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Abstract 
 

Microsporidia are a group of obligate intracellular fungal parasites that infect a wide range 

of vertebrates and invertebrates, and are of economic and academic interest. Some areas of 

their economic impact are in aquaculture where they can infect salmon and other fish species. 

In agriculture they have been considered as control agents for insect pests, but more 

importantly as likely contributing to colony collapse disorder of bees.  As an academic topic, 

microsporidia are fascinating because they are the smallest and simplest eukaryotic cells and 

require eukaryotic host cells in order to complete their life cycle.  Therefore one research 

avenue that moves forward both economic and academic interests is to use cultures of animal 

cells to support the growth and development of the microsporidia life cycle, including the 

production of spores.  

 Although the use of animal cell cultures for studying the microsporidia of insect and 

mammals has a fairly large literature, fish cell cultures have been employed less often but 

have had some successes as reviewed in this thesis.  Very short-term primary cultures have 

been used to show how microsporidia spores can modulate the activities of phagocytes.   The 

most successful microsporidia/fish cell culture system has been relatively long-term primary 

cultures of salmonid leukocytes for culturing Nucleospora salmonis.  Surprisingly, this 

system can also support the development of Enterocytozoon bienusi, which is of mammalian 

origin.  Some modest success has been achieved in growing Pseudoloma neurophilia on 

several different fish cell lines.  The eel cell line, EP-1, appears to be the only published 

example of any fish cell line being permanently infected with microsporidia, in this case 

Heterosporis anguillarum.  These cell culture approaches promise to be valuable for 

describing the growth and development of the microsporidia and for documenting the 

responses of fish cells to infection.  

 In this thesis, cell lines from warm water fish, goldfish, fathead minnow and 

zebrafish, and a coldwater species, rainbow trout, were explored as potential cellular hosts of 

two microsporidia species that have never been grown or associated with fish before.  One is 

Anncaliia algerae, which is an aquatic microsporidium that most commonly infects 

mosquitoes.  This microsporidia is one of the easiest species to grow in mammalian cells, 

with the rabbit kidney cell line, RK 13, being the most documented culture system.  The 
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other is Nosema apis, which is a pathogen of bees and for which few cell culture systems 

exist.  

 The ability of warm water fish cell lines to support the life cycle of A. algerae was 

investigated first.  Spores were purified from RK-13 cultures and added to cell lines from 

three warm water species as well as to an insect cell line.  The cell lines were GFSK-S1 and 

GFB3C- W1 from goldfish skin and brain respectively, ZEB2J from zebrafish embryos, 

FHMT-W1 from fathead minnow testis, and Sf9 from ovaries of a fall armyworm moth.  All 

cultures were maintained at 27 °C.   Infection was judged to have taken place by the 

appearance of sporonts and/or spores in cells and occurred in all cell lines.  Spores were also 

isolated from ZEB2J cultures and used to successfully infect new cultures of ZEB2J, RK-13 

and Sf9.  These results suggest that cells of a wide range of vertebrates support A. algerae 

growth in vitro and fish cells can produce spores infectious to cells of mammals, fish and 

insects.  As ZEB2J was the most characterized of the fish cell lines and supported good A. 

algerae growth, this cell line was used in further studies described below to compare the 

efficacy of antimicrosporidial drugs and to test whether fish cells could support N. apis 

growth, but first A. algerae growth at lower temperatures was explored with cell lines from a 

coldwater fish. 

 Cultures of cell lines from rainbow trout gill, RTgill-W1, and brain, RTbrain-W1, at 

9, 18 and 21°C were evaluated for their ability to support the development of A. algerae.  For 

up to 8 days after the addition of spores, living and DAPI stained cultures were examined by 

phase-contrast microscopy, allowing the identification of the meront, sporont, and spore 

stages in cultures at 18 and 21 °C.  Meronts and sporonts were both spindle-shaped, but 

relative to meronts, sporonts were darker under phase contrast and brighter after DAPI 

staining.  Spores were egg-shaped, phase- bright and intensely DAPI stained.   These stages 

could not be identified conclusively in cultures at 9 °C, but their appearance at 18 °C sets a 

new low temperature for the growth of this species.  The growth of A. algerae at room 

temperature allowed living cultures to be observed conveniently and videoed with a 

proprietary instrument, the Riveal microscope (www.quorumtechnologies.com).  With this 

microscope, the development of A. algerae life cycle stages at room temperature was 

confirmed plus for the first time meront division and intracellular germination were captured 

on video.  Spore germination in the absence of host cells and in response to 3 percent 
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hydrogen peroxide was also observed by Riveal microscopy and for first time an abnormal 

germination phenomenon was clearly documented: polar tubes were extruded but the spore 

bodies retained the nuclei. 

 ZEB2J cultures that had been infected with Anncaliia algerae spores were used as an 

in vitro test system to evaluate the curative actions of albendazole, fumagillin, and three 

fluoroquinolones; ciprofloxacin, norfloxacin, and ofloxacin.  For each drug at concentrations 

above 50 µg/ml, the viability of ZEB2J cell declined sharply so concentrations of 10 and 20 

µg/ml were studied. At these concentrations the drugs had little effect on the morphology and 

germination A. algerae spores.  Each of the fluoroquinolones failed to prevent A. algerae 

from infecting ZEB2J cells and from growing to the same extent as in untreated ZEB2J 

cultures. Adding albendazole or fumagillin to cultures did not prevent A. algerae from 

infecting ZEB2J cells but impeded the growth and accumulation of A. algerae life-cycle 

stages.  However, albendazole treatments caused a significant fraction of the ZEB2J cells to 

have nuclear abnormalities. Fumagillin reduced the intensity of infections within a ZEB2J 

cell, although the number of infected cells in a culture was not reduced.  Over 5 days of 

infection with A. algerae the accumulation of ZEB2J cells in cultures was reduced but 

fumagillin treatment restored the accumulation to control levels. These results suggest that 

fumagillin has some potential as a treatment for A. algerae infections.  

 ZEB2J was exposed to Nosema apis spores from the western honey bee (Apis 

mellifera).  Bees were collected from hives that had been naturally infected and confirmed 

polymerase chain reaction (PCR) to have N. apis.  Frozen bees were crushed in water to yield 

a mixture of bee parts, pollen grains, yeast, and microsporidial spores.  The mixture was 

filtered and then centrifuged through Percoll to produce a pellet of spores that was 

resuspended in L-15 with 10 percent fetal bovine serum (FBS). Aliquots of this were added 

to ZEB2J cultures.  Cultures were observed periodically for up to 24 days with a combination 

of phase contrast microscopy and of fluorescence microscopy, usually after staining with 

4’,6-diamidino-2-phenylindole (DAPI).  Although earlier life cycle stages were not observed, 

structures that were concluded to be either sporonts, sporoblasts and/or spores were seen, but 

these were in less than 5 percent of the fish cells.  These N. apis life cycle stages had grown 

in ZEB2J because some appeared to be inside the cells and often they were arranged around 

the nucleus of the host cell rather than being randomly distributed in cultures.  Despite 
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repeated rinsing over a three week period, all cultures were ultimately lost due to yeast from 

the original spore preparations over growing the fish cell cultures.  

 The overarching observation of this thesis is that fish cells in culture have been shown 

for the first time to support the growth A. algerae, and possibly N. apis.  This suggests that 

the cells of vertebrates might support the growth of a wide range of microsporidia species 

that normally are associated with insects.  In turn this suggests restriction of a microsporidial 

species to a particular animal group is unlikely accomplished at the cellular level but through 

physiological systems expressed at the organismal level and disturbances in these systems 

might lead to infections in new groups of animal hosts. The overarching observation of this 

thesis has two general implications for future studies.   Firstly, for studying the expression of 

antimicrosporidia mechanisms in fish cells, the ZEB2J/A. algerae co-culture system promises 

to be useful.  Secondly, for microsporidia species that are difficult to grow in culture, cell 

lines from a wide range of vertebrate and invertebrate species should be explored and one 

possibility for N. apis is fish cells.  
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Glossary of Terms 
 
This glossary of terms outlines relevant terminology of Anncaliia algerae and Nosema apis 
microsporidian life cycles.  
 
Anchoring Disc: A structure at the anterior pole of a microsporidian spore that physically 
connects the polar filament to the rest of the spore. 
 
Anterior pole: On the longitudinal axis of a microsporidian spore, the end of the spore that 
ejects the polar filament. In ovid shaped spores, the apex is the anterior pole. 
 
Diplokaryotic: the possession of two nuclei per parasite; a feature of some microsporidian 
species including Anncaliia algerae and Nosema apis. 
 
Extracellular Infective Phase: The phase of a microsporidian life cycle where the parasite 
has reached maturity as a mature spore, is released from the host (through digestion, 
elimination, decomposition, etc), and is capable of infecting a new host.  
 
Germination: The process that mature spores can undergo whereby the polar filament is 
ejected from the spore, and under normal conditions the spore contents, or sporoplasm, travel 
through the polar tube. This process is a mechanism of transmission if the polar tube injects 
the sporoplasm into a nearby cell. 
 
Intracellular Proliferative Phase: The growth and development of meronts and sporonts 
within a host cell and leading to spore maturation, synonymous with proliferative stage. 
 
Mature Spore: The last developmental life cycle stage of microsporidia that is smaller than 
earlier developmental phases. 
 
Merogony: A life cycle phase of microsporidia in which meronts/schizonts are developing 
and dividing. 
 
Meront: The earliest stage of microsporidian growth that occurs within a host cell 
developing from an ejected sporoplasm and developing into a sporont; synonymous with 
schizont. A meront is a product of merogony in the microsporidian life cycle. 
 
Polar filament: The helically coiled structure within a microsporidian spore, but sometimes 
used synonymously with polar tube. 
 
Polar tube: The ejected polar filament from a microsporidian spore, but sometimes used 
synonymously with polar filament. 
 
Posterior pole: On the longitudinal axis of a microsporidian spore, the end of the spore 
opposite to the end in which the polar filament is ejected during germination. In an ovid 
spore the posterior pole is opposite the apex. Using Riveal microscopy, a posterior pre-
germination (PPG) vacuole is apparent prior to germination as grey area at the posterior pole. 
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Posterior pre-germination vacuole (PPG): Using Riveal microscopy, a visible organelle or 
region in the posterior pole of an ungerminated spore that indicates germination is imminent. 
 
Posterior vacuole: A membrane bound organelle situated in the posterior pole of some 
species of microsporidian spores and thought to play a role in hydraulic pressure promoting 
spore germination. 
 
Proliferative stage: A generalized term to refer to microsporidia in merogony and 
sporogony life cycle phases. It is a phase of development in which meronts and/or sporonts 
are replicating and lead to parasite maturation. 
 
Schizont: The earliest stage of microsporidian growth that occurs within a host cell 
developing from an ejected sporoplasm and developing into a sporont; synonymous with 
meront. A schizont is the product of the merogony in the microsporidian life cycle. 
 
Spore coat: A protective structure enveloping a spore and consisting of three layers; the 
exospore, endospore and spore coat membrane (superficial to deep). Using TEM, the 
exospore is electron-dense, the endospore is electron lucent, and the spore coat membrane 
has a typical membrane appearance.  
 
Sporoblast: A developing microsporidian that has already undergone its last division as a 
sporont, but has yet to become a mature spore. The organization and development of the 
polar filament begins when a microsporidian becomes a sporoblast.  
 
Sporogony: A life cycle phase of microsporidia in which sporonts are developing and 
dividing. 
 
Sporoplasm: The contents of a microsporidian spore generally referring to the contents that 
have been ejected from the spore through the polar tube, but can also refer to ungerminated 
spore contents. 
 
Sporont: A sporont is a microsporidian growth stage which develops from a meront and 
becomes a sporoblast after its last division. Using light microscopy sporonts and meronts are 
morphologically similar but sporonts appear denser/darker than meronts. Using TEM the 
sporont is distinguished from meronts with a thick, continuous, electron dense material 
surrounding the parasite that is thinner and discontinuous in a meront. This electron-dense 
material is the initial formation of outer spore coat. A sporont is a product of sporogony in 
the microsporidian life cycle. 
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Chapter 1                                              

General Introduction 
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 Overview  
The use of animal cell cultures as tools for studying the microsporidia of insects and 

mammals is briefly reviewed, along with an in depth review of the literature on using fish 

cell cultures to study the microsporidia of fish. Fish cell cultures have been used less often 

but have had some success. Very short-term primary cultures have been used to show how 

microsporidia spores can modulate the activities of phagocytes. The most successful 

microsporidia/fish cell culture system has been relatively long-term primary cultures of 

salmonid leukocytes for culturing Nucleospora salmonis. Surprisingly, this system can also 

support the development of Enterocytozoon bieneusi, which is of mammalian origin and has 

limited success growing in vitro. Some modest success has been achieved in growing 

Pseudoloma neurophilia on several different fish cell lines. The eel cell line, EP-1, appears to 

be the only published example of any fish cell line being permanently infected with 

microsporidia, in this case Heterosporis anguillarum. These cell culture approaches promise 

to be valuable in understanding and treating microsporidia infections in fish, which are 

increasingly of economic importance. 
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1.1 Introduction 

Historically, animal cell cultures have been essential for studying viral and microbial 

pathogens of humans and animals. Some pathogens require animal cells in order to complete 

their life cycle, making animal cell cultures, or the in vitro approach, the most convenient 

avenue for producing and studying the pathogen. This is most famously true of viruses. Cell 

lines have been crucial for viral detection and for producing viruses, which then can be 

characterized by a variety of biochemical and morphological features and used in vaccines 

(Enders et al. 1949, Hsiung 1989). Animal cell cultures have allowed the single-cell 

reproductive cycle of viruses to be dissected and have contributed to studies of viral 

pathogenesis and development of therapeutic agents. Less well known is that some single-

cell eukaryotic pathogens also require animal cells to complete their life cycle, and their 

study is aided by the use of animal cell cultures (Wittner 1999). This is the case with 

microsporidia. Microsporidia survive only by living in other cells and are found outside of 

host cells only as spores. In this chapter, the past and future value of in vitro approaches to 

studies of the microsporidia infecting fish is reviewed after a brief overview of the biology of 

microsporidia and the in vitro success achieved with economically important microsporidia 

of insects and with clinically important microsporidia of humans.  

 

Microsporidia classification 

Microsporidia are currently included in the Fungi (Hibbett et al. 2007). Although 

organisms now known as microsporidia were originally identified as fungi, they were 

reclassified as protozoans by the end of the nineteenth century (Nageli 1857, Pasteur 1870), 

and this designation was accepted for over 100 years until molecular techniques determining 

phylogeny returned microsporidia to the Fungi (Hirt et al. 1999, Keeling and Fast 2002, 

Keeling et al. 2000). The phylum Microsporidia encompass over 1,200 species and almost 

150 genera (Franzen and Muller 2001, Wittner 1999). They infect every major animal group, 

from invertebrates to all classes of vertebrates. 

The type of host in which they have been found to infect has long been used as an informal 

categorization of microsporidia. For this classification, the principal groups have been insect 
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and human microsporidia. These have been identified and studied because of their economic 

and clinical relevance. Less intensively investigated, but also of economic importance, are 

fish microsporidia. Amphibians, reptiles, and birds are susceptible to microsporidia, but the 

research is comparatively much less on these microsporidial infections (Snowden and 

Shadduck 1999). In the future, these informal categories may be difficult to maintain because 

growing evidence, including in vitro approaches, demonstrates that several microsporidia 

have low host-specificity (Coyle et al. 2004, Lores et al. 2003, Rinder et al. 2000, Sutherland 

and Stelzig 2004). 

Cellular life cycle of microsporidia 

Diversity is found among the numerous microsporidian genera with respect to their life 

cycle in animal cells. Despite the variations, a generalized life cycle can be described (Fig. 

1). Microsporidia are obligate intracellular pathogens but have an extracellular infective 

spore phase of development. The spore contains a specialized structure, the polar filament, 

which under certain conditions, will eject from the spore and inject infective sporoplasm into 

the host cell. The injection of sporoplasm commences the proliferative, intracellular phase of 

the parasite’s development. The intracellular proliferative phases of the life cycle are 

characterized by the developmental stages of merogony and sporogony. Merogony, or the 

stage of meront development, originates with the infective sporoplasm of a germinated spore 

and typically occurs in direct contact with host cytoplasm. Meronts proliferate, often through 

binary fission, and differentiate into sporonts during sporogony. Sporogony is characterized 

by a number of morphological changes. A thickening of the electron dense plasmalemma 

surrounding the parasites, for example, is one indication of sporont development (Lom et al. 

2000). As well, this stage can occur in direct contact with host cytoplasm but may occur 

within a membranous envelope that develops of host, parasite, or host-parasite origin (Cali 

and Takvorian 1999, Lom and Dyková 2005). The developing spore is designated as a 

sporoblast at its last sporont division and, through metamorphosis, condenses to become a 

mature spore smaller than its developmental predecessors (Cali and Takvorian 1999). 

Liberation of mature spores into the extracellular environment occurs when the host cell dies. 
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Economically important microsporidia of insects 

Since the mid nineteenth century, microsporidia have been known as pathogens of 

economic importance. The initial impetus for scientific research of microsporidia was due to 

an epidemic threatening the silk industry of Europe. Characterized by black speckling of the 

silk worm, Pasteur identified the causative agent as Nosema bombycis and is credited with 

devising methods to reduce the impact of the disease (Pasteur 1870). Pasteur’s work is 

believed to be the first scientific investigation of the pathogenic nature of microsporidia. The 

apiculture industry is also negatively affected by microsporidiosis. Until recently, Nosema 

apis was exclusively the cause of nosemosis in the European honeybee (Apis mellifera) (Ellis 

and Munn 2005). Unfortunately, another microsporidian, Nosema ceranae, is an emerging 

pathogen of the European honeybee (Bromenshenk et al. 2010, Chen et al. 2008, Williams et 

al. 2008). The cost of nosemosis to the apiculture industry is unclear. However, the 

economics of pollination services have been estimated to provide a 600% to 700% return on 

investment for farmers, indicating the potential decrease in profitability if pollinations 

services are not optimal (Olmstead and Woolen 1987, Kevan and Phillips 2001). 
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Figure 1.1 Life cycle of generalized microsporidia in culture 
Environmental infective phase (left): Spores can germinate and inject infective sporoplasm 

(1a) or undergo phagocytosis (2a) to gain entry into the host cell. Intracellular proliferative 

phase (middle): Merogony typically occurs in direct contact with host cytoplasm (1b). With 

phagocytosis, sporoplasm evades lysosomal destruction (2b). Sporogony may (c) or may not 

occur with a membrane. Spore maturation occurs through metamorphosis (d). Environmental 

infective phase (right): Liberation of infective spores (e), accompanied with host cell death. 

HC host cell, N nucleus of host cell.  

Culturing microsporidia of insects 

The breakthrough uniting cell culture techniques and microsporidia research came in 1937 

with insects (Trager 1937). A silkworm cell culture was successfully infected with N. 

bombycis. The infected cells were reported to have been filled with spores and behaved 

similarly to uninfected cells. Trager (1937) speculated that the failure of previous attempts to 
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grow microsporidia in culture were likely a result of the addition of too few spores. His 

speculation has been supported by subsequent research: The optimal spore-to-cell ratio to 

infect a culture is 10:1 or greater (Jaronski 1984). Despite the initial success in 1930s, the 

common use of insect cell cultures in microsporidia research did not begin until the 1960s 

with the development of insect cell lines. Since then, insect cell lines have been used for two 

distinct purposes. One is as a basic research tool to study the life cycle of microsporidia. The 

other purpose is practical and is to develop large-scale cultures that produce spores that can 

be used as biological control agents for insect pests and for medically important insects 

(Jaronski 1984). A unique feature of some combinations of insect cell lines and 

microsporidia species is that the cultures can be subcultivated over 70 times and continue to 

produce spores (Iwano and Kurtti 1995, Kurtti et al. 1994). Nosema locustae, now reassigned 

to the genus Paranosema, is a fatal parasite of over 90 species of grasshoppers and is the 

only commercially approved microsporidial pesticide in the USA (Canning 1953, Henry and 

Onsager 1982, Sokolova et al. 2003). Although propagation of P. locustae has be achieved in 

vitro, the spore yield is higher in vivo, which is the commercial source (Becnel 2006, Khurad 

et al. 1991). 

Clinically important microsporidia 

Human microsporidiosis was first documented in 1959 (Matsubayashi et al. 1959). Over 

the next 25 years, incidents of microsporidia infections in humans were rare (Ashton et al. 

1973, Marcus et al. 1973, Margileth et al. 1973, Sprague 1974), but in the 1980s, 

microsporidia were found to be the causative agent of the often fatal diarrheal disorder of 

AIDS patients (Desportes et al. 1985, Dobbins and Weinstein 1985, Modigliani et al. 1985). 

Since this discovery, microsporidiosis has been found not only to affect AIDS patients but 

can also be an opportunistic infection of immunodepressed individuals and potentially 

individuals with seemingly intact immune responses (Didier and Weiss 2006, Sharma et al. 

2011). There are 14 species of microsporidia known to infect humans (Didier 2005). 

Enterocytozoon bieneusi and Encephalitozoon intestinalis are the most commonly identified 

human microsporidial infections (Didier and Weiss 2006, Kotler and Orenstein 1999). 

Although intestinal disease is the most prevalent consequence of human microsporidia, they 

can cause a broad range of conditions including keratoconjunctivitis, myositis, and 
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encephalitis (Kotler and Orenstein 1999). Once only a concern of economic importance, 

microsporidia suddenly had significant clinical relevance, and this led to research on these 

microsporidia in animal cell cultures (Visvesvara 2002). 

Culturing microsporidia of human diseases 

Although there are some notable exceptions, species of microsporidia in human diseases 

have been cultured effectively in vitro since 1990. The first success was with Vittaforma 

corneae (Shadduck et al. 1990) and made use of the approaches used years earlier to culture 

Encephalitozoon cuniculi, which infect rabbits and was grown in cultures of a mouse 

lymphosarcoma cell line (MB III) (Morris et al. 1956). Now, at least a half dozen species 

infecting humans opportunistically have been cultured, including Encephalitozoon hellem 

and E. intestinalis (Didier et al. 1991, Visvesvara 2002, Visvesvara et al. 1995a). This has 

been done with different mammalian cell lines, and Visvesvara (2002) has compiled a list of 

microsporidia species, cell lines, and media that have been used together to obtain 

microsporidia growth in vitro. However, success is not a certainty. For the same species of 

microsporidia, some isolates can be maintained in culture, whereas other isolates cannot. 

Most significantly, at least one clinically important species, E. bieneusi, has failed to be 

cultured despite repeated attempts with different isolates. Only short-term cultivation with 

very low spore production was achieved with E. bieneusi (Visvesvara et al. 1995b). For other 

species, successfully infected cell cultures often can be maintained for several months to over 

a year. In old cultures, spores were seen by phase contrast microscopy attached to the plastic 

growth surface among patches of disrupted mammalian cells, and in some cases, spores that 

had extruded polar tubules were visible as spermatozoan-like structures (Visvesvara 2002). 

The microsporidia/cell culture systems have been used for a variety of purposes. 

The first use is to produce the pathogen in amounts to allow identification and study. 

Microsporidial organisms are often present in very small numbers in samples such as in urine 

(Visvesvara 2002). Cell cultures allow their numbers to be increased substantially, which 

permits their identification by a variety of techniques, such as polymerase chain reactions 

(PCR) analysis of DNA extracted from the cultures. Thus, cell cultures are an aid to clinical 

identification. Cell cultures also provide a source of pathogens for infecting animals in vivo 
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and sufficient microsporidia for biochemical and molecular biology studies (Belkorchia et al. 

2008). 

A second use of microsporidia/cell culture systems is to study the early events of infection, 

including initial adherence, kinetics, and route of uptake. This is perhaps the most common 

use of microsporidia cultures, with them being examined by a variety of techniques and 

being the subjects for different experimental purposes. They have been used to show that the 

initial adherence of spores to host cells is mediated by sulfated glycosaminoglycans and is 

augmented by Mn++ and Mg++ but not by Ca++ (Hayman et al. 2005, Southern et al. 2007). 

Adherence of Encephalitozoon spp. was rapid (3-6 h) (Fischer et al. 2008). Both scanning 

electron microscopy and transmission electron microscopy (TEM) have been used to 

visualize the traditional route of infection, polar tube penetration, and deposition of the 

sporoplasm into the cytoplasm (Schottelius et al. 2000, Takvorian et al. 2005). The 

advantages for the microscopist are that the events of infection can be closely timed and the 

presence of infected cells usually can be assured. In vitro studies have shown that besides the 

traditional route of infection, two additional routes were possible (Couzinet et al. 2000, 

Takvorian et al. 2005). One was the phagocytosis of spores followed by germination and 

movement of the sporoplasm from the phagosome to the cytoplasm. The other possibility 

was that sporoplasm may be released extracellularly into a microenvironment close to the 

host cell and subsequently internalized into the host cytoplasm by phagocytosis or a type of 

endocytosis (Takvorian et al. 2005). 

Thirdly, microsporidia/cell culture systems can be utilized to study the cell biology and 

kinetics of the intracellular stages of microsporidia. For this, TEM is perhaps the most 

successful approach (Hollister et al. 1996, Lowman et al. 2000). The biochemical processes 

and signaling pathways of the proliferative phase that leads to meronts (merogony) and of 

meront conversion into spores (sporogony) and sporont differentiation into sporoblasts 

remain to be studied in detail, likely because of the complexity involved in teasing out these 

processes within a host cell that is also changing. An example of this would be determining 

the origin, fate, and fusion of the parasitophorous vacuole (Fasshauer et al. 2005, 

Ronnebaumer et al. 2008). However, procedures have been developed for isolating 

sporogonial stages of E. cuniculi in cultures with Madin-Darby canine kidney cells (Taupin 

et al. 2006b). This opens up the possibility of applying many biochemical methods, including 
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proteome studies. The in vitro systems are very amenable to cytochemical and 

immunocytochemical investigation. RNA in situ hybridization has been used to follow the 

level of messenger RNA for endospore-destined protein (Taupin et al. 2006a). Fluorescence 

microscopy allowed the identification and localization of a microsporidian cytoskeletal 

component, actin (Bigliardi et al. 1999). The in vitro approach can be used to determine the 

timing of intracellular events and to study the effect of variables, such as temperature, on 

proliferation and sporogony. The replication kinetics of E. intestinalis in a mouse intestinal 

cell line (CMT-93) was studied by real-time PCR (Wasson and Barry 2003). Elevated 

temperature was shown to impede proliferation and the onset of sporogony for B. algerae in 

rabbit kidney cells (Lowman et al. 2000). 

A fourth use of microsporidia/cell culture systems is to characterize the responses of the 

host animal cells to microsporidia, which would include not only innate cellular mechanisms 

for protecting the host against infection but also modulation of the host cell to protect the 

pathogen and perhaps disseminate it. These responses are more conveniently studied in vitro 

than in vivo, but such studies are in their infancy, with only a few cellular processes 

examined to date. Treatment of mouse macrophages in primary culture but not of a mouse 

macrophage cell line with interferon gamma inhibited E. cuniculi replication (Jelinek et al. 

2007). On the other hand, the reorganization of microtubules and induction of 

multinucleation in green monkey cell line E6 by Vittaforma corneae might be a way for the 

parasite to be protected from the host immune response (Leitch et al. 2005). To date, this has 

only been documented in vitro. Another focus is the induction of chemokines in macrophages 

in vitro and the migration of naïve monocytes by Encephalitozoon spp. (Fischer et al. 2007). 

This type of study aims to understand the dissemination of the pathogen within the host. 

Finally, the modulation of the cell cycle and cell death has been examined (del Aguila et al. 

2006). Overall, these types of studies have the potential to provide unique insights into the 

regulation of cellular processes and to open up new avenues of treatment. 

As a final application, microsporidia/cell culture systems provide convenient platforms for 

discovering and studying treatments that can be used to kill microsporidia. This approach 

was used to screen a variety of drugs for their therapeutic potential and to identify 

albendazole and fumagillin as effective at inhibiting the growth of E. cuniculi in vitro but at 

the same time causing little harm to the human cells, which in this case were MRC5 (Beauvis 
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et al. 1994). Similar systems have been used to evaluate the antimicrosporidial activity of 

other classes of compounds, including fluoroquinolones (Didier et al. 2005, Didier et al. 

2006). Although animals ultimately will have to be used to test the efficacy of therapeutics, 

the advantage of the in vitro approach is in providing preliminary screens of effectiveness 

rapidly and inexpensively. Furthermore, animal cell culture systems can be used to study the 

killing of microsporidia by chlorine and ultraviolet light (John et al. 2003, Wolk et al. 2000). 

Microsporidia of fish 

Microsporidiosis has been identified in fish for over a century (Moniez 1887). Since that 

time, there are at least 156 documented microsporidia species in 14 genera recognized in fish 

(Lom 2002). See Appendix A for a table of microsporidia infecting fish. Microsporidiosis is 

highly destructive to infected tissue resulting in high mortality rates in fish (Becker and 

Speare 2007, Shaw and Kent 1999). Some genera of microsporidia in fish are known to cause 

hypertrophic growth whereby a unique host-parasite complex develops called a xenoma or a 

xenoparasitic complex (Lom and Dyková 2005). The size of these hypertrophied cells are 

often 400 to 500 µm in diameter but have been described to  be as large as 13 mm (Canning 

and Lom 1986, Shaw and Kent 1999). Xenoma-inducing microsporidia tend to be more host-

specific than non-xenoma-inducing species (Lom and Dyková 2005). This is certainly true of 

Heterosporis sp., which is considered as one of three pathogens on the Great Lakes 

Commission Priority Invasive Species List (Great Lakes Commission 2005, Sutherland et al. 

2004).  

Economic importance of microsporidia of fish 

Microsporidiosis has substantial consequences to the profitability of aquaculture and 

commercial fishing. World aquaculture production has experienced an average annual 

growth of 8.8% since 1970 and continues to outpace all other animal food-producing sector 

growth (Food and Agriculture Organization of the United Nations (FAO) 2007). With 75% 

of marine fish stocks at or above sustainable yields, aquaculture can anticipate future 

pressure to supply demand (UN Atlas of the Oceans 2000). Disease in wild and farmed fish 

increases these pressures on aquaculture production. For example, Becker and Speare (2007) 

suggest that mortality of farmed Chinook salmon from microsporidia has, in part, influenced 

the need to dramatically increase production to compensate for reduced returns. Additionally, 
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high mortality rates from microsporidia have contributed to the weakening or collapse of 

several fisheries (Shaw and Kent 1999). Therefore, the economic impact of microsporidia has 

a compounding effect and has the potential to cause economic hardships in these industries. 

Sub-lethal infections can additionally impact commercial fishing and aquaculture. 

Microsporidia belonging to Glugea, Loma, Nucleospora, and Heterosporis genera are 

responsible for a number of diseases in economically important fish. Pathological expression 

of microsporidia varies by species of parasite and the tissue infected. Symptoms can include 

leukemia-like conditions, emaciation, disfigurement from xenoparasitic growths or tissue 

necrosis, and growth inhibition (Lom and Dyková 2005, Shaw and Kent 1999). For example, 

farmed salmonids in particular are susceptible to Loma salmonae and Nucleospora salmonis. 

L. salmonae causes xenoma growths on gill tissue and promotes respiratory failure, whereas 

N. salmonis results in leukemic symptoms. Heterosporis anguillarum causes morphological 

changes in the Japanese eel with necrotic depressions of trunk musculature (T'sui and Wang 

1988). The resulting disfigurement is called “Beko Disease” whereby muscle tissue 

undergoes liquefaction and is replaced with developing spores. Glugea spp. cause 

disfigurement with xenoparasitic growths in other economically important fish, such as in 

ayu and winter flounder (Cali and Takvorian 1991, Lee et al. 2004). Reductions in the fitness 

of these fish correspond to a reduction in catch value. Consequently, sub-lethal 

microsporidial infections also impact the fishing and aquaculture industries. 

Microsporidia can have an economic impact in the laboratory as well as in capture fisheries 

and aquaculture. The use of fish as models in biomedical research has dramatically increased 

in the last decade, largely lead by the development of the zebrafish (Danio rerio) model 

(Ackermann and Paw 2003). Two important microsporidian diseases afflict laboratory fishes; 

Pseudoloma neurophilia of zebrafish and Glugea anomala of stickleback species (Kent and 

Fournie 2007). Indeed. P. neurophilia is the most common pathogen in zebrafish research 

facilities. 

1.2 Fish cell culture 

As for cells from mammals, two general types of cultures can be used to study fish cells in 

vitro: primary cultures and cell lines. The two are interrelated because cell lines are 

developed from primary cultures. They differ in their life span. Primary cultures are initiated 
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directly from the cells, tissues or organs of fish and typically last only a few days, but 

exceptions exist. The extreme is hemopoietic cultures from the rainbow trout spleen, which 

can be maintained for a year or more (Ganassin and Bols 1996). By convention (Schaeffer 

1990), the primary culture ends and the cell line begins upon splitting or subcultivation of the 

primary culture into new culture vessels. In the case of mammalian cell lines, some can be 

propagated only a limited number of times, finite cells, whereas others can be grown 

indefinitely, continuous cell lines. Most fish cell lines appear to be continuous (Bols et al. 

2005). Primary cultures or cell lines have been developed from most tissues and organs of 

fish (Bols and Lee 1991). Many mammalian cell lines express functional properties of mature 

cells or can be triggered to differentiate into more mature cells, whereas the differentiation 

status or capacity of piscine cell lines is largely unexplored (Bols et al. 2005), although some 

B lymphocyte and macrophage cell lines have been developed (Ganassin and Bols 1998, 

Miller et al. 1994). Relatively recent lists of fish cell lines have been published along with 

their availability in repositories (Bols et al. 2005, Fryer and Lannan 1994).  

Microsporidia of fish in fish cell cultures 

Very short-term primary cultures have been used to study the interactions of microsporidia 

spores with cells of the innate immune system, macrophages and neutrophils. The cultures 

usually have been used within 48 h and the focus has been on the study of phagocytic and 

respiratory burst capabilities of the phagocytes. With such cultures, head kidney 

macrophages from the ayu were shown to phagocytize Glugea plecoglossi spores by 

recognizing concanavalin A-reactive glycoproteins on the spore surface (Kim et al. 1999). 

The modulation of the macrophages behaviour might aid the establishment of G. plecoglossi 

infection. Another example is a comparison of short-term cultures of peritoneal exudates 

adherent (PEA) cells from turbot that have been injected intraperitoneally with either sodium 

thioglycolate or spores of Tetramicra brevifilum (Leiro et al. 2001). For peritoneal cells from 

fish injected with microsporidian spores, more neutrophils were found among the PEA cells 

and these cells made less ROS in response to T. brevifilum spores. Thus again the 

microsporidian spores seemed capable of impairing the respiratory burst of phagocytes and 

this could aid infection. Cultures of macrophages from Chinook salmon and Atlantic salmon 

were compared for their ability to phagocytize L. salmonae spores (Shaw et al. 2001). 
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Phagocytosis was higher in Atlantic salmon macrophages. This suggests a possible cellular 

basis for the Atlantic salmon being resistant and Chinook salmon being susceptible to the 

parasite. 

Perhaps the most successful microsporidia/fish cell culture system has been obtained not 

with cell lines but with relatively long-term primary cultures of salmonid mononuclear 

leukocytes and less frequently head kidney stromal epithelial cells (Table 1.1) (Desportes-

Livage et al. 1996, Wongtavatchai et al. 1995, Wongtavatchai et al. 1994). These cultures 

supported the growth of Nucleospora salmonis. The basal medium was Iscove’s modified 

Dulbecco’s medium supplemented with fetal bovine serum, concanavalin A, 

lipopolysaccharide (LPS), and human recombinant interleukin 2. The source of infection was 

leukocytes from microsporidia-infected fish. Leukocytes from microsporidia-infected 

Chinook salmon and rainbow trout were co-cultured with leukocytes from non-infected fish 

to start the cultures. Cells from the initial cultures could be subcultured by adding them to 

new cultures of leukocytes from healthy fish. This subculturing could be done up to 17 times 

for almost a year. The cultures retained N. salmonis stages from early meronts to mature 

spores. Two mechanisms were postulated to explain the spread of the parasite among the 

cultured cells: microsporidia could be transferred from mother cell to two daughter cells 

upon division of the host cell or could directly penetrate uninfected host cells. As the cultures 

required the periodic addition of uninfected leukocytes, the latter mechanism appeared to be 

in operation. 

Inocula from these cultures were able to cause in vivo a disease that was identical to the 

disease observed in naturally infected Chinook salmon (Wongtavatchai et al. 1995). 

Although cultures stored at 4 ºC in water or at -70 ºC in medium without a cryoprotectant lost 

infectivity, the cells of N. salmonis infected leukocytes cultures could be cryopreserved in 

liquid nitrogen with a cryoprotectant and still retain their infectivity (Wongtavatchai et al. 

1994). Interestingly, cultures with many spores and cultures with few spores were both 

infective in fish (Wongtavatchai et al. 1995). Possibly, the prespore stages from cultures 

rapidly sporulated upon injection and these gave rise in vivo to infectious spores, which 

started the infection in fish. Alternatively, as well as spores, early proliferative forms of N. 

salmonis from cell cultures could be infective to Chinook salmon. 
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The N. salmonis/salmonid leukocyte cultures allowed the developmental stages of the 

microsporidia to be examined by TEM (Desportes-Livage et al. 1996, Wongtavatchai et al. 

1995). The most unique feature was that all developmental stages were in direct contact with 

the host nucleoplasm. TEM revealed the differentiation of the polar tube precursors (PTP), 

the polaroplast primordium (PLP), and the granular body (GB) and their assembly into the 

extrusion apparatus of the spores. 

Salmonid leukocyte cultures have been used to show that N. salmonis causes the 

leukocytes to release mitogenic factors that stimulates the proliferation of uninfected 

mononuclear cells (Wongtavatchai et al. 1995). The significance of this observation is that 

these factors could explain the principal pathological feature of the disease. Most N. salmonis 

infections have been observed in Chinook salmon, and a characteristic feature of the disease 

is the excessive proliferation of mononuclear leukocytes. The nature of the factor(s) 

responsible for this has yet to be determined, but the cell culture system could be a key to 

unraveling them. 

Several fish cell lines have been investigated for their capacity to support the growth of 

fish microsporidia. Spores of a fish microsporidia of the genus Glugea sp. were internalized 

in 12 h by cells of the Chinook salmon embryo cell line (CHSE-214) and sporoplasms and 

meronts were seen in parasitophorous vacuoles (Lores et al. 2003). However, development 

stopped by 48 h. Another fish microsporidia that has been studied is P. neurophilia, which, in 

research facilities, is a common pathogen of zebrafish (D. rerio) and is found in the central 

nervous system (Watral et al. 2006). Spores were collected from brains and anterior spinal 

cords of infected zebrafish and added to cultures of channel catfish ovary (CCO), zebrafish 

caudal fin fibroblast (SJD.1) carp epithelioma (EPC) and fathead minnow (FHM), which 

were maintained at 28 ºC. Aggregates of eight or more spores per cell developed, Fig 1.2. 

However, further development was limited and requires more investigation. 

The only other fish microsporidial pathogen that has been grown in vitro is by far the most 

unique of the in vitro fish microsporidia systems and perhaps in all of in vitro microsporidia 

work. This is the eel (Anguilla japonica) epithelial-like cell line, EP-1, which seems to be 

persistently infected with Pleistophora anguillarum, now H. anguillarum (Kou et al. 1995). 

EP-1 was developed from infected tissues of eel elvers (young eels) that had 12 d previously 

been immersed in a suspension of H. anguillarum spores. The spores had been obtained from 
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infected tissue of naturally infected eels. Several cell lines arose from the infected elver 

tissues, but only EP-1 was characterized. EP-1 seemed immortal as the cells were passaged 

over 223 times and had a heteroploid karyotype. Merogonial stages of H. anguillarum were 

visualized in EP-1 by TEM, and merozoites were detected by Feulgen staining and indirect 

immunofluorescent staining with antisera against H. anguillarum spores. The appearance of 

spores in EP-1 cultures was not specifically noted. However, after the 140th passage, EP-1 

cells were injected into uninfected elvers, and the young eels developed the muscle pathology 

of an H. aguillarum infection. Therefore, this in vitro system seemed to be producing H. 

anguillarum merozoites that were capable of continuing in vivo sporogonial reproduction 

and causing disease in the natural host, eels. This unique persistently infected cell line may 

prove to be an important tool to advance our knowledge of fish microsporidial pathogens and 

how to study microsporidia in vitro (Monaghan et al. 2008). 

To date, the culturing of fish microsporidia in fish cell cultures has not achieved the 

success that has been accomplished with insect and mammalian microsporidia. This is not 

likely due to the lack of cell lines from fish because as documented in the first section below, 

microsporidia from one animal group can infect in vitro the cells from a very different group 

of animals. A possibility is that specific differentiated cell types from fish are needed to grow 

fish microsporidia. However, as documented in the second section below, microsporidia 

often appear less fastidious about the cell type in vitro. 
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Figure 1.2 Pseudoloma neurophilia spores in EPC cells at 5 d post-inoculation 
Arrow indicates spores. DifQuick stain. Micrograph from M. Kent. Bar = 10 µm. 

 Host animal group specificity in vitro 

The precise in vivo specificity of a microsporidial species for a host animal group is 

difficult to state definitively. Microsporidia from diverse animal groups are being found to 

cause disease in animal species widely different from the hosts in which they were 

discovered initially. Microsporidia from mammals, insects, and even fish have been 

implicated in human infections. The occurrence of the four most common human 

microsporidial pathogens in non-human mammals raises questions regarding possible 

reservoirs for these parasites and their zoonotic potential (Mathis et al. 2005). A 56-year-old 

woman died of myositis initiated apparently from a mosquito bite and caused by the “insect” 

microsporidia Anncaliia algerae (Coyle et al. 2004). A fish microsporidia is thought to be the 

cause of myositis in an immuno-compromised man (Ledford et al. 1985). The in vitro results 

suggest that microsporidia can initiate at least some infection steps in cells from a wide range 

of vertebrates and invertebrates. 



 
18

T
ab

le
 1

.1
 F

is
h 

ce
ll 

cu
ltu

re
 sy

st
em

s u
se

d 
in

 th
e 

cu
lti

va
tio

n 
of

 m
ic

ro
sp

or
id

ia
 fr

om
 fi

sh
 

 
Ch

ar
ac

ter
ist

ics
 of

 th
e F

ish
 C

ell
 C

ult
ur

es
 

 
 

Ch
ar

ac
ter

ist
ics

 of
 th

e M
icr

os
po

rid
ia

 
 

Mi
cro

sp
or

idi
a i

n f
ish

 ce
ll c

ult
ur

e
 

 
Re

fer
en

ce
 

Ty
pe

 of
 cu

ltu
re

 
Sp

ec
ies

 
Tis

su
e O

rig
in 

 
Sp

ec
ies

 
No

rm
al 

Ho
st 

 
Ini

tia
tin

g I
nfe

cti
on

 in
 

vit
ro

 
Mi

cro
sp

or
idi

a 
Gr

ow
th

 

Pr
im

ar
y c

ult
ur

e: 
Le

uk
oc

yte
s 

Ch
ino

ok
 

Sa
lm

on
 

Pe
rip

he
ra

l b
loo

d 
 

Nu
cle

os
po

ra
 

sa
lm

on
is 

Fis
h (

sa
lm

on
ids

) 
 

 
Le

uk
oc

yte
s f

ro
m 

inf
ec

ted
 fis

h 
(co

-cu
ltiv

ati
on

) 

Sp
or

e d
ev

elo
pm

en
t 

in 
leu

ko
cy

te 
ce

ll 
nu

cle
us

 

 
W

on
gta

va
tch

ai 
et

 
al.

 19
94

; 
W

on
gta

va
tch

ai 
et

 
al.

 19
95

 
 

Pr
im

ar
y c

ult
ur

e: 
Le

uk
oc

yte
s 

Ch
ino

ok
 

Sa
lm

on
 

 

Inf
ec

ted
 ki

dn
ey

 
 

Nu
cle

os
po

ra
 

sa
lm

on
is 

 

Fis
h 

(sa
lm

on
ids

) 
 

Le
uk

oc
yte

s f
ro

m 
inf

ec
ted

 fis
h 

(co
-cu

ltiv
ati

on
) 

Sp
or

e d
ev

elo
pm

en
t 

in 
leu

ko
cy

te 
ce

ll 
nu

cle
us

 
 

 
De

sp
or

tes
-

Liv
ag

e e
t a

l. 
19

96
 

Pr
im

ar
y c

ult
ur

e: 
Ep

ith
eli

al-
lik

e 
Ra

inb
ow

 T
ro

ut 
Ki

dn
ey

 
 

Nu
cle

os
po

ra
 

sa
lm

on
is 

 

Fis
h 

(sa
lm

on
ids

) 
 

 
Le

uk
oc

yte
s f

ro
m 

inf
ec

ted
 fis

h 
(co

-cu
ltiv

ati
on

) 

Sp
or

e d
ev

elo
pm

en
t 

in 
ep

ith
eli

al 
ce

ll 
nu

cle
us

 
 

 
De

sp
or

tes
-

Liv
ag

e e
t a

l. 
19

96
 

Ce
ll l

ine
: 

CH
SE

-2
14

; 
Ep

ith
eli

al-
lik

e 

Ch
ino

ok
 

Sa
lm

on
 

Sa
lm

on
 em

br
yo

  
 

Gl
ug

ea
 sp

. 
Fis

h 
(m

an
y s

pe
cie

s) 
 

 
Sp

or
es

 fr
om

 in
fec

ted
 

fis
h 

(in
oc

ula
tio

n)
 

Pr
oli

fer
ati

on
 of

 
mi

cro
sp

or
idi

a 
sto

pp
ed

 af
ter

 48
 

ho
ur

s i
n c

ult
ur

e 
 

 
Lo

re
s e

t a
l. 2

00
3 

Ce
ll l

ine
s: 

CC
O;

 F
ibr

ob
las

t 
SJ

D.
1; 

Fib
ro

bla
st 

EP
C;

 E
pit

he
lia

l-
lik

e 
FH

M;
 E

pit
he

lia
l-

lik
e 

Ch
an

ne
l 

Ca
tfis

h 
Ze

br
afi

sh
 

Ca
rp

 
Fa

the
ad

 
Mi

nn
ow

 
(re

sp
ec

tiv
ely

) 
 

CC
O;

 O
va

ry 
SJ

D.
1; 

Fin
 

EP
C;

 S
kin

 
FH

M:
 C

on
ne

cti
ve

 
tis

su
e a

nd
 

mu
sc

le 

 
Ps

eu
do

lom
a 

ne
ur

op
hil

ia 
Fis

h 
(ze

br
afi

sh
) 

 
Sp

or
es

 fr
om

 in
fec

ted
 

fis
h 

(in
oc

ula
tio

n)
 

De
ve

lop
s 

ag
gr

eg
ate

s o
f 

ap
pr

ox
im

ate
ly 

8 
sp

or
es

 pe
r c

ell
 

 
W

atr
al 

et
 a

l. 
20

06
 

Ce
ll l

ine
: 

EP
-1

; E
pit

he
lia

l-
lik

e 

Ja
pa

ne
se

 ee
l 

 
Inf

ec
ted

 tis
su

es
 

of 
elv

er
s 

 
He

te
ro

sp
or

is 
an

gu
illa

ru
m

 
Fis

h 
(e

els
) 

 
No

t d
on

e; 
be

ga
n b

y 
ex

po
sin

g e
lve

rs 
to 

sp
or

es

Me
ro

nt 
de

ve
lop

me
nt 

 
Ko

u e
t a

l. 1
99

5 



 19

Many examples exist of microsporidia from insects being studied in mammalian cell 

cultures. The first successful cultivation of an insect-derived microsporidian, A. algerae, in 

mammalian cell culture (pig kidney) was subsequently followed by cultivation of 

microsporidian insect isolates in other mammalian cell cultures including rat, mouse, and 

rabbit (Ishihara 1968, Smith and Sinden 1980, Undeen 1975). More recently, in vitro 

approaches using insect-derived microsporidia in mammalian cell culture have furthered our 

understanding of parasite development and factors that influence it (Franzen et al. 2005a, 

Lowman et al. 2000, Takvorian et al. 2005, Trammer et al. 1999). For example, temperature-

imposed constraints to microsporidia growth from insect isolates have been evaluated in a 

number of in vitro studies using mammalian cells. Tubulinosema ratisbonensis, known only 

to infect fruit flies in vivo, was isolated and able to infect human lung fibroblasts (MRC-5) at 

31 ºC and 37 ºC, yet was unsuccessful in monkey kidney cells (Vero) (Franzen et al. 2005a). 

T. ratisbonensis grew at both temperatures, but when compared, proliferation was reduced at 

37 ºC. Likewise, Lowman et al. (2000) determined that the incubation of A. algerae spores at 

temperatures ranging from 29 ºC to 37 ºC did not prevent microsporidia growth but found 

that higher temperatures inhibited the rate of growth. 

Another example of a species of microsporidia from invertebrates interacting in vitro with 

cells from mammals is Ameson michaelis, which infects blue crabs. When placed in culture 

media with various cell types, A. michaelis was able to inject sporoplasm into not only 

epithelial cells and hemocytes of the blue crab but as well into human erythrocytes and 

mouse cells of various types (leukemia EL4 cells, macrophages, and neuroblastoma C1300 

cells) (Weidner 1972). In these experiments, proliferation of A. michaelis, the first infection 

step, showed no restriction in vitro between cells of different species and types, but 

subsequent steps must have been limiting. 

A few examples exist of microsporidia from mammals being studied in fish cell cultures 

(Table 1.2). E. cuniculi, of mammalian origin, was reported to develop spores in the 

cytoplasm of a fathead minnow cell line (Bedrnik and Vávra 1972). Also interesting was that 

this was accomplished at 18 ºC, a temperature far cooler than any mammalian host. E. 

bieneusi was cultivated in a primary culture from rainbow trout kidney cells (Desportes-

Livage et al. 1996). This is of particular interest as E. bieneusi has been very difficult to 

culture in mammalian cells (Visvesvara 2002). Desportes-Livage et al. (1996) observed early 
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E. bieneusi development to be organized with cisternae of the host endoplasmic reticulum. 

Meronts and sporonts were also found in close association with the host nucleus. In 

desquamating cells, mature spores were observed, which indicates probable discontinuation  

of development (Desportes-Livage et al. 1996). The last example relates to Glugea sp. 

collected from the livers of Greater Sand Eels (Hyperoplus lanceolatus), which was 

unproductive in fish culture, but successful at proliferating in a mosquito larvae cell line 

(ECACC90100401) (Lores et al. 2003). Meront development was observed within 12 h post-

infection (pi) and sporogony at 48 pi, and after 7 d, a variety of developmental stages were 

observed demonstrating the ability of Glugea sp. to continuously proliferate in the mosquito 

larvae cell line (Lores et al. 2003).  

Currently, no examples exist of microsporidia from fish being studied in mammalian cell 

cultures. Temperature would be anticipated to prevent microsporidia from cold-water fish 

being studied in mammalian cells, but this might not be a barrier for microsporidia from 

warm-water fish. The advantages of using mammalian cells would be that more cell lines 

expressing differentiated functions exist, several in vitro differentiation systems are well 

defined, and more antibodies and molecular probes would be available to study the host cell 

responses. 
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Host tissue or cell specificity in vitro 

The precise in vivo specificity of a microsporidial species for a host tissue or cell type is 

difficult to state definitely. While Encephalitozoon spp. are the primary cause of 

disseminated microsporidiosis in humans, other species of microsporidia appear to infect 

only specific tissue in their hosts (Mertens et al. 1997, Tosoni et al. 2002). For example, of 

the 14 species of microsporidia that infect humans, three are exclusively known to infect the 

eye, while three other species infect the eye and one other site (Didier and Weiss 2006). As 

well, Pleistophora ronneafiei and Brachiola vesicularum are two species known to infect 

only muscle tissue (Cali and Takvorian 2003, Didier and Weiss 2006). Interestingly, even 

among the same genus of microsporidial pathogens, such as Brachiola, there can be a broad 

range of clinical presentations. B. connori demonstrates low-tissue specificity as the 

causative agent of system infections, while B. vesicularum demonstrates high tissue 

specificity. On the other hand, E. bieneusi is rarely found infecting tissue other than the 

epithelium of the small intestine (Didier and Weiss 2006). Nonetheless, mechanisms 

providing the ability for some species to invade a variety of tissue types while others are 

found in limited tissue types remain unclear. 

Despite hints of apparent tissue tropism in vivo, the same microsporidia in vitro appear to 

be able to infect cells of different tissue origin and of stage of differentiation. For example, 

Franzen et al. (2005b) studied the internalization of four microsporidian species in seven 

different cell lines in vitro and observed that phagocytic cells were more proficient at 

internalizing spores than non-phagocytic cells. Comparing the non-phagocytic cells, the only 

clear result was that a pulmonary cell line, A549, was ten times less efficient than its 

counterparts at internalizing the spores. Furthermore, the intestinal cell lines were not only 

effective at internalizing spores that commonly affect the gastrointestinal tract but were also 

effective at internalizing spores of microsporidian species that typically do not cause 

gastrointestinal microsporidiosis. Because internalization patterns in the cell lines could not 

be correlated to clinical presentations, it was suggested that access to tissue types through 

various routes of infection are likely responsible for apparent tissue specificity rather than 

tissue tropisms (Franzen et al. 2005b). 
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Another example of an apparent loss of tissue tropism in vitro is with Nucleospora 

salmonis from rainbow trout (Desportes-Livage et al. 1996). In vivo N. salmonis was found 

only in leukocytes from blood and from hematopoietic tissues (kidney and spleen). By 

contrast, in vitro N. salmonis developed in epithelial cells of long-term head kidney cultures, 

and the yield of spores per cell was higher for the epithelial cells than for leukocytes. 

1.3 Discussion 

Insect and mammalian cell culture systems pioneered the in vitro study of microsporidia 

leading to important observations on their infectivity and development and an evaluation of 

possible treatments and disinfection procedures. Fish microsporidiology in fish cell culture 

also could make advancements in these areas and these in turn could help in understanding 

how to diagnose and control microsporidia infections in aquaculture. For example, cell 

cultures could be a source of material for the development of vaccines. However, besides 

their practical value, microsporidia/fish cell culture systems might uncover some unique cell 

processes. One is the possibility that for some fish microsporidia, fluctuating temperatures 

rather than constant temperatures are needed for all stages to be expressed in vitro. Another is 

the process behind the induction of xenomas, which are exceptional animal cells because of 

their enormous size and are most commonly found with fish microsporidia. A final example 

is the possible ability of fish microsporidia to immortalize animal cells, which are hinted at in 

the work on H. anguillarum. 

In the following chapters, the use of fish cell cultures to study microsporidia is 

demonstrated by growing A. algerae in several fish cell lines, and by using microscopy 

methods to evaluate the life cycle and possible control agents of the parasite (Chapters 2 to 

4). Additionally, in Chapter 5, fish cells are used to demonstrate the first evidence that 

Nosema apis can grow in a vertebrate cell line. Prior to this work, fish cells had been used 

with various success to grow fish derived microsporidia for four microsporidian species: N. 

salmonis (Desportes-Livage et al. 1996, Wongtavatchai et al. 1995, Wongtavatchai et al. 

1994), P. neurophilia (Watral et al. 2006) H. anguillarum (Kou et al. 1995), and Glugea sp. 

(Lores et al. 2003) (Table 1.1). Further, fish cell cultures were used in two other 

investigations to grow to mammalian derived microsporidia, E. cuniculi and E. bieneusi 

(Bedrnik and Vávra 1972, Desportes-Livage et al. 1996) (Table 1.2). With the over 1200 
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species of microsporidia (Wittner 1999), and 156 species of microsporidia known to infect 

fish (Lom 2002), there are clearly extensive areas of research to explore in this field. The 

goal of this work is to demonstrate the value fish cell cultures have in the study of 

microsporidia, and ultimately to use this experience to grow microsporidia that are known to 

infect economically important fish, in species/tissue specific fish cell cultures.  
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Chapter 2                                                       

In vitro Growth of Microsporidia Anncaliia 

algerae in Cell Lines From Warm Water Fish  
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Overview 
Anncallia algerae is an aquatic microsporidium that most commonly infects mosquitoes 

but can be grown on the rabbit kidney cell line, RK-13. Spores were purified from RK-13 

cultures and added to cell lines from warm water fish and from an insect. The cell lines were 

GFSK-S1 and GFB3C-W1 from goldfish skin and brain respectively, ZEB2J from zebrafish 

embryos, FHMT-W1 from fathead minnow testis, and Sf9 from ovaries of a fall armyworm 

moth. All cultures were maintained at 27ºC. Infection was judged to have taken place by the 

appearance of sporonts and/or spores in cells and occurred in all cell lines. Spores were also 

isolated from ZEB2J cultures and used to successfully infect new cultures of ZEB2J, RK-13 

and Sf9. These results suggest that cells of a wide range of vertebrates support A. algerae 

growth in vitro and fish cells can produce spores infectious to cells of mammals, fish and 

insects. 
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2.1 Introduction 

Microsporidia are a diverse group of fungi that are obligate intracellular parasites of other 

eukaryotes, including invertebrates and vertebrates (Keeling and Fast 2002). Informally, they 

can be categorized in several ways. One is to describe them as being insect, mammalian, or 

fish microsporidia based on the host from which they were originally derived. Another is to 

classify them as being terrestrial or aquatic based on whether spores survive and transmit 

from host to host in an aquatic or terrestrial environment and have different underlying 

germination mechanisms (Undeen and Vander Meer 1999). In humans, microsporidia rarely 

cause diseases, and when they do, the patients are usually immunocompromised (Didier 

2005). By contrast, several animal diseases of considerable economic importance have been 

attributed to microsporidia, including diseases that impede aquaculture of fish and have been 

a factor in the weakening or collapse of several fisheries (Becker and Speare 2007, Shaw and 

Kent 1999). 

Anncaliia algerae, which was first known as Nosema algerae and then as Brachiola 

algerae before being moved to the genus Anncaliia (Franzen et al. 2006), is an aquatic and 

insect microsporidium with an exceptional host range. Originally the species was discovered 

as a parasite of Anopheles mosquitoes (Vávra and Undeen 1970) and subsequently was 

shown to infect a variety of other insect species (Undeen and Maddox 1973). For mammals, 

the potential for an association was demonstrated first experimentally with mice, and then 

surprisingly, clinical cases emerged with humans. When spores were injected into the feet 

and tails of mice, limited infections were observed (Trammer et al. 1997, Undeen and 

Maddox 1973), but after the ocular administration of spores to immunodeficient mice, severe 

liver infections arose (Koudela et al. 2001). In humans, A. algerae was identified initially in 

eye scrapings of an immuno-competent person (Visvesvara et al. 1999) and then in skeletal 

muscle of a woman undergoing treatment for arthritis with immunosuppressive drugs and 

who ultimately succumbed to the infection (Coyle et al. 2004). 

Whether A. algerae infects aquatic vertebrates such as fish is unknown, but one approach 

for assessing this prospect is to determine whether they can infect fish cells in vitro. A. 

algerae has been successfully grown in insect and mammalian cell cultures, with the rabbit 

kidney epithelial cell line RK-13 being particularly useful for this purpose (Lowman et al. 
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2000), but fish cells have not been examined. Generally, animal cell cultures have been 

valuable tools for studying the interactions between microsporidia and mammalian cells 

(Visvesvara 2002), but for fish microsporidia, the in vitro approach has been used less 

frequently and with less success (Monaghan et al. 2009). Therefore, in order to evaluate the 

prospects of A. algerae infecting fish and of using A. algerae as a general model for studying 

the cellular pathology of fish microsporidial infections, we infected cell lines from zebrafish, 

goldfish, and fathead minnow with A. algerae spores. Cells of warm water fish and an 

incubation temperature of 27ºC were chosen because A. algerae has been shown to develop 

in vitro at temperatures as low as 25-26ºC (Belkorchia et al. 2008, Undeen 1975) and because 

cells of warm water fish grow well between 25ºC and 27ºC (Xing et al. 2008). Overall the 

results suggest that cells from warm water fish support the production of A. algerae spores 

and these spores can infect mammalian, lepidopteran, and other piscine cells in culture. 

2.2 Materials and Methods 

Cell Lines and Their Growth 

The American Type Culture Collection (ATCC, Manassas, VA) supplied the rabbit kidney 

epithelial cell line RK-13 (CCL-37), and InVitrogen (Carlsbad, CA) was the source of Sf9 

from fall armyworm ovary. Although initially grown in vented flasks at 37ºC in an 

atmosphere of 5% CO2 and 95% air in Modified Eagle’s Minimum Essential Medium 

(ATCC Cat#30-2003) with 10% heat-inactivated fetal bovine serum (FBS; Sigma, St. Louis, 

MO), RK-13 were switched to Leibovitz-15 (L-15; HyClone) with 2mM L-glutamine and 

10% FBS. With this medium, the RK-13 could be grown in an atmosphere of air in non-

vented flasks just as was done for the other cell lines. RK-13 was routinely grown at 37ºC, 

but confluent cultures could be maintained without any obvious change in cell number for at 

least 10 d at 27ºC. The Sf9 cells were grown at 27ºC in Grace’s Insect Culture Medium 

(HyClone) with 2mM L-glutamine, 500 mg/L calcium chloride, 2,800 mg/L potassium 

chloride, 3,330 mg/L lactalbumin hydrolysate, 3,330 mg/L yeastolate, and 10% FBS. 

Penicillin/streptomycin was used in all animal cell culture media at 100 IU/m 

The fish cell lines were developed in the laboratories Dr. Niels Bols (University of 

Waterloo) and Dr. Lucy Lee (Wilfrid Laurier University). ZEB2J is a zebrafish blastula cell 

line (Xing et al. 2008), and GFSK-S1 is from goldfish skin (Lee et al. 1997). The two other 
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fish cell lines, GFB3C-W1 from goldfish brain and FHMT-W1 from fathead minnow testis, 

have yet to be formally described in the literature. All fish cell lines are predominantly 

epithelial-like and were grown at 27ºC in L-15 supplemented as described above for RK-13. 

Production and Purification of A. algerae spores from RK-13 Cultures 

Initially, A. algerae spores were obtained from the ATCC as B. algerae (PRA-168). These 

were used to begin the routine production of spores in RK-13 cultures. RK-13 was used 

because of the success other have had with this cell line and A. algerae (Lowman et al. 2000, 

Takvorian et al. 2005). The initial ATCC sample was thawed, centrifuged at ~200g, and 

resuspended in L-15 with 2 mM L-glutamine and 10% FBS. This spore suspension was 

placed in a confluent culture of RK-13 cells in a 25-cm2 flask, which was incubated at 27ºC. 

After 10 d, spores were seen over the majority of the monolayer, and the monolayer was 

starting to deteriorate. The remaining attached cells were disassociated from the flask using a 

cell scraper. All contents were removed, placed in a 15-ml test tube, and centrifuged at ~200 

x g for 5 min. The supernatant was carefully removed using a Pasteur pipette, and the pellet 

was resuspended in L-15 with 2 mM L-glutamine and 10% FBS. The suspension was then 

used to infect other RK-13 flasks at 27ºC. This was repeated until a sufficient supply of 

spores was acquired to store some and use others to prepare more spores for experimental 

infection of other cells lines. 

For experimental infection of tested cell lines, spores were purified from RK-13 cultures 

by a method modified from Hester et al. (2002). Purification was done in order to make 

subsequent microscopic examination of cultures easier: purification eliminated the possibility 

of RK-13, whether intact or as debris, from being transferred. The RK-13 monolayer was 

scraped and the contents of a flask placed in the 15-ml test tube, centrifuged at ~1,100 xg for 

10 min, and the supernatant removed. The cell/spore pellet was then resuspended in 5 ml 

sterile water at room temperature for more that 24 h. The water lysed the cells but not the 

spores. To further liberate spores from any host cells membranes, the spore/cell lysate 

mixture was pushed through a 25-G needle twice, mixed with 5 ml Percoll (Sigma P1644), 

vortexed for approximately 5 s, and centrifuged at ~1,800 x g for 30 min. The spores pelleted 

to the bottom of the test tube, while cellular debris was in the Percoll/water supernatant, and 

removed by aspiration. The spore pellet was resuspended in sterile water. Some aliquots of 
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the suspension were autoclaved for 75 min at 121ºC. All aliquots were stored at room 

temperature. Spores were used within 2 wk of purification to infect animal cell cultures. 

Infecting Animal Cell Cultures with A. algerae Spores from RK-13 Cultures 

Infections were done in 12.5-cm2 non-vented flasks (Falcon). Each cell line was grown at 

the temperature appropriate for the cell line to approximately 70-90% confluency for the 

vertebrate cell lines and to about 30% confluency for the insect cell line, Sf9. As Sf9 cells 

grew loosely attached to the flask surface and in suspension, the flasks were used at a point 

when adherent cells were still visible and not blocked from view by cells floating in the 

medium. Spore suspensions in water were centrifuged at ~200xg, resuspended in L-15 with 

10% FBS for the vertebrate cells and in Grace’s Insect Medium for Sf9, and counted with a 

hemocytometer. For spore inoculation, each flask had 3.2 ml of culture medium and received 

either untreated or autoclaved spores to give 2 x 106 spores/ml. Additional flasks received no 

spores (no spore control). All co-culture combinations and their controls were maintained at 

27ºC. After 1-2 d post-infection (p.i.), the medium was removed from each flask and rinsed 

three times with fresh medium. 

Isolating and using A. algerae spores from other animal cell cultures 

Spores were also prepared from successfully infected cultures of the fish cell lines and of 

Sf9 and used to infect new cultures of each cell line from which they were produced. 

Additionally, spores from ZEB2J were used to infect RK-13 and Sf9 cultures and spores 

from Sf9 used to infect RK-13 and ZEB2J cultures. Spores were isolated and used as 

described above for RK-13. Again, 1 to 2 d p.i., cultures were rinsed and fresh medium 

added. Cultures were viewed at various times afterwards as described below. 

Monitoring animal cell cultures infected with A. algerae spores 

A Nikon TE300 inverted microscope with a TE-FM Epi-Fluorescence attachment and 

Nikon Cool Pix 5400 camera was used to monitor and photograph living and fixed cultures 

by phase and fluorescence microscopy, respectively. Phase contrast microscopy was used to 

view living cultures daily. Cell cultures were fixed at various times p.i. in Carnoy’s fixative 

(absolute methanol/glacial acetic acid, 3:1) and stained for DNA with 4’,6-diamidino-2-

phenylindole (DAPI). For fixation, 1 ml of Carnoy’s was added to the medium of a flask 
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culture and left for 2 min. A bulb pipette was used to remove the fixative and another 1.5 ml 

of Carnoy’s was added for a further 5 min before removal. Afterwards the culture flasks were 

rinsed in phosphate-buffered saline (PBS) and stained for at least 1 h in 10 µg/ml of DAPI in 

PBS. Cultures were scored for sporonts and spores by the criteria described in the first 

section of the “Results.” 

Comparing fish cell lines for their ability to support A. algerae spore 

production 

Counts were made of A. algerae spores in cultures of the four fish cells lines, 2 and 6 d 

after they had been infected as described above. Counts were done from micrographs of five 

random fields of DAPI stained cultures from 5 different flasks. The spores were the intensely 

stained ovoid structures, although sporonts were possibly included in the counts at day 6. The 

numbers were analyzed using GraphPad InStat (version 3.00 for Windows 95, GraphPad 

Software, San Diego, CA, www.graphpad.com). A one-way analysis of variances (ANOVA) 

was used to compare whether the number of spores in different cultures were statistically 

different (p<0.05). For each cell line, an unpaired t-test was used to compare the number of 

spores at day 6 with day 2 (p<0.05). 

Day 2 values were the reference points from which to determine whether cultures 

supported A. algerae development over the next 4 d. After spore additions, 2 d were allowed 

for the spores to distribute and settle over the culture before removal of the medium and 

rinsing of cultures. Rinsing immediately before the day 2 count meant that the spores being 

counted were those that had adhered to cells or plastic and potentially could infect cells. 

However, some spores would have infected cells during the first 2 d and would not likely be 

counted because of the weak DAPI staining of meronts (see “Results”). To determine the 

extent of this problem, parallel cultures received autoclaved spores before being rinsed. At 

day 2, the counts from these cultures were compared to the counts from cultures receiving 

untreated spores and were found not to be significantly different (unpaired t test, p>0.05). 

this suggests that the day 2 counts are an appropriate reference point from which to judge 

whether cultures supported spore production over the next 4 d. 
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Viability of fish and mammalian cells in cultures infected with A. algerae  

The cells in control and infected cultures were compared in several ways. For the adherent 

cell lines, cells were removed from the growth surface with TryplE (InVitrogen) as described 

by Servili et al. (2009) or trypsin as described previously (Bols and Lee 1994). Sf9 cells grew 

loosely over the growth surface and could be removed by scraping. Trypan blue was used to 

determine viability in cell suspensions. The proportion of viable cells and their size 

distribution were determined with an automated cell counter, The Countess (InVitrogen), 

according to the manufacturers instructions. Statistical analysis was done with GraphPad as 

described earlier. 

2.3 Results 

RK-13 cultures: the spore factory 

Signs of infection with A. algerae were seen clearly by phase contrast microscopy in RK-

13 cultures at between 24 to 48 h p.i. Prior to being added to cultures, spores were ovoid, 

phase-bright structures, and RK-13 cells had the conventional phase-contrast appearance of 

epithelial cells in culture (Fig 2.1A). However, between 24 to 48 h p.i., spindle-shaped 

structures appeared in the cytoplasms of many RK-13 cells. These structures were similar to 

those described by others in A. algerae infected animal cell cultures. They resemble the 

“developing stages” visualized by phase contrast microscopy in human foreskin fibroblast 

cultures (Belkorchia et al. 2008) and Giemsa-stained structures that were termed “meronts” 

and “sporonts” in pig kidney cell cultures (Undeen 1975) and “proliferative stages” in RK-13 

cells (Lowman et al. 2000). With Giemsa staining, multiple nuclei were seen (Lowman et al. 

2000, Undeen 1975). However, in our study, multiple nuclei were only occasionally visible 

by phase contrast microscopy and rarely by fluorescence microscopy after DAPI staining for 

DNA. DAPI stained spores strongly and the spindle-shaped structures weakly. Yet, DAPI 

staining and the ability to view the same microscope field by fluorescence and phase contrast 

helped localize spindle-shaped structures that were barely visible and hard to find by phase 

contrast microscopy alone. These are interpreted to be meronts (Fig 2.3 “M”). The spindle-

shaped structures that were much darker under the phase contrast microscope are interpreted 

to be sporonts (Fig 2.3 “S”). As these can be scored unequivocally, the appearance of phase-

dark, spindle-shaped structures was a clear indication that a culture had been successfully 



 33

infected. After 6 to 12 d p.i., the cytoplasms but not the nuclei of RK-13 cells became full 

with egg-shaped, phase-bright spores (Fig 2.1B). Cultures with this appearance were used as 

the source from which to isolate and purify spores, which were suspended in H2O and used in 

the following experiments. 

 

 

Figure 2.1 The A. algerae spore factory in RK-13 cultures  
Phase contrast appearance of RK-13 cultures without infection (A) and 11 d after infection 
with A. algerae spores (B). Cultures were maintained in L-15 with 10% FBS at 27°C. Scale 
bar = 10 µm. 
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Spores 

Immediately upon preparation, all the spores appeared phase bright but this changed as 

early as 5 min after the addition of purified spores to culture vessels with medium (Grace’s or 

L-15 with FBS) but no animal cells. The phase bright spore coat became phase dark and a 

polar filament became visible (Fig 2.2). In some cases, ejection of the polar filament was 

witnessed and seen to completely eject to the point of resistance, coil around the terminal 

sporoplasm, and forcefully pull the empty spore coat in its direction. These events occurred 

in seconds and are interpreted to be germination. However, spore germination was not 

synchronous and took place erratically over several hours. After approximately 5 h, no 

further germination was observed, even though many un-germinated spores were still 

present. When such a culture was fixed and incubated with DAPI, the un-germinated spores 

fluoresced much more strongly than the germinated spores. Some spore preparations were 

immediately autoclaved to create dead spores as controls in selected experiments. The 

autoclaved spores all appeared phase bright and stained strongly with DAPI. The autoclaved 

spores could be stored for days at 4ºC in water or at 27°C in culture medium without any 

noticeable change in their phase contrast appearance and DAPI staining. 
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Figure 2.2 Phase contrast appearance of germinated and ungerminated A. algerae 
spores in L-15 with 10% FBS 
Ungerminated spores (US) are generally phase bright using phase contrast microscopy. Polar 

filaments (PF) and sporoplasms (SP) can be observed from germinating spores (GS), and are 

generally darker in appearance using phase contrast microscopy. Spores are uniform but may 

appear more circular when observing them superiorly or inferiorly, in contrast to 

longitudinally. Scale bar = 10 µm. 
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Infecting fish cell lines 

Spores from RK-13 cultures were added to cultures of several fish cell lines: GFSK-S1 and 

GFB3C-W1 from goldfish skin and brain, respectively, ZEB2J from zebrafish blastula and 

FHMT-W1 from fathead minnow testis. Between 12 and 48 h after the addition of spores, 

sporonts clearly were visible in the cytoplasm of some cells in all cultures. As in RK-13, 

these were spindle-shaped phase-dark structures that stained diffusely with DAPI (Fig 2.3). 

Several of these structures often lay roughly parallel to one another within the cytoplasm. 

Such structures failed to appear in cultures that had been killed with Carnoy’s fixative prior 

to the addition of spore or in living cultures that received autoclaved spores. After 3 d p.i., 

ovoid, phase-bright spores were seen in the cytoplasm of many cells in cultures of these fish 

cell lines (Figs 2.4 and 2.5). These cultures were processed as was done with RK-13, 

including a water lysis step, to isolate spores. The spores were added to new cell cultures of 

the same cell lines. Additionally, spores from ZEB2J cultures were inoculated into cultures 

of RK-13 and of the insect cell line, Sf9. Again, sporonts and spores became clearly visible 

in cells of the fish and rabbit cell lines. As discussed below, only spores were seen in Sf9 

cultures. Overall, the results suggest that A. algerae spores can be produced in fish cells in 

culture, and these spores are infectious to piscine, mammalian, and insect  cells. 
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Figure 2.3 DAPI staining of spindle-shaped early developmental stages and ovid later 
developmental stages in ZEB2J 4d p.i. 
Meronts (M) and sporonts (S) can be distinguished from mature spores (MS) (left) using 10 
µg/ml DAPI (right). Scale bar = 10 µm. 
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Figure 2.4 Phase contrast and fluorescence microscopy views of zebrafish cell culture 3 
to 4 d after infection with A. algerae spores 
Phase contrast micrograph of ZEB2J at 3 d p.i. (A). M meronts, S sporonts, SB sporoblasts, 
and MS mature intracellular spores. Fluorescent (B), and phase contrast microscopy (C) 
ZEB2J day 4 p.i. with 10 µg/ml DAPI. A giant host cell nucleus surrounded by over 280 
spores developing with the host cell cytoplasm. Scale bar = 10 µm. 
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Figure 2.5 Phase contrast and fluorescence microscopy views of several warm water 
fish cell cultures 4 d after infection with A. algerae spores 

Growth occurred in all inoculated fish cell lines and could be clearly observed using 10 
µg/ml DAPI. Scale bar = 10 µm. 
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Infecting the lepidopteran cell line, Sf9 

Spores from RK-13 cultures were also introduced to cultures of the insect cell line Sf9. 

However, approximately 1 d p.i., the insect cells started floating compared to the uninfected 

control culture. This prevented the easy visualization of microsporidial developmental stages, 

such as sporonts, inside the Sf9 cells. After 6 d p.i., DAPI staining and phase contrast 

microscopy revealed structures that are interpreted to be spores associated with Sf9 cells (Fig 

2.6). Spores were isolated from these cultures by the same method as was done with RK-13 

and used to infect ZEB2J and RK-13 cultures as well as new Sf9 cultures. Over 

approximately a week, cells showed the development of sporonts and spores in the ZEB2J 

and RK-13 cultures and spores in Sf9 cultures. These results suggest that cell cultures of the 

armyworm support the production of A. algerae spores that are infectious in vitro for insect, 

fish and mammalian cells. 

 

 

Figure 2.6 Phase contrast and fluorescence microscopy views of Sf9 cell cultures 4 d 
after infection with A. algerae spores 
Uninfected Sf9 cells phase and corresponding fluorescent (A and B), and infected Sf9 cells 
(C and D) 4 d p.i. with 10 µg/ml DAPI. Scale bar = 10 µm. 
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Comparing fish cell lines for their ability to support A. algerae spore 

production 

For each fish cell line, more spores were present in cultures 6 d after infection with A. 

algerae spores than after 2 d (Fig 2.7). Spores were ovoid structures that stained intensely 

with DAPI. The percent increase was 164.6 for GFB3C-W1, 204.3 for FHMT-W1, 397.8 for 

ZEB2J and 795.0 for GFSK-S1. Between the four fish cell cultures, spore numbers were not 

significantly different at day 2 (ANOVA, p>0.05) but were at day 6 (p<0.05). At day 6, spore 

numbers in GFSK-S1 were higher than in GFB3C-W1 and FHMT-W1 cultures (Tukey, 

p<0.05). These results suggest that each cell line supported A. algerae development, but one 

cell line GFSK-S1 supported spore production better than at least two other cell lines. 

When autoclaved spores were added to cultures, the number of spores at day 6 was 

significantly less than the number at day 2 for each cell line (unpaired t test, p<0.05). The 

percent decrease in spore counts was 84.3 for FHMT, 86.7 for ZEB2J, 84.0 for GFSK-S1, 

and 64.6 for GFB3C. These results suggest that in vitro fish cells degraded A. algerae spores. 
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Figure 2.7 Comparing fish cell lines for their ability to support A. algerae spore 
production 
Two days after the inoculation of cultures of four fish cell lines (FHMT, ZEB2J, GFSK-S1, 

GFB3C) with spores, the cultures were rinsed thoroughly. One set of cultures was fixed 

immediately (open bars); the other set of cultures were fixed 4 d later (solid bars). The 

cultures were stained with DAPI and scored for sporonts/spores. The means with SD (n=5) 

are plotted. For each cell line, the values for 2 and 6 d p.i. were compared by an unpaired t 

test and were significantly different (p<0.05). An ANOVA was used to compare values at 

day 6 between cell lines and was significant (p<0.05). Cell lines that have the same symbol 

are significantly different from one another (Tukey-Kramer Multiple Comparisons Test, 

p<0.005). 

 

Viability of fish and mammalian cells in cultures infected with A. algerae 

Cells in cultures of fish and rabbit cell lines showed little or no change in viability during 

the first 6 d p.i. with A. algerae spores and production of new spores. Over this time frame, 

the epithelial-like- and fibroblast-like-infected cells remained adherent to the culture surface 

even when full of spores. All infected fish cell cultures developed the appearance of some 
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giant cells with mature and developing spores within, but of the fish cell cultures, this seems 

most apparent in ZEB2J. When trypsin or TryplE was added to control and infected cultures, 

cells rounded and detached from the surface of both culture types over a similar time frame, 

and in infected cultures, cells with and without spores rounded and detached similarly. Cell 

suspensions prepared by trypsin or TryplE treatments of control and infected cultures had a 

similar number of viable cells as judged by Trypan Blue exclusion and size distributions. In 

control and A. algerae-infected cultures of ZEB2J, the percentages of viable cells were 

respectively 97.5±2.12% (n=2) and 98.5±0.707% (n=2; t test p>0.05) and the mean diameters 

of the cells were 22.8±0.778 µm (n=2) and 21.0±2.19 µm (n=2; t test p>0.005). In control 

and A. algerae-infected cultures of RK-13, the percentages of viable cells were, respectively, 

99.5±0.707% (n=2) and 97.5±0.707% (n=2); t test p>0.05) and the mean diameters were 

21.3±1.98 µm (n=2) and 21.0±2.83 µm (n=2; t test p>0.05). When cell suspensions were 

added to new culture surfaces, cells from control and infected cultures attached and spread 

similarly over the time frame of 24 h as did cells from the infected cultures with or without 

spores. Therefore, A. algerae caused no gross changes in fish and rabbit cell cultures over the 

first 6 d p.i. of spore production. 

Viability of armyworm cells in cultures infected with A. algerae 

In cultures infected with A. algerae for 7 d, Sf9 cells showed a change in behaviour but not 

in viability or in size. Normally, Sf9 cells grew loosely attached to the culture surface, but 

more cells were detached and floating in cultures several days after the introduction of A. 

algerae spores. However, at 6 d p.i., the number of viable cells as judged by Trypan blue 

exclusion was unchanged from control cultures, and the size distribution of Sf9 cells was 

similar in control and infected cultures. In control cultures and A. algerae-infected cultures, 

respectively, the proportions of viable cells were 86.0±4.24% (n=2) and 87.5±4.95% (n=2; t 

test p>0.05) and the mean diameters were 17.4±0.071 µm (n=2) and 17.0±1.06 µm (n=3; t 

test p>0.05). 

 

2.4 Discussion 

The current study extends the range of animal cells that are known to support A. algerae 

growth to the cells of warm water fish. Growth was supported in cell cultures from goldfish, 
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zebrafish, and fathead minnow at 27ºC. The growth of cells from coldwater fish, such as 

rainbow trout, is restricted to temperatures below 24ºC (Bols et al. 1992) so whether cells of 

coldwater fish support A. algerae spore development requires further research. However, the 

warm water fish cells join a variety of insect and mammalian cells in culture that at between 

25ºC and 37ºC become infected with A. algerae. These include cells from Lepidoptera and 

mosquitoes (Belkorchia et al. 2008, Streett et al. 1980), frogs (Smith et al. 1982), and 

mammals, including humans, rabbits, monkeys, pigs, and rats (Belkorchia et al. 2008, Cali et 

al. 2004, Lowman et al. 2000, Moura et al. 1999, Smith et al. 1982, Takvorian et al. 2005, 

Trammer et al. 1999). Thus, at the cellular level A. algerae appears to be promiscuous in its 

choice of hosts. 

The tissue of origin for the cells supporting A. algerae growth in vitro is wide but hints of 

possible tissue or cell preferences in vertebrates exists. Common cell types supporting 

infection have been kidney epithelial cells (Lowman et al. 2000, Takvorian et al. 2005, 

Undeen 1975); African Green monkey kidney (Kucerova et al. 2004) and fibroblasts from 

human lung, muscle, and foreskin (Belkorchia et al. 2008, Scanlon et al. 1999, Trammer et 

al. 1999) and from Xenopus (Smith et al. 1982). Also used successfully to grow A. algerae 

have been cells or cell lines from rat brain and skeletal muscle (Cali et al. 2004, Smith et al. 

1982, Smith and Sinden 1980), human intestine (Leitch and Ceballos 2008), and liver (Smith 

et al. 1982). For the warm water fish, cell lines from embryo, brain, testis, and skin became 

infected with A. algerae, but the skin cell line, GFSK-S1 appeared to be better at supporting 

the production of A. algerae life cycle stages at 6 d post-infection. Other hints of cell type 

preference were seen in the poor infection of differentiated human intestinal epithelial cells 

(Leitch and Ceballos 2008) and in the severe infection of the liver but not in the other tissues 

of immunodeficient mice (Koudela et al. 2001). In the future, the in vitro approach might 

allow the delineation of possible tissue or cell selectivity. 

The ability of cells lines from warm water fish to support the production of infectious A. 

algerae spores raised the possibility that this microsporidia species might be transmitted 

between an aquatic insect and fish and subsequently between fish species as a rare event. As 

in the case of humans (Visvesvara et al. 2005), the immune system of the fish would likely 

have to be impaired to allow an initial infection to be established. Establishment might occur 

in skin or in the gastrointestinal (GI) tract. Microscopic wounds have been demonstrated in 
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skin and fins of fish (Kiryu and Wakabayashi 1999) and could be a route for microsporidia 

spores to enter fish from water. In at least one study, ditch water was found to contain spores 

of the genus Nosema (Avery and Undeen 1987), which is the genus to which A. algerae 

belonged formerly, and the spores might have arisen from aquatic insects, like mosquitoes. 

Interestingly, A. algerae appeared to grow best on the goldfish skin cell line. Another route 

might be through fish feeding on infected insects or fish and transmission occurring in the GI 

tract. For this route, the fish GI tract would have to allow spore germination and sporoplasm 

penetration into the epithelial cells. Although no clinical cases have been seen to involve the 

GI tract, A. algerae has been shown to infect the human intestinal cell line, CaCo-2 (Leitch 

and Ceballos 2008). 

The cell culture observations for approximately a week suggest that an A. algerae infection 

might cause chronic rather than acute effects in many hosts, although this would likely 

depend on the species. In Sf9 cultures, most cells remained viable, whereas Streett et al.  

(1980) observed cell lysis in other lepidopteran cell cultures infected with A. algerae. For 

fish cells, despite supporting spore production, the cultures showed little change, with the 

cells staying adherent and viable. One possible change was an increase in the number of giant 

cells in infected cultures, but when the size distribution was compared for cells detached 

from control and infected cultures, no difference was found. This requires further 

investigation. Despite supporting spore production, the cells showed little change, staying 

adherent and viable. The ease with which these cultures of A. algerae and fish cell lines can 

be established, maintained, and monitored should allow future studies on the general 

interactions between microsporidia and fish cells. These would include describing chronic 

changes in the molecular and cellular activities of fish cells and the response of cultures to 

potential therapeutic agents. 
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Chapter 3                                                         

Cell Lines from Cold Water Fish Support 

Growth of Anncaliia algerae 
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Overview 
Cultures of rainbow trout gill and brain, RTgill-W1 and RTbrain-W1, were used to evaluate 

their ability to host the growth of Anncaliia algerae at 9, 18 and 21 °C. There was no 

conclusive evidence of parasite growth at 9 °C, and in both cell lines 21 °C allowed for more 

A. algerae growth than 18 °C. In both cell lines maintained at 21 °C , sporonts were visible in 

the cytoplasm 4 days p.i., followed by the mature spores 6 days p.i., while with cultures 

maintained at 18 °C these developmental stages were observed 6 and 8 days p.i, respectively. 

The appearance of these developmental stages was the same regardless of cell type. 

However, proliferation after 21 days was significantly greater in RTbrain-W1 than RTgill-

W1. Using a novel real-time live cell (Riveal) microscopy (www.quorumtechnologies.com), 

proliferation and spontaneous germination of A. algerae grown at 18 ºC in RTgill-W1 for 10 

days were observed over a 2.5 h period.  Percoll gradient purified A. algerae spores grown at 

18ºC were live stained with the fluorescent stain DAPI and stimulated to germinate using 3% 

hydrogen peroxide. Using Riveal microscopy, the ejection of sporoplasm was regularly 

observed, but some spores were visualized to germinate without ejecting the sporoplasm.  
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3.1 Introduction 

Microsporidia comprise a varied group of obligate intracellular fungal parasites with an 

exceptional host range infecting most animal phyla. Hosts include important marine and 

freshwater food fish in the gadid and salmonid families. Rainbow trout (Oncorhynchus 

mykiss) are susceptible to microsporidial infection by Loma salmonae (Bader et al. 1998, 

Beaman et al. 1999, Becker and Speare 2004). Disease from this parasite is often reported on 

the gills, but can affect a variety of tissues resulting in increased mortality and heavy 

economic losses for aquaculture (Lovy et al. 2008, Morrison and Sprague 1983, Ramsay et 

al. 2003). Anncaliia algerae, previously in the genera Nosema and Brachiola, is a non-

xenoma forming microsporidium typically known to infect mosquitoes and mosquito larvae. 

Rainbow trout could be exposed to this aquatic microsporidian through environmental 

spores, and by consuming infected mosquitoes and mosquito larvae, though no infection of 

any fish species with A. algerae has been described. Previous reports suggest that A. algerae 

proliferates at temperatures between 25 and 38°C (Belkorchia et al. 2008, Lowman et al. 

2000, Trammer et al. 1999), well above the environmental temperatures in which rainbow 

trout thrive.  

Studies on the effects of temperature on A. algerae growth have primarily focused on its 

upper proliferative limits. Although initially thought to be a microsporidian parasite of 

mosquitoes exclusively, culture of A. algerae in mammalian cells at physiologically relevant 

temperatures accurately predicted the possibility that mammalian body temperatures were 

within the proliferative temperature range of the parasite. The growth of A. algerae in pig 

kidney cultures at 26 and 35ºC was the earliest demonstration that development of the 

parasite occurs in mammalian cells (Undeen 1975). A. algerae was also shown to develop in 

the extremities of experimentally infected athymic mice (Trammer et al. 1997),  and grow in 

human muscle fibroblasts (CHQ5B) at temperatures up to 38 ºC (Trammer et al. 1999). 

Subsequently, several mammalian cell lines have supported the growth of this parasite 

(Belkorchia et al. 2008, Kucerova et al. 2004, Lowman et al. 2000, Moura et al. 1999, 

Scanlon et al. 1999), and disease in the deep tissue, vocal cords, and cornea of humans has 

been attributed to A. algerae (Cali et al. 2010, Coyle et al. 2004, Visvesvara et al. 1999). 

There has been less priority given to determining the lowest temperature in which A. 

algerae will grow. Undeen’s initial work demonstrated that A. algerae grew at 26 ºC in pig 
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kidney cells, but the percent of germinated spores from this culture was reduced compared to 

spores grown at 35 ºC (Undeen 1975). Development of A. algerae in two mosquito cell lines 

(Mos55 and Sua4.0) at 25 ºC is also described, but infection took 10 to 15 days to detect and 

few spores were produced (Belkorchia et al. 2008). A. algerae has recently been determined 

to be able to grow at 27 ºC in cells derived from warm-water fish (Monaghan et al. 2011). 

Demonstrating the parasite’s ability to also grow in cells from cold-water fish provides an 

ideal and important in vitro system in which to study the effects of lower temperatures on A. 

algerae growth.  

In fish, water temperature is an important factor in the prevalence of microsporidial 

infections (Becker and Speare 2004, Becker et al. 2006, Takvorian and Cali 1984). For 

example, Loma salmonae was found to infect rainbow trout at temperatures between 9 and 

20ºC, but xenoma formation was not observed at temperatures above and below this range 

(Beaman et al. 1999). Seasonal increases in water temperature have also been found to 

increase Glugea stephani infection in winter flounder (Pseudopleuronectes americanus) 

(Takvorian and Cali 1984). At lower temperatures (10 ºC) growth of G. stephani  in English 

sole (Parophrys vetulus) was arrested, but infection continued to develop once temperatures 

were increased to 19-20 ºC (Olson 1981).  

Microsporidia interactions with host cells are often evaluated using transmission electron 

microscopy (TEM). Although useful for microsporidial research, a principal disadvantage of 

TEM is the need to extrapolate host-parasite interactions from fixed preparations. In this 

study we utilize Riveal Contrast microscopy by Quorum Technologies 

(www.quorumtechnologies.com) in order to document the developmental stages, growth and 

germination of A. algerae in living RTgill-W1, a rainbow trout gill cell line (Bols et al. 

1994). Riveal Contrast is a brightfield imaging technique that provides increased resolution 

and contrast of live specimens while providing colour information from a sample without 

having to add foreign contrasting agents. Using this technique, high-resolution of features 

within nanoparticle range (100 nm) can be achieved. DAPI stained cultures were also used to 

document differences in the number of spores at infection sites within cultures at the various 

temperatures.  
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3.2 Materials and Methods 

Fish Cell Lines and their growth 

The rainbow trout cell lines were developed in the laboratories of the authors. RTgill-W1  

and RTbrain-W1 are derived from rainbow trout gills and brain, respectively (Bols et al. 

1994). These cell cultures, similar to the species from which they were derived, can be 

maintained at relatively low temperatures (9 to 21 ºC). Lowman et al. (2000) previously 

determined that the optimal growth of A. algerae is 29 ºC, but rainbow trout cells do not 

survive at these temperatures, and cells from even warm water fish generally do not succeed 

if maintained at 29 ºC. The zebra fish embryo cell line, ZEB2J, (Xing et al. 2008) that can 

tolerate a temperature of 27 ºC, has already demonstrated that it can support A. algerae 

growth at that temperature (Chapter 2) (Monaghan 2011), and was used as a positive control 

by demonstrating that the spore inoculate used contained viable spores and were capable of 

growing in an already established culture system. All fish cell lines are predominantly 

epithelial-like and were grown in 25 cm2 flasks (Falcon) to approximately 80-90% 

confluency at 21 ºC in Leibovitz-15 (L-15; HyClone) with 2 mM L-glutamine and 10% FBS. 

 

Infecting fish cell lines with A. algerae  

A. algerae spores were originally obtained from the ATCC as B. algerae (PRA-168), 

grown in the rabbit kidney epithelial cell line RK-13, and purified suspensions were achieved 

using the spore growth and purification methods described in Chapter 2. Falcon 12.5 cm2 

flasks of confluent RTgill-W1 and RTbrain-W1, and ZEB2J were inoculated with either 

viable or autoclaved spores at approximately 3 x 103 spores, a relatively low number. There 

were 15 flasks of RTgill-W1 and RTbrain-W1 with 5 flasks maintained at each temperature. 

Two additional flasks of each cell line and for each temperature received no spores as an 

uninoculated control. Two days after inoculation, all media was removed, cell cultures were 

rinsed twice and replaced with spore free L-15 media as described. Rainbow trout co-culture 

combinations and their controls were maintained at 9, 18 and 21ºC, while ZEB2J co-cultures 

and controls were kept at 27 ºC. 
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Comparing A. algerae growth in fish cells  

A Nikon TE300 inverted microscope was used to monitor and photograph living and fixed 

cultures by phase and fluorescence microscopy, respectively. Phase contrast microscopy was 

used to view living cultures daily. The presence of sporont developmental stages was 

evidence that the spore inoculate infected the cells. Cultures were examined for the presence 

of this definitive stage, which appear as spindle shaped, phase dark structures in the 

cytoplasm (Chapter 2) (Monaghan et al 2011). Cells were also monitored for the first 

appearance of mature spores, which appear ovid and phase bright. Cell cultures were fixed at 

21 days p.i. (3:1 absolute methanol/glacial acetic acid fixative), and DNA stained with 4’,6-

diamidino-2-phenylindole (DAPI, Sigma). For fixation, 1 ml of fixative was added to the 

medium of a flask culture and left for 2 min. A bulb pipette was used to remove the fixative 

and another 1.5 ml of fixative was added for a further 5 min before removal. Afterwards, the 

culture flasks were rinsed in phosphate-buffered saline (PBS) and stained for at least 1 h in 

10 µg/ml of DAPI in PBS. Cultures were examined for loci of infection. Fluorescent 

photographs were taken, and quantification of A. algerae (spores and sporonts) in the foci 

was conducted using the images and Cell Counter mode in ImageJ 1.42q software (National 

Institutes of Health, NIH; ImageJ www.imagej.com). Fluorescent and phase micrographs of 

the same field were compared to verify spore or sporont morphology.  

 

Growth and preparation of A. algerae in RTgill-W1 for Riveal contast 

microscopy  

RTgill-W1 was grown to near confluency on single well slide flasks (Falcon) at 21ºC in L-

15 media supplemented as described above. Slide flasks were inoculated with 5 x 106 spores 

of A. algerae in media, and maintained at 18ºC. Two days after inoculation all medium was 

removed and replaced with spore free medium. After 10 days, the flask chamber was 

removed from the slide, and a coverslip placed over the slide and sealed using a fine line of 

petroleum jelly applied with a 18G blunt syringe. A Leica DM2500 upright microscope was 

used fitted with 100x oil immersion objective and condenser lens with a 1.2 numerical 

aperture. A Hamamatsu C7780 3 chip colour camera was used, and proprietary software 

algorithms from Quorum Technologies (www.quorumtechnologies.com) provided a means to 
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extract native colour information from the sample. The algorithms help to present the data in 

a way that is more easily interpreted than the actual image created in the microscope ocular. 

Further information on this technique can be found in the United States Patent document # 

6,704,140. 

  

Germination of purified spores grown in RTgill-W1 

RTgill-W1 infected with 5 x 106 A. algerae spores were grown in a 25 cm2 flask (Falcon) 

at 18°C for 14 days. Cells were lysed with water, and lysate was purified using a Percoll 

gradient  as described in Chapter 2 (Monaghan et al. 2011). Purified spores were kept in a 1.5 

ml bullet tube and vital stained with 10 µg/ml DAPI in PBS for more than 12 h. Spores were 

centrifuged, resuspended in 3% hydrogen peroxide, and placed on a glass slide. A coverslip 

was sealed using a fine line of petroleum jelly applied with a blunt syringe. Riveal 

microscopy images were taken using the camera, microscope and software described above.  

 

Statistical analysis 

The spore numbers were analyzed using GraphPad Prism (version 5 for Mac OS X, 

GraphPad Software, San Diego, CA, www.graphpad.com). One-way analyses of variance 

(ANOVA) were used to compare whether the number of spores in different cultures and at 

different temperatures were statistically different (p<0.05). Tukey’s Multiple Comparisions 

test, an ANOVA post-test, was used to determine significance (p<0.05) between means at 

each temperature. For rainbow trout cell lines maintained at the same temperature, an 

unpaired t-test was used to determine significant differences (p<0.05) between cell lines 

regarding the number of spores per foci of infection.  
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3.3 Results 

A. algerae growth in cultures of rainbow trout cell lines 

Spores from RK-13 cultures were added to cultures of rainbow trout cell lines, RTgill-W1 

and RTbrain-W1 from gill and brain respectively, and incubated at 21 °C, 18, and 9 °C and 

examined over time for sporonts and spores.  Sporonts and spores were spindle-shaped 

phase-dark structures that stained diffusely with DAPI (Fig 3.1).   At 4 days after the addition 

of spores, sporonts clearly were visible in the cytoplasms of some cells in cultures at 21 °C 

with mature spores observed after 6 days. The appearance of sporonts and mature spores in 

cultures of both cell lines at 18 ºC occurred on days 6 and 8 p.i., respectively.  However, 

proliferation after 21 days was significantly greater in RTbrain-W1 than RTgill-W1 (Fig 3.2). 

At 18ºC, there was 60% ±30.3 less in the parasite numbers per infection site in the rainbow 

trout gill cells compared to the brain cells, and at 21ºC this decrease was 47% ±44.2. The 

number of A. algerae per loci were counted to represent the number of parasites that grew 

per infective transmission into a cell. However, it was observed that there were more than 

twice the number of loci at 21 °C as were found in flasks at 18 °C regardless of cell line, and 

no loci were observed at 9 °C.  Cultures maintained at 9ºC did not demonstrate any 

conclusive parasite development, such as meronts or sporonts, over the 3-week period.  

 

 

Figure 3.1 Foci of Anncaliia algerae growth in RTgill-W1 maintained at 18°C 
Left: DNA was stained in fixed rainbow trout cell cultures in order to evaluate the level of 

infection 21 d p.i. Nuclei of sporonts and spores were visible in the cytoplasm of the RTgill-

W1 cells using DAPI. Right: corresponding phase contrast image. Scale bar = 10 µm. 
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Figure 3.2  Comparing rainbow trout gill and brain cell lines for their ability to support 
A. algerae at 9, 18 and 21°C after 3 weeks 

A and B: The mean number of A. algerae per infection site increased in both RTgill-W1 and 

RTbrain-W1 with increases in temperature. The means with SD are plotted (18 ºC n=5, 21 ºC 

n=5). ANOVA for both A and B indicates that temperature effects the number of A. algerae 

per loci of infection (p<0.0001). Significant differences between temperatures were evaluated 

using Tukey-Kramer’s Multiple Comparisons test and indicated with the same lower case 

letter/symbol C and D: RTbrain-W1 supported more A. algerae growth than RTgill-W1 at 

both 18 and 21 ºC. The means with standard deviations are plotted. The differences between 

RTgill-W1 and RTbrain-W1 at both temperatures were significant with p=0.0012 at 18 °C 

and p=0.0030 at  21 °C using Tukey-Kramer’s Multiple Comparisons test  
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Visualization of A. algerae life cycle stages in RTgill-W1 by Riveal microscopy  

 Most stages of the A. algerae life cycle that have been visualized by others through bright 

field light microscopy and transmission electron microscopy of fixed cultures have been 

identified tentatively for some stages and definitively for others through Riveal microscopy 

of living cultures (Fig 3.3).  From the literature, the order of the life cycle stages can be 

succinctly summarized as sporoplasm, meront, sporont and sporoblast, followed in vitro by 

early spore and germinated early spore (Becnel et al. 2005). Although cultures were not 

examined immediately after infection when the chances of detecting the earliest stage, 

sporoplasms, would have been highest, the later stages, meronts, sporonts and sporoblasts, 

were seen as oblong or oval structures with at least one pair of nuclei.  A nuclear pair 

(diplokaryons) was seen as a dark line, usually running perpendicular to the long axis of the 

oblong, with two very light grey circular structures on each side (Fig 3.3).  Meronts, 

sporonts, and sporoblasts were distinguished by their size and by the darkness of their 

cytoplasms. Meronts were the largest and lightest of the three stages.  Sporonts were slightly 

smaller and darker than meronts; sporoblasts slightly smaller and darker than sporonts (Fig 

3.3 and 3.4).  Meronts and sporonts are sometimes referred to collectively as the proliferative 

phase and some appeared to be dividing. Spores were dark. Nearby sporoblasts and spores in 

the host cytoplasm were small dark vesicles (Fig 3.4). In some spores internal features could 

be seen.  The most prominent of these was a small, oval grayish white region at one end (Fig 

3.4).  Spores with these structures were identified as mature spores because they were 

subsequently seen to germinate.  Germinated spores had an obvious polar tube (Fig 3.4).  As 

the small, oval, grayish white regions anticipated germination and appeared at the ends 

opposite from which the polar tubes were eventually observed, they have been termed 

posterior pre-germination (PPG) vacuoles. 
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Figure 3.3 Diplokaryia of A. algerae and parasite developmental stages 
Using Riveal Contrast microscopy, A. algerae proliferation is observed in RTgill-W1 cells 

maintained at 18°C, 10 d p.i. Two nuclei are observed in most developmental phases except 

in dividing meronts where 4 nuclei are present. Black arrows indicate where nuclear 

membranes meet, N indicates A. algerae nuclei. Meronts (M) are indicated with a white 

arrow, Sporoblasts (Sb) are indicated with a red arrow, and Mature spores (MS) are indicated 

with a blue arrow. Scale bar = 7 µm. 
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Figure 3.4 Germination of A. algerae and developmental phases 
The posterior pre-germination vacuole (PPG), can be observed in the posterior pole (white 

arrowheads) of spores that are about to germinate or are germinating. The black arrow 

indicates a polar tube (PT) as it is being ejected from a spore situated adjacent to the nuclear 

membrane of the RTgill-W1 host cell nucleus (HN). A sporont (S) is indicated with a red 

arrow and mature spore (MS) with a blue arrow. * Indicates granular structures associated 

with spore development. Scale bar = 7 µm. 
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Video microscopy of A. algerae proliferation  

 Through video and Riveal microscopy the proliferative phase of the A. algerae life 

cycle could be observed.  The best example of this was the cytoplasmic division of a meront. 

After 10 d at 18 °C flasks were placed on the Riveal microscope stage at room temperature 

over the period of 2 h and 25 minutes. The meront was initially seen as a sausage-shaped 

structure with a pair of nuclei at each end (Fig 3.5A). A cytoplasmic furrow developed and 

the meront cleaved to yield two cells each with a diplokaryon (Fig 3.5D).  A video of this can 

be viewed using the supplementary material in the back pocket of bound copies of this thesis 

or by searching this thesis at http://uwspace.uwaterloo.ca (see Appendix B). 

 

Video microscopy of A. algerae spore development and germination  

 Video and Riveal microscopy also allowed observations on the intracellular 

development and germination of A. algerae spores and on their extracellular germination in 

response to hydrogen peroxide.  In the fish cells the oval spores at first appeared as uniformly 

dark but subsequently in some, over the period of 2 h and 25 min the PPG vacuole became 

visible. The development of a clearly visible posterior vacuole and a slight swelling of the 

spore anticipated the spontaneous intracellular germination of the spore (Fig 3.5A and 3.5C).  

At the moment of polar filament expulsion, which took place in less than a second, the PPG 

vacuoles expanded to fill most of the spore, appearing to push out the polar tube and 

sporoplasm and leaving behind the dark spore wall surrounding a predominantly grayish 

white region (Fig 3.5C and 3.5D). This region is referred to as a germination (G) vacuole. A 

video of this can be viewed using the supplementary material in the back pocket of bound 

copies of this thesis or by searching this thesis at http://uwspace.uwaterloo.ca (see Appendix 

B). 

A similar sequence of events took place for spores that had been purified from the host cell 

cultures and triggered to germinate extracellularly with hydrogen peroxide (Fig 3.6 and 3.7).  

Some of these preparations were also stained with DAPI, permitting transmitted light and 

fluorescent views of the same field.  This allowed visual confirmation that nuclei were 

expelled from spores and were in sporoplasms (Fig 3.6).   Surprisingly, exceptions were 

found where the polar tube had been expelled but the DAPI still stained the spore for DNA 
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(Fig 3.7), suggesting a possible ‘misfire’.  Further investigation using Riveal microscopy can 

be used to examine various aspects of germination and incomplete germination. 

 

Life cycle of A. algerae in fish cells derived from phase, fluorescent and Riveal 

microscopy 

Using phase, fluorescent and Riveal microscopy, a schematic of the A. algerae life cycle as 

observed in fish cells was developed (Fig 3.8). The diagram depicts the parasite’s stages in 

sequential order of development, as well as characterizes the appearance of growth in the 

cytoplasm as it was observed.  Fluorescent microscopy with DAPI staining and Riveal 

microscopy allowed for early developmental stages, such as meronts, to be clearly seen. 

Meronts are spindle or sausage shaped structures in the cytoplasm of host cells (Fig 3.3) that 

are subtly defined. Sporonts are similar in shape to meronts, but are easily distinguishable 

using phase contract, fluorescent and Riveal microscopy since the plasmalemma is more well 

defined and the parasites at this stages are darker using phase contrast and Riveal 

microscopy. All three microscopy methods could be used to observe later developmental 

stages, such as sporoblasts and mature spores. However, the superior resolution provided by 

Riveal microscopy allowed for various details, such as the appearance of A. algerae nuclei at 

various stages and intracellular germination of spores, to be clearly illustrated.  
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Figure 3.5 Time-lapse A. algerae proliferation and germination in RTgill-W1 
Black arrows indicate dividing meronts observed over 2 h 25 min; White arrows indicate 

germination vacuole (G) which are visible in at least two other mature spores in D – 

indicating imminent germination; Blue arrows indicate extruded polar tubes (B and D), Red 

arrows denote empty spore coats surrounding germination vacuoles that have expelled all 

sporoplasm after germination. Scale bar = 7 µm. Riveal microscopy; Quorum Technologies 

Inc.. A, B, C and D represent images from video at time points 1, 85, 85 (seconds later) and 

140 min. To watch video in full (30 times real-time), or a section of video highlighting 

germination, see Appendix B. 
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Figure 3.6 Extracellularly germinated A. algerae spore grown in RTgill-W1 at 18°C 
with DAPI stained nuclei in ejected sporoplasm 
Riveal microscopy fluorescent (top) and corresponding non-fluorescent Riveal (bottom) 
micrograph. A. algerae spores were live stained with DAPI and germinated extracellularly 
using 3% hydrogen peroxide.  Ejected sporoplasm (arrow) contains parasite nuclei. Scale bar 
= 7 µm. 
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Figure 3.7 Incomplete germination, or misfire, of A. algerae spores grown at 18°C 
A. algerae spores were live stained with DAPI and germinated with 3% hydrogen peroxide. 
Occasionally, spores “misfired” and the spore nucleus was not ejected with the polar filament 
(black arrows). The top Riveal fluorescent micrograph allows for DAPI stained nuclei to be 
observed, while the bottom panel is the corresponding non-fluorescent Riveal image. Refer to  
Appendix C for video from which these images were taken. Scale bar = 7 µm.
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Fig 3.8 A schematic representation of the A. algerae life cycle in fish cell cultures as 
derived from phase contrast, fluorescent and Riveal microscopy observations  
An A. algerae spore that starts the life cycle by germinating and injecting its contents or 

sporoplasm into the fish cell or host cell (HC) is shown in A.  In the series B to K (connected 

with red arrows) in the top of the HC, the life cycle stages are arranged in the order in which 

they are thought to occur. In the bottom of the HC that begins with L is approximately the 

arrangement of the stages in a cell at any particular time.  The sporoplasm (C) and meronts 

(D to F) are only occasionally visible using phase contrast microscopy, but can be observed 

using fluorescent microscopy in DAPI stained cultures, or Riveal microscopy. Spindle 

shaped meronts divide by becoming sausage shaped, and the midline narrows to the point 

that cytokinesis is complete and two new meronts result (F). Changes occur within the 

meront to become sporonts (G) and are more visible using light microscopy because of their 

phase dark appearance and more defined plasmalemma. Sporonts undergo division similarly 

to meronts (H), and their last division results in sporoblasts (I), which appear as phase dark 

ovids using light and Riveal microscopy. Sporoblasts undergo a metamorphosis to become 

spores (J) and appear as phase bright ovids using phase contrast microscopy. They are 

released into the environment by an unknown mechanism.  The arrangement of the life cycle 

stages at the bottom of the diagram of the HC is shown as it is commonly observed within the 

cytoplasm of a fish cell. Spores are often in association with the nuclear membrane (nucleus 

= N), and plasma membrane, while earlier developmental stages are more centrally located in 

the cytoplasm. Intracellular spores can germinate in a living cell (M), and inject sporoplasm 

into a neighbouring cell to transmit infection in the culture.  

 

3.4 Discussion 

Two rainbow trout cell lines, RTgill-W1 and RTbrain-W1, have been shown to support the 

growth of the A. algerae at room temperature, which has allowed living cultures of A. 

algerae and rainbow trout cells to be visualized by a new method, Riveal microscopy.  The 

implications of A. algerae growth in rainbow trout cells and the new features of its life cycle 

revealed by Riveal microscopy are discussed below. 
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Growth of A. algerae in rainbow trout cell lines   

As observed in chapter 2 with cell lines from warm water fish, some cell lines in cold 

water fish appeared to support the growth of A. algerae better than other cell lines, but a 

pattern to the selectivity has yet to emerge.  For rainbow trout cell lines, A. algerae grew 

better in RTbrain-W1 than in RTgill-W1.  For warm water fish, a goldfish skin cell line, 

GFSK-1, supported the best growth.  Explanations for the preferential growth in some cell 

lines over others might lie in differences in either the extracellular and/or intracellular 

environment.  Extracellular matrix proteins and surface receptors might influence the 

adherence and entry of sporoplasms into host cells and thus the start of an infection. For 

example, sulfated glycans influenced the adherence of Encephalitozoon intestinalis to host 

cells (Hayman et al. 2005).  Intracellular differences that could preferentially impede A. 

algerae development in one cell line over another cell line would include differential 

expression of antimicrobial defense mechanisms. In some insects, some tissues became 

infected more frequently by A. algerae and produced more spores than in other tissues, but 

only in some insect species (Staiber 1994, Undeen and Maddox 1973, Vávra and Undeen 

1970).  For infections in humans, A. algerae was found to have grown in epithelial, muscle, 

and connective tissues (Cali et al. 2010, Coyle et al. 2004, Visvesvara et al. 2005).  

Therefore, although there might be some selectivity in A. algerae infections, this 

microsporidial species appears capable of infecting most animal tissues. 

This work demonstrates that the infective and proliferative temperature range of A. algerae 

is broader than previously reported. Over several years, efforts to elucidate the upper limit of 

this range have been the primary focus because of its clinical relevance. To investigate the 

lower limit of this range, rainbow trout cell cultures proved to be a valuable model. Rainbow 

trout cell lines kept at relevant environmental temperatures were capable of hosting A. 

algerae growth at 18ºC, though the number of spores per infection site was less than in cells 

maintained at 21ºC.  There were no identifiable intracellular sporonts or spores present at 9 

ºC. This could indicate that at this temperature A. algerae had limited capacity for 

germination and/or for progression through its life cycle. Interestingly, Undeen (1975) 

reported that temperatures of 26ºC reduced A. algerae spore germination compared to spores 

at 35ºC. This suggests that temperature may hamper spore infectivity at the germination stage 



 66

with inhibition or alteration of germination mechanisms, as well at the intracellular 

proliferative stage.  

The observations here show that rainbow trout cells can support A. algerae growth but 

whether rainbow trout can be infected is unknown as no natural or experimental infections 

have been reported.  A. algerae spores have been found in surface water (Avery and Undeen 

1987), and A. algerae infect mosquitoes (Andreadis 2007, Becnel et al. 2005) which are 

eaten by rainbow trout.   Thus rainbow trout and A. algerae could meet in the wild.  

However, several barriers can be considered as possibly preventing infection.  For exposure 

through the digestive tract, A. algerae spores would have to germinate in the gut and infect 

epithelial cells of the GI tract.  For exposure through water, A. algerae spores would have to 

germinate in mucus and infect skin or gill epithelial cells.  If epithelial cell infections were 

established, the next barrier would be the innate and adaptive immune systems of fish.  To 

date little is known about the immune response of fish to microsporidia, but adaptive 

immunity appears to play an essential role in eliminating infections (Rodriguez-Tovar et al. 

2011).  A final barrier might be temperature.  The temperature preference of rainbow trout 

varies regionally but growth conditions of the fish are reported to be optimal at mean water 

temperatures at or below 20ºC, with preferred water temperatures ranging from 10 to 15.6ºC 

(FERC 2007).  If A. algerae infection of rainbow trout is possible, lower temperature 

preferences of the fish may limit the parasite to a degree that allows for immune responses to 

clear infection. Even so, this research demonstrates that upper preferred temperature ranges 

of rainbow trout are within the lower temperature ranges of A. algerae proliferation, making 

infection in vivo something to look for in the future.   

 

Riveal microscopy and A. algerae life cycle  

For the first time, microsporidia have been examined by Riveal microscopy, a new bright 

field imaging technique that provides increased resolution and contrast without the use of 

stains.  Usually the intracellular life cycle stages of A. algerae have been visualized in the 

past through Giemsa staining and bright field light microscopy (Undeen 1975, Vávra and 

Undeen 1970) or through heavy metal staining and transmission electron microscopy (TEM) 

(Avery and Anthony 1983, Cali et al. 2004, Lowman et al. 2000, Takvorian et al. 2005, 



 67

Trammer et al. 1999).   Besides these microscopy methods, pores and spore germination have 

been examined by many additional techniques.  These include video-enhanced contrast 

microscopy (Frixione et al. 1992), freeze-fracture (Cali et al. 2002), phase contrast 

microscopy and scanning electron microscopy (SEM) (Visvesvara et al. 2005).  Riveal, 

fluorescent and phase contrast microscopy have provided unique insights into several aspects 

of the A. algerae life cycle, and were used to develop a schematic of the development that 

has been observed in fish cells with this work (Fig 3.8). 

Riveal and video microscopy has provided both new and confirmatory information on the 

proliferative stage of A. algerae.  For the first time, an event in the proliferative stage has 

been videoed and timed.  This is the cytoplasmic division of a meront, which was found to 

take approximately 2 h at room temperature in rainbow trout cells.  The timing might differ 

at other temperatures and in other cells.  Also, the act of observing the cells might have 

influenced the timing by raising the temperature.  Additionally the meront examined had two 

diplokaryons and the timing might change in meronts with one diplokaryon. Therefore many 

examples will have to be recorded in the future to build up an overview of meront division, 

but this study is a start.  Riveal microscopy detected dark, round granules at sites in the host 

cytoplasm where sporogny was occurring.  These resemble the dense spherical material that 

was seen through TEM by Takvorian et al (2005) in the vicinity of sporognic stages.  The 

authors speculated that these might be remnants of vesiculotubular appendages that were 

present on earlier developmental stages.  Unfortunately vesicuolotubular appendages were 

not obvious with Riveal microscopy so the origin of these dark, round granules is unknown at 

this time. 

Intracellular germination of A. algerae was clearly documented by video and Riveal 

microscopy. The germination of spores within cells in culture has been observed for several 

Nosema species (Fries et al. 1992, Ishihara 1969, Iwano and Ishihara 1989, Kawarabata and 

Ishihara 1984, Kurtti et al. 1983) but this is the first observation of the phenomenon with A. 

algerae.   However, because of the rapid progression of in vivo infections within individual 

mosquito larvae, A. algerae spore germination has been thought to take place intracellularly 

(Avery and Anthony 1983).   The first spores produced, early spores, might be subtly 

different from spores coming afterwards and have a different role in disease transmission.  

Early spores could be acting to quickly spread the infection to other cells and tissues within a 
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host, whereas the late or environmental spores would transmit the infection between 

individuals (Avery and Anthony 1983).   

What triggers intracellular germination in the current study remains to be determined and 

could include physiological or artificial stimuli.   Physiological variables that have been 

found to trigger microsporidia spore germination include changes in pH, cations, anions, and 

osmolarity (Xu and Weiss 2005).  Stimuli could be created artificially as the culture is being 

observed with the microscope. These could include an increase in temperature and 

osmolarity as the slide slowly dries.  In the future, attempts can be made to control this by 

trying different viewing chambers, but clearly rainbow trout cells are advantageous in that 

observations can be done at room temperature, which is appropriate for the health of these 

cells.   

The video and Riveal microscopy has provided for the first time visual evidence for a 

posterior vacuole-like structure in A. algerae spores.  In the spores of many microsporidia, a 

posterior vacuole has been identified (Williams 2009).  By TEM this often appears as an 

electron-lucent region. However no such structure has been found in A. algerae spores (Cali 

et al. 2002, Chioralia et al. 1998, Sinden and Canning 1974), although an electron dense 

amorphous zone posterior to the nucleus has been distinguished (Chioralia et al. 1998).  With 

Riveal microscopy, the posterior region of some spores clearly contained a small, oval, 

grayish region.  This structure slowly became apparent over approximately 2 h at the 

posterior and then expanded rapidly to almost completely fill the spore, with the concurrent 

explosive emergence of the polar tube.  As this posterior structure became visible just before 

germination and to distinguish it from the posterior vacuole common in other microsporidia, 

the name posterior pre-germination (PPG) vacuole is used to describe this before polar tube 

extrusion and germination (G) vacuole afterwards.  The PPG vacuole was not seen for spores 

that had been purified from cells and stimulated to germinate with hydrogen peroxide.  In this 

case the PPG might have developed too quickly to be detected.  Alternatively extracellular 

germination might be different, either because of differences in the spores or in the 

environment in which germination takes place, and not involve a PPG vacuole.  This might 

also be why a posterior vacuole-like structure has not been seen in A. algerae spores by 

TEM.  However, after germination, TEM did reveal a large vacuole that filled most of the 

spore (Vávra and Undeen 1970).  This might be the G vacuole.   
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For microsporidia in general, the sudden swelling of the posterior vacuole has been thought 

to play a pivotal role in generating the force necessary for spore germination (Xu and Weiss 

2005), and the PPG of A. algerae appears to perform a similar function. The mechanisms by 

which a posterior vacuole swells and generates expulsive force are still unclear but several 

ideas have been proposed, usually invoking changes in intrasporal osmotic pressure (Lom 

and Vávra 1963, Undeen and Frixione 1990, Xu and Weiss 2005) (Findley et al. 2005).  

Osmotic pressure could increase due to changes in the permeability of the spore coat to water 

(Lom and Vavara, 1963), in a proton gradient in the posterior vacuole (Dall 1983), and in the 

degradation of trehalose into a large number of small molecules  (Undeen and Frixione 

1990).  The involvement of the PPG in these processes awaits further research.    

Riveal microscopy of DAPI stained spores after germination had been stimulated with 

hydrogen peroxide clearly illustrated examples of polar tube discharge without nuclear 

expulsion.  Occasional incomplete discharges have been observed previously for A. algerae 

spores (Frixione et al. 1992) but the retention of the spore nuclear DNA is more clearly 

illustrated in the current study.  Spore discharge can be divided into several phases (Frixione 

et al. 1992, Xu and Weiss 2005).   These can be reduced most simply to just two: polar 

filament eversion and passage of the main sporoplasm mass through the filament.  For 

unknown reasons, these normally coordinated processes become disconnected occasionally 

in A. algerae, possibly because of the complexity of the last step.   
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Chapter 4                                           

Evaluating three classes of antimicrobial 

drugs on a unique in vitro combination of 

microsporidia and host cells: Anncaliia 

algerae and the zebrafish cell line, ZEB2J  
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Overview 
Cultures of the zebra fish embryo cell line, ZEB2J, that had been infected with Anncaliia 

algerae spores were used as an in vitro test system to evaluate the curative actions of 

albendazole, fumagillin, and three fluoroquinolones; ciprofloxacin, norfloxacin, and 

ofloxacin.  For each drug at concentrations above 50 µg/ml, the viability of ZEB2J cell 

declined sharply so concentrations of 10 and 20 µg/ml were studied. At these concentrations 

the drugs had little effect on the morphology and germination A. algerae spores.  Each of the 

fluoroquinolones failed to prevent A. algerae from infecting ZEB2J cells and from growing 

to the same extent as in untreated ZEB2J cultures. Adding albendazole or fumagillin to 

cultures did not prevent A. algerae from infecting ZEB2J cells but impeded the growth and 

accumulation of A. algerae life-cycle stages.  However, albendazole treatments caused a 

significant fraction of the ZEB2J cells to have nuclear abnormalities. Fumagillin reduced the 

intensity of infections within a ZEB2J cell, although the number of infected cells in a culture 

was not reduced.  Over 5 days of infection with A. algerae the accumulation of ZEB2J cells 

in cultures was reduced but fumagillin treatment restored the accumulation to control levels. 

These results suggest that fumagillin has some potential as a treatment for A. algerae 

infections.  
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4.1 Introduction 

Microsporidia are a group of intracellular parasites capable of infecting a broad range of 

hosts including mammals, fish and insects and of causing diseases in humans and significant 

economic losses in agriculture and aquaculture.  Therapeutic options to treat microsporidiosis 

have been elusive (Costa and Weiss 2000, Gross 2003).  One method for studying potential 

antimicrosporidial agents to treat mammals has been to determine the effectiveness of drugs 

in vitro (Beauvais et al. 1994, Didier 1997, Franssen et al. 1995).  This is a quick and 

inexpensive approach, but this has yet to be used for fish.  The demonstration that fish cell 

lines support the growth of the microsporidia, Anncaliia algerae, (Chapter 2) opens up the 

possibility of testing the efficacy of potential chemotherapeutic drugs on experimentally 

infected fish cells.   

To date the in vitro approach for testing potential cures has been restricted to relatively few 

combinations of animal cells and microsporidia (Table 4.1).  The animal cells have been 

either insect cell lines or primary cell cultures and cell lines from mammals.  The first insect 

cell line was IPLB from the moth Heliothis zea and the infectant was either Glugea disstriae 

or Nosema sp (Kurtti and Brooks 1977).  Subsequently, the S9 cell line from the fall 

armyworm, Spodoptera frugiperda, was used with the microsporidia, Nosema bombycis  

(Haque et al. 1993, Sichtova et al. 1993).  For mammalian cells, treatments for eliminating 

Encephalitozoon cuniculi have been studied in primary cultures from rabbit choroid plexus 

and kidney and from canine embryos (Shadduck 1980) and in cultures of three cell lines, 

Madin-Darby kidney (MDCK) (Beauvais et al. 1994), rabbit kidney RK13 (Franssen et al. 

1995), and monkey kidney Vero (E6) (Ditrich et al. 1994, Sobottka et al. 2002).  The 

inhibition of microsporidial growth also has been examined in cultures of MDCK with 

Vittaforma corneae (Silveira and Canning 1995), of RK13 with V. corneae and E. intestinalis 

(Didier 1997, Didier et al. 2005), and of Vero with E. hellem (Ditrich et al. 1994).  The 

mouse myoblast cell line C2, C12 has been used to study the treatment of Trachipleistophora 

hominis (Lafranchi-Tristem et al. 2001). Neither fish cells nor A. algerae have been subjects 

for in vitro studies of antimicrosporidial agents.  

The main drugs studied in vitro for the ability to inhibit microsporidia growth have been 

fumagillin and albendazole, although recently several others have been explored to a limited 

degree, such as the fluoroquinolones.  Fumagillin is a natural product of the fungus 
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Aspergillus fumigatus with a rare sesquiterpene carbon skeleton and a range of biological 

actions and uses for which the first prominent one was the treatment of honeybees for 

Nosema apis (Katznelson and Jamieson 1952).  The antimicrosporidial activity of fumagillin 

has been demonstrated in vitro against E. cuniculi in primary mammalian cell cultures 

(Shadduck 1980) and in cultures of cell lines from dog (MDCK), rabbit (RK13) and monkey 

(E6) (Beauvais et al. 1994, Franssen et al. 1995, Sobottka et al. 2002), and against E. 

intestinalis and Vittaforma corneae in RK13 cultures (Didier 1997, Didier et al. 2006).  

Albendazole belongs to the benzimidazole compounds, which are dicyclic with benzene and 

imidazole rings. Antimicrosporidial activity by albendazole has been demonstrated in vitro 

against N. bombycis in S9 cells (Haque et al. 1993), E. cuniculi in cultures of MDCK, RK13 

and E6 (Beauvais et al. 1994, Franssen et al. 1995), E.intestinalis in RK13 (Didier 1997), E. 

hellem in E6 (Ditrich et al. 1994), V. corneae in RK13 (Didier 1997, Silveira and Canning 

1995), and T. hominis in C2,C12 cultures (Lafranchi-Tristem et al. 2001). The 

fluoroquinolones are fluorinated derivatives of quinolone compounds and have been 

synthesized and marketed for their antibacterial actions.  Fifteen fluoroquinones have been 

assayed for their ability to inhibit the growth of E. intestinalis and V. corneae in RK13 

cultures and several were very effective, others had little effect, and some were more 

effective on one microsporidial species than on the other (Didier et al. 2005). 

Differences between the host animal cells and the infectant microsporidia appear to 

account for the antimicrosporidial actions of fumagillin, albendazole and the fluoroquinones.  

For fumagillin the mechanism of action likely revolves around methionine aminopeptidases 

(MetAPs), which come in two forms, MetAP-1 and MetAP-2.  MetAPs remove methionine 

from the N-terminus of growing polypeptides, which is a necessary step for other post 

translation modifications to proceed at the N-terminus and ultimately for the protein to 

function properly. Fumagillin inhibits MetAP-2 but not MetAP-1 (Sin et al. 1997). 

Microsporidia, at least as represented by E. cuniculi, has only MetAP2, whereas mammalian 

cells have both MetAP-1 and MetAP-2 and presumably survive in the presence of fumagillin 

because MetAP-1 still functions (Weiss et al. 2003, Zhang et al. 2005).  Albendazole likely is 

effective because the drug inhibits the polymerization of tubulin from parasites at much 

lower concentrations than tubulin from mammals (Chatterji et al. 2011).  In some 

microsporidia albendazole blocks the development of intranuclear spindles (Colbourn et al. 
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1994).  These structures are thought to be the only site in microsporidia where microtubules 

assemble and interfering with their assembly would interfere with spindle formation, which 

would prevent chromosome segregation and microsporidia growth (Colbourn et al. 1994).  

For the fluoroquinolones, the inhibition of enzymes necessary for DNA replication in 

microsporidia but not in mammalian cells likely accounts for their effectiveness.  In bacteria 

some fluoroquinones inhibit two enzymes essential for DNA replication, DNA gyrase and 

topoisomerase IV. The gene for topoisomerase IV has been identified in the genome of one 

microsporidia, Vittaforma corneae (Didier et al. 2005, Mittleider et al. 2002).   

The goal of this chapter was to evaluate different classes of antimicrobial drugs on a new 

in vitro combination of microsporidia and host cells: Anncaliia algerae and the zebrafish cell 

line, ZEB2J.  Neither A. algerae nor fish cells have previously been subjects for in vitro 

studies of antimicrosporidial agents.  The agents tested were three fluoroquinoles 

(ciprofloxacin, norfloxacin, and ofloxacin), albendazole and fumagillin.  Evaluating cultures 

for the efficacy of drug treatments to eliminate microsporidia is difficult, with no standard 

method yet to emerge.  Here two new steps were used. Cultures were stained with the 

fluorescent DNA dye, 4',6-diamidino-2-phenylindole (DAPI), and ImageJ 1.42q software 

(National Institutes of Health, NIH) was used as an aid to quantify microsporidia.  Fumagillin 

was found to hold the most promise as a drug to treat A. algerae infections. 
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4.2 Materials and Methods 

Chemotherapeutic Drugs 

Albendazole, fumagillin, and three fluoroquinolones were tested. Sigma-Aldrich (St Louis, 

MO) was the source of four chemotherapeutics: albendazole ≥ 98% (Titration by HClO4) 

(A4673), norfloxacin ≥ 98% (TLC)(N9890), ciprofloxacin >98.0% (HPLC) (17850), and 

ofloxacin ≥ 99% (HPLC) (O8757). Fumagillin-B dicyclohexylammonium was purchased 

from Medivet Pharmaceuticals Ltd., Red River, AB. The fumagillin-B was a proprietary 

formulation of 2.1 mg fumagillin-B per 100 mg dicyclohexylammonium salts from Medivet 

Pharmaceuticals for use in apiculture in the control of Nosema apis. All drugs were in 

powder form and weighed on an analytic balance.  Stock solutions of albendazole and the 

fluoroquinolones were prepared at 200 times concentration in dimethyl sulfoxide (DMSO) to 

give concentrations of 2 and 4 mg of each chemotherapeutic per ml.  Fumagillin-B was 

prepared at 20 times concentration in 10% DMSO and 90% L-15 to given concentrations of 

200 and 400 µg of fumagillin-B per ml. Stock solutions were added to give final 

concentrations of 10 and 20 µg/ml in cultures of the fish cell line, ZEB2J.   

ZEB2J cultures  

ZEB2J was developed from zebrafish blastula (Xing et al. 2008) and was grown routinely 

at 21 °C in Leibovitz’s medium (L-15) (HyClone) with 10 % fetal bovine serum (FBS) and 

100 IU/ml of penicillin/streptomycin (P/S). This medium is referred to as growth medium or 

L-15/FBS.  ZEB2J is predominantly epithelial-like. Chemotherapeutic drugs were tested on 

cultures of ZEB2J to which A. algerae spores had been added but first their effect on ZEB2J 

viability was determined. 

Effects of chemotherapeutics on ZEB2J 

Two fluorescent indicator dyes, alamar blue (AB or resazurin) and 5-carboxyfluorescein 

diacetate acetoxymethyl ester (CFDA-AM), were used to examine the viability of ZEB2J 

cultures after exposure to the chemotherapeutics. ZEB2J cells were plated in 96-well plates at 

approximately 1.5 x 104 cells per well. After 24 h, the growth medium was removed and 

replaced with fresh growth medium for control wells and with different concentrations of the 
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chemotherapeutic in growth medium for treatment wells. Plates were placed at 27°C for 5 d.  

At this point the media were removed and the viability of cultures was evaluated by adding 

AB and CFDA-AM for 1 h as described previously (Dayeh et al. 2005).  AB becomes 

fluorescent upon reduction by living cells and provides a relative measure of energy 

metabolism.  CFDA-AM is converted to carboxyfluorescein (CF) by cellular esterases and 

retained by cells with intact plasma membranes.  The reduction of AB and retention of 

CFDA-AM by each well were measured as relative fluorescence units (RFUs) with a 

Spectra-Max microplate reader.  The RFUs in treatment wells were expressed as a percentage 

of the RFUs in control wells. 

 

Anncaliia algerae spores 

The microsporidia, A. algerae, was obtained from the American Type Culture Collection 

(ATCC, Manassas, VA) as spores (ATCC number PRA-168).  Also purchased from ATCC 

was the rabbit kidney epithelial cell line RK-13 (CCL-37).   RK-13 was grown routinely at 

37 °C in L-15 with 10 % FBS and 100 IU/ml P/S.  A. algerae spores were grown in and 

purified  from RK-13 cultures at 27 °C as described previously (Chapter 2).  The spores were 

used to infect ZEB2J cultures but first the effect of chemotherapeutics on spore morphology 

and germination was determined.  

Effect of chemotherapeutics on A. algerae spores 

Spores were incubated with each drug for 24 h prior to being exposed to 3% hydrogen 

peroxide to trigger germination.  Exposures began by dividing preparations of purified A. 

algerae spores into six equal aliquots and centrifuging them at approx 450 x g for 5 min to 

get six pellets of spores. These were resuspended in L-15/FBS that had either one of the five 

chemotherapeutics at 20 µg/ml or no addition (control) and incubated at 27°C for 24 h.  At 

this time a small sample of each spore suspension was taken for observation under a phase-

contrast microscope and exposures were terminated.  For terminating exposures, the 

suspensions were centrifuged at 450 x g for 5 min and the supernatants removed.  The spores 

were resuspended in 3% hydrogen peroxide (Life Brand) and incubated at 27°C. After 20 

hours, 100 µl of each suspension was placed on a slide and observed by phase contrast 
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microscopy. Spores that had become phase dark, rather than phase bright, and/or had ejected 

polar filaments were scored as germinated.  

Effect of Chemotherapeutics on ZEB2J cultures with A. algerae spores  

Cultures of ZEB2J that had been grown to confluency at 21 °C in 12 well tissue culture 

plates (Falcon) were infected with A. algerae spores and treated for 5 days with 

chemotherapeutics.  For cultures to be subject to chemotherapy, the spores were suspended in 

L-15/FBS with either 10 or 20 µg/ml of albendazole, fumagillin, ciprofloxacin, norfloxacin 

or ofloxacin.  For cultures without chemotherapy, the spores were suspended in L-15/FBS 

with 0.5 % DMSO. In all cases these media contained approximately 3.4 x 103 spores/ml and 

3 ml were applied to each well. Some additional control wells received 3 ml of only L-

15/FBS.  Plates were incubated at 27°C for 5 days. Each 12 well plate had 3 wells designated 

for control, and three wells designated for each concentration of drug. The experiments were 

repeated 3 times. At this point cultures were fixed in Carnoy’s and stained with 10 µg/ml of 

DAPI as described in Chapter 2.  Cultures were examined with a Nikon TE300 inverted 

phase constrast microscope with a TE-FM Epi Fluorescence attachment. The appearance in 

the cytoplasm of ZEB2J cells of phase- dark, spindle-shaped structures that stained weakly 

with DAPI were interpreted as sporonts and as a sign that infection had taken place.  For the 

growth of A. algerae in cultures with and without treatments all life cycle stages were 

counted as outlined below.  

Quantifying A. algerae infections in ZEB2J cultures with and without 

chemotherapy 

A Nikon Cool Pix 5400 camera was used to photograph DAPI-stained cultures and from 

the fluorescent micrographs the number of A. algerae was counted with the aid of ImageJ 

1.42q.  A grid was established for the surface of each well so that a total of 6 fluorescent 

images and corresponding phase contrast micrographs were taken each at a grid intersection.  

An example of a fluorescent image without and with counting markers is illustrated in Fig 

4.1.  Dragging and dropping the JPG micrographs on the bottom of the ImageJ tool bar 

opened images in the software. “Particle Analysis” was selected under “Plugins” at the top of 

the screen, and “Cell Counter” was then selected from the drop down menu.  This action re-

opened the image in Cell Counter mode. To begin counting, a marker colour must be selected 
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from the clearly labeled options. “Infected Cells” were designated a red marker, “Uninfected 

Cells” a yellow marker, and “A. algerae” at any phase of development was designated a 

green marker (Fig 4.1). The values obtained from the counts of 6 images were averaged to 

establish a count per field for each well.   

Statistical analysis 

The numbers were analyzed using GraphPad Prism (version 5 for Mac OS X, GraphPad 

Software, San Diego, CA, www.graphpad.com). A one-way analysis of variances (ANOVA) 

was used to compare differences among drugs or among concentrations, and determine 

statistical significance (p<0.05). Tukey-Kramer’s Multiple Comparisions test is an ANOVA 

post-test used to determine significance (p<0.05) between means of every treatment, and 

every other treatment. An unpaired t test was used to determine significance (p<0.05) 

between total cells in uninfected ZEB2J cultures and A. algerae infected ZEB2J cultures. 
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A  

B  
 

Figure 4.1 Example of how one of six images of a DAPI stained culture was scored 
A) Fluorescent DAPI stained nuclei of ZEB2J and A. algerae without software enhancement. The 
host and microsporidia nuclei fluoresce blue unadorned with counter markers. B) Software enhanced 
image of above micrograph. Red and yellow markers indicate nuclei of infected cells and uninfected 
cells, respectively. Multinucleated cells were counted as a single cell. Green markers indicated 
intracellular or extracellular A. algerae at any stage of development. Counts for this image: Red= 15, 
Yellow = 1, Green = 825. Scale bar = 20 µm. 
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4.3 Results 

Effects of chemotherapeutics on ZEB2J   

Exposure for 5 days to increasing concentrations of each of the 5 chemotherapeutic agents 

caused a dose dependent decline in cell viability as measured with either Alamar Blue for 

energy metabolism or CFDA AM for cell membrane integrity (Fig 4.2).  At 1,000 μg/ml cell 

viability was reduced to near zero as evaluated with either endpoint, but at 20 μg/ml little or 

no change was observed.   With each of the chemotherapeutics at 20 μg/ml, cultures were 

examined for changes in appearance.  Cellular and nuclear shapes were unchanged in 

fumagillin, ciprofloxacin, norfloxacin and ofloxacin, but cultures with 20 μg/ml of 

albendazole had a small percentage of cells with irregular nuclear outlines, multiple nuclei 

and enlarged nuclei (Fig 4.3 and 4.7).  Despite this sublethal action of albendazole, the 

highest concentrations of drugs that had little or no effect on cell viability in ZEB2J cultures, 

10 and 20 μg/ml, were studied further. 

 

Effect of chemotherapeutics on A. algerae spores 

Exposure to the chemotherapeutics appeared to have little effect on the morphology and 

germination A. algerae spores. After exposure to each of the five drugs at 20 µg/ml for 24 h, 

little or no change was seen in the overall spore morphology as judge by phase contrast 

microscopy and in spore nuclear shape as judged by fluorescence microscopy after staining 

with DAPI.  The spores remained as ungerminated spores in these solutions.  However, when 

drugs were removed and the spores exposed to 3% hydrogen peroxide, spore germination 

was seen (Fig 4.4). Whether the spores had had a prior 24 h drug treatment or not, the 

germination percentage was near 100%. These results indicated that exposure to albendazole, 

fumagillin, ciprofloxacin, norfloxacin, or ofloxacin for 24 h did not inhibit the ability of the 

spores to subsequently germinate. 

 

Effect of fluoroquinolones on ZEB2J cultures with A. algerae spores 

Adding fluoroquinolones to cultures did not prevent A. algerae from infecting ZEB2J cells 

and from growing to the same extent as in untreated ZEB2J cultures.  Five days after 



 82

concurrent infection with A. algerae spores and treatment with fluoroquinolones ZEB2J 

cultures had cells with sporonts (Fig 4.5). The appearance of sporonts provided unequivocal 

evidence that A. algerae infection took place in the presence of ciprofloxacin, nofloxacin and 

ofloxain at 10 and 20 µg/ml.  When the total of all A. algerae life cycle stages were 

enumerated for cultures, little difference was found between control and treated cultures, 

indicating that A. algerae continued to develop and grow over 5 days in the presence 

ciprofloxacin, nofloxacin and ofloxacin (Fig. 4.6).  

Effect of albendazole on ZEB2J cultures with A. algerae spores  

Adding albendazole to cultures did not prevent A. algerae from infecting ZEB2J cells but 

impeded the growth and accumulation of A. algerae life-cycle stages.  Five days after 

concurrent infection with A. algerae spores and treatment with albendazole ZEB2J cultures 

had cells with sporonts and these sporonts often appeared larger than in untreated ZEB2J 

cells  (Fig 4.7).  This suggests that in cultures with albendazole A. algerae spores infected 

ZEB2J cells but subsequent development was impeded.  This was seen clearly when the total 

of all A. algerae life cycle stages were enumerated.  Cultures with 10 and 20 µg/ml of 

albendazole had significantly fewer A. algerae life-cycle stages than control cultures (Fig 

4.8A).  Albendazole and control cultures were further compared by counting the number of 

A. algerae life-cycle stages per infected cell and the number of infected cells per field (Fig 

4.8 B and C).  Albendazole at 10 and 20 µg/ml reduced the number of A. algerae life-cycle 

stages per infected cell but not the number of infected cells per field (Fig 4.8B and C). As 

noted earlier for ZEB2J cultures without spores but with albendazole (Fig 4.3), cells with 

irregular nuclear outlines, multiple nuclei and enlarged nuclei were observed in ZEB2J 

cultures infected with spores and treated with 10 and 20 µg/ml albendazole (Fig 4.7B).  

Effect of fumagillin on ZEB2J cultures with A. algerae spores  

Adding fumagillin to cultures did not prevent A. algerae from infecting ZEB2J cells but 

impeded the growth and accumulation of A. algerae life-cycle stages.  Five days after 

concurrent infection with A. algerae spores and treatment with fumagillin ZEB2J cultures 

had cells with sporonts and these sporonts sometimes appeared thinner than in untreated 

ZEB2J cells  (Fig 4.9).  This suggests that A. algerae spores infected ZEB2J cells in the 

presence of fumagillin but fumagillin interfered with subsequent development. When the 
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total of all A. algerae life cycle stages were enumerated, cultures with 10 and 20 µg/ml of 

fumagillin had significantly fewer A. algerae life-cycle stages than control cultures (Fig 4.10 

A).  Fumagillin and control cultures were further compared by counting the number of A. 

algerae life-cycle stages per infected cell and the number of infected cells per field.  

Fumagillin at 10 and 20 µg/ml reduced the number of A. algerae life-cycle stages per 

infected cell but not the number of infected cells per field  (Fig 4.10 B and C).  A study was 

also done to compare the number of ZEB2J cells in control cultures with number in cultures 

that had received either spores or spores and fumagillin.  Over 5 days of infection with A. 

algerae the accumulation of cells in ZEB2J cultures was inhibited but, fumagillin restored 

the accumulation to control levels (Fig 4.11).  

 

 

 

Figure 4.2 Effect of chemotherapeutics on the viability of uninfected ZEB2J cultures  
Metabolism of cells was measured using alamar blue fluorescent dye and demonstrated 

fumagillin is least toxic and albendazole and norfloxacin are most toxic among 

chemotherapeutics tested (A) at 27°C over 5 days. Cell membrane permeability was 

measured using fluorescent dye CFDA-AM. Fumagillin was found to least disrupt membrane 

permeability, while ciprofloxacin, albendazole, and norfloxacin disrupted membrane 

permeability the most among the chemotherapeutics tested (B).  
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Figure 4.3 Effects of five chemotherapeutic agents on nuclear and cellular morphology 
of uninfected ZEB2J   
On previous page: Media containing 20 µg/ml of drugs tested was placed on uninfected cells 

for 5 d at 27ºC. After 5 d cultures were fixed in 3:1 methanol to glacial acetic acid and 

stained with DAPI at 10 µg/ml. From A to F are DAPI images and corresponding phase 

contrast micrographs for: control, albendazole, fumagillin, ciprofloxacin, norfloxacin, 

respectively. Scale bar = 10 µm. 

 
 
 
 
 
 

 

Figure 4.4 A. algerae spore suspension after ciprofloxacin and hydrogen peroxide 
treatments  

Most spores germinated after suspension in 20 µg/ml of any drug and then exposed to 3% 

hydrogen peroxide. Empty spore coats from germinated spores are indicated with a black 

arrow. Polar filaments often tangle around each other as indicated with a blue arrow, and 

appear to be a “thick polar filament.” Only a few spores did not germinate as indicated with 

the red arrow. Scale bar = 20 µm. 
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Figure 4.5 Effects of fluoroquinolones on the development of A. algerae in ZEB2J 
DAPI stained A. algerae infected ZEB2J cultures 5 d after 20 µg/ml fluoroquinolone 
treatment (B, C, and D), with control (A), and corresponding phase contrast images (right). 
Treatment of A. algerae infected ZEB2J cultures with ciprofloxacin, norfloxacin and 
ofloxacin (B, C, D, respectively) did not alter the development of A. algerae compared to 
control (A). Normal sporont growth was observed and indicated with black arrows. Scale bar 
= 10 µm.  
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Figure 4.6 Effects of fluoroquinolones on the number of A. algerae developmental stages 
in ZEB2J cultures 
Treatment of A. algerae infected ZEB2J cultures for 5 d at 27 °C with fluoroquinolones had 

no effect on the number of parasites per field of view among the concentrations tested. 

Treatment with 0, 10 and 20 µg/ml of  (A) ciprofloxacin (p=0.11) , (B) norfloxacin (p=0.56), 

and (C) ofloxacin (p=0.51) had similar parasite numbers per microscopic field (n=3).  
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Figure 4.7 Effects of albendazole on the development of A. algerae in ZEB2J  
On previous page: A) DAPI stained ZEB2J infected with A. algerae without treatment 

(control), and corresponding phase (right). B) DAPI stained A. algerae infected ZEB2J 

cultures after 5 d with 10 µg/ml albendazole. Host nuclear morphology is altered and white 

arrows indicate enlarged nuclei (1), micronuclei (2), irregular nuclear membranes (3), and 

multinucleation (4). Examples of enlarged A. algerae sporonts are indicated with red arrows. 

Corresponding phase (below right). C) DAPI stained A. algerae infected ZEB2J after 5 d 

with 20 µg/ml albendazole, and corresponding phase (right). Red arrow indicates enlarged A. 

algerae development. Scale bar = 10 µm. 
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Figure 4.8 Effects of albendazole on the number of A. algerae developmental stages in 
ZEB2J cultures  
Albendazole at concentrations of 10 and 20 µg/ml reduced the mean number of A. algerae 

per counted fields in ZEB2J infected cultures (A), but did not affect the mean number of 

infected cells per scored field (B) (p>0.01). The number of A. algerae spores per infected cell 

was reduced with albendazole treatment (C) (p=0.0001). Tukey-Kramer Multiple 

Comparisons test, **p<0.01, ***p<0.001; n=3. Error bars = SD 
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Figure 4.9 Effects of fumagillin on the development of A. algerae in ZEB2J    
A) DAPI stained A. algerae infected ZEB2J cultures after 5 d without chemotherapeutic 

treatment (control), and corresponding phase (right). Several cells exhibit growth of the 

parasite with sporont development indicated with black arrows, and mature spores which 

appear as small phase bright ovid structures in the cytoplasm most visible in the bottom-most 

cell with sporont development. B) DAPI stained A. algerae infected ZEB2J cultures 5 d after 

20 µg/ml fumagillin treatment, and corresponding phase (right). No mature spores are noted, 

but the morphology of sporont development (indicated with a black arrow) appears thinner 

than sporont morphology in control cultures. 
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Figure 4.10 Effects of fumagillin on the number of A. algerae in ZEB2J cultures  
After 5 d at 27 °C, fumagillin at 10 and 20 µg/ml reduced the mean number of A. algerae per 

counted fields in ZEB2J infected cultures (A) (p=0.002), but did not affect the mean number 

of infected cells per scored field (B) (p=0.66). The number of A. algerae per infected cells 

was reduced with fumagillin treatment (C) (p<0.0001) Tukey-Kramer Multiple Comparisons 

test, **p<0.01, ***p<0.001; n=3. Error bars = SD.  
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Figure 4.11 Effect of A. algerae and A. algerae with fumagillin treatment on ZEB2J 
numbers per field of view over 5 days  
Cell numbers per scored field decrease with A. algerae infection, but the number of infected 

cells treated with 20 µg/ml fumagillin are similar to uninfected control. Tukey-Kramer 

Multiple Comparisons, *p<0.05; n=3. Error bars = SD. 

 

4.4 Discussion  

Three classes of antimicrosporidial drugs were evaluated for their ability to prevent A. 

algerae growth without impairing the host cells, the zebrafish cell line ZEB2J. 

Fluoroquinolones had little impact on A. algerae growth, and albendaozle impeded A. 

algerae development but at concentrations that caused sublethal damage to ZEB2J. By 

contrast, fumagillin held promise as a curative agent for this microsporidia/host cell 

combination: A. algerae growth was inhibited at concentrations that had little effect on 

ZEB2J.  These treatments are discussed below.  

 

Fluoroquinolones 

Although causing little or no harm to the fish cells, the fluoroquinolones at up to 20 μg/ml 

appeared to be ineffective at blocking the growth of A. algerae.  One of the three 
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fluoroquinolones, ciprofloxacin, also was reported to have little effect on E. intestinalis and 

V. corneae growth at concentrations as high as 3.3 μg/ml (Didier et al. 2005).  By contrast, 

the growth of these two microsporidia in RK13 was inhibited significantly by the other two 

fluoroquinolones, norfloxacin and ofloxacin at 3.2 and 3.6 μg/ml respectively, with E. 

intestinalis being inhibited more profoundly than V.corneae (Didier et al. 2005).  One 

possible target of fluoroquinolones in microsporidia is topoisomerase IV (Didier et al. 2005).  

The failure of A algerae to be inhibited by norfloxacin and ofloxacin at 20 μg/ml might due 

to the absence of topoisomerase IV or a different type of topoisomerase IV.  As many 

fluoroquinoles are available and some of these might act slightly differently from each other 

(Didier et al., 2005), perhaps others are worth testing in the A. algerae/ZEB2J system.  Any 

cytotoxic actions of the fluoroquinolones is likely similar in ZEB2J and RK13.  

Fluoroquinoles impaired cellular energy metabolism in ZEB2J as measured with alamar Blue 

at concentrations above 20 μg/ml after 5 days exposure and in RTK13 as measured with 

MTT [3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] at concentrations 

above approximately 3 μg/ml after 10 days exposure (Didier et al. 2005).  

 

Albendazole 

A. algerae, like several other species of microsporidia, appeared susceptible in vitro to 

albendazole.  For A. algerae, albendazole lowered the number of the microsporidia in ZEB2J 

cultures.  For E. intestinalis and V. cornea albendazole inhibited the increase in numbers that 

developed upon infection of mammalian cell cultures (Didier 1997, Didier et al. 1998).  In 

cultures with N. bombycis, V. corneae, T. hominis, E. cuniculi, E. hellem, or E. intestinalis 

albendazole reduced the percentage of infected host cells (Beauvais et al. 1994, Ditrich et al. 

1994, Haque et al. 1993, Lafranchi-Tristem et al. 2001, Silveira and Canning 1995). As in 

several of these studies, albendazole appeared in the current study to cause morphological 

abnormalities in the microsporidia.  With A. algerae the spindle shaped sporonts appeared 

enlarged by albendazole treatment.  For N. bombycis, the sporognic stages were disorganized 

(Haque et al. 1993); for E. cuniculi all developmental stages were swollen and misshapen 

(Colburn et al., 1994); and for V. corneae ultrastructural abnormalities were seen in all stages 

of the life cycle (Silveira and Canning 1995).  Spore structural abnormalities were observed 
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for E. cuniculi, E. hellmen, and T. hominis (Beauvais et al. 1994, Lafranchi-Tristem et al. 

2001).  

Albendazole failed to reduce the percentage of cells infected with A. algerae but in other 

studies with different microsporidial species (N. bombycis, T.hominis, E. cuniculi, E. hellem, 

and E. intestinalis) albendazole did decrease the number of infected host cells (Beauvais et 

al. 1994, Ditrich et al. 1994, Haque et al. 1993, Lafranchi-Tristem et al. 2001).  At least three 

technical differences in how experiments were carried out could account for these different 

outcomes, beginning with the method used to visualize microsporidia. For the evaluation of 

microsporidial numbers, A. algerae were scored as small DAPI-staining structures, whereas 

in other studies microsporidia were seen by several methods but most commonly Giemsa 

staining.  DAPI likely allowed a better visualization of all life cycle stages than these 

methods, some of which required parasitic foci to be scored rather than individual parasites 

(Beauvais et al. 1994, Franssen et al. 1995, Lafranchi-Tristem et al. 2001).  If DAPI were 

better at detecting a single A. algerae, this would make it harder to find cells completely free 

of microsporidia.   

Along with DAPI staining, the short exposure time (5 days) and possibly the higher 

albendazole concentrations (10 and 20 μg/ml) might additionally have made the complete 

elimination of microsporidia from cells difficult to achieve.  For a cell to be recorded as 

being free of microsporidia, the host cells must remove remnants of damaged or dead 

microsporidial nuclei so they are no longer detected by DAPI.  This could occur by a type of 

autophagy, xenophagy (Levine 2005), and an exposure time of 5 days might not give the 

ZEB2J time to completely degrade the A. algerae nuclei.  As autophagy can be inhibited or 

delayed by drugs interfering with microtubule polymerization (Monastyrska et al. 2009) and 

as albendazole interferes with microtubules in animal cells as well as in microsporidia 

(Chatterji et al. 2011), the high albendazole concentrations might slow down the digestion of 

A. algerae that have been damaged or killed by the high albendazole concentrations.  

Therefore, the completeness of microsporidial elimination from a cell could be influenced by 

the duration and concentration of albendazole treatments. For other microsporidial species, 

treatments have ranged from 3 days to 5 weeks (Beauvais et al. 1994, Lafranchi-Tristem et 

al. 2001) at concentrations from 0.008 μg/ml to 5.2 μg/ml (Ditrich et al. 1994, Haque et al. 

1993), and in some studies a drop in the percent of infected cells was found to take time to 



 96

develop, not being evident at 7 days but becoming clear at times afterward, depending on the 

albendazole concentration (Colbourn et al. 1994, Lafranchi-Tristem et al. 2001).   

A third and final technical consideration is the potential to generate false positives with the 

combination of DAPI and high albendazole.  In mammalian cells the inhibition of 

microtubule polymerization by albendazole leads to interference with the mitotic spindle and 

formation of micronuclei (Ramirez et al. 2007).  If this were to occur with ZEB2J, some 

micronuclei might be scored as microsporidia.  Indeed albendazole-treated ZEB2J cultures 

had cells with large nuclei or abnormally shaped nuclei, suggesting that albendazole was 

interfering with the mitotic spindle in the fish cells. However, micronuclei were rare.  With 

these technical considerations in mind, treating cultures with albendazole at lower 

concentrations for longer times might be interesting and could bring about a % reduction in 

the number of ZEB2J with A. algerae.   

Biological differences between A. algerae and other tested microsporidia or between 

zebrafish and mammalian cells also might be advanced to explain why albendazole failed to 

eliminate A. algerae completely from individual ZEB2J cells, although no definitive 

conclusion can be drawn at this time.  Albendazole is thought to target β-tubulin 

polymerization and differences in β-tubulin amino acid sequences can explain varying 

sensitivity to the drug (Chatterji et al. 2011).  The sequence of the β-tubulin gene for A. 

algerae is known and has been used to show that A. algerae does not belong to the same 

clades as N. bombycis, E. cuniculi, E. hellem, and E. intestinalis (Lee et al. 2008).  Whether a 

microsporidia species develops within the cytoplasm of the host cell or in a parasitophorous 

vaucole influences the effectiveness of albendazole on a species (Gross 2003), but in 

common with the other tested species A. algerae develops in the cytoplasm.  Vertebrates 

metabolize albendazole and eventually inactivate the drug but the metabolism can differ 

between groups, even among fish species (Shaikh et al. 2006).  If metabolic differences were 

to be maintained by cells in culture, this could make albendazole more or less effective in 

different in vitro systems.   

Albendazole at above 20 μg/ml (75 μM) caused a loss of cell viability in ZEB2J cultures, 

whereas a sublethal action, the appearance of abnormal nuclear morphologies, was seen at 10 

and 20 μg/ml.  In mammalian cell cultures albendazole also was cytotoxic but at lower 

concentrations (~ 0.5 μM to 50 μM) (Baliharová et al. 2003, Whittaker and Faustman 1991), 
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with differences being observed between cell culture types (Baliharová et al. 2003). Piscine 

and mammalian cells might differ subtly in their metabolism of albendazole or in their β-

tubulins to cause acute cytotoxicity to occur at lower concentrations in mammalian cells.  As 

for a sublethal action, irregular nuclear outlines, multiple nuclei and enlarged nuclei were 

found in ZEB2J cultures with 20 μg/ml albendazole.  These types of nuclear shapes have not 

been commented on specifically in studies with mammalian cells but might be expected as a 

general response of animal cells to a drug that can act as a mitotic spindle inhibitor.  

Despite potential toxicity, albendazole has been used successfully to reduce the intensity of 

microsporidia infections in vivo.  These include infections of Encephalitozoon intestinalis 

and E. cuniculi in humans (Gross 2003) and of Glugea anomala and Loma salmonae in fish 

(Schmahl and Benini 1998, Speare et al. 1999).  Albendazole against A. algerae has been 

unsuccessfully used to treat clinical cases including a deep-tissue infection (Coyle et al. 

2004), and infection of the vocal folds (Cali et al. 2010).  

 

Fumagillin 

This is the first report of fumagillin inhibiting the growth of A. algerae.  Inhibition 

occurred at 10 and 20 μg/ml, but perhaps in the future concentrations below 10 μg/ml should 

be tested as well.  Fumagillin has been reported to inhibit E. cuniculi, E. intestinalis, and V. 

corneae in vitro at lower concentrations, ranging from 0.001 to 5 μg/ml (Beauvais et al. 

1994, Didier 1997, Didier et al. 2006, Franssen et al. 1995).  For E. cuniculi, fumagillin 

inhibited the activity of MetAP-2, which is thought to be the site of its antimicrosporidial 

activity (Zhang et al. 2005).  Possibly this is also the mechanism for the inhibition of A. 

algerae as the gene for MetAP-2 has been identified in this species (Zhang et al. 2005).  

Over the last few decades, fumagillin has been explored as a drug to cure fish of 

microsporidian and myxosporean diseases (Molnár et al. 1986, Takahashi and Egusa 1976), 

although some toxicological consequences have been noted (Lauren et al. 1989).  Like 

microsporidia, the myxozoa were once considered protozoa, but unlike microsporidia, their 

relocation has been to the metazoa (Smothers et al. 1994).   For microsporidia, fumagillin has 

been found to reduce the severity of infections in ayu with Glugea plecoglossi (Takahashi 

and Egusa 1976) and in salmon with Enterocytozoon salmonis, Loma salmonae, and 
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Nucleospora salmonis (Hedrick et al. 1991, Kent and Dawe 1994, Speare et al. 1999).  For 

myyxospora, fumagillin was promising as a treatment for several diseases, including 

proliferative kidney disease (PKD) (Hedrick et al. 1988) and whirling disease (El-Matbouli 

and Hoffmann 1991).  Perhaps the most common toxicological consequence of fumagillin 

treatments has been a decline in haematopoietic cells (Hedrick et al. 1988, Lauren et al. 

1989).  The actions of fumagillin on fish cells in vitro are reported for the first time here.  

As represented by ZEB2J, the sensitivity of fish cells to fumagillin in vitro was similar to 

that reported for mammalian cells.  Impairment of ZEB2J cultures was observed only at 

concentrations above 20 μg/ml. Depending on the mammalian cell line, fumagillin has been 

reported to cause a 50 % reduction in neutral red uptake, a cytotoxic endpoint, at between 

16.5 to 36.4 μg/ml (Bunger et al. 2004).  MetAP-2 is the main biochemical target for the 

toxic actions of fumagillin and has been identified in zebrafish (Zhang et al. 2006).  

However, other fumagillin targets might exist.   When zebrafish embryos were treated with 

the fumagillin analog, TNP-470, abnormalities were observed and these were attributed to 

TNP-470 acting as a selective inhibitor of noncanonical Wnt signaling (Zhang et al. 2006). 

The ability to use fish cell cultures to evaluate chemotherapeutic effects against A. algerae 

demonstrates that attempts to establish systems of various host-parasite combinations may be 

valuable to assess the differences among these effects on different microsporidian species 

and host cells. 
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Chapter 5                                                             

A microsporidian, Nosema apis, from honey 

bees can infect the zebrafish cell line, ZEB2J 
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Overview 
A zebrafish cell line (ZEB2J) was exposed to Nosema apis spores from the western honey 

bee (Apis mellifera).  Bees were collected from hives that had been naturally infected and 

confirmed by conventional polymerase chain reaction (PCR) to have N. apis.  Frozen bees 

were crushed in water to yield a mixture of bee parts, pollen grains, yeast, and microsporidial 

spores.  The mixture was filtered and then centrifuged through Percoll to produce a pellet of 

spores that was resuspended in L-15 with 10 % fetal bovine serum (FBS). Aliquots of this 

were added to ZEB2J cultures.  Cultures were observed periodically for up to 24 days with a 

combination of phase contrast microscopy and of fluorescence microscopy, usually after 

staining with 4’,6-diamidino-2-phenylindole (DAPI).  Although earlier life cycle stages were 

not observed, structures that were concluded to be either sporonts, sporoblasts and/or spores 

were seen, but these were in less than 5 % of the fish cells.  These N. apis life cycle stages 

had grown in ZEB2J because some appeared to be inside the cells and often they were 

arranged around the nucleus of the host cell rather than being randomly distributed in 

cultures.  Despite repeated rinsing over a three week period, all cultures were ultimately lost 

due to yeast from the original spore preparations over growing the fish cell cultures.  

Although the infection frequency was low, these results suggest that cell lines from different 

vertebrates as well as different invertebrates should be explored as potential in vitro systems 

for growing N. apis.   
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5.1 Introduction 

The western or European honey bee (Apis mellifera) is of significant importance to 

agriculture as it is the primary pollinator of crops accounting for 35% of the human diet 

(Klein et al. 2007). In 1992 it was estimated that consumers in the United States annually 

saved between $1.6 and $5.7 billion due to lower crop prices as a direct result from honey 

bee pollination (Southwick and Southwick 1992). Recent severe declines in honey bee 

populations, or Colony Collapse Disorder (CCD) are believed to be the result of a variety of 

factors including pathogen interactions and non-pathogenic issues such as climate induced 

stress (Bromenshenk et al. 2010, Le Conte and Navajas 2008, vanEngelsdorp and Meixner 

2010). Despite the complexity of relationships among factors implicated in the causality of 

CCD, recent mass spectrometry-based proteomics (MSP) suggest that the probable 

pathogenic cause of CCD is the interaction between invertebrate iridescent virus (IIIV) 

infection, and parasitic infections from microsporidia and mites (Bromenshenk et al. 2010).  

Microsporidia are a varied group of obligate intracellular fungal parasites with an 

exceptional host range and that infect most animal phyla. Nosema apis and Nosema ceranae 

are the two microsporidians known to infect the western honey bee. N. apis was identified in 

the western honey bee in 1909 (Zander) and although generally reported as affecting the 

epithelia of the midgut, has been described in thoracic, pharyngeal and mandibular glands, as 

well as ovaries and hemolymph (Gilliam and Shimanuki 1967). N. ceranae was originally a 

microsporidian pathogen of Asian honey bees (Apis ceranae) but is now an emerging 

pathogen of the western honeybee (Klee et al. 2007). It is believed that N. ceranae has been 

present in A. mellifera populations in parts of the United States since at least the 1990’s 

(Chen et al. 2008). N. ceranae is now considered to be worldwide having been identified in 

North and South America, Asia and Europe (Chen and Huang 2010, Higes et al. 2006, 

Williams et al. 2008). The relatively recent identification of N. ceranae in the western honey 

bee, and reports of its broad tissue specificity and higher virulence compared to N. apis, have 

implicated the parasite as having more of a role in CCD (Martin-Hernandez et al. 2007). 

However, rates of N. ceranae infections are higher in normal colonies as well as CCD 

colonies, natural infections of N. ceranae are rarely without co-infection of N. apis, and 

regional differences may play a role (Cox-Foster et al. 2007, Gisder et al. 2010a, Read and 

Taylor 2001).  
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Historically, Nosema spp. have been of research interest because of the impact this genus 

has on insects and the silk industry. N. bombycis in the silkworm was the first microsporidian 

to be named (Nageli 1857), studied (Pasteur 1870), and grown in vitro using silkworm tissue 

cultures (Trager 1937). This initial development was followed by the growth of N. bombycis 

in several invertebrate cell culture systems (Ishihara 1969, Ishihara and Sohi 1966), and 

primary mammalian and chick embryo cultures (Ishihara 1968). After the successful growth 

of N. bombycis in culture, other Nosema spp. followed including: N. mesnili (Gupta 1964), N. 

furnacalis (Kurtti et al. 1994), and N. disstriae (Kurtti et al. 1983, Sohi and Wilson 1976). 

Other Nosema spp., including N. algerae, were grown in culture but subsequently reassigned 

to new genera (Khurad et al. 1991, Undeen 1975).  

Despite the importance of establishing successful in vitro cultivation of N. apis and N. 

ceranae, this has proven difficult and over the years the difficulty has been attributed to the 

lack of cell lines from bees.  However, recently the infection and growth of N. apis and N. 

ceranae has been observed in a lepdopteran cell line, although continuous propagation was 

not obtained (Gisder et al. 2010b).  Inasmuch as the continuous in vitro of growth of these 

bee pathogens has yet to be achieved and as Anncaliia algerae grew in fish cell lines as well 

as in insect cell lines (Chapter 2), the possibility of growing N. apis and N. ceranae in a fish 

cell line was investigated.    

 

5.2 Materials and Methods 

Cell Lines and Their Growth 

The ZEB2J fish cell line was developed at the University of Waterloo (Dr. Niels Bols 

Lab). ZEB2J is a predominantly epithelial-like, zebrafish blastula cell line (Xing et al. 2008). 

Cells were grown in 12.5 cm2 non-vented flasks (Falcon), initially maintained at 27ºC but 

moved to 18°C (see Results: Yeast Contamination) in Leibovitz-15 (L-15; HyClone) with 

2mM L-glutamine, 10% fetal bovine serum (FBS; Sigma, St. Louis, MO) and 3% Antibiotic-

Antimycotic (AB/AM; Gibco 15240).  
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Purification of N. apis and N. ceranae spores 

Nosema spp. samples were received from Geoffrey R. Williams (Dr. David Shutler Lab, 

Acadia University) and had been PCR verified to be containing either N. apis or N. ceranae. 

Bees were euthanized from experimentally infected hives and macerated in water before 

shipping (Fig 5.1). Spores were obtained from the shipped samples by placing 5 ml of 

original sample in a 15 ml test tube with 5 ml 20% AB/AM for a final concentration of 10% 

AB/AM. The sample was left for 24 hours, centrifuged to aspirate supernatant, and 

resuspended in sterile water with 10% AB/AM. After 2 days, contents of the test tube were 

transferred to a new test tube and filtered using several 40 µm nylon filters (Falcon) to 

separate spores from larger particulate in the sample. Filtrate was centrifuged, supernatant 

removed and resuspended in 5 ml sterile water and 5 ml Percoll (Sigma P1644). The sample 

was then vortexed for approximately 5 s, and centrifuged at ~1,800 x g for 30 min. The 

spores pelleted to the bottom of the test tube, while cellular debris was in the Percoll/water 

supernatant, and removed by aspiration. The spore pellet was resuspended in sterile water 

with 5% AB/AM. 

 

Infecting ZEB2J cultures with Nosema spp. spores  

Infections were done in 12.5-cm2 non-vented flasks (Falcon). ZEB2J was grown at 27 °C 

to near confluency. Spore suspensions in water were centrifuged at ~200x g, resuspended in 

L-15 media described above, and counted with a hemocytometer. For spore inoculation, 8 

ZEB2J flasks had growth media removed and replaced with 3 ml of culture medium 

containing approximately 1.5 x 106 spores/ml of either N. apis or N. ceranae spores. Four 

ZEB2J flasks were maintained for uninfected controls.  

 

Monitoring ZEB2J cultures infected with Nosema spp.  

A Nikon TE300 inverted microscope with a TE-FM Epi-Fluorescence attachment and 

Nikon Cool Pix 5400 camera was used to monitor and photograph living and fixed cultures 

by phase and fluorescence microscopy, respectively. Phase contrast microscopy was used to 
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view living cultures daily and cultures were fixed and stained when the flask was overcome 

with yeast contamination. Cell cultures were fixed in 3:1 absolute methanol to glacial acetic 

acid, and stained for DNA with 4’,6-diamidino-2-phenylindole (DAPI). For fixation, 1 ml of 

fixative (3:1, absolute methanol: glacial acetic acid) was added to the medium of a flask 

culture and left for 2 min. A bulb pipette was used to remove the fixative and another 1.5 ml 

of Carnoy’s was added for a further 5 min before removal. Afterwards the culture flasks were 

rinsed in phosphate-buffered saline (PBS) and stained for at least 2 h in 10 µg/ml of DAPI in 

PBS. Some cultures were subsequently stained with calcofluor white (Sigma 

BioChemika18909) a fluorescent brightener, which binds to chitin and other structural β-

linked polysaccharides (Hayashibe and Katohda 1973, Hughes and McCully 1975, Maeda 

and Ishida 1967). The microsporidian spore coat is comprised of chitin and brightly 

fluoresces when stained with calcofluor white.  
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Figure 5.1 Experimental outline for testing whether N. apis would grow in ZEB2J 
cultures 
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5.3 Results  

Preparation of N. apis spores   

As outlined in Fig 5.1, spores were prepared from bees that had been naturally infected 

with N. apis. Hives that had the characteristic features of a microsporidia infection were the 

source of bees and the presence of N. apis was confirmed by PCR.   After the bees had been 

crushed in distilled water, bee parts, pollen grains, yeast and spores were seen (Fig 5.1).  This 

extract or mixture was filtered and centrifuged to yield a pellet that consisted primarily of 

spores, but some yeast and pollen grains were also present.  The spores had the shape and 

size of N. apis spores as viewed by phase contrast microscopy and fluorescence microscopy 

after staining with DAPI (Fig 5.2).  

 

Phase contrast microscopy of ZEB2J cultures after addition of N. apis spores 

Fish cell cultures were examined thoroughly by phase contrast microscopy 48 h after the 

addition of the preparation of N. apis spores.  Early life cycle stages, sporoplasms and 

meronts, of N. apis were not definitively seen, but late life cycle stages were observed 

clearly, although in less than 5 % of the cells.  The late life cycle stages were 

characteristically localized around the nucleus of a ZEB2J cell, appearing as clusters of 10-30 

oval phase bright objects (Fig 5.3). These could potentially be sporonts, sporoblasts or 

spores.  Some were less phase bright than others suggesting that they were possibly sporonts 

or sporobalsts inside the ZEB2J cells (Fig 5.3A-D, red circles).  
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Figure 5.2 DAPI staining of a spore preparation from N. apis infected bees  
Fluorescent micrograph of spore preparation stained with  10 µg/ml DAPI (A), and 
corresponding phase contrast (B) Scale bar = 10 µm.  
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Figure 5.3 Phase contrast microscopy of ZEB2J cultures after addition of N. apis spores   
N. apis life cycle stages were seen as oval, phase-bright structures in the cytoplasm of fish 
cells in cultures 48 h post infection (p.i.) following thorough washing of extracellular spores 
(A & B).  Higher magnification of the images in A and B are shown in C & D.  Red circles 
identify a possible intracellular proliferative stage with spore nuclei; mature spores (white 
arrows); and possible meronts (black arrows). Life cycle stages (black arrows) were often 
adjacent to host nuclei (HN).  Cultures at 10 and 11 d p.i. also had ZEB2J cells with N. apis 
life cycle stages distributed around the host nucleus (E & F). Scale bar = 10 µm.  
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Fluorescence microscopy of ZEB2J cultures after addition of N. apis spores 

 Examining the fish cell cultures by fluorescence microscopy also suggested that N. 

apis spores infected ZEB2J cells and underwent development, but yeast in the cultures 

necessitated a cautious interpretation of the photographs.  When cultures were examined after 

DAPI staining for DNA, small whitish blue structures were seen around the nucleus of at 

least one fish cell that possibly were meronts (Fig 5.4).  The cultures also were seen to 

contain yeast but these were outside the cells and had a greenish fluorescence (Fig 5.4).  

Cultures also were stained with DAPI followed by Calcofluor white (CW), which has been 

used to stain chitin in the cell walls of microsporidia and yeast (Harrington and Hageage 

2003, Vávra et al. 1993).  With this combination of dyes, fish cells were seen with structures 

that faintly stained, in contrast to the bright staining of N. apis spores not associated with fish 

cells (Fig 5.5).   These faint staining structures are interpreted to represent N. apis life cycle 

stage(s) inside rather than outside the fish cells.  Even after cultures had been rinsed 

numerous times over several weeks some ZEB2J cells had N. apis life cycle stages as viewed 

by phase and fluorescence microscopy (Fig. 5.6), but yeast were beginning to overwhelm the 

cultures and so they were terminated.  
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A  
 

B  
 

Figure 5.4 ZEB2J cultures 16 days after addition of N. apis spores  
(A) Examination of a DAPI stained culture (16 d p.i.) revealed next to a ZEB2J nucleus small 
whitish blue structures (white arrow), which are possibly N. apis meronts or sporonts. Yeast 
fluoresced greenish in the extracellular millieu; ZEB2J nuclei, whitish blue. Corresponding 
phase contrast image depicting intracellular micarosporidian spores and extracellular yeast is 
depicted in (B). Scale bar = 10 µm. 
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Figure 5.5 ZEB2J cultures stained first with DAPI followed by Calcofluor White (CW) 
The same field of view was examined by fluorescence (A, C & E) and by phase contrast (B, D & F) 
microscopy.  The photos in A and B are repeated in C and D but with interpretative markings and 
repeated again in E and F at a higher magnification.  The ZEB2J nuclei (HN) are whitish blue with 
one or two brighter structures, which are interpreted to be nucleoli.  In C and D the white and black 
dotted lines delineate yeast contamination, whereas the red arrows point to weakly fluorescent 
structures that appear to be N. apis life cycle stages. Two ambiguous structures, which could be either 
yeast or microsporidia, are delineated within teal circles (C & D).  In E the white dotted line outlines 
yeast contamination and the red circles demarcate possible N. apis sporont stages with two nuclei.  
Scale bar = 10 µm.  
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B  

 

Figure 5.6 ZEB2J monolayers 26 days after the addition of N. apis spores   
Fluorescence (A) and phase contrast (B) examination of a DAPI-stained ZEB2J culture 
reveals many green fluorescent, phase-bright structure that are interpreted to be yeast but at 
least one ZEB2J cell has N. apis sporoblast and/or spores (white arrow).  DAPI stained 
ZEB2J nuclei fluoresced whitish blue. Scale bar = 10 µm.  
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Efforts to reduce or eliminate yeast contamination 

Several different strategies were tried without success to get cultures to persist longer than 26 

days with little or no yeast.  One method was to rinse cultures several times every 8 h with 

medium supplemented with 4% AB/AM, and replaced with 3% AB/AM. Another strategy 

was to move cultures to 18°C in the hope that yeast but not microsporidia growth would be 

inhibited. Other measures to remove yeast included disrupting yeast attachment to cells with 

a 20 s agitated rinse of TrypLE and striking the flask on the lab bench prior to rinsing. All 

methods resulted in a decrease of yeast contamination, but also a decrease in both infected 

and non-infected ZEB2J cells. Passaging of N. apis infected flasks to new flasks after rinsing 

also resulted in a reduction of adherent cells, and a temporary reduction of yeast 

contamination.  However, with all methods the number of yeast ultimately increased to high 

levels.  

 

5.4 Discussion 

Evidence of infection and propagation   

 The current work supports a recent study that N.apis can infect animal cells in culture 

(Gisder et al. 2010b) but different cell lines and visualization techniques have been used.  

The zebrafish cell line, ZEB2J, was used in this thesis, whereas the cell line, IPL-LD-657, 

from Bombyx mori (silkmoth) was used by Gisder et al. (2010b).  Although working with 

both N. ceranae and N. apis, Gisder et al. (2010b) presented pictures mainly for N.ceranae 

but made similar observations for N.apis.  An infection frequency of 15-30% was estimated 

for N.ceranae and 5-10% for N.apis.  In this thesis infections were initiated with both 

N.ceranae and N.apis but only cultures with N.apis were followed closely and photographed 

and the infection frequency was less than 5 %.  

 Gisder et al (2010b) visualized the microsporidial life cycle stages generally by 

staining with Giemsa and specifically by fluorescence in situ hybridization (FISH) with a 

Nosema-specific 16S rRNA-targeted oligonucleotide probe.  With both techniques they were 

able to see within host cells small spherical bodies that were thought to be sporoplasms and 

spindle-shaped bodies that were interpreted as meronts.  Sporoplasms were seen as early as 
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16 h post infection.  Sporonts, sporoblasts and spores began to be seen between 48 and 72 h 

and by 96 h the spores were thought to be either primary or environmental spores.  However 

the differences between sporonts, sporoblasts, and spore types were subtle.  Both sporonts 

and sporoblasts were described as round to oval.  Differential interfering contrast microscopy 

was used to tell apart primary spores, which were described as spherical, from environmental 

spores, which were described as oval.    

 In this thesis a combination of phase contrast and fluorescence microscopy after 

staining with DAPI, sometimes followed by calcofluor white (CW), has been used to 

identifying N.apis life cycle stages.  Cells with sporoplasms and meronts could not be 

identified in the current study.  Certainly the low infection frequency would have made 

detection difficult but other factors likely contributed to them not been seen.  In retrospect, 

for seeing sporoplasts cultures should have been examined more thoroughly within the first 

16 h post infection. Possibly the contrast between meronts with the host cytoplasm is too 

small to make easy phase contrast visualization of these stages.  As well, the chromatin of 

these stages could be too diffuse for strong DAPI staining.  However sporonts, sporoblasts, 

and spores were seen but distinguishing between these life cycle stages was difficult.  

 Several observations support the case that sporonts, sporoblasts, and spores developed 

in ZEB2J cultures, although the presence of yeast in the starting spore preparation 

complicated observations. Firstly as judged by phase contrast microscopy and by DAPI 

staining, host cells were seen with structures that had the shape and size of N. apis spores.   

These stages were distinguished from yeast by being slightly larger, having smooth oval 

outlines with no indication of budding, and appearing whitish blue rather than green after 

DAPI staining.  Secondly, some of the structures appeared to be inside rather outside the host 

cells based on their weak staining with CW and being slightly phase darker relative to spores 

outside cells.  Thirdly, these stages appear to have developed in the culture, rather than just 

representing spores that had been applied at the start of the infection and persisting 

unchanged over the period of observation.  This conclusion is reached because many host 

cells were seen with the putative N. apis stages arranged around the host cell nucleus rather 

than being randomly distributed in the cell or in the culture.  Additionally this arrangement 

with host cells was maintained despite repetitive rinsing of the cultures over a 24 day period.  

On the other hand, other explanations for these structures can be advanced.  Possibly N apis 



 115

spores attach on the outside of just a few cells in a characteristic pattern around the nucleus 

and persist in this arrangement.  Possibly the structures are another type of microbe in the bee 

extract and not microsporidia.  Despite these reservations, the simplest explanation for these 

observations is that a few ZEB2J were infected with N. apis and supported development to at 

least the sporont stage and possibly sporoblast and spore stages as well.  

 Although illustrating the importance of exploring cell lines from a variety of 

organisms for growing N. apis, this thesis with a fish cell line and the work of Gisder et al 

(2010b) with the lepidopteran cell line stress the need to get better in vitro systems.  The 

infection frequency was low with the lepidopteran cells and very low with the fish cells.  

Neither system allowed the continuous culturing of N. apis.  Perhaps cell lines from other 

organisms, especially bees, might allow continuous propagation.  On the other hand, the 

nature of the N. apis life cycle might prevent continuous in vitro growth.  This is illustrated 

by the behavior of other Nosema spp in vitro.  N. bombycis and N. furnacalis can be grown 

continuously in culture but N. pyrausta cannot (Sagers et al. 1996).   This difference is 

attributed to the failure of N. pyrausta, unlike the other two species, to continuously produce 

primary spores, which germinate intracellularly to infect neighboring cells and maintain an 

infection (Sagers et al. 1996).  

 Regardless of the animal cell culture system chosen, culturing N. apis has additional 

technical difficulties.  In this work, a problem was obtaining spores from infected bees free 

of yeast.  In the future this might be overcome by using bee midguts as the starting material 

and to rinse them well as done by Gisder et al. (Gisder et al. 2010a).  Other ways of reducing 

yeast also could be considered.  These could include trying to separate microsporidia from 

yeast with different Percoll concentrations and centrifugation speeds.  Additionally, some 

new antifungal drugs might be explored to see if they might preferentially kill yeast over 

microsporidia (Lorand and Kocsis 2007).  Finally the low infection frequency is another 

difficulty and might be partially technical in the current study because the bees were stored at 

-20 °C prior to N. apis spore isolation.  Recent studies suggest that Nosema spores might 

loose viability with freezing and long-term storage (Fenoy et al. 2009, Gisder et al. 2010a). 
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Chapter 6                                                

Future research and broader implications of 

this thesis 
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6.1 Future Research 

In this study, fish cell lines were evaluated for their ability to support microsporidial 

growth, and for their value in studying the host-parasite relationship. The establishment of 

unique in vitro systems of A. algerae and fish cell lines outlined in this thesis allow for new 

and future avenues of research. For example, there are several possible areas of investigation 

that could use this system to evaluate general antimicrosporidial defense mechanisms in fish 

cells, or the movement of spores using various cell types. Several specific areas to investigate 

are outlined below:  

Firstly, the A. algerae and fish cell system could be used to assess the effects of 

antimicrobial peptides on fish cells and levels of infection. Methods to evaluate the effects of 

antimicrobial agents in fish cell culture, as outlined in Chapter 4, could be used to assess a 

variety of compounds or conditions on microsporidial growth. Pleurocidin, for example, is a 

antimicrobial peptide known to be produced by winter flounder in the gut (Syvitski et al. 

2005) and has demonstrated antifungal properties (Sung and Lee 2008). Winter flounder are 

often host to Glugea stephani microsporidia infection of the gut (Cali and Takvorian 1991, 

Takvorian and Cali 1984). Using the A. algerae/fish cell culture system can be used to 

evaluate the effects of pleurocidin on A. algerae growth. Ultimately, developing a similar 

system with G. stephani in a winter flounder cell line would be of interest.  

Secondly, the cell culture system could be used to assess if phagocytosis and respiratory 

burst impede infection. Shaw et al. (2001) investigated phagocytosis of Loma salmonae 

spores by susceptible Chinook salmon derived macrophages, and resistant Atlantic salmon 

macrophages have been evaluated. It was determined that the resistant Atlantic salmon 

macrophages were more effective at phagocytosis of the Loma spores than resistant Chinook 

macrophages. These differences may play an important role in antimicrosporidial defense 

mechanisms. It also appears that immunemodulation may occur through phagocytosis and the 

prevention of the respiratory burst. Weidner and Sibley (1985) observed that aggregates of 

phagocytized spores were destroyed by macrophages, but single spores prevented 

phagosome-lysosome fusion. Germination has be observed to occur with changes in pH, 

including with lower pH shifts (Hashimoto et al. 1976, Undeen 1983, Undeen and Avery 

1988). Therefore, there is the possibility that the respiratory burst could promote infection by 

stimulating germination of phagocytized spores through an acidification pH shift and allow 
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for autoinfection of the cell, or infection of adjacent cells. Evaluation of the effects of 

phagocytosis by macrophages in co-cultures with other fish cells, may be a way to evaluate 

the role of macrophages in the promotion or inhibition of infection. 

Thirdly, the microsporidia/fish cell culture system could be used to evaluate if A. algerae 

induces specific modes of cell death in fish cells. Generally speaking parasites do not benefit 

from killing their hosts and in the case of microsporidia, proliferation of the parasite can only 

occur in a living cell. However, once a cell has been used by microsporidia to grow mature 

spores, there may be mechanisms of programmed cell death in apoptotic, autophagic or 

necrotic cell death that could promote transmission to surrounding cells. Therefore, 

evaluating mechanisms of cell death may elucidate factors that promote infection.  

Fourthly, A. algerae/fish cell culture could be used to evaluate the induction of various 

immune genes. Does infection regulate the expression of antimicrobial, cytokine, or Major 

Histocompatibility Complex (MHC) genes? When Chinook salmon leukocytes were 

challenged with Nucleospora salmonis, factors were released which promoted leukocyte 

proliferation (Wongtavatchai et al. 1994, 1995). The leukocytes were primary cell cultures 

isolated from the peripheral blood, which may be and important feature of the culture in 

order to elicit the upregulation of various cytokines. Future work using 

monocyte/macrophage cell lines or primary cultures may assist in the identification of what 

role cytokines play in immune responses to microsporidia infection.  

Lastly, the microsporidia/fish cell culture systems could be used to study the movement of 

spores across a gill or gut epithelium, and the transport of the parasite by host macrophages. 

In vivo, the life cycle of Loma salmonae, for example, is transmitted to the gut mucosa 

(lamina propria), and macrophages carry the parasite to the heart (Rodriguez-Tovar et al. 

2002, Sanchez et al. 2000). In the heart the parasite undergoes merogony and is again 

transported by macrophages to the pillar cells of the gills where sporogony and xenoma 

formation occurs (Rodriguez-Tovar et al. 2002). Understanding the way in which 

microsporidia can enter and exit cells during various stages of the life cycle may assist in 

understanding mechanisms of control. Various in vitro protocols could allow for these 

observations such as the co-culturing of macrophages with various cell lines/types, isolating 

and various life cycle stages, and using meronts, sporonts, sporoplasts or mature spores to 

observe the mechanism whereby meronts can leave a cell during aspects of the life cycle. 
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6.2 Broader Implications 

The experience and techniques gained by working with the A. algerae/fish cell culture 

system can be used to develop other in vitro systems. The goal of this work was to be able to 

use fish cell cultures to study microsporidia, and ultimately to use fish cell cultures cultivate 

microsporidia known to infect economically important fish. Loma salmonae, for example, 

would be an important fish microsporidian to grow in culture. It could allow for a greater 

understanding of mechanisms of immunemodulation, allow for evaluation of control 

measures, and potentially be the source from which spores are harvested for the L. salmonae 

whole spore vaccine (Rodriguez-Tovar et al. 2011, Speare et al. 2007). 

Lastly, my research suggests that the restriction of a microsporidial species to a particular 

animal host is not accomplished at the cellular level but through physiological systems 

expressed at the organismal level. Questions then arise from this work, since A. algerae can 

infect various fish cell lines, can A. algerae also infect fish (such as goldfish or zebrafish) in 

vivo? If microsporidia is considered an emerging pathogen of humans due to what are 

believed to be zoonotically transferred infections (Didier 2005, Didier et al. 2004, Didier and 

Weiss 2006), is it possible that various microsporidial infections previously only known in 

insects and mammals have to possibility to emerge in fish? This could include various 

microspordia including Paranosema locustae (previously Nosema) (Sokolova et al. 2003), a 

microsporidian that is known to infect grasshoppers and crickets and has recently been 

approved for conditional use of as a microbial pesticide to be sprayed on crops in Canada 

(Health_Canada 2010). Certainly this thesis suggests that further research is required to fully 

understand mechanisms that allow for transmission between different hosts, and to gain a 

greater understanding of host specificity. 
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Appendices 

 
Appendix A: Table of Microsporidia Genera in Fish 

(Based on Lom 2002) 
  

Genus   
Examples of Reported Infection Sites

Xe
no

ma
 F

or
ma

tio
n 

 
Glugea 

 
Thelohan, 1891 

 
Connective tissue of body organs, intestinal 
wall, gall bladder, mesentery, ovary, testes, 
subcutaneous tissue 

 
Ichthyosporidium 

 
Caullery & Mesnil, 1905 

 
Liver, adipose, subcutaneous connective 
tissues

 
Loma 

 
Sprague, 1981

 
Gill, digestive tract, organs 

 
Microfilum 

 
Faye, Toguebay & Bouix, 1991

 
Vessels of gill secondary lamellae

 
Microgemma

 
Ralphs & Mathews, 1986

 
Liver

 
Nosemoides 

 
Faye, Toguebay & Bouix, 1996

 
Gills, digestive tract 

 
Pseudoloma 

 
Mathews, Brown, Larison, 
Bishop-Stewart & Kent, 2001

 
Central nervous system 

 
Spraguae 

 
Sprague and Vavra, 1976

 
Ganglion cells of the central nervous system

 
Tetramicra 

 
Mathews and Mathews, 1980

 
Skeletal muscle tissue 

Ab
se

nc
e o

f X
en

om
a F

or
ma

tio
n 

 
Heterosporis 

 
Schubert, 1969

 
Skeletal muscle tissue 

 
Kabatana 

 
Lom, Dykova & Tonguthae, 2000 

 
Trunk muscles, heart and other muscles in 
body

 
Ovipleistophora 

 
Pekkarinnen, Lom & Nilsen, 2002

 
Oocytes

 
Nucleospora 

 
Hedrick, Groff & Baxa, 1991

 
Haematopetic cells, kidney, enterocytes

 
Pleistophora 

 
Gurley, 1893 

 
Skeletal muscles, muscle of swim bladder 
and stomach, gill operula, intestinal walls, 
mesentery

 
Reference 
Lom J (2002). A catalogue of described genera and species of microsporidians parasitic in 
fish.  Syst Parasitol 53: 81-99 
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Appendix B: Video of Anncaliia algerae growth and germination in 
a rainbow trout cell line, RTgill 

 

This appendix is comprised of two QuickTime™ movie files of Anncaliia algerae 

development and germination within a single cell from the RTgill cell line. During one video, 

A. algerae can be observed to divide within the cell, and 2 mature spores germinate. The 

second video is a short section of the first video in which intracellular germination is 

highlighted. 

 

Riveal microscopy from Quorum Technologies Inc. was used for this video. For more 

information on Riveal microscopy, see Chapter 3 of this thesis or visit 

www.quorumtechnologies.com . 

 

The file is available on the supplementary DVD that is included in the pocket inside the back 

cover. The file name of full movie file is “Anncaliia algerae growth and germination in 

RTgill.mov” and the file name for the section of video that highlights intracellular 

germination is “Anncaliia algerae germination in RTgill.mov” 

 

If you accessed this thesis from a source other than the University of Waterloo, you may not 

have access to this file. You may access it by searching for this thesis at 

http://uwspace.uwaterloo.ca . 
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Appendix C: Video of Anncaliia algerae spore misfires 
 

This appendix is a QuickTime™ movie file of incomplete germination of Anncaliia algerae 

spores, or spore misfires. Figure 3.7 images are taken from this video, but the video provide 

clearer evidence of germinated spores that did not discharge their nuclei.  

 

Riveal microscopy from Quorum Technologies Inc. was used for this video. For more 

information on Riveal microscopy, see Chapter 3 of this thesis or visit 

www.quorumtechnologies.com . 

 

The file name of this movie file is “Anncaliia algerae spore misfires.mov”. 

 

If you accessed this thesis from a source other than the University of Waterloo, you may not 

have access to this file. You may access it by searching for this thesis at 

http://uwspace.uwaterloo.ca . 
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