
Just-In-Time Push Prefetching: Accelerating
the Mobile Web

by

Nicholas D. R. Armstrong

A thesis
presented to the University of Waterloo

in ful�llment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2011

© Nicholas D. R. Armstrong 2011

I hereby declare that I am the sole author of this thesis.�is is a true copy of the thesis, including
any required �nal revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Web pages take noticeably longer to load when accessing the Internet using high-latency wide-
area wireless networks like 3G.�is delay can result in lower user satisfaction and lost revenue
for web site operators. By locating a just-in-time prefetching push proxy in the Internet service
provider’s mobile network core and routing mobile client web requests through it, web page load
times can be perceivably reduced. Our analysis and experimental results demonstrate that the use
of a push proxy results in a much smaller dependency on the mobile-client-to-network latency
than seen in environments where no proxy is used; in particular, only one full round trip from
client to server is necessary regardless of the number of resources referenced by a web page. In
addition, we �nd that the ideal location for a push proxy is close to the servers that the mobile
client accesses, minimizing the latency between the proxy and the servers that the mobile client
accesses through it; this is in contrast to traditional prefetching proxies that do not push prefetched
items to the client, which are best deployed halfway between the client and the server.

iii

Acknowledgements

Tomy family—my parents, grandparents, and especially my brothers — thank you.�e breaks
I spent with you kept me sane, and the support and encouragement you provided saw me through
to the end.

To my supervisor, Paul Ward, the members of the Shoshin research group, and the students and
faculty I interacted with along the way; thank you for your guidance and assistance in navigating
University practices.

To my friends, for always listening to me rant about the problems I had di�culty solving, for
providing perspective, and who never ceased to remind me why it was that I decided to do this;
thank you.

And �nally, thank you to Pravala Inc. and the Government of Canada, without whose �nancial
assistance this degree would not have been completed.

iv

Contents

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Contributions . 3

1.2 Organization . 4

2 Background 5

2.1 Sources of delay in wide-area wireless networks . 5

2.2 How latency a�ects page-load speed . 9

2.3 Minimizing the e�ects of latency on web browsing 14

2.3.1 Caching . 14

2.3.2 Client prefetching . 15

2.3.3 Network-side latency reductions . 17

2.3.4 Resource bundling . 18

3 A Just-In-Time Prefetching Push Proxy 21

3.1 Performance analysis . 23

3.1.1 Intuition . 25

v

3.1.2 Loading the root HTML �le . 27

3.1.3 Loading a page with 1 embedded resource 29

3.1.4 Loading a page with multiple embedded resources 32

3.1.5 Loading a page with nested resources . 34

3.2 Observations . 38

4 Evaluation 41

4.1 Proxy implementation . 42

4.1.1 Proxy operation . 43

4.2 Evaluation framework . 48

4.3 Architecture validation . 49

4.3.1 Processing time . 50

4.3.2 Page with 1 embedded resource . 52

4.3.3 Page with 3 embedded resources . 53

4.3.4 Page with embedded resources to depth 2 53

4.3.5 Page with 10 embedded resources . 54

4.4 Real page performance . 57

4.5 3G performance . 59

4.5.1 University of Waterloo home page . 60

4.5.2 Validation pages . 63

4.5.3 Live pages . 65

4.6 Implementation . 67

5 Future and RelatedWork 71

5.1 Future work . 71

5.2 Related work . 73

vi

5.2.1 Similar systems . 74

5.2.2 Page improvements . 75

5.2.3 Server improvements . 76

5.2.4 Network improvements . 77

5.2.5 In-network processing . 79

5.2.6 Client improvements . 81

6 Conclusions 83

References 84

vii

List of Tables

2.1 Browser connection limits . 12

4.1 Extra resource fetches, before and a�er �ltering unused CSS styles 45

4.2 E�ects of immediate requests for cookieless domains 47

4.3 Validation environment processing times . 51

4.4 Real-world page size examples . 55

4.5 Network segment latencies when loading University of Waterloo home page . . . 61

4.6 3G user bandwidth on Rogers and Bell networks . 62

4.7 Prediction accuracy and extra data overhead . 68

viii

List of Figures

1.1 Simpli�ed 3G network diagram . 2

2.1 Detailed 3G network diagram . 6

2.2 Document Object Model (DOM) tree sample . 10

2.3 Load timeline for the Bing homepage . 13

3.1 Just-in-time push proxy system architecture . 22

3.2 Sequence diagram for a just-in-time prefetch . 24

3.3 Page reference structures analyzed and tested . 26

3.4 Sequence diagram for troot . 27

3.5 Total load time for page with 1 embedded resource 31

3.6 Total load time for page with 3 embedded resources 34

3.7 Reference structure for a page with nested resources 35

3.8 Total load time for page with embedded resources to depth 2 37

3.9 Page-load time for 1 resource, as ratio . 38

4.1 Implemented architecture of our just-in-time prefetching push proxy 42

4.2 Architecture of the validation test system . 50

4.3 Actual load time for validation page with 1 embedded resource 52

4.4 Actual load time for validation page with 1 embedded resource, 10–50 ms 53

4.5 Actual load time for validation page with 3 embedded resources 54

ix

4.6 Actual load time for validation page with embedded resources to depth 2 56

4.7 Actual load time for validation page with 10 embedded resources 56

4.8 Load time for mirrored Amazon home page . 58

4.9 Load time for mirrored Celebrities on Facebook Facebook fan page 59

4.10 Additional path latency encountered in 3G test architecture 60

4.11 Load time for University of Waterloo homepage using 3G data stick 61

4.12 Load time for validation pages accessed using 3G data stick 64

4.13 Network segment latencies when loading live pages 65

4.14 Load time for Amazon and Facebook using 3G data stick 66

x

Chapter 1

Introduction

Internet access is currently provided tomobile users through the use of wide-area wireless networks

like those shown in Figure 1.1. �ough these networks have similar raw data rates to local-area

wireless access networks, the users accessing the networkmust share this capacity, causing each user

to receive less than the full raw data rate.�is sharing, as well as other technological and network

conditions (including backhaul limitations) typically results in a high client-to-network latency.

A detailed study of latencies experienced in 3G networks conducted by Fabini et al. [18] found

that the client-to-network latencies were in excess of 50 ms when uploading data in the presence

of a background data �ow. �is client-to-network latency is much higher than the latencies of

residential cable or DSL connections that access the Internet.

�ough network improvements can— and will — reduce some sources of latency, the only way

to decrease the latency caused by spectrum sharing in mobile networks is to reduce the amount of

sharing. �is can be achieved by contracting the area covered by a cell, thereby allowing for an

increase in the spatial re-use of network frequencies, or by increasing the number of frequencies

1

Mobile
Device

Mobile
Cell

Mobile
Network Core �e Internet

50 ms (or greater)

Figure 1.1: Simpli�ed 3G network diagram

available for data transmission.

�ough technologies like Wi-Fi and Femtocells cover smaller areas and therefore serve fewer

users, it is unlikely that service providers will choose to blanket their current service areas with

these technologies; if the coverage area of a cell tower is approximated as circular, each halving of

the coverage radius quadruples the number of towers required, driving up the cost. Increasing the

number of frequencies is not a viable option, as the number of frequencies suitable and licensed

for cellular data transmission is limited. We therefore posit that wide-area wireless networks will

continue to have higher latencies than wired and local-area wireless networks.

When we combine this high-latency wireless segment with the process of loading a web-page,

we see perceivable increases in the time it takes to load a complete page. As web browsing forms

the majority of network activity for smartphone users [50], increasing the speed at which pages

load would result in an improved smartphone experience.

Multiple techniques have been proposed for increasing the speed at which pages load, from

caching and prefetching proxies to content-delivery networks. However, most of these solutions

are designed to be shared by multiple users, and as a result they are by de�nition on the far side

2

of the high-latency wireless segment and therefore do not improve page-load performance to the

extent we desire. Furthermore, as these techniques work by moving content closer to the client,

they magnify the unbalanced ratio between the high-latency wireless segment and the subsequent

wired path to the server.

Two existing ways in which we can mask this delay — by having the client prefetch pages

before the user navigates to them, and by having the server push the complete web-page, including

resources, on the �rst request (limiting the traversals of the large latency segment to one) —

have inherent characteristics that prevent them from being suitable for the mobile environment.

In this work, we propose a just-in-time push proxy speci�cally targeted for wireless wide-area

networks that combines non-speculative prefetching on the proxy with a push to the requesting

client to produce an architecture capable of increasing the page-load speed on mobile devices.

Architecturally, our system is similar to commercial multipart/related web accelerators; our design

and implementation di�ers in that individual resources can be downloaded in parallel rather than

in sequence. Furthermore, our just-in-time push proxy pushes prefetched content to a proxy

daemon on the client, allowing operation with unmodi�ed web browsers.

1.1 Contributions

�is thesis presents a just-in-time prefetching push proxy that increases the speed of mobile

browsing in wide-area wireless networks.�e main contributions of this work are:

1. An analysis of the general technique used in architectures where a proxy server prefetches

embedded resources and pushes them to a client, showing theoretical limits on the reduction

in page-load time.

3

2. An implementation of the above architecture demonstrating the load-time reduction seen in

our validation environment as well as in a live environment.

1.2 Organization

Chapter 2 gives an overview of the sources of delay in wide-area wireless networks, describes

how latency a�ects the interaction between web browser and web server, and explores existing

techniques for minimizing the e�ect of latency on page-load times. In Chapter 3, we describe the

architecture for our just-in-time prefetching push proxy, and analyze its operation to understand

the potential bene�ts of such an architecture. To measure our architecture’s potential, Chapter 4

details an implementation of our architecture and presents results from a series of tests run with

our simple implementation. We discuss future work in Chapter 5, and provide a brief outline of

work related to ours that reduces page-load times through mechanisms other than caching and

prefetching proxies. Finally, we present our conclusions in Chapter 6.

4

Chapter 2

Background

As noted in Chapter 1, the decreased page-load speeds experienced when web browsing using

a mobile Internet connection are rooted in the increased latencies present in wireless wide-area

networks in combination with the structure of web-pages themselves.

2.1 Sources of delay in wide-area wireless networks

In wireless wide-area networks, information (voice or data) transmitted from a mobile phone is

captured by �xed antennas installed by service providers to cover geographical areas called cells.

Assigned to these cells are speci�c frequencies on which they may transmit; neighbouring cells

receive di�erent frequencies to ensure that their transmissions do not overlap [51]. Active mobile

devices in a cell are assigned a fraction of the cell’s allotted frequencies to communicate with the

cell base station; this fraction may be a time slice of a frequency band (for GSM networks), a unique

code across the whole frequency set (for CDMA networks), or some other division [51]. When

traveling between cells (roaming), the mobile device exchanges its fraction in the current cell for a

5

Mobile
Device

Mobile
Cell

Radio Network
Controller

Public Telephone
Network

RNC

SGSN

MSC

GGSN

GMSC

Serving/Gateway
GPRS Support Nodes

(Gateway) Mobile
Switching Centers

Public IP
Network

Data
VoiceBackhaul

Air

Figure 2.1: Detailed 3G network diagram

fraction in the new cell, freeing the fraction in the previous cell for re-use [51]. Inactive devices

are not assigned any dedicated spectrum resources, instead sharing a random-access channel for

signaling and paging.

If we follow the �ow of data through a wireless wide-area network, we can identify a number

of sources of latency in current mobile networks. A visual depiction of the elements in a GSM

network is given in Figure 2.1 [58]. When a device wishes to transmit data, it �rst negotiates with

the cell tower for a channel using a wireless MAC protocol; this is one source of latency. Once

this channel is established, data can �ow between the device and the cell tower; this transmission

happens over spectrum that must be shared, another source of latency. A�er data is received by the

tower, it is processed (more latency) and sent to a radio network controller (RNC) located in the

mobile network core, where voice and data services are separated and routed to the appropriate

network [58].�e communication between the cell tower and the RNC occurs over a high-capacity

backhaul link. However, due to the rapid increase in the raw data rate a cell must handle to provide

high-speed data service, not all cells have backhaul links of su�cient capacity to support all active

clients in the cell [20], which can introduce additional latency.

6

If we go through that set of things that introduce latency again, we �nd that most of them can

be reduced — processing time on the tower and RNC can be reduced with faster processors, and

backhaul can be upgraded. Two components of this latency cannot be so easily improved — the

latency incurred by sharing the channel with other users, and the latency resulting from the use of

wireless MAC protocols. As a result, we expect latency on mobile networks to be a problem for the

forseeable future; this work addresses the former source of latency, spectrum sharing.

Speci�cally, it is the way in which spectrum is shared that introduces latency. If each device

were assigned dedicated frequencies for uplink and downlink, the latency over the air interface

would be a mere 0.23 ms at the 35 km maximum range of a GSM tower [51]. As electromagnetic

spectrum is a �nite resource for which demand for prime frequencies outstrips supply, mobile

networks must share these frequencies amongst all devices active in a cell’s coverage area. For

GSM networks, this is accomplished by splitting each frequency into 8 time-slots that repeat every

4.615 ms (a frame); virtual channels for transmitting data, voice, or signalling are constructed from

sequences of these time-slots [51].

Voice and data channels are formed from time-slots using di�erent assignment algorithms.

Voice channels consist of a single consistent time-slot every frame, providing a guaranteed low

latency (and low data rate) channel for communication with the tower [51]. Admission control is

used by the network to ensure that assigned channels are reserved for the mobile device for the

duration of the call; new calls, and active calls for users roaming into the cell’s coverage area are

only admitted by the network when an unused channel is available.

Data channels on the other hand are assigned dynamically to more closely match the needs

of packet-switched data, and can be formed from multiple slots per frame to provide higher data

rates [51].�e available data capacity of the cell is divided amongst all active users, providing access

7

for all users when the network is heavily loaded and higher speeds when the network is lightly

loaded. However, since the assignment of these time-slots is not consistent, both jitter and latency

are higher than with voice channels [51].

�ough the particular details of each wide-area wireless network combine to produce its

particular latency characteristics, at very fundamental level each network is making a trade-o�

between throughput and latency. If we increase the length of time each device is allowed to

use a frequency, less signalling is required, less time is lost to guard space, and more data can

be transferred – frequency use is more e�cient. However, this also means higher latencies, as

devices wishing to transmit must wait longer – there are fewer users of the frequency in each

time period. Conversely, reducing the amount of time a device can hold a frequency increases the

number of devices that can transmit in a time period, reducing the time a device must wait and

thereby reducing latency; this also results in more time loss to guard space, more signalling, and a

lower e�ciency. Historically, throughput has been a larger problem than latency; ever-increasing

demands for data are placed on wide-area wireless networks, and the designs of these networks

have therefore been biased toward throughput. With the explosive growth in smartphones in

recent years, it is unlikely that this bias will change – mobile networks face unprecedented capacity

demands [11].

Technologies like Wi-Fi and Femtocells o�er us a way to decrease sharing by reducing the

geographical area covered by a cell. �is decreases the number of users to whom the cell can

provide service; decreasing the coverage area also allows for denser frequency re-use, providing the

potential for additional network capacity. By decreasing sharing, networks could use less e�cient

protocols to provide lower-latency service while maintaining data rates similar to those available

today. However, given that the typical range of a femtocell is 20 to 30 metres [27], compared to

8

the urban coverage range of 1 to 3 kilometres for a typical macrocell [10], it is unlikely that service

providers will choose to blanket their existing coverage areas with these devices. Current trials

instead use femtocells to boost signal coverage in indoor locations, and push the costs of the

femtocell o� to the consumer; the user must pay for both the femtocell and the Internet connection

it uses to backhaul data to the carrier’s network [53, 62]. As a result of this incentive structure,

femtocells have seen limited adoption thus far — end users have been generally resistive to the

notion of paying the start-up and operation costs for extensions to the carrier’s network.

2.2 How latency a�ects page-load speed

Content on the web is formatted using the HTMLmarkup language. Using a series of metadata tags,

textual content is arranged and formatted, and media elements — images, video, and interactive

elements — are placed within the page content. When a web browser encounters a web-page, it

builds a structure known as a Document Object Model (DOM) tree; Figure 2.2 displays a sample

DOM tree. When the browser generates a DOM element for which the HTML �le does not contain

the content — an image, for instance — the browser fetches that element from the provided URL

and inserts it into the tree.�ese external elements are o�en referred to as embedded objects [52],

even though they are not embedded within the page itself, but referenced from it. It is only once the

browser downloads and renders all parts of this tree that the load of a page is considered complete.

In addition to embedded media elements, web-pages o�en reference style sheets (CSS, Cas-

cading Style Sheets) and snippets of interactive JavaScript code. Style sheets provide an enhanced

way of modifying the look of the content on a page, by setting font styles, drawing borders or

backgrounds, and by positioning elements on the screen. Some of the attributes set by a style

9

html

head

title span

input

image

Image a p

form

body

Figure 2.2: Document Object Model (DOM) tree sample

sheet support referencing media elements, like images; the browser fetches these resources when

it applies the style. CSS also allows style sheets to reference additional style sheets; the browser

fetches additional style sheets when it encounters the style sheet reference.

Most browsers also provide an environment for running JavaScript code, used to interact with

the page’s DOM tree.�is allows developers to build interactive applications — like web-based

email and banking applications — within the con�nes of a web browser. Since JavaScript can

modify the DOM tree, it can insert elements into the page that result in the browser fetching

additional elements.

When the browser needs to fetch a resource, it issues a HTTP GET request to the server listed

in the item’s URL.�is request starts with a query to DNS for the corresponding server IP address,

a�er which the browser opens a TCP connection to the provided IP address. Once the browser

establishes a connection, it sends a plain-text HTTP request header to the server. �is header

speci�es the resource desired, the host from which it is requesting from, the identity of the client

making the request, and a small amount of other information.

Upon receiving this header, the server locates or generates the desired resource, and transmits

10

the resource back to the browser along with a response header; this response header provides the

information necessary for the client browser to understand the response. A�er the client receives

the response, it may close the underlying TCP connection, or can keep it alive and re-use it for

future requests [49]. Regardless of the state of the underlying TCP connection, for each resource

the browser must transmit a new HTTP request/response pair; only the TCP connection carrying

these requests is reused.

For this reason, the time it takes to load a page is particularly sensitive to the latency of

the network over which is being requested, as each element must be individually requested and

therefore must experience a round-trip from the client to the server and back. If these requests

were to occur serially, this would add one round-trip time to the total load time for each resource

referenced by the page. To improve performance, all browsers load elements in parallel by creating

multiple TCP connections to the server when loading a page; this allows the browser to overlap

requests and decrease the load time for pages referencing a large number of elements.

However, as the browser does not know all of the resources at the time of its initial request —

it starts by requesting only the root HTML page — there exists a minimum bound on the load

time of the page, based on the organization of elements it references. For pages without embedded

resources, that bound is 1 round-trip time (excluding connection initialization for TCP/SSL). If the

page references additional elements, that bound increases to 2 or more, depending on the number

of resources referenced by the root HTML page and the amount of parallelism. If those resources

themselves reference resources, the minimum bound continues to increase.

Furthermore, the HTTP protocol further limits the number of parallel connections to a single

server to 2, to improve response times and avoid congestion [49].�is limit is commonly increased

by modern browsers [6] — see Table 2.1 — but can still limit performance in instances where

11

Table 2.1: Browser connection limits

Connections
per Hostname

Maximum
Connections

Chrome 8.0.562 6 30
Firefox 3.6.12 6 30

Internet Explorer 8.0 6 35
Opera 10.7 8 30
Safari 5.0.3 6 35

Android 2.2 4 4
iPhone 4.2.1 4 35

Opera Mini 5.1 11 30
Windows Phone 7 6 35

the browser needs to request a large number of small resources. In e�ect, this limit makes a

large number of resources load in a similar fashion to a page with a deep resource structure, as

the connection limit e�ectively batches requests into serially-loaded groups. As this limit is per

hostname, some sites choose to load from multiple servers to avoid this limit; in this case, the

browser will open connections until it reaches its global maximum (see Table 2.1).

When we observe this sequence of requests while loading an entire page, we see a waterfall-like

pattern of HTTP requests. Figure 2.3 presents an illustrative example using the Bing home page.

�e load begins with a request for www.bing.com, which returns the root HTML document for

Bing. As the browser processes the HTML �le and builds the DOM tree, it encounters two scripts

referenced by the page (Shared.js and PostContent.js) and makes a parallel request for these

resources. A�er the browser retrieves the scripts, construction of the DOM tree continues, resulting

in parallel requests for h1.png (the Bing logo) and PitcherPlants EN-CA.jpg (the background

image). As these requests are underway, construction of the DOM tree completes (this is the �rst

vertical line in Figure 2.3). Once all of the items needed to display the page arrive and the page is

fully rendered, the page load is complete; this occurs at the second vertical line in Figure 2.3.

12

Figure 2.3: Load timeline for the Bing homepage

13

�e items loaded a�er the second vertical line in Figure 2.3 do not form part of the web-page

proper; rather, they are intended to be loaded a�er the page �nishes its primary load to provide

additional, auxiliary features. �is type of load is known as an asynchronous load, and is obtained

by using JavaScript to modify the DOM tree to include these elements a�er the page has loaded. In

Bing’s case, these elements contain tracking and overlay features.

2.3 Minimizing the e�ects of latency on web browsing

Due to the web’s sensitivity to the latency of the link between server and client, techniques have

been developed to reduce the latency seen while web browsing. With reference to the mobile

environment, we can group these techniques into four major areas: caching, network-side latency

reductions, client prefetching, and resource bundling.

2.3.1 Caching

HTTPprovidesmechanisms for expiration and validation of cached content to facilitate caching [49].

When serving a resource, web servers have the opportunity to place an expiration tag on the re-

sponse, which informs the cache of the duration for which it can serve the resource without

requesting an updated copy from the server. When loading a page, the client browser can skip

all network tra�c for unexpired resources that are present in its cache (the browser may also opt

to display stale resources in some circumstances). Instead of evicting the resource the cache may

issue a conditional GET request to the server to inquire whether its cached copy is current. If the

server determines that the browser has the most recent version, it sends the HTTP status code

304 Not Modified [49], and the browser loads the resource from its cache. Otherwise, the server

14

transmits the new version of the resource along with the status code 200 OK [49].�is eliminates

unnecessary transfers of the resource across the network. Both of these mechanisms have the

potential to improve perceived page load performance for previously visited resources, though

only the former eliminates network tra�c.

Locating a cache on the client can eliminate network latency for cached resources; all major

browsers contain caches which save visited resources for a period of time for this reason. A recent

study by Yahoo! found that 75–85% of page views on yahoo.com used browser-cached items [57],

indicating the success of this technique. However, caches can only help once the resources have

been previously loaded by the client; for the �rst load of the web site, they provide no bene�t. For

this reason, we must look to other techniques for increasing page-load speed.

2.3.2 Client prefetching

Client prefetchers increase the speed of web interactions by prefetching content prior to the user

making a request for it. When a user views a page, a prediction engine generates a hint list of

URLs the client is likely to request in the near future, along with a con�dence score indicating

the likelihood of the client accessing each individual URL [13].�e hint list can be generated on

the client using the client’s page view history [31, 34], on the server using information gathered

from all accesses to the page [48, 56], or on a proxy in between the two using a combination of

information [5, 15, 26]. In either case, the hint list is passed to a prefetching engine located on the

client, which prefetches all resources above a certain con�dence score and stores them in a local

cache.

If the user decides to follow a link from the page they are viewing to a page the prefetching

engine has fetched, the browser can load the page from cache. As the cache is located on the client

15

device itself and requires no network operations to access, the page loads rapidly. Alternatively, if

the user accesses a page that the engine has not prefetched — either because the prediction engine

computed too low of a con�dence score for prefetching, or the user typed a URL into their browser

— the page load occurs as it would normally, and sees no decrease in its load time. Setting the

con�dence threshold low results in the prefetching engine fetching more pages; this potentially

results in a higher reduction in user-perceived latency, as the browser can access prefetched data

without accessing the network at all.

Because a low con�dence threshold implies more prefetched pages, it also results in a lower

prefetch accuracy — pages that are prefetched and not subsequently viewed by the client. �e

prefetch accuracy is o�en expressed in terms of an extra data overhead, the number of bytes that

the prefetching engine fetches in error for every byte prefetched and used by the client. Typical

client prefetchers have extra data overheads in the range of 150% to 300% [31], though many choose

not to report this value. Furthermore, the prefetching engine must be careful not to prefetch a page

too far in advance of the user requesting it; the page displayed to the user is current as of the time

of the prefetch, not at the time of the user access, and therefore may present stale data [5].

When applied to the mobile environment, this technique quickly proves unsuitable for typical

web-pages because of the high cost of data transfer over current wide-area wireless networks. It can,

however, be used successfully when there is a high expectation of use (pages the user accesses daily,

for instance), or when the resources are known to be small (for example, news readers that fetch

feed text only). Unlike resource bundling, described next, a client prefetcher must speculatively

prefetch — it cannot prefetch only embedded resources. Because it is located on the client, on

the client side of the high-latency mobile network segment, if it were to prefetch only embedded

resources it would execute essentially in lock step with the browser itself, providing no performance

16

bene�t at all. Since a client prefetcher that does not speculate provides no performance bene�t,

and speculative prefetchers increase the data transferred over the network, client prefetchers are

not an appropriate way to minimize the e�ects of latency in spontaneous mobile web browsing.

2.3.3 Network-side latency reductions

Signi�cant e�ort has been invested in reducing the total latency experienced when loading a page;

with the exception of the techniques above, most of the focus has been on increasing page load

performance by optimizing the network side of the web request’s journey from client to server —

the portion from mobile-network core onwards. Two major examples of techniques that optimize

the network side of the web transaction are caching proxies and content-delivery networks (CDNs).

Similar to browser caches, caching proxies — which sit between the client and the servers it

contacts — improve performance by saving server responses; clients can subsequently get the

content from the cache rather than contacting the end server. Unlike browser caches, however,

caching proxies can bene�t multiple users, as all users share the same cache; individual users

bene�t from the accesses of other subscribers. By locating a caching proxy close to the clients,

substantial performance gains can be obtained — e�ectively, the caching proxy appears to the

client as a closer copy of the server for any resources it has cached. Further speed increases can be

obtained by allowing the proxy to perform speculative prefetching [5], which works similarly to

the client prefetching discussed earlier.

Content-delivery networks go one step further and actually relocate the source content close to

the clients for which it is intended. At a high level, these networks ensure that people accessing a

website access a copy that is close to them; users in Eastern Canada may access a copy in Montreal,

while users in Western Canada may access a copy in Vancouver. To provide this service, content-

17

delivery networks locate large storage servers inside service-provider networks and at major

network peering points. Web authors upload their resources to a CDN, and update their pages to

reference CDN-provided resources; the content-delivery network’s internal services automatically

distribute the content to all of the nodes in their network. When a client makes a request for one

of these resources, it receives the address for the closest CDN node (by way of anycast DNS), from

which it can connect to and download the resource. As a result, the client can load content much

faster.

In both of the above cases, however, these latency reductions do little to reduce the impact

of the high-latency access segment seen in mobile networks. Typical deployment guidance for

caching proxies, for instance, is to place them at the edge of access networks, close to the clients

they serve [32]. In wireless wide-area networks, even if we place a caching proxy or content-

delivery network node in the mobile-network core (reducing the network-core-to-server latency

to e�ectively zero), the client still must traverse the high-latency access segment in order to reach

the content, limiting the performance bene�t of content-delivery networks and caching proxies for

mobile clients. In fact, any technique that involves sharing at or past the mobile-network core and

does not modify the nature of the traditional request-response HTTP interaction (through the

use of a client push) is fundamentally not able to overcome this inherent latency to provide faster

page-load times to mobile users.

2.3.4 Resource bundling

Instead of speculating on what pages a user will access in the future, we can instead follow the

chain of resource references starting at the root HTML �le, and deterministically identify resources

in the same way that the browser does. If we perform this operation on the server, we can identify

18

all of the resources the browser will need to load a page prior to the browser itself requesting

these resources; if we couple this detection with a push of the associated resources to the client,

we can increase the page-load speed without speculation and its associated extra data overhead.

Operationally, when a client requests a web-page’s HTML �le, the server returns the HTML page

followed by all embedded resources in the same payload [52].�is allows the browser to receive all

content for the page in a single round-trip to the server (excluding the round-trips necessary for

TCP). We term this operation resource bundling, because the server is in e�ect bundling all of the

resources needed to display the page into a single package, and streaming that package down to

the client.

However, in order to support this mode of operation the server must be modi�ed to use the

multipart/related content type, be updated with a modi�ed version of HTTP [52], or use

another technology in HTTP’s place [24]. Modi�cations to the client are also necessary in order for

it to understand bundled responses, except for Internet Explorer and Chrome 14, which understand

the multipart/related content type natively. Performance improvements are not available when

accessing unmodi�ed servers. Furthermore, for a server to bundle resources in this manner, all of

the content for the page has to be present on that server. While generally true in the past, this is

o�en not the case with modern web sites, where pages are built with parts from multiple servers

— content servers, ad networks, analytics servers, and social networks being common sources of

external resources. Because the server hosting the root HTML �le cannot package resources from

these servers, the reductions in page-load time available with resource bundling are limited.

Alternatively, resource bundling can be performed on a proxy between client and server,

providing performance bene�ts to clients without requiring server modi�cations. �is is the

architecture used by the commercial web accelerator product o�ered by Openwave [44], as well as

19

work by Dong et. al [14]; speci�c details of these systems are given in Chapter 5.�is is also the

architecture we use for our just-in-time prefetching push proxy, discussed next.

20

Chapter 3

A Just-In-Time Prefetching Push Proxy

In order to overcome the limitations inherent in client prefetchers, network-side latency reduc-

tions, and when bundling resources, we investigate a just-in-time push proxy that combines

non-speculative prefetching with a push to the requesting client from a proxy located within the

mobile-network core, on the network side of the high-latency access link. �is approach combines

the bene�ts of client prefetching and resource bundling while avoiding the drawbacks that made

those techniques unsuitable for mobile networks. Our system is targeted speci�cally to improving

the end-user perceived performance of the spontaneous web-browsing sessions that form the

majority of the data accessed by the device [50]. Our system di�ers from previous systems from

Openwave [44] and Dong et. al [14] in that it supports simultaneous transmission of resources to

the client rather than sequential.

Our just-in-time prefetching push proxy system consists of two elements: the mobile client

and an in-network proxy located between the 3G network and the servers the mobile client can

access (Figure 3.1). More precisely, our proxy sits right a�er the network’s GPRS support nodes,

21

Client 3G infrastructure ServersProxy

Just-In-Time
Push

Prefetching
Proxy

Figure 3.1: Just-in-time push proxy system architecture

which convert mobile data into IP for transmission on the public Internet; this allows us to address

all forms of latency present in the 3G network.�e client component of the system consists either

of a proxy daemon that returns pushed resources to the unmodi�ed system web browser once it

makes a request for a resource with a matching URL; the web browser could also be modi�ed to

speak directly with the proxy.

When a user wishes to access a page, theirmobile device sends the page request to the server that

is intercepted by the proxy.�e proxy performs the request on behalf of the client, and when the

server sends its response, the proxy forwards the content on to the client. At the time of the server

response, the proxy also scans the response for references to embedded content, and independently

creates requests to the server for that content. Once the proxy fetches the independently requested

content from the server, it forwards the response to the client, which uses the information when

rendering the page. By prefetching only embedded content, our proxy avoids requesting content

the client will never need; all content embedded in a page is necessary to completely display it on

the client. Figure 3.2 shows this sequence of events.

If the client encounters a URL for which it does not have a matching resource in its cache —

when the user browses to a new web site, for instance — the client will request the resource from

the server.�e client also makes a request to the server if our proxy fails to identify an embedded

22

resource — resources that are called by Javascript, for instance.�ese requests are intercepted by

the proxy, which dispatches the request to the server, and returns the response to the client when

it arrives. Depending on the precise sequence of events, this may also occur when the proxy has

prefetched the content from the server but it has not yet been fully pushed to the client; in this

case, the proxy drops the request it receives, and the client uses the pushed content when it arrives

(the dashed arrow in Figure 3.2).

We can compare the actions of our just-in-time push proxy to a simple prefetching proxy that

prefetches embedded resources but does not push them to the client. As described in Chapter 2,

without the push to the client this proxy is located on the wrong side of the high-latency segment.

�is di�erence occurs at the �nal forward step shown in Figure 3.2. Rather than forwarding the

response to the client immediately upon receiving it from the server as in the diagram, a simple

prefetching proxy would have to wait until the request from the client arrived at the proxy before

forwarding it on (this request is represented by a dashed line in Figure 3.2).�ough this is faster

than requesting the resource from the server, the delay while waiting for the client request on the

proxy results in a slower page-load time compared to our push proxy.

3.1 Performance analysis

To understand how our system performs, let us begin by considering how our push proxy di�ers

from the scenario where no proxy is present, as well as the scenario where a prefetching proxy

is present but that proxy does not push the prefetch results to the client. For both types of proxy

(push and non-push), we assume that they are located in the mobile-network core, placing them as

close (in terms of latency) to the client as technologically possible. In particular, by locating the

23

Proxy

forward

forward

process

forward

drop

Server

process

process

Client

process

display

request

Figure 3.2: Sequence diagram for a just-in-time prefetch

24

proxy here we assume that the proxy is on the path from the mobile client to any server it wishes

to access; this means that there is additional delay to transit the proxy, but no additional network

latency.

3.1.1 Intuition

Intuitively, the time it takes for the client to retrieve the root HTML �le describing a web-page

should be the same whether or not we have a proxy (excluding processing time and queuing delay

on the proxy), and whether or not the proxy pushes data to the client; in all cases, we must wait for

the client to make a request for a page. It is only when the response to this request passes through

the proxy that the proxy has the opportunity to predict what resources the client will request next,

and take action on its predictions prior to the client making those requests.

We expect a prefetching proxy that does not push to the client to be faster than no proxy (again,

setting aside processing time and queuing delay) as it sees the server’s responses sooner than the

client, and can therefore begin fetching embedded resources sooner. When the client determines

that it requires an embedded resource, it makes its request to the server; this request is intercepted

by the proxy and upon which it catches up with the proxy request already in progress. From the

client’s perspective, this appears as if the server moved closer to the client, as the proxy responds

on the server’s behalf for all requests a�er the �rst.

For us to see a bene�t from a push proxy, we must �nd ourselves in the situation where the

proxy can prefetch a resource prior to the client request reaching the proxy. If this were not the

case, then a request from the client would already be waiting on the proxy, and using a separate

mechanism to push the content to the client would provide no bene�t. If we do �nd ourselves in

the �rst case, then we expect to see performance proportional to the distance between proxy and

25

HTML

Image

(a)

Image ImageImage

HTML

(b)

HTML

CSS

Image

(c)

Figure 3.3: Page reference structures analyzed and tested

server. Considering the high-latency �rst hop in mobile networks and that the majority of network

activity on a mobile device is web tra�c [50], we believe that mobile users spend most of their

time accessing servers for which push proxies are bene�cial.

In the following sections, we examine three di�erent page structures as diagrammed in Fig-

ure 3.3. �e �rst structure consists of a page loading a single resource (Figure 3.3a). �e second

consists of multiple resources embedded in the root HTML (Figure 3.3b); in this case, the browser

will open connections in parallel in order to download all resources.�e �nal structure consists of

a root HTML page that references a CSS �le, which itself references an image (Figure 3.3c). In this

case, because the browser does not know the next resource to load prior to loading the previous

one, it cannot parallelize its requests. All three scenarios test resource arrangements seen on the

web.

26

3.1.2 Loading the root HTML �le

Based on our intuition in the previous section, we expect the time it takes to load the root HTML

�le to be equal to the time it takes for the client to make a request to the server and receive a

response, passing through the proxy when present.�is process is diagrammed in Figure 3.4.

Proxy

forward

forward

Server

process

Client

request

lcp + mcp

rp

rp

lps + mps

rs

lps + msp

Figure 3.4: Sequence diagram for troot

Here, we de�ne the variable l to represent the latency between two positions in the network,

and the variable m to represent the transmission time of the request and response. Processing time

and queuing delays are represented by the variable r. Subscript pairs indicate participants and

directionality. �erefore, the subscript cpmodels a quantity starting at the client and ending at the

proxy, while a similar quantity between proxy and client would have the subscript pc.

Following the request as it travels to the server, the request must �rst be transmitted from the

client to the proxy (or the position where the proxy would be if present, in the no-proxy case).�is

27

quantity is formed from the latency of the path between client and proxy, lcp, and the transmission

time of the request over the client-proxy network, mcp.

Next, we encounter some processing time and queuing delay at the proxy, represented by rp.

�is quantity is equal to 0 in the no-proxy case, as no proxy is present to impose this additional

latency. Regardless of the value of rp, the request subsequently travels to the server, which takes

lps +mps — the latency of the path between the proxy position and the server, plus the transmission

time of the request over the proxy-server network.

Upon reaching the server, the server locates the requested content and prepares a response, a

process taking rs.�is response is sent to the client, taking lsp +msp to reach the position of the

proxy. If the proxy is present, additional processing time of rp is also encountered at this time.

It is at this point that the behaviour of the three cases begin to diverge beyond simple di�erences

in processing time. For clarity, we represent this period of common behaviour in the quantity troot ,

presented in Equation 3.1.

troot = (lcp +mcp∣HTML) + (2lps +mps∣HTML +msp∣HTML) + 2rp + rs (3.1)

�e transmission times in Equation 3.1 have been extended with the subscript HTML to

indicate that the quantity being discussed here is the root HTML �le. In future sections, the

subscript resource will be used to di�erentiate the transmission times for resources from the

transmission times for the root HTML �le

Equation 3.1 also makes some other assumptions about the network con�guration in order

to simplify this discussion. We assume that the latencies in the system are equal, so that lps = lsp.

Network bandwidths are not assumed to be equal. By placing our proxy in the mobile network

28

core, we assume that there is no additional path latency to travel through the proxy.

3.1.3 Loading a page with 1 embedded resource

To determine the load time for a page with a single resource, we must pick up where we le� o� in

Equation 3.1 and determine the time tresources each con�guration takes to load all of the resources

embedded in the rootHTML�le. We start by examining the load pattern of aHTML�le referencing

1 resource; Listing 3.1 presents an example of such a page.

Listing 3.1: HTML page with 1 resource
<html>

<head></head>
<body>

</body>

</html>

We start our analysis of tresources at the proxy. With no proxy, the ‘proxy’ is just an arbitrary

position in the network, and the response must continue all the way to the client before the browser

can process theHTML�le and generate a request for the embedded resource. Equation 3.3 describes

this case; the quantity rc represents the time it takes the client to process the received HTML �le

and generate a request for the embedded resource.

tresources∣no = (3lcp +mpc∣HTML +mcp∣resource +mpc∣resource + 2rc)

+ (2lps +mps∣resource +msp∣resource + rs) (3.2)

For both proxies, the proxy forwards the request on to the client while scanning it for embedded

resources (see Figure 3.2). When the proxy encounters the embedded image reference, it generates

29

a request and sends it o� to the server. �e time taken for this scanning is represented by the

parameter ri . Once the proxy receives a response from the server, it is either returned directly

to the client (if a request from the client has arrived in the interim), held on the server until the

client request arrives, or proactively pushed to the client. Equation 3.4 details the time it takes to

load the embedded resource with a prefetching proxy, while Equation 3.5 shows the time with our

push proxy. Adding these equations to troot, derived in the previous section, produces the total

page-load time tload .

tresources∣no = (3lcp +mpc∣HTML +mcp∣resource +mpc∣resource + 2rc)

+ (2lps +mps∣resource +msp∣resource + rs) (3.3)

tresources∣pre = (3lcp +mpc∣HTML +mcp∣resource +mpc∣resource + 2rc + rp)

+max (rp, (2lps +mps∣resource +msp∣resource + ri + rs) − (2lcp +mpc∣HTML +mcp∣resource + rc)) (3.4)

tresources∣push = (2lps +mps∣resource +msp∣resource) + ri + rs + rp + 2rc + (lcp +mpc∣resource) (3.5)

Graphing these equations with a lps of 30 ms produces Figure 3.5. For the graphs displayed

in this section, processing times rs, rp, rc, and ri were set to 0.2 ms, 2.2 ms, 4.6 ms, and 0 ms,

respectively. �ese values were obtained experimentally (see Table 4.3). Transmission times m

were calculated based on a 10 Mbit client-proxy link and a 100 Mbit proxy-server link, with a root

HTML page of 56 bytes and resources 600 bytes in size. All values and are for illustration only; the

general patterns we observe here are independent of the precise values of these parameters, as they

do not a�ect the slope (they do not change with lcp).

We see that the slope for our push proxy is half that of the no-proxy and prefetching proxy. For

each additionalmillisecond added to the client-to-proxy latency, the no-proxy load time encounters

30

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 20 40 60 80 100 120

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

Client - Proxy Latency (ms)

tload no proxy

tload prefetch

tload push

Figure 3.5: Total load time for page with 1 embedded resource

an extra millisecond of load time both when making a request to the server (an outbound traversal

of the client-proxy network), and when it receives a response from the server (an inbound traversal).

It does this twice, once to load the root HTML �le and once to load the embedded resource. For

the push proxy, the page load encounters an extra millisecond of load time per millisecond of

additional client-to-proxy latency in its initial request and when the server transmits the resource

back to the client; the proxy begins streaming the embedded resource back to the client in the

same amount of time in all cases as the proxy-server latency does not change. We do not see the

extra millisecond added to the response containing the HTML �le, as this response is not on the

critical path for the total page-load time.

�e kink in the graph of the prefetching proxy load time occurs at lcp = 30 ms. Before this point,
the client’s request for the embedded resource is waiting on the proxy by the time the prefetching

proxy �nishes retrieving the resource, making the prefetching proxy operate similarly to the push

31

proxy. A�er this point, the prefetching proxy must wait for a client request in order to return the

resource it prefetched.

�is results suggest that our push proxy can have signi�cant bene�ts in the mobile environment

— adding a prefetching proxy improves page-load time performance by moving resources closer to

the client, but bears the same slope as no proxy. A push proxy, on the other hand, has a fundamental

advantage on both other con�gurations, and becomes a better solution as the imbalance between

the client-proxy and proxy-server latencies grows.

3.1.4 Loading a page with multiple embedded resources

In practice, web-pages rarely contain a single image; rather, they are formed with multiple images,

all of which the client browser must request from the server. Listing 3.2 contains an example of

such a page, which loads 3 images.

Listing 3.2: HTML page with multiple embedded resources
<html>

<head></head>
<body>

</body>
</html>

When loading pages containing multiple embedded resources, web browsers typically create

multiple TCP connections to the server so that they can download resources in parallel.�is results

in a series of overlapping request-response pairs; the HTTP speci�cation also allows pipelining

multiple requests in a single connection for a similar overlap, though browser support for this

32

feature is limited. Analytically, this load has a similar shape to the load pattern seen when loading

a single resource — with no proxy, we see the same end-to-end load time as we did previously,

while with both proxies we see the requests spawned earlier on the proxy and the response either

returned directly to the client, held on the server until the client request arrives, or proactively

pushed to the client.

�e di�erence in page-load time between loading a single resource and loading multiple

resources is the time it takes to transmit the extra resources, as we can see in Equations 3.6 – 3.8.

tresources∣no = (3lcp +mpc∣HTML +mcp∣resource +mpc∣resource + 2rc)

+ (2lps +mps∣resource +msp∣resource + rs) + (n − 1)max (mpc∣resource ,msp∣resource) (3.6)

tresources∣pre = (3lcp +mpc∣HTML +mcp∣resource +mpc∣resource + rp + 2rc)

+max (rp, (2lps +mps∣resource +msp∣resource + ri + rs) − (2lcp +mpc∣HTML +mcp∣resource + rc))

+ (n − 1)max (mpc∣resource ,msp∣resource) (3.7)

tresources∣push = (2lps +mps∣resource +msp∣resource + ri + rs)

+ (lcp +mpc∣resource + rp + 2rc) + (n − 1)max (mpc∣resource ,msp∣resource) (3.8)

In general, we expect the bandwidth of the client-to-proxy network to be lower than the proxy

to server bandwidth, and therefore, the requests will be spaced apart by mpc . If the opposite is true,

the requests will be spaced by mps.

Graphing these equations with the parameters as before and 3 embedded resources produces

Figure 3.6. Here, we see the same pattern emerge as we saw with the single resource scenario; the

slope for our push proxy is half that of the no-proxy and prefetching proxy. In this instance, the

total load time is slightly higher due to the increased transmission time for the extra resources.

33

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 20 40 60 80 100 120

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

Client - Proxy Latency (ms)

tload no proxy

tload prefetch

tload push

Figure 3.6: Total load time for page with 3 embedded resources

3.1.5 Loading a page with nested resources

An alternate resource arrangement occurs when the root HTML page loads resources that them-

selves load further resources, as is o�en the case. Listings 3.3 and 3.4 present an example of this

structure. Unlike images, CSS �les have the ability to load additional resources, be they images

or other CSS �les. We de�ne depth d as the length of the longest chain of nested resources not

counting the root HTML page (see Figure 3.7). �erefore, a HTML page with no resources has

a depth of 0, as the browser does not have to perform additional requests to obtain resources.

Unlike the previous scenario where the browser could overlap requests to the server to improve

performance, because the browser cannot identify all necessary resources by loading only the root

HTML �le, each level of depth incurs an extra round-trip to the server.

�e behaviour of the client browser in the no-proxy case is straightforward; a�er receiving the

root HTML �le, it makes a request for the embedded resource. Once the server responds with

34

Listing 3.3: HTML page with external CSS
<html>

<head>
<link rel=‘stylesheet ’ href=‘level2.css ’/>

</head>
<body></body>

</html>

Listing 3.4: CSS resource �le level2.css importing additional CSS
.level2
{

background -image: url(’Y.png’);
}

HTML

Image Image
JSCSS

Image
CSS

Image Image

root

depth 1

depth 2

Figure 3.7: Reference structure for a page with nested resources

35

this resource, the browser parses it to identify any resources it references, and makes requests for

those resources. �is cycle repeats until the browser has identi�ed and requested all resources.

Equation 3.10 describes this case.

tresources∣no = (lcp +mpc∣HTML + rc)

+d ((2lcp +mcp∣resource +mpc∣resource) + (2lps +mps∣resource +msp∣resource + rs) + rc) (3.9)

For both of the proxies, once the proxy receives a response from the server, it is either returned

directly to the client, held on the proxy until the client request arrives, or proactively pushed to the

client as in the previous scenarios. Instead of scanning only the HTML �le on its way from the

server to the client, the proxies also scan retrieved CSS or HTML �les and generate requests for

any resources referenced by those �les. Equation 3.11 details the time it takes to load the embedded

resource with the prefetching proxy, while Equation 3.12 shows the time with the push proxy.

tresources∣no = (lcp +mpc∣HTML + rc)

+d ((2lcp +mcp∣resource +mpc∣resource) + (2lps +mps∣resource +msp∣resource + rs) + rc) (3.10)

tresources∣pre = (lcp +mpc∣HTML + rp + rc)

+d (2lcp +mcp∣resource +mpc∣resource + rc +max (rp,

((2lps +mps∣resource +msp∣resource + ri + rs) − (2lcp +mpc∣HTML +mcp∣resource + rc)))) (3.11)

tresources∣push = d (2lps +mps∣resource +msp∣resource + ri + rs + rc)

+ (lcp +mpc∣resource + rp + rc) (3.12)

Graphing these equations with the parameters as before and a depth of 2 produces Figure 3.8.

36

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

0 20 40 60 80 100 120

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

Client -Proxy Latency (ms)

tload no proxy

tload prefetch

tload push

Figure 3.8: Total load time for page with embedded resources to depth 2

Again we see the general shape we saw in the previous situations— a linear increase in the no-proxy

load time with a shallower increase seen on the push proxy. In this case, however, we see a larger

di�erence between the slopes of the no-proxy and prefetching proxy con�gurations and the push

proxy, as well as a larger gap between the parallel no-proxy and prefetching proxy lines.

As in the previous cases, the push proxy line has a slope of 2 ms/ms.�e no-proxy and push

proxy slopes, however, see an increase to 6 ms/ms. When resources load other resources, another

traversal of the client-proxy network is added. Since each extra layer in depth adds an extra trip

between client and proxy for the no-proxy and prefetching proxy con�gurations, we expect to see

that the slope of these lines is proportional to the depth; in our scenario, ∆tload∣no = 2 + 2d ms/ms.

�e improvement that the prefetching proxy sees over no proxy is also explained by the change

in slope. Since the prefetching proxy and the push proxy have similar behaviour up to lcp = 30 ms,
the gap between these lines is the di�erence in the rises of the no-proxy and push proxy lines

37

0%

20%

40%

60%

80%

100%

120%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pa
ge

 L
oa

d
Ti

m
e

as
 P

er
ce

nt
ag

e
of

 N
o

Pr
ox

y
Pa

ge
 L

oa
d

Ti
m

e

Client - Proxy Latency as Percentage of Total Latency

tload no proxy

tload prefetch

tload push

Figure 3.9: Page-load time for 1 resource, as ratio

between lcp = 0 ms and lcp = 30 ms. With an increase in the slope of the no-proxy line, we see an
increase in the rise over this period and thus a larger performance improvement by the prefetching

proxy.

3.2 Observations

From our analysis, we can see that just-in-time push proxies have the potential to improve the

perceived performance of the web on mobile devices. In particular, their insensitivity to latency

increases between client and proxy make them particularly suitable for mobile scenarios, where

the high-latency �rst segment dominates the latency of the entire client-server path. Furthermore,

push proxies maintain these bene�ts even when pages are structured similarly to how they are on

the modern web, with multiple resources at di�erent depths.

38

We canmake some additional observations if we re-graph the preceding equations by expressing

the client-proxy latency as a percentage of total latency, as Figure 3.9 shows. By holding the total end-

to-end latency constant, this graph shows how the positioning of each proxy a�ects the magnitude

of the bene�t it provides. As the client-proxy and proxy-server latencies are an arbitrary distinction

when no proxy is present, we see a constant load time for that con�guration, and normalize the

other con�gurations with respect to it.

Of primary note is the peak that occurs when the client-proxy and proxy-server latencies are

equal; in the previous graphs, this occurred at an lcp of 30 ms. To the le� of this point, both proxies

have identical performance, as we noted previously. To the right, the push proxy’s performance

continues to improve, while the bene�ts provided by the prefetching proxy begin to diminish. At

both edges of the graph, the prefetching proxy takes more time to load a page than no proxy due to

the extra time required to transit the proxy overwhelming the bene�ts provided by prefetching.�e

point at which prefetching is equal to no proxy is not at the very edges of the graph, but rather at the

point where the proxy can improve load time enough to balance the time lost passing through the

proxy. Since the push proxy does not need to wait for a request from the client to return prefetched

resources, the push proxy exhibits this behaviour on the le� edge of the graph only.

�erefore, we note the interesting di�erence that exists between the deployment guidance

for a push proxy versus a typical caching proxy; while caching proxies should be placed as close

as possible to the client in order to reduce the distance the content must travel [2], push prox-

ies provide bigger bene�t when they are placed as close to the server as possible. Deployment

guidance for prefetching proxies that do not push content to an attached client is di�erent still;

it should be placed at the midpoint between client and server for optimum performance. While

placing a prefetching proxy closer to the client maximizes the proxy-server distance, increasing the

39

performance di�erence over no proxy, it also reduces the lead time the proxy has for prefetching,

resulting in more waiting by the client. Since the servers accessed by a client are not at a uniform

distance from the client, this performance characteristic makes prefetching proxies di�cult to

place in practice.

40

Chapter 4

Evaluation

In order to see whether the potential performance bene�ts identi�ed in the previous chapter

exist in the real world, we have implemented our just-in-time prefetching push proxy. We feel

this is a better solution than simulations or trace-based evaluation, as an actual implementation

allows us to accurately capture the complex behaviour of modern browsers. Furthermore, we

can use our implementation with 3G networks as deployed today, allowing us to evaluate the

performance of our system in combination with any tra�c management and optimization systems

currently deployed by service providers. Due to this approach, however, our results are intrinsically

dependent on the quality of our implementation; programming errors, operating system issues,

and other network e�ects may cloud our results — all issues simulations avoid.

�ough we used a desktop computer and desktop browser to run these tests, we believe that this

setup is a reasonable approximation to the conditions encountered on the mobile web. First, 3G

USB data sticks provide users with a way to access the mobile web from a portable computer using

a desktop browser; our tests thus accurately represent this case. Second, smartphones and other

41

client

client
daemonbrowser

proxy

prefetch/push
service

server

HTML
Image

Figure 4.1: Implemented architecture of our just-in-time prefetching push proxy

devices with embedded mobile network cards typically use the rendering engines from desktop

browsers; for example, the WebKit engine used in the Google Chrome desktop browser used for

testing is also used in the Chrome browser for Android as well as Mobile Safari on iOS. We expect

both desktop and mobile versions of the browser to operate similarly for this reason. Finally, as

smartphones become more powerful, we expect the browsers on these devices to become more

similar to their desktop cousins.

4.1 Proxy implementation

�e client portion of our architecture was split into two components, the web browser and a client

daemon, in our sample implementation. Figure 4.1 presents this architecture. By splitting the client

in this manner, we were able to use an unmodi�ed client browser. We used Google Chrome for

testing; we also veri�ed with other browsers during development.�e browser was connected to

the client daemon by setting the browser’s HTTP proxy to our client daemon, which forced the

browser to make all of its requests through our client daemon.�e client daemon interacted with

our proxy as described in the previous chapter.

We implemented both the client daemon and the prefetching push proxy using node.js [29]

(version 0.2.5), an evented asynchronous network programming environment running under the

42

V8 JavaScript engine [59]. �ough this environment would not be well suited to a commercial

implementation of our push proxy, our testing found that node.js was su�cient for understanding

the behaviour of our architecture with a single client. �e client daemon connected to the network

proxy over persistent TCP connections; each client daemon established a con�gurable number

of connections to the proxy upon startup. We tested the proxy in two modes: prefetch, in which

the proxy scanned all HTML and CSS documents for referenced resources and prefetched these

resources to the proxy, and push, in which the proxy operated as in the prefetch con�guration

while also pushing prefetched resources to the client over one of the persistent TCP connections.

�e pushmode realizes our just-in-time prefetching push proxy.

4.1.1 Proxy operation

When a user enters a web address into their browser, the browser forwards this request to the

client daemon.�e client daemon checks its pool of pushed resources to see if a resource with a

matching URL is present; if it is, it begins streaming the data back to the browser. If the resource it

is streaming is incomplete, it streams all available data and then streams the remaining data as it

arrives. If no matching resource is present, the client forwards the request to the in-network proxy,

and waits for a response. Once the proxy begins streaming data, the daemon forwards the data to

the browser using the waiting connection. Once the daemon has streamed a complete request to

the browser, the daemon purges the resource from its list of pushed resources.�e client daemon

also periodically scans its list of pushed resources looking for items that have not seen activity in

the previous 300 seconds; these items are the result of erroneous predictions and are discarded by

the daemon to keep memory usage low.

On the proxy, the service waits for incoming client requests. When a request arrives, the proxy

43

service checks its list of in-progress and completed requests to see whether there is a resource with

a matching URL present for that client; if there is, it streams the data back to the client daemon.

If no matching resource is present, the proxy requests the resource from the server. Like a client

browser, the proxy uses HTTP 1.1 persistent connections to the servers it connects to, allowing it to

eliminate TCP handshakes with servers it has connected to recently. We have limited the number

of connections our proxy makes to any individual server to 6, matching the limit set in Google

Chrome [6]. When a server responds to a proxy request, the proxy checks to see if it has a waiting

client request; if it does, it forwards the data immediately. If no request is waiting, it caches the

data (in prefetch mode) or pushes it to the client via its push channel (in push mode).

Whenever a HTML or CSS �le passes through the proxy (and the proxy is in prefetch or

push mode), the proxy also scans the resource to identify embedded resources. When the proxy

identi�es an embedded resource, it is placed on the proxy’s prefetch queue and prefetched when

su�cient information is available. Our implementation is able to process both uncompressed and

compressed HTML responses, and identi�es referenced scripts, images, i-frames, and style sheets

and icons using the <link/> HTML tag. It also processes uncompressed and compressed CSS

responses, identifying resources using the CSS url() syntax.

HTTP request headers

In order to maintain compatibility with existing browsers and web servers, the proxy generates

the HTTP headers it sends using the HTTP headers sent by the client. As some web sites tailor

content to the identity of the browser accessing the content, sending the client’s header is important

to ensure that the proxy receives the correct content.�is practice sees widespread usage in the

mobile web, where browsing to a site’s homepage will o�en redirect the user to a mobile-optimized

44

Table 4.1: Extra resource fetches, before and a�er �ltering unused CSS styles
Extra

Resources
(Before)

Data
Overhead
(Before)

Extra
Resources
(A�er)

Data
Overhead
(A�er)

Google 0 0
Amazon 66 +51% 40 +37%

�e Toronto Star 198 +31% 53 +9.0%
New York Times 32 +2.0% 10 +1.3%

Google 2 +0.2% 2 +0.2%
Amazon 5 +6.8% 1 +0.3%

�e Toronto Star 3 +0.3% 1 +0.2%
New York Times 28 +28% 0

site by checking the User-Agent header.�is header is also used to present appropriate formats of

media elements to mobile clients.

Unused CSS styles

Initial testing of our implementation saw the prefetcher requesting a large number of resources

that were not subsequently used by the client. We found that web authors typically create a single

root CSS �le for an entire web site, and reference this �le from all pages on the site; this ensures

that all portions of the web site look identical, but it also results in some of the styles in a CSS �le

going unused on any given page. As a result of our prefetcher not knowing which styles were used

in the page, we were requesting all possible URLs. To resolve this issue, we amended our proxy to

log all style identi�ers it encounters during the parse of the root HTML �le; the CSS parser checks

this log when scanning and prefetches only resources for used styles.

Table 4.1 presents the e�ect of loading all resources referenced by a CSS �le versus loading

resources only for styles used by the page. In most cases, �ltering out unused styles reduces the

45

number of extra resources fetched, reducing the volume of data fetched in error by anywhere from

a few percent to an order of magnitude.

Cookie handling

A key aspect in the implementation of our proxy was the correct handling of cookies. Existing

prefetcher implementations o�en ignore cookies, and prefetch content without providing a cookie;

however, without sending user cookies to the server the response received by the prefetcher may

not be correct.�e need to pass along the client cookies e�ectively blocks prefetching attempts

to domains with cookies, as the prefetcher must wait for the client’s request to obtain the cookies

needed to make its own request; this eliminates the gain available from just-in-time prefetching.

Prefetchers integrated with the client browser do not su�er from this problem, as they can access

user cookies directly.

Past studies have shown that roughly 30% of requests contain cookies [7], which could hamper

the e�ectiveness of our prefetching scheme. To work around this problem, our proxy caches

the cookies sent by the client browser, and re-uses these cookies for a short period of time on

subsequent prefetch requests. When the prefetcher queues a prefetch request for a domain the

client has not requested recently, the prefetch blocks until a client request for that domain arrives

(containing a fresh cookie). �e arrival of a client request for a domain unblocks all prefetch

requests waiting on that domain.�is allows us to provide the server with the correct cookie, while

still performing prefetching in advance of the client.

Our implementation also immediately proceeds without cookies for requests to static (cookie-

less) domains.�ese domains are used by web developers to improve page-load speeds [60]. As the

HTTP protocol requires the browser to upload all cookies for a domain on every request, hosting

46

Table 4.2: E�ects of immediate requests for cookieless domains
Waiting
Requests

Average
Load Time

Waiting
Requests
(immediate)

Average Load
Time

(immediate)

Amazon 10 2.4 s 0 2.3 s
�e Toronto Star 85 9.0 s 5 9.5 s
New York Time 58 4.8 s 15 4.7 s

static content on a separate domain that never sets cookies can reduce the request size without

a�ecting the operation of the primary domain. Table 4.2 presents a comparison of the number of

requests that must wait on the server for a client request containing the appropriate cookies.

�e results presented in Table 4.2 were obtained using the same 3G network used for our live

page tests; full details of the experiment setup are given in Section 4.5.3. Counterintuitively, our

results show no measurable bene�t as a result of this optimization, despite a signi�cant reduction

in the number of requests that must wait on the proxy.�ough the number of waiting requests is

reduced, a corresponding reduction in total load time is not present, indicating that the requests

do not lie on the page’s critical path. �is optimization has no e�ect on pages that load from

a single domain (like the Google home page), as the cookies for the initial request can be used

for all remaining requests.�ough this optimization provides no clear bene�t, we have le� this

optimization enabled for the tests in this chapter.

Request spacing

During testing, we identi�ed a bug in the node.js HTTP library that resulted in intermittent data

loss and delays when we made multiple HTTP requests in a row.�is occurred in particular during

HTML and CSS parsing in prefetch and push modes, when the proxy identi�ed multiple resources

47

to prefetch and dispatched them to the server. �ough this bug was intermittent — not all batched

requests exhibited uncharacteristic slowdowns — it was reproducible and occurred in around 25%

of cases where our proxy made multiple requests.

We attempted to �x the bug, but due to its complexity and intermittent nature were not

able to identify its root cause. During our investigation, we did discover a workaround that

allowed our testing to continue until a �x to node.js is available (our tests were run against node.js

version 0.2.5). Our workaround spaces server requests apart by at least 1 ms apart by using the

JavaScript setTimeout() function; this results in a minor increase to the proxy processing time,

but eliminated the problem of intermittent server request delays.

4.2 Evaluation framework

As we are concerned with the perceived performance improvements our architecture provides,

we can guide the evaluation of our push proxy using the response time limits developed through

decades of research in human factors [9, 41, 42]:

1. 100milliseconds is about the limit for a user to feel that an action completed instantaneously.

2. 1 second is about the limit for a user’s task to remain uninterrupted; that is, the action and

its response happen as part of a single event

3. 10 seconds is about the limit for maintaining a user’s focus on a single task; any longer, and

they will attempt to perform other tasks while waiting (browsing in other tabs, getting a

co�ee, or abandoning the website altogether)

48

On the web, these periods of time begin when the user initiates a navigation to a new page

— by following a link, choosing a bookmark, or typing in the address bar — and end when the

requested page has �nished loading. As discussed in Chapter 2, this occurs at the time the browser

�res the load (onload) event. We used a browser extension inside Google Chrome to measure

this period; this allowed us to capture the total page-load time, including non-network aspects like

rendering.

4.3 Architecture validation

Our �rst set of tests validates the analysis presented in Chapter 3, and allows us to compare the

theoretical gains predicted there to the actual gain seen with a real implementation. We ran all

tests using Google Chrome 8.0.552.224 on Ubuntu Linux 10.04 x64; the client machine contained

3 GB of RAM and a 2.7 GHz Intel Core i3 E4500 CPU. During testing, we disabled Chrome’s disk

cache to ensure that it loaded all resources from the network. We also con�gured the server to

indicate all pages and resources were uncacheable; this prevented Chrome from caching resources

in its in-memory cache between page loads.

We constructed our validation system by placing our client machine in a disconnected Ethernet

network consisting of the client machine, a proxy machine, a web server, and a router. Figure 4.2

diagrams our setup. Both the client and proxy machines ran our just-in-time prefetching proxy

system; the server was an unmodi�ed Apache web server. We used the netem Linux kernel module

to vary the client-proxy and proxy-server delays in our network; we set the proxy-server delay

30 ms for all tests, while varying the client-proxy delay from 0 ms to 200 ms. We tested all of the

con�gurations analyzed in Chapter 3 — no proxy, our prefetching proxy set to prefetch mode, and

49

client

client
daemonbrowser

proxy

prefetch/push
service

server

HTML
Image

router

network
emulation

Figure 4.2: Architecture of the validation test system

our prefetching proxy set to push mode. Test runs consisted of 40 runs at each client-proxy delay.

We validated our implementation in three scenarios: a HTML page with 1 embedded image, a

HTML page with 3 embedded images, and a HTML page with an image embedded at a depth of 2

(2 total embedded resources). In the �rst scenario, the HTML page was 56 bytes in size, and the

embedded resource was an image 664 bytes in size.�e second scenario had an HTML page of

size 113 bytes, with the 3 embedded images averaging 609 bytes in size. For the last scenario, the

HTML page was 119 bytes in size, referencing a CSS �le 67 bytes in size, which referenced an image

247 bytes in size.

4.3.1 Processing time

We started our validation tests by measuring rp, rs, and rc in our validation system; feeding these

values into our analytical model allows us to compare our implementation with our expected results.

To ensure we captured all components of each parameter, including processing and queuing delays,

50

Table 4.3: Validation environment processing times

Parameter Value

rs 0.2 ms
rp∣up 3 ms

rp∣down 1.5 ms
rc 4.6 ms
ri 0 ms

we used the Linux system utility tcpdump to monitor the packets entering and exiting the client

(rc), proxy (rp), and server (rs) machines, and measured the di�erence between entering and

exiting packets during the load of our one resource validation page. Table 4.3 summarizes our

measurements.

We measured rp in two directions, both the time it takes the proxy to dispatch a request to the

server a�er receiving a request from the client, and the time it takes to return a response from the

server to the appropriate client.�ese are denoted as rp∣up and rp∣down (respectively) in Table 4.3. As

our analytical model does not di�erentiate these quantities, we average the two values to form the

rp value supplied to our analytical model. Finally, as our proxy implementation is single-threaded,

we have set ri to 0 ms; ri is subsumed into our measured rp.

We expect these processing time values to be di�erent in a production system o�ering service to

multiple clients.�e results presented here suggest that multi-client systems can provide page-load

performance improvements if sized appropriately, but a deeper performance study is needed using

an implementation explicitly designed to support multiple clients.

51

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 20 40 60 80 100 120

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

Client - Proxy Latency (ms)

tload no proxy

tload prefetch

tload push

Figure 4.3: Actual load time for validation page with 1 embedded resource

4.3.2 Page with 1 embedded resource

Our �rst step measured load performance for a page with a single embedded image. As we can see

in Figure 4.3, the measured page-load time matches our analytical model (screened in gray) for

the no-proxy load; the proxied page loads take longer than expected by a constant amount. For

pages with a single embedded resource, our push proxy reduced the total load time by 45 ms with

a client-proxy latency of 50 ms, and by 149 ms with a latency of 100 ms.

�e most unique portion of our graphs is the area around lcp = 30ms, where lcp = lps. Figure 4.4

expands this area. Here, we expect to see the simple prefetching proxy change behaviour, and

switch from the slope of the push proxy to the same slope as no proxy. Practically, this is the

point where the simple prefetching proxy is able to prefetch resources to itself prior to the client

requesting them. Without a mechanism to send these resources to the client as in the push proxy

case, these resources must wait on the proxy until the client request arrives. As expected, we see

52

150.0

170.0

190.0

210.0

230.0

250.0

270.0

290.0

310.0

330.0

350.0

10 15 20 25 30 35 40 45 50

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

Client - Proxy Latency (ms)

tload no proxy

tload prefetch

tload push

Figure 4.4: Actual load time for validation page with 1 embedded resource, 10–50 ms

the characteristic change in slope occurring around lcp = 30 ms, con�rming our analysis.

4.3.3 Page with 3 embedded resources

Figure 4.5 shows the measured page-load time for a page with 3 embedded resources. As in the

previous case, our results have the same characteristic shape as in our analysis — the embedded

images are loaded in parallel, with the increase in total load time due to the additional transmission

and proxy processing time.

4.3.4 Page with embedded resources to depth 2

To determine how deep pages on the Internet are, we performed a brief survey of some popular web

sites. Table 4.4 summarizes our results. We found that the median depth for desktop web-pages

53

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 20 40 60 80 100 120

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

Client - Proxy Latency (ms)

tload no proxy

tload prefetch

tload push

Figure 4.5: Actual load time for validation page with 3 embedded resources

was 2, while mobile web-pages (pages designed explicitly for mobile browsers) were evenly split

between depths of 1 and 2. Here, we examine the behaviour of a page with an image resource

embedded at a depth of 2.

Figure 4.6 shows that the measured page-load time for pages with deep resource structures is

close to the load times predicted by our analysis. Our push proxy fares well here, following the

much shallower slope predicted by our analysis. During the entire course of the test, the total load

time for the proxied page stays under 500 ms; by the time lcp = 100 ms, it loads in roughly half of
the time of the no-proxy page.

4.3.5 Page with 10 embedded resources

Figure 4.7 shows the measured page-load time for a page with 10 embedded resources, a condition

we did not analyze in the previous chapter. �is page is similar to the 3 resources page tested

54

Table 4.4: Real-world page size examples
Resources Depth Weight

Google 4 1 71 kB
Bing 13 2 127 kB

Amazon 64 2 682 kB
Facebook 55 2 561 kB
Twitter 69 2 780 kB

uWaterloo 18 2 784 kB
Wikipedia 39 2 737 kB
Yahoo! 43 2 699 kB
YouTube 28 2 652 kB
CBC News 71 3 912 kB

�e Toronto Star 186 3 2.56 MB
New York Times 93 4 1.19 MB

Bing (mobile) 6 1 11 kB
Facebook (mobile) 29 1 120 kB
Google (mobile) 2 1 85 kB
Yahoo! (mobile) 10 1 212 kB
YouTube (mobile) 8 1 318 kB
Amazon (mobile) 15 2 70 kB

New York Times (mobile) 29 2 130 kB
Toronto Star (mobile) 23 2 45 kB

Twitter (mobile) 11 2 127 kB
CBC News (mobile) 24 3 135 kB

55

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

0 20 40 60 80 100 120

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

Client - Proxy Latency (ms)

tload no proxy

tload prefetch

tload push

Figure 4.6: Actual load time for validation page with embedded resources to depth 2

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

0 20 40 60 80 100 120

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

Client - Proxy Latency (ms)

tload no proxy

tload prefetch

tload push

Figure 4.7: Actual load time for validation page with 10 embedded resources

56

previously, but because of the larger number of resources it triggers Chrome’s connections-per-

hostname limit of 6 [6]. As a result, we see an increase in the slope of the no-proxy and simple

prefetching proxy lines, up to a slope of 6.�is is similar to our results in the depth 2 case, where

we see an increase in slope due to the extra page depth, here, the connection limit acts similarly to

depth.

4.4 Real page performance

As we saw in the previous sections, our premise for improving page performance is sound; we can

improve the load performance of pages with multiple resources, regardless of depth, by pushing

these resources to the client prior to the client making a request for them. However, our tests

covered only simple pages with small numbers of resources; what happens when larger, more

complex pages like those seen on today’s web are accessed?

In order to answer this question, we mirrored two popular web sites, Amazon and Facebook,

onto our validation system. �e mobile versions of each of these sites were tested, as our push

proxy is intended to be used on mobile networks. As before, our validation system emulates

the con�guration seen in a service provider’s environment, with a mobile client connected by a

high-latency link to the mobile-network core, where the proxy is located.

For Amazon we mirrored the home page, which consisted of 15 resources and a depth of 2.

Figure 4.8 presents our results. As we can see, our push proxy performs better than no proxy for

client-proxy latencies in excess of 10 ms, with a page-load time reduction of 468 ms at lcp = 100 ms.
�is is an easily perceptible decrease in Amazon’s load time. tload increased by 14 ms for each

additional millisecond of client-proxy latency when no proxy was present, while it increased by a

57

0.0

500.0

1000.0

1500.0

2000.0

2500.0

0 20 40 60 80 100 120

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

Client - Proxy Latency (ms)

tload no proxy

tload prefetch

tload push

Figure 4.8: Load time for mirrored Amazon home page

shallower 9 ms/ms when accessed through our proxy.

We selected the Celebrities on Facebook fan page from Facebook, which resembles a user’s

wall page but is publicly accessible. �is page consists of 29 resources, all loaded from the root

HTML �le (depth 1). Figure 4.9 presents our results. As was the case with Amazon, our push

proxy performs better than no proxy for client-proxy latencies in excess of 10 ms. Due to the larger

number of resources, however, we see a larger reduction in the total page-load time, with a decrease

of 839 ms at lcp = 100 ms.

Both pages here are in�uenced by an additional factor not explored in the previous sections;

the browser’s per-host connection limit (summarized in Table 2.1). For the browser used in testing,

Google Chrome, that limit is 6 — only 6 resources can be loaded in parallel per domain. With 15

and 29 resources in the pages from Amazon and Facebook (respectively), Chrome must request

the resources in stages, with 3 stages needed for Amazon and 5 stages needed for Facebook.�e

58

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

0 20 40 60 80 100 120

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

Client - Proxy Latency (ms)

tload no proxy

tload prefetch

tload push

Figure 4.9: Load time for mirrored Celebrities on Facebook Facebook fan page

large number of resources combined with the connection limit serves to arti�cially increase the

depth of the page. As we saw in Chapter 3, we expect slope to be proportional to depth, and that is

re�ected here; the page from Facebook has a higher slope than the page from Amazon, and the

improvement seen with our proxy is larger as a result.

4.5 3G performance

�e �nal test of our system is to see how it operates over an actual 3G network. Because we cannot

access the mobile-network core, we cannot reproduce the scenario a mobile client would face; the

client’s tra�c has to go out of its way to reach our proxy, rather than passing through it upon exiting

the network core.�is adds an additional path latency when the proxy is used that is not present

with no proxy; as a result, in order for us to see a performance improvement our just-in-time push

59

client

client
daemonbrowser

proxy

prefetch/push
service

server

HTML
Image

lcp

lps
lcs

Figure 4.10: Additional path latency encountered in 3G test architecture

proxy must reduce the total load time by this extra path latency as well as the processing time of

the proxy as we saw previously. Figure 4.10 diagrams this extra latency; note that lcp + lps > lcs.

4.5.1 University of Waterloo home page

�e �rst page we measured was the University of Waterloo home page at www.uwaterloo.ca.�is

page consists of 18 resources and has a depth of 2; the total download size is 784 kB. Tests were

performed using HSPA+ 3G data sticks from two Canadian mobile service providers, Rogers and

Bell. Both sticks were capable of operation at 21 Mbps, though due to the other users on the 3G

network it is unlikely these sticks reached this speed during our testing. Tests were performed on a

weekday during work hours so that network loads similar to those encountered in day-to-day use

were present.

We deployed our just-in-time push proxy on a server in our research lab for this test. �is

60

Table 4.5: Network segment latencies when loading University of Waterloo home page

lcp lps lcs

Rogers 53 ms 0.6 ms 52 ms
Bell 37 ms 0.6 ms 36 ms

0

500

1000

1500

2000

2500

Rogers HSPA+ Bell HSPA+

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

tload no proxy

tload push

Figure 4.11: Load time for University of Waterloo homepage using 3G data stick

allows us to minimize the path latency di�erence between loads using no proxy and loads with our

push proxy, simulating the situation where our push proxy is deployed into the carrier’s mobile-

network core (which likewise has minimal path latency). In this case, the additional path latency

encountered in this test (not including processing time) was 1.6 ms.�e latencies for each network

segment are presented in Table 4.5.

Following the procedure outlined in Section 4.3.1, we measured the processing and queuing

delay of our proxy using tcpdump. On this machine, our proxy took 24.2 ms to make a request to

the server upon receiving a request from the client, and 0.9 ms to forward the response from the

server to the client.

Figure 4.11 displays the load time for the University of Waterloo home page over both mobile

networks, with and without our proxy.�e magnitude of improvement seen on each network is

61

Table 4.6: 3G user bandwidth on Rogers and Bell networks

A�ernoon Night

Rogers 939 kBps 1,210 kBps
Bell 537 kBps 739 kBps

quite perceptible to a user, consisting of a 645 ms reduction on the Rogers network and a 658 ms

reduction on the Bell network. �e load times on each network are quite di�erent, however —

the page loads in 1665 ms on the Rogers network, while it takes 2243 ms on the Bell network (an

additional 578 ms).�ere are a number of possible explanations for this di�erence — network load,

coding di�erences, backhaul limitations — so we ran an additional set of tests to see if we could

determine the cause. Our results are presented in Table 4.6, which were taken during the workday

as well as in the middle of the night when 3G networks are underutilized.

As we can see from Table 4.6, minimizing the number of users on the network by accessing the

network in the middle of the night increases the bandwidth available to the user on each network,

but does not address the di�erence between the two networks. To determine whether the di�erence

could be because a tighter coding scheme was used on our Rogers 3G data stick as a result of being

closer to a Rogers cell tower, we looked up the locations of the nearest cell towers to our testbed

using Industry Canada’s Spectrum Direct tool [28]. It showed that the closest Rogers tower was

376 m from our position, while the closest Bell tower was 1.84 km away, supporting this theory.

Without access to the radio interface on the 3G sticks, we are unable to determine the precise

coding rates used by our data sticks at the time of our tests. Alternatively, the di�erences we see

could be the result of limited backhaul available to the Bell tower, which would result in a similar

di�erence between networks; we believe this to be a less likely explanation, as in that case we would

expect to see a larger di�erence in bandwidth between our day and night tests on the Bell network.

62

4.5.2 Validation pages

Our second set of tests measures the load times of the pages we used for validation when accessed

via the Rogers 3G network. �e test pages from sections 4.3 – 4.4 were uploaded to Amazon

Cloudfront, a content-delivery network hosted by Amazon. As content-delivery networks move

content ever closer to clients, they magnify the latency di�erence between the client-to-network

and network-to-server segments; in some cases, the latter segment is nearly zero. �is architecture

provides a particularly big opportunity for our push proxy, as the larger the imbalance between the

two segments, the higher the potential gain.

However, as we are not able to deploy our proxy into the mobile-network core nor along the

route to the server (as was the case for the previous test), the test also encounters additional path

latency. We sought to minimize latency by deploying our proxy to a Virtual Private Server (VPS)

located at 151 Front Street in Toronto.�is data center contains the major Internet peering point for

southern Ontario, and most of the major service providers in our area peer with other providers at

this location. Even with our server located here, we saw an additional 10 ms of path latency added

when we used our push proxy; lcp is 38 ms, lps is 12 ms, and lcs is 40 ms. Using the procedure from

Section 4.3.1, we measured the processing and queuing delay of our proxy on this VPS at 19 ms to

make a request to the server upon receiving a request from the client, and 0.4 ms to forward the

response from the server to the client.

As we can see in Figure 4.12, our just-in-time push proxy obtains modest reductions of 40 ms

(1 resource) to 65 ms (3 resources) on pages with depth 1 and small numbers of resources. Our

10 resource validation page sees a smaller than expected reduction of 26 ms, though our depth 2

page sees a larger reduction as expected, of 134 ms. In all cases except the depth 2 resource, the

reductions in page-load time are too small to be perceptible to an end user [9,41,42]; the di�erence

63

0

200

400

600

800

1000

1200

1 Resource 3 Resources 10
Resources

Depth 2
Resource

Facebook
Mirror

Amazon
Mirror

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

tload no proxy

tload push

Figure 4.12: Load time for validation pages accessed using 3G data stick

in the depth 2 case is minimally perceptible.�e reduction in performance here is a result of the

extra path latency present here; with an extra 10 ms in path latency and 19.4 ms in processing delay,

our push proxy must e�ectively overcome the no-proxy case’s 39.4 ms head start on the �rst load

to provide a bene�t.

We would expect to see larger reductions for Amazon and Facebook, as both of these sites

contain a larger number of resources and demonstrated larger page-load time reductions within our

validation environment; indeed, that is exactly what we see here. With 29 resources, the Facebook

mirror page sees a 166 ms reduction in page load time, an easily perceptible improvement. �e

Amazon mirror, with only 15 resources, sees a smaller improvement of 46 ms.

64

client

browser &
client

daemon
proxy

prefetch/push
service

Amazon/Facebook

HTML
Image

lcp = 38 ms

Figure 4.13: Network segment latencies when loading live pages

4.5.3 Live pages

Our �nal tests consist of accessing the live copies of the mirrored pages we made of Amazon’s and

Facebook’s websites through our proxy using the 3G data stick. As in the last test, we used the

Rogers 3G network, and placed our proxy on the same Virtual Private Server in Toronto. Figure 4.13

presents the latencies encountered for each website.�e total additional time encountered with

our proxy includes both the network latency detailed in Figure 4.13 as well as the processing and

queuing delay on the proxy of 19.4 ms as before.

Another contributing factor to the performance of these live sites is our embedded resource

identi�cation accuracy; how accurately and completely our proxy predicts which resources are

needed to display the page. In previous tests, our accuracy was high as the only resources were

embedded directly into the HTML or CSS �les, and our proxy can detect both types of resources.

In practice, alternate ways of loading resources are available to page authors that our simple proxy

65

0

300

600

900

1200

1500

1800

Facebook Live Amazon Live

Pa
ge

 L
oa

d
Ti

m
e

(m
s)

tload no proxy

tload push proxy

tload tunnel

Figure 4.14: Load time for Amazon and Facebook using 3G data stick

implementation is unable to detect, with loads via JavaScript being the most signi�cant. By missing

a resource, the proxy forces the client to spawn an end-to-end request that can decrease the

page-load speed and result in performance similar to the no proxy case.

Figure 4.14 presents the results of the live page test. For both Amazon and Facebook we see

that the push proxy takes a similar amount of time to load the tested pages than loading the pages

without our proxy present, with a 35 ms increase in load time when accessing Facebook and a

49 ms decrease in load time when accessing Amazon. As a result, in this instance there is no clear

bene�t for running our proxy.�is does not appear to be the result of di�ering prefetch accuracies,

as both Facebook and Amazon have acceptable prefetch rates of 78% and 56%, respectively.

We theorized that the lack of improvement in this case was due to the additional path latency

incurred by the proxy not being located in the mobile network core. To con�rm our theory, we

created a SSH tunnel between the client and our proxy, which routed the tra�c from the client

through the proxy machine (though not our proxy so�ware); this equalizes the path latency

between the no-proxy and push proxy cases. Tunnelling the tra�c through the proxy machine

resulted in a processing delay of 1.5 ms (upsteam) and 0.2 ms (downstream); this compares to the

66

19 ms (upstream) and 0.4 ms (downstream) of processing delay when passing through our proxy

so�ware on the same machine.

As we can see in Figure 4.14, when the extra path latency is eliminated our proxy again shows

performance improvements, of 178 ms for Facebook and 317 ms for Amazon. �is underscores

the importance of deploying our solution in the mobile network core — when the proxy is moved

o� of the path between client and server, it becomes much more di�cult to realize a performance

gain.

4.6 Implementation

Although we are primarily concerned with performance, we excluded client prefetching as a viable

option for the mobile environment in Chapter 2 because of the amount of extra data transfer it

requires. To see how e�ectively our simple just-in-time push proxy implementation works in

practice, we measured the number of resources it was able to prefetch , the number of prefetched

resources that were subsequently used, and the amount of data transferred to the client in error, as

a percentage of the total page size. �e measures of detection rate and prediction accuracy provide

a measure of the e�ectiveness of our HTML/CSS scanning engine, while the data overhead allows

us to compare our solution with the overheads encountered in client-based prefetchers, which

typically have overheads in the range of 150% to 300% [31]. Figure 4.7 contains our results.

Resource detection rates are moderately low in our test set, with an average of 51% of resources

detected in desktop pages and 55% detected in mobile pages. �ough we cannot obtain 100%

detection — we can never detect the load of the root HTML �le before it occurs — a higher

resource detection rate would allow our proxy to obtain larger decreases in page-load time. In

67

Table 4.7: Prediction accuracy and extra data overhead
Resources Prefetched Extra

Resources
Data

Overhead

Amazon 196 144 75 +62%
CBC News 168 72 14 +2.1%
Facebook 68 9 3 +0.6%
Google 9 1 0

�e Toronto Star 268 192 24 +17%
Twitter 98 46 13 +5.2%

uWaterloo 22 18 4 +310%
Wikipedia 44 26 6 0.9%
Yahoo! 78 51 32 +27%
YouTube 57 25 22 +23%

Amazon (mobile) 16 9 0
CBC News (mobile) 37 27 7 +1.2%
Facebook (mobile) 32 25 0
Google (mobile) 8 3 1 +0.4%

Toronto Star (mobile) 31 25 2 +0.2%
Twitter (mobile) 6 4 0
Yahoo! (mobile) 55 37 3 +3.5%
YouTube (mobile) 8 1 1 +0.2%

68

particular, if the resources our push proxy reduces the load time for are not on the critical path

for the page load, we may see no change in the total page-load time; the larger the number of

resources we miss, the higher the likelihood that we do not shorten the critical path. We also note

that our proxy did not prefetch a web site’s favicon.ico �le unless it was referenced in the root

HTML �le; this icon is displayed in the tab’s tile bar and is typically loaded a�er the page �nishes

loading. Removing both the favicon and the root HTML �le from our results above results in a

minor increase in the average detection rate, up 6%.

Increasing the detection rate will likely require moving beyond simple scanning of the HTML

and CSS sources. Taking the YouTube mobile page as an example, our proxy prefetched none of

the 8 required resources. A manual scan of the page indicates that this page builds itself almost

exclusively with JavaScript, which our simple scanner is unable to process. Unfortunately, there

are no standardized ways of loading resources with JavaScript, and therefore, any scanner would

likely have to execute the JavaScript in order to determine which resources it loads. Furthermore,

as noted at the beginning of this chapter, our proxy discards detected resources in unused styles.

While this detection is accurate when CSS styles are applied statically, when JavaScript is used to

apply a CSS style (as is o�en the case with interactive elements), we likewise are unable to detect

the resource. In addition, our scanner was also unable to identify resources in CSS resource blocks

places within a page’s HTML; this does not seem to be a widespread practice in the pages in the

test set.

Prediction accuracy was moderately good, with 67% of prefetched resources subsequently

used by the browser across all desktop pages, and 89% of prefetched resources used across all

mobile pages. A brief survey of the erroneously fetched resources indicated they were the result of

unused styles; though our proxy attempted to �lter these out, it was unable to remove them all.

69

�e disparity between the prefetch accuracy for desktop and mobile pages appears to be the result

of the page size and structure; mobile pages tend to have less interactivity and complexity, and as

a result our proxy was better able to distinguish used styles from unused styles. As our proxy is

designed for use primarily in the mobile environment, the 89% accuracy it received with the pages

in our mobile test set is positive.

Compared to client based-prefetchers, our push proxy achieves lower data overheads, with

the mobile test set sporting an average byte overhead of 0.7%. �e desktop set is higher, at 45%,

primarily due to the particularly large overhead during the load of the University of Waterloo

home page, which had a byte overhead of 310%. Our investigation of this result determined that the

increase was almost exclusively due to the erroneous load of a single resource, a 780 kB image.�e

actual load size for the page was 252 kB, resulting in a high overhead. �e extra resource load (and

indeed, all extra resource loads on this page) were the result of our proxy fetching a style sheet not

intended for our browser, Google Chrome; that image and the associated style sheet are intended

for Internet Explorer 7. As our proxy is unable to identify <!--[if IE 7]><![endif]--> and

similar conditional comments, extra data is fetched when using browsers other than the browser

speci�ed by the condition. Decreasing the data overhead would require identifying conditional

includes of this form and comparing the browser’s User-Agent header to the include to determine

whether or not the speci�ed include should be fetched.

70

Chapter 5

Future and RelatedWork

5.1 Future work

An important piece of future work would be to develop an implementation of our system for

current generation smartphones and tablets, to ensure that the results we saw here also hold true

for these systems. In particular, should the low-power processors placed on these devices spend

a high proportion of their time rendering pages rather than loading them (a situation that is not

true of the desktop computer in our tests in Chapter 4), the bene�ts gained by our system may

not play out in practice once we factor in the page rendering time. �ough this is likely to be a

transient condition —mobile devices are becoming ever more powerful — it may be a barrier to

our system becoming adopted at the current time.

As we noted in Chapter 4, for simplicity our implementation uses a TCP connection to connect

the client daemon to the proxy. Numerous studies have explored TCP’s poor performance in the

mobile environment [17], and as we have designed this system speci�cally to overcome latencies

71

present in mobile wireless connections, it would be prudent to use a protocol more suited for

wireless transmissions. Since our system requires so�ware on both client and proxy, and our proxy

sends all web requests over the channel that connects the two elements, we have the opportunity

to use a wireless-optimized protocol without having to interoperate with old servers and without

having to modify client application connection libraries; the changes can be implemented solely

within our architecture.

�ough our push proxy was able to achieve high prediction rates on our validation test pages,

real-world pages are much harder to predict accurately. Our predictor scanned only HTML and

CSS �les looking for referenced resources; however, the page author can also reference resources

dynamically using scripts embedded in the page. �is technique is used during the initial page

load, where the browser determines the right resources to load based on user’s identity (or their

browser’s identity, when used to work around browser limitations); it is also the key feature of

AJAX web applications, where it allows for deferred loading [55].

Another situation impacting our predictor’s accuracy is the caching of resources that web

browsers perform. By caching the resource, the browser can load it directly from its cache, without

going to the network (or go to the network only to validate that the resource has not changed on

the server). On the proxy, however, we have no access to the list of resources that the browser

has cached, and must retrieve all embedded objects from the server and push them to the client —

even objects that the browser has previously cached. For this reason, some of the systems listed in

Chapter 2 disable the browser cache [31, 36] or ignore the issue altogether.

We believe that both of these problems can be resolved through a more detailed modeling of

the client browser on the proxy. For maximum compatibility, running a headless copy of the client

web browser on the proxy server would allow the proxy to execute JavaScript code against the

72

browser DOM, ensuring that the prefetcher requests all dynamically-inserted resources, and would

also allow the browser to build its cache using the same logic used on the client.

A more fundamental limitation of all implementations of our system is the use of HTTPS by

the client browser to securely connect to a web site. With HTTPS, the operating system encrypts

tra�c at the transport level, which means that proxy servers placed between client and server are

unable to read the content that passes through them. As a result, our push proxy is unable to scan

the responses for embedded resources. Identifying ways to work with HTTPS is a signi�cant area of

future work, especially as it must ensure that the security provided by HTTPS is not compromised

by the presence of side-channels (for instance, our push proxy should not know the identity of the

‘security image’ used on some banking websites, as this image is intended to be private between

client and server).

5.2 Related work

Due to the large number of components in the web architecture, the speed at which a page loads

can be improved in a number of di�erent areas. Our system increases performance by reducing

the number of network traversals the client must make while loading a page; other areas for

improvement include changing the design of the page, changing the way pages are served by

the server, preprocessing the page within the network, modifying the design of the underlying

connection, and extending the client browser to perform prefetching or increase rendering speed.

73

5.2.1 Similar systems

Research by Dong et. al [14] investigated a system in which pages requested by a client were fetched

from a server by a proxy and then compressed into a TAR archive in order to reduce the latency

present in mobile web browsing.�eir research is only preliminary, however — no description is

given for how they identify all of the components of a web page, nor how the client decodes the

resulting archive for display. Furthermore, their results are based on simulation, rather than an

implementation of their system. Architecturally, this system is similar to our own, in that content

is fetched by a proxy and pushed to a mobile client; numerous issues need to be addressed before it

reaches the capabilities of our system.

Commercial web accelerators perform a range of optimizations that fall inmany of the following

categories; many of these optimizations are proprietary and not documented publically. One such

optimization appears super�cially similar to ours, and is described by itsmanufacturerOpenwave as

“When a user requests a URL, [Openwave’s] Web Optimizer creates a compressed multipart/related

document to return to the handset.” [44] Multi-part HTTP documents, denoted by the MIME type

multipart/related, consist of a root document and accompanying �les identi�ed by URL, and

have been traditionally been used by email clients for rich text emails as well as by Internet Explorer

to save complete web pages (the MHTML �le type). �ough further details on Openwave’s system

are not available, we posit that their Web Optimizer packages all of the resources for a requested

page into a single MHTML document for transmission to the client, which can then display the

entire page immediately. In this manner, it acts similarly to our own system; the proxy fetches the

necessary content on behalf of the client without waiting for it to make corresponding requests,

improving the perceived page load time by reducing the number of client–network round-trips. It

is unclear from the Openwave documentation how many multi-part documents are created; if only

74

a single document is created, all resources must be loaded sequentially due to the contiguous nature

of multipart/related documents. �ough some technical di�erences exist between our system and

Openwave’s, architecturally both systems can obtain the same bene�ts when operating in a mobile

environment.

However, as Openwave’s Web Optimizer is a client-less product the use of this optimization

is dependent on mobile browser support of multi-part documents. At the current time, only

BlackBerry OS 5 and earlier support multi-part documents; on the desktop browser side, only

Internet Explorer and Opera do. Support for MHTML documents has recently been added to

WebKit; in the future, we may see support by Safari (iOS), Chrome (Android), and BlackBerry

OS 6 and above. We believe that this optimization is of limited use at this time, though a client

daemon analogous to our own could be created to act as an intermediary. A similar system, in

which a multi-part document is prepared following an initial handshake with the client browser to

con�rm compatibility and containing the root HTML �le is described in US patent 2005/0144278;

we know of no commercial implementation of this patent.

5.2.2 Page improvements

�e best way to improve the speed at which a web site loads over a mobile network connection is to

design the site speci�cally for mobile clients; by eliminating images and other media elements, the

number of round-trips between mobile client can be reduced. Companies like Facebook, Google,

and the New York Times o�er mobile sites for this reason. As shown in Chapter 4, even mobile sites

can see an improvement with our just-in-time push proxy. An alternative to eliminating images is

embedding them within the page itself using data URIs [39]. Resources embedded this way do not

require the browser to make a separate request for the resource data, eliminating a client-server

75

round trip; both the iOS and Android browsers support this technique [6].

In addition to changing how a page references resources, both Google [25] and Yahoo [60]

have developed tools that audit web sites and provide a list of recommendations to increase the

page-load speed.�ese recommendations include ways to optimize caching through the use of

far-future expires headers, minimizing upload size, and optimizing the way the browser lays out

and requests a page [25, 60]. Using these techniques, reductions in page-load times of 25–50% are

obtainable [54]. Google has recently packaged some of the above practices into an Apache module,

mod pagespeed, that performs these optimizations automatically [25].

5.2.3 Server improvements

�ere are a myriad of ways to reduce the time it takes a server to process a request for data, adapted

to the speci�c type of resources being served by the web server (static �les, dynamically generated

pages, web applications, or streaming media). A full coverage of these techniques is not presented

here, as the time it takes a server to serve the same content to a mobile client and a desktop client

is equal; these techniques improve desktop and mobile page-load times equally.

We do make speci�c mention of the work done by Bhatti et al. [4] and Olshefski and Nieh [43]

to incorporate a real-time measure of the user-perceived latency into the design of the web server

itself. In particular, Bhatti et al. recommend using earliest deadline �rst scheduling on web servers,

based on the limits of human perception (discussed in Chapter 4) and the actual delay between

client and server [4]. In the mobile environment, this would result in mobile clients being served

before desktop clients, as delaying a desktop client by an imperceptible amount in favour of a

mobile client could result in modest speedups on the mobile client.

Another avenue for improving page load performance on the server is to increase the TCP

76

initial congestion window past the standardized maximum of 4 segments [37]. Work by Dukkipati

et al. showed that increasing the initial TCP congestion window to 10 segments on the Google

front-end servers reduced the average HTTP latency by 10% [16]. As this increase only results in a

0.5% increase in retransmissions [16], we believe this approach has merit for mobile clients.

Research by Serbinski and Abhari [52] proposed a system in which a custom-built HTTP server

anticipates client requests for embedded objects also located on the server and sends them to the

client automatically.�eir approach di�ers from previous work in that their engine only predicts

elements embedded in the current page, rather than using a probabilistic approach [52]. A daemon

running on the client acts as an intermediary between an unmodi�ed client browser and the server,

much like our client daemon acts as an intermediary between our proxy and the client.�is system

showed reductions in page load time of up to 73% in their tests [52].

�is system acts similarly to our system, except that the prefetching logic of our proxy is

colocated on the server, removing the need for a separate proxy machine. However, as a result

of this colocation only servers that have this logic added will see a corresponding reduction in

load time; in contrast, by having a separate proxy all pages accessed by a mobile client can see

better page-load performance with our system. Furthermore, our system is able to prefetch page

components from third-party servers, an important feature for current web pages, which are o�en

formed using components from third-party analytic, advertisement, or social media servers.

5.2.4 Network improvements

Future wide-area wireless technologies, like LTE-Advanced, are expected to bring higher raw and

user data rates along with lower latencies [21]. As discussed in Chapter 1, due to the shared-usage

nature of wide-area wireless technologies, we believe these technologies will continue to lag the

77

page-load speeds available with local-area networks. Femtocells and Wi-Fi provide an alternative

to wide-area wireless networks [27]; by reducing the transmission range, these technologies reduce

the number of users they can serve and therefore increase the fraction of the raw data rate that is

available to individual users.�ough expensive on a per-unit-area basis [10], the data rates and

latencies available with these technologies are similar to those found in wired networks, resulting

in similar page-load time.

SPDY is an experimental proposal proposed by Google for minimizing latency on the web.

SPDY replaces HTTP with a new application-layer protocol that allows for multiplexed streams,

prioritized requests, header compression, server hinting/pushing, and mandatory security that

results in a 27 – 60% reduction in page load times in their testing [24].�ough SPDY’s bene�ts come

from the con�uence of its features, the features with the most in common to our system are server

hinting/pushing. Using these features, a proxy could be constructed that runs a prefetching engine

similar to our own and then pushes the result to the browser without a separate client daemon.

Furthermore, unlike our system the hint mechanism of SPDY could be used to search the browser’s

cache to ensure that already-cached resources are not re-fetched by the proxy. Architecturally,

such a system could obtain the same bene�ts when operating in a mobile environment as our own

system.

We have not seen any evidence that such a system has been constructed; existing research

focuses on other performance-enhancing aspects of SPDY. In addition, mobile browsers would

have to be updated with support for SPDY; at the current time, no mobile browsers support SPDY,

and only Chrome supports SPDY on the desktop.

78

5.2.5 In-network processing

Given the small screen sizes present onmobile devices, a popular technique for improving page-load

times on mobile devices is to transcode web content by reducing the size of embedded resources,

summarizing text, and adapting the page layout [8]. Proteus, a mobile web adaptation system

developed by Caetano et al. [8], performs all of these functions, obtaining compression ratios of up

to 87%. Mowser, developed by Bharadvaj et al. [3], transcodes and �lters requests bidirectionally,

allowing the end server to provide scaled-down resources without requiring the proxy to transcode

them on behalf of the client; it also ensures that only content the mobile device is able to display

is requested from the server. Other transcoders [22, 38] show similar results, with signi�cant

reductions in the amount of data transferred between proxy and client.

In addition to simply transcoding information, the higher processing power available to net-

worked servers has been used to o�oad page processing and rendering from the mobile browser

into the network [30, 33, 46, 61]. �is approach has two major advantages: complex pages can

be rendered rapidly on the server, and the simpli�ed form that results is o�en smaller and faster

to transfer than the original page. A commercial example of this technology is the Opera Mini

browser, available for smartphones and feature phones [47].

Opera Mini optimizes the mobile web experience by relocating the browser rendering engine

to a proxy server ‘in the cloud’; the Opera Mini application that resides on the mobile client acts

only as an input/output component with no logic of its own. �e rendering engine and display

client communicate using a single TCP connection using a proprietary protocol known as OBML

(Opera Binary Markup Language) [45].

When a user enters a web address into Opera Mini, their request is passed to the Opera Mini

proxy.�e proxy requests the page from the end server, and continues to request and render the

79

page as information arrives from the server. Once the page has been rendered, the rendered form

is compressed and transmitted to the Opera Mini client that made the request, which displays the

page. �is process saves CPU usage on the mobile device and can reduces bandwidth by up to

90% [46]; other research [47] shows improvements of 27 – 67%. Perceived page load times can also

be reduced as a result of a reduction in the page transmission time, the increased render speed of

the server (more processing power), and by reducing the number of client–network round-trips.

Our just-in-time push prefetching system is similar to Opera Mini as it also improves the

perceived page load time by reducing the number of client-network round-trips; as this segment

is proportionally large in wireless wide-area networks, measurable reductions can be obtained.

Unlike Opera Mini, our system runs only a fetching engine and not an entire rendering engine on

the proxy; as a result, we require a full browser on the mobile client. Our proxy does not transcode

or compress any content; the amount of data transmitted across the wireless link is similar with or

without our proxy.

As a result of running the rendering engine on the proxy, Opera Mini has some notable

drawbacks that our system avoids by virtue of it using a full client browser. First, once the page

is loaded a static snapshot of the page is sent to the client; a�er this snapshot is sent, all scripts

are paused on the server and no further updates are sent unless the user interacts with the page.

�is prevents some common web techniques like timed AJAX updates from functioning [46].

Furthermore, if the user clicks on a page element the click event must be dispatched to the server,

the click handler executed, and a new snapshot prepared and sent to the Opera Mini client for

display. Given the high-latency �rst hop on wide-area wireless networks, this process can easily

take 100 ms or more – a delay that is certainly noticeable to users. Finally, though Opera Mini

uses a secure connection to communicate with its proxy, as all rendering happens on the proxy

80

the end-to-end security semantics of SSL are broken; should the Opera proxies be compromised,

the secure tra�c of many users could be viewed (in contrast, our proxy has no ability to see into

secure data streams).

5.2.6 Client improvements

In Chapter 2, we discussed prefetching web content as a strategy for reducing mobile page-load

times. Prefetching can be applied to other aspects of the client-server interaction as well. For

instance, prefetching — or pre-resolving — the DNS names of servers that the browser may access

saved an average of 250 ms in tests performed by the Google Chrome team [23]. Furthermore, as

each DNS request is typically small (hundreds of bytes), this approach adds minimal extra data

overhead even when the prefetching engine fetches unnecessary DNS entries. For this reason,

recent versions of the Firefox, Safari, and Chrome browsers support DNS pre-resolving.

Another intriguing approach is to ‘prefetch’ a TCP connection to the servers the browser

predicts the client will access in the future, without making a request for content [7, 12]. Since the

time it takes for TCP’s three-way handshake to occur can be a signi�cant portion of the total time

it takes to download a small resource, especially on high-latency links like those found in mobile

and satellite environments, this approach can o�er measurable performance bene�ts. However, the

utility of this approach is more limited than either DNS or content prefetching, as origin servers

typically close idle connections a�er tens of seconds or minutes [12].

Signi�cant e�ort has been invested in recent years to improve the speed at which pages load

within the browser, with approaches including improving the execution speed of Javascript en-

gines [19, 35], increasing parallelism in layout and rendering [1, 40], and caching style and page

fragments to save future recomputation [63].�ough Badea et al. [1] were able to increase page-

81

load speed by a factor of 1.84 with their parallel browser, as their tests were run in an o�ine

environment it is di�cult to compare the bene�ts available via browser improvements with our

own network-based improvements.

82

Chapter 6

Conclusions

Wehave presented a just-in-time prefetching push proxy that increases the speed ofmobile browsing

in wide-area wireless networks.�is architecture consists of an in-network proxy that proactively

prefetches resources embedded in the HTML pages loaded through it, and a client daemon that

the in-network proxy pushes prefetched resources to.

Our analysis of the push proxy showed that pushing content to the mobile client provides a

fundamental decrease in page-load times.�is decrease is due to the push proxy’s much smaller

dependence on the client to proxy latency, as compared to no proxy or a traditional prefetching

proxy.�is decrease holds for sites with multiple resources, including those resources reference

other resources. Our analysis shows that a push proxy can achieve a signi�cant decrease in page-

load times given the client-proxy latencies encountered in mobile networks; however, this proxy

must be deployed within the mobile network core (or elsewhere along the path from client to

server) to provide this bene�t. As our architecture is compatible with existing web browsers and

servers, we built a sample implementation to evaluate our design; this evaluation showed that our

83

architecture performs as expected in our validation environment, and shows promise when using

currently-deployed 3G networks to access the Internet.

Unlike typical proxies, where the largest performance gains occur when the proxy is close to

the client, our push proxy performs better when placed closer to the server.�is makes it ideally

suited for the web today, where techniques like content-delivery networks bring content ever closer

to the client yet cannot overcome the high-latency client-to-network segment present in mobile

networks.

84

References

[1] C. Badea, M. R. Haghighat, A. Nicolau, and A. V. Veidenbaum, “Towards parallelizing the

layout engine of Firefox,” in Proceedings of the 2nd USENIX Conference on Hot Topics in

Parallelism. Berkeley, CA, USA: USENIX Association, 2010, pp. 1–1.

[2] G. Barish and K. Obraczke, “World wide web caching: Trends and techniques,” IEEE Commu-

nications Magazine, vol. 38, no. 5, pp. 178 –184, May 2000.

[3] H. Bharadvaj, A. Joshi, and S. Auephanwiriyakul, “An active transcoding proxy to support

mobile web access,” in Proceedings of the 17th IEEE Symposium on Reliable Distributed Systems.

Washington, DC, USA: IEEE Computer Society, 1998, pp. 118–.

[4] N. Bhatti, A. Bouch, and A. Kuchinsky, “Integrating user-perceived quality into web server

design,” in Proceedings of the 9th International World Wide Web Conference on Computer

Networks. Amsterdam,�e Netherlands,�e Netherlands: North-Holland Publishing Co.,

2000, pp. 1–16.

[5] C. Bouras, A. Konidaris, and D. Kostoulas, “Predictive prefetching on the web and its potential

impact in the wide area,”World Wide Web, vol. 7, pp. 143–179, June 2004.

85

[6] Browserscope.org, “Browserscope web browser pro�les,” 2011. [Online]. Available:

http://www.browserscope.org/

[7] R. Cáceres, F. Douglis, A. Feldmann, G. Glass, and M. Rabinovich, “Web proxy caching:

�e devil is in the details,” SIGMETRICS Performance Evaluation Review, vol. 26, pp. 11–15,

December 1998.

[8] M. F. Caetano, A. L. F. Fialho, J. L. Bordim, C. D. Castanho, R. P. Jacobi, and K. Nakano,

“Proteus: An architecture for adapting web page on small-screen devices,” in Proceedings of the

2007 IFIP international conference on Network and parallel computing. Berlin, Heidelberg:

Springer-Verlag, 2007, pp. 161–170.

[9] S. K. Card, G. G. Robertson, and J. D. Mackinlay, “�e information visualizer, an information

workspace,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems:

Reaching �rough Technology. New York, NY, USA: ACM, 1991, pp. 181–186.

[10] V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks: A survey,” IEEE Com-

munications Magazine, vol. 46, no. 9, pp. 59 –67, 2008.

[11] Cisco Systems Inc., “Cisco visual networking index: fore-

cast and methodology, 2010-2015,” June 2011. [Online]. Avail-

able: http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/

white paper c11-481360 ns827 Networking Solutions White Paper.html

[12] E. Cohen and H. Kaplan, “Prefetching the means for document transfer: A new approach for

reducing web latency,” Computer Networks, vol. 39, no. 4, pp. 437 – 455, 2002.

86

http://www.browserscope.org/
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html

[13] J. Domenech, J. Sahuquillo, J. A. Gil, and A. Pont, “�e impact of the web prefetching ar-

chitecture on the limits of reducing user’s perceived latency,” in Proceedings of the 2006

IEEE/WIC/ACM International Conference on Web Intelligence. Washington, DC, USA: IEEE

Computer Society, 2006, pp. 740–744.

[14] W. Dong, X. Chen, S. Xu, W. Wang, and G. Wei, “Proxy-based object packaging and com-

pression: a web acceleration scheme for UMTS,” in 5th International Conference on Wireless

Communications, Networking and Mobile Computing, September 2009, pp. 1 –5.

[15] S. Drakatos, N. Pissinou, K. Makki, and C. Douligeris, “A context-aware prefetching strategy

for mobile computing environments,” in Proceedings of the 2006 International Conference on

Wireless Communications and Mobile Computing. New York, NY, USA: ACM, 2006, pp.

1109–1116.

[16] N. Dukkipati, T. Re�ce, Y. Cheng, J. Chu, T. Herbert, A. Agarwal, A. Jain, and N. Sutin, “An

argument for increasing TCP’s initial congestion window,” SIGCOMM Computer Communica-

tions Review, vol. 40, pp. 26–33, June 2010.

[17] H. Elaarag, “Improving TCP performance over mobile networks,” ACM Computing Survey,

vol. 34, pp. 357–374, September 2002.

[18] J. Fabini, W. Karner, L. Wallentin, and T. Baumgartner, “�e illusion of being deterministic –

Application-level considerations on delay in 3G HSPA networks,” in Proceedings of the 8th

International IFIP-TC 6 Networking Conference. Berlin, Heidelberg: Springer-Verlag, 2009,

pp. 301–312.

[19] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Kaplan, G. Hoare,

B. Zbarsky, J. Orendor�, J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and

87

M. Franz, “Trace-based just-in-time type specialization for dynamic languages,” in Proceedings

of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation.

New York, NY, USA: ACM, 2009, pp. 465–478.

[20] H. Galeana-Zapién and R. Ferrús, “Design and evaluation of a backhaul-aware base station

assignment algorithm for ofdma-based cellular networks,” Transactions in Wireless Communi-

cations, vol. 9, pp. 3226–3237, October 2010.

[21] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T.�omas, “LTE-advanced: Next-

generation wireless broadband technology.”

[22] J. G. S. Gonzalez, V. J. S. Sosa, A. R. Montes, and y J. Carlos R. Olivares, “Multi-format web

content transcoding for mobile devices,” in Seventh Mexican International Conference on

Computer Science, 2006, 2006, pp. 109 –115.

[23] Google, “DNS prefetching (or pre-Resolving),” 2008. [Online]. Available: http://blog.

chromium.org/2008/09/dns-prefetching-or-pre-resolving.html

[24] ——, “SPDY: An experimental protocol for a faster web,” November 2009. [Online]. Available:

http://www.chromium.org/spdy/spdy-whitepaper

[25] ——, “Web performance best practices,” 2011. [Online]. Available: http://code.google.com/

speed/page-speed/docs/rules intro.html

[26] P. Gulati, A. Sharma, A. Goel, and J. Pandey, “A novel approach for determining next page

access,” in First International Conference on Emerging Trends in Engineering and Technology,

2008, 2008, pp. 1109 –1113.

88

http://blog.chromium.org/2008/09/dns-prefetching-or-pre-resolving.html
http://blog.chromium.org/2008/09/dns-prefetching-or-pre-resolving.html
http://www.chromium.org/spdy/spdy-whitepaper
http://code.google.com/speed/page-speed/docs/rules_intro.html
http://code.google.com/speed/page-speed/docs/rules_intro.html

[27] S. Hasan, N. Siddique, and S. Chakraborty, “Femtocell versus Wi-Fi – A survey and compari-

son of architecture and performance,” in 1st International Conference on Wireless Communica-

tion, Vehicular Technology, Information �eory and Aerospace Electronic Systems Technology,

2009, May 2009, pp. 916 –920.

[28] Industry Canada, “Geographical area search — Spectrum Direct,” August 2011. [Online].

Available: http://sd.ic.gc.ca/pls/engdoc anon/web search.geographical input

[29] Joyent, Inc, “node.js: Evented I/O for V8 JavaScript,” 2010. [Online]. Available:

http://nodejs.org

[30] J. Kim, R. A. Baratto, and J. Nieh, “pTHINC: A thin-client architecture for mobile wireless

web,” in Proceedings of the 15th International Conference on World Wide Web. New York, NY,

USA: ACM, 2006, pp. 143–152.

[31] R. Klemm, “WebCompanion: A friendly client-side web prefetching agent,” IEEE Transactions

on Knowledge and Data Engineering, vol. 11, no. 4, pp. 577 –594, 1999.

[32] T. M. Kroeger, D. D. E. Long, and J. C. Mogul, “Exploring the bounds of web latency reduc-

tion from caching and prefetching,” in Proceedings of the USENIX Symposium on Internet

Technologies and Systems. Berkeley, CA, USA: USENIX Association, 1997, pp. 2–2.

[33] A. M. Lai, J. Nieh, B. Bohra, V. Nandikonda, A. P. Surana, and S. Varshneya, “Improving web

browsing performance on wireless pdas using thin-client computing,” in Proceedings of the

13th International Conference on World Wide Web. New York, NY, USA: ACM, 2004, pp.

143–154.

89

http://sd.ic.gc.ca/pls/engdoc_anon/web_search.geographical_input
http://nodejs.org

[34] K. Lau and Y.-K. Ng, “A client-based web prefetching management system based on detection

theory,” inWeb Content Caching and Distribution, ser. Lecture Notes in Computer Science,

C.-H. Chi, M. van Steen, and C. Wills, Eds. Springer Berlin / Heidelberg, 2004, vol. 3293, pp.

129–143.

[35] S.-W. Lee, S.-M. Moon, W.-K. Jung, J.-S. Oh, and H.-S. Oh, “Code size and performance

optimization for mobile JavaScript just-in-time compiler,” in Proceedings of the 2010 Workshop

on Interaction between Compilers and Computer Architecture. New York, NY, USA: ACM,

2010, pp. 6:1–6:7.

[36] T. S. Loon and V. Bharghavan, “Alleviating the latency and bandwidth problems in WWW

browsing,” in Proceedings of the USENIX Symposium on Internet Technologies and Systems.

Berkeley, CA, USA: USENIX Association, 1997, pp. 20–20.

[37] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s initial window,” RFC 3390, 2002.

[Online]. Available: http://www.ietf.org/rfc/rfc3390.txt

[38] A. Maheshwari, A. Sharma, K. Ramamritham, and P. Shenoy, “Transquid: Transcoding and

caching proxy for heterogenous e-commerce environments,” in Proceedings of the Twel�h

International Workshop on Research Issues in Data Engineering: Engineering E-Commerce/E-

Business Systems, 2002, 2002.

[39] Masinter, L., “�e “data” url scheme,” RFC 2397, 1998. [Online]. Available: http:

//www.ietf.org/rfc/rfc2397.txt

[40] L. A. Meyerovich and R. Bodik, “Fast and parallel webpage layout,” in Proceedings of the 19th

International Conference on World Wide Web. New York, NY, USA: ACM, 2010, pp. 711–720.

90

http://www.ietf.org/rfc/rfc3390.txt
http://www.ietf.org/rfc/rfc2397.txt
http://www.ietf.org/rfc/rfc2397.txt

[41] R. B. Miller, “Response time in man-computer conversational transactions,” in Proceedings of

the December 9-11, 1968, Fall Joint Computer Conference, Part I. New York, NY, USA: ACM,

1968, pp. 267–277.

[42] J. Nielsen, Usability Engineering. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 1993.

[43] D. Olshefski and J. Nieh, “Understanding the management of client perceived response time,”

in Proceedings of the Joint International Conference on Measurement and Modeling of Computer

Systems. New York, NY, USA: ACM, 2006, pp. 240–251.

[44] Openwave Systems, “Openwave Web Optimizer,” February 2011. [Online]. Available:

http://www.openwave.com/sites/default/�les/docs/solutions/WebOptimizer 021011 0.pdf

[45] Opera So�ware, “Opera Mini FAQ,” 2011. [Online]. Available: http://www.opera.com/

mobile/help/faq/

[46] ——, “Opera Mini: Web content authoring guidelines,” February 2011. [Online]. Available:

http://dev.opera.com/articles/view/opera-mini-web-content-authoring-guidelines/

[47] S. Østen, “Analysing the compression of Opera Mini™ tra�c,” Master’s thesis, Oslo University

College, 2008.

[48] V. N. Padmanabhan and J. C. Mogul, “Using predictive prefetching to improve world wide

web latency,” SIGCOMM Computer Communications Review, vol. 26, pp. 22–36, July 1996.

[49] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee, “Hypertext transfer protocol – HTTP/1.1,” RFC 2616, 1999. [Online]. Available:

http://www.ietf.org/rfc/rfc2616.txt

91

http://www.openwave.com/sites/default/files/docs/solutions/WebOptimizer_021011_0.pdf
http://www.opera.com/mobile/help/faq/
http://www.opera.com/mobile/help/faq/
http://dev.opera.com/articles/view/opera-mini-web-content-authoring-guidelines/
http://www.ietf.org/rfc/rfc2616.txt

[50] Sandvine Inc., “2010 mobile Internet phenomena report,” 2010. [Online]. Available: http:

//www.sandvine.com/downloads/documents/2010MobileInternetPhenomenaReport.pdf

[51] J. H. Schiller,Mobile Communications, 2nd ed. Addison-Wesley, 2003.

[52] A. Serbinski and A. Abhari, “Improving the delivery of multimedia embedded in web pages,”

in Proceedings of the 15th International Conference on Multimedia. New York, NY, USA:

ACM, 2007, pp. 779–782.

[53] N. Shetty, S. Parekh, and J. Walrand, “Economics of femtocells,” in IEEE Global Telecommuni-

cations Conference, 2009, December 2009, pp. 1 –6.

[54] S. Souders, High Performance Web Sites, 1st ed. O’Reilly, 2007.

[55] ——, Even Faster Web Sites: Performance Best Practices for Web Developers, 1st ed. O’Reilly,

2009.

[56] W.-G. Teng, C.-Y. Chang, and M.-S. Chen, “Integrating web caching and web prefetching in

client-side proxies,” IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 5, pp.

444 – 455, May 2005.

[57] T.�eurer, “Performance research, part 2: Browser cache usage – exposed!” January 2007.

[Online]. Available: http://yuiblog.com/blog/2007/01/04/performance-research-part-2/

[58] 3GPP, “High speed packet access (HSPA) evolution; frequency division duplex (FDD),”

3rd Generation Partnership Project (3GPP), TR 25.999, Mar. 2008. [Online]. Available:

http://www.3gpp.org/�p/Specs/html-info/25999.htm

[59] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to build high-performance network

programs,” IEEE Internet Computing, vol. 14, pp. 80–83, November 2010.

92

http://www.sandvine.com/downloads/documents/2010 Mobile Internet Phenomena Report.pdf
http://www.sandvine.com/downloads/documents/2010 Mobile Internet Phenomena Report.pdf
http://yuiblog.com/blog/2007/01/04/performance-research-part-2/
http://www.3gpp.org/ftp/Specs/html-info/25999.htm

[60] Yahoo Inc., “Best practices for speeding up your web site,” 2010. [Online]. Available:

http://developer.yahoo.com/performance/rules.html

[61] S. J. Yang, J. Nieh, S. Krishnappa, A. Mohla, and M. Sajjadpour, “Web browsing performance

of wireless thin-client computing,” in Proceedings of the 12th International Conference on World

Wide Web. New York, NY, USA: ACM, 2003, pp. 68–79.

[62] S. Yun, Y. Yi, D. Cho, and J. Mo, “On the pricing of femtocell services,” in Proceedings of the

5th International Conference on Future Internet Technologies. New York, NY, USA: ACM,

2010, pp. 1–4.

[63] K. Zhang, L. Wang, A. Pan, and B. B. Zhu, “Smart caching for web browsers,” in Proceedings

of the 19th International Conference on World Wide Web. New York, NY, USA: ACM, 2010,

pp. 491–500.

93

http://developer.yahoo.com/performance/rules.html

	List of Tables
	List of Figures
	Introduction
	Contributions
	Organization

	Background
	Sources of delay in wide-area wireless networks
	How latency affects page-load speed
	Minimizing the effects of latency on web browsing
	Caching
	Client prefetching
	Network-side latency reductions
	Resource bundling

	A Just-In-Time Prefetching Push Proxy
	Performance analysis
	Intuition
	Loading the root HTML file
	Loading a page with 1 embedded resource
	Loading a page with multiple embedded resources
	Loading a page with nested resources

	Observations

	Evaluation
	Proxy implementation
	Proxy operation

	Evaluation framework
	Architecture validation
	Processing time
	Page with 1 embedded resource
	Page with 3 embedded resources
	Page with embedded resources to depth 2
	Page with 10 embedded resources

	Real page performance
	3G performance
	University of Waterloo home page
	Validation pages
	Live pages

	Implementation

	Future and Related Work
	Future work
	Related work
	Similar systems
	Page improvements
	Server improvements
	Network improvements
	In-network processing
	Client improvements

	Conclusions
	References

