A Study in Preference Elicitation
under Uncertainty

by

Greg Hines

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2011

© Greg Hines 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

[understand that my thesis may be made electronically available to the public.

i

Abstract

In many areas of Artificial Intelligence (Al), we are interested in helping people make
better decisions. This help can result in two advantages. First, computers can process
large amounts of data and perform quick calculations, leading to better decisions. Second,
if a user does not have to think about some decisions, they have more time to focus
on other things they find important. Since users’ preferences are private, in order to
make intelligent decisions, we need to elicit an accurate model of the users’ preferences for
different outcomes. We are specifically interested in outcomes involving a degree of risk or
uncertainty.

A common goal in AT preference elicitation is minimizing regret, or loss of utility. We
are often interested in minimax regret, or minimizing the worst-case regret. This thesis
examines three important aspects of preference elicitation and minimax regret. First, the
standard elicitation process in Al assumes users’ preferences follow the axioms of Expected
Utility Theory (EUT). However, there is strong evidence from psychology that people may
systematically deviate from EUT. Cumulative prospect theory (CPT) is an alternative
model to expected utility theory which has been shown empirically to better explain hu-
mans’ decision-making in risky settings. We show that the standard elicitation process can
be incompatible with CPT. We develop a new elicitation process that is compatible with
both CPT and minimax regret. Second, since minimax regret focuses on the worst-case
regret, minimax regret is often an overly cautious estimate of the actual regret. As a re-
sult, using minimax regret can often create an unnecessarily long elicitation process. We
create a new measure of regret that can be a more accurate estimate of the actual regret.
Our measurement of regret is especially well suited for eliciting preferences from multiple
users. Finally, we examine issues of multiattribute preferences. Multiattribute preferences
provide a natural way for people to reason about preferences. Unfortunately, in the worst-
case, the complexity of a user’s preferences grows exponentially with respect to the number
of attributes. Several models have been proposed to help create compact representations
of multiattribute preferences. We compare both the worst-case and average-case relative
compactness.

il

Acknowledgements

I would first like to thank my supervisor Kate Larson. I would not be here today if it
were not for her support, guidance and trust in me. As I finish my PhD, I am privileged to
be on a path as exciting as the one I am on. Prof. Larson played a key role in getting me
on this path. I would also like to thank Robin Cohen and Pascal Poupart. As members of
committee they provided feedback and support from the beginning. The internal-external
member of my committee Selcuk Onay was able to provide key feedback from a different
perspective on my research. My external committee member, David Parkes also provided
valuable insight.

I would also like to thank Craig Boutilier at the University of Toronto. Prof. Boutilier’s
interest in my work was a major motivation. Despite being a senior faculty member with
many responsibilities, Prof. Boutilier took considerable time out of his day to talk to me
about both my current research and to suggest several exciting areas for possible future
research.

Doing research in a complete void with no outside contact is not worth doing. My
friends played a vital role in getting me through all of this. The thought of being so far
away from my friends in the coming years is breaking my heart.

Finally, I would like to thank my family; both old and new. To my parents; I love you
so much.

v

Dedication

To Lisa:

You are the best part about me

Table of Contents

[List_of Tables| X
[List of Figures| xiii
(1__Introductionl 1
(L1 Contributions 3
(.2 Guide to the Thesisl oo 4

2 Background| 5
2.1 Models of Users” Preferences 5
[2.1.1 Preterences over Risky Outcomes| 7

2.2 Preference Elicitationlo o 14
[2.2.1 Choosing the Best Decision| 15

[2.2.2 Measuring the Confidence in Decisions| 18

[2.2.3 Choosing the Best Query|. 19

2.3 Multiattribute Preferencesfo 0oL 26
[2.3.1 Multiattribute Utility Functions| 26

2.3.2 Preference Flicitation with MultiAttribute Preferencesl 31

[3 Preference Elicitation and Cumulative Prospect Theory| 33
3.1 _The Role of Preference Maodels in Preference Elicitationl 33

vi

[3.2 Previous Methods ot Preterence Elicitation with Cumulative Prospect Theory| 38

[3.3 'T'he Gamble Equivalence Method| 42
[3.3.1 The Scenariol 42
[3.3.2 Configuration Queries|, 43
[3.3.3 Outcome queries| 46
[3.3.4 The Gamble Equivalence Method and Expected Utility Theory|{. . . 49

[3.4 Outcome Query Selection Heuristics|. 51
[3.4.1 Halve Largest Gap and Current Solution Heuristics With Outcome |

| QUETIES| o o e e 52
[3.4.2 Minimize Most-Likely Regret| 52
[3.4.3 Minimize Expected Minimax Regret| 53

[3.5 Experimental Results| o000 25
[3.5.1 Configuration Queries| 55
[3.5.2 Outcome Queries| 60

3.6 Conclusionl. 66

[4 Probabilistic Models of Regret| 68

[4.1 Current Measurements of Regret| 68

[4.2 Probabilistic Regret|. oo 71
[4.2.1 Probabilistic Regret|. 73
[4.2.2 Relaxing the Prior Knowledge Assumption| 75
[4.2.3 Hypothesis-Based Regret| 81
[4.2.4 Rejecting Hypotheses| 84
[4.2.5 A Probably Approximately Correct Approach to Probabilistic Regret| 93
4.2.6 Other Uses of Non-Parametric Statisticsin All 94

[4.3 How to Optimize Regret Calculations| 94
[4.3.1 Optimizing [IPtMMR} 000000 94
[4.3.2 Optimizing hPrMMR}|. 95

vil

viii

[4.4 Experimental Results| 0. 96
[4.4.1 Learnt-Probabilistic Regret Results 96

[4.4.2 Hypothesis Regret Results 107

4.5 Conclusionl. 110

E MG A Pref [Prek Eliciation 112
[b.1 Preference Elicitationlo oo 112
[.2 Comparing Decompositions| 119
[5.3 Experimental Results| o000 131
[5.3.1 Experimental Setup|. 131

h.3.2 Resultsl. oo 132

Hh4 Conclusionl. o 138

6 __Conclusionl 139
6.1 Contributionsl o 139
6.2 Future Workl. oo o 140
[6.2.1 Human Experiments 140

[6.2.2 Eliciting Intertemporal Preferences| 141

[6.2.3 Improving the Performance of Learnt Probabilistic Regret| 141

[6.2.4 Examining Probabilistic Regret from a Probably Approximately Cor- |

rect Perspective| oo 142

[6.2.5 Expanding our Comparison of Multiattribute Utility Independence |

Modeld o o o 142

[6.2.6 Improving the Efficiency of Multiattribute Preference Elicitation| . . 143
[References 149

List of Tables

[2.1 ~An experiment demonstrating the problems with expected utility theory as |

a descriptive theory.|o o o 9
[3.1 Error rates for preterence elicitation using SGQs on users with CP'T-modelled |

preferences.| L 37
[3.2 Error rates for preference elicitation using SGQs on users with CP'T-modelled |

preferences and monotonicity constraints.|. 38
[3.3 A summary of the experimental results from Section[3.5.2 61
[4.1 A comparison of the initial minimax and actual regret for users with and |

without the monotonicity constraint.| 71
[4.2 Average number of queries needed to process users using either MMR or |

IPrMMRI . . . o 99
[4.3 Experimental results for [IPtMMR+OPS| 101
[4.4 Expanded results from Table|d. 3| 102
[4.5 Experimental results for [IPtMMR+OPS+WSH| 102
[4.6 Initial experimental results tor hPrMMR| 109
4.7 Experimental results for hPrMMR with the Reject(0) heuristic| 109
4.8 Experimental results for hPrMMR with the Reject(1) heuristic| 110
4.9 Experimental results for hPrMMR and the Reject(n) heuristic for varying n| 110
(.1 Example utility constraints for v’y (A) and v’y (A|A;) given the CDI, rep- |

resentation given in Figure/o. 1l 00000 L. 115

X

[5.2 Probability distributions over A; and A, resulting from the decision d.| . . 115

[5.3 Probability distributions over A; and A, resulting from the decision d’.| . . 116

(5.4 Utility constraints from Table[5.1]converted to utility constraints over global |

outcomes] 117

List of Figures

2.1 The commonly accepted average shape of the probability weighting tfunction
WP . 11
[2.2 An example gamble with three equally likely outcomes.| 12
[2.3 Graphical illustration of maximin improvement with SGQs; step 1| 22
[2.4 Graphical illustration of maximin improvement with SGQs; step 2| 23
[2.5 Graphical illustration of maximin improvement with SGQs; step 3f 24
[2.6 Graphical illustration of maximin improvement with SGQs; step 4 25
[2.7 A CAI tree representation of the CAI factorization in Equation [2.29]| 28
[3.1 A graphical representation of the query in Equation|3.18}| 43
[3.2 A graphical representation of the query in Equation|3.19 44
[3.3 A graphical representation of an outcome query, 46
[3.4 Setup for an example outcome query,|o 47
[3.5 Oucome query based on the known utility values from Figure|3.4l| 47
[3.6 An example of updated utility constraints, based on the outcome query in |
Figure 3.0l 48
[3.7 A possible outcome query (s,t) that may be able to update either i, (z;) |
OF Umax (T3)| + o o 54
[3.8 The mean value for Equation [3.38| as a function of the number of configu- |
ration queries for simulated users using the Kahneman-Tversky weighting |
function 56
[3.9 T'he mean value for Equation |3.38 as a tunction of the number of configura- |
tion queries for simulated users using the Prelec weighting function.| 57

xi

[3.10 An example of a quasi-uniformly random function|. o8
[3.11 The mean value tor Equation[3.38 as a function of the number of configura- |
tion queries for simulated users using a quasi-uniformly random weighting |
function 59
[3.12 Experimental results for oucome queries using the HLG heuristic.| 62
[3.13 Experimental results for oucome queries using the HLG heuristic with deci- |
sion chosen to maximize initial minimax regret.| 62
[3.14 Experimental results for oucome queries using the CS heuristic| 63
[3.15 Experimental results tor oucome queries using the MMLR heuristic| 64
[3.16 Experimental results tor oucome queries using the MMLR heuristic. Users’ |
utility values were based on a combination of a power utility function and |
a quasi-uniformly random utility function.| 65
[3.17 Experimental results for oucome queries using the MEMR heuristic.| 66
[4.1 An illustration of how using lower bounds can lead to upper bounds.| 77
[4.2 An example of estimating the cdf for the regret of a given decision.| 78
[4.3 Example of compatible utility constraints.| 78
[4.4 Continued example of estimating the cdf for the regret of the chosen decision.| 80
[4.5 Ilustration of the Kolmogorov-Smirnov one-sample test, part 1f. 87
[4.6 Using the Kolmogorov-Smirnov one-sample test to reject hypotheses which |
underestimate regret.| 88
[4.7 Basic comparison of MMR and [IPPMMR.|. 97
[4.8 Cumulative difference in number ot queries needed with MMR and IPrMMR.|100
[4.9 Fraction of the previous users with compatible utility constraints atter each |
query with 7 outcomes.| Lo 104
[4.10 Fraction of the previous users with compatible utility constraints after each |
query with 20 outcomes.|o 105
[4.11 Average number of queries needed to achieve IPrTMMR of 0.01 with a prob- |
ability of error equal to 0.25. Compatible users were artificially generated |
with varying size ot utility gaps.| oL, 106

xii

[b.1 A simple example ot a CDI, representation.| 113

[5.2 An example of a skeleton CDI, graph over the LVF vyay 4, a3 (2)] 120
[5.3 An example of a skeleton CDI, graph over the attributes {A;, Ay, A3, Ay} 122
[>.4 'The skeleton CDI, graph representation of Equation[5.10|. 124

[>.50 The GAI graph representation of the CAI decomposition given in Equation |

[5.6 The CDI, graph decomposition of the CAI decomposition given in Equation |

|51]_| based on the ordering F1 = {Al,Az, A3} and F2 = {Ag, A3, A4}| ... 127

[>.7 The CDI, graph representation of the CAI factorization given in Equation |

[5.11{ based on the ordering F7 = {A,, A3, A1} and Fy = { Ay, A3, Ay}, . .. 128

[5.8 A CDI, graphical representation with a complexity of O(m” + (n—1)m*+m).[129

[5.9 A graphical summary of the complexity results in Section [5.2| 131

[5.10 The mean and maximum complexity of a CDI, representation of a utility |

function originally given in a GAI representation with a complexity of ©(m®) 133

[>.11 T'he difference between our upper bound and lower bound on the complexity |

of using a CDI, representation.| 133

[5.12 The mean and maximum complexity ot a CDI, representation of a utility |

function originally given in a GAI representation with a complexity of ©(m'").[134

[5.13 The difference between our upper bound and lower bound on the complexity |

of using a CDI, representation| 134

[5.14 The skeleton CDI, graph of the LVFs in Equation|s.16{| 135

[5.15 The mean and maximum complexity of a CDI, representation of a utility

function originally given in a GAI representation with a complexity of ©(m?)

and a guaranteed connected graph.| 136

[.16 The maximum complexity of a CDI, representation based on a Turan graph. 137

xiil

Chapter 1

Introduction

A common goal of Artificial Intelligence (Al) is to have computers work with people to make
better decisions. A computer could help plan a trip, for example, or help someone decide on
a risky medical procedure [20] [68]. A computer could also help control a household’s energy
usage, or create an optimal policy for a Markov Decision Process [30, 52 [64]. Having a
computer make these decisions can free up a person’s time. A computer can process large
amounts of information. Using a computer also minimizes the risk of trivial mistakes such
as addition error. In cases where a decision has to be made repeatedly, a computer will
never get bored.

In all of the example decisions mentioned above there can be a significant element of
risk. When planning a trip, there is always the risk of a flight being delayed or cancelled.
Similarly, almost all medical procedures carry some risk to them. If we pay more for
electricity when demand is high, then we need to decide if it is worthwhile waiting until
the morning to run the dishwasher. Hence, this thesis is focused on making decisions where
there is an element of risk.

For computers to make (or suggest) intelligent decisions, the computer must have an
accurate model of the users’ preferences [22]. If the user strongly dislikes missed plane
connections, for example, then the computer should not suggest a flight that arrives only
shortly before the connection leaves. Unfortunately, preferences are private; all we know
about a person’s preferences is what they choose to tell us. As a result, models of prefer-
ences will rarely be perfectly accurate. The focus of this thesis is how to create “accurate
enough” models of preferences.

The basic framework for building models of preferences is through preference elicitation,
which is based on the process of asking the user questions and using their responses to infer

constraints on their preferences. The questions are usually along the lines of, “how much
more do you prefer this outcome over this other outcome?” [36] We then determine if
our accumulated set of constraints gives us an accurate enough model to suggest which
decision the user should choose. If not, we repeat by asking another question. If the model
is accurate, we then choose a decision based on the model.

There are many different challenges with this approach. The first problem is that we
must understand how people reason about preferences. This understanding is necessary
to make correct inferences from the user’s response. The standard model in Al preference
elicitation is that people are economically rational [54]. However, there has been consider-
able work done in psychology and behavioural economics which shows that people are not
economically rational [55]. This work has also produced many alternative models. Current
research has not examined how compatible Al preference elicitation research is with these
alternative models.

The second issue is determining if a model is accurate enough. A common measurement
of accuracy is regret: the loss in utility from choosing one decision over another. If the
maximum regret from choosing a decision is zero, we know that the decision is optimal.
Since our models of preferences are not completely accurate, we can only estimate the
regret from choosing a decision. One estimate of regret is minimax regret which focuses
on bounding the best worst-case regret [10, [68]. Another estimate is ezpected regret which
focuses on the average regret [20]. In either case, if the estimated regret for all decisions
is too high, we need to improve the accuracy of the model. Since improving the accuracy
means burdening the user with more questions, it is important that our estimate of regret
is as accurate as possible. Minimax regret is easy to calculate but often overestimates the
actual regret, sometimes by as much as an order of magnitude. Expected regret gives a more
accurate estimate but requires us to make additional assumptions about what we know
about the user. Sometimes these additional assumptions are reasonable and sometimes
they are not.

The third problem is the issue of attributes and tractability. Attributes are a natural
way of describing outcomes; for example we can describe a flight by the airline, class, etc.
Using attributes to describe different outcomes can make it easier for the user to compare
outcomes [I4]. In the worst case, however, the number of outcomes will grow exponentially
with respect to the number of attributes. As a result, several multiattribute utility inde-
pendence (MUI) models have been proposed for compactly representing preferences over
multiple attributes and avoiding the exponential growth [11I, 25, 27, B36]. To our knowl-
edge, there has been little comparison of how efficiently different MUI models are able to
represent different multiattribute utility functions. There would be considerable benefit to
developing a database of MUI models for which we can compare the relative compactness

of any two models in this set, e.g. to know that in the average case or worst case, model
A can be exponentially more compact than model B. This would help in choosing the best
MUI model for a given scenario.

1.1 Contributions

This thesis addresses each of the above three problems. In brief, our three contributions
are as follows. First, we provide a new preference elicitation technique which can be
used in real world settings where the standard technique cannot be used. Secondly, we
greatly improve the efficiency of the elicitation process by providing a more accurate way
of measuring regret. Finally, we provide a comprehensive comparison between several
different MUI models which is vital when needing to choose which model to use. A more
detailed discussion of these three contributions is given below.

First, we show that the standard Al preference elicitation approach is not compat-
ible with the models of human preferences proposed by psychologists and behavioural
economists. We then introduce a new preference elicitation approach, the Gamble Equiv-
alence Method (GEM), which is compatible with these models. We also show that GEM
can be used to efficiently reduce the minimax regret.

Second, we introduce two new methods for estimating regret: learnt Probabilistic Min-
imazx Regret (IPtMMR) and hypothesis Probabilistic Minimax Regret (hPrMMR). As with
minimax regret, IPrMMR and hPrMMR aim to give an upper bound on the actual regret.
However, these bounds are probabilistic, i.e. there is some probability that the bounds
are actually less than the actual regret. The controller (whoever is running the elicitation
process) is able to choose the probability of this error. With a low probability of error
both IPrMMR and hPrMMR behave similarly to minimax regret. With a higher proba-
bility of error, both IPrMMR and hPrMMR can provide a lower bound on the regret than
MMR provides. The advantage is that neither IPrMMR nor hPrMMR require the strong
assumptions that expected regret requires. Additionally, both IPrMMR and hPrMMR are
especially well adapted to processing a series of users. For example, this means that both
IPrMMR and hPrMMR, could be used by websites helping people choose the best products.

Finally, we present a comparison of the compactness and abilities of several different
MUI models. A common MUI model for use with preference elicitation is the generalized
additive independence (GAI) model [27]. Braziunas and Boutilier showed how to calculate
minimax regret in polynomial time with respect to the size of the GAI representation [10),
13]. Our work focuses on examining conditional difference independence (CDI,), a new

MUI model [11]. While we show that minimax regret can also be calculated in polynomial
time with respect to the size of the CDI, representaion, we show that, in the worst case,
the GAI model is exponentially more compact than the CDI,. model. We then show that,
in the worst case, the CDI, model is exponentially more compact than the conditionally
additive independence model [25]. Finally, we use simulations to examine the average-case
relative compactness of the GAI and CDI,. models. We are able to show that even in the
average-case scenarios, there can be a considerable difference in compactness between GAI
and CDI,.

1.2 Guide to the Thesis

Chapter This chapter provides the background on models of utility and preferences,
preference elicitation, and multiattribute utility independence models.

Chapter [3} This chapter discusses why current AI preference elicitation techniques are
incompatible with descriptive models of preferences. We also introduce GEM and show
that it is both compatible with the descriptive models and can be used to efficiently reduce
the minimax regret. Experimental results are included.

Chapter This chapter introduces both IPrMMR and hPrMMR and compares them
against minimax regret and expected regret. We also discuss different methods for opti-
mizing both IPrMMR and hPrMMR. Experimental results are included.

Chapter In this chapter, we compare how efficient different MUI models are. The
comparisons include worse case analysis and experimental average case analysis. We also
discuss how some MUI models may be used to efficiently calculate minimax regret.

Chapter [6; Conclusion; we also discuss areas for future research.

Chapter 2

Background

Our work focuses on eliciting the preferences from users to help make better decisions
on their behalf. In Section [2.1I, we review possible models for a user’s preferences. We
focus on expected utility theory and cumulative prospect theory; two common models for
preferences in risky settings. In Section [2.2] we discuss different techniques for eliciting
preferences from users. Finally, in Section [2.3 we discuss how multiattribute preferences
can be modeled.

2.1 Models of Users’ Preferences

Consider a set of possible outcomes X = [z,,..., 7] where x| is the least preferred
outcome and x7 is the most preferred outcome. The set X can be continuous or discrete.
We can describe a user by their preferences over X. Let 3 be the preference operator, i.e.
x1 3 o means that xy is preferred at least as much as z;. Two standard assumptions
about = is that it satisfies both completeness and transitivity [41], [54].

Definition 1 (Completeness [41]). Given any two outcomes x and x’ in X, a user will
either prefer one outcome over another or be indifferent.

Completeness means that we can compare any two outcomes. This excludes the possi-
bility of scenarios where we have incomparable outcomes, e.g. settings where one outcome
is getting a toothbrush and another is doing long division.

Definition 2 (Transitivity [41]). Given any three outcomes 1, xa, and x3, if x1 7 x2 and
X9 7 x3 then x1 77 x3.

Transitivity is assumed in order to remove the possibility of “absurd” preferences. For
example, suppose we have outcomes {x |, 21, z1} and a user with preferences that violate
transitivity, e.g. x1 = x1, *1 > x, and x; > x7. As a result, the user might be willing
to pay $1 to change the outcome from =, to zy, from x; to x+ and from z+ to . If we
combine these three steps, the user would be willing to pay $3 to go from x, to z,. This
siuation is known as a money pump where we can get money for doing nothing [54].

If = is both complete and transitive, then there exists a function v : X — R which
represents 3, i.e.
u(x) < u(z')

if and only if x < 2’ [41]. The function u may only imply a qualitative relationship where
u(z) > u(x’) implies that x is preferred over 2’ but we cannot say by how much. We can
also have a quantitative relationship, e.g. u(x) = 2u(z’) means that x is preferred twice as
much as 2.

Lemma 1. The function u is unique up to positive affine transformation; this means that
we can create a new utility function

ui(z) =a-u(x)+0b
for any a € RT and b € R and uy(x) and u(x) will preserve the preferences.

Proof. Suppose we have two outcomes x and 2’ such that x < 2/, then

u(z) < u(z),
au(x) < au(z'),

au(z) +b < au(z’) +b
up(z) < ug(2').

]

As a result, we typically normalize utility values so that u(z,) = 0 and u(zt) = 1.
This normalization is needed when using standard gamble queries, as discussed in Section
2.2 In many, but not all cases, we can assume monotonicity where u(x;) > u(x;) for all
i > j. The set of all possible utility values is U = [0,1]® (assuming normalized utility
values).

2.1.1 Preferences over Risky Outcomes

A gamble d is represented by a probability distribution over X i.e. Pry(x) is the probability
of the outcome x € X occurring as the result of the gamble d[f| A gamble is typically written
in the form
D10, DX P T

An example of a simple gamble is flipping a fair coin; there is a 50% probability of heads
and 50% probability of tails. This gamble would be represented by [0.5; heads, 0.5; tails].
When there are multiple gambles and the user must choose one of them, we refer to the
gambles as decisions.

We are interested in scenarios where the user can choose between different decisions.
The set of all possible decisions for a specific scenario is D. As with outcomes, people have
preferences over decisions. These preferences are represented by <p, e.g. d ~ d means
that the user is indifferent between decisions d and d’ and d < d’ means that the user
strictly prefers decision d’ over d. We assume that <p is continuous. To define continuity,
we first define a compound decision.

Definition 3 (Compound decision). The compound decision
[paDa 1 _p7D/]7

means that with probability p the decision D happens and otherwise, with probability 1 —p,
the decision D' happens.

Definition 4 (Continuous [41]). The preference function > is continuous if, given decisions
dy,dy and ds, the sets
{p€10,1] : [psdi, 1 — p; da] = ds}

and
{p€0,1]:ds = [p;di,1 — p;da]}
are both closed.

Continuity means that a user’s preferences do not experience “sudden” changes. An
example of a non-continuous preference function over D where X = {z, , 2y, 27} is

Qe dif Pry(zr) > Prg(xr) or
(Prg(z7) = Pryg(zr)) and Prg(zy) > Pry(zq).

LA gamble can also be called a lottery or prospect.

7

As long as <p is continuous, there exists a function U : D — R such that U(d) > U(d')
if and only if d >=p d’ [41]. There are many different models for U. Models can be descrip-
tive, prescriptive or both. A descriptive model attempts to explain how people actually
reason about preferences. A prescriptive model attempts to explain how people should
reason about preferences. In this section, we review expected utility theory, the standard
prescriptive model, and cumulative prospect theory, the standard descriptive model.

Expected Utility Theory

Expected utility theory (EUT) is based on the von Neumann-Morgenstern expected utility
function.

Definition 5 (von Neumann-Morgenstern expected utility function [63]). The utility func-
tion U is a von Neumann-Morgenstern expected utility function, if for any decision d and
utility function u : X = R,

U(d,u) = Pr(x)u(x).

zeX

In this case, we denote the user’s utility by EU(d, u).

The existence of an expected utility function is dependent on decomposability and the
independence axiom.

Definition 6 (Sequential decision). The sequential decision,
<D,D >,
means that first the decision D happens and then the decision D' happens.

Definition 7 (Decomposability [54]). Any compound or sequential decision can be con-
verted to a “basic decision.”

For example, suppose we have the compound decision D = [0.5;$1,0.5;$5] and D" =
[0.5;$3,0.5; $6]. Then the decision < D, D" > can be reduced to [0.25; $4,0.25; $7,0.25; $8, 0.25; $11].

Definition 8 (Independence axiom [63]). The utility function U satisfies the independence
aziom if and only if, for any three decisions d, d’', and d" such that U(d) > U(d'),

Ulla;d, (1 —)d"]) > U([a; d’, (1 — @)d"]) ¥V « € [0, 1]. (2.1)

Choice A Choice B
$4000 with probability of 0.8 | guaranteed $3000
nothing otherwise

(a) First choice

Choice C Choice D
$4000 with probability of 0.2 | $3000 with a probability of 0.25 |]
nothing otherwise nothing otherwise

(b) Second choice

Table 2.1: An experiment demonstrating the problems with expected utility theory as a
descriptive theory. In the first half of the experiment, participants were asked to choose
between choices A and B. In the second half, participants were asked to choose between
choices C' and D.

In other words, the independence axiom implies that a user’s preferences between two
decisions is unaffected by any third choice.

EUT says that U is an expected utility function if and only if decomposition and the
independence axiom hold [41], 63].

When faced with a set of possible decisions D to choose between, the Mazimum Ezpected
Utility (MEU) principle says we should choose the decision which maximizes our expected
utility [54]. In other words, we should choose the decision

d = EU(d,u).

arg max EU(d, u)
The reasoning behind MEU is that choosing d* will, on average, maximize u. It is generally
accepted that maximizing EU is economically rational [54, 55]. As a result, EU is seen as
a prescriptive model of how people should reason about preferences.

Cumulative Prospect Theory

Unfortunately, expected utility is a poor descriptive model of peoples’ actual preferences.
Starting in the 1950s, numerous experiments have shown peoples’ preferences to contradict
those predicted by EU, including work by Allais and the following experiment conducted

by Kahneman and Tversky [0l [33]. In the first half of the study, people were asked to
choose between the two gambles shown in Table For example, if they chose A, they
would receive $4,000 with a probability of 80%, and otherwise, they would receive nothing.
If they chose B, they would receive a guaranteed $3,000. 80% of the participants chose B.
According to EU, this reesult implies that

0.8u($4, 000) + 0.2u($0) < u($3,000),
0.8u($4,000) < u($3,000). (2.2)

In the second half of the study, participants were asked to choose between the two choices
in Figure . If participants chose C, they would get $4,000 with a probability of 20%
and otherwise nothing. With choice D, participants would get $3,000 with a probability of
25% and otherwise nothing. This time, 65% chose C. According to EU, this results implies
that

0.2u($4,000) > 0.25u($3, 000),
0.8u($4,000) > u($3,000). (2.3)

Equations and contradict each other, regardless of the utility for the individual
outcomes. Therefore, the reversal in preferences contradicts expected utility. Specifically,
if we let d” be the outcome where the user wins nothing and o = 0.25, these results violate
the axiom of independence.

This experiment has been replicated numerous times, including with non-monetary
outcomes [33, 55]. Other, more fundamental, problems with expected utility have been
studied. For example, people treat gambles involving only gains differently than a gamble
involving losses, even if the end result is the same [33].

As a result, numerous alternative models of preferences have been proposed [55]. These
models may be thought of as a series of steps in relaxing the assumptions EUT relies on.
Arguably the most successful model at predicting peoples’ actual preferences is cumulative
prospect theory (CPT) [55], 59]. Daniel Kahneman won the Nobel Memorial Prize in Eco-
nomics for his work on CPT, and the papers on prospect theory (the precursor to CPT)
and CPT are two of the mostly highly cited papers in economics [31].

The three foundations of CPT are loss aversion, framing, and cumulative probability
weighting.

Loss aversion: People are more sensitive to a loss than to a gain of the same magni-
tude [32]. One way of modeling loss aversion is with the utility function

o 1 >
u(a:):{x ifxz>0

—(—2”) otherwise,

10

1.0

Weight
o o
=~ >
} }
\
AN
N\

0 I I I I
0 02 04 06 08 1.0
Probability

Figure 2.1: The commonly accepted average shape of the probability weighting function
w(p).

for § > «. By itself, loss aversion is compatible with EU.

Framing: People pay attention to how we arrive at a final outcome, not just the final
outcome itself. For example, suppose we have a disease which risks killing 1000
people [34]. One possible treatment will cure everyone with a probability of 50% and
otherwise only cure 500 people. A second treatment will cure everyone but there is
a 50% probability that its side effects will kill 500 people. Experiments have shown
that people do not view these two treatments as equivalent. People focus on how
each treatment works, not just the final number of people saved. The first treatment
is framed in terms of gain while the second treatment is framed in terms of loss. This
violates decomposability and therefore, framing is not compatible with EU.

Cumulative probability weighting: People distort the probabilities of events. We
attach too much weight to an unlikely event and too little weight to an almost
certain event. A (slightly morbid) example of probability weighting occurs when
playing Russian Roulette. Suppose we have an option of paying for one bullet to be
removed. Most people would pay more to go from one bullet to none than from 4 to
3 bullets [71].

The generally accepted average shape of the probability weighting function w(p) is
shown in Figure [71]. The dashed line corresponds to a neutral weighting. For
low probabilities w(p) is above the neutral weighting and for high probabilities w(p)

11

1/3 1/3 1/3

€T X1 xrT

Figure 2.2: An example gamble with three positive outcomes, each occurring with probability

1/3.

is below the neutral weighting. The probability weighting goes from overestimation
to underestimation for a value of p between 0.3 and 0.4.

CPT goes further and says that the weighting of a probability is also based on the
rank of the corresponding outcome, e.g. whether the outcome is the best outcome,
second best etc. With the CPT model, we associate more weight with the extreme
outcomes. CPT considers the weighting of gains and losses separately. Thus, we
divide X up into the subsets X~ = {z7,...,27} and Xt = {zT,... 2%} where
x7 = xT = 0 is the neutral outcome, z7 is the worst loss possible and z is the best
gain possible.

For gains, CPT’s probability weighting is
F(@7) = w(pT) (2.4)

@) =wlp +...+p7)
—w(pf, + ... +p7) (2.5)

™
™

where p; = Pr(z;) is the probability of the outcome z; occuring. For losses, the
weighting is

~(21) = w(py) (2.6)

—w(p] +...+Dp_,). (2.7)
We can think of 7 as the marginal difference the outcome x; makes to the function
w. In the case of only positive outcomes, > 7" (z) =1 [59)].

To illustrate how weighting values are calculated, we consider the gamble shown in
Figure . We have three positive outcomes, each occurring with probability 1/3.
For this example, we use values for w based on experimental evidence [59]. According

12

to Equation the weighting for z¥ is
mt(aF) = w(1/3)
~ .367

We next calculate the weighting values for outcomes 77 () and 7+ (x7), respectively,

using Equation [2.5

mh(zf) = w(2/3) —w(1/3)
.56 — .367
=.193,

Q

and
m(2]) = w(l) —w(2/3)
~1—.56
= .44.
Despite the fact that each outcome occurs with equal probability, we show each

outcome has a different weight associated with it. Specifically, we attach a higher
weight to the extreme outcomes.

Based on these three ideas of loss aversion, framing and cumulative probability weight-
ing, the overall value of the positive outcomes from a decision is

V(X)) =) r(x)u(x), (2.8)
zeXt
and the overall value of the negative outcome is
V(XT) =) m(z)u(x).
zeX™

The overall value of a decision is then
V= V(Xﬂ + V(X7).

Wakker et. al. provided an axiomatization of CPT without framing [66] | They showed
that the key difference between EU and CPT was the independence axiom. CPT relies on
comonotonic independence, a generalization of the independence axiom to a rank-dependent
setting. This means that CPT is a strict generalization of EU.

2While the idea of framing has been used to understand many real world applications, we are unaware
of any axiomatization of framing.

13

2.2 Preference Elicitation

In many areas of AI, we may be interested in making decisions on behalf of a user or
recommending a decision to a user [22]. For example, we may want to create an optimal
policy for a Markov Decision Process [52], help people make tough medical choices [20], or
help people plan trips, taking into account the probabilities of delays [68].

In order to make or recommend intelligent decisions, we need to understand a user’s
preferences. We assume that a user’s preferences are private; in general, the only source
of information about a user’s preferences is what they choose to tell us. (We can make
additional assumptions but must be careful in doing so.) One possibility is to have a
user state their utility values for each possible outcome. The cognitive burden of using
this approach would be tremendous; the user would have to figure out the exact utility
value for each outcome. A lot of this information might also be unnecessary. For example,
for a specific set of decisions, we may be able to make an optimal decision knowing that
u(zy) > 2u(zy) but without knowing the exact value for u(z;) and u(zs).

The efficiency of eliciting preferences can be greatly increased if users only have to
answer simple questions about their preferences. If a user’s preferences follow EUT, a
common technique is to use standard gamble queries (SGQs) [30].

Definition 9 (Standard Gamble Queries). A standard gamble query asks the user if they
prefer the outcome x over the decision

1 —p;xy,p o).

We refer to this query as q.(p). Assuming normalized utility values between 0 and 1, if the
person says they prefer the outcome over the decision, we can infer uw(z) > p. Similarly, if
the person says they prefer the decision over the outcome, we can infer u(x) < p. Otherwise,

u(z) = p.

Example: An example of a real life standard gamble query occurs at the University
of Waterloo used bookstore where students have two options when giving their books to
the bookstore. They can either sell or consign the book. If a student sells the book, they
receive an upfront amount of money. If the student consigns the book, they will receive
a larger amount of money but only if the book is sold. For example, a student might be
offered $30 upfront or if they choose consignment, they could receive $100 if the book is
successfully sold and nothing otherwise. The student must estimate the probability of the
book being sold. Ignoring issues related to temporal preferences, i.e. whether the student
wants now or in the future, this is a standard gamble query.

14

For example, suppose the book store is offering to buy a used book for $30. If the book
is succesfully sold on consignment the student will receive $80. The student believes there
is a 70% chance that the book will be sold. To decide whether to sell the book or put it
on consignment, the student must compare u($30) against the gamble,

[0.3; u($0), 0.7; u($80)].

In making this comparison, the student is answering a SGQ. n

SGQs are simple yet powerful: to answer a SGQ, a person just has to decide either yes
or no, yet we can use a series of SGQs to obtain an arbitrarily accurate bound on utility
values.

Since SGQs will never give us the exact utility values (unless we have unbelievable
luck in choosing p), we represent our limited knowledge about a user’s utility value for the
outcome x; as a set of constraints:

[Omin(llfi), Omax(.l’i)], (29)

where Cpin(;) is the minimum possible utility value for z; and Cpax(z;) is the maximum
possible utility. Initially, we set

[Cmin(xJ->>CmaX(xJ-)] = [0, 0]7

and for all other z; € X,
[Omin<xi)) Cmax(xi)] - [07]-]

The complete set of constraints over X is C' C U.

2.2.1 Choosing the Best Decision

We next consider how to choose the optimal decision for a given set of decisions and utility
constraints. “Optimal” can have several different definitions depending on our goals and
what assumptions we make about the user.

In some cases, a user’s preferences may be drawn from a known distribution of possible
preferences. For example, we could be trying to help a pregnant woman decide whether
to test her fetus for Down’s syndrome [19, 20]. These tests carry a significant risk of
miscarriage. There are several other factors that contribute to the value of the tests. Since
most mothers have had to decide whether or not to have these tests, we can use their

15

preferences to create a probability distribution of possible preferences which can be used
to help new mothers decide. In such cases, we let Pr(u) be the known distribution of
possible utility values and Pr(u|C) be the distribution restricted to utility constraints C'.
If Pr(u) is known, the value of a decision is the expected expected utility, defined as [9]

EEU(d,Pr(u|C)) ZPr (z, Pr(ulC)), (2.10)
zeX

where &(z, Pr) is the expected utility of the outcome x given the probability distribution
Pr. The rational choice is to then choose the decision which maximizes the expected
expected utility [9]. The decision which maximizes EEU does not necessarily maximize
EU. Similarly, the decision which maximizes EU does not necessarily maximize EEU.

An alternative criteria for choosing the optimal decision is regret. Regret is the expected
loss of utility we experience from choosing one decision instead of an other, i.e.,

R(d,u) := max [EU(d',u) — EU(d,u)] . (2.11)

FEzxpected regret is the mean regret from choosing a decision given the probability distribu-
tion Pr(u|C). We define expected regret as

ER(d, Pr(u|C)) = / (BU(dy (u), w) — EU(d, w)] Pr(u|C)du, (2.12)

where dj;;(u) is the decision which maximizes the EU given the utility values .

Choosing the decision which minimizes the expected regret is another method for choos-
ing an optimal decision. In fact, maximizing expected expected utility and minimizing
expected regret are equivalent.

Lemma 2. If decision d* maximizes EEU, then d* also minimizes ER.

Proof. Proof by contradiction. We assume there exists a decision d° such that ER(d°, Pr(u|C) <
ER(d*,Pr(u|C). By the definition of ER in Equation [2.12]

ER(d,Pr(u|C))) = / [EU(dgy(u),u) — EU(d,u)] Pr(u|C)du
_ / EU(diyy (), 1) Pr(u|C)du — / EU(d, u) Pr(u]C)du
_ / EU (i (u), u) Pr(u|C)du — EEU(d, Pr(u|C)).

Note that [EU(dy(u), u) Pr(u|C)du is fixed for all decisions. Therefore, if ER(d°, Pr(u|C) <
ER(d*, Pr(u|C), this implies that EEU(d¢, Pr(u|C) > EEU(d*, Pr(u|C). O

16

Lemma 3. If d* minimizes ER, then d* also mazximizes FEU.

Proof. Proof by contradiction. Assume there exists a decision d© which has a higher
expected expected utility than d*. Then by the previous lemma, d° also minimizes expected
regret which is a contradiction. O]

If we do not know Pr(u), we cannot calculate Equation [2.10] and therefore we cannot
use expected expected utility or expected regret in helping to choose an optimal decision.
If we do not know anything about the user’s preferences other than the utility constraints
C, then the reasonable option is to consider the worst-case scenarios from choosing each
outcome.

For example, for a given set of constraints C', we could consider the worst case expected
utility which is given by
EUpnin(d,C) = mig EU(d,u).
ue

In this case, we would then take the decision which maximized the worst-case expected
utility.

When we are considering worst-case scenarios, it is more common to choose the decision
which minimizes the worst-case regret. The best worst-case regret is known as minimaz
regret [10, [68]. To define worst case, or maximum, regret, we first define the pairwise
mazimum regret between decisions d and d’ as

PMR(d,d,C) := max [EU(d',u) — EU(d,u)]. (2.13)

ueC

The pairwise maximum regret is the most regret a user could experience from choosing
decision d instead of d’. The maximum regret for decision d is then

MR(d,C) := max PMR(d,d',C), (2.14)

d'eD

such that
r(d,u) < MR(d,C).

In this case, the minimax regret would be

MMR(C) := minmax PMR(d,d’, C).

deD d'eD

To achieve the minimax regret, we choose the decision

d*(C) := argminmax PMR(d,d’, C). (2.15)

deD d'eD

17

All we can say about the regret from choosing d*(C) is that it is at most MM R(C). We
do not know if r(d*(C),u) is equal to MM R(C) or if r(d*(C),u) is considerably less.

Decreasing the minimax regret does not necessarily increase expected utility. For ex-
ample, suppose we have two utility constraint sets C' and C” such that C' € C. We know
that MM R(C) > MM R(C"). However, it is not necessarily the case that EU(d*(C),u) <
EU(d*(C"),u). As our experimental results in subsequent chapters show, there are many
times when EU(d*(C),u) > EU(d*(C"),u). This is because minimax regret is focused on
the worst case and expected utility is focused on the average case; improving the worst
case does not necessarily improve the average case. However, MM R(C') does provide a
bound on how close our chosen decision is to maximizing expected utility.

Lemma 4. For a given utility value v and utility constraint set C such that u € C, let
dyvr be the minimaz optimal decision and MMR be the resulting maximum regret. Let
dyy be the decision which maximizes expected utility. Then

EU(dyypsv) > EU(dgy,u) — MMR.
Proof. Proof by contradiction. Assume
EU(dy g, u) = EU(dgy,u) — 1,
where r > M MR. Then the pairwise regret from choosing d},,, instead of djy; is
EU(dgy,vw) — EU(dypgsu) =7

The pairwise maximum regret from choosing d3,,, instead of d;; is at least 7. This means
that the maximum regret from choosing dj,;, is at least r which is a contradiction. [

Therefore, if MM R = 0, we know that dj},,, also maximizes expected utility. However,
if the expected regret is 0, this does not guarantee that dj; maximizes expected utility.
Therefore, if we want an absolute guarantee of the quality of a decision, we must use
minimax regret.

2.2.2 Measuring the Confidence in Decisions
Given the uncertainty about a user’s utility values, we can rarely guarantee that the chosen

decision is actually the optimal decision. Instead, at best, we can say that the chosen
decision is close to optimal. A key requirement in our work is that we offer a quantitative

18

measurement of “close:” we are not satisfied with statements such as “this seems like more
or less the best decision.” Both expected regret and minimax regret give a quantative
measurement. With either measurement of regret, the resulting standard elicitation process
is shown in Algorithm [I

Algorithm 1 The standard preference elicitation algorithm. The actual regret can be
either estimated or bounded by expected regret and minimax regret, respectively. The
SGQ can be chosen at random or using the heuristics discussed in Section [2.2.3] We can
either use KU maximization or maximum regret minimization as the metric for choosing
the optimal decision as discussed in [2.2.1]
while regret given utility constraints C is greater than threshold do
Query user using standard gamble query
Use user’s response to refine C
end while
Recommend optimal decision given C

2.2.3 Choosing the Best Query

If the expected or minimax regret is too high, we can ask the user additional queries to try
to reduce the regret. Choosing the best query is a difficult process: the value of a query
depends on the user’s response, which we obviously do not know beforehand. A series of
queries may also be more valuable than the sum of the values of each individual query [68].
As a result, we will rarely know the optimal query to ask; instead, we focus on heuristics
to help us choose queries.

Our benchmark heuristic is the halve largest-gap (HLG) heuristic [I0]. The HLG heuris-
tic focuses on the outcome with the largest utility gap which is defined as

Gap(x) := Cpax() — Crin (). (2.16)

If the outcome z* has the largest utility gap, then we use the query gu((Cmax(z*) +
Chin(2*))/2). The HLG heuristic offers a guaranteed bound on the minimax regret after
each query. This bound relies on a relationship between the minimax regret and the
maximum utility gap of C' which is defined as

mazrGap(C) = max [Ciax () — Crin ()] - (2.17)

reX

19

Proposition 1. Given a constraint set C, the minimax regret is bounded by [10]

MMR(C) < maxGap(C).

Boutilier et. al. originally proved this proposition for scenarios with non-risky deci-
sions [I0]. We use a novel approach to prove that the proposition still holds with risky
decisions.

Proof. Proof by contradiction. In order for MMR(C) > maxGap(C), MR(d,C) >
maxGap(C) must hold for all decisions. This means that for each decision d, there exists
a decision d’ such that PMR(d,d’',C) > maxzGap(C). We bound PM R(d,d',C') by

PMR(d,d,C) = max [EU(d',u) — EU(d,u)]
< max EU(d',u) — min EU(d, u) (2.18)
ucC ueC

For brevity, let EUpax(d, C) := max,ec EU(d, u) and let EUp,(d, C') be similarly defined.

Minimax regret can never increase as a result of refining the utility constraints. There-
fore, we account for the maximum possible minimax regret by assuming that for all out-
comes x;, Gap(z;) = maxGap(C'). We note that

max d C Zpr max

rzeX
- Pdr(x) [Cmax<) mln + Z PI' mln
zeX reX
= PI'(Z') [Cmax(x> - Cmin(x)] + EUmin(d> C)a
rzeX d
= Z %r(x)maxGap(C) + EUnin(d, C),
reX
= maxGap(C) + EUwin(d, C). (2.19)

We combine Equations [2.18 and [2.19 to show that

PMR(d,d',C) < EUpae(d',C) — EUnin(d, C)
< EUpax(d', C) — EUpax(d, C) + maxGap(C).

In other words, to get PM R(d,d', C') > mazxGap(C'), we need EUpax(d', C') > EUpax(d, C).
Similarly, since there exists some decision d” such that PM R(d',d”,C') > maxGap(C), we

20

know that EUpa(d”,C) > EUnax(d',C). Repeating this process gives us a sequence of
decisions, {dy,ds, ...} such that EUpax(diz1) > EUmpax(d;). Since the maximum expected
utilities are strictly increasing, this sequence can never repeat a decision. This means the
sequence must be infinite, which contradicts our model which has only a finite number of
decisions. O]

Proposition 2. If the initial mazimum utility gap is m, then with n outcomes, after
nllog(m/e)| HLG queries, the minimaz regret is at most €.

Our proof is a restatement of the proof given by Boutilier et. al. [10].

Proof. 1f we initially have Gap(x;) = m, since each HLG query cuts the gap in half, after
k HLG queries on x;, we have Gap(z;) = 27 *m. If we want Gap(z;) < ¢, then

27Fm < e
m < 9k
€
m
()<
€
Therefore, we need k = [log(m/e)] to guarantee a utility gap of size e. By Proposition [1]
if we repeat this for all n outcomes, the resulting minimax regret will be at most e. O]

An alternative query selection heuristic is the current selection (CS) heuristic [10].
While the HLG heuristic is able to provide a guaranteed level of minimax regret, the CS
heuristic is often able to outperform the HLG heuristic [10]. To describe the CS heuristic,
we first define the adversarial utility as

u® = max M R(dyprp, 0)- (2.20)

ueC

The adversarial utility is the utility that would result in the maximum actual regret (which
would be equal to the minimax regret). We next define the adversarial decision as

d* = argrélaﬁcPMR(g 4, C). (2.21)

€
If the user’s utility values were equal to u®, then d* would be the decision that the user
would have most wanted to choose over d},,,z. Since PMR(d}; 5, d*,C) = MMR(C),

reducing PM R(dy; /g, d%, C) could be an efficient way of reducing MM R(C'). As a result,
our new metric for choosing the best query is the weighted utility gap, defined as

| Pr(z) — Pr(a)|(Cuuns () — Con). (2.22)

21

Cmin (l‘z) u(-rz) Crnax(l‘i)

Figure 2.3: An example of finding the mazimum regret for decision dy as a function of u(xq)
after the user’s response to the query q.,(p). In this example, D = {dy,ds,ds}. We first
plot the PMR wvalues for dy against both dy and ds as functions of u(xy) using Equation
. The PMR values are shown as dashed lines. For example, since PMR(dy,ds) is
increasing, this means that Prg,(x;) > Prg, (x;). The mazximum regret, shown as the solid
line, is the maximum of all the pairwise regret values.

where Prge(z) is the probability of the outcome x occuring as a result of decision d* and
Prg«(x) is similarly defined. If the outcome z* maximizes the weighted utility gap, we use
the query gua((Cpax(z®) + Ciin(2®))/2). To illustrate the advantage of the CS heuristic
over the HLG heuristic, suppose for some outcome x, Prg.(z) = Prg(z). Then the size of
the utility gap for = has no effect on PMR(d*,d* C') and therefore, reducing the utility
gap will not reduce the minimax regret.

Both of the preceding heuristics query the user about the mid-point of the utility gap.
A heuristic that can query the user about any utility value is the maximin improvement
(MMI) heuristic [68]. Unlike the HLG and CS heuristics, MMI is not compatible with a
monotonicity assumption. For every possible query value, MMI determines the improve-
ment in the minimax regret if the user responds yes as well as the improvement if the user
responds no. MMI then selects the query value which maximizes the minimum of the two
improvements.

The MMI heuristic starts by expressing the PMR values as functions of u(x;), i.e. what
would the PMR be if we knew u(z;) and for the rest of the outcomes, we only had the

22

MRyo(dy, p) /

MR(dy,u)

Cmin (l‘z) u(-rz) Cmax(l‘i)

Figure 2.4: Continuing the example from Figure [2.5. We consider the case where the
user responds no to the query q.,(p). Finding the resulting mazimum regret for dy requires

relaxing Equation (shown as the thin line) to Equation[2.25 (shown as the thick line).

utility constraints C'(X\x;)? In this case, the PMR would be
PMER(d,du(z:)) = PMR(d,d,C(X\x)) + [Pr(z:) - Pr(z)] u(zy), (2.23)

with Chin(2;) < u(z;) < Chax(x;). For each decision d, we plot Equation for every
decision d’ € D\{d}. An example is shown in Figure 2.3 We can then express MR(d) as
a function of u(x;) by

MR(d,u(x;)) = max PMR(d,d',u(z;)). (2.24)

d'eD
An example of this function is also shown in Figure
We now consider the case where the user responds no to the query g, (p), which implies

that u(z;) < p. If all we know is that u(z;) € [Cmin(2:),p) (instead of the exact value of
u(z;)), we must relax Equation to be dependent on the range [Chin(z;), pl, i.e.
MR,,(d,p) =max max PMR(d,d u)
d’'€D ue[Crmin(xi),p)]

= max MR(dy,u). (2.25)

ue [Cmin (xi)ap}

An example of relaxing Equation to Equation [2.25[is shown in Figure [2.4. Therefore,
we can calculate the maximum regret from choosing decision d; as a function of the utility
value p, assuming the user responds no to the query ¢, (p).

23

dq

do

Cmin (l‘z) u(-rz) Crnax(l‘i)

Figure 2.5: Continuing our example from Figure we next plot M R,,(d,p) for each of
the three decisions, i.e. the line dy represents M R,,(da, p). We also take the minimum of
MR,,(d,p) at each value of p to get MM R,,(p).

We next plot Equation M R,,,(d, p) for each decision as shown in Figure . If we take
the minimum of each of these values, we get MM R,,,(p), the resulting minimax regret if
the user responds no to the query ¢,,(p). The function M M R,,,(p) is shown in Figure
as the dashed piecewise line.

We can use analogous reasoning to find MM R,.,(p). Figure shows both MM R,
and MMR,,. Since we do not know if the user is going to respond yes or no, we must
assume the worst case and take the maximum of MM R, and MMR,,. Therefore, we
focus on the minimum improvement which is defined as

MI(C,,,(p) = MMR(C) — max{MMRy..(p), MMRio(p)}. (2.26)

The value of p which maximizes the minimum improvement is the MMI query point. After
finding the minimum improvement for querying each outcome, we select the query which
maximizes Equation [2.26]

The MMI heuristic offers the best worst-case guarantees for individual queries, as op-
posed to HLG, which offers the best worst case guarantee for a long sequence of queries.
However, there are times when the best worst-case is no improvement. In such cases, us-
ing MMI results in stalling, where MMI recommends a series of queries, each offering no
improvement.

An alternative measure which is not subject to stalling is ezpected improvement (EI) [68].

24

MRyes (p)

MMR,(p)

Popt

- —_— — — >

Cmin (l‘z) u(-rz) Crnax(l‘i)

Figure 2.6: Continuing the example from Figure . We plot both MM R,,(p) and
MMR,.s(p). The intersection of these two functions gives the optimal worst-case querying
value for the outcome x;.

The expected improvement from the query ¢,,(p) given the utility constraints C' is

El(q,(p), C) = MM R(C) — Pr(yes|qa, (p), C)MM Ryes (C, i, p)
— Pr(nolq., (p), CYMMR,,,(C, z;, p).

In this case, the mazimum expected improvement (MEI) heuristic chooses the query which
maximizes EI. We can accurately calculate Pr(yes) and Pr(no) if we have some estimation
of the probability distribution of the user’s preferences (in which case, we are in a setting
similar to that assumed by expected regret). In this case, Monte Carlo sampling would
be an efficient method for calculating Pr(yes) and Pr(no). If all we know about the user’s
preference is C, then we can still use MEI by assuming some probability distribution.
Wang and Boutilier suggested assuming a uniform distribution, i.e [6§]

Cmax(“%‘) - D
Cmax(:ci) - Cmin(xi)’

Pr(yeS!qm (p)7 C) =

with Pr(no) similarly defined. The performance of the MEI heuristic assuming a uniform
distribution will be heavily dependent on how closely the user’s preferences are to being
uniform.

25

2.3 Multiattribute Preferences

In many settings we may judge outcomes by different attributes. For example, if the
possible outcomes are different cars, we may judge the outcomes by mileage, safety rating,
number of doors, etc. Attributes can provide a more natural setting for people to reason
about preferences: it can be difficult to compare two arbitrary cars, for example, since
there are so many different ways cars can vary. Even if someone says they prefer car A
over car B, this says nothing about whether they would prefer car C. If, however, the user
says that each additional five kilometres per liter in fuel efficiency is worth $500 to them,
this statement provides a powerful metric for comparing different cars.

Unfortunately, the number of possible outcomes grows exponentially with each addi-
tional attribute. For example, if we have n attributes and for each attribute, there are m
possible outcomes, also known as local outcomes, we have m"™ possible outcomes overall. As
a result, there has been considerable research into compactly representing utility functions
over multiple attributes [I1), 25 27, B6]. This work has focused on developing different
models of utility independence.

Modelling utility independence has many similarities to modelling probability inde-
pendence. In fact, some models of utility independence are directly inspired by Bayesian
networks [I1]. However, there is one key difference: Bayesian networks are considered
the standard way of representing probability independence, while there is no standard in
representing utility independence. Many models have been proposed which are funda-
mentally different from each other. In this section, we review some important models for
multiattribute utility functions and compare their strengths and weaknesses.

2.3.1 Multiattribute Utility Functions

We begin by defining a model for a multiattribute setting. There exists some set of at-
tributes A = {A;,..., A,} that define all outcomes, i.e. X = A; x ... x A,. Without loss
of generality, we assume that for each attribute there are m possible local outcomes. We
make no assumption about the ordering of the outcomes for each attribute: thus, while a
red sports car may be the best possible outcome, a green family car may be preferable to
a red family car.

Models of Utility Independence

In this section, we review several multiattribute utility independence (MUI) models.

26

Additive Independence: The strictest form of independence is additive independence

where
u(z) = Zuz(x) = Z Aivi(z),

where u; : A; — [0, 1] is a subutility function which is composed of a scaling factor \; € [0, 1]
and a local value function (LVF) v; : A; — [0,1] [36]. The key difference between a
subutility function and a LVF is that there is always a local outcome z; such that v;(z;) = 1.
A key difference between additive independence and the other MUIs discussed below is that
not all utility functions can be expressed using additive independence.

Example: Suppose we are flying from Toronto to Munich, Germany on Air Canada.
There are several flights we can choose between. For example, we can fly from Toronto to
Montreal and then to Munich or we can fly from Toronto to Frankfurt and then to Munich.
We can use many different attributes to compare the utility of each flight chose. The most
important attribute is probably cost. We might also be interested in the length of the total
trip and whether or not our luggage gets lost during the trip. An example utility function
based on these three attributes, assuming additive independence holds, is

w(x) = 0.8Veost() + 0.1501engtn () + 0.05015gage (T), (2.27)

where x is a specific flight. For example, we could use Equation to determine the
utility of a trip with the attributes [$1500, 9hrs, lost], i.e. a trip which costs $1,500, lasts
9 hours in total and results in lost luggage. O

Conditionally Additive Independence: A generalization of additive independence
is conditional additive independence (CAI) [25]. A key idea in CAI is features.

Definition 10 (Features). Let F* C A be a subset of all the attributes. A feature
F= XAieFattAi

is the set of all local outcomes over the set of attributes F. We can define subutility
functions, scaling factors, and LVF's over features, that is, up : F' — [0,1], Ap € [0,1] and
vp : F = [0,1]. Note including attributes is an all or nothing selection, that is, we either
include all local outcomes from an attribute A;, or we do not include A;. Since there is a
direct mapping between F and F*, we will use the terms interchangeably.

Suppose we have three independent features I, F,, and F3 such that X = F} X Fy X F3.
The features F; and Fj3 are CAl given F; if there exist subutility functions ug «xm, () and

27

Figure 2.7: A CAI tree representation of the CAI factorization in Equation [2.29]

U, x5 () over features Fy X Fy and Fy X F3, respectively, such that

u(x) = UR xFy (ZE) T URxFy (ZL‘) (2'28)

-)\Fl XFQUFlXFz (:E) _'_ >\F2><F31)F2><F3 (:C)

We can apply CAI recursively to further decompose either vg g, (z) or vExp(z). By
definition F{ N Fgt = ().

If we let F = {F,..., Fj} be the set of all features in a CAI decomposition (or factor-
ization), we can represent the decomposition graphically using a CAI tree. A CAI tree is
a binary tree which shows the iterative factorization of the features. Each external node
in a CAI tree corresponds to the attributes making up a feature in F. Each internal node
represents the intersection of its children nodes (empty intersections are allowed). The
CALI tree does not have to be unique. For example, the CAI tree for the function

u(m) = Uua, XAz(x) T UayxAs (.’L’) (229)

is shown in Figure 2.7, We can use the CAI tree to determine Fy, Fy and F3 from Equation
2.28/ Specifically, F§' is the root node, e.g. Fs'* = {As}, F{* is the first {A;, A2} minus
F§t e.g. Ff is {A;} and by similar reasoning F§* is {As}.

Lemma 5. Given a CAI decomposition with the set of features F, for any resulting CAI
tree, if we define An(F;, F;) as the common ancestor of the features F; and Fj, then F™ N
Fait — An(F, Fy).

Proof. For this proof, we assume that An(F}, F;) is the root of our CAI tree. It follows from
definition that An(F;, Fj) € F** N F{*". We need to show that F{" N F** C An(F;, F}).
We use proof by contradiction and assume that F{** N F#* 5 An(F;, Fj). We assume that
F; is in the left hand subtree rooted at An(F;, F;) and F} is in the right hand subtree. Let
F#* be all of the attributes in our CAI tree which are in the left hand subtree rooted at

28

An(F;, F;) and let F%* be all of the features in our CAI tree which are in the right hand
subtree rooted at An(F;, F;). We also define F{* as

tht — UFGF%MF
and FE"* as
tht = UFeF‘gtF-
Since F* C Fp* and F{" C Fg*, we need only show that (Ff* N FR'*) D An(F;, Fj) =
An(F}, Fj;) implies a contradiction. An alternative CAI factorization of u is
w(x) = up, () + up, (). (2.30)

In terms of Equation 2.28, Equation breaks down into Fy'* = Fptt 0 Fait, Fptt =
FE\Ff and F§tt = Fa"\ Fg*. By our assumption F{™ N F* £ () which contradicts our
definition of CAL O

Definition 11 (Cycle). A sequence of features {Fy, ..., F,} is a cycle if FP" N FAY # ()
and Fo™ N F§t £ (.

Corollary 1. Given a CAI decomposition, for any cycle, Ff" N F* = F& O F* for any
features F;, F;, Fy, Fy such that F; # Fj and Fy # F;.

In other words, if we have any cycles in a CAI decomposition, then the overlap between
features in the cycle must be constant, that is, F5 must be constant.

Example: Consider the decomposition

u(x) = UA; x Ay (I) T UA; x A3 (ZE) + uA1><A4<I) T UA; x A5 (Z‘) (231)

Although there is a cycle in Equation (in fact there are several), it is because the
overlap between features is constant that Equation [2.31}is a valid CAI decomposition. The
decomposition

u(l‘) = UA1><A2(1‘) T UAyx A, (ZL‘) T Uazxa, (I)7 (2'32)
is not a valid CAI decomposition since the overlap between features in the cycle is not
constant. 0

Generalized Additive Independence: We can further generalize additive independence
with generalized additive independence (GAI) [27]. A set of features F = {F},..., F,,} is
generalized additive independent if we can express u as

u(z) = ZuF(:r;) (2.33)

FelF

29

The key difference between CAI and GAI is that we place no restrictions on the features
in F in Equation [2.33] Specifically, Lemma [5| does not apply to GAI. As a result, both
Equations and are valid decompositions.

Given a GAI decomposition of u, we can construct a GAI graph. A GAI graph is an
undirected Ggar = (F,) with edges between features F; and Fj if and only if F**'NF]‘-1“ +
() [12]. In other words, a GAI graph is a graph where each node is a feature in F and nodes
are adjacent if and only if their corresponding features overlap.

Conditional Utility Independence: Given three independent features S, T and V
such that X = SUT UV, S is conditionally utility independent (CUI) of T given V' if for
any fixed value of V', say v, [25]

Vie T u(S,T,V)=u(S, T =t,V =wv).

That is, for any fixed value of V', the user’s preferences do not depend on 7. As a result,
we can decompose u into

w(S, T, V)= f(T,V)+ g(T,V)u(S, T =t,V), g(-) > 0. (2.34)
Conditional Difference Independence: To define conditional difference independence
(CDI,), we first define a reference utility function [11].

Definition 12 (Reference Utility Function). Fiz 2" € X to be a reference outcome (an
obvious choice being " = x,). Given a feature F, the reference utility function is

where x is the projection of x onto F' and F* = A\F*. That is ul.(x), the utility where
all attributes not in F' are set to the reference outcome.

Given two features, F' and F”, a conditional utility function is
u(wplrp) = upyp (tr Uzp) — wp(zp).
The feature F' is conditionally difference independent (CDI,) of F’ given F” if [11]
u(zp|lep, xpn) =u"(zp|zp.).

This is denoted by CDI.(F, F'|F"). As aresult, given any ordering of our set of attributes,
we can define Pa(A;) C {A;|7 < i} to be the set of “parent” or conditional attributes such

30

that CDI,(A;, Pa(A;)|Pa(A;)). As a result, we can express u as
u(r) = ujy, () + Z uy, (x| Pa(Aq))

= A, vy, (2 +Z/\pa VU (2| Pa(Ay))

An example of a CDI, representation over three attributes is shown in Figure BLAH.

Given a CDI, decomposition, we can construct a CDI. graph. A CDI, graph is a
directed graph Gepr, = (A, E) with the edge A; — A; if and only if A; € Pa(A;) [L1].
A CDI, graph has a strong relationship with Bayesian networks. Specifically, a directed
CDI, graph captures the notion of d-separation.

2.3.2 Preference Elicitation with MultiAttribute Preferences

Since MUI models allow for compact representations of multiattribute preferences, we
would like to have preference elicitation processes which take advantage of the MUI models.
While we could always use basic SGQs by converting a MUI decomposition into a standard
model (as discussed in Section , this would defeat the purpose of using a MUI model.
For GAI, and by extension, additive independence and CAI, we can adopt SGQs to take
advantage of the structure. For both models, queries are needed to bound both the scaling
factors and the LVFs.

max min

For the feature F', \p = w2 — 2" where uf™ = max, cpur(rr) and uP™ is similarly
defined [13]. Therefore to bound Ap, we need to bound both v and w#". To bound
these two values, we use traditional SGQs. When eliciting multiattribute preferences, we
refer to the basic SGQs as global SGQs [13]. To bound vg(xp) for local outcomes zp, we
use local standard gamble queries (ISGQs). A 1ISGQ asks the user if they would prefer the
decision [1 — p; 28" p; 22| over the local outcome xp, assuming all attributes not in F
are fixed. If the user does prefer the guaranteed outcome, then vp(zr) > p [13].

Example: We have a user flying from Toronto to Munich, Germany. We are trying
to elicit the user’s utilities to help them choose the best flight. This user judges flights on
three attributes; cost, length and whether or not the luggage is lost. Suppose the user’s
overall utility function based on these three attributes follows additive independence and
is given by Equation [2.27]

31

We wish to query the user about their utility with regards to the length of the flight.
In the best case, the trip will take 8 hours and the in the worst case the trip will take 24
hours. (Although the trip could actually take longer if, for example, a volcano erupted and
cancelled all flights for 4 days, we decide that the probability of such events occuring is
low enough that we can ignore them.) For this example, we wish to query the user about
their utility of a 10 hour trip. To do so, we would give the user a ISGQ comparing a trip
with a guaranteed length of 10 hours against a trip with a length given by the gamble

[1 — p; 24hrs, p; 8hrs],

i.e. with probability 1-p, the trip would take 24 hours and otherwise would take 8 hours.
This query would assume that the cost of the trip and whether or not the luggage was lost
is fixed. O

Previous Comparisons of Utility Independence

The compactness of a utility decomposition is the size of the decomposition. For example,
a decomposition could have a compactness of O(m?®) using a GAI representation, that
is, if we use GAI then the size of the resulting decomposition is O(m?). To the best of
our knowledge there has been little work on comparing the compactness of different MUI
models.

Additive independence is the strongest form of multiattribute independence, and there-
fore, the least compact. All of the independence models discussed in this section generalize
on additive independence. Engel and Wellman showed that CUI is a weakly more compact
representation than CAI, i.e. CUI is always at least as compact as CAI and sometimes
more so [25]. However, they did not examine cases where GAI achieves a more compact
representation than CAI. They dismissed such cases as “hard to identify” and lacking “an
intuitive interpretation” [25].

32

Chapter 3

Preference Elicitation and
Cumulative Prospect Theory

Preference elicitation in Al traditionally assumes the user follows expected utility. In Sec-
tion [3.1} we examine why expected utility is assumed. Since cumulative prospect theory is
a better descriptive model of peoples’ actual preferences we also investigate whether cur-
rent Al preference elicitation techniques are compatible with cumulative prospect theory;
we show that they are in fact incompatible. In Section [3.3] we introduce a new method for
preference elicitation that is compatible with cumulative prospect theory. Experimental
results are given in Section

3.1 The Role of Preference Models in Preference Elic-
itation

Papers in Al which deal with preference elicitation over risky outcomes make two strong
assumptions about ezpected utility (EU). The first assumption is that EU is a valid norma-
tive or rational model, 7.e. EU is a model of how people should reason about preferences.
The second assumption is that EU is a valid descriptive model, i.e. EU is a model of how
people actually reason about preferences/T]

!There is an important difference between EU and expected utility theory (EUT). EUT says that
EU holds if both decomposability and the independence axiom hold. As shown in Section EUT
is always correct and does not have to be assumed. If we assume EU holds, then we are assuming that
decomposability and the independence axiom hold.

33

These assumptions are made for two different reasons. Assuming EU is a valid rational
model means that maximizing EU is a rational goal. This is important because preference
elicitation papers either aim to maximize EU or optimize some metric closely related to
EU [20} [68]. People have generally agreed that EU is a valid rational model and therefore,
this assumption is uncontentious [54) [55].

Assuming EU is a valid descriptive model provides a framework for how to interact
with people. Specifically, by assuming EU, we can interpret a person’s response to the
standard gamble query (SGQ). Unfortunately, as discussed in Section , EU is a poor
descriptive model. This has lead to numerous alternative models which attempt to be
accurate descriptive models. Out of all of these alternative descriptive models, cumulative
prospect theory (CPT) is considered the best model [55].

Our goal in this chapter is to develop a preference elicitation method which always
works with users whose preferences follow CPT. Since there is general agreement that EU
is a valid normative model, we will keep EU as our normative model. As a result, while we
assume that user’s preferences follow CPT, we believe that users should actually be trying
to maximize their expected utility.

We begin by discussing the relationship between EU and SGQS. If a person’s preferences
followed EU, then they would evaluate the overall utility of the SGQ ¢,(p) as

U([l =pyxzy,pyar]) = EU([1 — p;xy, p; o))
= (1 = plu(z1) + pu(zT),
=p.

Therefore, if the user says that they prefer the certain outcome = over the given gamble,
we can infer that u(z) > p.

Without the assumption of EU, the relationship between u(x) and the user’s response
to the SGQ is no longer as clear. For example, if we assume that the user preferences
follow only CPT, then assuming that z; > 0, from Equation the user’s evaluation of a
given gamble is now

Ul = pizp,pyar]) = (w(1) —wlp))u(zL) + wip)uler),
= w(p). (3.1)

Without knowing how the user weights probabilities, we can no longer infer any relationship
between the u(x) and p.

The easiest solution is to ignore the probability weighting, i.e. assume w(p) = p. This
means that while the user is weighting the probabilities, we are analyzing their responses

34

as if they are not. To see if this approach could work, we consider a scenario with four
outcomes X = {z |, x, 29,7} and two decisions, d and d’;

[1 = p; @1, py 7], (3.2)

and
[1— 20,0 22], (3.3)
respectively.

Our goal is to choose a set of utility values and probabilities so that there is an error
with the minimax regret. If we can create an error, this would show that we cannot ignore
the probability weighting. Since minimax regret is supposed to be an upper bound on the
actual regret, there is an error any time the actual regret is greater than the minimax. Our
measure of error is

MM R,,, = max{0, actual regret — minimax regret} (3.4)

Hence, our goal is to choose utility values and probabilities that result in Equation |3.4
being greater than zero.

Suppose we query the user until we believe we know the user’s exact utility values for
both x; and z,. In this case, we believe that the utilities for outcomes z; and x5 are
w(u(zy)) and w(u(xs)), respectively. For brevity, we will refer to these values as w; and
wq. If we believe we know the exact utility for all possible outcomes, the minimax regret
will be zero. Therefore, an error occurs if we can get the actual regret to be positive.
For our example, we will consider the situation where the user prefers d’ but the minimax
decision is d. For the reverse situation, the reasoning is analogous.

According to the incorrect utility values w; and ws, we incorrectly believe the regret
from choosing decision d is

R(d> uincorrect) = T(d7 d/a uincorrect)
= EU(dla uincorrect) - EU(d, uincorrect)
=p'wy — (p+ (1 — puwn), (3.5)
where Uipcorrect = [Wincorrect (1) = W1, Uincorrect(T2) = wa]. In order for d to be the minimax
decision, Equation must be less than or equal to 0. This can always be achieved by

setting wy = wy = 0. Therefore, there always exist values for w; and wsy such that d appears
to be the preferred decision, even if d’ would actually maximize the user’s expected utility.

35

The actual regret from choosing d is

pu(rs) — (p+ (1 — pu(xy)). (3.6)

Since MMR = 0, for MMR,,, to be greater than zero, Equation just needs to be
greater than zero. We maximize Equation by setting u(zs) = 1 and u(x;) = 0 which
reduces the equation to

P —p (3.7)
Therefore, anytime that
p—p>0
P >, (3.8)

the user prefers decision d’ over d, resulting in M M R,,, > 0. Since M M R,,., > 0, minimax
regret is no longer a valid upper bound on the actual regret.

We can get an arbitrarily large error, i.e. MMR,,, = 1, by setting p = 0 and p’ = 1.
If Equation is not satisfied, we can still create an error by choosing values such that
Equation [3.5]is greater than 0 and Equation [3.6is less than 0. Thus in theory, for any given
set of gambles of the form of Equation and [3.3] there always exist utility values and
probability weighting values which result in an error if we ignore the probability weighting.
This shows that if the user is applying probability weightings, we cannot ignore them.

However, these errors may not be realistic since setting w; = 0 is not realistic. In
order to examine more realistic settings, we need to use probability weighting functions
built on experimental experience. We examined these realistic scenarios in the following
experiments.

We begin by using the weighting function [59]

p'Y

EATETDIE (39

MMZ(

Compared to other weighting functions, Equation has been shown to be relatively
accurate at modelling peoples’ weightings [71]. We used a value for v of 0.71 with a
standard deviation of 0.1 [71].

With these realistic values for w, we then searched for possible scenarios where the
minimax regret was violated, i.e., Equation [3.4] was greater than zero. This search was
based on examining possible sets of decisions in the form given by Equations and
3.3l To do so, we consider values of p and p’ both ranging from 0.1 to 0.9, inclusive, in

36

Number of Standard || Percent Error Max Error Max Error
Deviations Tversky-Kahneman w | Prelec w
1 44.4 0.215 0.155
2 44.4 0.315 0.245
3 44.4 0.444 0.35

Table 3.1: Error rates for preference elicitation using SGQs on users with CPT-modelled
preferences. Percent error is the percentage of decisions in the form given by FEquation
and for which there exist utility and probability weighting values which result in
the minimax regret being violated. FError is calculated according to Equation |5.4 The
probability weighing was calculated using the forms for w given by Twversky and Kahneman
(Equation and Prelec (Equation . Results are given for different ranges of v,
given in terms of the number of standard deviations around the mean. For example, in the
first row, for Tversky and Kahneman’s w, v ranges from 0.61 to 0.81 while for Prelec’s w,
v ranges from 0.60 to 0.88.

increments of 0.1. For each set of decisions, we searched for any utility and probability
weighting values that resulted in Equation being less than 0 and Equation being
greater than 0 (or vice-versa). We searched through all possible utility values ranging from
0.05 to 0.95 in increments of 0.05. For probability weighting values, we searched using
values of v in increments of 0.01 between lower and upper bounds given in terms of the
standard deviation of . For example, if we set the upper and lower bounds of v to be plus
or minus one standard deviation, then we would examine values of v from 0.61 to 0.81.
(The same v would be used in calculating both w; and wy.) If any such scenarios exist, we
measure the error according to Equation [3.4}

The results of this search are shown in Table We see that, regardless of the range
of possible values for v, for 44% of all decisions, there exists at least one set of utility
and probability weighting values which result in the violation of the minimax regret. For
values of v within one standard deviation, i.e. values of 7 which cover 68.2% of people, the
maximum error is 0.215. For values of v within three standard deviations, i.e values of
which cover 99.8% of people, the maximum error is 0.444. These values are significant and
show that the assumption of expected utility has important consequences. The fact that
the percent error is unaffected by the range of v suggests that, in practice, only certain
decisions can result in the violation of minimax regret. This suggests that certain decisions
are “immune” to the effects of probability weighting.

Since there is some disagreement about the form of the probability weighting function,

37

Number of Standard || Percent Error Max Error Max Error
Deviations Tversky-Kahneman w | Prelec w
1 100 0.215 0.155
2 100 0.315 0.245
3 100 0.444 0.35

Table 3.2: A repeat of the results from Table with a monotonicity constraint imposed
on u and the requirement that p’ > p.

we next tested a different weighting function,
w(p) = e~ lep) (3.10)

proposed by Prelec [49]. Experimental results have suggested that while, on average,
Prelec’s w may not be as accurate as Tversky and Kahneman’s, there are cases where
Prelec’s is more accurate [71]. Based on experimental results, the mean and standard
deviation for v with respect to Equation are 0.74 and 0.14, respectively [71]. The
results are also shown in Table [3.1} The percentage of decisions with which an error can
occur is identical to the percentage found using Tversky and Kahneman’s w. This implies
that whether or not minimax regret can be violated is not dependent on the exact form of
the probability weighting. However, the maximum error is slightly lower with Prelec’s w.

We wanted to see how robust these results are. Since a monotonicity constraint is
often a natural constraint, we next added a monotonicity constraint that u(z;) < u(xs).
We also added the constraint that p’ > p. (With the monotonicity constraints, if p’ < p,
the user will always prefer the decision in Equation and so we would never bother
processing a user for such a scenario.) While this setup guarantees that Equation is
always greater than 0, it does not guarantee that Equation will be less than 0. Thus
while an error is not guaranteed, the results, shown in Table |3.2, show that in practice, it
is always possible to have an error. The monotonicity constraints increase the probability
of an error occurring but do not affect the magnitude of the error. As a result, in scenarios
with monotonicity constraints, assuming EU can always create an error.

3.2 Previous Methods of Preference Elicitation with
Cumulative Prospect Theory

Over the last 25 years, there has been considerable work on trying to elicit utilities when
expected utility may not hold [26]. This has lead to several elicitation methods which are

38

specifically compatible with CPT. In this section we review the methods and discuss their
advantages and disadvantages.

The first possible method is to learn and model the user’s probability weightings. If we
knew the user’s weighting function, we could continue using SGQs. One method for finding
the user’s weighting function is a parametric approach where we assume that the functional
form of w is known. In this case, we can query the user directly about their probability
weighting [71]. Unfortunately, to our knowledge, no functional form of w has been proposed
which is able to explain experimental results to any accurate degree. For example, while the
probability weighting function in Equation has been used to study peoples’ probability
weighting in many different experiments, studies have found that this function is able to
explain only 39% of the variation from a neutral probability weighting [71]. While there
are weighting functions that are able, on average, to explain more of the variation, these
functions are not consistently better. For example, the weighting function proposed by
Kahneman and Tversky in their original prospect theory (OPT) paper has been shown to
explain around 47% of the variation [71]. However, Wu and Gonzalez showed that there
are probability values for which CPT provides a better explanation than OPT [71].

An alternative method for modelling the weighting function is a non-parametric ap-
proach where we do not assume any functional form for w. There are two possible
non-parametric approaches to eliciting probability weightings. The advantage of both ap-
proaches is that there is no error created by trying to fit the user’s responses to a functional
form of w.

The first non-parametric approach was proposed by Bleichrodt and Pinto [7]. We note
that the disadvantage of their approach is that they assume the utility values have already
been elicited. As a result, if we use Bleichrodt and Pinto’s method to find the user’s
weighting values which we then use in SGQs, we would be eliciting the user’s preferences
twice, creating unnecessary work.

Bleichrodt and Pinto’s method uses the the gamble-tradeoff method (GT method) to find
the user’s preferences [7, 65]. The GT method is able to elicit users’ preferences even when
users distort probabilities in their utility evaluations. This means that we could use the
GT method by itself, instead of SGQs, to elicit the preferences. The GT method assumes
that X is a subset of a larger set of continuous outcomes Y which has no upper bound. For
example, X could be different amounts of money to be won with the amount determined
by the roll of a die, e.g. if the die rolls 1, we win $1 etc. In this case, X = {$1,...,$6}
and we could have Y = {$y|y € R>¢}. As a result, the user has a utility for winning $4.5
or $10, even though neither outcome is possible for this specific scenario. This means that
we can generalize u to be over the domain Y. The GT method also assumes that u is

39

monotonically increasing.

The GT method starts by asking the user to choose an outcome y; € Y such that they
are indifferent between the decisions

[p; 21,1 —p; R] and [p;y1, 1 — p;r], (3.11)

where the outcomes r < R are fixed reference outcomes in Y and the probability p is also
fixed. We then ask the user to choose an outcome y, € Y such that they are indifferent
between the decisions

[p;y1,1 —p; R] and [p;y2, 1 — p; 7], (3.12)

where r, R and p are the same values used in the previous comparison. We evaluate both
indifferences according to CPT. Equation [3.11] evaluates to

w(l =pu(R) + (1 —w(l = p)u(zy) = w(l = plu(r) + (1 = w(l = p))uy),
w(l —p)u(R) —w(l —plu(r) = (1 —w(l —p))(uyr) — u(zL)), (3.13)

and Equation [3.12 evaluates o

w(l —plu(R) + (1 —w(1 —p))u(y) = w(l = plu(r) + (1 —w(l — p))u(y),
w(l —plu(R) —w(l —pu(r) = (1 —w(l —p))(u(y2) — u(y1))- (3.14)

Together, Equations and imply that
u(yr) — u(zi) = ulye) — u(yr),

which means that u(y;) is halfway in between u(x,) and u(y,). We can repeat this process
to give us {y1, 42, ...,y }. We normalize the utility values such that u(y;) = 1. Since the
utility values for y; are evenly spaced, this means that u(y;) = j/l. We then set the utility
constraints for u(z;) to be

[uyj-1), u(y;)] such that y; 1 2 z; <y;. (3.15)

We control the accuracy of these constraints by changing the values for the parameters p,
r and R in order to bring the outcomes y; and y;,; closer together. While choosing an
outcome which results in indifference between decisions (as done in Equations and
takes more cognitive effort than responding yes/no to a SGQ, the GT method has
been used successfully in several experiments with people [2, Bl [65]. This shows that the
GT method is a practical method for eliciting preferences.

40

However, the GT method is not efficient at reducing expected or minimax regret. The
accuracy of the results is controlled by how close the outcomes {yi,4s,...,y} are to-
gether. The closer these outcomes are together, the more accurate the utility constraints
for outcomes in X are. The first problem is that the GT method does not provide utility
constraints for all outcomes until y; > z7. For example, suppose X = {0,25, 75,100} and
y; = 50. In this case, we cannot use Equation to bound u(75) or u(100). All we can
say is that w(75) > 1 and «(100) > 1 which are not useful bounds. This means that we
cannot calculate expected or minimax regret until we have completed the GT method. At
this point, if the regret is too high, we must restart the GT method over from the begin-
ning. Since the accuracy of the constraints is controlled by three independent parameters,
it is not clear what are the best parameter values to choose to improve accuracy. Once
we have changed any of the three parameters, our y-values will not match up with the
y-values from the previous run. Therefore, every time we restart the GT method, we must
discard our previous set of constraints. Many of the outcomes in {y1, 4, ...,y } are not of
use to us. For example, suppose X = {0,75,100} and for our given scenario, to achieve
the desired minimax regret, the maximum allowable utility gap around u(75) corresponds
to u(74) and u(76). In this case, we may need {y; = 1,y2 =2,...,ynu = 74, y76 = 76, ...}.
This would result in a lot of unnecessary querying. Therefore, using the GT method to
minimize regret can be both inefficient and unintuitive to optimize.

The second non-parametric approach for eliciting probability weightings, the midweight
method, is by van de Kuilen and Wakker [61]. The midweight method is based on the
GT method. The advantage of the midweight method is that we only need to find one
pair of outcomes y; and ys such that u(ys) = 2u(y;). This means that we only need to
perform one iteration of the GT method. Once these two outcomes have been found, the
midweight method asks users to find a probability d such that they are indifferent between
the decisions

[b; 21, ¢;y1,a;y2] and [b+ (¢ — d); o, a + d; ys],

for probabilities a,b and ¢ such that a + b+ c =1 and 0 < d < ¢. Van de Kuilen and
Wakker showed that [61]
w(a) + w(c+ a)

5 .
For example, if we choose a = 0 and ¢ = 1 then since w(a) = 0 and w(a + ¢) = 1, we
can use the midweight method to find d = w=*(0.5). While van de Kuilen and Wakker
did not use the midweight method to minimize regret, it is straightforward to combine the
midweight method and SGQs. Suppose we give the user the SGQ ¢,,(p) and they respond
“no” (they prefer the decision over ;). As shown in Equation , we can only infer that
u(z;) < w(p). Since w is monotonically increasing, we can use the midweight method to

w(d+a) =

41

bound w(p). For example, if p < w™(0.5) then w(p) < 0.5. Each time we query the
user, we can either update our utility constraints by using a SGQ or we can update our
probability weight bounds by using a midweight query.

One possibility with the midweight method is to learn the user’s probability weight-
ing in a simpler setting. However, peoples’ probability weighting will vary from situation
to situation [65]. In one test, peoples’ probability weighting was elicited for situations
involving money and for situations involving medical options resulting in different life ex-
pectancies [65]. People were shown to apply heavier probability weightings to the situations
involving medical options. This means that we cannot necessarily learn peoples’ probability
weightings in one situation and apply them to another.

3.3 The Gamble Equivalence Method

We propose the gamble equivalence method (GEM), a preference elicitation method based
on the gamble-tradeoff method, which is compatible with CPT and which focuses on re-
ducing the minimax regret as quickly as possible. GEM uses two new types of queries:
configuration queries and outcome queries.

Configuration queries: These queries are used to find out enough about the user’s
probability weighting so that we can properly interpret the results of the outcome
queries.

Outcome queries: Once we have enough information about the user’s probability weight-
ing, we can use outcome queries to query the user about their utility values.

3.3.1 The Scenario

The scenario for using GEM is based on the user model presented in Section A user
faces a set of possible outcomes X = [z ,...,z7]. The user has a private utility function
w such that u(z,) = 0 and u(zt) = 1. As with the GT method, we assume that the set
X is a subset of the continuous set Y which has no upper bound. The user has a utility
value for all outcomes in Y, i.e. we can generalize u to be v : Y — R. We assume that u is
monotonically increasing and lim,_,, u(y) = co. These are common, though not universal,
assumptions in many economic scenarios [41].

The user evaluates their preferences according to CPT. The user’s weighting function
w is also private though we assume that w is monotonically increasing, an assumption

42

1-p

T

1-p

T

Y RS

Figure 3.1: A graphical representation of the query in Equation[3.18. The user is asked to
provide a probability p such that they are indifferent between these two decisions.

supported by experimental evidence [71]. We assume that EUT is a valid normative model.
Since we do not assume that the user’s preferences are drawn from any known distribution,
our goal is to minimize minimax regret.

3.3.2 Configuration Queries

The goal of configuration queries is to find out the necessary information about the user’s
probability weighting so that we correctly interpret the user’s response to our outcome
queries by factoring out the effects of probability weighting. We factor out the effects of
probability weighting by solving the equation

_wlpt) 1, (3.16)

w(l—p*) 2
for the probability p*. The reason why we only need to solve Equation is algebraic.
We use p* in our outcome queries (shown in the next section). With the equations that
result from the user’s evaluation of outcome queries, we are able to isolate the probability
weighting terms in the factor

w(p”)
w(l—p*)

By solving Equation [3.16] we are able to replace Equation in the evaluation of the
outcome queries with 1/2; which removes the effects of w. It is possible to solve Equation
for values other than 1/2. Using 1/2 gives the best guaranteed improvement; i.e. we
know that regardless of the user’s response to an outcome query, we will be reducing a
utility gap by half.

(3.17)

43

Figure 3.2: A graphical representation of the query in Equation[3.19. The user is asked to
provide an outcome z such that they are indifferent between these two decisions.

The first step in solving Equation is to find an outcome 2z € Y such that u(z) = 2.
Since we assumed that lim, ., u(y) = oo, we know z exists. To find z, we use a method
based heavily on the GT-method from Section [3.2] We start by picking two outcomes r
and R in Y such that z+ < r < R. We then ask the user to pick a probability p’ such that
they are indifferent between the decisions

[1—ps21,ps Rl and [1 —p's 21,95 7). (3.18)

This can either be done by asking the user directly for p’ or using a series of queries similar
to SGQs. A graphical representation of this query is shown in Figure[3.1 We next ask the
user for an outcome z € Y such that they are indifferent between the decisions

[1—p 27,0, R and [1 —p; 2,9, 7]. (3.19)

Due to the rank-dependent nature of CPT, we require that z+ < z < r. If this is not the
case, we must increase r and R and repeat these two steps. A graphical representation of
this query is shown in Figure |3.2

It follows from the indifference between the decisions in Equation thatﬂ

[w(1) = wp)u(zL) + wpu(R) = [w) = wp)u(r) + wp'u(r),
= w(p')[u(R) —u(r)] = [1 —w(p)][u(zr —u(zL)]. (3.20)
Similarly, it follows from the indifference between the decisions in Equation that

[w(1) = w(p)u(zr) + wphu(R) = [w(l) — wp)]u(z) + wpulr),
= w(p)[w(R) —u(r)] = [1 = wp)]u(z) — u(zr)].

2This derivation closely follows the derivation used with the GT-method shown in Section

(3.21)

44

Combining Equations and [3.21], we get
w(z) —u(zr) =u(zr) —u(z). (3.22)

Therefore, since we assumed that u(z,) = 0 and u(xt) = 1, then u(z) = 2.

Example: Suppose we have x; = 0, x+ = 10 and choose r = 20 and R = 40. We
would ask the user to choose a probability p’ such that they are indifferent between the
gambles

[1—p;0,p'40] and [1 — p'; 10, p'20].

Suppose the user says p’ = 0.6. We would then ask the user to choose an outcome z such
that they are indifferent between the gambles

[0.4; 10, 0.6; 40] and [0.4; z, 0.6; 20).

If z > 20 we would have to choose new values for » and R and repeat. O

Once we have found z, we can now solve Equation[3.16, While there is disagreement over
the specific functional form of w, there is agreement that w is monotonically increasing [71].
That is, increasing the probability of an outcome will never cause a person to assign less
weight to that outcome. As a result,

w(p)
w(l —p)

is also a monotonically increasing function with respect to p. This monotonicity means
that we can do a binary search for p*. Since for p = 0, Equation [3.23] equals 0 and as p
approaches 1, Equation [3.23| approaches infinity, and Equation [3.23]is continuous, by the
Intermediate Value Theorem, p* will always exist [56].

(3.23)

Let pr,, and p: .. be the minimum and maximum values possible for p*, respectively.
We start with py;,, = 0 and py,, = 1. Our estimate of p* is pj;,,,, which will always be
equal to (pf, + Phax)/2. The binary search will be based on asking the user if they prefer
the decision

[1 - pZinary; Ty, pZinary; Z] (324)

or the decision

[pZinary; ry,1— pzmary; [ET]. (325)

45

1-p* p*
: ° ® Y
s t
p* I—p"
I L =) Y
S v

Figure 3.3: A graphical representation of an outcome query. The user is asked to provide

an outcome v such that they are indifferent between these two decisions. We can then infer
that u(v) = M

If the user prefers the decision in Equation then

0 iinary)1(2) + (1 0@y)10 1) > (1~ B Ju(r) + [1 = (L~ Dy, (1),
W(Binary)1(2) > W(L = Dliary 7).
W(Pinary) u(z)
Wl = Plinary) ~ ul2)
w(p?;inary) 1
w(l — le’nm’y) 2
Therefore, our estimate of p* is too high. In this case, we set .. = Dhinar, and repeat this

process. If the user prefers the decision in|3.25, by analogous reasoning, our estimate of p*

is too low. In this case, we set py., = Phinar, and repeat. In Section 3.5.1) we discuss how
accurate the bounds on p* need to be.

(3.26)

Example: Suppose our current bounds for p* are [pl,..pk..] = [0.25,0.5]. For our
next iteration, we choose py;,.., = 0.375. We ask the user if they prefer the decision
[0.625; 1, 0.375; 2] over the decision [0.375; x,0.675; z]. If the user prefers the first deci-
sion, we set [pk. . ps. | =10.25,0.375] and otherwise we set [pX..,pk..] =1[0.375,0.5]. O

3.3.3 Outcome queries

Once we know p*, we stop asking configuration queries and start asking outcome queries.
An outcome query consists of asking the user to choose an outcome v € Y such that they
are indifferent between the two decisions

[1—p*s,p"t] and [p*;s,1 —p*; 0], (3.27)

46

(4 @ L 4 o Y
Ty S t
u=20 0.5 0.75 1

Figure 3.4: A possible setting for an outcome query where we already know the utility values
for the outcomes x,s,t, and x+. The outcomes s and t are not necessarily in X.

1—p* p*

° ° Y
T t

u=0 0.75

p* 1—-p*

° = Y
x| v
u=0

Figure 3.5: A possible outcome query based on the known utility values from Figure[3.4

for outcomes s,t € Y. A graphical representation of this query is shown in Figure [3.3
From this indifference, we can infer that

(u(t) —u(s)) (3.28)

u(t) —u(s)) (3.29)

Equations and show where we are able to use our knowledge about the user’s
probability weighting to remove its effect. Therefore, if we know u(s) and wu(t), we now
know u(v). Initially, the only outcomes we know the utility of are z; and xz+. Each time
we query the user, we are able to use v in future querying. This means that, for the most
part, s and t will not be members of X.

Example: Suppose we know the 4 utility values {u(x,) = 0,u(s) = 0.5,u(t) =
0.75,u(xt) = 1}. These values are illustrated in Figure There are 6 different out-

47

(4 —@ L d @ @ Y
T voox s t
u=0 0.375 0.5 0.75 1

Figure 3.6: An example of using our updated utility constraints, based on the results from
the outcome query in Figure . Before the outcome query, C,, = [0,0.5]. After the query,
assuming monotonicity, we know that C,, = [0.375,0.5].

come queries we could ask the user, one for each pair of outcomes whose utilities we know.
For this example, we decide to query the user using the outcomes x; and t. Therefore,
we ask the user to give an outcome v € Y such that they are indifferent between the two
gambles

[1—p5x,pt)and [p* 2,1 —p55o). (3.30)

A graphical representation of this query is shown in Figure [3.5] We now know that
u(v) = 0.375. Suppose we have some outcome x; € X such that x; < z; < s, as shown
in Figure 3.6l Before the outcome query, the utility constraints for u(z;) were [0,0.5].
After the outcome query, the utility constraints can be updated to [0.375,0.5]. Once we
have updated all possible utility constraints for all outcomes in X, we can recalculate the
minimax regret and decide whether or not we need to query the user again. O]

Example: To contrast outcome queries and SGQs, we revisit the used bookstore with
SGQs example from Section . For simplicity, we assume that p* = 1/3, i.e. EU holds.
In the SGQ example, the student could sell the book for $30 or consign it for $80 with
a 70% chance of the book being sold. The initial outcome query in this setting would
ask the student to choose a price v such that they are indifferent between the gambles

[2/3;$0,1/3;$80] and [1/3;$0,2/3;v].

Assuming normalized utilities with u($0) = 0 and u($80) = 1, we know that u(v) = 0.5.
Therefore, if v < $30, we know that «($30) > 0.5 and otherwise, «($30) < 0.5. We will
only know the exact value for «($30) in in the exceptional case where v = $30. Otherwise,
we will have to use additional outcome queries to refine the utility constraints on v. O]

The resulting preference elicitation algorithm using configuration queries and outcome
queries is shown in Algorithm 2]

48

Algorithm 2 The preference elicitation algorithm for users with CPT-based preferences.
This algorithm is based on the standard preference elicitation algorithm which is shown in
Algorithm[I]
while the range for p* is too large do
Query user using configuration query
Use user’s response to update range for possible values of p*
end while
while regret given utility constraints C is greater than threshold do
Query user using outcome query
Use user’s response to refine C
end while
Recommend optimal decision given C

3.3.4 The Gamble Equivalence Method and Expected Utility
Theory

Probability weighting varies from person to person. Studies have shown that probability
weighting is strongest in the people least familiar with a particular situation [I7]. As people
become experts in a field, they distort probabilities less. For these experts EUT may be a
valid descriptive model. Since CPT is a generalization of EUT, GEM works regardless of
whether or not people distort probabilities.

Although outcome queries can be used in many places where SGQs cannot, outcome
queries do impose a higher cognitive burden. SGQs require only a yes/no response while
outcome queries require a specific outcome as the response. One possible solution is to
implement outcome queries as a series of simpler queries. For example, we could ask the
user “is v less than or equal to y;,” “is v less than or equal to y.,” etc. Each of these
simplier queries has the same cognitive burden as a SGQ. The tradeoff is that the user
might have to answer a large number of these queries and some error is introduced into
our utility bounds. A similar system of elicitation was used to elicit peoples’ preferences

for intertemporal scenarios, showing that this is a feasible approach in practice [23].

Since outcome queries are only necessary when people distort probabilities, we can rely
on SGQs if can show that a user is not distorting probabilities. Under EU, we can solve

49

for p* in Equation [3.16| as

wp) P
w(l—p*) 1-p*
=p"=1/3.

It might be possible for p* = 1/3 even with probability weighting. To see if p* = 1/3 with
probability weighting, we consider the case where the weighting is given by Kahneman and
Tversky’s weighting function in Equation [3.9) We want to see if there exists any v which
results in p* = 1/3;:

(1/3)”

w(l/3) @Er+a-1/mi7
- @/3)
w@/3) T
_@ny
-~ (2/3)n
= (1/2)".
In this case p* = 1/3 if and only if v = 1. If ¥ = 1 then
(p) (p)

() + @ —p) 7~ (p+ (1 —p)

Therefore, if v = 1, there is no probability weighting. If we use Prelec’s probability
weighting function,

w(p) = eI, (3.31)
the analysis is slightly different;
w(2/3)
o—(~n1/3)7
= 2y 1/2

(= In2/3) (= n1/3)7 _ 1 /o
In [6(_1n2/3)v_(_1n1/3)v] —1n1/2
(=In2/3)Y — (=1In1/3)" =1In1/2
(—In2/3)Y =(=In1/3)" +1n1/2. (3.32)

50

The left side of Equation is monotonically decreasing while the right side is mono-
tonically increasing, which means that there is at most one solution. Since v = 1 is a
solution, it is the only solution. As with the Kahneman-Tversky weighting function, with
the Prelec weighting function, v = 1 implies no probability distortion. This means that
p* = 1/3 means that the user is not distorting probabilities at all. Thus, with both the
Kahenman-Tversky weighting function and the Prelec weighting function, we have the best
of both worlds. If p* = 1/3, we can rely on just SGQs. If p* # 1/3, we know that we must
fall back on outcome queries. We would like to strengthen these results by considering
non-parametric cases.

3.4 QOutcome Query Selection Heuristics

Choosing the best outcome query to ask the user can be difficult. We are often faced with
many choices of possible queries to ask. The number of possible queries grows quadratically
with respect to the number of outcomes we know the utility of. When eliciting preferences
from real people, we must be able to determine the next query quickly; this means that
we must be able to judge the value of each query quickly. The value of a query may
depend on how the user responds, though it can often be that in the worst case, the user’s
response will not help us reduce the minimax regret. Since we do not know what the user’s
response to a query will be, we are unable to judge how likely the worst-case outcome is.
Additionally, a series of queries may be more valuable than the sum of the value of each
individual query. For example, a query may not reduce the minimax regret but instead
allow for future queries which may be able to reduce the minimax regret considerably.

In this section we discuss four heuristics for helping us determine which queries to
ask. The first two methods, Halve Largest Gap and Current Solution, were proposed by
Boutilier et. al. for use with SGQs [10]. We discuss how to adapt these two methods for
use with outcome queries. The next two heuristics, Minimize Most-Likely Regret (MMLR)
and Minimize Expected Minimazx Regret (MEMR) were introduced by Hines and Larson
specifically for use with outcome queries [29].

The MMLR and MEMR heuristics both rely on assumptions about the distrubitions of
the user’s preferences. This is a shift from the previous work in this chapter where we have
made minimizing the assumptions about users a priority. There are several reasons for this.
First, these assumptions do not affect the correctness of any minimax regret calculations.
Instead, these assumptions only affect the efficiency of the elicitation process. Second,
there are already elicitation heuristics which do not make any assumptions about the user’s
preferences; specifically the Halve Largest Gap and Current Solution heuristics. In order

51

to examine alternatives to these existing heuristics, we need to make some assumptions.
Finally, our goal is to design heuristics which still be useful when our assumptions are close
to being correct. Thus, our heuristics should be flexible enough to handle cases that are
not completely what we expected. We examine the issue of flexibility in Section [3.5.2]

It is possible for different outcome queries to elicit the same response. For example,
suppose we have the outcomes yi,y2,y3 and y, with the utility values 0.25,0.5,0.75 and
1, respectively. Then the response to the outcome query based on y; and y, will be the
outcome y5 such that u(ys) = 0.625. Similarly, the response to the outcome query based
on Yy, and y3 will also be y5. There is no difference between such outcome queries, e.g. we
would be indifferent between using an outcome query based on y; and 1,4 versus one based
on y, and y3. However, this does mean that it is possible to choose many different outcome
queries which elicit the same response. This repetition is known as stalling. We can avoid
stalling by always checking to see if we already know the response to an outcome query.
For example, before querying using y, and y3, we would check to see if we already know
the outcome with utility 0.625.

3.4.1 Halve Largest Gap and Current Solution Heuristics With
Outcome Queries

While the Halve Largest Gap (HLG) and Current Solution (CS) heuristics (Chapter [2.2.3)
were designed to help choose which SGQs to use, they can both be easily adapted to work
for outcome queries.

The HLG heuristic focuses on the outcome with the largest utility gap, i.e. the size
of the corresponding utility constraint. While the HLG originally used a SGQ to halve
this utility gap, we can just as easily use an outcome query to do the same. For any
utility constraint [tmyn, Umax] there will always exist at least one outcome query which will
result in halving that utility constraint: if u_1 () is the outcome whose utility is ty;, and

uzl (z) is similarly defined, then by Equation , the outcome query based on u_i ()

max min

and u !l (z) will always halve the utility constraint.

max

3.4.2 Minimize Most-Likely Regret

The first new heuristic, Minimize Most-Likely Regret (MMLR), uses a parametric approach
where we choose some model utility function to approximate the user’s. Although any

52

model can work, for our work we use the function
u(x) = 2, (3.33)

partially because of its simplicity and partially because of its common use in experimental
setting [71]. We use least squares fitting to match the parameters of the model function as
closely as possible to the observed data. In the case of Equation [3.33, we would choose a
value for B which minimizes the error. We then use the model to estimate the most likely
response to an outcome query, which then allows us to estimate the most likely resulting
minimax regret. The process is repeated for every possible outcome query. We then choose
the query which we estimate will result in the lowest most-likely minimax regret.

3.4.3 Minimize Expected Minimax Regret

Our second new heuristic is Minimize Ezpected Minimaz Regret (MEMR). The MEMR is
inspired by the MEI heuristic, reviewed in Sectionm [68]. MEMR estimates the expected
minimax regret resulting from every possible outcome query and chooses the query which
minimizes the expected minimax regret. The calculation of the expected minimax regret
is based on two key ideas.

The first idea is that we calculate the minimax regret ignoring the monotonicity con-
straint. Since the monotonicity constraint only matters when the utility constraints are
overlapping, MEMR should be especially well suited for later in the elicitation process when
the utility constraints are relatively small and not overlapping. Ignoring the monotonic-
ity constraints makes calculating the pairwise maximum regret much easier. The PMR
between decisions d; and d; is now calculated as

= > (Pr(z) = Pr(z)) -

b Umin(z) otherwise.

{umax(x) if Pry,(z) > Pry,(z)

Therefore, to estimate the minimax regret after a query, we need to estimate the changes
t0 Upin (2;) and Umax(z;) for all z;. The outcome query (s,t), shown in Figure [3.7, will be
able to update wumin(2;) if and only if u_i (7;) < v < x;, where v is the user’s response.
To estimate the probability of this occurring, we assume that the probability density of v
is uniform between s and t. The MEI heuristic discussed in Section 2.2.3] also assumes a

uniform distribution [6§].

53

° Ui (i) Unnax (1) t

min

Figure 3.7: A possible outcome query (s,t) that may be able to update either umy(x;) or
umax(xi>-

With the assumption of uniform probability, the probability of i, (z;) being updated

is
|27 — i ()]

|t = s

If Upin () is updated, we need to estimate by how much. We assume that the user’s utility
function is linear between u_! (z;) and u_! (x;). This becomes a reasonable assumption
as the size of the utility constraints gets smaller since it has been observed that people’s
utility values tend to be relatively linear over small ranges [50]. Under this assumption,

between u_1 (7;) and u_! (z;), the slope of u is

min max

(3.34)

umax(xi) - umin(xi)
[t (%) — Upgin (@0)]

max min

With the assumption of a uniform distribution for v, the expected value of v is

(\fﬁi _uéniln(xi”) .

Therefore, if w,in(2;) is updated, the expected change in wp,(x;) is

(]xi - u;ﬁln(:cm) (Unmax (€5) = Unin(7:)) _ (3.35)

2 [t (%) — Upgin (73))]
The overall expected change t0 Umin(2;), A(Umin(2;)), is given by Equation multiplied
by Equation [3.35, We can calculate A(umax(z;)), the expected change to tmax(z;), in an

analogous manner. For any two decisions d; and d;, the expected change to the PMR
between those two decisions is

min

APMR(d;, dj) =Y (pa,(x) — pa,(x)) -

zeX

{A(umax<x>> if pg; () = pa, (x)
A(umin(z)) otherwise.

For each possible outcome query, we calculate the overall APMR. This allows us to
estimate the expected PMR resulting from any query. We then choose the outcome query
which gives the lowest expected PMR.

o4

3.5 Experimental Results

In this section, we present experimental results related to work done in this chapter. We
examine the performance of both configuration queries and outcome queries.

3.5.1 Configuration Queries

The goal of configuration queries is to find the probability p* which solves Equation [3.16)
In Section [3.3.2| we presented a binary search method for finding lower and upper bounds,
Pii, and pr . on p*. While we can use the binary search to find arbitrarily accurate bounds
on p*, since this is a search over the real numbers we will never know the exact value of p*.
However, at some point, our estimate of p* will be accurate enough that we can behave as
if we know the exact value. For example, in our experiments, we used the binary search
for 10 iterations which meant that our estimate of p* was within plus or minus 27! of the
actual value. With this estimate, all of our utility constraint and regret calculations were
correct. We confirmed this by always checking our utility constraints against the user’s
actual utility values.

Of course, in real life, we cannot check our constraints against the user’s actual utility
values. All we have to go on are our constraints on p*. For example, if we could calculate

w(p:mn)
tming 3.36
T~ D) 330
and ()
w(p:
—max] 3.37
w(l - p:nax) ()
then we would have a lower and upper bound, respectively, on
w(p;
(pbznary) : (338)

w(l - pz;inary)

where pp;,, ..., 1s our estimate of p*. If these bounds were too coarse, we could simply ask
the user another configuration query. Since we have not made any assumptions about w,
though, we cannot calculate Equations and [3.37]

We decided to investigate the behaviour of Equation |3.38| as a function of the number
of configuration queries. Since no weighting function has been shown to be overly accurate

95

Equation 3.37

n n n
] 5 10 15 20
Number of Queries

Figure 3.8: The mean value for Equation[3.38 as a function of the number of configuration
queries for simulated users using the Kahneman-Tversky weighting function, with vy chosen
uniformly at random between 0 and 1. The range of minimum to mazximum value is also
shown.

at modeling experimental results, we examined several different weighting functions and
many different parameter values.

We first investigated the Kahneman-Tversky (KT) probability weighting function, shown
in Equation [3.9, The KT weighting function has one parameter, v, which has been shown
to have a mean value of 0.71 and a standard deviation of 0.1. To provide the most robust
results possible, we simulated 500 users with + values chosen uniformly at random between
0 and 1. Figure 3.8 shows the mean value for Equation [3.38| after each configuration query
as well as the minimum and maximum values. After 10 configuration queries, the mean
value is equal to 0.50003 and the standard deviation is 0.001. For all 500 users, Equation
.38 was within plus or minus 0.002 of 0.5. This means that after 10 queries, for all practi-
cal purposes, Equation |3.38]is equal to 0.5 which means we can assume that our estimate
of p* is correct.

We next investigated the Prelec probability weighting function, shown in Equation|3.10]
The Prelec weighting function is also a function of v, which has been experimentally shown
to have a mean of 0.74 and a standard deviation of 0.14. Again, to provide the most robust
results possible, we simulated 500 users with + values chosen uniformly at random between
0.1 and 1. (Values of 7 less than 0.1 resulted in overflow errors.) Figure[3.9)shows the mean
value for Equation [3.38| after each configuration query as well as minimum and maximum
values. After 10 configuration queries, the mean value is equal to 0.5000 and the standard

56

- ® ©

>

Equation 3.37
-+
H

n n n
0 5 10 15 20
Number of Queries

Figure 3.9: The mean value for Equation[5.38 as a function of the number of configuration
queries for simulated users using the Prelec weighting function, with v chosen uniformly
at random between 0.1 and 1. The range of minimum to mazimum value is also shown.

deviation is 0.002. The maximum and minimum values over all 500 users were within 0.02
of 0.5. Again this means that for most purposes, we can safely assume that Equation [3.38]
is equal to 0.5 after 10 queries.

While the KT weighting function and the Prelec weighting function are the two most
commonly-used weighting functions, neither have been very successful at modeling ex-
perimental data. To test the robustness of configuration queries, we need to investigate
weighting functions which are substantially different. The only assumption configuration
queries make about weighting functions is that they are monotonically increasing. The KT
and Prelec weighting functions impose additional structure; specifically, the lower proba-
bilities are over-weighted and higher probabilities are under-weighted. While all three of
these characteristics are supported by experimental results, there is disagreement about
the exact nature of the over-and under-weighting. Monotonicity appears to be the only
characteristic of probability weighting that is generally agreed upon. Therefore, we next
experimented with weighting functions that are monotonically increasing but do not nec-
essarily have any of the over-or under-weighting characteristics.

The weighting function we chose to examine was a “quasi-uniformly” random weighting
function. An example is shown in Figure This weighting function chooses a finite
set of probabilities and for each of those probabilities chooses the weighting uniformly
at random (with the resulting weights sorted so monotonicity is maintained). Between
any two of these points, the weight is given by a line connecting these points. With this

57

I o o
IS = 0
T T T

Utility or Probability weighting values

e
o

L L L L
U'%,O 0.2 0.4 0.6 0.8 1.0
Outcomes or Probability values

Figure 3.10: An example of a quasi-uniformly random function. Quasi-uniformly random
functions can be used as either probability weighting functions or utility functions. For a
probability weighting function, we choose a fized set of probability points and choose the
corresponding weighting uniformly at random. These points are represented as dots in the
above figure. The rest of the weighting values are created by connecting the dots with lines.
For a quasi-uniformly random utility function, the dots represent the utility values for
outcomes in X, which are chosen uniformly at random. The utility values for the outcomes
Y are then created by connecting the dots.

58

1.0

08F

g
|

=

Equation 3.37
[
\
|
—_
—
o
/

021

n n
0.0“ 5 10 15 20
Number of Queries

Figure 3.11: The mean value for Equation[3.38 as a function of the number of configuration
queries for simulated users using a quasi-uniformly random weighting function. The range
of minimum to maximum value is also shown.

type of function, it is possible for lower probability values to be underweighted and high
probabilities to be overweighted. Hence, this function is fundamentally different than either
the KT or Prelec weighting function. Figure [3.11]shows the mean values for Equation [3.3§]
as a function of the number of configuration queries, as well as the minimum and maximum
values. After 10 configuration queries, the mean value is 0.5000 and the standard deviation
is 0.01. This shows that, even with a fundamentally different type of probability weighting
function, after 10 configuration queries, our estimate of p* is, on average, close enough to
being correct. However, the extreme minimum and maximum lie only within 0.11 of 0.5.
This means that in the worst case, it may take 2 or 3 additional queries to find a sufficiently
accurate estimate of p*.

These results show that in reasonable cases, 7.e. probability weightings with some
resemblance to experimental results, configuration queries are able to find a sufficiently
accurate estimate of p* after 10 queries. Even with extreme probability weightings, we
only need an additional two or three queries. Hence for all of the following experiments
with outcome queries, we first used 10 configuration queries to estimate p*.

59

3.5.2 Outcome Queries
Experimental Setup

For our experiments, we simulated processing 100 people. Each of these people were faced
with 50 outcomes and 25 decisions. The outcomes and decisions were different for every
person. We studied two different types of utility functions. The first utility function,

u(z) = 2%, (3.39)

is a commonly-used function [41]. The second type of utility function we examined is a
quasi-uniformly random utility function. For outcomes in X we chose the utility values
uniformly at random between 0 and 1 and sorted the values to ensure monotonicity. Since
outcome queries require users’ preferences to be defined for any outcome in Y, we defined
the overall utility function to be a piece wise-linear function of the form

u(y) =my +b (3.40)
where
m =) —ulz) (3.41)
Tit1 — T
and
b=u(x;) — mx;, (3.42)

for z; < y < z;41. An example of this utility function is shown in Figure [3.10]

The experimental results in Section [3.5.1] show that configuration queries are robust
enough to handle fundamentally different types of probability weighting functions. For
simplicity in these experiments, we chose to use the KT probability weighting function
with v = 0.71.

We created two types of scenarios. In the first, both the outcomes and the decisions were
picked uniformly at random. We then tried to create “harder” scenarios which maximized
the initial minimax regret. For these scenarios, we first chose the outcomes uniformly at
random, then decisions were created sequentially. For the first decision, d;, we picked
one outcome x at random and set Pry, (x) = 1 and all other values were set to zero.ﬁ For
decision d;, 1 = 2, ..., 25, we created ten decisions at random and picked the decision which
maximized the minimax regret over the outcomes dy,...,d;. Each user was queried until
the minimax regret was at most 0.01. We tested four different elicitation heuristics. Our
benchmark was the HLG heuristic. We also tested the CS, MMLR and MEMR heuristics.

3We found that choosing d; completely at random resulted in a lower overall minimax regret.

60

Description Number of Queries
Scenario type ‘ Utility values ‘ Elicitation heuristic | Mean ‘ Median

Random Power HLG 18.23 15

Hard Power HLG 14.81 13
Random Power CS 13.46 12
Random Power MMLR 10.3 9.5
Random Power 4+ quasi-uniform MMLR 11.74 9.5
Random Power MEMR 15.46 14
Random Quasi-uniform MEMR 16.75 16
Random Power + quasi-uniform MEMR 17.27 14

Table 3.3: A summary of the experimental results presented in this section. Quasi-uniform
utility values means utility values are chosen quasi-uniformly at random.

Experimental Results

Our first simulation was created as a benchmark for all subsequent simulations. We created
the outcomes and decisions at random. Our benchmark elicitation heuristic was HLG. The
minimax and actual regret over 50 queries is shown in Figure and summarized in Table
3.3l The mean and median number of queries are 18.23 and 15, respectively. This indicates
that there were a few especially difficult scenarios; in fact, the mean and median number
of the number of queries for the ten most difficult users using HLG were 40 and 40.5
respectively. The mean starting minimax regret is roughly 0.1. This is relatively low
compared to the theoretical maximum minimax regret of 0.5 (assuming monotonicity).
We also see that actual regret is considerably lower than the minimax regret. In many
cases, the actual regret is 0 while the minimax regret is much higher. This means we can
often pick the optimal decision without knowing it. These results also show that while the
minimax regret can never increase, the actual regret can.

We repeated the benchmark simulation but this time chose the decisions to maximize
the initial minimax regret. The results are shown in Figure [3.13] and summarized in Table
3.3l The average initial minimax regret is now over 0.25. While the actual regret remains
low, we see that the highest average actual regret in Figure is slightly higher than
the highest average actual regret in Figure This shows that we were successful at
creating scenarios with a high initial minimax regret, and that, at least by one measure,
these scenarios were more difficult than our benchmark scenarios. However, the mean and
median number of of queries needed to process each user fell to 14.81 and 13, respectively.
This indicates that a high initial minimax regret may actually be a poor indicator of a

61

— Minimax Regret
- - Actual Regret
0.25+ 1
0.20f+ |
2
2 0.15¢ 1
o
0.10 |
0.05f 1
0.005 10 20 30 40 50

Number of Queries

Figure 3.12: The minimax and actual regret over 50 queries for users facing 50 outcomes
and 25 decisions, chosen at random. The elicitation heuristic used was HLG.

— Minimax Regret
== Actual Regret

Number of Queries

Figure 3.13: The minimax and actual regret over 50 queries for users facing 50 outcomes
and 25 decisions. The decisions were chosen to mazximize the initial minimaz regret. The
elicitation heuristic used s HLG.

62

— Minimax Regret
== Actual Regret

0.25f

0.10

0.05f

0.005—== 10 20 30 40 50

Number of Queries

Figure 3.14: The minimax and actual regret over 50 queries for users facing 50 outcomes
and 25 decisions, chosen at random. The elicitation heuristic used is CS.

scenario’s overall difficulty. Therefore, for the rest of the experiments we created decisions
at random.

In our next experiment, we studied the effectiveness of the CS elicitation heuristic.
The results are shown in Figure and summarized in Table 3.3, The mean and median
number of queries needed to process each user, compared to our benchmark of HLG with
randomly-generated decisions, decreased to 13.46 and 12, respectively. This was a decrease
in the mean and median number of queries needed of 26% and 20%, respectively. As
discussed in Section [2.2.3] CS does not offer the same theoretical gaurantees as HLG, in
the worst case, using CS can result in an increase in the number of queries needed. We
next checked to see how often this was the case for our results. Out of 100 users, there
were only 5 users for whom using the CS heuristic resulted in an increase in the number
of queries compared to using the HLG heuristic. For each of these users, the CS heuristic
only resulted in one additional query. There were an additional 8 users that the HLG
and CS heuristics processed in the same number of queries. Finally, we were interested in
seeing how well the CS heuristic performed for the more difficult users. With CS, the mean
and median number of queries for the ten most difficult users were 26 and 20, respectively.
This was a decrease of 35% and 50%, respectively and shows that CS is able to handle the
more difficult users efficiently.

63

— Minimax Regret
== Actual Regret

0.25f

Regret
o
=
ul

0.10

0.05f

0'000 10 20 30 40 50

Number of Queries

Figure 3.15: The minimax and actual regret over 50 queries for users facing 50 outcomes
and 25 decisions, chosen at random. The elicitation heuristic used is MMLR.

In our next experiment, we studied the effectiveness of our MMLR elicitation heuristic.
The results are shown in Figure |3.15 and summarized in Table|3.3] The mean and median
number of queries decreases to 10.3 and 9.5, respectively. However, these results are highly
dependent on the users’ utility function having a similar shape to Equation [3.33]

To test the robustness of MMLR, we experimented with users with different types of
utility values. If users have quasi-uniformly random utility values, MMLR was unable to
process any users, even after 100 queries. We next experimented with a combination of the
power utility function and the quasi-uniformly random utility function. For this combined
utility function, we chose the utility values for outcomes in X using Equation [3.39| and for
outcomes in Y using Equations through The results are shown in Figure [3.16
and summarized in Table |3.3. The mean and median number of queries are 11.74 and 9.5
queries, respectively. While these results are not as good as MMLR with a power utility
function, they still outperform the CS heuristic.

This suggests that while in the worst case MMLR is not useful, in practice MMLR
could be very useful. The law of diminishing returns, a common property of peoples’ utility
values, implies the concavity of utility functions. Thus, while peoples’ utility functions may
not perfectly match the the form of Equation [3.33] MMLR may be useful for many peoples’

64

— Minimax Regret
== Actual Regret

0.25f

Regret
o
=
ul

0.10

0.05f

0.00 ==
0

10 20 30 40 50
Number of Queries

Figure 3.16: The minimax and actual regret over 50 queries for users facing 50 outcomes
and 25 decisions, chosen at random. The elicitation heuristic used is MMLR. Users’ utility
functions were based on a combination of a power utility function and a quasi-uniformly
random utility function. The results are very similar to the results in Figure[3.15, where
users’ utility functions were purely a power utility function.

actual utility values.

We next tested the MEMR heuristic. The results for a power utility function are shown
in Figure [3.17)and summarized in Table[3.3] The mean and median number of queries were
15.46 and 14, respectively. While this is definitely an improvement over HLG, the MEMR
heuristic was not as efficient as the CS or MMLI heuristics. We then used the MEMR
heuristic to process users with quasi-uniformly random utility values. In this case, the
mean and median number of queries increased to 16.75 and 16, respectively. We also
used the MEMR heuristic to process users with the combined utility function previously
mentioned. In this case, the mean and median number of queries were 17.27 and 14
respectively. This suggests that, while MEMR may not be as efficient as MMLI, MEMR
is a flexible heuristic and is able to deal with many different types of utility functions.

In theory, the MEMR and MMLR heuristics can choose an outcome query based on
any two outcomes which we already know the utility of. In practice, however, they always
recommend two adjacent outcomes, 7.e. we do not know the utility values for any outcomes

65

— Minimax Regret
== Actual Regret

0.25f

Regret
o
=
ul

0.10

0.05f

000523 20 30 40 50

Number of Queries

Figure 3.17: The minimax and actual regret over 50 queries for users facing 50 outcomes
and 25 decisions, chosen at random. The elicitation heuristic used 1s MEMR.

between the two that were recommended. As a result, we can save considerable time by
having MEMR and MMLR only search through adjacent outcomes.

3.6 Conclusion

In this chapter we examined whether standard gamble queries (SGQs) are compatible with
cumulative prospect theory (CPT). We showed that, in the worst case, using SGQs when
a user’s preferences follow CPT can result in arbitrarily bad decisions. We also showed
experimentally that in the average case, the error can be a concern. As a result, we
proposed the Gamble Equivalence Method for preference elicitation which is compatible
with CPT and allows us to efficiently reduce the minimax regret. We also developed two
heuristics to help us choose the best query and discussed how to adapt two preexisting
heuristics, originally developed for SGQs, to use with our method. Finally, we presented
experimental results showing how these heuristics performed in simulated settings. When
users’ preferences were of the form u(x) = %%, the MMLR heuristic easily outperformed
both the HLG and CS heuristics. The MMLR heuristic also performed well when users
had utility values close to u(z) = 2%%8. In the worst case, however, when users had utility

66

values chosen uniformly at random, MMLR was not able to process users. The MEMR
heuristic was not as efficient as MMLR, when when u(z) = 2% but MEMR was still able
to outperform HLG. The MEMR was also more flexible and was always able to process
users. This suggests that in the best case MMLR is the best heuristic, but that MEMR
has more flexibility.

67

Chapter 4

Probabilistic Models of Regret

Regret is the measure of error most commonly used in preference elicitation. In a sense, we
may think of the goal of preference elicitation to reduce the regret as quickly as possible.
The faster we reduce the regret, the less we have to bother the user with queries.

Since regret is a function of the user’s utility values, which are private, the true regret
is often not known. Instead, measures of regret used in preference elicitation must be
approximations or bounds of the actual regret. Improving these approximations or bounds
will allow for a faster and more efficient elicitation process.

In this chapter, we explore new ways of approximating and bounding the actual regret.
Our focus is on situations where we are eliciting preferences from a group of users. In
Section [4.1] we review the current methods for measuring regret. We introduce our new
method in Section[4.2] In Section[d.3] we discuss different methods of optimization. Finally,
in Section we provide experimental results.

4.1 Current Measurements of Regret

Two measurements of regret currently in the literature used are expected regret and min-
imax regret. Both measurements have advantages and disadvantages.

Expected regret (ER) (Section assumes that the current user’s preferences are
drawn from a known distribution over possible preferences. If we knew the user’s exact
utility values, then the expected regret from choosing the decision d instead of the decision
dp; which maximizes expected utility would be

r(d,u) = EU(dgy,u) — EU(d,u).

68

If we only have Pr(u), the probability distribution from which the user’s preferences were
drawn, then we can calculate the ER as

ER(d, Pr(u|C)) = / (BU(dy (u), w) — EU(d, w)] Pr(u|C)du,

where dj,;;(u) is the decision which maximizes expected utility given the utility values w.
The advantage of expected regret is that we are dealing with expected cases instead of worst
cases (as with minimax regret). Expected cases typically give lower regret estimations and
allow us to process users with fewer queries. The disadvantage of expected regret is the
strong prior knowledge requirement. The distribution is based on preferences elicited from
previous users [19, 20]. This means that we cannot assume Pr(u) is known perfectly; any
sample of users will be of finite size and any finite sample introduces the possibility of
error [69]. We are unaware of any work dealing with the issue of error in ER calculations;
previous work has assumed that Pr(u) is known perfectly [19, 20]. It is possible to have
a sample size large enough that it might be reasonable to assume that any error is “more
or less” non-existent. There are two factors which may limit the applicability of this
assumption. First, we must have already processed a large number of users whom we know
are drawn from the same distribution of preferences. This is not a reasonable assumption
for a new “setting,” e.g. if we are starting to help people create energy policies for the Smart
Grid. Even a database of previously-processed users may not help since the information
in it may be outdated or not fully relevant to the decision at hand. The second factor is
the quality of the utility constraints we have for each processed user. Anything less than
knowing the exact utility values may introduce error into our calculations. If the utility
constraints prove to be inexact, we cannot go back and “reprocess” users; they may have
moved or they may be unwilling to give more of their time.

Minimax regret avoids the prior knowledge assumption used in expected regret calcu-
lations by not making any assumption about the user’s preferences. The tradeoff is that
minimax regret focuses on the worst-case outcomes which can result in an overly cautious
upper bound on the actual regret. This caution can result in a need for additional queries
to process each user. We could decrease the number of queries needed if we knew by how
much the minimax regret overestimated the actual regret. The difficulty is that the actual
regret may be equal to the minimax regret or it could be significantly less.

We first show that it is always possible for the minimax regret and the actual regret to
be equal.

Lemma 6. For any set of utility constraints C', it is always possible for the actual regret
to equal the minimax regret, i.e.

R(>|<MMRvu) = MMR(C)a

69

where djy;yp @8 the minimaz-optimal decision, i.e. the decision which minimizes the maz-
imum possible regret.

Proof. The adversarial decision d* is the decision which maximizes pairwise maximum
regret with respect to d*, i.e.

d* = argrcllna;)(PMR(vimrs 4, C). (4.1)
S

By the definition of maximum regret in Equation [2.14] and Equation [4.T],

R(?\4MR7U) = PR(&MRadaau)a

where PR(d,d',u) is the pairwise regret from choosing decision d instead of d’. The ad-
versarial utility u® is the set of utility values which maximizes the pairwise regret between
d* and d?, i.e

u® = argmax { EU(d*,u) — EU(d",u)} . (4.2)

ueC

Therefore, if the user’s actual utility values are u®,
PMR(dJ*MMR7 da, C) — PR(d*MMR,da,Ua). (4.3)
If Equation [4.3] holds,

MMR(C) = MR(dypp,C)
= ml?XPMR(d}‘WMR,d, C)

= PR(dypp,d%, w)

= R(MMRaU)-

]

We next investigated cases where there is a considerable difference between the minimax
and actual regret. To do so, we created 500 users modelled with the utility function

u(z) = 2°, (4.4)

with 8 being chosen uniformly at random between 0.5 and 1. Each user faced the same
20 outcomes and we created 10 decisions, uniformly at random, for each user. We then
compared the initial average actual and minimax regret (i.e., the actual and minimax regret

70

’ Regret H Nonmonotonic ‘ Monotonic ‘

Minimax 0.451 0.123
Actual 0.052 0.008

Table 4.1: A comparison of the initial minimax and actual regret for users with and without
the monotonicity constraint.

before any queries). The results are shown in the left column of Table . The average
minimax regret was 0.451 while the average actual regret was only 0.052, a difference of
almost an order of magnitude.

In order to improve the minimax regret, we need to make additional assumptions about
the users’ preferences. Since Equation guarantees that the users’ preferences will be
monotonically increasing, we could try to decrease the minimax regret by imposing a mono-
tonicity constraint on the users’ utility values. The results from imposing this constraint
are shown in the right-hand column of Table [4.1] With the monotonicity constraint, the
minimax regret decreases to 0.123. Since our regret calculations change, the decisions we
choose on behalf of the user may also change. In fact, Table shows that by imposing
a monotonicity constraint, we are also choosing better decisions on behalf of the user. In
this case, the average actual regret decreases to 0.008. Thus, even with the monotonicity
constraint, the minimax regret remains roughly an order of magnitude higher than the
actual regret.

Therefore, the minimax regret may be equal to the actual regret, or there may be a
magnitude of difference between them. Even if we know that the actual regret is less than
the minimax regret, we need a quantitative measurement of the difference. For example,
suppose we are in a situation where the minimax regret is 0.1. If the maximum actual
regret we can tolerate is 0.01, can we stop querying the user? Extrapolating form the
results in Table the actual regret might be 0.0115 or it might be 0.006. In one case, we
can stop querying the user and in the other case we cannot. Therefore, a more principled
approach is needed.

4.2 Probabilistic Regret

In this section, we present probabilistic regret: a new way of approximating and bounding
the actual regret. We have three goals with probabilistic regret. First, we want to provide
a more accurate upper bound on the actual regret compared to minimax regret; in this
sense, probabilistic regret is closer to expected regret. Second, we want to relax the prior

71

knowledge assumption needed for expected regret; in this sense, probabilistic regret is
closer to minimax regret. Hence, probabilistic regret allows us to view regret as a spectrum
between expected and minimax regret. The third goal is to provide flexibility. There will
always be a balance between accuracy and prior knowledge. Our aim is to allow the
controller (i.e. whoever is running the elicitation process) to be able to decide on that
balance.

Probabilistic regret gives a probabilistic upper bound on the actual regret from choosing
a decision. For example, we would like to be able to say that there is an 80% probability
that choosing the decision d will give us an expected regret of at most 0.2. The advantage
of probabilistic regret is that we can ignore the rare cases where the regret is especially
high. For example, suppose the maximum regret from choosing d might be 0.3 but there
is an 95% probability that the actual regret from choosing d is at most 0.1. By ignoring
the other 5%, we can give a lower estimate of the regret.

We relax the prior knowledge assumption by assuming that Pr(u) is unknown. Instead,
we assume that we are eliciting individual preferences sequentially from a group of users[]
For example, we could be helping households in a specific city to each choose an optimal
energy use policy. We assume that the preferences from each of these users are drawn
i.i.d. from a single fixed but unknown distribution. This is the same setting as Bayesian
learning but without the need of any prior knowledge or training data [44]. Probabilistic
regret may benefit from prior knowledge, but it is never required. We assume that the
possible outcomes are the same for all users. For technical simplicity, we assume that all
users face the same set of possible decisions. These are both reasonable assumptions since
we are helping a group of users with the same problem. Generalizing our approach so that
users can have a different set of possible decisions requires only generalizing the notation.

For technical simplicity, the work in this chapter assumes that people follow expected
utility theory. All of the results in this chapter are completely compatible with configu-
ration and outcome queries. The methods only require a set of utility constraints from
each other. We are indifferent as to whether these constraints were obtained by standard
gamble queries or configuration and outcome queries. Hence, the results in this chapter
are compatible with cumulative prospect theory.

Probabilistic regret is based on standard methods from non-parametric statistics. While
there are many similarities between our approach and Bayesian reasoning, probabilistic
regret does not use Bayesian methods. It is theoretically possible that Bayesian methods

'We do not require users to be processed completely in sequence: we do allow some users to be processed
in parallel. What is important is that, for each user, we have a set of preferences from previous users to
help us.

72

could provide an alternative to probabilistic regret. Therefore, we also discuss some possible
complications a Bayesian approach might encounter and the advantages of our approach.

4.2.1 Probabilistic Regret

In this section, we introduce our initial definition of probabilistic regret. The initial defi-
nition assumes that Pr(u) is known. In subsequent sections, we discuss how to relax this
assumption.

Given Pr(u), we first define the probability distribution function r(d, d’, Pr(u)) to be the
distribution of pairwise regret values given Pr(u). We next define the cumulative density
function (cdf), Fya(r), as

Foa(r) :=Pr(r(d,d,Pr(u)) <r),

i.e. Fyqz(r) is the probability that the pairwise regret is at most . Throughout the
remainder of this chapter, we will be using numerous variations on Fy4(r) as well as
several lower and upper bounds on Fy 4 (r). While all of these functions are dependent on
both d and d’, to keep notation simple, we will avoid listing d and d’, instead only writing
F(r), unless d and d' are especially relevant at that point.

Given a set of utility constraints C', we can make r(d,d’, Pr(u)) dependent on C, i.e.
r(d,d,Pr(u|C)) is the probability distribution function of the pairwise regret given C.
Similarly, we can make F'(r) dependent on C| i.e.

Fo(r) :=Pr(r(d,d', Pr(u|C)) <),

that is, what do we expect the pairwise regret between decisions d and d to be given
the conditional probability distribution Pr(u|c). For a given probability p, we define the
probabilistic pairwise mazimum regret (PrPMR) as

PrPMR(d,d,C,p) = F;'(p). (4.5)

For example, if PrPMR(d,d,C,0.9) = 0.2, then given the utility constraints C, with
probability of error 0.1, the pairwise regret from choosing d instead of d' is at most 0.2.
There is a strong relationship between PrPM R and PMR. Specifically,

PrPMR(d,d,C,1) < PMR(d,d,C).

That is, the pairwise maximum regret is an upper bound on the probabilistic pairwise
maximum regret.

73

Using this definition, we define the probabilistic mazimum regret (PrMR) as

PrMR(d,C,p) := max PrPMR(d,d',C, p). (4.6)

d'eD
We next define the probabilistic minimax regret (PrMMR) as

PrMMR(C,p) := gleiﬂgl PrMR(d,C,p). (4.7)

Finally, we define the probabilistic minimax optimal decision d* as

d" := arg mdin PrMR(d,C,p). (4.8)

We illustrate the meaning of the above terms through the use of the following examples.
These examples also allow us to compare and contrast probabilistic regret with expected
regret and minimax regret. All of the following examples assume independence between
pairwise regret Fy 4 «(r) for different tuples of d and d'.

Example: If we set p = 1, PrMR(d,C,1) is the guaranteed maximum regret for
choosing decision d given utility constraints C. In this case, PrM MR gives the best
worst-case outcome. Note that, PrifR(d,C,1) = M R(d,C) may or may not hold. This
is because F may be able to rule out certain preferences in C. O

Example: If p = 0.5, PrMR(d,C,0.5) is the median regret for choosing decision
d given utility constraints C'. Unless the median and mean are the same, median regret
will be different than expected regret. If we want the mean regret, we must sample user
preferences according to F(r), which is the process used to calculate expected regret. [

Example: We can also choose values of p between 0.5 and 1. For example,
PrMR(d,C,0.9), gives us the 90th percentile regret from choosing decision d given con-
straints C'. Thus we can use probabilistic regret to achieve a balance between maximum
regret and expected regret. L]

Example We next consider PrMMR. If we set p = 1, PrM M R(C, 1) is the best worst-
case scenario given D, utility constraints C' and probability distribution Pr(u). This is
different than minimax regret, since minimax regret does not depend on any probability
distribution. This distinction is explored further in the experimental results section. If we
now set p = 0.5, PrM M R(C,0.5) gives us the best median scenario. Again, this is similar
but not identical to minimizing expected (mean) regret. O

If the pairwise regret from choosing decision d instead of d’ is greater than
PrMR(d,d,C,p), we cannot offer any bound on what the regret might be (other than the

74

obvious trivial bound of 1.) This means that with probability 1 — p, we have no idea how
bad choosing decision d might be. For example, if we set p = 0.99, then with probability
0.01, we may experience a black swan, a rare but profound event [57]. Thus, we may have
two different goals. The first goal is to minimize the regret for 99% of the users. The
second goal is to minimize the probability of a black swan occurring. In this case, both
our measure of optimality for choosing a decision and our measure of regret are based on
aggregations of these two, possibly competing, goals. For example, the aggregate utility
function could be based on lexicographical preferences. Thus, for technical simplicity, we
will avoid such issues for now while still recognizing their importance.

4.2.2 Relaxing the Prior Knowledge Assumption

Our current definition of probabilistic regret assumes that Pr(u) is known, which is the
same assumption made by expected regret. (Minimax regret assumes no prior knowledge.)
In this section, we investigate how to relax this prior knowledge assumption. We examine
two different approaches. The first method is to learn about F(r) as we process each user.
With the second method, we start with a set of hypotheses about what F(r) could be.
As we process each user, we are eventually able to reject the incorrect hypotheses. These
methods may be thought of as complementary. With the first method, we assume nothing
and eventually find the right answer. With the second method, we start by assuming
anything is possible and eventually reject all of the incorrect assumptions.

Learning the Probability Distribution

Our first approach to relaxing the prior knowledge assumption is called learnt PrMMR
(IPrtMMR). The basic idea is to learn F'(r) as we process additional users. We develop an
approximation of F'(r) that is initially crude, and with each additional user we process,
the approximation gets closer to F'(r). The only assumption we make about F(r) is that
users’ preferences are drawn i.i.d..

Suppose we have processed users up to, but not including, user i, and we have found
the exact utility values for each of those users. We could then approximate F(r) with an

A

empirical distribution function (edf) F;(r), defined as

- 1
B(r) = =

> I(r(d,d' uy) < 1), (4.9)

j<i

75

where

I(A<B):=

1 ifA<B
0 otherwise,

and u; is the set of utility values for user j. For example, if FZ-(O.Q) = 0.9, then for 90%
of all ¢ — 1 previous users, the regret from choosing decision d instead of d’ was at most
0.2. To help keep notation simple, we will not list ¢ when discussing Fz(r) or any lower or
upper bounds based on Fi(r), unless necessary.

After we have processed user ¢ enough to obtain the utility constraints C'(z), we can
improve the accuracy of Equation by considering only those previously-processed users
whose utility values are compatible with C(x). A user j with utility values u;(z) is com-
patible with the utility constraints C'(z) if and only if

Cmin(7) < uj(x) < Cpax(x) for all z € X. (4.10)

We define the set of users S;(C') to be all users processed before user i whose utility values
satisfy Equation [4.10| given the utility constraints C'. This allows us to refine Equation 4.9
as

Fo(r) =] jeszi(c)l(r(d, d'uj) <r). (4.11)

There are two problems with Equation|4.11] First, since we do not know the exact utility
values for any of the previous users, we cannot calculate r(d, d’, u;) and therefore we cannot
calculate Equation m The second problem is that FC(T) is only an approximation of
Fo(r). We need to know how accurate this approximation is. For example, after processing
10 users, we would like to know what the probability is that the cdf and edf differ by at
most 0.1. We solve both of these problems by finding three successive lower bounds to
Fo(r). As illustrated in Figure [4.1] finding a lower bound on Fy 4 ¢(r) allows us to find an
upper bound on PrPMR(d,d’,C,p) (denoted as PrPMR(C,p) for brevity).

The first lower bound, L (r), is due to the fact that since we do not know the exact
utility values of any of the previous users, we cannot calculate r(d, d’, u;). Instead, we rely
on Equation to provide an upper bound on r(d,d’,u;). Thus, we relax Equation

to
Fo(r) > LL(r) ==]Si(lC)| 'SZ(C)I(PMR(CZ, d,C;) <r). (4.12)

For example, L(0.3) = 0.2 means that the probability of the pairwise regret from
choosing decision d instead of d’ being at most 0.3 is at least 20%. To account for the

76

— PrPMR(C,p)
---- L' (p)

Cumulative Probability

X X 0.0 0.2 04 0.6 0.8 1.0
Regret Cumulative Probability

(a) Cumulative Probability (b) Inverse Cumulative Probability

Figure 4.1: Example of how finding a lower bound can lead to finding an upper bound.
In Figure ,the solid line is an example cdf, Fo(r), of the pairwise regret be-
tween decisions d and d'. The dashed line, L(r), is a lower bound of Fo(r). Since

PrPMR(C,p) = F;'(p), Figure |4.1(b) is the inverse of Figure |{.1(a). We note that
L=Y(p) is an upper bound on PrPMR(C, p).

worst possible case, we take equality in Equation 4.12] An example of the relationship
between Fe(r), Fo(r) and L (r) is shown in Figure

Since we do not know wu;, we must also redefine compatibility in terms of C;. Given
the utility constraint C;, a user is compatible with the utility constraints C; if and only if

Ci in(x) S Cr]nm(x) and Clilax(x) S C’L

m max

(z) for all z € X. (4.13)

Figure shows some examples of both compatible and incompatible constraints. As
Figure [4.3] illustrates, there can be cases where a user would be compatible according to
Equation but not Equation [4.13]

Although LL(r) is a lower bound of Fg, LL(r) is not necessarily a lower bound of
Feo. As a result, we need to create two additional lower bounds, LZ(r) and L3 (r). We
can measure our confidence that L (r) is a lower bound of Fy by giving a confidence
band around L} (r). A confidence band is a region around L} (r) which we are confident
includes Fe. According to the Dvoretzky-Kiefer-Wolfowitz inequality [70], given a desired

77

Cumulative Probability

Figure 4.2: An ezample of estimating the cdf for the regret of choosing decision d over d'.
The actual cdf is Fo(r)._Our edf is Fo(r). Since we cannot calculate the actual regret
values, we use Equation to create L (r) which is a lower bound of Fo(r).

Figure 4.3: A possible set of constraints for u(xzy) where C; is the constraint set for the
current user i. The dots represent the actual utility values for users (unknown to the
elicitation process). The constraint Cy is compatible with C; while Cy is not. We consider
C5 incompatible with C;, even though there is a chance that the two users have the same
utility value.

78

error value of

oo (2), (419

for some chosen 0 < o < 1, we can construct the functions
Li(r) == max{ﬁ’c(r) —¢,0}
Uo(r) == min{Fe(r) + €,1}

such that
Pr[Lz(r) < Fo(r) < Uc(r) for all r] > 11— a. (4.15)

We are interested in the implication that

Pr[L%(r) < Fo(r) forall r] > 1 — o

However, since we cannot calculate F(r), we also cannot calculate LZ(r). Instead, we
consider another lower bound,

L2.(r) := max{L(r) — ¢,0}. (4.16)
Since LL(r) < Fo(r), it follows that
Pr[L¥(r) < Fo(r) forall r] > 1 — o

Therefore, the probability that PMR(d,d',C') < r is at least (1 — a)L{(r) (where L, is
also a function of €). An example showing L,(r) with respect to Fi(r) and Fg(r) is shown
in Figure [4.4]

With slight abuse of notation, we define L*(pe4) to be the inverse of L, (r). This allows
us to bound the PrPMR by

PrPMR(d, ', C,pea) < L&’ (pea) (4.17)

for some given probability p.s. That is, with probability (1 — a)peq, the maximum regret
from choosing decision d over d is at most L;*(p.q). To account for the worst case, we
assume equality in Equation [4.17] Therefore, we define the learnt PrPMR as

IPrPMR = L;*(pea),

where p.4 is the cumulative probability chosen by the controller (i.e. who ever is runnig
the elicitation process.) We let

Perr =1 — (1 — @)Peq (4.18)

79

0.8

0.6

0.4

Cumulative Probability

0.2

U'%,

Regret

Figure 4.4: Continuing the example from Figure . Although L{(r) is a lower bound of
Fo(r), we do not know if LL(r) is a lower bound of Fe(r) (since we do not know how
accurately F’c(r) approzimates Fo(r)). Therefore, we use Equation to create another
lower bound, LE(r), which has a high probability of being a lower bound to Fo(r).

80

be the overall probability of error, i.e. with probability pe;.,
PMR(d,d,u) > IPrPMR(d,d,C,peq)-

Note when an error does occur, we can say nothing about PR(d,d’, u).

Finally, we adapt Equations [4.6|and [4.7] to work with IPrPMR by defining learnt PrMR
and learnt PrMMR as

[PrMR(d,C,p) := maxIPrPMR(d,d,C,p),

d'eD

and

IPrMMR(d,C,p) = gliﬂgl [PrMR(d,C,p),
€
respectively. We say [PrM R is correct if
R(d,u) <IPrMR(d,C,p). (4.19)

Lemma 7. The IPrMR is correct with at least a probability of 1 — pey.

Proof. Equation is satisfied if and only if

maxr(d,d,u) < maxIPrPMR(d,d,C,p). (4.20)

d'eD d'eD
Let d* = argmaxyr(d,d’,u). Then Equations and are both satisfied if
r(d,d*,u) < IPrPMR(d,d*, C, p). (4.21)

We do not know which decision d® is, we only know it exists. Note that Equation is
a sufficient but not necessary condition for Equations and to be satisfied. Since
Equation 4.21] holds with probability of at least 1 — p,,.., so does Equation [4.19] O

4.2.3 Hypothesis-Based Regret

We now consider a different method for overcoming the prior knowledge assumption. In-
stead of learning about the distribution as we process each user, we start off with a set of
hypotheses, H, for what the correct distribution could be. The PrMMR calculations are
now based on an aggregation of this set of hypotheses. As long as H contains the correct
hypothesis, our calculations will be correct. Since H can consist of an arbitrary number
of hypotheses, we can vary the size of H depending on how certain we are of the correct

81

hypothesis. The more hypotheses in H, the fewer assumptions we need to make about
the correct hypothesis. We can compensate for being relatively uncertain of the correct
hypothesis by increasing the size of HP| A key difference between this approach and a
Bayesian one is that we do not assign any probability of correctness to the hypotheses in
H. We will show that this allows for more robust calculations.

The more hypotheses we include, the higher the calculated regret values will be. Since
this could lead to a decrease in the efficiency of processing users, we provide a method that
rejects incorrect hypotheses with a high probability while accidentally rejecting correct hy-
potheses with low probability. Since rejecting hypotheses can require additional queries for
the user, we also provide a method to determine when it is beneficial to reject hypotheses.
We also discuss how to create an optimal hypothesis given a set of previously-processed
users. Finally, we discuss what happens if the correct hypothesis is not in H.

A hypothesis H is defined by two things. First, we have the set of possible utility
functions. Our hypothesis, for example. could be that all users have exponential utility,
i.e

uy(x,a) =1 —e /% (4.22)
for some parameter a. The second thing that defines a hypothesis is a probability density
function over the parameters for uy other than x. For the utility function in Equation
4.22 an example distribution might be

fla) =

1 if0<a<l1
0 otherwise.

We first consider the case with only one hypothesis: H = {#}. We adapt our definition
of F(r) to be dependent on H, i.e. Fyc(r). This gives the cumulative distribution of
the pairwise regret from choosing decision d instead of d’, assuming H to be true and with
the utility restrictions C' imposed. This allows us to also adapt our definitions of PrPMR,
PrMR, and PrMMR (Equations through to also be dependent on H, that is,

hPrPMR(d,d', H|C, ped) := Fyo(pea), (4.23)
hPrMR(d, H|C, pea) == max hPrPMR(d,d , H|C, pea), (4.24)
e
hPrMMR(H|C,pe) := gnig hPrMR(d, H|C, peq)- (4.25)
e

2Since there are an uncountable number of hypotheses, we can not include all of them in H. Therefore,
using this method we need to make at least some assumptions about the correct hypothesis.

82

To generalize for multiple hypotheses, we must calculate Equation for each hy-
pothesis in H. Then the PrPMR over multiple hypotheses is just an aggregation of these
values, i.e.

hPrPMR(d,d ,H|C, peq) := max hPrPMR(d,d , H|C, peq)- (4.26)
€
The PrMR and the PrMMR over multiple hypotheses are defined as
hPrMR(d,H|C, peq) = max hPrPMR(d,d ,H|C, peq)
e

and
hPrMMR(H|C, peq) = I;li}%)} hPrMR(d, H|C, peq).
€

Definition 13. The bound hPrPMR(d,d ,H|C,p) is correct if

r(d,d',u) < hPrPMR(d,d H|C,p) (4.27)
with probability of at least p.
Proposition 3. If Fyc(r) is independent for all H, then PrPMR(d,d ,H|C,p) is correct

as long as H contains the correct hypothesis.

Proof. Let H* be the correct hypothesis. By definition of Fyc(r), if Fy«c(r) is indepen-
dent of Fyyc(r) for other hypotheses H’', then the probability that

r(d,d',u) < PrPMR(d,d, H*|C,p), (4.28)

is p. Since PrPM R(d,d',H|C, p) takes the maximum over all PrPM R(d,d', H|C,p), then
as long as Equation [£.28]is satisfied, Equation is also satisfied. Suppose Equation
is not satisfied. Since the probability that

r(d,d,u) < PrPMR(d, H|C, p)

is non-negative for any hypothesis (correct or incorrect), this case cannot decrease the
probability that Equation is satisfied. O

An important implication of Proposition [3|is that while incorrect hypotheses can result
in an overestimation of the hPrPM R, they can never affect correctness (assuming the
correct hypothesis is in H). Since we consider each hypothesis conditional with respect
to the utility constraints C', hPrM M R(H|C') will never be larger than MM R(C'). For
example, if H is that u(z;) is uniformly distributed between 0 and 1 and our set of utility
constraints C' says that u(z;) is between 0 and 0.5, then H|C says that u(z;) is uniformly
distributed between 0 and 0.5.

83

4.2.4 Rejecting Hypotheses

With additional hypotheses our upper bound on regret, calculated using Equation [4.26], can
become less accurate and more time consuming to calculate. Therefore, we need a method
to reject incorrect hypotheses while minimizing the chances of accidentally rejecting the
correct hypothesis.

Each time we have finished processing a user, we examine the utility constraints from
that user and all previous users to see if there is any evidence against any of the hypothe-
ses. Many hypotheses can be rejected with certainty. For example, suppose we have the
hypothesis

H:u=22", (4.29)

but the actual utilities are given by
u=z",

for some distributions of r and r’. If we have the outcomes x =9 and z = 16 and r = 0.5,
then we would have the utility values u(9) = 3 and u(16) = 4. However, there is no value
for " which satisfies these utility values and Equation [4.29) In this case, we would know,
with certainty, that H is false.

However, there are many hypotheses that can never be rejected with certainty. For
example, it is always possible that a set of utility values have been chosen uniformly at
random. In these cases, the best we can do is say a hypothesis is unlikely. We need a
method that can reject a hypothesis if it is unlikely enough, while minimizing the chances
of accidentally rejecting the correct hypothesis; to do this, we use statistical testing.

Statistical testing compares the values we have observed while processing users against
the values we would expect to see occur under a particular hypothesis. A first choice of
values to compare might be the users’ utility constraints against the distribution of util-
ity values specified by a hypothesis. The difficulty with comparing utility values is that
each outcome adds a new dimension to the utility space and therefore our data is multi-
dimensional. Difficulties with testing multidimensional data include dealing with sparsity
of data and possible correlations between dimensions. One possible solution, often used
in Bayesian learning, is to assume independence; however, utility values are often highly
correlated [44]. For example, for exponential utility values (of the form given in Equation
4.22)), after the first three utility values, all other values are redundant. This suggests
that assuming independence may not be a feasible approach. There are methods which
are able to account for correlations when testing multidimensional data. However, to our
knowledge, these methods are exponential with respect to the number of dimensions [39].

84

Since the goal of both probabilistic and traditional minimax regret is to minimize regret,
we felt it would be more natural to compare the regret values predicted by hypotheses.
Specifically, we decided to compare the observed pairwise regret between any two decisions
against the pairwise regret distribution inferred by each hypothesis. In tests, we found that
correlations between pairwise regret values for different decisions to be minimal. Thus, we
assume that regret distributions are independent. This also helps us avoid the data sparsity
problem. One problem with comparing regret values is that it is possible for different utility
distributions to give the same regret values. Since we choose the decisions based on regret,
and not directly on utility, if such utility distributions exist, we would not be interested in
differentiating such distributions.

We can reject a hypothesis when it either overestimates or underestimates the regret.
There are different, but related, methods for checking for either case. If we assume that
the correct hypothesis is in H, then underestimating regret has no effect on correctness (see
Proposition |3) or on efficiency. As a result, checking for overestimation is more important.

Our method for rejecting hypotheses relies on the Kolmogorov-Smirnov (KS) one-
sample test [48]. We use the KS test to compare the regret values we would see if a
hypothesis was true against the regret values we see in practice. The test statistic for the
KS test is

Tr, = max | Fuain(r) — Faai(r), (4.30)

where F (r) is the empirical distribution function defined in Equation . For notational
brevity, we refer only to 77t instead of T;‘d,d. An example of finding the KS statistic is
shown in Figure [£.5]

If H is correct, then as ¢ approaches infinity,
Vi-T
converges to the Kolmogorov distribution which does not depend on F3. We reject H if
Vi-T > K, (4.31)
where K, is such that
PriK <K, =1-«
and K is the cumulative distribution function of the Kolmogorov distribution.

The statistic 7" measures the maximum absolute difference between Fy(r) and F(r).
We can break T" up into two parts, Tyye, and Typger. Let

A

Tover := max{0, mfxx(F(r) — Fy(r)}, (4.32)

85

be the evidence against H as the result of H overestimating the regret. As shown in Figure
, if F(r) is overestimating the regret, then Fy (r) < F(r). Similarly, let

Tunder := max{0, mraX(FH(T) — F(T))}, (4.33)

be the evidence against H as the result of H underestimating the regret. As a result,
T = maX{Tovera Tunder}-

Rejecting a Hypothesis when it Overestimates the Regret

Since we do not know F(r), we rely on the lower bound, L(r), given in Equation m
and assume equality to cover the worst case. In this case, we can give a lower bound to

Equation with
T per > max{0, max(L(r) — Fy(r))}, (4.34)

This statistic is illustrated in Figure |4.5

If H is true, then the probability that we incorrectly reject ‘H based on ijd,ﬂ for a specific
set of decisions {d,d'} is at most o. However, since we examine T4, ; for every possible
combination of decisions, the probability of incorrectly rejecting H is much higher. (This
is known as the multiple testing problem.) Our solution is to use the Bonferroni Method
where we reject H if

max Vi-Tj4 . > K,
{d,d'}CD o

where [69] ,
Pr(K < K') = m. (4.35)

Using this method, the probability of incorrectly rejecting H is at most a.

Rejecting a Hypothesis when it Underestimates the Regret

Our next goal is to measure Ty,40-, given in Equation [4.33], which measures the evidence
against H as the result of H underestimating the regret. However, since regret is private,
we cannot compute F'(r) and therefore, we also cannot compute T 4e-- Instead, we provide

a lower bound on T,,4.- in a similar approach as we used with bounding 7,,.,. The basic
set up is shown in Figure

Since we are concerned with the case where [3(r) is above F(r) (as shown in Figure
, to bound 7,4 We need to find an upper bound on F(r). To do so, we need to find
a lower bound on r(d,d',u) given PM R(C). We rely on the following proposition.

86

— (1)
“““ ()
08rf - - Maximum difference

0.6

Cumulative Probability

0.2

il I . .
“‘[8) 0 0.2 0.4 0.6 0.8 10
Expected Pairwise Regret

(a) KS test comparing Fy(r) against F(r).

1.0

>

Cumulative Probability
=

0.2

s))
“'[2) 0 0.2 0.4 0.6 0.8 1.0

Expected Pairwise Regret
(b) KS test comparing Fy (1) against L*(r).

Figure 4.5: An example of the Kolmogorov-Smirnov one-sample test. Our goal is to find
evidence against the hypothesis H. Ideally, we want to do this by comparing the regret
we would expect to see if H was true (Fy(r), Equation against the regret we have
actually seen (F(r), Equation . This situation is shown in Figure . The KS test
focuses on the maximum absolute difference between the two distributions, i.e. Equation
4.30. However, since the actual regret is private, we must use L'(r) from Equation as
a lower bound for Equation . This situation is shown in Figure . Here the KS test
focuses on the mazimum difference as defined in Equation[{.34 Note how the mazimum

difference in Figure is a lower bound for the mazimum difference in|{.5(a)
87

Cumulative Probability

Cumulative Probability

1.0

= P

F(r)
- - Maximum difference

(a) KS test

1.0

n
0.4

T
0.6 0.8

Expected Pairwise Regret

comparing

021

Fy(r) against F(r).

- - Maximum difference

n
0.4

n T
0.6 0.8

Expected Pairwise Regret

(b) KS test comparing Fy(r) against U?(r).

88

Figure 4.6: An example of using the KS test to reject a hypothesis which underestimated
the regret. As with the example in Figure [{.5, we want to compare the regret predicted
by the hypothesis H, shown by the function Fy(r), against the actual regret seen, shown
by the function F(r) Since regret is private, we cannot calculate F(r) If we compared
Fy(r) against L\(r), a lower bound of F(r), as we did in Figure we would find zero
evidence against Fy(r). Instead, we compare Fy(r) against U(r), an upper bound of F(r),

as shown in Figure |4.6(b).

Proposition 4. Given the utility constraint set C, for the pair of decisions d and d’ let

PMR@TT‘ - Z

zeX

Izlr(x) - P:ir(a:) [Crnax (%) — Chnin (@)]

then the difference between the pairwise maximum regret and PM R, is bounded by
PMR(d,d,C) — PMR.., <r(d,d, u). (4.36)
Proof. We need to show that

PMR(d,d,C) —r(d,d ,u) < PMRe,,.

If we let
ug e = argmaxr(d,d’, u’),
then
PME(,0) —r(d,d,9) =3 [Pr(x) — Pr()] uf o () - > [Pr(z) = Pr(a)] u(x)
S xe

- Z [lz,r(x) - I?Zr(x)] [() — u(w;)] (4.37)

zeX

We note that if Prg(v;) > Pra(z;), to maximize regret, we need to maximize ug ; (v;)
and therefore u§ , (7;) — u(x;) > 0. If Pry(z;) < Pry(w;), to maximize regret, we need to
minimize ug , (z;) and therefore ug , (v;) —u(x;) < 0. As a result, we can rewrite Equation

437 as

Pry(z)] ‘uid, (z;) — u(z;)| otherwise

Z {[Prd/(Pry(z)] [ug,d,(mi) — u(xz)} if Pry(x) > Pry(x)
reX [Prd/ 33)

) —)

((
[Pry (z) — Prg(x)] |ud 4 (x:) — u(x; if Pry(x) > Pry(x
—Z{ ; <;1|[,<> (2] () > Pry()

= | [Pra(x) — Pra(z |ug o (2;) —u(a;)| otherwise
=3 [Pr(a) = Pr()]| [ug o (1) — ulay) | (4.38)
reX

We maximize |[ug, (2;) — u(z;)| when u 4 (2;) = Cinax(2;) and u(z;) = Coin(2;). As a
result,
|ug,d’($i) - U(ZL’Z)| S Cmax($i) - Cmin(xi)-

89

Therefore, we can bound Equation by

[]

Since we now have a lower bound on 7(d,d’,u), we can give an upper bound to F(r)
similar to the lower bound we gave in Equation [4.12]

A

F(r) < U(r) =

1 U
— > I(PMR(d,d',C) — PMR.,, <r). (4.39)

j<i
As a result, we can give the following lower bound for T’
Tunder > max{0, max(Fy(r) — U*(r))}. (4.40)

We reject H is either Typger O Thper €xceeds the bound in Equation [£.31]

Note that the inequality in Equation [4.36]is a tight constraint. Specifically, if we choose
the set of utility values

u(z) = Crin() if Prd/('x) > Pry(x) (4.41)
Clnax otherwise,

we have equality in Equation [£.36]

Choosing the Best Hypothesis

The flexibility in choosing how many hypotheses are in H means that we do not have
to make strong assumptions about what the correct hypothesis is. However, even for a
relatively restricted set of hypotheses, listing each hypothesis may be too time consuming
and ineffective. For example, suppose we believe that users all have a utility function of
the form

u(z) = 2

where 3 is chosen uniformly at random on the closed interval [Ib, ub]. Despite this restricted
set of possible utility functions, there are many hypotheses that are consistent with it. We
can create a new hypothesis by changing either (b, ub or both. Even if we discretize the

90

possible values, there may still be too many hypotheses to feasibly deal with. For example,
if we considered values only in increments of 0.1, we would have the following sets of
parameters for ({b, ub):

(0,0.1) (0,0.2) ... (0,1)
(0.1,02) ... (0.1,1)
09,1

The sum of all of these possible sets of parameters would give us 55 possible hypotheses.

One possible way to improve efficiency is to specify a set of possible hypotheses depen-
dent on some common set of parameters. In the previous example, this set of parameters
would be [b and ub. If we defined a metric for evaluating how good each hypothesis is,
we could choose the hypothesis with the best parameters. As a result, we could then just
specify the set of possible hypotheses instead of listing each individual one.

This problem setting is very similar to the method of Bayesian mazimum a posterior:
probability (MAP) estimation [44]. The key difference is that MAP estimation tries to
choose the most likely values. However, our methods do not find evidence in favour of any
hypothesis, only evidence against. Lack of evidence against a hypothesis is not necessarily
evidence in favour. In statistical testing, the ability to find evidence in favour of a hypoth-
esis is known as statistical power [69]. The power of a statistical test is the probability of
correctly rejecting an incorrect hypothesis: if the power of a test is 1, then a statistical
test will always reject an incorrect hypothesis. Hence, if the power of a test is 1, or close
to 1, we may take lack of evidence against as evidence in favour.

In the limit, as the sample size increases, the power of the KS test approaches 1:
however, our method is only an approximation of the KS test since we do not know the
exact regret values for each user [48]. Furthermore, users do not care about the eventual
accuracy of our method, they only care how accurate the process is at the time when they
are being processed. The power of our method for any specific user depends on both the
number of users we have already processed and the accuracy of the utility constraints for
each of those users.

We avoid these complications by focusing on the evidence against a hypothesis. As a
result, we define an optimal hypothesis as the one with the least evidence against it, or the
least-likely incorrect hypothesis (LLIH). In the two previous sections, we provided methods
for giving lower bounds on the amount of evidence against a hypothesis by giving a lower
bound on T'. It may also be useful to find an upper bound on 7. For example, suppose we
have two hypotheses H; and Hs,. If all we know is that 7% > 1 and 772 > 1.1 we would
choose H; as being the hypothesis with the least amount of evidence against it. However,

91

if we also knew that 7" < 3 and T"2 < 1.5, that is, in the worst case, there is more
evidence against H;, we might choose Hs as our optimal hypothesis.

To find an upper bound on T, we calculate upper bounds on both T,,.. and Ty,qer.
These bounds easily follow from our definitions of T, and T4er, i.e.

Tover = max{0, mgx{ﬁ’(r) — Fyllh,
< max{0, m?X{Uz(r) — Futth, (4.42)

and

Tunder = max{0, mTaX{FH — 13’(7’)}}
< max{0, mTaX{FH — L'(r)}}. (4.43)

Choosing the LLIH works as follows. Given a functional form for the utility values and
a range of parameters, we search through the parameter space looking for the parameter
values with the least evidence against them as measured by 7. Since we only have a range
for what T could be, we have some flexibility in how we measure the evidence against a
particular set of parameter values. For example, we could choose the set of parameters
that minimize the maximum possible value for 7. If the range of values for T is too
large, the maximum 7" value may be too pessimistic. We could instead take an optimistic
approach and choose the parameter values which minimize the minimum possible value
for T'. Finally, we could decide based on some combination of minimum and maximum
possible values, e.g. the average. If there is strong evidence against even the least likely
incorrect hypothesis, this is evidence against that particular function form of the utility
values.

The accuracy of the range of 7' is heavily dependent on the accuracy of the utility
constraints. For example, if we knew the exact utility values for each user, we would know
the exact value of T. Having a small range for T" allows us to choose better parameter
values, which can allow us to process future users with fewer queries. Since the accuracy
of the utility constraints is dependent on the number of queries we ask each user, there
is a tradeoff between processing the current users quickly and improving efficiency for the
long term.

One way to balance these goals is to treat the initial set of users as a focus group.
For these users, the main objective would be to maximize the accuracy of their utility
constraints. For example, suppose we had a maximum of 30 queries for each user. If we
reached the desired regret after only 10 queries, we would use the remaining 20 queries to

92

maximize the accuracy of the utility constraints, where accuracy is inversely proportional
to the size of the largest utility gap. Only once we have processed each of the users in the
focus group would we find the LLIH. These users would be the equivalent of training data
for Bayesian reasoning. As we process subsequent users, we would keep on checking to see
if there was evidence against the original LLIH. If we did find substanial evidence against
it, we would need to find a new LLIH.

What if the Correct Hypothesis is not in H?

There is no guarantee that the correct hypothesis will always be in H. If the correct
hypothesis is not in H, our proof of correctness does not hold. If we have low confidence
that the correct hypothesis is in H, there are several options. The first step is to add more
hypotheses to H. Using the Least LLIH approach, we only need to add one hypothesis for
each type of utility function, e.g. exponential, linear, etc. We would then calculate the
least-likley incorrect (LLI) exponential hypothesis, the LLI linear hypothesis, etc. However,
if we are unsure of the basic form of the utility function, it is possible that we cannot add
enough hypotheses to H to ever be confident that the correct hypothesis is in H. If there
is strong evidence against each of the LLI hypotheses, this strong evidence that we do not
know what the utility function type is.

This is the same problem that statistical regression and least squares fitting has - if we
are trying to fit data to the wrong functional form, it may be impossible to get a good
fit. If we cannot get a good fit, we can either fall back on minimax regret or probabilistic
regret without hypotheses. We can also treat an initial group of users as a focus group
and use their preferences to try to discover what other possible utility functions we should
consider.

4.2.5 A Probably Approximately Correct Approach to Proba-
bilistic Regret

Probably Approximatley Correct (PAC) learning is an area of Al research [46],60]. The goal
of PAC learning is to learn a concept based on a set of labelled examples. For example, the
concept could be real numbers greater than 10 [46]. The actual concept is never revealed.
Instead, a set of random numbers is generated and labelled 1 if they satisfy the concept,
e.g. that number is greater than 10, and 0 otherwise. Based on these examples, PAC
learning aims to create a hypothesis which can correctly label any real number with a high
probability. A key goal in PAC learning is to create the hypothesis in polynomial time.

93

Non-parametric statistics and PAC learning are closely related [62]. A key difference
in our work is that we are not interested in whether either IPrMMR or hPrMMR can work
in polynomial. This is a definite area for future research. While many of the results in
PAC learning are built on results from non-parametric statistics, we have not found any
reference of the Dvoretzky-Kiefer-Wolfowitz inequality in PAC literature. Understanding
how the Dvoretzky-Kiefer-Wolfowitz inequality could be viewed from a PAC perspective
would allow us to frame our work in a PAC setting. This is another area for future research.

4.2.6 Other Uses of Non-Parametric Statistics in Al

The main statistical tools we used in this chapter; empirical distribution functions, the
Dvoretzky-Kiefer-Wolfowitz inequality and the Kolmogorov-Smirnov one-sample test have
a long history of use in non-parametric statistics. We make no claim that the idea of using
these tools to analyze data is novel in any way. Even in Al, there has been considerable
work done that has used these tools. For example, researchers have used non-parametric
statistics to examine empirical auction data and compare the results to theoretical predic-
tions [28].

4.3 How to Optimize Regret Calculations

In this section we examine methods for optimizing the performance of both IPrMMR and
hPrMMR.

4.3.1 Optimizing IPrMMR

Our first method, optimal parameter selection, allows us to select the optimal parameter
values for IPtMMR. The second method, weighted start heuristic, explores the tradeoff
between additional querying for some users and using the resulting additional information
to improve efficiency for other users.

Optimal Parameter Selection

As shown in Equation [4.1§ our overall probability of error for IPr'MMR is controlled by
two parameters, a and p.q. Thus, for a fixed value for p,.,., we may view p.q as a function

94

of a, 1.e.,
1_perr
1l—a

Ped = (4.44)

It may be possible that some values of « are able to achieve a lower IPrMMR than other
values. Since there are no requirements that a or p.q be fixed in advance of the elicitation
process, we are free to vary these values throughout the process. As a result, each time we
calculate the PrMMR, the optimal parameter selection (OPS) method searches through all
values of a to find the value which minimizes the IPrMMR. For the sake of simplicity, we
discretize the set of possible values of a.

Weighted Start Heuristics

Since the constraints for one user are used to help process future users, for each user we
face a tradeoff between minimizing queries and refining the constraint set for future benefit.
It may be worthwhile to do additional querying of some users, especially the initial users.
Weighted start heuristics (WSHs) are a set of heuristics which include any method of giving
the first ¢ users additional queries.

We propose three WSHs. The first WSH is to set a minimum number of queries. For
example, we could set a minimum of 20 queries, then we would always query the first ¢
users at least 20 times, even if we have reached the given regret threshold already. The
second possibility is to require a lower level of regret for the first ¢ users. For example, for
the first ¢ users we could have a regret threshold of 0.005 while for the subsequent users
we would only have a regret threshold of 0.01. It will generally take additional queries
to reach this lower threshold. The third WSH is to require a lower probability of error,
as given by Equation [4.18 Similar to the previous method, it will generally require more
queries to reach a lower probability of error.

4.3.2 Optimizing hPrMMR

We next consider a heuristic for helping us to effectively reject heuristics when using
hPrMMR.

Heuristics for Rejecting Hypotheses

Since incorrect hypotheses can result in higher regret estimates, we would like to reject
the incorrect hypotheses as quickly as possible. A major factor in how quickly we can

95

reject incorrect hypotheses is how accurate the utility constraints are for the users we
have processed. In many cases, it may be beneficial in the long run to spend some extra
time querying the initial users for improved utility constraints. To study these tradeoffs
between short-term and long-term efficiency we used a simple heuristic, Reject(j). With
the Reject(j) heuristic, we initially query every user for the maximum number of queries.
Once we have rejected 7 hypotheses, we query only until the PrMMR is below the given
threshold. We can vary j based on the number of hypotheses we want to reject. While
this means that the initial users will be processed inefficiently, we will be able to quickly
reject incorrect hypotheses and improve the long term efficiency over the population of the
users.

4.4 Experimental Results

In this section, we present our experimental results. The section is divided into two: we
present the results for both learnt probabilistic regret (Section and probabilistic
regret with hypotheses (Section . For all of these experiments we assumed that users’
preferences followed the axioms of EUT. Combining the work in this chapter with that in
the previous chapter is purely a technical exercise.

4.4.1 Learnt-Probabilistic Regret Results
Setup

For our experiments, we investigated a simplified market for buying electricity on the
Smart Grid. In this market, each day people pay a lump sum of money for the next day’s
electricity. We assume one aggregate utility company that decides on a constant per-unit
price for electricity which determines how much electricity each person receives. We assume
a competitive market where there is no profit from speculating.

A person’s decision, ¢, is how much money to pay in advance. For simplicity, we consider
only a finite number of possible amounts. There is uncertainty both in terms of how much
other people are willing to pay and how much capacity the system will have the next day.
However, based on historical data, we can estimate, for a given amount of payment, the
probability distribution for the resulting amount of electricity. Again, for simplicity, we
consider only a finite number of outcomes. Our goal is to process a set of Smart Grid users
and help them each decide on their optimal decision.

96

— MMR P — MMR ———
-~ PrMMR Tl —- PrMMR

0.4l PrMMR after 400 users 7 ’] 0.4f PrMMR after 400 users
_.0 ’ 1

|
0.3t i i 1 0.3F
, .

(a) Mean Regret (b) Median Regret

Figure 4.7: The average regret over 100 queries using either MMR or I[PrMMR with 500
simulated users. Figure|].7(a) shows the mean regret and Figure|].7(b) shows the median
regret. We also show the performance of IPrMMR on the last 100 users. Note that we
are always using the mazrimum number of queries, regardless of when we reach the given
threshold regret. As a result, these experiments compare the basic behaviour of IPrMMR
and MMR, not their relative efficiency.

Each person’s overall utility function is given by
u(c, T) = Ueleet () — ¢,
where x is the amount of electricity they receive. For each user, we used
Uetect (1) = 2, (4.45)

where 0 < # < 1 is chosen uniformly at random for each user. We are interested in utility
functions of the form given in Equation [4.45] since it is often used to describe peoples’
preferences in experimental settings [59].

Results

We began by studying the basic behaviour of probabilistic minimax regret compared to
(non-probabilistic) minimax regret. Figure 4.7 shows the average (both mean and median)

97

regret after each query using either MMR or IPrMMR after processing 500 simulated users.
For both types of regret, we used the HLG heuristic to select queries - this means that for
each user, we asked the same set of queries regardless of the type of regret. For IPrMMR set
a = 0.3 and p.g = 0.7 which means that p.,.,, = 0.51, so IPrMMR is basically selecting the
median regret. We did not use any optimization or heuristics for IPrMMR. For this initial
set of experiments, we are interested in comparing the basic behaviour of the two types
of regret, instead of their relative efficiency. As a result, we always used the maximum
number of queries, regardless of when the threshold regret was reached.

The minimax regret decreases monotonically over time and the mean and median values
are roughly the same. The probabilistic minimax regret initially decreases, then remains
steady for a time and then increases. This is explained by a tradeoff between the accuracy
of the utility constraints and the number of compatible users. This tradeoff occurs in
calculating the lower bound in Equation [£.16] With each additional query, we refine
the utility constraints for the current user. This improves the accuracy of our empirical
distribution function F¢(r) which also improves the accuracy of our lower bound function in
Equation[4.16] At the same time, with each additional constraint, we have fewer compatible
users. This results in an increase in our error value € from Equation[4.14which decreases the
accuracy of our lower bound function. As we refine our utility constraints, the improved
accuracy of L(r) is the dominant term in Equation and the probabilistic regret
decreases. However, eventually we have so few compatible users that the e value becomes
the dominant term and the IPrMMR increases. As we process more users, the set of
compatible users increases. For later users, the initial IPrMMR values should be lower
and it should take more queries before the probabilistic regret increases. In Figure [4.7] we
have also plotted the average probabilistic regret for the last 100 users. We see that the
probabilistic regret is initially lower for the last 100 users and for those users it takes more
queries before the probabilistic regret starts to increase.

Figure [4.7 also shows the median regret values. The mean and median minimax regret
are roughly the same. However, we see that the increase in the median IPrMMR, is more
immediate than the increase in the mean IPrMMR. This shows that for individual users
when the probabilistic regret starts to increase the increase is immediate and not gradual.

Finally, Figure shows that eventually IPrMMR becomes larger than the minimax
regret. For these experiments, this does not reflect on the efficiency of IPrMMR. Instead,
this is a result of the combination of always using the maximum number of queries and the
fact, as previously mentioned, that the IPrMMR will always eventually increase. If we were
querying only until the given regret threshold was reached, we would see a different result.
We explore this setting in subsequent simulations. Since it is possible for the IPrMMR to

98

Regret Mean,Median % %

not solved | error
Minimax 75.09, 76 0 N.A.
IPrM MR 49.11, 50 0 0

(a=10.3, peg = 0.7)

(a) Without Monotonicity Constraint

Regret Mean,Median % %
not solved | error
Minimax 34.95, 42 0 N.A.
IPrM MR 26.31, 26 0 0
(a@=0.3, pa = 0.7)

(b) With Monotonicity Constraint

Table 4.2: Mean and median number of queries needed per user to achieve a regret of at
most 0.01 using the HLG query selection heuristic. Results are given for both MMR and
[PrMMR with and without the monotonicity constraint. Percentage of users not solved,
i.e. regret of at least 0.01 after 20 queries, is also given. For the probabilistic results, the
percentage of users resulting in an error is also given, i.e. the percentage for which the
probabilistic minimax regret is less than the actual regret.

become larger than the MMR, for the rest of the experiments, we let
IPrMMR(C) = min {{PrMMR(C), MMR(C)}. (4.46)

With this restriction, using IPrMMR will never give worse results than MMR.

We compared the basic performance of MMR and PrMMR. In Table 4.2 we show the
mean and median number of queries needed to reach a maximum regret of 0.01. For both
types of regret we used the HLG elicitation heuristic from Section 2.2.3] For PrMMR
set @« = 0.3 and p,y = 0.7 which means that p... = 0.51, so PrMMR is selecting the
median regret. We did not use any optimization or heuristics for PrMMR. Without the
monotonicity constraint, the mean number of queries using MMR is 75 and using PrMMR
is 49. With the monotonicity constraint, the mean number of queries using MMR is 35
and using PrMMR is 26. In both cases, PrMMR easily out performs MMR. Without the
monotonicity constraint PrMMR is 35% faster than MMR. However, with the monotonicity

99

w
S

30

N]
)

25

N
o

Difference in Cumulative Mean
= =
S &
Difference in Cumulative Median
=
&

o)
o

=)
=)

100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration

o

(a) Mean Difference (b) Median Difference

Figure 4.8: A comparison of the relative performance of IPrMMR and MMR using Equation
447 Figure[{.8(a) shows the difference based on mean number of queries and Figure[{.8(b)
shows the difference based on median number of queries. The IPrMMR values were based
on setting o = 0.3 and p.q = 0.7 and without any optimizations.

constraint, PrMMR is only 25% faster. This suggests that the more we know about the
users’ utility values, the less help PrMMR is. The fact there was never an error when using
PrMMR shows just how much MMR can overestimate the actual regret.

For the initial users, the number of compatible users will be so small that the error
bound given in Equation [4.14] will result in only trivial values for IPrMMR. Thus, while
the performance of IPrMMR will never be worse than MMR (because of Equation , for
the initial set of users there will be no difference in the performance. We were interested in
finding the smallest number of users to process which would result in IPrMMR noticeably
outperforming MMR. Let QF be the number of queries needed to process user i using
IPrMMR and let QM be similarly defined using MMR. After processing user i, we can
measure the relative cumulative performance of IPrMMR and MMR up to user ¢ by looking
at the difference

dif f(i) .= average{Q}',...,QM} — average{Q?,...,QF}, (4.47)

where the average is either the mean or median. Figure 4.8 shows the values for Equation
[4.47 as we process the 500 users. The PrMMR values used to create Figure [1.47] were based
on setting a = 0.3 and p.; = 0.7 and without any optimizations.

100

Regret || Mean/Median % %0
not solved | error

Dorr = 0.5 42.68 34 0 0
Porr = 0.3 61.6 73 0 0
Peorr = 0.1 75 76 0 0

Table 4.3: Mean and median number of queries to process users using [IPrMMR using the
optimal parameter selection method with a varying probability of error.

Since users are chosen i.i.d., any difference might be the result of random chance. In-
stead, we look for when the difference in Equation becomes statistically significant.
Results are shown for both mean and median differences. To determine statistical signifi-
cance, we rely on the test statistic
dif (i)

~

S€;

|52, + 52, .
SAGZ‘ = % (449)

with S3; the sample variance of {Qf,...,Q[} and S};; similarly defined. We reject W; if
|W| > 2472 Where 2,5 is the value of the probability distribution function for the Gaussian
function at a/2. If we reject W;, then the probability of the difference after i being the
result of random chance is at most «. For our experiments, we used a value of a = 0.01.
For our experiments, Equation became statistically significant after 22 users when
using the mean and 32 users when using the median.

W =

(4.48)

where

The results in Figure 4.8 show that the mean difference initially increases much faster
than the median difference. In fact, for almost 300 users the median difference remains
below 5 queries while the mean difference increases to over 20. This means that for at least
50% of all initial users, the difference between PrMMR and MMR is modest. However,
with users for whom PrMMR makes a difference of more than 5 queries, the difference is
substantial. After 300 users, the median difference increases significantly and in the end
the mean and median differences are roughly equivalent.

We next examined how well optimal parameter selection (OPS) works. Table |4.3shows
the mean number of queries when using PrMMR and OPS for different values of p.,.. With
Perr = 0.5, the mean and median number of queries improves to 42 and 34 respectively. We
can compare this to the values in Table[d.2l While there is only a moderate improvement in

101

Probability | Mean/Median | Mean/Median Mean/Median
of Error for all users | for first 400 users | for last 100 users
0.5 42.7, 34 42.9, 31 42.1, 36
0.3 61.6, 73 66.8, 74 40.9, 24
0.1 71.1, 76 75.5, 76 73.2, 74

Table 4.4: The results from Table[{.5 divided between the first 400 users and the last 100

USErs.
Probability | Mean/Median | Mean/Median Mean/Median
of Error for all users | for first 400 users | for last 100 users
0.5 59.7, 76 79.3, 76 0.79, 0
0.3 65.2, 76 79.8, 76 6.5, 3
0.1 77.8, 76 79.9, 76 72.7,73.5
Table 4.5: Mean and median number of queries needed to process wusers with

IPrMMR+OPS+WSH. The probability of error is varied. With WSH, we require a mini-
mum of 75 queries for the first 400 users.

the mean number of queries, from 49 to 42, the median number of queries improves from 50
to 34. This shows that for a majority of users, OPS is able to make a considerable difference
but there are some users for whom OPS makes no difference. The median number of queries
with OPS is close, though not equal, to the median number of queries using PrMMR with
no optimization but assuming monotonicity. This suggests that OPS may be roughly as
powerful as assuming monotonicity.

Table [4.3] also shows the results for setting pe., = 0.3 and 0.1. In the first case, the
results are roughly half way in between MMR and PrMMR. With p.,.. = 0.1 the results
are identical to using MMR. However, for all of these results, we still do not have any
error occurring. This suggests that we can improve on these results. If we had reached
the optimal performance of PrMMR then with P... = 0.1 we would expect to see errors
occurring 10% of the time. We can improve on these results either by having more accurate
utility constraints or by processing more users.

To obtain more accurate constraints, we experimented with the weighted start heuristic.
The weighted start heuristic is based on the idea of requiring a minimum number of queries
from initial users. Therefore, we need to measure the success of the weighted start heuristic
by three things: what the overall performance is, what the performance is for the initial
users and what the performance is for the end users.

102

As a benchmark, we first took the results for PrMMR+OPS from Table and found
the average number of queries for the first 400 users as well as the last 100 users. The results
are shown in Table[£.4l These results illustrate a tradeoff in information requirements. On
the one hand, with a high probability of error, we do not need highly accurate utility
constraints to process each user, i.e. for each user, we have a low information requirement.
However, this also means that we are obtaining little information from each user to help
with processing future users. This can be seen with p.,, = 0.5 where the average number of
queries remains relatively constant for all 500 users. At the other extreme with p.,, = 0.1,
we need more accurate utility constraints and hence we are obtaining more information
from each user. However, with the decrease in the probability of error, we also need more
information to process each user: with p.,, = 0.1, despite the fact that we are obtaining
more information from each user, the amount of information we need per user has increased
even more. This is shown by the fact that with p... = 0.1, the average number of queries
again remains constant. With p... = 0.3, we have found a “sweet spot” where we are
actually gaining enough information from each user to improve the efficiency with which
we process future users. As a result, the average number of queries decreases as we process
additional users.

Our weighed start heuristic (WSH) experiments involved requiring a minimum of 75
queries for the first 400 users. The results are shown in Table and can be compared
directly against the results in Table 4.4l For a probability of error equal to 0.5, we can
process the last 100 users with an average of less than one query each. This is a substantial
improvement over the average for the first 400 users and the last 100 users in Table [£.4]
However, the price we pay is that the average number of queries for the first 400 users
increases noticeably. For a probability of error equal to 0.3, we again see a substantial
improvement in the average number of queries needed to process the last 100 users. Note
that with p.., = 0.3, the median number of queries for the first 400 users increases by
only 2. This means that most of the initial 400 users are affected only minimally by the
minimum query requirement. The mean number of queries for the first 400 users increases
by 13 queries. The difference between the increase in the mean verses median number of
queries means that while most users are not affected by the increase in queries, those users
who are affected require a substantial number of additional queries. With p,,, = 0.1, the
average number of queries for the last 100 users is unchanged.

These results show that WSH is a feasible heuristic. On average, the additional querying
has little impact on the initial users. The subsequent improvement for the last users is
substantial. However, the problem with WSH is its overall efficiency heavily depends upon
the number of users we are processing. This suggests that before we use WSH in practice,
it would be very useful to run simulations to see if WSH would be effective for the specific

103

1.0 T T T T T T T 1.0

with Compatible Utility Constraints
with Compatible Utility Constraints

of Previous Users

Fraction of Previous Users

10 12 14

(a) Uniform distribution (b) Parametric distribution

Figure 4.9: Fraction of the previous users with compatible utility constraints after each
query. DBoth the mean and median values are shown. The scenarios were based on 7
outcomes. In Figure the users” utility values were chosen uniformly at random.
This is the worst case in terms of maximizing the number of users with compatible utility
constraints. In Figure the users’ utility values were chosen using the parametric
function x" with r chosen uniformly at random between 0 and 1.

scenario.

While these results show that IPrMMR . can improve the performance over MMR, we see
that this improvement quickly disappears as we decrease the probability of error. A natural
question is how many users do we need to have processed before we see improvements in the
performance even with low probabilities of error. While we could create a massive database
of users, we found a more efficient way to investigate this problem was to artificially create
users throughout the elicitation process. Specifically, after each query, we create a fixed
number of users whose utility constraints are compatible with the current user’s constraints.

We next investigated how the number of compatible users changes with each additional
query. Figure shows the mean fraction of the previous users whose utility constraints
are compatible with the current user’s utility constraints after each query. For example,
if for the 11th user, 0.5 of the previous users’ utility constraints are still compatible with
the 11th user’s utility constraints, then 5 previous users are compatible. We examined two
situations. We started with a simple situation with 7 outcomes. In the first situation, the
users’ utility values were chosen uniformly at random, without a monotonicity constraint.

104

1.0 T T T T T T T 1.0

with Compatible Utility Constraints
with Compatible Utility Constraints

of Previous Users

Fraction of Previous Users

(a) Uniform distribution (b) Parametric distribution

Figure 4.10: Fraction of the previous users with compatible utility constraints after each
query. Both the mean and median values are shown. The scenarios were based on 20
outcomes.

Choosing utility values uniformly at at random spreads the values out and as a result it
is easier for two utility constraints to be incompatible with each other. Therefore, we can
think of these utility values as being the worst-case scenario. These results are shown in
Figure . The best case scenario is when utility values are identical. A “close-to” best-
case scenario is when the utility values differ by only a small amount. For our “close-to”
best case, we choose utility value according to

u(z) = 27,

where 0 < 8 < 1 is chosen uniformly at random for each user. These results are shown
in Figure . The results show that in the worst case, after 8 queries, there are no
compatible users. Even after just 4 queries only 10% of the previous users are compatible.
In our best case, even after 15 queries, the fraction of users with compatible utility con-
straints is still around 18%. This shows how critical the distribution of utility values is to
the performance of IPrMMR. The fact that the mean and median are roughly equivalent
for all queries shows that we are not dealing with a skewed distribution.

Scenarios with only 7 outcomes are obviously very simple. To see how these results
scale up to larger scenarios, we repeated these experiments with 20 outcomes and kept
all other parameters the same. The results are shown in Figure [4.10, We see that while

105

Number of queries

. _
o -))
.00 0.02 0.04 0.06 0.08 0.10
Utility gap size

Figure 4.11: The mean and median number of queries needed to achieve IPrMMR of 0.01
with a probability of error equal to 0.25. For each query, we created 200 compatible users
and varied the size of the utility gap for all of their utility constraints. For example, if
x = 0.03, then the size of the utility gap for utility constraints for all users was 0.03.

the fraction of compatible users decreases at only a slightly faster rate with the uniform
distribution, the rate of decrease for a parametric distribution increases significantly. This
illustrates that even with a parametric distribution, as we add more outcomes, the number
of compatible users can drop noticeably.

Our results are heavily dependent on how accurate the utility constraints we obtain
for each user are. Therefore, we next investigated how our results vary depending on the
accuracy of the utility constraints. We examined a situation with 20 outcomes and 10
decisions and queried each user using the HLG heuristic, until the IPrMMR was at most
0.01 with p.,. = 0.25 using OPS. Instead of using the utility constraints from previous users,
after each query we created 200 simulated users whose utility constraints were compatible
with the current user’s utility constraints. With this artificial approach, we were able to
ensure that the number of compatible users was constant and so any changes were purely
the result of the accuracy of the utility constraints. The size of the utility gap was the
same for each outcome and varied between 0 and 0.05. The resulting mean and median
number of queries needed are shown in Figure [4.11] If the size of the utility gap was 0,
i.e. we knew the exact utility values, we did not need any queries. As we increased the
size of the utility gaps, the mean number of queries quickly increased to 36.4, roughly half
of the queries needed with minimax regret. However, the median number of queries only
increased to 2. This discrepancy meant that, for most of the users, the loss of accuracy did
not make much of a difference. However, for those users where the loss of accuracy made

106

a difference, the difference was considerable. In fact, for many of the users who needed
additional queries, the number of queries needed was very close to the number of queries
needed with minimax regret. Thus, we have contrasting results. For most users, IPrMMR
is very robust with regards to the accuracy of the utility constraints. However, for the few
users where using IPrMMR is not robust, the differences are significant.

After k queries on the utility value of outcome z;, the size of the resulting utility gap is
27k Therefore, it will take 5 queries to reach a utility gap with a size of at most 0.05. For
20 outcomes, this will amount to 90 queries in total (since we do not need to query about
the first or last outcome). We can also use Figure to find the rough number of users we
need to process before we can get a specific level of performance. For example, suppose after
a query we had 200 users with compatible utility constraints and each of those users had a
utility gap of 0.05. Then the median number of queries needed to process users is 2 queries.
Using Figure we can estimate that if the user’s preferences were uniformly distributed,
then after 2 queries only roughly 24% of all users had utility constraints compatible with
the current user. This translates into needing 833 users initially. However, if the users’
preferences were distributed according to a parametric distribution, then 36% of all users
would be compatible with the current user. This translates into needing only 555 users.

4.4.2 Hypothesis Regret Results
Experimental Setup
All of the users’ preferences were created using the following probability distribution:
H*: The values for e are given by
Uetect (€) = €7 (4.50)
where 0 < 8 < 1 is chosen uniformly at random for each user. We are interested

in utility functions of the form in given in Equation [4.50] since it is often used to
describe peoples’ preferences in experimental settings [59].

To create a challenging experiment, we studied the following set of hypotheses which
are feasible with respect to H*.

Hq: The values for ueee; are chosen uniformly at random, without a monotonicity con-
straint.

107

Ho: The values for ueeet are chosen according to Equation [£.50, where 0 < r < 1 is chosen
according to a Gaussian distribution with mean 0.7 and standard deviation 0.1.

Hs: The values for uee; are chosen according to
uelect(x) = :Eﬂ +T

where 0 < < 1 is chosen uniformly at random and I" is chosen uniformly at random
between -0.1 and 0.1.

For these experiments we created 200 users whose preferences were created according
to H*. Each user had the same 15 possible cost choices and 15 possible energy outcomes.
We asked each user at most 100 queries. Our goal was to achieve a minimax regret of at
most 0.01. We rejected hypotheses when o < 0.01 which is typically seen as very strong
evidence against a hypothesis [69]. For all of our experiments, we chose p in Equation
to be equal to 1.

Experimental Results

As a benchmark, we first processed users relying just on minimax regret (with and without
the monotonicity constraint). The average number of queries needed to solve each user is
shown in Table We experimented with both the HLG and CS elicitation heuristics
(discussed in Section 2.2.3]) Without the monotonicity constraint, the average number
of queries was 42.0 using HLG and 66.7 using CS. With the monotonicity constraint, the
average was 22.7 using HLG and 53.6 using CS. Table also shows the results using
hypothesis-based regret with H = {#*}, i.e. what would happen if we knew the correct
distribution. In this case, using HLG the average number of queries is 2.4 and using CS the
average is 13.3. These results demonstrate that the more we know about the distribution,
the better the performance is.

Our next experiments looked at the performance of hypothesis-based regret using the
Reject(0) heuristic with the following sets for H: {H* Hi}, {H*, Ha}, and {H* Hs}.
Since, as shown in Table the HLG elicitation strategy outperforms the CS strategy
for our model, we relied on the HLG strategy. The average number of queries needed
to reject a hypothesis, as shown in Table 1.7, was 23.7, 2.4 and 12.9 for H;, Hs, and
‘Hs, respectively. Both H; and H3 overestimate the actual regret, resulting in an increase
in the number of queries needed. While H, is not identical to H*, for our simulations,
the regret estimates provided by these two hypotheses are close enough that there is no
increase in the number of queries when we include H, in H. We were unable to reject any

108

’ Regret ‘ HLG ‘ CS ‘

Minimax 42.0 66.7
(135 users not solved)
Minimax with | 22.7 23.6
monotonicity (143 users not solved)
hPrMMR 24 13.3
with H = {H*}

Table 4.6: The mean number of queries needed to process a user using either the HLG or
CS strategy based on different models of regret. The averages are based on only those users
we were able to solve, i.e. obtain a regret of at most 0.01.

] H \ Mean ‘
{H* Hi} | 24.7
{H* Ho} | 2.4
{H*, Hs} | 12.9

Table 4.7: Mean number of queries using hPrMMR with the Reject(0) heuristic for different
hypotheses sets.

of the incorrect hypotheses using Reject(0). However, we know from Proposition (3| that
our regret calculations are still correct.

We next experimented with the Reject(1) heuristic, again using HLG elicitation heuris-
tics. We tested the same sets of hypotheses for H as in Table and the results are shown
in Table 4.8l We were able to reject H; after 5 users, which reduced the overall average
number of queries to 7.4 when H = {H*, H;}. Thus, we can easily differentiate #; from
‘H* and doing so improves the overall average number of queries. With the additional
querying in Reject(1), we were able to quickly reject Hy. However, since including H, did
not increase the average number of queries, there is no gain from rejecting Hs and as a
result, the average number of queries rises to 8.29. It took 158 users to reject Hz. As a
result, the average number of queries increased to 80.0. This means it is relatively difficult
to differentiate H3 from H*. In this case, while including Hs3 in H increases the average
number of queries, we would be better off not trying to reject Hs when processing only
200 users.

Finally, we experimented with H = {H*, H;, Ha, H3} using Reject(n) with different
values of n. The results are shown in Table [£.9] With n = 0 we are unable to reject any of
the incorrect hypotheses, however the average number of queries is still considerably lower

109

H Mean | Number of users needed to
reject hypothesis

(7 H.} | 74 5
{7 Hy} | 83 11
{7, Hs} | 80.0 158

Table 4.8: Mean number of queries using hPrMMMR and Reject(1) heuristic for different
hypotheses sets.

n = | Mean | Number of users needed to
reject Hy,Ha,H3
0 26.0 NR,NR,NR
1 15.0 5NR,NR
2 18.5 5,11,NR
3 80.0 5,11,158

Table 4.9: Mean number of queries for using hPrMMR using the Reject(n) heuristic with
varying values for n. We also show that number of users to reject each hypothesis. The
hypotheses set is H = {H*, H1,Ha, Hs}. NR stands for not rejected.

than for minimax regret. With n = 1 we are able to quickly reject H; and, as a result,
the average number of queries decreases to 15.0. For n = 2 we are able to also reject Hs.
However, H, takes longer to reject and since Hy does not increase the number of queries,
using Reject(2), means the average number of queries rises to 18.5. Finally, with n = 3,
we are able to reject Hg as well as H; and H,. While having H3 in H increases the number
of queries, rejecting Hs is difficult enough that the average number of queries rises to 80.0.

These experiments show how hypothesis-based regret outperforms minimax regret.
While this is most noticeable when we are certain of the correct hypothesis, our approach
continues to work well with multiple hypotheses. The Reject(n) heuristic is effective at
rejecting hypotheses, improving the long term performance of hypothesis-based regret.

4.5 Conclusion

In this chapter, we introduced two new methods for giving an upper bound on the regret
from each decision. Both methods provide a probabilistic upper bound on the best worst-
case regret. These methods are especially well suited for processing a sequence of users.

110

The first method, IPrMMR, makes no assumptions about the users’ preferences and learns
from each of the users. Therefore, as we process more and more users, the performance
of IPrMMR increases. The second method, hPrMMR, uses a set of hypotheses about the
distribution all the users’ preferences are chosen from. As long as one of the hypotheses is
correct, the bounds given by hPrMMR are correct. In this case, the correctness of hPrMMR
is not affected by incorrect hypotheses. Instead, incorrect hypotheses only result in higher
estimates of regret. To improve the performance of hPrMMR, we provided methods for
rejecting the incorrect hypotheses.

Experimental results showed that the bounds given by both IPrMMR and hPrMMR
are never higher than MMR. The experimental results also showed how the bounds on
regret given by both IPrMMR and hPrMMR improve with each additional processed user.
The performance of hPrMMR was noticeably better than IPrMMR; however, this is due
to the stronger information requirement of hPrMMR.

111

Chapter 5

Multiattribute Preferences and
Preference Elicitation

Multiattribute preferences allow for a natural way to express preferences in complex sit-
uations. In the worst case, however, the number of outcomes grows exponentially with
respect to the number of attributes. Multiattribute utility independence (MUI) models of-
fer a way to avoid this exponential growth by compactly representing a user’s preferences.
In this chapter, we discuss how to take advantage of some of these models to improve the
preference elicitation process. The main focus of this chapter is to compare the relative
compactness of different independence models.

5.1 Preference Elicitation

With or without multiple attributes, there are two key steps for preference elicitation:
querying the user and calculating the regret. In Section [2.3.2], we reviewed approaches for
querying the user and calculating minimax regret while taking advantage of either Additive
Independence or Generalized Additive Independence (GAI) decompositions of preferences.
Calculating minimax regret with Additive Indpendence is polynomial in time. However,
Additive Independence is strict enough that we can rarely make use of it. While GAI
is more useful in practice than Additive Independence, current methods for calculating
minimax regret with GAI have, in the worst case, an exponential runtime. In this section,
we discuss how Conditional Difference Independence (CDI,.) can achieve a balance between
these two MUI models.

112

Figure 5.1: A simple example of a CDI, representation.

We start by discussing how to do preference elicitation based on a CDI, decomposition.
Given a CDI, decomposition, the goal of eliciting preferences is to bound v’y (z|Pa(A;)) for
each attribute. This in turn requires us to bound both Ay and v’y (z|f) for every attribute
A; and every local outcome f € Pa(A;). This can be done simply by using the global and
local standard gamble queries discussed in Section [2.3.2

We next show that, given a CDI,. decomposition, calculating minimax regret is polyno-
mial with respect to the size of the CDI, representation. Let Pry 4 be the marginal prob-
ability distribution over the attribute A given decision d. For example, if A = {4, Ay},
then for each outcome a; € A;, we would have the marginal distribution

Pr (a;) = Z Pdr((al,ag)).

d7A1
az €A2

We also define C4jpq(a) to be the utility constraints over the local outcomes in A given
Pa(A). For example, if A = {Ay, Ay, A3}, Pa(As) = {41, Ay} and Ay = {a1,a]}, Ay =
{ag,ay} and As = {as, a4} then

CA3|P‘1(A3) = {C(a’3|{a17 a2})= C(agHalv a’2})7 SRR C(CLQHCLQ, a2})7 .- }

where C(as|{a1,a2}) is the utility constraint on the local outcome aj given the conditional
outcome {ay, as}.

113

With these definitions, we calculate pairwise maximum regret, Equation [2.13] as;

PMR(d, d',C) = max Z(Fd’/r(x) - I?jr(:t))u(x)

- Teag::(m %uA z|Pa(A

=) xezxag,ru) ~ Pr(2))u(a] Pa(4))

=3 Pr(a) = Pr(a)| ui(alPa(4)) (5.1)
_ A% E; maj‘(pz [Pr aAp) — Prlan p)} u(a), (5.2)

where Pry(aAp) is the marginal probability over A x Pa(A). We can simplfy Equation
to because of a unique property of calculating PMR using a CDI, representation; the
utility values we choose for one node do not affect which utility values we can choose for
other nodes. For example, consider the CDI, representation in Figure[5.1 We calculate the
minimax regret by choosing values for u'y (a) and u'y, (a|Pa(A;)). However, vy (a|Pa(A;))
is not dependent on uy (a), u'y,(a|Pa(A;)) is only dependent on the realization of the local
oucome for the attribute A;. Since calculating minimax regret does not require choosing
realizations, we can maximize u’y, and vy, (a|Pa(A;)) independently of each other.

We can constrast this unique property by considering the related problem of choosing
the outcome which maximizes utility using a CDI, representation. (This problem is anal-
ogous to maximizing probabilities in a Bayesian network [I1].) For utility maximization,
we need to choose the local outcome for each attribute. Since the possible utility values for
a child node are dependent on the chosen local outcomes of the parent nodes, we cannot
consider each attribute independently.

We illustrate the uniqueness of calculating minimax regret using CDI, representations
with the following definition and example.

Definition 14 (Local Pairwise Maximum Regret). Given a CDI,. representation and corre-
sponding utility constraints, the local pairwise maximum regret (IPMR) between decisions
d and d' with respect to the attribute A is given by

max Z Z [Pr alNp)— P;r(a A p)} u(a), (5.3)

u€Ca|Paia) pePa(A) acA

mchx [d (a N p)— F;r(a A p)} u(a).
pEPa(A) Alp

114

A a | e | g |

|)y, (A)][10,0.3] | [0.6,0.7] [[0.0,0.5] |

| A | ol [a [a |
w, (AJA = a}) [10.1,08] [[0.3,0.7] | [0.4,1]
wy, (AJA, = ab) [104,05 [[0.2,0.6] | [0.1,0.2]
', (A[A, = al) [10.3,0.9] [0.1,0.3] | [0.0,0.5]

(b) C(142|f41

Table 5.1: Example utility constraints for u’y (A) and v’y (A|A;) given the CDI, represen-
tation given in Figure [5.1]

(a) A (b) Az
Table 5.2: Probability distributions over A; and A, resulting from the decision d.

Example: Suppose we have the CDI, representation given in Figure (5.1, This represen-
tation has two attributes, A; and A,. The conditional utility values for A, are dependent
on the realization of A;. For example, suppose both A; and Ay have three local outcomes,
{ai,ad,al} and {a?, a3, a3}, respectively. We have two decisions, d; and dy as described in
Tables 5.2 and [5.3] respectively. A set of example utility constraints are shown in Table
Bl

To calculate the PMR between d and d’ with respect to the utility constraints in Table
b.1 we need to calculate the IPMR with respect to both A; and As. In this example, we
choose to start by calculating the IPMR, with respect to A;. We note that we could just
as easily start with A, without having to restructure our CDI, representation. We can

115

| Pra(A) | 1/6 [1/3]1/2] | Pra(Ay) [1/7[3/7]3/7]

(a) A4 (b) A

Table 5.3: Probability distributions over A; and As resulting from the decision d’.

rewrite Equation [5.3| as

IPMRa,(d.d) =) [Pr (a) — Pr @)} {urﬁx(a) i Pra,p(a) > Proala)

’ min ;
LA d, Ay u'y"(a) otherwise,

= (1/6 = 1/2)u(ay) + (1/3 — 1/4)u*(az) + (1/2 = 1/4)u(az)
11 1

= —50 + EO.? + 10.5

= 0.183.

To calculate the IPMR with respect to As, we need to calculate IPM Ry, q1, (PMR 4,01
and [PMR 5,41

I[PMR 4,1 (d,d)

11 1 1\ ., 13 15\ .. 13 1 1\ .
(5355 b+ (52 -5 D) wmadab + (53 - 5+ 5) wiadlod

13 27 1
== 01— 034+—-1
536 01T 12 0 g

= 0.0673

IPMR 4,,(d,d)

11 1 1\ . 13 1 5\ .. 13 1 1\ ..
= (5 A g) ui*(ailay) + <§ T g) uliy (a3las) + <§ A g) s (ailap)

11 3 95

_ 050 094 2 0o
62 U0 T3 02t oy

— 0.0278

116

outcome H umin ‘ ymax H Pry ‘ Pry
at,a? 0.1 1.1 || 1/16 | 1/42
al, a3 0.3 1.0 || 5/16 | 3/42
aj,as 0.4 1.3 | 3/16 | 3/42
as, a3 1.0 | 1.2 || 1/32]1/21
as, aj 0.8 1.3 || 5/32 | 3/21
ay, a; 0.7 | 0.9 | 3/32|3/21
ay,as 0.3 14 | 1/32]1/14
ay, a; 0.1 0.8 || 5/32|3/14
ay,a’ 0.0 1.0 | 3/32 | 3/14

Table 5.4: Utility constraints from Table converted to utility constraints over global
outcomes.

IPMR 4, (d,d)

=) 0.9+ L3 0.3+ e 0.5
224 T 224 T 224
=0.1451

Therefore,

PMR =IPMRu,(d,d) + IPMR 1 (d,d) + IPMR,,(d,d) + IPM Ry, (d,d) (5.4)
= 0.4232

We next compare the above derivation against the standard PMR calculation from
Equation [2.13] To do so, we first convert the utility constraints in Table into utility
constraints over the global outcomes. The resulting utility constraints are shown in Table
6.4 There are two things to note about the constraints in Table First, several of the
upper bound constraints are above 1. For example, u™(a}, a?) = 1.4. What this means is
that at least one of the constraints v’{**(a3) and u'{**(af|a}) is too high. However, we have
no way of knowing which is the constraint that is too high. We also note that (a3, a3) is the
only constraint for which the minimum utility value is 0. This means that z;, = (a},a2).
As a result, we can set both w}**(a3) and u§**(a3) to be zero. Both of these cases illustrate
how converting from a CDI, representation into a non-multiattribute setting can provide

additional information.

117

The derviation for PM R(d,d’) according to Equation is as follows. To provide
a direct comparison against the result from Equation [5.5 we do not alter the constraints
from Table Table 5.1l

PMR(d,d) = (i - i) a((al, a2)) + <% - 3) a™((al, a2)) + <% - 1%) " ((al, a3))
3
21

1 1 max 1 2 3 max 1 2 3 3 max
_ 13 min 1 2 27 min 1 2 13 min 1 2
11 max 2 2 3 min/ 2 2 11 max 1 2
+ 672u ((29 1)) 224u (27a2>> + 224u ((0’270“3))
9 max 13 max 27 max
T oot ((a3,ai)) + 291" ((a3,a3)) + 291" ((ag,a3))
13 27 13
== 01— == 03— —-04
336 112 112
+ 1 1.2 3 0.8 + 1 0.9
672 224 224
9 13 27
— 144+ —-0. —1.
* 224 + 224 0.8+ 224 0
= —0.1226 + 0.0531 + 0.6920
= 0.6225

Using Equation 2.13]instead of Equation[5.5to calculate PMR resulted in a significantly
higher than; 0.6225 verses 0.4232. O]

The IPMR can be calculated in linear time with respect to the size of A x Pa(A). Let
Pay.x be the conditional set with the largest cardinality, that is

Papax = Pa(A)|.
o = 215 , T, 1Pa(4)

Therefore, the overall PMR can be calculated in O(|A|-|A X Pamax|) = O(n - |A X Payax|).
In the best case where additive independence holds, Pay.x = @), then the runtime becomes
O(n|A]) = O(nm). In the worst case where no independence holds, then assuming the
attributes are ordered {Ay,..., A}, Panax = Pa(A,) = {A; X ... x A,_1} which gives a
runtime of O(m™). This complexity means that we can calculate minimax regret using a

118

CDI,. decomposition in polynomial time with respect to the size of the CDI, decomposition.
Thus, we see that using a CDI, decomposition allows us to calculate minimax regret as
efficently as if we were using a GAI decomposition [10, [13].

5.2 Comparing Decompositions

In this section, we compare how compactly preferences can be represented using different
types of utility independence. Our focus is on comparing CDI,. to other MUI models;
specifically Conditionally Additive Independence (CAI) and GAI, since there are well-
established methods for calculating minimax regret using both of these models. We also
compare Conditional Utility Independence (CUI) against both GAI and CDI,.

Converting CDI, to GAI

To convert from CDI, to GAI, we take every marginal utility function u’y (A;|Pa(A4;)) and
convert it into a LVF v, paca,)(x). Since both the marginal utility function and the LVF
will have a complexity of m!'t1Pe(4)l GAI decompositions are always as compact as CDI,.
decompositions.

Converting GAI to CDI,

We next show that, in the worst case, GAI decompositions may be exponentially more
compact than the corresponding CDI, decompositions.

To convert GAI into CDI,, we rely on the graphical form of CDI,., given in Section
. The end result of our conversion will be a directed graph G = (A, E). The com-
plexity of the resulting CDI, decomposition will be determined by the maximum indegree
in G. Specifically, if the maximum indegree in G is j, then the decomposition will have
a complexity of O(m?*1). This conversion is done by converting each LVF in the GAI
decomposition into a subgraph of G using the following two definitions and lemma.

Definition 15 (Skeleton CDI, graph). A skeleton CDI,. graph is an undirected graph based
on a CDI, graph with all the directions on the edges removed. Given the CDI,. decomposition
{Ag, Pa(Ay), ..., Pa(A,)}, we create the skeleton graph GEFdeton(AE) by including the
edge (A;, A;) if and only if either A; € Pa(A;) or A; € Pa(A4;).

119

Figure 5.2: An example of a skeleton CDI,. graph for the LVF v, .a,,4,(x). Since the
skeleton s a clique any ordering of the attributes will result in the same complexity for the
CDI, representation. For example, if we choose the ordering { Ao, A1, As}, Ay will have an
indegree of 2, Ay will have an indegree of 1 and Ay will have indegree of 0. If we choose the
alternative ordering { Ao, Aa, A1}, Ay will have an indegree of 2, Ay will have an indegree
of 1 and Ay will have an indegree of 0. FEither way, the resulting CDI, representation will
have a complezity of ©(m?) where m is the number of local outcomes.

Definition 16 (Clique). A clique is a fully connect subgraph of an undirected graph.

Lemma 8. Suppose that the LVF vp(x) where F© = {A,..., A;} cannot be factored.
Then the skeleton CDI,. subgraph corresponding to ve(x) must be a clique.

Proof. For simplicity, we ignore other LVFs in the GAI decompositions. We start off by
showing that given a clique skeleton, we are able to choose an ordering of the attributes
such that the resulting CDI, subgraph is able to represent vp(x). We then show that we
are unable to remove any edges in the skeleton subgraph and still be able to represent

vp(x).

If the optimal skeleton subgraph is a clique, all possible orderings of the attributes
are isomorphic to each other, i.e. the ordering does not affect the complexity of the
representation. For example, consider a LVF over the attributes {Ag, A1, As}. The clique
skeleton over these three attributes is shown in Figure[5.2] If we convert the skeleton into a
CDI, graph by imposing the ordering { Ay, A1, A, }, Ay will have an indegree of 2, A; will
have an indegree of 1 and Ay will have an indegree of 0. If we choose a different ordering,
say {As, A1, Ao}, Ao will have an indegree of 2, A; will have an indegree of 1, A; will have
an indegree of 0. In fact, imposing any ordering on the nodes in Figure [5.2] will result in
one node having an indegree 2, one node having an indegree of 1 and one node having an
indegree of 0. As a result, the ordering of the attributes has no effect on the complexity of
the resulting CDI,. graph.

Therefore, without loss of generality, we assume the ordering {Ao, ..., A,}. By def-
inition of a skeleton CDI, graph, the only way to create a clique skeleton is by setting
Pa(A;) = {Ao, ..., Ai1}. For notational simplicity, we let uf; o(7) = uly, 4, x4,(7), etc.

120

As a result, the sum of the conditional utilities for all attributes in F'%* is

i=0
= vg(2) + (v (2) —vp(2) + -+ (0, n1al®) =00 na(2) (5.6)
= U(T),...,l(x)
= vp(z)

Therefore, with the clique skeleton and the ordering { Ay, ..., A;}, we are able to represent

vp(z). The above derivation works because Equation is a telescoping series where all
but one term cancel out.

Suppose we wished to find a simpler skeleton subgraph that could still represent vg(z).
For example, we might want to remove the edge between A,,_; and A,,. We would do this
by setting Pa(A,) = {Ao,..., A2} As a result, we would get the following

n—1

> vi(@{ Ao, A) + o (@l{ Ao, -, Ana})

i=0

- US,...,nfl(x) + Ug,...,nf2,n(‘r) - US,...,nf2(x) (58)
Since Equations 5.7 and[5.8|are not the same, Equation [5.8]is not equal to vp(z). Therefore,
the skeleton corresponding to vp(z) must be a clique. O]

The complexity of storing the conditional utility values for one attribute is equal to
the attribute’s indegree plus one, e.g. if an attribute has an indegree of 3, the complexity
of storing the conditional utility values for that attribute is m* where m is the number of
local outcomes.

Definition 17 (Sink). A sink is a node in a directed graph with no outgoing edges.

Any topological ordering of the nodes will result in at least one sink, specifically the
last node according to the ordering. For the feature F'| since the resulting skeleton is a
clique, all nodes are connected which means there must be exactly one sink. The indegree
for the sink node is m!F*"'I=! which means the complexity for storing the conditional utility
values at the sink is m/#"! (ignoring possible overlapping features). This means that the
complexity from using either a GAI or CDI, decomposition to store a single feature is the
same.

121

@v@
@‘@

Figure 5.3: A possible skeleton CDI,. graph over the four attributes {A;, A, Az, As}. All
attribute orderings lead to a complexity of O(m*). However, multiple GAI decompositions
of varying complexity map to this CDI,. decomposition.

Any increase in complexity must be the result of converting overlapping LVFs. We
illustrate this increase in complexity with an example. Figure [5.3] shows an undirected
CDI, graph for some utility function u over 4 attributes. In this case, the graph is a
clique or a complete graph. As a result, all orderings are isomorphic to each other. This
means that all orderings induce a directed graph that is able to represent u. In all of these
orderings, there will always be a node with indegree of 3 which gives a CDI, complexity of
O(m*). The problem is that there are multiple GAI decompositions which all lead to this

graph; e.g.
U(T) = Uy x Ay (T) + Uy a5 (T) + Uy x4, (T) F+ Uaynas (T) + Uy, (T) + Unzna, (T)

and
U(T) = Uy x Ay A5 (T) F UA x A A4 () F UA xA3x4, (T) F Unyxasxa, (T)

both lead to the CDI,. decomposition in Figure |5.3] The complexity of the first decompo-
sition is 6m? and the complexity of the second is 4m3. The problem is that the graph in
Figure |5.3] is unable to distinguish between these two decompositions. In fact, according
to Figure 5.3 u cannot be decomposed at all using a CDI,. representation.

We generalize this problem by considering a fully connected CDI, graph with n at-
tributes. Since all orderings are isomorphic to each other, without loss of generality, we
assume that the ordering is {Ay,..., A,}. This means that the indegree for A; is 0, for
Ay is 1, etc. The complexity of A; is m, the complexity of Ay is m?2, etc.. This gives an

122

Algorithm 3 A greedy algorithm for converting GAI representations into CDI,. represen-
tations.
- Convert the GAI decomposition into an undirected CDI, graph.
- Rank attributes by their degree in the undirected CDI, graph in descending order.
- Order attributes according to their rank, e.g. the attribute with the highest degree is
first. Ties are broken at random.

overall complexity of

> m

1<i<n

n+1_1
_mtt -1

~m". (5.9)

There are many different GAI decompositions which map to this one CDI, decomposi-
tion. Of all these decompositions, the one with the lowest complexity is

uX)= Y uaa(X)
{4i,4;}CA
1<j

The complexity of this decomposition is

n(n—1
(n—1) m?,
2
which is exponentially more compact than Equation [5.9

We are also interested in giving an upper bound on the complexity of a CDI, decom-
position in terms of the complexity of the original GAI decomposition. To do so, we used
Algorithm [3] As we did with finding the maximum clique, we start by converting the
GAI decomposition into a skeleton CDI,. graph using a clique representation for each LVF.
Attributes are then inversely ordered by their degree, e.g. the attribute with the highest
degree is ranked first, etc. Ties are broken at random. The combination of the undirected
CDI, graph and the ordering of the attributes gives a CDI, representation. The complexity
of any ordering given by this algorithm is an upper bound on the complexity of the optimal
CDI, decomposition. Since this is a randomized algorithm, we can repeat it multiple times
to try and find a better ordering.

123

4 (a)—()

Figure 5.4: The skeleton CDI, graph representation of Equation[5.10

Example: Suppose we have 4 attributes, {Ag, A1, A, A3}, and the following GAI
representation of wu,

U(ZE) - >‘A07A1UA0><A2 (I) +)‘Al,A2,A3UA1><A2><Aa (5(]) (510)

We use a clique representation for each LVF in Equation [5.10l The resulting skeleton
CDI, decomposition is shown in Figure[5.4 The degrees of the attributes in Figure are
{1,2,3,2}, respectively. Then one possible order which could result from our algorithm
is {Ay, A3, A1, Ap}. Since there are two attributes with degree 2, we could also have the
order { Ay, Ay, Az, Ao}. In this case, both orderings result in CDI, representations with the
same complexity.

Converting CAI to CDI,

We next show that CDI, is (asymptotically with respect to both m and n) as compact as
CAIL To do so, we provide an algorithm, shown in Algorithm [to convert from a CAI
decomposition to a CDI, decomposition. We first convert the CAI decomposition into a
GAI network. By Corollary [1} there will exist no cycles in the GAI network which are not
part of a clique. We also create a skeleton CDI,. graph over the attributes A where each
LVF in the CAI decompositions is represented by a clique.

Finally, we need to choose an ordering over the attributes. We choose any node in the
GAI network and use either a breadth first search (BFS) or depth first search (DFS) to
create an ordering of the features, {F}, ..., F;}. We iterate through the features, assigning
an order to each attribute the first time we encounter it. Some of the attributes will
already have been ordered when we converted a previous feature. The order chosen for the
remaining (i.e. new) attributes in the feature does not matter, as long as they are ordered

124

Algorithm 4 An algorithm for converting a CAI decomposition of a utility function into
a CDI,. decomposition which does not increase the complexity of the decomposition.
Require: A CAI decomposition of a utility function u.
Ensure: A CDI, decomposition of u based on an directed graph G. The directed graph is
based on an undirected graph G’ = (A, E) and a topological ordering of the attributes.
- Convert the CAI decomposition into a GAI graph.
- Using either a BF'S or DFS rooted at any feature in the GAI graph, create an ordering
of the features, F = {Fy,..., F}.
for F; € F do
- For all attributes in F; that have not already been assigned an order, choose any
ordering which preserves the rank of the attributes which have already been ordered,
that is, rank the new attributes after the old ones.
end for

after the already encountered attributes. (If we have an unconnected GAI network, we
just repeat the search over each component.)

Lemma 9. The ordering of the attributes given by Algorithm [{ creates a CDI, decompo-
sition with asymptotically (as n — oo) the same complexity as the original CAI decompo-
sition.

Proof. We show that for each attribute, the indegree for that attribute is at most equal to
the size of the feature where we first encountered that attribute, minus 1. For example, if
we encountered attribute A; while processing the feature Fj, then the indegree for A; in
our CDI, graph is at most |Fy| — 1.

For this proof, it is helpful to think that an edge does not exist until we have processed
the corresponding feature, e.g. if there is an edge between A; and A; due to the feature
Fj,, then we pretend that edge does not exist until we process Fy, even if both A; and A,
have both been assigned ranks before. Let Fy be the root feature chosen during our BFS
or DFS.

When we first encounter A; and assign it a rank, the indegree of A; is at most |Fi| — 1.
The indegree of A; can only increase if, while processing another feature, say F,, we
encounter another attribute, say A;, which has a lower rank than A; and does not already
have a directed edge into A;. We use proof by contradiction and assume such an attribute
A; exists. For A; to have been given a rank without there being an edge from A; to A;, there
must exist a sequence of features Fy, Fy,, ..., Fsy which does not include Fj and in which
every feature includes A; and none include A;. Similarly, there must exist the sequence

125

i A, A >, Aa A

Figure 5.5: The GAI graph representation of the CAI decomposition given in Equation
[5.71]

Fy, Fy,, ..., F, where every feature includes A; but none include A;. This means that
we can construct the cycle Fg, Fy, ..., Fy, Fy, Fy—1, ..., F,, Fo where the overlap between
features changes, which contradicts Corollary [I} Therefore, A; cannot exist.

Therefore, the complexity of representing the conditional utility at each attribute is
O(m/F¥l). If we let Fp.. = argmaxy |F;|, then the overall CDI, decomposition has a
complexity of O(m!*maxl) which is also the complexity of the initial CAI decomposition. []

Example: Suppose we have the following CAI decomposition of a utility function
which we want to turn into a CDI, decomposition:

u(‘r) = UA;xAyx A3 (l‘) + uA2><A3><A4(x)‘ (511)

We start by first converting Equation to the GAI graph decomposition shown in
Figure 5.5 Our algorithm works with any ordering of the features in Figure [5.5] based on
a BFS or DFS. In our example, any ordering is the result of a BFS. Therefore, suppose
Fy = {A), Ay, A3} and Fy = {As, A3, Ay}. We next need to decide on an ordering of the
attributes in F. According to our algorithm, any ordering will work. Therefore, we choose
the ordering A;, Az, A;. Using this ordering, we create the CDI, graph representation
of F} as shown in Figure We next convert Fy. Since the ordering of Ay and As
has already been decided, the ordering of A, is automatically determined. The resulting
CDI, decomposition is shown in Figure . Note that the complexity of the CAI
decomposition is 2m? and the complexity of the CDI, decomposition is 2m? + m? + m.

Given the ordering of the features in the GAI graph in Figure the attribute A4 will
always be ordered last. However, according to Algorithm [4] the ordering of the attributes
Aq,As and Aj does not matter. To demonstrate this flexibility, we consider another example
of converting Equation [5.11] into a CDI, representation where we choose the ordering
Ay, Az, A1, Ay. The resulting conversion is shown in Figure [5.7] n

There is a definite similarity between converting a CAI (or GAI) representation into a
CDI, graph and creating a Bayesian network. Algorithms exist for constructing Bayesian
networks which first create a skeleton of the Bayesian network and orient the directions
of the edges based on observed data [51]. This similarity is not too surprising given the

126

(a) The CDI, decomposi- (b) The CDI, representation of Fy +
tion of F1 . F2 .

Figure 5.6: The CDI, graph decomposition of the CAI decomposition given in Equation
based on the ordering Fy = { A1, Aa, A3} and Fy = {As, Az, Ay}. Figure|5.6(a) shows
the CDI,. decomposition of just Fy. Figure shows the final decomposition.

127

(a) The CDI, representa- (b) The CDI, representation of
tion of Fj. Fi + Fs.

Figure 5.7: A second example of a CDI, representation of the CAI factorization given in
Equation based on the ordering Fy = {As, A3, A1} and Fy = {As, A3, Ay}. Figure

5.7(a) shows the CDI, representation of just Fy. Figure|5.7(b) shows the final representa-
tion.

128

Figure 5.8: A CDI, graphical representation with a complexity of O(m3 + (n — 1)m? +m).

strong connections between CDI, graphs and Bayesian networks [I1]. The main difference
is that when constructing a CDI,. graph, we are not relying on observed data but using
the information from the structure of the CAI or GAI representation. Our algorithm for
converting CAI decompositions runs in linear time. However, our algorithm for converting
GAI decompositions does not run in polynomial time (or at least, the algorithm cannot
guarantee an optimal solution in polynomial time). A possible direction for future work
would be to combine our algorithm with existing algorithms for creating Bayesian networks.

Converting CDI, to CAI

There are cases where CAI representations are exponentially more complex than the corre-
sponding CDI, representation. For example, the CDI, graph in Figure 5.8 has a complexity
of O(m?®+ (n — 1)m* +m). However, since there is a cycle through all attributes, the cor-
responding CAI representation would have a complexity of O(m™).

Converting GAI to CUI

As mentioned, Engel and Wellman show that CUI gives a weakly more compact represen-
tation of u than CAI. We next show that GAI can give an exponentially more compact
representation than CUIL

We consider the GAI decomposition over A = {A;, Ay, A3},

U{A17A2}<x) + U{A27A3}<x) + u{A37A1}(x)‘ (512)

We will show that there exist utility functions of the form in Equation for which the
only CUI decomposition is the trivial one. The CUI decomposition of u, given in Equation
234 is

U(Al, Ag, Ag) == f(Al, AQ) + g(Al, AQ)h(AQ, Ag) (513)
(By symmetry in Equation , the order of the variables in Equation does not matter.
The actual definition of CUI given in Equation has h(Ay, A3) = u(A; = ay, As, A3).

129

For simplicity, we consider the more general case.) For now, we ignore the f(A;, Ay)
parameter in Equation [5.13] If a non-trivial CUI decomposition of Equation [5.12] exists,
then

g(Alv AQ)h(AQ’ A3) = u{A1,A2}($) + U{AQ,A3}($) + U{AZB;AI}('I)
U{A1,A2}($> + U{AQ,A3}($) + U{AS,A1}($)

A, As) = 5.14
g(1, 2) h(AQ,Ag) ()
Equation [5.14] must hold for every az € As. Therefore,
Ugay A2} (T) + Uga, 453 (T ag=a5) + Uz 40} (T Ag=a5)
h(A27 CL3)
_ u{Al,AQ}(x) + U{AQ,As}(x|A3=a§) + U{A3,A1}(‘T|A3:a§) (5 15)
h(As, a3) ’ '

for every pair of local outcomes {a3, a3} C As. Note that Equationis a linear constraint
with two unknowns, h(As, az) and h(As, ay). If |[As| = 2 then we have 2 unknowns in total
and 1 linear constraint. However, if |A3| = 4 we have 4 unknowns and 6 constraints (i.e. 4
choose 2). This is known as an overdetermined system, and with the exception of very rare
cases, such systems do not have a solution [37]. An example of an overdetermined system
is trying to fit a series of many points to a single line. Even if we include f(A;, As) as
an additional unknown, since f(A;, As) is not dependent on As, this would only give one
additional unknown. As a result, as the number of local outcomes in Az grows, the number
of constraints grows quadratically while the number of unknowns only grows linearly. Thus,
in general the nontrivial CUI decomposition in Equation |5.13| will not exist.

We can generalize Equation to include as many attributes as we want.
Comparing CUI and CDI,

Since Equation [5.12]is also a valid CDI,. decomposition, in the worst-case CDI, decompo-
sitions are exponentially more compact than CUI decompositions. However, since GAI is
always as compact as CDI,, it is also possible for CUI decompositions to be exponentially
more compact than CDI, decompositions.

Summary of Relative Complexities

To summarize our findings in this section (as well as previous findings), we use the graph
shown in Figure [5.9. Each of the nodes in Figure |5.9 represents a type of independence

130

!

Figure 5.9: A graphical summary of the complexity results in Section [5.3

model. A one-way directed edge from A to B means that B is always as compact as A and
may be exponentially more compact. This property is transitive.

5.3 Experimental Results

In Section we showed that, in the worst case, converting from GAI to CDI, can result
in an exponentially more complex representation. In this section, we investigate what
happens in average cases. The average case is important because CDI, representations are
conceptually simpler than GAI representations. Hence, doing elicitation based on a CDI,
representation may be more efficient. Any increase in complexity resulting from using a
CDI, representation, however, may make the process impractical. For example, suppose
we have a complexity of m? with a GAI representation and m? with a CDI, representation.
Then if m = 10, with the GAI representation we need to query the user about 100 outcomes,
a large but feasible number of outcomes, while,with the CDI, representation, we would have
1000 outcomes, an infeasible number of outcomes to query a user about.

5.3.1 Experimental Setup

We generated random GAI representations over 25 attributes (each with m local out-
comes), converted them into CDI, representations, and measured the resulting increase in
complexity. The complexities of the GAI and CDI, representations are given by cga; and
copl,, respectively. For example, if cgay = 3, then the complexity of the GAI representa-
tion is ©(m?3). We varied both the complexity of the GAI representation (by varying the
complexity of each individual LVF) and the number of LVFs.

The challenge is that the change in complexity is dependent on how good we are at
optimizing the CDI, representation. Finding the optimal CDI, representation can be a

131

hard problem [I1]. While this means we could argue that, at best, it is hard to find a CDI,
representation that is not more complex than the GAI decompositions, we would like a
stronger result. Our goal is to give a lower bound on the increase in complexity, regardless
of how well the CDI, representation is optimized.

To give a lower bound on the complexity of all possible CDI,. representations, we focus
on the size of the maximum clique in the undirected CDI, representations. If we can show
that a certain clique of attributes exists in all possible undirected CDI, representations,
then the minimum possible complexity for using a CDI, representation is at least equal to
the size of that clique. The actual complexity may be larger but the maximum clique size
provides a lower bound. Finding the maximum clique in a graph is NP-complete [35]. We
used the Bron-Kerbosch algorithm as it has been shown to be one of the fastest maximum
clique finding algorithms in practice [16] [18] [38]. To find an upper bound on the com-
plexity, we used Algorithm [3] Since ties are broken at random, for each conversion, we ran
Algorithm [3] 1000 times.

5.3.2 Results

We started with a complexity of cga; = 5 and varied the number of feaures between 1
and 15. The median and maximum complexity of the resulting CDI, representation are
shown in Figure [5.10f The median complexity grows gradually. With 15 features, the
median complexity is between Q(m®) and O(m?). The worst-case complexity grows more
quickly; with 15 features the maximum complexity is between Q(m?) d O(m!?). Since any
increase in complexity would make CDI,. representations unusable for eliciting preferences,
at best we could use CDI, representations with up to about 9 features before the complexity
starts to increase. Brazinuas and Boutilier were able to calculate minimax regret with GAI
representations with 13 features [I3]. In the best case with the lower bound on the median
complexity, CDI, could be used as an alternative representation. However, even with the
lower bound on the maximum complexity, calculating minimax regret would be infeasible.

We were also interested in how accurate our lower and upper bounds on the complexity
of the CDI, decompositions were. Figure [5.11| shows the median and maximum difference
between the lower and upper bounds as a function of the number of LVFs. With up to
6 features, on average, there is no difference between the upper and lower bounds. Even
with 15 features, the median difference is only 2 orders of magnitude, e.g. we could have a
lower bound of Q(m”) and an upper bound of O(m?). This gives us a fairly accurate range
for the complexity. However, in the worst case, the difference is 4 orders of magnitude.

We next experimented with GAI representations with complexity ©(m!?), i.e. repre-

132

25

+ Upper bound Upper bound
- - Lower bound - - Lower bound

20 1 20

Cepry
Cepry

10F 1 10F

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Number of features Number of features

(a) Median complexity (b) Maximum complexity

Figure 5.10: The median and mazimum complexity of a CDI,. representation of a utility
function originally given in a GAI representation with a complexity of ©(m?>). For example,
if the upper bound on ccpj, is 6, then the complexity of the CDI, representation is O(m®).
We varied the number of features in the GAI representation between 1 and 15, each with a
size of & attributes.

»

‘,
I
A=
g
-
g &1
g
g
8
s 3
=] 4
g
g

>

Figure 5.11: The difference between our upper bound and lower bound on the complexity
of using a CDI,. representation. For example, if difference is 2 and the lower bound on the

Difference between lower and upper bounds on complexity
-

o

Number of features

complezity is Q(mS), then our upper bound is O(m®).

133

25

201

=

\

Median complexity

Maximum complexity

6 8
Number of features

10

(a) Median complexity

Figure 5.12: The median and mazimum complexity of a CDI, representation of a utility
function originally given in a GAI representation with a complexity of ©(m!°). We varied
the number of LVFs in the GAI representation between 1 and 15, each with a size of 10

attributes.

»

Difference between lower and upper bounds on complexity
-

Figure 5.13: The difference between our upper bound and lower bound on the complexity
The original GAI representations had a complexity of
O(m!). The spike is due to the fact that the upper bound must stop increasing before the

of using a CDI, representation.

1 6 8 10 12
Number of features

(b) Maximum complexity

=

w

o

Number of features

lower bound stops increasing since the worst-case upper bound is O(m?®).

134

Figure 5.14: The skeleton CDI,. graph of the LVFs in Equation|5.16,

sentations where each feature was composed of 10 attributes. Since GAI representations
with a complexity of ©(m!?) are not practical to deal with, these experiments had more
of a theoretical motivation. The median and maximum complexity of the resulting CDI,
representations are shown in Figure 5.12, The median complexity increases faster than
the results in Figure , and with 15 features, we have a range of complexity between
Q(m!") and O(m?*). The maximum complexity also increases faster than in Figure
and with 15 LVFs we have a worst-case range of complexity of Q(m?") and O(m??).

Once again, we also compared the difference between the lower and upper bounds on
the complexity. The results are shown in Figure 5.13. The median difference between
lower and upper bounds is relatively small; at most either 2 or 3 orders of magnitude.
This is comparable to the median difference shown in Figure for 5 attributes per LVF.
However, the maximum difference, 7 orders of magnitude is considerable and much larger
than the maximum difference seen in Figure 5.11] We see that with enough LVFs, the
difference between our lower and upper bounds starts to decrease. This is because the
upper bound must stop increasing before the lower bound stops increasing.

We next investigated “hard” conversion cases where we try to maximize the difference
between the lower bound and upper bound of the complexity of the CDI, decomposition.
With our current approach, there is no guarantee that the resulting undirected CDI,. graph
will be connected. In a connected graph, there is a path between any two nodes. One
possible way to guarantee a connected graph is to add the LVFs

UA17A2(J:)7 VAL, Ay (I>7 -5 VAL A, (.73), (516>

to all of the GAI representations. The undirected CDI, graph resulting from just these
LVFs is shown in Figure [5.14] Note that as long as the complexity of the GAI repre-
sentation is at least ©(m?), the addition of the LVFs in Equation will not increase
the complexity of the GAI representation. Thus, these LVFs will increase the number of
edges in our undirected CDI, graph (thus hopefully increasing the complexity of the CDI,.
representation) without increasing the complexity of the GAI representation. The median

135

153

201

Median complexity

Maximum complexity

L L L L
6 8 10 12 14
Number of features

n L L L L L L L
4 6 8 10 12 14 (2 4
Number of features

(a) Median complexity (b) Maximum complexity

Figure 5.15: The median and mazimum complexity of a CDI. representation of a utility
function originally given in a GAI representation with a complexity of ©(m®). We varied
the number of LVFs in the GAI representation between 1 and 15, each with a size of 5
attributes. All of the GAI representations included the LVF's in Equation[5.16

and worst case complexity of the resulting CDI, representations are shown in Figure [5.15
These results can be compared to the results in Figure [5.10] We see that for the lower and
upper bounds for both the median and maximum complexity, there is an increase of one
order of magnitude.

To create harder conversion cases, we need to find a way of minimizing the size of the
maximum clique (since our lower bound is determined by the size of the maximum clique)
while maximizing the number of edges in the CDI, (since more edges usually results in
a higher complexity.) For a given number of attributes n and a clique size ¢ + 1, the
maximum number of edges a graph can have without having a clique of size ¢+ 1 is t(n, q)
where [58]

(g —n?

2
Furthermore, the graph containing t(n,q) edges without a clique of size ¢ 4+ 1 is unique
up to isomorphism and is known as the Turdn graph [58]. The Turdn graph can easily
be constructed by having an edge between attributes A; and A; if and only if i and j are
incongruent modulo ¢, that is (¢ — j) mod ¢ # 0 [21].

t(n,q) <

We created Turan graphs with 25 attributes and varied the maximum clique size be-

136

20+

10F

Complexity of CDI, decomposition

0 5 10 15 20 25
Maximum clique size

Figure 5.16: The maximum complexity of a CDI, representation based on a Turdn graph.

tween 2 and 25. The maximum clique in the (n, q) Turdn graph is of size of ¢ which allows
us to easily give a lower bound on copy.. The lower and upper bounds on copj, are shown
in Figure 5.16] As expected, the upper bounds are considerably larger than the lower
bounds. For example, with a maximum clique size of only 5, we have an upper bound of

O(m*).

These results show that for simple utility functions, e.g. utility functions composed of
only a small number of LVFs with each LVF having a low complexity, CDI,. decompositions
may be an efficient alternative to GAI decompositions. As either the number of LVFs
increases or the complexity of the LVFs increases, however, the complexity of the CDI,
decompositions can be noticeably larger than that of the equivalent GAI decompositions.

Experimental Conclusion

Braziunas and Boutilier were able to solve minimax regret calculations using GAI decom-
positions with up to 13 LVFs (or 13 features) with up to 5 attributes in each LVF. In our
experiments, the best-case complexity for CDI,. with 13 LVFs with 5 attributes each was
between Q(m®) and O(m®). Even in simple scenarios, with 15 features each with 5 at-
tributes, the worst case complexity was between Q(m?) and O(m'?). None of these values
would result in a representation suitable to use for querying a user about. Only in the best
of these cases, e.g. O(m®) or O(m"), would we have representations suitable for minimax
regret calculations.

Our results showed that, on average, we were able to find accurate lower and upper

137

bounds on the complexity of CDI, representations. The average range of complexities was
usually at most two or three orders of magnitude. We were also able to find many cases
where we found the exact complexity, that is, the lower complexity bound and the upper
complexity bound were equal. This shows that our algorithm for determining upper bounds
on complexity, despite being simple and random, can be effective. We also investigated
many cases where there was a considerable difference between the lower and upper bounds.
These cases highlight areas for future research.

Since our results were based on random cases, our results may not apply to specific
cases of interest. There may be real life examples where CDI representations are equally as
compact as GAI representations. Our methods for determining a lower and upper bound
on the complexity of the conversion can be applied to any set of CDI representations. As a
result, given a specific real world scenario, we can easily check whether a CDI representation
would be useful.

5.4 Conclusion

While many different multiattribute utility independence (MUI) models have been pro-
posed, we feel there has been little work done on comparing the relative compactness of
these different models. While the proposed MUI models were all designed to investigate
interesting properties in multiattribute preferences, a model is not worthwhile if it cannot
compactly represent utility preferences. Our main proofs show that GAI can be exponen-
tially more compact than CDI,., CDI, can be exponentially more compact than CAI and
that both GAI and CDI, can be exponentially more compact than CUI.

The worst case is often an extreme overestimate of the average case. Therefore, it is
important to investigate the average relative compactness of these models. In the second
half of this chapter, we presented experimental results which showed that, with the excep-
tion of relatively simple cases, GAI is often noticeably more compact than CDI, even in
average cases.

138

Chapter 6

Conclusion

In order for computers to help people make good decisions, we must have good models
of peoples’ preferences. The major theme in this thesis was to look at ways of making
preference elicitation more practical. We accomplished this goal in two distinct ways. First,
we examined the underlying models that are traditionally assumed in preference elicitation
and found ways to make these models more realistic. Secondly, we examined ways of making
the elicitation process more efficient. We improved efficiency both by introducing new ways
of measuring and estimating regret and by comparing different models for multiattribute
preferences. The comparison of multiattribute models is important since there are so many
to choose from; previously there had been few comparisons made between differnt models.
Our comparisons provide a benchmark by which to judge different models.

6.1 Contributions

The main contributions of this thesis are:

e We demonstrated that standard gamble queries, the standard method for eliciting
preferences, are not compatible with cumulative prospect theory (CPT), the standard
descriptive model of human reasoning under uncertainty.

e The Gamble Equivalence Method, a new querying method which is compatible with
CPT and can be used to efficiently reduce the minimax regret.

e Learnt Probabilistic Minimazx Regret (IPtMMR) and hypothesis-based Probabilistic
Minimaz Regret (hPrMMR), two new methods for estimating and bounding regret.

139

Unlike minimaz regret (MMR), IPtMMR and hPrMMR are able to provide tight
upper bounds of the actual regret. The bounds provided by IPrMMR and hPrMMR
are probabilistic, that is, there is some probability that the actual regret is higher
than the given upper bound; however, the controller (the person using the preference
elicitation) is able to choose the probability of error. The lower the probability of
error, the higher the upper bound. If the controller decides on a probability of error
equal to 0, both IPrtMMR and hPrMMR behave similarly to MMR. As the probability
of error increases, IPrMMR and hPrMMR start behaving similarly to expected regret.
However, IPrMMR and hPrMMR do not need to make the strong prior knowledge
assumptions made by expected regret. Both IPrMMR and hPrMMR are especially
well suited to eliciting the preferences from a sequence of users.

e Finally, we showed that with the multiattribute utility independence (MUI) model
common difference independence (CDI,.), we can calculate MMR polynomially with
respect to the size of the CDI, model. We also showed, however that in the worst
case, utility representations using CDI,. will be exponentially more complex than with
GALI We also showed that, even in the average case, GAI provides a significantly more
compact representation.

6.2 Future Work

We review several different possibilities for future work.

6.2.1 Human Experiments

We would like to make use of our work in human experiments. There has been some work
done with human experiments and Al preference elicitation [I5]. We are unaware of any
AT work done which involved uncertainty or risk. Most of the work done with human
experiments and risk has been in management science research [2l, 5] [7, (61, [65], [71].

Of the many implementational issues to consider, the most important is peoples’ ability
to do calculations. All of our work has assumed that people are able to perfectly calculate
and articulate utility values and probability weightings. This is not the case in practice,
which results in people giving inconsistent responses to queries. If we can bound the
inconsistencies, we can incorporate them into our model. By limiting the accuracy of the
utility constraint sets, though the inconsistencies will also limit how low we can drive the
minimax regret. Thus, instead of querying until we get the minimax regret below a given

140

threshold, we might only be able to query until the maximum utility gap is of a certain
size, and say that we cannot improve on the resulting minimax regret. Recent work has
examined possible methods for dealing with the lack of precision in preferences [47].

6.2.2 Eliciting Intertemporal Preferences

It is easy to generalize many of applications for preference elicitation to intertemporal
settings where utilities are dependent on time. For example, would you rather pay extra to
avoid long layovers before the holiday or after the holiday? Postponing running the dryer
until the middle of the night might save money, but you might need clothing right now.

There has been considerable work done in management science and behavioural eco-
nomics on eliciting preferences in intertemporal settings [3, [4]. However, to our knowledge,
there has been little work done in Al on eliciting preferences in intertemporal settings. The

closest we are aware of is eliciting preferences for constructing a Markov Decision Process
(MDP) [53].

As with preferences under uncertainty, there is a standard economically rational model
of how people reason about intertemporal preferences [54]. This model is known as dis-
counted utility. For example, MDPs are built on the basis of discounted utility [54]. How-
ever, there is strong experimental evidence that people do not actually reason using dis-
counted utility [8, 40]. This evidence means that discounted utility is not a reasonable
descriptive model. To make matters worse, there is a strong feeling that discounted utility
is not even a reasonable prescriptive model [40].

This means that there are many problems with generalizing Al preference elicitation
to an intertemporal setting. How do we generalize SGQs or outcome queries? How do
we generalize minimax regret? What are good descriptive and prescriptive models to use?
Intertemporal preferences have strong connections with multiattribute preferences which
should be explored.

6.2.3 Improving the Performance of Learnt Probabilistic Regret

In the limit, as we process more users, learnt probabilistic regret will be able to give
accurate upper bounds on the actual regret. For example, if we choose a probability of
error equal to 0.2, then learnt probabilistic regret should give us a value that is an upper
bound 80% of the time. As we saw in the experimental results for learnt probabilistic
regret, even after processing hundreds of users, we were not close to this level of accuracy.

141

There are only a limited number of ways to improve the performance of IPrMMR which
are able to keep the theoretical properties of IPrMMR. Massart showed that the constant in
the Dvoretzky-Kiefer-Wolfowitz inequality cannot be improved [42]. This means that the
only ways to improve performance are by processing more users or by requiring a minimum
level of accuracy for the utility constraints for each user. Requiring a minimum level of
accuracy can be self-defeating. Aminimum level of accuracy requires a minimum number
of queries, which is at odds with the goal of minimizing the number of queries.

Other methods for improving the performance would forfeit the theoretical properties
of IPtMMR, but could work well in practice. For example, in Figure [4.3] we mentioned
that we consider a set of utility constraints C' to be compatible with the constraints C” if
and only if C' C C’. It might be worthwhile to include any set which overlaps with C’. For
example, if C' and C’ overlap, we could consider the set C'N C" and weight C by

lcnc]

e
i.e. the percentage of C that is compatible with C’. Another possible heuristic would
be to ignore some outcomes. As the number of outcomes increases, it becomes easier
for utility constraint sets to become incompatible. By focusing on only a few important
outcomes, e.g. those outcomes which happen often or have a large utility associated with
them, we increase the number of compatible utility constraint sets. However, by ignoring
some outcomes, we are also ignoring possible correlations between utility values which
could skew our results. It might also be possible to improve performance by accounting
for correlations between probability distributions.

6.2.4 Examining Probabilistic Regret from a Probably Approx-
imately Correct Perspective

We would also like to examine how probabilistic regret is related to Probably Approxi-

mately Correct (PAC) learning. The focus would on understanding the relationship be-
tween the Dvoretzky-Kiefer-Wolfowitz inequality and PAC learning.

6.2.5 Expanding our Comparison of Multiattribute Utility Inde-
pendence Models

Our comparison of multiattribute utility independence (MUI) models focused on models
which could easily be used to compute minimax regret. There is an obvious benefit to

142

comparing additional MUI models and examining if any of them also allow for easy com-
putation of minimax regret [45]. It would be especially beneficial to continue the work
done on comparing compactness in average cases, not just the worst case.

There is considerable use of MUI models in management science research [1, 24 67].
Examining this research would give us a better idea of the real-world uses of MUI models.
This would allow us to compare the relative compactness of MUI models for real-world
settings.

6.2.6 Improving the Efficiency of Multiattribute Preference Elic-
itation

Responding to standard gamble queries is not the only way for users to express preferences.
Recent work has examined new methods for reasoning about quantative preferences [43].
Some of these methods may be especially well suited for specific MUI models. Incorporating
these methods could be one method for improving the elicitation process.

143

References

1]

8]

[9]

Ali E. Abbas. Invariant utility functions and certain equivalent transformations. De-
cision Analysis, 4:17-31, 2007.

Mohammed Abdellaoui. Parameter-free elicitation of utility and probability weighting
functions. Management Science, 46:1497-1512, 2000. [40]

Mohammed Abdellaoui, Arthur E. Attema, and Han Bleichrodt. Intertemporal trade-
offs for gains and losses: An experimental measurement of discounted utility. The
Economic Journal, 120:845-866, 2010.

Mohammed Abdellaoui, Enrico Diecidue, and Ayse Onculer. Risk preferences at dif-
ferent time periods: An experimental investigation. Management Science, 57:975-987,

2011. [I41]

Mohammed Abdellaoui, Frank Vossmann, and Martin Weber. Choice-based elicita-
tion and decomposition of decision weights for gains and losses under uncertainty.
Management Science, 51:1384-1399, 2005. [40], [I40]

M. Allais. Le comportement de I’homme rationnel devant le risque, critique des pos-
tulats et axiomes de I’école Américaine. Econometrica, 21:503-546, 1953.

Han Bleichrodt and Jose Luis Pinto. A parameter-free elicitation of the probability
weighting function in medical decision analysis. Management Science, 46:1485-1496,

2000. [39], [IA0]

Han Bleichrodt, Kirsten I.M. Rohde, and Peter P. Wakker. Non-hyperbolic time
inconsistency. Games and Economic Behavior, 66:27-38, 2009.

Craig Boutilier. On the foundations of expected expected utility. In Proceedings of
the 18th International Joint Conference on Artificial Intelligence, Acapulco, 2003.

144

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuurmans. Constraint-
based optimization and utility elicitation using the minimax decision criterion. Arti-

ficial Intelligence, 170:686-713, 2006. [2], [3] L7, [19} 20} 21} B}

Ronen I. Brafman and Yagil Engel. Decomposed utility functions and graphical models
for reasoning about preferences. In Proceedings of the Twenty-Second Conference on

Artificial Intelligence, 2010. [2], [[26] [30] 31}, 114} [129]

Darius Braziunas and Craig Boutilier. Preference elicitation and generalized addi-
tive utility. In Proceedings of the Twenty-First Conference on Artificial Intelligence
(AAAI-06), 2006.

Darius Braziunas and Craig Boutilier. Minimax regret based elicitation for general-
ized additive utilities. In Proceedings of the Twenty-Second Conference on Artificial

Intelligence, 2007. [3 BT} 119}

Darius Braziunas and Craig Boutilier. Elicitation of factored utilities. Al Magazine,
29, 2008. 2]

Darius Braziunas and Craig Boutilier. Assessing regret-based preference elicitation
with the utpref recommendation system. In Proceedings of the 11th ACM conference
on Electronic Commerce (EC-11), EC *10, pages 219228, New York, NY, USA, 2010.
ACM.

Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected
graph. Commun. ACM, 16:575-577, September 1973.

Colin F. Camerer, George Loewenstein, and Matthew Rabin, editors. Advances in
Behavorial Economics. Princeton University Press, 2003.

Frederic Cazals and Chinmay Karande. A note on the problem of reporting maximal
cliques. Theoretical Computer Science, 407:564-568, 2008.

Urszula Chajewska and Daphne Koller. Utilities as random variables: Density esti-
mation and structure discovery. In Proceedings of the Sizteenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-00), 2000. [15]

Urszula Chajewska, Daphne Koller, and Ron Parr. Making rational decisions using
adaptive utility elicitation. In Proceedings of the National Conference on Artificial

Intelligence (AAAI), pages 363-369, Austin, TX, 2000. 1} 2} [14] [17] [34]

145

[21]

22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

Chong-Yun Chao and George A. Novacky. On maximally saturated graphs. Discrete
Mathematics, 41:139-143, 1982. [136

Li Chen and Pearl Pu. Survey of preference elicitation methods. Technical report,
Ecole Politechnique Federale de Lausanne, 2004. [T,

Robin P. Cubitt and Daniel Read. Can intertemporal choice experiments elicit time
preferences for consumption? FEzxperimental Economics, 10:369-389, 2007.

James S. Dyer, Peter C. Fishburn, Ralph E. Steuer, Jyrki Wallenius, and Stanley
Zionts. Multiple criteria decision making, multiattribute utility theory: The next ten
years. Management Science, 38:645-654, 1992.

Yagil Engel and Michael P. Wellman. CUI networks: A graphical representation for
conditional utility independence. Journal of Artificial Intelligence Research, 31:83—

112, 2008. [, [26, 27}, B0l B2

Peter H. Farquhar. Utility assessment methods. Management Science, 30:1283-1300,
1984.

Peter C. Fishburn. Interdependence and additivity in multivariate, unidimensional
expected utility theory. International Economic Review, 8:335-342, 1967. [2] [3]

Philip A. Haile and Elie Tamer. Inference with an incomplete model of english auc-
tions. Journal of Political Economy, 111(1):pp. 1-51, 2003.

Greg Hines and Kate Larson. Preference elicitation for risky prospects. In Proceedings
of the 9th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS-10), Toronto, Canada, 2010.

Greg Hines and Kate Larson. Efficiently eliciting preferences from a group of users. In
Proceedings of the 2011 AAAI Workshop on Interactive Decision Theory and Game
Theory, 2011.

IDEAS. Ideas rankings. http://ideas.repec.org/top/, 2011.

Daniel Kahneman, Jack L. Knetsch, and Richard H. Thaler. Experimental test of the
endowment effect and the coase theorem. Journal of Political Economy, 98:1325-1348,
1990. 10

Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under
risk. Econometrica, 47:263-291, 1979.

146

[34] Daniel Kahneman and Amos Tversky. Choices, values and frames. American Psy-
chologist, 39:341-350, 1984.

[35] Richard Karp. Reducibility among combinatorial problems. In Raymond E Miller
and James W Thatcher, editors, Complexity of Computer Computations, pages 85—
103. Plenum Press, NY, 1972. {132

[36] Ralph Keeney and Howard Raiffa. Decisions with multiple objectives: Preferences and
value tradeoffs. Wiley, New York, 1976. 2] [14]

[37] Bernard Kolman and David R. Hill. Elementary Linear Algebra. Prentice Hall, 2000.
1130

[38] Oleksii Kuchaiev. Source code for Bron Kerbosch algorithm.
http://www.kuchaev.com/projects.html.

[39] Raul H.C. Lopes, Ivan Reid, and Peter R. Hubson. The two-dimensional kolmogorov-
smirnov test. In Proceedings of the Eleventh International Workshop on Advanced
Computing and Analysis Techniques in Physics Research, 2007.

[40] George Lowenstein and Drazen Prelec. Anomalies in intertemporal choice: Evidence
and an interpretation. Quarterly Journal of Economics, 107:573-597, 1992.

[41] Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green. Microeconomic Theory.
Oxford University Press, 1995. [5 [6] [7], [8] O (42}

[42] Pascal Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. The
Annals of Probability, 18(3):pp. 1269-1283, 1990.

[43] Michael McGeachie and Jon Doyle. The local geometry of multiattribute tradeoff
preferences. Artificial Intelligence, 175:1122-1152, 2011.

[44] Tom Mitchell. Machine Learning. McGraw-Hill, 1997. , ,

[45] Piero La Mura and Yoav Shoham. Expected utility networks. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence (UAI), 1999.

[46] Balas Kausik Natarajan. Machine Learning , A Theoretical Approach. Morgan Kauf-
mann Publishers, 1991.

[47] Meltem Ozturk, Marc Pirlot, and Alexis Tsoukias. Representing preferences using
intervals. Artificial Intelligence, 175:1194-1222, 2011.

147

48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

[60]

John W. Pratt and Jean D. Gibbons. Concepts of Nonparametric Theory. Springer-
Verlag, 1981. [85]

Drazen Prelec. The probability weighting function. 1995.

Matthew Rabin. Risk aversion and expected-utility theory: A calibration theorem.
Econometrica, 68:1281-1292, 2000.

George Rebane and Judea Pearl. The recovery of causal poly-trees from statistical
data. In Proceedings of the 3rd Workshop on Uncertainity in Artificial Intelligence,
1987.

Kevin Regan and Craig Boutilier. Regret-based reward elicitation for Markov decision
processes. In Proceedings of the 25th International Conference on Uncertainty in

Artificial Intelligence (UAI-09), Montreal, Canada, 2009. ,

Kevin Regan and Craig Boutilier. Robust online optimization of reward-uncertain
mdps. In Proceedings of the Twenty Second International Joint Conference on Artifi-

cial Intelligence (IJCAI-11), 2011.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 2nd edition, 2003. [2, 5} [6] [8} [}

Chris Starmer. Developments in non-expected utility theory: The hunt for a descrip-
tive theory of choice under risk. Journal of Economic Literature, 38:332-382, 2000. [2]

[} (10} 4]
James Stewart. Calculus. Brooks/Cole Publishing Company, 1999.

Nassim Nicholas Taleb. The Black Swan. Random House, 2007.

Paul Turan. On an extremal problem in graph theory. Matematiko Fizicki Lapok,
48:436-452, 1941. [130]

Amos Tversky and Daniel Kahneman. Advances in prospect theory: Cumulative
representation of uncertainty. Journal of Risk and Uncertainty, 5(4):297-323, 1992.

[10} [2, [36} o7, [107)

Leslie Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134—
1142, November 1984.

148

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]
[71]

Gijs van de Kuilen and Peter P. Wakker. The midweight method to measure attitudes
toward risk and ambiguity. Management Science, 57:582-598, 2011. [41]

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer, 2nd edition,
1999.

John von Neumann and Oskar Morgenstein. Theory of games and economic behavior.
Princeton University Press, 1947. [§]

Perukrishnen Vytelingum, Sarvapali D. Ramchurn, Thomas D. Voice, Alex Rogers,
and Nicholas R. Jennings. Trading agents for the smart electricity grid. In Proceedings
of the 9th International Conference on Autonomous Agents and Multiagent Systems:
(AAMAS-10); AAMAS ’10, pages 897-904, Richland, SC, 2010. International Foun-
dation for Autonomous Agents and Multiagent Systems.

Peter Wakker and Daniel Deneffe. Eliciting von Neumann-Morgenstern utilities when
probabilities are distorted or unknown. Management Science, 42:1131-1150, 1996. [39]

[0, A2, 110

Peter Wakker, Ido Erev, and Elke U. Weber. Comonotonic independence: The criti-
cal test between classical and rank-dependent utilities theories. Journal of Risk and
Uncertainty, 9:195-230, 1994.

Jyrki Wallenius, James S. Dyer, Peter C. Fishburn, Ralph E. Steuer, Stanley Zionts,
and Kalyanmoy Deb. Multiple criteria decision making, multiattribute utility theory:
Recent accomplishments and what lies ahead. Manage. Sci., 54:1336-1349, July 2008.
43

Tianhan Wang and Craig Boutilier. Incremental utility elicitation with the minimax
regret decision criterion. In Proceedings of the 18th International Joint Conference on

Artificial Intelligence (IJCAI-03), pages 309-318, Acapulco, Mexico, 2003. , ,
[T7, 19} 22} 24} 25, B4} B3]

Larry Wasserman. All of Statistics. Springer, 2004. , ,
Larry Wasserman. All of Nonparametric Statistics. Springer, 2006.

George Wu and Richard Gonzalez. Curvature of the probability weighting function.

Management Science, 42:1676-1690, 1996. [I1] [36} 38} 39} 43}, (45} B3] [140]

149

	List of Tables
	List of Figures
	Introduction
	Contributions
	Guide to the Thesis

	Background
	Models of Users' Preferences
	Preferences over Risky Outcomes

	Preference Elicitation
	Choosing the Best Decision
	Measuring the Confidence in Decisions
	Choosing the Best Query

	Multiattribute Preferences
	Multiattribute Utility Functions
	Preference Elicitation with MultiAttribute Preferences

	Preference Elicitation and Cumulative Prospect Theory
	The Role of Preference Models in Preference Elicitation
	Previous Methods of Preference Elicitation with Cumulative Prospect Theory
	The Gamble Equivalence Method
	The Scenario
	Configuration Queries
	Outcome queries
	The Gamble Equivalence Method and Expected Utility Theory

	Outcome Query Selection Heuristics
	Halve Largest Gap and Current Solution Heuristics With Outcome Queries
	Minimize Most-Likely Regret
	Minimize Expected Minimax Regret

	Experimental Results
	Configuration Queries
	Outcome Queries

	Conclusion

	Probabilistic Models of Regret
	Current Measurements of Regret
	Probabilistic Regret
	Probabilistic Regret
	Relaxing the Prior Knowledge Assumption
	Hypothesis-Based Regret
	Rejecting Hypotheses
	A Probably Approximately Correct Approach to Probabilistic Regret
	Other Uses of Non-Parametric Statistics in AI

	How to Optimize Regret Calculations
	Optimizing lPrMMR
	Optimizing hPrMMR

	Experimental Results
	Learnt-Probabilistic Regret Results
	Hypothesis Regret Results

	Conclusion

	Multiattribute Preferences and Preference Elicitation
	Preference Elicitation
	Comparing Decompositions
	Experimental Results
	Experimental Setup
	Results

	Conclusion

	Conclusion
	Contributions
	Future Work
	Human Experiments
	Eliciting Intertemporal Preferences
	Improving the Performance of Learnt Probabilistic Regret
	Examining Probabilistic Regret from a Probably Approximately Correct Perspective
	Expanding our Comparison of Multiattribute Utility Independence Models
	Improving the Efficiency of Multiattribute Preference Elicitation

	References

