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Abstract

The IEEE 802.15.4 standard defines the implementation of a Low-Rate Wireless Per-
sonal Area Network (WPAN). While the current version of the standard was ratified
in 2006, there is still no readily available Medium Access Control (MAC) layer and/or
Physical (PHY) layer for Altera Field Programmable Gate Arrays (FPGAs) in the public
domain. This research investigates the implementation of the standard using an Altera
FPGA for the MAC layer and PHY layer drivers. The Freescale MC13192 transceiver was
used for the physical portion of the PHY layer, which includes the RF front end of the
system.

The purpose of this research was to implement a basic full function device (FFD), which
is capable of acting as a node in the network, as well as co-ordinating it. This allows a simple
network to be tested by loading the same code on two FPGA boards, with one configured
to act as a coordinator and the other as a device. The flexibility of the standard means that
there are several implementation choices to be made, each of which limits the compatibility
with devices using other implementation options. The implementation and design decisions
made in producing a preliminary core are described in detail. The implementation of the
MAC layer primitives is discussed at length as these were not available as source code.
These primitives are the building blocks for the core functions of the system. Specifically,
the functionality of the Energy Detection (ED) scan, stream transmit and stream receive
functions are explored in detail. The code has been implemented using C and is run on the
Altera Nios II soft-core processor. The work presented here is an initial implementation
meant to serve as a foundation for further research. Additional functionality defined by
the standard could be added, or optimization of individual functions could be explored.
The current implementation also has the potential to serve as the foundation for research
into various sensors which may be part of end devices in the network.
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Chapter 1

Introduction

The IEEE 802.15.4 standard defines a low-rate wireless personal area network (WPAN)[1].

While some research has been done in the past on the implementation of the MAC and

PHY layers of this standard on FPGA[2, 3], the implementations are not publicly available.

Another challenge in implementing this standard is the flexibility of implementation that it

allows. As a result, two systems compliant with the standard are not necessarily compatible

with one another, depending on the configuration selected.

The implementation of a reconfigurable IP core ultimately allows users to quickly adapt

the FPGA implementation for use with 802.15.4 compliant hardware produced by various

vendors, regardless of the implementation options selected. A modular design also makes it

possible to shrink the code footprint by eliminating functionality not used by a particular

configuration.

1.1 Motivation

When the idea of implementing the standard on an FPGA was first explored, research was

done to determine what was currently available in the public domain. It was observed
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early on that despite the standard being ratified for over 7 years, there seemed to be very

few readily available implementations. Most of the implementations found were device or

product family specific. These were often provided in the form of pre-compiled code by the

device manufacturer. The inner workings of the code were clearly meant to remain a black

box to the user. There are two problems with the use of such code. First, it cannot be

easily adapted to meet the needs of a particular system. For example, unneeded features

cannot easily be removed to trim the footprint of the code. Second, it is not trivial to adapt

the code to an alternate transceiver as many of the code bases stray from the standard

to take advantage of a given transceiver’s features. Many of these same conclusions were

drawn by Flora and Bonnet[4] in their review of commercially available implementations

from 5 manufacturers and two open source platforms published in 2009.

The lack of a readily available FPGA core or open-source code implementation of the

standard raised one obvious question: Why, after 7 years and a revision to the standard,

does one not exist? The answer becomes very clear when the inner workings of the Freescale

implementation are explored. The short answer is the standard, even the revised version, is

impossible to implement without some modifications. The details of these will be explored

in-depth when the software design of the research presented here is discussed in Chapters

4 and 5.

1.2 Intended Purpose

The goal of this research is to develop a basic implementation of the 802.15.4 standard

for the Nios II processor on an Altera FPGA. This implementation can then serve as the

foundation for future work. It allows further exploration of optimizations to the specific

portions of the standard, as well as supports research that relies on it as a building block

for a larger system. For example, the 802.15.4 standard has been used extensively in the
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exploration of sensor network optimization[5].

The implementation presented here is a preliminary implementation, with only the

basic functionality needed to satisfy the standard. There is a considerable amount of

additional functionality still to be added. For example, no security is supported. The

current implementation also supports only one of two communication modes. At this time

beacon-based synchronous communication is not supported. Once basic functionality is

stable, the code will be made publicly available for research use. A copy can be requested

by contacting Dr. Bill Bishop at wdbiship@uwaterloo.ca.

1.3 State of the Art

According to market research conducted by ABI Research, the three biggest players in the

IEEE 802.15.4 IC market are Texas Instruments, Freescale and NXP[6]. Nine companies

in the market were evaluated based on both their innovative features and implementation

of the standard. Protocol stack availability was considered as part of the innovation score,

while factors such as perceived market share, vendor size and the amount of time they

have been in the 802.15.4 market factored into the implementation score.

Texas Instruments received the highest ranking from ABI. They currently offer several

802.15.4 compliant chips, both as transceivers and integrated in a system-on-chip(SOC)[7].

They provide royalty free MAC layer code, but only in the form of pre-compiled libraries.

They also provide an open-source ZigBee protocol stack, Z-Stack, for use with their prod-

ucts.

NXP acquired Jennic in July 2010, building their portfolio of low-power RF products[8].

Their 802.15.4 compliant solutions are still referred to as Jennic products. They currently

offer one 802.15.4-compliant chip, the JN5148[9]. It is a 32-bit RISC processor with support

for the ZigBee Pro, 6LoWPAN, and the proprietary JenNet protocol stacks and application
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framework. It also allows application development directly on top of the MAC layer.

Because the processor is integrated it is not practical for use in development on other

controller platforms, such as FPGA.

Freescale is currently selling their fourth generation of 802.15.4 and ZigBee platform

ICs, the MC1323x series[10]. This particular series implements SOC technology. It’s

predecessors, the MC1321x and MC1322x series also incorporated both the transceiver

and controller in a single package. Available controllers range from 8-bit MCUs to 32-bit

ARM7 processors. A second generation transceiver-only option is provided by the MC1320x

family. It is the successor to the MC1319x family. The 802.15.4 stack is available as part of

their Beekit software codebase[11]. An 802.15.4-2006 compliant version was released with

the HCS08 family MAC Codebase 2.0.0, available with BeeKit version 1.9.11 or later, in

the fall of 2010[12]. Their code base is freely available, but only partially open source. The

source code for the PHY layer is available, but the MAC layer is provided as pre-compiled

library files. Only the MAC header files are provided in source format.

While Atmel was not one of the top contenders in the 802.15.4 market according to ABI,

they are unique. They are currently providing a fully open source implementation of their

802.15.4 stack, unlike the other three[13]. However, the license for use is very explicit that

the software may only be used in connection with development for Atmel products. They

also offer their chips in a range of packages, including single chip solutions, transceivers and

modules[14]. Like the Freescale transceivers, the SPI bus is used for communication with

the standalone chips. The modules combine the transceiver, controller and the required

antennas, in a complete FCC certified package.
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1.4 Published Research

The published research related to the standard is limited considering the time it has been

available. That said, research has been published on the implementation of various aspects

of the standard, as well as attempts to optimize certain cores or actions. Efforts have also

been made to extend the standard to new areas for broader compatibility.

J. Flora and P. Bonnet[4], have done a considerable amount of work based on the

802.15.4 standard. They have done research with both the original 2003 version, as well as

the revised 2006 version. Their goal was to create a platform independent implementation,

insofar as that is possible, of the 802.15.4 standard. While their goal is similar to that

of the work presented here, they went about achieving it in a different manner. In their

case, TinyOS[15] was used as the foundation for their implementation. It is an open-

source operating system targeted specifically to the small footprint seen in sensor networks.

It provides the messaging structure necessary to interface between the MAC layer and

the application running on it. Using TinyOS allowed them to be processor independent,

however a physical PHY with RF components is still required in a working system. For

this, they used the Freescale MC13192, the same chip used in testing the research presented

here.

One of their most critical observations with respect to the work presented here is a

fundamental flaw in the standard. This flaw makes it impossible to implement a compliant

device in the specified manner. The standard largely neglects detailed timing specifica-

tions, while at the same time placing limits on the time in which certain actions must be

executed. As a result, the structure specified by the standard is impossible to implement

in such way that these time limits are not violated. Flora and Bonnet showed this empiri-

cally using an estimate of the number of clock cycles need to complete the time-sensitive

tasks. One of the proposed solutions is to shift tasks such as CRC calculation to the

PHY layer. This saves the time used passing invalid frames to the MAC instead of dis-
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carding them immediately. The CRC check can also be executed incrementally, increasing

the speed of frame processing. In reality this method is actively employed by commercial

implementations, including the Freescale MC13192 used in this research[16].

The settings used for the CSMA-CA algorithm can impact the performance of the PAN.

D. Rohm et al. have investigated the impact of these settings on beaconless networks

under different traffic loads[17]. Specifically, they looked at the impact of the macMinBE,

macMaxBE and macMaxCSMABackoffs. The optimum values are highly dependent on

the traffic load being experienced by the network. For the research presented here, only a

very simple network was tested. If more complex networks are tested in the future, this

work should be revisited.

Some researchers have targeted specific portions of the standard for optimization. For

example, a revised orphan algorithm has been proposed by Garcia-Sanchez et al.[18]. Using

the current algorithm, a considerable amount of time and energy is needed to reconnect

with the parent network. The optimized algorithm proposes three changes, including

the seemingly trivial change of having the application keep a record of known network

channel(s). The amount of memory consumed by doing so is trivial, and the time saved

by not starting the scan at channel 1 can be significant. The remaining optimizations take

advantage of the deterministic nature of beaconed networks. These are less relevant to

the research presented here as only a non-beaconed network is used. Thus, the details of

these will not be discussed. It should be noted that the authors did not develop their own

MAC/PHY layer in conducting this research. Instead, they used commercially available

ZigBee devices from Crossbow.

The published research on FPGA-based implementations to date shows that only por-

tions of the standard were actually implemented. R. Ahmad et al. focused solely on the

implementation of the CRC block[3]. They were successful in using Verilog and a Xilinx

FPGA to create a CRC block capable of running at 250 kbps, the same speed as trans-

6



missions in the 2.4 GHz band. In order to test their implementation it was not necessary

to implement any functionality from the MAC or PHY layers. They simply fed a pre-

determined digital data stream to the input of their CRC block and verified the output.

Another implementation by H. Li and Z. He includes a complete MAC layer[19]. They

used an 8051 CPU core on a Xilinx FPGA. The MAC layer functions were implemented

using embedded software, as well as a hardware controller for repetitive functions. Their

published research provides only a high level overview of their implementation, the source

code of which is not openly available.

Other researchers have considered the potential of the standard beyond the RF field.

One team has produced a proof of concept system in which they combine traditional RF

transceivers with powerline communication (PLC)[20]. Powerline networks take advantage

of the AC power systems already present in our homes to transmit information between

network nodes. Since these are also low data rate networks with many of the same criteria

as targeted by the standard, they surmised that the 802.15.4 MAC layer could be applied

to these devices as well. Slight adaptations of the MAC layer in order to meet timing

requirements were required, but they succeeded in demonstrating a heterogeneous system

using the 802.15.4 standard as a basis for communication using RF and PLC mediums.

Additional FPGA-based research has been done using the Bluetooth standard[21, 22].

This is also a short-range wireless communication standard, but it is aimed at higher

bandwidth requirements, allowing functions such as audio and video streaming to be

implemented[23]. The Bluetooth protocol has been available since 1998 and has prolif-

erated in the consumer electronics market. It was first ratified by the IEEE in 2002 as

IEEE Standard 802.15.1. Given this, it is not surprising that an extensive body of research

exists. While the standards are still inherently different, there is still insight that can be

gained from this work.
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Chapter 2

Background

The research presented here is based on IEEE standard 802.15.4: Wireless Medium Access

Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal

Area Networks (WPANs), published by the IEEE Computer Society[1]. For brevity it is

referred to as the IEEE 802.15.4 standard, or simply the standard from this point forward.

The fundamentals of the standard will be explored at a high-level. The network structure

described by the standard, as well as the MAC and PHY layers are then reviewed in detail.

ZigBee devices are the most common application, using the standard as a foundation[5].

The relationship between ZigBee devices and the standard is briefly explored.

2.1 Fundamentals of the IEEE 802.15.4 Standard

The first edition of the IEEE 802.15.4 standard was released in 2003[24]. The revised

edition was released in 2006, and it is backwards compatible with few exceptions. The

MAC/PHY presented here is based on the more recent version. This standard is targeted

to low power, low data rate devices. Common applications include home automation and

medical implementations, often in conjunction with ZigBee. The standard defines logical
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blocks, or layers. This theoretically allows various layers to be implemented independently

of the others, as the communication between them is standardized. While only a brief

high-level over view is provided here, Y. Xiao and Y. Pan have provided a more thorough

review in their book[25].

The high level block diagram of the system defined by the standard is shown in Fig-

ure 2.1. There are three primary layers in the system: user application, MAC and PHY.

The user application layer is often referred to as the network layer or by its abbreviation,

NWK. As the name implies, the implementation of this layer, and the functionality it

provides, are left to the user. That said, the NWK layer is required to have the ability to

process incoming messages from the MAC, as well as generate messages to be sent to the

MAC. The exchange of these messages between the layers is handled by a standardized in-

terface known as a Service Access Point (SAP). As shown in Figure 2.1 there are two SAPs

defined between the NWK and MAC layers. This allows the messages to be sorted based

on the portion of the MAC layer that generated or will be handling them. The two SAPs

between the MAC and PHY layers provide similar functionality. The implementation of

the SAPs is discussed in more detail in Section 4.2.

2.1.1 Network Structure

The network structure defines the relationship between device nodes. It should not be

confused with the application/NWK layer. The standard provides flexibility in the type

of network implemented. Both star and peer-to-peer topologies are supported, as shown

in Figure 2.2. Cluster tree networks can also be formed, greatly extending the range of

the network. For all of these network topologies there is also flexibility in the type of com-

munication used. They can be based on superframes or polling. In all cases, transactions

take place between a coordinator and a device. The network they form is referred to as a

personal area network, or PAN.

9



User Application (NWK)

PHY Layer

MAC Common
Sublayer

PD-SAP

MLME

MLME-SAPMCPS-SAP

MAC PIB

PLME

PHY PIB

PLME-SAP

RF-SAP
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5.3 Network topologies

Depending on the application requirements, an IEEE 802.15.4 LR-WPAN may operate in either of two
topologies: the star topology or the peer-to-peer topology. Both are shown in Figure 1. In the star topology
the communication is established between devices and a single central controller, called the PAN
coordinator. A device typically has some associated application and is either the initiation point or the
termination point for network communications. A PAN coordinator may also have a specific application, but
it can be used to initiate, terminate, or route communication around the network. The PAN coordinator is the
primary controller of the PAN. All devices operating on a network of either topology shall have unique 64-
bit addresses. This address may be used for direct communication within the PAN, or a short address may be
allocated by the PAN coordinator when the device associates and used instead. The PAN coordinator might
often be mains powered, while the devices will most likely be battery powered. Applications that benefit
from a star topology include home automation, personal computer (PC) peripherals, toys and games, and
personal health care.

The peer-to-peer topology also has a PAN coordinator; however, it differs from the star topology in that any
device may communicate with any other device as long as they are in range of one another. Peer-to-peer
topology allows more complex network formations to be implemented, such as mesh networking topology.
Applications such as industrial control and monitoring, wireless sensor networks, asset and inventory
tracking, intelligent agriculture, and security would benefit from such a network topology. A peer-to-peer
network can be ad hoc, self-organizing, and self-healing. It may also allow multiple hops to route messages
from any device to any other device on the network. Such functions can be added at the higher layer, but are
not part of this standard.

Each independent PAN selects a unique identifier. This PAN identifier allows communication between
devices within a network using short addresses and enables transmissions between devices across
independent networks. The mechanism by which identifiers are chosen is outside the scope of this standard. 

The network formation is performed by the higher layer, which is not part of this standard. However, 5.3.1
and 5.3.2 provide a brief overview on how each supported topology can be formed.

5.3.1 Star network formation

The basic structure of a star network is illustrated in Figure 1. After an FFD is activated, it can establish its
own network and become the PAN coordinator. All star networks operate independently from all other star
networks currently in operation. This is achieved by choosing a PAN identifier that is not currently used by
any other network within the radio sphere of influence. Once the PAN identifier is chosen, the PAN

Figure 1—Star and peer-to-peer topology examples

Reduced Function Device
Full Function Device

Star Topology Peer-to-Peer Topology

PAN
Coordinator

Communication Flow

PAN
Coordinator

Figure 2.2: Star and peer-to-peer topology examples1

1From IEEE Std 802.15.4-2006 Copyright 2006, by IEEE. All rights reserved.
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The 802.15.4 standard allows for two different classes of device to be implemented: a

full-function device (FFD) and a reduced function device (RFD). The reduced function

device differs from the full function device in that it does not have the ability to act

as a coordinator for the network. It is, however, still capable of functioning as part of

a beaconed or non-beaconed network, depending on the implementation selected. It is

intended to provide a smaller footprint for device nodes with limited resources that require

only a basic feature set. As shown in Figure 2.2, direct device-to-device communication is

only allowed between FFDs. FFDs are also capable of taking on special roles within the

network, namely coordinator and PAN coordinator. A PAN coordinator can be thought

of as the master coordinator of the entire network, with every network having exactly one.

The coordinators are used to extend the range of the network and provide a link from the

PAN coordinator to devices which are unable to connect directly to the PAN coordinator.

They are also used to implement cluster tree networks that increase the number of devices

that can be supported.

In the case of a superframe based system, the coordinator sends out periodic beacons

that define the start of the superframe. Each superframe consists of 16 equal slots, with

the beacon occupying the first slot. There is some flexibility in how the remaining slots

are used. They may all be allocated to what is known as a contention access period

(CAP), or they may be divided between the CAP and a contention-free period (CFP).

The CFP can consist of a maximum of seven slots. During the CAP, devices on the

network must compete with one another for transmission time using a slotted CSMA-CA

mechanism. All communication must be complete before the next beacon. In the case of

the contention free period, what is known as guaranteed time slots (GTSs) are allocated to

specific devices. Once again the device must ensure all communication is complete before

the start of the next GTS or beacon. There is also the option of having an inactive period

between the active period and the next beacon. This allows the coordinator to enter a low

power mode between beacons and is useful in networks where infrequent data transfers are
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required. While synchronization allows for lower latencies, it also requires a more complex

coordinator implementation to manage it.

The alternative method is for the coordinator not to use beacons, instead relying on

polling-style interaction with devices. This is suitable when devices in the network do

not require synchronization and can tolerate higher latencies. Eliminating period beacons

also leads to a less complex controller implementation as capabilities such as time slot

management and GTS allocation are no longer required. While beacons are no longer

needed for normal transfers, they are still required for network initialization and device

discovery. This is the method used in the implementation presented here.

2.1.2 MAC Layer

The MAC layer is the heart of the system. It is where the majority of the data processing

and other major system functions are executed. The MAC layer is further subdivided into

three cores: the Mac Common Part Sublayer (MCPS), the Mac Layer Management Entity

(MLME), and the PAN Information Base (PIB). There are also supporting functions im-

plemented in the MAC layer that are not specified in detail by the standard. However, they

are critical to the correct operation and a functional implementation. These include the

messaging system to support the SAPs, a storage structure for pending Acknowledgments,

and in the case of a coordinator, a storage structure for pending messages.

The MCPS is primarily concerned with the transfer of data. It is also implicitly con-

nected to the MLME, which allows those functions to use the data services it provides.

The full set of primitives provided by this core are discussed in Section 4.4.

The MLME is the largest and most complex of the MAC cores. As the name suggests,

it is responsible for the functions required to implement and maintain a network. This

includes tasks such as device association, device disassociation, starting a PAN, scanning
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for available networks or open channels, and more. The full set of primitives provided by

this core are discussed in Section 4.5.

The PIB is contained within the MLME. It is essentially a table of all variables and

constants needed to setup and maintain the network. In the case of the PAN coordinator, it

contains critical information about the network it is managing, such as whether or not it is

accepting new devices, various pieces of beacon information, and superframe construction

information. In the case of both end devices and the PAN coordinator, information such

as the channel of operation, the device’s address, the coordinator’s address, whether or

not security is enabled, and the information needed by a device to participate in a beacon

enabled network are found here. This core is discussed in more detail in Section 4.3.

2.1.3 PHY Layer

The PHY layer consists of two main components: the physical transceiver and the software

driver to control it. The physical components include the chip set for the actual radios, as

well as a controller responsible for managing PHY settings and coordinating data transac-

tions. The standard allows for the system to operate on the 2450 MHz, 915 MHz, and the

868 MHz bands, but an implementation of the standard need only operate on one. Because

this layer is primarily hardware, it is considerably less flexible than the MAC layer.

The need for RF components makes building the PHY a complex undertaking. As a

result, off-the-shelf transceivers are often used. They are available as loose chips as well

as mounted on daughter cards that include external components, the RF antennas and a

header for interfacing to the controller. One advantage of using an off the shelf chip is

that they are already certified by the Federal Communications Commission (FCC) in the

United States[26], or Industry Canada for products sold in Canada[27]. Certification is

required for the operation of all radio equipment. Fortunately for manufacturer’s the US

and Canada regulations are virtually identical, thus compliance with one almost always
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implies compliance with the other[28].

From a software perspective, the standard defines the interface between the PHY and

the MAC as a pair of SAPs. There are far fewer primitives defined for the PHY layer

compared to the MAC, as its core purpose is to support low level data transactions. Similar

to the MAC, it can be divided into three cores: PHY Data (PD), PHY Layer Management

Entity (PLME), and the PHY PAN Information Base (PHY-PIB).

The PD portion is responsible for handling the transfer of messages from the MAC

layer and ultimately generating the wireless signal. It also receives the wireless data and

transfers it to the MAC. The PD portion is formed by only a single primitive family,

PD-DATA.

The PLME handles all the support necessary for maintaining the network and suc-

cessfully executing data transactions. It includes primitives allowing the MAC layer to

read and write PHY-PIB values, set the state of the transceiver, and execute special func-

tions. The supported special functions are energy detection (ED) scan and clear channel

assessment (CCA).

Like the MAC layer, the PHY-PIB table is contained within the PLME and is used to

store information needed for the operation of the PAN. This table is much smaller than

the one contained in the MAC layer, consisting of only eight parameters. Four of these

parameters are read only and may be a constant for a given PHY. A comparison between

the PHY layer as defined by the standard and that of this implementation is located in

Chapter 5.

2.1.4 ZigBee and IEEE 802.15.4

One of the most common uses for the standard is in ZigBee devices. According to ABI

Research, ZigBee comprised about 40% of IEEE 802.15.4 compliant chip shipments in 2010,
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a number that is expected to grow to 55% by 2016[29]. As mentioned previously, the IEEE

802.15.4 protocol is used to implement the foundation upon which ZigBee applications

are built[5]. ZigBee is not a single standard, but rather a collection of nine different

standards. Each one is targeted to a specific application or industry, including smart energy,

home automation, retail, health care and input devices. The standards are published

by the ZigBee Alliance, a consortium of business, university, and government members

from around the world. Since 2002 they have been working towards the goal of providing

standards for low-power device networks which are capable of running on harvested energy

and/or battery power for years at a time. They also aim for a network that is simple to

set up and easily expandable with low maintenance needs. ZigBee takes advantage of the

802.15.4 PHY/MAC layers while using their own security and network layers, as well as

an application framework, to extend the standard.
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Chapter 3

Hardware Design and Verification

There are two key hardware components required to implement the system. The first is

the physical transceiver, which includes the RF components used for communication. This

functionality is realized using a Freescale transceiver daughter card. The second component

is the controller. While this functionality is often realized using a micro-controller, an

FPGA with a soft-core processor has been used for this implementation. The FPGA is

mounted on a project board, providing easy access to various peripherals and interfaces.

3.1 PHY Transceiver

A pair of Freescale 13192USLK[30], 802.15.4 compliant transceivers are used for the PHY

hardware. Freescale provides users with the code necessary to implement a compliant sys-

tem using these transceivers and several of their micro-controller families[12]. The code

to implement the drivers for the PHY layer is provided as C source code. Given this, it

was possible to use the PHY layer code as a starting point and modify it as needed for

implementation on the FPGA. Modifications include changes to I/O port assignment and

handling, interrupt service routines, in-line assembly, and the serial peripheral interface
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(SPI) interface between the FPGA project board and PHY hardware. For this implemen-

tation, a daughter card was connected to the FPGA using a standard ribbon cable[31].

This device uses the SPI bus protocol to communicate with the controller.

The hardware on this device is responsible for processing the message data sent to

it over the SPI bus and appending the information needed to complete the data frame,

specifically the frame check sequence (FCS). The format of this frame is discussed in detail

in Section 4.4. All configuration and initiation of transceiver actions is done by reading

and/or writing registers over the SPI bus. The bus is configured for 8-bit transfers, with

the MSB shifted first. The clock is set to 8 MHz, with both clock polarity and clock phase

set to 0. For each SPI transaction the transceiver expects three 8-bit transfers to take

place. The first byte contains the 6-bit address of the target register in bits 5:0, while bit

7 is used as a R/W signal. The next two bytes are the word of data being transfered.

This is done in big endian format, hence the bytes must be re-ordered by the FPGA before

sending and upon receipt as the MAC/PHY software uses little endian formatting.

There are three additional outputs from the transceiver connected to the controller. The

IRQ line must always be connected for the transceiver to function as it is used to indicate

errors as well as the completion of requested actions. The use of this signal is discussed in

more detail in Section 5.3. The IDLE and CRC (cyclic redundancy check) lines are optional.

However, they provide the ability to increase the speed of various operations. The CRC

line indicates that the received data frame is valid, without the need to read a register over

the SPI bus. The IDLE line provides a quick check on the state of the requested action,

indicating whether the transceiver is actively executing it or has returned to Idle.
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3.2 Controller

Many of the commercially available solutions which implement the 802.15.4 standard are

closely tied to a specific micro-controller or family of micro-controllers. They may also be

tied to a specific transceiver or family of transceivers. In contrast, implementation of the

standard on an FPGA provides users with a much more flexible and configurable device,

both in terms of the processor core and custom hardware that can be added. This means

that the implementation options can easily be varied, whether it be through the use of

define statements in code or a more sophisticated IP core GUI in the future.

The initial implementation of the MAC/PHY layer was done using an Altera Cyclone II

2C35 FPGA on an Altera DE-2 project board[32]. This particular device is far from the

fastest or most powerful FPGA produced by Altera today. The Cyclone line of FPGAs is

targeted for low cost, low power solutions in contrast with the Stratix devices which are

targeted for large, high-speed applications.

Even within the Cyclone family it is an older device, with the Cyclone V series now on

the market. A comparison of the Cyclone II 2C35 with a comparable Cyclone V device is

shown in Table 3.1. The comparable Cyclone V device was chosen based on the number

of logic elements. From this, it is clear that one of the major changes is the amount of

memory available. While there are fewer RAM blocks on the Cyclone V EP4CE30, they

are M9K blocks. Since different blocks are used, it is necessary to calculate the number

of bits actually contained in the RAM blocks of each device. Equation 3.1 shows that the

Cyclone II has about 430 kbits of RAM, while Equation 3.2 shows that the Cyclone V has

541 kbits of RAM. This is equivalent to about a 25 % increase in available RAM. A second

major increase has occured in the number of embedded multipliers, which has seen an

increase of nearly 50 %. Additional information on both families of devices can be found

on the Altera website[33].
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4, 096 bits ∗ 105 blocks ≈ 430 kBits (3.1)

8, 192 bits ∗ 66 blocks ≈ 541 kBits (3.2)

Table 3.1: Comparison of Cyclone II and Cyclone V devices1

Cyclone II Cyclone V

Device 2C35 EP4CE30

Logic Elements 35,000 30,000

RAM Blocks 105 (M4K) 66 (M9K)

Embedded Memory (kBits) 473 594

18-Bit x 18-Bit Embedded Multipliers 35 66

PLLs 4 4

Maximum User I/O Pins 475 532

Speed grade -6, -7, -8 -6, -7, -8

The nature of the MAC/PHY layer requires some form of processor capable of running

software. While it is conceivable that the system could be implemented solely in hardware,

it would be an extremely complex and cumbersome system. The architecture defined by

the standard relies on message passing between the layers, which can be implemented much

more efficiently in software. A pure hardware system would also be less flexible from an ap-

plication standpoint as the user would no longer be able to run a C-code application. Since

an Altera FPGA is being used, it is logical to use the Altera Nios II soft-core processor, as

it is easily integrated. Altera also provides an Eclipse-based software development environ-

ment with built-in support for the Nios II processor. This processor core provides the user

with flexible functionality, both in terms of processing power and interfacing capability.

Since this system is intended to support low data rate and low power systems, the Nios II/e

processor provides the required functionality with the smallest available Nios II footprint.

1Based on information available from the Altera website[33].
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However, it does not support level 2 debugging. This level of debugging is a requirement

for using hardware breakpoints, so the midrange Nios II/s was substituted. However, the

cores are interchangeable as long as the additional functionality of the Nios II/s, such as

instruction cache, are not required. As a result, once debugging is complete it should be

possible to use the Nios II/e to decrease the system footprint. For a complete description

of the functionality of the Nios II processor core, the handbook should be consulted[34].

The interfaces included in the processor are shown in Figure 3.1. The shaded interfaces

are those used for debugging purposes, and can be removed in the final product. The

SDRAM interface is connected to the onboard SDRAM chip, which has been used to store

the program code. The SysId is a module required by Altera that is used for synchronization

between the software generation files and the hardware loaded onto the FPGA board. The

remaining interfaces are simply the FPGA side of the MC13192 interface described in

Section 3.1. Information on using the software drivers provided by Altera for the various

interfaces can be found in the provided documentation[35, 36].
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Figure 3.1: Block diagram of hardware used to implement the system
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Chapter 4

MAC Software Design and

Verification

Implementing the entire standard from nothing is a challenge that cannot be completed by

a single person in the time available for this thesis. Instead, a more reasonable solution was

to use freely available code as a starting point. Since a Freescale transceiver was selected,

it was logical to use the corresponding code base. The 802.15.4-2006 compliant code base

for the HCS08 family of micro-controllers was used as a starting point. The Freescale code

base provides source files for the PHY and NWK layers, but not for the MAC. The MAC

layer code is provided in the form of pre-compiled libraries. As a result, it was necessary

to implement the MAC source code, using the provided header files as a guide.

As previously described, the standard allows a high degree of flexibility related to the

implementation of compliant devices. While the ultimate goal is to implement a code base

which allows the user to produce any valid implementation, only a limited number of fea-

tures has been implemented so far. In this implementation, no security has been included.

Only the beaconed network mode is supported, meaning that GTS is not supported. To

be able to test and verify the functionality of even a simple network, a PAN coordinator
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is needed. Thus it was necessary to implement a FFD.

The implementation of the MAC layer is largely consistent with what is described by

the standard. As noted before, only the header files were available from the Freescale im-

plementation. These provided some clues as to their implementation, particularly message

handling, but the majority of the layer had to be implemented using the standard and

Freescale’s reference manual[37] for guidance. Very few changes were made to the provided

header files, with two exceptions of note. First, the MAC enumerated IDs were adjusted

to be compliant with those listed in Table 78 of the standard[1]. Second, some structs

were added to facilitate simplified information passing between functions. These structs

are discussed in more detail with their corresponding functions.

As previously discussed in Chapter 2.1.2, the MAC layer can be divided into three

core components: MCPS, MLME, and PIB. There are also several supporting components

which must be considered to provide a more complete review of the MAC layer. In this

case they include security, SAPs, Acks and MAC commands. To provide the clearest

picture of the MAC layer, security, SAPs and the PIB are discussed first. This is followed

discussion of the MCPS, MLME and MAC commands. Acks are then explored to complete

the discussion.

4.1 Security

The 802.15.4 standard implements 3 core security services: data confidentiality, data au-

thenticity, and replay protection. The implementation of cryptographic operations and key

storage is assumed to be done in the higher level NWK layer, and as such is not explicitly

specified by the standard.

The Freescale code base that was used as a starting point for this research was originally

written to form the foundation of a ZigBee compliant code base. The security framework
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used in ZigBee differs from that specified by the IEEE standard. When the approaches

were contradictory, Freescale implemented the ZigBee compliant framework. As a result the

MAC layer is designed to support ZigBee Security Services Specification V.092. This means

that CCM security levels are used in place of the suites described by the IEEE standard.

One noted limitation that results is that secured beacons will not be processed[37].

At this time, no security is supported by the implementation presented here. However,

one of the considerations while writing the software was the ease of adding security support

in the future. In order to accomplish this, it was necessary to ensure that the appropriate

security information was still being passed between functions where required. Since the

same four pieces of security related information are always required, a struct combining

this information was implemented. This minimizes the number of parameters being passed

between functions. The code used to implement the structure is shown in Figure 4.1.

When no security is used, the struct pointer passed between functions only leads to the

security level. “If Defined” statements ensure that when security is not being used, the

parsing and/or processing of information can be removed from functions at compile time

to minimize the code footprint.

#ifdef NO_SECURITY
typedef struct macSecurityInfo_tag{

uint8_t securityLevel;
} macSecurityInfo_t;

#else
typedef struct macSecurityInfo_tag{

uint8_t securityLevel;
uint8_t keyIdMode;
uint8_t keySource[8];
uint8_t keyIndex;

} macSecurityInfo_t;
#endif

Figure 4.1: Struct used to simplify passing of security information between functions
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4.2 Service Access Points (SAPs)

SAPs are used for asynchronous communication between the NWK and MAC layers. They

provide the framework for messages to be passed between the layers and to be placed in

the appropriate queue for handling. The content of the messages passed through the SAPs

is defined by the available primitives.

The 802.15.4 standard primitive families use a request-confirm sequence to send mes-

sages between the layers. Less commonly, an indication or indication-response message

pair can also be used. The choice of primitive type is dependent on the direction of data

flow, as shown in Figure 4.2. Requests are always generated by the NWK layer and sent

to the MAC. Confirms are generated by the MAC and send to the NWK layer in response

to these requests. In the case where communication is taking place between devices, there

may also be an indication or an indication/response pair of primitives for a given family.

In this case, the indication primitive is generated by the MAC upon the receipt of the

information passed by a request primitive in the originating node via the RF medium to

the receiver’s PHY layer. This tells the receiver’s NWK layer that some action on its behalf

is being requested by the sender. In cases where the sender is requesting information from

the receiver, the response primitive is used to return the information. Response function-

ality is rarely required. It is only used when network information is being passed to a new

device, as in the case of an association, or when a device is trying to re-join a PAN after

loosing the connection.

In the case of MLME and MCPS primitives, messages are generated by the sender and

placed in a queue for processing by the receiver. This is shown in Figure 4.3 where the

names of the receiving queues, as well as the function responsible for handling the received

messages, are shown. As noted previously, deviation from the standard was necessary in

the implementation of the PHY layer. As a result, no SAPs are used and no queues are

needed for the MAC/PHY layer interface.
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Figure 4.3: Block diagram of SAPs and associated queues
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There are, however, some request primitives that are always handled immediately upon

their receipt. Because of this, it is not necessary to generate the confirm primitive, as

any feedback to the calling layer can be done within the calling function. The primitives

that operate in this manner are the MLME-RESET.request, MLME-GET.request, and

MLME-SET.request. Using MLME-GET.confirm and MLME-SET.confirm has been

replaced with using the return code of the MSG_Send() function to check the status[37].

The normal sequence of events starts with the request primitive being generated in

the calling layer. It is packaged as the appropriate message type, based on the sender

and receiver of the message. The four possible types are nwkToMcpsMessage_tag,

mlmeMessage_tag, mcpsToNwkMessage_tag, and nwkMessage_tag. The message

is then sent to the receiving layer via the corresponding SAP handler, which is once again

determined by the sender and receiver. The message is then added to the appropriate queue

until the target layer runs the process responsible for handling its received messages. When

this process is run is determined by the task scheduler. When the receiver has performed

the required actions, it generates a confirm primitive. Once again, the primitive is packaged

as the corresponding message type and sent to the request’s sender via a SAP handler.

The message is then queued and processed by the sender the next time the layer’s main

task runs. The sender now has the status or data it was seeking when the request primitive

was sent.

All messages are passed using a standard format. Each message is defined by a struct

which consists of a message type field, as well as a message data field. The type is set from

an enumerated list of available primitives for the cores between which the message is to

be passed. The message data field is comprised of a union of the structs used to hold the

information passed by each primitive, as defined by the standard. There are four different

lists of message types and corresponding message fields: NWK to MCPS, NWK to MLME,

MCPS to NWK and MLME to NWK. These correspond to the two directions messages
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can be sent through the two SAPs. This message structure is illustrated for the NWK to

MCPS case in Figure 4.4. In this case, there are only two possible message types. For

other SAPs there are far more, such as the NWK to MLME case where 15 different types

are handled.

NwkMacInterface

NWK to MCPS Primitives

enum

  gMcpsDataReq_c,
  gMcpsPurgeReq_c,                      
sgNwkToMcpsMaxPrimitives_c

typedef uint8_t

primNwkToMcps_t

typedef struct mcpsDataReq_tag

  uint8_t  dstAddr[8]; 
  uint8_t  dstPanId[2];
  uint8_t  dstAddrMode;
  uint8_t  srcAddr[8]; 
  uint8_t  srcPanId[2];
  uint8_t  srcAddrMode;
  uint8_t  msduLength; 
  uint8_t  msduHandle; 
  uint8_t  txOptions;
  uint8_t  securityLevel;
  uint8_t  keyIdMode;
  uint8_t  keySource[8];
  uint8_t  keyIndex;
  uint8_t  *pMsdu;

typedef struct mcpsPurgeReq_tag

  uint8_t  msduHandle;

typedef struct nwkToMcpsMessage_tag

  primNwkToMcps_t msgType;
  union {
    mcpsDataReq_t         dataReq;
    mcpsPurgeReq_t       purgeReq;
    void *                          dummyAlign;
  } msgData;

Figure 4.4: Message format structure for the MCPS SAP in the NWK to MCPS direction

The allocation of memory for messages is handled by the MAC. During MAC ini-

tialization, the heap of memory allocated for messages is subdivided into pools. This

allows for the creation of different sized message blocks to accommodate primitives requir-

ing large amounts of data to be passed without wasting resources when primitives with

minimal data needs are used. The number of pools, the number of message blocks in

each pool, and the size of each block is determined at compile time by settings in the

AppToMacPhyConfig.h header file. Currently, the addition of message blocks and the
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creation of new pools are not supported at run time, although support could be added in

the future.

During initialization, an array of anchors is created with one anchor per pool. The pools

are always ordered by increasing block size, which ensures the smallest available message

block of sufficient size will be used to send a message. Each anchor is simply a pair of

pointers: one each for the head and tail of the corresponding message pool. A pool array

of two pools with two message blocks in each list is shown Figure 4.5.

B2H2B1H1 B4H4B3H3 ...
Void * pHeap

p
P

o
o

l[
0

]

<<anchor_t>> anchor

<<alt_u8>> 

nextBlockSize

<<alt_u8>> blockSize

<<Pools_t>> myPools[2]

[0]

<<anchor_t>> anchor

<<alt_u8>> 

nextBlockSize

<<alt_u8>> blockSize

[1]

Block

<<anchor_t>>

<<listHeader_t>> *pHead

<<listHeader_t>> *pTail

<<listHeader_t>>

<<pools_tag>> *pParentPool

<<listHeader_tag>> *pNext

Block

<<listHeader_t>>

<<pools_tag>> *pParentPool

<<listHeader_tag>> *pNext

Block

<<anchor_t>>

<<listHeader_t>> *pHead

<<listHeader_t>> *pTail

<<listHeader_t>>

<<pools_tag>> *pParentPool

<<listHeader_tag>> *pNext

Block

<<listHeader_t>>

<<pools_tag>> *pParentPool

<<listHeader_tag>> *pNext

Figure 4.5: Pool array with corresponding message lists

The available message blocks within each pool are stored using a singly-linked list

structure. Each message block has a header which consists of two pointers: one to the next

block in the list, and the other to the corresponding pool anchor. This additional pointer

provides a mechanism for returning the message block to its parent pool once the message

has been received and processed. The remaining memory allocated to the block is available

for use by the message being passed. The state of a single pool when two message blocks

have been added is shown in Figure 4.6. Notice that both pParentPool pointers point to

the same anchor. In the current implementation, two pools are used. The first consists of

5 messages of 36 bytes each, while the second has 5 messages of 176 bytes each.
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Void List_AddHead(anchor_t *pAnchor, void *pBlock)

Block

Void List_ClearAnchor(anchor_t *pAnchor)
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<<listHeader_t>> *pTail
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<<listHeader_tag>> *pNext

<<void>> *pBlock

Block

<<listHeader_t>>
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<<listHeader_tag>> *pNext

Figure 4.6: List After List AddTail Applied

To validate the messaging structure, extensive testing was performed. Various test

functions were written with the goal of testing all typical and corner cases of the system.

A sample of the tests used, as well as their expected results is shown in Table 4.1. The

test number shown is the same as that which is printed to the console with the result of

the test when MsgMainTest() is called. The source code for these tests is located in

MacMsgTest.c and is only compiled when #define testing has been included.

Table 4.1: List of Messaging System Test Cases and expected results
Test Number Description Expected Output

1 Allocate a small message buffer The first data byte of the buffer:
0

2 Free the small message buffer The first data byte of each buffer
in the small pool: 1,2,3,4,0,

3 Allocate a large message buffer The first data byte of the buffer,
expected value 10

4 Free the large message buffer The first data byte of each buffer
in the large pool: 11,12,13,10,

5 Allocate a small message buffer
when none are available

A large pool should be allocated
instead. The first data byte of the
buffer: 11
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4.3 PAN Information Base (PIB)

The PIB table is used to store information about the current state of various MAC settings

and control values. As the MAC primitives were being implemented it was found that while

the PIB ID constants were defined, the table itself was implemented in the library files.

As a result, the code to implement the table had to be written. The challenge of doing

so is twofold. First, the identifiers, while all unique, are not necessarily sequential. Hence

an array indexed by these identifiers would be highly inefficient and sparsely populated.

The second challenge lies in the fact that the attributes are of varying data types, ranging

from Boolean values to 64-bit addresses. As a result a structure combining the ID and

Data field is not practical. To overcome this, a struct was used with elements ordered

by ID. This code is located in MacPib.h. A separate enumerated type declaration in

the NwkMacInterface.h header file associates the ID and entry names, as required by

the standard. Some elements included in the PIB Table are proprietary to Freescale’s

implementation. These are listed in Table 4.2. A full list of elements as defined by the

standard can be found in Table 86 of the 802.15.4 standard[1]. In keeping with the handling

of integers larger than 8-bits elsewhere in the code, byte arrays are used in declaring all

integer entries exceeding a byte.

Table 4.2: Freescale proprietary PIB Table elements
Attribute Type Notes

aMPibRole Integer (8) 0=device
1=coordinator
2=PAN coordinator

aMPibLogicalChannel Integer (8) range 11 to 26

aMPibTreemodeStartTime Integer (16) for beaconed tree mode

aMPibPanIdConflictDetection Boolean

aMPibNBSuperFrameInterval Integer (16)

aMPibBeaconResponseLQIThreshold Integer (8)
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From within the MAC layer the table can be directly accessed. However, there are

times when the upper layer needs to know the current state of a variable or set the value of

a variable. This is done using the MLME-GET.request and MLME-SET.request prim-

itives. The 802.15.4 standard calls for MLME-GET.confirm and MLME-SET.confirm

primitives to be issued by the MAC layer in response to the respective request. However,

Freescale had implemented the primitives such that they are handled synchronously, with

the result returned within the calling function. The MLME-GET.request function is ca-

pable of returning the value of any entry in the PIB table struct. However, the standard

specifies that some functions be read-only to any layer other than the MAC. This can

be achieved by only including those entires which can be modified in the case statement

which forms the foundation of the MLME-SET.request handler in the MAC layer. An

attempt to set a read-only entry will result in a value of errorInvalidParameter being

returned. The implementation of both primitives is discussed in detail in Section 4.5.

4.4 MAC Common Part Sublayer Primitives

The MCPS is responsible for handling the transfer of data between the NWK and PHY

layers. It is not surprising that only two primitive families are defined for this portion of

the MAC. The only one required by the standard is the MCPS-DATA family, which has

been implemented and tested. It is described in more detail below. The second primitive

defined by the standard is MCPS-PURGE. This family is only used by a coordinator, and

is an optional enhancement. It allows the NWK layer to remove data from the pending

message queue. It has not been implemented due to time constraints, but can easily

be added in the future. The primitives available in both of these families are shown in

Table 4.3. NI indicates an unimplemented primitive while a - indicates a primitive not

defined by the standard.
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Table 4.3: MCPS-SAP Primitives

Family Request Confirm Indication

MCPS-DATA T T W

MCPS-PURGE NI NI -
NI-Not Implemented, T-Tested, W-Written

4.4.1 Data

To carry out a single data transaction, all three primitives in the MCPS-DATA

family are used. The transaction begins with the sender’s NWK layer sending a

MCPS-DATA.request to its MAC. The MAC will then generate the message header and

append the data bytes before passing the frame to the PHY layer for transmission. The

PD-DATA.request primitive performs the setup for a stream transaction and transfers

the first word of data via the SPI bus to the transceiver. The MAC layer then sends the

MCPS-DATA.confirm message to the sender’s network layer with a status of SUCCESS.

When the message is successfully transmitted over the RF medium and received, the receiv-

ing PHY will pass the message to its MAC layer. The message header is then stripped and

the data is passed on to the NWK layer using the MCPS-DATA.indication primitive.

This message sequence is illustrated in Figure 4.7.
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7.1.3 Association primitives

MLME-SAP association primitives define how a device becomes associated with a PAN.

All devices shall provide an interface for the request and confirm association primitives. The indication and
response association primitives are optional for an RFD.

Table 46—Summary of the primitives accessed through the MLME-SAP

Name Request Indication Response Confirm

MLME-ASSOCIATE 7.1.3.1 7.1.3.2♦ 7.1.3.3♦ 7.1.3.4

MLME-DISASSOCIATE 7.1.4.1 7.1.4.2 7.1.4.3

MLME-BEACON-NOTIFY 7.1.5.1

MLME-GET 7.1.6.1 7.1.6.2

MLME-GTS 7.1.7.1∗ 7.1.7.3∗ 7.1.7.2∗

MLME-ORPHAN 7.1.8.1♦ 7.1.8.2♦

MLME-RESET 7.1.9.1 7.1.9.2

MLME-RX-ENABLE 7.1.10.1∗ 7.1.10.2∗

MLME-SCAN 7.1.11.1 7.1.11.2

MLME-COMM-STATUS 7.1.12.1

MLME-SET 7.1.13.1 7.1.13.2

MLME-START 7.1.14.1♦ 7.1.14.2♦

MLME-SYNC 7.1.15.1*

MLME-SYNC-LOSS 7.1.15.2

MLME-POLL 7.1.16.1 7.1.16.2

Figure 30—Message sequence chart describing the MAC data service
Figure 4.7: Message sequence chart describing the MAC data service1

The implementation of the MCPS-DATA primitives require a large number of variables

to be passed between functions. As a result, a new struct was declared so that only one

pointer is passed between functions with the information required to generate the header

of the data frame. The code of the new struct is shown in Figure 4.8. Not every element in

the struct will be needed every time, which becomes apparent when addressing is discussed,

but the small additional overhead of unused entries far outweighs the complexity of passing

each entry individually.

typedef struct hdrGenericAddr_tag{
uint8_t srcAddress[8];
uint8_t srcPanId[2];
uint8_t srcAddrMode;
uint8_t dstAddress[8];
uint8_t dstPanId[2];
uint8_t dstAddrMode;
bool_t ack;
bool_t panIDcomp;

} hdrGenericAddr_t;

Figure 4.8: Struct used to simplify passing address information for header generation in
MCPS

Whenever data is transmitted from one device to another, the general frame format

shown in Figure 4.9 is used. This general format still provides a great deal of flexibility

1From IEEE Std 802.15.4-2006 Copyright 2006, by IEEE. All rights reserved.
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for the contents of the transmitted frame. By looking at the number of octets used by the

various header fields, it is easy to see that the vast majority are optional or vary in length

depending on the settings used.
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longer than a single octet are sent to the PHY in the order from the octet containing the lowest numbered bits
to the octet containing the highest numbered bits.

For every MAC frame, all reserved bits shall be set to zero upon transmission and shall be ignored upon
receipt.

7.2.1 General MAC frame format

The MAC frame format is composed of a MHR, a MAC payload, and a MFR. The fields of the MHR appear
in a fixed order; however, the addressing fields may not be included in all frames. The general MAC frame
shall be formatted as illustrated in Figure 41.

7.2.1.1 Frame Control field

The Frame Control field is 2 octets in length and contains information defining the frame type, addressing
fields, and other control flags. The Frame Control field shall be formatted as illustrated in Figure 42.

7.2.1.1.1 Frame Type subfield

The Frame Type subfield is 3 bits in length and shall be set to one of the nonreserved values listed in
Table 79.

7.2.1.1.2 Security Enabled subfield

The Security Enabled subfield is 1 bit in length, and it shall be set to one if the frame is protected by the
MAC sublayer and shall be set to zero otherwise. The Auxiliary Security Header field of the MHR shall be
present only if the Security Enabled subfield is set to one.

Octets: 
2 1 0/2 0/2/8 0/2 0/2/8 0/5/6/10/

14 variable 2

Frame
Control

Sequence
Number

Destination
PAN
Identifier

Destination
Address

Source
PAN
Identifier

Source
Address

Auxiliary
Security
Header

Frame
Payload

FCS

Addressing fields

MHR MAC
Payload

MFR

Figure 41—General MAC frame format

Bits: 
0–2 3 4 5 6 7–9 10–11 12–13 14–15

Frame
Type

Security
Enabled

Frame
Pending

Ack.
Request

PAN ID
Compression

Reserved Dest.
Addressing
Mode

Frame
Version

Source
Addressing
Mode

Figure 42—Format of the Frame Control field

Figure 4.9: General MAC frame format2

The Frame Control Field is used as a guide to decoding the frame. It contains the

information needed for a device to determine where the addresses, security information,

and start of payload data are located within the received message. The format of this

two-byte field is shown in Figure 4.10. The first three bits identify the type of frame being

transmitted. In this case, a data frame is illustrated, so the bits are set to 001. The

Security Enabled bit is used to indicate whether or not an auxiliary security header is

present. Because security is not supported by this implementation, it is always 0. The

Frame Pending bit is set to one if there are additional frames to be transfered to the receiver

once the current transaction completes. This will be set to the appropriate value when

the frame header is being generated. The Ack Request bit is set according to what has

been received from the NWK layer in the txOptions field of the MCPS-DATA.request

message. The destination and source address modes are also specified by the NWK layer

in the message. For both addresses, the mode can be set to one of three things. If the

address and PAN ID are not included in the header, the appropriate mode field is set to 00.

If the address field contains the 16-bit short address, the mode is set to 10. If the extended

64-bit address is used, it is set to 11. The PAN ID Compression bit is only examined by

2From IEEE Std 802.15.4-2006 Copyright 2006, by IEEE. All rights reserved.
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the receiver if neither address mode has been set to 00. In this case, if both addresses are

associated with the same PAN ID, the transmission can be shortened by two bytes by only

sending it once. If the transmission has been shortened, the receiver is notified by setting

the PAN ID Compression bit to 1. The Frame Version field is used to indicate whether

a given frame is backwards compatible with the 2003 version of the standard. Because

security is not used, and channel pages are not supported by this implementation, the

frames are always backwards compatible. As a result this field will always be set to 00. If

security is added in the future, the frame version should be changed to 01.
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longer than a single octet are sent to the PHY in the order from the octet containing the lowest numbered bits
to the octet containing the highest numbered bits.

For every MAC frame, all reserved bits shall be set to zero upon transmission and shall be ignored upon
receipt.

7.2.1 General MAC frame format

The MAC frame format is composed of a MHR, a MAC payload, and a MFR. The fields of the MHR appear
in a fixed order; however, the addressing fields may not be included in all frames. The general MAC frame
shall be formatted as illustrated in Figure 41.

7.2.1.1 Frame Control field

The Frame Control field is 2 octets in length and contains information defining the frame type, addressing
fields, and other control flags. The Frame Control field shall be formatted as illustrated in Figure 42.

7.2.1.1.1 Frame Type subfield

The Frame Type subfield is 3 bits in length and shall be set to one of the nonreserved values listed in
Table 79.

7.2.1.1.2 Security Enabled subfield

The Security Enabled subfield is 1 bit in length, and it shall be set to one if the frame is protected by the
MAC sublayer and shall be set to zero otherwise. The Auxiliary Security Header field of the MHR shall be
present only if the Security Enabled subfield is set to one.

Octets: 
2 1 0/2 0/2/8 0/2 0/2/8 0/5/6/10/

14 variable 2
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Control

Sequence
Number
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Identifier

Destination
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MHR MAC
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Figure 41—General MAC frame format

Bits: 
0–2 3 4 5 6 7–9 10–11 12–13 14–15
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Figure 42—Format of the Frame Control field

Figure 4.10: Format of the Frame Control field3

The sequence number is obtained using a counter called macDsn stored in the MAC

PIB table which increments after each message sent. This allows for a correlation between

pending Acks from sent frames and received Acks. The lengths of the various addressing

fields are determined by the information passed from the NWK to MAC layer in the

MCPS-DATA.request message. Because security is not used, the length of the auxiliary

security header will always be 0. The Frame Control, Sequence Number, Addressing fields

and Auxiliary Security Header are collectively referred to as the MAC header, or MHR.

According to the standard, the frame check sequence (FCS) is to be generated by the

MAC layer. A cyclic redundancy check (CRC) is used to ensure received frames are not

corrupt. Upon receipt of a frame, the MAC layer is expected to calculate the CRC and

compare it to the received FCS. However, this would lead to violations on Ack timing, as

discussed in Section 1.4. One way to reduce the time needed for this check is to implement

it in the PHY hardware, as Freescale has done with the MC13192. As a result, when the

3From IEEE Std 802.15.4-2006 Copyright 2006, by IEEE. All rights reserved.
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MAC layer prepares data frames, the FCS is not included. When the length is passed to

the transceiver for transmission, it is increased by 2 to account for the FCS that will be

added. The PHY transceiver also takes care of calculating the CRC upon receipt, using

the CRC line to indicate that the received frame has passed the check.

The MCPS-DATA.request was one of the first primitives to be fully tested and val-

idated. A test function was used to create the messages in the format used by the NWK

layer. These messages were then passed directly to the request handler, allowing the func-

tion to be tested independent of the SAPs. A breakpoint towards the end of the request

function allowed the variable viewer in the debug environment to be used to verify that the

contents of the message being passed to the PD-DATA.request function were complete

and correctly formatted. All possible addressing combinations were tested to ensure that

MHR generation was fully validated. The code used to test this primitive is shown in

Appendix A. It should be noted that the validity of the values being entered in the various

message fields was unimportant as the message was not actually being transmitted. What

was important, was that they be correctly placed in the transmit message frame.

4.5 MAC Layer Management Entity Primitives

The MLME is responsible for starting and maintaining network connections. It is also

required for all MAC functionality outside of data transfers. The needed functionality

is realized using primitive families to carry out various functions. There are up to four

primitives within each of these families: request, indication, response and confirm. In all

cases, requests are initiated by the NWK layer and handled by the MAC layer, as are

responses. Confirms and indications are initiated by the MAC layer and handled by the

NWK layer.

In many cases multiple pieces of information, or data elements, are transfered by a single

37



primitive. If a data element is larger than 8 bits, it is declared as a byte array in little

endian format. The MLME primitive families are listed in Table 4.4. For each family, the

state of the defined primitives in the current implementation has been indicated. The ones

which are not implemented are indicated with NI, while those no longer required due to

changes in implementation are indicated by NA. Those which have been partly developed

are indicated by P, while W is used to indicate primitives which have been written but are

untested. Those which have been fully tested and verified are indicated by T. Each family

of primitives is discussed in more detail in the following sections with the exception of GTS,

Rx-Enable, Sync and Sync-Loss. The GTS, Sync and Sync-Loss families are only used in

beacon enabled networks, which are unsupported at this time. The Rx-Enable family of

primitives is optional on both RFD and FFD devices, and is currently unused. Information

on the unused primitive formats and functionality can be found in the standard[1].

4.5.1 Associate

The Associate primitives are used when a device is attempting to connect with a coordi-

nator to join a PAN. For the purposes of testing this implementation, the information that

would normally have been exchanged through the association sequence was simply hard

coded. This was due to time constraints and allowed the focus to be on achieving data

transactions. The indication and confirm primitives in this family serve only to pass infor-

mation from the MLME to the NWK. As a result they are straightforward to implement

and have been written. In the case of the confirm primitive, it simply packages information

provided to it in the corresponding message format and sends it to the MLME-NWK SAP.

This is easily tested by simply calling the MacMlmeAssociateConfirm() function,

which implements this primitive, and verifying that the NWK receives it. The indication

also acts as a mechanism for packaging and sending information to the NWK layer. While

the functionality was not tested, verification will be trivial in the future. For the MAC
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Table 4.4: MLME Primitives

Family Request Confirm Indication Response

MLME-ASSOCIATE NI T W NI

MLME-BEACON-NOTIFY - - P -

MLME-COMM-STATUS - - W -

MLME-DISASSOCIATE NI W NI -

MLME-GET T NA - -

MLME-GTS NI NI NI -

MLME-ORPHAN - - W W

MLME-POLL T T - -

MLME-RESET T NA - -

MLME-RX-ENABLE NI NI - -

MLME-SCAN T/P T - -

MLME-SET T NA - -

MLME-START T T - -

MLME-SYNC-LOSS - - NI -

MLME-SYNC NI - - -
NA-Not Applicable, NI-Not Implemented, P-Partially Implemented, T-Tested, W-Written

layer to meet even the most basic requirements of the standard, the request and response

need to be implemented and the verification of this family must be completed.

4.5.2 Beacon Notify

The MLME-BEACON-NOTIFY.indication is the only defined member of this primitive

family. It is used by the MLME to notify the NWK layer that a beacon has been received.

It will only be generated when the aMPibAutoRequest entry of the PIB table is set to false

or when there is a data payload sent with the beacon. The format of the beacon frame

is shown in Figure 4.11. The indication primitive passes information to the NWK layer

including the coordinator address, channel, super frame information, GTS information and
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link quality. The list of pending addresses and beacon payload, if any, are also forwarded

from the received frame.
IEEE
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7.2.2.1.1 Beacon frame MHR fields

The MHR for a beacon frame shall contain the Frame Control field, the Sequence Number field, the Source
PAN Identifier field, and the Source Address field.

In the Frame Control field, the Frame Type subfield shall contain the value that indicates a beacon frame, as
shown in Table 79, and the Source Addressing Mode subfield shall be set as appropriate for the address of
the coordinator transmitting the beacon frame. If protection is used for the beacon, the Security Enabled
subfield shall be set to one. The Frame Version subfield shall be set to one only if the Security Enabled
subfield is set to one. If a broadcast data or command frame is pending, the Frame Pending subfield shall be
set to one. All other subfields shall be set to zero and ignored on reception.

The Sequence Number field shall contain the current value of macBSN.

The addressing fields shall comprise only the source address fields. The Source PAN Identifier and Source
Address fields shall contain the PAN identifier and address, respectively, of the device transmitting the
beacon.

The Auxiliary Security Header field, if present, shall contain the information required for security
processing of the beacon frame, as specified in 7.2.1.7.

7.2.2.1.2 Superframe Specification field

The Superframe Specification field is 16 bits in length and shall be formatted as illustrated in Figure 47.

Octets: 2 1 4/10 0/5/6/10/14 2 variable variable variable 2

Frame
Control

Sequence
Number

Addressing
fields

Auxiliary
Security 
Header

Superframe
Specification

GTS
fields 
(Figure 45)

Pending
address
fields 
(Figure 46)

Beacon
Payload

FCS

MHR MAC Payload MFR

Figure 44—Beacon frame format

Octets: 1 0/1 variable

GTS Specification GTS Directions GTS List

Figure 45—Format of the GTS information fields

Octets: 1 variable

Pending Address Specification Address List

Figure 46—Format of the pending address information fields

Figure 4.11: Beacon frame format4

The current implementation does not support beacon-based networks. However, a

beacon is still sent out during startup, and devices may be on to receive it. Once the

MLME-ASSOCIATION.request functionality is implemented, a beacon will also be gen-

erated as part of the coordinator’s response to the new device.

4.5.3 Comm Status

The Comm Status primitive only exists in the form of an indication. It is issued by the

MLME and sent to the NWK layer following a transmission which resulted from a response

primitive. More specifically, it is issued following an MLME-ASSOCIATE.response prim-

itive or MLME-ORPHAN.response primitive. This primitive is only used by a coordi-

nator, as this will be the only device responding to MLME-ASSOCIATE.request and

MLME-ORPHAN.request primitives from other devices in the network. The association

message sequence chart shown in Figure 4.12 demonstrates how this primitive is used by

the coordinator as part of the association process.

In the current implementation, the code to implement the Comm Status indication

has been written but not tested. Since the indication simply takes information from the

4From IEEE Std 802.15.4-2006 Copyright 2006, by IEEE. All rights reserved.
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7.1.4 Disassociation primitives

The MLME-SAP disassociation primitives define how a device can disassociate from a PAN.

All devices shall provide an interface for these disassociation primitives.

7.1.4.1 MLME-DISASSOCIATE.request

The MLME-DISASSOCIATE.request primitive is used by an associated device to notify the coordinator of
its intent to leave the PAN. It is also used by the coordinator to instruct an associated device to leave the
PAN.

7.1.4.1.1 Semantics of the service primitive

The semantics of the MLME-DISASSOCIATE.request primitive are as follows:

Table 51 specifies the parameters for the MLME-DISASSOCIATE.request primitive.

Figure 31—Message sequence chart for association

Device next
higher layer

Device
MLME

MLME-ASSOCIATE.request

Data request

MLME-ASSOCIATE.indication

MLME-ASSOCIATE.confirm

Coordinator
next higher layer

Coordinator
MLME

Association request

Acknowledgement
Association response

Acknowledgement

Acknowledgement

MLME-ASSOCIATE.response

MLME-COMM-STATUS.indication

macResponseWaitTime

MLME-DISASSOCIATE.request (
DeviceAddrMode,
DevicePANId,
DeviceAddress,
DisassociateReason,
TxIndirect,
SecurityLevel,
KeyIdMode,
KeySource,
KeyIndex
)

Figure 4.12: Message sequence chart for association5

received message and packages it as the appropriate message type for transmission to the

NWK layer via the MLME-SAP, it is very similar to the functionality of various confirm

primitives which have been verified. As a result, the likelihood of functionality errors being

present is quite low, and testing should be straightforward. Testing was not completed in

the current implementation due to time constraints.

4.5.4 Disassociate

Like the Associate primitives, writing and testing the Disassociate functionality was not

critical to achieving basic communication. As a result, the request functionality was never

implemented. The confirm functionality was trivial as it simply packages the status, as well

as some address information, into a message and sends it to the MLME-SAP. While this

code has been written it has not been tested at this time. The request primitive must be

implemented for the MAC layer to meet the standard. The standard should be consulted

5From IEEE Std 802.15.4-2006 Copyright 2006, by IEEE. All rights reserved.
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for a full description of the expected behaviour of the MLME-DISASSOCIATE.request

primitive.

4.5.5 Get

The MLME-GET.request primitive allows the NWK layer to read PIB Table values

through the SAP. Since the PIB Table is private to the MAC layer, they cannot be directly

accessed. While on the surface this primitive seems trivial, it is complicated by the struc-

ture of the PIB Table itself. Because the elements in the table vary in size, it is not possible

to simply index into the table. As noted in Section 4.3, the PIB Table itself is actually a

struct to accommodate the various size requirements. Rather, the MLME-GET.request

function must deal with each valid element access individually. The easiest way to do this

is with a case statement. All elements contained in the PIB Table can be read using this

primitive.

The functionality of this primitive was verified by writing a test function which creates

a message of the appropriate type and passes it to the MLME-GET.request function.

Messages are created for one entry of each possible data type as testing each entry in-

dividually is inefficient. Because loops cannot be taken advantage of, it is necessary to

pass the ID or name of each entry tested manually in the test code. Because the table is

implemented as a struct, the first and last entries were also tested.

4.5.6 Orphan

The Orphan family is optional for RFDs as they are only used by a coordinator, and

consists of an indication and response primitive. It is used when orphaned devices are

attempting to reconnect with their network. The MLME-ORPHAN.indication message
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will be sent from the MLME to the NWK layer when an orphan notification MAC command

is received. The format and use of MAC commands is described in Section 4.6.

Once the indication has been received by the NWK layer, it is responsible for determin-

ing whether or not the orphan device was part of its network. This is done by comparing

the device’s address with those of known devices on the network. The details of how

the address list is stored, as well as how the comparison is carried out are beyond the

scope of the standard. If the NWK layer determines that the device is in its list, it sends

an MLME-ORPHAN.response message to the MLME. The MLME will then generate a

Coordinator Realignment MAC command, which is sent to the orphan device with the

information it needs to re-join the network.

At this time, the association functionality has not been fully implemented. As a result,

it is not possible for the coordinator to maintain a list of devices in the network. Since

network parameters were being hard coded for the purpose of creating a simple network,

support for orphan devices was unnecessary. The code for both primitives has been written,

but remains untested. A mechanism for tracking associated devices must also be added to

the NWK layer before functionality can be fully verified.

4.5.7 Poll

The MLME-Poll family consists of request and confirm primitives. The request is gen-

erated by the NWK layer and sent to the MLME when data is being requested from a

coordinator. Upon receipt of the request, the MLME calls the Data Request MAC com-

mand and passes the address and security information from the network layer to it. The

Data Request command will in turn register a pending Ack. If an Ack is received within

the time limit, and the payload length is non-zero, the MLME-POLL.confirm will be

generated with a status of SUCCESS and sent to the NWK layer. If the Frame Pending

subfield is set to zero, the status returned will be NO DATA. If the pending Ack expires
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before an Ack is received, the MLME-POLL.confirm will be generated with a status of

NO ACK.

The MLME-POLL family is actually one part of a larger procedure used for transferring

data in polling-based networks. This larger procedure is discussed in Section 6.2. It should

be noted that while this family is primarily used in non-beaconed networks, it can still be

used in beaconed networks if the controller is not actively pushing data to the end devices.

Poll request messages were created with various addressing combinations using the

MacMlmePollRequestTest. Breakpoints were then used in conjunction with the vari-

ables view in the debug screen to ensure that the information being passed to the Data

Request MAC command was correct. The confirm functionality was tested in a similar

manner by passing various statuses to the primitive. While the status response associated

with various Ack results has been written and appears to be correct, it should be verified

again once receive functionality allows for more thorough data transmission testing.

4.5.8 Reset

The reset primitive is used to return the MAC layer to its startup state without reseting

the rest of the system. For the current implementation, it is necessary to empty all SAP

message queues. This includes those on the NWK side of the interface as message allocation

and tracking is done in the MAC layer and as a result all message pools must be returned

to their default state. The list of pending Acks, and in the case of a coordinator pending

messages, are also cleared on reset.

Reseting the PIB table is a special case. It is the only portion of the MAC which the

user can choose whether or not to reset. While this may seem odd, when the type of

information contained in the PIB is considered it becomes clear why it may be desirable

not to reset it. It takes a significant amount of time and effort to setup the short address,
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MAC address, coordinator, channel etc. and if these have not changed, there is no reason

to do it again.

The functionality of this primitive was verified by passing the proper message type

to the reset function twice. The first time it was configured to reset the PIB table, the

second time not to. That all settings had been restored to default throughout the MAC

was verified using a combination of print statements and breakpoint. The print statements

provided an easy method of confirming the message blocks had been returned to their

default state, while the breakpoint allowed the variable viewer in the debug environment

to be used to check the settings of PIB table values as well as other elements such as

pending Ack and pending message lists.

4.5.9 Scan

The scan primitives are used by the MLME in establishing and maintaining the net-

work. Four different scan types can be preformed: ED scan, active scan, passive scan,

and orphan scan. The desired type of scan is indicated by the NWK layer using the

MLME-SCAN.request primitive by setting the appropriate value in the scanType field.

The 802.15.4 definition includes a channelPage field in the primitive definition, which is

not supported in this implementation. Since the Freescale PHY only supports a single

channel page, this information is unnecessary.

The ED scan and active scan are optional for RFDs. They are intended for use by a

coordinator. The ED scan allows the device to scan a set of channels in order to determine

the maximum energy detected on each channel during a set amount of time. The PHY is

set to the desired channel and the PLME-ED.request primitive is repeatedly issued until

time expires. The procedure is then repeated for all other channels in the set. Only the

maximum value returned on a given channel is stored. After all requested channels have

been scanned, an array of the maximum values is returned to the NWK layer.
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The active scan is intended for use by a prospective PAN coordinator. It can be used by

the device to select a PAN identifier which is not currently in use in its personal operating

space (POS) in order to avoid conflicts. Alternately, it can be used by a device prior

to association. The scan is performed by setting the PHY to the desired channel then

sending a Beacon Request MAC command. Once the command is transmitted, the device

waits for the number of symbols as given by Equation 4.1 to elapse. In this equation, n is

the value of the sacnDuration parameter in the MLME-SCAN.request. The information

received from all unique beacons during this time is recorded. Once the time has elapsed,

the process is repeated for the next channel in the list until all have been scanned. While

an active scan is being performed, any received frames which are not beacon frames are

discarded. If a beacon frame with a payload is received that contains the device in its list

of pending addresses, the MAC will not extract the pending data.

scanT ime = [aBaseSuperFrameDuration ∗ (2n + 1)]

scanT ime = [290 ∗ (2n + 1)]
(4.1)

The passive scan is required in all devices. This type of scan allows a device to locate

coordinators transmitting beacons within its POS. However, unlike the active scan a Beacon

Request MAC command is not sent. The device simply listens for beacons on the selected

channel. This type of scan is well suited for use by a device before association with a PAN.

As with the previously considered scan types, any non-beacon frames received during the

scan are automatically discarded. If a beacon frame with payload is received that includes

the scanning device in its list of pending addresses, the device will not extract the data.

The scan can be initiated for a given set of channels, where each channel is scanned for a

given period of time. The time for each scan is calculated using Equation 4.1, where n is

the value of the scanDuration parameter in the MLME-SCAN.request primitive.

The orphan scan allows a device to attempt to locate its coordinator in the event that
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synchronization is lost. The PHY is set to the desired channel and an Orphan Notification

MAC command is sent. Any frames received during the scan that are not coordinator

realignment command fames are discarded. The scan will terminate when either macRe-

sponseWaitTime has elapsed or it has received a Coordinator Realignment MAC command.

If a coordinator realignment command was not received, the next channel is scanned until

all specified channels have been scanned.

When the an Orphan Notification MAC command is received by a coordinator, an

MLME-ORPHAN.indication primitive is sent to the NWK layer. The NWK layer then

searches its device list for a match to the device indicated by the primitive. If a match

is found, it sends an MLME-ORPHAN.response primitive. This will in turn send a Co-

ordinator Realignment MAC command to the device. The whole process of searching the

device list and generating a response must complete within macResponseWaitTime, oth-

erwise the response will be missed by the device. If no match is found by the NWK layer

in the device list, the coordinator will simply discard the request.

In the current implementation, passive, active and orphan scans have only been par-

tially implemented. The focus was placed on implementing and testing ED scanning as

it is actually used in the startup procedure. ED scanning was tested by calling the func-

tion from the application with a channel list consisting of all channels supported by the

transceiver. SignalTap II was used to verify that the time for each scan was consistent

with the transceiver specification[16]. A breakpoint was used after the scan completed to

confirm that the values from the scan had been properly saved to the array and passed to

the NWK layer for channel selection.

4.5.10 Set

The MLME-SET.request primitive allows the NWK layer to modify PIB table values

through the MLME-SAP. Since the PIB Table is private to the MAC layer, they cannot
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be directly accessed. While on the surface this primitive seems trivial, it is complicated by

the structure of the PIB table itself. Because the elements in the table vary in size, it is

not possible to simply index into the table. As noted in Section 4.3, the PIB table itself is

actually a struct in order to accommodate the various size requirements. As a result, the

MLME-SET.request function must deal with each valid element access individually. The

easiest way to do this is with a case statement. Having to handle each valid element access

individually results in more complex code, however, it also makes it simple to protect

elements which are read only outside of the MAC layer. These elements simply aren’t

included in the case statement, and an attempt to access them will result in an error being

returned. As mentioned previously in Section 4.2, the MLME-SET.confirm primitive is

not required as the request is handled synchronously.

Testing of the MLME-SET.request primitive was also complicated by the nature of

the implementation. It was not possible to use a loop to step through entires. Instead,

one entry of each data type was tested. The first and last entry in the PIB table, as well

as an invalid entry were also tested. It is possible to set an entry by sending either the

corresponding identifier as defined by the standard, or the attribute name. The attribute

names have all been defined in the code as equal to their identifier. For example, the MAC

short address can be set in the table using either 0x53 or gMPibShortAddress_c as the

pibAttribute in the message sent from the NWK to the MLME. The functionality of

this primitive has been fully tested and validated.

4.5.11 Start

The start family is used by the NWK layer of an FFD to instruct the MAC to begin oper-

ating as a PAN coordinator. This should only be done after a reset of the MAC layer, in-

cluding the PIB table, has been performed. An active scan to determine a suitable channel

is also recommended. In beaconed network, the receipt of an MLME-START.request by
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the MAC layer would cause it to begin transmitting period beacons based on the settings

provided.

The standard calls for the MLME to set the PIB attributes if the start request is not

attempting to realign and existing coordinator. However, the Freescale implementation

sets the PIB attributes in the NWK layer before sending the MLME-START.request

primitive. While this gives the same result in the case of a non-beaconed network, it would

lead to violation of the standard in the case of a beaconed network. If a coordinator is

being realigned, the beacon related PIB attributes are only to be changed once the frame

is successfully transmitted. In the event of a channel access failure or invalid parameters

being requested, no changes are made.

This primitive was tested after the MLME-SAP was confirmed to be working. Thus it

was possible to confirm expected functionality using the application provided by Freescale

in the network layer. While the standard recommends an active scan, an ED scan was

used to select a suitable channel. Since a simple network is being tested and no other

coordinators are present, it makes more sense to ensure that other equipment in the area

is not interfering with the selected channel. A breakpoint was then used at the end of the

MLME handler to confirm that the parameters passed in the message had been properly

processed to create the message being passed to the PHY for transmission. The receipt

of the MLME-START.confirm primitive by the NWK layer was verified using a print

statement.

4.6 MAC Commands

Mac commands are used to support MAC primitives requiring the transfer of information

between devices. While the MAC primitives serve as a communication mechanism between

the MAC and NWK layers, fulfillment of the primitive request often requires interaction
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with other devices in the network. This is achieved through the use of MAC commands.

A full list of commands defined by the standard is shown in Table 4.5. Whether or not an

acknowledgment is required, as well as the commands status in the current implementation

are also shown. An RFD is not required to be capable of transmitting and receiving all

MAC commands. Those which are required are indicated by an X in the table. The

commands have been divided in the code such that the footprint can be trimmed for an

RFD by removing the #define FFD deceleration.

The MLMEBeaconRequest() primitive is listed as optional for an RFD device. How-

ever, the Freescale implementation of an end device on a non-beacon network uses an active

scan to find the coordinator. In order for this to work, the MLMEBeaconRequest() com-

mand must be available. As a result it is defined for a RFD device in this implementation.

Table 4.5: MAC Command Frames6

Command Command Name RFD ACK Status
Frame Identifier Tx Rx Tx Rx

0x01 Association request X Yes P NI

0x02 Association response X Yes P P

0x03 Disassociation notification X X Yes P P

0x04 Data request X Yes T W

0x05 PAN ID conflict notification X Yes T W

0x06 Orphan notification X No T W

0x07 Beacon request No P NI

0x08 Coordinator realignment X Opt. W W

0x09 GTS request Yes NI NI

NI-Not Implemented, P-Partially Implemented, T-Tested, W-Written

The MAC commands use a frame format derived from the general MAC frame discussed

in Section 4.4.1. The general MAC command frame is shown in Figure 4.13. Every MAC

6Adapted from IEEE Std 802.15.4-2006[1]
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command frame starts with the MHR field, which contains the Frame Control, Sequence

Number and Addressing fields. The information is identical to the Data frames, with the

exception of the Frame Type bits of the Frame Control field, which are 011 for a MAC

command. The MAC Payload is slightly different from that of the Data frames as the first

byte always contains the Command Frame Identifier in order to indicate the command

type. These Frame Identifiers are listed in Table 4.5 for each of the commands. For some

commands, additional payload data may also be transfered. As mentioned previously, the

FCS will be generated by the PHY when the frame is sent.
IEEE
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148 Copyright © 2006 IEEE. All rights reserved.

7.2.2.4.1 MAC command frame MHR fields

The MHR for a MAC command frame shall contain the Frame Control field, the Sequence Number field, the
destination PAN identifier/address fields and/or the source PAN identifier/address fields.

In the Frame Control field, the Frame Type subfield shall contain the value that indicates a MAC command
frame, as shown in Table 79. If the frame is to be secured, the Security Enabled subfield of the Frame
Control field shall be set to one and the frame secured according to the process described in 7.5.8.1.3.
Otherwise the Security Enabled subfield of the Frame Control field shall be set to zero. All other subfields
shall be set appropriately according to the intended use of the MAC command frame. All reserved subfields
shall be set to zero and ignored on reception.

The Sequence Number field shall contain the current value of macDSN.

The addressing fields shall comprise the destination address fields and/or the source address fields,
dependent on the settings in the Frame Control field.

The Auxiliary Security Header field, if present, shall contain the information required for security
processing of the MAC command frame, as specified in 7.2.1.7.

7.2.2.4.2 Command Frame Identifier field

The Command Frame Identifier field identifies the MAC command being used. This field shall be set to one
of the nonreserved values listed in Table 82.

7.2.2.4.3 Command Payload field

The Command Payload field contains the MAC command itself. The formats of the individual commands
are described in 7.3.

7.2.3 Frame compatibility

All unsecured frames specified in this standard are compatible with unsecured frames compliant with
IEEE Std 802.15.4-2003, with two exceptions: a coordinator realignment command frame with the Channel
Page field present (see 7.3.8) and any frame with a MAC Payload field larger than
aMaxMACSafePayloadSize octets.

Compatibility for secured frames is shown in Table 81, which identifies the security operating modes for
IEEE Std 802.15.4-2003 and this standard.

Octets: 2 1 (see 7.2.2.4.1) 0/5/6/10/14 1 variable 2

Frame
Control

Sequence
Number

Addressing
fields

Auxiliary 
Security 
Header

Command
Frame 
Identifier

Command
Payload

FCS

MHR MAC Payload MFR

Figure 54—MAC command frame format
Figure 4.13: MAC command frame format7

Because each function for sending commands receives the address information in dif-

ferent formats, some challenges are created. For every MAC command sent, it is necessary

to generate the appropriate MHR using information provided by the calling primitive. In

order to standardize the passing of header information between functions, a struct was

declared as shown in Figure 4.14. This allows for a single pointer to be passed, as opposed

to a large number of individual data elements. All MAC commands can then use a sin-

gle function for header generation, as well as a single function for decoding headers upon

receipt of a MAC command. Centralizing the generation and decoding functions greatly

reduces code duplication while also reducing the chance of a bug.

7From IEEE Std 802.15.4-2006 Copyright 2006, by IEEE. All rights reserved.
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typedef struct hdrMacCmdAddr_tag{
uint8_t srcAddrMode;
uint8_t *dstAddress;
uint8_t dstPanId[2];
uint8_t dstAddrMode;
bool_t ack;
bool_t panIDcomp;

} hdrMacCmdAddr_t;

Figure 4.14: Struct used to simplify passing address information for MAC command header
generation

4.6.1 Data Request

The data request MAC command is called when the MAC layer when it receives the

MLME-POLL.request primitive. It is responsible for generating the frame sent to the

transceiver to poll the coordinator for available data. Since the current system implemen-

tation uses polling to initiate data transmissions, this command is critical. The settings

for the address mode in the poll request are also used for the command, and an Ack is

always required. The data request frame only uses one byte of payload, the command ID

of 0x04.

The send functionality of this command was tested as part of MLME-POLL.request

testing. This MAC command is called from the poll request, which supplies the command

with pointers to address and security information needed to create the frame header. Break-

points were used in conjunction with the variable view of the debugger to confirm that the

message being passed to the PHY layer for transmission was correctly formatted. Testing

the possible address combinations that can be sent to MLME-POLL.request ensured that

the functionality was fully verified.

The receive functionality of this command has been written, but not tested. Once

messages are being successfully received, functionality will be easy to verify by sending

different address combinations. Verifying the functionality of this command will include
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verifying that message headers are being correctly parsed, a function shared by all receive

commands.

4.6.2 PAN ID Conflict Notification

This command is sent by a device to the PAN coordinator when a PAN ID conflict is

detected. The frame control settings used in the MHR field are specified by the standard

and shown in Table 4.6. The PAN ID Conflict frame uses only one byte of payload, the

command ID of 0x05.

Table 4.6: Frame Control Field of PAN ID Conflict Notification MAC command

Bits Name Setting

2-0 Fame Type 011

3 Security Enabled 0

4 Fame Pending 0

5 Ack. Request 1

6 PAN ID Compression 1

9-7 Reserved -

11-10 Dest. Addressing Mode 11

13-12 Fame Version 00

15-14 Source Addressing Mode 11

The code to implement both the send and receive variations of this command have been

written, but only send has been tested. Testing of the send command is trivial as the only

information passed to it is a pointer to security information. Since security is not currently

supported, there is only one possible variation of the command used at this time. The

functionality of the command was tested by passing it the security level of 0 then using

a break point to confirm that the message being passed to the PHY for transmission was

properly formatted. Testing the receive variation will be trivial once the function used to
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parse received frame headers is tested and verified.

4.6.3 Orphan

This command is used by a device in the event that it loses synchronization with the co-

ordinator. When a coordinator receives this command, an MLME-ORPHAN.indication

message is sent to the NWK layer. The settings for the Frame Control field defined by

the standard for this command are shown in Table 4.7. The orphan frame only uses one

byte of payload, the command ID of 0x06. The orphan device procedure was described

previously in Section 4.5.

Table 4.7: Frame Control field of Orphan MAC command

Bits Name Setting

2-0 Fame Type 011

3 Security Enabled 0

4 Fame Pending 0

5 Ack. Request 0

6 PAN ID Compression 1

9-7 Reserved -

11-10 Dest. Addressing Mode 10

13-12 Fame Version 00

15-14 Source Addressing Mode 11

Both the send and receive function to implement this command have been written.

However, only the send functionality has been tested so far. Like the PAN ID Conflict

Notification command, only the security information is passed to the send, making it

trivial to test. The same method described for testing the PAN ID Conflict Notification

send was applied here. Testing the receive variation will be trivial once the function used

to parse received frame headers is tested and verified.
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4.6.4 Coordinator Realignment

The are two scenarios where the Coordinator Realignment command is used. The first

scenario is when an Orphan notification command has been received, and the coordinator

has confirmed the sender is part of its network. In this case it is being sent from the coor-

dinator to the orphan device. The second case occurs when PAN configuration attributes

have been changed. These settings can only be changed by a MLME-START.request

being received from the NWK layer. As a result this command is always generated as

part of the handling of the request in the MLME. In this case it is being broadcast from

the coordinator to all devices on the network. The Frame Control settings specified by

the standard for this command are dependent on the intended recipient, as shown in Ta-

ble 4.8. For this command, additional payload bytes are appended after the command ID

of 0x08. They contain the PAN configuration information needed by the receiving device

to re-configure its PIB Table. If the command is sent to an orphaned device, the new short

address will be part of this payload. If the command is being broadcast, the destination

PAN ID will be set to 0xffff and the destination short address will be set to 0xffff in the

addressing fields to indicate it is intended for all devices.

The Coordinator Realignment command is sent as part of the startup procedure, but

PAN information is being hard coded at this time. As a result testing the functions which

have been written to send and receive this command was low priority. In the future, testing

of these functions can be done in much the same way as testing was completed for other

MAC commands. The Coordinator Realignment command is passed multiple pieces of

information in the send variation, so testing will require the function to be called multiple

times for thorough verification of the parameter variations.
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Table 4.8: Frame Control field of Coordinator Realignment MAC command

Bits Name Setting
Device Broadcast

2-0 Fame Type 011 011

3 Security Enabled 0 0

4 Fame Pending 0 0

5 Ack. Request 0 0

6 PAN ID Compression 0 0

9-7 Reserved - -

11-10 Dest. Addressing Mode 11 10

13-12 Fame Version 00 00

15-14 Source Addressing Mode 11 11

4.7 Acknowledgment

Acknowledgment messages, or Acks, are used to confirm that information has been suc-

cessfully received by the intended device. If the sender expects to receive an Ack, the

Ack.Request bit of the Frame Control Field will be set to one when the message is

transmitted. The frame format used when sending an Ack is shown in Figure 4.15. The

format of the Frame Control Field was shown previously in Figure 4.10. The settings used

for the Frame Control Field entries are shown in Table 4.9. The sequence number is set

to sequence number of the frame being acknowledged. As always, the FCS is generated by

the PHY transceiver hardware.
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The Sequence Number field shall contain the current value of macDSN.

The addressing fields shall comprise the destination address fields and/or the source address fields,
dependent on the settings in the Frame Control field.

The Auxiliary Security Header field, if present, shall contain the information required for security
processing of the data frame, as specified in 7.2.1.7.

7.2.2.2.2 Data Payload field

The payload of a data frame shall contain the sequence of octets that the next higher layer has requested the
MAC sublayer to transmit.

7.2.2.3 Acknowledgment frame format

The acknowledgment frame shall be formatted as illustrated in Figure 53.

The order of the fields of the acknowledgment frame shall conform to the order of the general MAC frame
as illustrated in Figure 41.

7.2.2.3.1 Acknowledgment frame MHR fields

The MHR for an acknowledgment frame shall contain only the Frame Control field and the Sequence
Number field.

In the Frame Control field, the Frame Type subfield shall contain the value that indicates an
acknowledgment frame, as shown in Table 79. If the acknowledgment frame is being sent in response to a
received data request command, the device sending the acknowledgment frame shall determine whether it
has data pending for the recipient. If the device can determine this before sending the acknowledgment
frame (see 7.5.6.4.2), it shall set the Frame Pending subfield according to whether there is pending data.
Otherwise, the Frame Pending subfield shall be set to one. If the acknowledgment frame is being sent in
response to either a data frame or another type of MAC command frame, the device shall set the Frame
Pending subfield to zero. All other subfields shall be set to zero and ignored on reception.

The Sequence Number field shall contain the value of the sequence number received in the frame for which
the acknowledgment is to be sent.

7.2.2.4 MAC command frame format

The MAC command frame shall be formatted as illustrated in Figure 54.

The order of the fields of the MAC command frame shall conform to the order of the general MAC frame as
illustrated in Figure 41.

Octets: 2 1 2

Frame Control Sequence Number FCS

MHR MFR

Figure 53—Acknowledgment frame format
Figure 4.15: Acknowledgment frame format8

8From IEEE Std 802.15.4-2006 Copyright 2006, by IEEE. All rights reserved.
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Table 4.9: Frame Control field of ACK message

Bits Name Setting

2-0 Fame Type 010

3 Security Enabled 0

4 Fame Pending 1/0

5 Ack. Request 0

6 PAN ID Compression 0

9-7 Reserved -

11-10 Dest. Addressing Mode 00

13-12 Fame Version 00

15-14 Source Addressing Mode 00

It is possible that a device could have more than one pending Ack at any given time.

As a result it is necessary to initialize a data structure which can be used to store a list of

pending Acks. A singly linked list is sufficient for this purpose.

The 802.15.4 standard requires that when a device receives a message for which an

Ack has been requested it must respond within aTurnAroundTime symbols. In order

to ensure that this condition has been met when the sender receives the Ack, an expiry

time is included in the pending Ack structure. Depending on the command with which

the pending Ack is associated, the required action in the event that a pending Ack expires

without a response from the receiver varies. In some cases the pending Ack is simply

discarded. In others, a confirm primitive with a status of NO_ACK is generated and sent

through the MLME NWK SAP to the next higher layer. The associated action in the

event of an expired Ack for each command type is shown in Table 4.10.
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Table 4.10: Action taken when pending Ack expires

Command ID Registering Command Action on Expiry

0x01 Association request none

0x02 Association response generate
MLME-ASSOCIATE.confirm
with a status of NO_ACK

0x03 Disassociation notification generate
MLME-DISASSOCIATE.confirm
with a status of NO_ACK

0x04 Data request generate MLME-POLL.confirm
with a status of NO_ACK

0x05 PAN ID Conflict notification none

0x08 Coordinator Realignment generate
MLME-COMM-STATUS.indication
with a status of NO_ACK

0x0A MCPS Data request generate MCPS-DATA.confirm
with a status of NO_ACK
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Chapter 5

PHY Software Design and

Verification

The PHY layer is where the majority of deviations from the standard occur. Because

the transceiver is physically separate from the controller, the SAPs between MAC and

PHY layers are not practical. Instead, PHY primitives are directly called from the MAC

layer. These primitives encapsulate the majority of the SPI bus communication necessary

to execute the desired action. In essence, the SAPs have been replaced with the SPI bus

and IRQ line which now form the interface to the transceiver. This new relation between

MAC and PHY layers is shown in Figure 5.1.

Because of the extensive changes, the PHY driver implementation will be reviewed.

The primitives described in the standard for both the PD and PLME cores of the PHY

layer will then be compared to the actual implementation. The use of the IRQ line for

system control, and how this control is used will also be reviewed. This proved to be one

of the most difficult portions of the PHY implementation, and the challenges encountered

will be discussed.
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PHY Driver

MAC Common
Sublayer

MLME

MAC PIB

PLME

Transceiver

RF-SAP

PHY PIB

SPI Bus IRQ Line

Figure 5.1: Revised PHY and MAC layer interface

5.1 PHY Driver

The PHY driver provided by Freescale was implemented using a state machine which

mirrors that of the transceiver. For correct operation it is critical that the state information

be kept in sync. Figure 5.2 shows the states used in this implementation. It also shows the

signals necessary to transition between the states. In this case, time-triggered events are

not used. It should also be noted that most events are configured to occur in stream mode.

The exception is ED, which performs an ED scan. Since this mode can only be entered

on PAN startup, it can be run with stream mode disabled. Due to timing considerations,

CCA is configured to run with the transceiver in stream mode. The alternate procedure
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recommended by Freescale is followed in this case[16]. In all cases the device must return

to the IDLE state before it can transition to one of the 4 action states.

ED

CCATX

RX

IDLE

RXTXEN=1

and tx_strm=1

and use_strm_mode=1

tx_sent_irq

RXTXEN=1

and rx_stream=1

and use_strm_mode=1

rx_stream_irq/

rx_done_irq

cca_irq

RXTXEN=1

and xcvr_seq=1

and use_stream_mode=1

cca_irq
RXTXEN=1

and xcvr_seq=1

and use_stream_mode=0

OFF

~RST=1

Initial State

Figure 5.2: State diagram for stream mode PHY

In order to use the transceivers, some changes to the drivers were necessary. There are

some peculiarities in the method used by Freescale to setup successive PHY actions. An

action is defined by the transition from Idle to one of the active states, and the subsequent

transition back to Idle. If the transceiver is not already in the process of executing an

action, the desired action will be setup immediately. If an action is currently in progress,

mpfPendingSetup will be set to the appropriate action but no changes will be made to

the transceiver. When the action in progress completes, the status of mpfPendingSetup
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is checked. If it is not NULL, the appropriate action is executed. Note that this imple-

mentation only supports one pending action at a time. According to comments in the

code, this has been done in order to free the processor for other tasks while waiting for the

transceiver to complete an action. While this may seem advantageous, there are very few

tasks undertaken by the transceiver during which time the processor can do other mean-

ingful work. One of the longest actions to execute is the ED scan. However, these scans

only occur in the coordinator while a channel is being selected for the network. Because

it is still in the setup procedure, there are no other actions for the controller to complete.

Another change from the Freescale implementation is the removal of the use of a timer to

initiate each action. Instead they are started when RXTXEN is set high. This is achieved

by not setting the tmr_trig_en bit when configuring the action.

5.2 Primitives

The primitives in the PHY layer operate on the same basic principles as those in the

MAC layer. Because the PHY layer is focused on low level functions, there are far fewer

primitives compared to the MAC layer. The primitives defined by the standard for both

the PD-SAP and PLME-SAP must be explored in detail as their implementation as defined

is not possible. In this implementation equivalent functionality is achieved through other

means.

5.2.1 PHY Data (PD)

The PD core of the PHY layer is solely responsible for data transmission and receipt.

This functionality is achieved with the use of a single primitive family, PD-DATA. The

primitives within this family, as well as their state in the current implementation are

shown in Table 5.1.
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Table 5.1: PD-SAP Primitives

Primitive Function Name Status File Location

PD-DATA.request PhyPdDataRequest T Data.c

PD-DATA.confirm - NA -

PD-DATA.indication - NA -
NA-Not Applicable, T-Tested

The PD-DATA.request primitive source code was provided by Freescale. However,

when it was compared to the 802.15.4 standard it was found to be non-compliant. Specifi-

cally, the standard calls for PD-DATA.confirm to be sent to the originating MAC layer

when the data frame is successfully transmitted. If the transmission is not successful, the

PD-DATA.confirm primitive is used to return an error code. In the Freescale code this

primitive is of type void and never called. The message sequence chart of a successful data

transmission according to the standard is shown in Figure 5.3 below.

Because the PHY in this implementation is a separate piece of hardware, the SAP inter-

face between the MAC and PHY is impractical, as previously discussed. Instead, the IRQ

line can be used in place of the PD-DATA.confirm, with bit 14 of the IRQ_Status(0x24)

register indicating the completion of a stream transmission. An interrupt is also gener-

ated after each word has been sent, telling the MAC layer to load the next word. This is

indicated using bit 6 of the IRQ_Status(0x24) register.

The purpose of the PD-DATA.indication is to notify the receiver’s MAC layer that

a message has been received and needs to be processed. Once again, this function is

realized using the IRQ line. Since a stream receive is used, an interrupt is generated after

every word and indicated using bit 7 of the IRQ_Status(0x24) register. When the full

message has been received bit 13 will also be set.

The first step is achieving a successful data transmission was to implement and test
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Originator MAC Originator PHY Receiver PHY Receiver MAC

PD-DATA.request

Wireless Transmission

PD-DATA.indication

PD-DATA.confirm

Figure 5.3: Sequence chart for a successful PD-DATA transaction

the stream transmit functionality of the transceiver. While the PHY routines for doing

so were provided as source code with the Freescale implementation, their use result in

the first word being successfully transmitted and generating the expected interrupt. This

interrupt would then be serviced by sending the next word to the transceiver, with the

expectation that an interrupt would be generated once it was sent. However, the second

interrupt would never occur. Instead, PLL Lock errors and stream errors were seen. In

order to debug the issue, the transceiver documentation was consulted[16]. By examining

the suggested procedure for initiating a stream transmission it was noted that there were

discrepancies with the provided code. As a result the PD-DATA.request was modified to

conform with the documentation. It was then tested again and confirmed to be functioning

as expected. Functionality was confirmed by examining the SignalTap II output of the SPI

bus, a sample of which is shown in Figure 5.4 for a successful stream transmission. It was

configured to trigger on the falling edge of the IRQ signal, which caused the transfer of

all data after the first word to be recorded. It was possible to verify that the first word

and the length of the data frame to be transmitted were being correctly written using a

separate SignalTap II recording. While this only confirms that the data is being transfered

between the transceiver and PHY driver as expected, it was all the testing that could be

done. The equipment needed to verify the RF signal being transmitted was not available.

Rather, successful RF transmission will be confirmed by successfully receiving transmitted
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frames.

Figure 5.4: SignalTap II Output showing successful stream transmission

5.2.2 PHY Layer Management Entity (PLME)

The majority of the PLME primitives defined by the standard are not implemented in

software. Rather, their intended functionality is realized within the transceiver itself and

abstracted from the user, or serves no useful purpose due to the necessary interface changes

between the PHY and MAC layers. Table 5.2 shows the PLME primitives that are defined

by the standard. The status of each in the current implementation is also shown. Those

still required in this implementation are described in more detail below.

The PLME-CCA.request primitive is used to trigger a clear channel assessment before

attempting to send data over the network, in order to decrease packet collisions. Since only

a basic network was used for testing, this was of low priority. The code is written, but no

testing has been done at this time.

The PLME-ED.request primitive is responsible for performing the setup necessary to

execute a single ED measurement. In this implementation that means setting xcvr_seq= 1

and RXTXEN=1. It is not necessary for the routine to set use_stream_mode= 0 as this

is already done in the PHY initialization routine. According to the standard, the primitive

is responsible for checking if the transceiver is disabled or the transmitter is enabled, re-

turning an error code to the MLME in either case via the PLME-ED.confirm primitive.

However, because the changes to MAC/PHY interface have resulted in tighter coupling of
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Table 5.2: PLME-SAP Primitives

Primitive Function Name Status File Location

PLME-CCA.request PhyPlmeCcaRequest W CcaEd.c

PLME-CCA.confirm - W -

PLME-ED.request PhyPlmeEdRequest T CcaEd.c

PLME-ED.confirm PhyPlmeEdConfirm T PhyMac.c

PLME-GET.request - NA -

PLME-GET.confirm - NA -

PLME-SET-TRX PhyPlmeTxRequest T SetRxTxState.c
-STATE.request PhyPlmeRxRequest T SetRxTxState.c

PhyPlmeForceTrxOffRequest W SetRxTxState.c

PLME-SET-TRX - NA -
-STATE.confirm

PLME-SET.request PhyPlmeSetCurrentChannelRequest T GetSet.c

PLME-SET.confirm - NA -
NA-Not Applicable, NI-Not Implemented, T-Tested, W-Written

the layers, the MLME can ensure the PHY is in the IDLE state before it calls the PLME-

ED.request function, making this check unnecessary. The PLME-ED.confirm primitive

is still used, but its functionality has been reduced. According to the standard it is to pass

both a status and the detected energy level to the MLME. In this implementation it is

called when the cca_irq is received and used to pass only the energy level.

The PLME-GET and PLME-SET primitive are intended to provide the MAC layer with

access to the variables stored in the PHY PIB table. This is analogous to the function-

ality provided to the NWK layer by the MLME-GET and MLME-SET primitives. How-

ever, the PHY PIB information is not held in a table structure as the MAC PIB. In-

stead, some are constants defined by the transceiver’s implementation while others are

controlled by setting register values via the SPI interface. This renders explicit imple-
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mentation of the PLME-GET primitives unnecessary as a simple SPI read to the correct

register or consultation of the transceiver reference manual is all that is needed. While

the PLME-SET.request primitive is still used, its functionality has been modified. Ac-

cording to the standard it should provide the ability to set any of the four entries in

the PHY PIB table which are not read-only attributes. Of these four, only setting the

phyCurrentChannel requires more than a SPI register write. In this case, the channel

number must be correlated to the appropriate settings for the LO1_Int_Div(0xF) and

LO1_Num(0x10) registers, which set the numerator and divisor of the local oscillator to

produce the correct RF frequency. This function has also been implemented to set the

PA_Lvl(0x12) register, which controls the power level of the transmit signal. Since this

whole procedure is considerably more complex than a single SPI write, it is logical to use

a function for implementation.

Similarly, in the case of the PLME-SET-TRX-STATE primitive, while the described

functionality is still present, it is not implemented in the stated manner. According to the

standard, the PLME-SET-TRX-STATE.request primitive is passed an enum to indicate

which mode it should set the transceiver to. Instead of passing this enum, the functionality

has been implemented using three different functions, one for each of the modes that can

be selected.

5.3 Interrupt Service Routine (ISR)

The interrupt service routine, and the correct functioning thereof, is one of the most crucial

pieces in making the system work. The transceiver relies on a single interrupt line to the

controller, IRQ, which is active low. When the line goes low, the controller is expected to

read the IRQ_Status(0x24) register. Each of the 16 bits in this register are used to

indicate the occurrence of a different event. There are, however, some bits whose meaning
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changes depending on the current configuration of the transceiver. Specifically, bits 14,

13, 7 and 6 are used to indicate different events depending on whether the transceiver is

operating in packet mode or streaming mode[16]. In this implementation the transceiver is

set to operate in streaming mode once the ED scans in the startup procedure are complete.

The transceiver then stays in this mode until it is reset. As a result, the code need only deal

with the interpretation of these bits in streaming mode. The adaptation of the existing

Freescale code to the FPGA with respect to interrupts can be considered in two stages:

the changes necessary to setup the interrupt service routine, and the changes necessary to

achieve the expected behaviour from the routine.

In terms of setup, the Freescale code included a series of functions used to abstract

the register operations necessary in determining which interrupt had been triggered, ac-

knowledging an interrupt, masking an interrupt etc. The macros for doing so were adapted

where appropriate to Altera I/O calls. The calls necessary to register the interrupt handler

with the Nios II vector table were also added.

Making the necessary configuration changes proved to be much simpler than achieving

the expected functionality. When the software is started, the first interrupt received from

the transceiver indicates that it has been restarted and is now in the cIdle state. The next

interrupt is of more interest in attempting to verify the functionality of the ISR in general,

as well as its response to the the ED scan routine.

It was found that several changes were necessary in order to have the correct ISR sub-

routine called, as well as to stop the routine from hanging. First, it was found that the

routine used to setup the transceiver for the scan was also responsible for determining

which of the ISR subroutines would be called based on the current value of gIsrFastAction.

However, in the Freescale code they were assigning the associated routine to gIsrPending-

FastAction, despite the fact that there was no subsequent routine to update gIsrFastAction

to the value of gIsrPendingFastAction if an action was not already in progress. As a result
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all PHY setup functions were changed to assign the associated routine directly to gIsrPend-

ingFastAction. The Freescale implementation also relied on a timer to trigger the start of

actions, which has been disabled in this implementation. Both of these code changes are

illustrated in Table 5.5 for the case of setting up an ED scan, as shown by the code which

has been commented out.

void SetupPendingEd(void)
{

uint16_t command = cCCA_MASK | cCCA_ED | SEQ_C; // | cTMR_TRIG_EN;
SetupAction(command);
MC1319xDrv_RxAntennaSwitchEnable();
mPhyTxRxState = cRxED;
gIsrFastAction=DoFastEdEof;
\\gIsrPendingFastAction=DoFastEdEof;

}

Figure 5.5: The revised code for configuring an ED scan is shown, with changes commented
out.

According to the Freescale MC13192 reference manual[16] the interrupt line is connected

to an open drain device,as expected from an active low signal. There is a programmable

40 kΩ pull-up resistor in the transceiver chip, which is controlled by GPIO_Data_Out(0x0C)

bit 7. An optional external pull-up resistor can also be used, as long as it is > 4 kΩ. Ac-

cording to the reference manual, this interrupt can be serviced every 6µs when the load is

< 20 pF. As a result one possible cause of slow de-assertion is a small pull-up resistance.

In order to verify the pull-up resistance of the IRQ line, it was measured with a mul-

timeter. It was found to measure just under 8 kΩ, which suggest that there is an external

pull-up resistor on the line. Using the basic equation for adding parallel resistances, it was

possible to estimate this external pull-up to be a 10 kΩ resistance, as shown in Equation 5.1.

This was then verified by disabling the 40 kΩ pull-up and repeating the measurement with

the multi-meter, confirming the predicted value. A sample of the response time observed is

shown in Figure 5.6. Using SignalTap II tools to count the number of cycles and converting
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to time showed it took 762µs before the IRQ line was reset in this particular case. This

is two orders of magnitude longer than expected, and is clearly unacceptable for normal

operation of the system. By zooming in on the same trace it is also possible to confirm that

the ISR is functioning as expected. When the IRQ line goes low, it is followed after a short

delay by a read to register 0x2D, as shown in Figure 5.7. This is the register which holds

the result of the ED measurement. While not shown by the figure, this read is followed by

a read to register 0x24 to de-assert the IRQ. Thus it appears that the procedure described

by the Freescale reference manual is being followed[16].

(
1

10 kΩ
+

1

40 kΩ

)−1

= 8 kΩ (5.1)

Figure 5.6: An example of the ISR routine triggered in response to the completion of an
ED scan. Note the extended length of time before the IRQ line is de-asserted.

Figure 5.7: A closer view of reading registers 2D to obtain the results of the scan.

After various software based attempts to decrease the response time of the IRQ line

de-assertion, alternative methods of controlling the system were considered. One possi-

bility is to rely on the IDLE line from the transceiver to indicate when the ED scan has

been completed, instead of relying on IRQ being asserted. According to the Freescale

documentation[16], the active-high IDLE line will be asserted while the device is actively

executing an action, whether it be an ED scan, CCA, transmit or receive. The ED scan
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is the first of these to be run during program execution, so it will be used as an example

here.

Figure 5.8 shows the SignalTap II output of the successive scans being triggered by

the falling edge of the IDLE signal. While the issue of only the first (not seen in figures)

and second scans being run with IRQ based timing has been eliminated, another issue is

apparent. During the first recorded ED scan the IDLE signal is asserted for a considerable

length of time, approximately 336µs. However, it is clear that after the second recorded

ED scan is setup, the IDLE signal is only high for a very short time, approximately 2µs, as

indicated by 1. Closer examination of the signals shows that this is the result of glitches on

the IRQ line when it is transitioning back to its de-asserted state. Because gIsrFastAction

has been configured to call the routine which handles saving the results of the current

ED scan and triggers setup of the next, scans are now effectively being triggered by two

conflicting sources. The solution is to set gIsrFastAction to DummyFastIsr. Hence the ISR

will now clear IRQ_Status (0x24) without interfering with the current ED scan if it

is triggered.

Figure 5.8: Using the IDLE signal to trigger successive ED scans

The expected behaviour of the system is that an interrupt will be generated when

the ED scan completes. From Figure 5.8, it is clear that the first recorded ED scan is

completing while the IRQ line is still low. Hence, even though IRQ_Status(0x24) has

already been read, a new interrupt bit is being set before the IRQ line is de-asserted, as

highlighted by 2. This is easily handled by adding a read of the IRQ_Status(0x24) in

the code that is executed when the IDLE signal returns to zero. The SignalTap II output
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that results from this change is shown in Figure 5.9. It is clear that even though the ISR

is still being triggered, it is no longer causing a premature termination of a running ED

scan as the IDLE signal remains high for the expected length of time.

Figure 5.9: IDLE line controlled ED scan with spurious IRQ

While using the IDLE line as a trigger did enable the ED scan to be successfully

executed, there is potential that critical interrupts are being ignored. One critical interrupt

is the pll_lock_irq. While the triggering of this interrupt is expected to be rare, failure

to correctly handle it can cause the system to hang. Should this interrupt occur during

while an action is being executed, the action will be aborted immediately. In the case of

the ED scan, this could mean the scan is terminated before the scanning time has elapsed.

It may also stop the PHY driver from setting the current transceiver mode back to cIdle

from cRxED, resulting in a loss of synchronization as the transceiver has reverted back to

Idle mode. It is clear that finding the cause of the slow IRQ line is critical.

While the value of the IRQ line pull-up resistor has been considered as a source of

the problem and eliminated, it was revisited and a schematic of the entire signal path

was drawn. This schematic is shown in Figure 5.10. When reviewing the schematic for the

MC13192 daughter card [38]that was used, it was noted that the tri-state buffer connection

on the IRQ line differed from those of the other output signals. Specifically, the input was

also connected to the active-low enable. As a result, when the IRQ line transitions from a

0 to a 1, the buffer is disabled. This leaves the FPGA side of the line in a high-Z state, as

the included pull-ups are both on the transceiver side of the buffer. To solve this problem

a 10 kΩ pull-up resistor was added to the FPGA side of the buffer. Subsequent testing
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with SignalTap II showed that this did indeed result in IRQ line behaviour consistent with

the transceiver documentation. With the IRQ now behaving as expected, it was possible

to test stream transmit and steam receive functionality.

MC13192 FPGA

40 kΩ
ENB

10 kΩ

Programmable 

(Disabled)

10 kΩ

Added

Figure 5.10: Schematic Diagram of IRQ Line

A combination of SignalTap II and the software debugging environment were used to

confirm the functionality of the PLME primitives. In many cases it was possible to use

the special test signal line that had been added to the processor to trigger the recording

of the desired data. From this data the SPI bus transactions were decoded, confirming the

proper transactions were taking place. In the case of PLME-GET and PLME-SET, it was

possible to read a register containing information normally found in the PHY PIB, modify

the value using the set function, and finally perform a second read to confirm the change

had indeed taken place. The result of both reads was printed to the console, allowing

multiple registers to be checked very quickly.
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Chapter 6

Analysis and Results

The primitives and functions discussed previously in Chapter 4 and Chapter 5 are the

building blocks used to implement the more complex core functions of the system. In

this initial implementation, two core functions have been implemented and tested: ED

scanning and polling-based data transactions. The stream transmit and stream receive

functionality are used in combination with one another to support polling-based data

transactions, which allows both core functions to be tested simultaneously. In both cases,

the actual implementation varied from the message sequence that has been defined by the

standard. These variations, as well as the justification for them, are discussed in detail for

each function.

6.1 Energy Detection (ED) Scan

As discussed previously in Section 4.5, the ED scan is one of four defined scan types.

This particular one is only used by a coordinator on startup when it is attempting to

determine the best channel on which to operate the network. The sequence of message

calls to be used according to the standard is shown in Figure 6.1. As discussed before, the
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well defined SAP type interface between the PHY and MAC layers is not practical due to

timing constraints as well as the physical interface. As a result, calls to PHY primitives are

carried out synchronously and there is no need to use confirm primitives. One exception

to this is the PLME-ED.confirm primitive. Since the transceiver generates an interrupt

when the scan completes, it is called by the interrupt handler and sets a global variable

used as a handshake signal to tell the MLME-ED.request handler that the current scan

is complete. Multiple scans are executed on a single channel until the time alloted for

scanning has elapsed, with the highest reading being saved as the value for that channel.

This process is then repeated on each of the other channels selected for scanning. When all

scans are complete, the array containing the results is passed back to the network layer as

part of the MLME-Scan.confirm message. It is then up to the network layer to process

the results and determine the best channel to use for the network. The message sequence

chart for the function as it has actually been implemented is shown in Figure 6.2.
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Figure 79—ED scan message sequence chart
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next higher layer 

MLME-SCAN.request 
(Energy detection) 

FFD 
PHY 

PLME-SET-TRX-STATE.request 
(Rx on)  

PLME-SET-TRX-STATE.confirm 
(SUCCESS)  

aBaseSuperframeDuration *  (2n + 1)
symbols, where n = ScanDuration

PLME-SET-TRX-STATE.request 
(TRx off)  

PLME-SET-TRX-STATE.confirm 
(SUCCESS)  

PLME-ED.request 

PLME-SET.request 
(phyCurrentChannel, the first channel)  

PLME-SET.confirm 
(SUCCESS)  

PLME-ED.confirm 

PLME-ED.request 

PLME-ED.confirm 

PLME-SET.request 
(phyCurrentChannel, the last channel)  

PLME-SET.confirm 
(SUCCESS)  

. 

. 

.
aBaseSuperframeDuration *  (2n + 1)

symbols, where n = ScanDuration

PLME-ED.request 

PLME-ED.confirm 

PLME-ED.request 

PLME-ED.confirm 

MLME-SCAN.confirm 
(SUCCESS) 

Energy detection 
measurement 

Energy detection 
measurement 

Energy 
detection 

Energy detection 
measurement 

Figure 6.1: ED scan message sequence chart1

1From IEEE Std 802.15.4-2006 Copyright 2006, by IEEE. All rights reserved.
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FFD NWK FFD MAC FFD PHY

MLME-SCAN.request (ED)

PLME-SET-TRX-STATE.request(Rx on)

PLME-SET.request(first channel)

PLME-ED.request

PLME-ED.confirm

PLME-ED.request

PLME-ED.confirm

...

ED 
Measurement

ED 
Measurement

Scan 
Duration

PLME-SET.request(last channel)

PLME-ED.request

PLME-ED.confirm

PLME-ED.request

PLME-ED.confirm

...

ED 
Measurement

ED 
Measurement

Scan 
Duration

...

PLME-SET-TRX-STATE.request(TRx off)

MLME-SCAN.confirm(SUCCESS)

Figure 6.2: Message sequence chart of an ED scan as implemented
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6.2 Polling Based Data Transmission

The execution of a polling-based data transmission involves primitives from both the

MLME and MCPS cores of the MAC, as well as involvement from the NWK and PHY

layers on both the device and the coordinator. This makes it an excellent candidate for

testing the basic functionality of this implementation. This communication mechanism is

often used in sensor networks where the device periodically polls the coordinator to deter-

mine if there is any new data available for it. Available data, if any, is then transmitted to

the device. This arrangement allows the device to go into a power saving mode between

checks. This is advantageous in situations where low power use is critical, such as a battery-

powered device. The alternative is to have the device enabled as a receiver whenever it

is idle. This allows the coordinator to send new data to the device as soon as it becomes

available. While this decreases the latency of new data being received and processed by

the device, it also increases the power consumption of the device considerably. While this

arrangement was not tested by the research presented here, it requires only changes to the

application in the NWK layer. As a result, there is no reason to believe the MAC/PHY

layers would not be fully functional in this scenario as well.

For the purposes of testing this implementation, the NWK layer of the device was

configured to enter an infinite loop after startup, where the following procedure is repeated

approximately every 0.5 s. This loop sends a MLME-POLL.request from the NWK layer

to the MLME. The MLME handles the request by issuing a Data Request MAC command,

which is passed to the PHY for transmission over the RF medium. This command is

then received by the coordinator PHY, which passes the command to the coordinator’s

MAC layer for processing. The MAC layer then checks the list of pending data frames

for any addressed to the requesting device. If one is found, an Ack is sent with Frame

Pending = 1. If there is no pending data for the device, the Ack is sent with Frame

Pending = 0. When the polling device receives the Ack, it compares it to its list of
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pending Acks. When the match is found, the MLME-POLL.confirm primitive is sent to

the NWK layer, with a status of NO DATA if Frame Pending = 0. If there is data, the

MLME waits until it has been received and sends the Ack to the coordinator before issuing

the MLME-POLL.confirm primitive with a status of SUCCESS. The data itself is passed

to the NWK layer via the MCPS-DATA.indication primitive. The message sequence

chart for the procedure described is shown in Figure 6.3.
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7.1.17 MAC enumeration description

This subclause explains the meaning of the enumerations used in the primitives defined in the MAC
sublayer specification. Table 78 shows a description of the MAC enumeration values.

Table 78—MAC enumerations description

Enumeration Value Description

SUCCESS 0x00 The requested operation was completed successfully. For a 
transmission request, this value indicates a successful 
transmission.

— 0x01–0xda Reserved for MAC command status and reason code values.

— 0x80–0xda, 
0xfe–0xff

Reserved.

BEACON_LOSS 0xe0 The beacon was lost following a synchronization request.

CHANNEL_ACCESS_FAILURE 0xe1 A transmission could not take place due to activity on the 
channel, i.e., the CSMA-CA mechanism has failed.

COUNTER_ERROR 0xdb The frame counter purportedly applied by the originator of the 
received frame is invalid.

DENIED 0xe2 The GTS request has been denied by the PAN coordinator.

DISABLE_TRX_FAILURE 0xe3 The attempt to disable the transceiver has failed.

FRAME_TOO_LONG 0xe5 Either a frame resulting from processing has a length that is 
greater than aMaxPHYPacketSize or a requested transaction is 
too large to fit in the CAP or GTS.

Figure 40—Message sequence chart for requesting data from the coordinatorFigure 6.3: Message sequence chart for requesting data from the coordinator2

The coordinator has been configured to generate a new pending message for the device

every time the current one is transmitted in response to the poll. The data payload

of this message is only one byte. It is the value of a counter that is incremented each

time a new message is generated, making it possible to observe the number of polling

transactions that have taken place. For the data to be available in the pending message

list, the MCPS-DATA.request must be passed from the NWK layer to the MLME. The

txOptions settings tell the MLME to queue the message instead of transmitting it right

2From IEEE Std 802.15.4-2006 Copyright 2006, by IEEE. All rights reserved.
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away. Once a Data Request MAC command is received for data in the pending list, the

MCPS commences the transmit procedure message sequence shown in Figure 6.4 for the

coordinator and Figure 6.5 for the device.

For various reasons, some of the primitives and procedures specified by the standard

are not used in this implementation. For the purpose of the initial testing of a simple

network, the CCA calls were not used. However, they could easily be added to the current

procedure at a later date. The sequence chart for the full polling procedure as it is currently

implemented is shown in Figure 6.6 for the device and Figure 6.7 for the coordinator.

Achieving successful stream transmissions proved to be a much more complex and time

consuming process than originally thought. As a result, despite all the code needed to

execute the polling procedure described above being written, it has not been fully tested.

This is a result of stream receives not being successfully executed at this time. The message

sequence has been fully verified up to the transmission of the first MAC command.
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Figure 84—Data transmission message sequence chart—originator

Originator 
MAC 

Data

Acknowledgment (if requested) 

Originator 
next higher layer 

MCPS-DATA.request  

MCPS-DATA.confirm 

Originator 
PHY 

PD-DATA.request  

PD-DATA.indication 

PLME-SET-TRX-STATE.request 
(Rx on)  

PLME-SET-TRX-STATE.confirm 
(SUCCESS)  

PLME-CCA.request  

Perform CCA 

PLME-SET-TRX-STATE.request 
(Tx on)  

PLME-SET-TRX-STATE.confirm 
(SUCCESS)  

PLME-CCA.confirm (SUCCESS) 

PLME-CCA.request  

Perform CCA 

PLME-CCA.confirm (SUCCESS)  

PD-DATA.confirm (SUCCESS) 

PLME-SET-TRX-STATE.request 
(Rx on)  

PLME-SET-TRX-STATE.confirm 
(SUCCESS) 

macAckWaitDuration 

PLME-SET-TRX-STATE.request 
(TRx off)  

PLME-SET-TRX-STATE.confirm 
(SUCCESS)  

Backoff period  

Figure 6.4: Data transmission message sequence chart - originator3

3From IEEE Std 802.15.4-2006 Copyright 2006, by IEEE. All rights reserved.
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Figure 85—Data transmission message sequence chart—recipient

Recipient
MAC

Data

Acknowledgment (if requested)

Recipient
next higher layer

MCPS-DATA.indication

Recipient
PHY

PD-DATA.indication

PD-DATA.request

MLME-RX -ENABLE.request

PLME -SET -TRX -STATE.request
(Rx on)

PLME-SET -TRX-STATE.confirm
(SUCCESS)

PLME -SET -TRX -STATE.request
(Tx on)

PLME-SET -TRX-STATE.confirm
(SUCCESS)

PD-DATA.confirm

PLME -SET -TRX -STATE.request
(TRx off)

PLME -SET -TRX-STATE.confirm
(SUCCESS)

Figure 6.5: Data transmission message sequence chart - recipient4

4From IEEE Std 802.15.4-2006 Copyright 2006, by IEEE. All rights reserved.
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Device PHY Device MAC Device NWK

MLME-POLL.confirm(SUCESS)

PLME-SET-TRX-STATE.request(Tx on)

MCPS-DATA.indication

PD-DATA.indication

PLME-SET-TRX-STATE.request(Rx on)

Data

Acknowledgment

Data Request MAC Command

MLME-Poll.request

Data Request MAC Command

Acknowledgment (FP=1)

Acknowledgment (FP=1)

Acknowledgment

Figure 6.6: Polling message sequence chart - device as implemented

6.3 Resource Usage

One of the main goals of the standard is to support systems with limited resource capa-

bilities. For example, the sensors used as end devices generally have limited memory and

processor capabilities. Given this, the resource usage of the current system can be reviewed

from both a hardware and software perspective. The unused resources available are also

of interest as they will determine the feasibility of incorporating additional functionality

in the future.

As discussed previously in Section 3.2, an Altera DE2 board with a Cyclone II 2C35

provides the hardware support for the system. The hardware, namely the Nios II processor

and a supporting PLL, was compiled for two cases. The first case includes all the interfaces,

as well as the SignalTap II support needed for debugging. In order to more accurately
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Coord. NWK Coord. MAC Coord. PHY

MCPS-DATA.request

PLME-SET-TRX-STATE.request(Tx on)

PD-DATA.request

PD-DATA.confirm(SUCCESS)

PD-DATA.indication

macAckWaitDuration

MCPS-DATA.confirm(SUCCESS)

PLME-SET-TRX-STATE.request(Rx on)

X

Data

Acknowledgment

Data pending 

until requested
Data Request MAC Command

Data Request MAC Command

Acknowledgment (FP=1)

Acknowledgment (FP=1)

Figure 6.7: Polling message sequence chart - coordinator as implemented

estimate the size of a final design, a second case without debugging support and using the

smaller Nios II/e processor was compiled. The results of both cases are shown in Table 6.1.

The resources available are also shown for comparison. It is clear that a large portion of

currently used resources, especially available memory bits, are used by debugging support.

In particular, SignalTap II is responsible for the majority of the memory usage in the debug

case. For comparison purposes, the minimum resource for a functional processor system

has also been shown. This system consists of the Nios̃II/e with SysID, JTAG and SRAM

interface modules.

The software used to implement the MAC layer and PHY driver is stored in the 512 kB

SRAM chip on the DE2 board. This chip is external to the FPGA. As with the hardware,
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Table 6.1: FPGA Resource Usage

Resource Available Debug Final Minimal

Logic Elements 33,216 4,067 (14 %) 1,977 (6 %) 1,433 (4 %)

Memory bits 483,840 341,632 (71 %) 11,264 (2 %) 11,264 (2 %)

PLLs 4 1 1 0

the code footprint can be considered for two cases: debug and final. In the case of the final

code, it was compiled using two different optimization level settings. In the first case, no

optimization was used, while optimized size was used in the second. Code optimization

is know to interfere with debugging, hence only the no optimization was used. In both

cases a FFD was compiled. The resource usage is shown in Table 6.2. From the results it

is clear that sufficient resources are still available for future enhancements of the current

implementation.

Table 6.2: Code Usage of 512 kB SRAM

Memory Usage Debug Final
No Optimization No Optimization Optimized (size)

Program (code + initialized data) 151 149 125

Free (stack/heap) 353 354 378
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Chapter 7

Conclusions and Future Work

The goal of this research was to implement an 802.15.4 compliant MAC/PHY on an FPGA.

The work has addressed a void in availability of open-source code for FPGA. While even

basic compliance with the standard has yet to be fully realized, the implementation pre-

sented here could easily achieve basic functionality with a small amount of additional code

and testing. While successful stream transmission allowed some functions to be tested, the

lack of successful stream reception prevented full functionality from being validated.

The current implementation supports only the most basic features of the 802.15.4 stan-

dard. There are several key areas of functionality that could be added to make the device

more adaptable and flexible in its implementation. First, only security level 0 has been

implemented. The 802.15.4 standard defines 7 other levels of security. Second, features

such as the time-stamping of messages could be supported.

There are also deviations from the standard present in the current implementation

that are a direct result of using the MC13192 transceiver as the PHY layer. For example,

the standard states that the CRC calculation is done in the MAC layer. However, this is

implemented in hardware by the transceiver. To make this implementation compatible with

transceivers without this feature, an optional module should be added to the code. This
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would provide the CRC functionality when needed. Another variation is that the MC13192

does not require a channelPage to be set as it only supports the 2.4 GHz frequency band.

Compliance with the standard, as well as flexibility to use other transceivers, requires that

this be added where appropriate in the code.

Significant changes to the PHY/MAC interface were also necessary. The SAPs defined

by the standard, as well as some of the primitives, have been replaced with a physical SPI

bus and IRQ line. In order to accommodate transceivers using alternative interfaces, it will

be necessary to adapt the PHY layer driver. Since Altera provides support in the Nios II

core for most common interfaces, the most difficult part will be adapting to the registers

and command sequences used by the particular transceiver.

This work provides an opportunity for future work to be done in expanding the system

to support beaconed networks. While the beaconed networks require a considerably more

complex coordinator and some additional functionality in devices, the current implemen-

tation provides a framework to build on. All additional functionality is in the MAC and

NWK layers. This means future work could fully leverage the PHY layer, without having

to necessarily understand every detail of it.

Overall this implementation serves as a framework for future research. It provides

an opportunity for another student to use for exploration of optimization and refinement

within a specific function or primitive. Alternatively, it could also be used as the backbone

in a larger system. Possible systems include sensor networks and remote node configura-

tions.
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Appendix A

C Code for Testing MAC Data
Primitives

C Code for the generation of MCPS-DATA.request test messages

void MacMcpsDataRequestTest(uint8_t dstAddrMode, uint8_t srcAddrMode){
nwkToMcpsMessage_t *pMsg;
uint8_t data[2] = {0xAA,0xBB};

MyMacPIBTable.aMPibPanId[0] = 0xEF;
MyMacPIBTable.aMPibPanId[1] = 0xBE;

pMsg = MSG_AllocType(nwkToMcpsMessage_t);

pMsg->msgType = gMcpsDataReq_c;
pMsg->msgData.dataReq.dstAddrMode = dstAddrMode;
pMsg->msgData.dataReq.srcAddrMode = srcAddrMode;
pMsg->msgData.dataReq.txOptions = 0x1;

switch(dstAddrMode){
case 0:

break;
case 2:

pMsg->msgData.dataReq.dstPanId[0] = MyMacPIBTable.aMPibPanId[0];
pMsg->msgData.dataReq.dstPanId[1] = MyMacPIBTable.aMPibPanId[1];
DstShortAddress(pMsg);
break;

case 3:
pMsg->msgData.dataReq.dstPanId[0] = MyMacPIBTable.aMPibPanId[0];
pMsg->msgData.dataReq.dstPanId[1] = MyMacPIBTable.aMPibPanId[1];
DstLongAddress(pMsg);
break;
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}

switch(srcAddrMode){
case 0:

break;
case 2:

pMsg->msgData.dataReq.srcPanId[0] = 0xBA;//MyMacPIBTable.
aMPibPanId[0];

pMsg->msgData.dataReq.srcPanId[1] = 0xBE;//MyMacPIBTable.
aMPibPanId[1];

SrcShortAddress(pMsg);
break;

case 3:
pMsg->msgData.dataReq.srcPanId[0] = 0xBA;//MyMacPIBTable.

aMPibPanId[0];
pMsg->msgData.dataReq.srcPanId[1] = 0xBE;//MyMacPIBTable.

aMPibPanId[1];
SrcLongAddress(pMsg);
break;

}

pMsg->msgData.dataReq.msduLength = 2; // 0-102
pMsg->msgData.dataReq.msduHandle = MyMacPIBTable.aMPibDsn;
pMsg->msgData.dataReq.securityLevel = 0;
pMsg->msgData.dataReq.pMsdu = data;

MacMcpsDataRequest(pMsg);
MM_Free(pMsg);

}

94



C Code for the generation of MCPS-DATA.confirm test messages

void MacMcpsDataConfirmTest(){
uint8_t status;
uint8_t msduHandle;

msduHandle = 5;
status = 0; //success
MacMcpsDataConfirm( msduHandle,status);

}
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Glossary

6LoWPAN: Common name for IPv6 over Low-power Wireless Personal Area Net-

works

CAP: Contention Access Period

CFP: Contention Free Period

CRC: Cyclic Redundancy Check

CSMA-CA: Carrier Sense Multiple Access with Collision Avoidance, an algorithm

used for access coordination on wireless networks

FCC: Federal Communications Commission

FCS: Frame Check Sequence

FFD: Full Function Device

FPGA: Field Programmable Gate Array

GTS: Guaranteed Time Slot

IEEE 802.15.4: A short range, low data rate wireless transmission protocol developed

by the Institute of Electrical and Electronics Engineers

ISR: Interrupt Service Routine

MAC: Medium Access Control Layer

MCPS: MAC Common Part Sublayer

MLME: MAC Layer Management Entity

MSB: Most Significant Bit
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NWK: Abbreviation used to refer to the application/network layer

PD: PHY Data

PHY: Physical Layer

PIB: PAN Information Base

PLME: Physical-Layer Management Entity

POS: Personal Operating Space - The space about a person or object that

is typically about 10 m in all directions and envelops the person or

object whether stationary or in motion[1].

RAM: Random Access Memory

RF: Radio Frequency

RFD: Reduced Function Device - A device that is not capable of acting as

a coordinator[1].

RISC: Reduced Instruction Set Computing

SAP: Service Access Point

SDRAM: Synchronous Dynamic Random Access Memory

SOC: System-on-chip

SPI: Serial Peripheral Interface

WPAN: Wireless Personal Area Network

ZigBee: An application framework standard developed on top of the 802.15.14

MAC/PHY layers by the ZigBee Alliance[5]
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