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Abstract

Aplysia Californica are marine mollusks with a relatively simple central nervous system
that makes them ideal for investigating neurons. The bag-cell neuron is found in the Aplysia
and is important due to its activity causing the onset of a series of behaviours which culmi-
nate in egg laying. The bag-cell neuron is generally not very active but can be stimulated
into a long active period known as the afterdischarge in which the neuron releases a hormone
that causes egg laying. The afterdischarge is due to a fundamental change in the electro-
physiological properties of the bag-cell neuron. The purpose of this thesis is to determine a
mathematical model for the electrical activity found in a single bag-cell neuron which can
be used to investigate the afterdischarge behaviour.
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Chapter 1

Introduction

Aplysia Californica are marine mollusks with a relatively simple central nervous system
that makes them ideal for investigating neurons. This is because the neural activity in an
Aplysia directly links to the animal’s behaviour. The bag-cell neuron is a neuron found in
the Aplysia whose activity causes the onset of a series of behaviours which culminate in
egg laying. This happens due to two clusters of 200-400 bag-cells activating synchronously
and releasing a hormone which will cause the animal to initiate egg laying behaviour. The
synchronous activation is a specific kind of neuronal activity known as the afterdischarge in
which a brief amount of stimulation causes the cell to be very active for up to several hours
during which the egg laying hormone is released. The purpose of this thesis is to determine
a mathematical model for the electrical activity found in a single bag-cell neuron which can
be used to investigate the afterdischarge behaviour.

1.1 Outline of Thesis

In Chapter 2 we will review the biology and function of neurons. We will follow this with
a review of the principles and mathematics involved in modelling the electrophysiology of
neurons by looking at the Nobel prize winning work done by Hodgkin and Huxley in the
late 1940’s and early 1950’s. Specifically we will be discussing what it means for a cell to be
excitable and how the relevant properties of neurons can be measured so that a mathematical
model of the behaviour can be created. We will then review the original model created by
Hodgkin and Huxley of a squid giant axon. In Chapter 3 we will discuss the biology and
physiology of Aplysia and its bag-cell neuron. We will then look at the literature regarding
bag-cell neurons from which we develop our model. In Chapter 4 we will go through the
steps of building the model of the bag-cell neuron and discuss the results and limitations as
well a further work that can be done to improve the model. Finally in Chapter 5 we will
review the results from the model we created and discuss its limitations and future work
which can be done to improve the model.
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Chapter 2

Neurobiology Background

2.1 Neurons

It has been known since the 19th century that cells are the basic elements of living organisms.
Neurons are the building blocks of a central nervous system. They are electrically excitable
cells that are responsible for transmitting information using electrical or chemical signals.
Neurons have an incredible range of distinct cell types that allow them to have different
functions.

Neurons have the same basic cellular structure as other cells, i.e. a cell body contain-
ing a nucleus, endoplasmic reticulum, ribosomes, Golgi apparatus, mitochondria and other
organelles. The important differences between neurons and other cells comes from two struc-
tures: the dendrites and the axon. The dendrites form a tree like structure (“dendron” is
Greek for tree) arising from the cell body which receives inputs from other neurons (the
dendritic arbor). The number of inputs a neuron receives is dependent on the complexity of
its dendritic arbor. The axon is a unique extension of the neuronal cell body that extends
from a few µm to significantly longer depending on the specific cell and its function. For
example, the sciatic nerve in humans has an axon which extends from the base of the spine
to the big toe. The point where the axon is connected to the cell body or soma is called the
axon hillock and the point at which the axon ends is called the terminal button. At the ter-
minal button there are vesicles, small membrane enclosed sacks, which can release chemicals
(neurotransmitters) into a small gap between the end of the axon and the dendrite of the
adjacent cell. A labelled neuron is shown in Figure 2.1

The fundamental characteristic of a neuron is its ability to generate electrical signals that
transmit information. Even though neurons are not good conductors of electricity, they have
developed elaborate mechanisms for generating electrical signals using the flow of ions across
their cell membranes. The electrical signal is an all-or-nothing event known as an action
potential. Action potentials are transient depolarizations (changes in membrane potential
in the positive direction) in the electrical potential of the cell membrane. Action potentials

2



Figure 2.1: A typical Neuron

are also known as “spikes” or “impulses”. An all-or-nothing event refers to the property of
the spike that the amplitude is the same regardless of the amount of stimulation as long as
it is above a certain threshold value. The signal is transmitted through a neuron starting at
the dendrites. The dendrites receive signals from other neurons, increasing the membrane
potential where the signal is received. This change spreads passively along the membrane
to the axon hillock. Passive spread refers to the spread of a change in membrane potential
where a local membrane depolarization causes the area around the initial depolarization to
also become depolarized slightly. The amount of depolarization in the membrane decreases
exponentially with distance from the initial site. If the membrane potential at the axon
hillock reaches a certain threshold value then an action potential is initiated that travels
down the axon to the terminal button where the signal is then transmitted to other neurons.
The place where the axon of one cell and the dendrite of the cell it is communicating with
are nearest is known as the synapse and the gap between the two is known as the synaptic
cleft. The cell sending a signal is called the efferent cell and the receiving cell is called the
afferent cell.

The transmission of a signal between two cells through the synapse consists of the fol-
lowing: the signal starts at the axon hillock of a neuron and travels down the axon to the
terminal button, at the terminal button neurotransmitters are released into the space be-
tween the efferent neuron’s axon and the afferent neuron’s dendrite, the neurotransmitters
bind to sites on the dendrite of the afferent cell and cause the signal sent by the efferent
neuron to propagate through the dendrites to the axon hillock of the afferent neuron. Specif-
ically the neurotransmitters cause protein channels to open allowing ions in. This produces

3



a positive change in the membrane potential of the dendrites which spreads. Eventually
the spreading depolarization reaches the axon hillock and since the difference in membrane
potential typically decays exponentially with distance from the synapse and time, it often
takes several efferent neurons’ inputs to stimulate an action potential.

Another way for action potentials to propagate from neuron to neuron is by gap junctions.
Gap junctions occur where two neurons are so close together that their cytoplasms are
directly connected by groups of proteins called connexons which extend from each cell to
bridge the extracellular space. This allows for ions to freely flow from one cell to another.
This means that if one cell membrane becomes very depolarized, the depolarization will
spread to the other cell.

2.2 Electrophysiology

The main focus of the mathematical model presented in Chapter 4 is to build a model
that describes and provides insight into the understanding of the action potential in a bag-
cell neuron. In order to understand an action potential in a bag-cell neuron we will first
examine the seminal work by Hodgkin and Huxley. In the late 1940’s and early 1950’s they
formulated a model for a squid giant axon using a series of mathematical equations. In order
to build up the full Hodgkin and Huxley model we first need to characterize the conditions
and physiology which makes it possible for a cell to “fire” an action potential. A cell from
which an action potential can be elicited is said to be “excitable”. In order to describe the
properties and behaviour of a cell membrane producing an action potential we will briefly
overview some basics of electrical physics and circuit theory. We will then describe how
these terms relate to ion channels and the dynamics of the cell membrane. Next we will
discuss the techniques Hodgkin, Huxley and others used to measure the electrophysiological
properties of neurons. Finally, we will discuss the Equations governing the electrical activity
of the cell membrane, developed with the data found using these techniques.

2.2.1 Electrical Physics

Since we will be using a lot of terms from electrical circuit theory to describe the behaviour of
ions with respect to the cell membrane, we will begin by defining some relevant terms. First,
Q is used to represent a quantity of charge. It is measured in coulombs (C). The charge on
Avogadro’s number of elementary charges (proton or electron) is called the Faraday constant
(F ). For example, the amount of charge on one mole of Na+ is F . The rate of flow of charges
is called current (I). It is the derivative of Q with respect to time and is measured in amperes
(A). We will use I to represent the rate at which ions flow through protein channels into and
out of the membrane.

Potential difference (V or E) is a measure of the work needed to move a small charge
between two points. It is measured in volts (V). Potential difference is also referred to as
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voltage or simply potential. A change that makes the potential more positive is called a
depolarization and a change that makes the potential more negative is called a hyperpo-
larization. Furthermore, a change that returns the membrane potential to the resting state
after the initial depolarization is referred to as a repolarization. Since V and E are both used
to represent voltage, in any equations that follow E will be used to represent a voltage that
is a constant and V will represent voltage that is a variable. The potential difference we are
interested in is the difference in potential across the cell membrane given by the following
equation

V (t) = Vi(t)− Ve(t) (2.1)

where t represents time and the subscript i denotes the intracellular voltage and e denotes
the extracellular voltage.

Conductance (g) measures the ease of flow of current between two points and is measured
in siemens (S). The reciprocal of conductance is called resistance (R) and is measured in
ohms (Ω). There is a very important relationship between theses quantities which we will
be using to model the rate of flow of ions across the membrane. It is known as Ohm’s law:

I = gV (2.2)

A potential difference occurs when there is a separation of charge, i.e., an excess of
positive charge on one side and negative charge on the other. Capacitance (C) measures
how much charge (Q) needs to be transferred from one conductor to another to set up a
given potential difference. It is defined as follows

C =
Q

V
(2.3)

or, taking the derivative with respect to time we can also write Equation (2.3) as follows

C
dV

dt
= I (2.4)

Capacitance is measured in farads (F). Now we will use these terms to describe the
conditions which create an action potential.

2.2.2 What makes a cell excitable?

The cell membrane is composed of a phospholipid bilayer. The polar (charged) heads of
the phospholipids are hydrophilic and the non-polar tails are hydrophobic. This causes the
heads to face the intracellular space and the extracellular space with the tails in between
facing each other. The bilayer is a very thin, 30-50 Å, insulator which prevents most ions
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and other solutes from passing through. The separation of ions allows for there to be dif-
ferent concentrations and amounts of charge on either side of the cell membrane which is
fundamental to the creation of action potentials and allows the membrane to modelled as a
capacitor.

When the cell is undisturbed the membrane potential is said to be at its “resting po-
tential”. The resting potential is quite negative for excitable cells, for example the squid
giant axon on which Hodgkin and Huxley experimented had a resting potential of approx-
imately negative 60 mV. When an excitable cell is stimulated, either using a electrode or
from receiving a signal by other neurons, there is a resulting transient change in membrane
potential as seen in Figure 2.2. For a weak stimulus the membrane potential is perturbed
from rest an amount proportional to the strength of the stimulus. However, in excitable cells
there is a threshold for which enough depolarizing stimulus will produce a disproportional
response. The disproportional response is a non-linear spike known as an action potential
and is determined by cell properties rather than the strength of the stimulus. The threshold
behaviour is generally true for a reasonable range of inputs, however, there is an upper limit
on the amount of current that can be injected into a cell without causing permanent damage.
Depending on the cell, a stimulus may result in more than one spike if it is strong enough.
The timing between spikes and the rate at which they fire is generally accepted as the way
information is conveyed throughout nervous systems.

In order for an action potential to occur the cell needs to be able to selectively allow
specific ions to pass through it. This is accomplished through ion channels. These are pro-
teins embedded in the membrane which allow specific ions to flow along the electrochemical
gradient. The electrochemical gradient is the combination the forces due to the electrical
charge and chemical concentrations, positive ions will move towards an area of the opposite
charge and ions will also move from an area of high concentration towards an area of lower
concentration. There are also ion pumps which actively use energy to move ions into and out
of the cell against their electrochemical gradient. Pumps are generally used to maintain the
proper distribution of ions across the membrane for eliciting action potentials. The opening
and closing of ion channels is responsible for the transient spike in the membrane potential
known as an action potential. It is interesting to note that Hodgkin and Huxley were not
aware of a specific mechanism that changed the permeability of the membrane due to the
limits of microscopes in the late 1940’s.

Since the membrane acts as a barrier between the intracellular and extracellular fluid, it
allows for there to be different concentrations of ions on either side of the membrane. There
are two properties that we consider affecting the movement of ions. The first is the movement
of ions due to a concentration gradient. This causes ions in a high concentration area to
diffuse to an area of lower concentration. We assume that the concentration gradient does
not change significantly as ions flow across the membrane. The second is the electrical force
due to the charge of the ions causing like charges to repel and opposite charges to attract.
These two forces are in constant conflict and the potential at which they are balanced is
known as the Nernst equilibrium. We will see later that the Nernst equilibrium is a special
case of the more general equations governing the movement of ions.

6
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Figure 2.2: Action Potential
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In order to describe the dynamics of ions flowing across the membrane one can use the
Goldman Hodgkin Katz (GHK) current equation. The GHK current equation is derived
by solving the Nernst-Planck Equation for electrodiffusion using the following assumptions:
the membrane is a homogeneous substance, the electrical field is constant so that the trans-
membrane potential varies linearly across the membrane, the ions access the membrane
instantaneously from the intracellular and extracellular solutions, the permeant ions do not
interact, and the movement of ions is affected by both concentration and voltage differences.
For a detailed derivation see Hille [9] or Keener and Sneyd [19]. This Equation describes the
current across a particular ion channel Is with respect to the membrane potential (V ) and
the concentration of ions inside ([ion]i) and outside ([ion]o) of the cell:

IS = z2
SPS

F 2

RT

(
[ion]i − [ion]oe

−zS V FRT

1− e−zS V FRT

)
(2.5)

where z is the valence of the ion, P is the permeability of the membrane, F is Faraday’s
constant, R is the universal gas constant, and T is temperature in Kelvin. By convention
a current where cations flow into the cell is considered positive since it causes a rise in the
membrane potential, similarly anions flowing outwards is considered positive. By the same
reasoning cations flowing out and anions flowing in give negative currents. If we set the
left side of Equation (2.5) to zero we can rearrange and solve for the potential at which the
current changes sign. This potential is the Nernst potential given in Equation (2.6). The
Nernst potential can also be derived from the Boltzmann Equation, see Hille ([9]). The
Nernst Equation is given by

Eion =
RT

zF
ln

[ion]o
[ion]i

(2.6)

where R is the universal gas constant, T is temperature in Kelvin, z is the valence of an
ion and F is Faraday’s constant. The Nernst Equation can be expanded to include multiple
ions across a membrane and their relative permeabilities across the membrane [9]. However
the Nernst Equation only describes the membrane potential at equilibrium for a membrane
permeable to a particular ion and does not describe the ion dynamics in detail.

The Nernst Equation does provide a very simple way of thinking about the action po-
tential. Given that the Na+ Nernst potential is +30 mV and the K+ is -60 mV. If the
membrane suddenly becomes permeable to only sodium the membrane potential will go to
the equilibrium value of +30 mV, then if the membrane potential becomes permeable to only
potassium the membrane potential will return to -60 mV. Of course this does not explain
the time scale of the dynamics but it provides the basic idea of an action potential being
caused by changes in permeability of the membrane.
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2.2.3 Measurement Methods

During the 1940’s, experiments were done on the giant axon found in a squid that enabled a
much greater understanding of how neurons work. We will discuss some of the first methods
used to measure the membrane potential and current flowing through the cell membrane of
a neuron. These methods were used in the experiments by Hodgkin and Huxley which they
used to determine a mathematical model describing the membrane potential, see Section 2.3
. We will also discuss the more modern research methods which generate the data we will
use to formulate the bag-cell neuron model.

Current Clamp

Working on the squid giant axon, Marmont [24] was able to achieve isopotentiality over a
region of the axon by threading a chloride covered silver wire into the axon to short-circuit
the longitudinal resistance in the cytoplasm of the axon. This prevented propagation of the
action potential along the axon. The squid giant axon was taken from the stellate nerve
of a Loligo, which is used to initiate movement when escaping from predators. The squid
giant axon was very useful as it is, as the name suggests, gigantic, with a diameter up to 1
mm. Marmont was also able to restrict current measurement to a short segment of the axon
by using electrical circuits to set up two “guard” zones on either side of the area he was
measuring. These zones ensured that the membrane potential on either side matched the
potential of the central region and thus prevented action potentials from outside the central
region from propagating in. Marmont used these experiments to inject current into the cell
and measure the resulting change in membrane potential. This allowed Marmont to record
action potentials in a single patch on the membrane.

Voltage Clamp

The voltage clamp is a simple feedback circuit designed to hold the membrane potential
at a specific value, seen in Figure 2.3. This method was developed by Marmont, Cole, and
Hodgkin, Huxley, and Katz ([24],[14]). Hodgkin Huxley and Katz improved upon Marmont’s
method by using different electrodes to measure the internal membrane potential and to
inject current.

A voltage clamp experiment works as follows. Two electrodes are inserted into the axon,
one records voltage and the other is used to inject current. A third electrode is used to
measure the external voltage. The experimenter chooses a voltage at which to hold the cell,
and the recorded voltage is compared to this, if the voltages differ then current is injected into
the cell to make the membrane voltage equal the holding voltage. The current injected into
the cell cancels out the ionic currents in the membrane. Since the voltage is held constant
the capacitive current (IC = C dV

dt
) is zero. In the case of the squid giant axon a long silver

wire was threaded down the length of the axon to maintain the voltage clamp conditions at
all locations, this is known as a space clamp.
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Modern Research Methods

Modern experiments differ from those discussed above in several ways as the methods for
performing voltage clamps and controlling the intracellular solution have improved since
Hodgkin and Huxley’s seminal work. One method, known as a patch clamp, uses a glass
micropipette with an open tip as an electrode which encloses a small portion of the membrane
surface area (the “patch”). This technique was developed by Erwin Neher and Bert Sakmann
in the late 1970s early 1980’s for which they received a Nobel Prize [25]. To make a whole-
cell recording a polished glass pipette is placed on the cell and a gentle suction is applied
forming a high resistance seal between the pipette and the membrane. Further suction is
then applied rupturing the membrane in the area inside the pipette. The interior of the
pipette effectively becomes the inside of the cell allowing for an electrode to be inserted to
measure the potential and another to input current. A third electrode is used to measure
the extracellular potential. Researchers can also use a similar technique to remove a small
portion of the membrane as soon as the seal is formed so that they can effectively measure the
behaviour of the channel with any “intracellular” and “extracellular” solutions they chose.

In situations where researchers want to measure the potential inside the cell membrane
with minimal effect on the ionic constitution of the intracellular fluid a sharp electrode
method can be used. These micropipettes are like those for patch clamp, but the pore is
much smaller so that there is very little ion exchange between the intracellular fluid and the
electrolyte in the pipette.

2.3 Hodgkin and Huxley Model

The following description of Hodkgin and Huxley’s work was taken from their original papers,
see [14], [11], [10], [12] and [13]. Using the techniques described above, Hodgkin and Huxley
were able to hold the membrane potential to a chosen constant value and then change the
membrane potential almost instantaneously to a new value and record the resulting change in
current. This method is known as the voltage clamp (discussed in detail in Section 2.2.3) and
can also be referred to as a step depolarization. Also it is important to note that for a squid
giant axon a space-clamp was used which means there was no spatial variation of membrane
potential. The voltage clamp offered the first quantitative measure of ionic currents flowing
across the membrane. Figure 2.4 shows the type of results that Hodgkin and Huxley saw
when they performed a voltage clamp experiment, where at t=0 the membrane potential is
changed from its holding value to the clamp value. From the results they determined there
must be two currents, an inward current causing the initial drop followed by an outward
current causing the rise afterwards.

With this method, Hodgkin and Huxley could separate currents carried by different ions.
We know that for membrane potentials less than the Nernst potential a cation will flow
inwards (a positive current) and for a membrane potential greater than the Nernst potential
a cation will flow outwards (a negative current). Another important experiment using the
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Figure 2.4: Example Voltage Clamp Results for Hodgkin and Huxley

voltage clamp was to remove ions from the extracellular space and replace them with an
ion of the same charge that would not permeate the membrane, this allowed Hodgkin and
Huxley to determine which ions could permeate the membrane. It was also assumed that an
ion’s ability to cross the membrane was not dependent on the concentration of other ions.
This assumption is valid for the Na+ and K+ channels in the squid giant axon, but some
more complicated channels can be dependent on the concentration of Ca2+ in the cell and
other mechanisms as we will see later. Hodgkin and Huxley were able to use these methods
to determine which ions were responsible for carrying currents across the membrane. For
example the Hodgkin and Huxley paper [11] tested their hypothesis that sodium carried
an inward current by varying the amount of sodium and replacing it with choline (a non-
permeant ion) in the extracellular solution and comparing the results of the voltage clamp
experiments. They found that the early inward current portion of the results (seen in Figure
2.4) disappeared with the lack of sodium. They were able to perform similar experiments
with potassium to determine it was responsible for the outward current portion of the results.
Hodgkin and Huxley also noticed a small, relatively voltage independent component of the
current which they called the leak current.

Once Hodgkin and Huxley had determined the ionic currents, the next step was to
give a quantitive measure to relationship between current and membrane potential for each
current. They did this by measuring what they called the “instantaneous current-voltage
relation”:they held the membrane potential at a slightly depolarized value and then stepping
the voltage to a more depolarized value and measured the current immediately after the step.
One set of experiments was done with high sodium permeability and one with high potassium
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permeability. Both experiments gave an approximately linear current-voltage relationship
consistent with Ohm’s Law. Thus Hodgkin and Huxley introduced ionic conductances as
measures of membrane permeability defined in terms of ionic current as follows

INa(V ) = gNa(V )(V − ENa) (2.7)

IK(V ) = gK(V )(V − EK) (2.8)

Linearity is only an approximation but it is valid for these ions over the voltage range
that occurs during normal cell activities. This can be confirmed empirically and from the
Goldman Hodgkin Katz current Equation. Conductance, like current is voltage and time
dependent. Using the above Equations combined with voltage clamp experiments we can
determine the relationship between conductance and voltage.

In order to model the behaviour of the cell membrane it is very useful to describe the
membrane potential in terms of an electrical circuit. The circuit consists of three components
analogous to the different parts of the physical system. Conductors or resistors are used to
represent the ion channels, batteries to represent the concentration gradients of the ions, and
capacitors to represent the ability of the membrane to separate charge. The circuit equivalent
which reproduces the behaviour of the membrane potential is a capacitor in parallel with
resistors and batteries representing each ion channel, as seen in Figure 2.5. We can apply
Kirchoff’s Current Law, that the sum of the currents flowing into or out of a node must
be zero, to conclude that the capacitive current, the ionic currents, and the applied current
must sum to zero.

IC + Iion − Iapp = 0 (2.9)

Using Equation (2.4), we can replace IC to obtain

C
dV

dt
+ Iion − Iapp = 0 (2.10)

where C is the membrane capacitance, V is the membrane potential, Iapp is the applied
current, and Iion is the sum of the currents due to the various ion channels. It is important
to note that charge cannot actually flow across a capacitor but is redistributed across the
membrane. Experimentally Equation (2.10) means that the applied current, Iapp, equals the
ionic currents when the voltage is clamped. We replace Iion with the sodium, potassium and
leak currents from Equations (2.8) and (2.7) to obtain

C
dV

dt
= −gNa(V )(V − ENa)− gK(V )(V − EK)− gL(V − EL) + Iapp (2.11)

where gNa and gK are voltage and time dependent. We will discuss each of the conductances
separately, both the Equations governing them and the experiments used to determine the
parameters of said Equations.
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Figure 2.5: Circuit Diagram of Hodgkin and Huxley Model

2.3.1 Leak Current

The easiest current to measure, the leak current can be determined by a voltage clamp
experiment that hyperpolarizes the cell. When the membrane potential is far enough below
the resting potential all of the voltage gated ion channels are closed and thus any current
observed is due to the leak current. Since non-specific channels are mostly permeable to
potassium, the reversal potential for the leak tends to be near EK . In addition the sum of
the ion and leak currents are zero at the resting potential so we can determine the values of
gL and EL since we have two data points and two unknowns.

2.3.2 Potassium Conductance

First we will describe the potassium conductance because it has the simpler behaviour of
the two voltage dependent ion channels. Hodgkin and Huxley were able to remove the
sodium from the bathing solution and replace it with a non-permeant ion and thus eliminate
the inward sodium current during voltage clamp experiments but keep the distribution of
charge the same. With the sodium current off and the leak current known we can subtract
it away to isolate the potassium current. From Equation (2.8), by dividing the current by
(V − VK) Hodgkin and Huxley obtained data for the potassium conductance at different
voltages. Hodgkin and Huxley proposed the following Equation to represent the potassium
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conductance

gK(t) = ḡKn
4(t) (2.12)

where the fourth power was chosen in order to best fit the data, ḡK is the maximal conduc-
tance and n is a dimensionless variable that varies between 0 and 1 and represents a fictional
activation particle. In current research, n4 is thought of as the proportion of ion channels
open or the probability of a channel being open. It follows that 1-n is the probability of
finding a channel closed. Assuming only these two states exist we can write the first order
kinetics as follows

O
βn−⇀↽−
αn

C (2.13)

where O represents the proportion of open channels and C represents the proportion of closed
channels. αn is a voltage-dependent rate constant, measured in msec−1 that determines how
quickly the channel transitions between closed and open states. Similarly βn is a voltage-
dependent rate constant determining how quickly the channel transitions between open and
closed states. This corresponds to the following differential Equation

dn

dt
= αn(V )(1− n)− βn(V )n (2.14)

These Equations can be derived stochastically [20]. Instead of using αn and βn, we can
express Equation (2.14) in terms of the voltage-dependent steady state value n∞(V ) ,and
the voltage-dependent time constant τn(V ) as follows

dn

dt
=
n∞(V )− n
τn(V )

(2.15)

where

n∞(V ) =
αn(V )

αn(V ) + βn(V )
(2.16)

and

τn(V ) =
1

αn(V ) + βn(V )
(2.17)

At the resting state (V = 0 mV in Hodgkin and Huxley’s original papers) n has a resting
value of

n∞(0) =
αn(0)

αn(0) + βn(0)
(2.18)

We can now solve Equation (2.15) with the initial condition (2.18)to find n(t) when the
voltage is clamped to a new value, VClamp

n = n∞(Vclamp)− (n∞(Vclamp)− n∞(0)) exp
− t
τn(VClamp) (2.19)
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This equation can be rewritten in terms of conductance by multiplying by ḡK to better
compare to the experimental results

gK = {g
1
4
K∞ − (g

1
4
K∞ − g

1
4
K0) exp−

t
τn }4 (2.20)

The data was fit for a large range of voltage clamp experiments . The maximal value for
the conductance was taken to be 20% greater than the steady state result of the -100mV
clamp where it was assumed n would be 1. Hodgkin and Huxley then fit expressions for
αn(V ) and βn(V ) to the data. The final Equation for the potassium current is

IK = ḡKn
4(t)(V − EK) (2.21)

with n(t) determined by Equation (2.14)

2.3.3 Sodium Conductance

The sodium conductance rises rapidly and then decays during a step depolarization. This
is due to the sodium channel having both a voltage gated activation component as well as
an inactivation component. If there were no inactivation component the conductance would
simply rise to a new steady state value at the depolarized voltage. Once inactivation has
occurred the membrane potential has to be repolarized or hyperpolarized to remove the
inactivation effects. In order to model the two components, Hodgkin and Huxley chose to
have two variables, one representing activation and the other inactivation. They assumed
Equations of the form

gNa(t) = ḡNam(t)3h(t) (2.22)

dm

dt
= αm(V )(1−m)− βm(V )m (2.23)

dh

dt
= αh(V )(1− h)− βh(V )h (2.24)

Similar to the potassium conductance case, m3h represents the proportion of channels
open. Where m governs the activation component and h governs the inactivation component.
Hodgkin and Huxley noted this could be done with a single variable with a second order
Equation but they felt it was more straightforward to model the dynamics using two first
order variables. Similar to the potassium conductance we can solve Equations (2.23) and
(2.24) with initial condition at the resting potential to get

m = m∞ − (m∞ −m0) exp−
t
τm (2.25)

h = h∞ − (h∞ − h0) exp
− t
τh (2.26)
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Hodgkin and Huxley noted that at rest the sodium conductance values were very small
compared to during large depolarizations so m0 could be neglected. Also they found that
inactivation does not occur for low voltages, i.e. h∞ ≈ 1. Combining these two results gave
the following Equation for conductance

gNa = ḡNam
3
∞h0[1− exp−

t
τm ]3 exp

− t
τh (2.27)

From the data, Hodgkin and Huxley obtained values for ḡNa,m∞,h0,τm,and τh. Hodgkin
and Huxley measured h∞ using a two-pulse voltage clamp experiment. The cell is held at a
prepulse potential long enough for the inactivation to reach a steady state. Then the cell is
stepped up to a higher potential and compared to results from the activation voltage clamp
to determine the percentage of channels that are closed.

2.3.4 Full Model

Combining the results for these currents, Hodgkin and Huxley were able to describe the
action potential of a squid giant axon . The model is still a widely accepted model of action
potential generation, and the methods and model can be used to describe may different
neurons and their action potentials. The work won them the 1963 Nobel Prize in Physiology
and Medicine. In Chapter 4 we use their work as the basis for creating a model describing
the membrane potential of a bag-cell neuron in an Aplysia.
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Chapter 3

Background on Aplysia

3.1 Aplysia Biology

An Aplyisia is a genus of marine mollusk commonly called a sea slug or sea hare. It is known
as a sea hare due to its round shape and two club shaped structures protruding upwards
from their head that resemble the ears of a hare. The Apylsia Californica has been known to
grow as large as 75 cm when fully extended. Other Aplysia, such as Aplysia vaccaria, have
been known to grow even larger. As the name suggests Aplysia Californica can be found in
the sea off the coast of California as well as northern Mexico and Florida. Aplysia California
are herbivores with a diet consisting mostly of red algae. When disturbed, sea hares are
capable of releasing a reddish-purple ink as a defence mechanism.

Aplysia are hermaphroditic and play the role of both male and female during mating.
During egg laying the Aplysia finds a vertical surface to climb and begin a series of predictable
behaviours that culminate in egg laying. A single egg mass may contain over 100 million
eggs. Aplysia are very prolific egg layers and a single Aplysia has been reported to lay over as
many as 478 million eggs during a period of just over four months. Egg laying is a seasonal
activity and it is known to be dependent on the temperature of the sea water. The natural
stimulation for egg laying is unknown although it has been suggested that egg laying Aplysia
release a pheromone that causes other Aplysia to begin laying eggs.

Aplysia are of much interest in neurobiology due to the simplicity of their central nervous
system which consists of approximately twenty thousand neurons, a relatively small number
compared to the human brain. The egg laying behaviour of an Aplysia is very interesting to
neuroscientists due to the role of bag-cell neurons, which when firing repetitively release a
hormone that causes the onset of a series of behaviours culminating in egg laying. Aplysia
have also been very useful in the study of learning and memory, specifically the work of
Nobel laureate Eric Kandel on how neurons are able to form and store memories.
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Figure 3.1: Aplysia diagram showing the location of the abdominal ganglion

3.2 Bag-cell Neuron

The following description of bag-cell follows the information from Kaczmarek and Conn [2].
Bag-cell neurons are important to study due to their direct link between the behaviour of
the neuron and the behaviour of the animal. Due to the simplicity of the animal’s nervous
system it is easier to understand the role of the neurons in relation to the behaviour of the
animal. Furthermore bag-cell neurons are well suited for traditional techniques for studying
neurons using biochemistry, electrophysiology and molecular biology. Bag-cell neurons are
located in the abdominal ganglion of an Aplysia. A ganglion is a term for a group of nerve
cells. The various parts of the Aplysia central nervous system are labeled in Figure 3.1.
Bag-cell neurons form two bilaterally situated clusters of 200 to 400 cells at the rostral
end of the abdominal ganglion. Bag-cell neurons are named due to their shape. Bag-cell
neurons are multipolar and send their processes (dendrites or axons) in all directions into
the surrounding connective sheath. Each neuron has two or three processes that extend
from the soma and branch extensively. The majority of processes group together and extend
into the pleuroabominal connective nerve and wrap around the proximal portion to form a
“cuff”. A small number of neurons extend up the pleuroabdominal connective among the
axons of other cells. Also, most bag-cell neurons extend one or more branches over the
abdominal ganglion or towards the contralateral bag-cell cluster. Bag-cell neurons contain
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round peptidergic granules throughout the cell, and especially dense clusters can be found
near the axon terminal. These vesicles mostly contain the neuropeptide egg laying hormone
(ELH). Bag-cell neurons release ELH both locally to other neurons and into circulation. The
previously mentioned extension of the bag-cell processes into connective tissue could allow
for the vesicle contents to be released into general circulation.

Bag-cell neurons have three states: a resting state where action potentials can be elicited,
the afterdischarge state where the cell fires spontaneously, and a refractory state where the
cell cannot be stimulated into the after discharge state. The resting potential of the bag-cell
neuron is between -40 and -65 mV. Action potentials can be elicited with an intracellular
depolarizing current stimulating the cell. The action potential of the resting cell does not
have the same all-or-nothing type response seen in other neurons. In the case of a bag-cell
neuron the upstroke of the spike only persists as long as their is a depolarizing stimulus
current. As soon as there is no stimulus current, and in some cases before the stimulus
current is turned off, the membrane potential starts to return to the resting value. Long
depolarizing pulses can cause the cell the “spike” more than once. The spikes have a duration
ranging from 30 to 150 ms.

A stimulus to the pleuroabdominal nerves or a repetitive stimulus to the bag-cell neurons
themselves can cause a change in the electrical properties of the cell allowing for it to fire
constantly for up to 60 minutes, although more often it only fires for 30 minutes. The
behaviour where the cell fires constantly is called the afterdischarge. The afterdischarge
is thought to be a tightly regulated all-or-nothing event in which the amount of stimulus
does not effect the duration of the afterdischarge. During the afterdischarge the neurons
release the neurotransmitter ELH which does not occur during spikes otherwise. Bag-cell
neurons are electrically coupled which causes the clusters to fire in tight synchrony during
the afterdischarge event. The evidence for the coupling between neurons comes from the
injection of lucifer yellow dye into a single neuron and then observing that the dye labels
adjacent cells. The coupling is thought to be in the form of a gap junction. Not only are
the neurons within a cluster electrically coupled, but the two clusters are also coupled. The
coupling means that one cluster can act as a pacemaker for the other. The synchrony in
firing during the afterdischarge could be to ensure that all cells within a cluster are firing
and thus there is a maximal output of neurotransmitter. The afterdischarge event begins
with high frequency firing of action potentials (2-6 Hz) for less than one minute followed by
a relatively low frequency of less than 0.5/min that lasts for the rest of the afterdischarge.
During the afterdischarge the shape of the action potentials changes, become taller and wider
early during the second phase. In vivo the mean duration of the discharges has been found
to be 21 minutes. Following the afterdischarge bag-cell neurons enter a prolonged inhibitory
state. The inhibitory state occurs gradually but it takes up to 20 hours before another full-
length afterdischarge can be elicited. It has been observed that there is a delay of roughly
30 minutes between the end of the afterdischarge and the onset of egg laying behaviour.

The afterdischarge event is thought to be influenced by several secondary messenger
molecules which help cause the long-lasting changes in the electrical properties of the cell.
Cyclic AMP plays a key role in the generation of bag-cell afterdischarge. After the onset
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of the event, the levels of cAMP rise and the excitability of cell has been shown to change.
Specifically cAMP seems to decrease the net outward currents. Protein Kinase C (PKC) has
also been shown to increase during the afterdischarge and PKC has been shown to enhance
the inward calcium current (responsible for helping depolarize the cell during a spike). The
enhanced calcium current seems to be due to a covert calcium channel that only becomes
active during the afterdischarge. These secondary messengers will be discussed in more detail
in the next section.

3.3 Aplysia Bag Cell Neuron Literature

We will start by looking at the experiments done on bag-cells over the last 30 years. In
order to build a complete model of the bag-cell neuron we need to look at the different ion
channels present in bag-cells. We will discuss the results of the literature chronologically
starting with some of the first analyses of the bag-cell action potentials and afterdischarge
behaviour followed by individual current analyses.

3.3.1 Kupfermann and Kandel 1970, Kupfermann 1970

In two papers in 1970, Kupfermann investigated the properties of the bag-cell neuron. The
first paper with Kandel [22] investigated the electrophysiological properties of the neurons.
These experiments were done by isolating the abdominal ganglion of the Aplysia and pinning
it in a dish of artificial seawater solution. The authors then used glass micropipettes to impale
the cells, inject current and record the response from the cells. They discovered the cells
were mostly silent with some cells spontaneously firing. Depolarizing pulses were used to
elicit action potentials with a spike height of roughly 80 mV lasting for 30-150 ms. However
a train of pulses could be used to stimulate most cells into repetitive firing which lasted
for more than 5 minutes with a maximum duration of 55 minutes. It was discovered that
a large fraction of the spikes occur within the first few minutes of the afterdischarge and
it was observed that there was no obvious correlation between the number of spikes in the
afterdischarge and the preceding stimulus. After the afterdischarge the cells became silent
and a new burst of activity could not be started for up to an hour. The authors confirmed that
the cells could not be stimulated antidromically (action potential travelling in the opposite
direction, from axon towards the soma) to determine that afferent fibers in the connective
close to the pleural ganglion were not responsible for the afterdischarge stimulation. The
cells were found to always fire synchronously but did not require the other cell cluster to
exhibit the afterdischarge effect, however the afterdischarge was shorter in length when the
two bag-cell clusters were disconnected. The authors also eliminated the possibility of a
driver interneuron by showing the same behaviour occurred in a bag-cell isolated from its
cluster. The second paper by Kupfermann ([21]) investigates and confirms the release of
a hormone from bag-cells that stimulates egg laying. Kupfermann homogenized bag-cells
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from an Aplysia and injected the bag-cell extract into live Aplysia and found that egg laying
behaviour occurred within 2 hours for 66.7% of the animals.

3.3.2 Strong 1984: A-current

In a 1984 paper ([31]), Strong studied the transient outward potassium current, also known
as the A-current, under the effects of specific drugs. The A-current has properties similar to
the sodium current in the Hodgkin and Huxley model in that it activates when the membrane
potential is depolarized and then inactivates shortly afterwards. The predominant role of
the A-current is to determine the behaviour of the cell at lower voltages. The excitability of
the bag-cell neuron is thought to be affected by internal levels of intracellular adenosine 3’:5’
-monophosphate (cAMP) (Kaczmarek 1978 [16]). Strong investigated the effect of increasing
the internal cAMP level on the A-current by applying forskolin (an activator of adenylate
cyclase) and RO20-1724 (a phophodiesterase inhibitor or PDI) and taking voltage clamp
measurements of the cell. Specifically forskolin and the PDI mimic the effects of cAMP and
have been found to initiate afterdischarges in intact bag-cell clusters (Strumwasser et al.
1982 [33]). Forskolin and the PDI have also been found to enhance the width and height of
action potentials (Kaczmarek and Kauer 1983 [17]) and raise the internal levels of cAMP.
Since the A-current occurs at much lower potentials than other currents it can be isolated
from other potassium currents by limiting the study to more negative potentials.

The application of forskolin and the PDI were reported to substantially speed up the
inactivation kinetics but they do not affect the steady state behaviour of the activation or
inactivation. The other major effect was the lowering of the peak potential at all voltages in
the clamp experiment. The effects of forskolin could be at least partially reversed by washing
out the bathing solution of the neuron.

3.3.3 Strong 1986: K1 and K2 Current

In a 1986 paper ([32]) Strong performed similar experiments to those in Strong 1984 ([31])
on the other outward currents in a bag-cell. These currents are thought to be responsible
for the repolarization behaviour of the cell during an action potential. Strong used ethylene
glycol tetraacetic acid (EGTA) to block the intake of calcium into the cell and prevent the
presence of a calcium activated potassium current. Voltage clamp experiments similar to [31]
were carried out both with and without forskolin and a PDI. Strong noticed that the tail
current in the results could not be described with a single decaying exponential. However,
the tail current could be described by the sum of two exponentials, which suggests that
there are two channels or a single channel with complex kinetics. The hypothesis of two
channels was supported by the fact that the two inactivation rates were affected differently
by the presence of forskolin. The two currents are carried by potassium ions and are labelled
IK1 and IK2. IK1 is an non-inactivating outward potassium current, whereas IK2 has an
inactivation component. IK2 was determined to be a different current to IA due to it being
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active at different range of membrane potentials and having different kinetics.The effects
of forskolin and the PDI were similar to the A-current, IK1 and IK2 had a decreased peak
current value during voltage clamp experiments and substantially faster inactivation.

3.3.4 Conn, Strong, Kaczmarek 1989: PKC

In a 1989 paper ([3]), Conn, Strong and Kaczmarek investigated the secondary messenger
Protein Kinase C and determined it was responsible for recruiting a previously covert species
of voltage-dependent calcium channel, resulting in an increase of calcium current during the
afterdischarge. The PKC current was investigated by introducing PKC activators such as
TPA and recording the results. Voltage clamp experiments were performed where the addi-
tion of TPA increased the amplitude of the results and then Sphinganine, which inactivates
TPA, was used return the cell to normal. Sphinganine was also shown to prevent the en-
hancement of action potentials when introduced before TPA.

3.3.5 Quattrocki 1994: Cloned K2 Current

A more thorough investigation of the IK2 current was done by Quattrocki et al. in 1994
([27]). Quattrocki’s paper provides a separation of IK1 and IK2 into two distinct currents.
The paper investigates the cloning of a channel in the Aplysia which they call Shab and
then shows that the cloned current is in fact the same current as IK2. To measure the Shab
current the DNA was isolated and then expressed in Xenopus oocytes. IK1 and IK2 occur in
greatly varying ratios in bag-cells and the authors used cells that were expressing primarily
one current or the other in order to get separate voltage clamp data. The Shab and IK2

currents are compared and determined to be the same as they give similar results in voltage
clamp experiments. The reaction of the two similar currents to tetraethylammonium (TEA),
which blocks certain types of potassium current inactivations, was also the same. The IK2

and Shab currents also display progressive inactivation with repeated depolarization as seen
in the previous Strong paper. The authors also created a basic Hodgkin Huxley type model
of the bag-cell action potential which will be discussed in detail in Section 3.4.1

3.3.6 Zhang 2002 and 2004: Calcium Dependent Potassium Cur-
rent

In 2002 and 2004 Zhang et al. ([37],[36]) released two papers which investigated the properties
of a calcium dependent outward potassium current, IKCa. IKCa is a type of current that
can be blocked by the drug paxilline, which does not block IA, IK1 and IK2. The ability
to manipulate the internal and external calcium concentrations allowed for the authors to
confirm that there is a calcium dependent current. Furthermore they subtracted the paxilline
voltage clamp experiment from the control voltage clamp experiment to obtain a difference
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current which consisted of only IKCa. The rest of the paper examines the behaviour of IKCa
during the afterdischarge and the effects of the secondary messenger protein kinase C (PKC)
on IKCa.

The 2004 Zhang paper looked at two forms IKCa that are the expressions of slo-a and
slo-b genes. The slo-a type is determined to be present in adult Apysia and is affected by
the secondary messenger protein kinase A (PKA). The slo-b variant is not affected by PKA.
Since the genes were used to express a single kind of channel in an oocyte the authors were
able to perform voltage clamp experiments on just IKCa and measure the increase in current
due to internal calcium levels. Juveniles do not have the slo-a version of IKCa and are unable
to initiate an afterdischarge leading the authors to propose that the slo-a version of IKCa is
fundamental to the repetitive firing behaviour seen during an afterdischarge.

3.3.7 Hung and Magoski 2007: Calcium Current and Prolonged
Depolarizing Current

Magoski 2007 ([15])investigates the presence of a prolonged depolarizing current ( IPD) that is
responsible for raising the membrane potential to help cause repetitive firing. The membrane
depolarization occurs after the cell has been repeatedly stimulated (i.e. a 5 hertz input for
10 seconds). The depolarizing current is thought to be dependent on a secondary messenger
calmodulin. Calmodulin is activated by intracellular calcium concentration. In order to
measure the effects of Ca2+ on the depolarizing current the authors did whole cell voltage
clamp experiments where the K+ and Na+ ions were replaced with non-permeable ions. The
authors confirmed there is a window or limit of Ca2+ which causes the depolarizing current
to come on. The depolarizing current was determined to be a nonspecific cation current.

3.4 Modelling Literature

3.4.1 Quattrocki et al. Bag Cell Neuron Model

Quattrocki et al. [27] created a model containing a generic calcium current, a leak current,
and the Shab potassium current using equations similar to the Hodgkin and Huxley model
(see Section 2.3. The governing equation of the Quattrocki model is:

C
dV

dt
= −ḡCan3j(V − 50)− ḡKm4h(V − (−80))− ḡL(V − Erest) + Istim (3.1)

where C = 0.5nF , ḡCa = 1.2µS, ḡK = 0.15µS, ḡCa = 0.025µS. Simulations were run with
Erest at −80mV ,−60mV , and −40mV to determine if action potentials would still fire at
different membrane resting potentials. Istim represents the stimulus current injected into the
cell and varied from 0 − 0.2 nA. The differential equations for n ,j , and m are similar to
the ones used by Hodgkin and Huxley, see equation (2.15). The maximal conductances, ḡi,
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can be thought of to represent the relative strengths of the currents and it is interesting to
note that ḡCa is 8 times the size of ḡK . The variable h differs from the Hodgkin and Huxley
equations in that a second order differential equation was used to represent the inactivation
of the potassium current. This is due to a very steep inactivation at first followed by a slower
inactivation that cannot be fit well by a single exponential function. This is represented by
the following kinetic equation

p
β1−⇀↽−
α1

q
β2−⇀↽−
α2

h (3.2)

where p is the permissive state and both q and h are inactive states. The kinetics correspond
to the following differential equations

dq

dt
= α1 − (α1β1 + α2)q + (α2β2 − α1)h (3.3)

dh

dt
= α2q − α2β2h (3.4)

The results were a model that recreated the single spike behaviour of the bag-cell neuron
very well. The calcium current from another cell and lack of IK1 and other potassium
currents mean the model does not fully represent bag-cell behaviour physiologically. It is
only meant to represent the shape of a single spike. The spike itself does not have the typical
behaviour of an action potential as it is not an all or nothing event. The membrane potential
only depolarizes while the the stimulus current is on and will drop as soon as the stimulus is
turned off. In Figure 3.2 we simulated the model using the equations and parameters given
in [27]. We found that we needed to increase the stimulus current from the value of 0.2 nA
they used and were able to obtain a similar spike.

3.4.2 Canavier et al. R15 Neuron Model

Since there are no previous full models for the Aplysia bag-cell neuron, we will look at a
neuron from the same animal, the R15 neuron. The R15 neuron is located in the abdominal
ganglion and has been useful in gaining insight into the biophysical mechanisms underlying
bursting behaviour in neurons. Bursting behaviour is when a cell fires repetitively for a finite
amount of time followed by a quiescent period and then the behaviour repeats itself. With
enough stimulation the cell has been known to fire continuously. This is known as beating.
Most of the R15 model is similar to a typical Hodgkin Huxley type model.

The governing equation for the membrane voltage is

C
dV

dt
= −

∑
Ii + Iapp (3.5)

25



Figure 3.2: Quattrocki Model Spike

where the index i represents several currents which we will not describe in much detail
here, for more detail see Canavier et al 1991 [1]. There is an inward sodium current INa
and as in the Hodgkin and Huxley model it contributes to the upstroke of the action poten-
tial. Unlike the Hodgkin and Huxley model there is also an inward calcium current that is
modelled in a similar way with both voltage dependent activation and inactivation. There is
a nonspecific cation current to help simulate the depolarizing aftercurrent seen in bursting
neurons. There is also a leak current as seen in the Hodgkin and Huxley model that is
mainly an amalgamation of other currents that are not very strong in the R15 neuron and
helps determine the resting potential. There are also potassium currents, IK , that is respon-
sible for repolarization during an action potential and IR which is similar to the previously
mentioned A-current.

The main difference from the Hodgkin Huxley model is a slow inward current. The
slow inward current is a voltage activated and Ca2+ inactivated. In the paper the current
is assumed to be carried by calcium ions. The model also represents the internal calcium
dynamics by combining the effects of a calcium current, the slow inward current, a sodium-
calcium exchanger, a calcium pump and an internal calcium buffer. This results in the
following equations
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[Ċa]i =

∑
wjIj

V oliF
− n[B]iOc (3.6)

where square brackets denote concentration, Ij are the calcium currents and pumps and
wj converts current to calcium ions per seconds, V oli is the effective cell volume and F is
Faradays constant. The first term governs the movement of calcium due to current. In the
second term n is the number of binding sites, B is the buffer, and Oc is the fraction of sites
already occupied in the calcium buffer and thus unavailable for use. The second term governs
the amount of calcium absorbed into the buffer. The buffer is based on the properties of the
calcium binding protein calmodulin and taken from a model for calmodulin in muscle cells
since the precise buffering method in R15 neuron was unknown. Oc is governed by a first
order kinetics differential equation as follows

Ȯc = ku[Ca]i(1−Oc)− krOc (3.7)

where the constants ku and kr represent the rates of binding and unbinding, respectively.

The model exhibits all the firing behaviours of the R15 neuron and the authors could
easily see the connection between calcium (and slow inward current) oscillations and the
bursting behaviour. Basically, slow oscillations in intracellular calcium concentrations cause
the slow inward current to depolarize the membrane potential in a periodic way causing the
membrane potential to cross the threshold and begin firing. If enough stimulus is input the
calcium level stays constant but very high and we see beating behaviour where the membrane
potential is above the threshold for the entire duration of the test and thus fires constantly.
The authors then reduced the model to two variables to analyse the dynamics of the system
using phase planes.
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Chapter 4

Model

4.1 Introduction

We will start by briefly outlining the full set of equations used in the model to provide
a point of reference when we outline the general method which we used to determine the
parameters for the model. We will discuss how we used the general method with each ion
channel using data taken from previous research as well as discuss the differences between
the methods used on specific channels and the general method. Combining these currents
we will create a single cell model. We compare the full model to spikes created from actual
cells and adjust our model to reflect the experimental results. Due to the fact that all of
our data for different currents come from different experiments using different cells measured
with varying techniques it is to be expected that parameters will need to be adjusted. This is
especially true for the maximum conductance values which determine the relative strengths
of the currents which vary from cell to cell due to the difference in the number of channels
expressed in a particular cell.

4.2 Model Equations

The equations of the bag-cell neuron model are as follows
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C
dV

dt
= −(ICa + IK1 + IK2 + IKC + IA − Iapp) (4.1)

ICa = ḡCam
pCa
Ca (V )hCa(V )(V − ECa)

IK1 = ḡK1m
pK1

K1 (V )(V − EK)

IK2 = ḡK2m
pK2

K2 (V )hK2(V )(V − EK)

IKC = ḡKCm
pKC
KC (V,Ca)(V − EK)

IA = ḡAm
pA
A (V )hCa(V )(V − EK)

IL = ḡL(V − EL)

dmi

dt
= m∞(V )−mi

τm(V )
(4.2)

dhi
dt

= h∞(V )−mi
τh(V )

(4.3)

dmKC

dt
= m∞(V,Ca)−mKC

τm(V )
(4.4)

m∞,i(V ) = 1

(1+e
V−Vm
Km )

(4.5)

h∞,i(V ) = 1

(1+e

V−Vh
Kh )

(4.6)

m∞,KC(V ) = 1

(1+e
V−Vm(Ca)

Km )

τm,i(V ) = τm0
e
δm(V−Vm)

Km

1+e
(V−Vm)
Km

(4.7)

τh,i(V ) = τh0
e

δh(V−Vh)
Kh

1+e

(V−Vh)
Kh

(4.8)

where Equation (4.1) is the governing equation similar to the equation used in Hodgkin
and Huxley’s model, see Equation (2.11). The model has one inward current, ICa, which
is due to a calcium permeable ion channel and is responsible for the upstroke in the action
potential. There are four inward potassium channels: IK1 and IK2 play a role in action
potential broadening and repolarization, IA is responsible for membrane potential behaviour
at hyperpolarized values, and IKC is a calcium dependent channel thought to play a role in
the overall excitability of the cell. Each current equation has a maximal conductance ḡi and
reversal potential Ei which depends on which ions the channel is permeable to. All of the
currents except for the leak current have an activation variable m which range between 0
and 1 and are dependent on the membrane potential, V. For the current IKC the activation
variable is also dependent on the amount of calcium inside the cell. The currents ICa,IK2,
and IA also have voltage dependent inactivation represented by the variable h which ranges
between 1 and 0. The dynamics of the activation and inactivation variables are determined by
the differential equations (4.2,4.3,4.4). The forms of the steady state activation/inactivation
variable, Equation (4.5), and the time constant, Equation (4.8), were taken from Willms
1999 paper [34] . The m∞(V )/h∞(V ) are sigmoidal functions where the parameter Vm/h
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corresponds to the membrane potential at which the function is at (1
2
)p its maximum value

and theKm/h parameter affects the slope of the function, see Figure 4.2 for example functions.
The time constant functions,τm/h(V ), are bell shaped functions where the value of δ is
between 0 and 1 and determines the skewness of the function.

Figure 4.1: Example m∞(V ) and h∞(V )

4.3 General Method

We will describe the general method for fitting parameters to the equations described above.
We start by writing out a general form of the equation for which we are trying to fit param-
eters

Ii = ḡimi(V )phi(V )(V − Ei) (4.9)

This is valid for voltage dependent currents. The calcium dependent components of chan-
nels as well as calcium dynamics will be described in later sections devoted to those specific
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topics. Note that the section is split into activation and inactivation subsections, but in the
activation section we will be focusing on data when the inactivation variable is assumed to
be approximately 1 and thus the procedure applies to currents with no inactivation variable.
Any differences from the general method due to availability of data will also be described in
a section addressing the specific current.

4.3.1 Activation Steady State

We will be using the steady state and time constant differential equations seen below to
model the activation variable for the currents in the Aplysia bag-cell neuron.

dm

dt
=
m∞(V )−m

τm(V )
(4.10)

m∞(V ) =
1

(1 + e
V−Vm
Km )p

(4.11)

τm(V ) = τm0
e
δm(V−Vm)

Km

1 + e
(V−Vm)
Km

(4.12)

These equation give us four parameters to fit: Vm, Km, δm, and τm0. Additionally we
will also determine ḡi from Equation (4.9) using the same data we use for m∞(V ). In order
to fit parameters for the steady state activation function, m∞(V ), we use data from voltage
clamp experiments done where only a single current is expressed. For an example of what
the resulting data from a voltage clamp experiment (as discussed in Section 2.2.3) looks like
see Figure 4.2. We denote the pre-clamp holding voltage Vpre and the holding voltage will be
V . To describe the fitting method we will use an arbitrary current Ii. We start by using the
differential equations for the activation variable m and inactivation variable h and solving
with the assumption that at the initial time t = 0 and V = Vpre. Solving Equation (4.10) to
gives us

m(t) = m∞(V ) + (m∞(Vpre)−m∞(V ))e−
t
τm (4.13)

and similarly we can solve
dh

dt
=
h∞(V )− h
τh(V )

(4.14)

to obtain
h(t) = h∞(V ) + (h∞(Vpre)− h∞(V ))e

− t
τh (4.15)

We can combine these results with Equation (4.9) to get an expanded current equation
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Figure 4.2: Voltage Clamp Example
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Ii = ḡi(V − Eion)[m∞(V ) + (m∞(Vpre)−m∞(V ))e−
t
τm ]p[h∞(V ) + (h∞(Vpre)− h∞(V ))e

− t
τh ]

(4.16)

Let (tpeak, Ii,peak) be the peak of the current versus time curve in the voltage clamp
experiment, see Figure 4.2. At this point we assume the inactivation has not yet started, i.e.

that tpeak << τh which implies e
−
tpeak
τh ≈ 1. With this assumption we can simplify Equation

(4.16) to

Ii,peak(V ) = Ii(tpeak) = ḡi(V −Eion)[m∞(V )+(m∞(Vpre)−m∞(V ))e−
tpeak
τm ]p[h∞(Vpre)] (4.17)

We further assume that the current is fully activated, i.e., τm << tpeak which implies

e−
tpeak
τm ≈ 0. We then obtain an equation for conductance as a function of V

Gi =
Ii,peak(V )

V − Eion
(4.18)

Gi = ḡim∞(V )ph∞(Vpre) (4.19)

We further assume that h∞(Vpre) ≈ 1 since Vpre is negative enough for there the in-
activation variable to be 1. Generally at membrane potentials significantly below the rest
potential the activation variable m is near 0 and the inactivation variable is 1 due to the
sigmoidal shape of their steady state curves which represents the channel being closed. Thus
for voltage clamp experiments the pre-pulse value is set negative enough for h∞(Vpre) ≈ 1 to
be a good approximation. Note that this simplification brings us to the same equation we
would have had for a current with no inactivation variable. The conductance equation now
becomes

Gi(V ) = ḡim∞(V )p (4.20)

where m∞(V ) is of the form seen in Equation (4.5) and thus we have

Gi(V ) =
ḡi

(1 + e
V−Vm
Km )p

(4.21)

In order to fit these parameters we convert the peak current values into conductance
values using Equation (4.18). We either extract the values of Ipeak from the voltage clamp
experiments plot using a digitizer or extract the data from a peak current versus membrane
potential plot which is commonly included with voltage clamp experimental data. The peak
current versus voltage plot is referred to as an I-V curve. To fit the parameters we use a
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Matlab nonlinear least squares curve-fitting algorithm (the function lsqcurvefit) to determine
the values of ḡi, Vm, and K for integer values of p from 1 to 4 and determine the best fit.

The Matlab function lsqcurvefit solves nonlinear curve-fitting problems in a least squares
sense. The algorithm was used with four inputs, the x-axis data, the y-axis data, the function
to be fitted and the initial condition of the parameters to be fitted. Upper and lower bounds
can be specified for the value of each parameter but for our purposes that often leads to the
algorithm simply stopping at the boundary. However it is not difficult to pick good starting
conditions for the sigmoidal functions due to the simple relationship between the parameter
values and the shape of the function previously discussed. We will report all results of
lsqcurvefit with an error value. The error value is the squared 2-norm of the residual at V,
i.e.

∑
((fitfunction(params, V )− Idata)2)

4.3.2 Activation Time Constant

Next we want to fit the parameters of τm(V ). First we take t 1
2

to be the time such that

Ii(t 1
2
) =

Ipeak
2

. Then Equation (4.17) becomes

Ii(t 1
2
) = ḡi(V − Eion)[m∞(V ) + (m∞(Vpre)−m∞(V ))e−

t 1
2
τm ]ph∞(Vpre) (4.22)

For convenience in further calculations we let

M =
m∞(Vpre)

m∞(V )
(4.23)

and then if we divide Equation (4.22) by Equation (4.17) we have

1

2
=

Ii,1/2
Ii,peak

=
[m∞(V ) + (m∞(Vpre)−m∞(V ))e−

t 1
2
τm ]p

[m∞(V ) + (m∞(Vpre)−m∞(V ))e−
tpeak
τm ]p

=
[1 + (M − 1)e−

t1/2
τm ]p

[1 + (M − 1)e−
tpeak
τm ]p

(4.24)

This can be rearranged as follows

1

2
[1 + (M − 1)e−

tpeak
τm ]p − [1 + (M − 1)e−

t1/2
τm ]p = 0 (4.25)
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and then solved for τm(V ) assuming we know m∞(V ). Howevever if we make the assump-
tion that m∞(Vpre) ≈ 0, i.e. that the pre-pulse potential was low enough that there is no
activation, we have M = 0. Equation (4.25) then becomes

1

2
[1− e−

tpeak
τm ]p − [1− e−

t1/2
τm ]p = 0 (4.26)

We also assume that that tpeak >> τm which implies e−
tpeak
τm ≈ 0 which greatly simplifies

Equation (4.25) giving

1

2
− (1− e−

t1/2
τm )p = 0 (4.27)

which we can solve for τm(V ) to get the following equation

τm(V ) = −
t 1
2

ln((1− (1
2
)
1
p ))

(4.28)

Using the data in figures we can convert the t 1
2

values to τm(V ) using the equation above.
We can then fit parameters τ0 and δ using lsqcurvefit method in Matlab.

4.3.3 Inactivation

In order to find the parameters for h∞(V ) and τh(V ) we start with the expanded form of
Equation (4.16) as we did for the activation parameter fitting. We take

Ii = ḡi(V − Ei)[m∞(V ) + (m∞(Vpre)−m∞(V ))e−
t
τm ]p[h∞(V ) + (h∞(Vpre)− h∞(V ))e

− t
τh ]

and we take experimental data from the voltage clamp experiment for which t is large,
i.e. t is significantly greater than tpeak. Thus we can assume that m(V ) = m∞(V ), which
we have already found. Then the current equation becomes

Ii = ḡi(V − Ei)[m∞(V )]p[h∞(V ) + (h∞(Vpre)− h∞(V ))e
− t
τh ] (4.29)

which is equivalent to

Ii(V ) = A1(V ) + A2(V )e
− t
τh (4.30)

where
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A1(V ) = ḡi(V − Ei)[m∞(V )]ph∞(V ) (4.31)

A2(V ) = ḡi(V − Ei)[m∞(V )]p[(h(Vpre)− h∞(V ))] (4.32)

We use Matlab to fit Equation (4.30) to the inactivating section of the voltage clamp
curves for different values of V. This explicitly gives us data for τh(V ) and we can solve
A1(V ) to determine h∞(V ) by rearranging the above equation to get

h∞(V ) =
A1(V )

ḡi(V − Ei)[m∞(V )]p
(4.33)

We now have data for both τh(V ) and h∞(V ) and we use Matlab to fit parameters as we
did for the activation functions.

4.3.4 Voltage Clamp Simulation

We make more adjustments to the parameters by simulating the voltage clamp experiments
which were the source of the data. To create these simulations we use XPPAUT. XPPAUT is
a numerical ordinary differential equation simulator created by Dr. Bard Ermentrout of the
University of Pittsburgh which includes the bifurcation package AUTO. The simulations for
our system of differential equations were done using the Runge Kutta fourth order method
with step size 0.05 msec.

4.4 Currents

4.4.1 IA

IA is the transient outward current that is responsible for shaping the spiking frequency and
serves to prevent action potential initiation at hyperpolarized potentials.

The experimental data for the A-current comes from Strong [31]. Strong carried out a
voltage clamp experiment where the cell was held at -95 mV in order to ensure there was
no inactivation, the cell was then stepped up to values between -55 mV and -15 mV. The
results are shown in Figure 2B of [31]. Figure 2C is the accompanying I-V curve which shows
the peak current value for each potential at which the cell was held. Using a digitizer we
extracted the values from Figure 2C and then converted the current values to conductance
as described in Section 4.3. The Nernst potential for potassium was determined to be -80
mV from the zero of the I-V curves of the inward potassium channels. The voltage clamp
experiment gives us 9 points of data.
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Figure 4.3: m∞A(V ) fits for various values of p

We tried fitting a function of the form of the Equation (4.21) for different values of p but
the lsqcurvefit algorithm converged to a value a maximum conductance value that did not
make physical sense. We set ḡA to 0.1653 which is the maximum conductance value from
the data and fit Vm and Km. The results are shown in table 4.1 and Figure 4.3.

Table 4.1: Parameter Values for Activation of IA
p Vm Km error
1 -39.9174 -8.0696 0.0057
2 -48.6597 -9.4135 0.0072
3 -53.9542 -9.9590 0.0083

Next we fit τmA(V ) to the form of Equation (4.8) using Figure 12A which plots the time
to half-peak versus membrane holding potential and is shown in Figure 2B. Using the data
in figures 12A we converted the half peak times, t 1

2
, to τmA(V ) using Equation (4.28). We

fit parameters τ0 and δ using lsqcurvefit in Matlab as before. The resulting parameter fits
can be seen in Table 4.4.1 and Figure 4.4.1.

p τ0 δ error scaled error
1 28.1645 0.2436 4.6524 0.0203
2 16.6969 0.2806 1.4389 0.0197
3 13.8690 0.3827 0.6476 0.0147

37



−50 −45 −40 −35 −30 −25 −20 −15

2

4

6

8

10

12

14

Voltage (mv)

τ

 

 
data p=1
data p=2
data p=3
fit p=1
fit p=2
fit p=3

Figure 4.4: τmA(V ) fit for IA
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Since different p values produce different τmA(V ), the error of comparing the residual
needs to be adjusted to account for the different y-axis scales. We do this scaling by dividing
the error for each fit by the square of the maximum value of τmA(V ) for that value of p. The
differences between fits for different values of p are insignificant when comparing the scaled
errors. Since all the fits are good we chose p to be 1 as it provides the simplest formula.

In Strong’s 1984 paper [31] the h∞(V ) inactivation data is provided and fit a function
of the form seen in Equation (4.5). The constants were determined to be KhA = 4.7 and
VhA = −82.4. Using the same data points as Strong we confirmed the parameters are a good
fit.

Next we fit τhA(V ) to a function of the form of Equation (4.8). For the τhA(V ) data we
used Figure 10 of [31] which provides data for τhA(V ) for different membrane potentials. The
τhA(V ) value was determined by fitting an exponential to the tail end of the voltage clamp
experiments. We ran the fitting process twice because the first fit did not provide accurate
results for V greater than -50 mV. We adjusted our fit by removing the points less than -50
mV.

Voltage Clamp Simulation

We replaced τh with a constant value of 125 since the fit levelled off at roughly that value and
the bell shaped section of the curve occurs mostly at voltages below the cell’s normal activity
range. In recreating the voltage clamp experiments from Figure 2B we found that τm(V )
needed to be very small as the activation of IA is almost instantaneous. We also increased
the conductance, ḡA to 0.36 to have a peak value similar to the voltage clamp experiments
from which the data was taken. The fit is shown in Figure 4.5.

4.4.2 IK1

IK1 is a voltage dependent potassium channel which has only an activation component. The
role of IK1 is to repolarize the action potential and regulate the width of the action potential.

All data is from Quattrocki et al.’s 1994 paper ([27]). IK1 has no inactivation so we
model it with the following equation

IK1 = ḡK1n
p
K1(V − EK) (4.34)

where nK1(V ) is modelled as before for an activation variable. The data for n∞K1(V ) was
taken from Figure 4D in Quattrocki. Figure 4D is a peak current versus membrane potential
plot. The peak current is taken from a voltage clamp experiment where a cell that strongly
expresses IK1 was held at -60 mV and stepped to potentials ranging from -40 mV to +30
mV. The voltage clamp results are shown in Figure 4B of [27]. The data from 4D gives us

the peak current value scaled by the maximum peak current value, specifically
Ipeak(V )

Ipeak(30)
. We
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Figure 4.5: Voltage Clamp for IA

extracted Ipeak(30) from Figure 4B and used it to determine Ipeak(V ) for other membrane
potentials. Once we had the data for Ipeak(V ) we calculated the conductance values, GK1(V ),
using Equation (4.18). The results are shown in Table 4.2 and Figure 4.7

Table 4.2: Activation Parameters for IK1

P ḡK1 Vn Kn error
1 0.0659 -33.2331 19.9529 0.00001455
2 0.0669 -52.9587 22.9508 0.00001232
3 0.0672 -64.9873 24.0465 0.000011163

Next we fit τnK1(V ) by taking the time to half maximum from the voltage clamp in
Figure 4B and then calculating τnK1(V ) for each p value using Equation (4.28) and fitting a
function as before. The time to half maximum values were determined by using a digitizer
to extract the peak value and then finding the point on the curve that was half the peak
value. The fit is shown in Table 4.3 and Figure 4.8.

Table 4.3: τnK1 Parameter Fits
P τ0K1 δK1 scaled error
1 92.5662 0.0901 0.0317
2 76.6947 0.1501 0.0996
3 75.5775 0.1772 0.1646
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Figure 4.6: n∞K1 fit for IK1

Figure 4.7: IK1 activation variable fit

Voltage clamp Simulation

Simulation of voltage clamp experiments from Quattrocki ([27]) are shown in Figure 4.9.
The simulation is a very good match to the actual voltage clamp experiment.

4.4.3 IK2

IK2 is a voltage gated outward potassium current with both activation and inactivation
components. Like IK1 the current is responsible for spike broadening and repolarization of
the membrane potential during an action potential.

Activation

The activation data for IK2 was taken from Quattrocki et al. 1994 [27] Figure 4D and 4A.
Figure 4D is the same as used for IK1 and also contains peak current versus membrane
potential data for IK2. Figure 4A contains a voltage clamp experiment for IK2 where the
cell was held at -60 mV and stepped up to holding voltages from -40 mV to +40 mV. As
with IK1 we found a normalized Ipeak(V ) from Figure 4D and then multiplied by Ipeak(40)
to get Ipeak(V ) values. We then converted Ipeak(V ) from current to conductance as before
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Figure 4.8: τnK1 fit for IK1
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Figure 4.9: Voltage Clamp for IK1
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Figure 4.10: m∞K2(V ) fits for various values of p

using Equation (4.18). We then fit the parameters of m∞(V ) using the lsqcurvefit function
in Matlab. The results are shown in the Table 4.5 below and Figure 4.10.

Table 4.4: IK2 Parameter Fit
P ḡK2 VmK2 KmK2 error
1 0.2435 15.053 -8.9191 0.00001625
2 0.2557 5.4067 -11.4679 0.00000707
3 0.2619 -1.033 -12.6744 0.00000546

For τmK2(V ) we took the time to half-maximum values from the voltage clamp shown
in Figure 4A and transformed the values τmK2(V ) as before. We then fit the parameters
to Equation (4.8) for different values of p. However there was not enough data to get a
reasonable fit and due to the steepness of the initial rise of the current in the voltage clamp
experiments it was very difficult to accurately determine the time to half maximum. Instead
we used a constant for τmK2(V ) which was fit by simulating the voltage clamp experiments
and adjusting the parameter so the simulation matched the actual experiment.

Inactivation

We used Figure 3B to determine the values for h∞K2(V ). Figure 3B plots steady state
inactivation against membrane potential. The steady state inactivation is determined by
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holding the cell at -80 mV then stepping the potential up to a prepulse potential between
-80 mV and 10 mV in 10 mV increments. After being held at the prepulse potential for 1.5
seconds to let the inactivation go to steady state, the cell is clamped at 20 mV to elicit the
remaining current. The peak of the remaining current was normalized and plotted against
the prepulse voltage. The h∞K2(V ) fit is shown in Figure 4.11

Table 4.5: IK2 Parameter Fit
Vh Kh error

-27.5467 -7.3401 0.0071

Figure 4.11: h∞K2(V ) parameter fit results

Next we use the general method described in Section 4.3 to fit a curve of the form

IK2 = A1(V ) + A2(V )e
− t
τh to the last 200 msec of the voltage clamp data from Figure 4A.

This gives us 5 data points for τh which is an insufficient range of membrane potentials to
fit a bell shaped curve. These results are shown in Table 4.6 below.

We take τh to be the average of the points in Table 4.6, 88.7305.

Voltage Clamp Simulation

The fit is shown in Figure 4.12, the only changes that were made were a slight increase in
the maximum conductance to 0.12 to account for the fact the inactivation variable is not 1
at the peak values of the current. We adjusted the value of τmK2(V ) to be 9 to match the
voltage clamp experiment data.
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Table 4.6: τh Data
V τh
0 93.9162
10 84.8528
20 79.0492
30 82.1083
40 103.726
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Figure 4.12: Voltage Clamp for IK2
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Table 4.7: ICa Parameter Values
P ḡCa Vm Km error
1 0.1168 -3.3863 5.7564 0.0003043
2 0.1173 -9.7085 6.8655 0.0003347
3 0.1172 13.4379 19.5559 0.0003518

4.4.4 ICa

ICa is an inward current carried by calcium which is responsible for the upstroke portion
of the action potential. It is the only current in the model that causes an increase in
membrane potential. The calcium current exhibits a use-dependent inactivation which is
partially responsible for the spike broadening during a spike train.

Activation

In order to model ICa, first we found ECa using the right side of the I-V curve found in
Figure 5A from [8]. We determined ECa by using the data in the I-V curve to solve for
I(Eca) = 0. We did this by fitting a polynomial curve to the data and then solving the fitted
curve for I(ECa) = 0. We used only the data after the minimum to get a better fit since for
this current the I-V graph forms and upside-down bell shaped curve. We used a quadratic
fit to determine ECa = 57.5699 with an error of 0.00778.

Next we used the same method as previous currents to fit m∞(V ) using the peak current
versus membrane potential plot in Figure 5 of [8]. Figure 5 is a voltage clamp experiment
where the cell was held at -60 mV and stepped in 10 mV increments from -60 mV to +60
mV.

The errors for each fit are so small that there is no significant difference between fits, we
take p to be 1 for simplicity.

Next we fit τm using Figure 2B from Zhang [37] and starting out by fitting a curve of

the form ICa = A1(V ) + A2(V )e−
t
τm to the activating section of the voltage clamp curves.

This is similar to the method described in the inactivation section of the general method
and follows from Equation (4.16). The activation section occurs for roughly the first 30
milliseconds until the current reaches its peak, afterwards the assumption that h ≈ 1 is no
longer valid. The results can be seen in Table 4.8

As before we fit this data to the function of seen in Equation (4.8) with results of δmCa =
0.1773 and τ0mCa = 8.5538, but the error for this was 23.6548. The error was too large
so instead we tried fitting a simple decaying exponential of the form Ae−

V
B . The result

was A=3.3308 and B=83.2560 with the error of 0.5680. However, we lack data for voltages
less than -30 mV, so we have no way of fitting a curve that accurately represents values of
τmCa(V ) for low membrane potentials. However since ICa is not active until quite depolarized
values we use the fit in our model.
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Figure 4.13: m∞Ca(V ) fit

Table 4.8: τmCa Values
V τmCa error

-30 4.7309 0.0036
-20 4.2563 0.0053
-10 4.0346 0.0022
0 3.1781 0.2598
10 3.0937 0.6747
20 2.1527 0.6720
30 2.0478 0.3611
40 2.3745 0.0362
50 2.0397 0.0028
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Inactivation

We use the general method with data taken from the voltage clamp experiment shown in
Figure 5 of Hung and Magoski [15] to fit parameters for h∞Ca(V ) and τhCa(V ). The results
are shown in Tables 4.9 and 4.10

Table 4.9: h∞Ca(V ) Parameters
P Vh Kh error
1 28.0559 -15.5973 0.0539

Table 4.10: τhCa Data
V τhCa

-20 71.8911
-10 63.3692
0 64.8659
10 66.2832
20 64.8080
30 64.5052
40 132.8472
50 71.3100

However the values in Table 4.10 did not provide adequate parameter fits for the usual
function, instead we took the average value of the data without the outlier of 132.8472 to
get a τhCa(V ) value of 65.83.

Use-Dependent Inactivation

In Figure 6d of Hung and Magoski [15] the calcium current exhibits use-dependent inacti-
vation during repeated voltage clamp experiments. Without a specific mechanism known
to cause the use-dependent inactivation we decided to use the internal calcium level as seen
in various calcium dependent currents seen and discussed in Chapter 11 of Voltage-Gated
Calcium Channels [23]. We will discuss the internal calcium dynamics in Section 4.4.6, for
now we will just look at the effects of calcium concentration on ICa. We incorporated the
calcium into the inactivation variable, h. More specifically we chose to have calcium decrease
the rate at which the channel opens, αhCa(V ). The rate at which channels close is modelled
by the variable βhCa(V ), where αhCa(V ) and βhCa(V ) relate to h∞Ca(V ) and τhCa(V ) as
follows

h∞Ca(V ) =
αhCa(V )

αhCa(V ) + βhCa(V )
(4.35)
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τhCa(V ) =
1

αhCa(V ) + βhCa(V )
(4.36)

and αhCa(V ) and βhCa(V ) are taken to be the following functions from Willms 1999 paper
[34]

αhCa(V ) = a0e
−δV
s

βhCa(V ) = b0e
(1−δ)V

s where 0 ≤ δ ≤ 1

The observed behaviour , that h∞Ca(V ) increases as [Ca] could be obtained by modifying
either αhCa(V ) or βhCa(V ) to be calcium dependent. However we chose to modify αhCa(V )
to be a function of V and calcium concentration by having an increase in calcium cause a
decrease in αhCa(V ). We chose αhCa(V ) rather than βhCa(V ) because a decrease in αhCa(V )
causes a decrease in h∞(V ) and an increase in τhCa(V ), which agrees with behaviour observed
by Magoski et al. [15] that in the absence of calcium (barium replaced calcium in the
experiment) it was found that ICa inactivated faster, i.e., τhCa(V ) was larger.

The calcium dependence was inserted as follows

αhCa(V,Ca) = a0
F (Ca)

e
−δV
s where F(Ca) is some function of calcium to be determined. We

substitute αhCa(V,Ca) and βhCa(V ) into Equation (4.35) and rearrange to get

h∞(V ) =
1

1 + b0F (Ca)
a0

e
V
s

(4.37)

which can be put in the form of a Boltzmann function similar to Equation (4.11 ) but with p

equal to 1, by choosing VhCa = −s ln( b0F (Ca)
a0

). We choose F(Ca) so that at the resting value
of internal calcium concentration we have the same value for Vha as previously determined.
Thus we can simplify our equation for VhCa and put it in terms of parameters we have already
calculated which yields

VhCa = Vh −K ln(F (Ca)

and we chose F(Ca) as follows

F (Ca) = (1 + (Ca− CaRest))

Since our inactivation time constant for ICa is actually a constant value rather than depen-
dent on V, we do not actually model any effect of calcium on the rate of inactivation of
ICa. The calcium dependence we introduced has the effect of shifting the inactivation steady
state curve to the left each time the calcium level increases thus causing the calcium current
to inactivate at a lower membrane potential with repeated use.
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Voltage Clamp Simulation

Since the current is now partially inactivated to due voltage and partially due to calcium
levels, we had to adjust our τhCa(V ) parameter. Once again we altered τhCa(V ) to get
the proper qualitative behaviour over long time spans, we increased the value to 300. The
simulation of Figure 5a from Magoski et al. [15] is shown in Figure 4.14.
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Figure 4.14: Voltage Clamp for ICa

4.4.5 IKC

Current Description

IKC is the calcium dependent potassium current. It is both voltage and calcium activated
with no inactivation.

Voltage Dependent Activation

We begin by ignoring the calcium dependence and fitting a normal activation gating variable
similar to IK1
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First we used Figure 2B from Zhang et al. [36], which shows an I-V curve for the IKC
channels that have been cloned and expressed in oocytes. This means we cannot use the
data to determine the maximum conductance, ḡKC . Instead we have

Ĝ(V ) =
ÎKC,peak(V )

V − EK
= ĝKC [n∞]p (4.38)

where ĝKC is not the true conductance value of the channel since it is taken from gene
expression data. The results were as follows

P ḡKC Vn Kn error
1 0.0784 32.0191 21.7066 0.00004232
2 0.0811 8.3680 27.7566 0.0000020444
3 0.0824 -7.7632 30.5101 0.0000014247
4 0.0831 -19.6994 32.0344 0.0000011466

Once again the differences in the errors for each fit are insignificant so we used p equal
to 1 for simplicity.

Next we used Figure 2A of Zhang [37]. Figure 2A shows a voltage clamp experiment
measuring potassium current before and after the application of a drug the specifically blocks
the type of calcium activated potassium current we are modelling. The plot also shows the
difference between the control and blocked voltage clamp currents which represents IKC . We
used the difference currents to find the maximum value of IKC . We then calculated ḡKC
from ĝKC using the following formula derived below

We combine
IKC = ḡKC(60− EK)np

and
ÎKC = ĝKC(60− EK)np

to get

ḡKC = ĝKC
IKC,peak(60)

ÎKC
(4.39)

which gave us a value of 0.0589 for ḡKC , where ÎKC(60) was taken from Zhang [36] Figure
2B and IKC was taken from Figure 2A mentioned above.

Next we tried using the difference current inset from Zhang [37] to find τmKC(V ) but
could not get accurate enough results due to the small size of the figure.

Calcium Dependence

We modelled the Calcium dependence as affecting the activation variable αnKC(V ) similar
to how we modelled use-dependent inactivation for ICa except αn(V ) increases with calcium.
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We use a method similar to Chapter 4 of [35] by Yamada, Koch, and Adams. We have the
following equation.

αhKC(V ) = z(Ca)a0e
−δV
s (4.40)

which can be rearranged so that as before the calcium dependence is in VnKC giving

Vn,new = Vn,old +Kn ln(z(Ca))

where

z(Ca) = 1 +
ca1

(1 + exp((−Ca+ca2)/ca3))

and ca1, ca2 and ca3 are all constants fit from the data taken from Figure 2F of Zhang
[36] which plots activation against calcium concentration. We rescaled the function so at
the resting value of calcium z(Ca)=0. The simplified effect of this calcium dependence is an
increase in calcium causes the nKC∞(V ) curve to shift to the left making the current activate
at lower membrane potentials.

Discussion

The voltage clamp experiment from Figure 2A of Zhang [37] was simulated in Figure 4.15.
The effect of the calcium level on IKC can be seen in Figure 4.16. Due to the lack of data on
internal levels of calcium we have some difficulty and need to adjust the parameters of the
calcium dependence to increase the effect so that it is noticeable. IKC is a smaller current
that is overpowered by the other inward potassium currents such that it generally does not
seem to have much of an effect on the shape of the action potential.

4.4.6 Calcium Dynamics

We based our calcium dynamics on the work by Canavier [1] discussed in Section 4.4.6 and
Methods in Neuronal Modeling Chapter 6 [30]. For our purposes, only the amount of calcium
just inside the membrane is relevant. Thus we have a model where the amount of calcium
coming into the cell is determined by the amount of calcium current, and once inside the
cell calcium is absorbed into cellular stores. We have the following differential equation to
describe this behaviour

[Ca]′ = −fCa
ICa(V )

volF
− β([Ca]− [Camin]) (4.41)

where vol is the volume of cell just inside the membrane which we are dealing with, F is
Faraday’s constant, fCa is a weight constant which converts the amount of ICa into the
amount of calcium in the cell. β is rate at which calcium is absorbed into the cytoplasm
of the cell and [Camin] is the minimum amount of calcium present in the outer layer of the
membrane.
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Figure 4.15: Voltage Clamp for IKC
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Figure 4.16: IKC Voltage Clamp with Vpre = −60 and V = 40 with calcium level ranging
from 0 (bottom) to 20 (top) in steps of 1 mM
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4.5 Action Potential

The action potential in an Aplysia bag-cell neuron is different from other neurons in that
the action potential does not exhibit threshold behaviour. Most neurons have a threshold
that if the input current pushes the membrane voltage above it, the ion channels in the cell
cause a spike to occur. The spike does not depend on the strength of the input as long as
the membrane potential the threshold. However in bag-cells the spiking behaviour seen in
papers such as Magoski et al.[15] clearly shows the upstroke of the action potential to occur
entirely while the stimulus current is on. As soon as the stimulus ceases the voltage rapidly
returns to its resting state. In fact during a spike train where the cell is stimulated at 5Hz
for 50 spikes, the voltage drops severely before the input has even stopped during the first
spike and gradually drops less as the spike changes shape during the spike train. For a basic
understanding of how the currents in the bag-cell neuron work together see all activation
and inactivation steady state curves in Figure 4.17. These steady state curves are useful for
describing when a given current is active at a glance. We found that the steady state of nK1

to cause a problem with the full model due to it being greater than 0 at very low voltages.
This leads to the K1 current overpowering the upstroke of an action potential and thus we
will start with a simpler version of the model.

First we will start by building a model containing just ICa, IK2 and IL similar to the model
made by Quattrocki et al. [27]. We found that the model parameters can be adjusted to give
us a very good representation of an initial spike in a spike train shown in Magoski et al.’s
2007 paper [15]. A spike train is a method used to experimentally induce an afterdischarge in
a bag-cell neuron. Using a sharp electrode current clamp the cell is forced to fire at 5 HZ for
10 seconds. The input is 1 nA for 50 ms then 150 ms off. After the spike train has finished
the cell will enter the afterdischarge state within a few minutes. The action potential has
a height of 80 to 90 mV and usually has returned to rest within 50 msec of the stimulus
ending.

We found the model to be very sensitive to different parameters. Specifically when adjust-
ing the maximum conductance for different currents there are two problems we encounter.
If the calcium conductance is too low then when the initial stimulus is applied ICa will not
be strong enough to overcome the potassium currents and we end up with a “spike” as seen
in Figure 4.18. However when ICa is strong enough for the spike to reach the correct height,
a second steady state appears if there is not the right amount of potassium current to bring
the spike downwards. An example of this can be seen in Figure 4.19. If we correctly set up
the balance between IK2 and ICa we can create a spike almost identical to the first spike of
the spike train seen in Magoski et al. [15] both qualitatively and quantitatively.

We then add in the remaining currents, IKC and IA, as well as the calcium dynamics
and use-dependent inactivation for ICa. The calcium dynamics parameters needed to be
adjusted so in order to fit with the larger calcium conductance we required to get proper
spiking behaviour. We also found that if we increase the activation time constant of IK2

slightly and decrease the inactivation time constant of ICa we can cause the spike behaviour
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Figure 4.17: Activation and Inactivation Steady State Curves

57



-55

-50

-45

-40

-35

-30

-25

V

0 20 40 60 80 100
t

Figure 4.18: Spike with Too Much Potassium Current

-50

-40

-30

-20

-10

0

10

V

0 20 40 60 80 100
t

Figure 4.19: Spike with not Enough Potassium Current
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Figure 4.20: Spike using ICa and IK2 and Leak

where the membrane potential has started to drop before the stimulating current has been
turned off. We simulated a spike train as seen in figures 1 and 4 of Magoski’s 2007 paper
[15]. The results are shown in Figure 4.21. We still do not include IK1 because even at very
small conductance values it will significantly affect the spiking behaviour by overpowering
the calcium current.

Figure 4.21 is a good representation of the spike train behaviour seen in Figure 4 of [15].
However the conductances we used to achieve the spike broadening were fairly large and
relied mostly on the use-dependent calcium current inactivation for spike broadening. We
have also not implemented any components within the model that will fundamentally change
the cell’s electrophysical properties so that it will spike spontaneously. In the next section
we will introduce a few of the cAMP and PKC dependent mechanisms into our model to try
and more accurately reproduce the spike broadening behaviour.

4.6 Further Work

4.6.1 PKC Activated Calcium Current

We implemented a basic version of a covert calcium channel which is physiologically activated
by PKC, which in turn is activated by increased levels of cAMP. Using Strong et al.’s 1985
[4] letter to Nature which investigated the effect of a cAMP analogue on voltage clamp
recordings of the calcium currents. We determined the activation variable properties for the
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Figure 4.21: 1st and 50th Spike in Spike train of 5Hz

covert calcium channel which we denote as IPKC . We chose to model IPKC as an addition
to the activation of the calcium current as follows

ICa = ḡCa(mCa(V ) +mPKC(V ))hCa(V )(V − ECa) (4.42)

Where we determined data for m∞,PKC(V ) by subtracting Figure 2a from Figure 2b of
[4] and using the same method as before which gives us the difference between the calcium
current with and without the PKC activated component. The results are shown in Table
4.11 and Figure 4.22.

Table 4.11: IPKC Parameter Fit Values
VmPKC KmPKC error
-5.0924 11 0.0074

However we need a mechanism to gradually turn the PKC activated current on so that
it does not unbalance the dynamics of the system and cause the high steady state behaviour
seen in Figure 4.18 which occurs whenever the ratio between calcium conductance and potas-
sium conductance is too high. We chose to do this by multiplying mPKC(V ) by the following

fPKC
Ca

Ca+ CPKC
(4.43)
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Figure 4.22: m∞PKC(V ) and m∞Ca(V )

where CPKC is the calcium threshold for the activation of the PKC current and fPKC is the
fraction of additional calcium conductance contributed by the covert calcium channels.

ICa = ḡCa(mCa(V ) + fPKC
Ca

Ca+ CPKC
mPKC(V ))hCa(V )(V − ECa) (4.44)

Also we have assumed that the PKC current is quite similar to the calcium current and
thus assumed the same time constants and inactivation variable. We did this because of
the limitations of the data we had and because the increase in calcium conductance from
this channel is a component in causing spike broadening. In the future we would want an
equation of the form

IPKC = ḡPKC(PKC)mPKC(V )hPKC(V )(V − ECa) (4.45)

where the maximal conductance is dependent on the amount of PKC available. If the timing
aspects of the PKC current are significantly different from the normal calcium current then
the PKC could be one of the most important components of causing an afterdischarge.

4.6.2 cAMP Dependent K2 Inactivation

In order to improve the spike broadening aspect of our model, we want to introduce the
cAMP-dependent inactivation of IK2 mentioned in Section 3.3 which was originally inves-
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tigated by Strong[32]. Since we have not implemented cAMP dynamics, we use calcium
to represent the amount of cAMP since during a spiking both calcium and cAMP levels
increase. Similar to our modulation of the PKC current we multiplied both gK2 and τhK2 by
a function of the form

1 +
CK2

CK2 + Ca
(4.46)

where CK2 is a constant that may have a different value for gK2 and τhK2, however when
fitting the parameters to simulate the correct behaviour we found the same value for both
gave us the amount of spike broadening we wanted. In order to implement this we had
to decrease the value of gK2 and τhK2 since the value of our calcium dependent function is
always greater than 1. The results of using these changes in addition to the PKC current can
be seen in Figure 4.23 and the full spike train and the resulting changes in calcium levels can
be seen in Figure 4.24. The spikes do represent the experimental data quite well although
there a few flaws. The peak for the 50th spike should be shifted a little more to the right and
the initial downstroke before the stimulus is turned off is more curved than it should be. We
also overshoot the resting potential during hyperpolarization which does not seem to occur
during experimental spikes. A lot of the inconsistencies between the experimental spike and
simulated spike seem to be due to the fact we did not have enough data to accurately model
the time constant functions over a sufficient range of membrane potential. The time constant
parameters are generally the most important parameters for adjusting the spike behaviour
in our model.

4.6.3 Prolonged Depolarizing Current

Magoski’s 2007 paper [15] described a prolonged depolarizing current that occurs after the
spike train leading up to the afterdischarge behaviour that could help explain the change in
electrophysical properties which causes a cell which does not have a normal spike to spike
spontaneously. The current is thought to be a nonselective cation current which activates
due to the influx of calcium during the spike train.

The calcium is thought to activate the depolarizing current by first activating the protein
calmodulin which in turn activates the nonspecific cation channel. Magoski et al. consider
that there may be a window where the correct level of calcium activates this current during
the spike train. For our purposes of trying to achieve the resulting membrane potential
behaviour, we can simply have the channel activate at a specific time when a certain level of
calcium is reached at the end of the spike train. The current typically raises the membrane
potential from -60 mV to -45 mV over 20-30 seconds and lasts for 3-5 minutes. The current
can be modelled by an equation of the form

IPD = ḡPDmPD(V − EPD) (4.47)
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Figure 4.23: 1st (narrower) and 50th (wider) Spike in Spike train of 5 Hz with additional
PKC and K2 inactivation

where

dmPD

dt
=
mPD∞(t)−mPD

τmPD
(4.48)

and
mPD∞ = H(t− tPD) (4.49)

where we simply model the activation variable using a Heaviside function for now where the
inactivation variable switches from 0 to 1 when peak level of calcium is reached at the end
of the spike train, tPD.

The three remaining parameters for this channel can be easily fit by eye by running
a simulation with no stimulating current and adjusting the parameters until the proper
behaviour is observed. The parameters ḡPD and EPD can be adjusted to determine the new
resting potential with IPD turned on and τmPD can be used to adjust the speed at which the
membrane potential approaches the new steady state. We have incorporated this into our
model in Figure 4.25 by running the simulation using two different time steps, 0.05 msec for
the spike train and 1 msec afterwards. The full model with all parameter values can be seen
in the Appendix.
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Figure 4.25: Spike Train with Prolonged Depolarizing Current
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Chapter 5

Conclusion

The Aplysia and its bag-cell neuron has been an important object of study for neuroscientists
over the last 40 years. Due to the relative simplicity of the Aplysia’s central nervous system it
is possible to understand the effects of a specific type neuron on the overall behaviour of the
animal. The bag-cell neuron is known to release a hormone that causes the onset of a series
of behaviours culminating in the animal laying eggs. The specific mechanism through which
this occurs is known as an afterdischarge. The bag-cell neurons will fire synchronously for
approximately 20 minutes releasing the egg laying hormone into circulation. Half an hour
after the afterdischarge the egg laying behaviour will begin. In vitro an afterdischarge is
stimulated by stimulating the cell repeatedly at 5 Hz for 1 second, which is followed by a
short delay and then the after discharge behaviour occurs.

The resting bag-cell neuron exhibits six main currents: ICa, IK1, IK2, IA, IKC and IL. ICa
is a voltage-gated calcium channel that is responsible for the upstroke of the action potential
and exhibits use-dependent inactivation. IK1 and IK2 are voltage gated potassium channel
responsible for hyperpolization during an action potential as well as spike broadening. IA
is a voltage gated potassium channel responsible for membrane potential behaviour at very
negative values. IKC is a voltage and calcium dependent potassium channel that affects spike
broadening and cell excitability. IL is the leak current and is a non specific cation channel
that determines the resting potential of a cell. Using voltage clamp experiments by Strong,
Kaczmarek, and Magoski we were able to fit equations that describe the behaviour of the
different ion channels. The equations were based on the Nobel prize winning work of Hodgkin
and Huxley described in Section 2.3. We were able to create a model that represented
very well the spiking behaviour of a bag-cell neuron when stimulated although we had to
remove the IK1 current to do so. The model still needs more work to be able to describe the
afterdischarge behaviour. There is a fundamental change in the electrophysiology that occurs
during the spike train stimulus that causes the cell to go from non-excitable to spontaneous
firing. The possible factors that cause this shift are described in the next section.
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5.1 Future Work

5.1.1 cAMP Dependence

From Strong and Kaczmarek’s papers ([4],[32],[2]), evidence suggests that cyclic adenosine
monophosphate (cAMP) plays a key role in modulating the conductances of the ion channels
of an Aplysia bag-cell neuron to cause afterdischarge behaviour. Bag-cell neurons also contain
a cAMP dependent protein kinase which affects certain types of potassium currents, see ([15],
[2]). The outward potassium currents are generally reduced in overall conductance and also
exhibit a decreased inactivation time due to cAMP, whereas PKC acts to increase the calcium
conductance by activating covert calcium channels. Injecting cAMP analogues into bag-cells
has been shown to induce afterdischarge behaviour.

5.1.2 Electrical Coupling

Aplysia bag-cell neurons are found in two clusters of several hundred neurons which are
electrically coupled. As previously discussed, bag-cells are coupled by a gap junction which is
when two cells are so close together that ions freely flow from cell to another. Afterdischarge
behaviour does not require the gap junctions to work however it does help synchronize
the behaviour of multiple cells. To model electrical coupling we will use the example from
Rinzel’s 1991 paper [29] which modelled synchronization of pancreatic β cells. The governing
equation was modified to include a term representing the flow of charge between different
neurons through gap junctions. The cells were assumed to be homogeneous and the current
flowing through the gap junction was assumed to equalize the membrane potentials, i.e. if
cell j hyperpolarizes cell k then cell k depolarizes cell j. The governing equation for the jth
neuron is as follows:

C
dVj
dt

= −
∑

Iion − ḡc
∑
k∈Ωj

(Vj − Vk) (5.1)

where ḡc is the conductance of the gap junction current and we sum over all the cells which
neuron j is connected to, Ωj.

5.1.3 Afterdischarge Discussion

In order to elicit afterdischarge behaviour there are several possibilities. The first and least
likely but easiest to implement is that during the spike train the increased levels of cAMP
cause a new current to slowly switch on which has the effect of constantly stimulating the
cell and causing it to spike.

The current research, however, suggests that the effects of cAMP and PKC change the
dynamical system so that it spontaneously fires. However it is hard to determine exactly how
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this may occur given that all the data taken from voltage and current clamp experiments
suggest the cell does not actually have a proper action potential even when stimulated. The
most significant cause of this behaviour seems to be the covert calcium current. Unlike
many other neurons, the bag-cell lacks any sodium current which is generally responsible for
the upstroke behaviour in action potentials. If the calcium current changes the dynamics
of the system so that it now exhibits threshold behaviour then it is possible the effects of
cAMP on the inward potassium currents create a low enough threshold that the prolonged
depolarizing current pushes the membrane potential above the threshold for the duration of
the afterdischarge.
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Appendix: Model Details

Units: millivolts, milliseconds, nanoamps, microsiemens, nanofarads

Initial Conditions

V = −56

nK1 = 0.2

mK2 = 0

hK2 = 1

mCa = 0

hCa = 1

ca = .5

mA = 0.1

hA = 0

mPD = 0

mPKC = 0

Capacitance

Cm = .5

Nernst Potentials

Ek = −80

ECa = 57.599

IK1 Parameters

gK1 = 0

VnK1 = −31.4888

KnK1 = 18.7711

pnK1 = 1

τnK1 = 5
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IK2 Parameters

gK2 = 0.2

VmK2 = 10

KmK2 = 8.9335

pmK2 = 1

τ0mK2 = 9

CK2τ = 50

CK2g = 50

KhK2 = 7

τ0hK2 = 88.7305

ICa Parameters

gCa = 0.15

VmCa = −3.3863

KmCa = −5.7564

pmCa = 1

τ0mCa = 8.5338

δmCa = .6586

Kca = 600

VhCa0 = −11.69

KhCa0 = 7.5

τ0hCa = 70

IPKC Parameters

fracPKC = 0.2

VmPKC = −5.0924

KmPKC = 11.2011

pmPKC = 1

CPKCCa = 30

IKC Parameters

gKC = 0.0588

VnKC0 = 28.5737

KnKC0 = −23.0909

pnKC = 1

τ0nKC = 2
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IL Parameters

gL = 0.01

VL = −55

Calcium Parameters

fCa = .3

vol = 6.5449847e− 11

Camin = 0.3

β = 0.3

Fconst = 96487e6

IKC Calcium Fit Parameters

Ca1 = 1.4469

Ca2 = 10.096

Ca3 = 1.1477

IA Parameters

gA = 0.36

VmA = −39.9174

KmA = 8.0696

pmA = 1

τ0mA = 22.7511

δmA = .2272

VhA = −82.4

KhA = −4.7

τ0hA = 250

Stimulating Current Parameters

Istim = 1.2

tstim = 50

Stimulating Current Equation

Ipulse = Istim(heav(t)−heav(t−tstim))
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Governing Equation

V ′ = −(IA+IK1+IK2(V )+ICa+IL(V )−Ipulse)/Cm

IK1 Equations

nK1∞(V ) = (1 + exp(−(V − V nK1)/KnK1))−pnK1

n′K1 = (nK1∞(V )− nK1)/τnK1

IK1(V ) = gK1nK1(V − EK)

IK2 Equations

mK2∞(V ) = (1 + exp(−(V − VmK2)/KmK2))−pmK2

m′K2 = (mK2∞(V )−mK2)/τ0mK2

hK2∞(V ) = (1 + exp((V − VhK2)/KhK2))−1

h′K2 = (hK2∞(V )− hK2)/(τ0hK2 ∗ (1 + CK2τ/(CK2τ + Ca)))

IK2(V ) = gK2(1 + CK2g/(CK2g + Ca)))mK2hK2(V − EK)

ICa Equations

mCa∞(V ) = (1 + exp((V − VmCa)/KmCa))
−pmCa

mPKC∞(V ) = (1 + exp((V − VmPKC)/KmPKC))−1

τmCa(V ) = 3.3308exp(−V/83.256)

vhCa(Ca) = VhCa0 + (KhCa0ln(1 + 1/(Ca− 0.3)))

hCa∞(V ) = (1 + exp((V − VhCa(Ca))/KhCa0))−1

τhCa = τ0hCa

m′Ca = (mCa∞(V )−mCa)/τmCa(V )

h′Ca = (hCa∞(V )− hCa)/τhCa
ICa(V ) = gCa(mCa + fracPKC ∗ (Ca/(Ca+ CPKCg)) ∗mPKC)hCa(V − ECa)

IKC Equations

z(ca) = 1 + ca1/(1 + exp((−ca+ ca2)/ca3))

VnKC(Ca) = VnKC0 + (KnKC0ln(z(ca)))

nKC∞(V ) = (1 + exp((V − V nKC(Ca))/KnKC0))−pnKC

τnKC = τ0nKC

n′KC = (nKC∞(V )− nKC)/τnKC

IKC(V ) = gKCnKC(V − EK)
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IA Equations

mA∞(V ) = (1 + exp(−(V − VmA)/KmA))−pmA

τmA(V ) = τ0mAexp(δmA(V − VmA)/KmA)/(1 + exp((V − VmA)/KmA))

hA∞(V ) = (1 + exp(−(V − VhA)/KhA))−1

τhA = τ0hA

m′A = (mA∞(V )−mA)/τmA(V )

h′A = (hA∞(V )− hA)/τhA

IA(V ) = gAmAhA(V − EK)

Leak Current Equation

IL(V ) = gL(V − VL)

Calcium Dynamics Equation

Ca′ = −fCaICa(mCa, hCa, V )/(volFconst)− β(Ca− CaMin)
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