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Abstract

The orthodox formulation of quantum theory invokes the mathematical apparatus of complex
Hilbert space. In this thesis, we consider a quaternionic quantum formalism for the description
of quantum states, quantum channels, and quantum measurements. We prove that probabilities
for outcomes of quaternionic quantum measurements arise from canonical inner products of the
corresponding quaternionic quantum effects and a unique quaternionic quantum state. We embed
quaternionic quantum theory into the framework of usual complex quantum information theory.
We prove that quaternionic quantum measurements can be simulated by usual complex positive
operator valued measures. Furthermore, we prove that quaternionic quantum channels can be
simulated by completely positive trace preserving maps on complex quantum states. We also derive
a lower bound on an orthonormality measure for sets of positive semi-definite quaternionic linear
operators. We prove that sets of operators saturating the aforementioned lower bound facilitate
a reconciliation of quaternionic quantum theory with a generalized Quantum Bayesian framework
for reconstructing quantum state spaces.

This thesis is an extension of work found in [42].
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Chapter 1

Introduction

The theory of relativity and quantum theory are the great triumphs of 20th century physics. The
theory of relativity revolutionized humankind’s conceptions of matter and spacetime, and quantum
theory inspired paradigm shifts in atomic physics and information science. The foundations for the
orthodox formulations of the aforementioned theories are, however, quite dissimilar. The theory
of relativity is founded on physical principles. In particular, the principle of relativity and the
principle of constant velocity of light in vacuo form the physical basis for the theory of relativity.
The former principle, in the case of general relativity, corresponds to the idea that all Gaussian
coordinate systems are physically equivalent [18]; whereas, in special relativity the principle of rela-
tivity is restricted to the physical equivalence of inertial reference frames [19]. Einstein emphasized
that these physical principles are not hypothetically constructed, but rather empirically discovered
characteristics of natural processes that give rise to the mathematical framework of the theory of
relativity [20].

In stark contrast to the theory of relativity, the orthodox formulation of quantum theory is founded
on abstract mathematics, not physical principles of the type described by Einstein in [20]. To this
day, with over one century now past since Planck’s discovery of the quantization of radiation
[62], the search for deep physical principles underpinning the orthodox formulation of quantum
theory remains ongoing. The discovery of such physical principles could contribute to a complete
unification of general relativity and quantum theory into a physical theory applicable on all physical
scales and to all known physical forces, which is one of the great problems facing 21st century
physics.

The mathematical formalism of quantum theory presently serves with unrivaled success to pre-
dict and control nongravitational physical phenomena on atomic and subatomic scales1. Research
in the field of quantum foundations is particularly concerned with the identification of physical
characteristics of the natural world that may be inferred in light of the great empirical success of
quantum theory. One of the most significant open questions in quantum foundations is: ‘What
is the fundamental ontology underlying quantum theory?’ In [21], Einstein, Podolsky, and Rosen
(EPR) expound a sufficient condition for elements of physical reality:

1In principle, quantum theory can be applied on all physical scales.
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“If, without in any way disturbing a system, we can predict with certainty (i.e., with proba-
bility equal to unity) the value of a physical quantity, then there exists an element of reality
corresponding to that quantity.”

– A. Einstein, B. Podolsky, and N. Rosen, 1935 [21].

EPR also define a necessary condition for the completeness of a physical theory, stating that
“every element of the physical reality must have a counterpart in the physical theory” [21], and
EPR argue that the description of reality as given by quantum theory is incomplete in that sense.
The EPR argument is tacitly based on the principle of locality, i.e. that the elements of physical
reality attributed to spatially separated physical systems are independent [73], or put otherwise
causally disconnected. EPR believed in the existence of a complete physical theory that respects
the principle of locality and reproduces the predictions of quantum theory [21]. However, in [9],
Bell proved that a complete physical theory that reproduces the predictions of quantum theory
must be nonlocal. Thus, in light of the great empirical success of quantum theory, one must reject
either the premise of locality or the EPR criterion of reality, or both.

Rejecting the principle of locality permits the construction of hidden-variable quantum models,
such as Bohmian mechanics [11], wherein the fundamental ontology consists of quantum states
together with additional elements of physical reality that suffice for the retention of EPR realism.
The Kochen-Specker theorem [55] dictates that such hidden-variable quantum models must be
contextual2, i.e. the elements of physical reality in such models cannot be independent of the
contexts in which they are measured. Adopting an epistemic view of quantum states, one can
reject the EPR criterion of reality and retain both the principle of locality and noncontextuality
of probability assignments for measurement outcomes, as in Quantum Bayesianism (see [32] and
references therein.) Indeed, the theorems of Bell [9] and Kochen-Specker [55] significantly constrain
coherent interpretations of quantum theory; consequently, different paths are established for seeking
out physical principles underpinning the orthodox quantum formalism.

In the past decade, the emerging field of quantum information science has motivated reconstructions
of finite-dimensional quantum theory based on information-theoretic physical principles, including
those found in [47][48][36][35][16][74][57]. Hardy points out in [48] that this program “was very
much inspired by Fuchs’s suggestion that we need to find information-theoretic reasons for the
quantum axioms (presented in a number of talks and written up in [30]).” Moreover, in [30], Fuchs
emphasizes that quantum states are epistemic states, not states of nature. On that view, quantum
theory prescribes a probability calculus for computing measurement outcome expectations based
on states of knowledge, or degrees of belief regarding physical systems and experimental apparatus.

A common technique applied in recent quantum foundational reconstruction programs is to first
reformulate the orthodox quantum formalism into new language using the tools, techniques, and
ideas of quantum information theory, and then to attempt to reconstruct that reformulation based
on physical principles. It is important to point out that, in all of the above cited cases, the goal
is to derive a formalism equivalent to the orthodox quantum formalism invoking complex Hilbert
space; wherein, quantum states for physical systems are defined by unit-trace positive semi-definite
linear operators on complex Hilbert spaces; physical transformations are associated with completely

2The Kochen-Specker theorem does not hold for 2-dimensional quantum systems.
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positive maps on quantum states; and physical measurements are associated with positive operator
valued measures comprised of complex quantum effects. But an important question remains:

Why complex Hilbert space?

The probability calculi prescribed by classical physical theories are fundamentally different from
the probability calculus prescribed by the orthodox formulation of quantum theory over complex
Hilbert spaces. For instance, Birkhoff and von Neumann pointed out that classical experimental
propositions regarding physical systems form Boolean algebras; whereas, quantum experimental
propositions – e.g. projections onto subspaces of a complex Hilbert space – comprise nondistributive
orthomodular lattices [10]. Moreover, Feynman emphasized that the classical Markovian law of
probability composition fails to hold in the description of quantum phenomena [26]. Instead,
quantum probability amplitudes superpose. These essential features are not, however, unique to
the calculus prescribed by usual complex quantum theory – they are enjoyed in quantum theories
formulated over any of the associative normed division algebras R, C, or H [10][1].

What then, if anything, does distinguish quantum theories formulated over R or H from usual
complex quantum theory? In the case of real quantum theory [70], multipartite systems are endowed
with some rather unusual properties. For example, in real quantum theory, there exist states
associated with n-partite systems for which every subsystem is maximally entangled with each of
the other subsystems, where n can be arbitrarily large [75]. Furthermore, real quantum theory is
not a locally tomographic theory (wherein states for composite systems can be determined by the
probabilities for outcomes of local measurements of the component systems) – it is instead a bilocally
tomographic theory (wherein states for composite systems can be determined by the probabilities
for outcomes of joint measurements of pairs of component systems) [49]. These observations point to
aspects of real quantum theory that are not realized within the usual complex quantum theoretical
framework. However, real quantum theory is equivalent to complex quantum theory equipped with
a superselection rule [70], and conversely, the evolution and measurement of a multipartite complex
quantum state under discrete or continuous evolution in complex quantum theory can be simulated
using states and operators in real quantum theory [58].

In the case of quaternionic quantum theory [29][27][28], the very notion of ‘independent subsystems’
is a subject of debate. In fact, quaternion-linear tensor products of quaternionic modules do not ex-
ist [63]. This has constituted a significant obstacle for the development of a consistent definition of
local quaternionic operations, and it has been argued that one is actually prevented from speaking of
absolutely independent systems in quaternionic quantum theory [27]. Nevertheless, the experimen-
tal propositions in quaternionic quantum theory that commute with a fixed anti-Hermitian unitary
operator are isomorphic to the experimental propositions of complex quantum theory, where the
isomorphism preserves the logical operations of intersection, span, and orthocomplement [27]. Fur-
thermore, in the context of quantum information processing involving unitary transformations and
projective measurements, it has been shown that circuits acting on n 2-dimensional quaternionic
systems can be simulated by circuits acting on n+ 1 qubits [25].

In this thesis, we consider a generalized formulation of quaternionic quantum theory, rather than
only considering the restricted class of quantum processes treated in [25][29][27][28][1]. We treat
generalized quantum measurements as quaternionic positive operator valued measures, and we treat
quantum channels as completely positive trace preserving quaternionic maps. Our primary purpose
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is to demonstrate that any quaternionic quantum process can be embedded into the formalism of
usual complex quantum information theory, as established in [42]. We also aim to investigate the
status of quaternionic quantum theory within a generalized Quantum Bayesian framework for the
reconstruction of quantum state spaces.

The remainder of this thesis is structured as follows. In Chapter 2, we formally introduce the
quaternions, and we review prerequisite quaternionic linear algebraic theory for the chapters that
follow. In Chapter 3, we consider a finite-dimensional quaternionic quantum formalism for the
description of quantum states, quantum channels, and quantum measurements; wherein, quater-
nionic quantum states are defined by unit-trace positive semi-definite linear operators on finite
dimensional right quaternionic modules; quaternionic quantum channels are defined by completely
positive trace preserving quaternionic maps; and quaternionic quantum measurements are defined
by quaternionic positive operator valued measures. We also prove a theorem dictating the quater-
nionic quantum probability rule. In Chapter 4, we prove that any physical process described via
quaternionic quantum formalism has an equivalent description in usual complex quantum informa-
tion theory. In Chapter 5, we derive a lower bound on an orthonormality measure for sets of positive
semi-definite quaternionic matrices. We consider the expansion of quaternionic quantum states in
bases that saturate the aforementioned lower bound, and we prove that such expansions permit
a reconciliation of quaternionic quantum theory with a generalized Quantum Bayesian framework
for the reconstruction of quantum state spaces. In Chapter 6, we conclude and outline directions
for future research. In Appendix A, we present elements of symplectic group theory referred to
throughout the thesis. In Appendix B, we describe the connection between unit-norm quaternions
and rotations on R3. Finally, in Appendix C, we explicitly compute the universal C∗-algebras
enveloping universally reversible self-adjoint quaternionic matrix algebras.
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Chapter 2

Quaternionic Linear Algebra

Unlike the complex number field and its subfield of real numbers, the division ring of quaternions
admits a noncommutative multiplication operation. The noncommutivity of quaternionic multipli-
cation results in significant distinctions between complex and quaternionic linear algebraic theories.
To state just one remarkable example at the outset, note that there exist finite-dimensional quater-
nionic matrices admitting an infinite spectrum of eigenvalues. In this chapter, we introduce the
quaternions and review the linear algebraic theory of quaternionic modules and matrices required
for the formulation of a quaternionic quantum formalism in Chapter 3.

2.1 Historical Prelude

The quaternions were discovered by Sir William Rowan Hamilton, whose important contributions
to classical mechanics and geometrical optics are well known. In 1835, Hamilton demonstrated that
the complex numbers could be regarded as an algebra of ordered pairs in R2. Hamilton referred
to such points as couples, and he showed that couples could be added and multiplied together
according the rules of complex arithmetic [43]. For many years thereafter, Hamilton’s attention
was occupied with attempts to develop a similar algebra of ordered triples, or triplets, that could
be represented by points in R3 [44]. Shortly before his death in 1865, Hamilton would write the
following in a letter to his son Archibald:

“Every morning in the early part of the above-cited month [author’s note: October 1843], on
my coming down to breakfast, your (then) little brother William Edwin, and yourself, used to
ask me: ‘Well, Papa, can you multiply triplets?’ Whereto I was always obliged to reply, with a
sad shake of the head: ‘No, I can only add and subtract them’.”

– W. R. Hamilton, August 5, 1865 [41].

Alas, Hamilton’s attempts were in vain, for, as Hurwitz’s theorem of 1898 would later establish,
the three-dimensional algebra Hamilton sought does not exist [52]. On the 16th day of October
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1843, while walking with his wife along the Royal Canal, Hamilton realized the key was to consider
a fourth dimension [44], and he proceeded to carve the following equation into the stonework of the
Brougham Bridge in Dublin:

i2 = j2 = k2 = ijk = −1, (2.1)

and so, in a flash of genius, the quaternions were discovered.

2.2 Quaternions

The set of quaternions is denoted by H in honour of Hamilton, and is defined as follows:

H =
{

1a0 + ia1 + ja2 + ka3

∣∣ (∀r : ar ∈ R) ∧ (i2 = j2 = k2 = ijk = −1)
}

, (2.2)

where the real numbers ar are referred to as constituents, and where the quaternion basis elements
defined in (2.1) also obey the following anticommutation relations:

ij = k and ji = −k, (2.3)

jk = i and kj = −i, (2.4)

ki = j and ik = −j. (2.5)

These anticommutation relations are trivial consequences of (2.1), for example

− 1 = ijk ⇐⇒ −k = ijk2 ⇐⇒ ij = k. (2.6)

We denote the real and quaternionic imaginary parts of 1a0 + ia1 + ja2 + ka3 ∈ H by <(a) = a0

and =(a) = ia1 + ja2 + ka3 respectively. Before going any further, it will be useful to recall the
definition of an abelian group:

Definition 2.2.1 Abelian Groups:

A group is a set S equipped with a binary operation ? such that the following properties hold:

• Closure: ∀a, b ∈ S, a ? b ∈ S,

• Associativity: ∀a, b, c ∈ S, (a ? b) ? c = a ? (b ? c),

• Identity: ∃I ∈ S such that ∀a ∈ S : a ? I = I ? a = a,

• Invertibility: ∀a ∈ S ∃a−1 ∈ S such that a ? a−1 = a−1 ? a = I.

An abelian group is a group equipped with a commutative binary operation such that

• Commutativity: ∀a, b ∈ S, a ? b = b ? a.

6



In fact, H is an abelian group with respect to an associative commutative addition operation defined
via

a+ b = 1(a0 + b0) + i(a1 + b1) + j(a2 + b2) + k(a3 + b3), (2.7)

for it is clear that H is closed under addition, that 0 is neutral with respect to addition, and that
∀a ∈ H ∃(−a) ∈ H : a+ (−a) = 0, namely −a = −1a0 − ia1 − ja2 − ka3.

Recall that a monoid enjoys all the properties of a group except for invertibility. The quaternions
are in fact a monoid with respect to an associative noncommutative multiplication defined via

ab = 1(a0b0 − a1b1 − a2b2 − a3b3) +

i(a0b1 + a1b0 + a2b3 − a3b2) +

j(a0b2 + a2b0 − a1b3 + a3b1) +

k(a0b3 + a3b0 + a1b2 − a2b1), (2.8)

for, again, it is clear that H is closed under multiplication, and that 1 is neutral with respect to
multiplication. Furthermore, ∀a 6= 0 ∈ H ∃a−1 ∈ H : aa−1 = a−1a = 1, where

a−1 =
1a0 − ia1 − ja2 − ka3

a2
0 + a2

1 + a2
2 + a2

3

. (2.9)

Quaternionic addition and multiplication are distributive in the sense that ∀a, b, c ∈ H:

a(b+ c) = ab+ ac, (2.10)

and
(a+ b)c = ac+ bc. (2.11)

Therefore, by virtue of all the aforementioned properties, H is a division ring, but not a field.

The quaternions admit an involutory antiautomorphic conjugation operation taking a→ a defined
∀a = 1a0 + ia1 + ja2 + ka3 ∈ H via

a = 1a0 − ia1 − ja2 − ka3, (2.12)

where we say that conjugation is involutory because (a) = a. Furthermore, observing that

ab = 1(a0b0 − a1b1 − a2b2 − a3b3)− i(a0b1 + a1b0 + a2b3 − a3b2)

−j(a0b2 + a2b0 − a1b3 + a3b1)− k(a0b3 + a3b0 + a1b2 − a2b1)

= (b0 − ib1 − jb2 − kb3)(a0 − ia1 − ja2 − ka3)

= ba, (2.13)

one sees that quaternionic conjugation is a bijection reversing multiplicative structure, i.e. an
anti-automorphism from the quaternions to themselves.

Quaternionic conjugation induces a multiplicative norm | · | : H→ R via

|a| =
√
aa =

√
a2

0 + a2
1 + a2

2 + a2
3, (2.14)

which is to say that the norm obeys the following properties ∀a, b ∈ H:
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• Multiplicativity: |ab| = |a||b|,

• Nonnegativity: |a| ≥ 0 with equality iff a = 0,

• Triangle Inequality: |a+ b| ≤ |a|+ |b|,

all of which follow directly from (2.14). Evidently, ∀a ∈ H:

a−1 = (|a|)−2a. (2.15)

The unit norm quaternions,
Sp(1) = {a ∈ H

∣∣ |a| = 1}, (2.16)

form a group that is isomorphic to SU(2). For the proof, see Remark A.2.5 in Appendix A. It is well
known that SU(2) is the double cover of SO(3), meaning that there is a two-to-one homomorphic
surjection from SU(2) onto SO(3) preserving group-multiplicative structure. In Appendix B, we
detail the connection between the group of unit-norm quaternions and the group of rotations on
R3.

Equipped with a multiplicative norm, the quaternions obviously enjoy R-homogeneity, which is to
say that ∀α ∈ R,∀a ∈ H : |αa| = |α||a|. Therefore H is in fact an associative normed division
algebra over the field of real numbers. By a normed algebra, we mean a real vector space that is
equipped with an associative R-bilinear multiplication operation and a multiplicative norm. The
aforementioned theorem of Hurwitz [52] dictates that R, C, and H are in fact the only associative
normed division algebras up to isomorphism1. However, since H is not a field, one must take care
when extending the notion of a vector space over R or C to that of a module over H.

2.3 Quaternionic Modules

In the chapters to follow, we are interested in a finite-dimensional quaternionic quantum formal-
ism. Therefore, we shall restrict our attention in this chapter to the linear algebraic theory of
finite-dimensional quaternionic modules and matrices. In the linear algebraic theory of complex
vector spaces formulated over the commutative associative normed division algebra C, it is inconse-
quential whether scalar multiplication is carried out from the right or from the left. In the case of
quaternionic linear algebra, the same statement does not hold. For example, if A is a quaternionic
matrix, φ is a quaternionic column vector, and λ is a quaternion, then Aφ = φλ does not imply
that Aφ = λφ. Following Finkelstein et al. [29], we adopt the convention wherein finite-dimensional
quaternionic modules are taken as right modules. This choice of convention allows us to adopt the
the familiar bra-ket notation from complex quantum theory to formulate aspects of the theory of
quaternionic linear operators detailed in Section 2.4. We now proceed with a formal definition of
right quaternionic modules:

1The only other normed division algebra (up to isomorphism) is the nonassociative algebra O – the octonions [52].
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Definition 2.3.1 Right Quaternionic Modules:

A right quaternionic module is a set V that is an abelian group under an addition operation + :
V×V→ V, and that is equipped and closed under right-multiplication by quaternions where ∀φ, ξ ∈ V

and ∀a, b ∈ H one has that (φ+ξ)a = φa+ξa, (φ)ab = (φa)b, and φ(a+b) = φa+φb. The elements
of V are referred to as rays.

The familiar concepts of a linear independence, spanning sets, and bases from complex vector space
theory all naturally carry over to the theory of right quaternionic modules. In particular, we say
that a set of rays in a module V is linearly independent if no ray in the set can be realized as
a right-quaternion-linear combination of the others. Also, if any ray in V can be realized as a
right-quaternion-linear combination of rays in a set S ⊆ V, then we say that S is a spanning set. A
linearly independent spanning set is referred to as a basis, and the cardinality of a basis is referred
to as the dimension of the right quaternionic module.

If Bd = {φ1, . . . , φd} is a basis for a finite d-dimensional right quaternionic module, then for any
element ξ ∈ V, ∃{a1, . . . , ad} ⊂ H such that ξ = φ1a1 + · · · + φdad, and we can represent ξ via
the d-tuple (a1, . . . , ad) with respect to Bd. Whenever we make such a reference to an element
in a finite d-dimensional quaternionic module, the basis shall be taken as implied. Moreover, the
d-fold Cartesian product Hd shall be assumed to be equipped with the standard addition operation,
defined ∀φ = (φ1, . . . , φd), ξ = (ξ1, . . . , ξd) ∈ Hd via

φ+ ξ = (φ1 + ξ1, . . . , φd + ξd), (2.17)

and the standard right quaternionic multiplication operation, defined ∀φ ∈ Hd and ∀a ∈ H via

φa = (φ1a, . . . , φda), (2.18)

so that Hd is a d-dimensional right quaternionic module. We also equip Hd with the standard
symplectic inner product, which naturally induces the canonical real-valued norm on Hd (see Def-
inition A.2.2). Furthermore, we shall often adopt the familiar bra-ket notation from complex
quantum theory, identifying ξ ∈ Hd with the ket column ray

|ξ〉 =


ξ1

.

.

.
ξd

 , (2.19)

and identifying bra conjugated row rays, comprising the dual right-module2 to Hd, as

〈φ| =
(
φ1 . . . φd

)
, (2.20)

so that

〈φ|ξ〉 =
d∑
r=1

φrξr (2.21)

2The set of quaternionic linear operators (see Section 2.4) T : Hd → H is referred to as the dual right-module of
Hd, and is in one-to-one correspondence with Hd. Therefore, Hd is in fact self-dual.
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defines the standard symplectic inner product, and so that the canonical real-valued norm on
Hd is defined via ‖φ‖2 = 〈φ|φ〉. The group of automorphisms on Hd preserving the standard
symplectic inner product is defined and described in Definition A.2.3 and Remark A.2.4. Referring
to Definition A.2.2, we note that the standard symplectic inner product admits ∀φ, ξ ∈ Hd and
∀a, b ∈ H that 〈φa|ξb〉 = a〈φ|ξ〉b. It is important to point out that if we had equipped Hd to
be a left quaternionic module, instead of a right quaternionic module, then it would follow that
〈aφ|bξ〉 =

∑d
r=1 φrabξr, which is not equal to a〈φ|ξ〉b in general, and so the bra-ket would not define

a symplectic inner product on Hd. This would have marked physical consequences for quaternionic
quantum theory. For instance, one could always find φ ∈ Hd such that the set of pure states
associated with the set of rays S = {|aφ〉 | a ∈ H} would be inequivalent in the sense that one could
also always find ξ ∈ Hd and a ∈ H such that

〈ξ|φ〉 = 0, (2.22)

and
〈ξ|aφ〉 6= 0, (2.23)

both hold. Put otherwise, quaternionic phases would play a key role in such a theory. Of course,
one could argue that it is simply not appropriate to adopt the bra-ket formalism in a left-modular
formulation of a quaternionic quantum theory. And in fact one can do just that and develop
a left-modular formulation of quaternionic quantum theory that is equivalent to a right-modular
formulation of quaternionic quantum theory [66]. One major disadvantage of such an approach is
that linear operators in the left-modular theory must act unusually – from the right. We adopt the
right-modular convention so that linear operators act on our modules according to ordinary matrix
multiplication from the left, which can be defined in terms of bras and kets as described in the
following section.

2.4 Quaternionic Matrices

In this thesis, we define a quaternionic linear operator as a function T : V → W, where V and W

are right quaternionic modules, such that ∀φ, ξ ∈ V and ∀a, b ∈ H:

T (φa+ ξb) = T (φ)a+ T (ξ)b, (2.24)

and we shall restrict our attention to finite dimensions. On that view, quaternionic linear operators
from finite d-dimensional V to finite p-dimensional W correspond to elements in the set of p × d
quaternionic matrices, which we denote by Mp,d(H). In particular, if

Bd = {φ1, . . . , φd}, (2.25)

is a basis for V, and if
Bp = {ξ1, . . . , ξp}, (2.26)

is a basis for W, then ∀s ∈ {1, . . . , d}, ∃{T1s, . . . , Tps} ⊂ H such that

T (φs) =

p∑
r=1

ξrTrs, (2.27)
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and the matrix A ∈ Mp,d(H) with entries Ars = Trs is said to be the matrix representation of T
with respect to Bd and Bp. Indeed, we can identify the action of a quaternionic linear operator
T : Hd → Hp on χ ∈ Hd, T (χ), with the left action of a quaternionic matrix A ∈ Mp,d(H) with
entries Ars = Trs as follows:

T (φ) = Aφ =


A11 A12 · · · A1d

A21 A22 · · · A2d
...

...
...

Ap1 Ap2 · · · Apd



χ1

χ2
...
χd

 =


A11χ1 +A12χ2 + . . . A1dχd
A21χ1 +A22χ2 + . . . A2dχd

...
Ap1χ1 +Ap2χ2 + . . . Apdχd

 , (2.28)

where the underlying bases Bd and Bp for V and W are respectively assumed. On that view,
there is biunique correspondence between Mp,d(H) and the set of all quaternionic linear operators
T : V → W. Therefore, we use the terms ‘linear operator’ and ‘matrix’ interchangeably. For
completeness, observe that that ∀A ∈ Mp,d, ∀B ∈ Md,q(H), ∀φ, ξ ∈ Hd, ∀η ∈ Hq, and ∀a, b ∈ H
that

A(φa+ ξb) = A(φa) +A(ξb) = (Aφ)a+ (Aξ)b, (2.29)

A(Bη) = AB(η). (2.30)

Evidently, Mp,d(H) is a pd-dimensional right quaternionic module. If Bd and Bp are both or-
thonormal in the usual sense with respect to the standard symplectic inner product, then matrix
multiplication can be carried out explicitly as follows

Aφ =

(
p∑
r=1

d∑
s=1

|ξr〉Ars〈φs|

)(
d∑
t=1

|φt〉χt

)
=

p∑
r=1

d∑
s=1

|ξr〉Arsχs, (2.31)

where we have employed bra-ket notation.

The set of quaternionic matrices enjoys several involutions, including an involutory conjugation
operation taking A→ A defined via

Ars = (Ars). (2.32)

Mp,d(H) also admits an involutory transposition operation taking A→ AT defined via

ATrs = Asr. (2.33)

The conjugation and transposition operations commute on Mp,d(H); although, ∃A ∈ Mp,d(H) and
B ∈Md,q(H) such that

(AB)T 6= BTAT , (2.34)

and
AB 6= A B. (2.35)

Mp,d(H) does, however, admit an involutory star operation taking A→ A∗ defined via

A∗ = A
T

= AT , (2.36)

so that ∀A ∈Mp,d(H) and ∀B ∈Md,q(H):

(AB)∗ = B∗A∗. (2.37)
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If p = d and U ∈Md,d(H) is such that UU∗ = 1Hd
3 then as we say that U is a unitary quaternionic

matrix. The set of unitary quaternionic matrices form a subgroup of the automorphism group on
Hd that preserves the standard symplectic inner product (see Remark A.2.4). Furthermore, when
p = d, it follows ∀A ∈Md,d(H) and ∀φ, ξ ∈ Hd that

〈φ|Aξ〉 =
d∑
r=1

φr(Aξ)r

=
d∑
r=1

d∑
s=1

φrArsξs

=

d∑
r=1

d∑
s=1

Arsφrξs

=
d∑
r=1

d∑
s=1

Asrφsξr

= 〈A∗φ|ξ〉, (2.38)

and we refer to the set Md,d(H)sa = {A ∈ Md,d(H) | A = A∗} as the self-adjoint quaternionic
matrices. The aforementioned biunique correspondence correspondence between quaternionic linear
operators and quaternionic matrices dictates that Md,d(H)sa is in one-to-one correspondence with
the set of self-adjoint quaternionic linear operators T = T ∗ : V→ V on a finite d-dimensional right
quaternionic module V, where T ∗ is defined via

〈T (φ)|ξ〉 = 〈φ|T ∗(ξ)〉. (2.39)

The set of self-adjoint quaternionic matrices (linear operators) is a real vector space of dimension
d(2d − 1), and we shall view it as such for the remainder of this thesis. As usual, we say that
A ∈Md,d(H)sa is positive semi-definite if ∀φ ∈ Hd the following holds:

〈φ|Aφ〉 ∈ R+, (2.40)

and we will often write 〈φ|Aφ〉 ≥ 0, where it is implied that the lhs of (2.40) is real. We denote
the set of positive semi-definite linear operators on Hd by L+(Hd), and we refer to Md,d(H)sa
as the ambient space for L+(Hd). In fact, positive semi-definiteness implies self-adjointness for
quaternionic matrices:

Lemma 2.4.1 Positive semi-definiteness implies self-adjointness:

If A ∈Md,d(H) is such that ∀φ ∈ Hd : 〈φ|Aφ〉 ≥ 0, then A = A∗.

Proof:

Applying R-linearity of quaternionic conjugation we have that

〈φ|Aφ〉 =

d∑
r=1

d∑
s=1

φrArsφs =

d∑
r=1

d∑
s=1

φs Ars φr =

d∑
r=1

d∑
s=1

φrA
∗
rsφs = 〈φ|A∗φ〉. (2.41)

3The condition UU∗ = 1Hd is equivalent to the condition U∗U = 1Hd . For the proof, see Lemma A.2.6.
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Thus, we have from the condition 〈φ|Aφ〉 = 〈φ|Aφ〉 that 〈φ|A∗φ〉 = 〈φ|Aφ〉. Put otherwise,

d∑
r=1

d∑
s=1

φ∗rA
∗
srφs =

d∑
r=1

d∑
s=1

φ∗rArsφs. (2.42)

Given that (2.42) holds for all φ ∈ Hd, we may choose and substitute φr = δrn into (2.42) to get
A∗nn = Ann, where δrn is the usual Kronecker delta function for arbitrary n ∈ {1, . . . , d}. Thus, the
diagonal elements of A are purely real. Now, we may also choose and substitute φr = δrn + iδrm
into (2.42) to get

d∑
r=1

d∑
s=1

(δrn − iδrm)A∗sr(δsn + iδsm) =
d∑
r=1

d∑
s=1

(δrn − iδrm)Ars(δsn + iδsm), (2.43)

which yields
− iA∗nm +A∗mni = −iAmn +Anmi. (2.44)

Let Anm = a0 + ia1 + ja2 + ka3, Amn = b0 + ib1 + jb2 + kb3. We have from (2.44) that

−i(a0−ia1−ja2−ka3)+(b0−ib1−jb2−kb3)i = −i(b0+ib1+jb2+kb3)+(a0+ia1+ja2+ka3)i, (2.45)

and distributivity of quaternionic multiplication yields

−ia0−a1 +ija2 +ika3 +ib0 +b1−jib2−kib3 = −ib0 +b1−ijb2−ikb3 +ia0−a1 +jia2 +kia3. (2.46)

Simplifying (2.46) we get

i(b0 − a0)− j(a3 + b3) + k(a2 + b2) = i(a0 − b0) + j(a3 + b3)− k(a2 + b2). (2.47)

Both the lhs and the rhs of (2.47) are pure quaternion imaginary, and are thus identically zero
implying that a0 = b0, a3 = −b3, and a2 = −b2. It remains only to show that a1 = −b1, which can
be done easily by choosing and substituting, for example, φr = δrn + jδrm into (2.42) and following
through an entirely similar calculation. Therefore A = A∗, finishing the proof. In Section 2.5, we
prove the spectral theorem for self-adjoint quaternionic matrices, which implies that the eigenvalues
of a positive semi-definite quaternionic matrix are elements of R+. �

We shall equip the real vector space Md,d(H)sa with the canonical inner product

(· , ·) : Md,d(H)sa ×Md,d(H)sa → R, (2.48)

defined ∀A,B ∈Md,d(H)sa via
(A,B) = tr(AB), (2.49)

where the quaternionic trace is defined for A ∈Md,d(H) with entries Ars via

tr(A) = <
( d∑
t=1

Att

)
, (2.50)

which is manifestly R-linear: ∀α, β ∈ R and ∀A,B ∈Md,d(H)

tr
(
Aα+ bβ

)
= tr(A)α+ tr(B)β. (2.51)
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In fact, the value of the quaternionic trace is independent of the choice of the underlying basis for
matrix representation [29], and on that view it is easy to see that the quaternionic trace enjoys the
cyclic property ∀A,B ∈Md,d(H):

tr(AB) = tr(BA). (2.52)

To see that (2.52) holds, we represent A and B with respect to an orthonormal basis for Hd so that

tr(AB) = <
( d∑
t=1

d∑
r=1

d∑
s=1

d∑
u=1

d∑
v=1

〈t|r〉Ars〈s|u〉Buv〈v|t〉
)

=
d∑
r=1

d∑
s=1

<
(
ArsBsr

)
= <

( d∑
r=1

d∑
s=1

BrsAsr

)
= tr(BA), (2.53)

where we have used the facts that ∀a, b ∈ H :

<(a+ b) = <(a) + <(b), (2.54)

<(ab) = <(ba). (2.55)

The canonical inner product on Md,d(H)sa enjoys the following properties ∀A,B,C ∈ Md,d(H)sa
and ∀α, β ∈ R:

• R-bilinearity: (Aα,Bβ) = α(A,B)β and (A+B,C)=(A,C) + (B,C)

• Symmetry: (A,B) = (B,A),

• Nonnegativity: (A,A) ≥ 0 with equality iff A = 0,

all of which follow from the definition of the quaternionic trace. The canonical inner product on
Md,d(H)sa obeys the Cauchy–Schwarz inequality:

|(A,B)|2 ≤ (A,A)(B,B), (2.56)

which can by proven by virtue of Theorem 2.5.4. The canonical inner product on Md,d(H)sa induces
a real-valued norm ‖ · ‖ : Md,d(H)sa → R defined ∀A ∈Md,d(H)sa via

‖A‖ =
√

(A,A) =
√

tr(A2). (2.57)

The norm obeys ∀A,B ∈Md,d(H)sa and ∀α ∈ R:

• R-homogeneity: ‖αA‖ = |α|‖A‖,

• Nonnegativity: ‖A‖ ≥ 0 with equality iff A = 0, and
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• Triangle Inequality: ‖A+B‖ ≤ ‖A‖+ ‖B‖.

Multiplicativity is trivial to establish, for by definition:

‖aA‖ =
√

tr((aA)2) = |a|
√

tr(A2), (2.58)

and nonnegativity follows just as easily since

‖A‖ =
√

tr((A)2) =

√∑
r,s

|Ars|2. (2.59)

The triangle inequality is established in the usual way by observing that

‖A+B‖2 = (A+B,A+B)

≤ ‖A‖2 + ‖B‖2 + 2|(A,B)|
≤ ‖A‖2 + ‖B‖2 + 2‖A‖‖B‖
= (‖A‖+ ‖B‖)2. (2.60)

It also turns out that ‖A‖ is equal to the square root of the sum of the squares of the eigenvalues
of A ∈Md,d,(H)sa. For the proof, see Corollary 2.5.5.

2.5 The Spectral Theorem for Md,d(H)sa

This section is devoted to proving the spectral theorem for self-adjoint quaternionic linear operators.
We begin with a definition of the right-modular quaternionic eigenproblem:

Definition 2.5.1 The Right-Modular Quaternionic Eigenproblem:

Let T : V→ V be a quaternionic linear operator on a finite d-dimensional right quaternionic module
V. The right-modular quaternionic eigenproblem for T is

T (φ) = φa, (2.61)

where φ ∈ Hd is nonzero and a ∈ H. Any solution (φ,a) to (2.61) is called an eigenpair, where φ
is referred to as an eigenvector, and where a is referred to as an eigenvalue. The set of eigenvalues
of all eigenpairs is referred to as the spectrum of T .

Every quaternionic linear operator admits at least one eigenpair [12], and it is interesting to note
that if =(a) 6= 0, then the spectrum of T is infinite. In particular, if a 6= <(a) is an eigenvalue of T
with corresponding eigenvector φ, then every element of the set {b−1ab |b ∈ H} is also an eigenvalue
of T corresponding to the eigenvector φb, since

T (φb) = (T (φ))b = (φa)b = (φb)b−1ab. (2.62)

However, the following lemma dictates the reality of eigenvalues of self-adjoint quaternionic linear
operators:
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Lemma 2.5.2 Reality of eigenvalues of self-adjoint quaternionic linear operators:

Let T : V→ V be a self-adjoint quaternionic linear operator on a finite d-dimensional right quater-
nionic module V. If T is such that

T (φ) = φa, (2.63)

where (φ, a) ∈ V×H, then =(a) = 0.

Proof:

T (φ) = φa implies that

a =
〈φ|T (φ)〉
〈φ|φ〉

=
〈φ|T ∗(φ)〉
〈φ|φ〉

= a, (2.64)

where we have used (2.41). �

In fact, every self-adjoint quaternionic linear operator admits exactly d (possibly degenerate) real
eigenvalues [23], and the corresponding eigenvectors can be chosen to constitute an orthonormal
basis for Hd according to Lemma (2.5.3).

Lemma 2.5.3 Eigenvectors and orthonormal bases:

If T : V → V is a self-adjoint quaternionic linear operator on a finite d-dimensional right quater-
nionic module V, then V admits an orthonormal basis consisting of eigenvectors of T .

Proof:

We prove the lemma by induction on d.

• Base case:

With d = 1, the orthonormal basis can be chosen as any unit norm quaternion φ ∈ Sp(1).

• Inductive step:

Suppose that the result holds for d ∈ Z+. We will show that the result holds for p = d+ 1.

Let (φ, a) ∈ V× R such that
T (φ) = φa. (2.65)

By Lemma 2.5.2 , a ∈ R. Furthermore, φ ∈ V can be chosen such that 〈φ|φ〉 = 1. Next, let

W = {ξ ∈ V |〈ξ|φ〉 = 0} ⊂ V. (2.66)

W is a right quaternionic module. We recall a result due to Farenick and Pidkowich [23]: If φ ∈ V

admits 〈φ|φ〉 = 1, then there exists an orthonormal basis Bp = {φ1, . . . , φp} for V with φ = φ1.
Therefore, if ξ ∈W ⊂ V, then ∃{b1, . . . , bp} ⊂ H such that

ξ = φb1 + · · ·+ φpbp, (2.67)
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with b1 = 0 for any choice of ξ. Thus, W is a d-dimensional right quaternionic module. Next,
observe that W is an invariant submodule under T , ∀ξ ∈ V:

〈T (ξ)|φ〉 = 〈ξ|T ∗(φ)〉 = 〈ξ|T (φ)〉 = 〈ξ|φ〉a = 0, (2.68)

which establishes that the restriction of T to W is a self-adjoint quaternionic linear operator.
Therefore, by the inductive hypothesis, W admits an orthonormal basis B consisting of eigenvectors
of T . Adjoining φ to Bp completes the proof. �

Equipped with Lemma 2.5.2 and 2.5.3, we now prove the spectral theorem for self-adjoint quater-
nionic linear operators, which is proven in [29].

Theorem 2.5.4 The Spectral Theorem:

If T is a self-adjoint quaternionic linear operator on a finite d-dimensional right quaternionic
module V, then V admits an orthonormal basis Bd = {φ1, . . . , φd} consisting of the eigenvectors of
T such that the matrix representation of T with respect Bd is real and diagonal.

Proof:

By Lemma 2.5.3 we have that V admits an orthonormal basis Bd = {φ1, . . . , φd} consisting of the
eigenvectors of T . Therefore, the action of T on V can be defined via A ∈Md,d(H)sa, where A acts
according to

A =

d∑
r=1

d∑
s=1

|φr〉Ars〈φs|. (2.69)

It follows that
Ars = 〈φr|Aφs〉 = 〈φr|φsas〉 = δrsas, (2.70)

where the eigenvalue as is an element of R by Lemma 2.5.2. Put otherwise,

A =
d∑
r=1

|φr〉ar〈φr|, (2.71)

finishing the proof. �

Theorem 2.5.4 is used to characterize the norm of A ∈ Md,d(H)sa in terms of its eigenvalues in
Corollary 2.5.5.

Corollary 2.5.5 On Eigenvalues and the Norm:

If A ∈Md,d(H)sa admits the spectrum {λ1, . . . , λd} with corresponding orthonormalized eigenvectors
{ξr, . . . , ξd}, then

‖A‖ =

√√√√ d∑
r=1

λ2
r. (2.72)
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Proof:

By explicit computation:

‖A‖2 = tr(A2)

= tr
( d∑
r=1

d∑
r′=1

|ξr〉λr〈ξr|ξr′〉λr′〈ξr′ |
)

= tr
( d∑
r=1

|ξr〉λ2
r〈ξr|

)
=

d∑
r=1

λ2
rtr(|ξr〉〈ξr|)

=
d∑
r=1

λ2
r . (2.73)

In deriving (2.73), we have used Lemma 2.5.2 and Lemma 2.5.3 , and the fact that ∀ξ, φ ∈ Hd one
has that:

tr(|ξ〉〈φ|) = <
( ∑
t∈Bd

〈t|ξ〉〈φ|t〉
)

=
∑
t∈Bd

<
(
〈t|ξ〉〈φ|t〉

)
=

∑
t∈Bd

<
(
〈φ|t〉〈t|ξ〉

)
= <

( ∑
t∈Bd

〈φ|t〉〈t|ξ〉
)

= <
(
〈φ|ξ〉

)
, (2.74)

where Bd is taken as an orthonormal basis for Hd, which turns out to be a useful identity in the
chapters that follow. �
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Chapter 3

Quaternionic Quantum Formalism

In this chapter, we consider a quaternionic quantum formalism for the description of quantum
states, quantum channels, and quantum measurements. Our formulation will take place in a finite-
dimensional setting, and shall be restricted to the description of experiments of the type depicted
in Figure 3.1, which is the scenario considered by Hardy in [47].

Figure 3.1: A generic physical scenario

We consider experiments wherein the experimentalist has access to three types of equipment: prepa-
ration devices, transformation channels, and measurement devices. In particular, we consider the
type of experiment depicted in Figure 3.1. A preparation device emits a physical system with an
initial associated state. The initial associated state is defined by the settings of the preparation
device. The system then enters a transformation channel that can transform the initial associated
state. The transformation of the initial associated state is defined by the settings of the trans-
formation channel. Finally, a physical system exits the channel and enters a measurement device
that registers one classical outcome. The number of classical outcomes depends on the settings
of the measurement device. The probabilities for the classical outcomes depend on the settings of
the measurement device and the transformed initial associated state.1 Hardy pointed out that this
type of experiment covers a very wide range of physical phenomena:

1In the preceding sentences, we have provided an operational definition for such an experiment. In practice,
the description of the preparation, transformation, and measurement processes are, at bottom, governed by the
experimentalist.
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The situation described here [author’s comment: i.e. in Figure 3.1 ] is quite generic. Although we

have described the set up as if the system were moving along one dimension, in fact the system

could equally well be regarded as remaining stationary whilst being subjected to transformations

and measurements. Furthermore, the system need not be localized but could be in several

locations. The transformations could be due to controlling fields or simply due to the natural

evolution of the system. Any physical experiment, quantum, classical or other, can be viewed

as an experiment of the type described here.

– L. Hardy, 2001 [47].

In the following sections, we formulate a quaternionic quantum description of states, transformation
channels, and measurement devices. There is a rich history of thought on the subject of formulating
quaternionic quantum theories [10][29][27][28][51][59][1]. In this chapter, we develop a quaternionic
quantum formalism mirroring the full apparatus of usual complex quantum information theory. Our
definition of a quaternionic quantum state is the standard one [51]. We define quaternionic quantum
channels by completely positive trace preserving maps, which have been also been considered in [6].
We define quaternionic quantum measurements via quaternionic positive operator valued measures,
which appear naturally in convex operational operational approaches to quantum theory [8]. We
prove that probabilities for quaternionic quantum measurement outcomes arise from canonical
inner products between the corresponding quaternionic quantum effects and a unique quaternionic
quantum state.

3.1 Quaternionic Quantum States

We define a quaternionic quantum state for a physical system S by a unit-trace positive semi-
definite matrix ρ ∈Md,d(H)sa, which is to say that

tr(ρ) = 1, (3.1)

and
∀φ ∈ Hd : 〈φ|ρφ〉 ≥ 0. (3.2)

We denote the convex set of all d-dimensional quaternionic quantum states by L1
+(Hd). It is clear

that L1
+(Hd) is convex, since given ρ1, ρ2 ∈ L1

+(Hd) and 0 < λ < 1 then

ρ =
(
(1− λ)ρ1 + λρ2

)
∈ L1

+(Hd), (3.3)

for by linearity of the quaternionic trace we have that

tr(ρ) = tr
(
(1− λ)ρ1 + λρ2

)
= (1− λ)tr(ρ1) + λtr(ρ2) = 1, (3.4)

and by linearity of the standard symplectic inner product we have that

∀φ ∈ Hd : 〈φ|ρφ〉 = (1− λ)〈φ|ρ1φ〉+ λ〈φ|ρ2φ〉 ∈ R+. (3.5)

We refer to the extreme points of L1
+(Hd) as pure quaternionic quantum states. All other points

are referred to as mixed states, which can be thought of as probabilistic mixtures of pure states.
Lemma 3.1.1 characterizes the set of pure quaternionic quantum states.
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Lemma 3.1.1 Extreme Quaternionic Quantum States:

The extreme points of L1
+(Hd) are rank-1 projection operators.

Proof:

Let
π2 = π = |φ〉〈φ| ∈ L1

+(Hd) (3.6)

be a rank-1 projection operator onto φ ∈ Hd. We will show that π is an extreme point of L1
+(Hd) via

reductio ad absurdum. Let a, b ∈ L1
+(Hd) with a 6= b, and let t ∈ (0, 1) and suppose π = ta+(1−t)b,

so that π2 = t2a2 + (1− t)2b2 + t(1− t)(ab+ ba). It follows that

1 = t2tr(a2) + (1− t)2tr(b2) + 2t(1− t)tr(ab). (3.7)

It will be useful to show that ∀a, b ∈ L1
+(Hd):

tr(ab) ≤ tr(a)tr(b), (3.8)

with equality iff a = b. Expand a and b in their respective eigenbases

a =

d∑
r=1

|r〉λr〈r| (3.9)

b =
d∑
s=1

|s〉µs〈s| (3.10)

and then expand b in terms of the eigenbasis for a as

b =
∑
s,r,r′

|r〉srµssr′〈r′|. (3.11)

Next, compute tr(ab) with respect to the eigenbasis for a:

tr(ab) =

d∑
r=1

d∑
r′=1

d∑
r′′=1

d∑
r′′′=1

d∑
s=1

〈r|r′〉λr′〈r′|r′′〉sr′′µssr′′′〈r′′′|r〉 =
d∑
r=1

d∑
s=1

|〈r|s〉|2λrµs, (3.12)

whereas
tr(a)tr(b) =

∑
r,s

λrµs. (3.13)

With λrµs ≥ 0, one has that |〈r|s〉|2 ≤ 1 with equality iff a = b, proving (3.8). Applying (3.8) to
(3.7) with a 6= b we have that 1 < 1, a contradiction. Therefore our supposition is false, and we
conclude that rank-1 projection operators are extreme points of L1

+(Hd). Since every element of
L1

+(Hd) can be expanded as a convex combination of rank-1 projection operators – as dictated by
Theorem 2.5.4 – only rank-1 projection operators can be extreme points. �

The ambient space for L1
+(Hd) is Md,d(H)sa, which means that

(
d(2d − 1) − 1

)
real parameters

are required for the definition of an arbitrary quaternionic quantum state. Therefore, the surface
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of L1
+(Hd) is

(
d(2d − 1) − 2

)
-dimensional. Extreme points require 4(d − 1) real parameters for

their specification, which is strictly less than the dimensionality of the surface of the convex set of
quaternionic quantum states, except in dimension 2. Indeed, quaternionic quantum theory shares
this property with usual complex quantum theory. Let us consider L1

+(H2) – the set of quaternionic
quantum states for a 2-dimensional quaternionic quantum system, or quabit – in some detail.

Define the following matrices:

1H2 = ( 1 0
0 1 ) , σ1 =

(
1 0
0 −1

)
, σ2 = ( 0 1

1 0 ) , σ3 =
(

0 i
−i 0

)
, σ4 =

(
0 j
−j 0

)
, σ5 =

(
0 k
−k 0

)
. (3.14)

Indeed, {σ1, . . . , σ5} are a spin system2 thereby admitting that

σrσs + σsσr = 2δrs1Hd , (3.15)

and
∀r ∈ {1, 2, 3, 4, 5} : σ2

r = 1Hd . (3.16)

The set of 2× 2 self-adjoint quaternionic matrices is obtained from all R-linear combinations of the
matrices defined in (3.14), i.e.

M2,2(H)sa = linR

{
1H2 , σ1, σ2, σ3, σ4, σ5

}
, (3.17)

and the set of 2-dimensional quaternionic quantum states is

L1
+(H2) =

{
ρ ∈M2,2(H)sa

∣∣ ρ =
1

2

(
1H2 +~r · ~σ

)}
, (3.18)

where
~σ = (σ1, σ2, σ3, σ4, σ5), (3.19)

and ~r ∈ R5 is such that
|~r| ≤ 1, (3.20)

which is a necessary and sufficient condition for ρ to be positive semi-definite. The value of the
upper bound on the norm of ~r in (3.20) is computed using the fact that ρ can be diagonalized as

ρ = |ξ+〉λ+〈ξ+|+ |ξ−〉λ−〈ξ−| (3.21)

where from [24] we have that
λ+ = 1

2(1 + |r|), (3.22)

and
λ− = 1

2(1− |r|), (3.23)

so that, in particular,
〈ξ−|ρξ−〉 ≥ 0 =⇒ |~r| ≤ 1. (3.24)

Given that any element φ in Hd can be expressed as

|φ〉 = |ξ+〉c+ + |ξ−〉c− (3.25)

2A spin system is a collection of anticommuting unitaries not equal to ±1 in a real unital Jordan algebra that
generates a Jordan-Banach algebra known as a spin factor, e.g. V5 = M2,2(H)sa [46].
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one has that
〈φ|ρφ〉 = c+λ+c+ + c−λ−c− = |c+|2λ+ + |c−|2λ−, (3.26)

and given the reality and positivity of λ+, and of the squares of |c+| and |c−|, we conclude that (3.20)
is indeed a necessary and sufficient condition for ρ to be positive semi-definite. Pure quabit states
comprise the surface of a sphere with |~r| = 1. For arbitrary dimension d ∈ Z+, we can make use of
the following lemma to characterize the set of pure quaternionic quantum states corresponding to
d-dimensional quaternionic systems, which we refer to as quadits.

Lemma 3.1.2 Characterization of Extreme Quaternionic Quantum States:

A ∈Md,d(H)sa is such that A = |φ〉〈φ| if and only if

tr(A2) = tr(A3) = 1. (3.27)

Proof:

We follow the complex-case proof given by Fuchs and Schack [36]. Let A ∈ Md,d(H)sa with real
eigenvalues λr and orthogonal eigenprojectors |ξr〉〈ξr|. Recall from Chapter 2 that

tr(A2) =

d∑
r=1

λ2
r , (3.28)

and one also has that

tr(A3) = tr
( d∑
r=1

d∑
r′=1

d∑
r′′=1

|ξr〉λr〈ξr|ξr′〉λr′〈ξr′ |ξr′′〉λr′′〈ξr′′ |
)

= tr
( d∑
r=1

|ξr〉λ3
r〈ξr|

)
=

d∑
r=1

λ3
rtr(|ξr〉〈ξr|)

=
d∑
r=1

λ3
r . (3.29)

Now, (3.27) implies that

∀r ∈ {1, . . . , d} : |λr| ≤ 1 =⇒ ∀r ∈ {1, . . . , d} : 1− λr ≥ 0. (3.30)

Next, observe that (3.29)-(3.28) yields

d∑
r=1

λ2
r(λr − 1) = 0, (3.31)

which implies that there is one and only one non-zero λr = 1. The converse holds trivially, and so
the lemma is proven. �
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Given that L1
+(Hd) is the convex hull of all pure states, the conditions (3.27) fully characterize the

outer shape of quaternionic quantum state space. We shall analyze such spaces in further detail in
Chapter 5.

3.2 Quaternionic Quantum Channels

We define the evolution of a quaternionic quantum state ρ associated with a physical system S via
a quaternionic quantum channel Φ : Md,d(H) −→Mp,p(H) whose action on ρ ∈Md,d(H) is defined
in terms of {A1, . . . , An} ⊂Mp,d(H) via

Φ(ρ) =
n∑
r=1

ArρA
∗
r , (3.32)

where
n∑
r=1

A∗rAr = 1Hd . (3.33)

In order to prove that quaternionic quantum channels transform quaternionic quantum states into
quaternionic quantum states, we require Lemma 3.2.1.

Lemma 3.2.1 On the Quaternionic Trace:

If A ∈Mp,d(H) and ρ ∈Md,d(H)sa, then

tr(AρA∗) = tr(A∗Aρ). (3.34)

Proof:

Observing that AρA∗ ∈Mp,p(H)sa, while A∗Aρ ∈Md,d(H)sa, we recognize that the lhs and rhs of
(3.34) are actually being computed with respect to bases for right quaternionic modules of generally
different dimensions p and q, and therefore the cyclic property of the trace does not suffice for a
proof of (3.34) when p 6= d. We will use the Greek letters α, β, γ, δ, and τ to keep track of elements
in an arbitrary orthonormal basis for Hd, and we will use the Latin letters a, b and t to keep track
of elements in an arbitrary orthonormal basis for Hp. Explicitly computing the lhs of (3.34) we
have that

tr(AρA∗) = <
( p∑
t=1

p∑
a=1

d∑
α=1

d∑
β=1

p∑
b=1

d∑
γ=1

d∑
δ=1

〈t|a〉Aaα〈α|γ〉ργδ〈δ|β〉A∗βb〈b|t〉
)

= <
( p∑
t=1

d∑
α=1

d∑
β=1

AtαραβA
∗
βt

)
. (3.35)
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Explicitly computing the rhs of (3.34) we have that

tr(A∗Aρ) = <
( d∑
τ=1

d∑
β=1

p∑
b=1

p∑
a=1

d∑
α=1

d∑
γ=1

d∑
δ=1

〈τ |β〉A∗βb〈b|a〉Aaα〈α|γ〉ργδ〈δ|τ〉
)

= <
( d∑
τ=1

d∑
α=1

p∑
a=1

A∗τaAaαρατ

)
=

d∑
τ=1

d∑
α=1

p∑
a=1

<
(
A∗τaAaαρατ

)
=

d∑
τ=1

d∑
α=1

p∑
a=1

<
(
AaαρατA

∗
τa

)
= <

( d∑
τ=1

d∑
α=1

p∑
a=1

AaαρατA
∗
τa

)
= <

( p∑
t=1

d∑
α=1

d∑
β=1

AtαραβA
∗
βt

)
(3.36)

where we have exchanged summation indices in arriving at the last equality, finishing the proof. �

Equipped with Lemma 3.2.1, we now prove Theorem 3.2.2, which states that

Φ(L1
+(Hd)) ⊆ L1

+(Hp) (3.37)

for any quaternionic quantum channel.

Lemma 3.2.2 On Quaternionic Quantum Channels:

Let ρ ∈ L1
+(Hd) and let Φ : Md,d −→Mp,p be a quaternionic quantum channel defined via

Φ(ρ) =
n∑
r=1

ArρA
∗
r, (3.38)

where {A1, . . . , An} ⊂Mp,d(H) are such that∑
r

A∗rAr = 1Hd. (3.39)

Then
tr (Φ(ρ)) = 1, (3.40)

and
∀χ ∈ Hp : 〈χ|Φ(ρ)χ〉 ≥ 0. (3.41)

Proof :
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To prove (3.40) we apply properties of the quaternionic trace and Lemma 3.2.1:

tr (Φ(ρ)) = tr

(
n∑
r=1

ArρA
∗
r

)

=
n∑
r=1

tr (ArρA
∗
r)

=
n∑
r=1

tr (ρA∗rAr)

= tr

(
ρ
( n∑
r=1

A∗rAr
))

= tr (ρ1Hd)

= tr(ρ)

= 1. (3.42)

To prove (3.41), let
Bp =

{
r ∈ Hp

∣∣ 〈r|r′〉 = δrr′
}p
r=1

, (3.43)

and

Bd =
{
α ∈ Hd

∣∣ 〈α|α′〉 = δαα′
}d
α=1

, (3.44)

be orthonormal bases for Hp and Hd respectively.

Let χ =
∑p

r=1 |r〉χr ∈ Hp with components

χr = 〈r|χ〉, (3.45)

and A =
∑p

r=1

∑d
α=1 |r〉Arα〈α| ∈Mp,d with components

Arα = 〈r|Aα〉. (3.46)

Also, let ρ =
∑d

α=1

∑d
β=1 |α〉ραβ〈β| ∈Md,d(H)sa

ραβ = 〈α|ρβ〉. (3.47)

Observe that

〈χ|AρA∗χ〉 =

p∑
r=1

χr (AρA∗χ)r

=

p∑
r=1

p∑
s=1

χr (AρA∗)rs χs

=

p∑
r=1

p∑
s=1

d∑
α=1

χrArα (ρA∗)αs χs

=

p∑
r=1

p∑
s=1

d∑
α=1

d∑
β=1

χrArαραβA
∗
βsχs. (3.48)
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Next, observe that

〈A∗χ|ρA∗χ〉 =
d∑

α=1

(A∗χ)α (ρA∗χ)α

=

d∑
α=1

p∑
r=1

A∗αrχr (ρA∗χ)α

=
d∑

α=1

p∑
r=1

p∑
s=1

A∗αrχr (ρA∗)αs χs

=

d∑
α=1

p∑
r=1

p∑
s=1

d∑
β=1

A∗αrχrραβA
∗
βsχs

=

p∑
r=1

p∑
s=1

d∑
α=1

d∑
β=1

χrArαραβA
∗
βsχs

= 〈χ|AρA∗χ〉. (3.49)

Therefore,

〈χ|Φ(ρ)χ〉 = 〈χ|
n∑
r=1

ArρA
∗
rχ〉

=
n∑
r=1

〈χ|ArρA∗rχ〉

=
n∑
r=1

〈A∗rχ|ρA∗rχ〉

=

n∑
r=1

〈φr|ρφr〉, (3.50)

where φr = A∗rχ is an arbitrary element of Hd. Given that ρ ∈ L1
+(Hd), have we reach the desired

conclusion. �

We have established that quaternionic quantum channels transform quaternionic quantum states
into quaternionic quantum states. In the context of usual complex quantum theory, such a trans-
formation is referred to as a positive map. The usual complex quantum formalism demands that
physical transformations be defined by completely positive maps. A completely positive map is
positive map, Φ : Md,d(C) → Mp,p(C), such that for all positive semi-definite complex matrices
A ∈ Mqd,qd(C)sa one has that (1Cq ⊗ Φ)(A) is positive semi-definite ∀q ∈ Z+ [60]. Choi’s theo-
rem for completely positive maps [17] dictates that any completely positive map acts according
to an operator-sum decomposition analogous to (3.32). As we shall see in the following chapter,
any quaternionic quantum channel can be simulated by a complex quantum channel (see Theo-
rem 4.2.5). On that view, we conclude that our definition of quaternionic quantum channels is
consistent with the usual definition of physical transformations. We refer to such channels as com-
pletely positive trace preserving quaternionic maps. Such terminology has previously been adopted
in the p = q case by Kossakowski [56]. We say more on the subject of tensor products in Section 6.2.
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3.3 Quaternionic Quantum Measurements

We define a measurement device to be a physical device that receives a physical system S as input
and outputs one classical outcome r ∈ {1, . . . , n} with n ∈ Z+. We associate each classical outcome
with a quaternionic quantum effect. We define the set of quaternionic quantum effects for physical
systems with an associated state ρ ∈ L1

+(Hd) as

E(Hd) = {E ∈ L+(Hd) ⊂Md,d(H)sa | ∀φ ∈ Hd : 〈φ|Eφ〉 ≤ 1}, (3.51)

from which it follows that ∀E ∈ E(Hd):

‖E‖ =
√

tr(E2) ≤
√
d. (3.52)

A quaternionic quantum measurement corresponds to a measurement device with classical outcomes
r ∈ {1, . . . , n} to which there is an associated set of quaternionic quantum effects {E1, . . . , En}
admitting the following normalization condition:

n∑
r=1

Er = 1Hd , (3.53)

and we refer to such a set as a quaternionic positive operator valued measure (quaternionic povm).

The set E(Hd) is convex, for if E1, E2 ∈ E(Hd) and 0 < λ < 1 then

E = (1− λ)E1 + λE2 ∈ E(Hd), (3.54)

since one has that ∀φ ∈ Hd

0 ≤ 〈φ|Eφ〉 = (1− λ)〈φ|E1φ〉+ λ〈φ|E2φ〉 ≤ 1. (3.55)

A distinguished class of quaternionic quantum povms are quaternionic projection valued measures
(quaternionic pvms), which are defined by sets of d rank-1 projection operators that are orthonormal
with respect to the canonical inner product on Md,d(H)sa, thereby resolving the identity on Hd as
in (3.53). Given Theorem 2.5.4, we have that the elements of a quaternionic pvm correspond to
the eigenvectors of a self-adjoint quaternionic matrix.

The formulations of quaternionic quantum theory given by Finkelstein et al. [27] and Adler [1]
restrict their attention to pvms by identifying observables with self-adjoint matrices and physical
propositions with the corresponding eigenprojectors. The full class of quaternionic povms offers a
wider range of possibilities for the description of measurement devices. For instance, a quaternionic
povm in E(Hd) may admit a cardinality larger than d, thereby describing a measurement device
with any number of classical outcomes. Moreover, the elements of a quaternionic povm need
not be orthogonal. In the context of complex quantum theory, the povm formalism has two
major advantages over the traditional pvm formalism. Firstly, complex povms provide a compact
formalism for the description of physical scenarios wherein S interacts with ancillary systems
[38][60]. Secondly, complex povms provide optimal solutions to important problems in complex
quantum information theory, such as distinguishing a set complex quantum states [38][60]. These
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lessons from complex quantum theory motivate us to consider a quaternionic povm formalism for
the description of quaternionic quantum measurements.

In usual complex quantum theory, Neumark’s Theorem dictates that any complex povm in E(Cd)
can be realized as a complex pvm acting on a higher-dimensional complex Hilbert space. In The-
orem 4.2.5, we prove that every quaternionic quantum measurement process corresponds to a
measurement process described by usual complex quantum theory. Therefore, quaternionic povms
can also be described by pvms on higher-dimensional complex Hilbert spaces.

3.4 The Quaternionic Quantum Probability Rule

In this section we prove that the probability for an outcome of a quaternionic quantum measure-
ment is equal the canonical inner product between the corresponding quaternionic quantum effect
and a unique quaternionic quantum state. Our proof is based on the proof given by Caves et
al. in the complex case [13]. In particular, we assume that probabilities for outcomes of quater-
nionic quantum measurements are noncontextual, so that they are given by quaternionic frame
functions defined in Definition 3.4.1. The Kochen-Specker theorem [55] thereby requires us to
denounce EPR realism [21]. Consequently, we deny the existence of the results of unperformed
quaternionic quantum measurements [61]. Our assumption of noncontextuality is consistent with a
Quantum Bayesian interpretation of quaternionic quantum states, wherein quaternionic quantum
states reflect personalist Bayesian degrees of belief regarding the outcomes of quaternionic quantum
measurements, and wherein measurements generate physical reality (see [32] and references therein,
as well as Section 5.1). Our assumption of noncontextuality is not consistent with hidden-variable
quantum models. We now proceed with the definition of quaternionic frame functions, and then we
present and prove Theorem 3.4.2 dictating the quaternionic probability rule. In the special cases
of pvms, Theorem 3.4.2 reduces to a quaternionic version of Gleason’s theorem [40].

Definition 3.4.1 Quaternionic Frame Functions

Let
f : E(Hd)→ [0, 1]. (3.56)

If ∀X = {Er ∈ E(Hd)|
∑

r Er = 1Hd}: ∑
Er∈X

f(Er) = 1, (3.57)

then we say that f is a quaternionic frame function.

Theorem 3.4.2 The Quaternionic Quantum Probability Rule:

For every quaternionic frame function there exists a unique unit-trace positive semi-definite matrix
ρ ∈Md,d(H)sa such that ∀E ∈ E(Hd) :

f(E) = (E, ρ) = tr(Eρ). (3.58)
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Proof :

For the proof, we closely follow the steps taken by Caves et al. in the complex case [13]. First,
we demonstrate that every quaternionic frame function is linear with respect to the nonnegative
rational numbers Q+. Next, we prove that every quaternionic frame function is continuous. These
two results together imply that every quaternionic frame function is linear on all of E(Hd). We
then extend f to a linear function on all of Md,d(H)sa, and we explicitly show that it arises from
the canonical inner product on Md,d(H)sa.

Step 1: Linearity with respect to the nonnegative rationals

Let
X1 = {E1, E2, E3} ⊂ E(Hd) (3.59)

define a quaternionic povm, so that

X2 = {E1 + E2, E3} ⊂ E(Hd) (3.60)

also defines a quaternionic povm. If f is a quaternionic frame function, then

f(E1) + f(E2) + f(E3) = f(E1 + E2) + f(E3), (3.61)

which implies that
f(E1) + f(E2) = f(E1 + E2), (3.62)

trivially establishing that f is additive on E(Hd).

Next, consider the effect
nE ∈ E(Hd), (3.63)

where n ∈ Z+ and E ∈ E(Hd) with ‖E‖ ≤
√
d
n . If m ∈ Z+, it follows that

n
mE ∈ E(Hd). (3.64)

We have from additivity of quaternionic frame functions on E(Hd) that

mf(
n

m
E) = f(nE) = nf(E) =⇒ f(

n

m
E) =

n

m
f(E), (3.65)

establishing that every quaternionic frame function is linear with respect to Q+ on E(Hd).

Step 2: Continuity

In this step, we prove that every quaternionic frame function is continuous. Recall the definition
of continuity of functions between metric spaces [13]:

Let (X, dX) and (Y, dY ) be metric spaces and let f : (X, dX) → (Y, dY ). We say that f is
continuous at x0 ∈ (X, dX) if ∀ε > 0 ∃δ > 0 such that dY (f(x), f(x0)) < ε ∀x satisfying
dX(x, x0) < δ.
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In our case, we have X = Md,d(H)sa and the metric dX(x1, x2) is given in terms of the norm induced
by the canonical inner product on Md,d(H)sa:

dX(x, y) = ‖x− y‖ =
√

tr
(
(x− y)2

)
. (3.66)

Indeed, the following properties hold for all quaternionic effects x, y, z ∈ E(Hd) by virtue of
Md,d(H)sa being a real vector space equipped with a norm induced by the canonical inner product
(2.49):

• Nonnegativity: dX(x, y) ≥ 0 with equality iff x = y,

• Symmetry: dX(x, y) = dX(y, x),

• Triangle inequality: dX(x, z) ≤ dX(x, y) + dX(y, z).

Nonnegativity of the metric follows directly from nonnegativity of the norm. Symmetry of the
metric is a trivial consequence R-homogeneity of the norm, in particular

dX(x, y) = ‖x− y‖ = ‖(−1)(y − x)‖ = | − 1|‖y − x‖ = ‖y − x‖ = dX(y, x). (3.67)

The triangle inequality for the metric simply follows from the triangle inequality for the norm:

dX(x, z) = ‖x− z‖ = ‖(x− y) + (y − z)‖ ≤ ‖x− y‖+ ‖y − z‖ = dX(x, y) + dX(y, z). (3.68)

We have thus established that Md,d(H)sa equipped with the aforementioned metric is indeed a
metric space. It is obvious that Y = [0, 1] equipped with the standard metric is a metric space.

We now proceed to show that any quaternionic frame function is continuous. Following Caves et al.
[13], we shall proceed via reductio ad absurdum. First, suppose that a quaternionic frame function
f is discontinuous – that is, not continuous – at the zero matrix 0. Additivity of quaternionic
frame functions on E(Hd) implies that ∀E ∈ E(Hd):

f(E) = f(E + 0) = f(E) + f(0) =⇒ f(0) = 0. (3.69)

Now, if f is discontinuous at 0, then there exists ε > 0 such that ∀δ > 0 there exists some
E ∈ E(Hd) satisfying ‖E‖ < δ and |f(E)| ≥ ε. Consider the choice δ = 1

n < ε where n ∈ Z+, and
let E ∈ E(Hd) be such that ‖E‖ < 1

n and |f(E)| ≥ ε. Now, consider the matrix F = nE. By
multiplicativity of the norm induced by the canonical inner product on Md,d(H)sa, one has that
‖F‖ = |n|‖E‖ = n‖E‖ < 1 <

√
d, for all dimensions of interest d ≥ 2. Therefore, we have that

F ∈ E(Hd); however, from additivity of quaternionic frame functions on E(Hd), we also have that
f(F ) = nf(E) = n|f(E)| ≥ nε > 1, which is impossible since f is a frame function. We have
arrived at a contradiction, therefore our supposition that f is discontinuous at the zero matrix is
false. We conclude that f is continuous at the zero matrix.

With the continuity of quaternionic frame functions established at the zero matrix, we can now
easily establish continuity of quaternionic frame functions at any arbitrary effect E0 ∈ E(Hd).
Consider a neighbouring E ∈ E(Hd) to E0 such that ‖E − E0‖ < 1. It is clear that G = E − E0 ∈
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Md,d(H)sa, and applying Theorem 2.5.5 we may write G = A−B where A and B are respectively
the positive and negative parts of the spectral resolution of G. Phrased explicitly, Theorem 2.5.4
theorem implies that we can write

G =

d∑
r=1

|ξr〉λr〈ξr|

=
(
|ξ1〉λ1〈ξ1|+ |ξ2〉λ2〈ξ2|+ · · ·+ |ξn〉λn〈ξn|

)
︸ ︷︷ ︸

A

−
(

(|ξn+1〉µn+1〈ξn+1|+ |ξn+2〉µn+2〈ξn+2|+ . . . |ξd〉µd〈ξd|
)

︸ ︷︷ ︸
B

, (3.70)

where we have grouped the eigenvalues such that ∀r satisfying 1 ≤ r ≤ n one has that λr ≥ 0, and
∀s satisfying n + 1 ≤ s ≤ d one has that λs < 0, with µs = −λs. One has that A,B ∈ L+(Hd),
since ∀φ ∈ Hd:

〈φ|Aφ〉 =

n∑
r=1

〈φ|ξr〉λr〈ξr|φ〉 =

n∑
r=1

|〈φ|ξr〉|2λr ≥ 0, (3.71)

where we have used the fact that λr ∈ R+ commutes with the quaternion 〈φ|ξr〉 and its conjugate
〈ξr|φ〉. Similarly, one has that ∀φ ∈ Hd:

〈φ|Bφ〉 =

d∑
s=n+1

〈φ|ξs〉µs〈ξs|φ〉 =

d∑
s=n+1

|〈φ|ξs〉|2µs ≥ 0. (3.72)

We have chosen E in the neighbourhood of E0 such that ‖E − E0‖ < 1, and so, in fact, it follows
that A,B ∈ E(Hd). To see that A and B are indeed effects, observe that

‖A−B‖2 = tr
(
(A−B)(A−B)

)
= tr(A2) + tr(B2)− 2tr(AB)

= ‖A‖2 + ‖B‖2, (3.73)

where we have used the cyclic property of the canonical inner product on Md,d(H)sa, and where we
have used the fact that eigenvectors of self-adjoint G = A−B may be taken as orthogonal, hence

tr(AB) = tr
( n∑
r=1

d∑
s=n+1

|ξr〉λr〈ξr|ξs〉µs〈ξs|
)

= 0. (3.74)

Summarizing the above, we have that

‖A‖2 = ‖A−B‖2 − ‖B‖2 < 1− ‖B‖2 < 1 =⇒ ‖A‖ < 1, (3.75)

and similarly
‖B‖2 = ‖A−B‖2 − ‖A‖2 < 1− ‖A‖2 < 1 =⇒ ‖B‖ < 1, (3.76)

hence A,B ∈ E(Hd). Next, consider the matrix E+B. By definition, E ∈ E(Hd) ⊂ L+(Hd), and we
have already established that B ∈ L+(Hd). Letting α = ‖E + B‖ ∈ R+ and choosing q ∈ Q+ > α
we have that ∥∥∥∥E +B

q

∥∥∥∥ =

∥∥∥∥A+B

q

∥∥∥∥ < 1, (3.77)
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and applying the frame function to the subnormalization of E +B = E0 +A by q we get

f

(
E +B

q

)
= f

(
E0 +A

q

)
=⇒ f

(
E

q

)
+ f

(
B

q

)
= f

(
E0

q

)
+ f

(
A

q

)
, (3.78)

and therefore
f(E)− f(E0) = f(A)− f(B). (3.79)

In deriving (3.79) we have applied linearity of quaternionic frame functions with respect to the
nonnegative rationals. Now, continuity of f at the zero matrix says that ∀ε = ε′

2 ∃δ > 0 such
that ‖A‖, ‖B‖ < δ implies that |f(A)|, |f(B)| < ε′. So, if ‖E − E0‖ = ‖A − B‖ < δ, then
|f(E) − f(E0)| = |f(A) − f(B)| ≤ |f(A)| + |f(B)| < 2ε′ = ε. Therefore, we have established
that any quaternionic frame function is continuous. Taken together with the result from Step 1 in
the proof – that is, any quaternionic frame function is linear on E(Hd) with respect to Q+ – we
conclude that any quaternionic frame function is in fact linear on E(Hd) with respect to R. Indeed,
the rational numbers are a dense subset of the real numbers, meaning that for any real number
α ∈ R there exists a rational number q ∈ Q that can be chosen such that |α−q| is arbitrarily small,
and so by continuity the difference between f(Eα) and f(E)q can be made arbitrarily small.

Step 3: Linearity and the canonical inner product

We have established that any quaternionic frame function f is R-linear on E(Hd). We now show
that any such f has a unique R-linear extension to cover the domain of all self-adjoint quaternionic
matrices Md,d(H)sa. Let H ∈ Md,d(H)sa, and let G1, G2 ∈ L+(Hd) be the positive and negative
parts of the spectral resolution of H respectively, so that H = G1 − G2 in analogy with (3.70).
Now, if G ∈ L+(Hd), then one can always find E ∈ E(Hd) such that G = αE, where α ∈ R+. We
define the extension of f acting on arbitrary H ∈Md,d(H)sa as follows:

f(H) = f(G1)− f(G2) = α1f(E1)− α2f(E2). (3.80)

The extension of f is R-linear. Indeed, if a ∈ R and H ∈Md,d(H)sa then

f(aH) = f(aG1 − aG2)

= f(aα1E1 − aα2E2)

= aα1f(E1)− aα2f(E2)

= af(H). (3.81)

Furthermore, if H(1), H(2) ∈Md,d(H)sa with

H(1) = α
(1)
1 E

(1)
1 − α(1)

2 E
(1)
2 , (3.82)

and
H(2) = α

(2)
1 E

(2)
1 − α(2)

2 E
(2)
2 , (3.83)
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then

f
(
H(1) +H(2)

)
= f

(
α

(1)
1 E

(1)
1 + α

(2)
1 E

(2)
1︸ ︷︷ ︸

α1E1

−
(
α

(1)
2 E

(1)
2 + α

(2)
2 E

(2)
2

)︸ ︷︷ ︸
α2E2

)
= f(α1E1 − α2E2)

= f(α1E1)− f(α2E2)

= f
(
α

(1)
1 E

(1)
1 + α

(2)
1 E

(2)
1

)
− f

(
α

(1)
2 E

(1)
2 − α(2)

2 E
(2)
2

)
= α

(1)
1 f

(
E

(1)
1

)
− α(1)

2 f
(
E

(1)
2

)
+ α

(2)
1 f

(
E

(2)
1

)
− α(2)

2 f
(
E

(2)
2

)
= f

(
H(1)

)
+ f

(
H(2)

)
, (3.84)

where we have repeatedly used R-linearity of f on E(Hd). Of course, there are infinitely many
ways to decompose a positive semi-definite quaternionic matrix as the product of a positive real
number and an effect. In particular, one can always find distinct α1, α2, α3, α4 ∈ R+ and distinct
E1, E2, E3, E4 ∈ E(Hd) such that

H = α1E1 − α2E2 = α3E3 − α4E4, (3.85)

which implies that
α1E1 + α4E4 = α2E2 + α3E3. (3.86)

Despite the existence of such distinct unravellings of H, the extension of f acting on H actually is
unique. To see this, choose β = max{α1, α2, α3, α4} and divide (3.86) by β:

α1

β
E1 +

α4

β
E4 =

α2

β
E2 +

α3

β
E3. (3.87)

It is obvious that ∀r ∈ {1, 2, 3, 4} : αr
β Er ∈ E(Hd) – the original domain of f . Acting on (3.87) with

f , and applying R-linearity of f on E(Hd), we conclude that

f(α1E1 − α2E2) = f(α3E3 − α4E4), (3.88)

establishing a unique R-linear extension of f to the domain Md,d(H)sa.

Having established R-linearity of any quaternionic frame function f on the real vector space
Md,d(H)sa, we now proceed to explicitly show that f arises from the canonical inner product
on Md,d(H)sa.

Let {Υ1, . . . ,Υd(2d−1)} be an orthonormal basis for Md,d(H)sa such that (Υr,Υrs) = δrs. We can

expand any effect E ∈ E(Hd) as a real-linear combination of the Υr in terms of coefficients (Υr, E):

E =

d(2d−1)∑
r=1

Υr(Υr, E). (3.89)
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Also, there exists a unique matrix ρ ∈Md,d(H)sa that we can expand as a real-linear combination
of the Υr in terms of coefficients f(Υr):

ρ =

d(2d−1)∑
r=1

Υrf(Υr), (3.90)

so that (ρ,Υr) = f(Υr). We stress that ρ is indeed unique, for

d(2d−1)∑
r=1

Υrαr =

d(2d−1)∑
r=1

Υrβr ⇐⇒ 0 =

d(2d−1)∑
r=1

(αr − βr)Υr ⇐⇒ ∀r : αr = βr, (3.91)

since Υr are linearly independent. It follows that

f(E) =

d(2d−1)∑
r=1

f(Υr)(Υr, E)

=

d(2d−1)∑
r=1

(ρ,Υr)(Υr, E)

=
( d(2d−1)∑

r=1

Υr(ρ,Υr), E
)

= (E, ρ). (3.92)

The matrix ρ is positive semi-definite, which is verified by letting E = |φ〉〈φ| for arbitrary φ ∈ Hd

and observing from (2.74) that

0 ≤ f(|φ〉〈φ|) = tr
(
ρ|φ〉〈φ|

)
= 〈φ|ρφ〉. (3.93)

We also have that ρ is unit-trace, which follows from the observation that

tr(ρ) = (ρ,1Hd) =

(
ρ,
∑
Er∈X

Er

)
=
∑
Er∈X

f(Er) = 1, (3.94)

where X is an arbitrary quaternionic povm, finishing the proof. �
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Chapter 4

Quaternionic Quantum Dynamics in
Complex Quantum Theory

In this chapter, we embed quaternionic quantum theory into the framework of complex quantum
theory. We prove that every physical process described via the quaternionic quantum formalism
considered in Chapter 3 corresponds to a physical process described via the formalism of usual
complex quantum information theory. Moreover, we show that any quaternionic quantum descrip-
tion of a physical preparation → transformation → measurement process of the type depicted in
Figure 3.1 is equivalent to a complex quantum description in the sense that both descriptions admit
identical probabilities for the outcomes of the final measurement process. Our results generalize
previously discovered equivalences between quaternionic and complex quantum theories highlighted
in Chapter 1. In particular, we prove that quaternionic quantum theory and complex quantum
theory are consistent with respect to the full apparatus of quantum information theory, rather than
only considering the restricted class of quantum processes treated in [25]. The results given by Fer-
nandez and Schneeberger in [25] establish the equivalence of quaternionic and complex quantum
theories with respect unitary evolution and pvm quantum measurements. Specifically, Fernandez
and Schneeberger show that any quaternionic preparation → unitary evolution → pvm measure-
ment process on n quabits corresponds to an equivalent process involving n+ 1 qubits. Their proof
is based on the group isomorphism

Sp(d) ∼= U(2d,C) ∩ Sp(2d,C) (4.1)

(see Lemma A.2.6 for the proof of this symplectic group isomorphism). We also appeal to the
symplectic embedding of quaternionic matrices into complex matrices to establish our main results.
In Section 4.1, we recall the symplectic coordinate representation of quaternions, and we apply
the symplectic coordinate representation to establish injective mappings ψp,d from Mp,d(H) into
M2p,2d(C), which reduce to the injective ∗-homomorphisms pointed out by Farenick and Pidkowich
in [23] when p = d. We proceed to prove several key properties of the maps ψp,d, including a lemma
relating canonical inner products on Md,d(H)sa to Hilbert-Schmidt inner products on M2d,2d(C)sa.
Equipped with the lemmas of Section 4.1, we prove our main results in Section 4.2.
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4.1 Symplectic Embeddings of Mp,d(H) into M2p,2d(C)

Finkelstein et al. [27] pointed out that every quaternion can be represented by a unique pair of
complex numbers in accordance with Definition 4.1.1:

Definition 4.1.1 Symplectic coordinate representations of quaternions:

Let a ∈ H with a = a0 + ia1 + ja2 + ka3 = γ1 + γ2j where γ1, γ2 ∈ C are defined in terms of the
constituents of a as follows:

γ1 = a0 + ia1 ∈ C, (4.2)

and
γ2 = a2 + ia3 ∈ C. (4.3)

We say that γ1 + γ2j is the symplectic coordinate representation of a.

The correspondence between symplectic coordinate representations of quaternions and the asso-
ciated C-linear endomorphisms on C2 are described in Section A.3. Symplectic coordinate repre-
sentations of quaternions are used to define symplectic coordinate representations of quaternionic
matrices in accordance with Definition 4.1.2:

Definition 4.1.2 Symplectic coordinate representations of quaternionic matrices:

Let A ∈ Mp,d(H) with A = Γ1 + Γ2j where Γ1,Γ2 ∈ Mp,d(C) are obtained from the symplectic
coordinate representations of matrix elements according to (4.2) and (4.3). We say that Γ1 + Γ2j
is the symplectic coordinate representation of A.

Evidently, the symplectic coordinate representation of a self-adjoint quaternionic matrix A ∈
Md,d(H)sa is given in terms of complex self-adjoint Γ1 = Γ∗1 and complex antisymmetric Γ2 = −ΓT2 ,
for A = A∗ implies that

Γ1 + Γ2j = (Γ1 + Γ2j)
∗ = Γ∗1 − jΓ∗2 = Γ∗1 − ΓT2 j. (4.4)

Symplectic coordinate representations of quaternionic matrices are used to define symplectic em-
beddings of quaternionic matrices into complex matrices according to Definition 4.1.3.

Definition 4.1.3 Symplectic Embeddings:

Let A = Γ1 + Γ2j ∈Mp,d(H). Define

ψp,d : Mp,d(H)→M2p,2d(C) (4.5)

via:

ψp,d (A) =

(
Γ1 Γ2

−Γ2 Γ1

)
. (4.6)

We say (4.6) is the symplectic embedding of A into M2p,2d(C).
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The symplectic embeddings enjoy the properties summarized in Lemma 4.1.4.

Lemma 4.1.4 Properties of Symplectic Embeddings:

The following holds ∀A,A′ ∈Mp,d(H), ∀B ∈Md,q(H) and ∀α, α′ ∈ R:

ψp,d
(
Aα+A′α′

)
= ψp,d (A)α+ ψp,d

(
A′
)
α′, (4.7)

ψd,d (1Hd) = 1C2d, (4.8)

ψp,d (A)ψd,q (B) = ψp,q (AB) , (4.9)

ψp,d (A)∗ = ψd,p (A∗) , (4.10)

ψ (A) = ψ
(
A′
)
⇐⇒ A = A′. (4.11)

Proof :

Let
A = Γ1 + Γ2j, (4.12)

A′ = Γ′1 + Γ′2j, (4.13)

and
B = Λ1 + Λ2j, (4.14)

where Γ1,Γ
′
1,Γ2,Γ

′
2 ∈ Mp,d(C) and where Λ1,Λ2 ∈ Md,q(C). Linearity (4.7) follows directly from

the definition of the symplectic embeddings:

ψp,d

((
Γ1α+ Γ2jα

)
+
(
Γ′1α

′ + Γ′2jα
′)) = ψp,d

((
Γ1α+ Γ′1α

′)+
(
Γ2α+ Γ′2α

′)j)
=

(
Γ1α+ Γ′1α

′ Γ2α+ Γ′2α
′

−Γ2α+ Γ′2α
′ Γ1α+ Γ′1α

′

)
= ψp,d(A)α+ ψp,d(A

′)α′. (4.15)

If A = 1Hd , then Γ1 = 1Hd and Γ2 = 0, and so ψd,d(1Hd) is the identity on 1C2d as in (4.8). To
prove multiplicativity (4.9) of the symplectic embeddings, we observe that

AB = (Γ1Λ1−Γ2Λ2)+(Γ1Λ2+Γ2Λ1)j =⇒ ψp,q(AB) =

(
Γ1Λ1 − Γ2Λ2 Γ1Λ2 + Γ2Λ1

−Γ1Λ2 − Γ2Λ1 Γ1Λ1 − Γ2Λ2

)
, (4.16)

whereas

ψp,d(A)ψd,p(B) =

(
Γ1 Γ2

−Γ2 Γ1

)(
Λ1 Λ2

−Λ2 Λ1

)
=

(
Γ1Λ1 − Γ2Λ2 Γ1Λ2 + Γ2Λ1

−Γ2Λ1 − Γ1 Λ2 −Γ2Λ2 + Γ1Λ1

)
= ψp,q(AB).

(4.17)
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To prove that symplectic embeddings commute with the composition of conjugation and transpo-
sition (4.10), we observe that A∗ = Γ∗1 − ΓT2 j so

ψd,p(A
∗) =

(
Γ∗1 (−Γ2)∗

Γ∗2 (Γ1)∗

)
=

(
Γ∗1 −ΓT2

Γ∗2 ΓT1

)
= ψp,d(A)∗. (4.18)

Finally, symplectic embeddings are injective (4.11), for if ψp,d(A) = ψp,d(A
′), then Γ1 = Γ′1 and

Γ2 = Γ′2, finishing the proof. �

In addition to Lemma 4.1.4, we require Lemma 4.1.5 in order to establish our results in Section
4.2.

Lemma 4.1.5 Inner Product Correspondence:

The following holds ∀A,B ∈Md,d(H)sa:

tr (AB) =
1

2
tr (ψd,d(A)ψd,d(B)) , (4.19)

where by virtue of A = A∗ and B = B∗ we have that the rhs of (4.19) is the standard Hilbert-
Schmidt inner product [60] on M2d,2d(C)sa.

Proof: Given (4.4), the symplectic coordinate representations of quaternionic self-adjoint A =
Γ1 + Γ2j and B = Λ1 + Λ2j are in terms of complex self-adjoint Γ1 = Γ∗1 and Λ1 = Λ∗1 and complex
antisymmetric Γ2 = −ΓT

2 and Λ2 = −ΛT
2 . Expanding the lhs of (4.19) we get

tr (AB) =
1

2
tr
(
Γ1Λ1 + Λ1Γ1

)
︸ ︷︷ ︸

a

+
1

2
tr
(
Γ1Λ2j + Λ1Γ2j

)
︸ ︷︷ ︸

b

+
1

2
tr
(
Γ2jΛ1 + Λ2jΓ1

)
︸ ︷︷ ︸

c

+
1

2
tr
(
Γ2jΛ2j + Λ2jΓ2j

)
︸ ︷︷ ︸

d

. (4.20)

Expanding the rhs of (4.19) we get

1

2
tr (ψd,d(A)ψd,d(B)) =

1

2
tr
(
Γ1Λ1 + Γ1 Λ1

)
︸ ︷︷ ︸

a′

+
1

2
tr
(
−Γ2Λ2 − Γ2Λ2

)
︸ ︷︷ ︸

d′

. (4.21)

Our method of proof will be to show that a = a′, d = d′, and b + c = 0. We begin by showing that
a = a′. Since Γ1,Λ1 ∈Mn(C)sa, we have that

tr
(
Γ1 Λ1

)
= tr(ΓT

1 ΛT
1 ) = tr

(
(Λ1Γ1)T

)
= tr (Λ1Γ1) = tr (Γ1Λ1) , (4.22)

and therefore by the cyclic property of the trace we have that a = a′. We now proceed to show that
b + c = 0. It will be useful to express the components of the symplectic coordinate representations
as follows:

Γ1 =
n∑
r=1

n∑
s=1

|r〉(ars + ibrs)〈s| , with ars + ibrs = asr − ibsr, (4.23)
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Γ2 =

n∑
r=1

n∑
s=1

|r〉(αrs + iβrs)〈s| , with αrs + iβrs = −αsr − iβsr, (4.24)

Λ1 =
n∑
u=1

n∑
v=1

|u〉(duv + iguv)〈v| , with duv + iguv = dvu − igvu, (4.25)

Λ2 =
n∑
u=1

n∑
v=1

|u〉(δuv + iγuv)〈v| , with δuv + iγuv = −δvu − iγvu, (4.26)

where |r〉, |s〉, |u〉, |v〉 are elements of an arbitrary orthonormal basis for Hd. We can see from (4.23)
that jΓ1 = Γ1j, and similarly jΛ1 = Λ1j. It follows that we may express 2(b + c) as

n∑
t=1

n∑
r=1

n∑
s=1

n∑
u=1

n∑
v=1

〈t|r〉(ars + ibrs)〈s|u〉(δuv + iγuv)〈v|t〉 (4.27)

+

n∑
t=1

n∑
u=1

n∑
v=1

n∑
r=1

n∑
s=1

〈t|u〉(duv + iguv)〈v|r〉(αrs + iβrs)〈r|t〉 (4.28)

+
n∑
t=1

n∑
r=1

n∑
s=1

n∑
u=1

n∑
v=1

〈t|r〉(αrs + iβrs)〈s|u〉(duv − iguv)〈v|t〉 (4.29)

+
n∑
t=1

n∑
u=1

n∑
v=1

n∑
r=1

n∑
s=1

〈t|u〉(δuv + iγuv)〈v|r〉(ars − ibrs)〈r|t〉. (4.30)

Switching u to v, v to u, r to s, and s to r in (4.30), we then condense the summation notation
and consider (4.27) + (4.30)

=
∑
t,r,s,v

〈t|r〉(ars + ibrs)(δsv + iγsv)〈v|t〉+
∑
t,r,s,v

〈t|v〉(δvs + iγvs)(asr − ibsr)〈r|t〉

=
∑
t,r,s,v

〈t|r〉(ars + ibrs)(δsv + iγsv)〈v|t〉+
∑
t,r,s,v

〈t|v〉(−δsv − iγsv)(ars + ibrs)〈r|t〉

=
∑
t,r,s,v

(arsδsv − brsγsv) (〈t|r〉〈v|t〉 − 〈t|v〉〈r|t〉)︸ ︷︷ ︸
∆rv−∆vr

+
∑
t,r,s,v

(arsγsv + brsδsv) (〈t|r〉i〈v|t〉 − 〈t|v〉i〈r|t〉)︸ ︷︷ ︸
i(∆rv−∆vr)

= 0 (4.31)

where we have used the unusual notation ∆rv for the Kronecker delta function so as not to confuse
it with the entries of Γ2. An entirely similar calculation shows that (4.28)+(4.29)= 0. Therefore
b + c = 0. We now proceed to show that d = d′. Observe that

jΓ2j =

n∑
r=1

n∑
s=1

|r〉j(αrs + iβrs)j〈s| =
n∑
r=1

n∑
s=1

|r〉(−αrs + iβrs)〈s|, (4.32)

and similarly,

jΛ2j =
n∑
u=1

n∑
v=1

|r〉j(δuv + iγuv)j〈s| =
n∑
u=1

n∑
v=1

|r〉(−δuv + iγuv)〈s|. (4.33)
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We therefore compute 2d as follows:

tr
(

Γ2jΛ2j + Λ2jΓ2j
)

= −tr
(

Γ2Λ2 + Λ2Γ2

)
, (4.34)

establishing that d = d′ and finishing the proof. �

Equipped with Lemma 4.1.4 and Lemma 4.1.5, we proceed in Section 4.2 to prove the equivalence
of quaternionic and complex quantum theories.

4.2 Complex Realizations of Quaternionic Quantum Dynamics

In this section, we prove that every physical preparation→ transformation→ measurement process
described via quaternionic quantum formalism has an equivalent description given via the formalism
of usual complex quantum information theory. We begin by proving that a subnormalization of the
symplectic embedding of any quaternionic quantum state is a complex quantum state.

Lemma 4.2.1 Symplectic Embeddings of Quaternionic Quantum States:

If ρ ∈ L1
+(Hd), then

σd,d(ρ) =
1

2
ψd,d(ρ) ∈ L1

+(C2d), (4.35)

where ψd,d is the symplectic embedding defined in (4.6). Moreover, σd,d(L
1
+(Hd)) is a convex subset

of L1
+(C2d).

Proof :

Applying Theorem 2.5.4:

ρ =
d∑
r=1

|ξr〉λr〈ξr|, (4.36)

where the {ξ1, . . . , ξd} form an orthonormal basis for Hd and where λ ∈ R+. Applying the symplectic
embedding:

ψd,d(ρ) = ψd,d

(
d∑
r=1

|ξr〉λr〈ξr|

)
=

d∑
r=1

ψd,d (|ξr〉〈ξr|)λr, (4.37)

where we have used (4.7) and the reality of λr. Next, let Π2
ξr

= Πξr = |ξr〉〈ξr| and observe that

ψd,d (Πξr) = ψd,d (ΠξrΠξr) = ψd,d (Πξr)2 (4.38)

where we have used (4.9), establishing that the symplectic embedding of a projection operator is a
projection operator. Projection operators are manifestly positive semi-definite, and given positivity
of λr we have that ψd,d(ρ) ∈ L+(C2d). Now, from (4.19) we have that

1 = tr(ρ) = tr(ρ1Hd) =
1

2
tr
(
ψd,d(ρ)ψd,d(1Hd)

)
=

1

2
tr(ψd,d(ρ)), (4.39)
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hence

σ(ρ) =
1

2
ψd,d(ρ) ∈ L1

+(C2d). (4.40)

It remains to show that σd,d(L
1
+(Hd)) is convex. If σd,d(ρ1), σd,d(ρ2) ∈ σd,d(L1

+(Hd)) and t ∈ (0, 1),
then

tσd,d(ρ1) + (1− t)σd,d(ρ2) = σd,d(tρ1 + (1− t)ρ1︸ ︷︷ ︸
ρ∈L1

+(Hd)

) = σd,d(ρ) ∈ σd,d(L1
+(Hd)), (4.41)

where we have used (4.7) and the convexity of L1
+(Hd). The proof is complete. �

Lemma 4.2.2 characterizes the extreme points of the image of quaternionic quantum state space
under subnormalized symplectic embedding into complex quantum state space.

Lemma 4.2.2 Extreme points of σd,d
(
L1

+(Hd)
)
⊂ L1

+(C2d):

The extreme points of σd,d
(
L1

+(Hd)
)

are subnormalized rank-2 projectors that are the images of the
extreme points of L1

+(Hd).

Proof:

For the proof, we employ a technique used in another context in [13]. With ρ ∈ L1
+(H), Theo-

rem 2.5.4 dictates that ρ can be decomposed as in (4.36). Consider the unique complex quantum
state

σd,d(ρ) =
1

2
ψd,d(ρ) =

1

2
ψ
( d∑
r=1

|ξr〉λr〈ξr|
)

=
d∑
r=1

λr
2
ψd,d(|ξr〉〈ξr|) =

d∑
r=1

λrσd,d(|ξr〉〈ξr|). (4.42)

With (4.42), we see that the image of a quaternionic quantum state under σd,d can be expanded as
a convex combination of subnormalized projectors – rank-2 projectors to be specific, since

ψd,d (|ξr〉〈ξr|) = ||r〉〉〈〈r||+ ||r + d〉〉〈〈r + d||, (4.43)

where ||r〉〉 are used to denote the standard basis vectors of C2d. Therefore, only subnormalized
rank-2 projectors can be extreme points of σd,d

(
L1

+(H)
)
. It remains to show that, in fact, all

σd,d(π) ∈ σd,d
(
L1

+(H)
)

with π2 = π are extreme points. We proceed via reductio ad absurdum.
Suppose σd,d(π) can be written as a proper convex combination of other subnormalized rank-2
projectors:

σd,d(π) = tA+ (1− t)B, (4.44)

where ∃ a2 = a, b2 = b ∈ L1
+(Hd), a 6= b, such that A = σd,d(a) and B = σd,d(b), and where

t ∈ (0, 1). For any normalized vector |η〉 ∈ C2d we have

〈η|σd,d(π)η〉 = t〈η|Aη〉+ (1− t)〈η|Bη〉. (4.45)

If 〈η|σd,d(π)η〉 = 0, then 〈η|Aη〉 = 0 and 〈η|Bη〉 = 0; this shows that the supports of A and B are
contained in the support of σd,d(π). Now, pick η in the support of σd,d(π) so that 〈ησd,d(π)|η〉 = 1,
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which implies that 〈η|Aη〉 = 〈η|Bη〉 = 1. Therefore, A = B = σd,d(π), contradicting our assumption
of a proper convex combination for σd,d(π). We conclude that the extreme points of σd,d

(
L1

+(Hd)
)

are subnormalized rank-2 projectors that are the images of the extreme points of L1
+(Hd). �

Lemma 4.2.1 dictates that a subnormalization of the symplectic embedding of a quaternionic quan-
tum state space is a convex subset of a complex quantum state space, and Lemma 4.2.2 characterizes
the extreme points of that convex set. The next step towards proving that any quaternionic quan-
tum description of a physical process has an equivalent complex quantum description is to show
that quaternionic quantum channels correspond to completely positive trace preserving maps on
complex matrices.

Lemma 4.2.3 Symplectic embeddings of quaternionic quantum channels:

Let Φ : Md,d(H) −→ Mp,p(H) be a completely positive trace preserving quaternionic map whose
action on ρ ∈Md,d(H)sa is defined in terms of {A1, . . . , An} ⊂Mp,d(H) via

Φ(ρ) =

n∑
r=1

ArρA
∗
r, (4.46)

where
n∑
r=1

A∗rAr = 1Hd. (4.47)

Then the map Θ : M2d,2d(C) −→ M2p,2p(H) whose action on x ∈ M2d,2d(C) is defined in terms of
{ψp,d(A1), . . . , ψp,d(An)} ⊂ M2p,2d(C) – where ψd,d is the symplectic embedding defined in (4.6) –
via

Θ(x) =
n∑
r=1

ψp,d(Ar)x
(
ψp,d(Ar)

)∗
, (4.48)

is a completely positive trace preserving complex map.

Proof :

By Choi’s theorem on completely positive maps [17], we have that any map of the form (4.48) is
completely positive. It remains to show that Θ is trace preserving. Observe that (4.47) implies
that

n∑
r=1

(
ψp,d(Ar)

)∗
ψp,d(Ar) =

∑
r

ψd,p(A
∗
r)ψp,d(Ar)

= ψd,d

(
n∑
r=1

A∗rAr

)
= ψd,d(1Hd)

= 1C2d , (4.49)
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where we have used (4.7) and (4.8). Next, let x ∈M2d,2d(C) and compute

tr
(
Θ(x)

)
= tr

( n∑
r=1

ψp,d(Ar)x
(
ψp,d(Ar)

)∗)
=

n∑
r=1

tr
(
ψp,d(Ar)x

(
ψp,d(Ar)

)∗)
=

n∑
r=1

tr
((
ψp,d(Ar)

)∗
ψp,d(Ar)x

)
= tr

(( n∑
r=1

(
ψp,d

(
Ar)
)∗
ψp,d

)
x

)
= tr(x), (4.50)

where we have applied linearity of the trace, Lemma 3.2.1, and (4.49), finishing the proof. �

With Lemma 4.2.3, we have established that the symplectic embedding of a completely positive
trace preserving quaternionic map corresponds to a quantum channel in usual complex quantum
information theory. In 2000, Kossakowski proved a statement of a different variety equating the
action of every decomposable complex map1 on a complex matrix x to the complex projection of the
action of a completely positive quaternionic map on x [56]. Specifically, Kossakowski showed that
the action of a decomposable complex map α : Md,d(C)→Md,d(C) on x ∈Md,d(C) is equivalent to
1
2(φ(x) − iφ(x)i) for some completely positive quaternionic map φ : Md,d(H) → Md,d(H). Asorey
et al. went on to show that the complex projection of any completely positive quaternionic map is
positive, but not necessarily completely positive [6].

We now turn our attention to quaternionic quantum measurements and prove that quaternionic
povms correspond to complex quantum measurements.

Lemma 4.2.4 Symplectic embeddings of quaternionic quantum measurements:

If X = {E1, . . . , En} ⊂ E(Hd) is a quaternionic povm quantum measurement, then{
ψd,d(E1), . . . , ψd,d(En)

}
⊂ E(C2d) (4.51)

where ψd,d is the symplectic embedding defined in (4.6). Moreover, ψd,d(X) is a complex povm
quantum measurement.

Proof :

Applying the Theorem 2.5.4 to Er ∈ E(Hd) we have that

Er =
d∑
r=1

|φr〉µr〈φr| (4.52)

1The general form of a decomposable complex map is given by the sum of completely positive and completely
copositive complex maps [69].
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with 0 ≤ µr ≤ 1. Letting Π2
φr

= Πφr = ψd,d(|φr〉〈φr|) it follows ∀η ∈ C2d that

0 ≤ 〈η|ψd,d(Er)η〉 =

〈
η
∣∣∣ d∑
r=1

µrΠφrη

〉
=

d∑
r=1

〈η|Πφrη〉µr ≤ 1, (4.53)

establishing that ψd,d(Er) ∈ E(C2d). It remains to show that the elements of ψd,d(X) resolve the
identity:

n∑
r=1

ψd,d(Er) = ψd,d

( d∑
r=1

Er

)
= ψd,d(1Hd) = 1C2d , (4.54)

as required, where we have applied Lemma 4.1.3. �

Equipped with Lemma 4.2.1, Lemma 4.2.3, and Lemma 4.2.4, we are now in the position to prove
our main result in Theorem 4.2.5; wherein P, S, C, and M refer to, respectively, a physical prepa-
ration device, a physical system, a physical transformation channel, and a physical measurement
device as depicted in Figure 4.1.

Figure 4.1: One experiment, two equivalent descriptions
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Theorem 4.2.5 Quaternionic Quantum Theory is consistent with Complex Quantum Theory:

Let P be a physical preparation device that outputs a physical system S. Let C be a physical
transformation channel that acts on S and outputs a physical system C(S). Let M be a physical
measurement device that acts on C(S) and registers one classical outcome r ∈ {1, . . . ,m}. Let P

represent the aforementioned generic physical scenario. Let the triple (ρ,Φ,X) represent a quater-
nionic quantum description of P, where ρ ∈ L1

+(Hd) is an initial associated quaternionic quantum
state for S; where

Φ : Md,d(H)→Mp,p(H) (4.55)

is a completely positive trace preserving quaternionic map whose whose action on the initial asso-
ciated state ρ is defined via

Φ(ρ) =

n∑
s=1

AsρA
∗
s, (4.56)

to yield a quaternionic quantum state Φ(ρ) ∈ L1
+(Hp) associated with C(S), such that

{A1, . . . , An} ⊂Mp,d(H) admit
n∑
s=1

A∗sAs = 1Hd; (4.57)

and where X = {E1, . . . , Em} ⊂ E(Hp) is a quaternionic povm comprised of quaternionic quantum
effects corresponding to the outcomes of M, where the probabilities for the outcomes of M are given
∀r ∈ {1, . . . ,m} by

p(r) = tr
(
ErΦ

(
ρ
))

. (4.58)

Then there exists a triple
(
σd,d(ρ),Θ, ψp,p(X)

)
representing a complex quantum description of P,

where σd,d(ρ) ∈ L1
+(C2d) is an initial associated complex quantum state for S; where

Θ : M2d,2d(C)→M2p,2p(C) (4.59)

is a completely positive trace preserving complex map whose whose action on the initial associated
state σd,d(ρ) is defined via

Θ
(
σd,d(ρ)

)
=

n∑
s=1

ψp,d(As)σd,d(ρ)ψp,d(As)
∗, (4.60)

to yield a complex quantum state Θ
(
σd,d(ρ)

)
∈ L1

+(C2p) associated with C(S), such that
{ψp,d(A1), . . . , ψp,d(An)} ⊂M2p,2d(C) admit

n∑
s=1

ψp,d(As)
∗ψp,d(As) = 1C2d; (4.61)

and where ψp,p(X) = {ψp,p(E1), . . . , ψp,p(Em)} ⊂ E(C2p) is a complex povm comprised of complex
quantum effects corresponding to the outcomes of M, where the probabilities for the outcomes of M
are given ∀r ∈ {1, . . . ,m} by

q(r) = tr
(
ψp,p(Er)Θ

(
σd,d(ρ)

))
, (4.62)

such that ∀r ∈ {1, . . . ,m}
q(r) = p(r). (4.63)
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Proof :

We divide the proof into two parts. First, we prove that the triple
(
σd,d(ρ),Θ, ψp,p(X)

)
is a valid

complex quantum description of P. Next, we prove that
(
σd,d(ρ),Θ, ψp,p(X)

)
gives rise to the same

outcome probabilities for M as the quaternionic triple (ρ,Φ,X) according to (4.63).

Lemma 4.2.1 implies that σd,d(ρ) is a valid complex quantum state: σd,d(ρ) ∈ L1
+(C2d). Lemma 4.2.3

implies that Θ, whose action is defined according to (4.59), (4.60), and (4.61), is a completely
positive trace preserving complex map; thus, Θ is a valid complex quantum channel and Θ

(
σd,d(ρ)

)
is a valid complex quantum state: Θ

(
σd,d(ρ)

)
∈ L1

+(C2p). Lemma 4.2.4 implies that ψp,p(X) is a
valid complex povm quantum measurement. Therefore, the triple

(
σd,d(ρ),Θ, ψp,p(X)

)
is a valid

complex quantum description of P, completing the first part of the proof.

The complex triple
(
σd,d(ρ),Θ, ψp,p(X)

)
gives rise to outcome probabilities q(r) for M according to

the usual Born rule in complex quantum theory according to (4.62). Applying Lemma 4.1.4 and
Lemma 4.1.5, as well as 2.51, we calculate ∀r ∈ {1, . . . ,m} :

q(r) = tr
(
ψp,p(Er)Θ

(
σd,d(ρ)

))
= tr

(
ψp,p(Er)

( n∑
s=1

ψp,d(As)σd,d(ρ)ψp,d(As)
∗
))

=
n∑
s=1

tr
(
ψp,p(Er)ψp,d(As)σd,d(ρ)ψp,d(As)

∗
)

=

n∑
s=1

tr
(
ψp,p(Er)ψp,d(As)σd,d(ρ)ψd,p(A

∗
s)
)

=
1

2

n∑
s=1

tr
(
ψp,p(Er)ψp,d(As)ψd,d(ρ)ψd,p(A

∗
s)
)

=
1

2

n∑
s=1

tr
(
ψp,p(Er)ψp,d(As)ψd,p(ρA

∗
s)
)

=
1

2

n∑
s=1

tr
(
ψp,p(Er)ψp,p(AsρA

∗
s)
)

=
n∑
s=1

tr
(
Er
(
AsρA

∗
s

))
= tr

(
Er

( n∑
s=1

AsρA
∗
s

))
= tr

(
ErΦ

(
ρ
))

= p(r), (4.64)

establishing that the outcome probabilities for the final measurement process in P given by the
quaternionic triple and the complex triple are identical. The proof is complete. �
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With the proof of Theorem 4.2.5 now complete, we note that if Φ is restricted to be unitary, i.e. if

Φ : Md,d(H)→Md,d(H) (4.65)

acts on ρ ∈ L1
+(Hd) according to U ∈ Sp(d) via

Φ(ρ) = UρU∗, (4.66)

and if X is restricted to be a pvm quaternionic quantum measurement, i.e. if

X = {π2
1 = π1, . . . , π

2
d = πd} ⊂ E(Hd), (4.67)

such that ∀r, s ∈ {1, . . . , d}:
tr(πrπs) = δrs, (4.68)

then Theorem 4.2.5 reproduces the simulation given by Fernandez and Schneeberger in [25].

Theorem 4.2.5 establishes that any description of a generic physical process P given in terms of
quaternionic quantum formalism is equivalent to a description of P given in terms of the language
of usual complex quantum information theory. Put otherwise, any process described by quater-
nionic quantum theory can be simulated using states and operations in usual complex quantum
information theory. Furthermore, given a quaternionic quantum triple (ρ,Φ,X) describing P, The-
orem 4.2.5 prescribes an explicit construction for a complex quantum triple

(
σd,d(ρ),Θ, ψp,p(X)

)
that yields identical probabilities for the outcomes of M. We conclude that the formalism of usual
complex quantum information theory is sufficient for an information-theoretic description – phrased
in terms probabilities for measurement outcomes – of all physical processes that can be described
via the quaternionic quantum formalism presented in Chapter 3. In closing this chapter, we recall
that John Archibald Wheeler, one of the founding fathers of complex quantum information theory,
emphasized that such descriptions are fundamental:

“The thesis it from bit : every it, every particle, every field of force, even the spacetime continuum
itself, derives its way of action and its very existence entirely, even if in some contexts indirectly,
from the detector-elicited answers to yes or no questions, binary choices, bits. Otherwise stated,
all things physical, all its, must in the end submit to an information-theoretic description.”

– J. A. Wheeler, 1992 [72].
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Chapter 5

Quaternionic Quantum Bayesian
State Spaces

In this chapter, we consider quaternionic quantum state spaces taken as convex sets of unit-trace
positive semi-definite linear operators on finite d-dimensional right quaternionic modules. These
state spaces correspond to quadits in the quaternionic quantum formalism considered in Chapter 3
and Chapter 4. The usual Quantum Bayesian, or QBist reformulation of complex quantum the-
ory expresses quantum states as points on a probability simplex over d2 outcomes for some fixed
reference symmetric informationally complete complex quantum measurement. We investigate the
status of quaternionic quantum theory within a generalized QBist framework for the reconstruc-
tion of quantum state spaces suggested by Fuchs and Schack [36][37]. We explore the possibility
of expanding quaternionic quantum states in terms of maximally symmetric bases for self-adjoint
quaternionic matrices, and we chart the geometry of quaternionic quantum state spaces on the
corresponding probability simplexes. We also analyze the geometry of symplectic embeddings of
quaternionic quantum state spaces on probability simplexes for symmetric informationally complete
complex quantum measurements.

5.1 Introduction to the Quantum Bayesian Program

The quantum information revolution has brought with it a new approach to understanding the
foundations of quantum theory. In the early dawn of the quantum information age, John A.
Wheeler pointed out several interconnections between quantum physics, information theory, and
the nature of existence [77]. Wheeler envisioned existence as an information-theoretic concept: the
reality of a physical system being generated via quantum measurements, not everlasting physical
law. Quantum theory, on that view, prescribes a probability calculus for the use of agents in
Wheeler’s ‘participatory Universe’. Wheeler himself submitted that one day all of physics would
be expressed in the language of information. Some thirty years have now past, and though it is
not yet Wheeler’s tomorrow, much progress has been made in the reformulation of quantum theory
solely in terms of probabilities.
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Among those considering quantum theory as a probability calculus, and in the light of quantum
information [30], are those espousing the Quantum Bayesian interpretation of quantum states origi-
nally developed by C. M. Caves, C. A. Fuchs, and R. Schack [31][14][30][34][15][35][36][5] [37][33][32].
From the Quantum Bayesian, or QBist point of view, the quantum state assigned to an objectively
existent physical system represents an agent’s personalist degrees of belief with regard to it – par-
ticularly in light of the participatory character of the Universe that Wheeler highlighted. The
Quantum Bayesian approach towards understanding the foundations of quantum theory, dubbed
QBism [33], adopts the Born rule as an addition to the classical probability rules required by Dutch-
book coherence [36]. This additional structure in fact causes a restriction on the class of priors
offered by Bayesian probability theory.

The character of the probability calculus prescribed by quantum theory is manifest in the geometry
of its state space. The mathematical formalism of QBism replaces the usual space of finite d-
dimensional complex quantum states – that is, the unit-trace positive semi-definite linear operators
on a d-dimensional complex Hilbert space – with a QBist state space. A QBist state space is
a convex subset of a probability simplex over d2 outcomes for some fixed reference symmetric
informationally complete quantum measurement [76][64]. Appleby et al. have recently explored
the structure of QBist state spaces [5]. Their approach is motivated by a QBist framework for
quantum state spaces suggested by Fuchs and Schack [36][37]. There is a parameter, q, in the
QBist framework, which must be set q = 2 in order to recover usual quantum state space. It has
been suggested that the case q = 4 may correspond to state spaces in quaternionic quantum theory
[37].

In the sections to follow, we strive to answer the following question: does quaternionic quantum
theory fit into the QBist framework? We shall consider the general case of a quantum state space
given by a convex set of unit-trace positive semi-definite linear operators on a finite dimensional
right quaternionic module, as defined in the preceding chapters and denoted by L1

+(Hd).

5.2 The QBist Framework

In the usual formulation of finite-dimensional quantum theory, the space of valid quantum states
is given by all unit-trace ρ ∈ L1

+(Cd). If1 there exists a symmetric informationally complete (sic)
positive operator valued measure [64] in dimension d,

sic =
{1

d
Πr =

1

d
|φr〉〈φr|

∣∣∣ |φr〉 ∈ Cd ∧ ‖〈φr|φs〉‖2 =
dδrs + 1

d+ 1

}d2
r=1

, (5.1)

then one can establish an injective map[36]

ω : L1
+(Cd)→ ∆d2 =

{
~p ∈ Rd

∣∣∣ p(r) ≥ 0 ∧
d2∑
r=1

p(r) = 1
}

, (5.2)

1It has been conjectured that sics exist in all finite dimensions [76]. There is numerical evidence of SIC exis-
tence for d = 2 – 67 given by Scott and Grassl in [65], where analytic constructions are also found for d = 2 –
15, 19, 24, 35, and 48.
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defined via
ω(ρ) = ~p, (5.3)

with components

p(r) = tr
(1

d
Πrρ

)
. (5.4)

In this way, one can identify any quantum state ρ with a unique point on the probability simplex
∆d2 over d2 outcomes for a sic quantum measurement. Moreover, one can expand any quantum
state as [36]:

ρ =

d2∑
r=1

(
(d+ 1)p(r)− 1

d

)
Πr, (5.5)

from which it follows that the probabilities f(s) for the outcomes of any quantum measurement
associated with a povm F = {Fs ∈ L+(Cd)

∣∣∑
s Fs = 1} are given by [36]:

f(s) =

d2∑
r=1

(
(d+ 1)p(r)− 1

d

)
t(s|r), (5.6)

with
t(s|r) = tr

(
FsΠr

)
. (5.7)

Fuchs and Schack refer to (5.6) as the Urgleichung – the primal equation for the quantum probability
calculus. The Urgleichung expresses the Born rule in the language of probabilities. From the QBist
viewpoint, it is the Born rule alone that restricts classical Bayesian probability theory to yield
quantum theory, so (5.6) is an equation of great importance. We have pointed out that the sic
representation of quantum states can be used to arrive at (5.6). Fuchs and Schack have sought
to derive (5.6), without any reference to complex Hilbert spaces, starting from the generalized
Urgleichung [36][37]

f(s) =

n∑
r=1

(
αp(r)− β

)
t(s|r). (5.8)

In the generalized Urgleichung (5.8), f(s) represent prior probabilities for a factual measurement
with d outcomes, p(r) represent prior probabilities for a counterfactual reference measurement
with n outcomes, and t(s|r) represents the conditional probability for factual outcome s given
counterfactual outcome r. The parameters α, β ∈ R+ in (5.8) set the form of the corresponding
theory. In the derivation given by Fuchs and Schack [36][37], there are initially no relationships
imposed on d, n, α and β, but it follows immediately from (5.8) that

α = nβ + 1. (5.9)

Referring the reader to [36] and [37], we note that a set of assumptions motivated by the Bayesian
interpretation of probability lead to the relation

d

n
α− β = 1, (5.10)

where n is given by

n(q, d) =
1

2
qd(d− 1) + d, (5.11)
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with q ∈ Z+ parameterizing the character of the calculus. The choice q = 2 yields the Urgleichung.
Incidentally, we observe that if q = 4, then n corresponds to the dimension of the ambient space for
the set of d-dimensional quaternionic quantum states. Also, observing that the real vector space of
real symmetric matrices – Md,d(R)s – has dimension 1

2d(d+ 1), the case q = 1 could correspond to
a quantum formalism where states for redits are taken as unit-trace positive semi-definite matrices
in Md,d(R)s. The case q = 0 corresponds to the classical law of total probability; however, the
correspondence is strictly formal. Indeed, classical probability theory does not constrain the prior
probabilities for a factual measurement in terms of probabilities involving a counterfactual process
via the law of total probability.

One can easily solve for α and β to yield

f(s) =
n∑
r=1

(
n− 1

d− 1
p(r)− n− d

n(d− 1)

)
t(s|r), (5.12)

which reduces to

f(s) =

d(2d−1)∑
r=1

(
(2d+ 1)p(r)− 2

2d− 1

)
t(s|r), (5.13)

in the quaternionic case. (5.13) is the Quaternionic Urgleichung. In the Section 5.4, we show
that one may formally recover (5.13) if maximally symmetric bases (analogues of sics) exist for
Md,d(H)sa. We derive the structure maximally symmetric bases in Section 5.3, where, for the
sake of completeness, we carry out our computations so that they apply to any of the associative
normed division algebras. As such, we introduce the notation L+(Rd) to denote the set of positive
semi-definite matrices with R = R,C, or H.2 Also, noting that L+(Rd) ⊂ L+(Cd) ⊂ L+(Hd) ⊂
Md,d(H)sa, we adopt the quaternionic trace and associated canonical inner product on Md,d(H)sa
defined in the preceding chapters.

5.3 Maximally Symmetric Bases

The Urgleichung (5.6) can be derived from a sic representation of quantum states. It stands to
reason that it may be possible to derive the generalized Urgleichung by expanding general (re-,
qu-, or qua-)dit quantum states in terms of a maximally symmetric basis. How should one quantify
such symmetry? In the complex case, Appleby, Dang, and Fuchs proposed a measure to quantify
the symmetry of a set of d2 positive semi-definite complex linear operators [4]. Their measure has
a lower bound saturated only by sics. We now proceed to generalize their result. Let

A = {Ar ∈ L+(Rd) | tr(A2
r) = 1}nr=1 (5.14)

be a set of n, as in (5.11), positive semi-definite linear operators normalized with respect to the
norm induced by the canonical inner product. We say that A is maximally symmetric when its
elements minimize the measure:

Kt =
n∑
r=1

n∑
s 6=r
|(Ar, As)|t =

n∑
r=1

n∑
s 6=r

(tr(ArAs))
t (5.15)

2By a positive semi-definite real matrix we shall mean a symmetric positive semi-definite real matrix.
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for any real number t ≥ 1. Our measure Kt is of exactly the same form as the one originally
proposed by Appleby, Dang, and Fuchs in the complex case, and is in some sense a measure of how
close A comes to being an orthonormal set [4]. We now prove the following theorem:

Theorem 5.3.1 Maximally Symmetric Bases:

If {Ar ∈ L+(Rd) | tr(A2
r) = 1}nr=1, then

Kt ≥
n(n− d)t

dt(n− 1)t−1
. (5.16)

Moreover, the lower bound in (5.16) is saturated iff

A =

{
Πr = |φr〉〈φr| ∈ L+(Rd)

∣∣∣ tr(ΠrΠs) =
n− d
d(n− 1)

(
1 + δrs

n(d− 1)

n− d

)}n
r=1

. (5.17)

Proof:

We will prove that (5.16) holds using an argument in the same spirit as the one given in [4]. We
consider first the case t = 1:

K1 =
n∑
r=1

n∑
s 6=r

tr(ArAs). (5.18)

Now we define

G =
n∑
r=1

Ar, (5.19)

and we apply the spectral theorem to get

G =

d∑
m=1

|m〉λm〈m|, (5.20)

where λm ∈ R+ and 〈m|m′〉 = δmm′ , from which it follows that

G2 =
d∑

m=1

|m〉λ2
m〈m|. (5.21)

It also follows that

tr(G) =

d∑
m=1

λm, (5.22)

and

tr(G2) =

d∑
m=1

λ2
m. (5.23)

Equivalently,

tr(G2) =
n∑
r=1

n∑
s=1

tr(ArAs). (5.24)
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Therefore,
K1 = tr(G2)− n. (5.25)

Applying the Cauchy-Schwarz inequality to the (real and positive) eigenvalues of G we get

tr(G2) ≥ 1

d

(
tr(G)

)2
. (5.26)

By our demand that tr(A2
r) = 1, it follows that tr(Ar) ≥ 1 3 and so

tr(G2) ≥ n2

d
. (5.27)

Therefore

K1 ≥
n2

d
− n. (5.28)

We now show that equality obtains if and only if ∀r : tr(Ar) = 1 and G = n
d1. To prove sufficiency

we note that
tr(Ar) = 1 =⇒ tr(G) = n, (5.29)

and we note that

G =
n

d
1 =⇒ tr(G2) =

n2

d
. (5.30)

To prove necessity, we observe that saturation of the bound implies that

tr(G2) =
1

d

(
tr(G)

)2
=

n2

d
, (5.31)

so tr(G) = n, and together with tr(Ar) ≥ 1 we have that tr(Ar) = 1. It remains to show that the
eigenvalues λm of G are all equal to n

d . We have that

d∑
m=1

λ2
m =

1

d

(
d∑

m=1

λm

)2

, (5.32)

and λm ∈ R+, and so by the Cauchy-Schwarz inequality the λm are equal to the same value λ = n
d .

Therefore, Ar are rank-1 projectors and the sum of their subnormalization by d
n resolves the identity

on Rd.

Consider now the case t > 1. Let x = tr(ArAs) ∈ R+. The function f(x) = xt is strictly convex
for t > 1. Recall the Jensen inequality [53] for a convex function f

N∑
r=1

arf(xr) ≥ (

N∑
r=1

ar)f
(∑N

r=1 arxr∑N
r=1 ar

)
(5.33)

Identifying ar = 1 and N = n(n− 1), and after some algebra we get

Kt ≥
Kt

1

(n(n− 1))t−1
≥ n(n− d)t

dt(n− 1)t−1
. (5.34)

3To see this, denote the eigenvalues of Ar by λr ∈ R+. By our demand
∑

r λ
2
r = 1 this implies λr ≤ 1, for

suppose λr > 1 in which case our demand fails. It follows that
∑

r λr ≥ 1, since λr ≤ 1 =⇒ λ2
r ≤ λr and thus

1 =
∑

r λ
2
r ≤

∑
r λr.
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The Jensen inequality [53] also implies that the lower bound of (5.16) is saturated if and only if
tr(ArAs) is equal to a unique constant µ2 for all r 6= s. We can compute the value of µ2 given that

1Rd =
d

n

n∑
r=1

Ar, (5.35)

and so by operating on (5.35) with As and taking the trace of both sides it follows that

n

d
tr(As) =

n

d
=

n∑
r=1

tr(ArAs) = µ2(n− 1) + 1 =⇒ µ2 =
n− d
d(n− 1)

. (5.36)

Therefore, maximally symmetric A take the form

A =

{
Πr = |φr〉〈φr| ∈ L+(Rd)

∣∣∣ tr(ArAs) =
n− d
d(n− 1)

(
1 + δrs

n(d− 1)

n− d

)}n
r=1

, (5.37)

where we have denoted the rank-1 projectors Ar by Πr, finishing the proof. �

Corollary 5.3.2 The elements of a maximally symmetric set are linearly independent:

Proof: For the proof, we follow [36] by taking αr ∈ R and setting

0 =

n∑
r=1

Πrαr. (5.38)

Taking the trace of both sides of (5.38) we get

0 =
n∑
r=1

αr. (5.39)

Now, operating on (5.38) with Πs, and taking the trace of both sides, we use (5.39) to get αs = 0.
�

It follows immediately from Corollary 5.3.2 that maximally symmetric sets with n as in (5.11)
form bases for the corresponding real vector spaces Md,d(R)sa, with forms given in Table 5.1. An
obvious question at this stage is: do maximally symmetric bases exist? For the case of R = R, they
exist for d = 2 (the regular 2-simplex) and for d = 3 (with projections Πr onto vectors defining
the vertices of an regular icosahedron). For cases where d > 3, it can be shown that a necessary
condition for the existence of a maximally symmetric basis for Md,d(R)sa is that d+ 2 must be the
square of an odd integer [54]. For the case of R = C, maximally symmetric bases are sics. In the
quaternionic case of R = H, much less is known. However, it is at least known that maximally
symmetric bases for Md,d(H)sa do exist for d = 2 and d = 3 [54]. In the sections to follow, we will
assume the existence of maximally symmetric bases for Md,d(H)sa.
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R Maximally symmetric bases

R
{

Πr = |φr〉〈φr| ∈ L+(Rd)
∣∣∣ tr(ΠrΠs) = 1+δrs(1+d)

d+2

} d(d+1)
2

r=1

C
{

Πr = |φr〉〈φr| ∈ L+(Cd)
∣∣∣ tr(ΠrΠs) = 1+δrsd

d+1

}d2
r=1

H
{

Πr = |φr〉〈φr| ∈ L+(Hd)
∣∣∣ tr(ΠrΠs) = 2+δrs(2d−1)

2d+1

}d(2d−1)

r=1

Table 5.1: Forms of maximally symmetric bases for Md,d(R)sa for R = R,C, and H.

5.4 Recovering the Quaternionic Urgleichung

In this section, we show that the existence of a maximally symmetric basis for Md,d(H)sa allows
one to recover the quaternionic Urgleichung (5.13). Let A be a maximally symmetric basis for
Md,d(H)sa as in Table 5.1. From the proof of Theorem 5.3.1, we have that

d∑
r=1

1

(2d− 1)
Πr = 1Hd . (5.40)

Also, given that Π2
r = Πr = |φr〉〈φr|, the following holds ∀r ∈ {1, . . . , d(2d− 1)}:

∀ξ ∈ Hd : 〈ξ|Πrξ〉 = |〈ξ|φr〉|2 ≥ 0. (5.41)

Therefore

hsic =

{
Er =

1

2d− 1
Πr

}d(2d−1)

r=1

(5.42)

is a quaternionic povm. The quaternionic quantum effects Er ∈ hsic inherit linearly inde-
pendence from the Πr, and so for all quaternionic quantum states ρ ∈ L1

+(Hd) ⊂ Md,d(H)sa
∃{α1, . . . , αd(2d−1)} ⊂ R such that

ρ =

d(2d−1)∑
r=1

Erαr. (5.43)

Right-multiplying (5.43) by Es for some arbitrary s ∈ {1, . . . , d(2d−1)} and taking the quaternionic
trace of both sides we get, by virtue of the reality of αr, that

tr(ρEs) = p(s) =

d(2d−1)∑
r=1

tr(ErEs)αr, (5.44)
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where p(s) is the sth component of the vector of probabilities ~p for the outcomes of hsic given the
quaternionic quantum state ρ. Now, we write (5.44) in matrix notation

~p = M~α, (5.45)

where the matrix M ∈Md(2d−1),d(2d−1)(R)s has entries

Mrs = tr(ErEs) =
1

(2d− 1)2

2

2d+ 1

(
1 + δrs

2d− 1

2

)
. (5.46)

The symmetries of M prompt the ansatz M−1
rs = δrsa+b. The matrix inverse is unique, and solving

MM−1 = 1Rd(2d−1) we calculate:
a = 4d2 − 1, (5.47)

b = −2. (5.48)

Inverting (5.45) we have that
~α = M−1~p, (5.49)

therefore

ρ =

d(2d−1)∑
r=1

(
(2d+ 1)p(r)− 2

2d− 1

)
Πr. (5.50)

With (5.50), one sees that any quaternionic quantum state can be expanded in terms of the proba-
bilities for the outcomes of the elements of (5.42). Moreover, the elements of (5.42) are symmetric
in the sense that they admit a constant pairwise canonical inner product. Hence we refer to (5.42)
as a symmetric informationally complete quaternionic quantum measurement.

Now, consider any quaternionic povm F with elements Fs. Right-multiplying (5.50) by Fs and
taking the quaternionic trace of both sides, and identifying t(s|r) = tr(ΠrFs) we recover the quater-
nionic Urgleichung

f(s) =

d(2d−1)∑
r=1

(
(2d+ 1)p(r)− 2

2d− 1

)
t(s|r). (5.51)

Therefore, under the assumption that maximally symmetric bases exist for Md,d(H)sa, quaternionic
quantum theory is consistent with the generalized QBist framework proposed by Fuchs and Schack
with the choice q = 4. We characterize the geometry of the corresponding quaternionic QBist state
spaces in Section 5.5.

5.5 Quaternionic Quantum Bayesian State Space Geometry

In this section, we assume the existence of an hsic in dimension d and chart the geometry of
quaternionic Quantum Bayesian state spaces. A quaternionic Quantum Bayesian state space is a
convex subset of a probability simplex ∆d(2d−1) over d(2d − 1) outcomes for an hsic quaternionic
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quantum measurement. The usual space of quaternionic quantum states L1
+(Hd) can be injected

into ∆d(2d−1) via the map θ : L1
+(Hd)→ ∆d(2d−1) defined ∀ρ ∈ L1

+(Hd) via

~p = θ(ρ) =

 tr(E1ρ)
...

tr(Ed(2d−1)ρ)

 , (5.52)

where Er comprise an hsic as in (5.42). In Chapter 3, we proved that the extreme points of
the space of quaternionic quantum states in L1

+(Hd) are completely determined by the conditions
tr(ρ2) = tr(ρ3) = 1. These conditions translate into constraints on coherent probability assignments
on hsic probability simplexes. The unit-trace condition for quaternionic quantum states implies
normalization of probabilities:

tr(ρ) = 1 =⇒ tr

d(2d−1)∑
r=1

Erρ

 = 1 =⇒
∑
r

p(r) = 1, (5.53)

where p(r) denote the components of the image of a quaternionic quantum state under the injec-
tion defined in (5.52). The condition tr(ρ2) = 1 dictates that pure quaternionic quantum states
constitute points on the surface of a sphere according to Lemma 5.5.1.

Lemma 5.5.1 The Quaternionic Quadratic Condition:

If θ is an injection of quaternionic quantum state space into an hsic probability simplex ∆d(2d−1)

as defined in (5.52), then

∀~p ∈ θ
({
|ξ〉〈ξ| ∈ L1

+(Hd)
∣∣∣ ξ ∈ Hd

})
⊂ ∆d(2d−1) (5.54)

the following holds:
2d2−d∑
r=1

p(r)2 =
3

4d2 − 1
. (5.55)

Proof:

We expand an arbitrary quaternionic quantum state ρ according to (5.50) and explicitly compute
tr(ρ2):

1 =
1

(d− 1)2

(
(n− 1)2

n∑
r=1

n∑
s=1

p(r)p(s)tr(ΠrΠs)−
2(n− 1)(n− d)

d

n∑
r=1

p(r) +
(n− d)2

d

)
, (5.56)

where we have let n = d(2d− 1). Algebraic simplification yields (5.55), finishing the proof. �

The condition tr(ρ3) = 1 dictates that not all points on the surface of the sphere correspond to
pure quaternionic quantum states according to Lemma 5.5.2 4.

4For the case d = 2, the cubic condition is in fact redundant and pure quaternionic quantum states comprise the
entire surface of the sphere, as they do in usual L1

+(H2) state space (see Section 3.1).
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Lemma 5.5.2 The Quaternionic Cubic Condition:

If θ is an injection of quaternionic quantum state space into an hsic probability simplex ∆d(2d−1)

as defined in (5.52), then

∀~p ∈ θ
({
|ξ〉〈ξ| ∈ L1

+(Hd)
∣∣∣ ξ ∈ Hd

})
⊂ ∆d(2d−1) (5.57)

the following holds:
2d2−d∑
r=1

2d2−d∑
s=1

2d2−d∑
t=1

crstp(r)p(s)p(t) =
8d+ 19

(2d+ 1)3
, (5.58)

where crst = tr(ΠrΠsΠt).

Proof :

We expand an arbitrary quaternionic quantum state ρ according to (5.50) and explicitly compute
tr(ρ3) as(n− 1

d− 1

)3∑
r,s,t

crstp(r)p(s)p(t)−
2(n− 1)2(n− d)

d(d− 1)3

∑
r,s

p(r)p(s)tr(ΠrΠs)+
(n− d)2(n− 1)

d2(d− 1)3
− n− d
d(d− 1)

, (5.59)

where crst = tr(ΠrΠsΠt) and where we have let n = d(2d− 1). We apply Lemma 5.5.1 to simplify
the double sum in (5.59) and then apply routine algebraic simplification to yield (5.58), finishing
the proof. �

Lemma 5.5.1 and Lemma 5.5.2 are necessary and sufficient conditions for ~p ∈ ∆d(2d−1) to represent
a pure quaternionic quantum state. All quaternionic quantum states arise as convex combinations
of the extreme points satisfying (5.55) and (5.58). Therefore, Lemma 5.5.1 and Lemma 5.5.2
characterize the surface of quaternionic quantum state spaces on hsic probability simplexes.

5.6 QBist Quadits inside QBist Qudits

In Chapter 4, we proved that all d-dimensional quaternionic quantum states for a physical system
S can be viewed 2d-dimensional complex quantum states for S. The converse does not hold. There
are 2d-dimensional complex quantum states that do not correspond to d-dimensional quaternionic
states. In this section, we will define the boundary of quaternionic quantum state spaces inside sic
probability simplexes. Furthermore, we analyze relations between representations of quaternionic
quantum states on hsic and sic simplexes.

Let {Πα ∈M2d,2d(C)sa}4d
2

α=1 be a sic so that

tr(ΠαΠβ) =
1

2d+ 1
∀α 6= β. (5.60)
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∀ρ ∈ L1
+(H), we can expand σd,d(ρ) according to (5.5)

σd,d(ρ) = (D + 1)

D2∑
α=1

q(α)Πα − 1CD , (5.61)

where we have let D = 2d and q(α) = tr
(
σd,d(ρ)Πα

)
, and where we have used the fact that

D2∑
r=1

1

D
Πr = 1CD . (5.62)

In Chapter 4, we established that the images of the extreme points of L1
+(Hd) under σd,d are the

extreme points of σd,d
(
L1

+(Hd)
)
⊂ L1

+(C2d). Therefore, the following conditions

tr(σd,d(ρ)) = 1, (5.63)

and

tr
(
σd,d(ρ)2

)
≤ 1

2
, (5.64)

and

tr
(
σd,d(ρ)3

)
≤ 1

4
, (5.65)

completely define the boundary of quaternionic quantum state space inside complex quantum state
space. The upper bounds in (5.64) and (5.65) are saturated only by the images of pure quaternionic
quantum states5. The conditions (5.63), (5.64) and (5.65) translate to boundary conditions on the
injection of σd,d(L

1
+(Hd)) into a sic probability simplex. Aside from the normalization condition

(5.63), the condition (5.64) defines the boundary of a sphere – the quaternionic sphere – whose
radius is given in Lemma 5.6.1. The condition (5.65) defines a cubic constraint for quaternionic
quantum states on sic probability simplexes. The cubic constraint is given in Lemma 5.6.2.

Lemma 5.6.1 The Quaternionic Sphere:

If ω is an injection of complex quantum state space into a sic probability simplex ∆D2 as defined

in (5.3), then ∀~q ∈ ω
(
σd,d

(
L1

+(Hd)
))
⊂ ∆D2 the following holds:

D2∑
α=1

q(α)2 ≤ 3

2D(D + 1)
. (5.66)

Proof:

5There may be complex mixed states in L1
+(Cd) that saturate these bounds, but which do not correspond to the

image of a quaternionic quantum state under σd,d.
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By explicit computation of tr
(
σd,d(ρ)2

)
:

tr
(

(D + 1)2
∑
α,β

q(α)q(β)ΠαΠβ − 2(D + 1)
∑
α

q(α)Πα + 1CD

)
=

(D + 1)2
∑
α,β

q(α)q(β)tr(ΠαΠβ)− 2(D + 1) +D =

(
(D + 1)2 − (D + 1)

)∑
α

q2
α + (D + 1)− 2D − 2 +D. (5.67)

Therefore, given (5.64):
D2∑
α=1

q(α)2 ≤ rH, (5.68)

where the radius of the quaternionic sphere inside the sic probability simplex is

rH =
3

2D(D + 1)
, (5.69)

finishing the proof. �

In [36], it is derived that the full set of complex quantum states in ∆D2 is bounded by the surface
of a sphere of radius

rC =
2

D(D + 1)
. (5.70)

Evidently,
rH < rC. (5.71)

Lemma 5.6.2 The Quaternionic Cubic Constraint:

If ω is an injection of complex quantum state space into a sic probability simplex ∆D2 as defined

in (5.3), then ∀~q ∈ ω
(
σd,d

(
L1

+(Hd)
))
⊂ ∆D2 the following holds:

D2∑
α=1

D2∑
β=1

D2∑
γ=1

cα,β,γq(α)q(β)q(γ) ≤
D + 23

4

(D + 1)3
, (5.72)

where
cα,β,γ = tr(ΠαΠβΠγ). (5.73)

Proof:

By explicit computation of tr
(
σd,d(ρ)3

)
:

tr
(

(D+1)3
∑
α,β,γ

q(α)q(β)q(γ)ΠαΠβΠγ−2(D+1)2
∑
α,β

q(α)q(β)ΠαΠβ+(D+1)
∑
α

q(α)Πα−σ(ρ)2
)

.

(5.74)
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Denoting the triple products tr(ΠαΠβΠγ) by cα,β,γ we have that∑
α,β,γ

cα,β,γq(α)q(β)q(γ) ≤ 1

(D + 1)3

(1

4
+ tr

(
σ(ρ)2

)︸ ︷︷ ︸
≤ 1

2

−(D + 1) + 2(D + 1)2
∑
α,β

q(α)q(β)tr(ΠαΠβ)
)

.

(5.75)
Now, given Lemma 5.6.1 we have that∑

α,β

q(α)q(β)tr(ΠαΠβ) =
1

D + 1
+ (1− 1

D + 1
)
∑
α

q(α)2 ≤ D + 3

(D + 1)2
, (5.76)

and it follows that∑
α,β,γ

cα,β,γq(α)q(β)q(γ) ≤ 1

(D + 1)3

(1

4
+

1

2
−D − 1 + 2D + 6

)
. (5.77)

Therefore, given (5.65):
D2∑
α=1

D2∑
β=1

D2∑
γ=1

cα,β,γq(α)q(β)q(γ) ≤ tH, (5.78)

where

tH =
D + 23

4

(D + 1)3
, (5.79)

finishing the proof. �

In [36], it is derived that the full set of complex quantum states in ∆D2 is subject to the cubic
constraint

D2∑
α=1

D2∑
β=1

D2∑
γ=1

cα,β,γq(α)q(β)q(γ) ≤ tC, (5.80)

with

tC =
D + 7

(D + 1)3
. (5.81)

Evidently,
tH < tC. (5.82)

The equations (5.66) and (5.72), together with (5.63) completely specify the boundary of the convex
set of quaternionic quantum states under the affine injection of their images under σd,d induced via
the Born rule using complex sics. All quaternionic quantum states arise as convex combinations
of the extreme points saturating the bounds in (5.66) and (5.72), thus these equations indicate the
outer shape of quaternionic quantum state spaces on sic probability simplexes.

We now turn out attention to relations between representations of quaternionic quantum states on
hsic and sic simplexes. Let

{πr ∈Md,d(H)sa}2d
2−d

r=1 (5.83)

be an hsic so that

tr(πrπs) =
2

2d+ 1
∀r 6= s, (5.84)
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and let {Πα ∈M2d,2d(C)sa}4d
2

α=1 be a sic as in (5.60). We expand

ψd,d(πr) =
4d2∑
α=1

Παc
r
α, (5.85)

where crα ∈ R. Given a quaternionic quantum state ρ and its complex image σd,d(ρ) = 1
2ψd,d(ρ),

we relate the probabilities for hsic measurement outcomes – p(r) – to the probabilities for sic
measurement outcomes – q(α) – as follows:

p(r) = tr(πrρ) = tr
(
ψd,d(πr)σd,d(ρ)

)
= tr

 4d2∑
α=1

Παc
r
ασ(ρ)

 =
4d2∑
α=1

crαq(α). (5.86)

The probabilities p(r) are constrained by (5.53), (5.55), and (5.58). In terms of probabilities on
the complex sic simplex, these conditions become:

2d2−d∑
r=1

4d2∑
α=1

crαq(α) = 1, (5.87)

2d2−d∑
r=1

4d2∑
α=1

4d2∑
β=1

crαc
r
βq(α)q(β) =

3

4d2 − 1
, (5.88)

2d2−d∑
r=1

2d2−d∑
s=1

2d2−d∑
t=1

4d2∑
α=1

4d2∑
β=1

4d2∑
γ=1

crstc
r
αc
s
βc
t
γq(α)q(β)q(γ) =

8d+ 19

(2d+ 1)3
, (5.89)

where
4d2∑
α=1

crα = 2, (5.90)

because ψd,d(πr) is a rank-2 projector. These relations relate constraints on coherent probability
assignments for sic measurement outcomes to the constraints on coherent probability assignments
for hsic measurement outcomes. Together with Lemma 5.6.1 and Lemma 5.6.2, we observe that
the images of quaternionic quantum state spaces on sic probability simplexes are characterized by
constraints on the images of pure quaternionic quantum states that involve the explicit forms of
the sics and hsics involved. It remains an open question as to whether maximally symmetric bases
for quaternionic and complex quantum states exist in all finite dimensions.
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Chapter 6

Conclusion and Future Directions

6.1 Conclusion

In this thesis, we considered a generalized quaternionic quantum formalism for the description
of quantum states, quantum channels, and quantum measurements. We proved Theorem 3.4.2,
which prescribes a rule for computing noncontextual probability assignments for outcomes of phys-
ical measurements via quaternionic quantum formalism. We applied symplectic embeddings from
Mp,d(H) → M2p,2d(C) to establish correspondences between quaternionic and complex quantum
states, completely positive trace preserving maps, and positive operator valued measures. In Theo-
rem 4.2.5 – the main result of this thesis – we proved that quaternionic quantum theory and complex
quantum theory are consistent with respect to the full apparatus of quantum information theory. In
particular, we proved that every quaternionic quantum description of a generic physical preparation
→ transformation→measurement process is equivalent to a description given within the framework
of complex quantum information theory. Furthermore, given a quaternionic quantum description of
a physical process, Theorem 4.2.5 defines an explicit construction of an equivalent complex quan-
tum description. We also considered the possibility of reconciling quaternionic quantum theory
with a generalized Quantum Bayesian framework for the reconstruction of quantum state spaces.
In Theorem 5.3.1, we derived a lower bound on an orthonormality measure for sets of positive
semi-definite self-adjoint linear operators acting on real, complex, and quaternionic modules. In
the quaternionic case, we proved that if maximally symmetric bases saturating the aforementioned
lower bound exist, then a quaternionic version of the Quantum Bayesian generalized Urgleichung
can be derived from the formalism of quaternionic quantum theory.

6.2 Future Directions

Our treatment of quaternionic quantum states, channels, and measurements in the preceding chap-
ters is quite general. In particular, we have considered a quaternionic quantum formalism for the
description of the generic physical scenario depicted in Figure 3.1, which is not restricted to the
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dynamics of localized systems [47]. However, the development of a quaternionic quantum formalism
for the explicit description of local operations and product states for composite systems remains
an open problem. For instance, observe that in all finite-dimensions d and p:

dim
(
Md,d(H)sa ⊗R Mp,p(H)sa

)
= dp(2d− 1)(2p− 1), (6.1)

as a real-vector space, where ⊗R denotes the real-algebraic tensor product equipped with component
wise multiplication. However, one also has that

dim
(
Mdp,dp(H)sa

)
= dp(2dp− 1), (6.2)

as a real-vector space, which is smaller than (6.1). Therefore, one cannot form general product
states and local operations for composite systems in quaternionic quantum theory using the usual
Kronecker matrix product method [60] from complex quantum theory. Indeed, taking ⊗ to denote
the Kronecker matrix product, ∃ρ1, ρ2 ∈ L1

+(Hd)1 such that ρ1⊗ρ2 is not self-adjoint, and therefore
not a quaternionic quantum state. This observation rules out the Kronecker matrix product as
a viable candidate for the constructing composite quaternionic states and operations; however, it
does not rule out altogether the possibility of developing a tensor product formalism for the explicit
description of composite systems in quaternionic quantum theory.

One possible route towards the construction of quaternionic tensor products, which was pointed out
by Barnum [7], could appeal to the fact that if Md,d(H)sa is equipped with the standard symmetric
product • : Md,d(H)sa ×Md,d(H)sa →Md,d(H)sa defined ∀A,B ∈Md,d(H)sa via

A •B =
1

2
(AB +BA), (6.3)

then Md,d(H)sa is JC -algebra [46], i.e. a norm closed Jordan subalgebra of the self-adjoint subspace
of a set of bounded linear operators acting on a complex Hilbert space, where the isomorphism
preserves the norm (see Section C.1 for supplementary definitions). In [45], Hanche-Olsen defines
a universal tensor product for JC-algebras, which could serve as a useful mathematical apparatus
for the construction of tensor products of quaternionic quantum states and operations [7]. The
universal tensor product of JC-algebras A and B is denoted by A⊗̃B, and is defined as the JC-
subalgebra of

(
C∗u(A)⊗maxC∗u(B)

)
generated by the subspace ψA(A)⊗RψB(B), where C∗u(A) is the

universal C∗-algebra of A, and where ψA is the associated injection of A into C∗u(A) (see Section C.2
for definitions). It turns out, for d ≥ 3, that the universal C∗-algebra of Md,d(H)sa is M2d,2d(C),
and the associated injection of Md,d(H)sa into C∗u(Md,d(H)sa) is the symplectic embedding defined
in Definition 4.1.3 (see Example C.2.3 for the proof). For d = 2, C∗u(M2,2(H)sa) is given by the
direct sum of two copies of M4,4(C) [46]. The universal tensor product is referred to as universal
due to Theorem 6.2.1:

Theorem 6.2.1 ([45], p 1071) Universality of A⊗̃B:

If A,B and C are unital JC-algebras, and φ : A → C and ϕ : B → C are unital homomorphisms
such that ∀a ∈ A, ∀b ∈ B, and ∀x ∈ C

φ(a) • (ϕ(b) • x) = ϕ(b) • (φ(a) • x) , (6.4)

1e.g. The Kronecker matrix product of ρ1 = 1
2

(
1 i
−i 1

)
with ρ2 = 1

2

(
1 j
−j 1

)
is not self-adjoint.
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then there is a unique homomorphism χ of A⊗̃B onto C such that

χ(a⊗ b) = φ(a) • ϕ(b). (6.5)

Moreover, the universal C∗-algebra of A⊗̃B is C∗(A)⊗max C∗(B).

The universal tensor product ⊗̃ is a potentially viable candidate for use in the development of
an explicit description of composite systems in quaternionic quantum theory. For suppose that
A = Md,d(H)sa and B = Mp,p(H)sa are ambient spaces for quaternionic quantum states associated
with two physical systems SA and SB respectively. In that case, the sets E(Hd) and E(Hp) of
local quaternionic quantum effects defining local quaternionic quantum measurements on SA and
SB are such that Ed ⊂ A and Ed ⊂ B. By its definition alone, A⊗̃B therefore contains a copy of
the local state spaces and the local effect sets associated with SA and SB. Put otherwise, A⊗̃B
contains all product states and all product effects. Furthermore, suppose that C is a JC-algebra –
not necessarily A⊗̃B – that is an ambient space for quantum states associated with the composite
system SAB

2, where the local state spaces are mapped to C by φ and ϕ respectively. Further still,
suppose that C is such that ∀x ∈ C the action of φ(a) and ϕ(b) operator commute in the sense of
(6.4). Then, according to Theorem 6.2.1, there is a unique homomorphism χ of the universal tensor
product A⊗̃B onto C such that χ(a⊗̃b) = φ(a) • ϕ(b) = ϕ(b) • φ(a) = χ(b⊗̃a). So, in particular,
if a and b are local quaternionic quantum effects whose images operator commute on states in C,
then there is a unique homomorphism χ taking the universal tensor product of a⊗̃b onto C such
that the action of χ(a⊗̃b) on states in C is symmetric under the interchange of a and b. In light of
these observations, it would interesting to see if one could develop a complete model for the explicit
description of composite systems in quaternionic quantum theory via the mathematical apparatus
of the universal tensor product.

Another interesting direction for future research would be to investigate the existence of symmetric
informationally complete quaternionic quantum measurements (hsics) for dimensions d > 3. In
Section 5.4, we proved that quaternionic quantum theory is consistent with a generalized Quantum
Bayesian framework for reconstructing quantum state spaces under the assumption that hsics exist.
Furthermore, in Section 5.5 and Section 5.6, we assumed the existence of hsics and considered the
consequences of that assumption for the geometry of quaternionic quantum state spaces. But do
hsics exist in all dimensions? At present, all that can be said for sure is that they do exist for d = 2
and d = 3 [54]. In complex quantum theory, the existence of sics remains an open problem as well,
although much more effort has been put towards the sic existence problem than the hsic existence
problem. It has been shown numerically that there exists a fiducial vector φ ∈ Cd whose orbit under
the action of the Weyl-Heisenberg group forms a set of vectors whose corresponding subnormalized
projection operators form a sic ∀d ∈ {2, . . . , 67} [65]. The Weyl-Heisenberg group is generated by
2 order d elements and a complex phase, and the quotient group of the Weyl-Heisenberg modulo its
center is isomorphic to Z2

d [3]. Hence, the projective unitary representation of the Weyl-Heisenberg
group on U(d,C) is order d2 – just the right number to possibly yield the d2 symmetric states
comprising a sic via the action of products of powers of the generators on a fiducial vector. In
the quaternionic case, the subject of group covariant hsics has yet to be explored. The cardinality

2In finite dimensions, it follows that the only possible choices for C are self-adjoint matrix algebras over the
associative normed division algebras, as well as spin factors (see footnote 2) [46].
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of an hsic is equal to d(2d − 1). Thus, a search for group covariant hsics might explore groups
with projective quaternionic unitary representations on Sp(d) of order at least d(2d − 1), if they
exist. Another possible approach might consider a translation of the hsic existence problem into
the language of complex quantum theory using symplectic embeddings.

In complex quantum theory, Neumark’s Theorem dictates that povm quantum measurements are
equivalent to pvm quantum measurements involving higher-dimensional complex Hilbert spaces.
Nevertheless, the povm formalism has proven to be a powerful tool in complex quantum information
theory, with distinct advantages over the pvm formalism. The povm formalism provides a compact
formalism for the description of physical scenarios involving ancillary systems, and it provides
optimal solutions to important problems such as distinguishing a set complex quantum states
[38][60]. In this thesis, we proved that quaternionic quantum descriptions of physical processes are
equivalent to complex quantum descriptions involving higher-dimensional complex Hilbert spaces.
Thus, in analogy with the power of povms, a quaternionic quantum formalism for the description
of physical phenomena may illuminate new insights into quantum information science and the
foundations of quantum theory, which is another interesting direction for future research.
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Appendix A

Symplectic Group Theory

We refer to
q = γ1 + γ2j (A.1)

as the “symplectic coordinate representation” of q = q0 + iq1 + jq2 + kq3 ∈ H, with γ1 = q0 + iq1,
γ2 = q2 + iq3 ∈ C. Horwitz and Biedenharn refer to (A.1) as the symplectic representation of
a component of a vector in a right quaternionic module [51]. Horwitz and Biedenharn provide
an implicit justification for adopting such terminology via their citation of seminal papers on
quaternionic quantum theory written by Finkelstein et al. in the early 1960s [27][28]. Looking
back on [27][28], however, one finds that Finkelstein et al. actually refer to an embedding of q into
M2,2(C) – i.e. ψ1,1(q) – as the symplectic representation of an endomorphism on H accomplishing
left-multiplication by q. In this appendix, we explore the origins of such terminology and we
consider relations between the symplectic groups.

A.1 The Symplectic Group

Definition A.1.1 ([71] p. 159) Symplectic Forms:

A symplectic form on a complex vector space V is a C-bilinear skew-symmetric non-degenerate form

ω : V× V→ C. (A.2)

Put otherwise, if u, u1, u2, v ∈ V and λ, λ1, λ2, µ ∈ C, then the following holds for a symplectic form:

• C-bilinearity: ω(u1λ1 + u2λ2, v) = λ1ω(u1, v) + λ2ω(u2, v),

• Skew-symmetry: ω(u, v) = −ω(v, u) and ω(u, u) = 0,

• Nondegeneracy: ω(u, v) = 0 ∀v =⇒ u = 0.
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With u = (u1, u
′
1, u2, u

′
2, . . . , uν , u

′
ν) and v = (v1, v

′
1, v2, v

′
2, . . . , vν , v

′
ν), we can define a symplectic

form ω(u, v) via
ω(u, v) = (u1v

′
1 − u′1v1) + . . .+ (uνv

′
ν − u′νvν), (A.3)

such that the n = 2ν basis vectors er satisfy ω(er, es) = ω(e′r, e
′
s) = 0 and ω(er, e

′
s) = −ω(e′r, es) =

δrs. Indeed, the existence of a symplectic form requires an even number of dimensions. We say
that {er} is a symplectic coordinate system.

Example A.1.2 Symplectic Form on C2:

The standard basis vectors e1 = (1, 0) and e2 = (0, 1) are suitable symplectic coordinate system. If
u = (ux, uy), v = (vx, vy) ∈ C2, then ω(u, v) = uxvy − uyvx is a symplectic form on C2.

Definition A.1.3 ([71] p. 159) Symplectic Groups:

The group of transformations on a complex vector space preserving the symplectic form (A.3) is
called the symplectic group, and is denoted by Sp(2d, C).

Remark A.1.4 Equivalence of Symplectic Groups:

Given x, y ∈ V, another symplectic form ω′ may be defined as ω′(x, y) = txΩy, where Ω = −ΩT =
−Ω−1 is the real skew-symmetric matrix defined as

Ω =

(
0 1

−1 0

)
, (A.4)

where 0 and 1 are the zero and unit matrices in Md×d(C) respectively. If B ∈ GL(2d,C) preserves
ω′, then ω′(Bx,By) = ω′(x, y) =⇒ BTΩB = Ω. That 1C2d preserves ω′ is clear. If B preserves
ω′, then B−1 = ΩTBTΩ, which we can see from

BTΩB = Ω =⇒ ΩTBTΩB = 1C2d =⇒ B−1 = ΩTBTΩ. (A.5)

If B and C both preserve ω′, then BC preserves ω′ as well:

(BC)TΩ(BC) = CTBTΩBC = CTΩC = Ω. (A.6)

Given the associativity of matrix multiplication, we conclude that the set of matrices preserving ω′

is a group, namely

G =
{
B ∈ GL(2d,C)

∣∣∣ BTΩB = Ω
}

. (A.7)

We should point out that (A.7) is actually equivalent to the compact symplectic group Sp(2d, C)
defined in Definition B.2.3. Indeed, if we define

J2d =


J 0 0 · · · 0
0 J 0 · · · 0
...

...
...

...
...

0 0 0 · · · J

 , (A.8)

70



with

J =

(
0 1
−1 0

)
, and 0 =

(
0 0
0 0

)
, (A.9)

then symplectic form ω : V × V → C defined via ω(x, y) = txJ2dy is exactly the one considered
by [71] and pointed out in Definition A.2.1. Notice that J2d = −JT2d = −J−1

2d , and so by following
through our preceding arguments, one can show that the set of matrices preserving ω form a group,
namely Sp(2d,C). Let us show that G ∼= Sp(2d,C). There exists [22] a real orthogonal matrix P
with PP T = 1C2d such that Ω = PJ2dP

T . Therefore

BTΩB = Ω =⇒ BTPJ2dP
TB = PJ2dP

T =⇒ P TBTPJ2dP
TBP = J2d =⇒ B̃TJ2dB̃ = J2d,

(A.10)
where B̃ is the unique matrix P TBP . Hence G ∼= Sp(2d,C). Moreover, we can repeat these
arguments for any skew-symmetric J defining a symplectic form on V. So, in particular, we can
define the symplectic group with respect to Ω, which turns out to be a convenient choice for proving
Theorem A.3.5.

Example A.1.5 Sp(2, C) = SL(2, C):

Let u = (ux, uy), v = (vx, vy) ∈ C2 and A =

[
α β
δ γ

]
∈ Sp(2, C), so that

ω(Au,Av) = (αux+βuy)(δvx+γvy)− (δux+γuy)(αvx+βvy) = (αγ−δβ)ω(u, v) =⇒ det(A) = 1,
(A.11)

establishing that Sp(2, C) = SL(2, C).

Remark A.1.6 Etymology of Symplectic:

Weyl originally refered to symplectic groups as ‘complex groups’, as he recalled in [71]:

“The name ‘complex group’ formerly advocated by me in allusion to line complexes, as these
are defined by the vanishing of antisymmetric bilinear forms, has become more and more em-
barrassing through collision with the word ‘complex’ in the connotation of complex number. I
therefore propose to replace it by the corresponding Greek adjective ‘symplectic.’ Dickson calls
the group ‘Abelian linear group’ in homage to Abel who first studied it”

– H. Weyl, 1939 [71].
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A.2 The Compact Symplectic Group

Definition A.2.1 ([39] p. 99) Symplectic Inner Product :

A symplectic inner product on a right quaternionic module V is an R-bilinear form

K : V× V→ H (A.12)

that is conjugate symmetric, conjugate H-linear in the first factor, and H-linear in the second. Put
otherwise, if u, u1, u2, v ∈ V, λ1, λ2 ∈ R, and λ, µ ∈ H, then a symplectic inner product satisfies

• R-linearity: K(u1λ1 + u2λ2, v) = λ1K(u1, v) + λ2K(u2, v),

• conjugate symmetry: K(u, v) = K(v, u),

• H-(conjugate)linearity: K(uλ, vµ) = λK(u, v)µ.

It is called nonnegative if K(u, u) ≥ 0 with equality iff u = 0.

Definition A.2.2 Standard Symplectic Inner Product on Hd and the Induced Norm:

Let u, v ∈ Hd. Then,

〈u|v〉 =
d∑
r=1

urvr, (A.13)

is a nonnegative symplectic inner product. We call (A.13) the standard symplectic inner product.
The standard standard symplectic inner product induces the canonical real-valued norm on Hd

‖ · ‖ : Hd → R defined ∀φ ∈ Hd via ‖φ‖2 = 〈φ|φ〉 and satisfying ∀φ, ξ ∈ Hd and ∀a ∈ H:

• Positive Homogeneity: ‖φa‖2 = |a|‖φ‖,

• Nonnegativity: ‖φ‖ ≥ 0 with equality iff φ = 0, and

• Triangle Inequality: ‖φ+ ξ‖ ≤ ‖φ‖+ ‖ξ‖.

Definition A.2.3 ([39] p. 99) Compact Symplectic Group:

The group of automorphisms on a d-dimensional right quaternionic module preserving the standard
symplectic inner product (A.13) is called the compact symplectic group, and is denoted by Sp(d).
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Remark A.2.4 Sp(d) = U(d, H):

The compact symplectic group is just the group of quaternionic unitary matrices. Let ϕ ∈ Sp(d) ⊂
GL(d, H) be defined with respect to an arbitrary orthonormal basis as follows: ϕ =

∑
rs |r〉ϕrs〈s|,

so that
〈ϕ(u)|ϕ(v)〉 =

∑
s,s′,t

us ϕtsϕts′vs′ = 〈u|v〉 ⇐⇒
∑
t

ϕtsϕts′ = δss′ , (A.14)

establishing that ϕ ∈ U(d, H).

Remark A.2.5 Sp(1) ∼= SU(2):

Let U =

[
a b
c d

]
∈ SU(2). UU∗ = 1C2 and det(U) = 1 imply that |a|2 + |b|2 = 1, c = −b, and a = d.

We will set up a group isomorphism between Sp(1) and SU(2). Let ϕ ∈ Sp(1) be decomposed
according to (A.1): ϕ = γ1 + γ2j, so that ϕϕ = 1 =⇒ |γ1|2 + |γ2|2 = 1. Let ψ : Sp(1) → SU(2) be
defined via

ψ(ϕ) =

[
γ1 γ2

−γ2 γ1

]
. (A.15)

Indeed, it is obvious that ψ is a bijection, and Lemma 4.1.4 tells that ψ(ϕ1ϕ2) = ψ(ϕ1)ψ(ϕ2),
establishing that ψ is indeed a group isomorphism.

Lemma A.2.6 Sp(d) ∼= U(2d) ∩ Sp(2d, C):

Proof:

This is a well-known result [39]. We have already proved the case n = 1 (consult Example A.1.5
and Remark A.2.5). We recall that

U(2d,C) =
{
B ∈ GL(2d,C)

∣∣∣ BB∗ = 1C2d

}
. (A.16)

As mentioned in Remark A.2.4, the compact symplectic group Sp(d) is just the group of quaternionic
unitary matrices, that is

Sp(d) =
{
A ∈ GL(d,H)

∣∣∣ AA∗ = 1Hd

}
. (A.17)

The condition AA∗ = 1Hd is equivalent to the condition A∗A = 1Hd , as is the case with complex
unitaries. To see this, we appeal to properties of the *-homomorphic symplectic embedding ψd,d :
Md,d(H)→M2d,2d(C) defined in Chapter 4, Definition 4.1.3 to see that

AA∗ = 1Hd =⇒ ψd,d(A)ψd,d(A
∗) = 1C2d =⇒ ψd,d(A

∗)ψd,d(A) = 1C2d =⇒ A∗A = 1Hd . (A.18)

One also has that A ∈ Sp(d) ⇐⇒ ψd,d(A) ∈ U(2d,C), for indeed:

1C2d = ψd,d (1Hd) = ψd,d (AA∗) = ψd,d(A)ψd,d(A
∗) = ψd,d(A)ψd,d(A)∗. (A.19)
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The image of Sp(d) under ψd,d is a subgroup of U(2d,C). To see this, we note that A,B ∈ Sp(d) =⇒
ψd,d(AB)ψd,d(AB)∗ = ψd,d(A)ψd,d(B)ψd,d(B)∗ψd,d(A)∗ = 1C2d =⇒ ψd,d(AB) ∈ U(2d,C). We also
recall that 1C2d is image of 1Hd ∈ Sp(d), and ψd,d(A) ∈ U(2d,C) implies ψd,d(A)−1 = ψd,d(A)∗ ∈
U(2d,C) – it is just the image of A∗. So, ψd,d (Sp(d)) is a subgroup of the unitary group.

We also have that
Ωψd,d(A) = ψd,d(A)Ω ∀A ∈ Sp(d). (A.20)

Indeed, calculation yields

Ωψd,d(A) =

(
0 1

−1 0

)(
Γ1 Γ2

−Γ2 Γ1

)
=

(
−Γ2 Γ1

−Γ1 −Γ2

)
=

(
Γ1 Γ2

−Γ2 Γ1

)(
0 1

−1 0

)
= ψd,d(A)Ω.

(A.21)
Now, A,B ∈ Sp(d) implies that

Ωψd,d(AB) = Ωψd,d(A)ψd,d(B) = ψd,d(A)Ωψd,d(B) = ψd,d(A) ψd,d(B) = ψd,d(AB)Ω. (A.22)

Given that ψd,d(A) are unitary, i.e. ψd,d(A)ψd,d(A)T = 1C2d , we have established that

A ∈ Sp(d) =⇒ ψd,d(A) ∈ U(2d,C) ∩ Sp(2d,C). (A.23)

Now, let B ∈ M2d,2d(C) such that B ∈ U(2d,C) ∩ Sp(2d,C). We will show that ∃!A ∈ Sp(d) such
that B = ψd,d(A). Let us write

B =

(
c d
e f

)
, (A.24)

where c, d, e, f ∈Md,d(C) are arbitrary d× d blocks. If ΩB = BΩ, then f = c and e = −d. Indeed,

ΩB = BΩ =⇒
(

0 1

−1 0

)(
c d
e f

)
=

(
c d

e f

)(
0 1

−1 0

)
=⇒

(
e f
−c −d

)
=

(
−d c

−f e

)
. (A.25)

Put otherwise, B ∈ U(2d,C) ∩ Sp(2d,C) =⇒ B = ψd,d(A) for a unique A ∈ Sp(d), finishing the
proof. �

A.3 Quaternionic Endomorphisms on C2

“It is sometimes convenient to represent quaternions by pairs of complex numbers (c0, c1) ac-
cording to q = c0 + i2c

1, where c0, c1 commute with i3, and are therefore essentially complex
numbers. Treating these pairs as vectors in a two-dimensional complex vector space C2, we find
that every linear transformation of Q is represented by a linear transformation of C2, that is by
a 2× 2 complex matrix. In particular the left multiplication q → aq by a fixed quaternion a, is
represented by a matrix aij , the symplectic representation of a. The symplectic representations
of left multiplication by i1, i2, i3 are just the Pauli spin operators (times i).”

– Finkelstein et al., 1962 [27].
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Viewing Q = H = C ⊕ jC ∼= C2 one does see that left-multiplication by elements of H correspond
to C-linear endomorphisms on C2. Let us adopt the Finkelstein notation with

i21 = i22 = i23 = i1i2i3 = −1 (A.26)

and write q = q0 + i1q1 + i2q2 + i3q3 = (q0 + i3q3) + i2(q2 + i3q1) = c0 + i2c
1 and embed

q ↪→
[
q0 + iq3

q2 + iq1

]
∈ C2. (A.27)

Then

i1q = (−q1 + i3q2) + i2(−q3 + i3q0) ↪→
[
−q1 + iq2

−q3 + iq0

]
=

[
0 i
i 0

] [
q0 + iq3

q2 + iq1

]
, (A.28)

which shows that left-multiplication by i1 corresponds to iσx. Similarly,

i2q = (−q2 − i3q1) + i2(q0 + i3q3) ↪→
[
−q2 − iq1

q0 + iq3

]
=

[
0 −1
1 0

] [
q0 + iq3

q2 + iq1

]
, (A.29)

i3q = (−q3 + i3q0) + i2(q1 − i3q2) ↪→
[
−q3 + iq0

q1 − iq2

]
=

[
i 0
0 −i

] [
q0 + iq3

q2 + iq1

]
, (A.30)

showing that left-multiplication by i2 corresponds to iσy, and left-multiplication by i3 corresponds
to iσz. Left-multiplication by the remaining unit, 1, corresponds to 1C2 . We have shown that Sp(1)
∼= SU(2) ⊂ Sp(2, C). One has that iσx, iσy, iσz,1C2 ∈ SU(2), and so we see that the group of unit
quaternions has a symplectic representation on (C2, ω), which is to say that this representation
preserves the symplectic form ω. In this sense, Finkelstein et al. were on the right track when
they used the words “symplectic representation”, but strictly speaking the endomorphism on C2

corresponding to left-multiplication by a ∈ H only preserves the symplectic form when aa = 1.

There are, however, linear-algebraic motivations for adopting a right-module formalism as we have
pointed out in Chapter 2. Let us take n = 1 and show that right-multiplications by unit quaternions
in H correspond to elements of SU(2). With q ∈ H decomposed according to (A.1) we embed

q = γ1 + γ2j ↪→
[
q0 + iq1

q2 + iq3

]
∈ C2, (A.31)

and observe that

qi ↪→
[
−q1 + iq0

q3 − iq2

]
=

[
i 0
0 −i

] [
q0 + iq1

q2 + iq3

]
, (A.32)

qj ↪→
[
−q2 − q3

q0 + iq1

]
=

[
0 −1
1 0

] [
q0 + iq1

q2 + iq3

]
, (A.33)

qk ↪→
[
−q3 + iq2

−q1 + iq0

]
=

[
0 i
i 0

] [
q0 + iq1

q2 + iq3

]
, (A.34)

showing that right-multiplications by unit quaternions correspond to elements of SU(2).
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A.4 Summary

We have shown that the standard basis for C2 is a suitable symplectic coordinate system (see
Example A.1.2). On that view, Horwitz and Biedenharn’s reference to (A.1) as the symplectic
representation of components of elements of H seems almost acceptable. We must, however, con-
clude from this analysis that it is the representation of the unit quaternions on C2 that is truly
“symplectic” in the full sense of the word. On that view, we refer to (A.1) as the “symplectic co-
ordinate representation” of q ∈ H, and we refer to ψp,d : Mp,d(H) → M2p,2d(C) as the “symplectic
embedding”.
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Appendix B

Sp(1) and SO(3)

In this appendix, we detail the connection between the group of unit norm quaternions – Sp(1) –
and the group of rotations on R3 – SO(3). Our primary references are [67] and [50].

Define the set of pure imaginary quaternions = (H) as

= (H) = iR+jR+kR ⊆ H =
{
ir1+jr2+kr3 |

(
r1, r2, r3 ∈ R

)
∧
(
i2 = j2 = k2 = ijk = −1

)}
. (B.1)

There is, of course, a natural bijection f : R3 → = (H) defined ∀~r = x̂r1 + ŷr2 + ẑr3 ∈ R3 via

f(~r) = ir1 + jr2 + kr3. (B.2)

The function f is clearly injective with f−1 : = (H)→ R3 defined ∀r = ir1 + jr2 + kr3 ∈ = (H) via

f−1(ir1 + jr2 + kr3) = x̂r1 + ŷr2 + ẑr3. (B.3)

It is also obvious that f admits ∀α, β ∈ R and ∀~r,~s ∈ R3 that

f(α~r + β~s) = αf(~r) + βf(~s), (B.4)

and that f−1 admits ∀α, β ∈ R and ∀p, q ∈ =(H) that

f−1(αp+ βq) = αf−1(p) + βf−1(q). (B.5)

Two familiar binary algebraic operations on R3, the standard scalar product and the standard
vector product, correspond to quaternionic arithmetic operations through f as follows:

~r · ~s = r1s1 + r2s2 + r3s3 = 1
2

(
f(~r)f(~s) + f(~s)f(~r)

)
, (B.6)

~r × ~s =

∣∣∣∣∣∣
 x̂ ŷ ẑ
r1 r2 r3

s1 s2 s3

∣∣∣∣∣∣ = f−1
(

1
2

(
f(~r)f(~s)− f(~s)f(~r)

))
. (B.7)
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We will prove that rotations on R3 also correspond to quaternionic arithmetic operations through
f . To begin, let t ∈ Sp(1) admitting tt = 1 and define the transformation T : R3 → R3 via

T (~r) = f−1
(
tf(~r)t

)
. (B.8)

Indeed,

tf(~r)t+
(
tf(~r)t

)
= tf(~r)t+ tf(~r)t = t

(
f(~r) + f(~r)

)
t = 0 =⇒ tf(~r)t ∈ = (H) , (B.9)

so f−1
(
tf(~r)t

)
∈ R3 is well defined and unique. Next, observe that

T (~r) · T (~s) = 1
2

(
f
(
T (~r)

)
f
(
T (~s)

)
+ f

(
T (~s)

)
f
(
T (~r)

))
= 1

2(tf(~r)ttf(~s)t+ tf(~s)ttf(~r)t)

= t
(

1
2

(
f(~r)f(~s) + f(~s)f(~r)

))
t

= t
(
~r · ~s

)
t

= ~r · ~s, (B.10)

establishing that T preserves the standard scalar product. Therefore, T preserves the standard
Euclidean norm on R3. Put otherwise, T is a Euclidean isometry. The fixed points of T are all of
those ~z ∈ R3 satisfying

~z = T (~z) ⇐⇒ f(~z) = f
(
f−1

(
tf(~z)t

))
= tf(~z)t. (B.11)

From (B.11) it follows that f(~z) commutes with t, therefore

i(z1t0 − z2t3 + z3t2) = i(z1t0 − z3t2 + z2t3), (B.12)

j(z2t0 − z3t1 + z1t3) = j(z2t0 − z1t3 + z3t1), (B.13)

k(z3t0 − z1t2 + z2t1) = k(z3t0 − z2t1 + z1t2). (B.14)

From (B.12), (B.13), and (B.14) it follows that

zα
zβ

=
tα
tβ
∀α, β ∈ {1, 2, 3}, (B.15)

establishing that ~z = f−1(iz1 + jz2 + kz3) and −~t = f−1(−it1 − jt2 − kt3) are collinear. Therefore

~z = T (~z) ⇐⇒ ~z = α~t, α ∈ R. (B.16)
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Next, observe that

T (~s)× T (~v) = f−1
[

1
2

(
f
(
T (~s)

)
f
(
T (~v)

)
− f

(
T (~v)

)
f
(
T (~s)

))]
= f−1

[
1
2

(
tf(~s)ttf(~v)t− tf(~v)ttf(~s)t

)]
= f−1

[
1
2

(
t
(
f(~s)f(~v)− f(~v)f(~s)

)
t
)]

= f−1
[
tf
(
f−1

(
1
2(f(~s)f(~v)− f(~v)f(~s))

))
t
]

= f−1
(
tf
(
~s× ~v

)
t
)

= T (~s× ~v). (B.17)

R-linearity of T follows from R-linearity of f and R-linearity of f−1, that is ∀α, β ∈ R and ∀~r,~s ∈ R3

T (α~r + β~s) = f−1
(
t
(
f(α~r + β~s)

)
t
)

= f−1
(
t
(
αf(~r) + βf(~s)

)
t
)

= αf−1
(
tf(~r)t

)
+ βf−1

(
tf(~s)t

)
= αT (~r) + βT (~s). (B.18)

Therefore, T acts on R3 via a matrix A defined with respect to an orthonormal basis {~e1, ~e2, ~e3} for
R3 as T (~r) = A~r. It will now be proven that det(A) = 1. Expand the vector product T (~u)×T (~v) =
A~u×A~v according to the orthonormal basis {A~e1, A~e2, A~e3} as

A~u×A~v =
3∑
r=1

((
A~u×A~v

)
·A~er

)
A~er. (B.19)

We require the following elementary result from linear algebra:

(
A~u×A~v

)
·A~er = A~er ·

(
A~u×A~v

)
=

∣∣∣∣∣∣
(A~er)1 (A~er)2 (A~er)3

(A~u)1 (A~u)2 (A~u)3

(A~v)1 (A~v)2 (A~v)3

∣∣∣∣∣∣ = det(X), (B.20)

where (A~er)1 denotes the projection of A~er onto e1, and so on. Now, observe that

A
(
~er|~u|~v

)
=

a11 a12 a13

a21 a22 a23

a31 a32 a33

~er1 ~u1 ~v1

~er2 ~u2 ~v2

~er3 ~u3 ~v3

 =

(A~er)1 (A~u)1 (A~v)1

(A~er)2 (A~u)2 (A~v)2

(A~er)3 (A~u)3 (A~v)3

 = XT . (B.21)
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Returning to (B.19) we have that

A~u×A~v =
3∑
r=1

det(X)A~er

=
3∑
r=1

det(XT )A~er

=
3∑
r=1

det
(
A
(
~er|~u|~v

) )
A~er

=
3∑
r=1

det(A) det
( (

~er|~u|~v
)T )

A~er

= det(A)
3∑
r=1

((
~u× ~v

)
· ~er
)
A~er, (B.22)

we we have used the elementary fact that det(M) = det(MT ) ∀M ∈ Mn(R). Expanding ~u × ~v in
terms of the orthonormal basis {~e1, ~e2, ~e3}, and using (B.17), we finally get that

A(~u× ~v) = A

3∑
r=1

((
~u× ~v

)
· ~er
)
er =

3∑
r=1

((
~u× ~v

)
· ~er
)
Aer =⇒ det(A) = 1. (B.23)

We have already established that T is a linear Euclidean isometry, from which it immediately
follows that AAT = 11. We conclude that T defines a rotation on R3 about the axis defined by ~t
through an angle θ.

Let us pause to introduce some notational conventions that will simplify the calculation of the
rotation angle following [50]. Let p, q ∈ H with p = 1p0 + ip1 + jp2 + kp3 = p0 + f(~p) and
q = 1q0 + iq1 + jq2 + kq3 = q0 + f(~q) where ~p = x̂p1 + ŷp2 + x̂p3. Furthermore, let us adopt the
convention wherein we identify the basis elements x̂ ↔ i, ŷ ↔ j, and ẑ ↔ k, so that we can write
f(~r) simply as ~r. Further still, let us write p =

(
p0, ~p

)
and q =

(
q0, ~q

)
so that a separation of the

real and imaginary parts is made even more explicit and so that quaternion multiplication becomes
simply

pq = (p0q0 − ~p · ~q , p0~q + q0~p+ ~p× ~q) . (B.24)

Now, let f(~r) =
(
u0, ~u) and compute f

(
T (~r)

)
= tf(~r)t as(

t0u0 − ~t · ~u , t0~u+ u0~t+ ~t× ~u
)(
t,−~t

)
=
(

(t0u0 − ~t · ~u)t0 + (t0~u+ u0~t+ ~t× ~u) · ~q ,

(t0u0 − ~t · ~u)(−~t) + t0( t0~u+ u0~t+ ~t× ~u) + (t0~u+ u0~t+ ~t× ~u)× (−~t)
)

(B.25)

We have already argued that the real part must vanish, which is readily verified given that u0 = 0
and (~t×~u) ·~t = 0. Making use of vector identities (in particular ~A× ~B = − ~B× ~A and ~A×( ~B× ~C) =
( ~A · ~C) ~B − ( ~A · ~B)~C) it follows that

T (~r) = ~u′ = (t20 − ~t · ~t)~u+ 2t0(~t× ~u) + 2(~t · ~u)~t. (B.26)

1δrs = ~er · ~es = A~er ·A~es =
∑3

t=1Ar,tAt,s =⇒ AAT = 1.

80



Now, choosing ~u = ~t×~a with |~a| = 1 and ~a ·~t 6= 1 we have the angle of rotation θ defined through

~u′ · ~u = |~u′||~u|cosθ, (B.27)

and we also have that

~u′ · ~u =
(

(t20 − ~t · ~t)~u+ 2t0(~t× ~u) + 2(~t · ~u)~t
)
· ~u = (t20 − ~t · ~t)|~u|2. (B.28)

Given that T is an isometry it follows that

cosθ = t20 − ~t · ~t, (B.29)

and given 1 = |t| = t20 + ~t · ~t we have that

t20 = 1
2(cosθ + 1) =⇒ t0 = ±cos( θ2), (B.30)

and we also have that
|~t|2 = 1

2(cosθ − 1) =⇒ ~t = ±sin( θ2). (B.31)

Choosing the positive solution, we thus have

t = cos( θ2) + sin( θ2)ω̂, (B.32)

where the image of ω̂ = f(~t)

|~t| under f−1 is along the axis of rotation defined by ~t. It is a trivial

consequence of the definition of T that −t ∈ Sp(1) implements the same rotation as the one defined
through t:

(−t)f(~r)(−t) = tf(~r)t, (B.33)

and it follows that Sp(1)/{±1} ∼= SO(3). Indeed, T−1 is defined simply through t, and T ◦ Q is
defined simply through h = tq ∈ Sp(1).
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Appendix C

Universal C*-algebras

In Section 6.2, we discuss one possible route that has been pointed out by Barnum [7] for the
development of an explicit description of composite systems in quaternionic quantum theory via
the universal tensor product introduced in [45] and defined in 6.2. The universal tensor product
of JC-algebras A and B is a JC-subalgebra of the maximal tensor product of their corresponding
universal C∗-algebras. In this appendix, we explicitly calculate the universal C∗-algebras enveloping
Md,d(H)sa for d ≥ 3. In Section C.1, we recall prerequisite algebraic definitions. In Section C.2,
we recall theorems due to Hanche-Olsen and Størmer concerning universal C∗-algebras enveloping
JC-algebras and we carry out the aforementioned explicit computation.

C.1 Preliminaries

In this section, we recall some basic definitions following [2] and [46]. Recall that an algebra is a real
or complex vector space equipped with a bilinear product. A unital algebra is an algebra equipped
with a multiplicative identity. An algebra A is said to be normed if it is equipped with a norm
such that ∀a, b ∈ A, ‖ab‖ ≤ ‖a‖‖b‖. An associative normed algebra which is complete is called a
Banach algebra. A Jordan algebra is an algebra A equipped with a commutative bilinear product
denoted by a • b satisfying a • (b • a2) = (a • b) • a2 ∀a, b ∈ A. A JB-algebra is a Jordan algebra
which is also a Banach algebra in which the norm satisfies the additional constraints ‖a2‖ = ‖a‖2
and ‖a2 + b2‖ ≤ ‖a2‖ ∀a, b ∈ A. A JC-algebra is a JB-algebra that is isometrically isomorphic to
a norm-closed Jordan subalgebra of the self-adjoint subspace of a set of bounded linear operators
acting on a complex Hilbert space. In finite dimensions, JB-algebras are JC-algebras, except for
M3(O)sa. A *-algebra is an associative algebra A equipped with an involution a 7→ a∗ satisfying
(a+ b)∗ = a∗+ b∗, (αa)∗ = ᾱa∗, a∗∗ = a, and (ab)∗ = b∗a∗ ∀a, b ∈ A and ∀α in the underlying field.
A linear map Φ from a ∗-algebra A1 to a ∗-algebra A2 is called a ∗-homomorphism if Φ(x∗) = Φ(x)∗

and Φ(xy) = Φ(x)Φ(y) ∀x, y ∈ A1, and it is called a ∗-anti-homomorphism if Φ(x∗) = Φ(x)∗ and
Φ(xy) = Φ(y)Φ(x) ∀x, y ∈ A1. The terms ∗-isomorphism, ∗-anti-isomorphism, ∗-automorphism,
and ∗-anti-automorphism are used accordingly. A C∗-algebra is a complex Banach ∗-algebra B
such that ‖x∗x‖ = ‖x‖2 ∀x ∈ B. If B is a C∗-algebra, then the set of all self-adjoint elements
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x ∈ B such that x = x∗ is denoted Bsa.

C.2 Theorems and Computation

In this section we compute the universal C∗-algebra enveloping Md,d(H)sa for all d ≥ 3 in Exam-
ple C.2.3. We begin by recalling a theorem due to Hanche-Olsen and Størmer [46]:

Theorem C.2.1 ([46], p. 152) Existence of Universal C∗-algebras:

Let A be a JB-algebra. Then there exists up to isomorphism a unique C∗-algebra C∗u(A) and a
homomorphism ψA : A→ C∗u(A)sa such that:

• ψA(A) generates C∗u(A) as a C∗-algebra.

• If B is a C∗-algebra and π : A→ Bsa is a homomorphism, then there exists a
∗-homomorphism π̂ : C∗u(A)→ B such that π = π̂ ◦ ψA.

• There is a involutive ∗-anti-automorphism Φ of C∗u(A) such that
Φ
(
ψA(a)

)
= ψA(a) ∀a ∈ A.

Proof: See [46].

One refers to C∗u(A) as the universal C∗-algebra enveloping A. The following morphism diagram is
useful to keep in mind:

C∗u(A)
π̂ // B

A

ψA

OO

π
// Bsa

OO

Recall that a JC-algebra A is said to be reversible if

a1, a2, . . . , an ∈ A =⇒ a1a2 · · · an + anan−1 · · · a1 ∈ A. (C.1)

Md,d(H)sa is clearly reversible, for if {a1, a2, . . . , an} ⊂Md,d(H)sa then

(a1a2 · · · an + anan−1 · · · a1)∗ = a∗na
∗
n−1 · · · a∗1 + a∗1a

∗
2 · · · a∗n = a1a2 · · · an + anan−1 · · · a1. (C.2)

Furthermore, a JC-algebra A is said to be universally reversible if π(A) is reversible for each
concrete representation π of A on an algebra of bounded linear operators on a complex Hilbert
space. Md,d(H)sa is universally reversible for all d ≥ 3 [68]. In [45] Hanche-Olsen proves the
following theorem characterizing the universal C∗-algebra enveloping a universally reversible JC-
algebra:
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Theorem C.2.2 ([45], p. 1069) Characterization of C∗u(A) for universally reversible JC-algebras:

Assume A is a universally reversible JC-algebra, that B is a C∗-algebra, and that θ : A → Bsa

is an injective homomorphism such that θ(A) generates B. If B admits an anti-automorphism ϕ
such that ϕ ◦ θ = θ, then θ̂ is a ∗-isomorphism of C∗u(A) onto B.

Proof: See [45].

Concretely, Theorem C.2.2 tells us how to compute the universal C∗-algebra enveloping a universally
reversible JC-algebra A. In particular, if one can find an injective homomorphism θ of A into a C∗-
algebra B that generates that B, and if one can find an ∗-anti-automorphism of B fixing the image
of A under injection by θ, then B is the universal C∗-algebra enveloping A up to isomorphism.
In [45], it is stated that M2d,2d(C) is the universal C∗-algebra enveloping Md,d(H)sa when d ≥ 3,
which we prove explicitly in Example C.2.3.

Example C.2.3 The Universal C∗-algebra enveloping Md,d(H)sa:

∀d ≥ 3 : C∗u

(
Md,d(H)sa

)
= M2d,2d(C). (C.3)

Proof :

To begin the proof, recall the *-homomorphic injection ψd,d : Md,d(H)sa →M2d,2d(C)sa defined for
a = Γ1 + Γ2j ∈Md,d(H)sa via

ψd,d (a) =

(
Γ1 Γ2

−Γ2 Γ1

)
. (C.4)

We will first show that ψd,d(Md,d(H)sa) generates M2d,2d(C)sa as a C∗-algebra. Let us introduce

some notation. The set of standard basis vectors for Cd will be denoted by {|r〉}dr=1, and the set

of standard basis vectors for C2d will be denoted by {||r〉〉}2dr=1, with the standard orthonormality
relations 〈s|r〉 = δrs and 〈〈s||r〉〉 = δrs.

From now on, let r 6= s. Choose Qrs ∈Md,d(H)sa such that Qrs = i|r〉〈s| − i|s〉〈r| =⇒

ψd,d(Qrs) = i||r〉〉〈〈s|| − i||s〉〉〈〈r|| − i||r + n〉〉〈〈s+ n||+ i||s+ n〉〉〈〈r + n||. (C.5)

Choose Prs ∈Md,d(H)sa such that Prs = |r〉〈s|+ |s〉〈r| =⇒

ψd,d(Prs) = ||r〉〉〈〈s||+ ||s〉〉〈〈r||+ ||r + n〉〉〈〈s+ n||+ ||s+ n〉〉〈〈r + n||. (C.6)

Then
1

2i

(
ψd,d(Qrs) + iψd,d(Prs)

)
= ||r〉〉〈〈s||+ ||s+ n〉〉〈〈r + n||. (C.7)
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Choose Rr ∈Md,d(H)sa such that Rr = |r〉〈r| =⇒

ψd,d(Rr) = ||r〉〉〈〈r||+ ||r + n〉〉〈〈r + n||. (C.8)

Choose Ss ∈Md,d(H)sa such that Ss = |s〉〈s| =⇒

ψd,d(Ss) = ||s〉〉〈〈s||+ ||s+ n〉〉〈〈s+ n||. (C.9)

Then,

ψd,d(Rr)

(
1

2i

(
ψd,d(Qrs) + iψd,d(Prs)

))
= ||r〉〉〈〈s||, (C.10)

ψd,d(Ss)

(
1

2i

(
ψd,d(Qrs) + iψd,d(Prs)

))
= ||s+ n〉〉〈〈r + n||. (C.11)

Also, notice that

− 1

4

(
iψd,d(Ss) + ψd,d(Prs)ψd,d(R)ψd,d(Qrs)

)2
= ||s〉〉〈〈s||, (C.12)

− 1

4

(
iψd,d(Ss)− ψd,d(Prs)ψd,d(R)ψd,d(Qrs)

)2
= ||s+ n〉〉〈〈s+ n||. (C.13)

So, for arbitrary ξ ∈Md,d(C), we can generate the following elements of M2d,2d(C):

Ξu =

(
ξ 0
0 0

)
, Ξb =

(
0 0
0 ξ

)
. (C.14)

Choose Wrs ∈Md,d(H)sa such that Wrs = j|r〉〈s| − j|s〉〈r| =⇒

ψd,d(Wrs) = ||r〉〉〈〈s+ n|| − ||s〉〉〈〈r + n|| − ||r + n〉〉〈〈s||+ ||s+ n〉〉〈〈r||. (C.15)

It follows that

ψd,d(Prs)ψd,d(Wrs) = −||r〉〉〈〈r + n|| − ||s〉〉〈〈s+ n||+ ||r + n〉〉〈〈r||+ ||s+ n〉〉〈〈s||, (C.16)

and so

d∑
r=1

ψd,d(Rr)ψd,d(Prs)ψd,d(Wrs) =
d∑
r=1

(
−||r〉〉〈〈r+n||+ ||r+n〉〉〈〈r||

)
= X =

(
0 −1n
1n 0

)
. (C.17)

Applying X to Ξu or Ξb we see that ψd,d (Md,d(H)sa) generates M2d,2d(C).

It remains to show that there exists an involutive ∗-anti-automorphism of M2d,2d(C) that acts as
the identity on ψd,d(Md,d(H)sa). Let

J =

(
0 1

−1 0

)
, (C.18)

where 0 and 1 are the zero and unit matrices in Md,d(C) respectively. Notice that JT = J−1 = −J
and J2 = −1. Let

Φ : M2d,2d(C)→M2d,2d(C) (C.19)
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be defined ∀X ∈M2d,2d(C) via
Φ(X) = (JTXJ)T . (C.20)

Φ is C−linear. Indeed, ∀α, β ∈ C and ∀X,Y ∈M2d,2d(C) one has that

Φ(αX + βY ) = αΦ(X) + βΦ(Y ). (C.21)

Direct computation yields

Φ2(X) = Φ (Φ(X)) =
(
JT (JTXJ)TJ

)T
=
(
JTJTXTJJ

)T
= X, (C.22)

Φ(X)∗ =
(
(JTXJ)T

)∗
= (JTXJ) = JTXJ = (JTX∗J)T = Φ(X∗), (C.23)

Φ(XY ) = (JTXY J)T = JTY TXTJ = JTY TJJTXTJ = (JTY J)T (JTXJ)T = Φ(Y )Φ(X).
(C.24)

Let
g : M2d,2d(C)→M2d,2d(C) (C.25)

be defined ∀Y ∈M2d,2d(C) via
g(Y ) = (JY JT )T . (C.26)

It follows ∀X ∈M2d,2d(C) that g (Φ(X)) = (JΦ(X)JT )T = (JJTXTJJT )T = X, so g = Φ−1. One
also has that

Φ(X) = Φ(Y ) ⇐⇒ (JTXJ)T = (JTY J)T ⇐⇒ JTXJ = JTY J ⇐⇒ X = Y . (C.27)

All of the above demonstrates that Φ is an involutive ∗-anti-automorphism of M2d,2d(C). The
remarkable property of Φ is that

Φ
(
ψd,d(a)

)
= ψd,d(a) ∀a ∈Md,d(H)sa. (C.28)

Therefore, by virtue of Theorem C.2.2, the proof is complete. �
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