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ABSTRACT 

This thesis proposes equilibrium models to link the wholesale and retail 

electricity markets which allow for reconciliation of the differing time scales of 

responses of producers (e.g., hourly) and consumers (e.g., monthly) to changing prices. 

Electricity market equilibrium models with time of use (TOU) pricing scheme are 

formulated as large-scale variational inequality (VI) problems, a unified and concise 

approach for modeling the equilibrium. The demand response is dynamic in these 

models through a dependence on the lagged demand. Different market structures are 

examined within this context. With an illustrative example, the welfare gains/losses are 

analyzed after an implementation of TOU pricing scheme over the single pricing 

scheme. An approximation of the welfare change for this analysis is also presented. 

Moreover, break-up of a large supplier into smaller parts is investigated. 

For the illustrative examples presented in the dissertation, overall welfare gains 

for consumers and lower prices closer to the levels of perfect competition can be 

realized when the retail pricing scheme is changed from single pricing to TOU pricing. 

These models can be useful policy tools for regulatory bodies i) to forecast future retail 

prices (TOU or single prices), ii) to examine the market power exerted by suppliers and 

iii) to measure welfare gains/losses with different retail pricing schemes (e.g., single 

versus TOU pricing). 

With the inclusion of linearized DC network constraints into these models, the 

problem size grows considerably. Dantzig-Wolfe (DW) decomposition algorithm for VI 

problems is used to alleviate the computational burden and it also facilitates model 

management and maintenance. Modification of the DW decomposition algorithm and 

approximation of the DW master problem significantly improve the computational 

effort required to find the equilibrium. These algorithms are applied to a two-region 

energy model for Canada and a realistic Ontario electricity test system. In addition to 

empirical analysis, theoretical results for the convergence properties of the master 

problem approximation are presented for DW decomposition of VI problems.   
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LIST OF SYMBOLS 

This is a non-exhaustive list of commonly used symbols throughout the thesis. 

Subscript n represents the nodes (e.g., buses) and the superscript (t) denotes the periods 

(e.g., month). 

Sets 

set of periods (months): t=1,…,T  
set of generation facilities: i=1,…,I 
set of demand blocks: j=1,…,J (alias index k) 
set of nodes: n=1,…,N  (Nd: set of demand nodes; Ng: set of generation nodes)  
set of hours in a demand block j: h=1,…,Hj (defined by the market regulator) 
set of firms: f=1,…,F 
set of lines: l=1,..,L 
 
Parameters 

     operating cost per unit of energy for firm f’s facility i ($/MWh) 

     capacity of firm f’s facility i (MW) 

     fraction of total energy demand during block j of a month for hour h 

        power transfer distribution factors  
         lower and upper bounds on real power flows through line (interface) l (MW) 
   vector of the factors representing non-price effects 
   a square matrix of the price coefficients (i.e., own-price and cross-price) 
   a square diagonal matrix of the lag coefficients 
    vector of lagged demands 
 
Decision variables  

       the energy flowing from firm f’s facility i to demand block j for hour h (MWh) 

      sales by firm f  to demand block j (MWh) 

     TOU prices (e.g., uniform block prices) for demand block j (off-peak, mid-peak 

and on-peak, $/MWh)  
       net injections from transmission lines into node n for demand block j at hour h 

(MW) 
      a congestion based fee (e.g., wheeling fee) for transmitting power from an 

arbitrary hub node to node n.
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1. Introduction 

The desire to solve more and more complex models has always been running 

ahead of capabilities of the time, and has provided a driving force for the development 

of faster and reliable algorithms to compute a solution. Complex models arise in many 

areas such as engineering, economics, public policy analysis and energy markets. They 

are defined as ―one made of a large number of parts that interact in a non-simple way‖ 

and complexity of a model increases by the number of different model parts, number of 

different ways these parts can interact, number of different type of variables and 

functions, time and spatial dimension and by the scope and range of the problem 

environment (Murphy, 1993).  

Complex and large-scale equilibrium models have been at the heart of research 

interest for many researchers and practitioners. Advances in computation power and 

increase in availability of data in the last few decades also has supported a dramatic 

growth of interest in these models. They have removed the need for working on small 

dimensional analytical models and incorporate much more detail than analytical 

models. This has stimulated the use of different techniques or algorithms to solve such 

equilibrium models, e.g., the Project Independence Evaluation System (PIES) algorithm 

(Ahn and Hogan, 1982), the decoupling algorithm (Wu and Fuller, 1995), and 

algorithms for complementarity problems (Mathiesen, 1985; Manne, 1985; Dirkse and 

Ferris, 1996; Ferris et al., 2001) or VI problems (Nagurney, 1993). The former two 

algorithms are based on a sequence of integrable optimization problems, whereas the 

latter two are more general and recognized approaches. 

PIES, which was originally developed for energy modeling for U.S. Department 

of Energy in the 1970s, captures many key features of complex equilibrium models. It 

has proven its success by solving such equilibrium models. The PIES algorithm 

approximates the non-integrable equilibrium problem by a sequence of integrable 

problems which can be converted into equivalent optimization problems. Each iteration 

solves a linear programming (LP) problem after a proper step function approximation is 
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made on an integrable approximation of the demand function (Hogan, 1975). This 

algorithm has the characteristics of the nonlinear Jacobi method for solving nonlinear 

system of equations.  Ahn and Hogan (1982) give sufficient conditions under which the 

PIES algorithm converges. But, as Murphy and Mudrageda (1998) point out, although 

PIES never met these conditions, because of demand function approximations, it 

usually does not fail to converge. 

Variational inequality (VI) problems were first developed in the context of 

studying a class of partial differential equations that arise in the field of mechanics and 

defined on infinite dimensional spaces. In contrast, finite dimensional VI problems have 

been studied for computation of economic and game theoretic equilibria.  For a 

comprehensive survey see Harker and Pang (1990). Many mathematical problems (e.g., 

system of equations, constrained and unconstrained optimization problems, 

complementarity problems, game theory and saddle point problems, fixed point 

problems, traffic assignment and network equilibrium problems) can be formulated as 

VI problems (Nagurney, 1993; Harker and Pang, 1990; Bertsekas and Tsitsiklis, 1989; 

Patriksson, 1994).   

There are several decomposition algorithms (e.g., Dantzig-Wolfe, Benders, 

Lagrangean) for solving and analyzing complex models. Decomposition is a notion to 

split a mathematical program into two or more set of variables and associated 

constraints. Separating some parts with special structure from the rest of the 

mathematical programming model is the purpose of the decomposition. Certain models 

may have a structure that some of the constraints prevent the separability of the 

problem into subproblems. If these constraints are removed, the resulting subproblems 

are frequently considerably easier to solve. These constraints are usually referred to as 

―complicating constraints‖ (and sometimes referred to as ―common‖ or ―linking‖ 

constraints). Dantzig-Wolfe (DW) decomposition is developed to take advantage of this 

structure (e.g., block diagonal structure).  Some other models may have a structure that 

if certain variables (i.e., binary and/or integer) can be fixed, the problem reduces to one 

that is easier to solve. These models including such variables are referred to as problems 
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with ―complicating variables‖. Benders decomposition is developed to exploit the 

structure of such models (Conejo et al., 2006). 

Decomposition methods allow large-scale and complex problems to be solved in 

a distributed and parallel fashion that helps to overcome computational difficulties 

(Fuller and Chung, 2008). They can reduce the memory requirements and/or increase 

the speed of calculations. Alternatively they can lead to a drastic simplification of the 

model development procedure and ease the model management and maintenance 

(Murphy, 1993; Murphy and Mudrageda, 1998). Generally, the scope of the complex 

models (e.g., related to public policy making) expands as addressing one question 

reveals other related questions. Therefore analyses of such models require continuous 

re-evaluation of the issues. Decomposition of these models allows different analysts or 

teams of experts to manage, analyze, re-evaluate and repeatedly run sub-models. 

Murphy (1993) demonstrated that expected run time can be reduced by 70% using 

decomposition methods. Another advantage of decomposition methods pointed out by 

Murphy (1993) is the error reduction in modeling (e.g., effects of errors can be made 

additive rather than multiplicative).  

Any decomposition algorithm involves an iterative procedure to solve 

subproblems by using adjusted information passed to subproblems between iterations. 

One type of algorithm is to use a ―master problem‖ to coordinate the communication 

between subproblems and adjust the information for the subproblems (Fuller and 

Chung, 2008). Instead of solving the original problem with complicating constraints or 

variables, two problems are solved iteratively, a master problem and a subproblem, i.e., 

original problem without complicating constraints or variables (it can also be 

decomposed into several subproblems in the absence of complicating constraints or 

variables). The solution to the original model is obtained by exchanging price and 

quantity information among the subproblem(s) and the master problem in an iterative 

manner. 

The power of formulation with VI framework extends our interest in the areas of 

very well studied algorithms and techniques for optimization problems, mainly 
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decomposition, to alleviate the difficulties when confronted with large-scale and 

complex models, (e.g., multiregional economic equilibrium problems, multiplayer game 

theoretic electricity market models). Many equilibrium problems can be formulated as 

VI problems. But it is a challenging task to find and to analyze the equilibrium for large-

scale and complex models. However, such models can have a special structure, i.e., they 

can be decomposable by some dimension (e.g., time, region, sector, product, player). 

Therefore, we are motivated to apply decomposition algorithms from optimization 

theory to VI problems and analyze the performance of such algorithms with further 

modifications and testing on large-scale, realistic models. 

The growing literature on market equilibrium models of electric power networks 

under different market designs presents examples of large-scale and complex 

equilibrium problems (Helman and Hobbs, 2010). The network underlying such market 

equilibrium problems provides an added dimension to the analysis and computation of 

equilibria (due to network constraints governed by Kirchhoff’s current and voltage 

laws). Simulation of market pricing through equilibrium market models can inform 

policy makers and system operators (e.g., regulatory bodies and independent 

system/market operators) by providing insights about the market design and market 

power issues (e.g., merger/divestiture decisions) (Smeers, 1997; Wei and Smeers, 1999; 

Day et al., 2002). Moreover, fairly detailed models can be useful in short-/long-term 

forecasting and ex-post replication of prices (Green and Newberry, 1992; Borenstein and 

Bushnell, 1998).  

Many models consider electricity as an undifferentiated commodity (e.g., a single 

product). However, in actual electricity markets, electricity is differentiated by both 

time (e.g., time of use –TOU) and location (e.g., network node) and even the fuel type 

(e.g., fossil fuel/nuclear versus renewable energy) (Hobbs and Pang, 2004). In this 

thesis, we propose equilibrium models of competition with product differentiation (e.g., 

using TOU pricing) as a more adequate approach to analyze strategic behavior in 

electricity markets. For a better understanding of the market behavior and outcomes, 

such models can be used in regulatory procedures (e.g., a guide for market power 
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monitoring and mitigation, merger/divestiture analysis) and evaluation/forecasting of 

prices (e.g., forecasting forward prices in markets where there is no consumer price 

regulation).  

The proposed models in this thesis also address the problem of demand response 

with the inclusion of TOU pricing scheme in the context of bilateral markets. Our focus 

in this thesis remains in, but not limited to, the Ontario electricity market. Ontario has 

been one of the pioneers in TOU pricing scheme and invested in smart metering 

technologies substantially. The aim is to provide an incentive for consumers to shift 

some of their consumption away from periods of high demand to periods of low 

demand and conserve often by installing more energy efficient equipment. This move in 

Ontario towards TOU pricing will certainly affect the market structure in the future. 

Some market participants may be interested in TOU bilateral contracts and in the future 

they can form a TOU bilateral market for Ontario. In such a bilateral market, power 

quantities for predefined intervals of hours (off-peak, mid-peak and on-peak) at 

negotiated prices, terms and conditions can be traded among participants. Within this 

context, the proposed models can be used as forecasting and policy analysis tools. 

1.1 Variational Inequality Problems 

The models proposed in this thesis are represented and solved by the VI problem 

approach. In general, a finite dimensional VI problem is defined as follows:   

       : Find a vector        , such that: 
(1.1) 

                           

where   is a given continuous function from   to    and   is a nonempty, closed and 

convex set (Nagurney, 1993). Unlike an optimization problem which has an objective 

function, a VI problem has a vector-valued function  , and it is equivalent to an 

optimization problem only if this vector-valued function is the gradient of an objective 

function. A necessary and sufficient condition for a differentiable   to satisfy the above 

condition is that the Jacobian matrix    is symmetric or in other words, that   is 

integrable, i.e., it can be integrated to define an objective function (Nagurney, 1993). 
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Unfortunately, this condition does not hold in many practical problems. In this thesis, 

we consider problems which are non-integrable (asymmetric)1. 

Standard conditions for existence and uniqueness of solutions to         are 

provided below. Definitions for monotonicity and coercivity are also provided 

(Patriksson, 1994). See Harker and Pang (1990), Nagurney (1993) or Patriksson (1994) 

for proofs. 

Definition 1.1 (Monotonicity):  

1)   is monotone on   if                                  . 

2)   is strictly monotone on   if                                           

3)   is strongly (uniformly) monotone on   if there exists a positive constant    such 

that                                           

Definition 1.2 (Coercivity):   is coercive on   if there exists a vector      such that 

   
   

      

            
 
       

      
     

Theorem 1.1: The existence of the solution to a VI problem follows from any one of 

the following properties of   or  : 

1) The set   is bounded; 

2) The mapping   is strongly monotone; 

                                                 
1 Samuelson (1951) formulated a spatial equilibrium model as a mathematical programming problem 

with the objective of maximizing consumers’ plus producers’ surpluses (e.g., ―net social payoff‖) in 

different regional markets minus the transportation costs. Takayama and Judge (1971) extended 

Samuelson’s model using a ―quasi welfare function‖ with linear price dependent demand and supply 

functions. They also defined the ―integrability‖ conditions to form this quasi welfare function and 

proposed a quadratic programming algorithm to obtain the equilibrium solution. But, if the demand 

functions are not symmetric, the integrability conditions are not satisfied. For example, in a multi-

commodity model, cross price effects in demand can cause the integrability conditions to fail. Empirically 

estimated demand functions are unlikely to satisfy these conditions. However, VI problems overcome 

this shortcoming of optimization approaches. 
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3) The mapping   is coercive. 

Theorem 1.2: The solution of a VI problem, if one exists, is unique, if   is strictly 

monotone on  . 

Complementarity problems are considered as a special case of VI problems, 

where they are defined on the non-negative orthant (proof can be found in Nagurney, 

(1993), p.7-8). Many electricity market models are represented using the 

complementarity problem framework. For examples see Hobbs and Helman (2010) and 

references therein with the exception of Wei and Smeers (1999), Daxhelet and Smeers 

(2001) who use VI framework.  

When Nash equilibrium (or generalized Nash equilibrium) problems are 

formulated as VI problems, they only include primal variables and their feasibility 

conditions, whereas complementarity problems include both primal and dual variables, 

their feasibility conditions together with complementary slackness conditions (i.e., more 

variables and conditions need to be represented and coding effort in GAMS is laborious 

compared to a VI problem formulation). It is possible to represent several objectives of 

different agents with VI formulation (e.g., in Nash equilibrium models), as we shall 

illustrate in chapters 2 and 3. 

Recently, the extended mathematical programming (EMP) framework (available 

under GAMS) has made it possible to manage and maintain VI problems. The modeler 

is not required to formulate an equilibrium problem as a mixed complementarity 

problem (MCP) or a system of nonlinear equations (i.e., no need to represent dual 

variables and their feasibility conditions) (Ferris et al., 2009). The EMP framework 

automates the conversion of a VI problem into an equivalent MCP, which is then solved 

by the MCP solver PATH. 

1.2 Review of Time of Use (TOU) Pricing in Electricity Markets 

In this subsection we briefly give an overview of TOU literature. This subsection 

is mainly extracted from Celebi (2005). In economic theory, efficient pricing is achieved 

when electricity is priced at the marginal cost of supplying the last increment of 
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electricity demand, and a perfectly competitive market can provide this. The literature 

on real time ―Marginal Cost Pricing‖ in electricity markets is now vast (see the seminal 

work by Schweppe et al. (1988)). However, the time-differentiated pricing concept 

started earlier with studies on ―Peak Load Pricing‖ (see Celebi and Fuller (2007) and 

references therein). Peak loads and their pricing have been a concern because of the 

capacity requirements for these loads. In peak load pricing, high marginal cost of 

electricity during the periods of the peak load is reflected in consumer prices, e.g., by 

time of use (TOU) pricing. In TOU pricing, both prices and time periods are known ex 

ante and are fixed for some duration (e.g., a season). In contrast, in real time pricing 

(RTP), generally prices change on an hourly basis and are fixed and known only on a 

day-ahead or hour-ahead basis. RTP reflects the wholesale prices, weather conditions, 

generator failures, scarcity of generation or other contingencies that occur in a 

wholesale electricity market.  

The theoretical body of peak load pricing literature was not able to give practical 

answers to the problem and many large-scale experiments have been conducted with 

TOU pricing over the past three decades. Surveys of these experiments can be found in 

Mitchell et al. (1978), Faruqui and Malko (1983), Aigner (1984), King and Chatterjee 

(2003). These experiments collected data that allow econometricians to estimate the 

parameters of electricity demand functions such as own and cross price elasticities, 

elasticities of substitution and lag elasticities. Some countries even implemented TOU 

pricing on a national scale (see Mitchell et al. (1978) and Chick (2002) for an account). A 

more recent experiment for California (Statewide Pricing Pilot) has shown that 

residential and small to medium commercial and industrial customers cut energy usage 

in peak periods in response to TOU prices (Faruqui and George, 2005). 

Patrick and Wolak (2001) estimated some significant demand response for 

electricity by large and medium-sized industrial and commercial customers purchasing 

electricity according to the half-hourly real time price from the England & Wales 

electricity market. Borenstein et al. (2002) reported on some U.S. utilities’ 
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implementations of RTP for their medium/large industrial and commercial customers 

that showed reduction in peak period energy use. 

The main attraction of time varying pricing (e.g., RTP, TOU) is that it motivates 

customers to reduce their electricity consumption in peak periods and shifts some to 

off-peak periods, thereby reducing the total capacity requirement (Celebi and Fuller, 

2007). However, RTP transfers the uncertainty and volatility of prices to customers and 

consequently, this has failed to attract many customers (Faruqui and George, 2002). 

Joskow and Tirole (2004) gave two main reasons why the final consumers may not react 

to real time prices. Firstly, the cost of monitoring and evaluation of hourly prices and 

constantly optimizing the use of equipment is enormous for small consumers. Secondly, 

most directed interruptions (due to a shortage in supply) that can be controlled by the 

distribution network operator usually occurs at the level of zones, which means that 

individual small consumers cannot sign up for interruptible supply contracts. For these 

reasons, TOU pricing is considered to be a practical step towards time-differentiated 

pricing. 

1.3 Summary of Contributions 

In this thesis, our main contributions can be summarized as follows:  

a) We formulate market equilibrium models of competition with product 

differentiation (e.g., using TOU pricing) as a more adequate approach to analyze 

strategic behavior in electricity markets.  These models allow for different pricing 

schemes (e.g., TOU or single or RTP) to be determined in different market 

structures. We develop policy tools for regulatory bodies to assess market power, to 

forecast (seasonal or monthly) TOU or single prices for future periods/seasons. 

b) We approximate consumers’ surplus for the consumers’ habit formation model (i.e., 

using distributed lagged demand model) and present an approximate measure of 

welfare among other measures for regulatory bodies (e.g., market concentration 

index and price-cost margins –PCM). The welfare measure can be useful for 

analyzing the regulatory applications (e.g., regulated retail rates). 
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c) The models in the thesis are formulated by VI problem framework, which provides 

compact and convenient representation of equilibrium problems. Moreover, VI 

models are easier to manage, maintain and solve in GAMS/EMP framework than 

GAMS/MCP models. We have found some computational advantages for large-

scale VI formulation over MCP formulations (e.g., improvements in computation 

times). 

d) A modified DW algorithm is offered for large-scale market equilibrium models of 

TOU pricing with linearized network constraints. Exact DW algorithm is modified 

in a way that the independent system operator’s (ISO’s) problem is contained in the 

master problem and extra constraints are added to the subproblem. The 

modifications produce better proposals from subproblem to be passed to DW master 

problem. Subproblem without network constraints is easier to solve, build and 

manage, while the network constraints are contained in master problem. Without 

any line limits, this modification improves the DW algorithm substantially over the 

exact DW algorithm. Also, it allows different teams or analysts for master problem 

and subproblem to maintain and manage the model. 

e) With line limits case, we propose an approximation of the master problem in the 

modified DW algorithm to gain computational advantages. We generalize this 

method for the DW decomposition with convergence analysis. Numerical results 

also support that the approximation of the master problem can overcome problems 

when confronted with computational limits (e.g., time and memory limits). 

1.4 Overview of the Thesis 

The thesis is organized as follows. Chapter 2 introduces the TOU pricing models 

in electricity markets under different market structures and their underlying 

assumptions. An illustrative example is presented, including several analyses to 

compare different market structures and pricing schemes (single versus TOU pricing, 

oligopoly versus perfect competition, break-up of a large firm into two or more parts 

with comparative welfare analyses). In chapter 3, linearized DC network is introduced 
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into the TOU pricing model and VI formulations are provided. Chapter 4 provides an 

overview of the decomposition methods for VI problems. It presents applications of the 

DW decomposition algorithm to TOU pricing models and provides convergence 

analysis. Moreover, modifications to the algorithm and approximation of the master 

problem solution to gain computational advantages are provided with convergence 

analysis. The paper concludes with chapter 5, in which the directions for future research 

are suggested. 
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2. Time of Use (TOU) Pricing Models in Electricity Markets 

under Different Market Structures and Welfare Analysis2 

2.1 Introduction 

In the deregulation of many electricity markets, only wholesale markets have 

been open to competition and often, regulatory bodies have immunized retail markets 

against the price volatility and spikes in the wholesale markets by regulating consumer 

prices (e.g., Ontario regulated price plan). Except for large industrial customers 

equipped with real time meters, participation of the demand side in the wholesale 

market is very small. Consequently, many consumers are indifferent to fluctuations in 

electricity prices or uninterested in curtailing power usage during price spikes in the 

wholesale markets. Moreover, this does not encourage consumers to reduce peak 

demand, thereby causing supply costs to increase due to extra peak generation 

capacity3. 

The regulation of retail rates limits the price-response by many consumers to 

wholesale markets (Bompard et al., 2007), but there are some jurisdictions that seek to 

revive price responsiveness of consumers by offering time-differentiated regulated 

pricing schemes (e.g., TOU pricing in Ontario) rather than single pricing schemes. With 

TOU pricing, electricity prices are differentiated by time (e.g., hour of the day) and this 

can lead to models of competition with product differentiation as a more adequate 

                                                 
2 This chapter is a journal submission under fourth round review: Celebi, E. and Fuller, J. D. 2011. ―Time 

of Use Pricing in Electricity Markets under Different Market Structures,‖ IEEE Transactions on Power 

Systems. 

3 Demand response is not only about price spikes but also about increasing demand in case of negative 

prices. It also influences the base load capacity (as it offers flexibility) and the transmission system (e.g., 

congestion). 
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approach to analyze strategic behavior in electricity markets4. TOU pricing can also 

reduce the inefficiency of single pricing, while being more practical, for most 

consumers, than the RTP of the wholesale market (see Celebi and Fuller (2007) and 

references therein for a review of TOU pricing). 

Many electricity market models have either mostly ignored the demand response 

to changing prices (e.g., day-ahead models with mostly fixed demand), or, at the other 

extreme, they assumed that the full demand response occurred within one hour, see 

Day et al. (2002), Helman and Hobbs (2010), Hobbs (2001), Hobbs and Pang (2004). In 

the former case, it usually creates a problem especially in Cournot models, where the 

prices can rise infinitely, due to inelastic demand (Day et al., 2002). The proposed model 

of this thesis seeks to resolve this problem by bridging the speed of response gap 

between suppliers and consumers. The speed of response gap is the difference between 

the consumers’ response to changes in price, which is no more frequent than the billing 

cycle allows (e.g., monthly), and the change in marginal costs of production, which 

occurs much more rapidly (e.g., hourly). In this thesis, we simulate consumer prices 

using monthly demand functions rather than hourly, with cross-price effects in the TOU 

models. TOU or single prices for consumers are determined for several months instead 

of each hour. Moreover, the demand response is dynamic in the model through a 

dependence of this month’s demand on the previous month’s demand. Note that these 

models are short-term (six months to a year) and the ―lag‖ dependence on the previous 

month mostly represents the consumers’ habits rather than long-term investment 

decisions (i.e., adjustment in capital stock is not considered).  

The models proposed in this thesis address the problem of demand response 

with the inclusion of TOU pricing scheme in the context of bilateral markets, but the 

                                                 
4 In actual electricity markets, power and its price are also differentiated by space (location on the 

transmission network) and fuel type (renewable versus fossil-fuelled or nuclear energy) and this may 

cause additional opportunities to exercise market power (see Hobbs and Pang (2004) and references 

therein). Note that a competitive rent earned by low-cost generators is not deemed to be evidence of 

market power. 
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models also apply to Ontario’s POOLCO system because Ontario has a uniform pricing 

mechanism (i.e., no locational marginal prices)5. Hence, we have only considered the 

bilateral market case, where the role of the ISO is to coordinate the market participants 

(e.g., in a way that minimizes suppliers’ operating costs) by using an incentive (e.g., 

penalty/payment) mechanism to curtail any trade that is not following the historical 

shape of the load duration curve6. 

In this thesis, our main focus remains in, but not limited to, the Ontario 

electricity market, since there is a move towards TOU pricing scheme with enhanced 

metering investment in Ontario. As a recent study by the Ontario Energy Board (OEB) 

(2007) showed, under TOU prices, consumers are able to reduce their overall 

consumption (conservation effect) and shift their consumption to mid-peak and off-

peak periods (demand response effect). Other pilot projects are underway to fine tune 

TOU pricing schemes so that consumers are encouraged to control their consumption 

and cost. This move in Ontario towards TOU pricing with substantial investment in 

metering technology will certainly affect the market structure in the future. Within this 

context, the proposed model can be used as a forecasting and policy analysis tool (e.g., 

to assess potential market power of large suppliers) by regulatory bodies (e.g., Market 

Surveillance Panel of OEB and Independent Electricity System Operator –IESO). 

There have been several studies in the literature about the efficiency and welfare 

effects of RTP and comparisons among single pricing (e.g., seasonal or monthly flat-

                                                 
5 In the presence of arbitrage (that erase any non-cost based differences in prices) and a network 

representation, Cournot competition in a bilateral market is equivalent to Cournot competition among 

generators in a POOLCO (i.e., generators sell to a central auction) (Hobbs, 2001). Without network 

representation, POOLCO and bilateral market models would be equivalent, too. Arbitrage is not relevant 

in this case, since there are no non-cost price differences (i.e., no locational marginal price differences). 

6 Load duration curve is obtained by re-ordering the hourly load (demand) data in descending order of 

magnitude, rather than chronologically for a period of time (e.g., year or month). The area under the load 

duration curve is the total electricity (e.g., kWh) used per period. It is most widely used for ―resource 

planning‖ (e.g., medium- to long-term planning of power production) (Kirschen and Strbac, 2004 ; Conejo 

et al., 2006). 
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rates) and seasonal TOU (i.e., TOU prices that change between winter and summer 

months) (Borenstein, 2005; Borenstein and Holland, 2005; Holland and Mansur, 2006). 

These studies have estimated the size of potential efficiency gains from RTP adoption 

and have performed reasonable sensitivity analysis for their simulations. In particular, 

Borenstein and Holland (2005) have calculated the long-run efficiency gains (e.g., 

considering capacity investments and long-term welfare transfers) of 3% to 11% of the 

energy bill with RTP adoption and Borenstein (2005) has simulated about a quarter of 

these gains for seasonal TOU pricing. Holland and Mansur (2006) have found that the 

short-run efficiency gains (e.g., short-run welfare and consumers’ surplus gains) are 

modest (0.24% and 2.5% of the total energy bill, respectively) if all customers adopt 

RTP. They have stated that monthly flat rates or seasonal TOU prices can only capture 

one third or a quarter of efficiency gains with RTP adoption, respectively. Moreover, 

they have analyzed the environmental effects of RTP adoption.  

Our approach in this thesis is different in several ways. Aforementioned studies 

specify constant elasticity demand functions for each hour, whereas we propose 

monthly linear demand functions. They also assume zero cross-price elasticities among 

hours or time-blocks; while we use non-zero cross-price elasticities. Also, they do not 

explicitly model the behavioral aspects and dynamics (e.g., habit formation with lag 

effect) of the demand side. Furthermore, their analyses are in the context of perfect 

competition only, but they have stated that market power would increase the efficiency 

gains. In our illustrations in section 2.3.2, we have compared the monthly TOU prices 

over monthly single prices for different market structures. 

Determining the degree of market power exercised by suppliers is a problem for 

regulators in electricity markets. Typical measures of market power include the market 

shares, pivotal supplier measure, concentration indices (e.g., Hirschmann-Herfindahl 

Index –HHI) and PCMs (e.g., Lerner index) (see Helman (2006) for discussion). This 

thesis shows how to conduct a welfare analysis by using an approximation method 

similar to Harberger (1971) to calculate the change in consumer surplus. A benchmark 

model of perfect competition is used to examine the surplus changes and PCMs for 



 

 

16 

different market structures.  

We represent our models using the VI framework, which is an effective and 

convenient way to create and manage our models. The VI formulations are developed 

to estimate ex ante TOU prices in different market structures, namely, perfect 

competition, oligopoly (i.e., all firms or several large firms compete à la Cournot7) and 

monopoly. The aim is to see the range of price manipulations for different structures. A 

scenario of the break-up of a large generation company into smaller parts is also 

examined (e.g., breaking-up the largest supplier in Ontario, Ontario Power Generation – 

OPG into two or more parts).  

The supply side of the model is deliberately simplified here. The Ontario 

electricity market has a uniform (single) market clearing price system rather than a 

nodal/zonal pricing system (i.e., locational marginal prices), and hence transmission 

network representation is not applicable for the Ontario market. But a network 

representation must be added for nodal/zonal pricing systems (e.g., Pennsylvania New 

Jersey Maryland –PJM, New York, New England). However, the network 

representation would increase the size of the problem considerably and may require 

special algorithms to alleviate the complexity of the problem (e.g., decomposition 

algorithms as in Fuller and Chung (2005, 2008); also refer to chapter 3 and 4). Linearized 

DC network for TOU pricing models is introduced in chapter 3. 

2.2 Time of Use Pricing Models 

This subsection presents a multi-firm, multi-period equilibrium model in 

electricity markets with TOU pricing. The model consists of three parts: the ISO’s 

problem, supply side (e.g., firm f’s problem) and the demand side. Symbols for the ISO 

                                                 
7 Cournot oligopoly is the most common framework to model interaction among participants in 

electricity markets. In this framework, a supplier takes its rivals’ sales and/or production quantities as 

fixed within its profit maximization problem. Other oligopolistic models (e.g., supply function, Bertrand, 

Stackelberg, tacit collusion) can be examined but the Cournot model is the most practical (Helman and 

Hobbs, 2010). Furthermore, it may be sufficient to simulate market prices (Sioshansi and Oren, 2007). 
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and supply side problems are defined in the following list. Symbols for the demand 

side are defined in section 2.2.4. 

Sets 

set of generation facilities: i=1,…,I 

set of demand blocks: j=1,…,J (alias index k) 

set of periods (months): t=1,…,T  

set of hours in a demand block j, period t: h=1,…,Hj(t) (defined by the market regulator) 

set of firms: f=1,…,F 

Parameters 

   
     operating cost per unit of energy for firm f’s facility i in period t ($/MWh) 

   
     capacity of firm f’s facility i in period t (MW) 

   
   

  fraction of total energy demand during block j of month t that occurs during hour 

h (see section 2.2.2 for explanation of this load shape parameter). 

 Decision variables  

     
     the energy flowing from firm f’s facility i to demand block j for hour h in period t 

(MWh) 

   
      sales by firm f  to demand block j in period t (MWh) 

  
      TOU prices (e.g., uniform block prices) in period t for demand block j (off-peak, 

mid-peak and on-peak, $/MWh) (a function of    
    variables, but treated as a 

parameter by price-taking firms)  

2.2.1 ISO’s Problem 

In this model, the role of the ISO is minimized (e.g., a ―minISO‖) and the ISO has 

no information about the financial arrangements (e.g., price, terms and conditions) 

among the buyers and sellers (Varaiya and Wu, 1997; Wu and Varaiya, 1999; 

Bhattacharya et al., 2001; Shahidehpour, 2001; Stoft, 2002). The ISO only acts as a 

medium-term (e.g., for six months) planner for generation scheduling (rather than 

hourly dispatch). It minimizes the overall operating costs of the suppliers while inciting 
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commitments by using the historical shape of the load duration curve. The operating 

procedures in this setting are as follows: 

Suppliers (e.g., generator firms) inform ISO about their bilateral trade quantities 

(e.g., sales of each firm to demand block j, for month t,    
   ) a month ahead for each 

demand block j. In ISO’s problem, the load variation within a demand block is enforced 

to follow the historical pattern (by using the parameters,    
   

, that are explained in 

section 2.2.2). Since the transmission network is not represented, the feasibility of trades 

(e.g., system balance and congestion management) is not a concern (but it is included in 

chapter 3). 

 Suppliers and consumers (or consuming entities such as local distribution 

utilities) make bilateral trades and ISO is informed about the demand (load) 

schedules for each demand block j a month ahead.  

 ISO enforces overall trades to follow the historical pattern of the load duration 

curve by broadcasting the penalty/payment scheme and hourly generation 

schedules.  

 With this information, suppliers and consumers modify their trades accordingly 

and return new trades.  

 This process can iterate between ISO and suppliers/consumers until equilibrium 

is reached. We can also assume that suppliers can anticipate the 

penalty/payment scheme (e.g.,    
   , in (2.1)) for their profit maximization 

problem and this iterative process for equilibrium can be avoided.  

 Finally, the generation and demand schedules for month t, demand block j and 

hour h are committed and all trades become firm (e.g., non-curtailable).  

The ISO’s penalty/payment scheme does not create any revenue or profit for the 

ISO, but rather, it acts as an incentive mechanism that shifts money around among 

firms (see section 2.3). In other words, the ISO encourages firms to minimize their 

deviations from the historical pattern of the load variation within a demand block j. 
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In (2.1), for each block of hours j, and for each month t, the ISO chooses      
    to 

minimize total operating costs of all generation facilities of firms that inject amounts    
    

during demand block j, while respecting the fluctuations in demand over the hours of 

blocks.  Here, we assume that each supplier firm f reports its bilateral contract amount 

   
    (but not the prices   

   ) to the ISO before each month t. Furthermore, it is assumed 

that the ISO is aware of the marginal cost (e.g.,    
   ) and capacity of each generation 

facility (e.g.,    
   ) at each month t. In the ISO’s problem, the amount of each firm’s sales, 

   
   , is treated as fixed (denoted by superscript *). The first set of constraints in (2.1) 

ensures that electricity supply of firm f is sufficient to meet its sales to demand block j. 

This constraint assumes that each bilateral trade is firm (e.g., non-curtailable) and firms 

have to satisfy their bilateral agreements. In other words, ISO requires each firm to 

satisfy their bilateral agreements, which is not a common practice in actual markets. 

However, for planning purposes, ISO may assume all bilateral trades will be realized.  

The second set of constraints contains the capacity constraint for each generation facility 

owned by firm f. The next subsection explains in detail how the third set of constraints 

ensures that generation matches demand in every hour of block j. 
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2.2.2 Estimation of Load Variation within a Demand Block 

We now explain the meaning and measurement of the parameters    
   

 which link 

the different time scales of the supply and demand sides of the model. 

When consumers pay the same price for energy at any hour within a TOU block, 

it is reasonable to suppose that the demand variations over hours within the block are 

related to non-price causes, such as temperatures, natural lighting, daily meal schedules 

and habits of all kinds that affect electricity usage.  Such non-price causes must 

necessarily be represented by parameters, not variables to be solved for.  Celebi and 

Fuller (2007) proposed to measure the pattern of variation in demand that has been 

observed in the recent past, and to assume that the same pattern (but not the absolute 

values) will repeat in the near future, i.e., within the model’s time horizon. These 

parameters for a specific demand block j can be calculated from historical observations 

of a previous year, as the fraction,    
   

, of total energy demand in block j, month t, that 

occurs during hour h: 

   
   

    
      

    

where    
    is the hourly energy demand for hour h within demand block j and   

    is the 

total energy demand in block j (i.e.,   
        

     
   

   ). A property of these parameters is 

that summation over hours of demand block j is 1, i.e.,     
     

   

     .  

The third set of constraints in (2.1) states that the hourly generation for all 

different facilities and all firms should meet the total sales of all firms at hour h. With 

this condition, the ISO imposes the historical shape of the load duration curve within 

the hours of demand block j. But if prices differ from historical ones, then the entire 

month’s load duration curve of the solution can have a shape that is different from the 

historical shape. The dual variable    
    (unconstrained in sign) for this condition is the 

penalty/payment for firm f’s hourly deviations of its sales from the average hourly 

demand in demand block j and hourly deviations of its output       
     

   from the 



 

 

21 

average output over all hours in the block j. (i.e., deviations from the historical shape of 

the load duration curve).   

2.2.3 Supply Side: Firm f’s Problem 

The supply side of the model, formulated in (2.2), maximizes firm f’s profit,   , 

i.e., the total revenues of firm f minus the total operating cost of firm f’s hourly 

generation by different technologies of production (e.g., nuclear, hydro, coal, gas/oil, 

indexed by i) to meet its sales in different demand blocks (e.g.,  off-peak, mid-peak, on-

peak, indexed by j) plus the ISO’s penalty/payment due to variations from hourly 

average demand and hourly average output in demand block j. Here, we assume that 

supplier firms are able to anticipate ISO’s penalty/payment scheme (e.g.,    
    ). 
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Various market structures are modeled within this framework. The perfect 

competition structure –with firms treating   
    as a parameter beyond their control– 

serves as a reference case, as it would lead to the most efficient market performance. On 

the other hand, the monopoly structure represents the worst outcome of exercising 

market power. In between is the Nash-Cournot structure where either all firms or some 

large firms act à la Cournot. In the monopoly and Nash-Cournot structures, firms see 

their knowledge of the dependence of   
    on total market demand, as detailed in 

section 2.3. 

As explained in Celebi and Fuller (2007), the supply model can be extended to be 

more realistic as long as each firm’s model remains as a LP (e.g., a linearized DC 
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network, line limits and ramping constraints can be included at the expense of problem 

size) or more generally as a convex program.  

In firm f’s problem, it is presumed that the ISO’s penalty/payment term,    
   , is 

fixed (denoted by superscript *). There is no discounting because the model is intended 

to cover only a few months into the future; discounting could be included for longer 

time horizons. The first set of constraints ensures that electricity supply of firm f is 

sufficient to meet its sales to demand block j; at an optimal solution, these constraints 

are binding equalities. The second set of constraints contains the capacity constraint for 

each generation facility owned by firm f. It should be noted that the ISO’s and firm f’s 

problem have the common variable,      
   , which, in equilibrium, are equivalent as 

shown in section 2.3.   

2.2.4 Demand Side 

The demand side is represented by demand equations that use the prices and 

lagged demand as independent variables, such that the reaction of demand to changes 

in price is a process in time (Celebi and Fuller, 2007; Taylor and Houthakker, 2010). 

Especially in energy markets, the adjustment to varying prices can occur after some 

periods rather than instantaneously. The response of the consumer is not at a point of 

time but rather distributed over time because of usage patterns (i.e., habits), imperfect 

information about the market and need for some uninterruptible services that are 

supplied by energy used by stocks of equipment –e.g., refrigerators, lights. Pollak (1970; 

1990) formulated a model of consumer behavior based on ―habit formation‖ (also see 

Taylor and Houthakker (2010) for dynamic demand models). His ―habit formation‖ 

assumptions imply that consumption in the previous period (month) influences current 

preference and demand. A fundamental assumption of the habit formation model is 

that the individual consumer does not take account of the effect of his current purchase 

on his future preferences and future consumption. In the case of habit formation, this 

assumption is plausible; in the case of capital stock (e.g., consumer durables) 

adjustment, it is not. For our demand model, we have used the former model rather 
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than the latter, as capital stock adjustment would be more appropriate for long-term 

models. A model of demand for this adjustment must explicitly recognize the 

intertemporal nature of the problem. We have focused on the short-term analysis of 

demand behavior and the effect of capital stock adjustment is not considered. In our 

models, we also assume that consumers’ decision making process is sequential in time 

and separate for each period. Hence, lagged demands are treated as parameters in the 

utility maximization problem of the individual consumer at each period (see Appendix 

A for details). A distributed lag model can represent this response process in time. One 

form of a one commodity model is the linear distributed lag model:  

                              (2.3) 

where      is the demand of electricity in period t,      is a constant representing non-

price effects (e.g., weather conditions, socio-demographic factors),      is the price of 

electricity at period t,        is the lagged demand,      is the price coefficient at period t 

and      is the lag coefficient at period t. In a real world application, a careful 

econometric study would be needed, to establish the best functional form, and its 

parameters. 

We allow the parameters      and      to vary with time because, in our 

illustration of section 2.3.1, we estimate these parameters by a linear approximation of 

the constant elasticity demand model around the perfect competition solution of Celebi 

and Fuller (2007). For example, in (2.3),                  , where   is the constant 

elasticity (independent of time), and       and       are the quantity and price at time t; 

     depends on time, unless the ratio             happens to be constant in time. 

Equation (2.3) can be extended to a multi-commodity case where each 

commodity is the electricity demand in different times of day (e.g., demand blocks: on-

peak, mid-peak, off-peak):  

                              (2.4) 
where 

      vector of the factors representing non-price effects at period t, 
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      vector of all demands for electricity in period t (i.e., on-peak, mid-peak, off-peak 

demand) where         
     and   

        
     

     

      vector of TOU electricity prices in period t  (i.e., on-peak, mid-peak, off-peak 

prices) 

      a square matrix of the price coefficients (i.e., own-price and cross-price) for 

period t 

      a square diagonal matrix of the lag coefficients for period t.  

     is assumed to be invertible for our analyses (i.e., inverse demand functions 

are well defined). Moreover, if the lagged demand terms in (2.4) are treated as 

parameters at each period (i.e., consumers’ decision making process is separate and 

sequential for each period), consumers’ preferences and their underlying utility 

maximization problem can be recovered. This recovery of preferences is the basis for the 

consumers’ welfare analysis (see footnote 28 in Appendix A for these recovery 

conditions). Many studies have shown how to approximate the change in consumers’ 

surplus using prices and quantities for different scenarios (see econometric studies 

specifically on TOU pricing in Acton and Mitchell (1980) and Caves et al. (1984)). We 

have shown in the Appendix A that the change in consumers’ surplus that accounts for 

the effect of lagged demand can be calculated using prices and quantities of different 

scenarios similar to Harberger’s approximation8 (Harberger, 1971). Also in the short-

                                                 
8 If the model has symmetric demand, and therefore an objective to maximize welfare (normally 

consumers’ plus producers’ surplus), a policy analyst can observe the change in surplus between two 

different runs of the equilibrium model. When the demand functions are not symmetric (non-integrable) 

an approximation method which was introduced by Arnold Harberger (1971) can be used to estimate the 

change in consumers’ surplus. He used a Taylor series approximation for the change in total value for a 

single consumer. Change in consumers’ surplus is then given by the change in consumers’ total value 

minus change in consumers’ payments, summed over all commodities j in the model: 

     
 

 
       

 
                            , 

where    is the previous equilibrium price,    is the quantity demanded in the previous equilibrium,     

is the change in prices and,     is the change in quantities demanded (Celebi and Fuller, 2007). 
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term, we have assumed that marginal utility of income is constant (i.e., effect of 

expenditure on energy commodities is not very significant in the budget). This ensures 

that the change in consumer surplus is a meaningful money measure of utility change 

in case of multiple price changes (i.e., path independence of price adjustments) (Just et 

al., 2004).   

2.3 Analyses of Different Market Structures 

The models proposed in this thesis are represented and solved by the VI problem 

approach. To aid readers who are familiar with MCP models, but not VI problems, we 

first formulate the perfect competition model as a MCP, followed by the VI form and a 

justification for the equivalence of the two forms. The oligopoly and monopoly models 

are presented only in the VI form. 

In (2.5), we formulate the perfect competition model as a MCP, by writing out 

the necessary Karush-Kuhn-Tucker (KKT) conditions for the ISO’s and firm f’s 

problems along with the demand equation, where   
   

and   
   

 are the jth elements of 

vectors     and     , respectively. Similarly,    
    and    

    are the elements of matrices 

     and     , respectively. 

MCP: Find    
   

      
   

   
   

    
   

      
   

    
   

 that satisfy  

   
            

        
      

   

  
   

   

    
              

(2.5) 
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The first four conditions in (2.5) are the necessary KKT conditions for firm f’s 

problem. The second to fifth conditions in (2.5) are the necessary KKT conditions for the 

ISO’s problem (i.e., second to fourth conditions are common for the ISO’s and firm f’s 

problem). The last equation is the linear distributed lagged demand equation. Note that 

the first condition does not include the extra term for the marginal revenue of firm f 

(i.e., recognizing that   
   

 is a function of     
    

   ) that appears in monopoly and 

Cournot models. Because all firms are price takers in a perfect competition structure, 

this condition only has the   
   

 term as the marginal revenue term. Also note that the 

third and fifth conditions in (2.5) are linearly dependent at a solution, where the third 

constraints are binding (i.e., summing the third condition over all firms f equals the sum 

of the fifth condition over all hours h) and one combination of t, f, j in the third set of 

constraints can be dropped from (2.5). 

When    
      (implying      

      from the third condition), the first two 

conditions in (2.5) become equalities and we can derive the following condition by 

summing them: 

    
        

      
   

  
   

   

    
       

         
    (2.6) 

The left hand side can be understood as the hourly price; let it be denoted by    
     

All firms receive this hourly price whereas consumers are paying the TOU price (   
   ) 

in the models. Note that firms have adequate revenue when      
     , because    

    

   
         

     . If we multiply the left hand side of (2.6) by    
    and sum over all hours 

h, we derive the condition,    
        

       
     

   

     This is the weighted average condition 

imposed in Celebi and Fuller (2007) (without the discount factor), which relates the 

hourly marginal cost     
    to consumer TOU price    

    in the perfect competition case. 

This also ensures that the revenue requirement of all firms for demand block j is met by 

revenue collected from consumers. 
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 (2.7) 

Related to this is the fact that the penalties/payments imposed by the ISO sum to 

zero, over all firms, within every block j: 

      
      

   

  
   

   

   
   

 

   

       
        

   

  
   

   

 

   

 

   

 

        
        

   

 

   

 

   

  
   

   

       
        

   

  
   

   

 

   

 

   

   

(2.8) 

Thus the ISO’s penalty/payment scheme shifts money around among firms, but 

does not directly involve consumers. 

We can also formulate (2.5) as a VI problem. The feasible set for the VI problem is 

defined as follows: 

  

 
 
 
 
 
 
 

 
 
 
 
 
 

   
         

      
   

 

 

 

    
           

   

  
   

   

 

   

                              

     
       

                                                        

     
                                                               

    
       

   

 

   

        
   

 

   

 

   

               

    
   

 

   

   
        

     
   

 

   

    
       

     

 

   

       
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Note that   
   

 variables are implicitly defined by the    
   

 variables. Instead, an 

explicit inverse demand function can be used for a more compact formulation without 

  
   

 variables, but for ease of readability of the formulation, the   
   

 variables are used.  

 

In the feasible set  , the first four constraints are from the ISO’s and firm f’s 

problems and the last equation is the linear distributed lagged demand equation. 

The VI problem for the perfect competition model is as in (2.9). To relate (2.9) to 

the general VI form (1.1), the vector   contains the variables    
   

      
   

 and   
   

 for all 
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        and  , and the elements of the vector-valued mapping      are as follows:    
   

 

is the element of   that corresponds to    
   

;    
   

 is the element of   that corresponds to 

     
   

; and the element of   that corresponds to   
   

 is zero. Note that for    
   

 and      
   

, 

the corresponding elements of   are the partial derivatives of the objective function of 

firm f’s problem (2.2) (i.e., the     
   

 terms are cancelled out.)  

Find     
          

       
        such that  

      
    

 

   

 

   

 

   

    
       

      

         
         

         
     

  
   

   

 

   

 

   

 

   

 

   

    

                                                            
         

      
       

(2.9) 

The VI problem (2.9) in primal variables has the KKT conditions listed in (2.5) 

and hence is equivalent to the MCP (2.5) (see Harker and Pang (1990) and Nagurney 

(1993) for discussion of the KKT conditions for VI problems).  

There is a minor technicality in the derivation of (2.5) from the KKT conditions of 

(2.9). Let   
   

 be the dual variable of the distributed lagged demand equation in the 

definition of  , and let      be the vector with elements   
   

. The KKT conditions which 

correspond to the   
   

 variables, in vector-matrix form, are            , where       is 

the transpose of     , the matrix of coefficients    
   . Because      is assumed to be 

invertible (so that we can have inverse demand functions) it follows that        for all 

 . Therefore,      and             can be dropped from the list of KKT conditions of the 

VI problem, giving rise to the MCP (2.5). 

We only provide the VI formulations for other market structures, for ease of 

representation. It is straightforward to derive their equivalent MCP formulations as in 

the perfect competition case. The other market structures have the same feasible set  . 

The VI problem for the Nash-Cournot model is formulated as follows: 
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Find     
    

      
    

   
    

    such that  

       
        

     

 

   

 

   

 

   

    
       

      

         
         

         
     

  
   

   

 

   

 

   

 

   

 

   

   

                                                            
         

      
       

(2.10) 

where the term   
        

     is the marginal revenue for firm f in period t and demand 

block j, and    
     is the ―extra‖ marginal revenue term. This marginal revenue term is 

derived from the partial derivative of the objective function in (2.2), with respect to    
   

, 

when the firm is aware of the price-quantity relation of the distributed lagged demand 

equation: 

   

    
   

   
   

 
   

   

    
   

   
   

 
   

     

    
   

   
     

   
       

    (2.11) 

 

where   
   

   

  
  
           

  
 and  

   
     

  
  
                    

  
. 

Note that the penalties/payments imposed by the ISO are neither included in the 

VI formulation (2.10) nor in the marginal revenue term, because they sum to zero, over 

all firms, within every block j. 

As an extension to (2.10), we can also formulate a problem where several large 

firms act à la Cournot and the rest of the firms are price takers. This problem is 

formulated as follows: 
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(2.12) 
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where g is the index of the set of price taker firms (i.e., they don’t have the ―extra‖ 

marginal revenue term    
    ) .  

Lastly we can define a VI problem for the monopoly structure: 

Find     
          

       
        such that  

       
       

   

   

 

    

 

 

   

 

   

 

   

    
       

      

         
         

         
     

  
   

   

 

   

 

   

 

   

 

   

   

                                                          
         

      
       

(2.13) 

Note that    is an alias index for  , and that all firms are owned by the 

monopolist.  

For each VI problem (2.9), (2.10) and (2.12), the expression in the inequality is an 

estimate of the change in the negative of profits (summed over all firms) due to feasible 

deviations from equilibrium, using marginal revenues of the firms as measured at 

equilibrium. Therefore, at equilibrium, no firm sees any advantage in changing its 

variables    
   

 and      
   

 in a feasible way. For the monopoly model (2.13), the monopolist 

firm sees no advantage in deviating from the equilibrium solution, i.e., the solution is a 

local maximum of profit (and a global maximum, due to convexity). 

Instead of TOU pricing, some consumers may prefer a single price, or regulatory 

bodies in electricity markets may choose to implement a single pricing scheme. In this 

case, consumers’ prices do not vary by time of day, and they may or may not vary by 

month (Ontario is now changing from single to TOU pricing). We illustrate by showing 

how to model a single price that is the same at all times of the day in a month. We can 

add a new constraint set to the feasible set K: 

  
      

   
         and where     (2.14) 

With this set of constraints, the single prices may vary over different months. 

This is equivalent to having a single demand block (e.g., j with one element only). The 
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single pricing model is solved with this additional constraint in the feasible set K using 

the same data and parameters for the TOU pricing model. 

A careful reader would note the ease and convenience of representation of 

different market structures with VI formulations (compared to MCP formulations) and 

less effort required in coding these models in GAMS/EMP framework, because the 

code for the VI model does not require explicit representation of any dual variable. Both 

MCP and VI formulations in GAMS are available upon request from the authors. 

2.3.1 An Illustrative Example: Assumptions and Data 

We illustrate by using a past period’s demand data for Ontario and find the TOU 

prices (ex post) for the same period. In real use, parameters carefully estimated from 

historical data would be used to forecast future TOU prices (ex ante). Moreover, in the 

regulatory context, sensitivity analysis may be required to demonstrate the robustness 

of the demand function specifications. This example consists of six periods (months 

May to October), four types of generation facilities (nuclear, hydro, coal, gas/oil), and 

three demand blocks (on-peak, mid-peak and off-peak electricity)9. There are only two 

firms (i.e., a duopoly for Nash-Cournot structure (2.10)) for this illustrative example. 

Firm 1 has 70% of the available generation capacity (almost equivalent to the total 

capacity of OPG) and firm 2 has the remaining 30% of the capacity (IESO, 2009). For 

another model, we assume that the firm 2 is a price taker in the Nash Cournot structure 

(2.12) with firm 1 acting à la Cournot, and we also solve the perfect competition (2.9) 

and monopoly (2.13) models. 

The data for the models are obtained from Celebi and Fuller (2007), (except the 

generation capacities which are from IESO (2005)). The models have been reduced in 

size by using a representative weekday of the month instead of all days of the month. In 

Celebi and Fuller (2007), they have used a logarithmic demand equation. Here, we have 

                                                 
9 In order to eliminate peculiarities in the first and last periods, due to lag and lead effects (resulting from 

the demand function and the marginal revenue term, respectively), we have used periods April to 

November in our actual analysis but reported the results for periods May to October only. 
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linearized their findings around the TOU pricing solution of the perfect competition 

model of a representative weekday of the month to obtain price (    ) and lag (    ) 

coefficient matrices. In other words, we have calibrated the demand parameters in the 

perfect competition model of Celebi and Fuller (2007) to obtain the same results in 

perfect competition model (2.9). 

A major assumption is about the network structure. Transmission constraints 

such as line and voltage limits are ignored in our analyses. This means that there is a 

single price at any given time, as is now the case in Ontario. Geographically 

differentiated prices (i.e., nodal, zonal pricing) would require a representation of the 

transmission network in the model and this is introduced in chapter 3. 

2.3.2 Results and Welfare Analysis 

The models are coded in the GAMS/EMP framework and solved by the PATH 

solver10. Table 1 summarizes the TOU and single prices for different market structures 

and periods. 

The perfect competition and monopoly models represent the two extreme market 

structures. The perfect competition model provides the lowest TOU prices for different 

blocks. At the other extreme, the monopoly model gives the highest TOU prices. The 

Nash-Cournot models with firm 1 as the only Nash-Cournot player or all firms as Nash-

Cournot players are in between these two extreme market structures. In almost all 

demand blocks and time periods (except for on-peak, periods May, Sept. and Oct., and 

mid-peak, period Sept.), the TOU prices of the Nash-Cournot model with firm 1 as the 

only Cournot player are lower than the TOU prices of the Nash-Cournot model with all 

                                                 
10 Most models are solved in less than a second on a 2.6 GHz Windows 2003 Server with 32 GB memory 

and 8 CPUs. In MCP and VI models with 2-firms, there are around 3,500 variables and conditions. Note 

that there are auxiliary variables (i.e.,   
   ) in both models and the model size can be reduced slightly (as 

much as    ) by eliminating them. 
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players acting à la Cournot. Note that the on-peak prices are highest in the periods June 

to August when the peak summer demand is expected. 

Table 1: TOU and single prices ($/MWh) for different market structures 

 
       Period 

Prices 
May June July Aug. Sept. Oct. 

P
e

rf
e

ct
 

C
o

m
p

e
ti

ti
o

n
 off-peak 32.36 32.47 33.80 36.31 31.53 33.57 

mid-peak 37.46 43.72 43.99 45.61 38.55 34.51 

on-peak 40.84 49.99 49.50 50.65 38.58 35.96 

single 39.56 42.19 42.70 44.16 38.56 35.50 

N
a
sh

 C
o

u
rn

o
t off-peak 47.64 48.29 49.30 51.24 45.75 50.20 

mid-peak 55.47 63.74 63.67 66.49 56.19 52.15 

on-peak 59.18 71.53 71.00 72.55 55.75 56.13 

single 56.94 60.79 62.06 65.55 55.36 53.18 

N
a
sh

 C
o

u
rn

o
t 

(F
ir

m
 1

 o
n

ly
) off-peak 44.32 46.18 47.36 50.67 43.23 46.05 

mid-peak 54.49 60.12 60.36 61.40 56.63 51.86 

on-peak 59.97 66.68 67.18 68.33 56.75 56.36 

single 53.16 57.08 58.56 61.72 51.96 51.67 

M
o

n
o

p
o

ly
 off-peak 56.01 56.32 58.28 63.24 54.90 60.49 

mid-peak 66.37 75.88 76.11 80.21 70.46 64.94 

on-peak 76.51 90.23 89.24 91.31 68.98 70.57 

single 67.26 72.61 73.55 77.62 65.32 65.59 

The single prices for different months are the lowest for the perfect competition 

and the highest for the monopoly case, as expected. Similar to TOU prices, as the 

number of Cournot players increases, the single prices for different months increase. 

We compute the PCMs, defined as the difference between a market structure’s 

price and perfect competition price divided by the market structure’s price (Bompard et 

al., 2005;  Helman and Hobbs, 2010). PCMs (averaged over all periods) are presented in 

Table 2. Note that the Nash-Cournot structure with firm 1 as the single Nash-Cournot 

player has the lowest margins, and the monopoly has the highest. 
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Table 2: PCMs for TOU and single pricing models (averaged over all periods) 

                                  PCMs                                                                       
Market Structure  

Off-peak Mid-peak On-peak Single 

Nash Cournot 31.6% 31.9% 31.4% 31.4% 

Nash Cournot (Firm 1 only) 28.0% 29.5% 29.6% 27.4% 

Monopoly 42.7% 43.9% 45.6% 42.5% 

Table 3: Change in total of consumers’, suppliers’ and total surpluses over all periods 
(in thousand dollars) due to change from single pricing to TOU pricing 

                                             Change in                                                                       
Market Structure  

Consumers’ 
Surplus 

Suppliers’ 
Surplus 

Total 
Surplus 

Perfect Competition 6,611 -1,919 4,692 

Nash Cournot 6,964 2,336 9,299 

Nash Cournot (Firm 1 only) 2,795 3,862 6,657 

Monopoly 275 4,574 4,850 

Table 3 summarizes the welfare analyses (i.e., change in consumers’, producers’ 

and total surpluses) after the implementation of TOU prices over single pricing for 

different market structures. Total surplus and consumers’ surplus increase for all 

market structures and suppliers’ surplus increases for all structures except perfect 

competition. 

In Table 4, we compare the perfect competition TOU model (i.e., reference case) 

to the other market structures. It is noted that the change in consumers’ or total surplus 

is positive when the perfect competition model is compared to all other market 

structures. 

Table 4: Change in total of consumers’, suppliers’ and total surpluses over all periods 
for TOU pricing due to change from oligopoly/monopoly to perfect competition (in 
thousand dollars) 

                                             Change in                                                                       
Market Structure  

Consumers’ 
Surplus 

Suppliers’ 
Surplus 

Total 
Surplus 

Nash Cournot 86,147 -36,736 49,411 

Nash Cournot (Firm 1 only) 76,693 -30,496 46,197 

Monopoly 134,777 -45,882 88,895 

In Table 5, we compute the consumer surplus gains as percentage of the total 

energy bill. We have found modest consumer surplus gains of monthly TOU prices 

over monthly single pricing (e.g., monthly flat-rates) under different market structures. 

However, market power (changing market structure from oligopoly/monopoly to 
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perfect competition under TOU pricing scheme) has some significant effect on these 

gains in our illustrations. 

Table 5: Change in total of consumers’ surpluses over all periods as percent of total 
energy bill 

                                             Change from                                                                       
Market Structure  

Single to 
TOU Pricing 

Oligopoly/Monopoly to Perfect 
Competition for TOU Pricing 

Perfect Competition 5.78% N/A 

Nash Cournot 5.20% 62.36% 

Nash Cournot (Firm 1 only) 2.08% 56.25% 

Monopoly 0.30% 94.77% 

These comparisons can be extended (but not illustrated in this thesis for brevity) 

by modifying the constraints (2.14) for seasonal TOU pricing as: 

  
      

    
          and where     ; (2.15) 

and for seasonal single pricing as: 

  
      

    
            and where     and     . (2.16) 

This illustrative example suggests a strong support for TOU pricing over the 

single pricing scheme in different market structures. These welfare analyses can be used 

by regulatory bodies in determining whether to pursue TOU prices or single prices. The 

welfare gains from TOU prices can be compared with the investment in metering 

technology and communication infrastructure. However, plausible sensitivity analyses 

for the model parameters are required for any policy recommendations. 

2.3.3 Break-up of the Large Firm into Two or More Parts 

In this subsection we discuss the break-up of the large supplier (firm 1 or 

namely, OPG in our illustration) into two equal parts (i.e., two firms with each having 

35% of the total available capacity) for a model with three Cournot firms. Then we 

compare it with the 2-firm Nash-Cournot (i.e., duopoly) structure. Here, we assume that 

the cost structures of the two new parts do not change with the break-up of the large 

firm.  

In Table 6, we compare the 2-firm structure with the 3-firm structure (for TOU 

and single pricing schemes separately). The consumers’ and total surpluses increase in 

both cases. 
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Table 6: Comparison of 2-firm and 3-firm oligopolies (in thousand dollars) 

                                             Change in                                                                       
Market Structure  

Consumers’ 
Surplus 

Suppliers’ 
Surplus 

Total 
Surplus 

2-firm to 3-firm oligopoly 
(TOU pricing) 

18,309 -5,833 12,477 

2-firm to 3-firm oligopoly 
(Single pricing) 

46,419 -14,225 32,194 

For this illustrative example, we further break up the large firms and increase the 

number of Cournot players to 10 in a way that all the firms are identical. As presented 

in Table 7, PCMs are decreasing as the number of firms is increasing. For this 

illustrative example, the break-up of a large supplier lowers the prices toward 

competitive levels. Regulatory bodies can use such analysis for break-up and 

divestiture decisions in order to ensure ―just and reasonable‖ market prices. 

Table 7: PCMs for TOU and single pricing Nash-Cournot models for different number 
of firms 

                                  PCMs                                                                       
No. of firms  

Off-peak Mid-peak On-peak Single 

2 firms (duopoly) 31.6% 31.9% 31.4% 31.4% 

3 firms (after break-up) 23.5% 27.4% 27.6% 16.6% 

10 identical firms 7.2% 3.5% 1.7% 4.0% 

2.4 Conclusions and Future Research 

This chapter presents TOU pricing models for electricity markets and proposes a 

policy tool for regulatory bodies (e.g., to examine the market power exerted by 

suppliers and to forecast TOU/single prices). The model also allows for reconciliation 

of the differing time scales of responses of producers and consumers to changing prices.  

TOU pricing and single pricing schemes in different market structures (from perfect 

competition to monopoly models) are illustrated with realistic data from the Ontario 

market. A comparative welfare analysis is conducted for the implementation of TOU 

prices over single pricing for different market structures. It is concluded that for this 

illustrative example, overall welfare gains for consumers can be realized when the 

pricing scheme is changed from single pricing to TOU pricing. Moreover, break-up of 
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the larger firm into two or more parts may increase this gain for the consumers and 

lower the prices closer to the levels of perfect competition structure.  

Another advantage of the models presented in this chapter is that they use the VI 

framework. VI problems, as compared to MCPs, are easier to create and manage.  

The proposed models would be useful for jurisdictions (e.g., Ontario) to assess 

market power issues by regulatory bodies, to forecast future TOU prices and to examine 

welfare changes. Another use of the model would be to forecast the TOU prices in a 

market in which the regulator does not set the prices, but it only defines the different 

intervals of the day for different prices. 

By introducing a linearized DC network, line limits, and ramp limits, a more 

realistic model can be built and the impact of transmission network (e.g., the effect of 

location) can be examined in detail, such as the market power issues in load pockets 

(Bompard et al., 2005; Helman and Hobbs, 2010; also refer to the model in chapter 3 

with linearized DC network constraints). 
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3. Time of Use Pricing Models in Electricity Markets on a 

Linearized DC Network 

A wide range of models for Nash-Cournot game in electricity markets with 

linearized DC network are proposed in literature, see Hobbs (2001), Day et al. (2002), 

Metzler et al. (2003), Hobbs and Pang (2007), Hobbs and Helman (2010) and references 

therein. Hobbs (2001) provided a framework for linear complementarity models of 

Nash-Cournot game in electricity markets with realistic strategic behavior and physical 

constraints. He presented two models; one for bilateral market11 and the other for 

POOLCO12 based system. In his static model of bilateral market, Hobbs introduced 

strategic (Cournot) supplier (e.g. generator) firms, ISO (e.g., ―grid owner‖ or regional 

transmission operator, RTO) with the responsibility of efficient centralized allocation of 

transmission services and price-taking spatial arbitrage firm with unlimited capacity 

(e.g., ―perfect arbitragers‖ that eliminates spatial price discrimination by Cournot 

firms). It has been shown that this model is equivalent to POOLCO type market model 

with ―no arbitrage‖ (Hobbs and Helman, 2010).  

In the Nash-Cournot setting, each supplier firm assumes that other firms will not 

alter their sales and that their outputs will not significantly alter transmission prices 

(Bertrand game for transmission). Also, a common assumption in a Nash-Cournot game 

is that, all firms are aware of the price-quantity relations (i.e., demand function) in the 

market. 

Following Hobbs’ (2001) framework, we would like to introduce TOU pricing in 

Nash-Cournot game setting in electricity markets on a linearized DC network with line 

                                                 
11 A market in which customers bilaterally contract with individual suppliers and arbitragers to provide 

energy, and an ISO charges wheeling fees upon these transactions (Metzler et al., 2003). 

12 A centrally administered auction in which generators (consumers) sell (buy) their power to (from) the 

auctioneer (e.g., POOLCO or ISO) at a locationally dependent price. Auctioneer receives the supply and 

demand bid to maximize the total welfare (Metzler et al., 2003). 
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limits. In this setting, it is assumed that there are no power losses during transmission, 

and congestion is the basis for geographical differentiation in pricing. ISO is the owner 

of the grid and it operates the transmission system (not only the market operator, and 

not only ensuring that supply equals demand at every hour, as in chapter 2). ISO 

charges a congestion based fee (e.g., wheeling fee) for transmitting power from an 

arbitrary hub node to any node. But these fees are exogenous to its problem (i.e., 

adopting the Nash-Bertrand assumption that it cannot alter the fees it gets). Also, there 

are no arbitragers in the model presented here and this allows non-cost based price 

differences to arise. Hence, suppliers can raise prices where competition is weak or 

demand is inelastic.  

The supplier firms have their decision making process based on a bilateral 

market model. In this process, generation firms bilaterally contract with consumers to 

deliver electricity and generation firms pay the cost of transmitting power from the 

point of generation to the point of consumption. The schedule of injections and 

withdrawals by generation firms are then provided to the ISO, who collects the 

transmission fees from these firms for their use of the transmission network. Arbitrage 

can be introduced at the expense of problem size and complexity, but for our purposes 

(e.g., computation of equilibrium using modified and approximate Dantzig-Wolfe 

decomposition algorithms) in chapter 4, it remains in future research directions. For the 

same reason, extensions to this bilateral model such as the ISO operating a spot market 

in which generation firms (consumers) can unilaterally sell (buy) power at nodal spot 

prices is included in future research. Most U.S. ISOs in operating day-ahead markets 

follow this ―hybrid‖ (bilateral and spot market) model and it is supported by U.S. 

Federal Energy Regulatory Commission (Hobbs and Pang, 2007). For simplicity, we 

model the market as entirely bilateral.13  

                                                 
13 As Hobbs and Pang (2007, p.115) pointed out ―In fact, the bulk of transactions take place on a bilateral 

basis, but a significant amount flows through the spot market.” They also mentioned that the 

incorporation of a spot market is a ―straightforward‖ extension (Hobbs and Pang, 2007, p.119). 
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3.1 Inclusion of Linearized DC Network to TOU Pricing Models  

This section presents a multi-firm, single-period (e.g., one month) equilibrium 

model in electricity markets with TOU pricing and linearized (lossless) DC network 

constraints. We introduce more complexity with the transmission structure, so to keep 

the complexity down and focus on transmission, we suppose only single period (e.g., a 

month).  It is straightforward to include several periods as in chapter 2, but at the cost of 

being harder to read. The model consists of four parts: the ISO’s problem, supply side 

(e.g., firm f’s problem), demand side and the market clearing conditions. 

In this setting, the ISO’s role is to ensure system balance (e.g., hourly demand 

and supply balance) and to manage congestion (e.g., routing the power through the 

transmission system). Operation procedures are similar to the ones in chapter 2 with the 

following differences: 

ISO’s problem is to efficiently allocate the transmission service. The power is 

treated as if it is routed through an arbitrary hub node and congestion (e.g., wheeling) 

based fees are calculated for transmission service at each node (e.g., bus) of the network. 

Within the market clearing conditions, the load variation within a demand block is 

enforced to follow the historical pattern (by using the parameters,    , that are explained 

in section 3.1.4). The aggregate demand of all firms for each demand block j and each 

node n in the network is distributed among each hour h according to the historical load-

duration curve. Therefore, the ISO’s congestion based fees also include a 

penalty/payment scheme (as in chapter 2 models) for enforcing the historical pattern of 

the load duration curve. Also, different than the models in chapter 2, ISO as the grid 

owner (or RTO) collects revenue for providing the transmission service (i.e., maximize 

the value of the transmission capacity). This revenue is used to recover the fixed costs14 

of the grid owner (i.e., ISO in our models). 

                                                 
14 In actual markets, a monthly or annual access fee is paid to grid owner (e.g., RTO) to recover their fixed 

costs (e.g., due to revenue requirements for the holders of the transmission rights) (Helman, 2003). An 

additional unit charge per MW can be included in the models for this purpose, but it is not modeled here. 
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Symbols for the ISO’s and supply side problems are defined in the following list. 

Symbols for the demand side are defined in section 3.1.3. 

Sets 

set of generation facilities: i=1,…,I 

set of demand blocks: j=1,…,J (alias index k) 

set of nodes: n=1,…,N  (Nd set of demand nodes; Ng: set of generation nodes)  

set of hours in a demand block j: h=1,…,Hj (defined by the market regulator) 

set of firms: f=1,…,F 

set of lines: l=1,..,L 

Parameters 

      operating cost per unit of energy for firm f’s facility i at node n ($/MWh) 

      capacity of firm f’s facility i at node n (MW) 

      fraction of total energy demand at node n during block j of a month that occurs 

during hour h 

        power transfer distribution factors15  

         lower and upper bounds on real power flows through line (interface) l (MW). 

 Decision variables  

        the energy flowing from firm f’s facility i to demand block j for hour h at 

generation node n, n Ng (MWh) 

       sales by firm f  to demand block j at demand node n, n Nd (MWh) 

      TOU prices (e.g., uniform block prices) for demand block j at node n (off-peak, 

mid-peak and on-peak, $/MWh) (a function of      variables) 

       net injections from transmission lines into node n for demand block j at hour h 

(conceptually, power from hub node to node n) (MW) 

                                                 
15 Power transfer distribution factor for node n on line l (PTDFln) describes the per megawatt (MW) 

impact (e.g., increase or decrease) in flow resulting from 1 MW of power injection at hub node and 1 MW 

of withdrawal at node n. Summation of such impacts over all nodes gives the total flow on line l. See 

appendix B for the derivation of these parameters from the non-linear AC power flow equations. 
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      a congestion based fee (e.g., wheeling fee) for transmitting power from an 

arbitrary hub node to node n.  

3.1.1 ISO’s Problem 

In (3.1), the ISO (also the grid owner or RTO) maximizes its profit by allocating 

transmission capacity efficiently. It chooses      by naively assuming that it is a price 

taker for transmission services (i.e., wheeling fees     
  are exogenous in its problem). 

This is equivalent to a competitive market for transmission rights in which suppliers do 

not exercise market power (Hobbs, 2001). In this market setting, congestion (wheeling) 

charges are sufficient to ration the use of the transmission network (i.e., transmission 

service is allocated efficiently and it maximizes social welfare) (Boucher and Smeers, 

2001).   

   
 

       
     

  

   

 

   

 

   

 

(3.1) 

                   

            

 

   

                     

           

 

   

                     

     

 

   

               

where             are the dual variables of the negative and positive power flow 

through line l for demand block j at hour h ($/MW) and     is the dual variable for flow 

balance equation. The model (3.1) differs from that of Hobbs (2001) in the inclusion of 

hours h and demand blocks j. 

Consistent with the linear DC approximation, flows through line l are modeled 

with PTDFs (see appendix B for derivation of these parameters) which are derived 

based on Kirchhoff’s current law (net flow into a node equals zero) and Kirchhoff’s 

voltage law (net voltage drop around any loop in the network is zero). The net MW 

flow through line l is            
 
   . The last constraint is the flow balance constraint 
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at the hub node. Note that      variables are not restricted in sign. A positive (negative) 

     means that there is a net flow into (out of) node n from (to) hub node. It is trivial to 

note that        is always a feasible solution to the ISO’s problem, because     and     

are positive scalars (Hobbs, 2001). 

3.1.2 Supply Side: Firm f’s Problem 

In the supply side of the model, formulated in (3.2), firm f computes its nodal 

sales and generation to maximize its profit,   , i.e., the total revenues of firm f minus the 

total operating cost of firm f’s hourly generation by different technologies of production 

(e.g., nuclear, hydro, coal, gas/oil, indexed by i) to meet its sales in different demand 

blocks (e.g., off-peak, mid-peak, on-peak, indexed by j) minus the ISO’s congestion (e.g., 

wheeling) fees.  

   
   

                       
 

  

   

     

 

       

               
        

  

   

 

   

 

       

 

(3.2) 

                   

     

    

          

  

   

 

       

             

                               

                    

The first set of constraints ensures that electricity supply of firm f is sufficient to 

meet its sales to demand block j overall nodes; at an optimal solution, these constraints 

are binding equalities. The second set of constraints contains the capacity constraint for 

each generation facility owned by firm f at each node. 

We have examined the Nash-Cournot structure where either all firms or some 

large firms act à la Cournot. In this structure, firms see their knowledge of the 

dependence of        on total market demand (i.e., in firm f’s problem,     is a function 

of           
 

   , where other firms sales,     
 , are exogenous –denoted by 

superscript *). It is also presumed that the ISO’s wheeling fees,     
 , are exogenous to 

firm f’s problem (i.e., all firms are ―price taker‖ for transmission services) and yet 
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endogenous in the overall equilibrium model (i.e., they will become endogenous in the 

MCP or VI formulation of the whole model). 

The           
   term in the objective function is denoting the per unit cost of the 

firm f to transmit power to the hub node. The                  
   

     term is denoting 

the per unit revenue of the firm f for conveying energy from hub node to the sales node 

for demand block j.16 Note that      is a variable for demand block j (for several hours), 

and     
  is an hourly wheeling fee.      parameters are the connection between these 

different time scales (e.g.,     : sales to demand blocks j at demand node n; 

        hourly generation output at generation node n). Wheeling fee for sales in demand 

block j at demand node n is represented for several hours, i.e.,          
   

       .    

3.1.3 Demand Side 

The demand side is represented by demand equations that use only the prices as 

independent variables. Different than the demand side in section 2.2.4, the lagged 

demand term,   
   

, is a parameter in the single period model. A multi-commodity case 

where each commodity is the electricity demand in different times of day (e.g., demand 

blocks: on-peak, mid-peak, off-peak) at each node n:  

               
   

 (3.3) 

where 

    vector of the factors representing non-price effects at node n, 

    vector of all demands for electricity at node n (i.e., on-peak, mid-peak, off-peak 

demand at node n) where          and           
 
     

  
   

  vector of all lagged demands for electricity at node n 

                                                 
16 A firm pays      

  to transmit power to the hub node from a generator at node n and it pays 

      
    
   

    to convey power to sales node n’ from hub node. Generation is charged straightforwardly 

at the hourly wheeling fee, but consumption is more complicated because it is measured only in a block 

of hours, so it is charged at the weighted average of the hourly wheeling fees for the hours within the 

demand block j. 
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    vector of TOU electricity prices at node n  (i.e., on-peak, mid-peak, off-peak prices) 

    a square matrix of the price coefficients (i.e., own-price and cross-price) for node n 

    a square diagonal matrix of the lag coefficients for node n.  

   is assumed to be invertible for our analyses (i.e., inverse demand functions 

are well defined).  

3.1.4 Market Clearing Conditions 

The total transmission service demanded by generators and consumers from the 

hub to any node n, demand block j, hour h must equal the transmission service the grid 

provides between these nodes. 

          

 

   

         

 

   

 

   

                                  (3.4) 

where      is the dual variable for the market clearing condition (i.e., wheeling fees that 

clear the markets). Note that total generation by all firms for hour h at node n in 

demand block j is a fraction        of total energy sales by all firms to demand block j at 

node n. Also note that in the special case of          at all nodes, we can add up (3.4) 

over all nodes to derive (together with the last constraint of (3.1)): 

          

 

       

          

 

   

 

       

            (3.5) 

This is similar to the third set of constraints in (2.2) of the chapter 2, which states 

that the hourly generation at all generation nodes for all different facilities and all firms 

should meet the total sales of all firms over all demand nodes for every hour h. With 

this condition, the ISO imposes the historical shape of the load duration curve within 

the hours of demand block j over all nodes and      can be additionally interpreted as a 

penalty/payment for deviations from the historical shape of the load duration curve. 

Notice that demand variations over hours within the demand block j at each 

node n is modeled with      parameters (when enough data is available for each node). 

This pattern of variation in demand at node n,       is imposed on total sales of all firms, 
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not individually for each firm.  A firm may produce more or less than               
 in 

an hour, but its total production for demand block j must meet its sales in demand 

block j,          
   

3.2 MCP and VI Formulations for the TOU Pricing Models on a 

Linearized DC Network 

Firstly, we formulate the perfect competition model as a MCP, by writing out the 

necessary KKT conditions for the ISO’s and firm f’s problems along with the demand 

equation and the market clearing conditions: 

MCP: Find                                                      that satisfy   

                      

  

   

               

(3.6) 

                                             

            

    

          

  

   

 

       

         

                                  

                                     

 

   

               

                     

 

   

             

                    

 

   

             

               

 

   

         

                    

 

   

         

 

   

 

   

              

      

 

   

             

 

   

          
   

 

   

       

where     and     are the jth elements of vectors    and   , respectively. Similarly,      

and      are the elements of matrices    and   , respectively. Note that     variables are 
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implicitly defined by the      variables. Instead, an explicit inverse demand function 

can be used for a more compact formulation without     variables, but for ease of 

readability of the formulation, the     variables are used.  

 

We can also formulate (3.6) as a VI problem. The feasible set for the VI problem is 

defined as follows: 

  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

                    

 

 

 

 

 

      

    

          

  

   

 

       

       

                      

                   

            

 

   

           

           

 

   

           

     

 

   

       

         

 

   

         

 

   

 

   

            

     

 

   

             

 

   

          
   

 

   

       
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

In the feasible set  , the first six constraints are from the firm f’s and ISO’s 

problems and the last two equations are the market clearing condition and the linear 

distributed lagged demand equation, respectively.  

The VI problem for the perfect competition model is as in (3.7). Note that for 

             and      the corresponding elements of   are the partial derivatives of the 

objective functions of firm f’s problem (3.2) and the ISO’s problem (3.1). 
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Find      
        

     
      

     such that  

        
           

  

   

           
  

 

       

 

   

 

                               
  

  

   

 

   

 

       

 

   

 

                  
  

  

   

 

   

 

   

    

                                                                                 

(3.7) 

Also note that the      terms are cancelled out in (3.7) (i.e., due to market 

clearing condition), and a more compact form is derived as follows: 

Find      
        

     
     such that  

       
           

  

 

       

 

   

 

                        
  

  

   

 

   

 

       

 

   

    

                                                                            

(3.8) 

The VI problem (3.8) in primal variables has the KKT conditions listed in (3.6) 

and hence is equivalent to the MCP (3.6)17. 

We only provide the VI formulation for Nash-Cournot market structure, for ease 

of representation. It is straightforward to derive its equivalent MCP formulations as in 

the perfect competition case. The Nash-Cournot market structure has the same feasible 

set  . The VI problem for the Nash-Cournot model is formulated as in (3.9): 

 

 

 

 

 

                                                 
17 There is a minor technicality in the derivation of (3.6) from the KKT conditions of (3.8), and this can be 

similarly explained as in section 2.3.  
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Find      
        

     
     such that  

        
      

            
  

 

       

 

   

 

                        
  

  

   

 

   

 

       

 

   

    

                                                                            

(3.9) 

where the term    
      

  is the marginal revenue for firm f at node n and demand 

block j, and     
  is the ―extra‖ marginal revenue term. This marginal revenue term is 

derived from the partial derivative of the objective function in (3.2), with respect to     , 

when the firm is aware of the price-quantity relation of the distributed lagged demand 

equation: 

   

     
     

    

     
              (3.10) 

 

where   
    

     
    

  . 

Note that the congestion fees charged by the ISO are neither included in the VI 

formulation (3.9) nor in the marginal revenue term (3.10), because they are cancelled out 

in the overall formulation. 

3.3 Illustrative Results for the 66-Bus Ontario Test System 

For our illustrations, we have used the network data for the Ontario electricity 

system obtained from Wong (2005). It is a scaled down 66-bus version of the full system 

that is used by the IESO to simulate Ontario’s electricity network on a small scale. It is 

composed of 53 loads, 171 transmission lines, and 12 generators.  

This example is a single period (month of July) version of the illustrations in 

section 2.3.1, e.g., it consists of four types of generation facilities (nuclear, hydro, coal, 

gas/oil), and three demand blocks (on-peak, mid-peak and off-peak electricity), two 

firms with firm 1 owning almost 70% of the available generation capacity and firm 2 

owning the remainder of the capacity. Each generator unit at a generation node is 

assigned to a single firm (i.e., firms are spatially competing over the network). The 
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models have been reduced in size by using a representative weekday of the month, as 

in section 2.3.1.  

Because there are no available nodal demand parameters (e.g.,              ) for 

this test system (nor is nodal demand and price data available), we have constructed 

plausible demand parameters (suitable for computational tests) for each node by the 

following procedure: We first use the demand parameters from section 2.3.1 to solve a 

perfect competition TOU pricing model with linearized DC network constraints as in 

(3.7) by using aggregated demand equations over all nodes18 without any transmission 

line limits. We obtain a solution for nodal demands and then we linearize the price and 

lag elasticities from Celebi and Fuller (2007) around this nodal solution to obtain price 

(  ) and lag (  ) coefficient matrices for each node. Finally, we compute    using the 

nodal solution with these coefficient matrices. In other words, we have calibrated the 

demand parameters in the perfect competition model of Celebi and Fuller (2007) to 

obtain the same results for aggregated (by node) and disaggregated demand equations 

of the perfect competition model in (3.7). Also we use the special case of          at all 

nodes for the fractions that represent the pattern of variation within a demand block j, 

e.g., identical pattern of variation at all nodes. 

PTDFln for line-node pairs are calculated using the line data from Wong (2005) 

(i.e., hub node is an arbitrary demand node). We consider a transmission network with 

congestion, i.e., limits in transmission capacities. The transmission capacities are from 

Wong (2005), and they are realistically set, but not necessarily correct. Also, we provide 

results for two types of competition: perfect competition model (3.8) and Nash-Cournot 

model (3.9).  

The models are coded in GAMS using a Windows 2003 Server, Dual Core AMD 

Opteron (8 CPUs) 2.6 GHz computer with 32GB memory. The VI problems are 

                                                 
18 We use the inverse demand functions,               

       
 

    
 , where demands are 

summed over nodes (e.g., aggregated) and   
      , with the parameters    ,  ,   and    from 

section 2.3.1. 
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automatically converted to MCP models by the GAMS\EMP framework and solved by 

PATH. 

In Table 8, we provide the TOU prices at selected nodes for perfect competition 

model and the Nash-Cournot model. For the perfect competition model, the TOU prices 

are same for all nodes. This is because of the aforementioned data calibration to obtain 

the demand parameters for the test system. Therefore, in our illustrations, we focus on 

the Nash-Cournot model. At nodes (e.g., buses) numbered 2106 and 3107, the TOU 

prices are relatively smaller compared to other nodes of the Nash-Cournot model. The 

main reason is that, there is usually congestion in four major lines (e.g., congestion from 

buses numbered 2100 to 2106, 4105 to 3107, 3107 to 4905 and 8112 to 8104, see Table 11) 

and the congestion fees (e.g., wheeling fees from hub node to these nodes) are 

significantly higher than the ones for other nodes in the system for any demand block j 

and hour h (see Table 12). 

Table 8: TOU prices (   ) for perfect competition and Nash-Cournot market structures 

at selected nodes ($/MWh) 

Bus # Off-peak Mid-peak On-peak 

PERFECT COMPETITION 

for all nodes 15.40 27.91 28.60 

NASH-COURNOT 

1 32.90 58.53 63.39 

101 32.88 58.55 63.41 

344 32.90 58.53 63.39 

1104 32.87 58.55 63.43 

2100 32.91 58.53 63.39 

2106 26.51 43.63 48.22 

3107 22.80 36.53 37.59 

4105 32.90 58.53 63.39 

5105 32.90 58.53 63.38 

6400 32.90 58.53 63.39 

7100 32.91 58.54 63.34 

8104 32.91 58.55 63.33 

8112 33.26 59.02 62.84 

8114 33.20 58.93 62.96 

9112 33.26 59.02 62.84 

9302 33.26 59.02 62.84 

9311 33.26 59.02 62.84 
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Table 9: PCMs for Nash-Cournot TOU pricing models at selected nodes 

Bus # Off-peak Mid-peak On-peak 

1 53.2% 52.3% 54.9% 

101 53.2% 52.3% 54.9% 

344 53.2% 52.3% 54.9% 

1104 53.1% 52.3% 54.9% 

2100 53.2% 52.3% 54.9% 

2106 41.9% 36.0% 40.7% 

3107 32.5% 23.6% 23.9% 

4105 53.2% 52.3% 54.9% 

5105 53.2% 52.3% 54.9% 

6400 53.2% 52.3% 54.9% 

7100 53.2% 52.3% 54.8% 

8104 53.2% 52.3% 54.8% 

8112 53.7% 52.7% 54.5% 

8114 53.6% 52.6% 54.6% 

9112 53.7% 52.7% 54.5% 

9302 53.7% 52.7% 54.5% 

9311 53.7% 52.7% 54.5% 

AVERAGE 52.7% 51.5% 54.0% 

In Table 9, we present the PCMs at selected nodes, defined as the difference 

between Nash-Cournot price and perfect competition price divided by the market 

Nash-Cournot price. Also, PCMs averaged over all nodes are presented. Note that the 

Nash-Cournot structure with network constraints has higher PCMs than the ones 

presented in chapter 2 (see Table 2). 

The welfare analyses (i.e., change in consumers’, producers’ and total surpluses 

for selected nodes) for changing from Nash-Cournot model to perfect competition 

model (i.e., reference case) is summarized in Table 10 for selected nodes. It is noted that 

at all nodes, total surpluses and consumers’ surpluses increase whereas suppliers’ 

surpluses decreases. Also, note that the lag effect on welfare (as explained in Appendix 

A) is not included in the analyses, because the results are for a single-period model (e.g., 

no lag demand). The consumers’ surplus gains as percentage of the total energy bill at 

selected nodes are presented in the last column of Table 10. Similar to chapter 2 results, 

changing from Nash-Cournot model to perfect competition model under TOU pricing 

scheme has some significant effect on these gains in our illustrations. 
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Table 10: Change in consumers’, suppliers’ and total surpluses over selected nodes due 
to change from Nash-Cournot oligopoly to perfect competition and consumers’ 
surpluses as percent of total energy bill (last column) 

               Change in 
 

Bus # 

Consumers’ 
Surplus (CS) 

Suppliers’ 
Surplus 

Total 
Surplus 

CS as % 
Total Energy 

Bill 

1 $258,130 -$150,744 $107,385 63.1% 

101 $181,040 -$105,724 $75,316 63.1% 

344 $249,657 -$145,796 $103,860 63.1% 

1104 $159,690 -$93,257 $66,433 63.1% 

2100 $266,248 -$155,485 $110,763 63.1% 

2106 $297,924 -$200,042 $97,882 42.7% 

3107 $39,605 -$28,275 $11,330 27.3% 

4105 $264,086 -$154,223 $109,864 63.1% 

5105 $263,518 -$153,890 $109,627 63.1% 

6400 $263,698 -$153,996 $109,701 63.1% 

7100 $261,730 -$152,841 $108,888 63.1% 

8104 $261,529 -$152,723 $108,807 63.1% 

8112 $66,887 -$38,861 $28,026 63.5% 

8114 $74,578 -$43,351 $31,227 63.5% 

9112 $66,887 -$38,861 $28,026 63.5% 

9302 $66,887 -$38,861 $28,026 63.5% 

9311 $66,887 -$38,861 $28,026 63.5% 

OVERALL 12,274,294 -8,342,742 3,931,552 62.1% 

Table 11: Dual variables           of the negative and positive power flow through line l 

for demand block j at hour h ($/MW) (legend: generation nodes, off-peak, mid-peak, on-peak)  

                Hours 
 Bus n to m 

1 2 3 4 5 6 7 8 9 10 11 12 

2100 to 2106 9.98 9.98 9.98 9.98 9.98 9.98 9.98 22.10 22.10 22.10 23.58 23.58 

4105 to 3107  19.65 19.65 19.65 19.65 19.65 19.65  38.35 38.35 35.61 40.62 40.62 

3107 to 4905 
 

 
 

   19.65   2.74   

8112 to 8104  
 

 
 

       1.53 1.53 

                Hours 
 Bus n to m 

13 14 15 16 17 18 19 20 21 22 23 24 

2100 to 2106 23.58 23.58 23.58 23.58 23.58 22.10 22.10 22.10 22.10 22.10 3.90 9.98 

4105 to 3107  40.62 40.62 40.62 40.62 40.62   38.35 38.35 38.35 38.35   19.65 

3107 to 4905           38.35         19.65   

8112 to 8104  1.53 1.53 1.53 1.53 1.53               

In Table 11, the duals associated with the line limits are represented. As 

aforementioned, some lines are congested, which in turn has an effect on congestion 

fees (i.e., power is wheeled through the hub node to node n, hence any congestion on 



 

 

54 

the route has an impact on this fee). Congestion (e.g., wheeling) fees (    ) are shown in 

Table 12. 

Table 12: Congestion (e.g., wheeling) fees (    ) for transmitting power from an 

arbitrary hub node to node n ($/MWh) (legend: generation nodes, off-peak, mid-peak, on-peak)  

        Hours 
 Bus # 

1 2 3 4 5 6 7 8 9 10 11 12 

2106 -9.98 -9.98 -9.98 -9.98 -9.98 -9.98 -9.98 -22.10 -22.10 -22.10 -23.58 -23.58 

2962 -9.98 -9.98 -9.98 -9.98 -9.98 -9.98 -9.98 -22.10 -22.10 -22.10 -23.58 -23.58 

3107 -19.37 -19.37 -19.37 -19.37 -19.37 -19.37 0.27 -37.82 -37.82 -35.08 -40.06 -40.06 

4905 -12.73 -12.73 -12.73 -12.73 -12.73 -12.73 -12.73 -24.85 -24.85 -24.85 -26.33 -26.33 

8112 
 

 
 

       1.21 1.21 

8114 
 

 
 

       1.13 1.13 

9103 
 

 
 

       1.21 1.21 

9112 
 

 
 

       1.21 1.21 

9302 
 

 
 

       1.21 1.21 

9311 
 

 
 

       1.21 1.21 

        Hours 
 Bus # 

13 14 15 16 17 18 19 20 21 22 23 24 

2106 -23.58 -23.58 -23.58 -23.58 -23.58 -22.10 -22.10 -22.10 -22.10 -22.10 -3.90 -9.98 

2962 -23.58 -23.58 -23.58 -23.58 -23.58 -22.10 -22.10 -22.10 -22.10 -22.10 -3.90 -9.98 

3107 -40.06 -40.06 -40.06 -40.06 -40.06 0.53 -37.82 -37.82 -37.82 -37.82 0.27 -19.37 

4905 -26.33 -26.33 -26.33 -26.33 -26.33 -24.85 -24.85 -24.85 -24.85 -24.85 -12.73 -12.73 

8112 1.21 1.21 1.21 1.21 1.21        

8114 1.13 1.13 1.13 1.13 1.13        

9103 1.21 1.21 1.21 1.21 1.21        

9112 1.21 1.21 1.21 1.21 1.21        

9302 1.21 1.21 1.21 1.21 1.21        

9311 1.21 1.21 1.21 1.21 1.21        

Table 13: Weighted sum of congestion fees (         
  

   ) and consumers’ payments 

received by firms net of weighted sum of congestion fees (             

  

   )  

          
  

                   
  

     

Bus # Off-peak Mid-peak On-peak  Off-peak Mid-peak On-peak 
2106 -9.24 -22.10 -23.58 35.75 65.74 71.80 

3107 -14.62 -32.48 -40.06 37.43 69.02 77.65 

8112 
 

 1.21   61.63 

8114 
 

 1.13   61.83 

9112 
 

 1.21   61.63 

9302 
 

 1.21   61.63 

9311 
 

 1.21   61.63 

We have computed the weighted sum of congestion fees that is deducted from 

the consumers’ payments to firms in Table 13. For nodes numbered 2106 and 3107, firm 

2’s facilities that are located at nodes numbered 2962 (nuclear) and 4905 (hydro) receive 
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incentives, because they reduce congestion and follow the historical shape of the load 

duration curve for their overall sales (i.e., node 2962 is only connected to node 2106 and 

node 4905 is only connected to nodes 3107 and 4105). On the other hand, firm 2’s facility 

at node numbered 9103 is penalized by ISO, as it causes congestion and does not follow 

the historical pattern of the load-duration curve (i.e., node 9103 is connected to nodes 

9112, 9302 and 9311; and through node 9112, it is connected to nodes 8112, which is also 

connected to 8114).  

3.4 Conclusions and Future Research 

There are many ways in which this basic framework can be extended. 

Arbitragers that erases non-cost based price differences among nodes can be introduced 

in the model (Hobbs and Helman, 2004; Hobbs and Pang, 2007). In addition to 

providing transmission service, ISO can perform the arbitrage activity by introducing 

unrestricted arbitrage variables in the objective function of its problem with the 

objective function coefficients equal to    
           

  

    (Hobbs et al., 2008). 

Alternatively, ISO can reallocate power to maximize consumers’ surplus (Yao et al., 

2005). Another possibility is to add a separate price-taking arbitrage firm that 

maximizes its revenues (e.g., arbitrage amounts multiplied by the price difference in 

different nodes) and pays congestion fee (e.g.,     ) subject to arbitrage balance 

constraints (e.g., total injections and withdrawals of arbitraged energy sum to zero). The 

alternative extensions to bilateral model can be used to simulate prices for a POOLCO 

based system. 

We have experimented with MCP formulation of a realistic 66-bus network for 

Ontario market (a single month perfect competition model with only 2-firms and line 

limits) and it took more than 5 hours to reach equilibrium (there were around 16,500 

variables and conditions). In such a case, decomposition methods (e.g., DW or Benders 

decomposition for VI problems) may surmount difficulties that may arise in 

computation of equilibrium. We explore DW decomposition in chapter 4. 
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4. Dantzig-Wolfe Decomposition Method for VI Problems with 

Applications to Two Models in Energy Markets 

This chapter is devoted to the DW decomposition for VI problems and its 

application to two models in energy markets. First, we present a general overview of 

decomposition methods from the literature. Then, we introduce the DW decomposition 

algorithms, namely exact, modified and approximate DW algorithms. Numerical 

investigations are performed on two models in energy markets. One of these models is 

a single-period (month) TOU pricing electricity market equilibrium model with 

linearized DC network constraints from chapter 3. We relate the general VI forms of the 

DW subproblem and master problem to this problem after the introduction of each 

algorithm in section 4.2. The other model is a realistic two-region energy equilibrium 

model for Canada from Fuller and Chung (2005).  

4.1 Decomposition Methods for Variational Inequality Problems 

Fuller and Chung (2005, p.304) address the main challenges to adapt 

optimization based decomposition to VI problems as: 

1) Definition of the forms of subproblems and master problem, and communication 

among them; 

2) Definition of a valid stopping (convergence) condition; 

3) Proof of convergence of the algorithm. 

There are various decomposition algorithms for optimization problems. DW and 

Benders decomposition are the most well known of those algorithms and they have 

been extended to VI problems. In addition to DW and Benders decomposition methods, 

other algorithms such as Lagrangean methods, simplicial decomposition, cobweb 

decomposition and partitionable decomposition are presented in the next subsections. 

This section is a general overview of these methods and algorithms. Section 4.2 is 

devoted to DW decomposition algorithm and its modifications, as well as applications 

to TOU pricing models of chapter 3.  
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4.1.1 Lagrangean Methods 

Lagrangean methods are based on relaxing the constraints that prevent the 

separability of the problem into subproblems (e.g., subproblems that are easy to solve) 

by using dual multipliers that penalize violations of these constraints. The method then 

iterates by updating these dual multipliers by subgradient methods, cutting plane 

methods or bundle methods (Conejo et al., 2006). Lagrangean methods for VI problems 

include the work by He et al. (1999, 2004), Han and Sun (2003) and Auslender and 

Teboulle (2000). 

4.1.2 Dantzig-Wolfe Decomposition 

DW decomposition is a special case of the column generation principle (Dantzig 

and Wolfe, 1961). The idea behind column generation is to algorithmically generate 

profitable variables (columns or proposals) to improve the objective function. An 

example of this technique is for the cutting stock problem where a column generation 

method is based on the solution of knapsack problems. In the dual formulation, column 

generation corresponds to cutting plane methods (i.e., adding a constraint).  

DW decomposition takes advantage of a block angular structure of the constraint 

set to decompose the problem into a master problem and one or more simpler (e.g., easy 

to solve) subproblems. The master problem is defined over the convex combination of 

the subproblem columns (proposals). The subproblem(s) employs a pricing out 

mechanism of the simplex method for column generation.  

Chung et al. (2003) employs the DW decomposition method for a class of 

economic equilibrium models. They decompose the asymmetric economic equilibrium 

problem into one equilibrium master problem (but it was not stated as a VI) and one LP 

subproblem. They distinguish between supply and demand variables as a special case 

of the model represented in Ahn and Hogan (1982) for the purpose of decomposition. 

Proposals from the subproblem to the master problem only include supply variables 

and the master problem has its own demand variables in addition to the weight 

variables for the convex combinations of the proposals.  They provide a convergence 
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criterion and conclude that the convergence occurs in a finite number of iterations, since 

the subproblem is a LP model with finite extreme points and there is no repetition of 

proposals (i.e., finite number of proposals from subproblem). 

Fuller and Chung (2005) introduce the DW decomposition for VI problems and 

show that their algorithm is convergent under usefully general conditions. The 

algorithm begins with relaxing a VI by removing complicating (linking) constraints and 

solving the subproblem. The master problem, a restricted version of the original VI 

problem (i.e., restricted to the convex combinations of the proposals from the 

subproblem), is then solved and computed dual solutions (prices) are passed to the 

subproblem. The algorithm proceeds between master and subproblem until a scalar 

quantity called the ―convergence gap‖ is close enough to zero. A small negative value of 

the convergence gap indicates that the current master problem solution is very close to 

equilibrium. They illustrate this convergence behavior by a realistic two-region energy 

equilibrium model for Canada. 

An extension of this work has been developed for multiregional and 

multicommodity economic equilibrium models. In the former work, DW decomposition 

is applied to decompose the multiregional model by region and a two-region energy 

equilibrium example is given to illustrate the convergence behavior and some useful 

properties of the algorithm (Chung et al., 2006). The latter one combines the Jacobi idea 

of PIES algorithm with DW decomposition of VI problems (Chung and Fuller, 2005). In 

this case, each equilibrium subproblem contains variables corresponding to not only 

demand for its own commodity, but also demands for other commodities. Since there is 

no information about the supply of other commodities in the subproblem, an 

equilibrium solution cannot be found. Using the Jacobi idea of PIES algorithm (by fixing 

the other commodities demand at the most recent values computed by the master 

problem), an equilibrium solution is found for the single commodity subproblem 

(which is now integrable and can be converted to a nonlinear optimization problem). 

The convergence results are provided under general useful conditions. Also, they do 

not need to assume that own-price influence on demand is more important than cross-
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price effects as is required for the convergence proof of the PIES method (see Ahn and 

Hogan, 1982). 

Chung and Fuller (2010) further extended their study on DW decomposition of 

VI problems by approximating the subproblem in a variety of ways. These 

approximations allow them to decompose a multicommodity economic equilibrium 

model into separate subproblems for each commodity. They have illustrated these 

approximation techniques on the same model of Chung et al. (2006) and concluded that 

these approximations can reduce the number of iterations required to achieve 

convergence. Moreover, they have pointed out that decomposition by commodity can 

be useful for model management purposes. They have also provided (in an online 

appendix to the paper) that the convergence theorems and proofs hold for these 

approximations of the subproblem.  

4.1.3 Benders Decomposition 

In Benders decomposition, the complicating variables are fixed at the most recent 

master problem solution and the resulting subproblem is solved iteratively (Geoffrion, 

1972). Based on the subproblem’s associated dual, a cutting plane (i.e., a linear 

inequality) that ―cuts off’ the current solution point is found by the algorithm. This cut 

is added to the constraint set of the master problem, which is then re-solved. 

Lawphongpanich and Hearn (1990) apply Benders Decomposition principle for 

VI problems. They define the subproblem VI by fixing some of the variables 

(complicating variables) that are determined by the master problem VI. However, they 

do not provide any proof of convergence of the algorithm for general VI problems. 

Also, the master problem of their proposed method requires a point-to-set mapping 

which requires strong assumptions on the mapping for convergence of the algorithm. 

Chung et al. (2003) states that the non-convexity of the transformed feasible region 

makes this problem very hard to solve. Lawphongpanich and Hearn (1990) implement 

their algorithm for a partially asymmetric traffic assignment problem where they use an 

approximation of the master problem, a LP, by using a cutting plane approach that 



 

 

60 

adds a new constraint at each iteration with the dual information from the most recent 

subproblem VI. Their numerical example is to demonstrate that the ―algorithm is 

implementable and has potential as an effective method for decomposing large VI 

problems‖ (Lawphongpanich and Hearn, 1990, p.245). 

Fuller and Chung (2008) apply Benders decomposition and provide convergence 

results and proofs for a useful class of VI problems. Their algorithm is mainly based on 

DW decomposition of VI problems by Fuller and Chung (2005) and Chung et al. (2006). 

They apply a DW decomposition procedure to a dual of the given VI. By converting the 

dual forms of DW master and subproblems to their primal forms, they derive the 

Benders master and subproblems. At each iteration, information from the latest 

subproblem adds a new cut to the Benders master problem and a scalar convergence 

gap parameter is calculated. They prove that the algorithm makes progress when the 

convergence gap is negative and under mild conditions it approaches zero in the limit 

of many iterations. They also show that if it has reached a non-negative value, a 

solution is obtained (under more restrictive conditions, i.e., strict monotonicity). 

Gabriel and Fuller (2010) presented a Benders decomposition method for solving 

a general two-stage stochastic complementarity problem (or VI), which is an extension 

of Fuller and Chung (2008) study. They have applied the Benders decomposition 

method (where decomposition corresponds to scenarios in their stochastic 

complementarity problem) on Hobbs’ (2001) electricity market equilibrium model, but 

for which stochastic elements are included. Their numerical investigations have shown 

substantial improvements in computation time over the extended form of the original 

model. They have also extended the theoretical results for DW and Benders 

decomposition methods of Fuller and Chung (2005; 2008) to the case where the master 

problem has its own variables (e.g., scenario independent variables can be retained in 

the master problem).   
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4.1.4 Simplicial Decomposition 

Simplicial decomposition is also a special case of the column generation 

principle, where the column generating subproblem is formed by approximating (often 

by a linear function) the objective function of the original problem (Patriksson, 1999). It 

has been applied to the VI problems, mostly in the context of traffic assignment 

problems. But this method does not allow for decomposition, since the subproblem is 

still subject to the whole feasible set. Hence, the block angular feasible set cannot be 

decomposed. Also, the subproblem defined by this method is a LP, not a VI.   

4.1.5 Cobweb Decomposition 

The cobweb algorithm is an iterative method that passes price or quantity 

approximations between subproblems (e.g., demand and supply models) and the 

algorithm stops when the price and quantity approximations do not change. But this 

decomposition algorithm may diverge even in one-dimensional examples (Ahn and 

Hogan, 1982).  

Murphy and Mudrageda (1998) study the convergence of a cobweb algorithm 

motivated by the experience with the National Energy Modeling System19 (NEMS) for 

the U.S. Department of Energy. They use step functions to approximate the supply and 

demand curves and employ a weighted average scheme20 for the convergence of the 

cobweb algorithm. They infer from their NEMS experience that their algorithm 

converges even when they have crude implementation and rough approximations.    

4.1.6 Partitionable Decomposition 

Partitionable decomposition takes advantage of the separable structure of the 

feasible region of some VI problems. Such problems, referred to as partitionable VI 

problems, are a class of VI problems in which the constraints define a Cartesian product 

                                                 
19 For evaluation of energy modeling in U.S. Department of Energy see Gabriel et al. (2001), Murphy and 

Mudrageda (1998) and Murphy and Shaw (1995). 

20 Weighted average of the last two iterates is used instead of the most recent iterate. 
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of feasible sets. This type of VI problem can be decomposed into subproblems (coupled 

VI problems of small dimensions) and these subproblems can be solved by linear or 

nonlinear approximations (Nagurney, 1993; Patriksson, 1994). However, the main 

assumption in this decomposition method is the separable structure of the feasible set. 

This method is not applicable for block angular feasible sets. 

4.2 Dantzig-Wolfe Decomposition Method for TOU Pricing Models with 

Transmission Network Constraints  

In this section, algorithms for the DW decomposition and modifications to this 

algorithm including an approximation of the master problem solution are explained in 

detail. Applications to TOU pricing models of chapter 3 are also provided. For 

simplicity of representation, a single period (month) TOU pricing model will be given 

as an example throughout the illustrations, but a multi-period model extension is 

straightforward. Decomposition algorithms are applied to this example. Firstly, we 

introduce the general problem setting as well as the subproblem and master problem 

definitions. 

We summarize the main results of Fuller and Chung (2005), using a slightly 

different notation and following their presentation closely. We consider a VI problem 

with a feasible set defined by two sets of constraints. We distinguish one of these 

constraint sets as complicating constraints, e.g., when they are relaxed a VI subproblem 

is formed (and it may or may not be decomposable, but it is easier to solve). Convex 

combinations of solutions of the subproblem with the complicating constraints form a 

master problem. We first define the feasible set for the original VI as follows. All vectors 

are considered to be column vectors. The feasible set is                       , 

where   is a mapping from    to    such that    is concave and continuously 

differentiable for all        , and   is a mapping from    to    such that    is 

concave and continuously differentiable for all        . The constraints        

represent the complicating constraints. The vector function   maps    to   . The 

original VI is defined as follows: 
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VI(K,G): find      such that                         (4.1) 

The feasible set for the subproblem is defined by relaxing the complicating 

constraints in K and it is represented as:                 . The subproblem at 

iteration k+1 is defined with    (the dual variable vector corresponding to the 

complicating constraints from the previous master problem solved at iteration k) and 

     
    the matrix of gradients of h evaluated at the master problem solution   

    The 

subproblem VI is defined as follows: 

Sub-VIk+1(           
    ): find   

       such that 

     
           

     
 
     

                 
(4.2) 

The feasible set for the master problem at iteration k is restricted to all convex 

combinations of the k solutions (or ―proposals‖) that have been calculated by the first k 

solutions of the subproblem. The complicating constraints need to be satisfied in this 

set. We use the notation       
    

      
   to represent matrices whose columns are 

the k proposals collected from the subproblem at each iteration. The weights on the 

proposals in the convex combination are contained in the vector     . The feasible set 

for the master problem is defined as:                              , where 

      is a vector whose k entries are all one. Since the convex combination     of 

solutions from the subproblem enforces the constraint set       , there is no need to 

explicitly mention this set of the constraints in the feasible set of the master problem. 

For brevity, we sometimes use the notation   
  to denote the solution of the master 

problem,   , in terms of the original x variables:   
       Note that   

       (i.e., 

the feasible region of the subproblem contains the original problem’s feasible region, 

since it is a ―relaxed‖ version of the original problem without complicating constraints). 

Finally, the master problem at iteration k is defined as: 

Master-VIk(     ): find      such that                          (4.3) 

where the mapping    from    to    is used to denote the condition                

in terms of    i.e.,                  .  

As an alternative notation, the feasible set for the master problem is also denoted 

by     
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where         21 stands for the convex hull of the points represented by   . The 

relationship among the feasible sets can be summarized as: 

                        

The master problem is more compactly defined as: 

Master-VIk(    ): find      such that                          (4.4) 

The DW algorithm uses the following information exchange between master 

problem and subproblem. The subproblem for k = 1, i.e., Sub-VI1, is solved with a 

starting guess of the value of the mapping adjustment, such as       
      , to obtain 

the proposals to be transferred to the matrix    of the master problem, thus enlarging 

the set    (or   ). Then Master-VI1 is solved to estimate a new dual vector   . Later 

iterations begin with a subproblem and end with a master problem. After each 

subproblem is solved, a scalar quantity called the convergence gap is calculated from 

the solutions of subproblem Sub-VIk+1 and master problem Master-VIk: 

         
         

     
 
   

      
    (4.5) 

The algorithm terminates when a predetermined convergence tolerance,    , is 

reached, e.g.,        .  

Fuller and Chung (2005) have provided useful convergence and existence results 

under the following assumptions: 

1)    is bounded. 

2) Each component of      and      is concave and continuously differentiable. 

3)   is continuous. 

4) Subproblem and master problem are feasible at each iteration. 

5)   is strictly monotone.22 

                                                 
21                                  

22 Fuller and Chung (2005) has also introduced an assumption that is applicable to a part of the mapping 

 , i.e.,     
     

     
  where    

 
 
 ,        is strictly monotone and      is a convex function. 
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Under these assumptions, Fuller and Chung (2005) prove several results, 

including: if      , then   
  solves VI(K,G); before convergence,      , and 

           . Furthermore, if in Assumption 5, ―strictly monotone‖ is replaced by 

―strongly monotone,‖ then          
      

     (if   is strongly monotone). We 

have provided the theorems of Fuller and Chung (2005) in Appendix C and the proofs 

can be found in Fuller and Chung (2005) or Chung and Fuller (2010). 

It is worth mentioning that sets of solutions to subproblems are assumed to be 

bounded as well, since unboundedness of subproblems creates complications by 

passing unbounded rays to master problem. This can be avoided by imposing 

upper\lower bounds on x variables in the subproblems that do not already have any 

upper\lower bounds. Also it is assumed that the master problem has an equilibrium 

solution at every iteration. Infeasibility of the master problem can be avoided by 

introducing artificial variables in the complicating constraints with high cost 

coefficients, i.e.,                with      (Chung et al., 2006). However, 

determining the value of these high cost coefficients (e.g., ―big-M‖ values) for artificial 

variables may cause some problems. If they are too small, positive artificial variables 

may be observed in the solution, and if they are too large, numerical problems due to 

poor scaling may arise. In practice, modeler’s insight is important in determining the 

―big-M‖ values, i.e., they are the bounds on the dual variables of the complicating 

constraints (Fuller and Chung, 2010). 

In the next subsections, we present the algorithms for the DW decomposition 

method in detail. 

4.2.1 Exact Dantzig-Wolfe Decomposition Algorithm  

In this subsection, we provide the exact DW algorithm and relate it to the VI 

formulation of TOU pricing models in chapter 3. The VI problem for the perfect 

competition model of TOU pricing is as in (3.7). To relate (3.7) to the general VI form 

(4.1), subproblem (4.2) and master problem (4.4), we have 
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The vector   contains the variables                  and     for all         and  , 

and the elements of the vector-valued mapping      are as follows:      is the element 

of   that corresponds to     ;      is the element of   that corresponds to       ; and the 

elements of   that corresponds to      and     are zero. Note that for      and       , the 

corresponding elements of   are the partial derivatives of the objective function of firm 

f’s problem (3.2), but the terms involving the dual variables     
  are left out. Because, 

these dual terms     
  are cancelled out in the original VI formulation and therefore, 

they do not appear in the mapping  . The feasible set   is as in (3.8) and the feasible set 

for the subproblem and the master problem are as follows:
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Note that the complicating constraints corresponding to      are the market 

clearing conditions (3.4) and they are the constraints in the feasible set of the master 

problem,   . Once they are eliminated the ISO’s problem and firms’ problems can be 

separated (i.e., since     depends on other firm’s sales, firms’ problems cannot be 

decomposed, hence, it is cast as a single equilibrium subproblem). In our computational 

illustrations, the subproblem was left as one large subproblem and it was not split into 

separate subproblems for ISO and firms; because, in almost all of our experiments, most 

computation time is spent for the master problem, we chose to focus on the 

modification/approximation of the master problem.  

The exact decomposition algorithm is stated below. Note that a ―null matrix‖ is a 

matrix with no columns. 

Exact DW Algorithm 

Step 0: Set k=0. Choose     
  and    . Set      

        
      

     
  

 
 to the null matrix and 

        

Step 1: Increment        Solve Sub-VIk with     
      

    and place the solution 

  
       

        
      

     
  

 
   

 
 
 
 
 
    

 

      
 

    
 

   
 

 
 
 
 
 

 

 
 
 
 
 

    
        

 

      
          

 

    
        

 

   
       

 
 
 
 
 
 

. 

If k=1 then go to Step 2; else 

If          , then STOP; else 

 go to Step 2. 

Step 2: Solve Master-VIk. Record     
 , the dual of the market clearing condition; record 

     
        

      
     

  
 
 for calculation of    ). Go to Step 1. 

The exact DW algorithm is implemented using VI formulation for the 

subproblem and the master problem in GAMS\EMP framework and solved by the 
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PATH solver. However, even without any line limits, this decomposition method does 

not converge after 48 hours of computation time. We have observed that, for the ISO’s 

variables, all the added columns were used at least once during the algorithm. This 

suggests the idea to include the ISO’s problem in the master problem instead of the 

subproblem. 

4.2.2 Modified Algorithm: ISO’s Problem in Master Problem 

In this subsection, we present a modified DW decomposition algorithm and we 

show that the subproblem in this algorithm is very similar to the TOU pricing models in 

chapter 2 (e.g., models without network constraints).  

Since the market clearing conditions (3.4) are eliminated from the subproblem’s 

feasible set   , in the exact DW algorithm, the ISO’s problem can be separated from the 

subproblem and it can alternatively be moved into the master problem. Therefore, in 

this modified DW algorithm, the      variables only appear in the master problem (i.e., 

the master problem has its own variables as in Gabriel and Fuller (2010) and they have 

shown that all the convergence results for DW decomposition holds for this case).  

For the exact DW algorithm, we observe in our experiments that the proposals 

from subproblems have almost never satisfied the      
 
      constraints in the 

master problem and therefore, the artificial variables usually remain positive in the 

master problem for many iterations.  

To enforce feasibility for the master problem and to produce better proposals 

from subproblems, we add extra constraints to the subproblem’s feasible set   . These 

extra constraints are obtained by summing the complicating constraints over all nodes, 

e.g.,          
 
       

          
 
   

 
       

      
 
     The right hand side of this 

equation,      
 
     is equal to zero in the master problem, hence we derive the extra 

constraints by setting the right hand side to zero: 

         

 

       

          

 

   

 

       

            (4.6) 
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In our experiments, these extra constraints do not complicate the subproblem 

(e.g., subproblems are very easy to solve within a second of CPU time). They also 

provide better proposals for the master problem (e.g., by satisfying the      
 
      

constraints). 

Also note that these extra constraints added to the feasible set    are very similar 

to the 3rd set of constraints in (2.1) (e.g., the ISO’s problem in chapter 2, without network 

constraints). In fact, the subproblem for the modified DW algorithm is almost same as 

the models of chapter 2 (see section 2.3, p. 28). The only differences are the 

representation of network nodes in the subproblem (e.g., nodal generation, nodal sales 

and nodal prices) and the adjustment in the mapping,            
    . 

To relate the modified algorithm’s subproblem to the general form of 

subproblem in (4.2), we have: 

   

    

      

   

                         

    

    

 
                       

             

       
     

 
 
 
 
 
         

 

  

   

     
 

  
 
 
 
 

          

 

The feasible set for the subproblem is as follows: 

   

 
 
 
 
 
 
 

 
 
 
 
 
 

               

 

 

 

      

    

          

  

   

 

       

       

                      

                   

         

 

       

          

 

   

 

       

          

     

 

   

             

 

   

          
   

 

   

       
 
 
 
 
 
 
 

 
 
 
 
 
 

 

In this subproblem, the vector   contains the variables             and     for all 

        and  , and the elements of the vector-valued mapping      are as follows:      
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is the element of   that corresponds to     ;      is the element of   that corresponds to 

      ; and the element of   that corresponds to     is zero. Note that the feasible set for 

the subproblem does not include any constraints of the ISO’s problem. These 

constraints are included in the master problem. Also the subproblem does not include 

any      variables in the VI formulation (i.e., the subproblem has no variables for the 

linearized DC network constraints).  

For the modified algorithm, we relate the modified algorithm’s master problem 

to the master problem in (4.4) as follows: 

   

    

      

    

   

                         

    

    

 
 

             

    

    
 

      
 

   
 

   

    
      

        
 

      
        

          
 

   
     

       
 

               

The feasible set for the master problem is as follows:

 

   

 
 
 
 
 
 

 
 
 
 
 

                             

 

 

 

 
            

 

   

           

           

 

   

           

     

 

   

       

          

 

   

         

 

   

 

   

            
 
 
 
 
 
 

 
 
 
 
 

 

For the master problem, the vector   contains the variables                  and 

    for all         and  , and the elements of the vector-valued mapping      are as 

follows:      is the element of   that corresponds to     ;      is the element of   that 

corresponds to       ; and the element of   that corresponds to     and      are zero. 

Note that, in the feasible set of the master problem                          and      
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are the variables of the master problem only (e.g., subproblem only provides proposals 

for                  variables).  

 The modified DW algorithm (when the ISO’s problem is in the master problem) 

is stated below. 

Modified DW Algorithm 

Step 0: Set k=0. Choose     
  and    . Set      

        
     

  
 
 to the null matrix and 

        

Step 1: Increment        Solve Sub-VIk with     
      

    and place the solution 

  
       

        
     

  
 
    

    
 

      
 

   
 

   

    
        

 

      
          

 

   
       

 

 
.
 

If k=1 then go to Step 2; else 

If          , then STOP; else 

 go to Step 2. 

Step 2: Solve Master-VIk. Record     
 , the dual of the market clearing condition; record 

     
        

     
  

 
 for calculation of    ). Go to Step 1. 

With this algorithm and without any line limits, the decomposition method 

converges in only one iteration. However, with line limits, the modified algorithm takes 

around four and a half hours to converge and more than 99% of computation time is 

spent on the master problem. This is an improvement over the exact DW algorithm 

(which cannot converge to equilibrium solution in a reasonable time). However, we 

seek a further improvement in computation times by an approximate solution of the 

master problem rather than an exact solution of it, as explained in the next subsection. 

4.2.3 Approximate Algorithm for the Solution of the Master Problem 

In this subsection we will provide an approximation method for the solution of 

the master problem in the DW decomposition algorithm for the TOU pricing models of 

chapter 3. This algorithm is essentially the same as the modified DW algorithm. We also 



 

 

72 

provide the convergence results and proofs for this approximation method. First, we 

define the approximation method and its properties in a general setting. 

An approximation to the mapping      in the master problem is considered. We 

approximate the master problem mapping by         , which relies on parameters in 

the vector    which has the same dimensions as   (e.g., these parameters can include 

the most recent solution of the master problem,   
   ). To gain some computational 

advantage    is chosen so that the approximate master problem VI is easy to solve (e.g., 

in section 4.2.4, it becomes a nonlinear programming problem –NLP). It is required that 

the approximate    should satisfy two properties. The first property replaces 

Assumption 5 of the section 4.2. 

 Approximation Properties: 

1) One of the following is true: 

(a)          is strictly monotone in x; 

(b)          is the gradient of a convex function. 

2) If      
 , then      

          
  .  

The second property is required for the convergence verification only. Different 

than Chung and Fuller (2010), the original mapping      is not preserved in the master 

problem. This approximation in the mapping of the master problem also requires 

redefinition of      because it is evaluated by the mapping          of the master 

problem. The subproblem is the same as in (4.2). The master problem with the 

approximate mapping is as follows: 

Master-VIk(           ): find       such that                              (4.6) 

The algorithm begins by solving the subproblem for k =1, and by choosing an 

initial guess for   ; then Master- VI1 is solved. Later iterations begin with a subproblem 

and end with a master problem. The approximate convergence gap,       is calculated 

by using the approximate mapping   : 

           
            

     
 
   

      
    (4.7) 
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Under Assumptions 1 to 4 and the two approximation properties, all of the 

theorems and proofs in Fuller and Chung (2005) hold for this approximation (see 

Appendix C for statements of all theorems from Fuller and Chung (2005)), with the 

exception of theorem 6. We provide a new theorem 6 and its proof. The rest of the 

proofs for the approximation of the mapping   in the master problem by    holds (e.g., 

they hold by replacing the mapping   with   ). 

New Theorem 6: If            
          

   
 

   
      

   then   
  solves VI(K,G), 

under the strict monotonicity of the mapping     . 

Proof: We shall show that if   
  does not solve VI(K,G), then 

           
          

   
 

   
      

    

By theorem 4 of Fuller and Chung (2005), suppose   
  does not solve VI(K,G). Then 

  
  does not solve Sub-VIk+1, so   

    
   . Strict monotonicity of   implies that 

     
       

     
 

   
    

      , since   
    

   . 

Also   
    solves Sub-VIk+1(           

    ) and   
    , it follows that 

     
           

     
 
   

    
        

Adding this last inequality to the strict inequality, we get: 

     
         

     
 
   

    
       

Now adding the term       
          

   
 

   
    

     to both sides of the 

inequality and multiplying by -1 yield: 

      
            

     
 
   

      
         

          
   

 

   
      

    

i.e.,            
          

   
 

   
      

               

We know that the difference term,      
          

    in new theorem 6 would 

vanish as      
 , because of approximation property 2. In the numerical results of 

section 4.2.4,    is chosen to be a symmetric approximation of  , using      
    in the 

resulting NLP that approximates the VI master problem. It is well known that such a 

sequential NLP algorithm has   
      

  under weak conditions without 
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decomposition (see Nagurney (1993), p.40). We check that with just one NLP per master 

problem iteration, this convergence takes place, but if not, then it would be possible to 

take extra NLP steps in a master problem iteration. In either case,      
  as k 

increases. 

This approximation in the decomposition algorithm allows more flexibility than 

the original DW algorithm for VI problems. One example of an advantage of this 

flexibility is that, as the subproblem of DW decomposition passes new proposals (e.g., 

columns) to the master problem, the master problem size grows and it may become 

computationally challenging to find a solution. Using an approximation method for the 

solution of the master problem may overcome this challenge, e.g., instead of solving the 

master problem VI with an asymmetric mapping  , an integrable mapping      
      

can be used to form a convex optimization problem, where commercial NLP solvers are 

faster and robust than current VI or MCP solvers. This may provide computational 

gains over the original DW decomposition algorithm.  

Now we can state the approximate DW decomposition algorithm for the TOU 

pricing models of chapter 3. 

Approximate DW Algorithm 

Step 0: Set k=0. Choose     
  and   . Set      

        
     

  
 
 to the null matrix and 

         

Step 1: Increment        Solve Sub-VIk with     
      

    and place the solution 

  
       

        
     

  
 
    

    
 

      
 

   
 

   

    
        

 

      
          

 

   
       

 

 
.
 

If k=1 then go to Step 2; else 

If              
              

     
 

   
    

    , then STOP; else 

 go to Step 2. 
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Step 2: Solve Master-VIk with approximate mapping          with      
   .23 Record 

    
 , the dual of the market clearing condition; record      

        
     

  
 
 (for calculation 

of     ). Go to Step 1. 

As stated above, the approximate DW algorithm does not need any convergence 

tolerance     for the stopping condition,              
              

     
 

   
  

  
    . However, in our experiments we have found that this stopping condition can be 

too strict (although as    , this condition is satisfied in theory).  

Note that, since    is bounded, it follows that    
    

      , where   is the 

maximum distance between points in   . Therefore, the convergence requirement is 

bounded above: 

      
              

     
 

   
    

           
              

        

We require the factor,       
              

     , to be as small as possible, 

because the judgement about stopping can be made essentially as in the exact DW 

algorithm: if         , then continue (by theorem 5 of Fuller and Chung (2005), see 

Appendix C) and if         , then stop. From the approximation property 2, if 

       
   , then the factor above is zero. Therefore, we have used a two-part stopping 

condition in our experiments. In step 0 of the algorithm, we choose tolerances     and 

   . In step 1 of the algorithm, if           and       
           , then the 

algorithm is required to stop. We have also verified that this stopping condition 

enforces the factor,       
              

       to be close to zero (see Figure 1 in 

section 4.2.4). 

4.2.4 Numerical Results 

We illustrate the algorithms explained in section 4.2.2 and 4.2.3 for the TOU 

pricing models with linearized DC network constraints, as detailed and illustrated in 

                                                 
23 There are other possibilities for choosing     e.g., weighted average of previous m master problem 

solutions.   
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chapter 3. The models are coded in GAMS using a Windows 2003 Server, Dual Core 

AMD Opteron (8 CPUs) 2.6 GHz computer with 32GB memory. The VI problems are 

solved by the GAMS\EMP framework and the PATH solver, and the convex 

optimization problems are solved by the NLP solver CONOPT3. The MCP models are 

also solved by the PATH solver in GAMS.  

We first solve the original models (perfect competition and Nash-Cournot cases) 

using the MCP and VI formulations. Computational results are summarized in the 

following tables (CPU times are PATH solver time only and excludes model generation 

times). 

Table 14: Computational Results for the Original Perfect Competition Model with 
Different Formulations 

 
No line limits With line limits 

Formulation MCP VI MCP VI 

CPU time (sec) 48.0 55.4 18,240.3 69.9 

No. of iterations 489 488 163,876 735 

No. of Equ./Var. 16,500 16,662 16,500 16662 

Table 15: Computational Results for the Original Nash-Cournot Model with Different 
Formulations 

 
No line limits With line limits 

Formulation MCP VI MCP VI 

CPU time (sec) 47.5 57.5 22,672.0 54.5 

No. of iterations 814 429 256,281 483 

No. of Equ./Var. 16,824 17,310 16,824 17,310 

For the no line limits case, the differences in the computational results for 

different formulations are very small. But with the line limits, the VI formulation has a 

substantial advantage. The MCP formulations take around 5 to 7 hours to reach the 

equilibrium solution, where as the VI models are solved around a minute of CPU time. 

GAMS/EMP framework, in fact, converts the VI formulation into an equivalent MCP 

formulation and while doing that some additional equation/variable pairs are added 

(note the slight increase in number of equation/variable pairs). This is most probably 

the reason for a faster computation of the equilibrium. Since there is no technical 

documentation about the GAMS/EMP framework yet (other than a general guide in 

(Ferris et al., 2009), at this point, we can presume that these added equation/variable 
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pairs make the VI formulation stronger than its pure MCP counterpart. As pointed out 

in Garcia et al. (2003), this increase in dimension improves the formulation (e.g., for 

integer programming and for certain structured LPs and NLPs, see Garcia et al. (2003) 

for details and references). Hence, we have used the VI formulation and GAMS/EMP 

framework for models in the rest of our computational results. 

In our computations, the subproblems are retained as a single equilibrium 

problem in all algorithms. This most likely added very little to the total solution time, 

since solving the subproblem with different     
 values for the TOU pricing models is 

very fast (less than a second at each DW iteration). In place of computing     or      at 

each iteration of the DW algorithms, we have calculated a relative convergence gap, 

     or      , for each iteration as a percent of the equilibrium value of producer’s 

surplus,       
      

 
                 

 
         . Hence,              gives an 

economically meaningful idea about the magnitude of     (    ) relative to the 

equilibrium value of producer’s surplus. 

For all algorithms, we have set        ,       ,       (where    is the 

equilibrium solution for the perfect competition model without any line limits) and 

    
    (but for Nash-Cournot model     

  is set to equilibrium solution,     
 , of perfect 

competition model solution with line limits). In the master problem, artificial variables 

are added to the constraint set with large cost coefficients (e.g., big-M). After some 

experimentation, big-M values are set to 325. Also in the subproblem, large 

upper\lower bounds are set for all   variables that do not already have any 

upper\lower bounds.  

Within the DW algorithms, computations for subproblem and master problem 

start from their equilibrium solution found in the previous iteration. This may be 

computationally advantageous for the iterations that use slightly modified data from 

the previous iteration (e.g., it may reduce the number of iterations required for 

convergence) (Murphy et al., 1988). 
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We were not able to reach an equilibrium solution for the exact DW algorithm for 

the TOU pricing models with 66-bus network (with or without line limits) within a 

reasonable time framework (e.g., we terminate the algorithm after 48 hours of CPU 

time). This is expected, because once the difficult constraints are relaxed, the link 

between the ISO’s problem and the firms’ problems is also disconnected. Hence, 

proposals from the subproblem do not satisfy the relaxed constraints and artificial 

variables become positive in most of the iterations (i.e., no feasible solution is found). 

For smaller test systems (e.g., 3-bus system), we have experienced this problem, 

however, the exact DW algorithm has found a feasible solution after 30 iterations and it 

has converged to the equilibrium solution after 84 iterations for a 3-bus example. It 

should be noted that unless there are very few iterations, the exact DW algorithm may 

work poorly, perhaps because there are many complicating (linking) constraints (e.g., in 

our illustrations there are            of these constraints). Hence, other strategies 

to reduce the number of complicating constraints are also important (e.g., calculating 

excess supply/demand from subproblems and determining a new price,     
 , at each 

iteration without solving the master problem). 

The modified DW algorithm, without line limits case, converges in only one 

iteration. This is not surprising, because without line limits, the congestion based 

wheeling fees would be zero and using a starting guess of     
    would provide the 

equilibrium solution for the subproblem, e.g.,      
        

     
  

 
      

        
     

     

Also, because of the extra constraints in the feasible set of the subproblem, this solution 

satisfies      
 
      constraints in the master problem.  

However, with line limits, the modified algorithm takes 176 iterations to 

converge (with four and a half hours of CPU time). Therefore, we seek better 

computational results with the approximation of the master problem in DW 

decomposition algorithm. 

We illustrate the approximate DW algorithm for the TOU pricing models with 

linearized DC network constraints as in chapter 3. In this model, instead of using the 
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asymmetric inverse demand function,        (where         ), we define a symmetric 

inverse demand function,           , where    equals the   variables from the most 

recent solution of the master problem,   
   .    

                
                                     , 

where    
 

 
        

The approximate DW algorithm can also be used to apply one step of PIES 

algorithm to the master problem by modifying it slightly, i.e.,           . We call this 

approximation, approximate-PIES. This way, we can define a diagonal inverse demand 

function,           , (e.g., with cross-demand variables fixed at the      

These approximate inverse demand functions in the mapping          satisfy the 

approximation properties. Also,           becomes a gradient of a convex function, e.g., 

it can be integrated to form a convex optimization problem. To relate (3.8) to the 

approximate master problem (4.6), we have 

   

    

      

    

   

                         

    

    

 
 

                

           
    

 
 

             

    

    
 

      
 

   
 

   

    
      

        
 

      
        

          
 

   
     

       
 

               

In the approximate DW algorithm, we have the two-part stopping condition 

                 and       
                . We note that the latter 

condition has made the       
              

      measure negligible as DW iterations 

carry on, as depicted in the figure below. 
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Figure 1: Stopping conditions for the approximate DW algorithm 

Without line limits case, the approximate DW algorithm converges, again, in 

only one iteration. With line limits, it takes around one (two) hours to converge to the 

equilibrium solution for the perfect competition (Nash-Cournot) model, a huge 

improvement compared to leaving extra constraints out of    and improvement over the 

modified algorithm with line limits by a factor of four (three). 

Computational results for all algorithms are summarized in the following tables. 

Table 16: Computational Results for the DW Algorithms for Perfect Competition TOU 
Pricing Models as in (3.8) (with line limits) 

DW Algorithm 
CPU time (sec) DW 

iterations Sub Master Total 

Exact  n/a n/a >48 hours >300 

Modified  122.9 15,971.6 16,094.5 176 

Approximate  58.0 3,486.7 3,544.7 147 

Approximate (PIES) 56.6 4,170.6 4,227.2 156 

Table 17: Computational Results for the DW Algorithms for Nash-Cournot TOU Pricing 
Models as in (3.9) (with line limits) 

DW Algorithm 
CPU time (sec) DW 

iterations Sub Master Total 

Exact  n/a n/a >48 hours >300 

Modified  123.2 22,140.1 22,263.3 230 

Approximate  104.1 7,550.4 7,654.5 235 

Approximate (PIES) 104.0 7,794.7 7898.7 240 
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Figure 2 and Figure 3 show the relative convergence gap and the convergence 

gap values, respectively, at each iteration of the approximate DW algorithms for the 

perfect competition model (3.8). 

 

Figure 2: Convergence gap as percent of the producer’s surplus at each DW 

iteration for the approximate DW algorithms 

 

Figure 3: Progress of iterations for the approximate DW algorithms 
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We can see that the convergence gap is not guaranteed to decrease monotonically 

as Chung et al. (2006) point out. We have presented the further details (tables for 

progress of DW iterations) on these algorithms in Appendix D.  

Another important finding in the detailed solution is that, artificial variables 

become all zero after some iterations (e.g., around 20th or 30th iteration). Therefore, they 

can be dropped from the master problem for the subsequent iterations when a feasible 

solution is found (e.g., after the 20th or 30th iteration). However, we did experience 

negligible computational advantage24 by dropping them after they have reached zero in 

the DW algorithm. 

 On the other hand, we have found some computational improvements when 

they are never included in the master problem of the modified DW algorithm. If the 

constraint for the sum of the weights for the convex combinations of proposals in the 

master problem is modified as       , zero solution becomes feasible. Once feasibility 

is satisfied25, artificial variables are not be needed. We have compared the 

computational results with and without artificial variables for the perfect competition 

model in the following table. 

 

 

                                                 
24 There may be some computational advantages in modeling time for GAMS (e.g., time elapsed to create 

the model due to less number of variables) but execution times (e.g., CPU times elapsed for PATH solver) 

are not affected. Because, in our experiments, the solution of the previous iteration is retained for the next 

iteration (e.g., warm starting). Once all artificial variables become zero for iteration k, the PATH 

algorithm starts from the zero solution for these variables in iteration k+1. Since, zero solution for 

iteration k is feasible, it is also feasible for iteration k+1 (due to theorem 5, strict inclusion, of Appendix C). 

25 In the modified DW algorithm,    
 
 
    is always a feasible solution for the subproblem and master 

problem. Adding this feasible proposal to    (e.g.,        
 
 
 ) and assigning a weight (e.g.,     ) to 

it will not alter the master problem formulation (i.e.,          ). This would yield,        once    is 

eliminated from the formulation and the master problem will always have a feasible solution and 

artificial variables are not needed anymore in the master problem.  
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Table 18: Effect of excluding artificial variables from the modified DW algorithm  
Modified DW 

Algorithm 
CPU time (sec) DW 

iterations Sub Master Total 

No artificial vars.  73.4 11,771.5 11,844.9 161 

With artificial vars.  122.9 15,971.6 16,094.5 176 

4.3 Numerical Results for a Two Region Canadian Energy Model  

In this section, we provide numerical results on the performance of the 

approximate-PIES DW algorithm by using a realistic two-region energy equilibrium 

model for Canada from (Fuller and Chung; 2005). Fuller and Chung (2005) illustrated 

their numerical results using the PIES algorithm (with several PIES steps) to solve for 

the master problem and the subproblem at each iteration of the DW decomposition. On 

the other hand, the approximate DW algorithm of section 4.2.3 proposes that instead of 

solving the exact equilibrium master problem, an integrable approximation of it (e.g., 

        ) can be solved  PIES algorithm also approximates the original mapping of the 

equilibrium problem by an integrable one26. It solves the equilibrium problem 

iteratively until there is not much change in the solution of two consecutive iterations. 

The approximate DW algorithm, however, propose to solve it only once. Instead of an 

exact solution or close to exact solution, even an approximate solution (with one step of 

PIES) within the DW algorithm is sufficient for convergence, as we illustrate below.  

We have tested the approximate DW algorithm on a two-region energy 

equilibrium model for Canada and provide the results for two cases (PIES with up to 20 

                                                 
26 Suppose that an inverse demand function is given in the form of      and it is not integrable (i.e., the 

equilibrium problem cannot be converted into an equivalent economic surplus maximization problem). 

The integrable approximation to this function is obtained by a modified inverse demand function, 

        with its ith component as      
       

         
     

  . PIES algorithm starts by choosing an initial 

estimate    for the equilibrium solution   , and solves the equilibrium problem with the integrable 

approximation         by an equivalent nonlinear programming (economic surplus maximization) 

problem. Setting the obtained solution to     , the algorithm iteratively solves for a series of integrable 

problems and terminates when           is less than a convergence tolerance. The PIES algorithm, with 

its approximation at each iteration, has a connection with the well-known nonlinear Jacobi method for 

solving a system of nonlinear equations (Ahn and Hogan, 1982). 
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steps and PIES with only one step). The results on progress of the approximate-PIES 

DW algorithm are summarized in Table 19. 

Table 19: Progress of iterations for the approximate-PIES DW algorithm for energy 
equilibrium model of Fuller and Chung (2005) 

 

iteration 

PIES with 1 Step 

 

PIES with up to 20 Steps 

CG 
CG/ surplus 

(%) 
max(qm-q*) 
/q* *100% 

CG 
CG/ surplus 

(%) 
max(qm-q*) 
/q* *100% 

PIES 
steps 

1 -13699.661 9040.771 944.245 -11262.152 7432.194 944.242 19 

2 -388095.091 256114.280 279.607 -401424.788 264910.902 91.470 16 

3 -401323.562 264844.100 470.252 -397991.302 262645.053 78.529 8 

4 -171625.821 113260.447 537.951 -499.243 329.463 22.548 18 

5 -36803.256 24287.448 282.942 -137204.945 90545.195 58.016 17 

6 -250.543 165.340 20.076 -191.454 126.346 9.469 14 

7 -40664.193 26835.384 150.304 -7177.857 4736.859 3.242 16 

8 -150.977 99.634 53.117 -108.437 71.560 4.207 12 

9 -7406.498 4887.745 37.092 -78.011 51.482 7.310 14 

10 -36.450 24.054 8.815 -22.505 14.852 1.178 13 

11 -37.989 25.070 15.552 -43.594 28.769 6.683 13 

12 -92.932 61.328 38.706 -6.073 4.008 1.481 16 

13 -17.772 11.728 5.582 -7.261 4.791 1.897 13 

14 -8.099 5.345 2.482 -2.084 1.375 0.251 12 

15 -10.893 7.188 1.618 -1.282 0.846 0.384 13 

16 -4.037 2.664 0.632 -0.616 0.406 0.209 12 

17 -4.826 3.185 1.154 -0.202 0.133 0.085 11 

18 -1.508 0.995 0.768 -0.218 0.144 0.105 11 

19 -1.035 0.683 0.481 -0.222 0.146 0.116 11 

20 -1.033 0.682 0.391 -0.059 0.039 0.075 11 

21 -0.183 0.121 0.169 -0.014 0.009 0.048 10 

22 -0.206 0.136 0.139 -0.011 0.007 0.048 8 

23 -0.093 0.062 0.113 -0.006 0.004 0.023 9 

24 -0.070 0.046 0.098 -0.004 0.002 0.018 8 

25 -0.015 0.010 0.060 -0.003 0.002 0.010 7 

26 -0.008 0.005 0.034 -0.001 6.E-04 0.014 6 

27 -0.005 0.003 0.032 -6.E-04 4.E-04 0.013 5 

28 -0.010 0.006 0.019 -6.E-04 4.E-04 0.012 6 

29 -0.001 9.E-04 0.015 -2.E-05 1.E-05 0.002 7 

30 -0.002 1.E-03 0.014 -1.E-05 9.E-06 0.002 4 

―CG‖ column shows the convergence gap at each decomposition iteration as in 

Fuller and Chung (2005) and ―CG/surplus(%)‖ denotes the relative measure of 

convergence gap as percent of the producer’s surplus at equilibrium solution (e.g., 

151.532 billion). Finally, ―max(qm-q*)/q* 100%‖ column is the maximum, over all demand 

quantities in vector q, of the absolute difference between  master problem’s solution and 

the reference solution, expressed as a percent of the reference solution. Finally, the last 
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column is the number of PIES steps required27 at each DW iteration for the DW 

algorithm with up to 20 PIES steps. 

Without any decomposition and using the PIES algorithm for the original model, 

it takes 0.387 seconds and 9 PIES iterations to reach the equilibrium solution with an 

accuracy of 0.00635%. The convergence gap as a percent of the producer’s surplus for 

the DW algorithms with up to 20 PIES steps and 1 PIES step after 30 decomposition 

iterations are 0.000009% and 0.001365%, respectively and both methods have a high 

degree of accuracy, 9.E-06% and 0.0142%, respectively. However, the computational 

gain with the approximate DW algorithm (e.g., PIES with 1 step) for this illustration is 

substantial (79.17% decrease in total CPU time) and this is presented in the next table. 

Table 20: Total CPU times for the approximate DW algorithm for energy equilibrium 
model of Fuller and Chung (2005) 

Approximate DW 
Algorithm 

Master 
Problem 

Subproblem 
for Region 1 

Subproblem 
for Region 2 Total 

PIES with up to 20 steps 6.574 2.785 3.113 12.473 

PIES with 1 step 0.648 0.957 0.992 2.598 

% Decrease in CPU time 90.14% 65.64% 68.13% 79.17% 

In this illustration, note that both the subproblem and the master problem 

solutions are approximated in the overall DW algorithm. Chung and Fuller (2010) study 

approximations of the subproblem for DW decomposition of VI problems and this 

illustration combines their ideas with the approximation of the master problem. This is 

important, because any real implementation necessarily has some degree of error in the 

solutions of the master problem and the subproblem. Moreover, one can control the 

amount of computational effort required at each iteration in order to decrease the 

overall computational burden. 

4.4 Summary and Discussions  

In this chapter, we present DW algorithms for two models in energy markets. 

The exact DW algorithm fails to converge within a reasonable time for our illustrations. 

                                                 
27 PIES method with up to 20 steps has the convergence condition that there should be no more than 0.1% 

change in the price of any demand commodity from one PIES iteration to the next. 
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However, the modified and approximate DW algorithms converge to the equilibrium 

solution with significant computational improvements over the exact DW algorithm.  

Although the models without any decomposition can be solved considerably 

quicker than any DW algorithm, the benefits of managing the subproblem and master 

problem separately may compensate for the additional time to obtain a solution. For the 

TOU pricing models, separate teams or analysts can maintain the subproblem 

(containing only firms’ problem) and the master problem (containing convex 

combinations of the proposals from subproblems and the ISO’s problem with network 

constraints). With further approximation in the subproblems (as in Chung and Fuller 

(2010)), models with special structure can be decomposed by other dimensions. As an 

example, energy market models can be decomposed by region (e.g., western and 

eastern Canada) or by commodity (e.g., electricity, gas, oil). Therefore, the resulting 

subproblems can be managed and maintained separately. A consistent solution of the 

whole model may be obtained by the proposed DW algorithms.  

Moreover, parallel computation of the master problem and the subproblem can 

increase the computational efficiency. Also, the memory limits may cause problems for 

a very large-scale problem (e.g., a stochastic model with many scenarios) and the only 

practical option may be the decomposition of the problem. 

Although the numerical results are presented for the VI problems, the theoretical 

results also hold for variety of problems, e.g., NLPs and monotone nonlinear 

complementarity problems.  
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5. Future Research Directions 

5.1 Modeling Prospects  

In the Ontario electricity market, the move towards the smart metering and new 

pricing schemes (e.g., TOU pricing) is an important part of the ―Integrated Power 

System Plan‖ to capture energy conservation opportunities (OPA, 2010). Within this 

context, design and structure of pricing schemes should deliver the appropriate price 

signals to consumers to cut energy consumption in on-peak hours. For any pricing 

scheme, regulatory bodies should ensure that markets are well functioning and market 

prices reflect sufficiently competitive levels where suppliers are making normal profits 

(but not monopoly profits). 

Market power monitoring and mitigation are key policy issues in the design of 

the competitive and sustainable electricity markets. Market shares, pivotal supplier 

measure, concentration indices are typical measures of market power. However, these 

measures are poor indicators of potential market power because they rely on imprecise 

measurement of the relevant geographical markets due to the simplification of power 

transmission network properties (Helman, 2006; Helman and Hobbs, 2010). Welfare 

analysis based on market price simulations and consumers’ surplus approximations can 

more accurately reflect the potential market power of suppliers. The intention is to 

propose useful policy tools for market regulators or other market screening entities. It 

can also provide a quantitative method for analysis of regulatory decisions (e.g., 

regulated price plan -TOU pricing versus single pricing). 

Strategic decisions on network design and capacity substantially affects the short 

term operational decisions of power suppliers and retailers in the electricity markets. 

One of the current interests in electricity markets is the integration of long-term 

investment models (both in generation capacity and transmission network) and their 

implications on short-term competitive market outcomes using game theoretic 

approaches. These models concentrate on the efficiency and performance of the 

wholesale markets as well as the impact of investments on market power issues. The 
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generation and transmission expansion models coupled with operational market 

models would be suitable for planning and forecasting purposes and regulatory bodies 

would benefit from these analyses in anticipating and monitoring the strategic behavior 

of suppliers (either system-wide or at particular locations on the power transmission 

network). In this context, it is also important to include the stochastic nature of 

renewable generation (e.g., wind) and to analyze its effects on the market outcomes. 

Revenue management and pricing for retailers and suppliers in electricity 

markets is another line of future research. In the future, subscription based prices (i.e., 

similar to cellular subscriptions in wireless networks) may be offered by retailers in 

electricity markets to attract consumers. Due to unique properties of electricity (e.g., 

non-storability, instant supply-demand balance, uncontrollable flow over network), 

revenue management among the electricity supply chain agents (from retailers to 

suppliers) is a challenging problem. Dynamic models of pricing in electricity markets 

using the vast literature from revenue management and pricing is an interesting and 

promising research area.  

5.2 Computational Prospects  

Future research on algorithms and computational efforts for large-scale VI 

problems include the extension of ideas for modified and approximate DW 

decomposition algorithms to investigate the Benders decomposition for VI problems. 

Goffin et al. (1997) and Denault and Goffin (1999, 2005) introduce the analytic center 

cutting plane method (ACCPM) to solve VI problems. In the context of column 

generation and cutting planes, ACCPM is a centering concept from interior point 

methods. A cut is introduced at the center of a feasible region and known to contain the 

solution. In practice, it is shown to be more effective than other centering schemes. 

Other cutting methods include Kelley’s cutting plane or the one from the dual of DW 

column generation (i.e., Benders). 

ACCPM allows for adding another cut to the master problem along with the cut 

obtained from the dual information of the subproblem. This cut can be calculated (or 
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approximated) from the analytic center of the feasible region at each iteration of 

Benders decomposition. It is important to understand whether these cuts should be 

accumulated in the Benders master problem or they should be updated at each 

iteration. Intuitively, this issue seems to be related to the convergence characteristics of 

the Benders master problem (i.e., feasible region of the master problem is monotonically 

non-increasing, but the convergence gap does not approach zero monotonically). 

Another research venue is to find conditions under which the convergence properties of 

the Benders decomposition are maintained by the new ACCPM cuts.  

It may also be possible to remove some previously added cuts (associated with 

the information from subproblems) from the master problem, if these cuts are not 

binding anymore. Although this approach may lead to improvements in the speed of 

the algorithm, convergence of the algorithm is uncertain. 

Finding the conditions under which the convergence properties of the Benders 

decomposition are improved by the new ACCPM cuts is also important. It may be 

possible to remove some previously added cuts (associated with the information from 

subproblems) from the master problem, if these cuts are not binding anymore. This 

approach may lead to improvements in the speed of the algorithm compared to the 

original Benders decomposition. 

A direct application of this method to the models of this thesis is that, ACCPM 

can be used to compute ―central prices‖ (e.g., central prices for congestion based 

wheeling) at each iteration of the DW decomposition. Instead of solving the master 

problem at each iteration, central prices can be used to compute a new proposal from 

the subproblem (e.g., a proposal provided by the ACCPM method). However, 

computing the analytic center can be computationally very challenging. Therefore, an 

approximation of the center can be useful within the Benders decomposition of VI 

problems in order to reduce the computational effort. 

As illustrated by the numerical results in section 4.3 (the approximate-PIES DW 

algorithm for the two-region Canadian energy model), approximation of the 

subproblem as well as the master problem has significant computational advantages 



 

 

90 

over the exact DW algorithm. Although, our convergence analysis does not support this 

type of algorithms, the numerical results provide useful insights. This can be studied in 

the future research as well.  

Column generation methods (e.g., DW, simplicial decomposition) usually 

include some column dropping schemes that drops the columns that are no longer 

believed to be necessary in order to express an optimal solution (Murphy, 1973; O’Neill, 

1977; Patriksson, 1994; Patriksson, 1999; Garcia, 2003; Garcia-Rodenas et al., 2011). The 

computational aim is to generate profitable columns in the search process of an optimal 

solution and, hence, to reduce the number of iterations and to increase efficiency of 

computations. In DW algorithm for VI problems, computational difficulties may arise 

when solving the master equilibrium problem, because the problem size grows with 

added columns. But using the background from optimization problems, these 

difficulties can be alleviated with a column dropping method.  

Murphy (1973) provided column dropping procedures for the generalized 

programming algorithm (i.e., decomposition of a convex nonlinear program such that 

the master problem is a LP). He shows that under certain conditions all non-basic 

columns (columns with zero weights) at each iteration can be dropped, except for the 

initial column retained from iteration 0. The reason for keeping the column retained 

from iteration 0 is to guarantee that there exists a non-degenerate basic feasible solution 

to the restricted master problem, and this consequently allows that all optimal solutions 

to the dual restricted master problem are contained within a compact set. He provides 

two conditions to drop columns. The first condition is to drop all non-basic columns 

(except the one in iteration 0), if the basic optimal set of weights (   vector in the master 

problem 4.3) for all basic variables and slacks associated with these weights for all basic 

slack variables are greater than or equal to     (  fixed for all iterations). But this 

condition can never be used to drop columns again if once it is violated.  

The second condition states that starting with an optimal basic solution 

determined at iteration k-1 as the trial solution at iteration k, if the new column added to 

the master problem can be pivoted into basis with a weight at least     (  fixed for all 
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iterations), then all the non-basic columns from iteration k-1 (except the column in 

iteration 0) can be dropped. Application of the second condition requires the solution of 

the succeeding iteration. However, if at any iteration first condition is satisfied (even it 

has been violated before) and the determinant of the basis solution is greater than some 

    (  fixed for all iterations), then the second condition is also satisfied at that 

iteration. Conversely, even if the first condition is violated, it can be reapplied until 

again violated, if the second condition is satisfied prior to the reapplication of first 

condition. 

The removal of columns with zero weights is a well studied subject in simplicial 

decomposition. Columns with weights of zero or sufficiently small values in the 

solution to a restricted problem can be dropped from the restricted master problem 

(due to the theorems on maximal number of columns to represent an optimal solution). 

See Patriksson (1994, p.119) and (Patriksson, 1999, ch.9). 

In DW decomposition of VI problems, non-basic columns can be determined by 

the weight vector    (columns with zero weights) at each iteration k and they can be 

removed from the master equilibrium problem in order to prevent it from getting too 

large. Another method is to generate several proposals from subproblems before 

solving the master problem. After iteration among subproblems and master problem 

starts, the columns with zero weights can be dropped. An important issue is that 

whether this column dropping technique preserves the convergence properties of the 

problem or not. Proof of these proposed extensions can be studied in the future 

research. 
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APPENDIX A. Approximation of Welfare Change 
In this appendix, we show how to approximate the change in consumers’ surplus 

for demand functions with lag effects. 

We assume that consumers are deciding on their consumption level for each 

energy commodity (e.g., off-peak, mid-peak, on-peak electricity),    (          at each 

period   separately and sequentially, i.e., the last period’s demands,    , appear as 

parameters in the current period’s utility function. The consumer’s problem is to 

maximize their utility,            , at each period subject to their budget constraints:  

   
    

              

               

 

   

         

where   is the monetary value of all other commodities,   is the budget (income) and    

is the marginal utility of income. The first-order conditions are: 

  

    
                 

  

   
         

 

   

      

Using these     conditions We can solve for   ,   and   as functions of    and   

(each depending also on parameter    ).  

We assume that utility now comes from consumption now, and therefore, extra 

utility due to extra     is zero if there is no consumption now, i.e. 

  

    
   , when     . 

We also assume that the demand functions satisfy the ―integrability‖ conditions28 

with the habit-formation model assumptions (i.e., lagged demand treated as 

parameters). 

                                                 
28A demand system is integrable (i.e., generated by an underlying utility maximization problem) if and 

only if it satisfies the several conditions detailed in Varian (1992). For example, these conditions are 

satisfied by five dynamic demand systems, with habit formation, and corresponding utility functions 

presented in Pollak (1970). Since preferences are unaffected by addition of a constant to a utility function, 

the further requirement that 
  

    
   , when      can be achieved for any utility function of Pollak (1970) 

by adding a constant (independent of this period’s consumption but dependent on the previous period’s 
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Now, consider two different price-quantity scenarios, denoted by superscripts   

and  . We can approximate the change in utility       by using the average values 

of partial derivatives evaluated under scenarios   and   as: 

      
 

 
  

   

   
 

   

   
    

    
  

 

   

 
 

 
 
   

   
 

   

   
         

 
 

 
  

   

    
 

   

    
     

     
  

 

   

 

Because of the income constraint the difference term       equals     
   

   
   

  
   

  . Using the first order conditions and assuming constant marginal utility of 

income under different scenarios,        , we can rewrite the above approximation 

as:   

     

 
 

 

 
    

    
     

    
  

 

   

     
   

    
   

  

 

   

 

 
 

  
  

   

    
 

   

    
     

     
  

 

   

 

The first term is the change in utility as in Harberger’s approximation 

(Harberger, 1971), and the second term is the change in consumer payments. For our 

lagged demand formulation, the partial derivatives in the last term are evaluated by 

                                                                                                                                                             
consumption) to the utility function such that the new utility equals zero when there is zero consumption 

now. Ideally, to do theoretically justifiable welfare analysis, the present study would start with a system 

such as in Pollak (1970) (with the added constant), perform the econometric estimation of parameters 

using data on prices and incomes, and use the estimated demand system instead of (2.4).  However, since 

we are not skilled econometricians, our goals are more modest: we wish only to illustrate how welfare 

analysis could be done on the outcomes of different runs of a TOU equilibrium model.  We must rely on 

estimates of elasticities from the literature (see Celebi and Fuller (2007)), and we have approximated the 

nonlinear demand functions of Celebi and Fuller (2007) by linear functions, resulting in a non-integrable 

demand system. Nevertheless, the system is acceptable for our illustrative purposes.  
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starting with the first order conditions    
 

 

  

    
  and the inverse demand functions 

                :29  

 

 

  

    
   

              

Differentiating with respect to     gives the second-order partial derivative: 

 

 

   

       
     

      

Reversing the order and integrating over this period’s demand would give the 

partial derivative with respect to previous period’s demands (assuming 
  

    
   , when 
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Therefore, the approximation can be rewritten as 

     

 
 

 

 
    

    
     

    
  

 

   

     
   

    
   

  

 

   

 

    
 

 
      

        
    

  

 

   

     
     

  

 

   

 

This last term in the approximation can be defined as the short-term effect of 

lagged demand (e.g., habit formation) on the consumers’ surplus. In the calculation of 

consumers’ surplus changes of section 2.3.2, this last term accounted for 43% to 76% of 

the whole change in consumers’ surplus (in Table 3, Table 4 and Table 6), and it was 

always a positive contribution to the total, when scenario   is TOU pricing and scenario 

  is single pricing scheme (the sign of the last term depends on the difference,     
  

   
    and it is positive for almost all of the off-peak and mid-peak hours and only 

negative for on-peak hours, hence the sum over all demand blocks and periods is 

always positive).  

                                                 
29 Demand functions are of the form             (as in section 2.2.4,(2.4)) and the column vectors 

and matrices are defined as       ,       ,       ,          ,         and           
   denotes the 

inverse of  , and   
   denotes the kth row of    . 
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APPENDIX B. PTDF Calculations for Linearized DC 
Network 
In this appendix, we show the PTDF calculations from the non-linear AC power 

flow equations. It is based on the presentations by Schweppe et al. (1988) and Treinen 

(2005) with different notation. With the assumption that the reactive power component 

of the AC power flow equations can be ignored (Schweppe et al., 1988), linearized DC 

network power flow refers to the real power component of the AC power flow 

equations. The real power flow from node n to m over line l is: 

  
        

                                   

where   
   is the amount of real power flowing from node n to node m over line l;    

and    are the phase angles;    and    are the voltage magnitudes at nodes n and m, 

respectively;    
  

  
    

 ;    
  

  
    

 ;    (resistance) and    (reactance) are the line 

parameters. 

 Assuming line resistance is negligible (i.e.      , thus lossless lines) and 

approximating,         (hence,              and                 ) 

and         with    , we can have: 

  
             

The choice of hub node in the network is arbitrary (but for simplicity a node that 

has no generation nor consumption is usually preferred) (Hobbs, 2001). The hub node 

allows for the measurement of all transactions using a single index representing 

transmission from the hub node (e.g., net injections from transmission lines into node 

n). This node is designated as k and     .  

Let the line-node incidence matrix be denoted by         and       if flow on 

line l is from node n and        if flow on line l is to node n, and       otherwise.  

This is a reduced sized line-node incidence matrix (e.g., hub node’s column, k, is 

deleted). Let   be the diagonal matrix with    on the diagonal. Then the closed form 

expression for the PTDF matrix is (Schweppe et al., 1988): 
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This matrix sets the relation among injections/withdrawals and the flow on 

lines: 

         

where   is vector of injections/withdrawals (e.g.,   ) from the hub node to node n, and 

  is the vector of line flows   
  . 

The PTDF matrix we get from the above formula has one less column than total 

number of nodes (N), to which we add a zero column to retrieve a size of L (total no. of 

lines) by N. 

The linearized DC network load flow equations do not represent any losses (i.e., 

quadratic resistance losses are possible to represent but not included in this appendix, 

see Schweppe et al., 1988). 
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APPENDIX C. Theorems from Fuller and Chung (2005, 
2010) 
We provide the theorems from Fuller and Chung (2005) in this appendix. Proofs 

can be found in Fuller and Chung (2005, 2010). 

Theorem 1:    solves VI(K,G) iff there exists      ,      
  and      

  such that all 

of the following conditions are satisfied: 

                            

         

        

            

            

Theorem 2:   
    solves Sub-VIk+1(           

    ) iff there exists   
       and 

  
      

  such that all of the following conditions are satisfied: 

    
           

           
      

      

    
        

  
        

         

Theorem 3:    solves Master-VIk(     ) iff there exists      
 ,      

  and      

such that all of the following conditions are satisfied:  

                                 

          

         

                                      

              

Theorem 4: If   
  solves Sub-VIk+1(           

    ), then   
  solves VI(K,G). 

Theorem 5: If      , then                   (strict inclusion). 

Theorem 6: If      , then   
  solves VI(K,G) (with assumption 5 holding, e.g.,   is 

strictly monotone). 
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Theorem 7: In the special case that VI(K,G) is a LP,     equals the difference between 

the value of the dual feasible solution provided by the subproblem and the value of the 

master problem. 

Theorem 8: Either       at a finite iteration number k, or       for all k. In the 

latter case, if   is continuous and the property that any infinite subsequence of 

    
       

     
   

 
has at least one limit point is satisfied, then              

Theorem 9: If   is strictly monotone, then the solution to VI(K,G) is unique (if the 

mapping   has the form described in assumption 5, then the solution is unique in   

only if       is strictly monotone  and the solution is unique in   and   only if      is 

strictly convex). 

Theorem 10: If   is strongly monotone and continuous, then either   
    

    for a 

finite iteration number k, or          
      

     (if the mapping   has the form 

described in assumption 5, then          
      

     only if       is strongly 

montone.) 
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APPENDIX D. Further Numerical Results 
In this appendix, we provide further results for the decomposition algorithms, 

e.g., results on the convergence of the solutions for different algorithms proposed in the 

thesis. 

Table 21: Convergence of Prices and Total Sales for Node #101 in the Modified DW 
Algorithm (For Perfect Competition TOU Pricing Model as in (3.8) with line limits) 

iteration no. 

Prices($/MWh) 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Total Sales (MWh) 

Off-peak Mid-peak On-peak Off-peak Mid-peak On-peak 

1 15.235 27.588 28.600    2,778.72     2,594.61     2,322.85  

11 15.340 27.643 28.597    2,773.77     2,593.46     2,323.08  

21 15.396 27.727 28.599    2,771.17     2,591.56     2,323.18  

31 15.419 27.781 28.601    2,770.19     2,590.32     2,323.20  

41 15.437 27.905 28.657    2,769.62     2,587.48     2,322.18  

51 15.410 28.070 28.648    2,771.12     2,583.50     2,322.45  

61 15.415 28.041 28.644    2,770.83     2,584.18     2,322.53  

71 15.396 28.045 28.448    2,771.29     2,583.75     2,326.45  

81 15.399 27.990 28.487    2,771.18     2,585.14     2,325.61  

91 15.401 27.957 28.540    2,771.12     2,585.99     2,324.53  

101 15.401 27.937 28.599    2,771.26     2,586.57     2,323.33  

111 15.407 27.927 28.587    2,770.94     2,586.80     2,323.57  

121 15.408 27.914 28.600    2,770.86     2,587.15     2,323.30  

131 15.404 27.908 28.600    2,771.04     2,587.28     2,323.30  

141 15.405 27.907 28.600    2,770.99     2,587.31     2,323.30  

151 15.405 27.907 28.600    2,771.03     2,587.31     2,323.30  

161 15.402 27.907 28.600    2,771.17     2,587.29     2,323.29  

171 15.399 27.906 28.600    2,771.31     2,587.32     2,323.29  

177 15.399 27.905 28.600    2,771.31     2,587.32     2,323.29  
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Table 22: Convergence of Prices and Total Sales for Node #101 in the Approximate DW 
Algorithm (For Nash-Cournot TOU Pricing Model as in (3.9) with line limits) 

iteration no. 

Prices($/MWh) 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Total Sales (MWh) 

Off-peak Mid-peak On-peak Off-peak Mid-peak On-peak 

1 34.149 59.861 67.257 2,015.69 1,942.25 1,704.60 

11 33.277 58.424 66.325 2,053.32 1,973.68 1,720.17 

21 33.232 58.605 66.827 2,056.80 1,970.06 1,710.71 

31 33.211 58.653 66.666 2,057.51 1,968.63 1,713.78 

41 33.199 58.726 66.740 2,058.33 1,966.97 1,712.41 

51 33.214 58.625 66.394 2,056.78 1,968.89 1,718.93 

61 33.169 58.491 66.396 2,058.74 1,972.01 1,718.73 

71 33.068 58.546 66.394 2,063.63 1,970.54 1,718.68 

81 33.089 58.516 66.424 2,062.64 1,971.32 1,718.13 

91 33.025 58.513 66.349 2,065.55 1,971.18 1,719.48 

101 33.049 58.555 66.378 2,064.52 1,970.25 1,718.98 

111 33.004 58.674 66.489 2,067.04 1,967.51 1,716.90 

121 33.061 58.700 66.491 2,064.40 1,966.98 1,716.96 

131 33.065 58.681 66.482 2,064.15 1,967.42 1,717.12 

141 33.114 58.734 66.514 2,061.93 1,966.30 1,716.61 

151 33.141 58.786 66.522 2,060.74 1,965.11 1,716.52 

161 33.170 58.768 66.478 2,059.26 1,965.53 1,717.38 

171 33.207 58.794 66.405 2,057.34 1,964.84 1,718.85 

181 33.233 58.877 66.328 2,056.08 1,962.80 1,720.40 

191 33.242 58.939 66.336 2,055.74 1,961.34 1,720.30 

201 33.239 58.949 66.338 2,055.91 1,961.10 1,720.26 

211 33.260 58.961 66.368 2,054.98 1,960.90 1,719.73 

221 33.264 58.968 66.367 2,054.80 1,960.74 1,719.75 

231 33.265 58.969 66.365 2,054.76 1,960.72 1,719.79 
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