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Abstract

The subject of this thesis is to study approximation algorithms for some network de-
sign problems in face of uncertainty. We consider two widely studied models of handling
uncertainties - Robust Optimization and Stochastic Optimization.

We study a robust version of the well studied Uncapacitated Facility Location Problem
(UFLP). In this version, once the set of facilities to be opened is decided, an adversary
may close at most β facilities. The clients must then be assigned to the remaining open
facilities. The performance of a solution is measured by the worst possible set of facilities
that the adversary may close. We introduce a novel LP for the problem, and provide an
LP rounding algorithm when all facilities have same opening costs.

We also study the 2-stage Stochastic version of the Steiner Tree Problem. In this
version, the set of terminals to be covered is not known in advance. Instead, a probability
distribution over the possible sets of terminals is known. One is allowed to build a partial
solution in the first stage a low cost, and when the exact scenario to be covered becomes
known in the second stage, one is allowed to extend the solution by building a recourse
network, albeit at higher cost. The aim is to construct a solution of low cost in expectation.
We provide an LP rounding algorithm for this problem that beats the current best known
LP rounding based approximation algorithm.
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Chapter 1

Introduction

Uncertainty is an integral part of most practical problems, and optimization problems are
no different. Uncertainty may arise in optimization problems for various reasons, such
as unpredictable information revealed in the future or inherent fluctuations caused by
noise. [38]. The need to model uncertainty in a mathematical framework arises frequently
in many areas such as transportation models, financial instruments and network design.
Some examples where decisions need to be taken in face of incomplete information include
problems in portfolio selection, the task of opening facilities to cater to some clients whose
exact locations are unknown initially, managing operation of water reservoirs that must
be able to reasonably distribute water for drinking purposes, irrigation, etc, but the exact
demands for each task and the location of such requirements may not be known precisely
in the beginning, and so on.

A common theme in such models is the need to make decisions without having their
full effect known in advance. Not only the uncertainty makes the task challenging in terms
of developing clean algorithms, but introduction of uncertainty may make an otherwise
easy problem hard to solve, in lieu of complexity theory. This means that while a deter-
ministic problem may be solvable in polynomial time, its counterpart, with some notion of
uncertainty, may be harder in terms of complexity (e.g. it may become NP-hard).

There are various options when it comes to measuring the goodness of a solution to a
problem with uncertainties. Robust Optimization and Stochastic Optimization are two
widely accepted notions of modeling a problem with uncertainties. Though both ap-
proaches cater to the basic need of dealing with uncertainties, the way they achieve this
differs. While stochastic optimization models the uncertainties as a probability distribu-
tion over a possible set of scenarios (which capture the uncertainty), robust optimization
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Figure 1.1: 2-stage and multistage stochastic optimization with recourse

develops a solution that would work for any possible scenario that occurs as a result of
uncertainty [9].

1.1 Stochastic Optimization

Stochastic optimization provides a means to handle uncertainty by modeling it by a prob-
ability distribution over possible realizations of the actual data, called scenarios. [38]. The
origins of stochastic optimization date back to the 1950’s in works of Dantzig [15] and
Beale [4].

A very widely used model of Stochastic optimization is the multistage stochastic op-
timization with recourse . In a 2-stage stochastic optimization with recourse model, the
actual scenario that need to be serviced is not known in advance. Instead, a probability
distribution over the possible set of scenarios is known in the first stage, based on which,
one is allowed to construct a partial solution. The actual scenario is revealed in stage 2,.
Further recourse solution must now be built to satisfy the requirements of the revealed
scenario. The aim is to construct a solution of low expected total cost incurred. Note that,
however, the prices of the components in this stage are higher as compared to the prices in
the first stage. Hence there is a tradeoff between constructing a solution in first stage at
lower cost but without complete information about the requirements, and waiting for the
requirements to be revealed but having to build a solution at higher costs. In a general
k stage process, the prices of the components increase with every stage, and a new infor-
mation is received at every stage which gives a probability distribution over a restricted
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set of scenarios. One is allowed to buy components at each stage (at the prices of the
stage), taking decisions based on the new knowledge available. Once the actual scenario
gets revealed in the final stage, the solution built so far has to be extended to satisfy the
revealed requirements.

Specification of the probability distribution is an important issue here. The set of sce-
narios can be finite or infinite. While it is not possible to list out a probability distribution
on infinite scenarios explicitly unless expressed concisely, even the finite scenario model
can be tricky. If the number of scenarios are not polynomial in other input parameters,
then it may not be feasible to list out the distribution explicitly. In a black box model,
the user is allowed to make polynomial amount of queries to a black box, and each such
query returns a scenario drawn according to the probability distribution. These samples
are then used to frame an approximation to the actual probability distribution. Another
variant specifies the probability with which each component occurs in the scenario that is
presented to the user in the second stage. This means that the probability of a scenario
occurring is just the product of the probabilities of occurrence of the components in the
scenario and the probabilities of non-occurrence of the components not in the scenario
(assuming independence).

1.2 Robust Optimization

Robust optimization handles uncertainty by constructing a solution that works well for the
worst possible scenario that may materialize. Unlike that in stochastic optimization, the
aim is not to construct a solution which performs well in expectation, but a solution that
performs well in the worst possible case. As noted in [9], the origins of robust optimization
lies in the field of robust control, where the uncertainty is in form of perturbations in the
parameters of the problem. Many optimization problems can be highly sensitive to such
perturbations, leaving the computed solution highly infeasible, suboptimal or both. The
idea of robustness is to develop solutions resilient to such sensitivity.

The uncertainty in such situations is not stochastic, but rather deterministic and set-
based. One intends to immunize the solution against any realization of the uncertainty in a
given set, instead of making it immune in some probabilistic sense to stochastic uncertainty
[9]. Recently, study of robust optimization received interest from the theoretical community
in an effort to understand computational tractability issues, among others. Works of
Ben-Tal and Nemirovski (e.g., [6], [7], [8],[5]) and others like [16], [32] explore robust
optimization versions of many problems in varied areas like portfolio optimization and
SDP.
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While we can define a multistage stochastic optimization problem, robust optimization
does not normally happen in multiple stages. All information needed to compute a solution
is known beforehand. The only thing that is not known is the actual scenario that will
materialize. This allows for a two stage process. Given the set of possible scenarios, one
is allowed to construct a partial solution to the problem at low costs. When the actual
scenario is revealed, the costs of the components involved are also inflated. Thus, one is
required to build a recourse solution to satisfy the scenario, but at a higher cost. The total
cost is the sum of the costs of solutions constructed in first and second stages. If Ω is the
set of scenarios, then the aim is (for a minimization problem):

min

(
(cost of first-stage partial solution) + max

A∈Ω
(cost of second stage recourse solution)

)
where costs may potentially be higher in the second stage. This translates to a single
stage process if the costs in the second stage are not inflated. In this case, the problem
of robust optimization becomes a min-max problem as there is no incentive of performing
an action in the first stage. The aim of the optimization problem can then thus be viewed
as construction of a mechanism (algorithm) A, which takes the deterministic parts of the
problem and a particular scenario from the set of all possible scenarios as input, and returns
a solution to the problem with that scenario as output. For a minimization problem, the
aim is:

min

(
max
A∈Ω
A (deterministic parts of problem, A)

)

1.3 Approximation Algorithms - Uncertainty in Net-

work Design Problems

Many deterministic network design problems are well studied and understood in terms of
approximation algorithms. It is natural to extend the problems to include uncertainty,
and develop approximation algorithms for these. Recently, much work has been done
in developing such models to include relevant notions of uncertainty, and constructing
solutions which are good in terms of some defined notion of goodness. In light of the
discussion above, one can develop both stochastic and robust optimization versions of such
network design problems. Let us consider some such common problems informally, and
their corresponding robust optimization and stochastic optimization versions.
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1.3.1 Set Cover

The input to the deterministic problem is a set system (U,F), where U is the universe of
elements, and F is a family of sets from U . There is a (non-negative) weight associated
with each set in the family F . Given a set of special elements K ⊆ U called terminals,
the aim is to come up with a collection of sets from the family F of minimum weight, such
that all the terminals are covered by this collection. It is hard to approximate this problem
to a factor better than log of the number of terminals, under reasonable assumptions [17].

Introduction of uncertainty: Here, the uncertainty lies in the exact set of terminals
that need to be covered. A scenario is a particular set of terminals that may need to be
covered, but it is not known precisely which scenario will occur from the set of all possible
scenarios Ω (Ω is supplied as an input to the problem). The robust optimization version
of the problem seeks to find a mechanism, which, given a scenario Si, returns a set cover
Ci covering Si, and the cost of the solution is judged by the cost of covering the most
notorious scenario, i.e.

min

(
max
Si∈Ω

( total weight of sets in Ci )

)
In a 2-stage stochastic optimization version of the problem, the sets are costlier in second
stage as compared to the first stage. In addition to Ω, a probability distribution over the
scenarios in Ω is also supplied as input to the problem. The aim is to include some sets in
the cover in first stage at lower weights (E0), and to extend it by an additional collection
of sets Ei (at higher weights) to satisfy the scenario Si in the second stage. The intention
is to minimize the expected cost of the solution:

min ((total weight of sets in E0 ) + ESi∈Ω ( total weight of sets in Ei ))

The exact approximation guarantees that can be obtained for these problems depend on
the way the set Ω is made accessible, and also the probability distribution in case of the
stochastic version. One is referred to [35] and [22] for further reading on this and related
problems. In this thesis, we study the next two problems we describe here.

1.3.2 Robust Facility Location Problem

In the deterministic version of the uncapacitated facility location problem (UFLP), the input
consists of a set of clients that need to satisfy their demands. Their demands are satisfied
by facilities, and the input specifies a set of potential locations F where the facilities can
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be opened, and the cost of opening a facility at each location. There is an underlying
metric which specifies the distance between clients and facilities, which also serves as the
cost of serving a unit demand at the client location by the facility concerned. The aim is
to open a set of facilities, and assign the clients to the open facilities, so that the total cost
of opening facilities and serving of client demands by the open facilities is minimized.

Introduction of uncertainty: Here, the uncertainty is supplied by an adversary, that
closes at most β facilities from the set of facilities F0 the user decides to open. Hence,
a scenario Si is a set of at most β facility locations. The collection of all scenarios Ω is
all possible subsets of the facility locations F of size at most β. The aim is to design an
algorithm that opens a set of facilities, and specifies the assignment σi of clients to open
facilities for every scenario Si, so as to achieve:

min

(
(cost of F0) + max

Si∈Ω
(cost of assignment σi of clients to facilities in F0 \ Si)

)
In this thesis, we study this robust version for UFLP and other variants of the facility
location problems.

1.3.3 Stochastic Steiner Tree Problem

The very well studied deterministic version of the Steiner tree problem is as follows: We
have a graph G = (V,E), and a cost function that assigns non-negative costs to each edge
of the graph. Additionally, a subset of vertices K (terminals) is provided as an input. The
aim is to find a subgraph of the original graph of minimum cost, such that this subgraph
is a tree that spans the terminals K.

Introduction of uncertainty: It is not known beforehand which set of terminals one
needs to cover, i.e. the uncertainty lies in the specification of set K. A scenario is a set
of terminals that need to be covered. In the 2-stage stochastic version, the collection of
all possible sets of terminals (i.e. set of scenarios Ω) and a probability distribution over
these terminal sets is provided as an input. One is allowed to construct a partial network
E0 in the first stage when only the set Ω and the probability distribution are known. Note
that E0 need not be a tree. In the second stage, the exact set of terminals Si ∈ Ω to cover
becomes known, and one must buy include additional set of edges Ei, such that E0 ∪Ei is
indeed a Steiner tree on Si. Care must be taken, however, that edges are costlier in second
stage as compared to the first stage. The objective is:

min ((cost of E0) + ESi∈Ω (cost of Ei))
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In this thesis, we study this stochastic version of the Steiner tree problem.

1.4 Outline of the Thesis

We provide an LP -rounding algorithm for the robust version of UFLP, that follows closely
rounding algorithms for the deterministic versions of the capacitated FLP. In Chapter 2,
we provide an overview of the rounding algorithms for the capacitated and uncapacitated
deterministic versions of FLP, an understanding of which is essential for understanding
the rounding algorithm for the robust version. In Chapter 3, we describe our rounding
algorithm for the robust version of the uncapacitated facility location problem. In Chapter
4, we extend this notion of robustness to the k-median facility location problem, and
explore promising directions towards solving this version. Finally, we present an improved
rounding algorithm for stochastic Steiner tree problem in Chapter 5.
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Chapter 2

LP Rounding Algorithms for Facility
Location Problems

In the next chapter, we describe a rounding algorithm for the robust version of the unca-
pacitated facility location problem (βRUFLP). As we shall see later, βRUFLP not only
is an extension of the uncapacitated facility location problem (UFLP), but also has fla-
vors from the capacitated facility location problem (CFLP). Our rounding algorithm for
βRUFLP derives inspiration from the rounding algorithms for UFLP and CFLP . We,
therefore, first present the rounding algorithms for UFLP and CFLP in this chapter. The
algorithms we discuss in this chapter are the ones presented by Shmoys et al in [36].

2.1 Uncapacitated FLP

In this section, we discuss the uncapacitated facility location problem. We are given a set
of clients D, and a set of facilities F . Every facility i ∈ F has a non-negative opening
cost fi associated with it. Every client j ∈ D has a non-negative demand dj which need
to be served by one or more open facilities. The cost of serving a unit demand of client
j by facility i is denoted by cij. The aim is to serve all the demands at minimum cost.
We discuss the metric version of the problem, in which the cost function ckl is defined for
k, l ∈ F ∪ D, and it follows the triangular inequality.

Hochbaum [26] presented a greedy algorithm with O(log n) approximation guarantee.
Shmoys, Tardos, and Aardal [36] used the techniques of Lin and Vitter [30] to give the first
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constant-approximation algorithm. Guha and Khuller in [20] showed that no ρ approxima-
tion algorithm for metric UFL exists for any ρ < 1.463, unless NP ⊂ DTIME (nO(log log n)).
Byrka [10] gave a 1.5-approximation algorithm, which is the best approximation factor for
the problem so far.

Throughout our discussion, we will use i to index the facilities in F and j to index the
clients in D. For the sake of ease of presentation, we will also assume unit demand at
every client(i.e. dj = 1). The following integer program captures this version of the facility
location problem:

minimize:
∑
i,j

cij · xij +
∑
i

fi · yi

subject to: ∀j,
∑
i

xij ≥ 1 (2.1)

∀i, j, xij ≤ yi (2.2)

∀i, j, xij, yi ∈ {0, 1} (2.3)

A natural linear relaxation of the above integer program relaxes the integrality constraint
to the following:

∀i, j, xij ≥ 0 and yi ≥ 0

Since there are no capacity constraints, we need not enforce that yi ≤ 1 in the constraint
above. We will henceforth refer to this LP as UFL− LP .

2.1.1 LP Rounding

The rounding algorithm proceeds in two stages. The first stage is filtering and the second
stage is clustering and rounding. A filtering step ensures that a client is served (fraction-
ally) by only nearby facilities. The main obstacle to rounding the UFL− LP solution are
the clients which are served by many fractionally open facilities to a small extent. The
clustering step clusters all the facilities close to a suitably chosen client, such that this
cluster contains large facility weight (in this case, the clusters contain enough weight to
pay for opening a facility integrally). The clusters are created, so that every client is close
to some suitable set of clusters, and is able to send a significant part of their demand to
these clusters.

Thus the algorithm results in a set of clusters, each of which can open a facility without
paying any extra cost than what is paid for the cluster by the UFL− LP solution, and
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all the clients are sending enough flow to some of these clusters that are close enough
to the client. Once we have such a solution with integrally open facilities and fractional
assignment costs, we are done, because assigning a client j to a facility ij = argmin

i:xij>0
cij

yields an integral assignment with a connection cost of at most the fractional connection
cost.

2.1.2 Rounding Algorithm

Filtering

The rounding algorithm starts by filtering, first introduced by Lin and Vitter in [30].
The filtering step modifies the solution so that a client is served only by nearby facilities,
without increasing the cost of the solution by much. Let (x∗, y∗) be an optimal solution to
the UFL− LP . The contribution of a client j towards the optimal LP solution is denoted
by C̄j and is defined by:

C̄j =
∑
i

x∗ij · cij (2.4)

Lemma (2.1.1) shows that a good fraction of a client j is served by nearby facilities.
Mathematically, let Nj(α) = {i : cij ≤ 1

1−α · C̄j}, for α ∈ (0, 1), then
∑

i∈Nj(α) xij ≥ α, i.e.
an α fraction of client j is served by facilities close enough to j.

Let Cost(x, y) denote the value of the UFL− LP objective for the solution (x, y). For a
fixed value of α (to be decided later) and due to the Lemma (2.1.1), one can easily modify
(x∗, y∗) to obtain another solution (x̄, ȳ), where the following hold:

∀i, ȳi = min(1, y∗i /α)

∀j, x̄ij = 0 if i /∈ Nj(α)

∀i, j, x̄ij ≤
1

α
· x∗ij

∀j,
∑
i

x̄ij = 1

Cost(x̄, ȳ) ≤ 1

α
· Cost(x∗, y∗)

and thus the new solution ensures that if x̄ij > 0 then i is near j, i.e. i ∈ Nj(α).
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Clustering Facilities and Rounding

We now modify the solution (x̄, ȳ) to obtain a more structured solution (x̂, ŷ). If a client
j is served fractionally by some integrally open facility i, then one can simply assign the
client to this facility integrally. Due to the filtering step, we know that cij ≤ 1

1−α · C̄j, and
hence the new connection cost of this client is bounded in terms of its connection cost in
the optimal LP solution, which is what we desire. Hence we need to cluster facilities of
only those clients that are not served by any integrally open facility.

Initialize D̂ = {j : ∀i, x̄ij > 0⇒ ȳi < 1}, i.e., set of all clients not served by any integrally

open facility. Also let F̂ = {i : ȳi 6= 1}, i.e., set of facilities not yet opened integrally.
Initialize all the x̂-values to 0 and set ŷi = 1 if ȳi = 1, otherwise set ŷi to 0.

Clustering Facilities: While D̂ 6= φ, repeat the following steps :

1. Pick j ∈ D̂ with minimum C̄j value.

2. Let Sj = {i ∈ F̂ : x̄ij > 0} and Dj = {j′ ∈ D̂ : ∃i ∈ Sj s.t. x̄ij′ > 0}. By definition
itself, j ∈ Dj. Sj is said to be the cluster and j is the corresponding cluster center.

3. Do: D̂ ← D̂ \Dj and F̂ ← F̂ \ Sj

Opening Facilities: For every cluster Sj, let oj be the cheapest facility in Sj. Set ŷoj = 1
and ŷi = 0 ∀i ∈ Sj \ {oj}, i.e. open the cheapest facility in the cluster.

Assigning Clients: Assign every client to the nearest open facility, i.e. for a client j′,
let ij′ = argmin

i:ŷi>0
cij′ . Set x̂ij′ = 1 for i = ij′ and 0 otherwise.

2.1.3 Analysis

Let us first state and prove the lemma that enabled our filtering step to be feasible.

Lemma 2.1.1. Let α ∈ (0, 1), and let Nj = {i : cij ≤ 1
1−α · C̄j}, then

∑
i∈Nj yi ≥ α.
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Proof. Let
∑

i/∈Nj x
∗(i, j) > 1− α. Then,

C̄j =
∑
i

x∗(i, j) · cij >
∑
i/∈Nj

x∗(i, j) · cij ≥
1

1− α
· C̄j ·

∑
i/∈Nj

x∗(i, j) ≥ C̄j

which is a contradiction. Thus, it follows that∑
i∈Nj

y∗i ≥
∑
i∈Nj

x∗(i, j) ≥ 1−
∑
i/∈Nj

x∗(i, j) ≥ α

where the first inequality follows form the LP constraint (2.2) and the second inequality
follows from the constraint (2.1) of the UFL− LP .

For α = 1
2
, the above lemma asserts that in a ball of radius 2 · C̄j centered at client j,

the amount of facility weight opened by the solution is at least a 1
2
. The set Nj is the set

of facilities near to j. Thus the filtering step as presented in the algorithm is feasible.

Facility Opening Cost: Let j ∈ D̂ be a cluster center, and Sj be the corresponding

cluster. At any stage of the algorithm, D̂ is the set of those clients which are served
entirely by fractionally open facilities. Thus, we have,∑

i∈Sj

yi ≥
∑
i∈Sj

xij = 1

Note that: ∑
i∈Sj

fi · ȳi ≥ foj ·
∑
i∈Sj

ȳi ≥ foj =
∑
i∈Sj

fi · ŷi

Thus, in a particular cluster, cost of opening the cheapest facility is paid off completely by
the facility opening cost of the cluster Sj by the solution (x̄, ȳ). Since these clusters are
mutually disjoint sets, we have:∑

i

ŷi · fi ≤
∑
i

ȳi · fi (2.5)

Connection Cost: Let J be the set of all cluster centers. Due to the filtering step, all
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facilities in a cluster Sj are close to each other. We have:

∀i, i′ ∈ Sj, cii′ ≤ cij + cji′ ≤ 2

1− α
C̄j. (2.6)

The following Lemma shows that every client is close to some open facility, and thus the
cost of connecting every client to its closest open facility is not much.

Lemma 2.1.2. For every client j ∈ D, there is an open facility i (i.e. ŷi = 1), with
cij ≤ 3

1−αC̄j.

Proof. If j ∈ J , then every facility in Sj is close to j. In particular, oj ∈ Sj is such that
ŷoj = 1 and cojj ≤ 1

1−α · C̄j. If j /∈ J , then there is a cluster center j∗, such that C̄j∗ ≤ C̄j,
and that the cluster Sj∗ serves j (fractionally), i.e. ∃i ∈ Sj∗ , such that, xij > 0. Because
of filtering, we know that cij ≤ 1

1−α · C̄j and from (2.6), we have cioj∗ ≤
2

1−αC̄j∗ ≤
2

1−αC̄j.

Thus using triangular inequality, we have that cjoj∗ ≤
3

1−αC̄j.

The following bound on the connection cost is thus immediate.

Corollary 2.1.3. The connection cost, when every client is served by the nearest open
facility, is bounded by 3

1−α
∑

j C̄j

Total Cost: Thus, we have:

Cost(x̂, ŷ) =
∑
i

fi · ŷi +
∑
i

∑
j

x̂ij · cij ≤
∑
i

ȳi · fi +
3

1− α
·
∑
j

C̄j

≤ 1

α
·
∑
i

y∗i · fi +
3

1− α
·
∑
j

C̄j (2.7)

Taking α = 1
4
, we have,

Cost(x̂, ŷ) ≤ 4 ·

(∑
i

y∗i · fi +
∑
j

C̄j

)
= 4 · Cost(x∗, y∗) (2.8)

Thus yielding a 4-approximation algorithm. Shmoys, Tardos and Aardal [36] use a ran-
domized filtering step, choosing α randomly from some interval, which improves this ap-
proximation ratio to 3.16.
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2.2 Capacitated FLP

In this section, we discuss the capacitated facility location problem. In this problem, we are
given a set of facilities, F and a set of clients D. Each client j ∈ D has a demand dj that
needs to be served by one or more open facilities. Opening a facility i ∈ F incurs a cost
fi. It costs cij to serve 1 unit of demand of a client j by facility i. Furthermore, no facility
may service more than u units of demand. The aim is to service all clients at the lowest
cost possible. We are going to assume that for any k, l ∈ F ∪ D, ckl is defined and obeys
the triangular inequality [14].

Capacitated facility location is studied in two varieties - with hard capacities and with
soft capacities. The facilities are said to have hard capacities if only one facility is allowed
to be open at a facility location. In the soft capacities version, however, a facility i with
opening cost fi and capacity ui pays d C

ui
e · fi for serving C clients, or in other words, d C

ui
e

facilities are opened at the location i . Further effort goes in designing algorithms that
ensure that the number of such facilities opened at a location is bounded.

Approximation algorithms for capacitated facility location problem with hard capaci-
ties are all based on local search. Korupolu, Plaxton and Rajaraman gave the first constant
approximation algorithm for the case of uniform capacities [34] (i.e. every facility has the
same capacity). Their analysis was subsequently improved by Chudak and Williamson [14]
which was further improved to yield a 3-approximation algorithm by Garg et al [1]. For
the facility location problem with non-uniform hard capacities, Pal, Tardos and Wexler
[33] gave the first constant factor approximation algorithm. The current best known ap-
proximation factor for this version is 5.83 by Zhang, Chen and Ye [39].

Jain and Vazirani [27], gave a 4-approximation algorithm for the facility location prob-
lem with non-uniform soft capacities. The current best known algorithm for this variation
is a 2-approximation algorithm by Mahdian, Ye and Zhang [31]. Recently, there has been
some work on the lower bounded facility location problem, where every open facility has to
serve at least a certain number B of clients. The first constant approximation algorithm
for this version was given by Svitkina [37], which was improved by Ahmadian and Swamy
[3] to yield a 82.6-approximation algorithm.

We will use i to index the facilities in F , and j to index the clients in D. The following
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integer program captures the capacitated facility location problem, with uniform capacities:

minimize:
∑
i,j

cij · xij · dj +
∑
i

fi · yi

subject to: ∀j,
∑
i

xij ≥ 1 (2.9)

∀i, j, xij ≤ yi (2.10)

∀i,
∑
j

xij · dj ≤ u · yi (2.11)

∀i, j, xij, yi ∈ {0, 1} (2.12)

The natural linear relaxation of the above program relaxes the integrality constraints to
the following:

∀i, j, xij ≥ 0 and 0 ≤ yi ≤ 1

Henceforth, we refer to the resulting LP as CFL− LP . The capacitated version of facility
location problem comes in two versions: the unsplittable version, where the demand located
at a client must be served by a single facility, and the splittable version, where the demand
present at a client is allowed to be split among open facilities. In the splittable version,
if all capacities are integral, then standard network flow theory implies that it is wlog to
assume that the demand is split integrally among the open facilities. With unit demands
(i.e. dj = 1 ∀j), the two versions are same. For simplicity of presentation, we will consider
this special case, where each client has a unit demand. However, the algorithm can be
easily adapted to work for the more general case of splittable non-unit demands. Thus the
objective function becomes:

minimize:
∑
i,j

cij · xij +
∑
i

fi · yi

Unfortunately, this LP-relaxation has an unbounded integrality gap, as demonstrated by
the following example presented in [36]: Consider an instance with u + 1 locations with
unit demand and at distance 0 from each other, with f1 = 0 and f2 = f3 = . . . = fu+1 = 1.
Any integral solution has to open at least one facility of unit cost, because there are u+ 1
demands, thus incurring a cost of at least 1. The optimum fractional solution has a cost
of 1

u+1
: Set y1 = 1 , y2 = 1

u+1
and y3 = . . . = yu+1 = 0, x1j = u

u+1
and x2j = 1

u+1
,

∀j ∈ {1, 2, . . . , u+ 1}. However, if one allows multiple facilities to be opened at a location,
the above example is no longer a problem, which is equivalent to saying that the capacities
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are allowed to be violated by a bounded factor.

2.2.1 LP Rounding

As in the uncapacitated case, the rounding algorithm proceeds in two stages. The first
stage is filtering and the second stage is clustering and rounding. The filtering step is
exactly the same as in the uncapacitated case, and it ensures that the facilities serving
a client are close to the client. Like in the uncapacitated case, the problem in rounding
the solution to CFL− LP are those clients which are served to a large extent by facilities
opened fractionally by the fractional solution. But since the facilities have capacity limits,
a more sophisticated clustering algorithm is required here. This clustering step clusters the
facilities together into disjoint clusters, where each cluster has enough facility weight (at
least half) so that facilities can be opened in these clusters without paying a much greater
cost than what the cluster pays towards the facility opening cost in the fractional solution.
Since a facility can serve only a limited amount of demand, we need to open multiple
facilities in a given cluster, instead of just one. Also, we can no longer ensure that every
client is served fully by the facilities opened, but we can ensure that every client is served
to a large extent (at least half) by these clusters. This is reasonable enough, because one
can then suitably scale the solution to satisfy the clients fully, by violating the capacity of
the facilities by some bounded amount.

2.2.2 Rounding Algorithm

Filtering

As in the uncapacitated case, we can modify (x∗, y∗) to obtain a more structured solution
(x̄, ȳ), where the following holds:

∀i, ȳi = y∗i /α

∀j, x̄ij = 0 if i /∈ Nj(α)

∀i, j, x̄ij ≤
1

α
· x∗ij

∀j,
∑
i

x̄ij = 1

where Nj(α) = {i : cij ≤ 1
1−α · C̄j}, for α ∈ (0, 1). Thus, the new solution ensures that
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if x̄ij > 0 then i is near j, i.e. i ∈ Nj(α). Also, Cost(x̄, ȳ) ≤ 1
α
· Cost(x∗, y∗). Note that ȳi

may be greater than 1, which is required, because otherwise the capacity constraint may
be violated. As discussed earlier, since the algorithm is allowed to open multiple facilities
at a location, ȳi > 1 does not pose as a problem, but allows us do precisely that.

Clustering Facilities and Rounding

As discussed earlier, one cannot ensure here that a client is served fully by the clusters.
What one can ensure, however, is that the clients are served to a large extent by the
clusters. Thus, we keep a client in the set D̂ till it is not served to an extent of half by the
clusters. J is the set of all cluster centers. The modified clustering algorithm is as follows:

Clustering Facilities: Initialize D̂ = D, and J = φ. While D̂ 6= φ, repeat the following
steps :

1. Pick j ∈ D̂ with minimum C̄j value. Set J ← J ∪ {j} .

2. Let Sj = {i ∈ F̂ : x̄ij > 0}. Sj is said to be a cluster and j is the corresponding

cluster center. Let Dj be the collection of all those clients in D̂ which are served to

an extent of at least half by the clusters, i.e. Dj = {j′ ∈ D̂ :
∑

j′′∈J
∑

i∈Sj′′
x̄ij′ ≥ 1

2
}.

By definition itself, j ∈ Dj.

3. Do: D̂ ← D̂ \Dj and F̂ ← F̂ \ Sj

Opening Facilities: For every cluster Sj, let Oj be the cheapest
⌈∑

i∈Sj yi

⌉
facilities in

Sj. Set ŷi = 1 ∀i ∈ Oj and ∀j ∈ J . Set ŷi = 0 ∀i ∈ F \
⋃
j∈J Oj.

Assigning Clients: Solve a transportation problem, where every client j′ sends
∑

i∈Sj x̄ij′

units of demand to the open facilities Oj of only those clusters Sj which have C̄j ≤ C̄j′ .
An open facility i accepts at most u units of demand. The solution of this transportation
problem defines the x̂ values. Lemma 2.2.1 shows that such a transportation problem is
feasible.
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2.2.3 Analysis

We first show that the transportation problem set up in the last step of the algorithm is a
feasible one.

Lemma 2.2.1. Let T be the following transportation problem: the clients j′ ∈ D act as
suppliers, the set of facilities

⋃
j Oj opened by the algorithm act as consumers. A supplier

j′ ∈ D has a supply of
∑

i∈Sj xij′ for the clusters Sj which have C̄j ≤ C̄j′. Each consumer
i ∈ Oj has a capacity u. T is a feasible transportation problem, i.e. the total supply for a
cluster is at most the total capacity of the cluster.

Proof. For a cluster Sj with the cluster center j (i.e. j ∈ J ), we have:

total capacity = u · |Oj| = u ·


∑
i∈Sj

yi


total supply =

∑
j′∈D

∑
i∈Sj

x̄ij′ ≤
∑
i∈Sj

u · ȳi ≤ u ·


∑
i∈Sj

ȳi


where the first inequality follows from (2.11). Thus, the total supply for a cluster is at
most the total capacity of the cluster and hence the transportation problem is well defined
and can be solved in polynomial time. The solution to this transportation problem defines
the x̂ij values.

Lemma 2.2.2. A client j′ ∈ D is assigned to an extent of at least half among the clusters,
i.e.,

∑
j∈J

∑
i∈Sj x̂ij ≥

1
2

Proof. If j′ ∈ J , then by definition of D̂, we have that
∑

i∈Sj′
x̄ij′ ≥ 1

2
. Thus,

∑
j∈J

∑
i∈Sj

x̂ij′ =
∑

j∈J :C̄j≤C̄j′

∑
i∈Sj

x̂ij′ =
∑

j∈J :C̄j≤C̄j′

∑
i∈Sj

x̄ij′ ≥
∑
i∈Sj′

x̄ij′ ≥
1

2

Otherwise, j′ /∈ J . Since j is not added as a cluster center, thus it is being served to an
extent of at least half by the clusters created by the time j′ was eligible to be considered
as a cluster center. All the clusters created so far had cluster centers j such that C̄j ≤ C̄j′ .
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Thus, we have, ∑
j∈J

∑
i∈Sj

x̂ij′ =
∑

j∈J :C̄j≤C̄j′

∑
i∈Sj

x̂ij′ =
∑

j∈J :C̄j≤C̄j′

∑
i∈Sj

x̄ij′ ≥
1

2

This completes the proof.

An important consequence of the way the x̂-values are defined is that a client j′ is
served by a cluster in the solution (x̂, ŷ) only if it was also served by this cluster in the
solution (x̄, ȳ). This observation shall be helpful for us in bounding the connection cost of
the solution (x̂, ŷ). Also note that if x̂ij′ > 0 for some i ∈ Sj, j ∈ J , then C̄j ≤ C̄j′ .

Facility Opening Cost: We know that∑
i∈Sj

ȳi ≥
∑
i∈Sj

x̄ij ≥
1

2

The first inequality follows from the constraint (2.10), and the second inequality follows
from the definition of D̂. Also,∑

i∈Sj

ȳi ≥
1

2
⇒ d

∑
i∈Sj

ȳie ≤ 2 ·
∑
i∈Sj

ȳi

Thus, one can easily verify (it follows from using Lemma (3.4.2)) that the cost of opening
cheapest d

∑
i∈Sj ȳie facilities in Sj is upper bounded by 2 ·

∑
i∈Sj fi · ȳi. Thus, we have,∑

i∈Sj

ŷi · fi ≤ 2 ·
∑
i∈Sj

ȳi · fi.

Since the clusters are mutually disjoint and their union may not cover the entire set of
facilities F , we have:∑

i

ŷi · fi =
∑
j∈J

∑
i∈Sj

ŷi · fi ≤ 2 ·
∑
j∈J

∑
i

ȳi · fi ≤ 2 ·
∑
i

ȳi · fi (2.13)

Connection Cost: Due to the filtering step, all facilities in Sj are close to each other.
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We have:

∀i, i′ ∈ Sj, cii′ ≤ cij + cji′ ≤ 2

1− α
C̄j. (2.14)

The maximum distance between any client j′ ∈ D and a facility i ∈ Oj (where j is a
cluster center) that serves it fractionally (i.e. x̂ij′ > 0), can be bound in terms of C̄j′ .
This is possible because, ∃i′′ ∈ Sj, such that, x̄i′′j′ > 0 and thus due to the filtering step,
ci′′j′ ≤ 1

1−αC̄j′ , and thus, we have:

∀i ∈ Sj cij′ ≤ cii′′ + ci′′j′ ≤ 2

1− α
C̄j +

1

1− α
C̄j′ ≤ 3

1− α
C̄j′ (2.15)

where the first inequality follows from the metric property, the second inequality follows
from (2.14), and the third property follows because of the way the transportation problem
was set up.

Therefore, at the end of the rounding algorithm, every client is satisfied to an extent
of at least a 1

2
by integrally open facilities, and the following property holds:

∀i, j, x̂ij > 0 ⇒ cij ≤
3

1− α
· C̄j (2.16)

Thus, as discussed earlier, we are now done, because we can now open twice as many
facilities at every location, (set ŷi ← 2 · ŷi, ∀i) and suitably modifying the x̂-values,
increasing them to at most twice their original value, and satisfying

∑
i x̂ij = 1 ∀j. Since

we do not introduce any new non-zero x-value in this process, the property (2.16) still
holds, and the equation (3.27) changes to:∑

i

ŷi · fi ≤ 4 ·
∑
i

ȳi · fi (2.17)

The property (2.16) ensures that the connection cost of the solution (x̂, ŷ) is not very
high. The connection cost is:∑

i

∑
j

x̂ij · cij ≤
3

1− α
·
∑
j

C̄j ·
∑
i

x̂ij =
3

1− α
·
∑
j

C̄j (2.18)

The equality holds because
∑

i x̂ij = 1, ∀j.

Total Cost: The solution (x̂, ŷ) has integral ŷ-values and fractional x̂-values. The x̂-
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values can be thought of as flow from demands to open facilities, and since the demand at
each location is integral, an integral flow exists between the demands and the open facilities
of the same cost as the fractional flow, and this integral flow can be found in polynomial
time. Thus the cost of the integral solution is :

Cost(x̂, ŷ) =
∑
i

fi · ŷi +
∑
i

∑
j

x̂ij · cij ≤ 4 ·
∑
i

ȳi · fi +
3

1− α
·
∑
j

C̄j

≤ 4

α
·
∑
i

y∗i · fi +
3

1− α
·
∑
j

C̄j (2.19)

Taking α = 4
7
, we have,

Cost(x̂, ŷ) ≤ 7 ·

(∑
i

y∗i · fi +
∑
j

C̄j

)
= 7 · Cost(x∗, y∗) (2.20)

And thus the rounding algorithm is a 7-approximation algorithm.
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Chapter 3

Robust Facility Location Problem

The classical facility location problems like uncapacitated facility location(UFL), capaci-
tated facility location(CFL), as well as many other standard facility location models assume
that facilities are completely reliable and not prone to failures. However, there are various
settings where this is not true, and in order to deliver effective solutions, we need to design
solutions that are resilient to failures. Various ways of incorporationg such resilience have
been considered in the literature.

Jain and Vazirani introduced the fault tolerant version of facility location problems in
[28]. In this version, a client j is to be served by rj open facilities, its shipping cost being
some weighted linear combination of the costs of shipping demand from all the facilities
to which it is assigned. This introduces a kind of robustness in the system, so that each
client is not connected to just one facility, but several facilities, and thus if some facilities
go down, the client is possibly still served.

Chechik and Peleg introduced a new kind of robustness in the facility location problem
framework in their recent work [13]. In this variant, once we decide which facilities to
open, an adversary closes at most β of them. The clients are then connected to the closest
facility from the remaining open facilities. The client pays only for the cost of shipping its
demand from the surviving facility that actually supplied its demand.

More formally, the β-robust uncapacitated facility location problem (βRUFLP) is defined
as follows: We are given a set of clients D, and a set of facilities F . Every facility i ∈ F has
a non-negative opening cost fi associated with it. Every client j ∈ D has a non-negative
demand dj which need to be served by one or more open facilities. The cost of serving a
unit demand of client j by facility i is denoted by cij. However, when the set of facilities F
to be opened is chosen, an adversary can close up to β of the open facilities, and the clients
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are assigned to the remaining open facilities. The aim is to search for a set of facilities F ,
that minimizes the sum of costs of opening the facilities in F and the costs of assigning
the demand of each node to the open facilities that did not fail, for any failure of up to β
facilities. We discuss the metric version of the problem, in which the cost function ckl is
defined for k, l ∈ F ∪ D, and it follows the triangle inequality.

In Chapter 4, we study the extension of this definition of robustness to the k-median
facility location problem, yielding the β-robust k-median facility location problem. In this
version, we are again looking for a set of facilities F that minimizes the sum of the cost
of the opening facilities and the cost of serving clients by the open facilities not closed by
the adversary, subject to the additional constraint that the set F cannot have more than
k facilities.

Chechik and Peleg give a 6.5 approximation for βRUFLP problem with at most 1
failure, and a 1.5 + 7.5β-approximation with at most β > 1 failures. Byrka, Ghodsi and
Srinivasan [11] gave an LP-rounding based (β+ 5 + 4/β)-approximation algorithm for this
problem. We study this version in this chapter, and present a different rounding algorithm
than what is presented in [11]. Our aim in studying βRUFLP with this rounding algorithm
was to get some insights into the structure of the problem and apply these ideas to the
β-robust k-median facility location problem, and thus we did not attempt to optimize
the approximation factors. We assume that all the facility opening costs are same (i.e.
∀i, fi = f) and obtain a 13.93-approximation algorithm for the special case of β = 1.

As Chelek and Peleg note in [13], their version is closely related to the 2-stage stochastic
model. The stochastic version proceeds in two decision stages. There is a probability
distribution over possible scenarios (a scenario, in facility location problems, specifies the
clients and their demands). In the first stage, some facilities may be purchased. This is
followed by some scenario, and a second decision stage is entered. One is now allowed to
open more facilities in this stage, but the facility costs may now be much higher than what
they were in the first stage. In contrast to this, in the robust version, the facilities must
be opened and paid for in advance, and these advance decisions must be adequate under
al possible future scenarios.
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3.1 Linear Programming Formulation

Byrka, Ghodsi and Srinivasan consider the following Integer Program for this problem in
[11]:

minimize:
∑
i∈F

fi · yi + max
A

∑
i

∑
j

cij · x(A, i, j)

subject to: ∀A, j,
∑
i

x(A, i, j) ≥ 1, (3.1)

∀i, A, j, x(A, i, j) ≤ yi, (3.2)

∀A, i ∈ A, j, x(A, i, j) = 0 (3.3)

∀i, A, j, x(A, i, j), yi ∈ {0, 1}. (3.4)

Here, A denotes a set of facilities of cardinality β. x(A, i, j) = 1 if the client j is served
by facility i /∈ A when the set of facilities closed is A, and is 0 otherwise. The constraints
ensure that a facility serves a client only if it is open. Also, if a facility i ∈ A, then it
cannot serve any clients. The integrality constraints in the above program can be relaxed
to the following:

∀i, A, j, x(A, i, j) ≥ 0 and yi ≥ 0

Note that the above formulation is not exactly a linear program, because the presence
of the max term in the objective makes it a non-linear function. But this can be easily
taken care of by introducing a new variable B, and modifying the objective function to
following:

minimize:
∑
i∈F

fi · yi + B

and introducing the following additional constraints:

∀A,
∑
i

∑
j

cij · x(A, i, j) ≤ B

Note that here can guess the value of B (see Section 3.5.1). As B is no longer a variable
but a known constant, the B term is no longer required in the objective function. Also,
we can strengthen this LP, by adding the following additional constraints when the value
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of B is known:

∀A, i,
∑
j

cij · x(A, i, j) ≤ B · yi

This trick of making the objective function linear and guessing the max term can be applied
to every such LP formulation presented in this thesis.

This LP is henceforth referred to as RUFLP − LP1 . A natural extension of this LP
to the β-robust k-median facility location problem would be to introduce the following
constraint in RUFLP − LP1 : ∑

i

yi ≤ k

However, Lemma 4.1.1, we show that the LP so obtained has an unbounded integrality
gap, and thus cannot be rounded. This motivated us to strengthen the above linear pro-
gram. We will introduce the strengthened form of this linear program for the βRUFLP
(referred to as RUFLP − LP2 ) here, and work with it for the rest of the chapter. Lemma
3.2.1 shows that RUFLP − LP2 is stronger than RUFLP − LP1 , in that every solution
to RUFLP − LP2 can be converted to a solution to RUFLP − LP1 of the same cost, and
hence the optimal value of RUFLP − LP1 is at most the optimal value of RUFLP − LP2 ,
and thus RUFLP − LP2 provides a better lower bound on the optimum. Byrka, Gh-
odsi and Srinivasan, in [11] also give an example that shows that the integrality gap of
RUFLP − LP1 is at least β + 1 + ε. Later in the chapter, we shall also show that this
example breaks down for RUFLP − LP2 .

3.2 A Different Linear Program

Let us consider the case when β = 1, i.e. when the adversary closes at most 1 facility. The
objective function is:

min
F⊆F

(
c(F ) + max

i∈F

∑
j

c (j, F \ {i})

)
(3.5)

Here c(F ) is the cost of opening the facilities in F , and c(j, S) denotes the cost of connecting
client j to the closest facility in set S. The integer program we consider has x(i, i′, j) and
yi as variables where i′ 6= i; i, i′ ∈ F and j ∈ D. x(i, i′, j) = 1 iff client j is served by
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facility i and is served by facility i′ in the event that the adversary closes facility i. We can
think of this as assigning a client j to a pair ii′ of facilities, where we call i as the primary
facility of j and i′ as the secondary facility of j.

Note that these variables are very different from the variables x(A, i, j) of the earlier
IP . The constraints of the earlier IP are such that the facilities in A need not be open
for the variable x(A, i, j) > 0. The constraint (3.1), in fact, ensures that whatever the set
A be, immaterial of whether facilities of A are opened (even fractionally) by the solution
or not, there is some i, such that x(A, i, j) > 0. In the variables we use here, however, the
variable x(i, i′, j) can be non-zero only if both the facilities i and i′ are open facilities.

The objective function (3.5) can be re-written as follows:

min
F⊆F

(
c(F ) +

∑
j

c(j, F ) + max
i∈F

∑
j

(c (j, F \ {i})− c (j, F ))

)
(3.6)

In terms of our variables, we have:

c (j, F \ {i}) =
∑
i′ 6=i

x(i, i′, j) · ci′j +
∑
i1 6=i

∑
i2 6=i1

x(i1, i2, j) · ci1j (3.7)

c (j, F ) =
∑
i1

∑
i2 6=i1

x(i1, i2, j) · ci1j (3.8)

And thus:

c (j, F \ {i})− c (j, F ) =
∑
i′ 6=i

x(i, i′, j) · (ci′j − cij) (3.9)

Thus the objective function is:

min

(∑
i

fi · yi +
∑
j

∑
i

∑
i′ 6=i

x(i, i′, j) · cij + max
i

∑
j

∑
i′ 6=i

x(i, i′, j) · (ci′j − cij)

)
(3.10)
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The following integer program captures the problem:

minimize:

(∑
i

fi · yi +
∑
j

∑
i

∑
i′ 6=i

x(i, i′, j) · cij + max
i

∑
j

∑
i′ 6=i

x(i, i′, j) · (ci′j − cij)

)
subject to: ∀j,

∑
i

∑
i′ 6=i

x(i, i′, j) ≥ 1, (3.11)

∀i, j,
∑
i′ 6=i

x(i, i′, j) + x(i′, i, j) ≤ yi, (3.12)

∀i, i′, j, x(i, i′, j), yi ∈ {0, 1}. (3.13)

A linear relaxation of this integer program modifies the last constraint to the following :

∀i, i′, j, x(i, i′, j) ≥ 0 and 0 ≤ yi ≤ 1

We call the resulting linear program as RUFLP − LP2 . Constraint (3.11) ensures that
every client is assigned to some facility pair. Constraint (3.12) asserts that a facility can
not be used as a primary or secondary facility for a particular client j, unless it is open.
Moreover, this constraint also says that a facility can only act as either a primary or
a secondary facility for a particular client, but not both, in an integral solution. It is
essentially this constraint that makes the RUFLP − LP2 different from RUFLP − LP1 ,
and it is this constraint that captures the robustness of the problem. An integral solution
to an instance of βRUFLP opens at least 2 facilities. The constraint (3.12) ensures that
this is true even for the fractional solution, which is not ensured in RUFLP − LP1 :∑

i

yi ≥
∑
i

∑
i′ 6=i

(x(i, i′, j) + x(i′, i, j)) = 2 ·
∑
i

∑
i′ 6=i

x(i, i′, j) ≥ 2

The following lemma shows that this linear program is indeed stronger than the original
one.

Lemma 3.2.1. Any feasible solution (x, y) to RUFLP − LP2 of objective function value
Cost(x, y) can be converted into a feasible solution (x̄, ȳ) to RUFLP − LP1 having an
objective function value Cost(x̄, ȳ), such that Cost(x, y) = Cost(x̄, ȳ).
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Proof. We obtain the solution (x̄, ȳ) from (x, y) as follows:

∀i, ȳi = yi

∀i1, i2 6= i1, j, x̄({i1}, i2, j) = x(i1, i2, j) +
∑
i3 6=i2

x(i2, i3, j)

∀i1, j, x̄({i1}, i1, j) = 0

We need to show that this solution (x̄, ȳ) is a feasible solution to RUFLP − LP1 . The
constraint (3.1) is:

∀ i1, j,
∑
i2

x({i1}, i2, j) =
∑
i2 6=i1

(
x(i1, i2, j) +

∑
i3 6=i2

x(i2, i3, j)

)
=
∑
i2

∑
i3 6=i2

x(i2, i3, j) ≥ 1

where the last inequality follows from the constraint (3.11). The constraint (3.2) is:

∀ i1, i2 6= i1, j, x({i1}, i2, j) = x(i1, i2, j) +
∑
i3 6=i2

x(i2, i3, j)

≤
∑
i3 6=i2

(x(i3, i2, j) + x(i2, i3, j)) ≤ yi

By construction, constraint (3.3) is satisfied too. The integrality constraints and their
linear relaxations also hold. Thus the solution (x̄, ȳ) is feasible for RUFLP − LP1 . The
cost of this solution is:

Cost(x̄, ȳ) =
∑
i∈F

fi · ȳi + max
i1

∑
i2

∑
j

x̄({i1}, i2, j) · ci2j

=
∑
i∈F

fi · yi + max
i1

∑
i2 6=i1

∑
j

(
x(i1, i2, j) +

∑
i3 6=i2

x(i2, i3, j)

)
· ci2j

=
∑
i∈F

fi · yi + max
i1

∑
j

(∑
i2 6=i1

x(i1, i2, j) · ci2j +
∑
i2 6=i1

∑
i3 6=i2

x(i2, i3, j) · ci2j

)
= Cost(x, y)

where the last equality follows from (3.5) and (3.7).

We shall later show that a similar result holds for the case β > 1 also, i.e. the
RUFLP − LP2 extended for the general case of β ≥ 1 is stronger than RUFLP − LP1 .
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This immediately implies that any approximation guarantees obtained by using the former
linear program, also apply for this linear program. In particular, we immediately have a
rounding algorithm for RUFLP − LP2 having an approximation ratio of (β + 5 + 4/β),
using the algorithm of Byrka et al in [11]:

Corollary 3.2.2. There is an LP-rounding based (β+5+4/β)-approximation algorithm for
the βRUFLP problem which rounds a fractional solution of RUFLP − LP2 to an integral
solution.

In an attempt to gain some insights into rounding our linear program RUFLP − LP2 ,
we design a different rounding algorithm for this LP , albeit one that works only for uni-
form facility costs. In the rest of this chapter, we present this rounding algorithm. For
the purposes of this new rounding algorithm, it will be more convenient to consider the
following slightly modified objective function, which is an upper bound on the objective
function (3.10):

min

(∑
i

fi · yi +
∑
j

∑
i

∑
i′ 6=i

x(i, i′, j) · cij + max
i

∑
j

∑
i′ 6=i

x(i, i′, j) · ci′i

)
(3.14)

We also need to show that the objective function in (3.14) is not very much larger than
the objective function (3.10). We show this later in Section 3.5.2. We call the components
of the objective function (3.14) as Opening cost, Connection cost and Relocation cost,
respectively. We can guess the maximum relocation cost B, and thus we can remove the
max term from the objective function and incorporate this information as a constraint,
which reduces the objective function to:

min

(∑
i

fi · yi +
∑
j

∑
i

∑
i′ 6=i

x(i, i′, j) · cij

)
(3.15)

Since the relocation cost B is now a parameter to the LP , we will refer to the above LP as
RFLP (B) (Robust Facility Location Problem with relocation cost as B). Thus the cost of
a solution to the problem is B + the value of the objective function. Also, our algorithm
works for the case where all facility opening costs are same (i.e. fi = f ∀ i). Thus, the
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following integer program captures the problem for which we devise a rounding algorithm

minimize:
∑
i

f · yi +
∑
i

(∑
i′ 6=i

∑
j

x(i, i′, j) · cij

)
subject to: ∀j,

∑
i

∑
i′ 6=i

x(i, i′, j) ≥ 1, (3.16)

∀i, j,
∑
i′ 6=i

x(i, i′, j) + x(i′, i, j) ≤ yi, (3.17)

∀i,
∑
i′ 6=i

∑
j

x(i, i′, j) · c(i, i′) ≤ B · yi, (3.18)

∀i, i′, j, x(i, i′, j), yi ∈ {0, 1}. (3.19)

Constraint (3.18) ensures that the relocation cost of an open facility i, i.e. cost of reas-
signing its clients in the event i is closed, is bounded by B (the maximum relocation cost).
Recall that we are now assuming that we know B, and that B is not a variable (and thus
constraint (3.18) is a linear constraint). We show how to find the value of B in Section
3.5.1. Also, constraint 3.5.1 is similar to the capacity constraint in CFLP . Though our
problem is uncapacitated, this constraint introduces flavor of CFLP , and thus we will refer
to this constraint as capacity constraint from now on.

3.3 Rounding the LP solution

Let (x∗, y∗) be an optimal solution to the above LP. We modify the solution in stages and
obtain an integer solution at the end. Let us denote the contribution of a client j towards
the value of the solution (x∗, y∗), by C̄j, defined as

C̄j =
∑
i

∑
i′ 6=i

x∗(i, i′, j) · cij

Let x∗(i, j) =
∑

i′ 6=i x
∗(i, i′, j), i.e. x∗(i, j) is the weight of cij in the weighted sum C̄j. As

for the UFLP and CFLP , Lemma 2.1.1 shows that the facilities serving a client j partially,
are such that a large chunk of j is served by facilities not too far away, i.e., for α ∈ (0, 1),
and Nj = {i : cij ≤ 1

1−α · C̄j}, we have,
∑

i∈Nj yi ≥ α.

30



3.3.1 Filtering

Due to Lemma 2.1.1, we can modify the solution (x∗, y∗) of the LP to obtain a more
structured solution (x̄, ȳ), just as we did for UFLP and CFLP . In particular, the solution
(x̄, ȳ) satisfies the following properties, for a fixed α (whose value will be decided later):

∀i, ȳi = min(1, y∗i /α) (3.20)

∀i, i′, j, x̄(i, i′, j) = 0 if i /∈ Nj(α) (3.21)

∀i, i′, j, x̄(i, i′, j) ≤ 1

α
· x(i, i′, j) (3.22)

∀j,
∑
i

∑
i′ 6=i

x̄(i, i′, j) = 1 (3.23)

Since the constraint (3.20) asserts that ȳi ≤ 1, the capacity constraint for RFLP (B) may
no longer be satisfied by the solution (x̄, ȳ). Instead, the following modification of the
constraint is satisfied:

∀i
∑
i′ 6=i

∑
j

x̄(i, i′, j) · c(i, i′) ≤ 1

α
·B · ȳi, (3.24)

Thus, this solution is feasible for RFLP (B′), where, B′ = 1
α
·B. Also,

Cost(x̄, ȳ) ≤ 1

α
· Cost(x∗, y∗) (3.25)

3.3.2 Clustering and Rounding

The clustering and rounding algorithm we use here follows closely the clustering and round-
ing algorithm for CFLP , as described in Section 2.2.2. In the robust version, a client j is
allotted to a pair (i, i′) instead of just a single facility, where i is the primary facility and
i′ is the secondary facility of j. Our algorithm clusters the primary facilities, and opens
suitable secondary facilities so that their opening cost can be charged to the cost of opening
the primary facilities, which can be bounded in a fashion similar to that in CFLP .

As in Section 2.2.2, let us use the solution (x̄, ȳ) to obtain a new solution (x̂, ŷ). In our
rounding algorithm, we are going to open pairs of facilities integrally as opposed to opening
single facilities. If every client j is served to an extent of at least a 1

2
by the facility pairs

opened integrally, then we are done, because we can double our guess of the maximum
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relocation cost B′ and suitably modify the x̂ values without violating any constraints and
increasing the relocation and connection costs of the solution by at most a factor of 2.

The clustering algorithm groups the primary facilities to form clusters having significant
(≥ 1

2
) primary facility weight open. Let D̂ be the set of clients not served to an extent

of at least 1
2

by the facility pairs opened integrally and F̂ be the set of potential primary

facilities not opened integrally. The algorithm terminates when D̂ becomes empty.

Clustering Facilities: Initialize D̂ = D, and J = φ. Also initialize all the ŷi values to
be 0. While D̂ 6= φ, repeat the following steps :

1. Pick j ∈ D̂ with minimum C̄j value. Set J ← J ∪ {j} .

2. Let Sj = {i ∈ F̂ :
∑

i 6=i′ x̄(i, i′, j) > 0}. Sj is said to be a cluster and j is the

corresponding cluster center. Let Dj be the collection of all those clients in D̂
which are served to an extent of at least half by the clusters, i.e. Dj = {j′ ∈
D̂ :

∑
j′′∈J

∑
i∈Sj′′

∑
i′ 6=i x̄(i, i′, j′) ≥ 1

2
}. By definition itself, j ∈ Dj.

3. Do: D̂ ← D̂ \Dj and F̂ ← F̂ \ Sj

Opening Facilities: For a given facility i, let s(i) denote the facility in F closest to i. Let
P (S) = {(i, s(i)) : i ∈ S}, and let the cost associated with a pair (i, s(i)) be the distance

between i and s(i), i.e., ci,s(i). For every cluster Sj, let Oj be the cheapest
⌈∑

i∈Sj yi

⌉
pairs

in P (Sj). Set ŷi = 1 ∀i such that (i, i′) ∈ Oj or (i′, i) ∈ Oj for some j ∈ J .

Assigning Clients: Solve a transportation problem, where every client j′ sends
∑

i∈Sj∑
i 6=i′ x̄(i, i′, j′) units of demand to the open facility pairs Oj of only those clusters Sj which

have C̄j ≤ C̄j′ . An open facility pair (i, s(i)) accepts at most B′

ci,s(i)
units of demand. The

solution of this transportation problem defines the x̂ values. Lemma 3.4.1 shows that such
a transportation problem is feasible.

3.4 Analysis

The Lemma below is similar to the Lemma 2.2.1 in the case of CFLP , and proves that the
transportation problem so created in the final step of the algorithm is feasible.
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Lemma 3.4.1. Let T be the following transportation problem: the clients j′ ∈ D act as
suppliers, the set of facility pairs in

⋃
j∈J Oj opened by the algorithm act as consumers.

A supplier j′ ∈ D has a supply of
∑

i∈Sj

∑
i′ 6=i x(i, i′, j′) for the clusters Sj which have

C̄j ≤ C̄j′. Each consumer (i, s(i)) ∈ Oj has a capacity B′

ci,s(i)
. T is a feasible transportation

problem, i.e., the total supply for a cluster is at most the total capacity of the cluster.

Proof. For a cluster Sj with the cluster center j (i.e. j ∈ J ), we have:

total capacity =
∑

(i,s(i))∈Oj

B′

ci,s(i)

total supply =
∑

j′∈D : C̄j≤C̄j′

∑
i∈Sj

∑
i′ 6=i

x̄(i, i′, j′)

By constraint (3.18), for a facility i ∈ Sj, we have:

B′ · ȳi ≥
∑
j′∈D

∑
i′ 6=i

x̄(i, i′, j′) · cii′

≥
∑

j′∈D : C̄j≤C̄j′

∑
i′ 6=i

x̄(i, i′, j′) · cii′ ≥
∑

j′∈D : C̄j≤C̄j′

∑
i′ 6=i

x̄(i, i′, j′) · ci,s(i)

Thus the total demand served by a facility i ∈ Sj is bounded as follows:

Demand served by i ∈ Sj =
∑

j′∈D : C̄j≤C̄j′

∑
i′ 6=i

x̄(i, i′, j′) ≤ B′ · ȳi
ci,s(i)

And thus, we have:

Total Demand =
∑
i∈Sj

∑
j′∈D : C̄j≤C̄j′

∑
i′ 6=i

x̄(i, i′, j′) ≤
∑
i∈Sj

B′ · ȳi
ci,s(i)

We just need to show that
∑

i∈Sj
B′·ȳi
ci,s(i)

≤
∑

(i,s(i))∈Oj
B′

ci,s(i)
to show that the transportation

problem is a feasible problem. For this, we just need a small mathematical result stated
in Lemma 3.4.2. Let (i1, s(i1)), (i2, s(i2)), . . ., (ik, s(ik0)) be an ordering of pairs in O in
increasing order of their costs, where k0 = |O|. Assign αk = B′

c(ik,s(ik))
and yk = ȳk.
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Using Lemma (3.4.2), we have:∑
i∈Sj

B′ · ȳi
ci,s(i)

≤
∑

(i,s(i))∈Oj

B′

ci,s(i)
(3.26)

This shows that the transportation problem is a feasible problem, and its solution is well-
defined. The solution to this transportation problem defines the value of x̂ variables.

Lemma 3.4.2. Let α1, α2, . . . αn be such that αk ∈ R and α1 ≥ α2 ≥ . . . ≥ αn and let
yk ∈ [0, 1], k ∈ {1, 2, . . . , n}. Let k0 = d

∑
k yke. Then,

∑
k αk · yk ≤

∑
k≤k0 αk.

The next Lemma is analogous to the Lemma 2.2.2, and the proof follows exactly on
the same lines.

Lemma 3.4.3. A client j′ ∈ D is assigned to an extent of at least half among the clusters,
i.e.,

∑
j∈J

∑
i∈Sj

∑
i′ 6=i x̂(i, i′, j′) ≥ 1

2

Proof. If j′ ∈ J , then by definition of D̂, we have that
∑

i∈Sj′
∑

i′ 6=i x̂(i, i′, j′) ≥ 1
2
. Thus,∑

j∈J

∑
i∈Sj

∑
i′ 6=i

x̂(i, i′, j′) =
∑

j∈J :C̄j≤C̄j′

∑
i∈Sj

∑
i′ 6=i

x̂(i, i′, j′)

=
∑

j∈J :C̄j≤C̄j′

∑
i∈Sj

∑
i′ 6=i

x̄(i, i′, j′) ≥
∑
i∈Sj′

∑
i′ 6=i

x̄(i, i′, j′) ≥ 1

2

Otherwise, j′ /∈ J . Since j is not added as a cluster center, thus it is being served to an
extent of at least half by the clusters created by the time j′ was eligible to be considered
as a cluster center. All the clusters created so far had cluster centers j such that C̄j ≤ C̄j′ .
Thus, we have,∑

j∈J

∑
i∈Sj

∑
i′ 6=i

x̂(i, i′, j′) =
∑

j∈J :C̄j≤C̄j′

∑
i∈Sj

∑
i′ 6=i

x̂(i, i′, j′) =
∑

j∈J :C̄j≤C̄j′

∑
i∈Sj

∑
i′ 6=i

x̄(i, i′, j′) ≥ 1

2

This completes the proof.

Facility Opening Cost: The algorithm considers every facility at most once, when it
lies in a set Sj, for some j. Once considered, the entire set is removed from F̂ and hence
is not considered again. In a cluster Sj, the algorithm opens d

∑
i∈Sj ȳie primary facilities,
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and during this iteration, the algorithm needs these many secondary facilities. Over all the
iterations, the number of secondary facilities is at most the number of primary facilities
(since a facility can both be a primary facility and a secondary facility for different clients,
and also different primaries can have the same secondaries).

Note that a facility is given status of a primary facility only once, but a facility can
be declared as a secondary facility in multiple iterations, and also for multiple primary
facilities in the same iteration. Since in our assumptions we assumed that opening cost of
all facilities is same, hence we can charge the opening cost of secondary facilities to the
opening cost of primary facilities.

As j ∈ D̂, we have:

1

2
≤
∑
i∈Sj

∑
i′ 6=i

x(i, i′, j) ≤
∑
i∈Sj

yi

Thus Sj has a primary facility weight of at least a half. Thus we have that

d
∑
i∈Sj

yie ≤ 2 ·
∑
i∈Sj

yi

Thus, in a particular iteration, cost of opening primary facilities is :

f · d
∑
i∈Sj

ȳie ≤ 2 · f ·
∑
i∈Sj

ȳi.

Since the clusters are mutually disjoint and their union may not cover the entire set of
facilities F , we have:∑

i

ŷi · f =
∑
j∈J

∑
i∈Sj

ŷi · f ≤ 4 ·
∑
j∈J

∑
i

ȳi · f ≤ 4 ·
∑
i

ȳi · f ≤
4

α
·
∑
i

y∗i · f (3.27)

Connection Cost: This analysis follows closely the analysis of connection cost in CFLP .
Due to the filtering step, all facilities in Sj are close to each other. We have:

∀i, i′ ∈ Sj, cii′ ≤ cij + cji′ ≤ 2

1− α
C̄j. (3.28)

The maximum distance between any client j′ ∈ D and a facility i such that (i, s(i)) ∈ Oj

(where j is a cluster center) that serves it fractionally (i.e. ∃i′ 6= i such that x̂(i, i′, j′) > 0),
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can be bound in terms of C̄j′ . This is possible because, ∃i′′ ∈ Sj and i′′′ 6= i′′, such that,
x̄(i′′, i′′′, j′) > 0 and thus due to the filtering step, ci′′j′ ≤ 1

1−αC̄j′ , and thus, we have:

∀i ∈ Sj cij′ ≤ cii′′ + ci′′j′ ≤ 2

1− α
C̄j +

1

1− α
C̄j′ ≤ 3

1− α
C̄j′ (3.29)

where the first inequality follows from the metric property, the second inequality follows
from (3.28), and the third property follows because of the way the transportation problem
was set up.

Therefore, at the end of the rounding algorithm, every client is satisfied to an extent of at
least a 1

2
by integrally open facilities, and the following property holds:

∀i, i′ 6= i, j, x̂(i, i′, j) > 0 ⇒ cij ≤
3

1− α
· C̄j (3.30)

Thus, as discussed earlier, we are now done, because we can now double our guess of the
maximum relocation cost, (set B′ ← 2 ·B′) and suitably modifying the x̂-values, increasing
them to at most twice their original value, and satisfying

∑
i

∑
i′ 6=i x̂(i, i′, j) = 1 ∀j. Since

we do not introduce any new non-zero x-value in this process, the property (3.30) still
holds, and (x̂, ŷ) is a feasible solution to RFLP (B′) which is RFLP ( 2

α
·B).

The property (3.30) ensures that the connection cost of the solution (x̂, ŷ) is not very high.
The connection cost is:∑

i

∑
i 6=i′

∑
j

x̂(i, i′, j) · cij ≤
3

1− α
·
∑
j

C̄j ·
∑
i

∑
i′ 6=i

x̂(i, i′, j) =
3

1− α
·
∑
j

C̄j (3.31)

Total Cost: The solution (x̂, ŷ) has integral ŷ-values and fractional x̂-values. The cost
of the optimal LP solution (x∗, y∗) is:

Cost(x∗, y∗) =
∑
i

f · yi +
∑
j

C̄j + B (3.32)

The cost of our solution (x̂, ŷ) is:

Cost(x̂, ŷ) ≤ 4

α
·
∑
i

f · y∗i +
3

1− α
·
∑
j

C̄j +
2

α
·B (3.33)

Obtaining an integral solution: The x̂-values can be thought of as a flow between
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demands acting as sources and facility pairs acting as sinks. Each demand is sending out
a flow of 1, and each facility pair (i1, i2) accepts a flow of at most 2

α
· B. Since the flow

coming out of every source is integral, thus we know that there is an integral flow between
the sources and the sinks that respects the capacities as mentioned above, and that this
flow can be found in polynomial time.

3.5 Some Missing Details

There are a few things that remain to be explained.

3.5.1 Choosing B

We try all possible values of B in geometric increments of (1 + ε), for some ε ∈ (0, 1). Let
Bi = (1 + ε)i. Let IP (B) and LP (B) denote the value for the integer and linear programs
respectively for this value of B. Let

B∗ = argmin
B

(IP (B) + B)

Bj = argmin
i=0,...

(LP (Bi) +Bi)

Let Bk be such that B∗ ≤ Bk ≤ (1 + ε) · B∗. A λ-approximation rounding algorithm for
RFLP (Bj), produces an integral solution of cost at most

λ · (LP (Bj) +Bj)

≤ λ · (LP (Bk) +Bk)

≤ λ · (1 + ε) · (LP (B∗) +B∗)

≤ λ · (1 + ε) · (IP (B∗) +B∗)

and thus yields a λ · (1 + ε)-approximation algorithm for the problem.
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3.5.2 Objective function

In section (3.2), we said that the objective functions (3.10) and (3.14) are not very far
apart from each other. Let (x, y) be a feasible solution w.r.t. to the constraints. We need
to show that the value of the two objective functions is not very far apart. Let us state
the two objective functions here again.

Objective 1:

min

(∑
i

fi · yi +
∑
j

∑
i

∑
i′ 6=i

x(i, i′, j) · cij + max
i

∑
j

∑
i′ 6=i

x(i, i′, j) · (ci′j − cij)

)
(3.34)

Objective 2:

min

(∑
i

f · yi +
∑
j

∑
i

∑
i′ 6=i

x(i, i′, j) · cij + max
i

∑
j

∑
i′ 6=i

x(i, i′, j) · ci′i

)
(3.35)

Let Fi(x, y), Ci(x, y) and Ri(x, y) represent the facility cost, connection cost and relocation
cost of the objective function i for the solution (x, y). Certainly they have the same facility
opening costs (F1(x, y) = F2(x, y)) and same connection costs (C1(x, y) = C2(x, y)). Their
relocation costs differ. Let us assume for the time being that:

x(i, i′, j) > 0 ⇒ cij ≤ ci′j (3.36)

Note that (3.36) holds for an (some) integer optimal solution. This is because, assigning j
to a nearer open facility makes sense as it may lead to reduction in the cost of solution. The
fractional solution, however, may not hold property (3.36). One can convert any fractional
solution to a solution that satisfies this property, loosing a factor of 2 in the process. Or,
since there is an optimal solution that satisfies this property, one can include constraints
of following form in the LP:

x(i, i′, j) = 0 if cij > ci′j (3.37)

These constraints do not interfere with our rounding algorithm, and works perfectly when
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we have a solution to this modified LP. This helps us, because now, we can say:

R2(x, y) = max
i

(∑
j

∑
i′ 6=i

x(i, i′, j) · ci′i

)
≤ max

i

(∑
j

∑
i′ 6=i

x(i, i′, j) · (cij + ci′j)

)

≤ 2 ·max
i

(∑
j

∑
i′ 6=i

x(i, i′, j) · ci′j

)
≤ 2 · (C1(x, y) +R1(x, y)) (3.38)

The last inequality holds because we know from (3.7) that:

(C1(x, y) +R1(x, y)) = max
i

(∑
j

(∑
i′ 6=i

x(i, i′, j) · ci′j +
∑
i1 6=i

∑
i2 6=i1

x(i1, i2, j) · ci1j

))

≥ max
i

(∑
j

∑
i′ 6=i

x(i, i′, j) · ci′j

)

Thus, we have,

F1(x, y) + C1(x, y) +R1(x, y) ≤ F2(x, y) + C2(x, y) +R2(x, y)

≤ F1(x, y) + 3 · C1(x, y) + 2 ·R1(x, y) (3.39)

3.5.3 Approximation Ratio

Let (x∗, y∗) be a solution that minimizes the function (3.34). Since this is a feasible solution
to the LP we consider in this chapter (with objective function (3.35)), one can very well
start the rounding algorithm with this solution (in which case, terms like C̄j is defined
w.r.t. this solution). We know from (3.33), that we have an integral solution (x̂, ŷ), such
that:

Cost(x̂ , ŷ) ≤ 4

α
· F2(x∗, y∗) +

3

1− α
· C2(x∗, y∗) +

2

α
·R2(x∗, y∗)

≤ 4

α
· F1(x∗, y∗) +

(
3

1− α
+

4

α

)
· C1(x∗, y∗) +

4

α
·R1(x∗, y∗) (3.40)

Taking α = 0.5, we get a 14 factor approximation. Taking α to be 4 − 2
√

3, we get a
slightly better approximation ratio of 13.93. This gives a 13.93 · (1 + ε)2-approximation
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algorithm.

3.6 Extension to β > 1

The following linear program captures the extension of RUFLP − LP2 (henceforth referred
to as RUFLP-LP2(β)) to the case when β > 1. In this linear program, A ⊆ F and B is a
sequence of elements from F . A represents the set of facilities closed by the adversary, and
thus |A| ≤ β. B is the extension of the pairs we had for the β = 1 case. B is a set of β+ 1
facilities. In the integer program, x(B, j) = 1 means that among all the open facilities, B
is the set of the β + 1 facilities closest to j. Also, d(j, S) represents the distance of j from
the closest facility to j in S, i.e. d(j, S) = min{cij : i ∈ S}. In the linear program below,
these constraints that specify the sets A and B are omitted, and are assumed to be clear
from the description above.

minimize:
∑
i

fi · yi + max
A

∑
B

∑
j

x(B, j) · d(j, B \ A)

subject to: ∀j,
∑
B

x(B, j) ≥ 1, (3.41)

∀i, j,
∑

B : i∈B

x(B, j) ≤ yi, (3.42)

∀B, j, x(B, j), yi ≥ 0. (3.43)

Note that RUFLP − LP2 is a special case of the above LP. As mentioned earlier, once
the set of facilities F to open are known, one of the optimal solution is such that a variable
x(i, i′, j) = 1 if and only if i and i′ are the two open facilities closest to the client j. For
general β ≥ 1, a client j is assigned to one of the β + 1 open facilities closest to j, no
matter what set A of facilities is closed by the adversary.

One can prove a result similar to the Lemma 3.2.1, which shows RUFLP-LP2(β) is
stronger than RUFLP − LP1 , by using a transformation similar to the one shown in the
proof of that lemma.

Lemma 3.6.1. Any feasible solution (x, y) to RUFLP-LP2(β) of objective function value
Cost(x, y) can be converted into a feasible solution (x̄, ȳ) to RUFLP − LP1 having an
objective function value Cost(x̄, ȳ), such that Cost(x, y) = Cost(x̄, ȳ).

Proof. The construction here is a generalization of the construction in the proof of Lemma
3.2.1. Intuitively, an integral solution of RUFLP − LP1 will set a variable x̄(A, i, j) = 1
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(where |A| = β) if the client j is assigned to the facility i in the event the set of facilities
closed are the facilities in set A. We need to extract those variable of our new LP which
are set to 1 in similar circumstances.

Recall that variables in the latter LP are of the form x(B, j), where |B| = β + 1, and
this is set to 1 if B is the set of those β + 1 open facilities which are closest to the client
j. This ensures that no matter what β facilities the adversary closes, there is a facility in
the set B, which is the closest facility to j among all open facilities. Thus, to be able to
express x̄(A, i, j) in terms of the x(B, j) variables, one must consider those x variables for
which the corresponding set B is such that i ∈ B and, moreover, i is the facility in B which
is closest to j when the facilities in A are closed by the adversary. Formally, let i /∈ A and
B(A, i, j) = {B ⊆ F : |B| = β + 1, i ∈ B and ∀i′ ∈ B, we have, ci′j < cij ⇒ i′ ∈ A}, i.e.,
the B(A, i, j) is the collection of all the sets B such that i is the facility in B \A closest to
client j. If, for such a B, the variable x(B, j) is 1, then intuitively, x̄(A, i, j) should also
be set as 1.

Thus, we obtain the solution (x̄, ȳ) from (x, y) as follows:

∀i, ȳi = yi

∀A, i /∈ A, j, x̄(A, i, j) =
∑

B∈B(A,i,j)

x(B, j)

∀A, i ∈ A, j, x̄(A, i, j) = 0

We need to show that this solution (x̄, ȳ) is a feasible solution to RUFLP − LP1 . Let
B = {B ⊆ F ′ : |B| = β + 1}. The constraint (3.1) is:

∀ A, j,
∑
i

x̄(A, i, j) =
∑
i/∈A

∑
B∈B(A,i,j)

x(B, j) =
∑
B∈B′

x(B, j) ≥ 1

where the last inequality follows from the constraint (3.41). We need to argue about the
validity of the last equality above, i.e. we need to argue that

∑
i/∈A
∑

B∈B(A,i,j) x(B, j) =∑
B∈B′ x(B, j). To show this, we argue that for any given A, and ∀B ∈ B′, the term x(B, j)

appears in the first summation exactly once. Let {i1, i2, · · · , iβ+1} be an ordering of the
facilities in B in order of increasing distance from j, and let k be such that {i1, · · · , ik−1} ⊆
A and ik /∈ A. Such a k always exists because B is strictly larger than A. By our definition,
B ∈ B(A, ik, j), and now it is easy to argue that B /∈ B(A, i, j) for i 6= ik (for facilities
equidistant from a client, one can break ties arbitrarily, yielding a strict order on facilities
with respect to a client). Thus, it follows that

∑
i/∈A
∑

B∈B(A,i,j) x(B, j) =
∑

B∈B′ x(B, j).
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The constraint (3.2) is also satisfied because:

∀ i, A, j, x̄(A, i, j) =
∑

B∈B(A,i,j)

x(B, j) ≤
∑

B∈B′: i∈B

x(B, j) ≤ yi

We are using (3.42) here, together with the simple fact that if B ∈ B(A, i, j), then
i ∈ B. By construction, constraint (3.3) is satisfied too. The integrality constraints and
their linear relaxations also hold. Thus the solution (x̄, ȳ) is feasible for RUFLP − LP1 .
The cost of this solution is:

Cost(x̄, ȳ) =
∑
i∈F

fi · ȳi + max
A

∑
j

∑
i

x̄(A, i, j) · cij

=
∑
i∈F

fi · yi + max
A

∑
j

∑
i/∈A

x̄(A, i, j) · cij

=
∑
i∈F

fi · yi + max
A

∑
j

∑
i/∈A

∑
B∈B(A,i,j)

x(B, j) · cij

=
∑
i∈F

fi · yi + max
A

∑
j

∑
B∈B′

x(B, j) · d(j, B \ A)

= Cost(x, y)

This argument follows through because if B ∈ B(A, i, j), then i is the closest facility to j
in the set B \ A, i.e. cij = d(j, B \ A).

3.6.1 Integrality Gap Example

Byrka, Ghodsi and Srinivasan presented an example instance in [11] which shows that
RUFLP − LP1 has an integrality gap of at least β + 1 − ε. The example is as follows:
There is a single client and n identical facilities, each having a facility cost of 1 and all
co-located with the client (i.e. all connection costs are 0). The RUFLP − LP1 can get
away by opening each facility fractionally to an extent of 1

n−β , so that the total cost of
opening opening facilities = n

n−β → 1 as n → ∞. The integral solution, however, has to
open β + 1 facilities, and thus incurs a facility opening cost of β + 1.

This example, however, fails to be a bad example for the RUFLP-LP2(β). This
is because constraint (3.42) prevents any facility from being opened fractionally to a
small extent. Any solution (x, y) has a facility opening cost of

∑
i yi, which is at least∑

i

∑
B : i∈B x(B, j) (j being the single client in the instance) by constraint (3.42). The
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term x(B, j), for a particular set B, appears k + 1 times in the sum above. Thus,∑
i

∑
B : i∈B

x(B, j) = (k + 1) ·
∑
B

x(B, j) ≥ (k + 1)

The last inequality follows from the constraint (3.41). This proves that the facility cost of
any solution to the RUFLP-LP2(β) is at least k + 1, which is in fact same as the facility
opening cost of the optimal integral solution.

In Section 3.1, we discussed that we can strengthen the RUFLP − LP1 by adding
following constraints : ∀A, i,

∑
j cij ·x(A, i, j) ≤ B · yi. The example presented above is

still a bad example for even this strengthened linear program because the connection costs
in this example are all zero.
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Chapter 4

Robust k-median Facility Location
Problem

The kind of robustness introduced by Chechik and Peleg in [13] can be extended to other
versions of the facility location problems also. In this chapter we consider the robust version
of the k-median facility location problem. In this version, the solution is not allowed to
open more than k facilities, and of these facilities, the adversary closes at most β, where
β < k.

More formally, the β-robust k-median facility location problem (RFLP(β, k)) is defined
as follows: We are given a set of clients D, and a set of facilities F . Every facility i ∈ F has
a non-negative opening cost fi associated with it. Every client j ∈ D has a non-negative
demand dj which need to be served by one or more open facilities. The cost of serving
a unit demand of client j by facility i is denoted by cij. Given a set F of facilities to
be opened, an adversary can close up to β of the open facilities, and the clients are then
assigned to the remaining open facilities. The aim is to search for a set of facilities F of
size at most k, that minimizes the sum of costs of opening the facilities in F and the costs
of assigning the demand of each node to the open facilities that did not fail, for any failure
of up to β facilities.

We discuss the metric version of the problem, in which the cost function ckl is defined
for k, l ∈ F ∪ D, and it follows the triangle inequality.
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4.1 LP Formulation

In this section, we consider two possible linear programming formulations of this problem.
The first one is a natural extension of RUFLP-LP1 (from [11]) for the k-median version.
The second is a natural extension of the RUFLP-LP2(β) for this problem. We will present
an example to show that the first LP has an unbounded integrality gap, and that this
example breaks down for the other linear program.

The natural extension of the integer program corresponding to RUFLP-LP1 for the
β-robust k-median facility location problem is the following integer program.

minimize:
∑
i∈F

fi · yi + max
A

∑
i

∑
j

cij · x(A, i, j)

subject to: ∀A, j,
∑
i

x(A, i, j) ≥ 1, (4.1)

∀i, A, j, x(A, i, j) ≤ yi, (4.2)

∀A, i ∈ A, j, x(A, i, j) = 0 (4.3)∑
i

yi ≤ k (4.4)

∀i, A, j, x(A, i, j), yi ∈ {0, 1}. (4.5)

Here, x(A, i, j) = 1 in an integral solution, if the client j is assigned to facility i when the
adversary closes the open facilities in A, where set A has size at most β. The constraints
are same as that of RUFLP-LP1, with an additional constraint (4.4) which restricts the
number of open facilities to at most k. The integrality constraints in the above program
can be relaxed to the following:

∀i, A, j, x(A, i, j) ≥ 0 and yi ≥ 0. (4.6)

We will henceforth refer to this LP as RFLP(β, k)− LP1 . Though the objective function
of this linear program is not exactly linear, this can be taken care of assuming that we
know the value of maxA

∑
i

∑
j cij · x(A, i, j) as B, and including the following constraint

in RFLP(β, k)− LP1 :

∀A
∑
i

∑
j

cij · x(A, i, j) ≤ B

This removes the max term from the objective function, and thus making it a linear
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Figure 4.1: An example illustrating unbounded integrality gap for RFLP(β, k)− LP1

function. It is easy to guess the value of B, by using techniques of Section 3.5.1. Lemma
4.1.1 shows that the above LP has an unbounded integrality gap.

Lemma 4.1.1. For any β and k, such that
⌊
k
2

⌋
− 1 < β < k − 1, the linear program

RFLP(β, k)− LP1 has an unbounded integrality gap.

Proof. Consider the following family of instances (see Fig. 4.1): There are two clusters at
a distance M apart. Each cluster has 1 client, and k facilities. Thus in total, there are 2 ·k
facilities, and 2 clients. The opening cost of each facility is 0 (i.e. fi = 0 ∀ i). Following is
an optimal solution to RFLP(β, k)− LP1 of cost 0 :

∀i, yi =
1

2

∀A, i, j, x(A, i, j) =
1

2
if cij = 0 and i /∈ A

= 0 if cij = M or i ∈ A

The solution clearly satisfies constraints (4.2) and (4.3). The total number of facilities
opened is 2 · k · 1

2
= k, and thus the solution satisfies constraint (4.4). When the adversary

closes β facilities, there are at least 2 facility locations that remain open at each cluster
and thus the solution satisfies constraint (4.1). Here, each cluster has, in total, at least
1 facility open. Each client is served by the facilities in its own cluster, no matter what
facilities are closed by the adversary. Hence the solution above is a feasible solution and
thus indeed optimum.

An integral solution can avoid the extra connection of cost M by opening enough
facilities in each cluster such that irrespective of the facilities closed by the adversary, each
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cluster has at least one open facility. This is only possible if the integral solution opens at
least β+1 facilities in each cluster, which is not possible, because 2·(β+1) > 2·(k

2
−1+1) =

k. Hence any integral solution opens less than β+1 facilities in at least one of the clusters,
and thus incurs a cost of M .

The natural extension of the integer program corresponding to RUFLP-LP2(β) is the
following integer program:

minimize:
∑
i

fi · yi + max
A

∑
B

∑
j

x(B, j) · d(j, B \ A)

subject to: ∀j,
∑
B

x(B, j) ≥ 1, (4.7)

∀i, j,
∑

B : i∈B

x(B, j) ≤ yi, (4.8)∑
i

yi ≤ k (4.9)

∀B, j, x(B, j), yi ∈ {0, 1}. (4.10)

The integrality constaints in the above program can be relaxed to the following:

∀i, B, j, x(B, j) ≥ 0 and yi ≥ 0. (4.11)

We will henceforth refer to the resulting linear program as RFLP(β, k)− LP2 . The
variables hold the same meanings as earlier. The only addition here is the constraint that
limits the number of open facilities to at most k. Though the objective function is not
linear, it can be easily made linear by guessing the value of the max term, and introducing
it as a new constraint (in the same way as discussed for RFLP(β, k)− LP1 ).

We now show that the example produced in the proof of Lemma 4.1.1 is not a bad
example for RFLP(β, k)− LP2 .

Let (x, y) be a feasible solution to RFLP(β, k)− LP2 . Let C1 and C2 be the two
clusters with clients j1 and j2 and facilitiy sets F1 and F2 respectively.

Since
∑

i yi ≤ k, thus, one of the clusters has at most k
2

facility weight opened by the
solution (x, y). Without loss of generality, let C1 be such that

∑
i∈F1

yi ≤ k
2
. Then, we
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have,

k

2
≥
∑
i∈F1

yi ≥
∑
i∈F1

∑
B : i∈B

x(B, j1) ≥
∑
i∈F1

∑
B⊆F1 : i∈B

x(B, j1) = (β + 1) ·
∑
B⊆F1

x(B, j1)

And thus, we have, ∑
B:B∩F2 6=φ

x(B, j1) ≥ 1 − k

2 · (β + 1)
> 0

where the last inequality follows from the assumption that
⌊
k
2

⌋
− 1 < β. This shows that

the cost of the fractional solution to RFLP(β, k)− LP2 is not 0. We still need to show that
the cost of such a solution is not very small as compared to the optimal integral solution.
We need to come up with a scenario A, whose removal results in a high relocation cost.
Since |B| = β + 1, thus |B ∩ F1| ≤ β ⇒ B ∩ F2 6= φ. There are

(
k
β

)
different subsets of F1

of size β. We have,∑
S⊂F1, |S|=β

∑
B:B∩F1⊆S

x(B, j1) ≥
∑

B:B∩F2 6=φ

x(B, j1) ≥ 1 − k

2 · (β + 1)

which means there is a set S0 ⊂ F1, with |S0| = β, such that∑
B:B∩F1⊆S0

x(B, j1) ≥ 1(
k
β

) · (1 − k

2 · (β + 1)

)

which shows that the cost of the optimal fractional solution is at least 1

(kβ)

(
1 − k

2·(β+1)

)
M .

For the special case of β = k − 2, the cost of the optimal fractional solution is at least
O(M

k3
).

4.1.1 Rounding Algorithm

We tried to round the linear program RFLP(β, k)− LP2 to obtain an integral solution
not very far from the optimal fractional solution. One of the ways to approach this is to
attempt a rounding procedure similar to that of classical k-median problem as presented
by [12]. As such, normal filtering cannot be applied to the k-median problem, unless one is
willing to sacrifice the requirement that no more than k facilities should be opened. Thus
the algorithm proceeds by first clustering clients together. One of the main assumptions
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Figure 4.2: An example illustrating that co-located clients may have different assignments

that makes the algorithm work is that co-located clients are served by the same set of
open facilities. This is certainly true in the classical k-median problem, because co-located
clients have the same set of facilities closest to their location, and thus all demands located
at the same place can easily be served by the same open facilities (there being no constraints
on the amount of demand that can be served by an open facility). This, however, fails to
hold in the robust version of the k-median problem. This is because in the robust version,
it helps to distribute clients to numerous facilities as it keeps the maximum relocation
cost incurred, in the event of closing of facilities, minimal. The following simple example
illustrates this:

The location j has 2 demands, and there are 4 facilities, i1, i2, i3, i4, where the facilities
and demands can be thought of as located on a number line, with i1 at −2, i2 at −1, j at
origin, i3 at 1 and finally i4 at 2. Let us say k = 4 and β = 1, and all facility opening costs
are 0. Then the optimal solution will open all the four facilities, and allot one demand
to i2 and one to 13, giving a connection cost of 2. In case i2 gets closed, its demand is
allocated to i1 and when i3 is closed, its demand is allocated to i4. This gives a maximum
relocation cost of 1, and thus cost of this solution is 3. If we assign both the demands to
i2, then the connection cost is 2 and the maximum relocation cost is also 2. This gives a
solution of cost 4 > 3. Hence it is not necessary that co-located clients are served by the
same set of facilities.
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Chapter 5

Stochastic Steiner Tree

Robustness can be introduced in networks in multiple ways. Some ideas of robustness aim
at designing networks that are resilient to failures of components, while others incorporate
other notions of uncertainties in the network. Stochastic network design models the un-
certainties via a probability distribution over the possible scenarios, and this enables one
to work with the expected cost of the solution with regard to this probability distribution.
Among the more popular models is that of two stage stochastic optimization with recourse
in which only distributional data is made available in the first stage, and the user is allowed
to build a basic low cost network to avoid high costs in the second stage when the data is
made known fully but the prices are inflated.

Many variants of this model deal with the nature of the scenario set and how the
scenario set is made available to the user. The scenario set can be finite, in which case one
can list the probability distribution (although this may take exponential space), or infinite,
in which case it may be difficult to specify the probability distribution concisely. In a black
box model, the user is allowed to make a polynomial number of queries to a black box, and
each such query returns a scenario drawn according to the probability distribution. These
samples are then used to frame an approximation to the actual probability distribution.
Another variant specifies the probability with which each component occurs in the scenario
that is presented to the user in the second stage and assumes a product combination;
that is, the probability of a scenario occurring is just the product of the probabilities of
occurrence of the components in the scenario and the probabilities of non-occurrence of
the components not in the scenario (assuming independence). Other variants of this model
deal with the inflation in costs that occurs in the second stage. One can assume a uniform
inflation across all scenarios, or one can assume a different inflation factor for each scenario.
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One can even generalize further and assume separate inflation factors for each component
and each scenario.

In this chapter, we consider the stochastic version of the Steiner tree problem (SST),
which seeks to find a tree spanning a given subset of the vertex set. The vertices in this
subset are called terminals. The cost of a solution is the sum of the costs of the edges in
this network. In the two-stage stochastic Steiner tree problem, the set of terminals is not
known beforehand. In the first stage, only a probability distribution over possible scenarios
is known, where a scenario consists of a set of terminals that may come up in the second
stage. In the second stage, the actual scenario, i.e. the set of terminals to be spanned
by the network is revealed, but the edges are more expensive by an inflation factor in the
second stage as compared to the first stage. Thus, we are allowed to build a partial network
in the first stage at a lower cost, and in the second stage, when the set of terminals become
known, we must build a recourse network to satisfy this set, but incurring a higher cost.
A closely related problem is the stochastic version of the Steiner forest problem (SSF), in
which the scenarios are collection of source sink pairs.

Approximation algorithms for SST come in two flavors. In the rooted version of the
problem, it is assumed that all the scenarios share a common vertex which is called as the
root. In the unrooted version, such a common vertex is absent. This distinction is non-
trivial, and normally algorithms for the unrooted versions are powerful enough to solve
problems like Multicommodity Rent or Buy problem [23]. Gupta and Pál [23] gave the
first constant factor approximation algorithm for SST . Fleischer, Könemann, Leonardi
and Schäfer [18] gave an improved 6-approximation algorithm. All these algorithms are in
the black box model, where polynomial number of queries are made to a black box oracle
to estimate the probability distribution on the scenarios. For the rooted SST, Gupta,
Pál, Ravi and Sinha [24] gave a 3.55-approximation algorithm for the black box model.
They also give a 8-approximation algorithm for the SSF in the independent decision model
(i.e. a pair (si, ti) may require to be connected with a probability πi independently of all
other pairs). For the general black box oracle model, nothing was known until recently,
when Gupta and Kumar [21] gave the first (and so far the only) constant approximation
algorithm for the SSF problem. The techniques used in their work are built upon the basic
ideas of work on SST by Gupta, Ravi and Sinha in [25], albeit the modifications required
are very involved and difficult to comprehend.

The discussion in this chapter is mainly based on the work of Gupta, Ravi and Sinha in
[25]. Our aim was to be able to come up a cleaner way of presenting Gupta and Kumar’s
algorithm for the SSF, based on this earlier work on SST. Though we were unable to come
up with such a refinement, we were able to obtain a cleaner presentation of Gupta, Ravi
and Sinha’s algorithm on SST, and in the process improved its performance guarantee
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(though there are algorithms with better approximation factors based on cost shares). We
assume a finite scenario model, i.e. the set of terminals in the second stage is one of a
finite set of distinct and specified sets. We present a 20-approximation algorithm for the
rooted SST (in finite scenario model) which is an improvement to the 40-approximation
algorithm of Gupta, Ravi and Sinha in [25].

5.1 Problem Definition

Let G = (V,E) be an undirected graph, with a cost function c : E → R+. c(e) denotes the
cost of an edge e in the first stage. The root vertex is labeled as r. Let c(H) =

∑
e∈H c(e)

denote the cost of a subgraph H of G. Given a terminal set R with r ∈ R, let span(R)
denote the set of trees that are subgraphs of G that span R. We work with the finite
scenario model here, i.e. there are m scenarios and the kth scenario is specified by a set
of terminals Sk, a probability of occurrence pk, and an inflation factor σk, which indicates
that if scenario k comes up in the second stage, then every edge is σk times more expensive
as compared to its first-stage cost. We have,

∑
k pk = 1, because exactly one scenario

materializes in the second stage. The aim is to find a set of edges E0 so as to minimize :

c(E0) + E[σRc(ER)] such that E0 ∪ ER ∈ span(R)

which can be written as:

c(E0) +
m∑
k=1

pk · σk · c(Ek) such that E0 ∪ Ek ∈ span(Sk) ∀k (5.1)

where Ek is the set of recourse edges bought in the second stage to satisfy the scenario Sk.
Note that once Sk and the set of edges bought in first stage E0 are known, the set Ek can
be computed easily by (approximately) solving a suitable Steiner tree instance.

As is standard and noted in [25], the following assumptions can be made without loosing
the generality of the problem:

• The cost function c follows the triangle inequality.

• Each terminal occurs in at most one scenario Sk, i.e. the sets {Sk : k = 1, . . . ,m}
are mutually disjoint.
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Because the cost function c follows the triangle inequality, it can very well be viewed as a
distance function, i.e. as a metric. Thus, throughout this chapter the terms distance and
cost are used interchangeably.

5.2 LP formulation

Gupta, Ravi and Sinha [25] extend the undirected cut formulation of the deterministic
version of the Steiner tree problem to obtain the following integer program:

minimize:
∑
e

c(e) · x0
e +

m∑
k=1

pk · σk
∑
e

c(e) · xke

subject to: ∀S : r /∈ S, S ∩ Sk 6= φ, ∀k,
∑
e∈δ(S)

(
x0
e + xke

)
≥ 1, (5.2)

∀k, e ∈ E, xke ≥ 0 (5.3)

∀k, e ∈ E, xke ∈ Z. (5.4)

Here, x0
e = 1 indicates that edge e is bought in the first stage. Also, xke = 1 indicates

that edge e is bought in the second stage when the scenario Sk arises in the second stage.
A linear relaxation of this integer program would drop the constraint (5.4). Let us call
the resulting linear program as SST-LP1. The set of edges bought in the first stage is the
set E0 = {e : x0

e = 1}. In general, as shown in [25], for an optimal solution to the above
integer program, the set E0 need not form a tree. However, Gupta et al in [25] also show
that one can transform a solution (x0, xk) to the above integer program, into a solution
(x̄0, x̄k), such that the first-stage edges in this new solution form a tree containing the root
vertex r, and Cost(x̄0, x̄k) ≤ 2 ·Cost(x0, xk). Thus, by loosing a factor of 2, one can obtain
this nice structure to the edges bought in the first stage that they form a tree containing
the root vertex r.

A consequence of the above observation is that, in the final solution, the path from a
terminal t to the root r is composed of second-stage edges followed by first-stage edges. In
other words, the path pt connecting terminal t to root r in the final network is such that
there is a vertex vt, called as the transition vertex, on this path pt such that all edges e on
the path pt(t, vt) are edges bought in the second stage (i.e. xke = 1), and all edges e′ on the
path pt(vt, r) are edges bought in the first stage (i.e., x0

e′ = 1). This property is referred
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to as the monotonicity property, and helps us view the stochastic Steiner tree problem in
a slightly different way.

Let t be a terminal in some scenario Sk (i.e. t ∈ ∪mk=1Sk), and let Pt be the set of
all simple paths with t and r as end points. Let p ∈ Pt, and let v be a vertex on this
path p. Let f(p, v) = 1 if the terminal t uses this path p to connect to root (in case its
scenario gets chosen), and vertex v is the transition vertex, i.e. all edges on the path p(t, v)
are second-stage edges, and all edges on path p(v, r) are first-stage edges (where p(a, b)
represents the portion of the path p with end points at a and b, where a and b are vertices
on the path p). With this notation in place, the variables of the above integer program
translate to following:

∀e ∈ E, t ∈ Sk, ∀k, x0
e ≥

∑
p∈Pt, v∈p: e∈p(v,r)

f(p, v) (5.5)

∀e ∈ E, t ∈ Sk, ∀k, xke ≥
∑

p∈Pt, v∈p: e∈p(t,v)

f(p, v) (5.6)

The variable x0
e is the maximum flow sent on this edge by any scenario as a first-stage

flow. Thus, the integer program can be written as:

minimize:
∑
e

c(e) · x0
e +

m∑
k=1

pk · σk
∑
e

c(e) · xke

subject to: ∀S : r /∈ S, S ∩ Sk 6= φ, ∀k,
∑
e∈δ(S)

(
x0
e + xke

)
≥ 1, (5.7)

∀t ∈ Sk, ∀k,
∑

p∈Pt,v∈p

f(p, v) = 1 (5.8)

∀e ∈ E, t ∈ Sk, ∀k, x0
e ≥

∑
p∈Pt, v∈p: e∈p(v,r)

f(p, v) (5.9)

∀e ∈ E, t ∈ Sk, ∀k, xke ≥
∑

p∈Pt, v∈p: e∈p(t,v)

f(p, v) (5.10)

∀k, t ∈ Sk, p ∈ Pt v ∈ p, f(p, v) ∈ {0, 1}. (5.11)

The constraints (5.8) - (5.10) imply the constraint (5.7), but it is included in the integer
program just for the sake of clarity. The linear programming relaxation of the above integer
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program modifies the last constraint to the following constraint:

∀k, t ∈ Sk, p ∈ Pt, v ∈ p, 0 ≤ f(p, v) ≤ 1

Let us call the resulting linear program as SST-LP2. As already discussed, cost of the
optimal solution to SST-LP2 is at most twice the cost of the optimal solution to SST-LP1
as proved in Lemma 3.1 in [25].

5.3 Rounding Algorithm

The fractional solution to the above linear program can be thought of as flow from each
terminal to the root. A terminal t sends fractional flows along various paths in Pt, and each
such path p has a transition vertex v ∈ p. The values of x0

e and xke are suitably obtained
from these flow values. Once these flow values are known, the constraints (5.9) and (5.10)
fully specify the solution to the linear program.

The rounding algorithm we present here closely follows the rounding algorithm of [25],
but with a somewhat cleaner and simpler exposition, which also results in an inmproved
approximation factor. The algorithm is divided in roughly three phases. In the first phase,
each scenario builds a part of its second-stage solution, which is a Steiner forest. In the
second phase, we build the first-stage tree T0, and finally in the third phase, some scenarios
extend their second-stage solution to connect the forest built in the first phase to the tree
T0. We now describe each phase in detail, and simultaneously prove that the cost of the
network built in that phase can be paid for by the appropriate portions of the solution to
the linear program SST-LP2.

5.3.1 Phase 1: Second-Stage Component Growth

We construct a second-stage solution for each scenario using the second-stage variables xke
for scenario k, and the flow values f(p, v) for p ∈ Pt and v ∈ p. For the sake of clarity, let
us define some notation. For a terminal t and a set S containing t and not containing r,
let Fi(t, S) be the flow on paths in Pt which have their transition vertex inside the set S,
and let Fo(t, S) be the flow on paths in Pt which have their transition vertex outside the
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Figure 5.1: Fi(t, S) and Fo(t, S)

set S, i.e.

Fi(t, S) :=
∑

p∈Pt, v∈p, v∈S

f(p, v)

Fo(t, S) :=
∑

p∈Pt, v∈p, v /∈S

f(p, v)

We need to define a notion of active and inactive sets for our primal dual algorithm.
Here, moat refers to subset of vertices that can grow to include other vertices during the
algorithm. Let α > 1 be a fixed real number, whose value we will determine later.

Definition 5.3.1 (Inactive, Active). Let set S be such that S ∩ Sk 6= φ and r /∈ S, for
some scenario k. Then S is said to be:

• Inactive: ∃t ∈ S ∩ Sk, such that Fi(t, S) ≥ 1
α

.

• Active: ∀t ∈ S ∩ Sk, Fi(t, S) ≤ 1
α

, or equivalently, Fo(t, S) ≥ 1− 1
α

.

�

The following lemma relates the flow values to the x-variables, and also highlights a
monotonicity property which we will exploit in the primal dual algorithm. The results of
the lemma are straightforward to derive using the definitions of the respective terms, and
are stated here for the sake of completion and clarity to the reader, because they play a
key role in the algorithm.
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Lemma 5.3.2. For a scenario k, let sets S and T be such that they separate some terminals
in Sk from root r, i.e. r /∈ S, r /∈ T , S ∩ Sk 6= φ, T ∩ Sk 6= φ, and let S ⊆ T . Then the
following results hold:

1.
∑

e∈δ(S) x
k
e ≥ Fo(t, S)

2.
∑

e∈δ(S) x
0
e ≥ Fi(t, S)

3. Fi(t, S) ≤ Fi(t, T )

4. Fo(t, S) ≥ Fo(t, T )

5. If S is an inactive set, then T is also an inactive set.

6. If T is an active set, then S is also an active set.

Given a set of valid moats Mk, let Ak be the set of active moats, and Ik be the set of
inactive moats in Mk. Our aim is to grow some active moats in a primal-dual algorithm
and to build some second-stage forests for each scenarios. We will then connect all these
forests by a first-stage tree containing the root. The advantage of doing things this way is
that the building of the first-stage trees continues from where the second-stage construction
left off, making the algorithm more streamlined and, in essence, very similar to the primal
dual algorithm for Steiner tree, where we grow moats from each terminal.

Following the primal dual treatment of the stochastic Steiner tree algorithm in [2], [25],
which is mimicked by the Steiner forest algorithm in [19], we start with the collection of
moatsMk to be the minimal active sets, i.e. the singleton sets comprised of the terminals
in Sk. The dual variables zS are initialized to 0 for all active sets S. Also, Ak and Ik be the
corresponding active and inactive moats in Mk. We also maintain a set of special moats
Gk, which are active sets but they stop growing because they have enough dual to connect
to the network of scenario k. Every moat M ∈ Gk would have enough dual to connect to
another moat M ′ which will be called its parent. Gk is initialized to φ. At any time, Ak,
Ik and Gk are mutually disjoint and it holds that Ak ∪ Ik ∪ Gk = Mk. As is standard in
primal-dual algorithms, we introduce a notion of time τ , which is initialized to 0.

Growing of moats: Only active moats grow. We increase the dual variables for the
active sets in Ak, uniformly with time, at the same rate, till an edge becomes tight. An
edge e is said to be tight if the total dual of all the active sets incident on this edge sums
up to the cost of this edge, i.e.

∑
S:S is active, e∈δ(S) zS = c(e). The following possibilities

arise:
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• Edge e is incident to two active moats M,M ′. Remove them from Mk and Ak. Let
M ′′ = M ∪M ′. Insert M ′′ inMk and also in the appropriate set Ak or Ik depending
on whether M ′′ is active or inactive.

• Edge e is incident to an active moat M and a non-growing moat M ′, i.e. M ′ ∈ Ik∪Gk.
Remove M from Ak and insert it in Gk . Mark M ′ as the parent of M .

• Edge e is incident to just one active moat M , and no other moats. Then M simply
grows to include both the end points of the edge e. If M becomes inactive after this
growth, it is removed from Ak and inserted in Ik.

Termination time: For every non-growing moat M ∈ Ik ∪ Gk, we also record the time
τM which is the value of τ when the moat M stopped growing.

This moat growing process finishes when there are no more active moats, i.e. Ak = φ.
The primal dual process of [2] and [19] grows moats precisely in the same way as we
have described it here, and it simultaneously constructs a Steiner tree TM connecting the
terminals in Sk ∩M for a moat M . The following result follows from their analysis:

Lemma 5.3.3. For any non-growing moat M ∈ Ik ∪ Gk, at any stage of the primal dual
process, we have, 2 · τM +

∑
e∈TM c(e) ≤ 2 ·

∑
S⊆M zS.

Also, following result is similar to the Lemma 3.4 in [25]. This result charges the cost
of building these Steiner trees of individual moats to the second-stage variables xke .

Lemma 5.3.4. For any scenario Sk, we have,
∑

S⊆V zS ≤
(

α
α−1

)
·
∑

e c(e)x
k
e

Proof. Consider the problem of covering all the active sets that are subsets of some non-
growing moat M ∈ Ik ∪Gk, i.e. find a collection of edges of minimum cost, such that every
active set is incident to at least one edge from the collection. This can be cast as a linear
program. Let A be the collection of active sets which are subset of some non-growing moat
M , i.e. A = {S ⊆M | S is an active set, M ∈ Ik ∪ Gk}. The primal program (LP1 ) is:

minimize:
∑
e

c(e) · ye

subject to: ∀S ∈ A,
∑
e∈δ(S)

ye ≥ 1,

∀e, ye ≥ 0.
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The corresponding dual program (LP2 ) is:

maximize:
∑
S∈A

ẑS

subject to: ∀e,
∑

S∈A: e∈δ(S)

ẑS ≤ c(e),

∀S ∈ A, ẑS ≥ 0.

By Lemma 5.3.2, and definition of active sets, for a set S ∈ A and a terminal t ∈ S, we
have, ∑

e∈δ(S)

xke ≥ Fo(t, S) ≥ 1− 1

α
⇒

∑
e∈δ(S)

(
α

α− 1

)
· xke ≥ 1

And thus, ye =
(

α
α−1

)
· xke is a feasible solution to LP1 . Also, the dual zS grown by

our primal dual process is a feasible solution to the dual program LP2 because we never
violate any edge constraints when we construct these z-variables. Thus ∀S ∈ A, ẑS = zS
is a feasible solution for the dual program. Thus, by weak duality, we have:∑

S⊆V

zS =
∑
S∈A

zS ≤
(

α

α− 1

)
·
∑
e

xke

The first equality holds because only active sets get non-zero dual values in the primal dual
process.

We will also need following lemma in coming phases about the above moat growing
process.

Lemma 5.3.5. Let M be a moat in Ak at time τ . Then, for every vertex v ∈ M , there
is a terminal t ∈ M , such that d(v, t) ≤ τ . Thus, for a moat M ∈ Ik ∪ Gk and a vertex
v ∈M , there is a terminal t ∈M , such that d(v, t) ≤ τM .

Proof. Let M be an active moat at time τ , and RM be the collection of all the terminals in
the moat M . The proof of this result follows from the fact that M =

⋃
t∈RM B(t, τ), where

B(t, τ) is the collection of all the vertices that are a distance of at most τ from t.
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Figure 5.2: Growing moats for a scenario k, building a part of the second-stage network
for this scenario. At the end of the primal dual process, Ak = φ, Ik = {M5,M9,M11} and
Gk = {M1,M2}.
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5.3.2 Phase 2: First-Stage Tree

We can now construct our first-stage tree. The idea is to continue from the inactive moats
created by the second-stage component growth. Let I = ∪mk=1Ik, be the collection of all the
inactive moats at the end of the initial primal dual algorithm on each scenario. The moats
in a particular set Ik are disjoint and form a valid set of moats, but this is no longer true
for I, because moats from two different scenarios may overlap. Thus we need to choose a
set of representative moats which are disjoint (and hence form a valid collection of moats),
contract them and build a Steiner tree T on top of the contracted moats which will be the
first-stage tree. Having obtained T , we will need to do two things:

• Expand each contracted moat in the representative moat set, and connect the second-
stage Steiner tree of these moats to the tree T using first-stage edges. This gives us
the first-stage tree T0.

• Recourse second-stage paths: For all the moats not in the representative set, we will
need to expand their second-stage solution by adding second-stage paths that connect
their Steiner trees to the tree T0.

To be able to bound the cost of each of these steps, the set of representative moats need
to be chosen wisely. As in [25], we will choose this set so that the cost of the first task
listed above can be bounded in terms of the cost of the tree T0, and the cost of the second
task above can be bounded in terms of the second-stage variables xke . We will need notion
of diameter of a moat and distance between moats:

Definition 5.3.6. Diameter d(M) of a moat M ∈ I is defined as:

d(M) := 2 · τM +
∑
e∈TM

c(e)

�

Definition 5.3.7. Distance d(M,M ′) between two moats M,M ′ ∈ I is defined to be the
distance between closest vertices in M and M ′, i.e.

d(M,M ′) := min{d(u, v) : u ∈M, v ∈M ′}

�
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Figure 5.3: Illustrating the construction of the first-stage tree T0

Note that, by definition, if M,M ′ are such that M ∩M ′ 6= φ, then, d(M,M ′) = 0.
We have enough ground work laid out to define the properties of the set of representative
moats. Let β ≥ 1 be a fixed real number whose value we will determine later. The following
lemma is very similar to the Proposition 3.3 in [25].

Lemma 5.3.8. There exists a set of moats IR ⊆ I (called the set of representative moats),
computable in polynomial time such that:

1. If M1,M2 ∈ IR, then d(M1,M2) ≥ 1
β
· (d(M1) + d(M2))

2. For every moat M ∈ I \ IR, we have a representative moat rep(M) ∈ IR, such that
d(M) ≥ d(rep(M)), and d(M, rep(M)) ≤ 1

β
· (d(M) + d(rep(M)))

Proof. Proceed by examining all moats of I in increasing order of their diameters. If a
moat M is being examined and is such that d(M,M ′) ≥ 1

β
· (d(M) + d(M ′)) holds for

all M ′ ∈ IR, then include M in IR. If not, then there exists a M0 ∈ IR, such that
d(M0,M) ≤ 1

β
· (d(M0) + d(M)). Define rep(M) := M0 (i.e. M0 is assigned as the

representative moat of M in IR), and proceed to the next moat.

For every moat M ∈ I, we will label one terminal in M as tM . This terminal tM is the
vertex at which the tree TM of the moat will definitely meet the first-stage tree T0, thus
ensuring that all the terminals of a scenario k, present in the representative moats, are
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connected by the first and second-stage solutions together. The choice of tM is descibed in
step (3) below. Our aim is to build a low-cost Steiner tree over the collection of moats IR.
The following steps lead to the construction of our first-stage tree T0:

1. Contract each moat M ∈ IR into a single vertex vM .

2. Build a MST T on the set of terminals R̂ = {r}
⋃
{vM : M ∈ IR}.

3. For every M ∈ IR, include a set of edges FM that connects TM to every T -edge
incident on M , such that edges in FM form a tree and contain a terminal from M .
Label this terminal as tM .

4. Our first-stage tree is T0 = T ∪
(⋃

M∈IR FM
)
.

We need to describe how to choose the set of edges FM in step (3) above. The choice of
FM depends on the degree of the vertex vM corresponding to moat M in the tree T :

• Case 1 (Degree of vM in T is 1): Let v be the vertex at which a T -edge is incident
on moat M . Then tM is the terminal in M closest to v, and FM is the shortest path
from v to tM .

• Case 2 (Degree of vM in T is > 1): Label any terminal in M as tM . Connect each
T -edge incident to M to the tree TM using shortest paths. These shortest paths,
together with the tree TM , form the set FM .

We will now bound the costs of T and FM separately, giving us a bound on the cost of T0.

Lemma 5.3.9. c(T ) ≤ 2α
∑

e x
0
e

Proof. Let G′ be the graph obtained by contracting the moats in IR, with R̂ as the set of
terminals (root and contracted moats). Let S = {S : S ∩ R̂ 6= φ, r /∈ S}. Consider the
linear program for the Steiner tree problem:

maximize:
∑

e∈E(G′)

c(e) · ye

subject to: ∀S ∈ S,
∑
e∈δ(S)

ye ≥ 1,

∀e ∈ E(G′), ye ≥ 0.
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Figure 5.4: Illustrating choice of FM and tM for a moat M depending on the degree of the
corresponding vertex vM in the tree T

By Lemma 5.3.2, any set S ∈ S is an inactive set in the original graph, and by the same
Lemma, ∃t ∈ S, such that∑

e∈δ(S)

x0
e ≥ Fi(t, S) ≥ 1

α
⇒

∑
e∈δ(S)

α · x0
e ≥ 1

And thus, ye = α · x0
e is a feasible fractional solution to the above linear program.It is well

known that the cost of an MST is at most twice the cost of the optimal fractional solution
to the above LP. Thus, we have that,

c(T ) ≤ 2
∑

e∈E(G′)

c(e)ye ≤ 2α
∑

e∈E(G′)

c(e)x0
e ≤ 2α

∑
e∈E(G)

c(e)x0
e

Lemma 5.3.10. Let M ∈ I. If u, v ∈M , then d(u, v) ≤ d(M)

Proof. Recall that d(M) = 2τM +c(TM). Let t1, t2 be any two terminals in M . since all the
terminals in M are connected by the Steiner tree TM , thus, d(t1, t2) ≤ c(TM). Also, from
Lemma 5.3.5, for any vertex v ∈ M , there is a terminal tv ∈ M , such that d(v, tv) ≤ τM .
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Thus, for every u, v ∈M , there are some terminals tu, tv ∈M , such that:

d(u, v) ≤ d(u, tu) + d(tu, tv) + d(tv, v) ≤ 2 · τM + c(TM) = d(M)

We can bound the cost of the cost of edges in ∪M∈IRFM in terms of the cost of the tree
T .

Lemma 5.3.11. c
(⋃

M∈IR FM
)
≤ β

2
· c(T )

Proof. Let M ∈ IR. If degT (vM) = 1, then, by the choice of edges in FM and Lemma

5.3.5, we have that c(FM) ≤ τM ≤ d(M)
2

. If degT (vM) > 1, then c(FM) = c(TM)+ cost of
shortest paths from the vertices where edges of T are incident at moat M to their nearest
terminals. By Lemma 5.3.5, each of these shortest paths is at most τM in length. Thus,

c(FM) ≤ c(TM) + degT (vM) · τM ≤
degT (vM)

2
(c(TM) + 2 · τM) = degT (vM) · d(M)

2

Hence, we have,

c

( ⋃
M∈IR

FM

)
≤

∑
M∈IR

degT (vM) · d(M)

2
(5.12)

Let e = (vM1 , vM2) be an edge in the tree T . We know that

c(e) ≥ 1

β
· (d(M1) + d(M2))

Summing over all edges, we get,

c(T ) ≥ 1

β
·
∑
M∈IR

degT (vM) · d(M) (5.13)

From (5.12) and (5.13), we get,

c

( ⋃
M∈IR

FM

)
≤ β

2
· c(T )
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Corollary 5.3.12. c(T0) ≤ 2α
(
1 + β

2

)
·
∑

e c(e)x
0
e

5.3.3 Phase 3: Extending Second-Stage Solution

For every moat M ∈ I\IR, let vM ∈M and vrep(M) ∈ rep(M) be such that d(vM , vrep(M)) =
d(M, rep(M)) (i.e. these are the vertices closest to each other in the two moats). Let tM
be the terminal in M closest to vM . Let pM be the following path:

p(M) = p(tM , vM) ∪ p(vM , vrep(M)) ∪ p(vrep(M), trep(M))

The second-stage network of moat M is TM ∪ pM . We have the following bound on c(pM)
by using the definition of IR and Lemmas (5.3.5) and (5.3.10).

c(pM) ≤ c(p(t, vM)) + c(p(vM , vrep(M))) + c(p(vrep(M), trep(M)))

≤ τM +
1

β
(d(M) + d(rep(M))) + d(rep(M))

≤ τM +

(
1 +

2

β

)
d(M)

For every scenario k, consider the moats in Gk in increasing order of their termination
time τM . For a moat M ∈ Gk, let P (M) = {M ′ ∈ Gk ∪ Ik : τM ′ ≤ τM}. Then, M was
added to Gk, because it had grown to collide with some set M ′ ∈ P (M), i.e. an edge e
incident on both M and M ′ had become tight. This set M ′ was labeled as the parent of
M .

Lemma 5.3.13. Let M ∈ Gk, and M ′ ∈ P (M) be such that it is labeled as the parent of
M . Then, ∃ terminal t ∈M and t′ ∈M ′, such that d(t, t′) ≤ 2 · τM .

Proof. Let e = (u, v), where u ∈M , and v ∈M ′. Let τ1 be the time when u gets included
in M , and τ2 be the time when v gets included in M ′. Then, by Lemma 5.3.10, ∃ terminal
t ∈M , such that d(t, u) ≤ τ1, and ∃ terminal t′ ∈M ′, such that d(t′, v) ≤ τ2. Also, because
edge e gets tight at time τM , thus, (τM − τ1) + (τM ′ − τ2) = c(e). Thus,

d(t, t′) ≤ d(t, u) + c(e) + d(v, t′) ≤ τ1 + (τM + τM ′ − τ1 − τ2) + τ2 ≤ 2 · τM

where the last inequality follows from the definition of P (M).
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Thus, the cost of the second-stage network of a moat M ∈ Gk is at most 2·τM +c(TM) =
d(M).

5.3.4 Putting Things Together

The cost of the second-stage network of a moat M ∈ I \ IR is:

c(TM) + c(pM) ≤ c(TM) + τM +

(
1 +

2

β

)
d(M)

≤
(

2 +
2

β

)
d(M)

Cost of the second-stage network of a moat M ∈ IR is:

c(TM) ≤ d(M) ≤
(

2 +
2

β

)
d(M)

Cost of the second-stage network of a moat M ∈ Gk is:

2 · τM + c(TM) = d(M) ≤
(

2 +
2

β

)
d(M)

Also, from Lemmas (5.3.3) and (5.3.4) and the definition of d(M), we have,∑
M∈Ik∪Gk

d(M) ≤ 2

(
α

α− 1

)∑
e

c(e)xke

Thus, cost of the second-stage network for the scenario k is bounded by:∑
M∈Ik∪Gk

2

(
2 +

2

β

)(
α

α− 1

)∑
e∈M

c(e)xke

≤ 2

(
2 +

2

β

)(
α

α− 1

) ∑
e∈E(G)

c(e)xke
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Also, cost of the first-stage network, i.e. tree T0 is bounded by Corollary 5.3.12 as follows:

c(T0) ≤ 2α

(
1 +

β

2

)
·
∑
e

c(e)x0
e

Thus, expected cost of our solution is bounded by:

2α

(
1 +

β

2

)
·
∑
e

c(e)x0
e + 2

(
2 +

2

β

)(
α

α− 1

) m∑
k=1

σkpk
∑

e∈E(G)

c(e)xke

For α = 2.5 and β = 2, the above expression reduces to:

10 ·

∑
e

c(e)x0
e +

m∑
k=1

σkpk
∑

e∈E(G)

c(e)xke

 (5.14)

Thus, it is possible to round it to obtain an integral solution of cost at most 10 times the
cost of the optimal fractional solution to SST-LP2. Consequently, the integral solution so
obtained is within a factor of at most 20 of the optimal integral solution to SST-LP1 Thus,
we have proved the following theorem:

Theorem 5.3.14. Our algorithm is a 20-factor approximation algorithm for the Stochastic
Steiner Tree Problem with finite number of scenarios.

5.4 Stochastic Steiner Forest

As noted earlier, our motivation in studying this algorithm for the SST problem was to
gain better insights into the (only) constant factor approximation algorithm for the SSF
problem under the black box oracle model by Gupta and Kumar in [21]. In this section
we discuss some problems that arise as a result of trying to extend the algorithm for the
SST to an algorithm for SSF.

As noted by the authors in [21], a primal dual approach for the SST problem is very
well suitable for the rooted version of the problem. The main idea of growing the moats
first for the second stage solution, obtaining a collection of disjoint moats for each stage,
and then choosing a collection of good (disjoint and far apart) moats from all the moats
to proceed with another primal-dual algorithm to construct the first stage tree connecting
the scenarios, works well for the rooted SST. This is beacuse, in rooted SST problem, the
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transition of a growing moat from the second stage to the first stage happens only once and
is easy to work with. In the unrooted version of SST problem and even the SSF problem,
one of the difficulties that arise is that such a transition is not a singular phenomenon. The
algorithm for the rooted SST case rely heavily on the results in the Lemma 5.3.2, many of
which fail to hold if the definitions are extended in an analogous way for the SSF problem.

In rooted SST, since all the terminals have to be eventually connected to the root, once
the first stage solution (connecting core tree) is started to be build, the growing moats
become inactive only when they collide either directly with the root or with another moat
containing the root. However in the SSF problem, an active moat may cease to be active
because a source sink pair is now satisfied, even though there may still be unsatisfied pairs
in the growing moats but their contribution towards the boundary of the moat is not
enough to pay for buying edges. Thus, the transition from SST to SSF is fairly involved,
and requires new ideas.
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