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Abstract 

Dynarnic estimation, the assimilation of data over time, is an important scientific issue 

in remote sensing, image processing, and cornputer vision, to name a few. 

The main motivation for this thesis is large-scale 2-D dynamic estimation problems 

related to remote sensing. For such problems, number of variables to be estimated can 

reach to the order of millions. As a result, direct application of conventional estimation 

algorithm, i.e., the Kalman filter, becomes totally impractical from two technical aspects: 

computational and storage demands. In this thesis, we propose ii new method for large- 

scale 2-D estimation problems that emulates the Kalman filter, but with more efficient 

computational and storage demands. 

Using parameterized error models to mode1 the huge error covariance matrices is the 

main contribution of this thesis. Under this scope, we develope a new approximate error 

prediction step and a new approximate large-scale update step. 

We studied the performance of the proposed method in the context of small synthetic 

2-D diffusion processes. In addition, we applied our method to a large-scale rernote sens- 

ing problem: the estimation of the ocean surface temperature based on sparse satellite 

measurements. 
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Notation 

Spatial correlation length 

Total number of intemediate interpolating priors 

ith correlation length used to constmct interpolant prior P(Zi), 1 5 i 5 k. 

7D isotropie stationary prior with correlation length 1 

Exact estimation error covariance based on prior P(Z) 

Sample path from prior P(1) 

Exact estimates for state : based on prior P(1). 

Exact estimation error variances based on prior P(1). 

Approximate estirnates for the whole 2D field computed based on in  terpo- 

lating weights. 

Approximate error variances for for the whole 2D field computed based on 

interpolating weights. 

State interpolating weight associated with correlation length Z 

Estimation error interpolating weight for correIation length 1 

The length in pixels of one edge of the 2D domain 

Number of elements in field, 2D n = N x N 

A region of the 2D domain that has correlation length equal to 1 



Chapter 1 

Introduction 

1.1 Thesis Motivations 

Dynamic estimation, the assimilation of data over time, is an important scientific issue 

in remote sensing, image processing, and computer vision, to name a few. 

Large scale 2-D dynamic estimation problems related to the remote sensing is the 

main motivation for this thesis. For such problems, the number of variables to be esti- 

mated can reach to the order of millions. As a result, direct application of conventional 

estimation algorithms, Le., like the Kalman filter, becomes totdly impracticd from two 

technical aspects: computational and storage demands. 

From the computational aspect, the Kaiman filter (to be detailed in the next chapter) 

involves two highly computationally demanding operations: rnatrix multiplication and 

matnx inversion. Both have computational cost of order 0 ( N 3 )  where N is the length 

of the state vector. For a 2D process of size N x N  the computational cost is ( 3 ( N 6 ) .  

The huge storage dernands are essential since the filter requires the full error covariances, 

each of size NZ x N 2 ,  to be readily available at each time step. 

From the above, it becomes obvious that for large-scale 2-D dynamic estimation 

problems there exists a need to develop an approximate dynamic filter that emulates the 



Kalrnan filter but with more efficient computational and storage demands. 

Although there have been several research works that tried to deal with such issues for 

relatively large estimation problems, these studies mainly addressed the computational 

demands of the update step under some restricted and irnpractical assurnprions: 

Fast Fourier transform (FFT) [33] methods require that the underlying process is 

spatially stationary. 

Iterative methods for solving the normal equations [48] require the full error matri- 

ces to be available. In addition they do not expIicitly provide the estimation error 

statistics. 

O The sparse Kalman filter [4, 15, 161 exploits the sparsity of the filter matrices 

and uses polynornial approximation for matrix inversion. This method requires 

the availability of the error matrices. In addition it requires that the matrix to be 

invcrted be diagonal1 y dorninan t. 

O Covariance extension methods [20,40, 501 reduce the storage requirements for the 

error covariance matrices but are only developed for 1-D large estimation prob- 

lems. 

Multiscale based dynarnic estimation for 2D problerns [SOI with reduced order tree 

States is only applicable for small size probIems. 

Another motivation for this thesis is to extend the capability of a recently developed 

efficient static estimator, the muItiscde estimator [17, 32, 50, 53, 671, to include large- 

scale 2-D dynamïc estimation problems. The multiscale estimator is a static estimator 

that can efficiently solve large-scale static estimation problems. It provides estirnates in 

addition to estimation error variances and a mode1 for the estimation error covariance at 

a very low computational and storage demands. 



A third motivation for this research is to develop a dynamic estimation tool that can be 

applied to diffusive-like processes such as the ocean surface temperature (OST). Study- 

ing diffusive-Iike processes has many practicai and useful applications in science and 

engineering. Since the ocean surface dynamics are not rnainly diffusive, we want to 

point out that the (OST) probIem is stnctly considered as a demonstrative probIem for 

this work. 

1.2 Thesis Contributions 

In this work, the main contribution is based on developing a dynamic estirnator that 

deals wi th parameten,ied error models instead of very large error covariance matrices. 

We investigate this approach for 2-D difiuion processes. One of the challenges that we 

are trying to address is that while the process covariance structure is stationary, the error 

process covariance is not. Theoretically, there is no way to have a direct formulation 

for non-stationary parametrïc error model that can be fitted to a non-stationary process 

statistics. Our approach to this is addressed in the context of the following two steps. 

1.2.1 Approximate error prediction models 

In this context, we investigated a new error prediction approach that suits large-scale 2-D 

dynamic estimation problems for 2-D diffusion processes. This approach is simply based 

on exploiting the fact that any covariance matrix can be written in terms of its diagonal 

elements and a correlation coefficient matrix. We exactly propagate the error variances 

and model the correlation matrix by a pararnetnc model. By establishing an empirical 

model that relates the estimation error variances to the correlation length at any element 

of the 3-D error process we were able to encode the non-stationarity in the predicted and 

updated error models. 



1.2.2 Non-stationary large-scale 2-D update step 

The measurement update step in the Kalman filter is a static estimation problem. The 

multiscale estirnator can efficiently be used to solve the update step for large-scale 2-D 

dynamic estimation problems. Estimates computed by the multiscale estimator are in 

general based on stationary prior. In the dynarnic estimation context, the correlation 

structure of the error process is generally non-stationary. One of the contributions of this 

work is to be able to compute non-stationary estimates consistent with the correlation 

structure of the error process based on stationary pnors. 

1.2.3 Application to OST 

As mentioned earlier, the main motivation of this work is to be able to apply it to solve 

large-scale 2-D dynamic estimation problems related to diffusion processes. The prob- 

lem that we used to dernonstrate Our method is the estimation of the ocean surface tem- 

perature (OST) based on satellite observations. The size of the images is huge (512 x 

5 12) elements. The probiem is hard from several aspects: 

O The data are very sparse; 

The size of the state vector is very large; 

O Dynamic estimation requires the availability of a dynamic model. 

The first two issues rnotivate the development of our approximate dynamic estimation 

method. The issue of the temporal dynarnics for the ocean surface is solved by assuming 

that the ocean surface is diffusive. We want here to emphasize the following issues: 

The ocean surface dynamics are not exactly diffusive. However, the diffusion as- 

sumption for the ocean surface temperature is reasonable because it covers the current 

mixing effect and the heat transfer to the surroundings. An advective component in the 

ocean dynarnics which is due to the effect of currents is not incorporated by considering 



only the diffusion model. Ideally, obtaining exact ocean diffusion dynamics parame- 

ters requires collaboration with oceangraphers. Our effort is concentrated on developing 

a dynarnic estimation tool for large-scale problems that can be of potential interest to 

oceangraphers. The adopred approach for obtaining approximate diffusion parameters 

for the ocean surface is based on fitting a diffusion process statistics to the ocean statis- 

tics inferred from the data. 

Despite the problem size, and the lack of true ocean surface dynamic model we were 

able to successfully demonstrate the results of the proposed approach. Quantitative sci- 

entific assessment of the results would require the input of oceangraphers. 

1.3 Thesis Organization 

This thesis divides into seven chapters. This chapter bas presented a surnmary on both 

the motivations and the contributions of this work. 

Chapter 2 presents general background material on estimation . Tne material is meant 

to be concise yet comprehensive for readers who are not familiar with estimation the- 

ory. The chapter addresses the two main estimation categories: static estimation and 

dynarnic estimation. Detailed background of a standard dynamic estimation algorithm 

(the Kalman fi lter) is presented. In addition, al ternative approaches when dealing with 

large-scale dynamic estimation problems are reviewed. A detailed discussion on various 

approaches to test the performance of the approximate filters is mentioned in the last 

section. 

Chapter 3 presents the background material on multiscale estimation. This chap- 

ter covers the general concept of the multiscale estimation. We revisited some of the 

previous development and applications of this frarnework. In addition, we review the 

limitations of the previous work on large-scale dynamic estimation using the multiscale 

estimator. 

The contributions of this research are presented in chapters 4 through 6. In Chapter 4, 



we present our approach to approximate error predictions in the context of diffusion 

dynamics. We show how we can use stationary parameterized error models to propagate 

the updated estimation error variances. By ernpiricdly studying the relationship between 

the error variances and the correlation length we are able to encode the non-stationarity 

in the error process statistics. 

Chapter 5 presents Our method for computing estimates based on parameterized error 

models but taking into consideration the spatial non-stationarity in the predicted error 

model. Our method makes use of the efficiency of the multiscale estimator in computing 

stationary estimates. By properly combining stationary estimates computed based on 

several stationary priors we are able to produce approximate non-stationary estimates 

and their associated estimation error variances- We investigate the effect of the number 

of stationary priors on the estimation quality. In the last section, we show some synthetic 

static estimation experiments to illustrate our approach. 

Chapter 6 presents several synthetic examples on dynamic estimation for 2D diffu- 

sion processes in addition to the ocean surface tempzrature problem. We compare the 

results obtained by our method to the estimates produced by the standard KaIrnan filter 

algorithm. In the Iast section, we present the ocean surface temperature problem and we 

show that Our method is capable of producing approximate estimates if reasonable ocean 

surface statistics and diffusion parameters are available. 

Finally, Chapter 7 presents a surnrnary of this work and topics for future work. 



Chapter 2 

General Background 

This chapter presents generd background related to the subject of estimation. The mate- 

rial is meant to be concise for readers who are not familiar with estimation theory. The 

chapter addresses the two main estimation categories: static estimation and dynamic es- 

timation. The reader may think that the two problems are unrelated, but infact, they are 

closeIy related and are presented in this chapter. 

Section 2.1 talks about the estimation problem in general. Static estimation is pre- 

sented in Section 2.2. First, the two main types of static estimation are presented. Next, 

some important properties for estimating Gaussian variables are listed. For large-scale 

static estimation problems, there exist certain techniques that can deal with the computa- 

tional and storage issues. Properties and drawbacks of these rnethods are then addressed. 

Dynamic estimation background, which is closely related to the topic of this thesis, 

is presented in Section 2.3. This section starts by presenting the Kalman filter basis. 

Then, two important alternative forms of the standard Kalman filter are detailed. Next, 

the filter limitations with respect to computational and storage issues are addressed. In 

addition, various approaches to deding with large-sale dynarnic estimation problems 

are presented. Finally, Section 2.4 discusses various approaches to test the performance 

of the approximate filters. 



C '  2. GENERAL BACKGROUND 

x 
Unknown 

Figure 2.1: Illustration of the peneral estimation problem. y is a set of observations for 
unknown quantity x. 2 is an estimate of x computed by an estimator denved based on 
minimizing some function of the the estimation error x - 5. 

2.1 Overview 

In many scientific or engineering problems, scientists are interested in obtaining a math- 

ematical mode1 descnbing the underlying process that c m  be used in simulating and an- 

alyzing the underlying phenomena. Nomally, the construction of such models requires 

the determination of unknown parameters, typically based on experimentally-measured 

quantities. However, in collecting such measurements, two issues arise: 

Not al1 quantities can be measured; 

Most sensors or measuring devices introduce errors into the rneasurement process. 

For those rneasurable quantities, how can one filter out the sensor noise? 

Estimation theory [41, 65, 71, 911 plays a major role in dealing with the above two 

issues. Estimation generally refers to the subject of making inferences about some un- 

known (random) quantities based on measurements of the sarne or some related unknown 

(random) variables. Estimation problems are mainly composed of five major cornpo- 

nents [60,69, 921: 

1. The variables to be estimated. Based on the underlying problem, the quantity to be 

estimated c m  either be a scalar (a single value) x or a vector g f Rn. The vector 

quanti ty c m  represent a one-dimensional process or a lexicograp hicall y stacked 
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two-dimensional one. Estimation problems are categorized in to two main types 

depending on the nature of the quantity to be estimated. If the quantity to be 

estimated is just a deterministic unknown, then this is called parameter estimation 

o r  non-Bayesian estimation [65, 841. On the other hand, if the unknown quantity 

is random, then this is called Bayesian estimation [65, 841. 

2, A set of measurements or observations y. 

3. A mathematical model describing the relationship between the observations y and 

the unknown quantity x in addition to the nature of the measurement noise. The 

measurernent model is generally a linear function of the unknown. That is, the 

obtained measurements are linear combinations of the unknown quantities. In ad- 

dition, a probabilistic or mathematical model describing the uncertainties in the 

measurements is usudly known. In most cases, the mode1 is given by the mea- 

surement noise covariance rnatrix R which is usually diagonal (multiple of the 

identity), i.e., the noise cornponents are independent. 

4. A probabilistic or  mathematical model describing the p i o r  knowledge of the un- 

derlying random process. This is an essential component only in the case of es- 

timating a random process. UsualIy the model is given in terms of the process 

covariance matrix Pz. In the case of a deterministic unknown x, then a pnor 

knowledge for the distribution of the measurements is required. This is usually 

given in terms of the measurements probability density function (PDF). 

5. A performance criterion upon which the estimator is derived and its performance 

is assessed. 

Figure 2.1 summarizes the general estimation problem. To ~ I a n f y  the above points the 

following exarnple is presented: 
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Given a set of observations y for a random quantity x, the relationship between y and 

x is given by 

Equation (2.1) is a cornmon linear mathematical model for the relationship between mea- 

surements and unknown quantities. The term v is an additive Gaussian white noise with 

mean O and covariance R- These statistics represent a probabilistic model for the mea- 

surement noise, The unknown quantity x is random and it is assumed to be Gaussian. 

This statistical mode1 is called a prior. In this case, the pnor for x can be described by 

its rnean pz and covariance matnx Pz. Given the above quantities, in order to estimate 

z an estimation criterion must be specified. A cornrnon criterion is rninimizing the mean 

square estimation error E [ ( x  - i)2]. Now, the estimation problem is completely iden- 

tified. The derivation for the estimate and its error covariance is given in the following 

section. 

2.2 Static estimation 

In static estimation the unknown quantity does not evolve with time. In addition, the 

sampled measurements are not obtained temporally. So static estimation deais with esti- 

mating a static quantity based on a single set of measurements [60,65]. 

As mentioned in Section 2.1, estimation problems can be categorized as Bayesian 

or non-Bayesian, depending on the statistical nature of the unknown quantity to be esti- 

mated. In the following two subsections, each of these two cases is discussed in tum. 

2.2.1 Non-Bayesian estimation 

When the unknown quantity x is deterministic as opposed to random the estimation prob- 

lem becomes non-Bayesian. Estimating the mean or the variance of a distribution from 
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a set of observations are examples of non-Bayesian estimation. 

The most common criterion used in non-Bayesian estimation is the maximum Iike- 

lihood [BO]. Let g be the measurement vector and - is an unknown quantity, then the 

estimate for - is the value of g which maxirnizes the likelihood function p(&. 

Consider the basic static estimation problem [41, 60, 651 in which the goal is to 

estimate a collection of z~rzkrmvn parameters represented by a vector g E Rn, based 

on a set of noisy measurements represented by y E R". Generaliy, we have a linear 

relationship between the unknown: and the measurements y given by 

Where the matrïx C descnbes the nature of the measurement process. Generally, C is 

a "selection matrix" indicating the measured components and which combinations of xi 

corresponds to the measurement y;. If C is a selection matrix then it has ones in the 

columns that correspond to the measured quantity. In  the following, we will refer to 

(2.2) as the Zinear model. Observe that p(Y1X)  is also Gaussian with mean E[y] = Cg 

and covariance R. 

In order to maximize (2.3) we need to rninimize 

Note that using the inverse of the measurement noise covariance R-' to weight the sum 

of squares of the error is a special case of the weighted Ieast squares where we seek an 

estimate 2 that will minirnize the weighted sum of squares of the error by some arbitrary 

positive definite weighting matrix W [65]. By differentiating (2.4) with respect to g and 
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equating the result to zero, the optimal estimate for the linear mode1 is given by [65] 

The corresponding estimation error covariance is [65] 

2.2.2 Bayesian estimation 

The second type of estimation problem is when the unknown quantity is a random vector 

x. In this case, we have pnor knowledge about g specified by its density function ~(2). - 

Bayesi an estimation provides a method to merge the external know ledge (i.e., the pnor 

p ( g ) )  and the observations g in estimating K. 

There are several sources for pnor knowledge. The prior knowledge can be obtained 

from data previously studied by estimating the probability density function of the un- 

known quantity, or estimating the joint PDF of the measurements and the unknown 

p(-, y) [8], or it  can be an imposed constraint, like a smoothness constraint [33]. 

In the general Bayesian framework, two main components affect the estimation re- 

sults: the pnor knowledge of both the measurements and the unknown and the chosen 

estimation cost function c(e). The estimate ( y )  is chosen to minimize the expected 

value of the estimation cost function (Le., the average cost) 

There are v,uious estimation criteria based on the selection of the cost function 1281 

Mean-square estimation, which selects an estimate & that minimizes the mean 
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square error 

This is referred to as Bayesian Lensr sqlrares esrimarion LSE [2Q,  65, 841. 

Maximum posterior estimation MAP [28,65, 841 which uses a uniform cost func- 

tion aven by 

Observe that the MAP criterion treats al1 the mors above a given value E equally 

by a cost function that is equal to one. The above cost criterion corresponds to 

selecting an estimate 2 that rnaximizes the posterior probability p(-1%) 

Linear Ieast squares estimation LLSE criterion is an extension to the LSE. How- 

ever, in LLSE we require the estimate to be a linear function of the measurernents 

Î = Ag + b. The estimation cost in this case is given by - 

The Bayes' least squares estimate LSE is the conditional mean of g [28, 65, 841. 

In most cases, the conditional mean is not a linear function of the observations. LLSE 

criterion assures that the estimate is a Iinear function of the observations. For the Gaus- 

sian case, the conditionai mean given by (2.8) is a linear function of the measure- 

ments. Therefore, estimates produced by LSE and LLSE are equivalent for the Gaussian 

case [2, 65,7 13. 
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Following is the derivation for the estimate for the Gaussian case [2, 65, 711 where 

the measurement Zinear mode1 given in (2.2) is considered. Note that the derivation is 

based on LSE criterion which is equivalent to LLSE in this case. 

The problem statistics are 

This makes the estimation error covariance equal to the sum of both the process covari- 

ance and the measurement noise covariance 

The least-squares criterion in  this case becornes finding 2 that will minimize the mean- 

square error given by 

In the case where al1 the random variables are Gaussian, the estimate given by (2.8) is just 

the conditional mean of the conditional distribution p+(X IY) which is also Gaussian. 

The estimate in this case is given by 

and the associated estimation error covariance is 

where = g = : - 2 is tkiz estimation error. 

It is important to mention the alternative forms of equations (2.12), (2.13) which are 
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derived using the ABCD lemma [28] 

This form is identical to the one given in (2.12),(2.13) with respect to the estimation 

results. However, the computational cost of both forms can be different, as will be illus- 

trated in Section 2.2.4, 

2.2.3 Estimation properties of the Gaussian case 

A Gaussianity assurnption appears in many estimation problems for at least two impor- 

tant reasons. First, Gaussian random variables, in many natural phenornena, provide a 

reasonable and simple approximation. Second, if the underlying random phenomenon is 

the superposition of an arbitrary large number of random processes, the whole process 

can be considered as Gaussian. 

There are several important properties of estimates when the involved random vari- 

ables are Gaussian [7 1, 841: 

Estimates can be derived based on the second-order statistics only instead of the 

whole joint probability densi ty function. 

The LSE estimate, which is the conditional mean, is always a Iinear function of the 

observations, making the LSE criterion and L U E  criterion equivalent. 

The estimation error covariance is independent of the observations. This is an 

important feature that allows assessing the estimates quality before setting up the 

experiments and taking the measurements. 

Estimates are optimal (i-e., unbiased and efficient [71]) with respect to any of the 

previously mentioned cri teria. 
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2.2.4 Approaches for Large Scale static Estimation 

Estimation problems related to remote-sensing involve dealing with huge mount  of in- 

formation. Global ocean modeling and climate studies, based on satellite altimetry mea- 

surements, are two important examples. In large scale problems, the number of rneasure- 

ments and the number of variables to be estimated c m  reach the order of millions. In this 

case, the LLSE suffers frorn high computational cost and the impossibility of storing a 

million by miilion covariance rnatrix. 

Consider applying the LLSE to a 2-D random field of size n = N x N .  This in- 

volves the inversion of a matrix of size N2 x N2, requiring 0 ( N 6 )  computations (matrix 

inversion is of order 0(n3)).  In addition, the storage requirements are of order 0(n2).  

The difficulty in applying the LLSE to large-scale problems is associated with the 

matrix inversion and multiplication required to compute both the estimate and the error 

covariance. 

Thefirst intuitive approach when deaiing with large-scale static estimation problems 

is to determine which form of the LLSE given in (2.12),(2.13), and (2.14),(2.15) should 

be employed. The selection should be based on the dimension of the measurements and 

the variables to be estimated. Both forrns involve matrix inversion which is of high com- 

putational cost. However, in the first forrn, the size of the matrix to be inverted is related 

to the number of measurements. In the second form, the number of variables to be esti- 

mated deterrnines the size of the matnx that needs to be inverted. If there is a consider- 

able difference between the number of measurements taken and the number of variables 

to be estimated then a great irnprovement can be achieved by choosing the proper form. 

The second intuitive approach is to minimize the number of variables to be estimated. 

This can be done by ignoring those variables that are exactly measured. In some cases, 

this can lead to a considerable reduction in computational demands. However, this is not 

usually the case when applying the LLSE to large scale problems. 

Because the solution of large two-dimensional Ieast squares estimation problems is 
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of considerable interest in many disciplines, a number of efficient least squares methods 

have been proposed- Most of these methods address the matnx inversion problern. How- 

ever, for large-scale problems matrix multiplication is still a problem to be considered. 

Following is a brief overview of some of these methods: 

1 : Brute-force solution by a more efficient matrix inversion method 

Inversion of large matrices is impractical. However, in many problems, the matrix to 

be inverted has a well-defined structure (e-g. banded). In such cases, the inversion 

can be done efficiently by approximating it with infinite series [16]. Provided that the 

rnatnx to be inverted A is diagonally dominant, A can be written as A = D + 0, where 

D is the main diagonal of A and O are the remaining off-diagonals. Then A-' can be 

approximated by: 

2: Direct and lterative methods [43,44,96] 

The probtem of L U E  can be viewed as solving a system of linear equations Le., 

Ag = b. For exarnple, consider writing equation (2.14) in the foIlowing form: 

Equation (2.17) is commonly known as the system of normal equations which are 

expressed as a linear system (i.e., y = A d .  

Linear systems can be solved numericdly by mainly two classes of methods: direct 

methods and iterative methods. 

Direct methods give the exact solution in a finite number of elementary arithrnetic 

operations provided there are no rounding errors. There are three categones of the 

direct methods [44,94]: 
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1. Gaussian elirnination with interchanges 

2. Triangular factorization including Cholesky factorization for positive-definite ma- 

trices 

3. Householder reduction to upper tnangular form. 

Direct methods can be impractical if the coefficient matnx [Aly] is very large and 

sparse, because the factorization can Iead to dense factors. 

Altematively, iterative methods [42,43,44,48] are used. A typical iterative method 

involves the initial selection of an approximation x(') to r, and the determination of a 

sequence x ( ~ ) :  x ( ~ ) ;  such that limi+, x ( ~ )  = 2. In practice, the iterntion is stopped 

when the current approximation is acceptably close to 5 .  Several iterative methods 

are availabie: the Jacobi , Gauss-Seidel, Successive Over-Relaxation, and Conjugate 

Gradient methods. 

Iterative methods suffer from the following problems: 

0 The Convergence rate in many cases is slow which leads to large nurnber of iter- 

ations. Even methods which accelerate the convergence rate remain impractical 

for problems that have considerable size. The above rnentioned iterative methods 

tend to reduce the high frequency components of the error rapidly but reduce the 

Iow frequency (Le., smooth) components of the error much more slowly. This 

leads to the poor convergence rate. 

It is generaily hard to determine the stopping criterion for the iterative method. 

In addition to the above classical iterative methods, there exist other efficient iterative 

techniques such as the multigrid method [48, 961 and nested dissection methods [IO, 

5 11. 

The multigrid method is usually used to solve discretized partial differential equations. 

It makes use of the idea that the high and low frequency components of the error 
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are relative to the rnesh on which the solution is defined. A component that appears 

smooth on a fine grid may appear as high frequency on a coarser grid. Consequently, 

if we apply one of the iterative methods such as Gauss-Seidel on the coarser grid, then 

we may get rapid progress in removing the high frequency components of the error 

with very few iterations. Then, the results are interpohted back to the fine scale. On 

this scale, one might also apply Gauss-Seidel to ensure reducing the high frequency 

components. The final result is an approximate solution to the fine grid. Multigrid 

methods can converge in order O (n) operations where n is the number of grid points. 

In most estimation problems, error statistics are as important as estimating the ran- 

dom variables. In dynarnic estimation, error statistics for any time step are necessary 

for moving into the next time step. However, solving (2.17) using direct or iterative 

methods does not explicitly give estimation error statistics The above methods can 

provide error statistics by brute-force only. In fact, computing the estimation error 

covariance ( p ) ,  generally, requires n times as much the computational work as finding 

the estimate 5 where n is the number of the variables to be estimated. 

3: FFT Technique [33]  

In some cases, the underlying estimation problem is statistically toroidally stationary. 

For a 2-D process, toroidal stationarity is formalIy given by 

Where Ax, Ay are the horizontal and vertical lags, respectively, and M N are the 2-D 

field dimensions. 

The basis of F'FT methods is that the FFT diagonalizes any circulant matrix (Le., each 

column/row can be obtained from the previous one by shifting al1 elements one pIace 

dowdnght and putting the last element at the toplleft). Consequently, for stationary 

processes, the FFT can be used to diagonalize the matrices involved in the LLSE esti- 



mation solutions (2.12),(2.13) and this will Iead to the inversion of diagonal matrices 

which is of a very low computational cost. The FFT method, on the other hand, is lim- 

ited by the two constraints that must be satisfied in the underlying estimation problem: 

it reqüires the measurements to be regular (i-e., we should have point measure- 

ments). 

it is only applied to stationary processes. 

4: Local methods [37] 

These methods compute local estimates based on rneasurements that are local to small 

regions obtained by dividing the whole large field into smaller regions. The main 

assumption in these methods is that neighbouring pixels are highly correlated where 

pixels that are a far distance from each other are only weakly correlated. This approach 

reduces the computational and storage demands required to solve the large problem, 

however, the estimates obtained in any region are only based on the local existing 

measurements. If a region is not measured then it will not be affected by neighbounng 

measurements. In addition, by only considenng local correlation, high correlation 

information in the prior is ignored. 

5 :  Multiscale Method [17,37,67] 

This is an efficient, state of the art static estimation algorithm that can deal with large- 

scale static estimation problems. This method provides not onIy estimates but the 

associated estimation error variances. This algorithm is employed in this work. A 

complete background of the muItiscale algorithm is presented in the next chapter. 

2.3 Dynarnic Estimation 

In dynamic estimation problems, measurements evolve with time. In addition, the 

quantity to be estimated also evolves with time according to some dynamic rule. The 
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Figure 3.2: Foward and Backward smoothing. 

system dynamics are usually govemed by a partial differential equation. The foliowing 

sections elaborate on the dynarnic estimation subject. 

2.3.1 Kalman filter formulation 

The Kalman filter [2, 65, 711 is the conventional estimation tool that comptes optimal 

state estimates and the associated estimation error covariance for an underlying dynarnic 

system based upon a dynamic mode1 and a dynamic measurernent rnodel. The Kalman 

filter is known to be rhe optimal estimator if al1 the involved filter quanti ties are Gaussian. 

In case of random quantities that have arbitrary statistics, the filter is the best linear 

estimator [65]. 

The linear time-invariant dynamic model for a discrete time process is given by the 

first-order Gauss-Markov model 
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where, 

where mo is the process mean and Po is an n x n (n is the dimension of the state 

vector) initial covariance rnatrix. 

~ ( t )  : (n x 1) process state vector. Each element of g is a random variable that needs to - 

be estimated 

A : A matrix of size (n x n) which relates the state at time t to the state at tirne t + 1. A 

describes the deterministic part of the underlying process dynarnics. The dynamics can 

be obtained by discretizing the partial differential equation that governs the evolution 

of the process over time in both time and space, or by some physical rule that governs 

the behaviour of the process. 

B : A rnatrix of size (n x p) that contains the stochastic dynarnics of the underlying 

process. 

~ ( t )  : A vector of size (p x 1) that represents t h e  process noise. This is assumed to be a 

white sequence. 

The linear dynamic measurement modei is described by 

w here, 

y ( t )  : A vector of size (rn x 1) representing sarnpled measurements for the process states 

at time t .  
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C ( t )  : A matrix of size (m x n) that indicates which states are measured or the relationship 

between measurements and the process states- 

~ ( t )  : A vector of size (m x 1) which is the measurement error. 

R(t) is an m x nz matrix, the covariance of the measurement noise t ~ ( t ) .  

The assumed statistics for the standard Kalman filter are given by 

E [ zu( t ) - (k ) ]  = O for ail k and t 

E [i(~)$ (k)] = O for al1 k 

~ [ ~ ( O ) g ' ( k ) ]  = O for ail k 

where (2.25), (2.26) and (2.26) imply the statistical independence' of the process noise 

and the measurement noise, the independence of the state and the measurement noise, 

and the independence of the state and the process noise, respectively. Several aspects of 

the filter make it optimal [69]: 

0 In contrast to static estimation, the effect of the uncertainty in the initial conditions 

decays by accumulating more measurements over time. 

0 It processes al1 the available observations available at different times t,, t 2 ,  . , t~ 

regardless of their precision. If an observation has a high noise variance then the 

filter will associate less weight to it and vice versa. 

'In the case of uncorrelated Gaussian random variables this irnplies their independence, however, this 
is not true for other distributions 
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0 The estimates are computed based on al1 the available statistics: the process mode1 

noise, the measurement noise, and the process prier statistics 

0 It incorporates the available initial conditions such as the process mean and covari- 

ance in the computation of the estimates and emor statistics, 

0 It carries the uncertainty knowledge of the previous estimates and the previous 

estirnates to the next time step, which implies that it does not require al1 previous 

data to be stored and then reprocessed every time a new measurement becomes 

available. 

The filter is initidized by the initial conditions of the process, i.e., the process mean m o  

and its covariance Po given formally by (2-20) and (2.21). 

The Kalman filter consists of two main steps: A prediction step and an update step. 

The prediction step for both the state estimate and the associated estimation error covari- 

ance is given by 

In the prediction step, the filter cornputes estimates of the state x ( t )  based on the model 

and the previous updated estimates Î(t - llt - 1). Both the deterministic and stochas- 

tic dynmics represented by the model parameters A, B are involved in the prediction 

step to obtain the best estimates and the associated predicted estimation error covariance 

3F(tlt - l), P(tlt - 1). 

The predicted error covariance P(t  lt - 1)  is computed via (2.29) which is called the 

discrete time Lyapunov equation. 

In the update step, the predicted estimates are combined with the new available mea- 
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surements at time ( t )  to obtain estimates based on al1 the data available up to time (t): 

Where K ( t )  is the gain matrix. 

An important feature of the Kalman filter is its ability to compute estimates for the 

state and the associated estimation error at time t even if no measurements are available at 

that time. Therefore, in this case, updated estimates are equal to the predicted estimates 

cornputed by (2.28) and (2.29). The quality of the predicted estimates depends on the 

accuracy of the dynamic mode1 parameters Le., A and B in (2.19). Observe that the 

error prediction step adds more uncertainty to the updated error covariance p(t lt). The 

increase in the uncertainty depends on the process includes noise covariance Q. On the 

other hand, once a measurement becornes available, the filter updates the state estimates, 

in addition the estimation error is reduced. The amount of reduction depends on how 

much weight the filter puts on the measurement which depends on the accuracy of the 

measurement. 

Smoothed estimates at anytime t based on al1 the available measurernents can be 

obtained by applyinp the Rauch-Tung-Striebel RTS [7 11 smoothing algorithm. The RTS 

algorithm consists of two passes: a forward recursive pass (left-to-right in Figure 2.2) 

which is the Kalman filter and a backward recursive pass (right-to-left in Figure 2.2) 

which is the RTS dgorithm. The filter is initialized with the smoothed values obtained 

frorn the fonvard pass (Le., P(TIT) and P (T IT) ) .  At time t the filter cornputes srnoothed 

estimates Is(t lT) and F ' ( t l ~ )  based on al1 available measurernents up to time T. The 

smoothed estimates are given by: 



The above forrn of the RTS smoother is calledfi~ed-interval smoothing. In which the 

measurement time interval is fixed and one can compute smoothed estimates for some or 

al1 of the interna1 points. Two other foms  of the smoother exit: fùced-poinr smoorhing 

andflred-lag smoothing. In the former, smoothed estimates are only computed for a 

single point. In fixed-lag smoothing, smoothed estimates are computed for a fixed length 

of time back in the past [2,71]- 

2.3.2 The information filter 

There exists several alternative f o m s  of the Kalrnan filter that are algebraically equiva- 

lent to the standard form presented in section Section 2.3.1. The choice of any specific 

form depends on the underlying application. One important form of the Kalman filter is 

the information filter [65, 691. The information filter propagates the inverse of the esti- 

mation error covariance instead of the covariance matrïx. This gives the filter a unique 

feature in that it allows starting up the filter with P-' (01 - 1) which is cailed the informa- 

tion matrïx. In many applications, the prior statistical knowledge about the state initial 

conditions may not be available. This can be modeled by making P(OI - 1) = m l  or 

equivaiently making P-'(01 - 1) = OI which is not allowed in the standard form. 

Another advantage of employing the information filter is that it allows exploiting the 

sparsity of the inverse of the covariance matrix. In case of Markov random fields (MRF), 

there is a considerable structure in the process covariance. The process covariance of a 

MRF is generally full but its inverse is sparse and banded [16,50]. This allows exploiting 

banded matrix storage and inversion techniques for the filter update step. For large-scale 
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problems, like remote sensing applications, it makes sense to express the error statistics 

in terms of the inverse of the error covariance- This wilI result in a considerable saving 

in both computational and storage demands. 

The information filter differs from the standard filter in the cornputation of both the 

updated estimation error and the gain rnatrix. The updated error is computed by 

Observe thai the updated error in this case is computed without computing the gain K(t ) .  

The gain in this form is cornputed ajkr the updated error P ( t  [t ) computation via 

Note that in order to compute the gain and propagate the estimation error covariance, two 

(n x n) matrix inversions (where n is the state dimension) are required at any single time 

step which is of high computational demand. However, in many applications, a special 

structure for the filter's matrices exists or can be asserted and this leads to highly efficient 

storage and reduced computational demands. 

When al1 of the Kalman filter's model quantities are time independent, Le., the model 

matrices A, B, C, and the noise statistics R, Q and the process statistics are stationary, 

then the system is called a time-invariant and stationary system. This leads to an impor- 

tant property of the Kalman filter in that the filter i tself becornes a time-invariant system 

and converges to steady-state after some transient duration [71]. At steady state, the filter 

gain becomes constant Le., lim,,, K ( t )  = Kss7 where K,, is the gain at steady-state. 

This leads to constant predicted &, and updated error matrices. In other words, at 

steady-state, P(t + Ilt) = p(tlt - l), and P(t + llt + 1)  = i>(tlt). Equation (2.29) 
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will converge to the predicted estimation error covariance at steady-state pp and equation 

(2.3 1) will converge to the updated estimation error covariance at steady-state PU. 

where equation (2.40) is the standard fonn of the Algebraic Riccati equation for the 

predicted error covariance Pp and (2.41) is the standard f u m  of the Algebraic Riccati 

equation [65] for the updated error covariance E.  
The Kalrnan filter itself is a solver for Pp or pu. This is because the filter is an iterative 

procedure to solve both (2.40) and (2.41). One cm also solve both (2.40) and (2.41) for 

~ p , ~ u ,  respectively by other i terative methods [7 11. 

Given the solution of the predicted error matrix at steady-state Pp, the steady-state 

filter is given by 

The steady-state gain K,, is computed only once. Then it is used in (2.43) at each time 

step to update the predicted state estimate computed by (2.44). 

It is important to mention that the transient duration of the time-invariant filter is 

not affected by the initial pnor P(OI - 1). P(01 - 1) affects only the magnitude of the 

transient state estimates and the associated error statistics. On the other hand, changing 

the process noise covariance Q or the measurernent noise covariance R does affect the 

transient duration [69]. If the ratio Q / R  is large, then steady-state is reached quickly 

because the uncertainty in the state and error prediction steps is large compared to the 

accuracy of the rneasurements. As a result, the rate of growth of P ( t )  will increase and 
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Computational demand Storage demand 

State prediction 6 ( n Z )  
Error predic ti on O (n3)  
State update O b 3 )  
Error update O b 3 )  

Table 2.1: Surnmary OF the standard Kalman filter computational and storage require- 
ments for each step 

therefore, the filter gain will also increase. This implies that the new estimates are heavily 

dependent upon the new available observations and not upon the pnor from the previoüs 

time step. 

2.3.4 Computational and storage demands-of the Kalman filter 

Despite the fact that the Kalman filter is a robust recursive estimator, it is limited by 

the computational and storage demands that depend on the dimensionality of the state 

vector. As the number of States increases, the filter becomes incapable of dealing with 

the large computational and storage demands. For 2-D estimation problems, the state 

vector is of size n = N x N where N is the length of the field. Table 2.1 summanzes 

the computational and storage demands for each step in the filter 

2.3.5 Approaches for large-scale dynarnic estimation 

As mentioned in the previous section, the Kalman filter is hindered by computational 

and storage demands at each time step. Given that most remote sensing applications 

require a state vector of very high dimensionaliy, most conventional computing facilities 

are incapable of dealing with the filter's computational and storage requirements. 

Several approaches have been investigated to deal with the above limitations of the 

filter. Following is a brief listing. 
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A: Using the information filter and approximate inversion [16,45,69] 

In the standard Kalman fiIter each step requires inverting a matrix of size m x m where 

m is the dimensionality of the measurements vector. In some cases, the state vector is 

much smaller than the measurement vector. In this situation, it is recommended to use 

the information filter which requires inverting a matrïx of size n x n where n is the 

number of States to be estimated. 

Another approach used in [16], is based on using the information filter and asserting a 

banded structure for the estimation error covariance matrix. This leads to a huge reduc- 

tion in both the computational and storage demands of the filter. An L x L banded ma- 

trix that has K bands can be easily stored in a smaller matrix of size K x L. Also in or- 

der to avoid the brute-force matrix inversion in the information filter, matrix inversion 

by polynomial approximation, given in equation (2.16), is used. Substantial savings in 

both storage and computationd demands are gained by employing this approach. This 

approach has some limitations in the sense that it imposes a nearest-neighbor correla- 

tion structure for the underlying estimation error covariance. In addition, the accuracy 

of matnx inversion by polynomial approximation is highly dependent on the diagonal 

elements of the matrix to be inverted. If the matrix to be inverted is not diagonally 

dominant then the polynomial approximation approach is inaccurate. 

B: Sequential processing approach [45,46,63] 

In many estimation problems, the measurements obtained at any particular time y ( t )  

are statistically independent. This means that the measurement noise covariance ma- 

trix R(t) is diagonal i.e., 
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The measurement mode1 (2.22) can be written as 

Observe that in the above formulation we have q statistically independent measure- 

rnents each of them can be a scalar or of size m(') x 1. This makes 

since the measurernents at time t are independent, they can be processed individually 

and independently. Consequently, the huge matrix inversion in the gain matrix com- 

putation in equation (2.30) can be avoided. Instead of inverting an m x m matrix 

simultaneously, one must compute q smaller matrix inversions at any tirne step. Fur- 

thermore, if al1 measurements are independent, Le., m(') = 1 for al1 i = 1,2 ,  - - - , q, 

then no matrix inversions are required at all. The update step for the Kalman filter is 

computed iteratively as follows 

The above steps are repeated for i = 1,2 ,  - , q. 

The above approach highly reduces both the computational demands for matrix in- 

version and also the numerical errors involved in inverting large matrices. However, 

it does not handle the huge storage demand required for storing the error estimation 

covariance matrices. Also it does not deal with the computational demand involved in 
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matrix muhiplication which is necessary in the prediction step. It is worth mentioning 

that there exists an equivalent sequential processing formulation for the information 

filter [46,63] 

B: Reduced order approach [65,71] 

This approach aims towards reducing the dimensionality of the state vector by decou- 

pling the original dynamic systern into smaller subsystems that are processed inde- 

pendently. By doing so, we actually divide the large estimation problem into many 

small estimation probiems that can be solved easily with computational and storage 

demands depending on the size of the state vector for each subsystem. Consider the 

dynamic rnodels given in equation (2.19),(2.22), if the models parameters A, C, Q, R 

are block diagonal, then the dynarnic models can be written as 

For the above exmple, the computational and storage demands for the filter per time 

step are reduced to O(n: + n.2) instead of O(nl + 7 ~ ~ ) ~ .  

On the other hand, if the filter matrices are not block diagonal then asserting a block 

diagond structure may lead to substantid approximation depending on the underlying 

problern. 

A reduced order fil ter can also be implemented in the case of perfect measurements [7 11. 

A set of perfect measurements (Le., R = 01) reduces the number of related States to 

be estimated. If k perfect measurements exist, then instead of estirnating a state vector 

of Iength n, one needs to deal with only a state vector of size n - k. This approach 

reduces the storage and computational demands of the filter. However, in most cases, 
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the Ic perfect measurements are usually linearly related to the n States. This issue re- 

quires adjusting the estirnator steps. The reader is referred to [71] for a more detailed 

discussion on this issue. 

Standard applications of the reduced order filter appears in works related to 2-D image 

restoration problems. Extensive research exists on Kalman fiitering for 2-D image 

restoration [3, 5, 9, 13, 59, 1001. Generdly, the filter in this case is called a reduced 

update Kalman filter. In order to reduce the computational demands when dealing 

with the 2-D image, the restoration problem is based on a dynamic model for the 

image that considers only a small neighbourhood as the state vector. The smalI local 

dynarnic model switches throughout the image. the dynarnic model is given by [59] 

where a(k, 1)  are the model parameters, and w(m, n) is a zero-mean white Gaussian 

noise. The set w defines those pixel locations which are used to define the autoregres- 

sive model of the image. The set w is given by 

The appropriate mode1 parmeters for each region need io be estimated. The 2-D 

Kalman filtering deals with solving a static estimation problem (i-e., image restora- 

tion) using a dynamic estimation method. This method is not applicable to large-scale 

dynamic estimation where at each time new 2-D f r m e  (image) data arrives and needs 

to be considered to update the previous estimates. 



2.4 Testing the dynamic estimator performance 

The standard Kalman filter propagates the error statistics through time by (2.29). Then, 

t h e  gain matrix K( t )  is computed based on the propagated error covariance P(t  + Ilt). 

In large scale dynamic estimation problems, due to the huge computational demands, 

exact error propagation is impossible. Altematively, the error is propagated approxi- 

mately. In this case, the gain K ( t )  computed based on the approxirnate error covariances 

is no longer optimal and it is caIIed the suboptimal gain and hence the filter is called a 

suboptimal filter [2,65]. 

In the case of a suboptimal filter, the error statistics produced by (2.29), (2.31) are 

not the actuul error statistics, since the suboptimal filter does not use the optimal gain 

K ( t )  in its computation. 

To be able to compute the actual error statistics, we need to look at the temporal 

dynarnics of the updated and predicted estimation errors of the Kdman filter. 

The general equations that govern the propagation of the estimation error statistics 

for any linear recursive estimator are derived from the estimation error temporal dynam- 

ics [50]. The updated and predicted dynamics of the estimation error are given by 

e(t [ t )  = (1 - K(t)C)e(t  lt - 1 )  - K(t)v( t )  (S. 54) 

e( t  + 1 It) = Ae(t lt) + w(t) (3.55) 

where w(t) - N(0, Q) and v ( t )  - N(0, R) are the process noise and the measurement 

noise, respectively. e ( t 1 t )  is the error in computing the updated state estimates &lt) 

and e(tlt - 1) is the error in the state prediction step resulting from computing the States 

estimates using (2.28). 

Hence, from (2.55),(2.54), the updated error covariance P ( t  1 t ) and the predicted error 

covariance P(t + ilt) of the suboptimal filter are propagated by 
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Now, the above two equations give the same answer as (2.29),(2.31) only in the case 

of the optimal Kalman filter with gain K( t )  computed based on actual propagated error 

statistics. However, in the case of propagating or computing the error statistics approx- 

imately, then the above equations will give the actual error statistics, but (2.29),(2.31) 

wiII give the error statistics that the filter believes and uses in its recursion. 

Combining both equations (2.29) and (2.3 1) together gives a single dynamic equation 

that govems the temporal propagation of the predicted estimation error covariance from 

P(tjt  - 1 )  t o P ( t  + llt). 

Observe that equation (2.58) gives the dynarnics of the predicted estimation error statis- 

tics P(tlt - 1). An alternative form for the dynamics that propagate the updated estima- 

tion error statistics Z>(tlt) to p(t + lit + 1) is given by 

Similarly, combining equations (2.56), and (2.57) together gives an alternative form to 

the standard Riccati equation (2.58) which is called the Joseph stabilized f o m  [65] of 

the Riccati equation that governs the temporal dynamic of the predicted estimation error 

F ( t  + Ilt) 

Sirnilarly, one can have the Joseph stabilized f o m  to (2.60) for the dynamics îhat propa- 
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gate the updated estimation error covariance through tirne from P ( t  lt) to B(t + 11 t + 1) 

For a stationary and time-invariant dynamic systems, (2.60) will converge to the pre- 

dicted estimation error covariance at steady-state 6 and (2.61) will converge to the up- 

dated estimation error covariance at steady-state Pu. The steady-state expressions for 

both (2.60) and (2.6 1) are given by 

where equation (2.62) is the stabilized form of the Algebraic Riccati equation for the 

predicted error covariance pp and (2.63) is the slubilized f o m  of the Algebraic Riccati 

equation for the updated error covariance pu. 
Based on the above, in order to be able to assess a suboptimal estimator, several 

criteria exist and the selection between them is application dependent: 

If one is Iooking for a good estimator then, the estimates computed by the the ap- 

proximate filter and the estimates cornputed by the standard filter should be com- 

pared. 

If the resulting error statistics are important then, the error statistics produced by 

the approximate filter based on (2.29), (2.3 1) and the actual error statistics com- 

puted by (2.56),(2.57) should be compared. 

0 Altematively, the approximate error statistics produced by the approximate filter 
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(based on the approximate gain) are compared to the true error statistics produced 

by the standard Kalman filter based on the true gain. 

If the behaviour of the approximate filter at steady-state is to be studied, then the 

solutions of equations (2.62),(2.63) based on the approxirnate gain should be com- 

pared to the solutions of (2.401, (2.41). 

In general, testing the performance of a suboptimal fi l  ter depends on many related factors- 

A suboptimal filter that performs well with respect to a specific application may not have 

the sarne performance when applied to another application. Consequentl y, in almost al1 

works related to the development of an approximate filter, the performance is compared 

to the exacr solution obtained by the standard Kalman filter. For large-scale problems 

cornparison is based on small size problems [61]. 



Chapter 3 

Multiscale Dynamic Estimation 

This chapter is devoted to two subjects: multiscale estimation theory and multiscale- 

based dynamic estimation. 

3.1 Challenges in large-scale dynamic estimation 

Large-scale dynamic estimation problems appear in many scientific applications: image 

processing [9, 161 and remote sensing 111, 12, 231, to name a few. As mentioned in 

Table 2.1, as the number of States gets larger, the computational and storage demands 

of the conventional dynamic estimation tool, Le., the Kaiman filter become infeasible. 

In Section 2.3.5, several approaches to large-scale dynarnic estimation problems have 

been presented. The performance of these approaches is problem dependent. These ap- 

proaches do not directly deal with the issue of the problem. The sequential processing 

approach is applied only when measurements at any time step are statistically indepen- 

dent. This approach could only reduce the computational demand of the matrix inversion 

in the update step. The prediction step is done exactly which means that the full updated 

error covariance has to be available. Another approach is based on employing the infor- 

mation filter with the local correlation assumption (banded error covariance matrices). 



This approach reduces the storage demand of the filter. However, matrix inversion, in 

this approach, is based on polynornial approximation which works only for diagonally 

dominant matrices. A reduced order filter is based on partitioning the system dynarnics 

into smaller subsystems. Substantial approximation arises if the original system is not 

separable. 

More recently, an efficient multiscale static estimation algorithm that can ded with 

large-scale static estimation problems has been developed 117,671 and employed for dy- 

narnic estimation problems [50]. The following sections present details of the multiscale 

framework. 

3.2 Overview on Multiscale estimation 

As discussed in Section 2.2.4, there are several techniques that can be used to attack 

the high computational effort involved in LLSE. However, these techniques have their 

limitations. As an exarnple, the multigrid method, which is one of the efficient iterative 

methods that can provide estimates with a fast convergence rate . However, computing 

the error statistics can only be done by brute-force and is considered computationally 

inefficient for large scale problems. The FFT technique is another method for solving 

large-scale strttic estimation problems but requires that the random process and the mea- 

surements noise be stationary, in addition, to the requirement of point measurements. 

These conditions are not usually satisfied in large-scale remote sensing probIems like the 

one that will be investigated in this research. 

It is well known that when dealing with large scale problems, one can try to find 

an approximate solution by subdividing the problem into smaller ones which are easy 

to solve or by creating another similar approximate problem which can be solved ex- 

actly [88]. The second option is the one adapted in the multiscale framework [32]. The 

idea is motivated by the success of multiresolution analysis which combats the compu- 

tational demands of a large-scale problem by solving coarse versions that are computa- 



Figure 3.1: An example to illustrate the hierarchical decomposition of a 1-D randorn 
process on a dyadic tree. 

tionally simpler and then uses these coarse versions to guide and speed up their corre- 

sponding higher resolution parts. Recall frorn the previous chapter that in the standard 

Bayesian LLSE, the prior knowledge of the statistical structure of a random process 2 

is explicitly given in a form of the covariance matrix Pz = E[&]. Bayesian LLSE 

depends on the prior covariance to compute estimate equations (2.12),(2.14) which is 

infeasible in the case of large-scale estimation problems. Multiscde estimation [32], on 

the other hand, is based on modeling the statistical structure of the underlying stochastic 

process at multiple scales on a tree as depicted in Figure 3.1. This will lead to a scale-to- 

scale relationship and consequently aIlow an efficient estimation solution for large-scale 

problerns. The goal is to get an approximate version of the whole random field statistics 

P, (the desired prior covariance) at the finest scale in a finite number of scales referred to 

by M. In doing so, the random field is modeled on a tree with coarser scales toward the 

top of the tree. The finest representation of the random field will approximately represent 
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the statistical features of the original random field: 

Ilustrate the above [33 1, consider a large 1-D process or a 2-D static random field, 

stacked as one vector g, with a prior covariance P, and the linear measurements mode1 

given by y = Cg + 2. The random 1-D process is modeIed on a dyadic tree as shown 

in Figure 3.1. The states - at each level capture part of the statistical structure of the 

original random field g. More detailed discussion of the multiscale modeling will be 

given in Section 3.4. At coarsest level m = 0, the field is approximated by a single state 

vector: 

-0 

At the next level m = 1 , the random field is approximated by: 

At the third le el m = 2, theproc ess is approxim ated b 

It is obvious that as we increase the scale (moving down in the tree), we add more details 

to the representation of the statistical structure of the random field. At the finest scale 

m = M we capture approximately the whole statistical structure of the random process. 

The basic mode1 that governs the relationship between states at different scales is 



given by the first-order Markov model: 

where g is Gaussian zero-mean with identity covariance, white noise process uncorre- 

lated with go 

By using the recursive model given in (3.1), one can express the relation between 

states at Ievel 2 and leveI 1 by: 

Equation (3.3) demonstrates that by modeling the random field on the tree, we break 

down the dynamics of the states at each level as they evolve from scale-to-scale. As 

an example, the state z, at level 1 is composed of four smaller states each with its own 

mode1 parameters Aij ,  Bi,. This breakdown of the relationships between the tree nodes is 

vital in the sense that it allows breaking down the large estimation problem into smaller 

estimation problems that can be solved efficiently. The following sections will give a 

formal description of multiscale processing and modeling [17, 32, 50, 53,671. 

3.3 Multiscale Processing 

In the multiscale framework, the random process is modeled on a tree structure. In 
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Figure 3.2: Illustration of different types of trees used in the multiscale framework to 
model 1-D and 2-D stochastic processes [32] .  (a) is the mulriscale tree used to model 
1-D processes and (b) is a quadtree used to model 2-D random fields. 



order to generalize the recursive model given by (3.2), any node on the tree is referred 

to by a variable s,  so x(s) refers to state x at node s on the tree and 7 is a raising 

operator for state s to its parent state x(s7). The general scale-to-scale recursive model 

for representing the dynamics of the random process on the tree is given by 

where w(s) is a zero-mean vector with identity covariance, white Gaussian noise pro- 

cess uncorrelated with x ( 0 ) .  A(s), B(s )  are deterministic quantities defining the process 

statistics on the tree. The Iinear measurement mode1 in the multiscaIe framework is given 

by 

where C ( s )  is a selection matrix defining measured States at node ( s ) ,  and v(s) is white 

Gaussian noise. The measurement model is general in the sense that it allows measure- 

ments to be available at any scale. 

Figure 3.2 (a) is an example of a general dyadic tree which is used to model a 1-D 

process and Figure 3.2 (b) is a quadtree used to model a 2-D random field. In both cases, 

the finest scale represents the underlying random process. Referring to previous figures, 

the muItiscale tree is characterized, mainly, by two parameters: q(s) which represents 

the descendants of each node s (except those at the finest scale), and M which repre- 

sents the number of scales in the tree. The scde of any node is given by rn(s), where 

O 5 m(s) 5 M. The finer scales have larger values of m ( s ) .  The root node of the 

tree is denoted by O and its scale is n ( s )  = O. In general, a uniform dyadic tree Fig- 

ure 3.2 (a) (Le., each node has two child nodes except at the finest scale) is used to model 

1-D random processes and a quadtree (each node has four child nodes except at the finest 

scaIe) is used to mode1 a 2-D randorn field. Refemng to Figure 3.2 every node (s) on 

the tree is connected to a unique parent node, sy, at the previous coarser level. In ad- 



dition, each node s (except those at the finest levei) is connected to several child nodes 

~(sct;), (i = 1, - , q) at the next finer level. 

The efficiency of the rnultiscale estimation algorithm is based upon the Markovianity 

property of (3.4), i.e., conditioned on any node on the tree, each of the q + 1 subtrees 

connected to this node are conditionally decorrelated. The processing of that data in the 

subtrees below a given node s is independent of each other. This is a key point behind 

the multiscale framework. 

At the root node, the initial conditions are given by 

The initial conditions x ( 0 )  and P(0)  represent the coarsest pnor representation of the 

randorn process at the finest scale xM. Given the initial conditions and the mode1 pa- 

rameters A(s) ,  B(s). any entry in the original process covariance matrix can be easily 

computed. For example, the cross-covariance rnatrix between the two nodes on t h e  tree 

x(sal) and x(saz) in Figure 3.2 (a) is 

Using the recursive model (3.4) to express both nodes x ( s a l )  and z (saZ) 

their model parameters A(sl), A(sz) , B(sl), B(sI )  and their cornmon parent state ~ ( s )  

Then apply the expectation, we get 

~ [ x ( s a i ) x ( s o r ~ ) ~ ]  = ~ ( s a l )  ~ [ z ( s ) x ( s ) ~ ] ~ ( s a ~ ) ~  + ~ ( s a ~ ) ~ [ w ( s a l ) w ( s a ~ ) ~ j ~ ( s o ~ ) ~  (3.8) 



C m  3. MULï7SCALE DMVAMC ES-ON 46 

By considering the fact that the noise components are uncorrelated in scale, we get 

The covariance P(s )  of state z(s) at any tree node s is computed by the scale-recursive 

Lyapunov equation 

P ( s )  = ~ ( s )  p(s i )AT ( s )  + ~ ( s )  B~ (s) (3.10) 

The Markovianity property implied by (3.4), ailows efficient estimation based on the RTS 

smoothing algorithm [71]. Recall from Section 2.3 that the RTS smoothing algorithm 

involves two steps: a forward Kalman filter sweep and a backward sweep to compute the 

smoothed estimates. In the forward sweep, best estimates of the States of the process at 

time t are computed based on al1 measurements available up to t .  

In the backward sweep, smoothed estimates at time t are obtained based on al1 available 

measurements. 

The multiscale framework generalizes the RTS smoother by modeling the process on 

a tree and marching in scale s, instead of time, from fine-to-coarse as an upward (for- 

ward) sweep (Figure 3.3 (a)) and from couse-to-fine as a downward (backward)(figure 

Figure 3.3 (b)). In the upward sweep, the Kalrnan filter prediction step computes an esti- 

mate of state x(s) at node s and scale m ( s )  = j based on the measurements available at 
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a) Upward Pass b) Downward Pass 

Figure 3.3: Illustration of the two main steps used in multiscale estimation. The upward 
pass is the Kalman filter and the downward pass is the RTS smoother. 

each of the subtrees sa; descending from node s individually. 

Next, the individual predicted estimates of state x(s) are merged by a merge step to 

obtain the best linear estimates of x ( s )  based on al1 the data available at the child nodes 

sa;. Then, in the update step, the best estimates of x ( s )  and scale m ( s )  = j is obtained 

by involving measurements available at node S .  

The downward sweep follows by marching down from the root node ~ ( 0 )  to the finest 

scale. In this step, the best estimate of x ( s )  at any node is computed based on available 



measurernents everywhere on the tree. 

The multiscaIe estimation algorithm differs from the standard Kalman filter and RTS 

smoother in that the algonthm proceeds from fine-to-coarse (Le., in the inverse direction 

of the model given in (3.4),(3.5)). Consequently, a fine-to-coarse model that represents 

the States x ( s 7 )  in terms of x (s )  and a noise term that is uncorrelated with state ~ ( s )  is 

constructed and used in the upward sweep. Another key difference between the multi- 

scale smoother and standard RTS smoother is the presence of a merge step in the pre- 

diction step of the standard Kalman filter. As each node s on the tree (except those at 

the finest scale) has q children, q predictions are obtained. The merge step is necessary 

to combine al1 these predicted estimates. The detailed multiscale estimation algorithm is 

summarized in Appendix A- 

3.4 Multiscale Modeling 

Recall that we refer to any two random variables x, y as being conditionally uncorrelated 

if conditioning on another random variable z the cross conditional correlation of x, y 

becomes the product of the individuai conditional mean 1921 

The efficiency behind the multiscale frarnework is based on the conditional decorrelation 

property (3.16) which allows breaking the large estimation problem into srnalier prob- 

lems that are easier to be solved. The task of the multiscale rnodeling is to determine 

the state variables at any tree node that will exactly or approximately satisfy the tree 

conditional decorrelation assumption. The randorn process x ( s )  in the recursive mode1 

is assumed to be hierarchical. In other words, the statistical structure of the random pro- 



cess can be modeled on multiple resolutions. The mode1 parameters (Le., A(s) 'B(s))  

allow the mode1 given by (3.4) to recursively approximate the state at any tree node z ( s )  

in terms of its parent state x(s ; i )  and some estimation error t e m  w(s). That is 

To clarify (3.17), observe that if we assume that the parent state z(.sy) represents a mea- 

surement for the child state x (s )  with covariance P(sT) ,  then the cross-covariance be- 

tween the unknown (the child state) and the parent state is P ( s ,  s ~ ) ,  and applying the 

LLSE (2.12) leads us to have the following expressions for the multiscale mode1 param- 

eters A(s) ,  B(s )  [32] 

Now the actual rnultiscale state definition x ( s )  depends on the nature of the random 

process. A nch Iiterature is available on the multiscale rnodeling issue [32, 40, 50, 53, 

661. 

In generd, there are three classes of random processes that have been successfully 

modeled by the multiscale frarnework: Markov randorn fields MRFs [32, 663, generd 

Gaussian random field GRF Le., processes where dl variables are Gaussian, and pro- 

cesses that have power spectra densi ty li ke l/ f u [32, 1031. 

As this research is based on multiscale models for 2-D MRFs, a detailed discussion 

of this type will is covered in the foIlowing. 

3.4.1 Multiscale models for 2-D MRF' 

To give a forrnal definition for discrete 2-D MRFs [21] we shouId define a neighbour- 



Figure 3.4: One possible mangement of boundary elements (m)  that are kept as muiti- 
scale States for 16 x 16 M W  Left (a) shows the boundary pixels for the root node z(0) 
and right (b) Shows the boundary pixels for the left-north quadrant for the next level in 
the quadtree x(sa& 

hood system over a rectangular lattice L representing the whole 2-D field. Let {Ni j  c L} 

be a set of field elernents x(k_ 1 )  E L located in the vicinity of element x(i, j). Therefore, 

any element x(k: 1 )  is in the neighbourhood of element x ( i ,  j) if x(k, 2) E PLivj- A 2-D 

process is called MRF if 

MRFs are classified according to the definition of the neighbourhood system. A first- 

order MRF is associated with a first-order neighbourhood system which consists of the 

four nearest neighbours of each field eiement. A second-order MRF is associated with 

a second-order neighbourhood system which consists of the eight nearest neighbours of 

each field element. The set of points that are neighbours of a field subset (0 c L} are 

called the bouncirrry of region R. The definition of the boundary also varies according to 



C m  3. MULï7SCALE DMVAlMIC ESTIMATION 

the neighbourhood order, 

Now depending on the order of the MW, a set of boundary points of a closed region 

conditionally decorrelates the set of inside points from the rest of the domain. In order to 

model a 2-D MRF on the multiscale tree we have to define the trees intemal states x(s) so 

that the conditional decorrelation property is satisfied as in the model (3.4). In addition, 

the realized process covariance at the finest scale of the tree P,M matches approximately 

the desired process covariance at the finest scale Pz. From the MRF definition given 

above [21]? the decorrelation property is completely satisfied by making the state vector 

x(s) at any tree node composed of the boundary elements of its children. That is, 

Equation (3.22) states that the multiscale states x(s) are expressed as linear combinations 

of the states xM at the finest scale nodes. where W ( s )  is a matrix, defined for each tree 

node, sampling every pixel of the random process x M  along the boundaries of the chil- 

&en of state x(s) as depicted in Figure 3.4. By making x(s) equal to the boundary pixels 

of its children (Le., the states ~ ( s a i )  for (i = 1, - - ,4 ) ) ,  the Markovianity conditional 

decorrelation property is satisfied. In other words, x(s) is decorrelated from al1 subtrees 

below it and the remainder of the tree nodes at the finest scale. 

The multiscale mode1 parameters A(s), B(s) require the covariance of the state z ( s )  

and the cross-covariance of x ( s )  and x ( s 7 ) .  Given the state definition as in (3.22), the 

multiscale model parameters A(s)  B (s) are then computed according to (3.18),(3.20) 

as follows: 

Issues conceming the equivalence of (3.18), (3.20) and (3.23), (3.24) can be found in 



[40, 501. 

A critical issue for multiscale modeling of a 2-D MRF is the growing size of the tree 

states that is proportional to the field dimensions. For a field of size n, the maximum 

state dimension (the root state î ( 0 )  ) is proportional to @. Usually, the highest states 

dimensions occur in the first two levels of the tree. For large-scaIe estimation problems, 

like the ocean surface temperature f34], exact multiscale redization of the field statistics 

requires high computationai and storage demands as the tree states required to realize 

the process get larger. Figure 3.4 illustrates the exact multiscale modeling for a 16 x 16 

2-D MRF. The mode1 is called afill order rnultiscale mode1 in that al1 the necessary 

boundary elements are kept as tree states. The computational demand required to do 

static estimation for processes that are modeled by exact MRF rnodels is O ( n 8 )  where 

n = N x N and d is the dimension of the Iargest state vector x ( s )  on the tree. In 

case of fixing the root state dimension to N, then the computational complexity becomes 

O (n512) 

3.4.2 Other Muitiscale models 

Observe from Figure 3.4 that some of the field elements assigned to the root node state 

are also assigned to the four descendant states in the next level. This results in some 

redundant information kept at multiple scales on the tree. Because of such redundancy 

these models are called redundant models. Another type of rnultiscale modeling for 

MRFs is called non-redundant multiscale model. In non-redundant models elements of 

the 2-D field appear only once on the tree [50]. This implies that the 2-D process is 

no longer mapped to the finest scaie but is distributed arnong dl nodes on the tree. An 

example is depicted in Figure 3.5 (a,b) which display the elements that are kept as states 

for the root node and the next level for a 11 x 17 field. The multiscale computational 

complexity for non-redundant boundary models for 2-D MRF is 0(n3/'). 

The two previous multiscale realizations of 2-D MRF are exact. In order to avoid 



Figure 3.5: Boundary elements (a) that are kept as multiscale States z(s) for 17 x 17 
MRF in case of non-redundant model. Left (a)  shows boundary pixels for the root node 
x ( 0 )  and rîght (b) shows boundary pixels for the next level for the Ieft-north quadrant in 
the quadtree x(sctl) (c) shows one choice of boundary pixels for the root node z(0) for 
the non-redundant reduced-order model ( d )  shows boundary pixels for the next level for 
the left-north quadrant in the quadtree x(scrl). 



high computational dernands and numericd problems other approximate alternatives ex- 

ist [50]: 

0 Subsample boundary pixels to a fixed percent of the number of boundary elements. 

This model is refered to as a redicced order rn~tltiscale model. This model is based 

on the fact that most random fields have the characteristic that neighbour elements 

are highiy correlated. Hence, O nly a subset of those elements are needed to cap- 

ture the correlation information. In this case, the sampling matrix W ( s )  defined 

in (3.22) samples every K'" element of the finest scale process zM dong the 

boundaries of the children of node s [72]. Figure 3.5 (c,d) show the subsrunpled 

boundary elements for level O and level 1, 

DenseIy sarnple boundary elements in regions containing measurements and re- 

duce sarnpling in regions far away from measurements [50]. 

Coordinate transformation of the boundary pixels using wavelet transforms and 

keep some of the resulted coefficients [66]. 

Take averages or weighted averages of the boundary elements 1321. 

Depending on the amount of approximation, the rnultiscde model fidelity is de- 

creased. ConsequentIy, the obtained estimates and the associated error variances becorne 

approximate. In addition, noisy artifacts appear in the obtained estimates depending on 

the degree of the achieved decorrelation. The advantages of reduced order or approxi- 

mate models are 

Less redundant information which reduce numerical errors due to singularities 

0 Much Iower computational and storage demands 

Multiscale modeling based on sarnpling the boundary elements in order to satisfy the 

Markovianity property becomes exact and efficient when applied to Markov random pro- 

cesses. For general Gaussian random processes, exact rnultiscale realization is achieved 



based on canonical correlation realization CCR [53]. The basic ideû is to have state 

variables x ( s )  at any tree node s that decorrelate al1 the q + 1 subtrees connected to that 

node. Algorithm details can be found in [40, 501. The CCR is based on applying singu- 

lar value decomposition for each node on the tree which is computationally demanding. 

The complexity for CCR is 0 ( n 4 )  where n = N x N and N is the dimension of one 

edge of the 2-D domain [50], 

Another class of random processes that have been modeled by the multiscale frarne- 

work is the l/ f processes [37]. This class of processes appears in many oceanography 

problems [103]. As an exarnple, l/f processes are suitabIe to mode1 the surface height 

of the ocean [37]. The 11 f multiscale model where the tree states are scalar is given by 

where m(s) is the scale of node s and Bo is the magnitude of the process noise variance 

and u is some parameter in the range O 5 u 5 2 controlling the steepness of the process 

power spectra [103]. 

In this simple case, the states x(s) are scalar. The state at any node is equal to its 

parent node (i-e., A(s)  = 1) plus a white noise process. The white noise process is 

scaled exponentially as a function of scale. 

From (3.25) we can observe that by rnoving down to finer scales, details are added as 

process noise w (s). The state at the root node can be considered as the aggregate average 

over the entire process. 

One advantage of l/ f multiscale model is that it requires low state dimension imply- 

ing that large 2D estimation problerns can be solved very fast. 



3.5 Previous work on large-scale multiscale-based static 

estimation 

The multiscale algorithm is mainly developed to solve static estimation problems. Con- 

sequently, in most of the previous appIications of the multiscale algorithm, even though 

the underlying physical systems are dynamic, the estimation problerns were treated as 

static estimation problerns by considenng one snapshot of the system at a time. 

One can categorïze the previous multiscale researches into three major categories: 

1.  theoretical developrnents [ 1 7,40,53, 52,66,67]. 

2. applications to remote sensing static estimation problerns [37, 39, 723. 

3. rcpplications to image processing problems [38, 66,  881. 

As both static estimation and remote sensing previous developments are relevant to this 

work, following is a brief overview of those applications. 

Multiscale estimation was used in mapping ocean surface height from satellite mea- 

surements [72]. Gndding maps with 25,000 grid points were generated in less than a 

minute on the current generation of workstations. This success lies behind the fact that 

the mdtiscale framework is directly suited to capturing phenomena that display hierar- 

chical statistical structure such as stochastic processes with l/ f power spectra. Many 

natural phenomena such as the ocean surface height are modeled as l/ f -processes. The 

multiscale mode1 for the ocean height problem was given by 



where ~ ( s )  is a scalar state representing the ocean height at a particular scale and position 

corresponding to node S. The main results of this work are 

- Successfully applying multiscale framework in solving a large-scale remote sens- 

ing static estimation problem. 

- One major drawback of l/ f models with small tree state dimensions is the re- 

sulting artifacts in the estimates due to the inability of the model to capture the 

correlation structure of the process exactly and the sensitivity of the model to the 

spatial positioning of the multiscale tree. Two approaches were proposed for re- 

solving this issue: averaging estimates produced by various trees at di fferent spatial 

positions and incorporating the overlapping tree approach [52]. 

- The multiscale l/ f can be tailored to compensate for non-stationaries in the pro- 

cess pnor by increasing the driving noise values B(s)  on those multiscale tree 

nodes which overlap with regions that have non-stationary statistics. 

Another significant application of the multiscale algorithm in remote sensing was in rnap- 

ping ocean surface temperature [34] based on hydrographie data sets. In this application, 

the model given in (3.22) was used to model the process. The state x ( s )  at each node 

s equals a subset of the process dong the boundaries of the children of S. The sam- 

pling density was controlled by a pararneter proportional to the correlation length of the 

random process defined by its prior covariance Pz. The multiscale model parameters 

( A ( $ ) ,  B ( s ) )  were then computed using (3.23),(3.24). The main reported outcornes in 

this work are: 

- A reduced-order model was used to mode1 the 2-D MRF process. By increasing the 

sampling density of the boundary elements, a higher statistical fidelity of the result- 

ing estimates and the error statistics were obtained. However, numerical rounding 

errors and computationa1 demands are increased. Decreasing the sampling den- 



sipj increases the algorithm computational efficiency but reduces the quality of the 

obtained estimates. In addition, artifacts appear in the obtained estimates. 

- The multiscaIe mode1 was built based on assuming a stationary mode1 for the un- 

derlying random field. This is one of the major challenges associated with using 

the multiscale estimator to solve large-scale static estimation problems. Dealing 

with this issue is a major part of this thesis work. 

In image processing area, three main applications of the multiscale frarnework have 

been investigated: Estimating optical flow 1661, the surface reconstruction problem [3S], 

and the image segmentation problem [88]. 

From the previous efforts and developrnents that were based on the multiscale frarne- 

work, following is a surnmary of the reported features and the remaining active chal- 

lenges: 

Features of the rnultiscale estimation 

O The algorithm is capable of dealing with estimation problems that involve large 

data sets with highly efficient computational and storage demands. This is mainly 

because it does not require brute-force inversion of large covariance matrices. 

O The computed estirnates are based on al1 available measurements everywhere in 

the field. This is in contrast to local methods that compute estirnates based on local 

measurements and hence ignores the long correlation information that might exists 

in the prier. 

The algorithm provides estimation error variances at no additional computational 

costs. Estimation error variances provide a measure to assess the quality of the 

obtained estirnates. In addition, error variances are necessary components in dy- 

narnic estimation problems as they are part of the prior for the next time step. One 

of the contributions of this work is to employ multiscale estimator in large-scale 



dynamic estimation problems. Therefore, estimation error variances are essential 

components in the proposed method. 

0 Maximum-likelihood calculations and sarnple-path generation are two important 

tools in estimation and statistical analysis which can be computed efficiently by 

the multiscale estimator. 

Active challenges with the muitiscale estimation framework 

0 Estimation efficiency is highly dependent on the multiscale realization of the un- 

derlying process statistics. For 2-D MRF, multiscale rnodels that can capture the 

statistical behaviour of the field exactly require tree state dimensions that grow 

with the field dimensions. This increases the fidelity of the obtained estimates and 

the estimation error variances. On the other hand, large state dimensions wilI usu- 

ally result in increasing the computational dernands of the estimator. In addition it  

might lead to numerical errors. 

a Reduced-order rnodets are used as alternatives for large-scale estimation prob- 

lems. In this case the multiscale mode1 is approxi mate. S tate-reduction increases 

the computational efficiency and decreases the possi bili ty of numencal errors. 

However, the approximation in the obtained estimates highly increases, in addi- 

tion visual artifacts appear in the estimated field. 

l/ f multiscale rnodels provide fast estimation as the state dimensions are very 

small (scalar in most cases). These models represent good alternatives for many 

natural processes whose statistics are not well-defined and for large-scale problems 

with non-stationary priors that can't be given explicitly in a covariance matrix forrn 

due to storage issues. Building such models is totally affccted by the spatial posi- 

tioning of the multiscale tree. In consequence, the overlapping regions approach or 

averaging estimates obtained based on various tree positions should be used. This 

leads to more computational demands. 



In most of the previous works that dealt with large-scale static estimation prob- 

lems, the assumed prior for the underlying process is considered to be stationary. 

However, for the following two problems, the stationarity assumption might lead 

to statistical inconsistency and therefore, large reduction in the estimator fidelity: 

- For large-scale 2-D MRF where a well-structured non-stationary prior is 

explici tly specified. 

- In dynamic estimation problems, the measurement update step transforms a 

stationary prior into a non-stationary one. 

In previous works, the non-stationarity in the pior was marginally tackled only 

in the case of l/ f multiscale models. Addressing the above issue for static and 

dynamic estimation of 2-D MRF processes is part of this thesis contribution. 

3.6 Multiscale-based large-scale dynamic estimation 

For large-scde 2-D dynamic estimation problems, one needs to deal with the computa- 

tional and storage demands for the two main steps of the Kalman filter: the measure- 

ment update step and the dynamic prediction step. The measurements update step in the 

Kalman filter is composed of two components: the predicted estimates and the estirnate 

of the prediction error based on the innovation sequence (y (t) - C(t)2(t lt - 1 ) )  

where the estimated prediction error component i(t lt - 1) is computed by 

where K( t )  is LSE gain and y ( t )  is the current measurement. 
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By observing that estimating the prediction error is just a static estimation problem, 

solving this static estimation problem c m  be done efficiently using the multiscale estima- 

tor. The outputs of the multiscale estimator are the updated state estimates Z(s, t l t ) ,  the 

estimation error variances fi(s, t l t ) ,  and a multiscale mode1 for the updated estimation 

&s, t lt) error process from which any cross-covariance element c m  be cornputed. 

The accuracy and computational complexity of the multiscale update step are depen- 

dent on the choice of the multiscale model. In the static estimation problems, three main 

multiscale models have been investigated and applied (see Section 3.4): 

Multiscale models for MRFs using the subsarnpling approach to satisfy the Marko- 

vianity property on the tree and its model order variations. 

General models for Gaussian random fields GRFs using singular value decornpo- 

sition. 

O Models for processes with l/ f power spectra. 

In the dynamic estimation context, the estimation error process at any time step is to 

be modeled on the tree. The following technical issues anse when using the rnultiscale 

estimator in dynamic estimation problems: 

1. Which multiscale model of the above listed is more appropriate to capture the 

statisticd structure of the error process 

2. How to temporalIy propagate the updated estimation error variance 

For the first point, selecting the appropriate model depends on the size of the problem 

and the desired accuracy. This issue has been investigated in [32,50]. The difficulty and 

the challenging part are in the error prediction step. 
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Figure 3.6: Illustration of Multiscale-based dynamic estimation with various alternatives 
for prediction step. The top path represents the conventional Kalman filter, the path 
denoted by dark dashed arrows represents the previous approach for large-scale dynamic 
estimation, and the bottom path represents the multiscale-based Kalman filter developed 
in this work. 

In order to complete one step in the Kalrnan filter, prediction is necessary for both the 

updated States î ( t  lt) and the associated updated error covariance P ( t  1 t ). The complexity 

of the standard state prediction step is 6(n) ,  where n = N x N and N the length of 

one edge of the 2-D field, which is achievable even for large-scale problems as in many 

cases one can have an implicit representation for the dynamics. As an example, in case 

the system dynamics matrix A represents a discretized diffusion process, then A cm be 

represented by a convolutional mask and the state prediction (2.28) can be implemented 

by convoIution instead of direct matrix-vector muttiplication which requires storïng A. 

Exact error prediction via the Lyapunov equation (2.29) requires 0(n3)  cornpufational 

and storage complexity which is totally impossible for large-scale problems. The advan- 

tage of employing the multiscale estimator is that the estimation error covariances are 

available but not as ordinary huge covariance matrices but in forms of multiscale error 
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models. For large-scde static estimation problems, diagonal elements of the estimation 

error model computed by the multiscale estimator are enough to assess the estimation 

results. However, for dynamic estimation problems, the multiscale error models need to 

be propagated overtirne. Figure 3.6 illustrates the recursive estimator that employs the 

multiscale estimator. The main contribution of this work is to propose a new approxi- 

mate prediction step that suiis large-scale dynamic estimation problems (the gray dashed 

m o w  in the figure). Before presenting the proposed rnethod, the following section gives 

a brief surnrnary of the previous effort on multiscde prediction step. 

3.6.1 Previous formulation of Mdtiscale prediction step 

Previous work [50] on multiscale-based dynamic estimation was mainly applied to dif- 

fusion dynamic models. The mu1 ti scale update step produces estimates for states and 

the associated estimation error variances. In addition, a rnultiscde model for the statis- 

tical structure of the updated estimation error process P(s? t l t )  is also computed. The 

multiscale mode1 is completeIy defined by the model parameters of (3.4) which are 

where A(s; t lt) and B(s ,  t lt) refer to the multiscale mode1 for the updated error process at 

time t and P(0,  t lt) is the covariance at the root node of the tree. Given these parameters, 

any off-diagonal element of the realized updated error covariance rnatrix P(tlt) can be 

computed. 

Recall that in order to propagate the estimation error covariance overtime via the Lya- 

punov equation (2.29), the full updated error covariance rnatrix P ( t  1 t ) must be available. 

Eventhough the availability of multiscale model for the updated error ailows the compu- 

tation of the full updated error covariance, it becomes totally infeasible for large-scale 

problems because of both the high computational demands and the storage requirernents. 

Implicit prediction which propagates multiscale error models instead of error covariances 



is the alternative. 

As it was illustrated in Section 3.4, the state x(s) at any tree node (s) on the tree is 

written as a iinear function of the fine-scale process (3.22). Sirnilarly, for the estimation 

error process the tree States are given by 

where eM(t[t) is the realized error process at the finest scale M, and W(s, t lt) is a linear 

functional to realize the selected multiscale model. Sirnilarly, the predicted multiscale 

error mode1 p(s ,  t + llt) is given by 

where A is the system discretized temporal dynamics. Recall from Section 2.4 that the 

error process evoives according to 

e ( t  + 1It) = Ae(t1t) + w ( t )  (3 -3 3) 

Therefore, from (3.31), and (3.32) the multiscale updated error model is related to the 

multiscale predicted error model by 

Hence, the predicted error (s, t + 11 t)  is computed by 

Equation (3.35) is similar to the standard Lyapunov equation of the Kalrnan filter (2.29) 

with the addition of the linear functional W ( s )  tem. The multiscale predicted error 



model parameters for any tree node (s) are 

But recall from (3.18), (3.20) that in order to compute A(s, t + 11 t ) ,  B ( s ,  t + 1 lt) we 

need not only the predicted error covariance of state z(s), Le., P ( s :  t + 1 l t)  but also the 

predicted joint-statistics of r(s) and its parent +y), Le., P(s, sy, t + l l t )  in addition 

to the predicted parent state covariance P(s7). The predicted States z(s) and z(s7) are 

given by 

Figuring out which update cross-covariances are invoived depends on the multiscale 

model and the temporal dynamics Le., the product term W(s,  t + 1lt)A. Based on the 

multiscale models rnentioned in the previous section, there are mainly three rnethods to 

incorporate the temporal effect of the dynamics on the rnultiscale model as illustrated in 

Figure 3.7 

Time-varying linear functionals W (s, t ) for MRF models 

It has been found in [SOI that the error process for diffusion processes at any time 

can be reasonably approximated by a Markov random field. Hence, the subsampling 

approach for modeling the error process on the tree can be used to satisfy the tree 

Markovianity condition. This means that W(s) is a sarnpling matrix keeping as a state 

x ( s )  the boundary elements of its descendants. It is obvious from (3.35) that due to 

the mixing effect of the dynamics, Iinear functionals used to model the updated error 

process W(s; t l t )  are mixed. In order to reflect this mixing effect in the multiscale 

model, one has to keep not only the end-point pixels as boundaries but also the two 

nearest-neighbours (in the case of a 1-D process) to those pixels at any tree node ( 5 )  



Figure 3.7: Different alternatives for incorporating the temporal dynamics effect in mod- 
eling tree states on 1-D tree. (a) illustrates the time-varying linear functionals which keep 
boundary elernents and nearest-neighbours at anytirne step in case of MRF; models, (b) 
shows the time-varying singular values that are kept as states in case of GRF models, 
and (c) shows the time-invariant linear functionals which keep only boundary elements 
at anytime step. 

and the four-nearest neighbours in the 2-D case. This is illustrated for the 1-D case 

in Figure 3.7 (a). Observe that this approach will eventuaIly lead to tree states with 

large dirnensionality. Therefore, at some point of time the computational demands 

of this approach will be very high which rnakes the multiscale-based Kalman filter 

computationally inefficient. 

Time-varying linear functionals W(s ,  t )  for GRF models 

One approach for modeling general Gaussian random fields is to use singular value 

decomposition to compute the tree states. This approach gives more accurate results 

as it avoids the Markovianity assumption for the error process. However, it is suit- 

able only for small size problems due to the high computational demands required to 

compute singular values. This approach is illustrated in Figure 3.7 (b). 

Time-invariant linear functionals W ( s )  
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Figure 3.8: Illustration of modeling a 1-D process using multiple trees with shifted 
origins in order to reduce the computational effort needed to compute updated joint- 
statistics necessary to compute the predicted multiscale model. 

In this approach, the linear functionals W ( s )  based on the above two methods are kept 

constant for dl time steps. This is the approach that was adopted in [50].  For time- 

varying systems, fixing the linear functionals implies that only approxirnate estimates 

are obtained. This approach is more suitable for implementing a large-scale steady- 

state filter. This approach is illustrated in Figure 3.7 (c). 

3.6.2 Approaches for computing updated cross-covariances 

As mentioned in the previous section, in order to compute multiscale model pararne- 

ters for the predicted error process, some cross-covariances of the updated error process 

should be computed. The computational demands for the multiscale-based Kalman filter 

increase by the number of the required cross-covariances. This makes the brute-force 

approach (Le., cornputing al1 the necessary cross-cov~ances) highl y computationall y 

inefficient. In the following, other alternatives to the  brute-force approach to computing 

the necessary updated off-diagonal statistics are presented: 

a Using multiple trees 



This approach is based on using multiple multiscale models with shifted origins [32, 

501. The basic idea is that some tree states that beIong to different parents on one 

tree may become siblings in another tree with a shifted origin. This will highly 

reduce the computational effort in computing their cross-covariances. The idea 

is illustrated in Figure 3.8 for a 1-D random process. Observe that comput- 

ing the cross-covariance between states x(sa2) and x ( s a 3 )  on tree(2) (the tree 

with dashed line), one needs to cornpute A(sa2), A(s) ,  A(u),  A(ua3) where only 

A(saz),  A(uaJ) are needed if tree(1) is used. 

This approach reduces the computational demands for computing the joint-statistics 

between any two tree nodes, but for large-scale problems it becomes inefficient as 

the number of multiscaie trees increases. 

Using maximum entropy 

The maximum entropy approach to complete covariance matrix has been studied in 

[20,40,64,79]. The basic problem is given some entries of the covariance matrix, 

obtain estimates for the remaining entries which wi Il produce maximum entropy 

of this covariance. Applying maximum entropy to dynamic estimation problems 

has been studied in [SOI. Instead of computing al1 the necessary cross-covariances 

by brute-force, sorne entries are computed exactly and others are estirnated based 

on the maximum entropy completion method. 

The main drawback of this method is that it is only applicable to 1-D processes. Tt 

is not clear how this method cm be extended to 2-D. 

Using parameterized modets for the error covariances 

This approach is the one that we are investigating in this work. Having parûrneter- 

ized error models will allow us to deal with large-scale estimation problems since 

any covariance entry c m  be computed directly based on the model. The challenge 

to this approach is that while the process covariance structure is stationary, the 



error process covariance is not. Theoretically, there is no way to have a direct 

formulation for a non-stationary mode1 that can be fitted to the process statistics. 

Stationarity assumptions can lead to a huge approximation as one is treating the 

interactions between domain pixels equaliy, which is not necessarily true for many 

cases. In this work, we investigate a new approach that can deal with these issues 

for large-scale 2-D problems. This approach is detailed in the next chapter. 



Chapter 4 

Large-Scale Dynarnic Estimation: 

Prediction Step 

In the previous chapter, we introduced the multiscale estimator and its usage in both large 

scde static and dynarnic estimation problems. This chapter will present Our alternative 

approach for large scale 2D dynamic estimation which is based on pararneterized error 

models. The main subject of this chapter is the error prediction step. The measurement 

update step wiIl be covered in the next chapter. 

4.1 Kalman fiiter revisited 

Recaii from Chapter 2 that the Kalrnan filter consists of two main steps: a prediction step 

and an update step. The prediction step for both the state estimate 2 and the associated 

estimation error covariance P is given by 
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In the prediction step, the filter cornputes estimates of the state x(t)  based on the mode1 

and the previous updated estimates Z(t - 1 lt - 1). Both the deterministic and stochastic 

dynamics represented by the mode1 parameters A, B are involved in the prediction step to 

obtain best estimates E(tlt - 1) and the associated estimation error covariance P(t1t - 1). 

In the update step, the predicted estimates are combined with the new available mea- 

surements at time ( t )  to obtain estimates based on al1 the data available up to time (t): 

The Kaiman filter deals with estimation errorcovarïances P(t ~ t ) ,  p(t + l ( t )  as matrices. 

For large-scale problems, it becomes impractical, if not even impossible, to compute and 

store such matrices. This chapter presents an approach for the prediction step which is 

based on using parameterized models for the error covariances with focus on 2D diffusion 

processes. Before presenting the approach, 1 begin by introducing parameterized covari- 

ance rnodels in Section 4.1.1 and then review 2D diffusion processes in Section 4.1 -2. 

4.1.1 2-D stationary priors 

A random process : is called wide sense stationary if its statistics satisfy the following 

two conditions: 

1 The process has a time invariant mean, i.e., 
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2 The correlation between any two process elements is independent of their actual 

spatial position, i .e., 

where 7, is called the lag, and R(T=) is the process autocorrelation at lag T,. 

The same concept is extended for 2D random fields, where the  correlation between 

any two field eIements is given by 

where ri, rj are the horizontal and vertical lags, respectively 

Stationary pnor models for image and signal processing applications have been stud- 

ied in various contexts and applied widely to several applications related to the field: 

motion estimation and image coding 1581 and image modeling and restoration 147, 551, 

to narne a few. In generd, Gaussian or exponential functions are used as priors to model 

natural phenornena. This is usuaIly an intuitive model since the relationship between any 

two random field elements decays as a function of the distance between them. There are 

two choices of exponential 2D priors: 

1 A separable exponentiai prior mode1 given by 

This correlation model is depicted in Figure 4. L (a). 

2 A non-separable exponential correlation coefficient model given by 
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Figure 4.1 : Illustration of two 2D exponential correlation functions. (a) is separable, (b) 
is non-separable. 

This correlation model is depicted in figure Figure 4.1 (b). 

In the above two exponential models, oz is the overall domain variance, and r, and r, 

represent the lags in the z and y directions. Z,, Z, represent the correlation lengths (the 

distance between two field elements to have a correlation coefficient value equal to 5) 
in both directions where larger values indicate higher correlation between the process 

elements and hence, a smoother process structure. Figure 4.2 shows that varying the cor- 

relation Iength in a model controls the  amount of interaction between the field elements. 

Note that for an isotropic (homogeneous) correlation structure, the correlation length 

is the same in both the horizontal and vertical directions, Le., 1, = 1,. Observe from 

Figure 4.1 (a), however, that for the case of the separable prior (4.10), it is not exactly 

isotropic even when 1, = 1,. In this thesis, we will use the word isotropic to mean a prior 

that has equal correlation Iength in both horizontal and vertical directions. The above 

exponential priors handle only positively correlated random variables which is enough 

for the correlation structures of diffusion processes . 
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Figure 4.2: Illustration of the effect of the correlation length on the process correlation 
structure. Observe that increasing the correlation length impIies a higher correlation 
between the process elements. 

4.1.2 Review of Diffusion Dynamics 

In this research, we focus Our study on 2D diffusion processes. Therefore, the dynamic 

operator A represents the discretized 2D diffusion process. In this section we present a 

brief review of such processes- The diffusion process is a well understood process with a 

simple behavior. It has been used for several appkations such as image restoration [56], 

and in estimation problems [29]. In addition, the diffusion model is a reasonable model 

for the ocean surface temperature problem that we will apply Our method to. 

For a 1D process, the diffusion process is governed by the following stochastic partial 

differential equation (PDE) [3 1,981 

where T ( z ,  t )  is the temperature distribution at spatial position x and time t ,  a is the 

diffusion parameter which is media dependent, b is a heat Ioss term representing the heat 



C m  4. LARGE-SCALE DMVAMlC ESTIMATION: PREDIC77ON S7EP 75 

trmsferred to the surroundings, and w(x, t )  is Gaussian white noise with variance y2. 

For a 2D process, the diffusion process is given by the following 

where T ( x ,  y, t )  is the temperature at position (2: y)  at time t ,  and w ( x 7  y, t )  is Gaussian 

white noise with unit variance. 

There exist various finite-difference schemes [3 1,981 to discretize (4.13) in order to 

construct a system of difference equations 

where g is a vector representing the 2D process ordered lexicographically, Using a 

Forward-Euler discretization scheme [3 1,981 A is penta-diagonal . 

Matrix A can be represented implicitly by the following convolutional moIecule Cm 

Where 

Ct = 1 -4.a.-- 
(W2 

b - At and 

assuming an equal spatial discretization interval in both x, y directions, So we can alter- 
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natively express (4.14) as 

where (*) stands for convolution operation and al1 variables are in their actuaI 2D forms, 

Le., not in vector forms. 

Our knowledge of the process dynamic matrix A will allow us to study the process 

statistics at steady-state by solving the Lyapunov equation 

It is worth mentioning that the diffusion parameters affect the correlation structure of 

the process in steady-state. By modifying the diffusion parameters a, P,  one can control 

the arnount of correlation between the process elements. 

4.2 Large-scale approximate prediction step 

4.2.1 State prediction 

In general, exact state prediction according to (4.1) is achievable. In many cases, one c m  

exploit the sparsity of the dynarnics operator A to overcome the storage issue when ded- 

ing with large-scale systems. For diffusion processes, A cm be represented implicitly by 

the kernel given in (4.15) and, as a result, exact state prediction can be done efficiently 

by convolving the updated estimates I(t l t)  with the kernel Cm 
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4.2.2 Error prediction 

Recall that the estimation error is propagated through time by 

For large-scale dynamic estimation problems, exact error prediction by (4.21) is im- 

possible. From a storage perspective, both the temporal dynarnics A and the updated 

estimation error P(t l t )  can not be represented explicitly. In addition, from a computa- 

tional perspective, matnx multiplication is of order 0 ( n 3 ) ,  where n is the 2D domain 

size, which is infeasible for large 2-D dynamic estimation problems. 

Although, in some cases, by exploiting the sparsity of A the matnx-matrix multipli- 

cation can be done efficiently, the storage problem of the resulting irregular and non- 

stationary structure of P( t  + 1It) is still a problem. 

Our approach for the error prediction step is to parameterize the error covariances 

P( t l t ) ,  P( t  + l i t ) .  

In fact, a covariance rnatrix P can be expressed in terms of 

1. The main diagonal elements cov(i, i) which are the error variances, given by 

2. The off-diagonals elements or cross-covariances cov(i, j )  expressed in terms of 

standard deviations and correlation coefficients p 
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where -1 5 p, < I 

Equivalently, we can express the covariance matrix P in a matrix form, as 

where is the correlation coefficient matrix and the symbol refers to ent-by- 

element multiplication. So in terms of the error prediction step given by (4.21), we can 

express the involved estimation error covariance matrices in terms of their components 

Prediction 
{fi( t l t) f i( t l t)T}f  @ q t p )  =., {p( t  + lIt)P(t + 1 1 t ) ~ } t  o +(t + 1It) (4.25) 

Observe from (4.25) that in order to compute the predicted estimation error covariance 

p(t + l l t)  according to (4.21), we need the two components of the updated estimation 

error covariance P(t l t )  In this work, we adopt the multiscale estimator to solve the 

update step. The multiscale estimator provides in addition to the updated state estimates 

iE(tlt) the updated estimation error variances fi(tlt) (Le the first component), and the 

updated estimation error process correlation structure <P(t lt) as a multiscale tree model 

i>(s, t lt) (The reader is referred to Section 3.6 for more detail). 

As a fact, the correlation coefficient between any two States can be computed from 

the multiscale updated error model P ( s ,  tlt), but this becomes highly inefficient when 

dealing with large-scale problems, as presented in Section 3.6. Even the availability 

of al1 of the necessary updated estimation error cross-covariances does not allow exact 

error prediction according to (4.21) because of the infeasible storage requirements for 

both the temporal dynamics matrix A and the full updated estimation error covariance 

matrix P ( t  1 t ). 
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Expressing the estimation error covariance matrices as in (4.25) helps us to develop 

approximate error prediction methods that can predict the two components of the esti- 

mation error efficiently. In this work, we propose using a parameterized mode1 given 

by (4.10), or (4.1 1) for the error process correlation structure @ which has to satisfy the 

following constraints: 

1. The resulting errorcovarïance matrix is both positive definite and syrnmetric. These 

are two requirements for any valid covariance matrix. 

2. The correlation structure imposed by the model (5 should be consistent with the 

statistics of the underlying process. This can be determined by Iooking at the 

process correlation structure obtained by solving the Lyapunov equation (4.19). 

For diffusion dynamics, the process correlation structure decays exponentially with cor- 

relation length depending on the diffusion dynamics parameters. Hence, we model the 

error correlation structures Q(tl t ) ,  Q(t  + Z [ t )  at any time step by an exponential model 

which also satisfies the positive-defini te condition. 

Now, piven the above approach for modeling the error process correlation structure, 

the error prediction step reduces to (i) infemng the predicted / updated correlation length 

at any element of the 2D error process and (ii) propagating the updated error variances 

P(tlt)- 

Our approach to these two requirements is presented in the following sections. 

4.2.3 Inferring the predicted / updated correlation structure 

The spatial correlation structure of the error process at any time step is not spatially 

stationary. Even if the process prior Pz = P(0)  is stationary, once the field is updated 

by irregular measurements the posterior (Le., the pnor for the next time step b(t + Zlt)) 

becomes spatially non-stationary. The issue that we are addressing here is how to reflect 

such non-stationarity in the pararneterized error models given by (4.10) or (4.1 1). 
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Our approach is to estimate the correlation length L(t  lt), L(t+l lt) of the updated/predicted 

2D error processes. Given a non-stationary covariance matrix P, the process correlation 

coefficient matrix can be computed by 

where the division in (4.26) is point-wise. 

Now, under the assumption that the correlation p between any two elements of the 

error process is given by the exponential mode1 (4.10) and considering the first-order 

neighbours N ,  the correlation length at any element e( i ,  j) c m  be estimated by 

where p(e ( i ,  j ) e ( k ,  1 ) )  is the correlation coefficient between two neighbouring elements 

of the 2D process and N refers to the four first-order neighbours of elernent (i, j ) .  

Although the above is only applicable for small size problems, it helps us construct 

ernpirical relationships between the updated / predicted estimation error variances and 

the corresponding updated / predicted correlation lengths. 

where L(t  lt), L( t  + 1 lt) are two dimensional matrices containing the estimated corre- 

lation length at any element of the updated and predicted 2D processes, respectively. 

Infemng the relationships for large-scale 2D problems is done by applying the exact 

Kalman filter to a sirnilar but a smaIler size problem and observing the relationship 

between the estimation error standard deviations and the 2D correlation length. We 

observed empirically that both the updated and predicted relationships take the same 
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Figure 4.3: Scatter plots depicting the empirical relationship between error standard de- 
viations and the corresponding correlation length for two different diffusion processes. 
(a) Process with correlation length (4). (b) Correlation length 12. 

form. Figure 4.3 illustrates such a relationship for two different diffusion processes with 

steady-state correlation lengths (4) and (12). Observe that above a certain value Q, of 

the estimation error standard deviations the relationship between the error standard devi- 

ations fi and the corresponding correlation lengths L can be reasonably approximated 

by a linear relationship f ( l ) ,  Le., a straight line equation. By modeling this linearity, 

we will be able to extrapolate the correlation lengths for error standard deviations values 

beyond the empiricai ones. 

Tt is important to mention that the empirical relationship does not cover the whole 

range of the expected process correlation length spectrum, Le., the minimum and maxi- 

mum lirnits lL,,,,]. The minimum and maximum lirnits [lSmaiL ZL,,,] are obtained 

by solving both the following discrete-time Riccati and Lyapunov equations, respectively 

Let lmk,l,,, refer to the minimum and maximum correlation Iengths realized by the 

empiricai relationship and let crmin and a,,, refer to their corresponding minimum and 



maximum estimation error standard deviations. Also let lmder refer to the interpolated 

correlation length based on the empirical relationship for all cr,, 5 c 5 GA, then esti- 

rnating the predictedhpdated correlation length Li at the ith elernent of the 2D process 

is done as follows 

4.2.4 Propagating the updated error variances 

In this work, the following two models for propagating the updated error variances p ( t  It) 

were studied. 

A- Modulating the updated error variances 

This is a simple intuitive mode1 in which we assume that each diagonal elernent of the 

updated error covariance evoIves separately (i.e., a diagonal updated error covariance 

rnatrix is assurned, p(t lt) = diag(oi, oz, . - , on)). Based on this assumption, the 

predicted error variances p(tlt) are computed by 

where a is the elernent of the main diagonal of the diffusion discrete temporal dynam- 

ics rnatrix A and ri is the process noise variance for state zi and i refers to the ith state 

position. Now, given P(t + 1 lt) and the empirical relationship between 46  (t + 11 t )  

and L(t + llt) as descnbed in the previous section, any element of the rest of the 

prediction estimation error covariance (i .e., the cross-covari ances) is given by 
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where the predicted error correlation structure is Q(t + l l t ) .  Realizing a spatially non- 

stationary correlation structure Q(t + lit) based on both fi(t + l it)  and L(t + l l t )  will 

be covered in the next chapter. 

Although this model is computationdly not demanding, it has the following disad- 

vantages: (i) the model assumes that each estimation error pixel 02(t lt) evolves inde- 

pendently. Therefore, the mixing effect of the diffusion dynamics is not reflected in 

the predicted estimation error variances, and (ii) the model clearly underestimates the 

predicted error variances because it ignores other terrns (cross-covariances) involved 

in propagating the updated error variances. 

B- Exact dynamics applied to the updated error variances 

In this model discretized temporal dynarnics parameters are applied exactly to the 

updated error variances according to (4.21). Fomally this is equivalent to 

Exact temporal prediction of the updated error variances requires figuring out what 

elements of the updated error covariance (variances and cross-covariances) are needed 

in order to compute the product A P ( ~  l t ) ~ ~  exactly. 

Recall that for diffusion dynamics the discretized temporal dynarnics matrix A c m  be 

represented implicitly by (4.15). Predicting the estimation error variance 

c r 2  . (t + l[ t)  at any state requires applying (4.15) to the error field in a way such 
~ ( 8  d) 

that (4.21) is satisfied. This requires that for a given error pixel, the updated error 

variances and the joint statistics of the first-order neighbourhood pixels depicted in 

Figure 4.4 be modulated by the temporal dynarnics values given in (4.15). Based on 

the above, we find that the expression for predicting the estimation error variance at 
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Figure 4.4: Part of the 2D domain of the updated estimation error variances fi(t It) which 
illustrates the interactions (cross-covariances) between the middle pixeI at the (i, j) po- 
sition and its four first-order neighbours that need to be compuied in order to compute 
the predicted estimation error variance for the (i, j )  pixel 

any field state is given by 

Observe that in order to compute the predicted diagonal elements we need to compute 

some of the cross-covariances of the updated error covariance P(t lt). Recall that any 

off-diagonal element of the updated estimation error covariance can be written in terms 

of the updated error standard deviations and the updated correlation coefficient as 



CHAPTER 4. LARGE-SCALE DYNAMlC ES'TTlMATTON: PREDICTION STEP 85 

where oi( t l t ) ,  cj(tlt) are the updated estimation error standard deviations which are 

available from the update step, and pG(tlt) is the correlation coefficient. Given our 

Figure 4.5: Elements of the updated estimation error covariance P(tl t)  that are needed 
to propagate updated error variances exactly according to (4.21) for an 8 x 8 domain 

choice of assuming a parameterized mode1 for the error covariances and given the em- 

pirical relationship between dp(tlt) and L( t l t ) ,  the required correlation coefficients 

p,(tlt) between any two error process elements can be computed directly from the 

assumed parametric correlation mode1 6(t lt).  

This cornputation is not demanding as the number of necessary cross-covariances is  

very small in cornparison to the size of the covariance matrix. As an exarnple, Fig- 

ure 4.5 depicts the elernents that are needed to propagate a11 of the updated error vari- 

ances for a 8 x 8 2-D process; the total number of necessary cross-covariances is Iess 

than 17% of the 2D covariance matrix size which is 64 x 64 in this case. Now, given 

G(t + 1 lt) and L ( t  + 1 lt), the rest of the predicted error covariance elements are given 

by 



Figure 4.6: Illustration of the steps for propagating the updated error variances. (a) 
Updated error std. dev. f i ( l  Il). (b) Estimated correlation length L(lI1)  contours. (c) 
Predicted error std. dev. fi(20119). (d) Estimated correlation length L(20 119) 

Figure 4.6 illustrates the complete error prediction step. The right-hand-side panels 

show the estimated updated / predicted correlation lengths from the updated / predicted 

error standard deviations depicted in the left-hand-side. Observe that: 

The variations in the correlation length L(t1t) levels Figure 4.6(b) after updat- 

ing the field with a single measurement in the center of the domain cleariy show 

the spatial non-stationarity of the posterior P( t  [ t ) .  

0 The prediction step clearl y reflects the changes in the error variances p ( t  + 1 [t ) 

and the corresponding correlation lengths L ( t  + 1 lt). This is depicted in panels 



CEiWTER 4. LARGE-SCALE D M \ r M C  ESîllMAî7ON: PREDICîTOiV STEP 87 

Figure 4.6(c,d) where for this case observe that there is an increase in the process 

correlation length at al1 process elements. 

An important issue which was not covered in this chapter is how to realize the non- 

stationarity in the predicted error process correlation structure Q(t + 11 t )  based on both 

the predicted estimation error variances P(t  + lit) and the estimated predicted correla- 

tion length L(t  + llt). This will be covered in the next chapter. 



Chapter 5 

Large-Scale Non-stationary Static 

Estimation: Update step 

The previous chapter covered the large-scale prediction step.. In this chapter, we present 

a new approach for large-scale 2D non-stationary static estimation such as the Kalman 

filter update step. Although the stationarity assurnption rnight be reasonable in the case 

of large-scale 2D static estimation problems, it leads to statistical invalidity for dynamic 

estimation problems where irregular spaced measurements change a spatially station- 

ary pnor into a spatidly non-stationary prior. The update step in the Kalman filter 

(4.3),(4.4),(4.5) is just a static estimation problem. Typically the most challenging as- 

pect of the update step is the matrix inversion in (4.3). In this work, we propose using 

the multiscale estimator presented in Chapter 3 which efficiently solves the update step 

and produces p(tlt) as needed for prediction. One difficulty when employing the multi- 

scale estimator in dynarnic estimation problems is how to provide a statistical prior which 

reflects the non-stationarity in the error process statistics. 

Before presenting Our approach for non-stationary static estimation, we begin this 

chapter by revisiting static estimation and then illustrate the limitation of static estimation 

based on stationary priors. 
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5.1 Large-scale static estimation revisited 

Recall from Section 2.2 that optimal state estimates based on the linear least square 

estimation criteria are computed by 

and the associated error covariance is 

Observe that the above two equations require the availability of the whole process pt-ior 

covariance matrix Pz. For 2D processes of size N x N, the covariance matrix P, is of 

size N2 x N 2 .  If the 2D domain is large then storing Px is impossible and the exact solu- 

tion for large-scale static estimation problems by (5.1), (5.2) is infeasible. FFT methods, 

mentioned in Section 2.2.4, can provide approximate estimates only under special sta- 

tistical restrictions. In addition, iterative methods [43,44,96] require the knowledge of 

the exact pnor Pz in order to converge to the true solution given (SA), (5.2). However 

storing the whole prior and also the whole posterior P rnatnx is infeasible for large-scaie 

2D problems. 

We will begin with a discussion on large-scale stationary static estimation before 

presenting Our approach to the non-stationary case. 

5.2 Limitations of large-scale 2D static estimation based 

on stationary prior 

When computing estimates based on stationary priors, the prior covariance matrix Pz 

required in both (5.1),(5.2) is constnicted using stationary pnor models (4.10),(4.11). 
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It is important to mention that the stationarity assumption for the 2D random field 

does not lead to any reduction in the computational demands. Although the storage 

demands for the pnor are low, storing the whole posterior P is hard because of the non- 

stationarity. 

The stationarity assurnption might be a reasonable assumption especially when deal- 

ing with large-scale random processes. On the other hand, for at least the following two 

problems, the stationarity assumption rnight lead to statistical invalidity and therefore, 

large reduction in the fidelity of the computed estimates: 

The first problem is when the large-scale 2D processes has a well-structured non- 

stationary prior. In this case, if one assumes stationarity and underestimates the correla- 

tion length at some field regions, then the accuracy of the cornputed estimates at those 

regions will be highly affected. The effect of any measurement will be local to the mea- 

sured points. On the other hand, an overestimated correlation length rnight mix the effect 

of measurements and lead to inaccurate estirnates. 

In addition, the associated estimation error variances will be overestimated if the cor- 

relation length is underestimated. Furthemore, if the correlation length is overestirnated, 

then the estimation error variances will be underestimated. 

As an example, Figure 5.1 shows the estimates cornputed for a field of size 24 x 

24 with a single measurement at position (12,12). In Figure S.l(a,b) estimates are 

computed based on an isotropic stationary pnor with a short correlation length that is 

equal to 1. Observe that the effect of the rneasurement is nearly local and the estimation 

error variances are srnall only in the vicinity of the rneasured position and get larger as 

we move away frorn the measured position. In Figure 5.1(c7d) estimates are computed 

based on a stationary pnor with a correlation length that is equal to 10. The effect of 

the measured pixel is nearly global (covers a larger area) in addition estimation error 

variances are small in a Iarger region than in the first case. This makes the selection of 

the correlation length in (5.1), (5.2) a very crucial issue. 

The second problem is related to large-scale dynamic estimation. In this case, the 
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(c) State estimates (d) Error standard deviations 

Figure 5.1: Illustration of effect of the correlation length on the state estimates and the 
associated estimation error variances for a 2D process of size 24 x 24 and a measurement 
at position (12,12). Estimates in (a) are obtained based on an isotropic exponential prior 
with correlation length 1 = 1. An isotropic prior with correlation length Z = 10 is used 
to compute estimates in (c). 

measurement update step transforms a stationary prior PJO) into a non-stationary one 

p(010) in the case of an irregularly spaced rneasurement structure as depicted in Fig- 

ure 4.6(d). This case is the one relevant for this thesis. 
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5.3 Discussion on approaches for modeling 2D non sta- 

tionary priors 

In the previous chapter, we showed that the predicted error model used by the proposed 

prediction consists of two components: the predicted error variances p (t + 1 lt)  and the 

predicted correlation length at al1 domain elements L(t + Il£). The question now is how 

to build a non-stationary pRor mode1 based on these components so that the updated 

estimates are non-stationary. 

Consider a 2D field x of size N x N that has a non-stationary prior given by a 

covariance matnx Pz. Spatial non-stationarity irnplies that for any two field elements 

x(i, j), x ( k ,  l ) ,  their statistical relationship E[x(i, j ) z ( k ,  l ) ]  depends on their actual posi- 

tions and not only on their spatial separation. For large-scale 2D domains, although the 

statistical structure of the whoIe domain is globaIly non-stationary, some regions of the 

2D domain cm be considered as locally stationary with a fixed correlation length 1. In 

the following discussion we will use r(Z) to refer to a region of the 2D domain that has a 

correlation length equal to 1. Therefore, the correlation structure of al1 elements q E r(1) 
can be given by an appropriate stationary prior model with a correlation length Il. Other 

regions in the domain can have a correlation structure with a correlation length Z2 where 

Il # Z2. The non-uniformity in the correlation length for al1 the domain regions is the 

source of the global spatial non-stationarity. 

As mentioned earlier, for a Iarge-scale 2D process, it is impossible to have a prior in 

a f o m  of a matrix due to the huge storage demands. One can instead have an implicit 

representation for the non-stationary pnor by using a stationary pnor as given in (4.10) 

or (4.1 1) with vnrying both the correlation length 1 and the variance depending un the 

location of any mu pkels in the dornain. For simplicity, consider 

varying pnor for a 1D process given by 

for example a spatially 
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A covariance matrix Pz constructed by (5.3) will represent a non-stationary process 

where the correlation Iength changes spatially from one set of elements to another. How- 

ever, Pz is not guaranteed to satisfy a very important condition which is being positive 

definite. 

Another approach to construct a non-stationary prior is to assrune independence of 

any IWO elements that belong to bvo dzflerent regions. For exarnple, in the ID case, for 

two process elements x;, xk at locations i, k7 the following covariance mode1 

wilI assume that 2;: x k  are independent if they belong to two different regions. 

A covariance matnx Pz constructed by (5.4) is guaranteed to be a positive definite and 

it will represent a non-stationary process where the correlation length changes spatially 

from one set of elements to another. However, using (5.4) to solve large-scaIe estimation 

problems will Iead to blocky artifacts in the produced estimates and associated estimation 

error variances. This will affect the smoothness of the resulting 2D estimates. This is 

because two neighbouring pixels with different correlation lengths are assumed to be 

independent by (5.4). Another drawback of this approach is the difficulty in defining 

the different region boundaries and how thcse boundaries change over time (expand or 

shrink) in the case of dynamic estimation problems. 

One well-formulated approach that dealt with the non-stationarity issue which is only 

applicable for 1D estimation problems is based on cornputing some elements of the co- 

variance and then estimating the required remaining elements based on covariiznce a- 

tension and completion methods [20,40,64, 791. The covariance extension problern for 

a 1D process x ( i )  , i E {O, 1, . - , N - 1) is defined as follows; 
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Given a partial covariance matrix PB defined as 

pt,, forsomeentries ( t , s )  wheret ls  E { 0 , 1 , - - - ;  N - 1) 
(5-5) 

? for the remaining elements 

the covariance extension problem is to find a positive-definite and symmetric covariance 

matrix Pc that matches the partial covariance matrix PB at the known entnes. If the goal 

is to have a full covariance matrix Pc that matches PB in the known entries, then the 

problem is called covariance completion. 

The general approach for solving the covariance extension problem is based on maximum- 

entropy methods [64] where a positive definite covariance matrix Pc is found such that 

its entropy function 

is maximized. Maximum-entropy methods are only applicable for 1 D problems. For 

2D problerns where the 2D covariance structure is more complicated, extending the 1D 

covariance extension and completion methods is a hard problem. 

In dealing with this issue, we propose a method that can be considered as an altema- 

tive to the 2D covariance extension for large-scale 2D estimation problems. This method 

is presented in the next section. 

5.4 Proposed method for non-stationary Static Estima- 

tion for 2D processes 

The problem that we are trying to address is the ability to solve 2D large-scale static 

estimation (the update step in the dynamic estimation context) where the pnor statistics 

are non-stationary- To clarify, consider a 2D domain with non-stationary statistics (spa- 
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Figure 5.2: Illustration of the expected quality of the computed stationary static esti- 
mates. (a) The correlation length map of a non-stationary pnor with two regions that 
have different correlation length r(Zl), I?(l2). (b) Contours of the validity of the estimates 
cornputed based on a stationary pnor with correlation length Il where darker colours in- 
dicate a higher quality and (c) depicts the validity of static estimates computed based on 
a stationary prior with correlation length 1,. 
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tially varying correlation Iength) as shown in Figure 5.2 (a) where two main regions with 

two different correlation lengths I?(l1), ï(12) exist. If stationary static estimates 2(1,) 

are computed based on a stationary pnor il, then one should expect that the quality of 

the produced estirnates would be high for those process elements located at r(1,) and 

wouId decay to a lower quality as one rnoves away from region ï ( l &  This is depicted 

in Figure 5.2(b). Similarly, Figure 5.2(c) depicts the expected validity of the estimates 

produced in the case that a stationary prior with correlation Iength Z2 is used. 

The question that we try to solve is how we can cornpute high qudity estirnates in 

regions that have other correlation lengths 1; where 11 5 1; < 1 2 .  In other words, if two 

separate stationary static estimates ? ( I l )  and Î(Zz) in addition to their associated esti- 

mation error variances p( l l ) ,  fi(l2) are computed how one can combine thern efficiently 

such that the validity of the combined estimation result is high over the whole 2 0  do- 

main. In addition, the produced estimates and their associated estimation error variances 

are smoothed everywhere, i.e., with no bloc@ artqacts generated. 

Now, since Our goal is to be able to perform non-stationary static estimation ac- 

cording to (5.1), (5.2), Our approach is to express the estirnates computed based on a 

non-stationary pnor Pz as some linear combination of estimates computed based on an 

arbitrary number of stationary pnor models with various correlation lengths 1;. 

where P(1;) is an isotropic exponential prior mode1 with correlation length li, and I l i )  

is a set of correlation lengths that spans the whole correlation length spectrum of the 2D 

process. In the following discussion we will refer to (1;) as interpolants. The a,(li) are 

weighting coefficients associated with estimates cornputed based on a stationary pior  

1; and a,(l;) are the weighting coefficients associated with estimation error statistics 

produced based on a stationary prior P(I;)-  
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Our choice for a linear mode1 to express the actud estimates ?(Pz) and their asso- 

ciated estimation error variances p(P.) is justified by the fact that the update step in 

the Kalman fiIter is linear. Therefor, using (5.7) and (5.8) to compute the approximate 

estirnates elirninates the possibility of introducing any non-linearity to the estimator. 

As just mentioned, the set of correlation lengths Cli) must span the whole correlation 

length spectrum of the 2D process. An intuitive choice for the number of interpolating 

stationary priors P(1;) would be just two, Le., the smallest and the largest possible cor- 

relation Iengths in the domain, lSmau, ZLbrge-  However, as illustrated in Figure 5.2, this 

selection does not dlow estimates to be interpolated properly especially for large do- 

mains where the difference between lmail and llar,, is large. Therefore, incorporating a 

set of intermediate correlation lengths, Le., {lSmail7 lZ7 l,, - - - , h  ,,,. ), wili lead to better 

interpolation results. 

An important issue is to determine the best interpolating weights for both the state 

estimates a, and for the estimation error variances a,. This issue is discussed in the 

following section. 

5.4.1 Determination of best interpolating weights 

In this section we address the issue of determining the interpolating weights for both 

the state estimates a, and for the estimation error variances a, at each value 2 in the 

correlation range of the process. 

Starting by a set of k interpolants, i-e., 

in addition to an estimate for the predicted correlation length L(t+ 11 t) at each pixel in the 

2D domain. Our approach is to compute merged estimates at any value 1 E [l.,,i17 Zia,,,] 

based on the following sets of interpolants: 

Set1 : { t  1 , } for ZSrnall 5 2 < 22 
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Now, consider the simple case where three interpolating isotropic stationary priors are 

used to perform a non-stationary static estimation: li < li+l < l i f 2 -  The state estimates 

for those field elements that have a correlation length Z such that 1; 5 1 5 l i+I,  can be 

written as 

w here I(Z), p(1) are the exact estimate and estimation error variances cornputed based 

on an isotropic stationary prior with a correlation length of 1 ,  5 ( l i ) ,  p(li)  are the estimate 

and estimation error variances, respectively, computed based on isotropic prior with cor- 

relation length lis The a,(l, 1;) , a&, l i)  are the weights associated with estimates / es- 

timation error variances computed based on a stationary pnor with correlation length li 

used to interpolate estimates for elements with correlation length 1 .  e,(l),e,(l) are error 

terms associated with expressing the exact estimates E ( l ) ,  p(1) as a linear combination 

of estimates cornputed based on other stationary priors. 

In order to ensure that the interpolating weights for each interpolant P(1;) exactly add 

up to one and therefore exact estimates are attained at those values, 

ax(l, l;+a)7 a& liC2) are forced to be the following 
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Now, writing (5.9) for al1 the 2D field elements will give 

Equivalently, the above can be written in a matrix form as 

( 2 )  = Hx%(l) + e, 

where & is of size N2 x 1, H, is of size N 2  x 3,  and e, is N 2  x 1. The problem now is to 

find the estimated weights {&,(li)) that will minimize the squared error II e, JI2. Observe 

that this is just the well-known least-squares estimation where the objective function is 

and the solution to the above which will minimize the squared error II e, I l 2  is given by 

Using the set of estimated weights {&(li)), we can express the merged state estimates 

at correlation length 2 for the whole field as 

Similady, in order to obtain merged estimation error variances, the same formulation 
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above is applied. Rewriting (5-13) for the estimation error variances 

Equivalently, the above can be wntten as 

Therefore, the approximate optimal weights & for the estimation error variances are 

given by the LLSE solution for the above overdetemined system 

Now, the corresponding merged estimation error variances are given by 

Figure 5.3 depicts the general shape of the interpohting weights, for the case of a single 

intermediate prior. States interpolating weights a, are shown in Figure 5.3(a) and the 

associated error variances interpolating weights cu, are displayed in Figure 5.3(b). In this 

case, the range of the correlation length spectrum is = 0.6 lia,,, = 251. An 

intermediate prior with correIation length 1 = 4.0 is used. In this case, we have six sets 

of interpolating weights: {a,(O.û), ax(4.0), crx(25), q,(0.6), a,(4.0), a,(25)). Observe 

from Figure 5.3 (a,b) that by constraining the weights to add up to one according to 

(5.11),(5.12), their values are equal to one at their corresponding correlation lengths. 

In addition, each weight decays to smaller values in places that are far away from its 
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Figure 5.3: The general shape of the interpolating weights for the states a, (a) and the 
estimation error variances q, (b). The correlation length range in this case is [Z,,,ll = 
0.6 ZL,,,. = 251. Interpolating priors are at correlation lengths [0.6 4.0 251 

corresponding correlation lengt h. 

An exarnple is depicted in Figure 5.4 where five interpolating pnors are used: 

{0.6,1.5,4,8,25). Therefore, three sets of weights for both the states and the estimation 

error variances are computed: 

Setl: {0.6,1.5,4) 
Set2: {1.5,4,8) 
Set3: {4,8,25) 

5.4.2 Weight Iearning 

This section presents a method for practically applying the formulation presented in the 

previous section. Startirig with our knowledge of the 2D process correlation length range 

[Zsman ZL,,], the main issue that we try to address here is how to compute weights for 

the estimates and the estimation error variances at each value of 2 E [Zs,.n l L a T g e ] -  In the 

previous section, we showed that for each E ,  three interpolants are used to compute the 
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Figure 5.4: A general example showing different interpolating weights for the case of 
five interpolating priors at (0.6 1.5 4 8 25). Interpolating weights for the state 
and the estimation error variances are shown in the left and right columns, respectively. 
Each figure shows the weights for a set of three consecutive and overlapped interpolating 
piors. 
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h 

merged estimates g(1). The left-hand-sides of (5.14),(5.18) represent the true estirnates 

at correlation length 2 and each column of matrices Hz, HP contains true estimates com- 

puted based on each interpolants P(li). We start by sampling the continuous correlation 

tength range into S samples using some sarnpling interval. Now, the question is how to 

construct the left-hand-side g(2) and fi(1) and matrices Hz, HP for each sampled value 1 

of the correlation length spectmm? Our approach is based on solving a small 2D static 

estimation problern exactly using (5.1)- (5.2) at each sample 1 of the process correlation 

length range, i.e., 1 E [Zsmajr lLa,,,]. Therefore, in order to cornpute the tme estimates at 

correlation length 1 and the m e  estimates at each interpolant I;, we should construct the 

following: 

0 A stationary prior with correlation length 2 representing the true process statis- 

tics and also three interpolants with correlation lengths 1; < E i + ,  < li+2 for each 

1; 5 1 < z;+i. 

Noisy measurements according to the linear measurement mode1 

Similar to Monte-Carlo simulation methods (4.10) or (4.1 1) are used to generate a prior 

P(Z) with correlation length 1 for a small size 2D process. A sample path or a real- 

ization %rut, of the 2D domain C(Z) is generated based on prior P(Z). This will allow 

us to sample noisy measurements with a measurement noise covariance R equivalent to 

the Iarger problem. In order to avoid biasing the weights, a single measurement is only 

sarnpled. Now, using the sampled noisy measurements 2, the measurements noise co- 

variance R, and the prior P(I) ,  state estimates i(~) and the associated estimation error 

variances @(Z) are computed. Now, i(1) and p(Z) in a vector form, Le., ordered lexico- 

graphically, will give the left hand side of (5.14) in case of the state estimates and the 
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left-hand-side of (5.17) in case of the estimation error variances. Similarly, each col- 

umn of matrices Hz, HP is constructed based on the position of 1 in the correlation length 

spectrum and the number of interpolating priors P(k;). If li 5 1 5 Zi,, then the three 

consecutive priors {P(li), P(I;+l), P(li+z)) are used to cornpute both the interpolating 

state estimates {&Ji &+L)7 -(Zi+l)) and the interpolating estimation error variances 

( 1 )  ( + )  ( 1 )  Once ~ ( l ) ,  p(1) and matrices Hz, HP are filled, then solving 

(5.15),(5.19) for both a,(l) and a&) is straight forward. 

The complete weight learning algorithm is given in Figure 5.5. 

5.4.3 Weight Optimization 

The accuracy of the computed merged estimates and estimation error variances is highly 

dependent on two factors: the number of interpolants (K), and the correlation lengths 

Cli). The determination of optimal values for these two parameters requires setting up a 

performance criterion. The mean-square criterion given by 

h 

error =Il &Z) - &) I l 2  (5.3 1) 

treats al1 the difference between the true estimates and the approximate ones equally at 

each pixel of the 2D domain- This is usualiy not suitable in estimation problems where 

there exist high quality estimates having low estimation error variances and estimates 

with lower quality having higher uncertainties. In order to consider this fact we adopt 

the following criterion 

where &(l)  are the exact estimation error standard deviations. Note that the subtrac- 

tion, division, and absolute value in (5.32) are pixel-wise. In Figure 5.6(a,b) the max- 
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1. The continuous correlation length ( l ) ,  where 1 E [ZSma,, , lLaFge] of the process, is de- 
scretized into S sarnples using some sarnpling interval Al. 

2- For every discrete value 1 = lsmaLr + i h l ,  where O 5 i < S - 1, an isotropic stationary 
exponential prior P(1) is constxucted. 

3. A sample path a+ut, is genented using the prior P(Z) 

4. Noisy measurements y are sarnpled randomly using 

5- Empirically, determine number of interpolating pnors k. 

6. For each value of 1 such that li 5 1 < li+l three isotropic stationary priors 
(P(I;) ,  P(li+l) ,  P(Zi+z)) where 1 5 i 5 K - 2 are constmcted. 

7. True estimates ;(l)  for the whole field are then computed based on the actual prior P(1) 
for which the interpolating weights are to be learned using 

8. Stationary states and error estimates are then computed based on the three different inter- 
polating priors {P( l i ) ,  P( l ;+ l ) ,  P(li+z)) using 

9. Approximate weights for the states and the error variances are then computed using 
(5-  1 5),(5.l 9). 

A 

10. Merged estimates %(l), and merged estimation error variances a ( l )  can then be cornputed 

Figure 5-5: A generaI procedure for generating interpolating weights for the state esti- 
mates and the estimation error variances. 
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Figure 5.6: Illustration of the effect of the position of the intermediate correlation length 
on the maximum error in the domain computed based on (5.32)- In (a) the intemediate 
prior at 1 = 2 is positioned near lsmail = 0.6. In (b) the intermediate pnor at 1 = 10 is 
positioned towards km,, = 25 

imum error computed according to (5.32) is plotted for al1 correlation length samples 

I E [Zsmall lLarse]- Observe that in this case we have a single intemediate prior created 

at two different values of 1 selected arbitrarïly. In Figure 5.6(a), the intermediate prior 

is created at I = 2 while in Figure 5.6(b) the intermediate prior is created at 1 = 10. It 

is obvious that positioning the intemediate prior has a crucial effect on the maximum 

error. 

Therefore, to get a better positioning of the intemediate set lSmail < Zi < IL,,,, 

of priors correlation lengths which will rninimize the maximum emor over the whole 

correlation length range, we solve the following optimization problem 
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Figure 5.7: Results of optirnizing the values of 1; rit which the intermedirite priors are 
computed. In (a) only a single intermediate prior is positioned at 1 = 4.12 and in (b) 
three intermediate piors are positioned at l1  = 1.66, Z2 = 3-98, Z3 = 8.36 

Subject to : O < lsmall < li < ZLarge 

Starting with an initial guess for the intermediate priors correlation lengths and then 

solving the above optimization problem using the MatLab optirnization toolbox results 

in figuring out the best set of interpolants correlation lengths (2;) that will rninimize the 

maximum error in the domain. This is depicted in Figure 5.7(a,b). Comparing Fig- 

ure 5.7 (b) and Figure 5.7 (a), we observe that the maximum attained error for the opti- 

mized set of interpolants Figure 5.7(a) is (0.1) for the whole correlation length spectrum 

while the maximum error in Figure 5.7 (b) is (0.02) for some range of the correlation 

length and aimost five times lower for another range. 
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5.5 Experimental examples 

Although the main motivation of the development of the non-stationary update is to be 

applied in large-scale dynarnic estimation problems, for the purpose of illustrating the 

performance we present two sets of exarnples: first, interpolating stationary estimates 

based on correlation lengths that are not used as interpolants and second, computing 

estimates based on non-stationary priors. 

The performance will be tested on small size problems. This will dlow us to solve 

(5.1) and (5.2) exactly and to compare the produced estimates and error variances. 

5.5.1 Experiments on stationary priors 

In the following examples, we apply our proposed large-scale static estimation rnethod 

on 2D processes with stationary priors based on various correlation lengths that have not 

been used in computing the interpolating weights. The goal is to see the capability of 

the method to compute estimates and associated estimation error variances for various 

correlation lengths based on a various number of interpolating stationary priors. 

The first example is based on 2D domain of size 24 x 24 with a correlation length of 

1 = 6. Optimized interpolating weights are computed for a correlation length range of 

= 0.6, IL,,. = 25). Estimates are cornputed based on a single measurement at 

location (12,12) with a noise variance of R = 10. In this experiment, three interpolants 

are used with correlation lengths {0.6,4.12,25). Figure 5.9 depicts the obtained esti- 

mates compared to the true estimates computed by brute-force based on (5.1) and (5.2). 

Figure 5.9(a7c) show the actual state estimates and the associated estimation error vari- 

ances, and Figure 5.9(b,d) show the interpolated or the approximate state estimates and 

the associated estimation error variances computed based on the interpolating weights. 

Observe that the obtained estimates appear to be very similar to the true estimates. By 

computing the nomalized absolute value difference depicted in Figure 5.9(e) estimates 

are almost exact in the measured position and in its vicinity. However, the error in- 
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Table 5.1: Summary of the mean-square error for estimates computed based on various 
number of interpolating stationary prion 

creases as we move away from the measured position with maximum error equals 0.094. 

Figure 5.9(f) depicts the absolute difference in the estimation error standard deviation. 

Again we see that the difference is zero at the measured position and its vicinity. Next, 

we repeat the sarne experiment but with three intermediate interpolating priors, i.e., five 

interpolants. The obtained estimates are depicted in Figure 5.10. The improvement in 

the estimates and the error variances is clear from the figure. The maximum error in 

the domain is 0.044 for the state estimates and 0.014 for the error standard deviation. 

More improvement is attained by incorporating four intermediate interpolating priors as 

depicted in Figure 5.1 1. 

In Table 5.1, the mean-square error computed by 

1 h 

M S E  = -C(& - g)2 N" - 
2.3 

for the estimates is listed for the above three cases. It is obvious that by incorporating 

more priors, the quality of the estimates and the error variances is increased at the expense 

of more computational demands. From the above experiments we can make the following 

two conclusions: 

The proposed method performs very-well (almost exactly) at the measured posi- 

tions and even in the vicini ty of the measured positions. 
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Figure 5.8: The correlation length contours of a 2D domain of size 24 x 24 from updating 
the field by a single measurement located at the center. 

The quality of the produced estimates is improved by incorporating more priors. 

Since for large scale problems we are employing a computationally efficient es- 

timator, the computational requirement even by incorporating more priors is still 

reasonable and c m  easily be done on the normal workstations. 

5.5.2 Experiments on non-stationary priors 

In these experiments, we demonstrate the performance of Our method based on a non- 

stationary prior. We synthesize a non-stationary covariance by using the posterior re- 

sulted from a static estimation problem,i.e., (m, = 2 ,  Pz = p ) .  The original prier is 

stationary with correlation length equal to 10 and process variance equal to 10. The cor- 

relation structure of the posterior is depicted in Figure 5.8. Observe how the correlation 

length varies from small values near the center to larger values far away. 

Figure 5.12 shows the estimates and the estimation error variances in the case of 

a single measiirernent at position (12,12). Three interpolants are used to compute the 

approximate estirnates S. The normalized error depicted in Figure 5.12(c) is minimal at 

the measured position and its vicinity with a maximum value of (0.12). By increasing 

the number of interpolants to (6) the maximum error is reduced by a factor of two. This 

is depicted in Figure 5.13. 
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(a) (b) 
States Estimates 

Estimation error std, dev. 

JX-xi state error = 6 std. dev error = 1 fi - 61 
Figure 5.9: Estimation results based on a single intemediate interpolating pnor for 
24 x 24 process with correlation length equal to 6. (a) Tme estimates. (b) Approxi- 
mate estimates. ( c )  True error std. dev. (d) Approximate error std. dev. (e) Normalized 
absolute difference. between (a) and (b). (f) Absolute difference between (c) and (d). 
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Figure 5.10: Estimation results based on three intermediate interpolating pnors for 
24 x 24 process with correlation length equal to 6. (a) True estimates. (b) Approxi- 
mate estimates. (c) True error std. dev. (d) Approximate error std. dev. (e) Normalized 
absolute difference. between (a) and (b). (0 Absolute difference between (c) and (d). 
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Estimation error std. dev. 
i 1.- 

h - A 

state error = I--sl JP= 

Figure 5.1 1 : Estimation results based on four intermediate interpolating priors for 24 x 24 
process with correlation length equal to 6 .  (a) True estimates. (b) Approximate estimates. 
(c) True error std. dev. (d) Approximate error std. dev. (e) Nomalized absolute differ- 
ence. between (a) and (b). (0 Absolute difference between (c) and (d). 
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Arumber of 
measttrements 

Table 5.2: Summary of the mean-square error for estimates computed based on various 
number of interpolating stationary priors and various number of measurements 

Nurnber of 
intermediate 

One 
Four 

The performance is also tested for the case of multiple meastmernents at positions 

[(2,2),  (2,23),  (23,2),  (23,23)]. Results are shown in Figure 5.14, Figure 5.15. Again 

we have srnoothed estimates with no blocky artifacts due to the interpolation process. 

priors 

The estimates quality improves as we incorporate more interpolants. 

1 '  
0.081 
0.040 

A summary of the mean-square error for the estimates of the whole domain is com- 

4 
0.020 
0.01 1 

puted for the above four cases and is given in Table 5.2. 
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(cl (4 
Estimation error std. dev. 
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. . h  

2 3: state error = 9 
(0 

std. dev error = 1 f i  - 61 
Figure 5.12: Estimation results based on three interpolants for 24 x 24 process with 
a single measurement at (12,lS) using a non-stationary prior. (a) True estimates. (b) 
Approximate estimates. (c) T r ~ e  error std. dev. (d) Approximate error std. dev. (e)  
Norrnalized absolute difference. between (a) and (b). (f) Absolute difference between 
(c) and (d). 
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Estimation error std. dev. 

std. dev error = 16 - 61 
Figure 5.13: Estimation results based on six interpolants for 24 x 24 process with a sinsle 
measurement at (12,12) using a non-stationary prior. (a) True estirnates. (b) Approximate 
estimates. (c) Tnie error std. dev. (d) Approximate error std. dev. (e) Normalized 
absolute difference. between (a) and (b). (0 Absolute difference between (c) and (d) 
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(a) (b) 
States Estimates 

(c) (dl 
Estimation error std. dev. 

j.x-XI State error = fi std. dev error = 16 - fi l  

Figure 5.14: Estimation results based on three interpolants for 24 x 24 process with 
four measurernent using a non-stationary prior. (a) True estimates. (b) Approximate 
estimates. (c) True error std. dev. (d) Approximate error std. dev. (e)  Normalized 
absolute difference. between (a) and (b). (0 Absolute difference between (c) and (d) 
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(a) (b) 
States Estimates 

(cl (4 
Estimation error std. dev. 

state error = i.--i[ std. dev error = [fi - 61 
Figure 5.15: Estimation results based on six interpolants for 24 x 24 process with four 
measurements using a non-stationary prior. (a) True estimates. (b) Approximate esti- 
mates. (c)  True error std. dev. (d) Approximate error std. dev. (e) Norrnalized absolute 
difference. between (a) and (b). (0 Absolute diference between (c) and (d) 



Chapter 6 

Experimental Results 

In this chapter we present dynamic estimation examples in order to illustrate the perfor- 

mance of the proposed large-scale 2D dynamic estimator for diffusion dynarnics. Two 

sets of exarnpies are presented: synthetic problerns Section 6.1 - Section 6.3 and the 

ocean surface problem Section 6.4. 

For the synthetic problems, the performance of our approximate method is compared 

to the actual estimation results produced by the Kalrnan filter. For the synthetic problems, 

we show two types of examples: (i) time-invariant measurements and (ii) time-varying 

measurements. In both cases, a cornparison is done between the exact solution obtained 

by the Kalman filter and our dynarnic estimator. Both filters are initiaiized with the same 

initial conditions, Le., ( x ( O ) ,  P(0) ) .  

For the ocean surface problem, the multiscale estimator is used to solve the update 

step. In this work, no cross-validation is done because of the lack of ground truth, and 

the unavailability of exact ocean dynamic parameters. 



6.1 Time invariant case 

In the folIowing expenments, the dynamic modei is given by 

where A is the disceritized difision dynamic process. The dynarnic measurement mode1 

is 

and C is kept constant over time. In other words, the nurnber and position of the mea- 

surements are not changed overtime. 

As our rnethod is based on pararneterized error models, for a given choice of diffusion 

A, we obtain the steady-state process covariance P, by solving the discrete Lyapunov 

equation 

The process correlation length L is then estimated using (4.27). The filters are then 

initialized by 

where Q> is created using an isotropie stationary prior (4.10) with correlation length L 

and p are the diagonal elements (variances) of Pz. The domain size for al1 the presented 

exarnples is 24 x 24. 

Interpolating weights for the state estimates (a,) and for the estimation error vari- 

ances (a,) are computed based on the method developed in Chapter 5. These weights 

cover the range of the process correlation length [I,,iI = 0.4, lia,,. = 71. In ail expen- 



Figure 6.1: Dynamic estimates in case of five measurements after 20 update steps (a) 
Actual estirnates. (b) Approximate estimates using exact LSE. (c) Approximate estimates 
using the Multiscale estimator. (d) Actual error std. (e) Approximate error std. using 
exact LSE. (QApproximate error std. using the Multiscale estimator. 

rnents, the update step is computed based on three interpolants. 

Although in al1 the following synthetic exarnples we solve the update step exactly 

(i.e-, using brute-force matrix inversion), the estimation results in the case of small size 

problems are equivalent to the results obtained using the multiscale estimator. In Fig- 

ure 6.1 we illustrate this fact where we compare the estimates and the estimation error 

standard deviations, for a 32 x 32 process, obtained by the Kalman filter Figure 6.1 (a,d), 

the approximate filter based on exact LSE Figure 6.1 (b,e), and the approximate filter 

using the mukiscale estimator Figure 6.1 (c,f). Numex-ically the results obtained based 

on the multiscale estimator are close to the ones obtaineci by using LSE by brute-force 

except for the blocky artifacts. 



6.1.1 Single measurement 

The following experiment is based on a single rneasurement at position (12,12) sarn- 

pled at each time step according to (6.2). The 2D diffusion process parameters are se- 

Iected so that the steady-state process correlation length is about 7 pixels. Figure 6.2 

depicts the estimation results obtained by the Kalrnan filter (left-hand-side) Î ( t l t )  and by 

the approximate filter (right-hand-side) S ( t  lt). Panels (a),(b) show the state estimates (ex- 

act 2( t  lt), and approximate S(tlt)), respectively. Observe that the approxirnate estimates 

are exact at the measured position and its neighbourinp pixels. The approximate filter 

underestimates those eIements away from the measured position. In panels (c)(exact er- 

ror standard deviations fi(t 1 t ) ) ,  and (d)(approximate error standard deviations $(t lt)) we 

clearly see that the approximate filter underestimates the estimation error variances for 

elernents away from the measured position due to the approximation in both update and 

prediction steps. In panels (e),(f) the attained error for both the estimates and the esti- 

mation error variances computed by (5.32) for the state estimates (e)  and by the absolute 

difference for the estimation error variances (f) are shown. 

6.1.2 Multiple measurements 

The same setup of the previous experiment is repeated here except that each update step 

is based on five rneasurements iocated at (2,2) (2,23) (12,12) (23,Z) and (23,23). Results 

are depicted in Figure 6.3. We can clearly observe that the performance of our method 

is quite comparable to the Kalman filter. In places where we have measurements and in 

their nighbourhoods we have estimates that are almost equal to the exact ones as depicted 

in panels (a),(b). The approximate estimation error variances, panel (d), for those places 

are also equal to the exact error variances, panel (c), obtained by the Kalman filter. Our 

method underestimates the error variances at places far from the measured positions. 



(c)  (dl 
Estimation error std. dev. 

States Estimates 

Figure 6.2: A single measurement case. Top row shows the state estimates after 20 
update steps, (a) Actuai and @) Approximate. The second row shows the estimation 
error std. dev. (c) Actual and (d) Approximate. (e) is the normalized difference between 
(a) and (b). In (f) the absoiute difference between (c) and (d). 
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(b) 
States Estimates 

kstirnation error std. dev. 

std. dev error = I J ~  - Jml 
Figure 6.3: Five measurements. Top row shows the state estimates, after 20 update steps 
(a) Actuai and (b) Approximate. The second row shows the estimation error std. dev. (c) 
Actual and (d) Approximate. (e) is the normalized difference between (a) and (b). In (0 
the absolute difference between (c) and (d). 



6.1.3 Multiple measurements with multiple predictions 

The purpose of the following experïment is to see the effect of the number of pre- 

dictions on the obtained estirnate quality. Ten predictions between any two successive 

updates are computed. The performance of the approximate filter is still reasonable and 

it has not been greatly affected by the approximate prediction step that we adopted. The 

approximate estimation error variances are also comparable to the ones computed by the 

Kaiman filter. Results are depicted in Figure 6.4. 

The previous expenments are repeated but with a fixed measurement value, 

i.e., y = k for al1 time steps. Although this seems unrealistic, it allows us to avoid 

the effect of the randomness involved in generating the measurements according to (6.1) 

and (6.2). The s m e  conciusions can be reached by averaging the results of huge Monte- 

Carlo simulations. 

In Figure 6.5 we show a 1-D profile for the estimates computed by the two filters 

based on a single prediction step for each update. In Figure 6S(a) we observe that the 

interpolated estirnates are quite good with a small difference as we move away from the 

measured positions. On the other hand, by increasing the number of prediction steps the 

difference becomes Iarger. This is depicted in Figure 6.5(b). In order to study the effect 

of prediction steps and number of measurements on the performance of the developed 

estimator, the following RMS of fractional error is adopted 

Where al1 operations are point-wise. 

In Figure 6.6(a) the RMSFE is plotted as a function of number of updates for various 

number of predictions (one, five, twenty). In al1 expenments the update step is based on 

five measurements positioned at (2,2) (2,23) (12,12) (23,2) and (23,23). It is obvious that 
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state error = lZ(tIt)-Z(tlt) l std. dev error = 1 JpO - J=[ 

Figure 6.4: Five measurements with 10 predictions. Top row shows the state estimates 
after 20 update steps, (a) Actual and @) Approximate. The second row shows the esti- 
mation error std. dev. (c) Actual and (d) Approximate. (e) is the normalized difference 
between (a) and (b). In (f) the absolute difference between (c) and (d). 



Figure 6.5: 1-D Profile for row 12 of the 24 x24 2D diffusion process after 20 update 
steps with the measurement value fixed over al1 time steps. Actuai estimates are shown 
as solid line and the dotted line is the approximate estimates. (a) A single prediction 
between each update. (b) Ten predictions are used between each update. 

increasing the number of predictions magnifies the approximation effect imposed by Our 

method- 

Figure 6.6(b) shows a summary for the effect of the number of measured positions 

on the estimates quality measured by (6.5). We conducted three different experiments 

based on various numbers of rneasurements (one, five, ten). For al1 experirnents, a singIe 

prediction is cornputed for each update step. Note that if the process is weakly observed 

a higher RMSFE is attained. 

6.1.4 Time-varying interpolating weights 

The final experiment was done based on time-varying weights. In other words, more than 

one set of interpolating weights are used. Each set covers a different correlation length 

range. This is done by computing m sets of interpolating weights 

{(oZii (az2, aP2), - , (a,, , O+,)), each has a different value for li,,. At any 

time step, the set that has II,,,, nearest to max{L(t + l l t))  is used to compute the up- 





Figure 6.7: Surnmary of the effect of using various sets of interpolating weights on the 
Mean-squared error computed by (6.5). 

dated estimates and their estimation error variances. Each update is based on five ob- 

servations and only a single prediction between each update. Results are depicted in 

Figure 6.7 where we observe that by using various interpolating weights there is a slight 

improvement in the filter performance. 

6.1.5 Convergence to steady-state 

In order to empirically show that the approximate filter is capable of reaching steady- 

state, the filter is initialized by two different p i o r  error variances p with the sarne cor- 

relation structure 9. Al1 the filter parameters are kept constant over time. In Figure 6.8, 

we plot the square root of the trace of the updated covariance matrix ~ r a c e ( p ( t  [ t ) )  at d l  

time steps. Solid line represents the Kalman filter behaviour and the crossed line shows 

the approximate filter behaviour. The bold line is the solution of the Riccati equation. 

We observe that the approximate filter converges to steady-state, and as we expected, it 

converges to a lower value than the exact filter- 



Figure 6.8: Steady state behaviour of the approximate filter. The bold line is the Riccati 
solution. The solid Iine is the Kalman filter behaviour and the crossed line is the approx- 
imate filter behaviour. The vertical axis shows the trace of the updated error covariance 
~ race ( f ' ( t  l t)) 

6.2 Tirne-varying measurements 

The experimentai setup in this case is similar to the tirne-invariant case in Section 6.1 

except that the measurements mode1 in this experiment is given by 

Observe that matnx C is a function of time. This implies that at any time step, the 

number and positions of observations change randomly. This case is the one relevant 

to the large-scale problem that we are addressing which is the estimation of the ocean 

surface temperature based on satellite observations. In al1 experiments, the update step 

is computed based on three interpolants. 
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std. dev error = 1 JP(tlt) - dm-1 
Figure 6.9: Single random measurement. Top row shows the state estimates after 20 
update steps, (a) Actual and (b) Approximate. The second row shows the estimation 
error std. dev. (c) Actual and (d) Approximate. (e) is the normalized difference between 
(a) and (b). In (0 the absolute difference between (c)  and (d). 



In Figure 6.9 we show an expenment where the update step is done based on a single 

measurement with a time-varying position. For the case of the approximate estimates, 

we see that the results are comparable to the actual estimates. The obtained approxi- 

mate estimation error variances are also consistent with the actual. In Figure 6.9(e) we 

see that the maximum normalized error is (0.18) and this happens at the non-observed 

positions. The maximum absolute error for the estimation error standard deviations is 

(1  -8). In order to get some notion about the effect of prediction on the estimate quality, 

we conducted three experiments with time-varying measurement positions but for a fixed 

measurement value and number. At any time step we randomly observe five pixels. The 

three experiments are based on a single, five, and twenty prediction steps, respectively. 

Al1 these experiments are based on process correlation length of approximately seven 

pixels. First, in Figure 6.10 (a) we show the effect of prediction steps on the RMSFE 

computed by (6.5). A similar behaviour to the time-invariant case is observed. The error 

increases as we use more predictions steps. In this case, on the other hand, the error 

decays to nearly zero as number of update steps increases. 

The second set of experiments are also based on process correlation length of ap- 

proxirnately seven pixels and time-varying measurement positions but with only a single 

prediction step. Results are depicted in Figure 6.10 (b) where we show the effect of the 

number of measurements on the RMSFE. Clearly, the mean-squared error is reduced by 

observing more pixels. 

The third experiment was to study the effect of the process correlation length on the 

estimator performance. We conducted two experimen ts wi t h ti me-varying measuremen ts 

positions but for two different process correlation lengths Zr,, = 4 and lia,,, = 8. In 

these experiments we observed five pixels randomly. Figure 6.10(c) shows the resulting 

performance. When dealing with a process that has a larger correlation length Zn,,, = 8, 

the effect of measurement is increased and the RMSFE is reduced, 
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Figure 6.10: Summary of the RMS of fractional error (6.5) for time-varying measure- 
ments positions. In (a) the effect of number of prediction steps on the error. (b) the effect 
of nurnber of measurements on the error. (c) the effect of the process correlation length 
on the error. 



6.3 Cornparison with the sparse Kalman fiiter 

One comrnon approach for solving relatively large-scale dynamic estimation problems 

is the sparse KaIman filter [4, 15, 16, 141 presented in Section 2.3.5. The computational 

and siorage demands for this method are dependent on both the number of bands kept in 

the fiIter matrices and the nurnber of terms used in the polynomial approximation for the 

matrix inversion. 

The complexity of the error prediction step in the sparse Kalman filter is mainly due 

to the matrix multiplication operation, and it is of order O(b1 b2 - n) where n is the 

field size and bl,b2 are the number of bands kept in the dynamics matnx A and the error 

covariance rnatrïx P( t ( t ) ,  respectiveiy. Our prediction approach, on the other hand, has 

a linear complexity (Le., O(n)) .  

The accuracy and complexity of the update step in the sparse Kalman filter depends 

on number of terms used in the polynornial approximation under the constraint that the 

rnatrix has to be diagonally dominant. By incorporating more terms in the polynornial 

approximation the matrix inverse converges to the true inverse with additional computa- 

tiond and storage demands. In Our approach, the computational complexity of a single 

stationary update step based on the multiscale estirnator is ~ ( n  f ). The total cornputa- 

tional complexity of the update step depends on number of interpolants used to compute 

the approximate estimates. 

As an exarnple, we compared the estimation results for the case of a 24 x 24 process 

obtained by the sparse Kalman filter and Our approximate method. For this exarnple a 

single pixel at (12,12) is observed. Error covariance matrices are asserted to have 29 

bands which represent the nescessary bands for six-order neighbourhood structure. The 

update step in our method is based on three interpolants. 

Results are depicted in Figure 6.1 1 after 50 update steps. Exact state estimates and 

estimation error standard deviations by Kdman filter are depicted in Figure 6.11 (a,b), 

respectively. Estirnates computed based on pararneterized error covariances are depicted 



in Figure 6.1 1 (c,d). F igue  6.1 1 (e,f) show the estimates obtained by the sparse Kalman 

filter. For this snapshot, our method clearly outperforms the sparse Kalman filter esti- 

mates and estimation error variances. Observe the effect of imposing a local neighbour- 

hood structure in case of the sparse Kalman filter on the estimates quality. While Our 

approximate method produces smooth estirnates that cover the whole domain, the sparse 

Kalman filter estimates are just local to the extend defined by the imposed neighbourhood 

structure. 

6.4 Ocean Surface Problem 

The main motivation of this research is to apply it in solving large-scale 2D dynarnic 

estimation problems. 

Recently, there has been great interest in studying the ocean surface temperature due 

to its relationship to climate changes. As reported by [76], the following facts motivate 

scientists to study the sea surface temperature (OST): 

OST plays an important role in determining the heat flux between the oceans and 

the atmosphere and is a major component of the global climate. 

OST is one of the most important geophysical parameters in climate studies, as the 

behaviour of the atmosphere is strongly coupled to the ocean temperature. 

Monitoring OST facilitates in the early detection of short-term climate anomalies 

such as El Nino. In addition, a current issue which is the prediction of global 

warming is investigated through monitoring OST. 

Observations of OST are provided by a series of instruments called the Along-Track 

Scanning Radiorneter (P;TSR), infrared instruments, mounted on the ERS-1/2 and EN- 

VISAT research satellites [75, 761. The observed OST is highly accurate with an ac- 

curacy of 0-3 K due to the unique scanning geometry of ATSR. ATSRs view the same 



Figure 6.1 1: Cornparison with sparse Kalman filter in case of a single time-invariant 
measurement. (a) exact estimates and @) estimation error standard deviations obtained 
by the Kalman filter after 50 update steps. (c) and (d) depict the approxirnate estimates 
and the approximate estimation error std. based on pararneterized error models. (d) and 
(0 are the resul ts computed by the sparse Kalman filter wi th six-neighbourhood structure. 



Figure 6.1 2: Smples of the OST observations for the month of October. (a) Night data. 
(b) Day data 

point on the sea surface twice dong two different atmospheric paths allowing for the 

correction of any atmospheric interferences. 

Figure 6.12 shows samples of the data that we are dealing with. OST observations are 

provided over two time periods: night time Figure 6.12 (a) and day timeFigure 6.12 (b). 

The size of each image is 512 x 512. Observe that the data is very sparse. There are many 

instances where no data is available. Ako, there are many cases where data is rnissing 

dus to clouds or due to the scanning devices. 

Interpolated static estimates based on three successive observations of the ocean sur- 

face temperature have been studied before [34] based on the assurnption that the ocean 

surface is static over a three-day period. However, the sparse nature of the data in addition 

to the dynamic nature of the ocean surface make solving such a problem in the dynamic 

estimation context a more realistic approach, yet challenging, due to the problem size. 

As previously elaborated, dynmic estimation allows extractinp as much information as 

possible from ail available data. In other words, estimates at any tirne are not only based 

on the available observation at the current time but also on al1 available observations up 

to the present tirne. In addition, in the case of no observations, available estimates are 
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Figure 6.13: Effect of the diffusion parameters on the desired process spatial and tem- 
poral correlation length. The horizontal axis represents the heat loss parameter b.At and 
the vertical axis represents (a) in (4.15) (a) Process spatial correlation length in pixels@) 
Process temporal correlation iength in time steps. 

still computed based on the dynamic model. This implies that highly srnoothed estimates 

are obtained with a lower uncertainty as more observations are incorporated. 

6.4.1 Ocean surface dynamics 

In this work, we model the dynamics of the ocean surface temperature as a 2D dif- 

fusion process. We want to emphasize that that the ocean dynarnics are more complex 

than a simple diffusion modeI. The avaiiability of the ocean surface temperature data is 

not enough to infer an approxirnate model for the ocean surface dynamics for at least the 

foIlowing reasons: 

Ocean dynamics depend on several natural factors that need to be observed in order 

to infer a reasonable dynamic model. 

The available observations are for the surface temperature and it is not clear how 

to determine other variables that have not been observed. 

The temperature measurements are local to the surrounding region and can not be 



generalized to al1 ocean regions. 

Exact modeling of the ocean surface dynamics is beyond the scope of Our work. The 

reader is referred to [I l ,  12, 73,971 for more material on ocean dynarnics- 

Sense the scope of this work is related to the diffusion dynamics, we model the dy- 

narnics of the ocean surface temperature as a 2D diffusion process. AIthough Our model 

is not exact, it is a reasonable assumption that allows us to illustrate the capability of the 

developed method. 

Based on our choice of modeling the ocean as diffusive according to 

Where T ( x ,  y, t )  is the temperature at position (2, y) w d  time t ,  and w(x, y, t )  is a Gaus- 

sian white noise with variance 72. We empirically tned to fit a reasonable discretized 

diffusion parameters, Le., ,@, a in (4.15), by considering the ocean temporal and spatial 

correlation structure. A given spatial correlation length can be accomplished by various 

combinations of the discretized diffusion process pararneters. However, by incorporating 

the ocean temporal correlation length a unique set of pararneters c m  be obtained. This 

is illustrated in Figure 6.13 where in (a) the contour of a11 the diffusion parameters that 

can lead to a spatial correlation length of 20 pixels is plotted (the solid line in the left 

corner of the figure). In Figure 6.13 (b) we superimposed the contour of al1 diffusion pa- 

rarneters that lead to a tirne step of approximately 500 predictions (the dotted line) over 

the previous contour. The point of intersection gives the unique diffusion parameters that 

matches Our choice of temporal and spatial correlation lengths. 

To get an approximate notion for the ocean temporal correlation length, we used the 

available observations to empirically compute the sarnple correlation coefficient accord- 

ing to 



Figure 6.14: Empirïcal ocean temporal correlation. 

Where TG is the ocean temperature at the (i, j )  pixel and N is the total number of tem- 

perature frames and 1 is temporal separation. Figure 6.14 depicts the ocean temporal 

correlation. 

6.4.2 OST simulation results 

The developed method has been applied to a five-month penod of OST observations. 

The diffusion parameters are chosen such that the process spatial correlation length is 20 

pixels (5 degrees). The corresponding temporal correlation length is about 30 prediction 

steps. The initial prior is an isotropic exponential with correlation length 20 pixels and 

standard deviation of 70 K. The obtained temperature estimates are given in Figure 6.15 

and their corresponding estimation error standard deviations are depicted in Figure 6.16. 

By visually inspecting the obtained estimates we can observe the following: 

0 The estimated images are dense and smooth with no blocky artifacts arising from 

the estimation process. This is because Our dynamic estimation method does not 

compute estimates based on statistically uncorrelated regions. 

The temperature variations are compatible, to first-order, with oceanographic ex- 

pectations, although further work is required here. 
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Figure 6.15: Anomaiy state estimates over a five months period 
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Figure 6.16: Corresponding estimation error std. dev. over a five months period 



CHAPTER 6- EXPERLMEN?AL RESULTS 

0 The error standard deviations are reasonable in the sense that regions that are re- 

cently measured have a lower uncertainty than others, and there is a smooth tran- 

sition, over time, from certainty to uncertainty. 

O The presence of some sharp gradients in the estimates is the result of an inadequate 

dynamic model. Modeling the dynarnics of the ocean surface temperature as a 

diffusion process does not consider any motion of the surface. As a result, we 

observe in the obtained estimates the existence of some hot patches in the vicinity 

of cold ones and vise versa. This suggests that better estimation results c m  be 

produced by having some sort of a motion model for the ocean surface. 



Chapter 7 

Thesis Summary 

In this thesis we have presented a new approach to dynamic estimation that can efficiently 

deal with large-scale 2D processes. Large-scale dynarnic estimation is important in many 

scientific problems. However, due to the high computational and storage demands for 

such large problems, the direct application of the Kalman filter becomes infeasible. This 

research is motivated by a real large-scale (512 x 512) estimation problem which is 

the estimation of the ocean surface temperature (OST) based on satellite observations. 

Dynarnic estimation is suitable for such a problem because of the sparsity of the available 

data. Due the huge state vector size 2 x IO5, the application of the Kalman filter becomes 

impossible. 

One key aspect of the Kalman filter is that it cornputes estimates at any time based on 

al1 available observations up to that time without the need to store the previous observa- 

tions. This is done by storing error covariance matrices and propagating them overtime. 

The size of the error covariance matrices grows with the size of the state vector. For 

exarnple, for the OST problem, the filter needs to propagate error covariance matrices of 

size IO5 x IO5. 

From the above, it becomes obvious that for large-scale 2-D dynamic estimation 

problems there exists a need to develop an approximate dynarnic filter that emulates the 



Kalman filter but with more efficient computational and storage demands. 

Although there have been several research works that tried to deai with such issues for 

relativeZy large estimation problems, these studies mainly addressed the computational 

demands of the zipdate step under sorne restrïcted and impractical assumptions: 

r Fast Fourier transform &Ti) [33] methods require that the underlying process is 

spatially stationary. 

r Iterative methods for solving the normal equations [48] require the fut1 error ma- 

trices to be avaiIable in addition they do not explicitly provide the estimation error 

statistics. 

The sparse Kalman filter [16] exploits the sparsity of the filter matrices and uses 

polynomial approximation for matrix inversion. This method requires the avail- 

ability of the error matrices in addition it requires that the matrix to be inverted to 

be diagonally dominant. 

Covariance extension methods [20,40,50] reduce the storage requirements for the 

error covarÎance matrices but are only developed for 1-D large estimation prob- 

lems. - 

a Multiscale based dynamic estimation for 2D problems with reduced order tree 

States is only applicable for small size problems because it requires the covariance 

matrix of the error process at steady state to be available. 

Our approach tu this problem is based on using appropriateparameterized error mod- 

els. Instead of storing large error covariance matrices, we store only the main diagonal 

elements and we use a pararneterized model to represent the correlation structure. The 

main problem with the pararneterized model, which we addressed in this research, is the 

imposed stationarity. As a fact, while the correlation structure of the diffusion process is 

stationary, the error process is not. 



We began by studying the effect of the measurement update step on the error pro- 

cess correlation statistics. We empincally showed that in general the error statistics are 

spatially non-stationary and there is a smooth transition of the correlation structure from 

almost weak correlation at the measured positions to high correlation at places that have 

not been observed. By considering this observation, we introduced the notion of corre- 

lation length at any error process element in the 2D domain to encode the spatial non- 

stationarity in the error statistics. 

In the prediction step, we presented a new approximate method to propagate the two 

components of the updated error covariance matrix: the updated estimation error vari- 

ances and the non-stationary correlation structure. The method suits large-scale problems 

because it has alrnost h e a r  computationd and storage demands. This was presented in 

detail in Chapter 4. 

For the update step, we adopted the multiscale estirnator. Although computationally 

efficient and fast, it requires a stationary pnor to mode1 the underfying process. We 

showed that computing the update step based on stationary error rnodels might lead to 

huge statistical inconsistencies. We presented a rnethod to combine estimates based on 

several stationary priors. The method is capable of computing the associated estimation 

error variances. 

We ex'unined our method on several 2D examples under the context of diffusion dy- 

namics. Based on the synthetic 2D diffusion experiments that are described in Chapter 6, 

the obtained estimation results are satisfactory and comparable to the optimal solution 

obtained by the Kalman filter. In addition, we have shown the real benefits of Our ap- 

proach in the context of a tmly large-scale dynarnic estimation probiem related to remote 

sensing such as the OST problem. The ocean surface is modeled as a 2D diffusion pro- 

cess. We obtained approximate diffusion parameters that can fit the ocean spatial and 

temporal statistics. We applied our method to the sparse data of the ocean surface tem- 

perature and were able to obtain dense estimates for the ocean surface temperature based 

on a five month data set. We believe that the obtained results represent a good starting 



point and require more investigation by scientists who are expert in the ocean science. 

7.1 Suggestions for future work 

As with most research efforts, this dissertation possibly raised as many questions as it 

solved. However, the ideas presented here should provide a strong foundation upon 

which to build and extend. In the following, we present some irnprovements to Our 

current work which can be considered as future research directions. 

For the update step, we adopted the multiscale estimator. We pointed out that for 

large-scale problems the accuracy and the quality of the produced estimates is highly 

dependent on the size of the intemal tree states. As the length of the tree states increases 

better estimates are obtained. However, numerical errors might occur. A recently devel- 

oped method by [89] can deal with large-scaie 2D static estimation problems. It can also 

provides the necessary estimation error variances. The method is based on using the con- 

jugate gradient algorithm. Although this method is based on using a stationary prior, it 

does not suffer from the numerical problems and the quality of the obtained estimates and 

the estimation error variances are almost comparable to the optimal solution obtained by 

solving the LSE exactly. It would be a good idea if one employed this method for solv- 

ing the large-scale update step instead of the muItiscale estimator. Since this method is 

almost exact, one can also study using it to compute the necessary interpotating weights 

for the state and for the estimation error variances. 

When computing the optimal interpolation weights for the estimates and the asso- 

ciated estimation error variances we used the standard LSE. One can try to study the 

possibility of using the weighted LSE instead for some suitable weighing matrix W that 

can reflect the characteristics of the underlying estimation problem. As an exampte, one 

can study using a weighting matrix W that gives more weights to elements that have 

been measured. 

For the real problem which is the estimation of the ocean surface temperature, we as- 



sumed that the ocean surface is diffusive. We developed our prediction and update meth- 

ods based on this assumption. The diffusion dynamics are simple and have a well-studied 

behaviour. The diffusion dynamics do not take care of any motion of the ocean surface 

which we do observe by displaying the dense estimates overtime. As a future work, one 

can try to estimate the ocean motion based on the sparse satellite measurernents or based 

on the dense estimates obtained by Our method. Motion estimation methods such as op- 

tic flow or block matching can be investigâted. By combining both diffusion dynamics 

and motion estimates, the sharp gradients in the obtained temperature estimates can be 

reduced. 

Other types of complex dynamics that suit the ocean such as the Rossby wave equa- 

tion [97] c m  also be investigated. If one adopt the Rossby wave equation as the dynamic 

mode1 then several issues have to investigated: (i) What correlation structure does the 

process have and (ii) if the process has a complicated correlation structure, what is the 

effect of imposing an exponential or Gaussian mode1 on the obtained estimates and fi- 

natly (iii) how can one do state and error predictions? 

In general we suggest that any future extensions to this work and, in general, to 

large-scale 2D dynamic estimation problems should focus on increasing the quaiity of 

the obtained estimates in addition to decreasing the computational and storage demands. 



Appendix A 

Multiscale Algorithm 

The multiscale process and the rneasurements models are given by: 

where w(s) is N(O,I) a zero-mean and unit variance white noise process with normal 

distribution, 

The measurements noise v ( s )  is also white noise with zero-mean and covariance R(s)  

but it is not multiple of the identity. 

The process prior at the coarsest scale (Le the root node) 

The upward model corresponding to the downward model given in (A. 1)  



APPEZVDlX A. MULnSCALE ALGORITHM 

where 

F ( S )  = P ( S ~ ) A ~ ( S ) P ( S ) - ~  

E [ w ( s ) u ( s ) ~ ]  = P ( s 7 )  - F(s )A(s )P(s? )  = Q ( s )  

P ( s )  = ~ [ z ( s ) z ~ ( s ) ]  is the prior covariance of state x ( s )  and it can be coxnputed by 

the Lyapunov recursive equation for the multiscale mode1 

P ( S )  = A ( S ) P ( S ~ ) A ~ ( S )  + B ( s ) B ~ ( s )  

Before giving the details of the algorïthm, it is necessary to define some terms: 

Y. = ( y ( ( ~ ) I u  is a descendant of s )  is a set of measurements at al1 nodes below s 

excluding the measurement at node s  

2(o[s)  = E [ x ( u )  la E Y, U y(s)]  is the best estimate of X(O) given measurements 

at node s  and al1 nodes below s  

Î (a ls f )  = E [ x ( o )  la E x] is the best estimate of x ( a )  given measurments at al1 

nodes below s 

C(+) = Cov[z(u) - i?(+)] 

f (++) = Cov[z(o) - S(oIs+)] 

The aigorithm is consists of three main steps: 

(A) Initialization 

Each node s  at the finest scale is assigned the following prior values: 

(A-9) 

(A. 10) 



(B) Upward Sweep 

The upward sweep cornputes the best estimates of the state x ( s )  at node s given mea- 

surements at or below node S .  It consists of two steps at each scale 

1. Update step: 

.(SIS) = +ls+)+K(s)[y(s) - C(s)+ls+)] (A. 1 1) 

P(sls) = [ I  - K(s)C(s)]P(sjs+) (A. 12) 

K ( s )  = P(sls+)~*(s)[C(s) ~ ( s I s + ) ~ ~ ( s )  + R(s)]-' (A.13) 

2. Prediction step This step is applied to al1 nodes except the leaf nodes (which were 

initialized in the initialization step). 

5(slsa;) = F(sa;)Z(scqlsa;) (A. 14) 

~ ( s l s a ; )  =  sa;) ~ ( s c r ; [ s ~ ) ~ ~ ( ~ )  + Q ( S ~ J  (A. 15) 

The above step will give the best estimate of x(s) given al1 measurements at the 

offspring s w ( i  = 1 . . . q). The q offsring based estimates of x(s) are combined 

via the merge equations: 

Q 

.(SIS+) = P(s~s+) C P - ~ ( S [ S ~ ~ ~ ) Z ( S ~ S Q ~ )  (A. 16) 
i=l 

(C) Downward Sweep The estimate at the root node ÎS(O) = 2(010) is a smoothed one. 

The smoothed estimates of the remaining States are found by distributing the informa- 

tion back down the tree 

5' = Z.(sIs) + J(s)[is(sy) - Z(syls)] (A. 18) 



Ps (s) = P ( s  1s) + J(s) [Ps(s'y) - P ( S ~  1 s)] J ~ ( s )  
J(S) = P ( S [ S ) F ~ ( S ) P - ~ ( S ~ ~ S )  

w here 

Z3(.s) are the srnoothed estimates 

P3(s) are the corresponding estimation error covariances. 

(A. 19) 

(A.20) 
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