bound

4.4 The Gradient and Hessian of k̂(r, t)

As we have mentioned above, instead of fixing the value of r, we can view r as a variable of k, and
maximize k̂(r, t) by changing the value of both t and r simultaneously in each iteration. There-
fore, unconstrained optimization methods like steepest descent can be applied to maximize k̂(r, t).
However, we should examine more properties of the function k̂(r, t) first.

Theorem 4.1. Let

k̂(r, t) = (
s2

r2
+ 1)λmin(D(r, t))− t,

where

D(r, t) =

(
t −raT
−ra r2A

)
.

Let A = QΛQT be the spectral decomposition of A, γk be the kth component of QTa, and Λ =
diag (λ1, λ2, . . . λn) such that λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of A. Then,

1. In the easy case, k̂(r, t) is differentiable on (0,+∞)× R.

2. In the hard case, let

t0 = r2λ1 +
∑

k∈{j|γj ̸=0}

γ2k
λk − λ1

.

Then k̂(r, t) is differentiable on (0,+∞)× (−∞, t0).

29

The gradient of k̂(r, t) is given by

∇k̂(r, t) =

(
∂k̂(r,t)

∂r
∂k̂(r,t)

∂t

)
=

(
−2s2r−3λmin(D(r, t))− 2rw(r, t)TAw(r, t) + 2y0(r, t)a

Tw(r, t)
(s2r−2 + 1)y20(r, t)− 1

)

where y(r, t) =

(
y0(r, t)
w(r, t)

)
is the normalized eigenvector corresponding to λmin(D(r, t)).

Moreover, if A has n distinct eigenvalues, i.e., λ1(A) < λ2(A) < . . . < λn(A), and for j =
1, ..., n, γj ̸= 0, then k̂(r, t) is twice differentiable on (0,+∞)× R. The Hessian of k̂(r, t), a 2 × 2
symmetric matrix H, is given by:

H(1, 1) =
∂2k̂(r, t)

∂r2
= (6s2r−4)λmin(D)−4s2r−3(yTDry)+(s2r−2+1)(2wTAw+8

∑
i

(rwTAw − y0aTw)2

λmin(D)− λi(D)
)

H(1, 2) = H(2, 1) =
∂2k̂(r, t)

∂r∂t
= −2s2r−3y20 + 2(s2r−2 + 1)(

∑
i

y0y
i
0

2rwTAwi − aT (yi0w + y0w
i)

λmin(D)− λi(D)
)

H(2, 2) =
∂2k̂(r, t)

∂t2
= 2(s2r−2 + 1)(

∑
i

(y0y
i
0)

2

λmin(D)− λi(D)
)

where yi =

(
yi0
wi

)
is the normalized eigenvector corresponding to the eigenvalue λi(D), such that

λi(D) ̸= λmin(D).

Proof:
Without loss of generality, we assume A is diagonal, and so A = Λ, Q = QT = I and QTa = a.
From [13], we have

det(D(r, t)− λI) = (t− λ)
n∏

k=1

(r2λk − λ)−
n∑

k=1

((rak)
2

n∏
j ̸=k

(r2λj − λ)).

Therefore, if we let

d(λ) = λ+

n∑
k=1

(rak)
2

r2λk − λ
,

when λ ̸= r2λk, we have

det(D(r, t)− λ) = (t− d(λ))
n∏

k=1

(r2λk − λ). (20)

In the easy case, we know that at least one component of a corresponding to the smallest eigenvalue
is nonzero. Without loss of generality, assume a1 ̸= 0, so we have

lim
λ→−∞

d(λ) = −∞,

30

lim
λ→(r2λ1)−

d(λ) =∞.

Moreover,

d′(λ) = 1 +

n∑
k=1

(rak)
2

(r2λk − λ)2
> 0,

d′′(λ) =
n∑

k=1

2(rak)
2

(r2λk − λ)3
.

When λ ∈ (−∞, r2λ1), d′′(λ) > 0 and d(λ) is a convex and strictly increasing function, and its
range is (−∞,∞). Therefore, there is a unique solution λ ∈ (−∞, r2λ1) with multiplicity 1 for
t − d(λ) = 0 for any fixed value of t. This solution must be the smallest eigenvalue of D(r, t) (
because it is the smallest solution for det(D(r, t) − λI) = 0). So we know that λmin(D(r, t)) has
multiplicity 1. From [24], λmin(D(r, t)) is differentiable, and we know k̂(r, t) is also differentiable.
In the hard case, ak = 0 for all k ∈ {j|λj = λ1}. If t < t0, then

lim
λ→(r2λ1)−

d(λ) = r2λ1 +

n∑
k∈{j|λj>λ1}

(rak)
2

r2λk − r2λ1
= t0 > t.

Since d(λ) is still convex and strictly increasing when λ ∈ (−∞, r2λ1), there is still a unique solution
with multiplicity 1 for t− d(λ) = 0 in (−∞, r2λ1). Therefore, k̂(r, t) is differentiable.
The gradient of k̂(r, t) can be calculated by

∇k̂(r, t) =

(
∂k̂(r,t)

∂r
∂k̂(r,t)

∂t

)
=

(
−2s2r−3λmin(D(r, t))− y(r, t)T ∂D(r,t)

∂r y(r, t)
(s2r−2 + 1)y20(r, t)− 1

)

=

 −2s2r−3λmin(D(r, t))− y(r, t)T
(

0 −aT
−a 2rA

)
y(r, t)

(s2r−2 + 1)y20(r, t)− 1

=

(
−2s2r−3λmin(D(r, t))− 2rw(r, t)TAw(r, t) + 2y0(r, t)a

Tw(r, t)
(s2r−2 + 1)y20(r, t)− 1

)
.

Moreover, if λ1 < λ2 < . . . < λn, and every component of a is nonzero, then for k = 1, 2, . . . n− 1,

lim
λ→(r2λk)+

d(λ) = −∞,

lim
λ→(r2λk)−

d(λ) =∞.

Therefore, there is a unique solution λ ∈ (r2λk, r
2λk+1) for t − d(λ) = 0. From (20), we conclude

that this is an eigenvalue of D(r, t). Also, since

lim
λ→−∞

d(λ) = −∞,

lim
λ→+∞

d(λ) =∞,

31

there are also unique solutions in the interval (−∞, r2λ1) and (r2λn,+∞) respectively for t−d(λ) =
0. Therefore,

λ1(D(r, t)) < r2λ1 < λ2(D(r, t)) < r2λ2 < . . . < λn(D(r, t)) < r2λn < λn+1(D(r, t)).

By [22], if all the eigenvalues of D(r, t) are distinct, the eigenvalues of D(r, t) are all twice differ-
entiable with respect to r and t, including λmin(D(r, t)). Hence k̂(r, t) is twice differentiable on
(0,+∞)× R.
Let

Dr =
∂D(r, t)

∂r
=

(
0 −aT
−a 2rA

)
,

Drr =
∂2D(r, t)

∂r2
=

(
0 0
0 2A

)
,

then we have

∂2k̂(r,t)
∂r2

= (6s2r−4)λmin(D)− 4s2r−3(yTDry) + (s2r−2 + 1)(yTDrry + 2
∑

i
(yTDry)2

λmin(D)−λi(D))

= (6s2r−4)λmin(D)− 4s2r−3(yTDry) + (s2r−2 + 1)(2wTAw + 8
∑

i
(rwTAw−y0aTw)2

λmin(D)−λi(D)),

∂2k̂(r,t)
∂r∂t = −2s2r−3y20 + 2(s2r−2 + 1)(

∑
i y0y

i
0

yTDry
λmin(D)−λi(D))

= −2s2r−3y20 + 2(s2r−2 + 1)(
∑

i y0y
i
0
2rwTAwi−aT (yi0w+y0wi)

λmin(D)−λi(D)),

∂2k̂(r,t)
∂t2

= 2(s2r−2 + 1)(
∑

i
(y0yi0)

2

λmin(D)−λi(D)).

32

5 Shift and Deflation

The technique of shift is widely used in eigenvalue problems, linear systems and many other matrix
analysis problems. It can also be exploited in our algorithm to handle the hard case (case 2) (see
[13]). We know that the hard case (case 2) happens only when λ∗ = λmin(A) ≤ 0. Therefore, if we
can make A positive definite, then λmin(A) > 0, and so the hard case (case 2) does not occur. The
following lemma tells us how the shift and deflation can be applied to make A positive definite.

Lemma 5.1. Let A =
∑n

i=1 λi(A)viv
T
i = QΛQT be the spectral decomposition of A, with vi or-

thonormal eigenvectors and Q = (v1, v2, ...vn) an orthogonal matrix. Let γi = (QTa)i, which is the
i-th component of QTa. Let

S1 = {i : γi ̸= 0, λi(A) > λmin(A)}.

S2 = {i : γi = 0, λi(A) > λmin(A)}.

S3 = {i : γi ̸= 0, λi(A) = λmin(A)}.

S4 = {i : γi = 0, λi(A) = λmin(A)}.

For k = 1, 2, 3, 4, let Ak =
∑

i∈Sk
λi(A)viv

T
i . Then,

1. If S3 ̸= ∅ (easy case), then
(x∗, λ∗) solves the TRS iff
(x∗, λ∗) solves the TRS when A is replaced by A1 +A3.

2. If S3 = ∅ (hard case), let i0 = 1 ∈ S4, then
(x∗, λ∗) solves the TRS iff
(x∗, λ∗) solves the TRS when A is replaced by A1 + λi0(A)vi0v

T
i0
.

3. Let x(λ∗) = (A− λ∗I)†a, then
(x∗, λ∗), where x∗ = x(λ∗) + z, z ∈ N (A− λ∗I) and ∥x∗∥ = s solves the TRS iff
(x(λ∗), λ∗ − λmin(A)) solves the TRS when A is replaced by A− λmin(A)I.

4. If λmin(A) ≥ 0, then
(x∗, λ∗) solves the TRS iff
(x∗, λ∗) solves the TRS when A is replaced by A+

∑
i∈S4

αiviv
T
i , with αi ≥ 0.

Therefore, after we calculate the smallest eigenvalue λmin(A) and the corresponding eigenvector
v, we check whether λmin(A) < 0 and whether vTa = 0 (or vTa is sufficiently small). If they
are both true, we know that we may have the hard case. Then we replace A by A − λmin(A)I
(shift), and then deflate A by adding αivv

T to A. Now, if the smallest eigenvalue of A after the
shift and deflation is positive, we know v is the only eigenvector corresponding to λmin(A). But if
the smallest eigenvalue of A after the shift and deflation is still 0 (or sufficiently small), then we
know the multiplicity of the smallest eigenvalue is greater than 1, and so we need to find all the
eigenvectors of λmin(A). This is done by deflating all the eigenvectors we have found corresponding
to the smallest eigenvalue iteratively (i.e., replace A by A+αiviv

T
i if Avi = λmin(A)vi). If v

T
i a ̸= 0

33

for some i such that λi(A) = λmin(A), we know that we do not have the hard case, and we continue
with the regular algorithm.

However, if vTi a = 0 for all i such that λi(A) = λmin(A), then the hard case holds. Since
we have deflated all the eigenvectors corresponding to λmin(A) (notice that λmin(A) = 0 after the
shift), A is now positive definite. Then we can calculate x(λ∗) = A−1a, which is the solution to
the shifted and deflated problem. If ∥x(λ∗)∥ ≤ s, then we have the hard case (case 2). Therefore,
λ∗ = λmin(A). According to Lemma 5.1 Item 3, x∗ = x(λ∗)+z is the optimal solution to the original
TRS with z ∈ N (A − λ∗I) and ∥x∗∥ = s. Recall that we have calculated at least one eigenvector
v corresponding to λmin(A), and we have (A − λmin(A)I)v = Av − λmin(A)v = 0. Therefore,
v ∈ N (A−λ∗I), and we can set z = v and scale it so that ∥x(λ∗)+ z∥ = s. By doing this, we solve
the TRS in the hard case (case 2), with the optimal solution x∗ = x(λ∗) + v, λ∗ = λmin(A). If
∥x(λ∗)∥ > s, then we have the hard case (case 1), and this can be solved by the regular algorithm.

In summary, if the hard case (case 2) holds, the TRS can be solved with the cost of calculating
the smallest eigenvalue of A and solving a well-conditioned linear system. If λmin(A) is not multiple,
solving the hard case (case 2) is significantly faster than solving the easy case or the hard case (case
1), where we need to find the optimal value of t by the regular algorithm. More results will be
shown in Section 8.

Notice that if we find that we do not have the hard case (case 2) after the shift and deflation, we
still keep the shift and deflation because it can still accelerate the algorithm. This is because after
the shift and deflation, A becomes positive definite, and so λ∗ is well separated from the smallest
eigenvalue of A. Moreover, the solution can also be easily recovered by taking a primal step to the
boundary.

Remark 5.1. 1. If the shift and deflation is used (i.e., λmin(A) < 0 and vTa is sufficiently
small), but we do not have the hard case (case 2), then we need to proceed with the regular
algorithm. Notice that A becomes positive definite after the shift and deflation. Since the hard
case (case 2) does not hold, for the original problem, we know that ∥x(λmin(A))∥ > s, and
so the solution can not be in the interior for the shifted and deflated problem. According to
Lemma 5.1 Item 3 and Item 4, x∗ does not change after the shift and deflation. Therefore,
we only need to recover the value of λ∗ and q∗ after we solve the shifted and deflated TRS.

2. The preconditioned conjugate gradient is applied right after we confirm that all the eigenvectors
corresponding to the smallest eigenvalue are orthogonal to a (i.e., we have the hard case).
If x(λ∗) obtained from the preconditioned conjugate gradient is not in the trust region, we
need to proceed with the regular algorithm, and this is somehow not efficient. Therefore,
some heuristic indicator can make this process more efficient. For example, since ||A −
λmin(A)I|| ≤ ||A|| + λmin(A), we know that x(λ∗) ≥ ||a||

||A||+λmin(A) . Consequently, if we check

that ||a||
||A||+λmin(A) ≥ s, we know that it is likely to be the hard case (case 1). Notice that this

is just a heuristic estimate because the deflation also has effect on A and x(λ∗), but it is not

considered in the indicator ||a||
||A||+λmin(A) .

3. αi is the scalar used for the deflation. In fact, as long as αi is significantly greater than 0, the
eigenvector vi (corresponding to λmin(A)) is fully deflated, and αi becomes a new eigenvalue.

34

6 Other Improvements and Analysis of the Algorithm

6.1 Rotation Modification

The RW algorithm is aiming at large-scale sparse trust region subproblems, which involves com-
plicated setups and sophisticated techniques in order to fully exploit the structure and sparsity of
the problem. However, if the trust region subproblem is dense and small, all these techniques may
be excessive and therefore resulting in inefficiency. A more straight forward method can be used
to solve such small and dense problems.

Ben-Tal and Teboulle (see [2]) have shown that all trust region subproblems can be reformulated
as a TRS with diagonal matrix by double duality. However, a much simpler approach can also
lead to the same result. Rotation (Diagonalization) has been widely used in the TRS to prove
theoretical results (see [2, 8]). However, because a complete spectral decomposition is usually
expensive, it is still not used in any algorithm. But when the problem is dense and small, we can
still take advantage of this technique.

Let A = QΛQT be the spectral decomposition of A. So we know QTQ = QQT = I, Λ =
diag (λ1, λ2, . . . λn) such that λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of A. Since Q is an orthogonal
matrix, ∥QTx∥ = ∥x∥. Therefore, our problem becomes:

q∗ = min q(x) = xTQΛQTx− 2aTx
s.t. ∥x∥ ≤ s. (21)

If we let y = QTx, then x = (QT)−1y = Qy, and our problem becomes:

q∗ = min q̃(y) = yTΛy − 2(QTa)T y
s.t. ∥y∥ ≤ s. (22)

which is equivalent as:

(TRSdiag)
q∗ = min q̃(y) =

∑n
i=1(λiy

2
i − 2γiyi)

s.t.
∑n

i=1 y
2
i ≤ s2.

(23)

where y = (y1, y2, . . . , yn)
T , QTa = (γ1, γ2, . . . , γn)

T . Accordingly, the optimality conditions of
(TRSdiag) are

(λi − λ∗)y∗i = γi, i = 1, . . . , n
λ∗ ≤ λi, i = 1, . . . , n

λ∗ ≤ 0∑n
i=1 y

∗2
i ≤ s2

λ∗(s2 − (
∑n

i=1 y
∗2
i)) = 0.

(24)

After this decomposition, we can see that it can be solved easily by Newton’s method or other
algorithms (see Algorithm 6.1).

Algorithm 6.1. Rotation Algorithm

1. Initialization
Spectral decomposition of A: A = QΛQT .

35

(a) If λmin(A) > 0, A is positive definite,
check if the global minimizer is in the trust region. If so, problem is solved, return the
value x∗ = A−1a.

(b) If λmin(A) ≤ 0 and
∑

k∈{j|λj=λmin(A)} γ
2
k = 0, the hard case holds.

i. calculate x(λmin(A)), ∥x(λmin(A))∥,
ii. if ∥x(λmin(A))∥ ≤ s, the hard case (case 2) holds,

iii. return the value of x∗ = x(λmin(A)) + z, where z ∈ N (A− λmin(A)I).

2. Get the Starting Value of λ
Let ϵ > 0 to be a small number, λ < λmin(A).
While ∥x(λ)∥ < s,

(a) ϵ = ϵ2,

(b) λ = λmin(A)− ϵ,
(c) calculate ∥x(λ)∥.

3. The Main Loop of the Newton’s Method
While ∥x(λ)∥ − s > tol,

λ = λ− ∥x(λ)∥2−s2

(∥x(λ)∥2)′ (i.e., a Newton step to solve ∥x(λ)∥2 − s2 = 0).

Still, there are a few shortcomings with this approach:

1. The orthogonal matrix Q, which is indeed comprised of the eigenspace of A, is generally a
dense matrix. Therefore, the cost of storage is expensive if n is large.

2. This method does not exploit the sparsity of A, since the structure of Q does not depend on
the sparsity of A.

3. Note that the diagonalization can be done by the Householder transformation. The House-
holder transformation is widely used for tri-diagonalization of symmetric matrices (see [34]).
Then, characteristic polynomial can be evaluated efficiently for tri-diagonal matrices, and so
eigenvalues can also be easily found.

6.2 Inverse Polynomial Interpolation

The different techniques used in the original RW algorithm to maximize k(t) can guarantee the
convergence, but we may further accelerate the algorithm by applying some other techniques. If
we carefully examine all the methods, it is noticeable that all of them only use the information of
only one or two points from the previous iterations. Therefore, it is natural to consider whether we
can make use of more information from the previous iterations. This is indeed feasible by inverse
polynomial interpolation (see Figure 15).

To illustrate this method, we first recall that t∗ is optimal if and only if

ϕ(t∗) =
√
s2 + 1− 1

y0(t∗)
= 0, (25)

36

Figure 15: Inverse Polynomial Interpolation

−3 −2.8 −2.6 −2.4 −2.2 −2 −1.8 −1.6 −1.4 −1.2 −1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

t

ψ
 (

t)

ψ(t)
polynomial approximation

ψ(t)=0
previous steps
next estimate

where y0(t
∗) is the first component of the eigenvector corresponding to λmin(D(t)). Although we

do not have an explicit expression of t in terms of ϕ, we can estimate its value by an polynomial
approximation. Precisely, assume

t ≈ P (ϕ) = c0 + c1ϕ+ c2ϕ
2 + ...+ ck−1ϕ

k−1.

Therefore, if we already have k iterations, in which we obtained {tj}j=1,...,k and {ϕj}j=1,...,k, where
ϕj =

√
s2 + 1− 1

y0(tj)
. Let

M(ϕ) =

1 ϕk . . . ϕk−1

k

1 ϕk−1 . . . ϕk−1
k−1

...
...

. . .
...

1 ϕ1 . . . ϕk−1
1

c⃗ = (c0, c1, . . . , ck−1)

T ,

t⃗ = (t1, t2, . . . , tk)
T .

Then we can solve the linear system
M(ϕ)c⃗ = t⃗. (26)

Then the estimated value of t such that ϕ(t) = 0 is given by

t = P (0) = c0.

37

Remark 6.1. 1. In order to guarantee that the estimated solution is stable, i.e., to make sure
that it is actually an interpolation rather than an extrapolation, we need points on both the good
side and the bad side of our objective. Precisely, we need to check both min{ϕj}j=1,...,k < 0
and max{ϕj}j=1,...,k > 0 hold, and so the result is reliable. Otherwise, it may lead to an
extremely inaccurate estimated point.

2. Since ϕ(t) is a strictly decreasing function, as long as there is no same t in any two iterations,
the values of {ϕj}j=1,...,k are all different, guaranteeing that the matrix M(ϕ) is invertible,
and so the linear system (26) has a unique solution.

3. It is unlikely that the initial value of t is a good (or even approximate) solution to the equation
(25). Therefore, the absolute value of ϕ1 = ϕ(t1) is generally large. Consequently, as k
increases, the value of ϕk−1

1 may become extremely large, rendering the matrix M(ϕ) ill-
conditioned. Hence in each iteration, it is necessary to check the condition number of M(ϕ).
If it is larger than a threshold, then we get rid of the information from the earliest iteration.
Precisely, we delete the last row and last column of M(ϕ), as well as the last component of c⃗
and t⃗ respectively.

4. Another question is, since there are so many different functions we are interested in, (e.g.,
k(t), k′(t), ϕ(t) etc.) why is ϕ(t) the one selected to perform the inverse polynomial interpo-
lation? Based on simple observation, we can find that ϕ(t) is not only strictly decreasing but
also a concave function for all t ∈ R. Moreover, we need to select a function whose value is
predetermined for the optimal value, and we know that ϕ(t∗) = 0 always holds. However, if we
choose k(t) to perform the inverse polynomial interpolation, even if we know that t = P (k),
it is still difficult to find the value of t∗, because we do not know the value of k∗ = k(t∗), until
we obtain the optimal solution.

6.3 Approximate Eigenvalue Calculation

Although the TRS is reformulated as a parametric eigenvalue problem, we do not need the exact
eigenpair in each iteration. In order to make the algorithm faster and more efficient, we may use
the approximate eigenvalue estimation instead of the exact solution in each iteration.

However, when our interval is getting smaller, (i.e., when the upper bound and the lower bound
of t is getting close) we need more accurate eigenvalue and eigenvector calculations to make progress
with the algorithm. If the eigenvalue is inaccurate while (tup − tlow) is small, the next estimation
of t is probably not in (tlow, tup), which means no progress can be made. Moreover, if the interval
of the t value is small, it means that in each iteration, the value t does not change a lot, which also
leads to a comparatively small change of the eigenvalue and the eigenvector. Therefore, since we are
using the eigenvector obtained from the last iteration to start the Lanczos method for solving the
eigenpair, the smaller the change of the eigenvector is, the faster the Lanczos method is. Therefore,
it is reasonable to set the tolerance of the Lanczos method proportional to the interval of t. That
is,

tol eigenvalue = τ(tup − tlow).

When we use the approximate eigenvalue calculation, since the eigenvalue and the estimate for
t is less accurate in each iteration, this may result in more iterations to obtain the optimal solution.

38

However, compared to the original RW algorithm, the cost in each iteration is significantly reduced.
In fact, the numerical results show that the total number of matrix-vector multiplications is also
significantly reduced.

6.4 Sensitivity Analysis

The sensitivity analysis on the TRS in the easy case has been done by Flippo and Jansen in [12].
We can extend the results to the hard case (case 1) using Theorem 6.1, below. We first introduce
a lemma which gives an easier way to calculate the optimal objective value of the TRS.

Lemma 6.1. If (x∗, λ∗) is an optimal primal-dual solution pair to the TRS, then

q∗ = λ∗s2 − aTx∗.

Proof: If (x∗, λ∗) is an optimal primal-dual solution pair to the TRS, then the optimality
conditions imply that:

(A− λ∗I)x∗ = a,

λ∗(x∗Tx∗ − s2) = 0.

Therefore,
q∗ = x∗TAx∗ − 2aTx∗

= x∗T (λ∗x∗ + a)− 2aTx∗

= λ∗s2 − aTx∗.

We now obtain sensitivity analysis on the easy case and the hard case (case 1).

Theorem 6.1. Consider the perturbed TRS:

(TRSu)
q∗(u) = min q(u, x) := xTA(u)x− 2a(u)Tx

s.t. ∥x∥ ≤ s(u), (27)

where u ∈ R is the perturbation parameter, and A(u), a(u) and s(u) are differentiable functions of
u. If the solution to this problem is (x∗(ū), λ∗(ū)) when u = ū, and we know that the easy case or
the hard case (case 1) holds for this problem, then

dq∗(ū)

du
= −2x∗(ū)T da(ū)

du
+ x∗(ū)T

dA(ū)

du
x∗(ū) + 2λ∗(ū)s(ū)

ds(ū)

du
.

Proof: First of all, since the easy case or the hard case (case 1) holds, we know that λ∗(ū) <
λmin(A(ū)) and x

∗(ū) is unique. According to the optimality conditions, we have

(A(ū)− λ∗(ū)I)x∗(ū) = a(ū), (28)

λ∗(ū)(x∗(ū)Tx∗(ū)− s(ū)2) = 0. (29)

From Lemma 6.1, we have
q∗(ū) = λ∗(ū)s(ū)2 − a(ū)Tx∗(ū) (30)

39

Differentiating (30) with respect to u, we can obtain

dq∗(ū)

du
=
dλ∗(ū)

du
s(ū)2 + 2s(ū)λ∗(ū)

ds(ū)

du
− da(ū)

du

T

x∗(ū)− dx∗(ū)

du

T

a(ū). (31)

Also, differentiating (28), we have

(
dA(ū)

du
− dλ∗(ū)

du
I)x∗(ū) + (A(ū)− λ∗(ū)I)dx

∗(ū)

du
=
da(ū)

du
. (32)

Left multiplying by x∗(ū)T on both sides of (32), we can obtain

x∗(ū)T (
dA(ū)

du
− dλ∗(ū)

du
I)x∗(ū) + x∗(ū)T (A(ū)− λ∗(ū)I)dx

∗(ū)

du
= x∗(ū)T

da(ū)

du
. (33)

Combine (31) and (33), and the result follows.

In the hard case (case 2), in order to apply the sensitivity analysis results in convex programming
to the TRS, we need to reformulate the TRS to an equivalent convex problem. This can be done
by the following theorem.

Theorem 6.2 ([13]). If (x∗, λ∗) is the optimal solution to the TRS, and the hard case (case 2)
holds, then the TRS is equivalent to the following convex programming problem:

(TRSc)
q∗c = min qc(x) := xT (A− λmin(A)I)x− 2aTx+ s2λmin(A)

s.t. ∥x∥ ≤ s, (34)

in the sense that (x∗, λ∗) solves the TRS if and only if (x∗, 0) solves the TRSc, and q
∗ = q∗c .

Proof: Since the hard case (case 2) holds for the TRS, we know that λ∗ = λmin(A), a ∈
R(A− λ∗I), and ∥x(λ∗)∥ ≤ s.
If λ∗ = λmin(A) = 0, then the TRS is exactly the same as the TRSc, and the conclusion is obviously
true.
If λ∗ = λmin(A) < 0, then we know x∗ = x(λ∗) + z with z ∈ N (A − λ∗I) and ∥x∗∥ = s solves the
TRS. From Lemma 6.1, we have

q∗ = λ∗s2 − aTx∗
= λ∗s2 − aT (x(λ∗) + z)
= λ∗s2 − aTx(λ∗) + aT z
= λ∗s2 − aTx(λ∗).

The last step is because we know that the hard case (case 2) holds, and so a ∈ R(A − λ∗I), and
we also know that z ∈ N (A − λ∗I). Therefore, a⊥z and aT z = 0. Also, according to Lemma 5.1
Item 3, (x(λ∗), 0) solves the TRSc, and according to Lemma 6.1, we have

q∗c = 0s2 − aTx(λ∗) + s2λ∗ = λ∗s2 − aTx∗.

40

Therefore, q∗ = q∗c . Also, ∥x∗∥ ≤ s, and so x∗ is a feasible solution to the TRSc. Since

qc(x
∗) = x∗T (A− λmin(A))x

∗ − 2aTx∗ + s2λmin(A)
= x(λ∗)T (A− λmin(A)I)x(λ

∗) + 2x(λ∗)T (A− λmin(A)I)z
+zT (A− λmin(A)I)z − 2aTx(λ∗)− 2sT z + s2λmin(A)

= x(λ∗)T (A− λmin(A)I)x(λ
∗)− 2aTx(λ∗) + s2λmin(A)

= q∗c ,

where the last step is because z ∈ N (A − λmin(A)I) and aT z = 0. Therefore, (x∗, 0) solves the
TRSc.

Since the TRS in the hard case (case 2) can be reformulated as a convex problem, we have the
following result on the sensitivity analysis with respect to q∗.

Corollary 6.1. If the hard case (case 2) holds for the TRS, and s(u) = s + u is perturbed. Let
q∗(u) be the optimal objective value, then

dq∗(0)

du
= −λ∗

q∗(u) ≥ q∗(0)− λ∗u.

Proof: The result follows from Theorem 6.2 .

6.5 Error Analysis on t∗

We have shown in Section 6.1 (also see [2]) that all trust region subproblems can be reformulated to
a diagonal problem (i.e., the matrix A is diagonal). In this section, we assume that A is diagonal,
with distinct diagonal entries (eigenvalues) λ1 < λ2 < ... < λn. Moreover, we require the hard case
does not hold so that k(t) and λmin(D(t)) are both twice differentiable.

Since the RW algorithm is mainly finding the optimal value of t, we analyze how the error on
t affect the results. Assume t∗ = argmin k(t), then q∗ = k(t∗). Let t = t∗ + ∆t be an inaccurate
solution with a very small error ∆t.

6.5.1 How ∆t Affects λ∗

Since the easy case holds, recall from the proof of Theorem 4.1 that there is a unique λ∗ in
(−∞, λmin(A)) such that d(λ∗) = t∗, where

d(λ) = λ+
∑

k∈{j|λj>λ}

a2k
λk(A)− λ

.

Moreover,

41

d′(λ) = 1 +
∑

k∈{j|λj>λ}

a2k
(λk(A)− λ)2

> 0,

and so d(λ) is a monotonically increasing function. If t = t∗ +∆t, then d(λ∗ +∆λ) = t. Since ∆t
is very small, we may assume that

d′(λ)∆λ = ∆t+ o(∆t),

so
|∆λ| = |∆t+o(∆t)

d′(λ∗) |

= | ∆t+o(∆t)

1+
∑

k∈{j|λj>λ}

a2
k

(λk−λ∗)2

|

≤ |∆t+o(∆t)
1 |

= |∆t+ o(∆t)|.

Another approach will also leads us to the same result. Since λ∗ = λmin(D(t∗)),

|∆λ| = |λ− λ∗|

= |λmin(D(t))− λmin(D(t∗))|

= |λ′min(D(t∗))(t− t∗)|

= |(y∗0)2∆t+ o(∆t)|

≤ |(y∗0)2||∆t+ o(∆t)|

≤ |∆t+ o(∆t)|.

Therefore, the value of λ is stable for t.

6.5.2 How ∆t Affects k∗

Also, we want to see how does this affect the value of k(t). When ∆t > 0, t > t∗ and −1 < k′(t) < 0,
then ∆k < 0 and

∆k = k(t)− k(t∗)

> −1×∆t

= −∆t.

So 0 > ∆k > −∆t when ∆t > 0.
If ∆t < 0, then t < t∗ and 0 < k′(t) < s2, so we have ∆k > 0 and

42

∆k = k(t)− k(t∗)

< −s2 ×∆t.

So −s2∆t > ∆k > 0 when ∆t < 0.
Therefore, We can conclude that |∆k| < max{|∆t|, s2|∆t|} < (s2 + 1)|∆t|. Since q∗ = k(t∗),

the value of k is also stable for t, as long as the value of s is not large. In other words, the trust
region being too large may result in an unstable value of the quadratic objective function.

6.5.3 How ∆t Affects k′(t∗)

Also, if yi(t) =

(
yi0(t)
wi(t)

)
is the corresponding eigenvector of λi(D(t)). In particular, y(t) =(

y0(t)
w(t)

)
is the corresponding eigenvector of λmin(D(t)). Then from [22], the second derivative of

k(t) can be calculated by:

k′′(t) = 2(s2 + 1)(
∑
i

(y0y
i
0)

2

λmin(D(t))− λi(D(t))
).

Therefore,

|∆k′(t)| = |k′′(t∗)∆t+ o(∆t)|

= |2(s2 + 1)(
∑

i
(y0yi0)

2

λmin(D(t))−λi(D(t)))∆t+ o(∆t)|

≤ |2(s2 + 1)(
∑

i
1

λmin(D(t))−λi(D(t)))||∆t|+ |o(∆t)|.

As a result, we can see that k′(t) is also stable for t given the condition that the second smallest
eigenvalue of D(t∗) is well separated from λmin(D(t∗)). On the other hand, if λmin(D(t∗)) ≈
λ2(D(t∗)), ∆|k′(t)| may become very large even if t is only a little bit perturbed from t∗.

Recall that λmin(D(t∗)) ≤ λmin(A) ≤ λ2(D(t∗)). Since d(λmin(D)) = t∗ where

d(λ) = λ+
∑

k∈{j|λj>λ}

(ak)
2

λk(A)− λ
,

d′(λ) = 1 +
∑

k∈{j|λj>λ}

(ak)
2

(λk(A)− λ)2
> 0,

d′′(λ) =
∑

k∈{j|λj>λ}

2(ak)
2

(λk(A)− λ)3
.

So when λ ∈ (−∞, λ1), d(λ) is convex and strictly increasing and its range is (−∞,∞). Also, we
know that d(λ∗) = t∗. Therefore, in the easy case, as long as t∗ is not large, d(λ∗) is also not large,
and so λmin(D) is well separated from λmin(A), and therefore also well separated from λ2(D). As
a result k′(t) is also stable for t.

43

6.5.4 How ∆t Affects q∗

Since the value of x is obtained by

x(t) =
w(t)

y0(t)

and

q(x) = x(t)TAx(t)− 2aTx(t).

Let

x′(t) =

x′1(t)
x′2(t)
...

x′n(t)

 w′(t) =

w′
1(t)

w′
2(t)
...

w′
n(t)

 .

Then
∆q = q(t)− q(t∗)

= q′(t∗)∆t+ o(∆t)

= 2(Ax(t∗)− a)Tx′(t∗)∆t+ o(∆t)

= 2(Ax(t∗)− a)T (w
′(t∗)

y0(t∗)
− w(t∗)y′0(t

∗)
(y0(t∗))2

)∆t+ o(∆t).

= 2(λ∗x∗)T (w
′(t∗)

y0(t∗)
− w(t∗)y′0(t

∗)
(y0(t∗))2

)∆t+ o(∆t).

Therefore, we know that when ∥x∗∥ or λ∗ is close to 0, q(x) is still stable to t. However, if y0(t
∗)

is small, the value of q(x) is sensitive to t.

44

7 Application to Unconstrained Optimization

The trust region method is a widely used optimization method for unconstrained optimization
problems, e.g., [8]. It is an iterative method which calculates a step to improve the value of the
objective function in each iteration, subject to the condition that the step is within a proper trust
region. On the other hand, the trust region is also adjusted adaptively according to the performance
at the current iteration. Generally, we require the objective function to be twice differentiable so
that in each iteration we can obtain the gradient and the Hessian matrix of the objective function,
which are used in the trust region subproblem.

Like Newton’s method, it is also a second order method, while methods like steepest descent
only require the information of the first derivative. However, it is different from Newton’s method
in the following two aspects. (i) One of the biggest advantage of Newton’s method is that it is
scale-free, while the trust region method is not; (ii) sparsity can be easily exploited in Newton’s
method while most classic approaches for the TRS cannot take advantage of the sparsity or the
structure of the Hessian matrix.

We first present the standard trust region method. In each iteration, if the estimate from the
last iteration is xk, then the trust region subproblem for the current iteration is defined as:

q∗ = min q(v) := vTHv + 2gT v
s.t. ∥v∥ ≤ s, (35)

where

H = ∇2f(xk), g = ∇f(xk).

The motivation behind this is the Taylor expansion for f(xk + v):

f(xk + v) ≈ f(xk) +∇f(xk)T v +
1

2
vT∇2f(xk)v.

Since this is true only if v is relatively small, the radius of the trust region s determines how much
we ”trust” the model. It is adjusted by the performance of the model, which is measured by:

ρk =
f(xk + v)− f(xk)

q(v)
.

If ρk is close to 1 (or greater than 1), then we know that the model represents the function quite
well, and so we should take the step and the trust region can be expanded in the next iteration.
However, if ρk is small or even negative, the trust region is too large and so it has to shrink in the
next iteration.

Since we have the information of the Hessian and the gradient in each iteration, they can also
be used as stopping criteria. Precisely, the algorithm terminates when the Hessian is positive semi-
definite and the gradient is sufficiently small, which means the minimum is obtained. Notice that
the trust region method does not guarantee convergence to the global minimum.

The algorithm can be summarized as Algorithm 7.1: (see [8])

Algorithm 7.1. Trust Region Method
Set x0, s0, 0 < α1 ≤ α2 < 1, 0 < β1 ≤ β2 < 1.
While Hk is not positive semi-definite or ∥gk∥ ≥ tol g,

45

1. solve the trust region subproblem:

(TRSk)
q∗ = min q(vk) := vTkHkvk + 2gTk vk

s.t. ∥vk∥ ≤ sk.
(36)

2. Measure the performance of vk:

ρk =
f(xk + vk)− f(xk)

q(vk)
.

3. Update:

(a) If ρk ≥ α2, sk+1 ∈ (sk,+∞). (trust region expands)

(b) If α2 > ρk ≥ α1, sk+1 ∈ (β2sk, sk).

(c) If ρk < α1, sk+1 ∈ (β1sk, β2sk). (trust region shrinks)

(d) If ρk > α1, xk+1 = xk + vk. (take the step)

(e) Hk+1 = ∇2f(xk+1), gk+1 = ∇f(xk+1).

7.1 Modification for the Hard Case

Recall that when the hard case (case 2) occurs in the trust region subproblem, the optimal solution
is given by x∗ = x + z where x = (A − λmin(A)I)

†a and z ∈ N (A − λmin(A)I), such that ∥z∥2 =
s2 − ∥x∥2. Therefore, whenever the hard case (case 2) occurs,

1. The solution has to be ”pushed” to the boundary in order to satisfy the optimality conditions.

2. Optimal solution is not unique, since z is not unique.

3. Though the objective value of the trust region subproblem is the same for different optimal
solutions, it’s not the case of the objective function in the unconstrained optimization problem.
i.e., f(xk + vk) is different for different vk.

Therefore, when the hard case (case 2) occurs, the performance of the model is usually not good
since the trust region subproblem is indeed unstable. A common technique to prevent the hard
case (case 2) and make the solution to the TRS unique is to decrease the value of s, and when
s < ∥x∥, the hard case (case 2) does not occur. From another angle, when the hard case (case 2)
occurs, s is too large and we trust the model too much. Therefore, instead of the standard routine
in the trust region method, a better approach is to adjust the trust region in order to make the
solution to the TRS more stable. Precisely,

vk = (Hk − λmin(Hk))
†gk,

sk+1 = ∥(Hk − λmin(Hk))
†gk∥.

46

7.2 Warm Start

Notice that when ρk is small or negative, the step is not taken and so xk+1 = xk, which also results
in Hk+1 = Hk, gk+1 = gk. Therefore, the (TRSk) and the (TRSk+1) are the same except for the
change of s, the trust region radius. It is inefficient to solve the almost same problem all over again.
Therefore, we use the warm start when the step is not taken in an iteration.

We keep the smallest eigenvalue and its corresponding eigenvector of Hk, which can all be used

in (TRSk+1). In addition, because D(t) =

(
t −aT
−a A

)
is independent to s, all the smallest

eigenvalues and eigenvectors of D(t) for different t can be saved for further use. Given the value of
λmin(D(t)) and y(t), we know that k(t) and k′(t) can also be easily obtained with little computation.
Then we pick t0, which has the greatest value of k(t) (or smallest magnitude of k′(t)) as the starting
point of the new iteration. Details are shown in Algorithm 7.2:

Algorithm 7.2. Warm Start
Let t1, t2, ... tm are the iterative estimating points obtained in the process of solving (TRSk). The
values of λmin(D(t1)), λmin(D(t2)), ... ,λmin(D(tm)) and y0(t1), y0(t2), ... ,y0(tm) are saved.
If ρk < α1, then xk+1 = xk, Hk+1 = Hk, gk+1 = gk.

1. Compute
t0 = arg max

i=1,2,...m
k(ti) = (s2k+1 + 1)λmin(D(ti))− ti,

or

t0 = arg min
i=1,2,...m

|k′(ti)| = |(s2k+1 + 1)y0(ti)
2 − 1|.

2. Solve (TRSk+1) using t0 as the starting point.

47

8 Numerical Experiments

In this section, we test the performance of the improvements discussed above. We first compare
the performance of the RW algorithm solving the TRS and the scaled TRS with the scalar r = s.
Then, we test the results of the shift and deflation in the hard case (case 2). Then the performance
of the improvements and techniques we discussed before are also tested, including the rotation
modification, the inverse polynomial interpolation and the approximate eigenvalue calculation.
Since the hard case (case 2) can be efficiently solved by the shift and deflation, and the hard
case (case 1) actually can be treated by the same method as the easy case, we only perform the
tests in the easy case for all the techniques and improvements except the shift and deflation. We
then compare the revised RW algorithm with the LSTRS, a TRS solver written by Rojas, Santos,
Sorenson and Voss, (see [19, 26]). Finally, results on CUTEr problem test set (see [1] and [3])
are also given when the TRS algorithm is used in a trust region method to solve unconstrained
optimization problems.

All the tests are done using MATLAB 2011a in the Windows 7 Professional 64-bit environment.
The computer is a laptop with a dual core 2.66GHz CPU and 4GB Ram. Each point on the figures
is the average of 20 test problems. Unless otherwise specified, the density of the matrix in each
problem is 0.01. Also, the tolerance of the first order optimality condition is 10−8 for the TRS.
The random TRS are generated using the following MATLAB Codes:

% % Generate an easy case problem
Ae=sprandsym(n,density);

ae=randn(n,1);

se=abs(randn);

% % Generate a hard case (case 2) problem

Ah=sprandsym(n,density); % generate a random symmetric Ah

(v,lambda)=eigs(Ah,1,’SA’); % the smallest eigenvalue of Ah

xtempopt=randn(n,1); % generate a random optimal solution

sh=1.1*norm(xtempopt); % trust region radius

ah=Ah*xtempopt -lambda*xtempopt; % set ah = (Ah-lambda I)xtempopt

8.1 Scaling

Recall that for a given scalar r > 0, we can scale the TRS to obtain an equivalent problem using

A← r2A, a← ra, s← 1

r
s.

From Figure 16, we can see that the scaling can considerably improve the performance of the RW
algorithm. Especially when the size of the problem n is getting larger, the difference of the matrix-
vector multiplications for the original TRS and the scaled TRS is also getting bigger. Therefore,
setting r = s certainly can accelerate the RW algorithm.

8.2 Shift and Deflation

The shift and deflation is another technique which we may use to improve the performance of the
algorithm. From Figure 17, we can see that the performance of the shift and deflation is remarkable.
As we expect, if the multiplicity of the smallest eigenvalue of A is 1, then it solves the TRS by

48

Figure 16: Scaling; Varying n; Density= 0.01; Easy Case

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
150

200

250

300

350

400

450

500

550

log
10

(n)

N
um

be
r

of
 M

at
rix

−
V

ec
to

r
M

ul
tip

lic
at

io
ns

The original TRS
The scaled TRS with r=s

Figure 17: Shift and Deflation; Varying n; Density= 0.01; Hard Case (Case 2)

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

200

400

600

800

1000

1200

log
10

(n)

N
um

be
r

of
 M

at
rix

−
V

ec
to

r
M

ul
tip

lic
at

io
ns

RW Algorithm
RW Algorithm with shift and deflation

49

calculating 2 eigenvalues (to make sure the smallest eigenvalue is not multiple) and solving a well-
conditioned linear system. This is certainly much faster than the original RW algorithm, which
needs to calculate an eigenpair in each iteration. Also, notice that the shift and deflation is not
used at all in the easy case, because it is only triggered when |vTa| is sufficiently small, where v
is the eigenvector corresponding to the smallest eigenvalue of A. Therefore, it does not affect the
speed at all in the easy case.

8.3 Rotation Versus the RW Algorithm

In this section, we test the rotation algorithm from Section 6.1, and compare it with the RW
algorithm. In the first figure (see Figure 18), we fix the density at 0.01 and solve some randomly
generated trust region subproblems with the same density but different sizes n.

Figure 18: Rotation vs RW; Varying n; Density= 0.01; Easy Case

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.5

1

1.5

2

2.5

3

log
10

(n)

C
P

U
 S

ec

RW algorithm
Rotation

We can see that the time of the RW algorithm is increasing slowly with respect to the problem
size, while the rotation algorithm is much more sensitive to the problem size. The reason is also
obvious —— the complete spectral decomposition becomes much more expensive when the matrix
size is larger. However, when the size of the problem is small (n ≤ 102.6 ≈ 400), in both the easy
and the hard cases, the rotation algorithm costs much less than the RW algorithm, even though
the problem is sparse.

We next fix the size of the problems (n = 1000), and compare the two algorithms by solving
problems with different densities (see Figure 19).

As we expect, when the problem is sparse, the RW algorithm performs much better. However,
when the density is getting higher, since the rotation algorithm does not take advantage of the
sparsity at all, we conclude that it is not affected by the higher density. Therefore, the cost of time
for the rotation remains almost the same for different densities.

50

Figure 19: Rotation vs RW; Varying Density; n = 1000; Easy Case

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

3

4

5

6

7

8

9

10

11

Density

C
P

U
 S

ec

RW algorithm
Rotation

In sum, the rotation algorithm is more efficient when the problem is dense and small. The
smaller size and the more dense it is, the better it performs comparing to the RW algorithm.

8.4 Inverse Polynomial Interpolation

Inverse polynomial interpolation uses a high order polynomial to approximate the inverse func-
tion of ϕ(t) in order to get a better approximation of t(ϕ). In the easy case (see Figure 20), we
can see that this technique does give some improvement to the algorithm. The improvement main-
ly comes from less iterations required to obtain t∗ because the estimate is more precise in each
iteration.

8.5 Approximate Eigenvalue Calculation

Approximate eigenvalue calculation is indeed a very simple idea, in which we decrease the accuracy
of eigenvalue calculation in each iteration but instead increase the number of iterations as a tradeoff.
Note that the accuracy of the TRS actually remains the same, because none of the stopping criteria
to terminate the algorithm are changed.

From the figure (see Figure 21), we know that in the easy case, we have significant improvements
comparing to the original RW algorithm. We also want to mention that in the tests we dynamically
change the accuracy of the eigenvalue calculation in each iteration, which turns out to perform well.
Precisely, as the estimates are approaching the solution, tolerance has to be set smaller and smaller.
If the accuracy is fixed, it is the same as the original RW algorithm (when the accuracy is very
high in each iteration) or it fails to converge (when the accuracy is too low).

51

Figure 20: Inverse Polynomial Interpolation; Varying n; Density= 0.01; Easy Case

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
100

150

200

250

300

350

400

450

500

550

log
10

(n)

N
um

be
r

of
 M

at
rix

−
V

ec
to

r
M

ul
tip

lic
at

io
ns

RW algorithm
RW algorithm with inverse polynomial interpolation

Figure 21: Approximate Eigenvalue Calculation; Varying n; Density= 0.01; Easy Case

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
150

200

250

300

350

400

450

500

550

log
10

(n)

N
um

be
r

of
 M

at
rix

−
V

ec
to

r
M

ul
tip

lic
at

io
ns

RW algorithm
RW algorithm with approximate eigenvalue calculation

52

8.6 Revised RW Algorithm Versus LSTRS

The LSTRS (see [25, 26]) is also a TRS solver which is designed for large-scale sparse problems.
It reformulates the TRS into a parametric eigenvalue problem. It is also matrix-free in the sense
that the matrix A is only used as an operator to perform matrix-vector multiplications. However,
comparing to the RW algorithm, it uses a different interpolation scheme to update the parameter.
We now compare the revised RW algorithm with the LSTRS in solving the TRS in both the easy
case and the hard case.

Figure 22: Revised RW vs LSTRS; Varying n; Density= 0.01; Easy Case

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
100

150

200

250

300

350

400

450

500

550

log
10

(n)

C
P

U
 S

ec

Revised RW algorithm
LSTRS

From Figure 22, we can see that the LSTRS is more sensitive to the problem size than the
revised RW algorithm in the easy case. From an average of 20 randomly generated problems in
each problem size n, the LSTRS takes 124.10 matrix-vector multiplications to solve a problem when
n = 100 and it takes 498.75 matrix-vector multiplications to solve a problem when n = 10000. But
for the revised RW algorithm, the number of matrix-vector multiplications increases from 228.25
to 391.70 when n increases from 100 to 10000. Therefore, the LSTRS performs better when the
problem size is small, while the revised RW algorithm is better when the problem size is large.

In the hard case (case 2), from Figure 23 we can see that the revised RW algorithm outperforms
the LSTRS. This is mainly because of the application of the shift and deflation in the revised RW
algorithm.

8.7 Hard Case (Case 2) with Multiple Smallest Eigenvalue

Let m be the multiplicity of the smallest eigenvalue of the matrix A. A TRS in the hard case (case
2) with m > 1 is generally difficult to solve. When m > 1, we have numerical difficulties in solving
the eigenpairs using Lanczos type methods. Moreover, m eigenvectors (the basis of the eigenspace

53

Figure 23: Revised RW vs LSTRS; Varying n; Density= 0.01; Hard Case (Case 2)

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

100

200

300

400

500

600

700

800

900

1000

log
10

(n)

N
um

be
r

of
 M

at
rix

−
V

ec
to

r
M

ul
tip

lic
at

io
ns

Revised RW Algorithm
LSTRS

corresponding to the smallest eigenvector) have to be deflated in order to get rid of the hard case
(case 2) in the shift and deflation. When m is large, the cost may become rather expensive. In
this section we generate TRS in the hard case (case 2) randomly with different multiplicities of the
smallest eigenvalue and see how the revised RW algorithm performs.

Firstly we show that how a TRS in the hard case (case 2) with multiple smallest eigenvalue
is generated. Let n be the problem size, m < n be a positive integer (the multiplicity of the
smallest eigenvalue). Let A0 ∈ R(n−m)×(n−m) be a randomly generated symmetric sparse matrix,
a0 ∈ R(n−m)×1 be a randomly generated vector. Let λ1 be the smallest eigenvalue of A0, α be

a positive constant. Let A =

(
A0 0T

0 (λ1 − α)I

)
where 0 ∈ Rm×(n−m) is the zero matrix, and

I is the identity matrix of the proper size. Then we know that A ∈ Rn×n is a symmetric sparse

matrix, with smallest eigenvalue λmin(A) = λ1 − α and its multiplicity is m. Also, a =

(
a0
0

)
must be orthogonal to the eigenspace of λmin(A). Therefore, if we let s = 1.1∥(A− λmin(A)I)

†a∥,
then s > ∥x(λmin(A))∥, and so we have a TRS in the hard case (case 2). Moreover, let J be a
random permutation of {1, 2, ..., n}, and we set A = A(J, J), a = a(J), i.e., we permute the rows
and columns of A by J , and permute a by J . This does not change the smallest eigenvalue of A,
nor its multiplicity. Also, a is still orthogonal to the eigenspace of λmin(A). As a result, the TRS
is still in the hard case (case 2), with the multiplicity of smallest eigenvalue m.

From Figure 24, we can see that the number of matrix-vector multiplications is increasing
considerably with the increase of m. This is because, in the implementation of the shift and
deflation, we need to calculate m eigenvectors corresponding to the smallest eigenvector in order

54

Figure 24: Revised RW Algorithm; Varying m; n = 10000, Density= 0.01; Hard Case (Case 2)

0 2 4 6 8 10 12 14 16 18 20
0

1000

2000

3000

4000

5000

6000

Multiplicity of Smallest Eigenvalue

N
um

be
r

of
 M

at
rix

−
V

ec
to

r
M

ul
tip

lic
at

io
ns

to make A positive definite and so the hard case (case 2) does not hold. Moreover, since these m
eigenvectors used in the shift and deflation are orthogonal, we cannot use the current eigenvector
as the starting vector for the next eigenvalue calculation.

Even though it is sensitive to m, the revised RW algorithm is able to solve the TRS in the
hard case (case 2) with the desired accuracy (which is 10−8) when m ≤ 20 in the tests. However,
the LSTRS fails when m > 1. Precisely, ||(A− λ∗I)x∗ − a||/||a|| > 1 or (∥x∗∥ − s)/s > 0.5 for the
LSTRS when it terminates.

8.8 Results on Unconstrained Optimization Problems

In this section, we compare our algorithm with the MATLAB Large-Scale Unconstrained Optimizer
called fminunc, which uses the techniques developed in Coleman and Li [5, 6, 7]. fminunc is also
a trust region based method which minimizes the function iteratively. However, in each iteration, it
obtains three different solutions to compare —— a 2-D subspace solution, a reflective 2-D subspace
solution and a solution on the direction of the gradient. The best among these three solutions are
selected to take a step in order to decrease the value of the objective function.

We choose a few functions in [1] to perform the test. The algorithm terminates when the first
order optimality (the norm of the gradient) is less than the tolerance, which we set to be 10−12.
Note that this accuracy is quite high, and because fminunc only gives an approximate solution
to the (TRS) in each iteration, this sometimes causes the fminunc fails in achieving the desired
accuracy. Both algorithms are trust region based method, where gradient and Hessian are given
by a defined function. For some of the problems, we test them with different problem sizes in order
to have a more precise results about the two algorithms. Since the cost of time can be affected by
many factors (e.g., other running programs, available RAM), all results are obtained by the average

55

Function Size RW iter RW sec fminunc iter fminunc sec fminunc |gradient|
ARWHEAD 500 9 0.538367 11 0.382102
ARWHEAD 3000 10 4.888472 11 4.068102

Broyden Tridiagonal 500 32 10.138823 400 140.324756 3.87e−07
BRYBND 500 26 2.867038 27 1.530577
BRYBND 2000 31 21.584817 29 18.705026

DIAGONAL1 500 40 10.249686 159 5.518354 1.25e−06
DIAGONAL2 500 37 14.565753 29 4.932759
DIAGONAL3 500 13 3.341224 15 3.374957 5.45e−10
DQDRTIC 500 8 0.222984 8 0.192932
DQDRTIC 5000 11 2.337161 12 2.586480
GENROSE 500 8 0.413776 7 0.339784
GENROSE 5000 12 4.537010 11 6.788770
NONDIA 500 11 1.484020 21 13.210778
PERTQUA 500 2 0.602417 3 0.231616 6.26e−12
POWER 500 5 0.344326 2 0.132514
POWER 5000 5 1.059508 2 0.950641
Raydan1 500 12 5.825982 21 0.823498 8.34e−07
Raydan2 500 20 0.847983 21 0.481980 2.90e−10
SENSORS 500 2 1.439267 2 1.504251
TRIDIA 500 5 0.389786 5 0.213572 7.12e−09

Table 1: Revised RW Algorithm vs fminunc

of time used to solve the problem 10 times. We also show the norm of the gradient when fminunc
can not obtain the desired accuracy (10−12). Results are shown in Table 1.

First of all, when the norm of the gradient is less than a certain amount (the value shown in
the bracket after the cost of time, which depends on different problems), no further improvement
can be made by fminunc. Precisely, in fminunc, the value of the objective function and the
gradient remain the same for several iterations and the trust region radius becomes sufficiently
small (usually much smaller than the tolerance), then fminunc terminates. On the other hand,
the revised RW algorithm can still proceed until the desired accuracy is attained. Therefore, the
revised RW algorithm can obtain higher accuracy in many problems than fminunc.

Secondly, in some problems even though the revised RW algorithm takes less iterations to solve a
problem, fminunc is faster in terms of the cost of time. This is because the fminunc only solves an
approximate solution in each iteration, while the revised RW algorithm gives a much more accurate
estimate. This result is more evident when the fminunc fails to obtain the desired accuracy. For
example, in the DIAGONAL1 function, even though the fminunc takes 159 iterations, but most
of the iterations actually do not improve the solution at all, and so they cost little time.

Finally, in each iteration, fminunc only solves an approximate solution to the TRS, and so the
time spent is much less. However, in the revised RW algorithm, if a step is not taken, (which means
everything remains the same for the TRS except the trust region radius), because the warm start
is exploited, the gradient or Hessian is not recalculated, and the new TRS is also solved efficiently,
and therefore the cost is also quite low.

56

9 Conclusion

In this thesis we present a survey of the trust region subproblem algorithms and suggest some
improvements on the RW algorithm. The well-known optimality conditions for the TRS and the
essentially equivalent theorem —— S-lemma are illustrated. After introducing the main devel-
opments of the TRS algorithms in the last few decades, we then give detailed review on the MS
algorithm, the GLTR algorithm, the SSM algorithm and the Gould-Robinson-Thorne algorithm.
Then, we focus on the RW algorithm and discuss how it can be improved.

Then, simple scaling, a new method which can adjust the trust region radius of the TRS, and
how it can be applied to improve the RW algorithm is illustrated. Different choices of the scalar,
and some properties of the scaled problem are also introduced. The shift and deflation, a technique
used to handle the hard case (case 2) efficiently, is also introduced. It not only solves the hard
case (case 2) efficiently by making the matrix A positive definite, but also helps the RW algorithm
solving the hard case (case 1) and the easy case by separating the optimal dual variable from the
smallest eigenvalue of A. In addition, some other techniques to improve the RW algorithm are
also presented, including the rotation modification, the inverse polynomial interpolation and the
approximate eigenvalue calculation. We also provide the sensitivity analysis on the TRS, and show
that the optimal objective value is stable with respect to the trust region radius in both the easy
case and the hard case.

Moreover, we introduce the trust region method, the main part of which is solving a TRS in
each iteration. We then propose two modifications to the classic trust region method, i.e., (i) warm
start is used when a step is not taken in one iteration; (ii) a different updating scheme for the trust
region radius is applied when the hard case (case 2) occurs.

Finally, numerical tests are given to show the performance of the techniques discussed in the
thesis. Then we compare the revised RW algorithm with the LSTRS, and show that the revised
RW algorithm is more efficient in the hard case (case 2). In particular, the RW algorithm is able
to solve the TRS in the hard case (case 2) with multiple smallest eigenvalue, while the LSTRS
fails. We also compare the trust region method which applies the revised RW algorithm with
the unconstrained optimizer in MATLAB, and show that our algorithm can obtain solutions with
higher accuracy than the MATLAB unconstrained optimizer.

57

References

[1] N. Andrei, An unconstrained optimization test functions collection, Adv. Model. Optim., 10
(2008), pp. 147–161. 48, 55

[2] A. Ben-Tal and M. Teboulle, Hidden convexity in some nonconvex quadratically con-
strained quadratic programming, Math. Programming, 72 (1996), pp. 51–63. 7, 35, 41

[3] I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint, CUTE: Constrained and un-
constrained testing environment, ACM Transactions on Mathematical Software, 21 (1995),
pp. 123–160. 48

[4] D. Calvetti, L. Reichel, and D. Sorensen, An implicitly restarted Lanczos
method for large symmetric eigenvalue problems, ETNA, 2 (1994), pp. 1–21. URL
http://etna.mcs.kent.edu/vol.2.1994/index.html. 7

[5] T. F. Coleman and Y. Li, On the convergence of interior-reflective Newton methods for
nonlinear minimization subject to bounds, Math. Programming, 67 (1994), pp. 189–224. 55

[6] , An interior trust region approach for nonlinear minimization subject to bounds, SIAM
J. Optim., 6 (1996), pp. 418–445. 55

[7] , A reflective Newton method for minimizing a quadratic function subject to bounds on
some of the variables, SIAM J. Optim., 6 (1996), pp. 1040–1058. 55

[8] A. Conn, N. Gould, and P. Toint, Trust-Region Methods, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 2000. 2, 9, 11, 16, 35, 45

[9] J. K. Cullum and R. A. Willoughby, Lánczos algorithms for large symmetric eigenvalue
computations. Vol. II, vol. 4 of Progress in Scientific Computing, Birkhäuser Boston Inc.,
Boston, MA, 1985. Programs. 12

[10] X. Doan and H. Wolkowicz, Numerical computations and the ω-condition number, Tech.
Rep. CORR 2011-??, University of Waterloo, Waterloo, Ontario, 2011. submitted in ???, 2011.

[11] J. Erway, P. Gill, and J. Griffin, Iterative methods for finding a trust-region step, siopt,
20 (2009), pp. 1110–1131. 8

[12] O. FLIPPO and B. JANSEN, Duality and sensitivity in nonconvex quadratic optimization
over a ellipsoid, Tech. Rep. 93-15, Technical University of Delft, Delft, The Netherlands, 1993.
39

[13] C. Fortin and H. Wolkowicz, The trust region subproblem and semidefinite programming,
Optim. Methods Softw., 19 (2004), pp. 41–67. 1, 2, 4, 18, 30, 33, 40

[14] D. Gay, Computing optimal locally constrained steps, SIAM J. Sci. Statist. Comput., 2 (1981),
pp. 186–197. 2, 4, 7

[15] N. Gould, S. Lucidi, M. Roma, and P. L. Toint, Solving the trust-region subproblem
using the Lanczos method, SIAM J. Optim., 9 (1999), pp. 504–525. 1, 2, 7, 11, 13

58

[16] N. Gould, D. Robinson, and H. Thorne, On solving trust-region and other regularised
subproblems in optimization, Math. Program. Comput., 2 (2010), pp. 21–57. 1, 8, 14

[17] W. Hager, Minimizing a quadratic over a sphere, tech. rep., University of Florida, Gainsville,
Fa, 2000. 1, 7, 13

[18] W. W. Hager and S. Park, Global convergence of SSM for minimizing a quadratic over a
sphere, Math. Comp., 74 (2005), pp. 1413–1423. 7

[19] J. Lampe, M. Rojas, D. Sorensen, and H. Voss, Accelerating the LSTRS Algorithm,
SIAM J. Sci. Comput., 33 (2011), pp. 175–194. 8, 48

[20] Y. Levin and A. Ben-Israel, The Newton bracketing method for convex minimization,
Computational Optimization and Applications, (2001). 19, 20

[21] J. Moré and D. Sorensen, Computing a trust region step, SIAM J. Sci. Statist. Comput.,
4 (1983), pp. 553–572. 1, 2, 4, 7, 8, 10

[22] M. Overton and R. Womersley, Second derivatives for optimizing eigenvalues of symmet-
ric matrices, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 697–718. 32, 43

[23] I. Pólik and T. Terlaky, A survey of the S-lemma, SIAM Rev., 49 (2007), pp. 371–418
(electronic). 2

[24] F. Rendl and H. Wolkowicz, A semidefinite framework for trust region subproblems with
applications to large scale minimization, Math. Programming, 77 (1997), pp. 273–299. 1, 2, 7,
16, 17, 26, 31

[25] M. Rojas, S. Santos, and D. Sorensen, A new matrix-free algorithm for the large-scale
trust-region subproblem, SIAM J. Optim., 11 (2000/01), pp. 611–646 (electronic). 7, 53

[26] M. Rojas, S. Santos, and D. Sorensen, Algorithm 873: LSTRS: MATLAB software for
large-scale trust-region subproblems and regularization, ACM Trans. Math. Software, 34 (2008),
pp. Art. 11, 28. 48, 53

[27] D. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J.
Matrix Anal. Appl., 13 (1992), pp. 357–385. 7

[28] , Minimization of a large-scale quadratic function subject to a spherical constraint, SIAM
Journal on Optimization, 7 (1997), pp. 141–161. 7

[29] R. Stern and H. Wolkowicz, Indefinite trust region subproblems and nonsymmetric eigen-
value perturbations, SIAM J. Optim., 5 (1995), pp. 286–313. 2

[30] P. Tao and L. An, D.C. (difference of convex functions) optimization algorithms (DCA)
for globally minimizing nonconvex quadratic forms on Euclidean balls and spheres, tech. rep.,
LMI, INSA, Rouen, Mont Saint Aignan Cedex, France, 1995. 7

[31] A. Tikhonov and V. Arsenin, Solutions of Ill-Posed Problems, V.H. Winston & Sons, John
Wiley & Sons, Washington D.C., 1977. Translation editor Fritz John. 4

59

[32] V. Yakubovich, The S-procedure in nonlinear control theory, Vestnik Leningrad. Univ., 4
(1977), pp. 73–93. English Translation, original Russian publication in Vestnik Leningradskogo
Universiteta, Seriya Mathematika 62-77, 1971. 2

[33] Y. YE and S. ZHANG, New results on quadratic minimization, Tech. Rep. SEEM2001-03,
Department of Systems Engineering & Engineering Management The Chinese University of
Hong Kong, Hong Kong, 2001. 8

[34] A.S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell Publishing
Company, New York, NY, 1964. 36

[35] S.G. Nash, Newton-Type Minimization via the Lanczos Method, SIAM Journal on Numerical
Analysis, 21 (1984), pp. 770–788. 12

60

