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Abstract

For nearly three decades, the model of interactive proof systems and its variants have
been central to many important and exciting developments in computational complexity
theory such as exact characterization of some well known complexity classes, development
of probabilistically checkable proof systems and theory of hardness of approximation, and
formalization of fundamental cryptographic primitives.

On the other hand, the theory of quantum information, which is primarily concerned
with harnessing quantum mechanical features for algorithmic, cryptographic, and informa-
tion processing tasks has found many applications. In the past three decades, quantum
information has been used to develop unconditionally secure quantum cryptography proto-
cols, efficient quantum algorithms for certain problems that are believed to be intractable
in classical world, and communication efficient protocols.

In this thesis, we study the impact of quantum information on the models of interactive
proof systems and their multi-prover variants. We study various quantum models and
explore two questions. The first question we address pertains to the expressive power of
such models with or without resource constraints. The second question is related to error
reduction technique of such proof systems via parallel repetition.

The question related to the expressive power of models of quantum interactive proof
systems and their variants lead us to the following results.

1. We show that the expressive power of quantum interactive proof systems is exactly
PSPACE, the class of problems that can be solved by a polynomial-space deterministic
Turing machines and that also admit a classical interactive proof systems. This re-
sult shows that in terms of complexity-theoretic characterization, both the models are
equivalent. The result is obtained using an algorithmic technique known as the matrix
multiplicative weights update method to solve a semidefinite program that characterizes
the success probability of the quantum prover.

2. We show that polynomially many logarithmic-size unentangled quantum proofs are no
more powerful than a classical proof if the verifier has the ability to process quantum
information. This result follows from an observation that logarithmic-size quantum
states can be efficiently represented classically and such classical representation can be
used to efficiently generate the quantum state.

3. We also establish that the model of multi-prover quantum Merlin Arthur proof system,
where the verifier is only allowed to apply nonadaptive unentangled measurement on
each proof and then a quantum circuit on the classical outcomes, is no more powerful
than QMA under the restriction that there are only polynomial number of outcomes
per proof. This result follows from showing that such proof systems also admit a QMA
verification procedure.
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The question related to error reduction via parallel repetition lead us to following results
on a class of two-prover one-round games with quantum provers and a class of multi-prover
QMA proof systems.

1. We establish that for a certain class of two-prover one-round games known as XOR
games, admit a perfect parallel repetition theorem in the following sense. When the
provers play a collection of XOR games, an optimal strategy of the provers is to play
each instance of the collection independently and optimally. In particular, the success
probability of the quantum provers in the n-fold repetition of an XOR game G with
quantum value ωq(G) is exactly (ωq(G))n.

2. We show a parallel repetition theorem for two-prover one-round unique games. More
specifically, we prove that if the quantum value of a unique game is 1 − ε, then the
quantum value of n-fold repetition of the game is at most (1− Ω(ε2))

n
. We also establish

that for certain class of unique games, the MODk games, the quantum value of the n-
fold repetition of the game is at most (1− Ω(ε))n. For the special case of XOR games,
our proof technique gives an alternate proof of result mentioned above.

3. Our final result on parallel repetition is concerned with SepQMA(m) proof systems,
where the verifier receives m unentangled quantum proofs and the measurement opera-
tor corresponding to outcome accept is a fully separable operator. We give an alternate
proof of a result of Harrow and Montanaro [HM10] that states that perfect parallel
repetition theorem holds for such proof systems.

The first two results follow from the duality of semidefinite programs and the final result
follows from cone programming duality.
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Chapter 1

Introduction

The unique feature that separates mathematics from other scientific disciplines is the notion
of proof. It is the concept that establishes irrevocable truth of mathematical statements by
following a sequence of logical rules. The notion of proving the correctness of an assertion
can be thought of as a two stage process. The first stage is proof generation, which often
involves creativity, insight, and patience. The second stage is proof verification, which is
often considered as burdensome and mechanical task. However, the importance of the
second stage cannot be underestimated for the task gives the proof its due value.

The concept of proof and its verification is ubiquitous in mathematics and have been
widely studied from computational, logical, and philosophical viewpoint. This thesis fo-
cuses on the second stage, the process of proof verification, from a computational perspec-
tive. It is an important and active field of study for the last three decades with several
applications. This thesis is an attempt to contribute to the vast body of work done on
computational notions of verification. The chapter itself attempts to state the significance
of proof verification.

What constitutes as a verification procedure? In simplistic terms, proof verification can
be thought of as a deterministic procedure that takes the assertion and its proof as input
and outputs accept or reject signifying the correctness or incorrectness of the proof. The
procedure satisfies the following two properties.

1. Completeness. If the assertion is correct, then the verification procedure should accept
a proof with certainty.

2. Soundness. If the assertion is incorrect, then no matter what proof is supplied to the
verification procedure, it should reject with certainty.

This is the most common notion of verification, often referred as the standard notion
of verification. The completeness condition states that if the assertion is valid, then there
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exists a proof that will be accepted by the verification process. The soundness condition
states that if the assertion is incorrect, then since no such proof of the validity of asser-
tion exists, the verification procedure should always reject the purported proof. Taken
together, the two conditions implies that a proof is accepted if and only if the assertion
is correct. Of course, this means that the two properties can be summarized in a single
sentence. However, having two separate conditions serves a purpose later on while we
define computational notions of verification.

Throughout history, eminent mathematicians have tried to understand the impact of
mechanical devices on theorem proving. The origin of this question can be traced back to
Gottfried Leibniz, who dreamed of building a mechanical device that could tell the truth
value of a mathematical statement. He realized that the first step was to formulate a
formal language for the device and much of his subsequent work was devoted to achieving
this goal. Indeed Leibniz was much ahead of his time.

Leibniz’s quest was revisited again after more than two hundred years. In 1928, David
Hilbert posed a fundamental question, known as the Entscheidungsproblem: Does there
exists an algorithm that takes a mathematical statement as an input and produces an
output true if and only if the statement is true and false if and only if the statement is
false in finite time steps?

The existence of such an algorithm means that one can get a true/false answer to their
favorite conjecture. A few years later, inspired by Gödel’s incompleteness theorems, Alonzo
Church [Chu36] and Alan Turing [Tur37] showed that existence of such an algorithm is
impossible. The importance of their work is not limited to answering the question and
exhibiting the power of human creativity over automated procedures. Their work formed
the basis of computability theory, articulated the Church-Turing thesis, presented λ-calculi
and Turing machines as universal models of computation, and helped introduce the no-
tion of efficient computation and theory of computational complexity. Among some great
achievements listed above, their work also introduced the notion of decision problems as
a fundamental concept in computational complexity theory. Roughly speaking, a decision
problem can be thought of as a partition of the set

{0, 1}∗ =
⋃
n≥0

{0, 1}n

into two disjoint subsets Lyes and Lno. The sets Lyes and Lno represent the yes-instances
and no-instances of the problem.

With this notion in mind, the notion of efficient computation associates a Turing ma-
chine with a decision problem in the following way. Given any input string x, the Turing
machine runs in polynomial-time in the size of the input (|x|) and decides correctly whether
x is a yes-instance or a no-instance of the problem. The notion of efficient computation was
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first introduced by Edmonds [Edm65], who explained the importance of polynomial-time
and possible existence of other classes of problems that seemingly have no polynomial-time
algorithm.

Edmonds seminal contribution led to significant breakthrough in theoretical computer
science such as the introduction of P as the class of decision problems that admits a
polynomial-time algorithm on a Turing machine and the theory of NP-completeness de-
veloped by Cook [Coo71], Karp [Kar72], and Levin [Lev73]. Indeed the theory of NP-
completeness is based on the standard notion of proof verification discussed above with
an added restriction that the verification procedure has to be efficient. These and other
models of proof verification are discussed in the following section.

1.1 Notions of efficient verification

The notion of efficient proof verification implicitly involves two players, the prover and the
verifier, and assumes the verification procedure to be efficient. It is one of the most widely
studied notion in theoretical computer science with far reaching applications. One of the
most fundamental questions in computational complexity asks for the intrinsic complexity
of two tasks: proof generation and proof verification. Below we make this question more
precise.

Let (Lyes, Lno) be a decision problem and x be an input string. Once the input string
and the decision problem has been specified, the claim is to establish that x ∈ Lyes. The
task of efficient proof generation is to come up with an efficient algorithm that generates
a proof of the fact in the following sense. If the claim is true, then the algorithm outputs
accept and if the claim is false, then the algorithm outputs reject. Indeed the class P is the
class of decision problems that admit efficient proof generation procedure.

The task of efficient proof verification is to come up with an efficient algorithm that
verifier whether a given proof of the claim x ∈ Lyes is correct or not. In other words,
the algorithm takes in two inputs, the string x and the proof, and efficiently decides the
correctness of the claim. The class NP is the class of decision problems that admit efficient
proof verification procedure. In this sense, the question of intrinsic complexity of the two
tasks, proof generation and proof verification, is just the famous P-versus-NP problem,
which asks whether the two classes are same.

Let us now turn to various notions of efficient proof verification. As discussed above,
the complexity-theoretic abstraction of the standard notion of proof verification is the class
NP. This proof system treats proofs as static objects, thereby limiting the role of the prover
to merely sending the proof. A two-way dialog between the prover and the verifier allows
us to treat proofs as dynamic objects, thereby increasing the role of the prover. On the
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other hand, the verifier is allowed the luxury of two additional resources: interaction and
randomness. Intuitively, interaction allows the verifier to ask questions to the prover who
has to reply convincingly and randomness limits the prover’s ability to predict the verifier’s
strategy. Of course, the verification procedure has to be efficient and satisfy the following
three properties.

1. Completeness. For every x belonging to the yes-instances of the problem, there exists
a behavior of the prover that causes the verifier to accept x as a yes-input with very
high probability.

2. Soundness. For every x belonging to the no-instances of the problem, regardless of
what behavior the prover adopts, the verifier accepts x as a yes-input with very small
probability.

3. Efficiency. The complete verification procedure over all rounds of communication be-
tween the prover and the verifier should run in polynomial-time in the size of the
string x.

The model is referred to as interactive proof system. Since the verifier is allowed to make
error, the acceptance of a proof does not mean that it is a proof in strict mathematical
sense. Instead the proof can be seen as an argument that convinces the verifier with
overwhelming statistics that the assertion is correct. Also, if the verifier rejects at the end
of the protocol, it does not mean that the assertion is incorrect. It means that the prover
was unable to convince the verifier that the assertion is correct.

Interactive proof systems highlight the characteristics and role of the two players in-
volved. The verifier is assumed to be curious, näıve, and reliable. He is supposed to protect
his own interests, a characteristic that is best highlighted when studying zero-knowledge
proof systems. The prover possess limitless computational power, is unreliable, and works
towards protecting her interests. Both players proceed with the interaction keeping their
respective interests in mind, which may be conflicting. In fact, the scenario becomes in-
teresting when their interests are conflicting. That is, the proves tries to prove that an
incorrect claim is valid and the verifier tries to catch her. Indeed, while devising an inter-
active protocol for a problem, our major focus is on this scenario.

The original motivation of studying such a model comes from cryptography and formal-
ization of cryptographic primitives. There exist interactive proofs that are zero-knowledge,
which means that the verifier gains no knowledge about the proof beyond the fact that
the assertion is valid. This is a very peculiar aspect of interactive proof systems and one
cannot hope for anything remotely similar in the standard model of proof verification.

Moving away from the original motivation, the model of interactive proof systems has
led to the investigation of variants of the model. It is not an overstatement that the subse-
quent developments in the past twenty five years have huge impact on theoretical computer
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science. One of the hallmarks of interactive verification is that the concept itself has raised
many important questions, some of which are closely tied with their fundamental proper-
ties, while others tied with applications to other areas such as cryptography and hardness
of approximation. Below we briefly discuss the variants of interactive proof systems and
questions related to them that are pertinent to this thesis.

Variants of interactive proof systems: Apart from the single-prover interactive proof
system as discussed above, there have been significant research done on different variants of
the model. One such variant is the model of multi-prover interactive proof system wherein
multiple provers try to convince a skeptical verifier that the assertion is correct. The
nature of the provers towards each other is co-operating, however, they are not allowed
to communicate with each other once the protocol starts. Allowing them to communicate
with each other makes the model uninteresting for then the model reduces to single-prover
model. Multi-prover interactive proof systems are at least as powerful as their single-prover
counterpart for the verifier can concentrate on one prover and completely disregard the
action of other provers. However, the model is much more powerful than the single prover
case in complexity-theoretic sense because the verifier can use the non-communicating
provers to his advantage.

Another variant that has been studied in literature is the model of interactive proof sys-
tems with competing provers. In this model, there are two provers with conflicting interest:
one trying to prove that the assertion is correct, which we call the yes-prover and the other
trying to prove the exact opposite, which we call the no-prover. The conflicting nature
of the provers mean that even if one of the provers is honest, the other prover’s behavior
can be malicious and dishonest. Accordingly the completeness and soundness conditions
of verification procedure accommodates for such type of behavior. More specifically, such
proof system satisfies the following two properties apart from verifier being efficient.

1. Completeness. For every x belonging to the yes-instances of the problem, there exists
a behavior of the yes-prover such that no matter what behavior the no-prover adopts,
the verifier accepts x as a yes-input with very high probability.

2. Soundness. For every x belonging to the no-instances of the problem, there exists a
behavior of the no-prover such that no matter what behavior the yes-prover adopts,
the verifier accepts x as a yes-input with very small probability.

There are other interesting variants of the interactive proof system model which have
been widely studied in the literature. One of them is the model of zero-knowledge proof
system, where informally speaking, interaction helps the prover to prove an assertion with-
out letting the verifier know anything about the proof. Such proof system are specially
important from a cryptographic viewpoint and is rarely mentioned in this thesis.
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Error reduction: Since the interactive verification allows the verifier to make error, a
natural question to ask is whether one can make the proof systems robust against er-
ror probabilities. In other words, is it possible to reduce the error probabilities in both
completeness and soundness case to an arbitrary small quantity without sacrificing the
expressive power of the model. In most cases, if the prover adopts honest behavior and the
assertion is correct, then the verifier always accepts the proof. Such proof systems are said
to have perfect completeness. It is important to note that one cannot avoid the non-zero
error probability in the soundness case without losing the expressive power of such proof
systems.

There are many techniques employed to reduce the error probabilities of interactive
proof systems and their variants. One such technique is the sequential repetition of the
protocol. The acceptance criteria of the verifier is to accept if and only if all the repetitions
are accepted. This technique works in case of perfect completeness at the expense of
increase in the number of rounds of communication. Another way of error reduction
(assuming perfect completeness) is to repeat multiple instances of the protocol in parallel
and accept if and only if all the instances are accepted. In this case, the verifier executes
multiple instances of the protocol simultaneously with the prover(s), which allows the
prover(s) to gain additional knowledge in the sense that the prover(s) can reply with answer
for each instance that may depend on all the questions received. However in most cases,
the additional knowledge is not sufficient enough for the prover(s) to win all instances of
the protocol with very high probability even if we assume that the success probability of
the prover(s) for one execution of the protocol is very close to one. This error reduction
technique is known as parallel repetition and is an extremely important technique that has
found applications in the multi-prover case.

The power of interaction and randomization: It was established in the 1990’s that
the model of interactive proof systems, their competing prover variants, and the multi-
prover variants are surprisingly very powerful models of computation. In other words, the
process of verification with additional resources such as interaction and randomness allows
efficient verification for a large class of problems with yes/no answers. For instance, the
verifier in the most basic variant of interactive proof systems can verify the assertion for all
such problems that are solvable using polynomial amount of space on a Turing machine.
The verifier in the competing prover variants are even more powerful for he/she can verify
the assertion for any problem that can be solved in exponential-time on a deterministic
Turing machine. Finally, the verifier in the multi-prover variant can verify the assertion
for any problem that can be solved in exponential-time on a non-deterministic Turing
machine. From a complexity-theoretic viewpoint, the multi-prover variants is considered
more powerful than the competing-prover variant which in turn is considered more powerful
than the single-prover interactive proof system.
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Interaction and randomization also allows us to conceptualize zero-knowledge proofs,
which are of great theoretical and practical interest from a cryptography point of view. As
informally stated above, these are proofs where the verifier gains no knowledge about the
proof beyond the fact that the assertion is valid. This is indeed very peculiar to interac-
tive proof systems and their multi-prover variants. Apart from cryptographic applications,
the role of interaction and randomness have also resulted in surprising breakthroughs in
theoretical computer science such as the development of (what we know as) the probabilis-
tically checkable proof systems and a theory of hardness of approximation for optimization
problems in computational setting.

With such a wide range of applications and the growing acceptability of quantum
information as a resource, it is imperative to study the impact of quantum information
on such proof systems. That is, either the prover(s) or the verifier or both are allowed to
process quantum information. In scenarios where both the players can process quantum
information, they can also exchange quantum information. Quantum information allows
the verifier to simulate classical information and randomness and hence gives the verifier
additional power over the verifier that can only process classical information. However, as
we will explore some of the models in the light of quantum information, we will see that
quantum resources are not always beneficial.

1.2 Quantum information as a resource

Quantum mechanics, a theory formulated in the last century, describes physical systems
at an atomic scale which are otherwise indescribable by classical physics. Right from its
inception the theory has been at the center of exciting developments in various disciplines
of science. In the last three decades, a huge body of research have focused on exploiting
quantum mechanical features to perform computational, communication, cryptographic,
and information-theoretic tasks.

In early 1980s, Benioff [Ben82a, Ben82b] and Feynman [Fey82, Fey86] considered the
task of simulating quantum mechanical phenomena on existing models of computation
such as Turing machine and concluded that a new computational model based on the laws
of quantum mechanics is required to hopefully perform such tasks. This led to a seminal
work by David Deutsch [Deu85] in which the concept of quantum computer was made
precise in terms of quantum Turing machines. The theory of quantum computation was
subsequently developed by seminal work of Bernstein and Vazirani [BV97] (the preliminary
version of their paper appeared in 1993), and Yao [Yao93]. After Feynman’s proposed idea
of building a computer based on laws of quantum mechanics, a huge body of research has
been done on quantum computational model and the implications of quantum mechanical
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features to various disciplines of theoretical computer science. Indeed, quantum informa-
tion have found applications in different areas, few of which are briefly mentioned below.
Our intention is not to provide a comprehensive list of applications, which is clearly beyond
the scope of the thesis, but to briefly mention few of the most important developments
that led to huge interest in quantum information. Of course, we still list a handful of those
applications, which should be not be treated as the only set of important developments.
Indeed, the list is due to the highly biased opinion of ours.

Quantum information in algorithms: The idea of a model of computation based on
the principles of quantum mechanics is highly interesting, but what is even more interest-
ing is that they can seemingly violate the extended Church-Turing thesis. The extended
Church-Turing thesis hypothesizes that any efficiently computable function is efficiently
computable of a Turing machine with access to randomness. One of the crowning achieve-
ments of quantum information is an efficient quantum algorithm for factoring and discrete-
log problem [Sho97], based on Simon’s algorithm [Sim97], which seemingly violates the
extended Church-Turing thesis. The fact that such an algorithm seemingly violates the
thesis is based on an intractability assumption that factoring cannot be solved efficiently
on a classical computer with access to randomness. In fact, the best known classical al-
gorithm for factoring, the general number field sieve method, runs in time exponential in
some power of the input-size. The quantum algorithm for factoring led to other algorithmic
breakthroughs, where similar speed ups were obtained [Hal07].

Quantum information in cryptography: While Shor’s algorithm is simply a mar-
velous achievement and generated tremendous interest in quantum information, it also
makes some existing cryptosystems insecure. Should large scale quantum computers be-
come a reality, they will break existing public-key cryptosystems that are based on in-
tractability assumptions like hardness of factoring or discrete-log problem. To salvage
the damage done by a quantum computer (from a cryptographer’s point of view), one
can use cryptographic protocols based on quantum information for secure data transmis-
sion. Indeed, such a quantum key distribution protocol was proposed by Bennett and
Brassard [BB84] in 1984, much before Shor’s algorithm came into existence. Unlike the
classical public-key cryptosystems, the quantum key distribution protocol is known to be
unconditionally secure [BBBMR06, May01, SP00].

One of the key impact of quantum information has been the development of next
generation classical cryptosystems that are believed to be unbreakable even on a quantum
computer. In other words, these cryptosystems have so far resisted attacks based on
quantum computers. For instance, lattice-based cryptography has generated tremendous
interest among cryptographers for its simplicity, efficient implementation, and the fact that
it is believed to be secure against quantum attacks [GM02].
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Quantum information as proof technique: Much of the applications of quantum
information is derived from using quantum information in algorithmic, computational,
communication, cryptographic, and information-theoretic tasks. However, quantum infor-
mation has been successful as a powerful analytical tool too. Its use have led to proving
theorems and in some cases providing simpler proof of the existing theorems. One of the
earliest applications of quantum arguments in theoretical computer science was proving an
exponential lower bound on two-query locally decodable codes [KdW03]. There are few
instances where quantum techniques have also been used in providing a simpler proof of
important theorems [Aar05, deW06]. Other examples include lower bounds in communi-
cation complexity and polynomial approximations. For a more comprehensive overview on
such applications of quantum techniques, we refer to the survey [DdW11] and the references
therein.

At the heart of these exciting and interesting results are the mystical quantum mechan-
ical features: quantum superposition, quantum interference, and quantum entanglement.
Understanding the full potential of these features has been one of the biggest challenges of
the last century and our current understanding largely depends on the problem in hand.
This thesis, which focuses on specific questions related to quantum interactive proof sys-
tems and their variants, can be seen as an endeavor towards understanding the impact of
quantum information on the models of interactive proof systems and their variants. Given
the enormity of both the fields, the results in this thesis can be seen as partial progress
towards understanding the implications of quantum mechanical features to computational
complexity theory.

1.3 Results presented in the thesis

The focus of this thesis is on the impact of quantum information on the models of interactive
proof systems and their variants. The role of quantum information in these models have
been investigated in various papers over the past twelve years and although a lot of results
have been known, still our current understanding of these models is incomplete. The
results presented in this thesis builds upon the earlier works and focuses on two broad
questions: expressive power of the models based on quantum interactive proof systems
and their variants, and error reduction via parallel repetition. This section summarizes the
main results presented in this thesis.

Introductory chapters: The next three chapters following the current chapter are chap-
ters introducing the basic knowledge required to understand the thesis. Our treatment to
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each of the chapters is based on the results presented in the thesis and although extensive,
they are not comprehensive. We have pointed our references that give a comprehensive
overview of the topics discussed in the next three chapters.

Chapter 2 focuses on the mathematical preliminaries pertinent to this thesis. The first
section of the chapter is devoted to linear algebra preliminaries wherein we introduce the
notations used throughout the thesis. The second section introduces quantum informa-
tion and provides required background to understand the subsequent chapters. The final
section summarizes the notations used in the thesis for readers who wish to skip the de-
tails presented in the previous two sections. Our treatment to these topics are more than
what is required for this thesis and are presented for the sake of completeness. Chap-
ter 3 introduces semidefinite programs, the duality theory of semidefinite programs, and
their applications in this thesis both as an algorithmic and an analytical tool. It mentions
all the facts on semidefinite programs that are necessary to follow the rest of the thesis.
Chapter 4 gives a brief overview on computational complexity theory and introduces the
relevant complexity classes. It also discusses the models of interactive proof systems and
their multi-prover variants in greater details.

Expressive power of QIP: Chapter 5 is devoted to the first result of this thesis. This
result characterizes the expressive power of quantum interactive proof systems, wherein
the prover and the verifier can exchange and process quantum information, in terms of
PSPACE, the class of problems that can be solved in polynomial-space on a Turing ma-
chine [JJUW09]. It has been known for twenty years that the model of interactive proof
systems are sufficiently powerful to characterize PSPACE [LFKN92, Sha92, She92]. Our
result establishes that the the classical and quantum models of interactive proof systems
are equivalent.

To establish the desired result we make use of semidefinite programming character-
ization of an equivalent yet simple model of quantum interactive proof systems, which
we refer to as single-coin quantum interactive proof systems [MW05], and an alternate
characterization of PSPACE. We show that the semidefinite program can be “solved”
by a fast parallel algorithm in the size of the program, which is exponential in the size
of the input. It is known that such an algorithm can be simulated by a Turing ma-
chine that uses polynomial-space [Bor77], thereby establishing the result. We remark that
the algorithm for semidefinite program is based on matrix multiplicative weights update
method [AK07, Kal07, WK06], a technique that has been used to come up with faster
algorithms for certain semidefinite programs.

Parallel repetition of quantum XOR games: Chapter 6 establishes a perfect paral-
lel repetition theorem for a certain class of two-prover one-round games, known as XOR
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games[CSUU08]. These are games where the verifier asks questions to each prover who
respond with a bit, and the verifier’s verdict is based on the parity of the bits received .
In the quantum setting, the communication channel between the provers and the verifier
is classical, however, the provers are allowed to share quantum entanglement among them-
selves. The main result of this chapter is that when the provers are allowed to process
quantum information, the optimum success probability of the provers for simultaneously
playing a collection of XOR games is exactly the product of the individual optimal success
probabilities.

Our proof uses semidefinite programming techniques. We cast the quantum bias of an
XOR game as a semidefinite program based on earlier results [CHTW04a, Tsi80, Tsi85]
and show that the quantum bias of the parities of two XOR games G1 and G2, which we
denote G1 ⊕G2, is equal to the product of quantum biases of the games G1 and G2. This
property is established via semidefinite programming duality. We then relate this property
to parallel repetition of XOR games via Fourier analysis. Our parallel repetition theorem
together a result of Cleve, Høyer, Toner and Watrous [CHTW04a] also establishes a parallel
repetition theorem for classical XOR games, which has been subsequently generalized by
Rao [Rao08] and proven to be tight by Raz [Raz11].

Parallel repetition of unique games: Chapter 7 generalizes the results presented in
Chapter 6 to unique games, which are two-prover one-round games wherein conditioned
on verifier’s acceptance the answer of the first prover uniquely determines the answer of
the second prover and likewise the answer of the second prover uniquely determines the
answer of the first prover. We show that a parallel repetition theorem for such games
where the provers are allowed to share quantum resources [Upa07]. Our parallel repetition
theorem is not perfect in the sense explained above. Nevertheless, the bounds obtained
for unique games are tight. This result was obtained independently of Kempe, Regev and
Toner [KRT08].

Our proof technique uses semidefinite programming duality and the quantum rounding
procedure discussed in the reference [KRT08]. We first establish that any feasible solution
of a semidefinite program relaxation of quantum value of the game can be rounded to
obtain a valid quantum strategy for the provers with very good success probability. Then
using duality of semidefinite programs, we establish that the optimum of the relaxation
corresponding to the n-fold repetition of the game G, which we denote G⊗n, is no more
than (σ̄q(G))n, where σ̄q(G) is the optimum of the relaxation corresponding to game G.
Combining both these facts, we obtain the desired parallel repetition theorem. For certain
special class of unique games, we also obtain stronger parallel repetition theorem.

QMA variants with polynomially many provers: Chapter 8 concerns with the model
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of one-message quantum interactive proof systems, known as quantum Merlin-Arthur proof
systems, and their multi-prover variants. In their multi-prover variants, the provers are
only allowed to send quantum proofs that are guaranteed to be unentangled with other
quantum proofs. We consider three variants of multi-prover quantum Merlin-Arthur proof
systems. The first variant is QMAlog(poly) wherein each proof is logarithmic-size in the
size of the input. The second variant is BellQMA(poly) wherein the verifier’s computation
is a two-stage process as follows. The verifier first applies unentangled, nonadaptive mea-
surements on each proof and then applies another quantum circuit on the outcomes of each
measurement to decide whether to accept or reject. The third variant is SepQMA(poly),
where the verifier’s measurement operator corresponding to outcome accept is a fully sep-
arable operator across the proofs. In each model, we do not place any restriction on the
number of provers.

The results mentioned in this chapter are as follows. We show that the first variant
QMAlog(poly) is equivalent to MQA, the collection of problems that admits a classical
proof and quantum verification procedure. For the second variant, we show that if the
number of measurement outcomes per proof is at most polynomial in the size of the input,
then the power of such proof system is no more than QMA, the collection of promise
problems admitting a quantum Merlin-Arthur proof system. The final result shows that
perfect parallel repetition holds for SepQMA(poly), a result previously obtained by Harrow
and Montanaro [HM10]. However, our proof technique is different from theirs in the sense
that we use duality of cone programming to establish the result.

The thesis is organized keeping in mind that readers familiar with the required back-
ground and notations used in the thesis can directly follow them without going through
other results. For a summary of the results presented and future work, we refer the readers
to Chapter 9.
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Chapter 2

Mathematical Preliminaries

The purpose of this chapter is to summarize the basics of linear algebra and quantum in-
formation relevant to the thesis. In the process, we familiarize ourselves with the notations
used in this thesis. The chapter itself is divided into three sections.

• In Section 2.1, we give an extensive overview of the linear algebra preliminaries.
This is by no means a comprehensive treatment on the topic and readers are referred
to excellent texts on linear algebra [Rom08] and matrix analysis [Bha97, HJ85] for
further details.

• In Section 2.2, we discuss the quantum information facts pertinent to the thesis.
For a more comprehensive treatment on the topic, we refer to the following lecture
notes [Wat08], and excellent texts by Kitaev, Shen and Vyali [KSV02], and Nielsen
and Chuang [NC00].

• In Section 2.3, we summarize the notations used in the thesis for the benefit of the
readers already familiar with the basics of linear algebra and quantum information.

2.1 Linear algebra preliminaries

This sections intends to summarize the basic facts from linear algebra and notations used
throughout the thesis. The notations and conventions followed in this thesis are heavily
borrowed from the following lecture notes [Wat08]. The section is divided into three sub-
sections devoted to the following: complex Euclidean spaces, linear operators acting on
complex Euclidean spaces, and linear super-operators that map operators acting on one
space to operators acting on another space.
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2.1.1 Vector spaces

The collection of N tuple of complex numbers CN for N > 0 forms a vector space over the
field of complex numbers. Such vector spaces are referred to as complex Euclidean spaces.
We identify any such vector space by script uppercase letters X ,Y , and Z. The dimension
of a vector space X , when not explicitly stated, is denoted dim(X ). The real vector space
is denoted RN . The vectors are denoted by lowercase Roman letters u, v, and w. For any
vector u ∈ X = CN , we typically associate the vector as a column matrix

u[1]
u[2]

...
u[N ]

 .

Here u[i] denotes the i-th co-ordinate of the vector u. For a vector u, the dual of u is
denoted

u∗ = (u[1], u[2], . . . , u[n])

where u[i] is the complex conjugate of u[i]. For two vectors u and v in a complex Euclidean
space X = Cn, their (standard) inner product is defined as

〈u, v〉 :=
N∑
i=1

u[i]v[i] = u∗v.

The inner product is conjugate-linear in the first argument and linear in the second argu-
ment. The inner product equips the underlying vector space with a norm. The standard
Euclidean norm of a vector u ∈ X is

‖u‖ =
√
〈u, u〉 =

(
N∑
i=1

|u[i]|2
)1/2

.

The Cauchy-Schwarz inequality states that

| 〈u, v〉 | ≤ ‖u‖ · ‖v‖

with equality if and only if u = λv for λ ∈ C. The Euclidean norm is a special case of the
class of p-norms for p ∈ [1,∞], which are defined as

‖u‖p :=

(
N∑
i=1

|u[i]|p
)1/p
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for any vector u ∈ X and p ∈ [1,∞). For p =∞, the corresponding norm is defined as

‖u‖∞ := max
{
|u[i]| : i ∈ [N ]

}
.

The Euclidean norm corresponds to p = 2. This thesis uses Euclidean norm and (occa-
sionally) 1-norm.

A collection of vectors
{
ui : i ∈ [M ]

}
⊂ X is said to be an orthogonal set of vectors if

for every distinct choices of i, j ∈ [M ], it holds that

〈ui, uj〉 = 0.

The notation [M ] denotes the set {1, 2, . . . ,M}. In addition to orthogonality condition,
if the Euclidean norm of every vector is 1, then the set is said to be an orthonormal
set of vectors. For any complex Euclidean space X , an orthogonal (and consequently
an orthonormal) set of vectors always exists for 1 ≤ M ≤ N . For M = N , the set
spans X in the sense that any vector in X can be written as a linear combination of the
orthogonal vectors in the set. The standard basis of X is denoted by the elements of the
set {ei : i ∈ [N ]}, where

ei[j] =

{
1 if i = j

0 if i 6= j.

For any two complex Euclidean spaces X = CN and Y = CM with the following standard
bases {

e1, e2, . . . , eN
}
⊂ X and

{
f1, f2, . . . , fM

}
⊂ Y

the complex Euclidean space X ⊗ Y is the space of dimension NM with the following
standard bases:

gi,j = ei ⊗ fj for all i ∈ [N ] and j ∈ [M ].

The complex Euclidean space X ⊗ Y is called the tensor product of vector spaces X and
Y . For any two vectors u ∈ X and v ∈ Y , the vector u ⊗ v is called the tensor product
of u and v. Not all vectors in X ⊗ Y can be written in the form of u ⊗ v. However, the
following theorem, called the singular value theorem (also known as Schmidt decomposition
in literature), gives a nice characterization of a vector w ∈ X ⊗ Y in terms of vectors of
the form u⊗ v.

Theorem 1. Let X = CN and Y = CM be two complex Euclidean spaces. For any vector
w ∈ X ⊗ Y, there exist non-negative real numbers λi associated with orthonormal sets of
unit vectors

{ui : i ∈ [min{N,M}]} ⊂ X and {vi : i ∈ [min{N,M}]} ⊂ Y
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such that

w =

min{N,M}∑
i=1

√
λiui ⊗ vi.

The tensor product of three such spaces X ,Y , and Z is defined by first taking the
tensor product of X and Y and then taking the tensor product of X ⊗ Y with Z. The
tensor product of more than three vector spaces is inductively defined in a similar fashion.

For two complex Euclidean spaces X = CN and Y = CM , the direct sum X ⊕Y defines
another complex Euclidean space of dimension N + M . For any two vectors u ∈ X and
v ∈ Y , the vector u⊕ v is called the direct sum of u and v. The standard basis of X ⊕ Y
is given by {(

ei
0

)
∪
(

0
fj

)}
for all i ∈ [N ] and j ∈ [M ]. The direct sum of three such spaces X ,Y , and Z is defined by
first taking the direct sum of X and Y and then taking the direct sum of X ⊕ Y with Z.
The direct sum of more than three vector spaces is inductively defined in a similar fashion.

2.1.2 Linear operators

Each pair of vectors u ∈ X and v ∈ Y induces a linear operator or simply an operator
vu∗ : X → Y defined by the action

vu∗w = 〈u,w〉 v.

Given two complex Euclidean spaces X = CN and Y = CM , the collection of all linear
operators of the form

A : X → Y

is denoted L (X ,Y). The collection L (X ,Y) forms a vector space over complex numbers.
The dimension of the vector space L (X ,Y) is the product of the dimensions of the two
vector spaces X and Y :

dim(L (X ,Y)) = dim(X )dim(Y) = NM.

Throughout the rest of the subsection, we denote dim(X ) = N and dim(Y) = M . The set
of operators of the form

A : X → X

is denoted L (X ). The identity operator acting on X is denotes IX . An operator A ∈
L (X ,Y) is naturally represented by an M × N matrix, whose (i, j) entry is is denoted
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A[i, j] and defined as 〈fi, Aej〉, where{
ei : i ∈ [N ]

}
⊂ X and

{
fi : i ∈ [M ]

}
⊂ Y

denote the sets of standard bases of X and Y , respectively. For the rest of the thesis, we
will use the terms operator and matrix interchangeably and will not differentiate between
an operator and its matrix representation. That is, we will use the same uppercase later
to identify an operator as itself and its matrix representation. This does not cause any
ambiguity and the usage of both the terms will be clear from the context.

Given an operator A ∈ L (X ,Y), the operator A∗ ∈ L (Y ,X ) is the unique linear
operator that satisfies the relationship

〈u,Av〉 = 〈A∗u, v〉

for all u ∈ X and v ∈ Y . Alternately, the operator A∗ is the operator whose matrix
representation is obtained by the relationship

A∗[i, j] := A[j, i]

for all j ∈ [M ] and i ∈ [N ]. The operator A∗ is called the adjoint of A. For an operator
A ∈ L (X ,Y), the operators

A ∈ L (X ,Y) and A> ∈ L (Y ,X )

are the operators whose matrix representation are defined as

A[i, j] := A[i, j] and A>[i, j] := A[j, i]

for all i ∈ [N ] and j ∈ [M ]. The operators A and A> are called entry-wise conjugate and
transpose of A. If every matrix entry of an operator A is real, then it holds that A = A
and A∗ = A>.

For the space of operators L (X ,Y), the Hilbert-Schmidt inner product (or inner prod-
uct, for short) of two operators A and B is defined as

〈A,B〉 := Tr(A∗B) :=
N∑
i=1

(A∗B)[i, i] =
M∑
i=1

N∑
j=1

A[j, i]B[i, j]

where Tr(X) is called the trace of the operator X. Note that the operation Tr(A∗B) is well
defined because the operator A∗B maps X to itself. One way of viewing the inner product
on the space of operators is by writing the operators as vectors in a complex Euclidean
space of dimension NM , and then applying the standard inner product on the resulting
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vectors. In more precise terms, define

vec : L (X ,Y)→ Y ⊗X

as the unique linear mapping that maps the operator fie
∗
j ∈ L (X ,Y) to fi ⊗ ej ∈ Y ⊗ X .

This mapping is clearly linear and bijective, which means that every operator A ∈ L (X ,Y)
uniquely determines a vector uA ∈ Y ⊗ X such that vec(A) = uA. Moreover,

〈A,B〉 = 〈vec(A), vec(B)〉

for all A,B ∈ L (X ,Y).

As in the case of vectors, one can define tensor product of two or more than two
operators. For two operators A ∈ L (X1,Y1) and B ∈ L (X2,Y2), their tensor product
associate another operator A ⊗ B that lives in the vector space L (X1 ⊗X2,Y1 ⊗ Y2) and
is defined as

A⊗B :=


A[1, 1]B A[1, 2]B · · · A[1,M1]B
A[2, 1]B A[2, 2]B · · · A[2,M1]B

...
...

. . .
...

A[N1, 1]B A[N1, 2]B · · · A[N1,M1]B


where dim(X1) = N1 and dim(Y1) = M1. An alternate way of defining A⊗ B is to define
it as a unique linear map that satisfies the relationship

(A⊗B)(u⊗ v) = (Au)⊗ (Bv)

for all u ∈ X1 and v ∈ Y1. For three operators A ∈ L (X1,Y1), B ∈ L (X2,Y2), and
C ∈ L (X3,Y3), one defines the tensor product of them by first taking the tensor product
of A and B and then taking the tensor product of A ⊗ B and C. The tensor product of
more than three operators is defined similarly.

Relevant sets of operators

Most operators we encounter in this thesis are of the form

A : X → X

and hence their matrix representation is a square matrix. This section intends to briefly
summarize the various classes of operators that are extremely relevant to the thesis. For
an operator A ∈ L (X ) and a non zero vector u ∈ X , if Au = λu for some λ ∈ C, then λ is
said to be the eigenvalue of A and u is said to be the corresponding eigenvector of A. An
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operator A ∈ L (X ) is normal if
AA∗ = A∗A.

The class of normal operators are exactly those operators for which the spectral theorem
as given below holds.

Theorem 2. Let A ∈ L (X ) be a normal operator and (λ1(A), λ2(A), . . . , λN(A)) be the
tuple of eigenvalues of A. Then there exists an orthonormal basis {u1, u2, . . . , uN} ⊂ X
such that

A =
N∑
i=1

λi(A)uiu
∗
i .

Note that the spectral decomposition is in general not unique. For example, the identity
operator IX has a spectral decomposition for any orthonormal basis. The spectral theorem
allows us to define functions of the form f : C→ C on normal operators as follows:

f(A) :=
N∑
i=1

f(λi(A))uiu
∗
i .

Although there can be more than one spectral decompositions of an operator A, the op-
erator f(A) is unique and consequently well defined. The spectral theorem allows us to
define the Schatten p-norms of any operator, which is discussed later in this section. Next
we briefly mention few special classes of normal operators that will be used throughout the
thesis.

Hermitian operators: A normal operator A ∈ L (X ) is Hermitian if A = A∗. Such
operators are also known as self-adjoint operators in literature. The set of Hermitian
operators acting on a complex Euclidean space X is denoted Herm (X ). The eigenvalues
of any Hermitian operator are real and we write

λ(A) = (λ1(A), . . . , λN(A))

to denote the N -tuple of eigenvalues of A (counting multiplicities), sorted from largest to
smallest:

λ1(A) ≥ λ2(A) ≥ · · · ≥ λN(A).

The set of Hermitian operators form a vector space of dimension N2 over the field of real
numbers. If {e1, e2, . . . , eN} denotes the standard basis of X , then one example of a basis
of Herm (X ) is{
eie
∗
i : 1 ≤ i ≤ N

}
∪

{
eie
∗
j+eje

∗
i : 1 ≤ i < j ≤ N

}
∪

{
ιeie

∗
j−ιeje∗i : 1 ≤ i < j ≤ N

}
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where ι =
√
−1. We refer to them as the standard basis for the space of Hermitian

operators. The operator Eij denotes the Hermitian operator with (i, j) and (j, i) entries
1, and 0 elsewhere. Similarly, the operator Fij denotes the Hermitian operator with (i, j)
entry ι, (j, i) entry −ι, and 0 elsewhere. An important subset of Hermitian operators are
symmetric operators whose representations have only real entries. The set of symmetric
operators, denoted Herm

(
RN
)
, also form a vector space over real numbers. However, the

dimension of such a vector space is N(N + 1)/2.

Finally, we note that Hermitian operators are closed under addition and real scalar
multiplication. If a Hermitian operator is invertible, then its inverse is also a Hermitian
operator.

Positive semidefinite operators: A Hermitian operator A ∈ L (X ) is positive semidef-
inite if all the eigenvalues of A are non-negative. That is,

λ1(A) ≥ λ2(A) ≥ · · · ≥ λN(A) ≥ 0.

The set of positive semidefinite operators are denoted Pos (X ). The notation A � 0
indicates that A is positive semidefinite, and more generally the notations B � A and
A � B indicate that A−B � 0 for Hermitian operators A and B. The positive semidefinite
inequality induces a partial order on the set of Hermitian operators. There are many
equivalent ways of describing positive semidefinite operators summarized in the theorem
below.

Theorem 3. Let A ∈ Herm (X ). Then the following are equivalent:

1. The operator A is positive semidefinite.

2. All the eigenvalues of A are non-negative.

3. There exists an operator B ∈ L (X ) such that A = B∗B.

4. For every choice of u ∈ X , 〈u,Au〉 ≥ 0.

5. There exists a collection of vectors {u1, u2, . . . , un} ⊂ X such that A[i, j] = 〈ui, uj〉.
6. For any set S ⊆ [N ], the symmetric restriction of A defined by the set S, AS, with

entries

AS[i, j] =

{
A[i, j] if i, j ∈ S
0 otherwise.

is positive semidefinite.

The diagonal entries of positive semidefinite operators are always non-negative and conse-
quently its trace is non-negative. If the diagonal entry of a positive semidefinite operator is
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0, then every entry in the row and column corresponding to the diagonal entry must be 0.
The alternate ways of describing positive semidefinite operators prove to be useful in dif-
ferent situations. For instance, a consequence of item 3 is that for two positive semidefinite
operators P and Q, their inner product 〈P,Q〉 is always greater than zero with equality if
and only if PQ = 0.

Note that Theorem 3 holds for positive semidefinite operators over symmetric operators
also. For such operators items 3, 4, and 5 hold for X = RN . The set of symmetric positive
semidefinite operators acting on RN is denoted Pos

(
RN
)
. Finally, we note that for a

symmetric operator A ∈ Herm
(
RN
)
, if

2A[i, i] ≥
N∑
j=1

|A[i, j]|

for every i ∈ [N ], then A is positive semidefinite. Such operators are called diagonally
dominant operators.

Positive definite operators: A positive semidefinite operator A ∈ L (X ) is positive
definite if all its eigenvalues are strictly positive. That is,

λ1(A) ≥ λ2(A) ≥ · · · ≥ λN(A) > 0.

The set of positive definite operators are denoted Pd (X ). The notation A � 0 indicates
that A is positive definite, and more generally the notations B ≺ A and A � B indicate
that A− B � 0 for Hermitian operators A and B. As in the case of positive semidefinite
operators, there are alternate ways of describing positive definite operators summarized in
the following theorem.

Theorem 4. Let A ∈ Herm (X ). Then the following are equivalent:

1. The operator A is positive definite.

2. All the eigenvalues of A are strictly positive.

3. There exists a non-singular operator B ∈ L (X ) such that A = B∗B.

4. For every choice of u ∈ X/{0}, 〈u,Au〉 > 0.

5. There exists a collection of linearly independent vectors {u1, u2, . . . , un} ⊂ X such that
A[i, j] = 〈ui, uj〉.

The diagonal entries of positive definite operators are always strictly positive and conse-
quently its trace is strictly greater than 0. Moreover, if a positive semidefinite operator P
makes zero inner product with a positive definite operator then P = 0.
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As before, Theorem 4 holds for positive definite operators over symmetric operators,
where items 3, 4, and 5 hold for X = RN . The set of symmetric positive definite op-
erators acting on RN is denoted Pd

(
RN
)
. Finally, for a diagonally dominant operator

A ∈ Pos
(
RN
)
, if

2A[i, i] >
N∑
j=1

|A[i, j]|

for every i ∈ [N ], then A is positive definite.

Projection operators: A positive semidefinite operator A ∈ L (X ) is called an orthog-
onal projection or simply projection if it also satisfies an additional property that A2 = A.
Alternately, any Hermitian operator with eigenvalue either 0 or 1 is a projection operator.
The projection operator are usually denoted by uppercase Greek letters Π, ∆, and Λ. By
spectral theorem, any projection operator Π can be written as

Π =
M∑
i=1

uiu
∗
i .

Denoting V = span{u1, u2, . . . , uM} ⊆ X , one obtains that Π acts as an identity operator
on V and that V is an M -dimensional subspace of X . The projection on the whole space
X is the identity operator IX .

Density operators: A positive semidefinite operator A ∈ L (X ) is called a density
operator if its trace is equal to one. The set of density operators are denoted D (X )
and they form a convex compact set. The elements of this set will usually be denoted by
lowercase Greek letters ρ, σ, and ξ. By the spectral theorem, any density operator ρ can
be written as

ρ =
N∑
i=1

λiuiu
∗
i

where λ1, λ2, . . . , λN sum up to one. One can view density operators as probability distri-
butions over rank-one projection operators. As mentioned earlier, spectral decomposition
is not unique and hence different distributions over rank-one projection operators may be
represented by the same density operator. In other words, the mapping

{λi, uiu∗i : i ∈ [N ]} −→
N∑
i=1

λiuiu
∗
i

is surjective but not injective.
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Linear isometry and unitary operators: An operator A ∈ L (X ,Y) is a linear
isometry, or simply an isometry if A∗A = IX . This condition is satisfied if and only if
dim(Y) ≥ dim(X ). The set of linear isometries are denoted U (X ,Y). Any linear isometry
A preserves the inner product between any two vectors and consequently the Euclidean
norm of the vectors. In other words,

〈Au,Av〉 = 〈u, v〉 and ‖Au‖ = ‖u‖ .

When dim(X ) = dim(Y), the operator is called a unitary operator and the set of such
operators is denoted U (X ).

Norms of operators

As in the case of vectors, the Hilbert-Schmidt inner product equips the space with a norm
similar to the Euclidean norm for vectors. This norm is a type of a class of norms known
as Schatten p-norms. For any p ≥ 1, the Schatten p-norms of any operator A ∈ L (X ,Y)
are defined as

‖A‖p :=

[
Tr

(
(A∗A)p/2

)]1/p

.

Clearly A∗A is Hermitian and hence normal. Therefore, by the spectral theorem (Theo-
rem 2)

A∗A =
N∑
i=1

λi(A
∗A)uiu

∗
i

for some orthonormal set of vectors {u1, u2, . . . , uN} ⊂ X . As a consequence of the above,
we have

‖A‖p =

(
N∑
i=1

(
λi(A

∗A)
)p/2)1/p

.

The cases p = 1 and p = 2 are also known as trace norm (or 1-norm) and Frobenius norm
(or 2-norm) respectively:

‖A‖1 =
N∑
i=1

√
λi(A∗A) and ‖A‖2 =

(
N∑
i=1

λi(A
∗A)

)1/2

.

For p =∞,

‖A‖∞ = max

{√
λi(A∗A) : i ∈ [N ]

}
.

This norm is called the infinity norm or operator norm of A. An alternate way of defining
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the infinity norm of A is as follows:

‖A‖∞ = max
{
‖Au‖ : u ∈ X and ‖u‖ = 1

}
.

One can define a family of induced p-norms in a similar way. However, we will not require
the induced p-norms in this thesis. The Schatten p-norms are invariant under the action
of any unitary operator. In other words, for any choice of appropriate unitary operators U
and V ,

‖A‖p = ‖UAV ∗‖p .

The Schatten p-norms are submultiplicative:

||AB||p ≤ ||A||p · ||B||p

for any p ∈ [1,∞].

The following three norms will be useful in the thesis: the trace norm, the Frobenius norm,
and the infinity norm. These norms have several nice properties. For instance, the operator
norm satisfies

‖A∗A‖ = ‖AA∗‖ = ‖A‖2

for every A ∈ L (X ,Y). The Frobenius norm satisfies

‖A‖2 =
√

Tr(A∗A) =
√
〈A,A〉 =

√
〈vec(A), vec(A)〉 = ‖vec(A)‖ .

The Frobenius and trace norms also satisfy the following inequalities for operators A and
B for which the matrix product makes sense:

‖AB‖2 ≤ ‖A‖∞ · ‖B‖2 and ‖AB‖1 ≤ ‖A‖∞ · ‖B‖1 .

The above inequality holds in general for any Schatten p-norm.

2.1.3 Linear super-operators

A linear super-operator (or simply a super-operator) is a linear map of the form

Φ : L (X )→ L (Y)

where X and Y are complex Euclidean spaces. In other words, these action of these maps
transforms an operator acting on X to an operator acting on Y . The set of all such maps
form a vector space. Such maps are always denoted by Φ,Ψ, and Ξ in this thesis. A
super-operator can be represented in several ways. Before we proceed to do that, we define
the partial trace of an operator. For two complex Euclidean spaces X and Y , the partial
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trace is the unique linear map

TrY : L (X ⊗ Y)→ X

that satisfies
TrY(A⊗B) = Tr(B)A

for all A ∈ L (X ) and B ∈ L (Y). Similarly, one can define TrX : L (X ⊗ Y) → Y to
be the unique linear map that satisfies TrX (A ⊗ B) = Tr(A)B for all A ∈ L (X ) and
B ∈ L (Y). For any operator A ∈ L (X ⊗ Y), the partial trace with respect to X and Y
has the following operator sum representation:

TrX (A) =
N∑
i=1

(e∗i ⊗ IY)A(ei ⊗ IY) and TrY(A) =
M∑
i=1

(IX ⊗ f ∗i )A(IX ⊗ fi).

By definition, the partial trace is independent of the choice of the basis used. Having defined
partial trace, we now proceed to discuss three different super-operator representations and
the relationships among them.

Kraus representation: The Kraus representation of a linear super-operator

Φ : L (X )→ L (Y)

is given by

Φ(X) =
K∑
i=1

AiXB
∗
i

for every choice of X ∈ L (X ) and for some operators
{
Ai ∈ L (X ,Y) : i ∈ [K]

}
and{

Bi ∈ L (X ,Y) : i ∈ [K]
}

. The operators Ai’s and Bi’s are referred to as Kraus operators.
The Kraus representation exists for all super-operators. However, a super-operator Φ can
have multiple Kraus representations. Note that it suffices to use NM operators to represent
a super-operator in Kraus form. Moreover, there exist super-operators that require at least
NM Kraus operators to describe them in the above form.

Stinespring representation: The Stinespring representation of a linear super-operator
of the form Φ : L (X )→ L (Y) is given by

Φ(X) = TrZ(AXB∗)

for every choice of X ∈ L (X ) and for some operators A,B ∈ L (X ,Y ⊗ Z), where Z
is some vector space. The Stinespring representation of a super-operator always exists
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but is in general not unique. Moreover, it is sufficient to take Z = CNM to describe a
super-operator in this representation.

Choi-Jamio lkowski representation: The Choi-Jamio lkowski representation1 of a lin-
ear super-operator Φ : L (X )→ L (Y) is given by

J(Φ) =
N∑

i,j=1

Φ(eie
∗
j)⊗ eie∗j ∈ L (Y ⊗ X ) . (2.1)

Alternately, one can write

J(Φ) =
(
Φ⊗ IL(X )

)
(vec(IX )vec(IX )∗)

where IL(X ) : L (X ) → L (X ) is the identity super-operator that maps any linear operator
X ∈ L (X ) to itself. The Choi-Jamio lkowski representation is basis dependent and is
always defined with respect to the standard basis of X . Unlike Kraus and Stinespring
representations, Choi-Jamio lkowski representation is unique and one can recover the action
of Φ by the following relationship:

Φ(X) = TrX
(
J(Φ)

(
IY ⊗X>

))
. (2.2)

The Kraus, Stinespring, and Choi-Jamio lkowski representations are related to each
other in the following way. For a super-operator Φ : L (X )→ L (Y), let

Φ(X) =
K∑
i=1

AiXB
∗
i

for some operators
{
Ai ∈ L (X ,Y) : i ∈ [K]

}
and

{
Bi ∈ L (X ,Y) : i ∈ [K]

}
. Then the

Stinespring representation can be defined as

Φ(X) = TrZ(AXB∗)

1Historically speaking, the definition of Choi-Jamio lkowski representation given above is due to
Choi [Cho75]. Jamio lkowski [Jam72] came up with a slightly different representation, which for a super-
operator Φ : L (X )→ L (Y) is given by

J ′(Φ) =
N∑

i,j=1

eje
∗
i ⊗ Φ(eie

∗
j ) ∈ L (X ⊗ Y) .

However, we will refer to (2.1) as the Choi-Jamio lkowski representation due to the apparent similarity
between the two representations with respect to definitions and properties.
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where Z = CK , and

A =
K∑
i=1

Ai ⊗ gi and B =
K∑
i=1

Bi ⊗ gi

for {gi : i ∈ [K]}, the standard bases of Z. The Choi-Jamio lkowski representation in terms
of Kraus operators is

J(Φ) =
K∑
i=1

vec(Ai)vec(Bi)
∗.

Finally, for every super-operator Φ : L (X ) → L (Y), there exists a unique super-
operator Φ∗ : L (Y)→ L (X ) that satisfies

〈Y,Φ(X)〉 = 〈Φ∗(Y ), X〉

for all X ∈ L (X ) and Y ∈ L (Y). The map Φ∗ is called the adjoint super-operator of Φ.

Important sets of super-operators

We next proceed to briefly discuss some interesting classes of super-operators that are
pertinent to this thesis.

1. A super-operator Φ : L (X ) → L (Y) is positive if for every choice of P ∈ Pos (X ), it
holds that Φ(P ) ∈ Pos (Y).

2. A super-operator Φ : L (X ) → L (Y) is completely positive if for every choice of vector
space Z and P ∈ Pos (X ⊗ Z), it holds that

(
Φ⊗ IL(Z)

)
(P ) ∈ Pos (Y ⊗ Z).

3. A super-operator Φ : L (X )→ L (Y) is trace preserving if for every choice of X ∈ L (X ),
it holds that Tr(Φ(X)) = Tr(X).

4. A super-operator Φ : L (X ) → L (Y) is Hermiticity preserving if for every choice of
X ∈ Herm (X ), it holds that Φ(X) ∈ Herm (Y).

Of the four different class of super-operators defined above, completely positive and
trace preserving super-operators are relevant from quantum information viewpoint. A
completely positive super-operator Φ : L (X ) → L (Y) has the following Kraus and Stine-
spring representations:

Φ(X) =
K∑
i=1

AiXA
∗
i and Φ(X) = TrZ(AXA∗).
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Consequently, the Choi-Jamio lkowski representation J(Φ) ∈ Pos (Y ⊗ X ). This follows
easily from the fact that

J(Φ) =
K∑
i=1

vec(Ai)vec(Ai)
∗.

In fact, the converse also holds for these representations. For instance, if J(Φ) is positive
semidefinite, then the corresponding super-operator is completely positive.

A trace preserving super-operator Φ : L (X ) → L (Y) with Kraus and Stinespring
representations

Φ(X) =
K∑
i=1

AiXB
∗
i and Φ(X) = TrZ(AXB∗)

necessarily satisfy
K∑
i=1

A∗iBi = IX and A∗B = IX .

Moreover, the Choi-Jamio lkowski representation satisfies the relationship TrY(J(Φ)) = IX .
The converse also holds for these representations.

Finally, a Hermiticity preserving super-operator have the following alternate character-
izations:

J(Φ) ∈ Herm (Y ⊗ X ) and Φ(X) = Φ0(X)− Φ1(X)

for two completely positive super-operators Φ0,Φ1 : L (X ) → L (Y). It also holds that(
Φ(X)

)∗
= Φ(X∗) for all X ∈ L (X ).

Norms of super-operators

We briefly discuss the following two norms on super-operator from the point of view of
this thesis. For more discussion, we refer to Chapter 18 of the lecture notes on quantum
information [Wat08].

Super-operator trace norm: For any super-operator Φ : L (X ) → L (Y), the super-
operator trace norm is defined as

‖Φ‖1 = max
{
‖Φ(X)‖1 : X ∈ L (X ) , ‖X‖1 ≤ 1

}
.

Given that the trace norm is a convex function, one can replace the maximization over
linear operators by maximization over linear operators of the form uv∗, where u, v ∈ X are
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unit vectors. The super-operator trace norm is an example of an induced super-operator
norm for every p ≥ 1 defined by replacing the subscript “1” by p in the equation above.

Diamond norm: The diamond norm of a super-operator Φ : L (X ) → L (Y) is defined
as

‖Φ‖� =
∥∥Φ⊗ IL(X )

∥∥
1
.

The diamond norm has several nice properties. One such property states that the choice
of identity super-operator IL(X ) acting on L (X ) is not a particular choice, and one can
replace it by IL(Z) for any vector space Z such that dim(Z) ≥ dim(X ). In other words, it
holds that

‖Φ‖� =
∥∥Φ⊗ IL(Z)

∥∥
1

for all Z such that dim(Z) ≥ dim(X ). This can be interpreted as diamond norm being
stable with respect to every choice of vector space Z such that dim(Z) ≥ dim(X ). Another
nice property of diamond norm is that for two super-operators Φ1 : L (X1) → L (Y1) and
Φ2 : L (X2)→ L (Y2),

‖Φ1 ⊗ Φ2‖� = ‖Φ1‖� · ‖Φ2‖� .

2.2 Basic quantum information

In this section, we summarize the quantum information preliminaries required to under-
stand the thesis. Our objective is to introduce the basics of quantum information from
a linear algebra viewpoint. Our treatment to this subject is focused towards the results
discussed in this thesis.

2.2.1 Quantum states, operations, and measurements

Quantum states: Associated with every N -level closed physical system X is a complex
Euclidean space X = CN . We refer to them as quantum registers. For physical systems
X,Y, and Z, the corresponding complex Euclidean spaces as X ,Y , and Z. Each distinct
level of the physical system is denoted by the standard basis of X , which in the context of
quantum information will be represented by the set{

|1〉 , |2〉 , . . . , |N〉
}
.

One identifies the set of standard bases of X with the above set by the relationship |i〉 = ei.
Here |·〉 is the Dirac’s notation for unit vectors and the associated dual vector is denoted
〈·|. A quantum state of such a system can be described by the set of density operators
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acting on X : the set of positive semidefinite operators with trace one. The quantum state
of a physical system is said to be pure, if the associated density operator ρ has rank one.
That is, ρ = uu∗ for some unit vector u ∈ X . In the context of quantum information, we
often write u in the Dirac’s notation as

|ψu〉 =
N∑
i=1

u[i] |i〉 .

For notational convenience, we never use the subscript u, and instead use |ψ〉 , |φ〉 , |ϕ〉 to
represent unit vectors in X when representing pure quantum states. A quantum state is
called mixed if it cannot be represented as a rank one density operator. It follows from the
spectral decomposition of normal operators (Theorem 2) that any quantum state ρ can be
viewed as a probability distribution over pure states. Note that this ensemble is in general
not unique.

For two physical systems X and Y with associated complex Euclidean spaces X and Y ,
one can view the two physical system as one system (X,Y) with the associated complex
Euclidean space X ⊗ Y . For a quantum state ρXY ∈ D (X ⊗ Y) of the larger system, the
quantum state of the subsystems X and Y (also called the reduced states) are respectively
given by

ρX = TrY(ρXY) and ρY = TrX (ρXY).

The relationship ρXY = ρX ⊗ ρY almost never holds. A quantum state ρ ∈ D (X ⊗ Y) is
a product state if it can be expressed as ρ ⊗ σ for ρ ∈ D (X ) and σ ∈ D (Y). A quantum
state is called separable if it can be expressed as a convex combination of product states.
In other words,

ρ =
K∑
i=1

piρi ⊗ σi (2.3)

for some
{
ρi : i ∈ [K]

}
⊂ D (X ) and

{
σi : i ∈ [K]

}
⊂ D (Y). We remark that this

decomposition is in general not unique. The usage of term “separable” is not limited to
density operators. More generally, a positive semidefinite operator R ∈ Pos (X ⊗ Y) is
called a separable operator if it can be expressed in the form

R =
K∑
i=1

Pi ⊗Qi

for some
{
Pi : i ∈ [K]

}
⊂ Pos (X ) and

{
σi : i ∈ [K]

}
⊂ Pos (Y). A quantum state

ρ ∈ D (X ⊗ Y) is called entangled if it cannot be written in the form as described in (2.3).
In different settings, entangled states are used to show non-local behaviors that are in-
describable by the laws of classical physics. A few example of pure entangled states in
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D (C2 ⊗ C2) are

|00〉+ |11〉√
2

,
|00〉 − |11〉√

2
,

|01〉+ |10〉√
2

, and
|01〉 − |10〉√

2
.

These states are often referred to as maximally entangled state on two qubits. The term
“maximal” refers to the fact that under some measure of entanglement, no other state
in same complex Euclidean space can exhibit more entanglement that the above state.
Without getting into any details of entanglement measures, we can alternately say that a
pure state in D (X ⊗ X ) is maximally entangled if the reduced states of both the systems
is IX/dim(X ). This only applies to bipartite pure states.

Quantum operations: An operation is said to be a quantum operation if, roughly speak-
ing, it maps quantum states to quantum states. In more formal terms, a quantum oper-
ation is a super-operator of the form Φ : L (X ) → L (Y) that satisfies the following two
conditions.

1. For every choices of vector space Z and A ∈ Pos (X ⊗ Z), it holds that

(Φ⊗ IL(X ))(A) ∈ Pos (Y ⊗ X ) .

2. For every choice of A ∈ L (X ), it holds that

Tr(Φ(A)) = Tr(A).

In other words, a quantum operation is a completely positive and trace preserving map.
Taken together, the two constraints imply that density operators are always mapped to
density operators. Such maps are also called admissible operation. One such quantum
operation is the map X 7→ UXU∗ for some unitary U ∈ U (X ). The unitary operators
are sufficient to describe any quantum operation in the following sense. The action of a
quantum operation Φ : L (X )→ L (Y) on any state ρ ∈ D (X ) can be expressed as

Φ(ρ) = TrZ
(
U(ρ⊗ |ψ〉 〈ψ|)U∗

)
for some vector space Z of sufficiently large dimension, a unitary U ∈ U (X ⊗ Z), and
a fixed quantum state |ψ〉 ∈ Z independent of ρ. A few example of one qubit unitary
operators that will be referred to in this thesis are

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y =

(
0 −ι
ι 0

)
, H =

1√
2

(
1 1
1 −1

)
.
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The operators X, Y, and Z are referred to as Pauli operators and they anti-commute with
each other. Together with IC2 , they form an orthogonal basis for the space of one qubit
operators.

Quantum measurements: In order to obtain classical information from a quantum
state, one can perform measurement on the system. There are two ways of formalizing
measurement operators. The first formalism allows us to describe measurement statis-
tics and the post-measurement states conditioned on outcomes. The second formalism
allows us to describe the measurement statistics only and implicitly assumes that the
state is destroyed after the measurement is applied. This thesis is not concerned with
post-measurement quantum states and therefore the latter formalism is more suited in our
context.

Formally, a quantum measurement on a physical system X consists of a set of positive
semidefinite operators

M = {Λ1,Λ2, . . . ,Λm} ⊂ Pos (X )

that satisfies
m∑
i=1

Λi = IX .

The outcome of the measurement M is the one of the labels in the set [m]. For any state
ρ ∈ D (X ), the probability that the measurement operation described by M yields an
outcome i is given by

P[M(ρ) = i] = 〈Λi, ρ〉 .

For most parts of the thesis, we work with a special kind of measurement operation called
projective measurements. Projective measurement can be identified with the set of mea-
surement operators

P = {Π1,Π2, . . . ,Πm} ⊂ Pos (X ) ,

where Πi’s are orthogonal projection and 〈Πi,Πj〉 = 0 for every choice of i and j such
that i 6= j. For the purpose of this thesis, we do not lose any generality by assuming that
the measurement operators are projection operators. Indeed, by Naimark’s theorem, an
arbitrary measurement on a physical system can be simulated by a projective measurement
over a larger system. More formally, for any measurement M = {Λ1,Λ2, . . . ,Λm} ⊂ X ,
there exists a vector space Z, a unit vector |ψ〉 ∈ Z, and projective measurement described
by operators P = {Π1,Π2, . . . ,Πm} ⊂ Pos (X ⊗ Z) such that

〈Λi, ρ〉 = 〈Πi, ρ⊗ |ψ〉 〈ψ|〉

for all ρ ∈ D (X ). In other words, the projective measurement operation P generate the
same statistics as M.
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2.2.2 Relevant facts in quantum information theory

Purifications: Suppose the state of a physical system is ρ ∈ D (X ). For a vector space
Y , we say that |ψ〉 ∈ X ⊗ Y is a purification of ρ if

ρ = TrY(|ψ〉 〈ψ|).

Such a purification always exists for any choice of Y such that dim(Y) ≥ rank(ρ), where
rank(ρ) denotes the rank of ρ. This is an easy implication of spectral theorem. In fact, if
|ψ〉 ∈ X ⊗ Y is a purification of ρ, then dim(Y) ≥ rank(ρ). The purification of a density
operator ρ is never unique because one can always apply a unitary on the system Y to
obtain a different quantum state that purifies the density operator. However, up to a
unitary transformation, the purification is always unique as summarized by the following
theorem.

Theorem 5. Let ρ ∈ D (X ) and Y be a vector space such that dim(Y) ≥ rank(ρ). Then
for every two purifications |ψ〉 , |φ〉 ∈ X ⊗ Y of ρ, there exists a unitary U ∈ U (Y) such
that |ψ〉 = (IX ⊗ U) |φ〉.

The theorem above is often referred to as unitary equivalence of purification. It can
be used to show the following. If two density operators ρ1, ρ2 ∈ D (X ⊗ Y) agree on the
subsystem X, then there exists a quantum operation on subsystem Y that maps ρ1 to ρ2, a
fact used in Chapter 5. Finally, we note that the notion of purification extends to positive
semidefinite operators in the most natural way. The square of the Euclidean norm of the
vector that purifies the positive semidefinite operator is equal to trace of the operator.

Distance measures for quantum states: Given two states ρ0 ∈ D (X ) and ρ1 ∈ D (X ),
the trace distance between them is defined as

‖ρ0 − ρ1‖1 =

dim(X )∑
i=1

|λi(ρ0 − ρ1)|

The trace distance can be seen as a generalization of statistical distance (or variational
distance) between two probability distributions to quantum states and quantifies how close
or far two quantum states are from each other. The quantity lies in the interval [0, 2], where
it is 0 and 2 if and only if

ρ0 = ρ1 and 〈ρ0, ρ1〉 = 0

respectively. The trace distance is closely related to the optimum probability of distin-
guishing two quantum states given uniformly at random. In other words, given two states
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ρ0 and ρ1 uniformly at random, the optimum success probability of guessing the correct
state is

1

2
+

1

4
‖ρ0 − ρ1‖1 .

Another quantity that quantifies the similarity or difference between two quantum states
is the notion of fidelity. Given two states ρ, σ ∈ D (X ), the fidelity between ρ0 and ρ1 is

F(ρ, σ) =
∥∥√ρ√σ∥∥

1
.

The fidelity between two pure states |ψ〉 and |φ〉 is |〈φ|ψ〉|. The fidelity function lies in
the interval [0, 1], where it is 0 and 1 if and only if

〈ρ, σ〉 = 0 and ρ = σ

respectively. The fidelity function has some nice properties. One such property is that it
is multiplicative with respect to tensor products. That is, for ρ0, σ0 ∈ D (X ) and ρ1, σ1 ∈
D (Y), it holds that

F(ρ0 ⊗ ρ1, σ0 ⊗ σ1) = F(ρ0, σ0) F(ρ1, σ1).

The fidelity of two density operators can be characterized in terms of their purifications
by the following theorem known as Uhlmann’s theorem.

Theorem 6. Let ρ, σ ∈ D (X ) and Y be a vector space such that the purifications of ρ and
σ exist in X ⊗ Y. For any purification |ψ〉 of ρ,

F(ρ, σ) = max {|〈ψ|φ〉| : φ ∈ X ⊗ Y is a purification of σ} .

The two notions discussed above, fidelity and trace distance, are related to each other
by the following inequalities, known as Fuchs-van de Graaf inequalities. The inequalities
relate the trace distance and fidelity of two density operators ρ, σ ∈ D (X ) as follows:

1− 1

2
‖ρ0 − ρ1‖1 ≤ F(ρ, σ) ≤

√
1− 1

4
‖ρ0 − ρ1‖2

1. (2.4)

Distance measures for quantum operations: Given two quantum operations Φ0,Φ1 :
L (X )→ L (Y), one defines the trace distance between the quantum operations as

‖Φ0 − Φ1‖1 = max
{
‖Φ0(ρ)− Φ1(ρ)‖ :ρ∈D(X )

}
.

It holds that for Hermiticity preserving super-operators the trace norm is attained by a
density operator. Unlike the case of trace distance between states, the trace distance
between the quantum operations does not completely characterize the optimum distin-
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guishing procedure. To illustrate this fact, consider the following scenario between Alice
and Bob. Alice has two quantum operations Φ0,Φ1 : L (X )→ L (Y) and she applies one of
the operations uniformly at random on a quantum state provided by Bob. The goal of the
Bob is to prepare a state that determines the operation applied by Alice. One strategy of
Bob is to prepare a state ρ ∈ D (X ) and send it to Alice. It is clear that Bob’s optimum
success probability is

1

2
+

1

4
max {‖Φ0(ρ)− Φ1(ρ)‖1 : ρ ∈ D (X )} =

1

2
+

1

4
‖Φ0 − Φ1‖1 .

However, a better approach for Bob is to prepare a state σ ∈ D (X ⊗ Z) for some choice of
vector space Z and send the first subsystem to Alice. In this case, Bob’s optimum success
probability is

1

2
+

1

4
max

{∥∥(Φ0 ⊗ IL(Z)

)
(σ)−

(
Φ1 ⊗ IL(Z)

)
(σ)
∥∥

1
: σ ∈ D (X ⊗ Z)

}
≤ 1

2
+

1

4
‖Φ0 − Φ1‖� .

Of course, the equality can be achieved for an appropriate choice of Z and σ ∈ D (X ⊗ Z).

2.3 Summary of notations

This section briefly summarizes the notations defined in this chapter. We begin with linear
algebra basics first.

• The complex Euclidean spaces are denoted by script uppercase letters X ,Y , and Z.
The vectors are denoted by lowercase Roman letters u, v, and w. The dimension of
a vector space X is denoted dim(X ). A real vector space of dimension N is denoted
RN .

• The vector space L (X ,Y) denotes the space of operators of the form A : X → Y . If
X = Y , the operator space is denoted L (X ). For an operator A, the operators A∗, A,
and A> are the adjoint, entry-wise conjugate, and transpose of A.

• The set of Hermitian operators are denoted Herm (X ). The set of symmetric opera-
tors are denoted Herm

(
RN
)

if RN is the underlying space on which the symmetric
operators act.

• The set of positive semidefinite operators are denoted Pos (X ). The set of symmetric
positive semidefinite operators are denoted Pos

(
RN
)

if RN is the underlying space on
which the positive semidefinite operators act. We use the standard notation A � 0
to denote that A is positive semidefinite.
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• The set of positive definite operators are denoted Pd (X ). The set of symmetric
positive definite operators are denoted Pd

(
RN
)

if RN is the underlying space on
which the positive definite operators act. We use the standard notation A � 0 to
denote that A is positive semidefinite.

• The set of density operators are denoted D (X ). The lowercase Greek symbols ρ, σ,
and ξ are used to denote density operators.

• The set of linear isometries are denoted U (X ,Y) and the set of unitary operators
are denoted U (X ).

• For a super-operator Φ : L (X ) → L (Y), the Choi-Jamio lkowski representation is
denoted J(Φ).

• The Euclidean norm and 1-norm of a vector u ∈ X are denoted ‖u‖ and ‖u‖1

respectively.

• The operator, Frobenius, and trace norms of an operator A ∈ L (X ,Y) are denoted
‖A‖∞, ‖A‖2, and ‖A‖1 respectively.

• The super-operator trace norm and diamond norm of a super-operator Φ : L (X )→
L (Y) are denoted ‖Φ‖1 and ‖Φ‖� respectively.

The notations used in this thesis when discussing quantum information is as follows.

• Any physical system with associated complex Euclidean space X is identified by a
quantum register X. The pure quantum states are denoted using Dirac’s notation
such as |ψ〉, |ψ〉 , and |ϕ〉.

• The thesis focuses on projective measurement operators, which are usually denoted
by Λ,Π, and ∆.

• The fidelity of two quantum states ρ and σ is denoted F(ρ, σ).
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Chapter 3

Semidefinite Programming

The purpose of this chapter is to introduce semidefinite programming (SDP), a widely used
optimization method with enormous applications in various disciplines in mathematics and
theoretical computer science such as approximation algorithms, control theory, information
theory, and quantum information. Semidefinite programs are either a maximization or a
minimization of a linear function over the intersection of a collection of finitely many
affine constraints and the set of positive semidefinite operators. From the viewpoint of
formulation of the optimization problem, they are a class of conic programs that generalizes
linear programming, quadratic programming, and second-order cone programming. From
the algorithmic perspective, they generalize linear programming and second-order cone
programming.

A major part of this thesis uses semidefinite programming techniques. The wide applica-
tions of semidefinite programs comes from the fact that they can be used as an algorithmic
and an analytical tool. The results presented in Chapters 5, 6, and 7 can be viewed as
applications of semidefinite programs. While in Chapter 5, we exploit a class of semidef-
inite programs as an algorithmic tool, the next two Chapters focus on using semidefinite
programs analytically to prove certain parallel repetition theorems. This chapter itself is
divides in three sections.

• In Section 3.1, we introduce semidefinite programs and briefly discuss two syntacti-
cally different yet equivalent forms of semidefinite programs: standard form and the
super-operator form.

• In Section 3.2, we briefly discuss semidefinite programming duality theory and suffi-
cient conditions for strong duality to hold. The semidefinite programs that are pre-
dominantly used in this thesis do satisfy the strong duality conditions (Theorems 8
and 9).
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• In Section 3.3, we briefly summarize how semidefinite programs have been applied in
this thesis.

For a comprehensive treatment on the subject, we refer to excellent surveys [Lov03,
LR05, VB96], texts [Tun10, VB04], and the references therein.

3.1 Equivalent forms of semidefinite programs

The two forms that we discuss in this section are known as the standard form and the
super-operator form. Let X = CN be a complex Euclidean space, A ∈ Herm (X ), b ∈ RM ,
and F : L (X ) → CM be a linear function whose action on any operator in Herm (X ) is
a vector in RM . A semidefinite program in standard form associates the following two
optimization problems to the triple (F , A, b):

Primal problem

supremum: 〈A,X〉
subject to: F(X) = b,

X ∈ Pos (X ) .

Dual problem

infimum: 〈b, y〉
subject to: F∗(y) = A+ Y,

Y ∈ Pos (X ) .

The use of supremum and infimum is justified because there are instances of semidefinite
programs where a finite optimum value exists but is not attained. The functions 〈A,X〉
and 〈b, y〉 are called the primal objective function and the dual objective function. The map
F can be described by a collection of operators {F1, F2, . . . , FM} ⊂ Herm (X ) such that

F(X)[i] = 〈Fi, X〉 .

The map F∗ is the unique linear map that satisfies 〈y,F(X)〉 = 〈F∗(y), X〉 for all X ∈
L (X ) and y ∈ CM . It is an easy observation that

F∗(y) =
M∑
i=1

y[i]Fi.

We can equivalently write the two optimization problems as follows:

Primal problem

supremum: 〈A,X〉
subject to: ∀i : 〈Fi, X〉 = bi,

X ∈ Pos (X ) .

Dual problem

infimum: 〈b, y〉
subject to:

∑
i

y[i]Fi − A ∈ Pos (X ) .
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While writing semidefinite programs in the standard form, we may often omit the under-
lying space on which the operators act and use the notation X � 0 instead of X ∈ Pos (X )
for convenience. This will not create any ambiguity and the underlying space will always
be understood from the context.

In literature the standard form is usually written in terms of symmetric operators in-
stead of Hermitian operators. In other words, the operators A,F1, F2, . . . , FM are symmet-
ric operators. It is not hard to see that these two forms are equivalent. Any semidefinite
program in the above form can be converted into a semidefinite program where the oper-
ators specifying the program are symmetric.

In various applications, the standard form is sufficient to concisely describe the program.
However the semidefinite programming problem that arises in Chapter 5 is better described
in a different form, called the super-operator form. Let X and Y be two vector spaces,
A ∈ Herm (X ), B ∈ Herm (Y), and Φ : L (X ) → L (Y) be a Hermiticity preserving
super-operator. A semidefinite program in super-operator form associates the following
two optimization problems to (Φ, A,B):

Primal problem

supremum: 〈A,X〉
subject to: Φ(X) � B,

X ∈ Pos (X ) .

Dual problem

infimum: 〈B, Y 〉
subject to: Φ∗(Y ) � A,

Y ∈ Pos (Y) .

The adjoint super-operator Φ∗ : L (Y)→ L (X ) is the unique Hermiticity preserving linear
map that satisfies

〈Y,Φ(X)〉 = 〈Φ∗(Y ), X〉

for all X ∈ L (X ) and Y ∈ L (Y).

It is sometimes desirable to work with semidefinite programs in super-operator form.
The two forms are equivalent to each other in the following sense. Any semidefinite program
in standard form can be converted into a semidefinite program in super-operator form and
vice-versa.

3.2 Semidefinite programming duality

The duality theory for semidefinite programs refers to the relation between the associated
primal and dual problems. A simple observation leads us to the following theorem, referred
to as the weak duality theorem.

Theorem 7. The following hold.
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1. Let the triple (F , A, b) describe a semidefinite program in the standard form. Then for
any feasible solutions X and (y, Y ) of the primal and the dual problems, respectively,

〈b, y〉 ≥ 〈A,X〉 .

2. Let the triple (Φ, A,B) describe semidefinite program in the super-operator form. Then
for any feasible solutions X and Y of the primal and the dual problems, respectively,

〈B, Y 〉 ≥ 〈A,X〉 .

One follows the following convention in case the set of primal feasible solutions is empty
or the set of dual feasible solutions is empty. If the set of primal feasible solutions is empty,
then the optimum of the primal problem is assumed to be −∞. Likewise if the set of dual
feasible solutions is empty, then the optimum of the dual problem is assumed to be ∞.

One of the fundamental facts about linear programs is that both primal and dual
problems attain their respective optimum values assuming that they are feasible. Moreover,
the optimum values of primal and dual problems coincide with each other. This property
is called strong duality. In contrast, semidefinite programs do not always satisfy strong
duality. One can easily come up with examples of semidefinite programs where the primal
or the dual problem do not attain their respective optimum values or there is a positive
duality gap.

Although the presence of a positive duality gap in semidefinite programming is un-
avoidable, there exists a strong duality theorem for semidefinite programs that satisfy
come conditions. The semidefinite programs that we often encounter in various applica-
tions generally satisfy the strong duality conditions.

For a semidefinite program in the standard form, let α and β denote the optimum
values for primal and dual problems, respectively. One has the following strong duality
theorem.

Theorem 8. For a vector space X = CN , let A ∈ Herm (X ), b ∈ RM , and F : L (X )→ CM

specify a semidefinite program in standard form. Then the following hold.

1. Let α be finite and suppose there exists an operator X ′ ∈ Pd (X ) such that F(X ′) = b.
Then α = β and there exists (y, Y ) ∈ RM ⊕ Pos (X ) such that

F∗(y) = A+ Y and 〈b, y〉 = β.

2. Let β be finite and suppose there exists (y′, Y ′) ∈ RM⊕Pd (X ) such that F∗(y′) = A+Y ′.
Then α = β and there exists X ∈ Pos (X ) such that

F(X) = b and 〈A,X〉 = α.
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The conditions that there must exist a primal feasible solutionX ′ such thatX ′ ∈ Pd (X )
or there must exist a dual feasible solution (y′, Y ′) such that Y ′ ∈ Pd (X ) are termed as
Slater conditions, and X ′ and (y′, Y ′) are called Slater points. Item 1 of the theorem states
that the existence of a Slater point for the primal problem implies that strong duality holds
and that a dual feasible solution attains the optimum dual value. Item 2 of the theorem
states that the existence of a Slater point for the dual problem implies that strong duality
holds and that a primal feasible solution attains the primal optimum value. The existence
of Slater points for both primal and dual problems guarantees that both problems attain
the same optimum value.

A similar theorem holds for semidefinite programs in super-operator form as stated
below [Wat08]. Let α and β be the optimum values for primal and dual problems, respec-
tively.

Theorem 9. For vector spaces X = CN and Y = CM , let A ∈ Herm (X ), B ∈ Herm (Y),
and Φ : L (X ) → L (Y) specify a semidefinite program in super-operator form. Then the
following hold.

1. Let α be finite and suppose there exists an operator X ′ ∈ Pd (X ) such that Φ(X ′) ≺ B.
Then α = β and there exists Y ∈ Pos (Y) such that

Φ∗(Y ) � A and 〈B, Y 〉 = β.

2. Let β be finite and suppose there exists Y ′ ∈ Pd (Y) such that Φ∗(Y ′) � A. Then α = β
and there exists X ∈ Pos (X ) such that

Φ(X) � B and 〈A,X〉 = α.

Item 1 of the theorem states that the existence of a Slater point for the primal problem
implies that strong duality holds and that a dual feasible solution attains the dual optimum
value. Item 2 of the theorem states that the existence of a Slater point for the dual
problem implies that strong duality holds and that a primal feasible solution attains the
primal optimum value. The existence of Slater points for both primal and dual problem
guarantees that both problems attain the same optimum value.

3.3 Semidefinite programs in this thesis

This section intends to briefly summarize how semidefinite programs are applied in this
thesis. From an algorithmic perspective, we show that a certain class of semidefinite
programs can be solved by an efficient parallel algorithm, which we then use to prove
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a better complexity-theoretic upper bound on the model of quantum interactive proof
systems. From an analytical perspective, we use semidefinite programs to establish parallel
repetition theorems for certain classes of two-prover one-round quantum games.

3.3.1 Algorithmic application of semidefinite programs

Semidefinite programs have been widely used as an algorithmic means to efficiently solve
optimization problems. The efficiency of the algorithm is guaranteed by a generic algo-
rithm known as the ellipsoid method. From a theoretical viewpoint, the ellipsoid method is
an extremely powerful method and provided that the semidefinite program under consid-
eration satisfies some nice conditions, it guarantees a provable polynomial-time algorithm
for finding a feasible solution with objective value ε-close to the optimum value.

The semidefinite programming approximation problem is the following computational
problem as described in Watrous [Wat08].

• Input. A semidefinite program (Φ, A,B) over X = CN and Y = CM , an accuracy
parameter ε > 0, and positive rational numbers r and R.

• Output. A number γ such that |γ − α| < ε, where α is the optimum value of the
primal problem of the semidefinite program.

The ellipsoid method requires the following two conditions to be satisfied by the semidef-
inite program (Φ, A,B) [GLS93]. The conditions essentially define the parameters r and
R mentioned in the computational problem above.

1. The set of primal feasible solutions is contained in a ball of radius R. In other words,
for every primal feasible X, ‖X‖2 ≤ R.

2. The set of primal feasible solutions contains a ball of radius r. In other words, there
exists a primal feasible solution X such that X + C is also primal feasible for every
choice of C such that ‖C‖2 ≤ r.

The running time of the ellipsoid method is a polynomial in the input parameters
N,M , polylogarithmic in the input parameters 1/r,R, 1/ε, and polynomial in the maxi-
mum bit-length of the matrix entries of (J(Φ), A,B). Here J(Φ) is the Choi-Jamio lkowski
representation of super-operator Φ. One can recover the action of Φ on any operator X
from J(Φ) by using (2.2). It should be noted that the choice of using the primal problem
to run the ellipsoid method is not necessary. If the dual problem satisfies items 1 and 2
above, then one can run the ellipsoid method on the dual problem as well. If strong duality
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holds, then it will give an approximation for the optimum value of the other problem as
well.

While ellipsoid method is a very powerful algorithmic technique and is provably a
polynomial-time algorithm on Turing machine, there are faster algorithms for semidefinite
programs, the interior-point methods, that are used in practice. At present the polynomial
running time on interior-point methods is not established on a Turing machine. However,
this thesis is concerned with a recent approach for solving a class of semidefinite programs
based on the matrix multiplicative weights update method. The ordinary multiplicative
weights update method is a framework for algorithmic design having its origins in vari-
ous fields including combinatorial optimization [PST95], computational geometry [Cha00],
game theory [BvN50, Rob51], and learning theory [FS99]. Its matrix version, as discussed
in the PhD thesis of Kale [Kal07], is an iterative procedure that can be used to efficiently
approximate optimum values of certain semidefinite programs [AK07, WK06]. However,
the running time of the algorithm depends polynomially on 1/ε, where ε is the accuracy
parameter.

A very rough idea of the algorithm presented in Arora and Kale [AK07] is a primal-dual
approach based on matrix multiplicative weights update method and proceeds as follows.
The algorithm guesses an objective value γ for the optimum value, and proceeds to con-
struct either a primal feasible solution or a dual feasible solution with the desired objective
value. To do this, the algorithm guesses a candidate solution for the primal problem and
calls a subroutine. The function of the subroutine is to returns a certificate that shows that
the candidate solution is either infeasible or does not attain the desired objective value or
both. The specifics of the subroutine depends on the semidefinite program in hand and is
not important right now. If the subroutine returns a certificate, then the algorithm updates
the candidate solution using the certificate to generate a new candidate solution. If the
subroutine does not return a certificate, then it can be showed that the candidate solution
is close to being primal feasible and the objective value is approximately γ. Finally, if the
subroutine returns a certificate for a sufficient number of iterations, then the certificates
generated in all iterations can be used to generate a dual feasible solution with objective
value close to γ.

An important aspect of the matrix multiplicative weights update method from the
viewpoint of this thesis and the papers [JUW09, JW09] is its parallelizability for certain
class of semidefinite programs. For the class of semidefinite programs of our interest, the
method runs for a very few number of iterations, each iteration consisting of matrix com-
putations that can be parallelized, and gives a certificate of primal or dual feasibility with
a certain objective value. Although we haven’t made the notion of “few iterations” precise,
we emphasize that the fact that the method runs for few iterations for the semidefinite
program of our interest cannot be generalized to any semidefinite program under some
widely believed complexity-theoretic assumption.
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3.3.2 Analytical application of semidefinite programs

Semidefinite programs have been used analytically to prove important theorems in various
disciplines such as combinatorial optimization, discrepancy theory, metric embeddings,
and quantum information (see the references [HLW06, GW07, Lov79, Lov00] for some
applications on these topics). For more applications, we refer to the surveys and texts
mentioned at the beginning of the chapter. In this thesis, we use semidefinite programs to
establish parallel repetition theorems for certain classes of two-prover one-round games.

Imagine a protocol between two co-operating quantum players and a referee, where the
referee picks a question for each player, sends the questions, receives an answer from each
player, and decides to accept or reject based on the questions and answers. The measure of
how well the players perform is determined by the maximum success probability achieved
by them, which is called the quantum value of the game. The parallel repetition of such
games asks the following question. What is the rate of decrease of success probability of
players if the referee plays multiple instances of the protocol simultaneously and decides to
accept if and only if all instances are accepted? Ideally if the original game G has quantum
value p, then the n-fold repetition of the game should have quantum value pn. However,
this perfect bound does not hold in general.

For the class of two-prover one-round games considered in Chapter 6, we establish a
perfect parallel repetition theorem via semidefinite programming. It turns out that there
exists a semidefinite program that characterizes the quantum value of the game. For a
game G, let us denote εq(G) to be another measure of the game defined as follows. For
any strategy S, εq(G,S) denotes the difference between the probability of success and the
probability of the failure. The quantity εq(G) is the maximum over all possible quantum
strategies. Then one defines the game G⊕G to be the game where the verifier plays two
instances of the original game and accepts if and only if the players either win or lose both
instances of the game. To obtain a perfect bound on the two-fold repetition of such a game,
which we denote G ⊗ G, it suffices to show that εq(G ⊕ G) = (εq(G))2. This is obtained
via duality of semidefinite programming.

For the class of two-prover one-round games considered in Chapter 7, we establish a
strong parallel repetition theorem again via semidefinite programming duality. In this case,
there exists a semidefinite programming relaxation that upper bounds the quantum value
of the game. It also holds that from the an optimal primal solution of the semidefinite
program, one can derive a quantum strategy with good enough approximation guarantee.
We obtain a parallel repetition theorem for such games by showing that σ̄q(G ⊗ G) =
(σ̄q(G))2, where σ̄q(G) is the optimum of the semidefinite programming relaxation.
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Chapter 4

Basic Computational Complexity
Theory

This chapter gives a brief introduction to computational complexity theory. Computational
complexity theory is concerned with the systematic study of the amount of computational
resources required to solve problems on a computational model. The study entails defining
computational models, and computational resources and the corresponding complexity
measures.

The most basic computational model studied in computer science is deterministic Tur-
ing machine. Without going into the model in detail, which can be found in the literature,
we remark that the choice is apt to study the computational difficulty of the problems.
One of the major reasons for considering the model is its apparent simplicity that also
avoids the pitfall of being too detailed and hence difficult to work with. There are host of
variants of the basic model that have been widely studied in the literature such as circuit
based models, nondeterministic, and probabilistic Turing machines.

The resources one normally considers mimic the real-life situation. One normally con-
siders the amount of time and space required to solve a problem as primary computational
resources. To understand the complexity of an algorithm, the standard practice researchers
adopt is asymptotic analysis. To be more precise, given an input to the algorithm, we
quantify the complexity measures by functions of algorithm’s input size and study the
asymptotic behavior of the functions. We now proceed on to give a brief overview on the
organization of the chapter.

• In Section 4.1, we briefly describe the basics of computational complexity theory
followed by a glossary of complexity classes relevant to the thesis.

• In Section 4.2, we give a detailed description of the quantum computational model
and basic quantum complexity classes mentioned implicitly in this thesis.
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• In Section 4.3, we focus on interactive proof systems and their multi-prover variants.
These models form the bedrock for few of the most important breakthroughs in
theory of computation in the last twenty five years.

The field itself have seen tremendous growth in the last three decades and for a
more comprehensive treatment of the subject, we refer to excellent texts by Arora and
Barak [AB09], and Goldreich [Gol08].

4.1 Classical computational complexity

We assume knowledge of deterministic Turing machine and their nondeterministic and
probabilistic variant. These models have been comprehensively defined in texts cited above.

A function p : N → N (where N = {1, 2, . . . }) is said to be a polynomial-bounded
function if there exists a polynomial-time deterministic Turing machine that outputs 1p(n)

on input 1n for all n ∈ N. Assume that {0, 1} is the alphabet set and let {0, 1}∗ denote
the set of all possible strings over it. A computational problem is a function f of the form

f : {0, 1}∗ → {0, 1}∗.

The function f is said to be polynomial-time computable (exponential-time computable if
there exists a polynomial-time (exponential-time) deterministic Turing machine that out-
puts f(x) for every valid input x. The function f is said to be probabilistic polynomial-time
computable if there exists a polynomial-time probabilistic Turing machine that outputs f(x)
for every valid input x with probability at least 2

3
. The function f is said to be polynomial-

space computable if there exists a polynomial-space deterministic Turing machine that
outputs f(x) for every valid input x. Here the amount of resource used is measured with
respect to |x|, the size of the input. Of special interest are decision problems or more
generally promise problems, which are of the form f : {0, 1}∗ → {0, 1}. A decision problem
L can be partitioned into two disjoint subsets Lyes and Lno such that their union is {0, 1}∗,
and

Lyes = {x ∈ {0, 1}∗ : f(x) = 1} and Lno = {x ∈ {0, 1}∗ : f(x) = 0}.

The set Lyes represents the ‘yes’ instances of the problem and the set Lno represents the
‘no’ instances of the problem. A promise problem A = (Ayes, Ano) is a partition of strings
over {0, 1}∗ into three disjoint subsets: the set Ayes representing the ‘yes’ instances of
the problem, the set Ano representing the ‘no’ instances of the problem, and the set of
strings which are neither in Ayes nor in Ano, representing the disallowed instances of the
problem [ESY84, Gol05].
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The notion of promise problems is central to probabilistic and quantum computational
complexity theory. They notion has been instrumental in formalizing “gap problems”
to capture inapproximability, property testing, and introducing complete problems for
various complexity classes to be discussed in this chapter. Readers should note that some
of the consequences of decision problems do not generalize to promise problems [Gol05].
However, given the applications of this notion, we define complexity classes in terms of
promise problems instead of decision problems. For more insights on promise problems,
we refer to the Ref. [Gol05].

The following complexity classes are relevant to this thesis.

• The complexity class P is the collection of promise problems A = (Ayes, Ano) such
that for any A, there exists a polynomial-time deterministic Turing machine that
accepts every string x ∈ Ayes and rejects every string x ∈ Ano.

• The complexity class BPP is the collection of promise problems A = (Ayes, Ano) such
that for any A, there exists a polynomial-time probabilistic Turing machine that
accepts every string x ∈ Ayes and rejects every string x ∈ Ano with probability at
least 2

3
.

• The complexity class NP is the collection of promise problems A = (Ayes, Ano) such
that there exists a polynomial p : N→ N and a polynomial-time deterministic Turing
machine such that the following holds: (i) for every string x ∈ Ayes, there exists a
string y ∈ {0, 1}p(x) such that the machine accepts on input (x, y), and (ii) for every
string x ∈ Ano, there does not exists a string y ∈ {0, 1}p(x) such that the machine
accepts on input (x, y). When x ∈ Ayes, the string y for which the machine accepts
(x, y) is often referred to as proof (or certificate or witness).

• The complexity class MA is the collection of promise problems A = (Ayes, Ano) such
that there exists a polynomial p : N→ N and a polynomial-time probabilistic Turing
machine such that the following holds: (i) for every string x ∈ Ayes, there exists a
string y ∈ {0, 1}p(x) such that the machine accepts with probability at least 2

3
, and

(ii) for every string x ∈ Ano, the probability that the machine rejects over all choices
of y ∈ {0, 1}p(x) is at least 2

3
.

• The complexity class PP is the collection of promise problems A = (Ayes, Ano) such
that there exists a polynomial-time probabilistic Turing machine that accepts every
x ∈ Ayes with probability strictly greater than 1

2
and accepts every x ∈ Ano with

probability at most 1
2
.

• The complexity class PSPACE is the collection of promise problems A = (Ayes, Ano)
such that there exists a deterministic Turing machine that uses polynomial-space and
accepts every string x ∈ Ayes and rejects every string x ∈ Ano.
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• The complexity class EXP is the collection of promise problems A = (Ayes, Ano) such
that there exists a exponential-time deterministic Turing machine that accepts every
string x ∈ Ayes and rejects every string x ∈ Ano.

• The complexity class NEXP is the collection of promise problems A = (Ayes, Ano)
such that there exists a exponential function e : N → N and a exponential-time
deterministic Turing machine such that the following holds: (i) for every string x ∈
Ayes, there exists a string y ∈ {0, 1}e(x) such that the machine accepts on input (x, y),
and (ii) for every string x ∈ Ano, there does not exists a string y ∈ {0, 1}e(x) such
that the machine accepts on input (x, y).

These complexity classes are related to each other by the following well-known relation-
ships:

P ⊆ NP ⊆ MA ⊆ PP ⊆ PSPACE ⊆ EXP ⊆ NEXP and P ⊆ BPP ⊆ MA.

The containments among these classes are not known to be strict except for P 6= EXP
and NP 6= NEXP. Proving strict containments or equality among these classes are major
open problems in the area of computational complexity theory. A few other complexity
classes based on the model of interactive proof systems and their variants is deferred to
section 4.3. The quantum variants of interactive proof systems that are relevant to this
thesis are discussed in subsequent chapters.

4.2 Quantum computational model and BQP

This section is devoted to quantum computational complexity. Our objective is to first
describe a quantum computational model and then define relevant quantum complexity
classes. For a comprehensive overview of the subject, we refer to the survey on quantum
computational complexity [Wat09b].

Quantum circuits: The most widely used quantum computational model is the quantum
circuit model. The topological structure of a quantum circuit is same as a classical circuit
with the exception that the gates in the quantum circuits are unitary operations. Quantum
circuits refer to a directed acyclic graph, where the nodes are labeled as one of the quantum
gates from a finite set. These gets are represented by unitary operators acting on of one,
two, or three qubits.

In general, the quantum circuit computing a function f : {0, 1}∗ → {0, 1}m on input
string x will have |x| input qubits that represents the input string as a quantum state
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in standard basis |x〉 and may use p(|x|) qubits (initialized to |0 . . . 0〉 as ancilla qubits
for some function p : N → N. The quantum circuit transforms the state |x〉 |0 . . . 0〉 to a
(|x|+p(|x|))-qubit quantum state. The first m qubits are designated as output qubits and
the rest of the qubits are designated as garbage qubits. Measuring the first m qubits in
the standard basis yields the output of the circuit.

The nature of a quantum operation is continuous which means that one cannot hope to
simulate any quantum operation with a finite set of quantum gates. However, there exist
finite sets of quantum gates that are approximately universal meaning that any quantum
operation can be approximated by a composition of these gates with very high precision.
This is mentioned in the following theorem, also known as the Solovay-Kitaev Theorem.

Theorem 10. Let X = C2n
and Y = C2m

. Let Φ : L (X )→ L (Y) be an arbitrary quantum
operation acting on n input qubits and producing m output qubits. Then for every ε > 0
there exists a finite set of quantum gates S and a quantum circuit Q acting on (n+ p(n))-
qubits using gates from S that simulates a quantum operation Ψ : L (X ) → L (Y) such
that

‖Ψ− Φ‖� ≤ ε.

Moreover, the number of gates Q requires to simulate Φ depends polynomially on log (1/ε)
for fixed choice of n and m.

One such finite set mentioned in Theorem 10 consists of the following three unitary
operation.

1. Hadamard gate. A Hadamard gate is a unitary operation on one qubit as described
below:

H |a〉 =
1√
2

(|0〉+ (−1)a |1〉 for a ∈ {0, 1}.

2. Phase gate. A phase gate is a unitary operation on one qubit as described below:

P |a〉 = ia |a〉 for a ∈ {0, 1}.

3. Toffoli gate. A Toffoli gate is a unitary operation on three qubits as described below:

T |a〉 |b〉 |c〉 = |a〉 |b〉 |c⊕ a ∧ b〉 for a, b, c ∈ {0, 1}.

Quantum complexity classes: Before proceeding on to define quantum complexity
classes, we define polynomial-time generated families of quantum circuits. A family of
quantum circuits {Qn : n ∈ N} is said to be polynomial-time generated if there exists a
polynomial-time deterministic Turing machine that generates a description of the circuit
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Qn on input 1n. The encoding of the circuit has to be efficient in the sense that the length
of the encoding is at most p(n) for some fixed polynomial p : N→ N.

By restricting our attention to polynomial-time generated family of quantum circuits,
we impose a uniformity condition on the circuit family. This allows us to visualize the
circuits as quantum algorithms as follows. On input x, the Turing machine first generates
the description of the circuit and then runs the quantum circuit. We remark that the
notion of polynomial-time generated families of quantum circuits is to capture the notion of
efficient quantum computation, which is precisely captured by such families of polynomial-
size.

More precisely, the quantum complexity class BQP is defined as the collection of promise
problems A = (Ayes, Ano) such that for every problem A, there exists a polynomial-time
generated family of quantum circuits Q = {Qn : n ∈ N}, where Qn takes n input qubits
and produces 1 output qubit, such that the following two conditions are met.

1. For every x ∈ Ayes, the circuit Q|x| accepts x with probability at least 2/3. In other
words, the output qubit produces 1 with probability at least 2/3.

2. For every x ∈ Ano, the circuit Q|x| accepts x with probability at most 1/3. In other
words, the output qubit produces 1 with probability at most 1/3.

The probabilities 2/3 and 1/3 are arbitrary and one can without loss of generality assume
that they can be replaced by two parameters a and b, respectively such that their gap is
bounded from below by a fixed inverse polynomial. Indeed, one can decrease the two-sided
error probability to a quantity exponentially close to 0. The class BQP trivially contains
P and BPP and is known to be contained in PP.

4.3 Interactive proofs and their variants

In this section, we discuss the model of interactive proof systems and their multi-prover
variants. Interactive proof systems associate the notion of verifying a claim with an inter-
active process by explicitly referring to two interactive players: the prover and the verifier.
The prover possess unlimited computational power and the verifier is restricted to per-
form efficient computation. Roughly speaking, the notion of efficient computation in the
classical setting is polynomial-time computation with an additional resource: randomness.
There is an symmetry between the computational power of the players and the main reason
for such an asymmetry is that the fundamental goal is to understand the complexity of the
interactive verification procedure rather than the complexity of generating the proof that
convinces the verifier.
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Interactive proof systems: The study of interactive proof systems was initiated by
Goldwasser, Micali and Rackoff [GMR85], and Babai [Bab85]. The model of interactive
proof system is formalized below. Let A = (Ayes, Ano) be a promise problem and x ∈
Ayes ∪ Ano be an input string. We begin by describing the action of the prover and the
verifier followed by describing their interaction.

The verifier is specified by a bounded-error probabilistic polynomial time Turing ma-
chine that takes qv(|x|) + qm(|x| + r(|x|)) bits as inputs and produces qv(|x|) + qm(|x|
bits as output. The first qv(|x|) bits represent verifier’s private bits, the next qm(|x| bits
represent the message bits obtained from interacting with the prover, and the final r(|x|)
bits represent the outcome of random coin tosses performed by the verifier. At the end of
the interaction and the verifier’s final computation, the first bit designates the output; if
it is 1, the verifier accepts and if it is 0, the verifier rejects.

The prover is defined along similar lines except that the computational requirements
are dropped. Without loss of generality, one can assume that the prover is deterministic
because her goal is to maximize the acceptance probability of the verifier. At every step
of the interaction, the prover computes an arbitrary function of the form

f : {0, 1}qm(|x|) × {0, 1}qp(|x|) −→ {0, 1}qm(|x|) × {0, 1}qp(|x|).

The first qm(|x|) bits represent the message bits from the verifier and the last qp(|x|)
represent the prover’s private bits. No restriction is placed on the class of functions being
computed by the prover and the number of private bits.

Given two players described above, we always assume that they are compatible in the
following sense: Both players agree upon the number of message bits communicated. A
2k−1-message interactive proof system is described by k functions computed by the prover
and k functions computed by the verifier:

Pi : {0, 1}qm(|x|) × {0, 1}qp(|x|) −→ {0, 1}qm(|x|) × {0, 1}qp(|x|) for all i ∈ [k]

and

Vi : {0, 1}qv(|x|) × {0, 1}qm(|x|) × {0, 1}r(|x|) −→ {0, 1}qv(|x|) × {0, 1}qm(|x|) × {0, 1}r(|x|)

for all i ∈ [k]. The prover is sometimes referred to as 2k − 1-message prover. Messages
exchanged between the two players are represented by alternations between the prover’s
computation and the verifier’s computation. The interaction begins by prover applying P1

and sending the first qm bits to the verifier and ends when prover computes Pk and sends
the first qm bits. After the end of interaction, the verifier computes Vk and checks whether
the first bit is 0 (reject) or 1 (accept).

A 2k-message interactive proof system proceeds along similar lines except that the
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first message is sent by the verifier instead of the prover and the verifier computes k + 1
functions. Finally, the complexity class based on interactive proof systems is defined as
follows.

Definition 11. For two polynomial-time computable functions c, s : N→ [0, 1], a promise
problem A = (Ayes, Ano) is said to have a k-message (c, s)-interactive proof system between
a prover and a verifier as described above, if the following holds:

1. The number of messages exchanged between the prover and the verifier is k, the last
message is from the prover to the verifier, and the number of bits in each message is
bounded by a fixed polynomial qm : N→ N.

2. (Completeness) For every x ∈ Ayes, there exists a k-message prover such that the verifier
accepts with probability at least c(|x|) after exchanging k messages.

3. (Soundness) For every x ∈ Ano, for all k-message prover, the verifier accepts with
probability at most s(|x|) after exchanging k messages.

For any k, the complexity class IP(k, c, s) consists of all promise problems A = (Ayes, Ano)
having a k-message interactive proof system with completeness c(|x|) and soundness s(|x|).
The class IP(k) denotes IP(k, 2/3, 1/3) and

IP =
⋃

k∈poly

IP(k).

The complexity classes NP and MA can be viewed as a special form of interactive proof
systems, where the interaction between the prover and the verifier is limited to the prover
sending the proof to the verifier:

NP = IP(1, 1, 0) and MA = IP(1, 2/3, 1/3).

In the definition above, the parameters c and s are arbitrary polynomial-time com-
putable functions as long as the gap c− s is at least inverse polynomial. It is known that
any interactive protocol of the above form can be simulated by an interactive protocol with
perfect completeness (c = 1) and soundness exponentially close to 0. One should note that
there is an asymmetry between the completeness and the soundness conditions. While the
completeness of an interactive protocol can be perfect, the soundness cannot be made 0
without decreasing the expressive power of the model. In complexity theory terms, the
class of problems accepted by an interactive proof system with s = 0 is precisely NP. More-
over, in contrast to the non-interactive setting, such proof systems are extremely powerful
and are characterized by the following well-known relationship [LFKN92, Sha92, She92]:

IP = PSPACE.
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The proof of IP ⊆ PSPACE is attributed to Feldman [Fel86]. The proof of the other
containment follows from an idea known as arithmetization, which views Boolean formulas
algebraically by representing them as polynomials. The idea of arithmetization has found
further applications in the setting of proof systems.

Many variants of interactive proof systems have been studied in literature, including
but not limited to public-coin interactive proof systems [Bab85, BM88], zero-knowledge
interactive proof systems [GMR89], multi-prover interactive proof systems [BOGKW88,
BFL91, FL92], and interactive proof systems with competing provers [FK97]. Of these
models, the models of public-coin and multi-prover interactive proof systems are relevant
to this thesis.

The model of public-coin interactive proof system is a special type of interactive proof
system, where roughly speaking, the verifier’s randomness is public. To be more precise,
before the start of a k-round (or 2k-message) protocol the verifier tosses unbiased random
coins to generate k strings

s1 ∈ {0, 1}p1(|x|), s2 ∈ {0, 1}p2(|x|), . . . , and sk ∈ {0, 1}pk(|x|)

where p1, p2, . . . , pk : N → N are fixed polynomials. The subsequent computation of the
verifier at every round is deterministic and the verifier’s message to the prover at i-th round
is si. We say a promise problem A = (Ayes, Ano) admits a k-message public-coin interactive
proof system with completeness c and soundness s if the items 1-3 of Definition 11 hold.
The complexity class AM(k) (often referred to as Arthur-Merlin proof systems or Arthur-
Merlin games) consists of the collection of problems A = (Ayes, Ano) that admit a k-message
public-coin interactive proof systems.

It is known that the restrictive model of public-coin interactive proof system are as
powerful as the general model of private-coin interactive proof system [GS89]. Given
that the model is weaker and allows the prover to see verifier’s randomness, the following
containment is surprising:

IP(k) ⊆ AM(k + 2).

The key idea behind the proof of the containment is that the verifier in Arthur-Merlin
proof system convinces himself by approximately counting the number of paths that leads
the verifier in the interactive proof system model to accept. If the number of accepting
paths is very large, then the verifier in Arthur-Merlin proof system accepts and otherwise
rejects.

Arthur-Merlin proof systems are extremely robust against error probability and one can
assume that the completeness probability of such proof system is 1 and soundness inverse
exponentially close to 0. Moreover, if k ≥ 2 is constant, then it is known that

IP(k) ⊆ AM(k + 2) ⊆ AM(2).
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It is common to denote AM(2) as AM, which is inconsistent with the notational definition
of IP. Nevertheless we follow the notations commonly used in the literature. Constant
message interactive proof systems are assumed to be weaker than IP in terms of expressive
power under a complexity-theoretic assumption. In fact, under a strong derandomization
hypothesis, it is believed that AM = NP. In other words, under the hypothesis, interaction
and randomization does not help the verifier.

Multi-prover interactive proof systems: A variant of interactive proof systems rel-
evant to the thesis is the model of multi-prover interactive proof systems [BOGKW88,
BFL91, FRS94, LS91]. Roughly speaking, the model is a form of interactive protocol be-
tween multiple co-operating provers and a verifier where the provers are not allowed to
communicate with each other once the protocol starts. Without this restriction on provers
not communicating with each other, the model is equivalent to single-prover interactive
proof system.

Below we formalize the model of multi-prover interactive proof system. The description
of the provers and the verifier is pretty much the same except that below we talk in terms
of number of rounds of communication instead of the number of messages exchanged. For
readers who are not familiar with the terminology, a round of communication represents
a message from the verifier to the prover followed by a message from the prover to the
verifier. This is a notational ambiguity, however, we do this to be consistent with the
terminology used in literature.

Let A = (Ayes, Ano) be a promise problem and x ∈ Ayes ∪ Ano be an input string. We
begin by describing the action of the provers and the verifier followed by describing their
interaction. Suppose the number of provers is m.

The verifier is specified by a bounded-error probabilistic polynomial time Turing ma-
chine that takes qv(|x|) + qm(|x| + r(|x|)) bits as inputs and produces qv(|x|) + qm(|x|
bits as output. The first qv(|x|) bits represent verifier’s private bits, the next qm(|x| bits
represent the message bits obtained from interacting with the provers, and the final r(|x|)
bits represent the outcome of random coin tosses performed by the verifier. At the end of
the interaction and the verifier’s final computation, the first bit designates the output; if
it is 1, the verifier accepts and if it is 0, the verifier rejects.

The provers are defined along similar lines except that the computational requirements
are dropped. At every step of the interaction, the provers computes an arbitrary function
of the form

f (j) : {0, 1}q
(j)
m (|x|) × {0, 1}q

(j)
p (|x|) −→ {0, 1}q

(j)
m (|x|) × {0, 1}q

(j)
p (|x|) for all j ∈ [k].

Here the superscript j denotes the index of the prover. The first q
(j)
m (|x|) bits represent

the message bits from the verifier and the last q
(j)
p (|x|) represent the prover’s private bits.
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No restriction is placed on the class of functions being computed by the prover and the
number of private bits.

A k-round multi-prover interactive proof system is described by k functions computed
by each prover and k functions computed by the verifier:

P
(j)
i : {0, 1}qm(|x|)×{0, 1}qp(|x|) −→ {0, 1}qm(|x|)×{0, 1}qp(|x|) for all (i, j) ∈ [k]× [m]

and

Vi : {0, 1}qv(|x|) × {0, 1}qm(|x|) × {0, 1}r(|x|) −→ {0, 1}qv(|x|) × {0, 1}qm(|x|) × {0, 1}r(|x|)

for all i ∈ [k+ 1]. The provers and the verifier are said to be compatible if they agree upon
k and if

qm =
m∑
j=1

q(j)
m .

More specifically, after verifier performs his computation, he partitions the message bits into
j parts, the j-th part being of size q

(j)
m , and sends the j-th part to the corresponding prover.

Messages exchanged between the provers and the verifier are represented by alternations
between the provers’ computation and the verifier’s computation. The interaction begins
by verifier applying V1 and sending the corresponding messages to the provers and ends
when provers compute their last function in the sequence and send the message bits. After
the end of interaction, the verifier computes Vk+1 and checks whether the first bit is 0
(reject) or 1 (accept).

Definition 12. For two polynomial-time computable functions c, s : N→ [0, 1], a promise
problem A = (Ayes, Ano) is said to have a m-prover k-round (c, s)-interactive proof sys-
tem between m provers each with unlimited computational power who are not allowed to
communicate with each other, and a verifier that executes BPP strategy, if the following
holds:

1. The number of messages exchanged between the provers and the verifier is 2k, the last
message is from the prover to the verifier, and the number of bits in each message is
bounded by a fixed polynomial p : N→ N.

2. (Completeness) For every x ∈ Ayes, there exist m provers that the cause the verifier to
accept with probability at least c(|x|) after k rounds.

3. (Soundness) For every x ∈ Ano, for all m provers, the verifier accepts with probability
at most s(|x|) after k rounds.

For any k, the complexity class MIP(m, k, c, s) consists of all promise problems A =
(Ayes, Ano) having a k-round m-provers interactive proof system with completeness prob-
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ability c and soundness probability s. The class MIP(m, k) denotes MIP(m, k, 2/3, 1/3)
and

MIP =
⋃

m,k∈poly

MIP(m, k).

Multi-prover interactive proof systems are extremely robust against error probabilities.
It is known that multi-prover interactive proof systems can have perfect completeness and
the soundness can be made exponentially close to 0. Moreover, such proof systems are
extremely powerful as characterized by the following well-known relationship:

MIP = NEXP.

This was first established by Babai, Fortnow, and Lund [BFL91] and subsequently im-
proved in a paper by Feige and Lovász [FL92] culminating in the characterization of NEXP
by MIP(2, 1), the model of two-prover one-round interactive proof systems. The above
characterization is surprising because if we do not allow the verification procedure to be
interactive and randomized, then the proof system (with multiple provers) can only ac-
cept any problem in NP. The characterization also implies that unlike in the single prover
case, multi-prover interactive proof systems can be parallelized to one round without losing
its expressive power. Moreover, the seemingly restrictive model is also extremely robust
against error probability. That is, any promise problem in NEXP admits a two-prover
one-round proof system with perfect completeness and soundness exponentially close to
zero.

The original motivation of introducing the model of multi-prover interactive proofs
was zero-knowledge proof systems and it was shown that NP has perfect zero-knowledge
proofs [BOGKW88]. The focus on multi-prover interactive proof systems led to the de-
velopment of probabilistically checkable proof (PCP) systems [ALMSS98, AS98] and their
connection with hardness of approximation [H̊as96, BGS98, H̊as01]. It is not an under-
statement that the development of probabilistically checkable proofs has been one of the
crowning achievements of computational complexity theory.

Given that two-prover one-round interactive proof systems have perfect completeness,
one simple way of reducing the soundness is to repeat multiple instances of the protocol
simultaneously. Although it increases the communication cost between the provers and the
verifier, the new protocol has the property that it is still a one-round protocol. This kind
of repetition is called parallel repetition. For a while it was thought that if the original
soundness is s, then the soundness of the proof system where k instances of the protocol
is repeated is sk. This was proved to be untrue [For89, FL92] and subsequently a great
body of work was devoted in coming up with a concrete bound on k-fold repetition of the
protocol [CCL90, CCL92, FV02, Ver95, Ver96]. A concrete bound was first established
by Raz [Raz98]. This was recently simplified and improved by Holenstein [Hol07] and
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Rao [Rao08]. In the classical case, Feige and Verbitsky [FV02] showed that Raz’s bound
is nearly tight. A major part of this thesis concerns with parallel repetition of two-prover
one-round proof systems, where the provers are allowed to process quantum information
but the communication channel between the provers and the verifier is classical.

For the purpose of this thesis, it is often convenient to abstract two-prover one-round
interactive proof systems as games played between two co-operating players and a referee.
One can make the association between two-prover one-round games with the model of two-
prover one-round interactive proof systems precise by saying that on every input x, the
verifier plays a game with the provers such that the value of the game (maximum success
probability of the provers) is at least c(|x|) for all x ∈ Ayes and is at most s(|x|) for all
x ∈ Ano (refer to Definition 12). Of course, the game depends on the input string x.
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Chapter 5

Expressive Power of QIP

This chapter is based on the Ref. [JJUW09] and is a joint work with Rahul Jain, Zhengfeng
Ji, and John Watrous.

The chapter introduces the class QIP, the collection of promise problems that ad-
mit quantum interactive proof systems. Quantum interactive proof systems are quantum
analogue of interactive proof systems wherein the prover and the verifier are allowed to
exchange and process quantum information. It is immediate that QIP contains IP and
hence PSPACE [LFKN92, Sha92, She92], since the additional ability of processing quan-
tum information is no hindrance to the verifier’s ability to behave classically and force the
prover to behave classically. The main result of this chapter is the reverse containment:

QIP ⊆ PSPACE.

The containment implies that the any promise problem that admits a quantum interactive
proof system also admits a classical interactive proof system. The proof relies on an
alternate characterization of PSPACE in terms of Boolean circuits and several known
facts on quantum interactive proof systems, which are briefly discussed in the subsequent
section.

The organization of this chapter is as follows.

• In Section 5.1, we formally define the model of quantum interactive proof systems
and mention the known facts on quantum interactive proof systems that allows us
to simplify the model to a variant of quantum interactive proof systems, referred to
as single-coin quantum interactive proof systems.

• In Section 5.2, we discuss an alternate characterization of PSPACE in terms of
polynomial-space uniform families of Boolean circuits of polynomial depth and ma-
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trix multiplicative weights update method, a meta-algorithm that forms the basis of
our algorithm.

• In Section 5.3, we characterize the set of potential quantum strategies adopted by the
prover in single-coin quantum interactive proof systems as a simple exponential-size
semidefinite program.

• In Section 5.4, we present the algorithm for solving the semidefinite program that
characterizes the single-coin quantum interactive proof systems followed by a de-
tailed analysis of the algorithm and its implementation by polynomial-space uniform
families of Boolean circuits of polynomial depth.

• Finally in Section 5.5, we discuss two recent results reported by Jain and Yao [JY11]
and Gutoski and Wu [GW10] that are related to the main result and techniques used
in this chapter.

5.1 Quantum interactive proof systems

This section introduces the model of quantum interactive proof systems. Similar to the
classical case, quantum interactive proof systems associate the notion of efficient verification
of a purported claim with an interactive process by explicitly referring to two interactive
players: the prover and the verifier. The only difference between classical and quantum
interactive proof systems is that in the latter both players are allowed to exchange and
process quantum information. The study of quantum interactive proofs was initiated by
Watrous [Wat03] (the conference version first appeared in 1999).

The model of quantum interactive proof system is formalized below. Let A = (Ayes, Ano)
be a promise problem and x ∈ Ayes ∪ Ano be an input string. We begin by describing the
action of the prover and the verifier followed by describing their interaction.

The verifier is defined by polynomial-time generated families of quantum circuits of
polynomial-size. More specifically, the verifier can be represented by a unitary operator
acting on qv(|x|)+qm(|x|) qubits. The first qv(|x|) is verifier’s private qubits and the rest of
the qubits represent the quantum message exchanged between the prover and the verifier.
Of course, the unitary operator is an efficiently implementable operator in the sense that
it can be implemented exactly by the finite set of gates described in Section 4.2. The first
qubit of the verifier represents the output of the interaction with the prover. Measuring
this qubit in standard basis reveals the verifier’s output; if it is 1, the verifier accepts and
if it is 0, the verifier rejects.

Similarly, the prover is represented by quantum circuits. However, we drop all the
computational requirements such as polynomials-size quantum circuits or polynomial-time

59



generation of the circuits. The prover is represented by a unitary operator acting on
qm(|x|+ qp(|x|) qubits, the first qm(|x|) representing the qubits received form the verifier
and the last qp(|x|) representing the prover’s private qubits. One places no bound on num-
ber of prover’s private qubits, however, by the singular value decomposition (Theorem 1),
one can assume that qm(|x|) = qp(|x|).

The interaction between the prover and the verifier is described below. Imagine a
quantum interactive proof systems in which a prover and a verifier exchange 2k message.
Alternately, the number of rounds of communication between the players is k. The verifier
is described by k + 1 quantum circuits

{V0(x), V1(x), . . . , Vk(x)}

and the prover is described by k circuits

{P1(x), P2(x), . . . , Pk(x)}

such that they operate on same number of message qubits. The interaction begins by
verifier applying V0(x) on two registers of size qv(|x|) and qm(|x|), respectively, initialized
to state |0 . . . 0〉⊗ |0 . . . 0〉. The interaction begins by verifier sending the qubits designates
as message to the prover, who applies P1(x) on his private qubits (initialized in any state she
desires) and the message qubits. The interaction proceeds by prover sending the message
qubits back to the verifier who applies his next operation. This process is alternated until
prover applies his final map Pk(x) and sends the message qubits to the verifier. After the
interaction ends, the verifier applies his final operation Vk(x) and measures the first qubit
in the standard basis, the output of which denotes whether the verifier accepts or rejects.

A 2k−1 message quantum interactive proof system proceeds in a similar fashion except
that the prover initiates the interaction by sending the first message. One assumes that the
verifier’s private qubits are initialized to |0 . . . 0〉. Upon receiving the message, the verifier
proceeds to apply his first operation, and the interaction proceeds as before until verifier
applied his final operation and measures the first qubit in standard basis to decide whether
to accept or reject.

In a k-message quantum interactive proof system, the prover is usually referred to as
k-message quantum prover. Finally, the complexity class based on quantum interactive
proof system is defined below.

Definition 13. For two polynomial-time computable functions c, s : N→ [0, 1], a promise
problem A = (Ayes, Ano) is said to have a k-message (c, s)-quantum interactive proof system
between a prover and a verifier as described above, if the following holds:

1. The number of messages exchanged between the prover and the verifier is k, the last
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message is from the prover to the verifier, and the number of qubits in each message is
bounded by a fixed polynomial qm : N→ N.

2. (Completeness) For every x ∈ Ayes, there exists a k-message quantum prover such that
the quantum verifier accepts with probability at least c(|x|) after exchanging k messages.

3. (Soundness) For every x ∈ Ano, for all k-message quantum prover, the quantum verifier
accepts with probability at most s(|x|) after exchanging k messages.

For any k, the complexity class QIP(k, c, s) consists of all promise problems A = (Ayes, Ano)
having a k-message quantum interactive proof system with completeness c and soundness
s. The class QIP(k) denotes QIP(k, 2/3, 1/3) and

QIP =
⋃

k∈poly

QIP(k).

In the above definition, the parameters c and s can be arbitrary polynomially-bounded
functions such that their difference c−s is at least inverse polynomial. It is known that any
quantum interactive protocol of the above form can be simulated by a quantum interactive
protocol with perfect completeness and soundness exponentially close to zero. This and
various other facts are summarized below.

As mentioned earlier, the study of quantum interactive proofs was initiated by Wa-
trous [Wat03] (the conference version of the paper appeared in 1999), where he showed
that any problem in PSPACE admits a three-message quantum interactive proof system.
The result is extremely surprising in the wake of the classical case, where it is conjectured
that PSPACE does not admit a constant message interactive proof system. The belief is
based on a well known complexity-theoretic conjecture that states that such a result would
imply that polynomial hierarchy collapses to the second level [Bab85, GS89]. Similar to
the classical case, many variants of quantum interactive proof systems have been studied,
including public-coin quantum interactive proof systems [MW05], zero-knowledge quantum
interactive proof systems [HKSZ08, Kob08, Wat02, Wat09a], multi-prover quantum inter-
active proof systems [CHTW04a, KKMTV11, KKMV09, KM03], and quantum interactive
proof systems with competing provers [GW05, GW07]. The focus of this section is on
quantum interactive proof systems and the subsequent simplifications of the most general
model to a model more suited for our purpose.

Subsequent to the containment PSPACE ⊆ QIP(3), Kitaev and Watrous [KW00] es-
tablished a series of results on quantum interactive proof systems that simplified the model
considerably and exhibited some nice properties of it. They are summarized below.

1. Every quantum interactive proof system with completeness c and soundness s can be
transformed into an equivalent quantum interactive proof system with perfect com-
pleteness and soundness bounded from above by 1− (c− s)2/2. This transformation is
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obtained at the cost of an extra round of communication between the prover and the
verifier. In complexity theory terms,

QIP(k, c, s) ⊆ QIP(k + 2, 1, 1− (c− s)2/2).

2. Every quantum interactive proof system with completeness 1 and soundness bounded
away from 1 can be transformed into a three-message quantum interactive proof system
with perfect completeness and soundness bounded away from 1. The soundness depends
on the original soundness and the number of messages exchanged between the prover
and the verifier. In complexity theory terms,

QIP(k, 1, 1− ε) ⊆ QIP(3, 1, 1− ε2/4k).

3. Multiple executions of the protocol of a three-message quantum interactive proof sys-
tem simultaneously (in parallel) with perfect completeness reduces the soundness to
a quantity that is exponentially close to zero. The exponential reduction is perfect in
the following sense. If the soundness of one execution of the protocol is s, then the
soundness of r simultaneous executions in sr. This implies that

QIP(3, 1, s) ⊆ QIP(3, 1, sr)

for any polynomial r : N→ N. This follows from characterizing the success probability
of a three-message protocol by the diamond norm of a super-operator Φ defined by
verifier’s operation, ‖Φ‖�, together with the multiplicative property of the norm un-
der the tensor product operation. The result can be extended to k-message quantum
interactive proof systems for any polynomially-bounded function k : N→ N [Gut09].

4. The maximum success probability of the prover in a three-message quantum interac-
tive proof system can be expressed as an exponential-size semidefinite program. The
semidefinite program satisfies the conditions of ellipsoid method and hence can be effi-
ciently approximated in the size of the operators defining it. This shows that

QIP ⊆ EXP.

The fact that the model of three-message quantum interactive proof systems are as powerful
as the general model leaves us with four complexity classes based on the model:

QIP(0) = BQP, QIP(1) = QMA, QIP(2), and QIP(3) = QIP.

The most mysterious of the four classes is QIP(2) and the present status of this class is
that it lies in PSPACE [JUW09]. This was known prior to the main result of this chapter.
The class QMA is the quantum analogue of the complexity classes NP and MA. Unlike
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QIP, it is not known whether QIP(2) and QMA can have perfect completeness. However,
both classes are extremely robust against error probabilities.

We briefly remark that Marriott and Watrous [MW05] demonstrated an alternate
method of error reduction for QMA. Most of the error reduction techniques blow up the
size of the messages of the prover and the verifier. The alternate error reduction technique
for QMA, as described by Marriott and Watrous, achieves exponentially small two-sided
error probabilities without increasing the size of the message sent by the prover. For de-
tails, we refer the interested readers to their paper. Using this fact, Marriott and Watrous
gave an alternate proof of the containment

QMA ⊆ PP.

Coming back to quantum interactive proofs, Marriott and Watrous also demonstrated that
it is always possible to transform a given quantum interactive proof system into one with a
simpler form as described below in detail. They showed that any three-message quantum
interactive proof system can be converted into a three-message quantum interactive proof
system, where the verifier’s message to the prover is a uniformly random bit. We refer
to such proof systems as single-coin quantum interactive proof systems. In greater detail,
such a three-message protocol is described below.

1. The verifier receives a register X from the prover and sends a bit a ∈ {0, 1}, chosen
uniformly at random to the prover.

2. Upon receiving a, the prover applies a quantum operation on a second register Y and
sends Y to the verifier.

3. The verifier measures the pair (X,Y) with respect to two-outcome projective measure-
ment {Πa

0,Π
a
1} that depends on a. Here the operator Πa

1 corresponds to outcome accept.

We remark that the three-message protocol described above does not follow the de-
scription of quantum interactive proof systems strictly. However, it is easy to describe the
above protocol in a way that agrees with Definition 13 and the preceding discussion.

For the remainder of this chapter, we will denote m = p(n) for some fixed polynomial
p : N→ N and assume without loss of generality, that the size of registers X and Y are m-
qubits. Consequently, the associated complex Euclidean spaces X and Y are isomorphic to
CM for M = 2m. Marriott and Watrous proved that every problem problem A = (Ayes, Ano)
in QIP has a quantum interactive proof system of the above form, where the completeness
is perfect and the soundness is bounded from above by 1/2 + ε for any desired constant
ε > 0. In fact ε can be made exponentially small, however, for our needs it suffices to
consider it to be a constant. Note that if we allow the verifier to send only one uniformly
random bit, then the prover can always succeed with probability 1/2 by randomly guessing
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the bit and then sending a state in (X,Y) that causes the verifier to accept with probability
1 for that particular choice. To reduce the soundness to something exponentially close to
zero, one can execute multiple instances of the protocol simultaneously.

5.2 Some background information

In this section, we discuss two different topics that form the basis of the proof. The
first topic is a complexity-theoretic result due to Borodin [Bor77] and the second topic
is a meta-algorithm that has found applications in various areas in theoretical computer
science.

5.2.1 Boolean circuits and PSPACE

In this section, we discuss an alternate characterization of PSPACE in terms of Boolean
circuits. To prove that QIP is contained in PSPACE, we will demonstrate that the SDP
characterization of single-coin quantum interactive proofs can be solved by such circuits.
This is done in detail in Section 5.4.

The complexity class NC is defined as the class of all functions (including promise
problems) computable by families of logarithmic-space uniform families of Boolean circuits
of polylogarithmic depth. Such circuits can be represented as a directed acyclic graph with a
polynomial number of vertices. The restriction of polylogarithmic depth is an abstraction of
massive parallelizability. The restriction of logarithmic-space uniformity means that there
exists a logarithmic-space deterministic Turing machine that generates the description of
the circuit. Consequently, the circuit is polynomial in size with the uniformity condition
allowing the circuit to be viewed as as algorithm The problems in class NC are instances
of efficiently computable problems and therefore are contained in P.

Also, let us denote NC(poly) to be the class that consists of all functions computable
by polynomial-space uniform families of Boolean circuits having polynomial-depth. The
NC(poly) circuits satisfy the following property. Let f : {0, 1}∗ → {0, 1}∗ is a function
computable in NC(poly) and g : {0, 1}∗ → {0, 1}∗ is a function computable in NC. Then
the composition g ◦ f (if it is well defined) is also computable in NC(poly). This follows
from the most straightforward way of composing the families of circuits that compute f
and g, along with the observation that the size of f(x) is at most exponential in |x|.

The NC(poly) circuits can be potentially exponential in size and hence can be trivially
simulated in exponential-time. They do not necessarily represent efficient computation.
However, the restriction of polynomial depth is a significant restriction in their computa-
tional power. This is best exemplified by the classic result of Borodin [Bor77]. A corollary
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of Borodin’s result is that when restricted to promise problems, we have

NC(poly) = PSPACE.

The main idea behind the containment NC(poly) ⊆ PSPACE is that in polynomial-space
it is possible to do a space efficient depth-first traversal of a directed acyclic graph of
polynomial-depth aka NC(poly) circuit.

The other containment is not hard to follow. One of the ways of showing the contain-
ment is to show that a PSPACE-complete problem can be solved by NC(poly) circuits.
We precisely do this below using the following problem.

Input. An exponential-size graph described succinctly by a polynomial-time generated
family of polynomial-size circuits and two designated nodes s and t.

Ouput. A Boolean value representing whether there exists a path between s and t. In
other words, the value is 1 if and only if there exists a path between s and t.

When we say that the graph is described succinctly by a circuit, we mean that the
circuit takes two inputs s and t and outputs 1 if and only if there is an edge between
s and t. One should also note that a “scaled-down” version of the problem is complete for
L, the class of problems solvable on a deterministic Turing machine that uses logarithmic-
space. The fact that the above problem is PSPACE-complete has been shown by Lozano
and Balcázar [LB90].

Now we describe an NC(poly) circuit for the above problem. The algorithm for the
problem is a two-step procedure as follows.

1. Compute the adjacency matrix of the exponential-size graph from its circuit description.
Let the adjacency matrix be denoted A.

2. Compute the transitive-closure of the graph TA using the identity

TA = I + A+ A2 + · · ·+ AN

where N is the number of vertices in the graph. Here the addition and multiplication
are over Boolean variables. Output the (s, t)-entry of TA.

Given the circuit description of the problem, the first step can be done exactly in NC(poly)
by computing every entry of the adjacency matrix using the circuit describing the graph in
parallel. The second step can be done in NC (where the input is the size of the graph). This
is straightforward to see because it involves Boolean matrix addition and multiplication
for which NC algorithm exists. The matrix computation Ai can be done using repeated
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squaring trick, which increases the depth by dlog2Ne. The final computation involves
outputting the (s, t)-entry of TA, which by the property of transitive-closure of the graph
shows an existence of a path between s and t. We see that composing the two circuits
gives us the desired NC(poly) for the above problem.

5.2.2 Matrix multiplicative weights update method

In this section, we discuss the matrix variant of multiplicative weights update method. The
proof of our main result is heavily based on this method. Before we proceed, we describe
the basic multiplicative weights update method for some intuition.

Multiplicative weights update method: Let us consider a scenario where we have
n experts, each making a prediction on the outcome of a game. They win or lose the
bet depending on their prediction. Our goal is to devise an algorithm whose average loss
over long run is close to the average loss of the best expert. The algorithm proceeds
by maintaining a certain distribution over the experts, where the weight associated with
each expert is tied with the expert’s performance in the previous rounds. At every round,
the weights on the experts are updated by a multiplicative rule and hence the name,
multiplicative weights update method.

The algorithm works in a more general scenario where the number of possible outcomes
is non-binary. To account for this general setting, we assume that a cost is associated with
choosing an expert. For now we assume that the cost associated with n experts at some
round t is given to the algorithm in form of a vector c(t). The cost is revealed only after
the algorithm picks an expert. In more concrete settings, the cost is usually formulated in
terms of the problem in hand. The only assumption we make about the cost is that

0 ≤ c(t) ≤ ē (5.1)

where ē is the vector of all 1’s. The assumption is due to technical reasons. Often the
assumption does not hold and we briefly mention how to handle this case after describing
the algorithm.

Suppose the algorithm picks the experts from a probability distribution p(t). Then the
expected cost incurred by the algorithm is given by

〈
c(t), p(t)

〉
. The total expected cost of

the algorithm and the cost of always choosing the best expert after T rounds are

T−1∑
t=0

〈
c(t), p(t)

〉
and min

i

{
T−1∑
t=0

c(t)[i]

}

respectively. The algorithm is described below.
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Let ε ≤ 1/2 and the initial weight for an expert i is w(0)[i] := 1. Repeat for every t
from 0 to T − 1:

1. Choose expert i according to the distribution p(t), where

p(t) =

{
w(t)[1]

w
(t)
sum

, . . . ,
w(t)[n]

w
(t)
sum

}
and w(t)

sum =
n∑
i=1

w(t)[i].

2. Given the cost vector c(t), update the weights of the expert by the following rule:

w(t+1)[i] = w(t)[i](1− ε)c(t)[i].

The choice of the uniform weight at the start of the algorithm represents our complete
lack of knowledge about the experts. The algorithm monitors the performance of experts
and skews the distribution in favor of the experts who performed well in the previous
iterations. The skewing of the distribution is done by using the update rule described in
step 2.

It holds that after T rounds, the average cost incurred by the algorithm and the average
cost of any expert i follows the following relationship:

1

T

T−1∑
t=0

〈
c(t), p(t)

〉
≤ 1 + ε

T

T−1∑
t=0

c(t)[i] +
log n

εT
.

The proof can be found in the PhD thesis of Kale [Kal07]. When designing algorithms for
some problem using the multiplicative weights update method, often (5.1) does not hold.
However, there exists a parameter χ such that the cost vector satisfies

0 ≤ c(t) ≤ χē.

The parameter χ depends on the problem in hand. In such a scenario, we redefine the
cost by dividing the original cost by χ. The performance of the method depends on χ as
follows:

1

T

T−1∑
t=0

〈
c(t), p(t)

〉
≤ 1 + ε

T

T−1∑
t=0

c(t)[i] +
χ log n

εT
.

Matrix multiplicative weights update method: The matrix variant of multiplicative
weights update method is a generalization of the algorithm described above to Hermitian
operators in the most natural way. We discuss two formalism in this case: the loss matrix
formalism and the gain matrix formalism. Roughly speaking, the loss matrix formalism
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relates the average loss of the matrix multiplicative weights update method with the min-
imum average loss over all experts. On the other hand, the gain matrix formalism relates
the average gain of the matrix multiplicative weights update method with the maximum
average gain over all experts. The notions of loss matrices and gain matrices is made
precise below.

We first describe the loss matrix formalism. Fix a complex Euclidean space X = Cn.
One associates every rank-one density operator uu∗ ∈ D (X ) with an expert. Given a loss
matrix C ∈ Herm (X ), the loss of an expert uu∗ is given by 〈C, uu∗〉. Similar to the basic
setting, we assume that the loss matrix satisfies the relationship

0 � C � IX .

This is the only assumption we make on the algorithm. The most natural way of rep-
resenting a probability distribution over the experts is by using density operators. More
specifically, given an ensemble (p[u], uu∗), one uses the density operator

ρ =
∑
u

p[u] uu∗

to represent the distribution over the experts. Conversely, given a density operator ρ,
the spectral decomposition gives a canonical distribution over the experts. With these
associations in mind, we describe the matrix multiplicative weights update method below.

Let ε ≤ 1/2 and initialize the weight operator W (0) := IX . Repeat for every t from 0
to T − 1:

1. Use the density operator ρ(t) defined as

ρ(t) :=
W (t)

Tr (W (0))
.

2. Observe the cost operator C(t) and update the weights of the expert by the following
rule:

W (t+1) = exp

(
−ε

t∑
j=0

C(j)

)
.

It holds that after T rounds, the average loss incurred by the algorithm and the average
loss of any expert uu∗ follows the relationship:

exp(−ε)
T

T−1∑
t=0

〈
C(t), ρ(t)

〉
≤ 1

T

T−1∑
t=0

〈
C(t), uu∗

〉
+

log n

εT
. (5.2)
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The minimum loss over all experts in this setting is

min
u

{
T−1∑
t=0

〈
C(t), uu∗

〉}
= λn

(
T−1∑
t=0

C(t)

)
.

The above follows simply from the variational characterization of eigenvalues of Hermitian
matrices.

Now we turn to describe the gain matrix formalism. The setting and the assumption
is same except that we talk about gain matrices instead of loss matrices. The algorithm is
essentially the same except that the update rule is

W (t+1) = exp

(
ε

t∑
j=0

C(j)

)
.

It holds that after T rounds, the average gain of the algorithm and the average gain of any
expert uu∗ follows the relationship:

exp(ε)

T

T−1∑
t=0

〈
C(t), ρ(t)

〉
≥ 1

T

T−1∑
t=0

〈
C(t), uu∗

〉
− log n

εT
. (5.3)

Again from the variational characterization of eigenvalues of Hermitian matrices, the max-
imum gain over all experts in this setting is

max
u

{
T−1∑
t=0

〈
C(t), uu∗

〉}
= λ1

(
T−1∑
t=0

C(t)

)
.

In the algorithm described below, we use both the loss and gain matrix formalism.

5.3 SDP for single-coin quantum interactive proofs

In this section, we demonstrate the semidefinite programming characterization of the single-
coin quantum interactive proof systems. Recall that a single-coin quantum interactive
proof system proceeds by prover sending a register X upon which the verifier sends a
random bit a back to the prover. The prover finally sends another register Y. The verifier
measures the two registers and decides to accept or reject depending upon the outcome of
the measurement operation.

Given two m-qubit registers, X and Y whose content depends on the bit a ∈ {0, 1} cho-
sen uniformly at random, any strategy adopted by the prover can be exactly characterized
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by density operators
{ρa : a ∈ {0, 1}} ⊂ D (X ⊗ Y)

that satisfy the following equation

TrY(ρ0) = TrY(ρ1). (5.4)

The necessity of the condition follows from the fact that the content of X is independent
of the bit a send to the prover. The sufficiency of the condition follows from Theorem 5,
which states that if the prover holds a purification of the quantum state in X, then the
prover can generate all possible states ξ ∈ D (X ⊗ Y) by applying a suitable quantum
operation on Y such that TrY(ξ) agrees with the quantum state in X.

Moreover, given that the measurement operators corresponding to outcome accept are
Π0

1 and Π1
1, it immediately follows that the maximum success probability of the prover is

given by the expression
1

2

〈
Π0

1, ρ0

〉
+

1

2

〈
Π1

1, ρ1

〉
(5.5)

subject to the constraint that ρ0, ρ1 ∈ D (X ⊗ Y) satisfy (5.4). This is clearly an instance
of a semidefinite program, where one wishes to maximize (5.5) subject to the constraint
that two density operators ρ0 and ρ1 satisfy (5.4).

We first modify the semidefinite program to a form that is well-suited for our approach.
Let

P0 = Π0
1 + αΠ0

0 and P1 = Π1
1 + αΠ1

0

for a positive number α. We will choose α = 4 later on. Any smaller choice of α will work,
however, the choice of α = 4 is sufficient for the correct operation of the algorithm. Since
the elements of the sets {Π0

1,Π
0
0} and {Π1

1,Π
1
0} are projection operators, and Π0

1+Π0
0 = IX⊗Y

and Π1
1 +Π1

0 = IX⊗Y , it follows that P0 and P1 are positive definite operators, with inverses
given by

P−1
0 = Π0

1 +
1

α
Π0

0 and P−1
1 = Π1

1 +
1

α
Π1

0.

A simple calculation shows that

1

2

〈
Π0

1, ρ0

〉
+

1

2

〈
Π1

1, ρ1

〉
≤ 1

2

〈
P−2

0 , ρ0

〉
+

1

2

〈
P−2

1 , ρ1

〉
≤ 1

2

〈
Π0

1, ρ0

〉
+

1

2

〈
Π1

1, ρ1

〉
+

1

α2
.

Moreover, since Pa is a positive definite operator for both choices of a, it holds that PaρaPa
range over all positive semidefinite operators as ρa does. Hence, by defining operators Q0

and Q1 as
Q0 = P−1

0 ρ0P
−1
0 and Q1 = P−1

1 ρ1P
−1
1

the semidefinite program described by (5.4) and (5.5) is equivalent to the semidefinite
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program, where one maximizes the quantity

Tr

(
1

2
Q0 +

1

2
Q1

)
over all positive semidefinite operators Q0 and Q1 that satisfy the positive semidefinite
inequalities TrY(P0Q0P0) � ξ and TrY(P1Q1P1) � ξ for some choice of ξ ∈ D (X ). Let P
and Q be the operators

P =

(
(Π0

1 + αΠ0
0) 0

0 (Π1
1 + αΠ1

0)

)
∈ Pos (Z ⊗ X ⊗ Y) (5.6)

and

Q =

(
1
2
Q0 0
0 1

2
Q1

)
∈ Pos (Z ⊗ X ⊗ Y) .

Here the complex Euclidean space Z = C2 can be thought of as the space corresponding
to verifier’s coin toss. With this simple modification, the semidefinite program for single-
coin quantum interactive proof system can be written as follows. We denote the resulting
semidefinite program as SDP(P ).

Primal problem

maximize: Tr (Q)

subject to: TrY(PQP ) � 1

2
IZ ⊗ ξ,

Q ∈ Pos (Z ⊗ X ⊗ Y) ,

ξ ∈ D (X ) .

Dual problem

minimize: µ

subject to:
1

2
TrZ (R) � µIX ,

P (R⊗ IY)P � IZ⊗X⊗Y ,
R ∈ Pos (Z ⊗ X ) .

The primal and dual problems of SDP(P ) are not written in the forms described in
Chapter 3. However, it is not hard to see that one can write them in one of the forms. We
utilize the above form because it is more suited to the algorithm and its analysis presented
in Section 5.4. Before we proceed, let us convince ourselves that the “dual problem” above
is indeed the dual to the primal problem.

Let Ψ : L (Z ⊗ X ⊗ Y ⊕ X ) → L (Z ⊗ X ⊕ C1) be the super-operator whose action is
described as (

Q ∗
∗ ξ

)
Ψ−→
(

TrY(PQP )− 1
2
IZ ⊗ ξ 0

0 Tr(ξ)

)
.

The adjoint super-operator Ψ∗ : L (Z ⊗ X ⊕ C1) → L (Z ⊗ X ⊗ Y ⊕ X ) is therefore the
super-operator whose action is described as follows:(

R ∗
∗ µ

)
Ψ∗−→
(
P (R⊗ IY)P 0

0 µIX − 1
2

TrZ (R)

)
.
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Writing the primal objective function in the appropriate form, we observe that the dual
constraint is (

P (R⊗ IY)P 0
0 µIX − 1

2
TrZ (R)

)
�
(

IZ⊗X⊗Y 0
0 0

)
and the dual objective function is(

0 0
0 1

)
∈ Pos

(
Z ⊗ X ⊕ C1

)
.

It follows from above that the dual problem is minimizing the scalar quantity µ subject to
the constraints

P (R⊗ IY)P � IZ⊗X⊗Y and
1

2
TrZ(R) � µIX .

This is exactly the dual problem stated above. It is immediate that the for any positive
semidefinite operator R, the positive real number µ satisfying TrZ(R) � µIX is the operator
norm of TrZ(R). We also remark that the usage of terms “maximize” and “minimize” is
justified for the above primal-dual pair because Slater points exist for both primal and
dual problems:

(Q̂, ξ̂) =

(
IZ⊗X⊗Y

4 dim(X ⊗ Y)
,

IX
dim(X )

)
and (µ̂, R̂) = (α, αIZ⊗X ) .

Since the objective value of the problems are bounded by 1, by Theorem 9, the optimum
values of the primal and dual problems are equal and attained.

5.4 NC(poly) simulation of QIP

Given that NC(poly) characterizes PSPACE, it is natural to consider showing that one can
approximately solve SDP(P ) in NC(poly). It also helps our cause that various matrix op-
erations such as matrix addition, matrix multiplication, matrix inversion, tensor product,
and scalar multiplication are known to be computable in NC. In addition to them, com-
putations such as matrix exponentiation, matrix square root, and spectral decomposition
can be approximated with high precision within NC.

The assumption that a promise problem A = (Ayes, Ano) belongs to QIP implies that
there exists a single-coin quantum interactive proof system for the problem described in
Section‘5.1 with the following completeness and soundness conditions.

1. Completeness. For every x ∈ Ayes, there exists a strategy for the prover that causes the
verifier to accept with probability 1.
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2. Soundness.For every x ∈ Ano, regardless of whatever strategy adopted by the prover,
the probability that the verifier accepts is at most 1/2 + ε for ε = 1/64.

As noted before, one can assume ε to be exponentially close to 0. However, the choice
of ε is sufficient for correct functioning of the algorithm. Recall that, the optimum value of
SDP(P ) is at least the maximum success probability of the prover and at most 1/α2 plus
the maximum success probability of the prover. For the choice of α = 4, the completeness
and soundness conditions impose the following promise on the optimum value of SDP(P ).

1. If x ∈ Ayes, then the optimum value of the semidefinite program SDP(P ) is at least 1.
In other words, there exists a primal feasible solution with objective value 1.

2. If x ∈ Ano, then the optimum value of the semidefinite program SDP(P ) is at most
1/2+ε+1/α2 < 5/8. In other words, there exists a dual feasible solution with objective
value at most 5/8.

With this promise in mind, we show that a promise problem A = (Ayes, Ano)in QIP is
also contained in NC(poly) as follows. We consider a two-stage computation to distinguish
between the two cases as follows.

1. The first stage of the computation computes explicit matrix representations of the
projection operators Π0

0, Π0
1, Π1

0, and Π1
1 from given input string x. This computation

can be done exactly in NC(poly).

2. The second stage of the computation runs the algorithm described in the next subsec-
tion on the semidefinite program SDP(P ) described by the four projection operators
mentioned in item 1.

We first demonstrate how the first step can be done in NC(poly). Notice that the
verifier’s circuit corresponding to both choices of a ∈ {0, 1} is composed of polynomial
number of Hadamard, Phase, and Toffoli gates followed by a measurement operation.
Following Marriott and Watrous [MW05], the measurement operation for both choices of
a ∈ {0, 1} are described by diagonal projection operators. Given that the registers X and
Y are m-qubit registers, each of the gates can be written explicitly as a 22m × 22m matrix,
the entries of each matrix being from the set {−1, 0, 1, ι} modulo the normalization factor
of
√

2 for each Hadamard gate. The normalization factor for each Hadamard gate can be
accounted for by counting the number of such gates. If r is the number of Hadamard gates,
the projection operator Πa

b for a, b ∈ {0, 1} can be written as

Πa
b =

1

2r
(
Ua

1 . . . U
a
q

)∗
Λa
b

(
Ua

1 . . . U
a
q

)
,
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where {Λa
0,Λ

a
1} are the diagonal projection operators corresponding to the verifier’s message

a ∈ {0, 1} and the matrix entries of each Ua
j is from the set {−1, 0, 1, ι}. Computing Πa

b for
each a, b ∈ {0, 1} can be done in NC(poly) by first computing each entry of the matrices
Ua

1 , . . . , U
a
q and Λa

b independently by an NC(poly) circuit and then composing it by an NC
circuit that performs matrix multiplication.

The second stage of the computation is to run the algorithm described in the following
subsection on SDP(P ). The goal of the algorithm is to accept if the optimum value of
SDP(P ) is at least 1 and reject if the optimum value of SDP(P ) is at most 5/8. For the
whole computation to be in NC(poly), this stage of computation has to be implemented
in NC, which is described in the remainder of this section.

5.4.1 A parallel semidefinite programming algorithm

This section presents the parallel algorithm for SDP(P ). Let

Π0
0, Π0

1, Π1
0, Π1

1 ∈ Pos (X ⊗ Y)

be the four projection operators generated by the NC(poly) circuit as described above.
The projection operators satisfy

Π0
0 + Π0

1 = Π1
0 + Π1

1 = IX⊗Y ,

for vector spaces X and Y both having dimension M = 2m.

For α = 4 and P as defined in (5.6), if the optimum of the semidefinite program
SDP(P ) is at least 1, then the algorithm outputs accept and if the optimum is at most
5/8, then the algorithm outputs reject. We remark that the algorithm does not try to
find an approximation to the optimum value of the semidefinite program. Instead, it
either generates a primal feasible solution with objective value greater than 5/8 or a dual
feasible solution with objective value strictly less than 1, and accepts or rejects based on
the solution generated.

Now we begin describing the desired algorithm for the semidefinite program SDP(P ).
Let

α = 4, γ =
4

3
, ε =

1

64
, δ =

ε

α2
, and T =

⌈
8γ log(M)

ε2δ

⌉
,

and

P =

(
(Π0

1 + αΠ0
0) 0

0 (Π1
1 + αΠ1

0)

)
, ρ(0) =

1

2M2
IZ⊗X⊗Y , and σ(0) =

1

M
IX .

The algorithm is as follows.

74



1. Compute P , ρ(0), σ(0), and T .

2. For every t in {0, 1, . . . , T − 1}, repeat the following steps:

(a) Compute

Z(t) ← γ

2
IZ ⊗ σ(t) − TrY

(
Pρ(t)P

)
and compute the projection ∆(t) onto the negative eigenspace of Z(t). Compute

β(t) =
〈
∆(t) ⊗ IY , Pρ(t)P

〉
.

If β(t) ≤ ε then output accept and stop.

(b) Compute

X(t+1) ← exp

(
−

t∑
j=0

εδ

β(j)
P
(
∆(j) ⊗ IY

)
P

)

Y (t+1) ← exp

(
t∑

j=0

εδ

β(j)

(
TrZ

(
∆(j)

)))

and

ρ(t+1) ← X(t+1)

Tr (X(t+1))
and σ(t+1) ← Y (t+1)

Tr (Y (t+1))

3. If the algorithm has not stopped during any iteration of step 2 then output reject and
stop.

Before presenting the analysis of the algorithm, we briefly discuss the intuition behind
the algorithm itself. The algorithm is inspired by the Arora-Kale framework [AK07] for
solving semidefinite programs by matrix multiplicative weights update method. A rough
sketch of the algorithm is as follows. It is an iterative procedure that tries to construct
a suitable primal feasible solution that will demonstrate that the optimum value of the
semidefinite program is at least 1. At every step of the iteration, the algorithm checks
whether the candidates for primal feasibility are approximately feasible using a suitable
condition. If the condition is satisfied, then the algorithm halts and accepts. Otherwise,
the algorithm updates the candidate solutions to obtain better candidate solutions and
repeat the process again. If the condition for approximate primal feasibility is not satisfied
for a certain number of iterations, the algorithm halts and rejects. Each of the three steps
of the algorithm described above serves the following purposes.

1. The first step of the algorithm computes the positive semidefinite operator P that
specify the objective function and the primal constraints, and various parameters on
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which the algorithm operates. It also computes the initial candidate solutions for primal
feasibility.

2. The second step of the algorithm is an iterative procedure, which checks if the candidate
solutions can be used to obtain a primal feasible solution that guarantees that the
optimum value of SDP(P ) is at least 1. This is step 2(a) of the algorithm. The next
step (step 2(b)) is where the current candidate solutions are updated to new candidate
solutions.

3. The third step of the algorithm merely halts and outputs reject thereby implying that it
has failed to generate a primal feasible solution with the desired objective value. In this
case, the algorithm guarantees the existence of a dual feasible solution with objective
value strictly less than 1.

In greater detail, the functioning of the algorithm is as follows. We emphasize that
the algorithm does not attempt to approximate the optimum value of SDP(P ), but merely
attempts to determine whether its optimum value is at least or at most 1/γ = 3/4. Given
the task at hand, it suffices to show that the optimum value is more or less than 1/γ by
exhibiting a primal or a dual feasible solution with objective value 1/γ, respectively. From
the promise on the optimum value of SDP(P ), it is fairly straightforward to observe that if
there exists a primal feasible solution with objective value 1/γ, then the optimum value is
at least 1, and likewise if there exists a dual feasible solution with objective value 1/γ, then
the optimum value is at most 5/8. Note that the algorithm can be run for different choices
of 1/γ to obtain an increasingly accurate approximation of the optimum value. However,
for our purposes it is not required to get an accurate approximation of the optimum value
of SDP(P ).

There is a certain asymmetry in the algorithm. At every iteration, the algorithm
always tries to generate a primal feasible solution with objective value 1/γ and checks if
the candidate solutions are primal feasible or not. If they are not, the algorithm generates
a certificate that guarantees that the candidate solutions are not feasible. If the algorithm
cannot generate the desired primal feasible solution for a certain number of iterations,
then it uses the certificates to construct a dual feasible solution with objective value close
enough to 1/γ. The use of certificates to generate a dual feasible solution is one of the
most important aspects of the algorithm.

The variables ρ(t) and σ(t) generated in step 2(b) in successive iterations within the
algorithm are operators in correspondence with the primal candidate solutions Q(t) and ξ(t),
respectively. The initial choices for ρ(0) and σ(0) are identity operators of the appropriate
dimension, scaled down to have unit trace. They represent the complete lack of information
at the start of the algorithm and may not form a primal feasible solution. In this respect,
our algorithm can be thought of as an instance of infeasible start methods for solving
semidefinite programs. At every step, the algorithm makes sure that ρ(t) and σ(t) are
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density operators. This allows us to implicitly define the candidate solutions for primal
feasibility as

Q(t) :=
ρ(t)

γ
and ξ(t) := σ(t).

From the association of ρ(t) and Q(t), it follows that the objective value corresponding to
the operator Q(t) is

Tr
(
Q(t)

)
=

3

4
.

Given that the primal candidate solutions Q(t) and ξ(t) always attain the desired objective
value, the objective of the algorithm reduces to finding out if they are close to a primal
feasible solution. It is a simple observation that the candidate solutions are primal feasible
if the projection on the negative eigenspace of the operator Z(t), or alternately,

IZ ⊗ ξ(t) − TrY
(
PQ(t)P

)
is the zero operator. However, as we see later in the analysis, it suffices to show that the
candidate solutions for primal problem yield a setting that is close to satisfying the primal
constraints above. The notion of closeness is described by the real parameter β(t), whose
specification is well-suited to the analysis of the algorithm. At a very informal level, a
very small value of β(t) implies that the weights on the negative eigenspace of Z(t) are very
small relative to the current choices of primal candidate solutions Q(t) and ξ(t). It is not
difficult to show, as is done in the formal analysis that follows in the next subsection, that
if ρ(t) and σ(t) provide a setting of Q(t) and ξ(t) for which β(t) is small (step 2(a)), then
these operators can be appropriately massaged to yield a truly feasible setting without
sacrificing the objective value by too much. In such a scenario, the algorithm generates a
certificate that the optimum value of SDP(P ) is at least 1.

On the other hand, if it so happens that a given choice of ρ(t) and σ(t) fails to yield
a setting for Q(t) and ξ(t) that is close to being primal feasible, then the algorithm can
generate a certificate of this fact. This certificate is unsurprisingly the projection operator
on the negative eigenspace of Z(t), which is denoted ∆(t) in the algorithm. The projection
operator serves two distinct purposes in the algorithm as described in the following two
paragraphs.

One of the purposes of the operator ∆(t) is to update the current candidate solution to
a new (and possibly better) candidate solution, as described in step 2(b) of the algorithm.
This step is where the matrix multiplicative weights update method takes place. The new
candidate solutions ρ(t+1) and σ(t+1) are generated from the previously computed values of
∆(j) and β(j), for j = 0, . . . , t. Informally speaking, one can think that the effect of the
matrix exponentials in these generations is to suppress the weights of ρ(t+1) and boast the
weights of IZ⊗σ(t) corresponding to the negative eigenspaces of Z(t). Of course, this is only
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an informal explanation: technical properties of the matrix exponentials are necessary for
a formal demonstration that the algorithm operates correctly. We also note that the two
updates in step 2(b) of the algorithm is associated with the loss and gain matrix formalism
as describes in Section 5.2.2.

The other purpose of these operators is to implicitly construct a feasible solution R for
the dual problem. As noted above, unlike the primal variables Q and ξ, the feasibility of
the dual candidate solutions can only be guaranteed after certain number of iterations. It
holds that if for a logarithmic number of successive iterations, the algorithm fails to find
a setting of (Q(t), ξ(t)) that is close to being primal feasible, a dual-feasible setting for R
achieving a dual objective value close to 1/γ can be found. It is critical for the parallel
simulation of the algorithm that the number of iterations T is logarithmic in the size of
the operators.

5.4.2 Analysis of the algorithm (assuming exact computations)

Before we proceed with the analysis of the algorithm, we require the following observations.
For any operator A ∈ L (X ), the exponential of A is defined as

exp(A) = IX +
∞∑
i=1

Ai

i!

Also, for any two operators A,B ∈ Herm (X ), the Golden-Thompson inequality states the
following:

Tr [exp(A+B)] ≤ Tr [exp(A) exp(B)] .

A proof of the inequality can be found in section IX.3 of Bhatia [Bha97]. We also require
the following two simple lemmas.

Lemma 14. Let R ∈ Pos (X ) be an operator satisfying R � IX . Then for every real
number η, it holds that

exp(ηR) � IX + η exp(η)R.

Proof. It is sufficient to prove the inequality for a scalar λ ∈ [0, 1], for then the operator
inequality follows by considering a spectral decomposition of it and the commutativity of
the operator and its exponential. If λ = 0 the inequality is immediate, so assume 0 < λ ≤ 1.

Consider the function f(λ) = exp(ηλ). By the Mean Value Theorem, there exists a
value λ0 ∈ (0, λ) such that

f(λ)− f(0)

λ
= f ′(λ0) =⇒ exp(ηλ)− 1

λ
= η exp(ηλ0) ≤ η exp(η),
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from which the inequality follows.

Lemma 15. For any positive semidefinite operator R ∈ Pos (Z ⊗ X ) such that Z = C2.
Then

R � 2IZ ⊗ TrZ(R).

Proof. Let

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, and Y =

(
0 −ι
ι 0

)
be the two-dimensional Pauli operators. It holds for any R ∈ L (Z ⊗ X )

IZ ⊗ TrZ(R) =
1

2
[R + (X ⊗ IX )R(X ⊗ IX ) + (Y ⊗ IX )R(Y ⊗ IX ) + (Z ⊗ IX )R(Z ⊗ IX )]

and hence R � 2IZ ⊗ TrZ(R).

We now show that the algorithm described at the beginning of the section performs
as desired. Recall that, if x ∈ Ayes then the optimum value of SDP(P ) is at least 1 and
if x ∈ Ano then the optimum value of SDP(P ) is at most 5/8. In what follows below,
we precisely establish the two facts. The analysis presented below is done under the
assumption that every step of the algorithm can be performed exactly. However, some of
the computations performed by the algorithm cannot be done exactly and this is formally
discussed in the following subsection.

The case when algorithm accepts: Assume first that the algorithm accepts. Let the
algorithm accepts at any iteration t. We write ρ, σ, ∆, and β instead of ρ(t), σ(t), ∆(t),
and β(t) for the sake of clarity. Since ∆ is the projection onto the negative eigenspace of
γIZ ⊗ σ − TrY(PρP ), we have that

−∆ TrY(PρP )∆ � ∆
(γ

2
IZ ⊗ σ − TrY(PρP )

)
∆ � γ

2
IZ ⊗ σ − TrY(PρP ).

We conclude that
TrY(PρP ) � γ

2
IZ ⊗ σ + ∆ TrY(PρP )∆

and therefore using Lemma 15,

TrY(PρP ) � IZ ⊗
[γ

2
σ + 2 (TrZ (∆ TrY(PρP )∆))

]
.
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Given that
β = 〈∆⊗ IY , PρP 〉 = 〈∆,TrY(PρP )〉

it follows that

TrY

[
P

(
ρ

γ + 4β

)
P

]
� 1

2
IZ ⊗

(
γσ + 4 (TrZ (∆ TrY(PρP )∆))

γ + 4β

)
. (5.7)

Defining Q ∈ Pos (Z ⊗ X ⊗ Y) and ξ ∈ D (X ) as

Q =
ρ

γ + 4β
and ξ =

γσ + 4 TrZ (∆ TrY(PρP )∆)

γ + 4β

we observe that (5.7) can be alternately written as TrY (PQP ) � IZ ⊗ ξ, which implies
that (Q, ξ) form a primal feasible solution. Given that the algorithm has accepted, it holds
that β ≤ ε, and therefore the primal objective value obtained is

Tr (Q) =
1

γ + 4β
≥ 1

γ + 4ε
≥ 3

4
(1− 3ε) >

5

8
.

The case when algorithm rejects: Assume that the algorithm rejects. In this case,
β(t) > ε for every choice of t. Let

R :=
1 + 4ε

T

T−1∑
t=0

∆(t)

β(t)
. (5.8)

Below we show that µ = 7/8 and R form a dual feasible solution. This is done by estab-
lishing the following two operator inequalities:

P (R⊗ IY)P � IZ⊗X⊗Y and TrZ(R)/2 � µIX .

As we will see shortly, the first operator inequality follows from the loss matrix formalism
and the second operator inequality follows from the gain matrix formalism discussed in
Section 5.2.2. Note that the update that generates the operators X(0), . . . , X(T−1) resemble
the update in the loss matrix formalism with the associated loss matrix at iteration t dfined
as

C(t) =
δ

β(t)

(
P
(
∆(t) ⊗ IY

)
P
)
. (5.9)

Since the algorithm rejects, it is easy to observe that

∥∥C(t)
∥∥
∞ =

∥∥∥∥ δ

β(t)
P
(
∆(t) ⊗ IY

)
P

∥∥∥∥
∞
<
δ ‖P 2‖∞

ε
<
δα2

ε
= 1
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for every iteration t ∈ {0, . . . , T − 1}, and consequently it satisfies the assumption in the
matrix multiplicative weights update method. With this association in mind, let us proceed
with the first part of the analysis. Observe that for every choice of t = 0, . . . , T − 1, we
have

Tr
(
X(t+1)

)
= Tr

[
exp

(
−

t∑
j=0

εδ

β(j)
P
(
∆(j) ⊗ IY

)
P

)]

≤ Tr

[
exp

(
−

t−1∑
j=0

εδ

β(j)
P
(
∆(j) ⊗ IY

)
P

)
exp

(
− εδ

β(t)
P
(
∆(t) ⊗ IY

)
P

)]

= Tr

[
X(t) exp

(
− εδ

β(t)
P
(
∆(t) ⊗ IY

)
P

)]
where the inequality follows from Golden-Thompson inequality. Lemma 14 implies that

exp

(
− εδ

β(t)
P
(
∆(t) ⊗ IY

)
P

)
� IZ⊗X⊗Y −

εδ exp(−ε)
β(t)

P
(
∆(t) ⊗ IY

)
P

and consequently

Tr
(
X(t+1)

)
≤ Tr

(
X(t)

(
IZ⊗X⊗Y −

εδ exp(−ε)
β(t)

P
(
∆(t) ⊗ IY

)
P

))
= Tr

(
X(t)

)
− εδ exp(−ε)

β(t)

〈
X(t), P

(
∆(t) ⊗ IY

)
P
〉

=
[
Tr
(
X(t)

)](
1− εδ exp(−ε)

β(t)

〈
ρ(t), P

(
∆(t) ⊗ IY

)
P
〉)

.

Since
β(t) =

〈
ρ(t), P

(
∆(t) ⊗ IY

)
P
〉
,

it follows from above and the inequality 1− z ≤ exp(−z) for all z ∈ R that

Tr
(
X(t+1)

)
≤
[
Tr
(
X(t)

)]
exp (−εδ exp(−ε)) .

Applying the above inequality recursively yields

Tr
(
X(T )

)
≤

[
Tr
(
X(0)

)]
exp (−Tεδ exp(−ε)) = 2M2 exp (−Tεδ exp(−ε)) .

Now we turn to lower bound the quantity Tr
(
X(T )

)
, which in turn will help us establish

that R is dual feasible. For any Hermitian operator H ∈ Herm
(
Ck
)
, it holds that

Tr (exp(H)) ≥ exp (λk(H))
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and therefore

Tr
(
X(T )

)
= Tr

(
exp

(
−

T−1∑
t=0

εδ

β(t)
P
(
∆(t) ⊗ IY

)
P

))

≥ exp

(
−εδλ2M2

(
T−1∑
t=0

1

β(t)
P
(
∆(t) ⊗ IY

)
P

))
.

Combining the lower bound and the upper bound on Tr
(
X(T )

)
obtained above, we observe

that

exp

(
−εδλ2M2

(
T−1∑
t=0

1

β(t)
P
(
∆(t) ⊗ IY

)
P

))
≤ Tr

(
X(T )

)
≤ 2M2 exp(−Tεδ exp(−ε)).

The above inequality yields the following

λ2M2

(
1

T

T−1∑
t=0

1

β(t)
P
(
∆(t) ⊗ IY

)
P

)
≥ exp(−ε)− log(2M2)

Tεδ
. (5.10)

The above inequality does not resemble (5.2), however, we note that for our choice of loss
matrix (refer to (5.9)) it holds that the expected loss at every iteration t is δ. Substituting
this equality in (5.2) and rearranging term gives us (5.9). To show that R as defined
in (5.8) is dual feasible, we substitute the value of T in (5.10). We obtain that

λ2M2(P (R⊗ IY)P ) ≥ (1 + 4ε)

(
exp(−ε)− log(2M2)

Tεδ

)
≥ 1.

It follows from above that
P (R⊗ IY)P ≥ IZ⊗X⊗Y

implying that R forms a dual feasible solution of SDP(P ). It remains to prove that

TrZ(R)/2 � µIX

for some choice of µ. The analysis of this part is very similar to the analysis described
above except that we use the gain matrix formalism instead of the loss matrix formalism
below. The update that generates the operators Y (0), . . . , Y (T−1) resemble the update in
the gain matrix formalism with the associated gain matrix at iteration t defined as

C(t) :=
δ

β(t)

(
TrZ

(
∆(t)

))
. (5.11)
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For the above choice of gain matrix, we observe that

∥∥C(t)
∥∥
∞ =

∥∥∥∥ δ

β(t)
TrZ

(
∆(t)

)∥∥∥∥
∞
<

2δ

ε
=

2

α2
< 1

for every choice of t ∈ {0, . . . , T − 1} and hence the assumption of matrix multiplicative
weights update method is satisfied. By applying Golden-Thompson inequality again, we
have for every choice of t = 0, . . . , T − 1

Tr
(
Y (t+1)

)
= Tr

[
exp

(
εδ

t∑
j=0

TrZ
(
∆(j)

)
β(j)

)]

≤ Tr

[
exp

(
εδ

t−1∑
j=0

TrZ
(
∆(j)

)
β(j)

)
exp

(
εδ

TrZ
(
∆(t)

)
β(t)

)]

= Tr

[
Y (t) exp

(
εδ

TrZ
(
∆(t)

)
β(t)

)]

Using Lemma 14 once again, we obtain that

exp

(
εδ

β(t)
TrZ

(
∆(t)

))
� IX +

εδ exp(ε)

β(t)
TrZ

(
∆(t)

)
.

It follows that

Tr
(
Y (t+1)

)
≤
[
Tr
(
Y (t)

)](
1 +

εδ exp(ε)

β(t)

〈
TrZ

(
∆(t)

)
, σ(t)

〉)
.

Since ∆(t) is projection onto the negative eigenspace of
γ

2
IZ ⊗σ(t)−TrY

(
Pρ(t)P

)
, we have

the following positive semidefinite inequality

∆(t)
(γ

2
IZ ⊗ σ(t) − TrY

(
Pρ(t)P

))
∆(t) � 0

and consequently

〈
TrZ

(
∆(t)

)
, σ(t)

〉
=

〈
∆(t), IZ ⊗ σ(t)

〉
≤ 2

γ

〈
∆(t),TrY

(
Pρ(t)P

)〉
=

2β(t)

γ
.

Therefore,

Tr
(
Y (t+1)

)
≤
[
Tr
(
Y (t)

)](
1 +

2εδ exp(ε)

γ

)
≤
[
Tr
(
Y (t)

)]
exp

(
2εδ exp(ε)

γ

)
.
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By applying the above inequality recursively and observing that Y (0) = IY , we immediately
obtain that

Tr
(
Y (T )

)
≤M exp

(
2Tεδ exp(ε)

γ

)
.

On the other hand, we have

Tr
(
Y (T )

)
= Tr

[
exp

(
εδTrZ

(
T−1∑
t=0

∆(t)

β(t)

))]
≥ exp

[
εδλ1

(
TrZ

(
T−1∑
t=0

∆(t)

β(t)

))]
.

The lower and upper bounds on Tr
(
Y (T )

)
yield the following inequality:

λ1

(
TrZ

(
T−1∑
t=0

∆(t)

β(t)

))
≤ 2T exp(ε)

γ
+

log(M)

εδ
. (5.12)

The above inequality does not resemble (5.3), however, we note that for our choice of loss
matrix (refer to (5.11)) it holds that the expected loss at every iteration t is at most 2δ/γ.
Substituting this equality in (5.3) and rearranging term gives us (5.12).

Define the scalar quantity µ as

µ :=
1 + 8ε

γ
.

Using (5.12), we obtain

λ1 (TrZ(R)) =

(
1 + 4ε

T

)
λ1

(
TrZ

(
T−1∑
t=0

∆(t)

β(t)

))

≤ (1 + 4ε)

(
2 exp(ε)

γ
+

log(M)

Tεδ

)
≤ 2(1 + 8ε)

γ
= 2µ.

It follows that 1
2

TrZ(R) � µIX . Substituting the value of ε and γ, we observe that
µ < 7/8. This completes the construction of an appropriate dual feasible solution under
the assumption that the algorithm rejects.

To summarize, we have shown that if the optimum value of the semidefinite program
is at least 1, then the algorithm constructs (Q, ξ) that form a primal feasible solution with
objective value strictly greater than 5/8 and accepts. Similarly, if the optimum value is
smaller than 5/8, then the algorithm constructs (µ,R) that form a dual feasible solution
with objective value less than 7/8 and rejects. It is clear that the algorithm operates as
desired.
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5.4.3 Precision issues

In the previous subsection, we presented the analysis assuming that every computation
done by the algorithm is exact. However, some of the matrix computations required in the
algorithm cannot be done exactly in NC or for that matter any discrete model of compu-
tation. Nevertheless, we briefly sketch below how the analysis in the previous subsection
can be appropriately modified to accommodate for the approximate computations, pro-
vided we make certain assumptions about the quality of the approximation. While simple
matrix computations such as matrix addition, matrix multiplication, tensor product, and
matrix inverse can be done exactly, other computations such as singular value decomposi-
tion, square root of a positive semidefinite matrix, and matrix exponentiation cannot be
computed with zero precision error because of the unavoidable fact that the output of such
computations may involve irrational numbers.

The algorithm presented in the previous section refers to two such computations that
has to be approximated: computation of the negative eigenspace projections in step 2(a)
and matrix exponentiations in step 2(b). Assuming that the approximate computations
can be performed with sufficient accuracy (refer to the subsection following this one), the
analysis presented in the previous subsection can be used without any major complications
to show that the algorithm still operates as desired.

Keeping the objective of the algorithm in mind, we make the following assumptions on
the approximation of computation of negative eigenspace projection and matrix exponen-
tiation. We remark that the one can even get a much better approximation than what we
assume below. Let η > 0 be the accuracy parameter of the approximate computations.
Assume that

2η < ε.

For every choice of t ∈ {0, . . . , T − 1}, let ∆(t) be a positive semidefinite operator
satisfying ∥∥∥√∆(t) − Λ(t)

∥∥∥
∞
<

η2

50M
(5.13)

for Λ(t) being the true projection operator onto the negative eigenspace of Z(t) as defined
in step 2(a) of the algorithm. Since Λ(t) is a projection operator, it holds that∥∥∥√∆(t)

∥∥∥
∞
< 1 +

η2

50M
.

Here
√

∆(t) is the positive semidefinite operator that will be computed by the algorithm as
an approximation to the true projection Λ(t). That the operator Λ(t) can be approximated
to the accuracy described in (5.13) will be justified in the next subsection.

For every choice of t ∈ {0, . . . , T −1}, let ρ(t) and σ(t) be positive semidefinite operators
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that satisfy∥∥∥∥ρ(t) − X(t)

Tr (X(t))

∥∥∥∥
∞
<

η2

50M2
and

∥∥∥∥σ(t) − Y (t)

Tr (Y (t))

∥∥∥∥
∞
<

η2

10M
(5.14)

where X(t) and Y (t) are defined in step 2(b) of the algorithm. In addition to above,
we assume that both ρ(t) and σ(t) are density operators. We do not lose any generality by
assuming it. That these operators can be approximated to the accuracy described in (5.14)
will be justified in the next subsection.

Given that the negative eigenspace projection and matrix exponentiation can be ap-
proximated within the desired accuracy for any iteration t, the closeness parameter β(t),
defined in step 2(a) of the algorithm, can be computed exactly. More specifically, we define
β(t) not in terms of the true projection operator Λ(t); instead we define it in terms of ∆(t),
the approximation to the true projection operator as follows:

β(t) =
〈
∆(t) ⊗ IY , Pρ(t)P

〉
. (5.15)

Keeping in mind the assumptions made on the quality of approximation, we proceed with
the brief sketch of the modified analysis of the algorithm.

The case when algorithm accepts: Assume that the algorithm accepts at step t. To
begin, we note that for any three Hermitian operators A,B,C ∈ Herm (W), the following
norm inequality holds:

‖CAC −BAB‖∞ ≤ ‖B‖∞ + ‖C‖∞ · ‖A‖∞ · ‖B − C‖∞ .

Letting A = γ
2
IZ ⊗ σ(t) − TrY

(
Pρ(t)P

)
, B =

√
∆(t),and C = Λ(t), we have from (5.13),

‖B‖∞ + ‖C‖∞ ≤ 2 +
η2

50M
and ‖B − C‖∞ ≤

η2

50M
and ‖A‖∞ ≤ γ + α2 < 20.

This implies that the quantity∥∥∥Λ(t)
(γ

2
IZ ⊗ σ(t) − TrY

(
Pρ(t)P

))
Λ(t) −

√
∆(t)

(γ
2

IZ ⊗ σ(t) − TrY(Pρ(t)P )
)√

∆(t)

∥∥∥
∞

is strictly smaller than η2/M and therefore

√
∆(t)

(γ
2

IZ ⊗ σ(t) − TrY
(
Pρ(t)P

))√
∆(t)

� Λ(t)
(γ

2
IZ ⊗ σ(t) − TrY(Pρ(t)P )

)
Λ(t) +

η2

M
IZ⊗X . (5.16)
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It follows from above that

−
√

∆(t)
(
TrY(Pρ(t)P

)√
∆(t) � γ

2
IZ ⊗ σ − TrY

(
Pρ(t)P

)
+
η2

M
IZ⊗X .

The above inequality follows because Λ(t) is the true projection operator onto the negative
eigenspace of

γ

2
IZ ⊗ σ − TrY

(
Pρ(t)P

)
.

Therefore, using Lemma 15 on the operator
√

∆(t)
(
TrY(Pρ(t)P

)√
∆(t) ∈ Pos (Z ⊗ X ), we

have that

TrY
(
Pρ(t)P

)
� 1

2
IZ ⊗

(
γσ(t) + 4 TrZ

(√
∆(t) TrY

(
Pρ(t)P

)√
∆(t)

)
+

2η2

M
IX
)
.

Using the fact that

β(t) =
〈
∆(t) ⊗ IY , Pρ(t)P

〉
=
〈
∆(t),TrY

(
Pρ(t)P

)〉
= Tr

[
TrZ
√

∆(t)
(

TrY
(
Pρ(t)P

)√
∆(t)

)]
we obtain that

Q =
ρ(t)

γ + 4β(t) + 2η2

and

ξ =
γσ(t) + 4 TrZ

√
∆(t)

(
TrY

(
Pρ(t)P

)√
∆(t)

)
+ 2η2

M
IX

γ + 4β(t) + 2η2

satisfy all the primal constraints of SDP(P ). That is, TrY(PQP ) � 1

2
IZ ⊗ ξ for ξ ∈ D (X )

and Q ∈ Pos (Z ⊗ X ⊗ Y). Given that the algorithm accepts, it holds that β(t) ≤ ε and
hence the objective value of the primal solution is at least

1

γ + 2ε+ η2
>

1

γ + 4ε+ ε2

2

>
5

8
.

Therefore, under the assumption that (5.13) holds, the algorithm works as desired in the
accepting case.

The case when algorithm rejects: Assume that the algorithm rejects. Going through
the analysis as presented in the previous subsection, we have by Golden Thompson in-
equality,

Tr
(
X(t+1)

)
≤ Tr

(
X(t)

)
− εδ exp(−ε)

β(t)

〈
X(t), P

(
∆(t) ⊗ IY

)
P
〉
.
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At this point, we substitute the approximation ρ(t) stored by the algorithm for X(t)

Tr(X(t))
in

the above equation using the first norm inequality in (5.14). We observe that∣∣∣∣〈ρ(t), P
(
∆(t) ⊗ IY

)
P
〉
− 1

Tr (X(t))

〈
X(t), P

(
∆(t) ⊗ IY

)
P
〉∣∣∣∣ <

η2
∥∥P (∆(t) ⊗ IY

)
P
∥∥
∞

50

< η2.

As a consequence of the above inequality, we have

Tr
(
X(t+1)

)
≤
[
Tr
(
X(t)

)](
1− εδ exp(−ε)

β(t)

(〈
ρ(t), P

(
∆(t) ⊗ IY

)
P
〉
− η2

))
.

Since the algorithm rejects, it holds that ε < β(t) for every choice of t = 0, . . . , T − 1. By
our assumption on η, we have the following chain of inequalities: 2η < ε < β(t), and hence
2η2 < εβ(t). Moreover, from (5.15) we have that β(t) =

〈
ρ(t), P

(
∆(t) ⊗ IY

)
P
〉
. Using both

the observations in the previous equation, we obtain

Tr
(
X(t+1)

)
≤

[
Tr
(
X(t)

)] (
1− εδ exp(−ε)

(
1− ε

2

))
≤

[
Tr
(
X(t)

)]
exp

(
−εδ

(
1− ε

2

)
exp(−ε)

)
.

Applying the inequality recursively, we obtain

Tr
(
X(T )

)
≤ 2M2 exp

(
−Tεδ

(
1− ε

2

)
exp(−ε)

)
.

Going through the analysis as before, we have that

λM2(P (R⊗ IY)P ) ≥ (1 + 4ε)

((
1− ε

2

)
exp(−ε)− log(2M2)

Tεδ

)
≥ 1.

We now proceed to show that the scalar quantity µ is large enough even after incorpo-
rating the precision issues. Along similar lines, we have

Tr
(
Y (t+1)

)
≤
(

Tr
(
Y (t)

)
+
εδ exp(ε)

β(t)

〈
∆(t), Y (t)

〉)
At this point, we substitute the approximation σ(t) stored by the algorithm for Y (t) in the
above equation by using the second norm inequality in (5.14). As before, it immediately
follows that ∣∣∣∣〈∆(t), σ(t)

〉
− 1

Tr (Y (t))

〈
∆(t), Y (t)

〉∣∣∣∣ < η2
∥∥∆(t)

∥∥
∞

10
< η2.
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It follows from above that

1

Tr (Y (t))

〈
∆(t), Y (t)

〉
<
〈
∆(t), σ(t)

〉
+ η2 <

〈
∆(t), σ(t)

〉
+
ε2

4

and hence

Tr
(
Y (t+1)

)
≤
[
Tr
(
Y (t)

)](
1 +

εδ exp(ε)

β(t)

(〈
∆(t), σ(t)

〉
+
ε2

4

))
.

Recall that Λ(t) is the true projection on the negative eigenspace of

γ

2
IZ ⊗ σ(t) − TrY

(
Pρ(t)P

)
and consequently the operator inequality holds: Λ(t)

(
γ
2
IZ ⊗ σ(t) − TrY(Pρ(t)P )

)
Λ(t) � 0.

From (5.16) it follows that

γ

2

〈
∆(t), σ(t)

〉
≤
〈
∆(t) ⊗ IY , Pρ(t)P

〉
+
η2

M
Tr (IZ⊗X )

and hence 〈
∆(t), σ(t)

〉
<

2
(
β(t) + 2η2

)
γ

<
2β(t) + ε2

γ
.

Proceeding through the analysis presented in the previous subsection and simplifying, we
obtain

Tr
(
Y (t+1)

)
<

[
Tr
(
Y (t)

)](
1 +

εδ exp(ε)

β(t)

(
2β(t) + ε2

γ
+
ε2

4

))
≤

[
Tr
(
Y (t)

)]
exp

(
2εδ

(
1 + 2ε

3

)
exp(ε)

γ

)
.

Using the above inequality recursively yields

Tr
(
Y (T )

)
≤M exp

(
2Tεδ

(
1 + 2ε

3

)
exp(ε)

γ

)
.

Following the analysis of the previous subsection, we obtain that the largest eigenvalue of
the operator TrZ(R) is still at most 2µ as shown below.

λ1 (TrZ(R)) < (1 + 4ε)

(
2
(
1 + 2ε

3

)
exp(ε)

γ
+

log(M)

Tεδ

)
<

2(1 + 8ε)

γ
= 2µ.
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Hence as before

(µ,R) =

(
1 + 8ε

γ
,
1 + 4ε

T

T−1∑
t=0

∆(t)

β(t)

)
still form a dual feasible solution with dual objective value strictly less than 1. Therefore,
under the accuracy assumptions of the approximations , the algorithm works as desired in
the rejecting case too.

5.4.4 An NC implementation of the algorithm

The final part of the proof of the containment QIP ⊆ PSPACE is to show that the algorithm
presented earlier can be implemented in NC. We recall that NC is the class of all functions
(including predicates that represent promise problems) computable by logarithmic-space
uniform family of Boolean circuits of polylogarithmic depth.

Every entry of a matrix or the scalar quantities generated or used by the algorithm will
have rational real and imaginary parts, which can be denoted (a/b) + ι(c/d) and stored as
a quadruple (a, b, c, d) in binary notation. The length of any complex number with rational
real and imaginary parts is understood to be the total number of bits needed to specify
the quadruple.

It should be noted that the algorithm does the following matrix computations: matrix
addition, matrix multiplication, tensor product operation, iterated matrix addition and
multiplication, negative eigenspace projection, and matrix exponentiation. Out of these
matrix operations, except for negative eigenspace projection and matrix exponentiation,
every other matrix computations can be computed exactly in NC. We refer the reader to
the survey of von zur Gathen [Gat93] for more details.

As was mentioned in the previous subsection, the negative eigenspace projection in
step 2(a) and matrix exponentiation in step 2(b) of the algorithm cannot be computed
exactly. Based on the discussion in the previous subsection, however, it suffices to show that
both the computational problems can be approximated (within the accuracy prescribed
in the previous subsection) in NC. Below we describe how these computations can be
approximated in NC.

Negative eigenspace projection: Given a Hermitian operator H ∈ Herm (Cn), the
negative eigenspace projection problem asks for computing a positive semidefinite operator
∆ ∈ Pos (Cn) such that

‖∆− Λ‖∞ < ε

where Λ is the projection operator onto the negative eigenspace of H. That this compu-
tation can be performed in NC can be shown by considering a two step computation as
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described below.

1. Compute the positive and negative eigenvalues of H, each of them within very high
precision.

2. Compute the projection onto the space spanned by the eigenvectors of H with negative
eigenvalues.

The first step of the above procedure can be computed as follows. It is a well known fact
that the characteristic polynomial of an operator can be computed exactly in NC [Csa76].
This can be done by computing each coefficient of the polynomial using the Newton iden-
tities. First of all, writing the characteristic polynomial of the operator H as a monic
polynomial

χ(x) =
n∑
i=0

(−1)n−i an−i x
i

we observe that a1 = Tr(M). Second of all, the Newton identities claim that the coefficients
ak can be computed as

ak =
1

k

k∑
i=1

(−1)i−1 ak−i Tr
(
Ai
)
.

Given that the entries of M have rational real and imaginary parts, one can write the
characteristic polynomial as an integer polynomial. It is known that roots of integer
polynomials can be approximated within very high precision in NC provided they are
real [BFKT86, BP98]. For instance, the algorithm of Bini and Pan [BP98] to approximate
the roots of integer polynomials is a two step process roughly sketched as follows. The
first step of the algorithm computes an interleaving set such that some eigenvalues can
be computed within the desired accuracy and the rest of the eigenvalues are isolated in
the interleaved set. The second step of the algorithm approximates the isolated eigenval-
ues using Newton-Raphson method. We briefly remark that one can compute complex
roots of an integer polynomial in NC [Nef96]. For our purposes, it is important to dif-
ferentiate between positive and negative roots without any error. However, this is not
an issue as distinct non-zero roots of integer polynomials can neither be too close to one
another nor to zero [Mah61, Mah64, Bug04]. For two distinct roots q and r of a polynomial
p(x) = a0 + a1x+ · · ·+ anx

n, it holds that

|q − r| > (n+ 1)−(n+1)
(

max
i
{|ai |}

)−n+1

.

This bound is sufficiently large enough and the root finding algorithm can approximate
the roots within this separation in NC. The fact that these roots are not close to zero can
be observed by considering the polynomial xp(x), which has a zero root. Using these facts,
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we can approximate the roots of the characteristic polynomial and can distinguish between
negative and positive real roots without any error.

That the second step of the computation of the negative eigenspace projection problem
can be done in NC follows from the fact that in NC one can compute the eigenspace
corresponding to any eigenvalue of H. For an eigenvalue λ of H, let λ̃ be a sufficiently
close approximation of λ. Consider the non-singular operator

F = λ̃ICn −H.

It holds that F−1 divided by a sufficiently close approximation of the largest singular
value of F−1 is a very good approximation of the projection onto the eigenspace of M
corresponding to eigenvalue λ. This can be seen as follows. For λ̃ being a sufficiently close
approximation of λ, the largest singular value of F−1 is 1

|λ̃−λ| . Let κ > 0 be a sufficiently

close approximation of this quantity. Then the action of (κF )−1 on

H = λΠ +
∑
j:λj 6=λ

λjvjv
∗
j

is the operator  1

κ
(
λ̃− λ

)λΠ +
1

κ
(
λ̃− λ

) ∑
j:λj 6=λ

(
λ̃− λj

)
λjvjv

∗
j

 .

We can choose κ to be a sufficiently close approximation of λ̃− λ such that

1

κ
∣∣∣(λ̃− λ)∣∣∣

∥∥∥∥∥∥
∑
j:λj 6=λ

(
λ̃− λj

)
λjvjv

∗
j

∥∥∥∥∥∥
∞

< ε

for a choice of ε > 0 sufficient for our need. In such a case, (κF )−1 serves as an approxi-
mation of the projection onto the eigenspace of H corresponding to eigenvalue λ. In case
λ̃ = λ, we perturb λ̃ slightly to make F non-singular and proceed as before. By summing
the approximate projections onto the eigenspaces corresponding to the negative eigenvalues
(which can be distinguished from positive eigenvalues without any error), we can obtain
the desired approximation ∆2 of Λ.

Matrix exponentiation: Given a Hermitian operator H ∈ Herm (Cn) with the promise
that ‖H‖∞ < k, the matrix exponentiation problem asks for computing a positive semidef-
inite operator X ∈ Pos (Cn) such that
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‖X − exp(H)‖∞ < ε.

The fact that matrix exponentials can be approximated in NC follows by truncating the
series

exp(H) = ICn +H +
H2

2
+
H3

6
+ · · · (5.17)

to a number of terms linear in k + log(1/ε). The fact that only linear number of terms in
k+ log(1/ε) is required follows from a very simple observation on matrix exponentials and
the above series. More specifically, for any x ∈ R it holds that

exp(x)−
r−1∑
i=0

xi

i!
<

xr

r!

(
1− r + 1

r + 1− x

)
and consequently, given the bound on the operator norm of H, by taking the number of
terms r to be linear in k + log(1/ε), we can ensure that ‖X − exp(H)‖∞ < ε. To ensure
that the resulting approximation X is positive semidefinite, one can take an odd number
of terms in (5.17).

Given that every matrix computation can be either computed exactly or approximated
within the accuracy required by the algorithm by NC computations, it follows that every
iteration of the algorithm can be done in NC. To accommodate for the accuracy, we require
that the entries of the matrices processed by the algorithm are specified by O(M) bits,
where M is the dimension of vector spaces X and Y . As the number of iterations required
by the algorithm is at most logarithmic in M , the whole algorithm can be implemented in
NC by composing the circuits corresponding to each iteration of the algorithm in the most
natural way. Given that the first stage of the simulation can be done exactly in NC(poly)
as discussed at the start of this section, and the second stage can be done in NC, it follows
that the overall computation is in NC(poly). Hence the promise problem A ∈ QIP can
be decided by an NC(poly) circuit, thereby showing that A ∈ NC(poly) = PSPACE, as
desired.

5.5 Subsequent work

There have been two recent developments reported after the main result in this chapter
appeared in STOC 2010 [JJUW09]. The first result, due to Jain and Yao [JY11], concerns a
class of semidefinite programs that admit an efficient parallel algorithm. The second result,
due to Gutoski and Wu [GW10], concerns further applications of matrix multiplicative
weights update method in quantum computational complexity theory. The second result
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is a generalization of Wu’s alternate proof of our main result [Wu10]. We briefly discuss
both the results below.

Jain and Yao demonstrated that a general class of semidefinite programs, which they
refer to as positive semidefinite programs, can be approximately solved in NC. Their result
generalizes a result of Luby and Nisan [LN93] on positive instances of linear programs (a
subsequent paper by Young [You01] showed an NC algorithm for such linear programs with
some advantage over Luby-Nisan algorithm). In more detail, they consider the following
semidefinite program:

Primal problem

minimize: 〈A,X〉
subject to: 〈Fi, X〉 ≥ bi,∀i ∈ [m]

X ∈ Pos (X ) .

Dual problem

maximize: 〈b, y〉

subject to:
m∑
i=1

y[i]Fi � A,

y ∈ Rm
+ .

Here X is a complex Euclidean space of dimension n, Rm
+ denote the non-negative orthant,

and the Hermitian operators A,F1, . . . , Fm are positive semidefinite operators. Jain and
Yao [JY11] showed that there exists an algorithm that outputs an (1+ε)-approximation to
the optimum value of above semidefinite program such that the algorithm uses a number
of iteration T that depends polynomially on log(n), log(m) and 1/ε. Every iteration of
their algorithm uses matrix computations that can be computed exactly or approximately
in NC. Since the number of iteration is small, the whole algorithm can be parallelized.
Note that it is highly unlikely that all semidefinite programs can be approximated to high
accuracy in NC — for even if this were true just for linear programs it would imply NC
= P [DLR79, Ser91, Meg92]. Moreover, it is not known whether the semidefinite program
for single-coin quantum interactive proof system can be rewritten in the form described in
Ref. [JY11].

The containment of QIP in PSPACE naturally raises the following question: Can the
matrix multiplicative weights update method be used to demonstrate such a containment
for other quantum complexity classes? One natural candidate to consider is QRG(2), the
class of problems that admit a competing prover strategy of the following form. The
class QRG(2) consists of all promise problems that admit two-message competing-prover
quantum interactive proof system, where the verifier simultaneously asks both provers
(yes-prover and no-prover) a question, receives their answers, and decides to accept or
reject based on the questions and the answers received. The maximum success probability
of the yes-prover in a one-round quantum refereed game can be written as a semidef-
inite program [GW07]. The classical analogue of this class is known to coincide with
PSPACE [FK97]. Recently, Gutoski and Wu [GW10] showed that the class QRG(2) in-
deed coincides with PSPACE.
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Their result is more general than what we have stated above. They consider a more
general class of competing prover quantum interactive proofs, wherein the verifier interacts
and exchanges several messages with the yes-prover and then interacts and exchanges sev-
eral messages with the no-prover. They call such a proof system doubly quantum interactive
proof systems and show that such proof system also coincide with PSPACE. It also follows
from their result that the classical variant of this model is also equal to PSPACE. A conse-
quence of their result is that public-coin variant of classical or quantum refereed games also
coincide with PSPACE. This follows easily from the observation that in the public-coin
variant, the quantum (classical) refereed game can be transformed into a doubly quantum
(classical) interactive proof system.

One should not confuse doubly quantum interactive proof systems with polynomial-
round quantum refereed games, wherein the verifier asks questions to both the provers
simultaneously. While Gutoski and Wu show that doubly quantum interactive proofs are
contained in PSPACE, it is known that quantum refereed games characterize EXP [FK97,
GW07]. Their result on doubly quantum interactive proofs subsumes the main result of
this chapter.
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Chapter 6

Quantum XOR games and parallel
repetition

This chapter is based on the Ref. [CSUU08] and is a joint work with Richard Cleve, William
Slofstra, and Falk Unger.

The chapter introduces a class of two-prover one-round games wherein the verifier asks
questions to each prover who each respond with a bit, and the verifier’s verdict is based
on the parity of the bits received. Such games are known as XOR games. The main result
of this chapter is that when the the provers are allowed to process quantum information
but the communication channel between the provers and the verifier is classical, a perfect
parallel repetition holds in the following sense. The optimal success probability of the
provers for simultaneously playing a collection of XOR games is exactly the product of the
individual optimal success probabilities. This property is remarkable in view of the fact
that, in the classical case it does not hold [BCLKP02]. The parallel repetition theorem is
proved in two steps. The first step is to analyze parities of XOR games using semidefinite
programming techniques and the second step is to relate the parities of XOR games with
parallel repetition of XOR games via Fourier analysis.

The organization of the chapter is as follows.

• In Section 6.1, we introduce classical and quantum XOR games and discuss various
known results about them.

• In Section 6.2, we briefly discuss Tsirelson’s vector characterization of quantum XOR
games and relate it to a simple semidefinite program that captures the set of potential
strategies adopted by the quantum provers.

• In Section 6.3, we mention the two main theorems proved in this chapter and briefly
describe the techniques used to prove them.
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• In Section 6.4, we establish the main results of the chapter. We also show an unpub-
lished proof due to Watrous [Wat04] that demonstrates that perfect parallel repetition
theorem does not hold even for binary games (games with answer sets {0, 1}).

• In Section 6.5, we relate the success probability of the quantum provers in an XOR
game with the corresponding Feige-Lovász relaxations [FL92], a fact noted earlier in
Refs. [FG95, FKO07].

• In Section 6.6, we briefly discuss works related to the main result and techniques
used in this chapter.

6.1 Quantum XOR games

An XOR game is operationally defined as follows. For a predicate f : S × T → {0, 1}
and a probability distribution π on S × T , an XOR game G = (f, π) is a one-round game
between two provers and a verifier that proceeds as follows.

1. The verifier selects a pair of questions (s, t) ∈ S × T according to the probability
distribution π. One assumes without loss of generality that the sets S and T are
disjoint.

2. The verifier sends one question to each prover: s to prover Alice and t to prover Bob.
Alice and Bob are forbidden from communicating with each other once the game starts.

3. Alice sends a ∈ {0, 1} and Bob sends b ∈ {0, 1} to the verifier.

4. The verifier accepts the response of the provers if and only if a⊕ b = f(s, t).

In the classical version, the provers are allowed to have unlimited computing power, but
are restricted to possessing classical information. In the quantum version, the provers
have the ability to process quantum information and therefore, for instance, can share
entanglement. In both versions, the communication channel between the provers and the
verifier is classical. For an XOR game G, one defines its classical value ωc(G) as the
maximum possible success probability achievable by a classical strategy. Similarly, the
quantum value ωq(G) is defined as the maximum possible success probability achievable
by a quantum strategy. A detailed description of what constitutes as a valid quantum
strategy is given in the following section.

There is an association between two-prover one-round games and multi-prover inter-
active proof systems. For example, XOR games can be associated with two-prover one-
round interactive proof systems as follows. For two polynomial-time computable functions
c, s : N→ [0, 1], one defines an XOR proof system for a promise problem A = (Ayes, Ano) as
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follows. On input string x, the provers and the verifier play an XOR game Gx = (fx, πx).
The question sets of both the provers Sx and Tx consist of strings of length polynomial in
|x|, the probability distribution πx can be sampled efficiently, and the function fx can be
computed in polynomial-time. The proof system satisfies the following two properties.

1. Completeness. For every x ∈ Ayes, there exists a strategy of the provers that causes
the verifier to accept with probability at least c(|x|). In other words, the maximum
acceptance probability over prover’s strategies is at least c(|x|).

2. Soundness. For every x ∈ Ano, regardless of what strategy the provers adopt, the
verifier accepts with probability at most s(|x|). In other words, the maximum accep-
tance probability over prover’s strategies is at most s(|x|).

Such proof systems are denoted ⊕MIPc,s(2, 1) in the classical case and ⊕MIP∗c,s(2, 1) in the
quantum case. The asterisk (*) denotes the presence of quantum entanglement between
the provers. In the sections to follow, we will always refer to XOR games rather than XOR
proof systems, their relationship being made explicit above.

Cleve, Høyer, Toner, and Watrous [CHTW04a] pointed out that earlier results of Bel-
lare, Goldreich and Sudan [BGS98], and H̊astad [H̊as01] imply that, in the case of classical
provers, these proof systems have sufficient expressive power to recognize every problem in
NEXP (with soundness s = 11/16 + ε and completeness c = 12/16− ε, for arbitrary small
ε > 0). Thus, although these proof systems appear to be very restrictive, they can recog-
nize any problem that an unrestricted multi-prover interactive proof system can recognize
with bounded gap between completeness and soundness probabilities.

Although not noted in the paper, the results mentioned in their paper [CHTW04a]
also imply that the quantum XOR proof systems lie in EXP (this was first noted in a
presentation at CCC 2004 [CHTW04b]). This containtment was subsequently improved
by Wehner [Weh06] who showed that quantum XOR proof systems are contained in QIP(2).
Since QIP = PSPACE, Wehner’s result implies that

⊕MIP∗c,s(2, 1) ⊆ PSPACE

for any c, s > 0 such that c− s is at least some inverse polynomial. Thus, quantum XOR
proof systems are strictly less powerful than their classical counterpart under the widely
believed assumption that PSPACE 6= NEXP. This is the best complexity-theoretic upper
bound known on ⊕MIP∗c,s(2, 1) to date. On the lower bound front, Cleve, Gavinsky and
Jain [CGJ09] showed that any problem in NP admits a quantum XOR proof systems with
completeness 1 − ε and soundness 1/2 + η for any ε, η > 0. It is also not hard to observe
that

SZK ⊆ ⊕MIP∗c,s(2, 1)
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where the completeness c = 1 − ε and soundness s = 1/2 + η for any arbitrary small
ε, η > 0. Here SZK is the class of problems that admit a statistical zero-knowledge proof
system [SV03].

Returning to XOR games, quantum physicists have, in a sense, been studying them
since the 1960s, when John Bell introduced his celebrated results that are now known as
Bell inequality violations [Bel64]. An example is the CHSH game, named after the authors
of the paper [CHSH69]. In this game, S = T = {0, 1}, π is the uniform distribution on
S × T , and f(s, t) = s ∧ t. It is well known that, for the CHSH game, the best possible
classical strategy succeeds with probability 3/4, whereas the best possible quantum strategy

succeeds with probability cos2
(
π
8

)
=
√

2+1
2
√

2
≈ 0.85 [CHSH69, Tsi80].

6.2 Tsirelson’s vector characterization for quantum

XOR games

In this section, we briefly discuss Tsirelson’s vector characterization of quantum XOR
games, which states that any valid quantum strategy for an XOR game can be characterized
by a vector system. To this end, we first proceed to describe a quantum strategy for an
XOR game. A quantum strategy for an XOR game proceeds as follows. The provers Alice
and Bob share a state |ψ〉 ∈ X ⊗ Y . One does not lose any generality by assuming that
X = Y = CN , but for the sake of clarity we will denote Alice’s and Bob’s part by X and
Y . Upon receiving questions s and t, each prover applies a two-outcome measurement
operation on the respective part of their bipartite shared state:{

Π0
s,Π

1
s

}
and

{
∆0
t ,∆

1
t

}
.

The measurement operators satisfy∑
a∈{0,1}

Πa
s = IX and

∑
b∈{0,1}

∆b
t = IY .

Alice and Bob send the outcome of the measurement operation to the verifier, who checks
whether the parity of the bits received is indeed f(s, t) or not. Denoting the strategy by S,
the success probability of the provers that follow the strategy S is given by the expression

ωq(G,S) =
∑
s,t

∑
a,b

π(s, t)V (a, b|s, t) 〈ψ|Πa
s ⊗∆b

t |ψ〉 (6.1)

where V (a, b|s, t) = 1 if and only if a⊕ b = f(s, t). We point out two straightforward facts
about general quantum strategies. First of all, since we are interested in maximizing (6.1),
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one can without loss of generality assume that the state shared by the provers is a pure
state. This follows easily from a standard convexity argument. Second of all, we can
assume that for any optimal strategy the measurement operators are projection operators,
and hence 〈Π0

s,Π
1
s〉 = 0 and 〈∆0

t ,∆
1
t 〉 = 0 [CHTW04a].

We do not place any restriction on the amount of entanglement the provers possess for
playing the game. However, for the case of XOR games, a finite dimensional state suffices
for the provers to perform optimally. Of course, the dimension of the state depends on the
number of questions asked to the provers. This fact follows from the vector characterization
of XOR games, which we describe below. To begin, fix an optimal strategy

|ψ〉 ∈ X ⊗ Y and
{{

Π0
s,Π

1
s

}
: s ∈ S

}
and

{{
∆0
t ,∆

1
t

}
: t ∈ T

}
of the provers. Here the measurement operators {Π0

s,Π
1
s} and {∆0

t ,∆
1
t} are projective

measurement for every choice of (s, t) ∈ S×T . Now for every choice of question pair (s, t),
let

Xs = Π0
s − Π1

s =
∑

a∈{0,1}

(−1)aΠa
s and Yt = ∆0

t −∆1
t =

∑
b∈{0,1}

(−1)b∆b
t

be Hermitian unitary operators acting on X and Y , respectively. Noting that

V (a, b|s, t) =
1 + (−1)a⊕b(−1)f(s,t)

2

one can write the quantum value of an XOR game as

ωq(G) =
1

2
+

1

2

∑
s,t

π(s, t)(−1)f(s,t) 〈ψ|Xs ⊗ Yt |ψ〉 =
1 + εq(G)

2
.

The quantity εq(G) is called the quantum bias of the game. To prove the desired result, it
will be convenient for us to work with the quantum bias instead of the quantum value of
the game. We remark that one can similarly define the classical bias of an XOR game G
as

εc(G) = 2ωc(G)− 1.

One nice property about an XOR game is that the quantum bias can be characterized
by a system of unit vectors in the following way.

Theorem 16 ([Tsi85, CHTW04a]). Let S and T be finite sets, and let |ψ〉 be a pure
quantum state with support on a bipartite vector space X⊗Y such that dim(X ) = dim(Y) =
n. For each s ∈ S and t ∈ T , let Xs and Yt be Hermitian unitary operators on X and Y,
respectively. Then there exists real unit vectors xs and yt in R2n2

such that

〈ψ|Xs ⊗ Yt |ψ〉 = 〈xs, yt〉
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for all s ∈ S and t ∈ T .

Conversely, suppose that S and T are finite sets, and xs and yt are unit vectors in RN for
each s ∈ S and t ∈ T . Let X and Y be vector space of dimension 2dN/2e and |ψ〉 be a
maximally entangled state on X ⊗ Y. Then there exists Hermitian unitary operators Xs

and Yt on X and Y, respectively, such that

〈xs, yt〉 = 〈ψ|Xs ⊗ Yt |ψ〉

for all s ∈ S and t ∈ T .

Theorem 16 implies that any quantum strategy adopted by Alice and Bob can be charac-
terized by some choice of unit vectors {xs : s ∈ S} and {yt : t ∈ T}, the association of the
unit vectors with a quantum strategy being made explicit above:

εq(G) = max
{xs},{yt}

∑
s,t

π(s, t)(−1)f(s,t) 〈xs, yt〉 . (6.2)

The proof of the theorem is not difficult to follow. Given two Hermitian unitary oper-
ators Xs ∈ Herm (X ) and Yt ∈ Herm (Y), and a bipartite quantum state |ψ〉 ∈ X ⊗Y , the
corresponding vectors xs and yt are defined as

xs := (Xs ⊗ IY) |ψ〉 and yt = (IX ⊗ Yt) |ψ〉 .

The vectors may not be real vectors but nevertheless can be embedded into a real space
of twice the dimension. The conversion of unit vectors into a quantum strategy follows
from noting that for two n-dimensional real vectors, there exist a set of Hermitian unitary
operators {M1, . . . ,Mn} ⊂ Herm (Z) such that

M2
i = IZ and MiMj = MjMi

for distinct i and j. We associate the vectors xs and yt with the Hermitian unitary operators
Xs and Yt as

Xs =
n∑
i=1

xs[i]Mi and Yt =
n∑
i=1

yt[i]M
>
i

and the state to be the maximally entangled state in Z ⊗Z. This construction works and
the detail is left to the readers. Now we proceed to describe the semidefinite programming
characterization of the quantum bias of the game.

Let A be the matrix with matrix entries A[s, t] = π(s, t)(−1)f(s,t). We call A the cost
matrix of an XOR game. Assume the question sets to be S = [N ] and T = [M ]. Then
A is an N -by-M real matrix such that the absolute values of its entries of A sum to 1.
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Conversely, any real matrix A such that the absolute value of its entries sum up to 1
represents an XOR game. Let

C =
1

2

(
0 A
A> 0

)
.

be the symmetric cost matrix of the game. Then the quantum bias of G can be expressed
as the following semidefinite program:

εq(G) = maximum: 〈C,X〉
subject to: ∀ k ∈ [N +M ], 〈Ekk, X〉 = X[k, k] = 1,

X ∈ Pos
(
RN+M

)
.

The equivalence between the quantum bias and the above semidefinite programming prob-
lem follows straightforwardly from item 5 of Theorem 3 on page 20.

6.3 Proof structure

For any two XOR games G1 = (f1, π1) and G2 = (f2, π2), define their sum (modulo 2) as
the following XOR game

G1 ⊕G2 = (f1 ⊕ f2, π1 × π2).

In this game, the verifier begins by choosing questions (s1, t1) ∈ S1 × T1 according to the
probability distribution π1 and (s2, t2) ∈ S2 × T2 according to the probability distribution
π2. The verifier sends (s1, s2) to Alice and (t1, t2) to Bob. Alice and Bob are expected to
reply with a bit each and they win if and only if their respective outputs, a and b, satisfy
a⊕ b = f1(s1, t1)⊕ f2(s2, t2).

The most straightforward way for Alice and Bob (who may or may not share entangle-
ment) to play G1⊕G2 is to optimally play G1 and G2 separately, producing outputs (a1, b1)
for G1 and (a2, b2) for G2, and then to output a = a1 ⊕ a2 and b = b1 ⊕ b2 respectively. It
is straightforward to calculate that the above method for playing G1 ⊕ G2 succeeds with
probability

ω(G1)ω(G2) + (1− ω(G1))(1− ω(G2)). (6.3)

We dropped the subscript referring to the classical and quantum case in the above equation
to stress on the fact that the above lower bound holds for both cases. One can ask the
question whether the lower bound is tight, or, in other words, an optimal strategy for the
game G1 ⊕G2 is to play both games independently and optimally as mentioned above.

Unsurprisingly, the answer to the question is no for classical strategies. To see why
this is so, note that, using this approach for the XOR game CHSH ⊕ CHSH, produces a
success probability of 5/8. A better strategy is for Alice to output a = s1 ∧ s2 and Bob to
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output b = t1 ∧ t2. It is straightforward to verify that this latter strategy succeeds with
probability 3/4. However, we show that the in the quantum case, an optimal strategy is
indeed the strategy described above.

Theorem 17 (Additivity Theorem). For any two XOR games G1 and G2, an optimal
quantum strategy for playing G1 ⊕ G2 is for Alice and Bob to optimally play G1 and G2

separately, producing outputs a1, b1 for G1 and a2, b2 for G2, and then to output a = a1⊕a2

and b = b1 ⊕ b2. In other words,

εq(G1 ⊕G2) = εq(G1) · εq(G2).

A straightforward consequence of the above theorem is that if G1, G2, . . . , Gk are k
XOR games, then

εq

(
k⊕
i=1

Gi

)
=

k∏
i=1

εq(Gi).

The proof of Theorem 17 uses semidefinite programming techniques, as described in
the subsequent section. The additivity theorem will be used to prove a perfect parallel
repetition theorem for quantum XOR games.

For any sequence of XOR games G1 =(f1, π1), . . . , Gn = (fn, πn), define their conjunc-
tion, denoted by

n⊗
j=1

Gj

as follows. The verifier chooses questions ((s1, t1), . . . , (sn, tn)) ∈ (S1×T1)×· · ·× (Sn×Tn)
according to the product distribution π1 × · · · × πn, and sends (s1, . . . , sn) to Alice and
(t1, . . . , tn) to Bob. Alice and Bob output bits (a1, . . . , an) and (b1, . . . , bn), respectively,
and win if and only if their outputs simultaneously satisfy the following n conditions:

ak ⊕ bk = fk(sk, tk)

for all k ∈ [n]. One way for Alice and Bob to play conjunction of n games G1, G2, . . . , Gn

is to independently play each game optimally. This succeeds with probability

n∏
j=1

ω(Gj).

Again the dropping of the subscript in the above equation refer to the fact that the above
lower bound above holds for both cases. One can ask the question whether this lower bound
is tight, or, in other words, an optimal strategy for the conjunction of games G1, . . . , Gn is
to play each game independently and optimally as mentioned above.
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Again the answer is no for classical strategies. It was shown by Barrett, Collins, Hardy,
Kent and Popescu [BCLKP02] that for the CHSH game

ωc(CHSH ⊗ CHSH ) = 10/16 > 9/16 = ωc(CHSH )ωc(CHSH ).

However, using the additivity theorem, we show that the answer is yes for quantum strate-
gies.

Theorem 18 (Parallel Repetition Theorem). For any XOR games G1, . . . , Gn, we
have that

ωq

(
n⊗
j=1

Gj

)
=

n∏
j=1

ωq(Gj).

This theorem can be viewed as the quantum version of Raz’s parallel repetition theo-
rem [Raz98] for the restricted class of XOR games. We call it a perfect parallel repetition
theorem because the probabilities are multiplicative in the exact sense. The proof of The-
orem 18 is based on Theorem 17 combined with Fourier analysis techniques for Boolean
functions.

Prior to the result presented in this chapter, there was no known parallel repetition
theorem along the lines of Raz [Raz98] for general quantum games (where the players
share entanglement). Subsequent to this result, a parallel repetition theorem for quantum
unique games have been proved [KRT08, Upa07], which we discuss in the chapter following
this one.

The prefect parallel repetition theorem fails to hold for general binary games (where
the answer sets of both the provers is {0, 1}). In particular, Watrous [Wat04] showed that
there exists a binary game for which ωq(G) = ωq(G ⊗ G) = 2/3, as in the classical case.
The game considered by Watrous was originally defined by Feige and Lovász [FL92]. We
describe the result in the section following this one.

For any XOR game G, the semidefinite programming relaxations of the classical value
of G due to Feige and Lovász [FL92] have value equal to the quantum value of G. Although
this was also noted previously [FG95, FKO07], for completeness, we show an explicit proof
of this in Section 6.5. It is important to note that, for general games, the relationship
between their quantum values and the Feige-Lovász relaxations of their classical values
are not understood. As far as we know, neither quantity bounds the other for general
games. However, using the fact that they are equivalent for XOR games combined with our
Theorem 18, we can deduce that, whenever G1, . . . , Gn are XOR games, the quantum value
of ⊗nj=1Gj coincides with the optimum values of the associated Feige-Lovász relaxations.
(Note that this does not reduce our Theorem 18 to the results mentioned in Feige and
Lovász since that would entail circular reasoning.)
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6.4 Proof of the main result

In this section, we prove the main result of the chapter. The first subsection proves the
additivity theorem, which is followed by a subsection on the proof of the perfect parallel
repetition theorem for quantum XOR games. In the final subsection, we show Watrous’s
proof on the existence of a binary game that does not obey the perfect parallel repetition
theorem in the quantum setting.

6.4.1 Proof of additivity theorem

We first establish the additivity theorem. The proof of the additivity theorem goes via
showing that the optimum value of the semidefinite program corresponding to the XOR
game G1 ⊕ G2 is the product of the optimum values of the semidefinite program corre-
sponding to games G1 and G2. The proof below is somewhat different from the one that
appeared in the Ref. [CSUU08] but still uses semidefinite programming duality. We first
recall that the quantum bias of game G with question sets S = [N ] and T = [M ] is
associated with the following semidefinite program:

Primal problem (P)

εq(G) = maximize: 〈C,X〉
subject to: ∀ k ∈ [N +M ], X[k, k] = 1,

X ∈ Pos
(
RN+M

)
.

The use of the term “maximize” is justified in the above semidefinite program as demon-
strated below. The dual of the semidefinite program is

Dual problem (D)

εq(G) = minimize:
N∑
k=1

y[k] +
M∑
l=1

z[l]

subject to: Z =

(
Λ(y) −1

2
A

−1
2
A> Λ(z)

)
∈ Pos

(
RN+M

)
,

y ∈ RN and z ∈ RM .

Here Λ : RN+M → Herm
(
RN+M

)
is an operator that maps any vector into a diagonal

matrix. Note that we have Slater points for both primal (I) and dual problem ((2ē, 2I))and
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therefore strong duality holds (refer to Theorem 8). Here ē is the all one vector. We first
show that every optimal solution of the dual problem satisfies a nice property stated in the
following lemma. The proof of the lemma stated below is similar to the proof of Lemma 35
in Chapter 7.

Lemma 19. Let (y, z) be any optimal solution of the dual. Then it holds that

N∑
k=1

y[k] =
M∑
l=1

z[l].

Proof. Let (y, z) be an optimal dual solution. Since (y, z) forms a feasible dual solution,
we have that

N∑
k=1

y[k] > 0 and
M∑
l=1

z[l] > 0.

The matrix Z is positive semidefinite and hence it can be written as

Z =

(
Λ(y) −1

2
A

−1
2
A> Λ(z)

)
=

(
B
D

)(
B
D

)>
=

(
BB> BD>

DB> DD>

)
� 0.

Hence (abusing notation) we have Λ(y) = BB>, Λ(z) = DD>, and BD> = − A
2
. It is also

immediate from above that the diagonal entries of BB> and DD> are the vectors y and z
respectively. Without loss of generality, assume that

p :=
N∑
k=1

y[k] >
M∑
l=1

z[l] =: q.

and let λ > 0. It is clear that p, q > 0. Define a new matrix Z ′ as

Z ′ =

(
λB

(1/λ)D

)(
λB

(1/λ)D

)>
=

(
λ2BB> BD>

DB> (1/λ2)DD>

)
� 0.

It is clear that Z ′ is dual feasible for the off-diagonal block of the matrix is BD> = − A
2

and Z ′ ∈ Pos
(
RN+M

)
. The objective value of the new solution is λ2p + (1/λ2)q, which

is strictly less that p + q for λ ∈
(

1,
√
p/q
)

, contradicting our assumption that p 6= q for

optimal dual solution.

The lemma implies that for an optimal dual solution, the contribution from dual feasible
vectors y and z towards the objective value is equal. Now we proceed to establish the
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additivity theorem. Let G1 and G2 be two XOR games with cost matrices A1 and A2,
respectively. Assume that for game Gi, the sets of questions are Si = [Ni] and Ti = [Mi].
The cost matrix of the game G = G1 ⊕ G2 is A1 ⊗ A2 and therefore its symmetric cost
matrix is

C =
1

2

(
0 A1 ⊗ A2

(A1 ⊗ A2)> 0

)
.

The primal problem of the SDP for game G1 ⊕G2 is

Primal problem (D)

maximize: 〈C,X〉
subject to: ∀k1 ∈ [N1 +M1] and k2 ∈ [N2 +M2], X[(k1k2), (k1, k2)] = 1,

X ∈ Pos
(
RN1N2+M1M2

)
.

Similarly, the dual problem can be written as

Dual problem (D)

minimize:
∑

k1∈[N1]

∑
k2∈[N2]

y[(k1, k2)] +
∑

l1∈[M1]

∑
l2∈[M2]

z[(l1, l2)]

subject to: Z =

(
Λ(y) −1

2
A1 ⊗ A2

−1
2
(A1 ⊗ A2)> Λ(z)

)
∈ Pos

(
RN1N2+M1M2

)
,

y ∈ RN1N2 and z ∈ RM1M2 .

As before, we define Λ : RN1N2+M1M2 → Herm
(
RN1N2+M1M2

)
to be the linear operator that

maps a vector to a diagonal matrix. For both choices of i ∈ {1, 2}, let

X̄i =

(
Ui Vi
V >i Wi

)
be an optimal solution of the primal problem of the SDP for game Gi. Then

X̄ =

(
U1 ⊗ U2 V1 ⊗ V2

(V1 ⊗ V2)> W1 ⊗W2

)
is a feasible solution of the primal problem of the SDP for game G1 ⊕G2. The feasibility
follows from the fact that if the diagonal entries of the matrices U1, U2, V1, and V2 are 1, then
the diagonal entries of the matrices U1⊗U2 and V1⊗V2 are also 1. The positive semidefinite
property of X̄ follows from the fact that it is a symmetric restriction of X̄1 ⊗ X̄2 (item 6
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of Theorem 3). It is a simple calculation to show that X̄ achieves an objective value equal
to
〈
C1, X̄1

〉
·
〈
C2, X̄2

〉
. Hence

εq(G1 ⊕G2) ≥ εq(G1)εq(G2).

For the opposite inequality, let (ȳi, z̄i) form an optimal dual solution for Gi for both choices
of i ∈ {1, 2}. By Lemma 19, we have that

Ni∑
k=1

ȳi[k] =

Mi∑
l=1

z̄i[l].

It will be convenient for us to denote the matrix

Zi =

(
Λi(ȳi) − 1

2
Ai

− 1
2
A>i Λi(z̄i)

)
as

(
Bi − 1

2
Ai

− 1
2
A>i Di

)

from which it follows that

Tr(Bi) =

Ni∑
k=1

ȳi[k] and Tr(Di) =

Mi∑
l=1

z̄i[l]. (6.4)

Therefore, by Lemma 19

Tr(Bi) = Tr(Di) =
εq(Gi)

2
(6.5)

for both choices of i ∈ {1, 2}. Let Z ′i = Zi + 2Ci. We now proceed to show that Zi is
positive semidefinite if and only if Z ′i is positive semidefinite. This follows easily from
exploiting the block structure of the matrices Zi and Z ′i, and item 4 of Theorem 3. First
of all note that for both choices of i ∈ {1, 2}, it holds that(

u

v

)>(
Bi −1

2
Ai

−1
2
A>i Di

)(
u

v

)
=

(
u

−v

)>(
Bi

1
2
Ai

1
2
A>i Di

)(
u

−v

)

and therefore

Zi =

(
Bi − 1

2
Ai

− 1
2
A>i Di

)
� 0 if and only if Z ′i =

(
Bi

1
2
Ai

1
2
A>i Di

)
� 0.

The above implies that the tensor product of Zi and Z ′j is positive semidefinite. In partic-
ular,

Z1 ⊗ Z ′2 � 0 and Z ′1 ⊗ Z2 � 0.
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and hence the following matrix

Z̄ :=

(
2B1 ⊗B2 − 1

2
A1 ⊗ A2

− 1
2
(A1 ⊗ A2)> 2D1 ⊗D2

)

is positive semidefinite. This follows easily from the fact that Z̄ is a symmetric restriction
of the matrix Z1 ⊗ Z ′2 + Z ′1 ⊗ Z2. A straightforward implication of this fact is that setting

y[(k1, k2)] = 2ȳ1[k1] · ȳ2[k2] and z[(l1, l2)] = 2z̄1[l1] · z̄2[l2]

yields a dual feasible solution to the SDP for G1 ⊕G2. Hence by (6.4) and (6.5), we have

εq(G1 ⊕G2) ≤ 2

(
N1∑
k=1

y1[k]

)(
N2∑
k=1

y2[k]

)
+ 2

(
M1∑
l=1

z1[l]

)(
M2∑
l=1

z2[l]

)

= 2 · εq(G1)

2
· εq(G2)

2
+ 2 · εq(G1)

2
· εq(G2)

2
= εq(G1)εq(G2).

This finishes the proof of the additivity theorem.

6.4.2 Proof of perfect parallel repetition theorem

This section is devoted to the proof of the perfect parallel repetition theorem of quantum
XOR games. To prove the main result, we begin with the following simple probabilistic
lemma.

Lemma 20. For any sequence of binary random variables X1, X2, . . . , Xn,

1

2n

∑
M⊆[n]

E
[
(−1)⊕j∈MXj

]
= P[X1 . . . Xn = 0 . . . 0].

Proof. First of all, note that
n∏
j=1

(1 + (−1)Xj ) 6= 0 (6.6)

if and only if Xj = 0 for all j ∈ [n]. By the linearity of expectation,

1

2n

∑
M⊆[n]

E
[
(−1)⊕j∈MXj

]
= E

[
1

2n

∑
M⊆[n]

(−1)⊕j∈MXj

]

= E
[ n∏

j=1

(
1 + (−1)Xj

2

) ]
= P [X1 . . . Xn = 0 . . . 0]
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where the last equality follows from Eq 6.6.

We introduce the following terminology. For any strategy S (classical or quantum) for
any game G, define ω(S, G) as the success probability of strategy S on game G. Similarly,
define the corresponding bias as ε(S, G) = 2ω(S, G)− 1. We drop the subscript to empha-
size that the claims below holds for both classical and quantum case. Now let S be any
protocol for the game

n⊗
j=1

Gj

For each M ⊆ [n], define the protocol SM for the sum of XOR games {Gi : i ∈ M} as
follows.

1. Run the protocol S, yielding (a1, a2, . . . , an) and (b1, b2, . . . , bn) for Alice and Bob,
respectively.

2. Alice and Bob output ⊕
j∈M

aj and
⊕
j∈M

bj

respecively.

Lemma 21. For any strategy S for the conjunction of XOR games G1, G2, . . . , Gn, we
have

1

2n

∑
M⊆[n]

ε

(
SM ,

⊕
j∈M

Gj

)
= ω

(
S,

n⊗
j=1

Gj

)
.

Proof. For all j ∈ [n], define Xj = aj ⊕ bj ⊕ fj(sj, tj). Then, for all M ⊆ [n], we have

E
[
(−1)

⊕
j∈M Xj

]
= ε

(
SM ,

⊕
j∈M

Gj

)
and P[X1 . . . Xn = 0 . . . 0] = ω

(
S,

n⊗
j=1

Gj

)
.

The result now follows from Lemma 20.

As a corollary to the above lemma, we have

ωc

(
n⊗
j=1

Gj

)
≤ 1

2n

∑
M⊆[n]

εc

(⊕
j∈M

Gj

)
and ωq

(
n⊗
j=1

Gj

)
≤ 1

2n

∑
M⊆[n]

εq

(⊕
j∈M

Gj

)
.
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Now, to complete the proof of Theorem 18, using Theorem 17, we have

1

2n

∑
M⊆[n]

εq

(⊕
j∈M

Gj

)
=

1

2n

∑
M⊆[n]

∏
j∈M

εq(Gj)

=
n∏
j=1

(
1 + εq(Gj)

2

)
=

n∏
j=1

ωq(Gj).

Combining this with above, we conclude that

ωq

(
n⊗
j=1

Gj

)
=

n∏
j=1

ωq(Gj)

which completes the proof of Theorem 18.

6.4.3 A counterexample to perfect parallel repetition

In this subsection, we give an unpublished proof due to Watrous [Wat04] that there exists
a binary game G (that is not an XOR game) for which ωq(G) = ωq(G ⊗ G) = 2

3
. The

game used was originally proposed by Feige and Lovász [FL92], who showed that ωc(G) =
ωc(G⊗G) = 2

3
.

The game has binary questions (S = T = {0, 1}) and binary answers (A = B = {0, 1}).
The operation of the game is as follows. The verifier selects a pair of questions (s, t)
uniformly from {(0, 0), (0, 1), (1, 0)} and sends s and t to Alice and Bob, respectively. The
verifier accepts the answers, a from Alice and b from Bob, if and only if s ∨ a 6= t ∨ b.

Consider a quantum strategy for this game, where |ψ〉 ∈ X ⊗ Y is the shared entan-
glement, Alice’s behavior is determined by the Hermitian unitary operators A0 and A1,
and Bob’s behavior is determined by the Hermitian unitary operators B0 and B1. On
input (s, t), Alice computes a by measuring with respect to As, and Bob computes b by
measuring with respect to Bt. It is straightforward to deduce that the bias of this strategy
is

1

3
〈ψ| (−A0 ⊗B0 + A0 ⊗ IY + IX ⊗B0.) |ψ〉

Once A0 and B0 are determined, the optimal bias is the largest eigenvalue of M , where

M = −1

3
A0 ⊗B0 +

1

3
A0 ⊗ IY +

1

3
IX ⊗B0.

One can show that

M2 = −2

3
M +

1

3
IX⊗Y
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from where we conclude that the largest eigenvalue of M is 1/3. Since the largest eigenvalue
is clearly the optimum bias of the game, we conclude that ωq(G) = 2/3. Combining this
with the fact that 2/3 = ωc(G⊗G) ≤ ωq(G⊗G) ≤ ωq(G), we obtain ωq(G⊗G) = 2/3.

6.5 Feigi-Lovász relaxations and XOR games

In their seminal paper, Feigi and Lovász [FL92] showed that computing the classical value of
a two-prover one-round game is equivalent to optimizing a quadratic programming prob-
lem. The optimization problem can be cast as optimizing a linear objective function
subject to affine constraints and a non-convex rank constraint. Relaxing the non-convex
constraint leads to the first semidefinite programming relaxation for the classical value of
the two-prover one-round game. In the same paper, they considered another semidefinite
programming relaxation, which satisfies a nice multiplicative property as discussed later
in this section.

For any game G, the optimum value of the first relaxation (given by equations (5)-(9)
in their paper) is denoted σ(G) and the optimum value of the second relaxation (given by
equations (12)-(17) in the same paper) is denoted σ̄(G). The semidefinite programming
relaxations are such that the set of feasible solutions of the first relaxation is a subset of
the set of feasible solutions of the second relaxation and hence σ(G) ≤ σ̄(G). We write
both the semidefinite relaxations for the special case of XOR games below. The general
case have the same set of constraints as shown below, however, with different answer sets
A and B of the provers.

First of all, let C be the matrix with rows indexed by (s, a) ∈ S × {0, 1}, columns
indexed by (t, b) ∈ T × {0, 1}, and the matrix entries C[(s, a), (t, b)] = π(s, t)V (a, b|s, t).
We refer to C as the cost matrix of the XOR game and

Ĉ =
1

2

(
0 C
C> 0

)
.

to be the symmetric cost matrix of the XOR game. The first semidefinite programming
relaxation that appears in Ref. [FL92] is as follows. Let the optimum value of the relaxation
be denoted σ(G).

σ(G) = maximize:
〈
Ĉ, P

〉
subject to: ∀s, t ∈ S ∪ T,

∑
a,b∈{0,1}

P [(s, a), (t, b)] = 1, (6.7)

∀s, t ∈ S ∪ T, a, b ∈ {0, 1}, P [(s, a), (t, b)] ≥ 0, (6.8)

P � 0.
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The second semidefinite programming relaxation is as follows. Let the optimum value
of the relaxation be σ̄(G).

σ̄(G) = maximize:
〈
Ĉ, P

〉
subject to: ∀s, t ∈ S or s, t ∈ T,

∑
a,b∈{0,1}

∣∣P [(s, a), (t, b)]
∣∣ ≤ 1, (6.9)

∀s, t ∈ S ∪ T, a, b ∈ {0, 1}, P [(s, a), (t, b)] ≥ 0, (6.10)

P � 0.

We have the following theorem that relates the quantum value of an XOR game with the
optimum values of the two SDP relaxations. We remark that it is not known if any of
the three quantities discussed are related to each other for general two-prover one-round
games.

Theorem 22. For any XOR game G, ωq(G) = σ(G) = σ̄(G).

Proof. Let G be an XOR game. We already know that σ(G) ≤ σ̄(G). Hence it suffices to
show that ωq(G) ≤ σ(G) and σ̄(G) ≤ ωq(G). We first show that ωq(G) ≤ σ(G). To begin
let us assume an optimal strategy for G as follows. The provers Alice and Bob share a
maximally entangled state

|ψ〉 =
1√
k

∑
i∈[k]

|i〉 |i〉 ∈ X ⊗ X

and upon questions s ∈ S and t ∈ T , the provers apply projective measurements described
by operators {Π0

s,Π
1
s} and {∆0

t ,∆
1
t}, respectively. Let

uas =

{
(Πa

s ⊗ IX ) |ψ〉 for s ∈ S
(IX ⊗∆a

s) |ψ〉 for s ∈ T

and let P̂ be a positive semidefinite matrix with entries P̂ [(s, a), (t, b)] =
〈
uas , u

b
t

〉
. Since

Π0
s + Π1

s = IX and ∆0
t + ∆1

t = IX

it is straightforward to check that (6.7) holds. Moreover, for positive semidefinite operators
Πa
s and ∆b

t , we have for any (s, t) ∈ S × T

P̂ [(s, a), (t, b)] =
〈
uas , u

b
t

〉
= 〈ψ|Πa

s ⊗∆b
t |ψ〉 ≥ 0.

The above set of inequalities takes care of the non-negativity constraints of the off-diagonal
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blocks of P̂ (corresponding to matrix C). Given that |ψ〉 is the maximally entangled state,
we also have

P̂ [(s, a), (t, b)] =
〈
uas , u

b
t

〉
= 〈ψ| IX ⊗∆a

s∆
b
t |ψ〉 =

1

k

〈
∆a
s ,∆

b
t

〉
≥ 0

for any s, t ∈ T . Similarly for any s, t ∈ S,

P̂ [(s, a), (t, b)] =
〈
uas , u

b
t

〉
= 〈ψ|Πa

sΠ
b
t ⊗ IX |ψ〉 =

1

k

〈
Πa
s ,Π

b
t

〉
≥ 0.

The above two sets of inequalities take care of the non-negativity constraints of the diagonal
blocks of P̂ . Hence P̂ [(s, a), (t, b)] ≥ 0 for every choice of s, t ∈ S ∪ T and a, b ∈ {0, 1},
which shows that P̂ satisfies the constraints described in (6.8). It is fairly straightforward
to observe that the objective value of P̂ is equal to the quantum value of the XOR game,
which implies that

ωq(G) ≤ σ(G).

We now proceed to establish that σ̄(G) ≤ ωq(G). To begin, assume an optimal solution
P̄ for the semidefinite program with optimum value σ̄(G). Since P̄ is a positive semidefinite
matrix, we can find vectors uas for s ∈ S and a ∈ {0, 1}, and vbt for t ∈ T and b ∈ {0, 1},
such that

P̄ [(s, a), (t, b)] =


〈
uas , u

b
t

〉
s, t ∈ S〈

vas , v
b
t

〉
s, t ∈ T〈

uas , v
b
t

〉
s ∈ S, t ∈ T.

We can view {uas : a ∈ {0, 1}} as Alice’s collection of vectors for each question s ∈ S and
{vbt : b ∈ {0, 1}} as Bob’s collection of vectors for each question t ∈ T . From (6.9), we have
that ∑

a,b∈{0,1}

∣∣ 〈uas , ubs〉 ∣∣ ≤ 1

and hence ∣∣∣∣∣ ∑
a,b∈{0,1}

〈
uas , u

b
s

〉 ∣∣∣∣∣ =

∥∥∥∥∥∥
∑

a∈{0,1}

uas

∥∥∥∥∥∥
2

≤ 1.

Therefore u0
s + u1

s and similarly v0
t + v1

t lie in a unit ball. We have〈
u0
s, v

0
t

〉
+
〈
u0
s, v

1
t

〉
+
〈
u1
s, v

0
t

〉
+
〈
u1
s, v

1
t

〉
≤ 1

Let xs = u0
s − u1

s and yt = v0
t − v1

t . Then

〈xs, yt〉 =
〈
u0
s, v

0
t

〉
−
〈
u0
s, v

1
t

〉
−
〈
u1
s, v

0
t

〉
+
〈
u1
s, v

1
t

〉
.
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A straightforward calculation shows that the above two equations imply the following two
inequalities:

〈
u0
s, v

1
t

〉
+
〈
u1
s, v

0
t

〉
≤ 1− 〈xs, yt〉

2
and

〈
u0
s, v

0
t

〉
+
〈
u1
s, v

1
t

〉
≤ 1 + 〈xs, yt〉

2
. (6.11)

From (6.11), σ̄(G) is upper bounded by

∑
s,t

π(s, t)
1

2

{
(1 + 〈xs, yt〉) if the correct answer is 0

(1− 〈xs, yt〉) if the correct answer is 1

which is at most ωq(G) (Proposition 5.7 in Cleve, Høyer, Toner and Watrous [CHTW04a]).
Hence σ̄(G) ≤ ωq(G), which completes the proof.

Feige and Lovász demonstrated that the second relaxation is multiplicative in the fol-
lowing sense. If the optimum values of the second semidefinite programming relaxation for
two games G1 and G2 are σ̄(G1) and σ̄(G1), respectively, then the optimum value of the
same relaxation for the game G1 ⊗G2 is exactly σ̄(G1)σ̄(G2). Combining our Theorem 18
and the multiplicative property of the second relaxation, we have the following simple
observation.

Proposition 23. For any XOR games G1, . . . , Gn,

wq

(
n⊗
i=1

Gi

)
= σ

(
n⊗
i=1

Gi

)
= σ̄

(
n⊗
i=1

Gi

)
.

This automatically implies that the first semidefinite programming relaxation is also
multiplicative for XOR games in the sense as described above. For a larger class of games
such as the ones discussed in the next chapter, we do not know whether the above propo-
sition holds.

We finally remark that in the journal version of their paper, Kempe, Regev, and
Toner [KRT10] use the same approach to show multiplicative property of a large class
of semidefinite programs that subsumes our proof of the additivity theorem.

6.6 Related work

In this section, we briefly mention few further developments related to the results and
techniques used in this chapter.
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A consequence of our result and an earlier result on relationship between classical and
quantum XOR games [CHTW04a] also gives a parallel repetition theorem for classical
XOR games as follows.

Theorem 24. Let G be an XOR game with classical value 1− ε. Then the classical value
of the game G⊗n is at most (1− Ω(ε2))

n
.

This bound was reported in a paper by Feige, Kindler, and O’Donnell [FKO07] who
attributed it to Feige and Lovász [FL92], and Goemans and Williamson [GW95]. This was
subsequently improved by Rao [Rao08] for a large class of games, called projection games
that includes XOR games as well. Rao’s upper bound shows a quadratic dependence on ε.
It is natural to ask whether the dependence of ωc (G⊗n) on ε is tight or not. What we know
about classical XOR games is that they do not obey a perfect parallel repetition theorem,
the CHSH game being a counterexample to this fact, but one can hope of improving the
dependence on ωc (G⊗n) on ε from quadratic to let’s say linear. However, Raz [Raz11]
showed that for the odd cycle game of size m, which is an example of XOR games (refer
to the papers [CHTW04a, Raz11] for a description of an odd cycle game),

ωc
(
G⊗nm

)
≥ 1− 1

m
O
(√

n
)
.

Here Gm denotes the odd cycle game of size m. It is easy to establish that ωc(Gm) =
1− 1/2m. Consequently, the above relationship implies that one needs O(m2) repetitions
to reduce the classical value of the game to a constant, thereby showing that the upper
bound on ωc(G

⊗n) as mentioned in Theorem 24 is tight. In other words, one cannot hope
for a better dependence of ε in the above theorem.

The measure of how well the provers perform is defined to be the maximum average
success probability of the provers under a predefined distribution. One can also define
another measure of how well the provers perform by considering worst-case success proba-
bility of an XOR game. By Tsirelson’s vector characterization, the worst-case bias in the
quantum case is the optimum of the following semidefinite program as described below.

Let S = [N ] and T = [M ] be the question sets, R ⊆ S × T to be the set of valid
questions asked to the provers, and A be the cost matrix defined as A[s, t] = (−1)f(s,t)

if f is defined on the pair (s, t) and zero otherwise. Note that the distribution over the
question set is not important when considering the worst-case value (or worst-case bias) of
the game.

maximize: η

subject to: ∀(i, j) ∈ R, X[i, N + j] ≥ (−1)f(i,j)η,

∀k ∈ [N +M ], X[k, k] = 1,

X ∈ Pos
(
RN+M

)
.
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It holds that the worst-case bias of an XOR game is multiplicative in the sense of
Theorem 17 and one can easily show that the worst-case quantum value of a conjunction
of XOR games G1, G2, . . . , Gn is the product of the worst-case quantum values of the
individual games. It also holds that the optimal dual solution of the semidefinite program
described above gives us the “hardest distribution” for playing an XOR game. That is, if
the XOR game is played using this distribution, then the verifier can minimize the success
probability of the provers, where the minimum is taken over all possible choices of the
distribution.

The multiplicative property of the worst-case bias of an XOR game was first observed by
Lee, Shraibman and Špalek [LSS08] in connection with obtaining direct product theorem for
discrepancy. They considered the quantity γα2 (A) defined by Linial and Shraibman [LS09]
(the preliminary version of their paper appeared in 2007) and observed that when α→∞,
the quantity approaches the reciprocal of the worst-case bias of an XOR game correspond-
ing to matrix A. These quantities are related to the one-way communication complexity
models and we refer to the Refs. [LMSS07, LS09] for more details.

Another avenue explored following this result was the question of multiplicative prop-
erty of semidefinite programs. In particular, Mittal and Szegedy [MS07] investigated the
following questions. For two semidefinite programs (i ∈ {1, 2})

αi := max
{
〈Ci, Xi〉 :

〈
A

(k)
i , Xi

〉
= b[k] for all k ∈ [mi] and Xi ∈ Pos

(
RNi

)}
(6.12)

what are the conditions on them such that the optimum value of the following semidefinite
program

max
{
〈C1 ⊗ C2, X〉 :

〈
A

(j)
1 ⊗ A

(k)
2 , X

〉
= b[j] · b[k] for all (j, k) ∈ [m1]× [m2]

}
(6.13)

and
X ∈ Pos

(
RN1 ⊗ RN2

)
is the product of α1 and α2? They showed that if Ci ∈ Pos

(
RNi

)
for i ∈ {1, 2}, then the

multiplicative property holds. The other case for which they showed that the multiplicative
property holds is when the matrices for both semidefinite programs are of the following
form:

Ci =

(
0 Ri

R>i 0

)
and A

(j)
i =

(
P

(j)
i 0

0 Q
(j)
i

)
.

Note that quantum bias of an XOR game has a semidefinite program of the following form
and although we analyze a different product operation on the semidefinite program, it holds
that if the semidefinite programs in (6.12) represent the quantum bias of XOR games G1

and G2, then the optimum of the SDP in (6.13) is equal to εq(G1⊕G2) [CSUU08, KRT10].
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Finally, Slofstra [Slo10] answered a question on the amount of entanglement needed to
play an XOR game optimally or near-optimally. Although the result is not directly related
to this chapter, we briefly mention that he showed that for certain XOR game, the only
optimum strategy is to use the Tsirelson’s construction of Hermitian unitary operators
from the vector system. In particular, he obtained that there exists XOR games wherein
the provers need exponential number of entangled qubits for optimal performance. We
refer to his paper for further details.
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Chapter 7

Quantum unique games and parallel
repetition

This chapter is concerned with parallel repetition theorems for unique games and is based
on the Ref. [Upa07]. The work presented in this chapter was obtained independently of
Kempe, Regev, and Toner [KRT10] (a preliminary version of their paper appeared in 2007).

In this chapter, we introduce a class of games that includes XOR games and show a
parallel repetition theorem for such games when the provers are allowed to share a priori
entanglement. These games are called unique games and have been widely studied in the
literature because of their connection with hardness of approximation. Unlike XOR games,
unique games are not known to have a semidefinite programming characterization in the
quantum world. However, we consider a semidefinite programming relaxation to quantum
unique games and use the quantum rounding procedure presented in the Ref. [KRT10] to
round an optimal solution of the relaxation to a valid quantum strategy. The relaxation is
such that the multiplicative property holds, which easily translates into a parallel repetition
theorem for unique games.

The organization of the chapter is as follows.

• In Section 7.1, we introduce unique games, their classical and quantum variant, briefly
touch upon the huge body of work devoted on them, and state the main results of
the chapter.

• In Section 7.2, we discuss two semidefinite programming relaxations for quantum
unique games and the quantum rounding procedure. The first relaxation and the
rounding procedure appear in the Ref. [KRT10]. The main focus of this chapter is on
the second relaxation, which we use to prove parallel repetition theorem for unique
games [Upa07].
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• In Section 7.3, we show a class of semidefinite programs that are multiplicative un-
der a product operation similar to the one discussed in Section 6.4.1. The class of
semidefinite programs considered is a subclass of semidefinite programs mentioned
in Lee and Mittal [LM08].

• In Section 7.4, we prove the parallel repetition theorem for unique games and provide
even stronger parallel repetition theorem for certain class of unique games known as
MODk games.

• In Section 7.5, we discuss research works related to the main results and techniques
used in this chapter. A detailed comparison of our result with the Ref. [KRT10] is
done in this section.

7.1 Unique games, classical and quantum provers

Two-prover one-round games: Two-prover one-round games with classical provers
have been central to many important discoveries in computational complexity theory. Such
games are operationally defined as follows.

• The verifier generates a pair of questions (s, t) ∈ S × T according to a probability
distribution π : S × T → [0, 1] and sends s to the first prover (Alice) and t to the
second prover (Bob).

• Upon receiving s and t, Alice and Bob reply with their respective answers a ∈ A and
b ∈ B.

• The verifier evaluates a predicate V : A×B×S×T → {0, 1} based on the questions
send and answers received, and accepts if and only if V (a, b|s, t) = 1.

The objective of the provers is to maximize verifier’s acceptance probability. The
maximum average success probability of the provers over all possible (and valid) classical
strategy is called the classical value of the game.

The focus of the current chapter is on unique games. Unique games are a class of
two-prover one-round games wherein the verifier’s predicate evaluates to 1 if and only if
a = Γst(b) for some permutation Γst for every choice of questions (s, t). Before we focus
on unique games with quantum provers, we briefly mention the relevance of two-prover
one-round games in computational complexity theory.

Various NP-complete problems such as satisfiability of a 3SAT formula can be cast as
an instance of two-prover one-round games. The existence of a satisfiable assignment for a
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3SAT formula is equivalent to determining whether classical value of a certain two-prover
one-round game is 1 or not. Therefore, computing the value of the game is clearly NP-
hard. A more relaxed version of the problem is the following problem: Given the promise
that either the classical value of the game is exactly 1 or a small constant ε > 0, what
is the complexity of distinguishing between the two cases. A consequence of the famous
PCP Theorem [ALMSS98, AS98] and Raz’s parallel repetition theorem [Raz98] is that it
is NP-hard to determine whether the classical value of a game is 1 or at most ε > 0. The
class of games that arise from the PCP Theorem is known as projection games. These
games satisfy the following two properties.

1. The answer sets of the provers are [k] := {1, . . . , k} and [l] := {1, . . . , l}, where k, l
depend onε.

2. Conditioned on verifier’s acceptance, the answer of the first prover uniquely deter-
mines the answer of the second prover. This property is referred to as projection
property.

The hardness of such games have led to optimal inapproximability results for problems
like MAX-3SAT and MAX-3LIN2 [H̊as01]. Khot [Kho02] investigated a restricted class
of projection games, where the projection property holds both ways. In other words,
conditioned on verifier’s acceptance the answer of the first prover uniquely determines the
answer of the second prover and vice-versa.1 This implies that for every choice of question
pair asked to the provers, there is a bijective mapping between the answer sets of the two
prover. Note that the bijective mapping may depend on the question pair. Such games are
known as unique games. An example of a unique game is the CHSH game mentioned in the
previous chapter, or more generally, any XOR game. One of the major open problems in
the theory of computational complexity is the Unique Games Conjecture of Khot [Kho02]
as described below.

Conjecture 25. For any constants ε, δ > 0, there exists a unique game such that deter-
mining whether the classical value of the game is at least 1− ε or at most δ is NP-hard.

Note that for any unique game, determining whether the classical value of the game is 1
can be easily done in polynomial-time in the number of the questions. In the past decade,
unique games have found applications in hardness of approximation of various problems.
A considerable amount of work has been devoted in either proving optimal inapproxima-
bility results for various optimization problems assuming the conjecture [KKMO07, KR08,
Rag08], or refuting the conjecture [CMM06a, CMM06b, Tre08]. The uncertainty around

1A similar notion of uniqueness was investigated by Feige and Lovász [FL92], and Cai, Condon and
Lipton [CCL90, CCL92] for two-prover one-round games.
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the conjecture has been a notoriously difficult problem in theoretical computer science. A
few research work has also focused on coming up with the best possible algorithm (not
necessarily polynomial-time) that distinguishes between the two cases [ABS10, Kol10].

In the quantum case, Kempe, Regev and Toner [KRT08] showed that one can efficiently
approximate the quantum value (defined below) of such games in the following sense. If
the optimum value of a semidefinite programming relaxation for quantum value of unique
games is 1 − ε, then there exists a valid quantum strategy of the provers that succeeds
with probability at least 1− 6ε. One of the consequences of their result is that one cannot
hope for NP-hardness of unique games with quantum provers. In the classical case, similar
techniques of rounding a SDP solution to a valid classical strategy have been used by
various researchers. However, the rounding solution does not provide a strategy with
“good enough” classical value to refute the conjecture. In fact, Khot and Vishnoi [KV05]
explicitly constructed a unique game where the optimum of the SDP is close to one, while
the value of the game is close to zero.

We now proceed to explain what we mean by a quantum strategy for unique games.
Any quantum strategy of the provers for a unique game G can be described in terms of a
shared quantum state and measurement for each pair of questions (s, t) as follows.

• The quantum provers (sometimes referred to as Alice and Bob) share a bipartite
quantum state |ψ〉 ∈ X ⊗ X .

• Upon receiving questions s and t from the verifier, Alice and Bob apply projective
measurements described by the operators {Πa

s : a ∈ [k]} ⊂ Pos (X ) and {∆b
t : b ∈

[k]} ⊂ Pos (X ). The provers send the outcome of the measurement operation to the
verifier.

The quantum value of the game for the strategy described above is the average success
probability of the provers when they adopt the strategy and is given by the expression∑

s,t

∑
a,b

π(s, t)V (a, b|s, t) 〈ψ|Πa
s ⊗∆b

t) |ψ〉 .

The quantum value of the game ωq(G) is the best possible average success probability
achieved over all valid quantum strategies as described above. In mathematical terms,

ωq(G) = lim
dim(X )→∞

max
|ψ〉∈X⊗X

max
Πa

s ,∆
b
t

∑
s,t

∑
a,b

π(s, t)V (a, b|s, t) 〈ψ|Πa
s ⊗∆b

t) |ψ〉 . (7.1)

Finally, the n-fold repetition of a unique game G with questions sets S and T , answer set
[k] for each prover, and a probability distribution π : S × T → [0, 1] proceeds as follows.
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• The verifier generates n pairs of questions {(si, ti) ∈ S × T : i ∈ [n]} independently
according to the probability distribution π and sends the n-tuple (s1, . . . , sn) and
(t1, . . . , tn) to Alice and Bob, respectively.

• Upon receiving the questions, Alice replies with (a1, . . . , an) and Bob replies with
(b1, . . . , bn).

• The verifier accepts if and only if the provers win all instances of the game. That is
the predicate V (ai, bi|si, ti) evaluates to 1 for all i ∈ [n].

We denote the n-fold repetition of games by G⊗n. A fundamental question in the theory
of two-prover one-round games is the rate at which the value of a game decreases if multiple
instances of the game are played simultaneously. For a while it was believed that playing
n instances of the game simultaneously would decrease the value of the game from p to pn,
where p is the value of the original game. As mentioned in the previous chapter, Feige and
Lovász [FL92] showed that there exists a game with classical value 2

3
such that playing it

twice in parallel does not decrease the classical value. The same game has been used to
demonstrate that perfect parallel repetition does not hold for quantum strategies [Wat04]
and non-signaling strategies [Hol07]. Subsequent to their counterexample, many results
were established on parallel repetition of various types of games (see the references [CCL90,
CCL92, FV02, Ver95, Ver96]) culminating in Raz’s parallel repetition theorem [Raz98].

Theorem 26. For any game G with classical value ωc(G) = 1− ε and answer sets A and
B, there exists universal constants c1 and c2 such that the classical value of the game G⊗n

is

ωc
(
G⊗n

)
≤
(

1− εc1

c2

)n/ log(|A||B |)

.

Feige and Verbitsky [FV02] showed that Raz’s parallel repetition theorem is almost
tight in the following sense. They showed that there exists a family of games for which
reducing the classical value of the game from one constant to another fixed constant re-

quires O
(

log k
log log k

)
repetitions, where k is the size of the answer sets. Subsequently, Holen-

stein [Hol07] gave a simplified proof of Raz’s parallel repetition theorem and showed that
the constant c1 in Theorem 26 is 3.

Although Raz’s and Holenstein’s proof give sufficiently strong quantitative bounds on
the classical value of G⊗n in terms of classical value of G, there have been renewed interest
in obtaining better bounds in parallel repetition theorem for unique games in connection
with Khot’s unique games conjecture [AS08, BHHRRS08, BRRRS09, FKO07]. Shortly
after Holenstein’s simplified proof, Rao [Rao08] improved the generic bounds due to Raz
and Holenstein for the class of projection games.
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Theorem 27. For any projection game G with classical value ωc(G) = 1 − ε and answer
sets [k] and [l], there exists a universal constant c such that the classical value of the game
G⊗n is

ωc
(
G⊗n

)
≤
(

1− ε2

c

)n
.

As briefly discussed in Section 6.6, Raz [Raz11] showed that there exists an XOR game
for which Rao’s bound is tight wioth respect to the dependence on ε. Barak, Rao, Raz,
Rosen, and Shaltiel [BRRRS09] have recently shown that if the projection game has the
property that the probability distribution of the question pair is a product distribution,
then one can obtain an even stronger parallel repetition theorem in the sense that the
dependence on ε is linear. A similar bound is known to hold for projection games on
bipartite expanders [RR10].

In the quantum case, prior to the work presented in this chapter, a parallel repetition
theorem was known only for XOR games [CSUU08]. This has already been discussed in
the previous chapter. In this chapter, we establish a parallel repetition theorem for unique
games, which is based on the manuscript [Upa07]. Independent of the results presented
here, Kempe, Regev, and Toner [KRT08] showed a parallel repetition theorem for unique
games.

Results: We now proceed to list the main results of this chapter. Our first result is for
general unique games.

Theorem 28. For any unique game G with quantum value ωq(G) = 1− ε, we have

ωq(G
⊗n) ≤

(
1− ε2

49

)n
.

The bound obtained for unique games has been proven to be essentially tight [KR10]
with respect to the dependence on ε. A very special case of unique games are XOR games.
For any XOR game, we show that its quantum value is equal to the optimum value of the
SDP relaxations referred to in Section 7.2. This gives an alternate proof of the perfect
parallel repetition theorem for XOR games. For a class of games that generalize XOR
games, which we call as MODk games, an essentially tight parallel repetition theorem
holds. The MODk games are generalization of XOR games wherein the provers succeed if
and only if their answers a and b satisfy the linear equation a− b ≡ f(s, t) mod k.

Theorem 29. For any MODk game G with quantum value ωq(G) = 1− ε, we have

ωq(G
n) ≤

(
1− ε

4

)n
.
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Our technique for proving the results is as follows. We consider a semidefinite program-
ming relaxation for quantum value of a two-prover one-round game and show that it is
multiplicative in the following sense. If the optimum of the SDP corresponding to a game
G is α, then the optimum of the SDP corresponding to the n-fold repetition of G is αn. For
a given unique game, we use the the quantum rounding procedure of Ref. [KRT10]to obtain
a quantitative relationship between the optimum value of the semidefinite programming
relaxation and the quantum value. This immediately translates into a parallel repetition
theorem for such games.

7.2 SDP relaxations and quantum rounding

In this section, we discuss the two semidefinite programming relaxations for the quantum
value of a unique game and the quantum rounding procedure. The relaxations presented
here are relaxations for any two-prover one-round quantum game. However, we limit our
exposition to quantum unique games.

7.2.1 Semidefinite programming relaxations

For a quantum strategy described by a shared quantum state |ψ〉 ∈ X ⊗X , and projective
measurements {Πa

s : a ∈ [k]} ⊂ Pos (X ) and {∆b
t : b ∈ [k]} ⊂ Pos (X ) for every choice of s

and t, the quantum value of the associated strategy is given by the expression∑
s,t

∑
a,b

π(s, t)V (a, b|s, t) 〈ψ|Πa
s ⊗∆b

t |ψ〉 .

We first observe the following three constraints that arise from the associated measurement
operators.

1. Since the sets {Πa
s : a ∈ [k]} ⊂ Pos (X ) and {∆b

t : b ∈ [k]} ⊂ Pos (X ) are measurement
operators, it holds that ∑

a∈[k]

Πa
s = IX and

∑
b∈[k]

∆b
t = IX .

for every choice of (s, t) ∈ S × T .

2. Since the elements of the sets {Πa
s : a ∈ [k]} ⊂ Pos (X ) and {∆b

t : b ∈ [k]} ⊂ Pos (X )
are projection operators, it holds that〈

Πa
s ,Π

a′

s

〉
= 0 and

〈
∆b
t ,∆

b′

t

〉
= 0
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for every choice of (s, t) ∈ S × T such that a 6= a′ and b 6= b′.

3. Since the expression 〈ψ|Πa
s ⊗ ∆b

t |ψ〉 describes the probability of outputting (a, b) on
questions (s, t), it holds that

〈ψ|Πa
s ⊗∆b

t |ψ〉 ≥ 0

for every choice of (s, t) ∈ S × T and a, b ∈ [k].

For every choice of operators Πa
s and ∆b

t , define the vectors uas and vbt as

uas :=
(
Πa
s ⊗ IX

)
|ψ〉 and vbt :=

(
IX ⊗∆b

t

)
|ψ〉 .

It follows from item 1 that∑
a∈[k]

uas = |ψ〉 and
∑
b∈[k]

vbt = |ψ〉

and from item 2 that 〈
uas , u

a′

s

〉
= 0 and

〈
vbt , v

b′

t

〉
= 0.

Moreover, item 3 implies that
〈
uas , v

b
t

〉
≥ 0. These constraints can be written down as

the following semidefinite program [KRT10], which is denoted SDP1(G). Let σq(G) be the
optimum value of the SDP.

σq(G) = maximize:
∑
s,t

∑
a,b

π(s, t)V (a, b|s, t)
〈
uas , v

b
t

〉
subject to: ||z|| = 1,

∀s, t,
∑
a∈[k]

uas =
∑
b∈[k]

vbt = z,

∀s, t, a, b : a 6= b,
〈
uas , u

b
s

〉
=
〈
vat , v

b
t

〉
= 0,

∀s, t, a, b,
〈
uas , v

b
t

〉
≥ 0.

We note that the non-convex constraints∑
a∈[k]

uas =
∑
b∈[k]

vbt = z and ||z|| = 1

can be converted into following linear constraints∑
a∈[k]

〈uas , uas〉 =
∑
b∈[k]

〈
vbt , v

b
t

〉
=
∑
a,b

〈
uas , v

b
t

〉
= 1.
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Throughout the chapter, we will let s and t to be the elements of the sets S and T ,
respectively. Without loss of generality, we can assume the vectors associated with a
feasible solution of SDP1(G) to be real vectors [KRT10]. This fact implicitly helps in
analyzing the quantum rounding procedure.

For MODk games, there always exists an optimal strategy in which the provers’ output
distribution is uniform on the answer set. This allows us to put an extra constraint on the
SDP for such games:

∀s, t, a, b, ||uas || = ||vbt || =
1√
k
. (7.2)

The existence of an optimal solution satisfying (7.2) is proved in Proposition 38. Note that
there may be other unique games for which an optimal quantum strategy satisfies (7.2).
However, one cannot guarantee that the n-fold repetition of the game also satisfies the
same property.

It is known that the optimum value of SDP1(G) is a very good approximation to the
quantum value of a unique game. One might be tempted to use it to obtain parallel repe-
tition results similar to XOR games. Unfortunately, it is not true that the optimum value
of SDP1 (G⊗n) is (σq(G))n. Hence one needs to come up with a suitable SDP relaxation
for which this property holds and the optimum value is still a good enough approximation
to the quantum value of the unique game. One such semidefinite program is given below,
which is denoted SDP2(G). Let σ̄q(G) be the optimum value of the SDP.

σ̄q(G) = maximize:
∑
s,t

∑
a,b

π(s, t)V (a, b|s, t)
〈
uas , v

b
t

〉
subject to: ∀s, t, ‖zs‖ = ‖zt‖ = 1,

∀s, t,
∑
a∈[k]

uas = zs and
∑
b∈[k]

vbt = zt,

∀s, t, a, b : a 6= b,
〈
uas , u

b
s

〉
=
〈
vat , v

b
t

〉
= 0,

∀s, t, a, b,
〈
uas , v

b
t

〉
≥ 0.

Note that the only difference is that the system of vectors {uas : a ∈ [k]} and {vbt : b ∈ [k]}
may sum up to different unit vectors. One can easily see that the two semidefinite programs
are relaxations of the quantum value of any two-prover one-round quantum game with
answer sets [k] and [l]. We begin with a simple lemma that establishes a qualitative
relationship between the two semidefinite programs.

Lemma 30. For any two-prover one-round game G, whether unique or not, σq(G) = 1 if
and only if σ̄q(G) = 1.

Proof. Since SDP2(G) is a relaxation of SDP1(G), it is clear that σq(G) = 1 implies
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σ̄q(G) = 1. For the converse direction, assume that σ̄q(G) = 1 and that the system of
vectors {uas : a ∈ [k], s ∈ S} and {vbt : b ∈ [l], t ∈ T} form a feasible solution of SDP2(G)
achieving that value. Now

〈zs, zt〉 =
∑
a,b

〈
uas , v

b
t

〉
≥

∑
a,b:V (a,b|s,t)=1

〈
uas , v

b
t

〉
= 1

and therefore zs = zt = z. Hence the same system of vectors is a feasible solution of
SDP1(G). Since the objective function is the same, we have the desired result.

7.2.2 Quantum rounding procedure

In this section, we briefly discuss the quantum rounding procedure of Kempe, Regev and
Toner [KRT10]. Let the vectors obtained from any feasible solution of the semidefinite
programs lie in RM . The dimension M can be as large as k(|S| + |T |). Alternately, one
can consider a large enough N and embed these vectors in RN . The rounding procedure
begins with Alice and Bob sharing a maximally entangled state

|ψ〉 =
1√
M

M∑
i=1

|i〉 |i〉 ∈ X ⊗ X

where X = CM . For every question s and t, the vectors {uas : a ∈ [k]} and {vbt : b ∈ [k]}
can be used to define the measurement operators of the provers as follows:

Πa
s =

∣∣∣∣ uas||uas ||
〉〈

uas
||uas ||

∣∣∣∣ and ∆b
t =

∣∣∣∣ vbt||vbt ||
〉〈

vbt
||vbt ||

∣∣∣∣ .
The operators {Πa

s : a ∈ [k]} and {∆b
t : b ∈ [k]} not necessarily sum up to IX and so one

defines
Π0
s = IX −

∑
a∈[k]

Πa
s and ∆0

t = IX −
∑
b∈[k]

∆b
t

to be operators corresponding to outcome 0. This outcome means that the prover did not
get a valid outcome. We note that

1√
M

M∑
i=1

|i〉 |i〉 =
1√
M

M∑
i=1

|wi〉 |wi〉

for any set of real vectors {w1, w2, . . . , wM} that form an orthonormal basis for RM . This
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property together with the fact that the k-tuple of vectors arising from a feasible solution
of SDP1(G) or SDP2(G) are orthogonal for every choice of s and t helps in coming up with
a quantum strategy with a property that the success probability on questions (s, t) is close
to the inner product of vectors that contribute to the objective value.

The provers, Alice and Bob, share unlimited copies of maximally entangled state on
X ⊗ X and a sequence of real variables Λ = (λ1, λ2, . . . ). Each element of the sequence is
independently and uniformly sampled from [0, 1]. In round 1, Alice measures her part of
the state as described by the operators {Π0

s, . . . ,Π
k
s} above. Alice outputs a if and only if

a 6= 0 and λ1 ≤ ‖uas‖
2. If one of the two conditions are not met, Alice proceeds to round

2 and repeats the same strategy but with another copy of maximally entangled state and
the next real variable from Λ, which in this case is λ2. Alice iterates the procedure unless
she gives an output. Bob’s strategy is same except that Bob uses projective measurements

described by operators {∆0
t , . . . ,∆

k
t } and he outputs b 6= 0 at round i if λi ≤

∥∥vbt ∥∥2
.

Although Alice and Bob cannot ensure that they output in the same round, if the
optimum value of the relaxations is very high, the quantum strategy described above
performs very well. This is summarized in the following lemma.

Lemma 31 ([KRT10]). Let {uas : a ∈ [k]} and {vbt : b ∈ [k]} be two sets of orthog-
onal vectors such that they sum to (possibly different) unit vectors, and Rst = {(a, b) :
V (a, b|s, t) = 1}. Then there exists a quantum strategy such that the probability of Alice
and Bob outputting (a, b) ∈ Rst is at least

pst ≥ 1− 2

1−
∑

(a,b)∈Rst

〈
uas
‖uas‖

,
vbt
||vbt ||

〉2 (
min

{
||uas ||, ||vbt ||

})2

 . (7.3)

We use Lemma 31 to round an optimal vector solution of SDP2(G) into a quantum
strategy. The proof of the following lemma appears as Lemma 5.7 in the reference [KRT10]
and was independently obtained using the proof of Theorem 4.5 in the same paper.

Lemma 32. For a unique game G, let the optimum of SDP2(G) be σ̄q(G) = 1− ε. Then
there exists a quantum strategy S that achieves the value at least 1− 7

√
ε.

Proof. Unsurprisingly the quantum strategy is the one defined by the quantum round-
ing procedure. The major portion of the proof of this lemma appears as the proof of
Theorem 4.5 of Kempe, Regev and Toner, which rounds a feasible solution of SDP1(G).
To account for the fact that we are rounding a feasible solution of SDP2(G), we use the
Cauchy-Schwarz inequality to bound the difference between qst and q′st (defined below).
Let

εst = 1−
∑

(a,b)∈Rst

〈
uas , v

b
t

〉
so that ε =

∑
s,t

π(s, t)εst. (7.4)
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Let

qst =
∑

(a,b)∈Rst

〈
uas
‖uas‖

,
vbt
||vbt ||

〉2

‖uas‖ ||vbt || and r =
∑

(a,b)∈Rst

‖uas‖ ||vbt ||.

Since the game under consideration is a unique game, by the Cauchy-Schwarz inequality,
we have that r ≤ 1. It follows from above that

qst = r
∑

(a,b)∈Rst

‖uas‖
∥∥vbt ∥∥
r

〈
uas
‖uas‖

,
vbt
||vbt ||

〉2

≥ r

 ∑
(a,b)∈Rst

‖uas‖ ||vbt ||
r

〈
uas
‖uas‖

,
vbt
||vbt ||

〉2

.

The last inequality follows from the fact that px2 + (1− p)y2 ≥ (px+ (1− p)y)2. Hence

qst ≥
1

r

 ∑
(a,b)∈Rst

〈
uas , v

b
t

〉2

=
(1− εst)2

r
≥ 1− 2εst

r
≥ 1− 2εst. (7.5)

Let

q′st =

 ∑
(a,b)∈Rst

〈
uas
‖uas‖

,
vbt
||vbt ||

〉2
(min

{
‖uas‖ , ||vbt ||

})2

so that
pst ≥ 1− 2 (1− q′st) = 2q′st − 1 (7.6)

by (7.3). By the arithmetic-geometric inequality, we have
√
xy − min{x, y} ≤ |x − y|/2,

and therefore

qst − q′st ≤
∑

(a,b)∈Rst

(〈
uas
‖uas‖

,
vbt
||vbt ||

〉2
∣∣||uas ||2 − ||vbt ||2∣∣

2

)

≤ 1

2

∑
(a,b)∈Rst

∣∣||uas || − ||vbt ||∣∣ · ∣∣||uas ||+ ||vbt ||∣∣
≤ 1

2

2− 2
∑

(a,b)∈Rst

||uas || · ||vbt ||

2 + 2
∑

(a,b)∈Rst

||uas || · ||vbt ||

1/2

=

1−

 ∑
(a,b)∈Rst

||uas || · ||vbt ||

21/2

≤

1−

 ∑
(a,b)∈Rst

〈
uas , v

b
t

〉21/2

=
[
1− (1− εst)2

]1/2 ≤ √2εst.
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Now from (7.5)
q′st ≥ qst −

√
2εst ≥ 1− 2εst −

√
2εst.

It follows from (7.6) that

pst ≥ 2q′st − 1 ≥ 1− 4εst − 2
√

2εst ≥ 1− 7
√
εst.

The success probability of the quantum strategy S defined by the quantum rounding
procedure is

ωq(G,S) =
∑
s,t

π(s, t)pst ≥ 1−7
∑
s,t

π(s, t)
√
εst ≥ 1−7

(∑
s,t

π(s, t)

)1/2(∑
s,t

π(s, t)εst

)1/2

and therefore ωq(G) ≥ ωq(G,S) ≥ 1− 7
√
ε. This completes the proof.

For any MODk game G, Kempe, Regev and Toner [KRT10] established the following
relationship between the quantum value and the optimum value of SDP1(G).

Lemma 33. For any MODk game G, let the optimum of SDP1(G) be σq(G) = 1−ε. Then
there exists a quantum strategy S such that ωq(G,S) ≥ 1− 4ε.

In Section 7.4, we will show that for any MODk gameG, the optimum values of SDP1(G)
and SDP2(G) are equal.

7.3 Multiplicative semidefinite programs

In this section, we define a product operation on a class of semidefinite program. We show
that multiplicative property holds under the product operation assuming that the SDP
satisfies a certain condition. The product operation is pertinent to the results presented in
this chapter as we later show that SDP2(G) is an instance of the class of semidefinite pro-
grams discussed below. It is also notationally convenient for us to consider the semidefinite
program described below instead of SDP2(G).

α(G) = supremum: 〈C,X〉
subject to: ∀i ∈ [m], 〈Ai, X〉 = a[i],

∀j ∈ [n], 〈Bj, X〉 = b[j],

∀k ∈ [l], 〈Dk, X〉 ≥ 0,

X � 0.
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Throughout the rest of the section, we assume that the strong duality holds and the
optimum of the primal and the dual problems are attained. The SDP is such that there
exists a block partition of the associated matrices such that across that partition the cost
matrix is of the form

C =
1

2

(
0 Ĉ

Ĉ> 0

)
and the constraint matrices Ai, Bj, Dk are of the form

Ai =

(
Âi 0
0 0

)
, Bj =

(
0 0

0 B̂j

)
, and Dk =

(
0 D̂k

D̂>k 0

)
.

Let us assume that the matrices are (N +M)-by-(N +M), where the top diagonal block is
N -by-N and the bottom diagonal block is M -by-M The dual of the semidefinite program
is

α(G) = infimum:
∑
i∈[m]

a[i]y[i] +
∑
j∈[n]

b[j]z[j]

subject to: Y =

( ∑m
i=1 y[i]Âi

∑l
k=1 v[k]B̂k∑l

k=1 v[k]B̂>k
∑n

j=1 z[j]D̂j

)
= Z +

1

2

(
0 Ĉ

Ĉ> 0

)
,

∀k ∈ [l], v[k] ≤ 0,

y ∈ Rm and z ∈ Rn and Z � 0.

The bipartite tensor product of SDP with itself is defined as the following semidefinite
program, which we denote G ⊗b G.

α(G ⊗b G) = supremum:
〈
C̄,X

〉
subject to: ∀i1, i2 ∈ [m],

〈
Āi1i2 , X

〉
= a[i1] · a[i2],

∀j1, j2 ∈ [n],
〈
B̄j1j2 , X

〉
= b[j1] · b[j2],

∀k1, k2 ∈ [l],
〈
D̄k1k2 , X

〉
≥ 0,

X � 0.

Here the cost matrix is

C̄ =
1

2

(
0 Ĉ ⊗ Ĉ

(Ĉ ⊗ Ĉ)> 0

)
,

and the constraint matrices are

Āi1i2 =

(
Âi1 ⊗ Âi2 0

0 0

)
and B̄j1j2 =

(
0 0

0 B̂j1 ⊗ B̂j2

)
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and

D̄k1k2 =

(
0 D̂k1 ⊗ D̂k2(

D̂k1 ⊗ D̂k2

)>
0

)
.

We have the following multiplicative property for the class of semidefinite programs
discussed above.

Theorem 34. Let u ∈ Rl such that u[k] ≥ 0 for all k ∈ [l] and

1

2

(
0 Ĉ

Ĉ> 0

)
=

(
0

∑
k∈[l] u[k]D̂k∑

k∈[l] u[k]D̂>k 0

)
.

If for any dual feasible solution (y, z, v), it holds that

∑
i∈[m]

a[i]y[i] > 0 and
∑
j∈[n]

b[j]z[j] > 0

then α(G ⊗b G) = α(G)2.

To prove the above theorem, we need the following lemma that gives a necessary condi-
tion for optimal dual solutions. The lemma claims that for any optimal dual solution, the
contribution from the dual feasible vectors y and z towards the objective value is equal.

Lemma 35. For any feasible solution of the dual (y, z, v), let∑
i∈[m]

a[i]y[i] > 0 and
∑
j∈[n]

b[j]z[j] > 0.

Then for any optimal solution of the dual (ŷ, ẑ, v̂),∑
i∈[m]

a[i]ŷ[i] =
∑
j∈[n]

b[j]ẑ[j].

Proof. Let (Y, Z) be an optimal dual solution of the semidefinite program. Since Z is
positive semidefinite, we have

Z =

(
B
D

)(
B
D

)>
=

(
BB> BD>

DB> DD>

)
.

Let
p :=

∑
i∈[m]

a[i]y[i] > 0 and q :=
∑
j∈[n]

b[j]z[j] > 0.
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Assume that p 6= q and let p > q. For any λ > 0, let Z ′ be the following matrix

Z ′ =

(
λB

(1/λ)D

)(
λB

(1/λ)D

)>
=

(
λ2BB> BD>

DB> (1/λ2)DD>

)
and define Y ′ = Z ′+C. Since the off diagonal blocks of Z ′ is same as the off diagonal blocks
of Z, it is immediate that the associated vector v′ satisfies v′[k] = v[k] ≤ 0. Moreover, the
dual variables that contribute to the diagonal blocks of Y ′ are either a scalar multiple of
λ2 or 1/λ2 of the corresponding dual variables that contribute to the diagonal blocks of Y :

y′[i] = λ2y[i] for all i ∈ [m] and z′[j] =
1

λ2
z[j] for all j ∈ [n].

Therefore (Y ′, Z ′) form a dual feasible solution with objective value λ2p + q/λ2, which is
2
√
pq (< p+ q) for λ2 =

√
q/p, contradicting our assumption.

Now we proceed to prove Theorem 34. First of all, let X be an optimal solution of the
primal problem G. One can write X as

X =

(
U V
V > W

)
.

It follows that α(G) = Tr(ĈV >). Let X̄ be the following matrix:

X̄ =

(
U ⊗ U V ⊗ V

(V ⊗ V )> W ⊗W

)
.

It is evidently clear that X̄ satisfy all the constraints of bipartite tensor product of the
SDP with itself. All we need to show is that X̄ � 0. This easily follows from item 5 of
Theorem 3 since X̄ is a symmetric restriction of X⊗X. Finally, the objective value of the
feasible solution X̄ is

Tr
(

(Ĉ ⊗ Ĉ)(V ⊗ V )>
)

=
(

Tr(ĈV >)
)2

which is equal to α(G)2, since X is an optimal solution of G. Since the primal problem is
a maximization problem, this establishes

α(G ⊗b G) ≥ (α(G))2 .

For the opposite inequality, let (Y, Z) form a dual optimal solution. By Lemma 35, we
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can assume that the contributions of the variable y and z to the dual objective value is
equal. We first the dual optimal solutions as

Y =

 ∑m
i=1 y[i]Âi

∑l
k=1 v[k]D̂k∑l

k=1 v[k]D̂>k
∑n

j=1 z[j]B̂j


and

Z =

 ∑m
i=1 y[i]Âi

∑l
k=1 v[k]D̂k − Ĉ

2∑l
k=1 v[k]D̂>k − Ĉ>

2

∑n
j=1 z[j]B̂j

 .

By the assumption in Theorem 34, we have

Z =

 ∑m
i=1 y[i]Âi

∑l
k=1 (v[k]− u[k]) D̂k∑l

k=1 (v[k]− u[k]) D̂>k
∑n

j=1 z[j]B̂j

 =:

(
E H
H> F

)
(7.7)

for some u ∈ Rl such that u[k] ≥ 0 such that

∑
k∈[l]

u[k]D̂k =
Ĉ

2
.

Note that v[k] ≤ 0 and Z is positive semidefinite. For the bipartite tensor product of SDP,
we define the dual variables as follows:

y[i1, i2] = 2y[i1] · y[i2] and z[j1, j2] = 2z[j1] · z[j2] (7.8)

and
v[k1, k2] = −2v[k1] · v[k2] + 2u[k1] · v[k2] + 2v[k1] · u[k2] ≤ 0. (7.9)

The inequality v[k1, k2] ≤ 0 follows from the inequalities u[k1], u[k2] ≥ 0 and v[k1], v[k2] ≤ 0.
Let

Ȳ =

 2
∑m

i1,i2=1 y[i1, i2]Âi1 ⊗ Âi2 −2
∑l

k1,k2=1 v[k1, k2]D̂k1 ⊗ D̂k2

−
∑l

k1,k2=1 v[k1, k2]
(
D̂k1 ⊗ D̂k2

)> ∑n
j1,j2=1 z[j1, j2]B̂j1 ⊗ B̂j2

 .

Using (7.8) and (7.9), and

2
∑

k1,k2∈[l]

u[k1] · u[k2]D̂k1 ⊗ D̂k2 =
Ĉ ⊗ Ĉ

2
(7.10)
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one obtains that

Z̄ = 2

(
E ⊗ E −H ⊗H

− (H ⊗H)> F ⊗ F

)
.

To show that (Ȳ , Z̄) is dual feasible, we only need to show that Z̄ is positive semidefinite.
Since Z � 0, it follows from (7.7) that Z̄ � 0. To see why this is true, notice that for any

vector

(
u
v

)
, we have

(
u
v

)>(
E ⊗ E H ⊗H

(H ⊗H)> F ⊗ F

)(
u
v

)
=

(
u
−v

)>(
E ⊗ E −H ⊗H

− (H ⊗H)> F ⊗ F

)(
u
−v

)
and therefore the first matrix is positive semidefinite if and only if the second matrix is
positive semidefinite. The first matrix is positive semidefinite because it is a symmetric
restriction of Z ⊗ Z. It follows that Z̄, a scalar multiple of the second matrix, is also
positive semidefinite. Since objective value of this dual solution is an upper bound on
α(G ⊗b G), we have that

α(G ⊗b G) ≤
m∑
i1=1

m∑
i2=1

a[i1]a[i2]y[i1, i2] +
n∑

j1=1

n∑
j2=1

b[j1]b[j2]z[j1, j2]

= 2

( m∑
i=1

a[i]y[i]

)( m∑
i=1

a[i]y[i]

)
+ 2

( n∑
j=1

b[j]z[j]

)( n∑
j=1

b[j]z[j]

)

=

( m∑
i=1

a[i]y[i]

)2

+

( n∑
j=1

b[j]z[j]

)2

=

(
α(G)

)2

2
+

(
α(G)

)2

2
=
(
α(G)

)2
,

where the second last equality follows from Lemma 35. This establishes that

α(G ⊗b G) ≤ (α(G))2

which completes the proof of Theorem 34.

It should be noted that if we have two different instances of the semidefinite programs G1

and G2 such that both of them satisfy the conditions stated in Theorem 34 and Lemma 35,
and are of the required form (as described in the beginning of the section), then the
optimum value of the semidefinite program G1 ⊗b G2 is the product of the optimum values
of the individual semidefinite programs.

Moreover, the condition of Theorem 34 is inspired by Lee and Mittal [LM08]. In the
next section, we will demonstrate that for any game G, SDP2(G) is an instance of the class
of semidefinite programs considered in this section. In the manuscript [Upa07], we only
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prove the multiplicative property of SDP2(G) by essentially following the same argument.
However, the proof presented in the Ref. [Upa07] shows the desired multiplicative property
for SDP2(G) under the product operation arising from the repetition of games instead of
the bipartite tensor product. The main reason for present exposition is to avoid messy
notations that seems unavoidable while proving the multiplicative property of SDP2(G).

7.4 Parallel repetition theorems for quantum unique

games

To prove the main results of this chapter, we first show that SDP2(G) is an instance of
the class of semidefinite programs considered in Section 7.3. To this end, we rewrite the
constraints of SDP2(G) in the standard form. Consider a two-prover one-round game
specified by the question sets of the provers S and T , the answer set [k], the probability
distribution π : S × T → [0, 1], and a predicate V : [k]× [k]× S × T → {0, 1}.

Let C be a matrix whose rows are indexed by (s, a) ∈ S × [k] (Alice’s questions and
answers) and columns are indexed by (t, b) ∈ T × [k] (Bob’s questions and answers). We
call C the cost matrix of the game with matrix entries

C[(s, a), (t, b)] = π(s, t)V (a, b|s, t).

Define

C̄ :=
1

2

(
0 C
C> 0

)
(7.11)

to be the symmetric cost matrix of the game. We first start by writing the constraints of
the SDP2(G) in a form more amenable to the form discussed in the previous section.

1. The constraints 〈
uas , u

b
s

〉
=
〈
vat , v

b
t

〉
= 0 for all a, b ∈ [k] : a 6= b

can be alternately written as

X[(s, a), (s, b)] = X[(t, a), (t, b)] = 0 for all a, b ∈ [k] : a 6= b

for all choices of (s, t) ∈ S × T . For every choice of (s, t) ∈ S × T and a, b ∈ [k], let
Esab and Etab be 0− 1 matrices such that Esab[(s, a), (s, b)] = Esab[(s, b), (s, a)] = 1 and
Etab[(t, a), (t, b)] = Etab[(t, b), (t, a)] = 1, and zero elsewhere. Then for any choices of
(s, t) ∈ S × T and a, b ∈ [k], the constraints can be rewritten as

〈Esab, X〉 = 1 and 〈Etab, X〉 = 1.
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2. The constraints ‖zs‖ = ‖zt‖ = 1 and∑
a∈[k]

uas = zs for all s ∈ S and
∑
b∈[k]

vbt = zt for all t ∈ T

can be alternately written as∑
a∈[k]

X[(s, a), (s, a)] = 1 and
∑
b∈[k]

X[(t, b), (t, b)] = 1

for all choices of s ∈ S and t ∈ T . For all s ∈ S and t ∈ T , let Ess and Ett be 0 − 1
matrices such that Ess[(s, a), (s, a)] = 1 for all a ∈ [k] and Ett[(t, b), (t, b)] = 1 for all
b ∈ [k], and zero elsewhere. Then for any choice of s ∈ S and t ∈ T , the constraints
can be rewritten as

〈Ess, X〉 = 1 and 〈Ett′ , X〉 = 1.

3. The constraints
〈
uas , v

b
t

〉
≥ 0 can be written as

X[(s, a), (t, b)] +X[(t, b), (s, a)] ≥ 0

for every choice of (s, t) ∈ S×T and a, b ∈ [k]. For any (s, t) ∈ S×T and a, b ∈ [k], let
Esatb be the matrix with Esatb[(s, a), (t, b)] = Esatb[(t, b), (s, a)] = 1 and zero elsewhere.
Then for any choices of (s, t) ∈ S × T and a, b ∈ [k], the above constraints can be
rewritten as

〈Esatb, X〉 ≥ 0.

We now proceed to show that the constraint matrices are of the form as described in
Section 7.3. From items 1 and 2, it is immediate that the matrices Ess, Esab and the
matrices Ett, Etab are of the form(

∗ 0
0 0

)
and

(
0 0
0 ∗

)
,

while the matrices Esatb are of the form(
0 ∗
∗ 0

)
.

The partition of the blocks is done with respect to the partition in (7.11). Therefore,
the semidefinite program SDP2(G) is an instance of the class of semidefinite programs
considered in the previous section.
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It follows that for u[s, a, t, b] = π(s, t)V (a, b|s, t)/2 ≥ 0,∑
s,a,t,b

u[(s, a)(t, b)]Esatb = C̄

and hence the first condition of Theorem 34 is satisfied. One also notes that for any dual
feasible variables y and z, their contribution to the objective value are always non-negative:∑

s∈S

y[s] > 0 and
∑
t∈T

z[t] > 0.

Therefore, the second condition of Theorem 34 is satisfied. Hence the optimum value of the
bipartite tensor product of the semidefinite programs corresponding to games G1 and G2,
denoted SDP2(G1 ⊗b G2), is equal to the product of the optimum values of the SDP2(G1)
and SDP2(G2).

However, there is a minor problem. The semidefinite programming relaxation SDP2(G⊗
G) corresponding to G ⊗ G is not exactly the semidefinite program SDP2(G ⊗b G), the
bipartite tensor product of SDP2(G) with itself 2. This can be seen as follows. The
constraints of SDP2(G⊗G) are the following three sets of constraints:

1. For all s1, s2 ∈ S and t1, t2 ∈ T ,∑
a1,a2∈[k]

ua1a2
s1s2

= zs1s2 and
∑

b1,b2∈[k]

vb1b2t1t2 = zt1t2

such that zs1s2 and zt1t2 are unit vectors.

2. For all s1, s2 ∈ S and t1, t2 ∈ T , 〈
ua1a2
s1s2

, vb1b2t1t2

〉
≥ 0

for all a1, a2 ∈ [k] and b1, b2 ∈ [k].

3. For all s1, s2 ∈ S and t1, t2 ∈ T ,〈
ua1a2
s1s2

, ub1b2s1s2

〉
= 0 and

〈
va1a2
t1t2 , v

b1b2
t1t2

〉
= 0

if (a1, a2) 6= (b1, b2).

The bipartite tensor product of SDP2(G) with itself does contain the set of constraints
stated in items 1 and 2. However, there are other constraints in SDP2(G ⊗b G) that are

2This fact was pointed to us by Oded Regev.
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different from the set of constraints stated in item 3. These are the set of constraints that
arise from taking the “bipartite tensor product” of constraint matrices Es1s1 and Es2a2b2 ,
Et1t1 and Et2a2b2 , Es1a1b1 and Es2a2b2 , and Et1a1b1 and Et2a2b2 , for appropriate choices of
(a1, b1) and (a2, b2). Some of these constraints do appear in item 3 above but there are
other constraints that do not appear in item 3.

The set of constraints that arise from taking the bipartite tensor product of Es1a1b1 and
Es2a2b2 , and Et1a1b1 and Et2a2b2 can be rewritten as〈

ua1b1
s1s2

, ua2b2
s1s2

〉
= 0 and

〈
va1b1
t1t2 , v

a2b2
t1t2

〉
= 0

for a1 6= a2 and b1 6= b2. These are the set of constraints that are included in item 3 above.
The constraints that arise from the bipartite tensor product of Es1s1 and Es2a2b2 can be
rewritten as ∑

a1∈[k]

〈
ua1a2
s1s2

, ua1b2
s1s2

〉
= 0 and

∑
b1∈[k]

〈
vb1a2
t1t2 , v

b1b2
t1t2

〉
= 0 (7.12)

for a2 6= b2 and the constraints that arise from the bipartite tensor product of Et1t1 and
Et2a2b2 can be rewritten as∑

a1∈[k]

〈
ua2a1
s1s2

, ub2a1
s1s2

〉
= 0 and

∑
b1∈[k]

〈
va2b1
t1t2 , v

b2b1
t1t2

〉
= 0. (7.13)

for a2 6= b2. It is immediate that if the set of constraints in item 3 are satisfied then the
constraints in (7.12) and (7.13) are also satisfied. Therefore, any primal feasible solution
of SDP2(G⊗G) is also a feasible solution of the bipartite tensor product of SDP2(G) with
itself. Recall that the optimum value of SDP2(G) is denoted σ̄q(G). It immediately follows
that the optimum value of SDP2(G⊗G) is at most the optimum of SDP2(G⊗b G), which
is exactly (σ̄q(G))2. Using this argument inductively, we obtain that the optimum value of
SDP2 (G⊗n) is at most the optimum value of n-fold bipartite tensor product of SDP2(G),
which implies that

σ̄
(
G⊗n

)
= (σ̄(G))n .

The proof of Theorem 28 follows easily. Let ωq(G) = 1− ε. Using Lemma 32, we have that

ωq
(
G⊗n

)
≤ σ̄q

(
G⊗n

)
= (σ̄q(G))n ≤

(
1− ε2

49

)n
.

7.4.1 XOR games

Next we consider the case of XOR games for which we already know that a perfect parallel
repetition theorem holds. Below we show an alternate proof of perfect parallel repetition
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theorem for XOR games that goes via analyzing the quantum value of the game instead
of the quantum bias of the game. To begin, we state the following proposition from Cleve,
Høyer, Toner, and Watrous [CHTW04a].

Proposition 36. Let G be an XOR game. Then

ωq(G) =
1

2
+

1

2
max
xs,yt

∑
s,t

π(s, t)(V (0|s, t)− V (1|s, t))〈xs, yt〉

where xs, yt lie in a unit ball for all s ∈ S and t ∈ T .

A consequence of Proposition 36 is that the quantum value of an XOR game is

ωq(G) = max
xs,yt

∑
s,t

π(s, t)
1

2

{
(1 + 〈xs, yt〉) if V (0, 0|s, t) = V (1, 1|s, t) = 1

(1− 〈xs, yt〉) if V (0, 1|s, t) = V (1, 0|s, t) = 1.
(7.14)

The following theorem establishes that the quantum value of an XOR game is equal
to the optimum of SDP relaxations considered in this chapter. The proof is similar to
the proof presented in Section 6.5 that relates the quantum value of XOR games and the
optimum values of the Feige-Lovász relaxations.

Theorem 37. For an XOR game G, σ̄q(G) = σq(G) = ωq(G).

Proof. It is easy to see that ωq(G) ≤ σq(G) ≤ σ̄q(G). Therefore, we only need to show
that σ̄q(G) ≤ ωq(G) to establish the theorem .

To this end, let {uas : a ∈ {0, 1}, s ∈ S} and {vbt : b ∈ {0, 1}, t ∈ T} be a system of
vectors that form an optimal solution of SDP2(G). Define the following vectors for every
choice os (s, t) ∈ S × T

xs := u0
s − u1

s, and yt := v0
t − v1

t .

Since 〈u0
s, u

1
s〉 = 0 and 〈v0

t , v
1
t 〉 = 0, and the fact that

zs = u0
s + u1

s, and zt = v0
t + v1

t

are unit vectors, it is immediate that {xs : s ∈ S} and {yt : t ∈ T}, z1 are also unit vectors.
For any question (s, t) such that a ⊕ b = 0, the contribution of the vectors towards the
objective value of SDP2(G) is

〈u0
s, v

0
t 〉+ 〈u1

s, v
1
t 〉 = 〈zs, zt〉 −

(〈
u0
s, v

1
t

〉
+
〈
u1
s, v

0
t

〉)
≤ 1−

(〈
u0
s, v

1
t

〉
+
〈
u1
s, v

0
t

〉)
= 1−

(〈
u0
s, v

0
t

〉
+
〈
u1
s, v

1
t

〉
− 〈xs, yt〉

)
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and hence 〈
u0
s, v

0
t

〉
+
〈
u1
s, v

1
t

〉
≤ 1 + 〈xs, yt〉

2
. (7.15)

Similarly, for any question (s, t) such that a⊕b = 1, the contribution of the vectors towards
the objective value of SDP2(G) is

〈u0
s, v

1
t 〉+ 〈u1

s, v
0
t 〉 = 〈zs, zt〉 −

(〈
u0
s, v

0
t

〉
+
〈
u1
s, v

1
t

〉)
≤ 1−

(〈
u0
s, v

0
t

〉
+
〈
u1
s, v

1
t

〉)
= 1−

(〈
u0
s, v

1
t

〉
+
〈
u1
s, v

0
t

〉
+ 〈xs, yt〉

)
and hence 〈

u0
s, v

1
t

〉
+
〈
u1
s, v

0
t

〉
≤ 1− 〈xs, yt〉

2
. (7.16)

From (7.15) and (7.16) the optimum value of SDP2(G) is at most

∑
s,t

π(s, t)
1

2

{
(1 + 〈xs, yt〉) if V (0, 0|s, t) = V (1, 1|s, t) = 1

(1− 〈xs, yt〉) if V (0, 1|s, t) = V (1, 0|s, t) = 1

which is at most ωq(G) from (7.14). The completes the proof of the theorem.

The prefect parallel repetition theorem follows easily from the fact that for an XOR game
G,

ωq(G
⊗n) ≤ σ̄q(G

⊗n) =
(
σ̄q(G)

)n
=
(
ωq(G)

)n
.

7.4.2 MODk games

Our final result concerns with improving the bound in the parallel repetition theorem for
MODk games. The MODk games can be viewed as generalization of XOR games, where
each prover’s response a, b ∈ [k] to questions s and t must satisfy

a− b ≡ f(s, t) mod k.

In this subsection, we show that for any MODk game G, the optimum values of SDP1(G)
and SDP2(G) are equal. Then a straightforward application of Lemma 33 proves Theo-
rem 29. In general, one cannot hope for the optimum values of both relaxations to be equal.
However, the following proposition, which shows that there exists an optimal solution for
MODk games with certain additional properties, allows us to prove the desired relationship
between the two relaxations.
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Proposition 38. For a MODk game G, there exists an optimal solution {uas : a ∈ [k], s ∈
S} and {vbt : b ∈ [k], t ∈ T} for SDP1(G) and SDP2(G) satisfying∑

a∈[k]

uas = zs and
∑
b∈[k]

vbt = zt.

such that for all s, t, a, b,

〈uas , zt〉 =
1

k
〈zs, zt〉 and

〈
zs, v

b
t

〉
=

1

k
〈zs, zt〉 . (7.17)

Moreover, ||uas || = ||vbt || = 1√
k
.

Proof. We prove the proposition for SDP2(G). The proof for SDP1(G) follows from setting
zs = zt for every choices of the pair (s, t). To prove the claim, assume that the sets
{uas : a ∈ [k], s ∈ S} and {vbt : b ∈ [k], t ∈ T} form an optimal solution of SDP2(G). Define
the vectors

ûas :=
1√
k

a⊕
j=a+1

ujs and v̂bt :=
1√
k

b⊕
j=b+1

vjt .

Here the addition operation in the direct sum is modulo k. One easily observes that〈
ûas , v̂

b
t

〉
≥ 0 and

‖ûas‖ =
1√
k

and
∥∥v̂bt ∥∥ =

1√
k
.

Moreover, ∑
a∈[k]

ûas =
1√
k

⊕
j∈[k]

zs =: ẑs and
∑
b∈[k]

v̂bt =
1√
k

⊕
j∈k

zt =: ẑt.

Therefore, the two sets of vectors

{ûas : a ∈ [k], s ∈ S} and {v̂bt : b ∈ [k], t ∈ T}

form a feasible solution of SDP2(G). In fact, the objective value of the new solution is
same as the objective value of the optimal solution. To see why this is true, note that the
contribution of the new set of vectors for a linear equation of the form a− b ≡ c mod k is

∑
a,b:a−b=c

〈
ûas , v̂

b
t

〉
=
∑
a∈[k]

〈
ûas , v̂

a−c
t

〉
=

1

k

∑
a∈[k]

k∑
j=1

〈
ujs, v

j−c
t

〉
=
∑
a∈[k]

〈
uas , v

a−c
t

〉
.

Since the objective function depends on a − b, we obtain that the two sets of vectors
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{ûas : a ∈ [k], s ∈ S} and {v̂bt : b ∈ [k], t ∈ T} also form an optimal solution of SDP2(G).
Moreover, we also observe that

〈ûas , ẑt〉 =
1

k

〈
a⊕

j=a+1

ujs,
⊕
j∈k

zt

〉
=

1

k

∑
a∈[k]

〈uas , zt〉 =
〈zs, zt〉
k

=
1

k
〈ẑs, ẑt〉

and similarly
〈
ẑs, v̂

b
t

〉
= 〈ẑs,ẑt〉

k
.

To show that the optimum values of SDP1(G) and SDP2(G) are equal, we introduce
another semidefinite program denoted SDP3(G). For the remainder of the section, we
assume the answer set to be {0, 1, . . . , k − 1} and ω = exp(2πi/k), the k-th root of unity.
Let σ̂q(G) denote the optimum value of the optimization problem below.

σ̂q(G) = maximize:

(
1

k
+

1

k

∑
s,t

π(s, t)

(
k−1∑
j=1

ωjf(s,t)
〈
xjs, y

j
t

〉))
subject to: ∀s, t, j,

∥∥xjs∥∥ =
∥∥yjt ∥∥ = 1,

∀s, t, i, j : i 6= j,
〈
xis, x

j
s

〉
=
〈
yit, y

j
t

〉
= 0,

∀s, t, −1 ≤
k−1∑
j=1

ωjf(s,t)
〈
xjs, y

j
t

〉
≤ k − 1,

∀s, t, a, b,
k−1∑
i,j=1

ω(ia−jb) 〈xis, yjt 〉 ≥ −1.

The only use of the third set of constraints is to make sure that the objective function is
always real. It will be easy to parse the optimization problem when the answer size of both
the provers is 2. Note that for k = 2, the last two constraints are redundant because they
reduce to the obvious fact that the inner product of two unit vectors lie between [−1, 1].
Hence SDP3(G) reduces to the following.

σ̂q(G) = maximize:

(
1

2
+

1

2

∑
s,t

π(s, t)(−1)f(s,t) 〈xs, yt〉

)
subject to: ∀s, t, ‖xs‖ = ‖yt‖ = 1.

which is the quantum value of an XOR game. For MODk games, the relationship between
the set of unit vectors in the above problem and the set of vectors arising from a feasible
solution of SDP2(G) will be made precise in the proof of the following theorem.
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Theorem 39. For any MODk game G, σq(G) = σ̂q(G) = σ̄q(G).

Proof. We first prove that the optimum of SDP2(G) is at most the optimum of SDP3(G).
To this end, let

{uas : a ∈ [k], s ∈ S} and {vbt : b ∈ [k], t ∈ T}

form an optimal solution of SDP2(G) satisfying (7.17) and the uniformity constraint (refer
to Proposition 38). Define the unit vectors xis and yjt as

xis :=
k−1∑
a=0

ωiauas and yjt :=
k−1∑
b=0

ωjbvbt (7.18)

for every choice of s ∈ S, t ∈ T , and i, j ∈ [k− 1]. Let x0
s = zs and y0

t = zt for every choice
of (s, t) ∈ S × T . Below we prove that the vectors

{xis : i ∈ [k − 1], s ∈ S} and {yjt : j ∈ [k − 1], t ∈ T}

form a feasible solution of SDP3(G). The following four items show that all four sets of
constraints are satisfied.

1. For the first set of constraints of SDP3(G), it is immediate from (7.18) that∥∥xis∥∥ =
∥∥yit∥∥ = 1 for all i ∈ [k − 1].

2. For the second set of constraints of SDP3(G), we have for distinct i and j

〈
xis, x

j
s

〉
=

〈
k−1∑
a=0

ωiauas ,
k−1∑
b=0

ωjbubs

〉
=

k−1∑
a=0

ω(i−j)a||uas ||2 =
k−1∑
a=0

ω(i−j)a

k
= 0.

Similarly, it can be argued that for distinct i and j,
〈
yit, y

j
t

〉
= 0.

3. For the third set of constraints of SDP3(G), we observe that

1

k

k−1∑
j=0

ωjf(s,t)
〈
xjs, y

j
t

〉
=

1

k

k−1∑
a,b=0

k−1∑
j=0

ωj(f(s,t)−(a−b)) 〈uas , vbt〉 =
∑

a,b:a−b=f(s,t)

〈
uas , v

b
t

〉
∈ [0, 1].

Using the fact that x0
s = zs and y0

t = zt, we have

−1 ≤ −〈zs, zt〉 ≤
k−1∑
j=1

ωjf(s,t)
〈
xjs, y

j
t

〉
≤ k − 1.
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4. For the fourth set of constraints of SDP3(G), using (7.18) we have

uas =
1

k

k−1∑
i=0

ω−iaxis and vbt =
1

k

k−1∑
j=0

ω−jbyjt , (7.19)

and since
〈
uas , v

b
t

〉
≥ 0, it follows that

0 ≤ k2
〈
uas , v

b
t

〉
=

k−1∑
i,j=1

ω(ia−jb) 〈xis, yjt 〉+

〈
k−1∑
i=1

ω−iaxis, y
0
t

〉

+

〈
x0
s,
k−1∑
j=1

ω−jbyjt

〉
+
〈
x0
s, y

0
t

〉
.

From (7.19), we obtain

k−1∑
i=1

ω−iaxis = zs − k · uas and
k−1∑
j=1

ω−jbyjt = zt − k · vbt

and therefore from Proposition 38, we have that

k−1∑
i,j=1

ω(ia−jb) 〈xis, yjt 〉 ≥ 〈zs, zt〉 − k 〈zs, vbt〉− k 〈uas , zt〉 = −〈zs, zt〉 ≥ −1.

Hence all the constraints of SDP3(G) are satisfied, which implies that the system of
unit vectors {xis : i ∈ [k − 1], s ∈ S} and {yjt : j ∈ [k − 1], t ∈ T} as defined above forms a
feasible solution to the optimization problem. It remains to prove that the objective value
of this feasible solution is equal to the objective value of optimal solution of SDP2(G),
which is demonstrated below.

σ̂q(G) ≥
(

1

k
+

1

k

∑
s,t

k−1∑
j=1

π(s, t)ωjf(s,t)
〈
xjs, y

j
t

〉)
≥ 1

k

∑
s,t

k−1∑
j=0

π(s, t)ωjf(s,t)
〈
xjs, y

j
t

〉
=

1

k

∑
s,t

k−1∑
a,b=0

k−1∑
j=0

π(s, t)ωj(f(s,t)−(a−b)) 〈uas , vbt〉
=

∑
s,t

∑
a,b:a−b=f(s,t)

π(s, t)
〈
uas , v

b
t

〉
=
∑
s,t

∑
a,b

π(s, t)V (a, b|s, t)
〈
uas , v

b
t

〉
,

and hence σ̂q(G) ≥ σ̄q(G).

146



Next we proceed to show that the optimum of SDP3(G) is at most the optimum of
SDP1(G). To this end, let

{xis : i ∈ [k − 1], s ∈ S} and {yjt : j ∈ [k − 1], t ∈ T}

form an optimal solution of SDP3(G). Let z be a unit vector that is orthonormal to the
above system of unit vectors and let x0

s = y0
t = z for every choice of (s, t) ∈ S × T . Define

the vectors uas and vbt as

uas :=
1

k

k−1∑
i=0

ω−iaxis and vbt :=
1

k

k−1∑
j=0

ω−jbyjt . (7.20)

for all choice of (s, t) ∈ S × T and a, b ∈ {0, 1, . . . , k − 1}.
Now we proceed to show that the vectors in (7.20) form a feasible solution to SDP1(G).

To begin, first observe that {xis : i ∈ [k − 1]} are mutually orthonormal and likewise
{yjt : j ∈ [k − 1]} are mutually orthonormal. It follows from (7.20) that

||uas || = ||vbt || =
1√
k
.

The following three items establish the feasibility of vectors in (7.20) for SDP1(G).

1. It follows from (7.20) that

k−1∑
a=0

uas =
1

k

k−1∑
a=0

k−1∑
i=0

ω−iaxis =
1

k

k−1∑
i=0

(
k−1∑
a=0

ω−ia

)
xis = x0

s = z.

Similarly, it can be argued that

k−1∑
b=0

vbt =
1

k

k−1∑
b=0

k−1∑
j=0

ω−jbyjt =
1

k

k−1∑
j=0

(
k−1∑
b=0

ω−jb

)
yjt = y0

t = z.

This implies that the collection of vectors {uas} and {vbt} as defined in (7.20) sum to
same unit vector z.

2. For distinct a and b

k2
〈
uas , u

b
s

〉
=

〈
k−1∑
i=0

ω−iaxis,

k−1∑
j=0

ω−jbxjs

〉
=

k−1∑
i=0

ωi(a−b)
〈
xis, x

i
s

〉
=

k−1∑
i=0

ωi(a−b) = 0.

Similarly, for distinct choices of a and b, it can be argued that
〈
vat , v

b
t

〉
= 0.
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3. Using (7.20), we have that

k2
〈
uas , v

b
t

〉
=

k−1∑
i,j=1

ω(ia−jb) 〈xis, yjt 〉+

〈
k−1∑
i=1

ω−iaxis, y
0
t

〉
+

〈
x0
s,
k−1∑
j=1

ω−jbyjt

〉
+
〈
x0
s, y

0
t

〉
≥ −1 +

〈
k−1∑
i=1

ω−iaxis, z

〉
+

〈
z,

k−1∑
j=1

ω−iayjt

〉
+ 1 = 0.

Here we used the fact that z is orthonormal to xis and yjt for all i, j ∈ [k − 1] and
(s, t) ∈ S × T , and that the first term in the expression is at least −1 because xis and
yjt form a feasible solution of SDP3(G).

This shows that all the constraints of SDP1(G) is satisfied and hence {uas : a ∈ [k], s ∈ S}
and {vbt : b ∈ [k], t ∈ T} form a feasible solution of SDP1(G). It holds that

σq(G) ≥
∑
s,t

∑
a,b

π(s, t)V (a, b|s, t)
〈
uas , v

b
t

〉
=

1

k

∑
s,t

k−1∑
a,b=0

k−1∑
j=0

π(s, t)ωj(f(s,t)−(a−b)) 〈uas , vbt〉
=

1

k

∑
s,t

k−1∑
j=0

π(s, t)ωjf(s,t)

〈
k−1∑
a=0

ωjauas ,
k−1∑
b=0

ωjbvbt

〉

=

(
1

k
+

1

k

∑
s,t

k−1∑
j=1

π(s, t)ωjf(s,t)
〈
xjs, y

j
t

〉)
= σ̂q(G).

One cannot guarantee that the system of vectors {uas : a ∈ [k], s ∈ S} and {vbt :
b ∈ [k], t ∈ T} are real vectors. However, using Lemma 3.2 of Kempe, Regev and
Toner [KRT10], one can convert the above set of vectors into real vectors that satisfy
the feasibility of SDP1(G) with same objective value. This completes the proof of the
theorem.

The proof of parallel repetition theorem for MODk games follow easily from Theorem 39.
For any such game G with ωq(G) = 1− ε, we have

ωq
(
G⊗n

)
≤ σ̄q

(
G⊗n

)
= (σ̄q(G))n = (σq(G))n ≤

(
1− ε

4

)n
.

A consequence of Theorem 39 is that for any MODk game G, σq (G⊗n) = (σq(G))n. This
is provably not true for unique games [KR10].
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7.5 Related work

The result presented in this chapter is based on the manuscript [Upa07]. However, the
present exposition is vastly different from the manuscript. We stress that the proof of
the multiplicative property of a class of semidefinite program in Section 7.3 is based on an
observation made by Lee and Mittal [LM08] and was not proved in the original manuscript.
The purpose of this section is merely to avoid messy notations one encounters when proving
the multiplicative property of SDP2(G). In fact, the original proof showed that

σ̄q
(
G⊗n

)
= (σ̄q(G))n

without any reference to bipartite tensor product.

The parallel repetition results in this chapter was independently obtained by Kempe,
Regev and Toner [KRT10]. We obtained the result after the appearance of a preliminary
version of the Ref. [KRT10] on arXiv in October 2007. The preliminary version did not
include the parallel repetition results. The techniques used to show parallel repetition
results for general unique games is almost same as the one presented in their paper. One
of the differences is the choice of semidefinite program used to establish the theorem. The
one discussed in their paper is a relaxation of SDP2(G) and is described below for the sake
of completeness.

maximize:
∑
s,t

∑
a,b

π(s, t)V (a, b|s, t)
〈
uas , v

b
t

〉
subject to: ∀s, t, ‖zs‖ = ‖zt‖ = 1,

∀s, t
∑
a∈[k]

uas = zs and
∑
b∈[k]

vbt = zt,

∀s, t, a, b : a 6= b
〈
uas , u

b
s

〉
=
〈
vat , v

b
t

〉
= 0.

The second SDP relaxation discussed in this chapter has an extra set of non-negativity
constraints: 〈

uas , v
b
t

〉
≥ 0 for all (s, t) ∈ S × T and a, b ∈ [k].

The set of non-negativity constraints are not essential in obtaining parallel repetition theo-
rems for quantum unique games. For such games, one can trivially observe that Lemma 30
holds. However, for two-prover one-round games that are not unique, in general the opti-
mum value of the semidefinite program can be strictly greater than 1 whereas the quantum
value is strictly less than 1. Therefore, for such games, one cannot hope to obtain parallel
repetition result using the above SDP. One such class of games are two-prover one-round
binary games [CHTW04a] for which semidefinite programming based approach might be
useful [Bei10].
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The analysis of the quantum rounding procedure for general unique games in Kempe,
Regev and Toner is exactly the same as the one presented in this chapter. We obtain the
proof of Lemma 32 by using the proof of Theorem 4.5 of their paper [KRT10] (Theorem 4.4
in in the preliminary arXiv version), and a simple application of the Cauchy-Schwarz
inequality. The proof of Lemma 32 is presented in this chapter for the sake of completeness.

Although oure result on MODk games is same as the one presented in their paper, the
approach is completely different. We show that for any such game G, the optimum values
of SDP1(G) and SDP2(G) are equal. As a consequence, we are able to show that the first
relaxation is also multiplicative. It also gives us an alternate proof of the perfect parallel
repetition theorem for XOR games, discussed in the previous chapter. We remark that
the proof of Lemma 33 does not use the fact that the system of vectors {uas : a ∈ [k]} and
{vbt : b ∈ [k]} for every question (s, t) should sum up to same unit vector z [KRT10]. There-
fore, for MODk games, the quantum rounding procedure applied on the second relaxation
in Section 7.2 or the relaxation mentioned above will also give the same quantitative perfor-
mance. This provides a simpler proof of Theorem 29, which is mentioned in Ref. [KRT10].
We also remark that the quantum value of an XOR game and the optimum value of the
above mentioned semidefinite program are equal. As a consequence, their result also im-
plies perfect parallel repetition theorem for quantum XOR games, although this is not
explicitly stated.

Another direction of research has focused on coming up with optimal lower bound on
parallel repetition for quantum unique games. More precisely, Kempe and Regev [KR10]
asked the following question on parallel repetition of unique games. For a unique game G
with quantum value ωq(G) = 1−ε, what is the optimal dependence of ωq (G⊗n) on ε? They
proved the existence of a unique game for which the bound obtained in Theorem 28 is tight
with respect to the exponent in ε. This also establishes that while σ̄q(G

⊗n) = (σ̄q(G))n,
the same does not hold for SDP1(G) for if it holds that σq(G

⊗n) = (σq(G))n for any unique
game G, then the optimal dependence of ωq (G⊗n) on ε will be linear instead of quadratic.

In the same paper, Kempe and Regev also show that for non-signaling strategies, the
bound obtained by Holenstein [Hol07] is also tight. Roughly speaking, non-signaling strate-
gies are strategies where the marginal distribution of Alice’s answer is independent of Bob’s
question and likewise for Bob. One should note that for unique games as defined in this
chapter, its non-signaling value is always 1: simply choose the following distribution Pst
on the answer pairs (a, b)

Pst(a, b) =
1

k
if and only if a = Γst(b).

Here Γst is the permutation on question (s, t). It is immediate that the marginal distribu-
tion of Alice’s answer is uniform and hence independent of Bob’s question and likewise for
Bob.
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Lee and Mittal [LM08] demonstrated a class of semidefinite programs for which mul-
tiplicative property holds. The class of semidefinite programs considered in their paper
is similar but more general than the one presented in Section 7.3. They considered the
following semidefinite program:

max
{
〈C,X〉 :

〈
A(k), X

〉
= b[k] and

〈
B(j), X

〉
≥ 0 for all (j, k) ∈ [n]× [m] and X � 0

}
,

where the matrices are of the form

C =

(
0 D
D> 0

)
and A(k) =

(
P (k) 0

0 Q(k)

)
and B(j) =

(
0 R(j)(

R(j)
)>

0

)
and there exists u[j] ≥ 0 such that

D =
n∑
j=1

u[j]R(j).

Lee and Mittal showed that the two semidefinite programs of the above form (identified
by subscripts 1 and 2 below) are multiplicative under the tensor product operation de-
fined below. The cost matrix is the tensor product of the cost matrices of the individual
semidefinite programs. The constraints are of the form〈

A
(k)
1 ⊗ A

(k′)
2 , X

〉
= b[k] · b[k′] and

〈
B

(j)
1 ⊗B

(j′)
2 , X

〉
≥ 0.

It is not hard to see that for the class of semidefinite programs considered in Section 7.3,
the optimum value of the bipartite tensor product of two semidefinite programs is equal
to the optimum value of the semidefinite program obtained from the product operation
defined above. However, the multiplicative property of the class of semidefinite programs
under the product operation defined in Ref. [LM08] is larger than the class of semidefinite
programs considered in Section 7.3.

Although not explicitly stated, it is known that for a unique game G, if ωq(G) = 1
then ωc(G) = 1. One cannot hope for a quantitative relationship between these two
quantities like the relationship we have for XOR games [CHTW04a]. Indeed, Khot and
Vishnoi [KV05] explicitly constructed a unique game for which the classical value is close to
zero but optimum of a semidefinite programming relaxation for the classical value is close
to one. The optimal solution of the SDP relaxation can be used to extract a quantum
strategy that is still close to one, which provides an arbitrary large separation between the
two quantities.

Finally, Kempe and Vidick [KV11] have recently demonstrated an error reduction tech-
nique for general two-prover one-round quantum games. Informally speaking, their result
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is as follows. If the quantum value of a two-prover one-round game G is at most α, then
there exists a game G′ defined in terms of repetitions of G with quantum value at most ε,
where the number of repetitions depends polynomially on (1− α)−1 and ε−1. The depen-
dence implies that if, for instance, the quantum value of some game G is 1− 1/n, then one
needs poly(n) repetitions to reduce the quantum value to a constant. They consider two
different kinds of repetitions that defined game G′ in terms of G: the Feige-Killian repeti-
tion [FK00] and the Dinur-Reingold repetition [DR06]. We point out that the game G′ is
not the standard n-fold repetition of the game G. We refer to their paper and the references
therein for more detail on the types of repetitions and the proof technique employed.
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Chapter 8

QMA variants with polynomially
many provers

The chapter is based on the Ref. [GSU11] and is a joint work with Sevag Gharibian and
Jamie Sikora.

The chapter introduces quantum Merlin-Arthur proof systems with multiple provers.
Roughly speaking, multi-prover QMA proof systems are non-interactive proof system
wherein each prover (Merlin) sends a polynomial-size proof that are unentangled with
each other to the verifier (Arthur) who then runs a quantum verification procedure to
decide whether to accept or reject. In this chapter, we are primarily concerned with three
variants of multi-prover quantum Merlin-Arthur proof systems. The first variant is de-
noted QMAlog(poly), the class of problems that can be efficiently verified by polynomially
many unentangled quantum proofs each of logarithmic-size. The second variant is denoted
BellQMA(poly), the class of problems that admits a verifier who first applies unentan-
gled, nonadaptive measurements on each proof and then applies another operation on the
outcomes of each measurement to decide whether to accept or reject. The third variant
is SepQMA(poly), where the verifier’s measurement operator corresponding to outcome
accept is a fully separable operator across the polynomially many unentangled quantum
proofs.

The organization of the chapter is as follows.

• In Section 8.1, we formally define multi-prover quantum Merlin-Arthur proof systems
and their variants that aee relevant to this chapter.

• In Section 8.2, we discuss the main results of this chapter and brief overview of the
proofs idea. We also give a short introduction to on conic programming relevant to
this chapter.
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• In Section 8.3, we show that QMAlog(poly) is equivalent to MQA, the class of prob-
lems that admit a classical proof and a quantum verification procedure.

• In Section 8.4, we show that BellQMA(poly) is equivalent to QMA under the con-
straint that the number of outcomes after applying unentangled, nonadaptive mea-
surements on each proof is at most a polynomial per proof.

• In Section 8.5, we provide an alternate proof of perfect parallel repetition theorem
for SepQMA(poly), a result previously obtained by Harrow and Montanaro [HM10].
Our proof technique uses duality of cone programming and is similar in spirit to the
techniques employed in previous two chapters.

8.1 Multiple prover quantum Merlin-Arthur proofs

This section introduces multi-prover quantum Merlin-Arthur proof systems. The study
of non-interactive proof system in the classical world has yielded some of the greatest
achievements in theoretical computer science, from the Cook-Levin theorem, which for-
mally ushered in the age of NP verification systems and the now ubiquitous notion of
NP-hardness, to the more modern PCP theorem [ALMSS98, AS98, Din07], which has led
to significant advancements in our understanding of hardness of approximation.

A natural quantum generalization of the class NP, or more accurately its probabilistic
analogue MA, is the class based on quantum Merlin-Arthur proof system [KSV02], where
a computationally powerful but untrustworthy prover, Merlin, sends a quantum proof to
convince an efficient quantum verifier, Arthur, that a given input string x ∈ { 0, 1 }n belongs
to the yes-instance of a specified promise problem. The proof system is at least as powerful
as its classical counterparts, for the ability to process and exchange quantum information is
no hindrance to Arthur’s ability to act classically and prevent Merlin from using quantum
information to his advantage.

The multi-prover variant of quantum Merlin-Arthur proof systems are non-interactive
proof systems wherein multiple provers send quantum proofs that are guaranteed to be
unentangled with each other. The complexity class based on such proof system is formally
defined below.

Definition 40 (QMA(m)). Let p : N → N be a polynomially bounded function, and
m : N → N a function. A promise problem A = (Ayes, Ano) is in the class QMA(m) if
there exists a polynomial-time generated family of verification circuits Q = {Qn | n ∈ N }
with the following properties:

1. Each Qn acts on n+ p(n) input qubits, and outputs one qubit.
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2. (Completeness) For every x ∈ Ayes, there exist m(|x|) quantum proofs specified by the

set {|ψi〉 : i ∈ [m(|x|)]} ⊂ C2p(|x|)
such that

Pr[Q|x| accepts (x, |ψ1〉 ⊗ . . .⊗ |ψm(|x|)〉)] ≥ 2/3.

3. (Soundness) For any x ∈ Ano and any m(|x|) quantum proofs specified by the set

{|ψi〉 : i ∈ [m(|x|)]} ⊂ C2p(|x|)

Pr[Q|x| accepts (x, |ψ1〉 ⊗ . . .⊗ |ψm(|x|)〉)] ≤ 1/3.

The class QMA(poly) is defined as

QMA(poly) =
⋃

m∈poly

QMA(m).

We point out a notational ambiguity here. We denote k-message quantum interactive
proofs QIP(k) whereas we denote m-prover quantum Merlin-Arthur proofs by QMA(m).
This will not lead to any ambiguity because multi-prover quantum Merlin-Arthur proof
system are non-interactive and the number of messages exchanged between the provers
and the verifier is always understood to be 1. We also note that the constants 2/3 and 1/3
can be replaced by any two real numbers a and b such that the difference between a and b
is bounded from below by an inverse polynomial and one can amplify the two-sided errors
to exponentially close to zero [HM10].

Few variants of QMA(m) mentioned in this chapter are listed below. All these classes
satisfy the completeness and soundness conditions mentioned in Definition 40.

1. The complexity class QMA is simply QMA(1). The complexity class MQA is a sub-
class of QMA, where the proof is a polynomial-size classical string and the verification
procedure is an efficient quantum computation.

2. The complexity class SepQMA(poly) is a subclass of QMA(poly), wherein Arthur’s
measurement operator corresponding to outcome “accept” is a fully separable oper-
ator across the proofs.

3. The complexity class QMAlog(poly) is a subclass of QMA(poly), wherein each Mer-
lin’s message to Arthur is O(log(|x|)) qubits.

We remark that MQA has been studied under the name QCMA in the literature —
the notation MQA was suggested by Watrous [Wat09b]. It follows from definition that
MA ⊆ MQA ⊆ QMA. A collapse of either of the two containments would be surprising,
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as the first one would imply that quantum verification offers no advantage over classical
verification and the second one would imply that quantum proofs do not offer any advantage
over classical proofs in the non-interactive setting.

The expressive power of multiple Merlins was first studied by Kobayashi, Matsumoto
and Yamakami [KMY03], who showed that QMA(2) = QMA(poly) if and only if the
class of QMA(2) protocols with completeness c and soundness s (with at least inverse
polynomial gap) is exactly equal to QMA(2) protocols with completeness 2/3 and sound-
ness 1/3. A substantial amount of research has since been devoted to understanding the
properties of multi-prover quantum Merlin-Arthur proof systems. Recently, Harrow and
Montanaro [HM10] demonstrated a product state test, wherein given two copies of a pure
quantum state on multiple systems, the test distinguishes between the cases when the quan-
tum state is a fully product state across all the systems or far from any such state. Using
this test, they answered a few important questions regarding QMA(poly). In particular,
they showed that

QMA(2) = QMA(poly)

and that error reduction is possible for such proof systems. Prior to their result, the
answers to both the questions were known to be affirmative assuming a weak version of the
Additivity Conjecture [ABDFS09]. One of the crucial properties of the product state test
is that it can be converted into a QMA(2) protocol, where Arthur’s measurement operator
corresponding to outcome accept is a separable operator across the two proofs. Harrow
and Montanaro established a perfect parallel repetition theorem for such proof systems, a
crucial step in obtaining exponentially small error probabilities.

Blier and Tapp initiated the study of logarithmic-size quantum proofs [BT09] that are
unentangled (a preprint of the paper first appeared in 2007). They showed that two unen-
tangled quantum proofs suffice to show that a 3-coloring of an input graph exists, implying
that NP has succinct unentangled quantum proofs. A drawback of their protocol is that al-
though it has perfect completeness, its soundness is only inverse polynomially bounded away
from 1. Shortly after, Aaronson, Beigi, Drucker, Fefferman and Shor [ABDFS09] showed

that satisfiability of any 3-SAT formula of size n can be proven by Õ(
√
n) unentangled

quantum proofs of O(log n) qubits with perfect completeness and constant soundness (see
also Chen and Drucker [CD10]). In a subsequent paper [Bei08], Beigi improved directly
on Blier and Tapp’s result [BT09] by showing that by sacrificing perfect completeness, one
can show that NP has two logarithmic-size quantum proofs with a better gap between
completeness and soundness probabilities than in [BT09].

Finally, one of the open questions raised in Ref. [ABDFS09] concerns the power of
Arthur’s verification procedure. In particular, the paper introduces two different classes of
verification procedures, BellQMA and LOCCQMA verification. Roughly speaking, LOC-
CQMA verification corresponds to Arthur applying a measurement operation that can be
implemented by Local Operations and Classical Communication (LOCC) (with respect to
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the partition induced by the multiple proofs). The authors raised the question of whether
BellQMA(poly) = QMA or not. Brandão [Bra08] showed that BellQMA(m) is equal to
QMA for constant m. In a recent development, Brandão, Christandl and Yard [BCY11]
showed that LOCCQMA(m) is equal to QMA for constant m.

A major focus of this chapter is on BellQMA verification, which is a two-stage verifi-
cation procedure that proceeds as follows.

1. Arthur first performs measurement on each proof that are nonadaptive and unentangled
with each other. The measurement need not be binary and the number of possible
outcomes for each proof can be exponential.

2. Arthur’s second step is to apply a quantum circuit on the measurement outcomes of
each proof followed by measuring the first qubit of the resulting state. Depending on
the measurement outcome, Arthur decides to accept or reject.

We remark that, as in the Ref. [CD10], our BellQMA protocols are allowed to use a quantum
verification circuit in Stage 2, whereas originally in Refs. [Bra08, ABDFS09] only classical
processing of measurement outcomes { yi } was allowed in order to emulate the notion of
a Bell experiment performed by Arthur. The result presented in Section 8.4 holds for
both definitions. We now proceed on to define the class BellQMA(poly). The definition
highlights the two-stage computation of the verifier and assumes that the completeness
and soundness are 2/3 and 1/3, respectively. As stated above, they can be replaced by any
two real numbers a and b such that the difference between a and b is bounded from below
by an inverse polynomial without changing the expressive power of the class.

Definition 41. Let r,m : N→ N be two functions. A promise problem A = (Ayes, Ano) is
in class BellQMA[r,m] with completeness 2/3 and soundness 1/3 if there exists a quantum
polynomial-time Arthur whose verification procedure is as follows.

1. Arthur first performs a polynomial-time quantum computation on the input and gen-
erates a description of quantum circuits V1(x), . . . , Vm(x). The quantum circuits are
independent and unentangled with each other.

2. Arthur’s second step is to simultaneously apply Vi(x) on the i-th quantum proof, the
action of which can be described by a unitary operator followed by measurement in
standard basis. At the end of this stage, Arthur obtains outcome yi ∈ [r(|x|)] for the
i-th proof.

3. Arthur finally performs an efficient quantum computation following by a two-outcome
measurement on the input and the measurement outcomes obtained in step 2, and de-
cides to accept or reject based on the final outcome.
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The class BellQMA(m) and BellQMA(poly) are defined as

BellQMA(m) =
⋃
r∈exp

BellQMA[r,m] and BellQMA(poly) =
⋃

m∈poly

BellQMA(m).

Note that the key distinction between BellQMA[r,m] and BellQMA(poly) is that the
former has the number of measurement outcomes in Stage 1 of the protocol bounded by
r(|x|), whereas the latter may allow exponentially many possible outcomes. Throughout
this paper, we use the notation BellQMA[poly, poly] to denote

BellQMA[poly, poly] :=
⋃

r∈poly

⋃
m∈poly

BellQMA[r,m].

Finally, we remark that the class SepQMA(m) is equivalent to QMA(m). The equiva-
lence between classes QMA(m) and SepQMA(m) was demonstrated by Harrow and Mon-
tanaro [HM10], where they used the equivalence to show that error amplification is possible
for QMA(m) proof systems. This follows from their product state test, which shows that a
QMA(m) protocol can be converted into a SepQMA(2) protocol.

8.2 Results and preliminaries

In this section, we discuss the main results and overview of the proof ideas adopted to
obtain the results. We also briefly discuss cone programming and mention few relevant
facts about them, which are implicitly used in Section 8.5.

8.2.1 Main results

We show the following three results regarding variants of QMA(poly).

1. Relationship to MQA. The first result is an easy observation that concerns with
the expressive power of polynomially many logarithmic-size unentangled quantum proofs.
We specifically show that

QMAlog(poly) = MQA.

In other words, if each prover is restricted to sending short quantum proofs, then one
can not only do away with multiple provers, but also of the need for quantum proofs
altogether. The significance of this result is as follows: Understanding the expressive power
of QMA(poly), or its relationship with QMA, is currently one of the biggest challenges in
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quantum complexity theory. The above result settles this question in the logarithmic-size
message setting.

The proof is based on a simple application of the fact that logarithmic-size quan-
tum states can be described to within inverse exponential precision using a polynomial
number of bits and efficiently prepared by a quantum circuit. Hence, roughly speaking,
one can replace a polynomial number of logarithmic-size quantum proofs with a single
polynomial-size classical proof. Each quantum proof can then be efficiently prepared from
this classical information by the verifier to within inverse exponential precision since the
original quantum proofs were of logarithmic-size. Although the proof is simple, one cannot
hope for a better characterization using other techniques because the reverse containment,
i.e. MQA ⊆ QMAlog(poly), also holds using similar ideas. In fact, MQA can be simulated
by polynomially-many logarithmic-size quantum proofs, where each Merlin is supposed to
send a bit of the optimal classical proof. We also note that Marriott and Watrous [MW05]
showed that QMAlog(1) is equal to BQP, a result that has been subsequently extended to
two different models of single-prover quantum interactive proof systems, where the prover
sends logarithmic-size message to the verifier [BSW11].

2. Towards a non-trivial upper bound on BellQMA(poly). Our second result
concerns with BellQMA protocols. We show that for the class BellQMA[r,m], if r,m :
N→ N are polynomially bounded functions, then

BellQMA[r,m] = QMA.

Note that the number of outcomes after the first step of Arthur’s verification procedure can
be exponential in the input-size. The restriction that r has to be polynomially bounded
function is crucial for our proof. One can view the result as a step towards answering
whether the complexity classes BellQMA(poly) and QMA(poly) have the same expressive
power or not.

The significance of BellQMA(poly) in our setting is that if one could show that QMA 6=
BellQMA(poly), then it would follow that QMA 6= QMA(poly), since it holds that QMA ⊆
BellQMA(poly) ⊆ QMA(poly). As mentioned above, Brandão has shown the negative re-
sult that QMA = BellQMA(m) for constant m [Bra08]. Where BellQMA(poly) lies, how-
ever, remains open. For example, although we know QMA(2) = QMA(poly) [HM10], the
same techniques do not apply in any obvious way to show an analogous result for BellQMA
protocols as they require entangled measurements (i.e., SWAP test measurements) across
multiple proofs, which violate the definition of BellQMA.

The proof of this result is more technically challenging. To show the containment
BellQMA[poly, poly] ⊆ QMA (note that the reverse containment is trivial since QMA ⊆
BellQMA[2, 1]), we demonstrate a QMA protocol which simulates a BellQMA[poly, poly]
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protocol using the following observation: although consolidating m quantum proofs into
a single quantum proof raises the possibility of cheating using entanglement, if Arthur is
also sent an appropriate classical “consistency-check” string, then a dishonest Merlin can
be caught with non-negligible probability.

Specifically, in our QMA protocol, we ask a single Merlin to send the m quantum
proofs of the original BellQMA protocol (denoted by a single state |ψ〉), accompanied by a
“consistency-check” string p which is a classical description of the probability distributions
obtained as the output of Stage 1. One can think of this as having the QMA verifier delegate
first stage of the BellQMA verification to Merlin. Arthur then performs a consistency check
between |ψ〉 and p based on the premise that if Merlin is honest, then p should arise from
running first stage of the original verification on |ψ〉. If this check passes, then Arthur
runs second stage of the BellQMA verification on p. If Merlin tries to cheat, however, we
show that the check detects this with non-negligible probability. Note that the accuracy
of the consistency check crucially uses the fact that there are at most polynomially many
outcomes to check for each local measurement of first stage of the BellQMA verification.

A noteworthy observation based on the above two characterizations is that when re-
stricted to BellQMA protocols with polynomial number of outcomes per proof, allowing
each Merlin to send polynomially many qubits makes the model more powerful than the
model where each Merlin is restricted to send logarithmic many qubits, unless MQA 6=
QMA.

3. Perfect parallel repetition for SepQMA(m). Our final result concerns with error
reduction of SepQMA(m) protocols. We show that the property of perfect parallel repe-
tition holds for SepQMA(m). This is in contrast with general QMA(m) protocols, where
perfect parallel repetition does not hold. The property of perfect parallel repetition for
SepQMA(m) protocols was previously proved by Harrow and Montanaro [HM10]. How-
ever, our proof technique is different from their technique. We use a simple cone program
to characterize the success probability of SepQMA(m) protocol and use duality to show
that perfect parallel repetition holds if the verifier’s measurement operator is a separable
operator across k proofs.

We remark that the duality of semidefinite programs have been used to show a perfect or
strong parallel repetition for various models of (single or two-prover) quantum interactive
proof systems as discussed in this thesis.

Finally, the following lemma is crucial to the proof of the first two results.

Lemma 42. [Wat02] Let {ρ1 . . . , ρk} ⊂ D (X ) and {σ1, . . . , σk} ⊂ D (X ). Then∥∥∥∥ k⊗
i=1

ρi −
k⊗
i=1

σi

∥∥∥∥
1

≤
k∑
i=1

‖ρi − σi‖1 .
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8.2.2 Cone programming

This section briefly reviews basic notions in conic optimization (or cone programming),
which is a generalization of semidefinite optimization. We say that a set K in an underlying
Euclidean space is a cone if x ∈ cone implies that λx ∈ K for all λ > 0. A cone K is convex
if x, y ∈ K implies that x+ y ∈ K. Cone programs are concerned with optimizing a linear
function over the intersection of a convex cone and an affine space. It generalizes several
well-studied models of optimization including semidefinite programming (K = Pos (X ))
and linear programming (K = Rn

+). Associated with a cone K is its dual cone K∗ defined
as

K∗ = {S : 〈X,S〉 ≥ 0 for all X ∈ K} .

A cone program associates the following 4-tuple (C, b,A,K) to an optimization problem
described as below.

supremum: 〈C,X〉
subject to: A(X) = b,

X ∈ K,

where A : Span(K) → RM is a linear operator. transformation. Note that the inner
product is defined as in the Euclidean space. For instance, if the cone under consideration
is the set of positive semidefinite or separable operators, then the inner product is the
standard Hilbert-Schmidt inner product over the space of Hermitian operators. As in the
case of linear and semidefinite programs, cone programs also come in primal-dual pairs as
described below.

Primal problem (P)

supremum: 〈C,X〉
subject to: A(X) = b,

X ∈ K.

Dual problem (D)

infimum: 〈b, y〉
subject to: A∗(y) = C + S,

S ∈ K∗.

The linear operator A∗ is the adjoint of A and is the unique map that satisfies

〈Y,A(X)〉 = 〈A∗(Y ), X〉

for all X and Y in the underlying Euclidean space.

We say that the cone program is primal feasible and strictly primal feasible, respectively,
if the sets

{X : A(X) = b} ∩K and {X : A(X) = b} ∩ int(K)

are non-empty. Here int(·) denotes the interior of a set.
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One has a similar notion of dual feasible and strictly dual feasible. That is, the cone
program is dual feasible and strictly dual feasible, respectively, if the sets

{(y, S) : A∗(y) = C + S} ∩Rm⊕K∗ and {(y, S) : A∗(y) = C + S} ∩RM ⊕ int(K∗).

A convex cone K is closed if and only if K = K∗∗. Thus, if K is not closed we need to
“order” the primal-dual pairs since the dual of the dual problem is no longer the primal
problem. In this chapter, we are primarily concerned with the convex cone

Sep (X1,X2, . . . ,Xm) =

{
k∑
i=1

Pi(1)⊗ · · · ⊗ Pi(m) : {P1(j), . . . , Pk(j)} ⊂ Pos (Xj) , k ∈ N

}
.

We call the elements of the set Sep (X1, . . . ,Xm) fully separable operator and the set itself
as the cone of fully separable operators. Note that the cone of fully separable operators is
a closed convex cone so ordering the primal-dual pairs is not an issue.

Similar to linear programming and semidefinite programming, cone programming has
a rich duality theory.

Lemma 43 (Weak Duality). If X is primal feasible and (y, S) is dual feasible then

〈b, y〉 − 〈C,X〉 ≥ 0.

This result can be used to show upper bounds on the value of the primal problem or
lower bounds on the value of the dual problem. There is also a notion of strong duality.
We say that strong duality holds for a problem (P) if the optimal value of (P) equals the
optimal value of (D) and (D) attains an optimal solution. Below we give a condition that
guarantees strong duality for (P) when the underlying K lies in the space of Hermitian
operators. The choice of this space is due to its relevance to Section 8.5 and the lemma
holds as long as the cone K is a closed convex cone. Let α and β denote the optimum
values for primal and dual problems, respectively.

Lemma 44. Let K be a closed convex cone, C ∈ Herm (X ), b ∈ RM , and A : L (X )→ CM

be a map that maps every operator in Herm (X ) to RM . Then the following holds.

1. Let β be finite and that there exists an operator X ′ ∈ int(K) such that A(X ′) = b. Then
α = β and there exists (y, S) ∈ RM ⊕K∗ such that

A∗(y) = C + S and 〈b, y〉 = β.

2. Let α be finite and that there exists (y′, S ′) ∈ RM ⊕ int(K∗) such that A∗(y′) = C + S ′.
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Then α = β and there exists X ∈ K such that

A(X) = b and 〈C,X〉 = α.

This result can be used to show upper bounds on the value of the primal problem or
lower bounds on the value of the dual problem. There is also a notion of strong duality.
There are several conditions that guarantee strong duality for cone programs and we refer
to Tunçel and Wolkowicz [TW08] and the references therein for detail.

We finally remark that unlike linear programming or semidefinite programing, cone
programming are not efficiently solvable. There exist NP-hard problems that can be rep-
resented as instances of cone programs.

8.3 Equivalence of MQA and QMAlog(poly)

In this section, we prove the equivalence between MQA and QMAlog(poly). We first show
the direction MQA ⊆ QMAlog(poly). Let A = (Ayes, Ano) be a promise problem in MQA
and let x ∈ {0, 1}n be the input string. Suppose the MQA prover sends an m-bit classical
proof to the verifier, for polynomially bounded m. Then the following simple QMAlog(m)
protocol achieves the desired containment:

QMAlog(m) Protocol

1. Embed classical bits into qubits. Each (unentangled) prover i ∈ [m] sends a
single qubit |ψi〉 ∈ C2 to Arthur. If the i-th prover is honest, his/her qubit is the
computational basis state corresponding to the i-th bit of the classical MQA proof.

2. Make things classical again. Arthur measures all proofs in the computational basis,
obtaining a classical string y ∈ {0, 1}m.

3. Run MQA verification. Arthur runs the MQA verification circuit on x and y and
accepts if and only if acceptance occurs in the MQA verification.

The completeness property follows straightforwardly. The soundness property is also easy
to observe. Note that Arthur runs the MQA verification on a classical string y and hence
he accepts the string with probability at most 1/3.

To show the reverse containment, let A = (Ayes, Ano) be a problem in QMAlog(poly) and
let x ∈ {0, 1}n be the input string. Suppose we have a QMAlog(m) protocol for polynomially
bounded m, where prover i sends a dc log ne-qubit state |ψi〉 for some constant c > 0. Let

r(n) = 2dc logne = O(nc).
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The MQA protocol proceeds as follows:

MQA Protocol

1. Describe proofs classically. The prover sends m classical registers represented by
the tuple (C1,C2, . . . ,Cm), each of length 2n · r(n) to Arthur. If the prover is honest,
register Ci contains a classical description of the i-th quantum proof of the QMAlog(m)
protocol.

2. State preparation. Using the contents of register Ci, for every choice of i ∈ [m],
Arthur prepares the state |ψi〉 by first determining a unitary Ui such that Ui |0 . . . 0〉 =
|ψi〉, and then implementing Ui with high precision using a finite set of approximately
universal gates, obtaining states |ψ′i〉.

3. Run QMAlog(m) verification. Arthur runs the QMAlog(m) verification circuit on
|ψ′1〉⊗· · ·⊗|ψ′m〉 and accepts if and only if acceptance occurs in QMAlog(m) verification.

Observe that each classical register Ci is of size polynomial in n, implying the overall proof
length is of polynomial size. In Step 1, the prover uses n bits to represent the real and
imaginary parts of each of the polynomially many entities (r(n) entries) required to describe
each |ψ〉. Let the unit vector described by register Ci be denoted |ψi〉. In Step 2, Ui is easily
found as the unitary that maps |0 . . . 0〉 to |ψi〉 as the inverse of the unitary that maps |ψi〉
to |0 . . . 0〉. Such a unitary can be easily decomposed into a product of polynomially many
2 × 2 rotations on an r(n)-dimensional real space and a diagonal unitary as follows. The
first step is to convert the vector |ψi〉 into a real vector by applying an appropriate diagonal
unitary operator. The second step is to convert the resulting real unit vector into |0 . . . 0〉
by shifting the amplitudes of any standard basis other than |0 . . . 0〉 to |0 . . . 0〉. Each of
these unitary operators can be implemented by a finite set of approximately universal gates
(see Bernstein and Vazirani [BV97] for details). This step also incurs some error, which
can be made exponentially small.

Since Steps 1 and 2 can be performed to within inverse exponential error, we thus can
ensure ‖|ψi〉 − |ψ′i〉‖ ≤ ε for all i ∈ [m] and for inverse exponential ε > 0. By Lemma 42,
it follows that the overall precision error is at most mε for polynomial m, and thus the
completeness and soundness of the protocol are bounded from below and above by (respec-
tively)

2

3
−mε and

1

3
+mε.

Alternatively, the containment QMAlog(poly) ⊆ MQA can be shown using a slightly
different protocol1, where Merlin sends classical descriptions of the quantum circuits that
generate the quantum proofs from |0 . . . 0〉 instead of classical descriptions of the proofs.

1This protocol was mentioned to us by Richard Cleve.

164



8.4 Equivalence of BellQMA[poly,poly] and QMA

Recall that BellQMA[r,m] is the class of problems, where the verifier receives m unen-
tangled proofs from m Merlins, applies a quantum circuit Vj(x) on j-th proof that can
be physically interpreted as performing unentangled, nonadaptive measurement on each
proof with r possible outcomes from the set [r], and then applies a quantum circuit on the
measurement outcomes to decide whether to accept or reject. One can assume without
loss of generality that the number of possible outcomes is exactly r for each prover. In this
section, we show that if r,m are polynomially-bounded functions, then

QMA = BellQMA[r,m].

For notational convenience, let Πj(i) denote Arthur’s i-th POVM element in the first stage
of BellQMA verification protocol for the j-th prover.

We proceed as follows. Let A = (Ayes, Ano) be a promise problem, and x be an in-
put string of length n := |x|. As mentioned in Section 8.2.1, the containment QMA ⊆
BellQMA[poly, poly] follows straightforwardly since QMA ⊆ BellQMA[2, 1]. For the re-
verse containment, suppose we have a BellQMA[r,m] protocol for polynomially bounded
functions r,m : N → N with completeness 2/3 and soundness 1/3. We show that this
protocol can be simulated by a QMA protocol where Merlin sends the following proof to
Arthur.

Merlin sends two registers (X,Y), which should be thought of as the classical and
quantum registers, respectively. Suppose optimal proofs for the BellQMA[r,m] protocol
for input x are given by ρj for j ∈ [m]. Then, in the quantum register Y, an honest Merlin
should send many copies of the state ρj. Specifically, Y is partitioned into m registers Yj,
one for each original prover, and each Yj should contain k copies of ρj, for k a carefully
chosen polynomial. In other words, Y should contain the state [ρ⊗k1 ]Y1 ⊗ · · · ⊗ [ρ⊗km ]Ym . We
further view each Yj as a block of registers (Y1

j , . . . ,Y
k
j ) where Yl

j should contain the l-th
copy of ρj.

In the classical register X, an honest Merlin prepares a quantum state in the com-
putational basis, which intuitively corresponds to a bit string describing the m classical
probability distributions Arthur induces upon applying the measurement operation cor-
responding to first stage of the BellQMA verification to each of the optimal proofs ρj,
respectively.

More formally, we partition X into mr registers Xij corresponding to each of the j ∈ [m]
Merlins and i ∈ [r] POVM outcomes for every Merlin. In the scenario when Merlins are
honest, the content of Xij should be

pj(i) := 〈Πj(i), ρj〉
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truncated to s bits of precision (s being polynomially bounded function), such that the
set {pj(1), . . . , pj(r)} form a probability distribution. For example, if the j-th prover’s
proof was the single qubit state ρj = |0〉 〈0|, with Πj(1) = |0〉 〈0| and Πj(2) = |1〉 〈1|, then
Xj = (1, 0). We remark that X plays the role of the classical “consistency check” string
described in Section 8.2.1.

Of course, Merlin may elect to be dishonest and choose not to send a proof of the
above form to Arthur by (let’s say) sending a quantum state which is entangled across the
registers (X,Y). To catch this, our QMA protocol is defined as follows:

Of course, Merlin may elect to be dishonest and choose not to send a proof of the above
form to Arthur by, e.g., sending a quantum state which is entangled across the registers
(X,Y). To catch this, our QMA protocol is defined as follows:

QMA Protocol

1. Merlin sends Arthur a quantum state in registers (X,Y), for X and Y defined as above.

2. Force X to be classical. Arthur measures register X in the computational basis and
reads the measurement outcome. This forces X to essentially be a classical register of
bits, and destroys any entanglement or correlations between X and Y.

3. X should contain probability distributions. Arthur checks whether the content of
registers Xj form a probability distribution pj, i.e., that

∑r
i=1 pj(i) = 1. Arthur rejects

if this is not the case.

4. Consistency check: Can the quantum states in Y reproduce the distribu-
tions in X? Arthur picks independently and uniformly at random, an index j ∈ [m]
and another index i ∈ [r]. He applies the measurement {Πj(i)}ri=1 separately to each
register Y1

j , . . . ,Y
k
j , and counts the number of times outcome i appears, which we denote

henceforth as nj(i). Arthur rejects ifnj(i)k
− pj(i)

 ≥ 1

p

for p a carefully chosen polynomial.

5. Run Stage 2 of the BellQMA verification and repeat for error amplification.
For each prover j, Arthur samples an outcome from [r] according to the distribution
in (X1

j , . . . ,X
r
j), and runs Stage 2 of the BellQMA verification on the resulting set of

samples. He repeats this process independently a polynomial number of times q, and
accepts if and only if the BellQMA procedure accepts on the majority of the runs.

Let us give an intuition behind the above verification procedure. The key step above
is Step 4, where Arthur cross-checks that the classical distributions sent in X really can
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be obtained by measuring m quantum proofs, which for an honest Merlin should be unen-
tangled. In this sense, our protocol can alternatively be viewed as using quantum proofs
(Y) to check validity of a classical proof (X). Intuitively, the reason why entanglement
in Y does not help a dishonest Merlin in Step 3 is due to the local nature of Arthur’s
checks/measurements. Finally, once Arthur is satisfied that X contains valid distributions,
he runs Step 5. We remark that repetition is used here in order to boost the probability of
acceptance in the x ∈ Ayes case to exponentially close to 1, which is required to separate
it from the x ∈ Ano case, where the probability of catching a dishonest Merlin is only in-
verse polynomially bounded away from 1. Once such a gap exists, standard amplification
techniques [KW00, MW05] can be used to further improve completeness and soundness
parameters.

To formally analyze completeness and soundness of the protocol, we assign the following
values to the parameters mentioned above, all of which are polynomial in n in our setting:

q = 50n and p = 20mr and k = 5p3 and s = 20nmr.

We now analyze the completeness and soundness probabilities of the QMA protocol below.

Completeness. Intuitively, when x ∈ Ayes, Merlin passes Step 4 with probability expo-
nentially close to 1 since he has no incentive to cheat — he can send an unentangled proof
in Step 1 to Arthur corresponding to the optimal proofs ρj in the BellQMA protocol, such
that the expected value of nj(i)/k is indeed pj(i). Arthur’s checks in Step 4 are then inde-
pendent local trials, allowing a Chernoff bound to be applied. We then show that Merlin
passes each run in Step 5 with constant probability, and applying the Chernoff bound a
second time yields the desired completeness exponentially close to 1 for the protocol.

To state this formally, suppose Merlin is honest and sends registers (X,Y) in the desired
form, i.e., Xij contains pj(i) = 〈Πj(i), ρj〉 up to α bits of precision, and Yl

j contains ρj. Then,
the expected value of the random variable nj(i) is E[nj(i)] = k 〈Πj(i), ρj〉, which is equal
to k · pj(i) up to the error incurred by representing pj(i) using α bits of precision. In other
words, ∣∣∣∣E[nj(i)]

k
− pj(i)

∣∣∣∣ < 1

2s
<

1

2p
. (8.1)

We can hence upper bound the probability of rejecting in Step 3 by

Pr

[nj(i)k
− pj(i)

 ≥ 1

p

]
< Pr

[nj(i)k
− E[nj(i)]

k

 ≥ 1

2p

]
≤ 2 exp

(
−5p

4

)
where the first inequality follows from (8.1) and the second from the Chernoff bound.
Thus, Merlin passes Step 4 with probability exponentially close to 1.
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We now turn to the final step. Since x ∈ Ayes, we know that the optimal distributions,
denoted qj := (〈Πj(1), ρj〉 , . . . , 〈Πj(r), ρj〉) for j ∈ [m], obtained in first stage of the original
BellQMA protocol are now accepted in Stage 2 with probability at least 2/3. However, in
our case, Merlin was only able to specify each qj up to α bits of precision per entry as the
distributions pj. To analyze how this affects the probability of acceptance, let Pj and Qj

be diagonal operators with entries Pj(i, i) = pj(i) and Qj(i, i) = 〈Πj(i), ρj〉, respectively.
Letting Λaccept denote the POVM element corresponding to outcome accept in second stage
of the BellQMA protocol, we thus bound the change in acceptance probability by:∣∣∣∣∣Tr

[
Λaccept

(
m⊗
j=1

Pj −
m⊗
j=1

Qj

)]∣∣∣∣∣ ≤
∥∥∥∥ m⊗
j=1

Pj −
m⊗
j=1

Qj

∥∥∥∥
tr

≤
m∑
j=1

‖Pj −Qj‖1

=
m∑
j=1

r∑
i=1

|pj(i)− 〈Πj(i), ρj〉 |

≤ mr

220nmr

where the first inequality follows from the fact that |Tr(AB)| ≤ ‖A‖∞ · ‖B‖1 and the
second inequality follows from Lemma 42. Therefore, the probability of success for each of
the q runs of the BellQMA protocol in Step 5 is at least(

2

3
− mr

220nmr

)
> 0.6.

Since each run is independent, applying the Chernoff bound yields that Arthur accepts
Merlin’s proof in Step 5 with probability at least 1−2 exp(−0.02q), as desired. There may
be some error incurred in sampling, which can be assumed to be exponentially small so
that the success probability of each run is still at least 0.6.

Soundness. We now prove that when x ∈ Ano, a dishonest Merlin can win with prob-
ability at most inverse polynomially bounded away from 1. To show this, we bound the
probability of passing Step 4 by relating the quantity pj(i) to the expected value of nj(i)/k,
and then apply the Markov bound. The desired relationship follows by observing first that
the expected value of nj(i)/k is precisely the probability of obtaining outcome i when
measuring proof j of some (honest) unentangled strategy, followed by arguing that the
distribution pj must hence be far from this latter (honest) distribution if Merlin is to pass
Step 5 with probability at least 1/2 (since x ∈ Ano). Combining these facts, we find that
Arthur detects a cheating Merlin with inverse polynomial probability in Step 4.
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More formally, let the quantum register Yj contain an arbitrary quantum state σj whose
reduced states in registers Yl

j for l ∈ [k] are given by σj(l), and define

ξj :=
1

k

k∑
l=1

σj(l).

By the linearity of expectation, the expected value of the random variable nj(i)/k is

E
[
nj(i)

k

]
=

1

k

k∑
l=1

〈Πj(i), σj(l)〉 = 〈Πj(i), ξj〉 .

Our goal is to lower bound the expression

Pr

[nj(i)k
− pj(i)

 ≥ 1

p

]
. (8.2)

To achieve this, we first substitute pj(i) above with a quantity involving E[nj(i)/k], and
then apply the Markov bound.

To relate E[nj(i)/k] to pj(i), we first remark that in order for Merlin to pass each run
of Step 5 with probability exponentially close to 1, he must send probability distributions
pj, which are accepted by Stage 2 of the BellQMA verification with probability at least
1/2. Let

qj(i) := 〈Πj(i), ξj〉 .

Let us imagine a BellQMA protocol where the j-th Merlin sends ξj as his quantum proof.
Since x ∈ Ano, by the soundness property of the BellQMA(m) proof system, the success
probability of the Merlins is at most 1/3. In other words, sampling outcomes from the
probability distributions (qj(1), . . . , qj(r)) and then running the second stage of BellQMA
verification procedure will yield outcome accept with probability at most 1/3. Also, observe
that

E
[
nj(i)

k

]
= qj(i).

It follows that by letting Pj and Qj be diagonal operators with the probability vectors pj
and qj on their diagonals, respectively, and Λaccept the POVM element corresponding to
outcome accept in second stage of the BellQMA protocol, we have

1

10
<

∣∣∣∣∣Tr

[
Λaccept

(
m⊗
j=1

Pj −
m⊗
j=1

Qj

)]∣∣∣∣∣ ≤
∥∥∥∥ m⊗
j=1

Pj −
m⊗
j=1

Qj

∥∥∥∥
1

≤
m∑
j=1

‖Pj −Qj‖1 .

Here, the (loose) lower bound of 1/10 comes from the following two observations. First,
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the distributions represented by the diagonal operators Qj’s are derived from a BellQMA
protocol and therefore achieve a success probability at most 1/3 by the soundness prop-
erty of the BellQMA verification. Second, the distributions represented by the diagonal
operators Pj’s have to achieve a success probability strictly greater than 1/2 per run to
guarantee that Merlin wins Step 5 with probability exponentially close to 1. Combining
these two, we get that the difference between the success probabilities obtained by distri-
butions described by operators {Pj : j ∈ [m] } and {Qj : j ∈ [m] } should be at least 1/6
modulo the error incurred due to finite precision when encoding the distributions pj. The
use of the constant 1/10 overcompensates for this precision error. Hence, there exists a j
such that

‖Pj −Qj‖1 =
r∑
i=1

|pj(i)− qj(i)| ≥
1

10m

implying the existence of an i such that

|pj(i)− qj(i)| ≥
1

10mr
. (8.3)

This is our desired relationship between pj(i) and E[nj(i)/k] = qj(i). Note that the prob-
ability of picking pair (i, j) in Step 4 is 1/mr.

We now substitute this relationship into Eq. (8.2) and apply the Markov bound. Specif-
ically, choose i and j as in Eq. (8.3), and assume that pj(i) > 〈Πj(i), ξj〉. Then, we have

Pr

[nj(i)k
− pj(i)

 < 1

p

]
< Pr

[
nj(i)

k
− E

[
nj(i)

k

]
>

1

10mr
− 1

p

]
≤ 1− 1

2p
.

The case when pj(i) < 〈Πj(1), ξj〉 is similar. We conclude that a dishonest Merlin is caught
in Step 4 with probability at least 1/2p. Therefore, the probability that Arthur proceeds
to Step 5 is upper bounded by(

1

mr

)(
1− 1

20mr

)
+

(
1− 1

mr

)
(1) = 1− 1

20m2r2

where the first term represents the case where Arthur selects the correct pair (i, j) to check,
and the second term the complementary case, in which we assume the cheating prover can
win with probability 1. Hence the overall success probability of a dishonest Merlin is at
most 1− 1/20m2r2, which is bounded away from 1 by an inverse polynomial.

Finally, as mentioned before, since m and r are polynomially bounded functions, we
have that the completeness is exponentially close to 1, while the soundness is bounded
away from 1 by an inverse polynomial. By known amplification techniques for QMA
protocols [KW00, MW05], one can amplify the completeness and soundness errors to be
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exponentially close to 0. This proves our desired containment.

We note that the result of Brandão that BellQMA(k) = QMA for constant k is not
subsumed by our result. While Brandão’s result works only for constant k, it does not make
any assumption on the number of possible outcomes at stage 1 of the BellQMA verification.
Although our result works for polynomially many Merlins, however, it crucially uses the
fact that the number of outcome per proof.

8.5 Perfect parallel repetition for SepQMA(poly)

In this section, we answer the following question on SepQMA(poly) protocols. Before we
proceed, recall that the closed convex cone Sep (X1, . . . ,Xm) is defined to contain operators
of the form

k∑
i=1

P1(i)⊗ · · · ⊗ Pm(i)

where Pj(i) ∈ Pos (Xj), for every j ∈ [m] and i ∈ [k]. This is the cone of interest and it is
known to be closed and convex with non-empty interior. Given C to be the measurement
operator corresponding to outcome accept, the maximum success probability of the Merlins
in any QMA(m) protocol can be written as the maximum of 〈ρ, C〉, where ρ is a density
operator in Sep (X1, . . . ,Xm). By standard convexity argument, one can always assume
that the maximum is achieved by a pure product state.

Suppose we have two instances of a SepQMA(m) protocol, the main question is to
characterize the optimal strategy of both instances of the protocol in terms of the optimal
strategy of a single instance. We begin by recalling that for vector spaces X1, . . . ,Xk we
have the cone containments

Sep (X1, . . . ,Xm) ⊆ Pos (X1 ⊗ · · · ⊗ Xm) ⊆ Sep∗(X1, . . . ,Xm) ⊆ Herm (X1 ⊗ · · · ⊗ Xm) .

It will be convenient for us to distinguish the two instances of the SepQMA(m) pro-
tocols as the first and second protocol. For the first SepQMA(k) protocol we can write
the maximum acceptance probability as the optimal value of the primal problem as the
following primal-dual cone porgram:

Primal problem (P1)

maximize: 〈C1, X1〉
subject to: Tr(X1) = 1,

X ∈ Sep (X1, . . . ,Xm) .

Dual problem (D1)

minimize: t1

subject to: t1IX = C1 +W1,

W1 ∈ Sep∗(X1, . . . ,Xk).
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Here X denotes X1 ⊗ · · · ⊗ Xm for notational convenience. The use of “maximum” and
“minimum” is justified in the above program. Notice that

X̂1 :=
IX

dim(X )
and (t̂1, Ŵ1) := (2, 2IX − C1)

are strictly feasible solutions for P1 and D1, respectively. That the normalized identity
operator is in the interior of the cone of fully separable operators follows from the fact that
a ball around the normalized identity operator is contained in the cone of fully separable
operators [GB02, GB03, GB05]. Moreover, the value of P1 and D1 are bounded from above
and below by 1, respectively. Hence by Lemma 44, strong duality holds and there exist
primal and dual feasible solutions that achieve the optimum objective value. Indeed, since
the primal problem is an optimization problem of a linear function over a compact set, the
optimum value is attained by a primal feasible solution.

We can similarly formulate the acceptance probability of the second instance of the
protocol as

Primal problem (P2)

maximize: 〈C2, X2〉
subject to: Tr(X2) = 1,

X2 ∈ Sep (Y1, . . . ,Ym) .

Dual problem (D2)

minimize: t2

subject to: t2IY = C2 +W2,

W2 ∈ Sep∗(Y1, . . . ,Ym).

For the sake of clarity, we index the two instances of the protocol by subscripts 1 and
2. We let Y denote Y1 ⊗ · · · ⊗ Ym. The success probability of the two-fold repetition of
SepQMA(m) protocol is given by the following primal-dual pair.

Primal problem (P)

maximize: 〈C1 ⊗ C2, X〉
subject to: Tr(X) = 1,

X ∈ Sep (X ⊗ Y1, . . . ,X ⊗ Ym) .

Dual problem (D)

minimize: t

subject to: tIX⊗Y = C1 ⊗ C2 +W,

W ∈ Sep∗(X ⊗ Y1, . . . ,X ⊗ Ym).

We must make sure that the operators in the above program are defined in the correct
operator spaces to make the inner products in the objective functions well-defined.
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Observe that if X1 and X2 are any respective optimal solutions of (P1) and (P2), then
X1 ⊗ X2 is a primal feasible solution of P. Therefore the optimal value of (P) is at least
the product of the optimal values of (P1) and (P2). It remains to show that in fact no
other strategy for the prover can perform better than this honest strategy. To do so, we
demonstrate a dual feasible solution for (D) attaining this same objective value.

More formally, let (t1,W1) and (t2,W2) be respective dual optimal solutions of (D1)
and (D2). By strong duality, t1 is the optimal value of (P1) and t2 is the optimal value of
(P2). We show that t1 · t2 is an upper bound on the optimal value of (P) by exhibiting a
solution (t1 · t2,W ) which is feasible in (D), for some W ∈ Sep∗(X1 ⊗ Y1, . . . ,Xm ⊗ Ym).
We first prove the following useful lemma.

Lemma 45. For any W1 ∈ Sep∗(X1, . . . ,Xm) and C2 ∈ Sep(Y1, . . . ,Ym), we have

W1 ⊗ C2 ∈ Sep∗(X1 ⊗ Y1, . . . ,Xm ⊗ Ym) ⊆ Herm (X1 ⊗ · · · ⊗ Xm ⊗ Y1 ⊗ · · · ⊗ Ym) .

Similarly, for any W2 ∈ Sep∗(Y1, . . . ,Ym) and C1 ∈ Sep(X1, . . . ,Xm), we have

C1 ⊗W2 ∈ Sep∗(X1 ⊗ Y1, . . . ,Xm ⊗ Ym) ⊆ Herm (X1 ⊗ · · · ⊗ Xm ⊗ Y1 ⊗ · · · ⊗ Ym) .

Proof. We prove the first condition only, since the second condition is nearly identical. For
S ∈ Sep(X1 ⊗ Y1, . . . ,Xm ⊗ Ym), we have

〈W1 ⊗ C2, S〉 = 〈W1,TrY [S(IX ⊗ C2)]〉 ≥ 0

if TrY [(IX ⊗ C2)S] ∈ Sep (X1, . . . ,Xm). All we need to show is that TrY [(IX ⊗ C2)S] ∈
Sep (X1, . . . ,Xm). To this end, let

S =
∑
i

ρi(1)⊗ · · · ⊗ ρi(m) and C2 =
∑
j

σj(1)⊗ · · · ⊗ σj(m)

where ρi(k) ∈ Pos (Xk ⊗ Yk) for all choices of i and k, and σj(l) ∈ Pos (Yl) for all choices
of j and l. Now

TrY [(IX ⊗ C2)S] = TrY

[(∑
i

m⊗
k=1

ρi(k)

)(
IX ⊗

∑
j

m⊗
l=1

σj(l)

)]

=
∑
i,j

m⊗
k=1

TrYk
[ρi(k) (IXk

⊗ σj(k))]

which is clearly in Sep (X1, . . . ,Xm). This concludes the proof.
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The above lemma implies the following cone containments:

1. Sep∗(X1, . . . ,Xm)⊗ Sep(Y1, . . . ,Ym) ⊆ Sep∗(X1 ⊗ Y1, . . . ,Xm ⊗ Ym).

2. Sep(X1, . . . ,Xm)⊗ Sep∗(Y1, . . . ,Ym) ⊆ Sep∗(X1 ⊗ Y1, . . . ,Xm ⊗ Ym).

Here Sep∗(X1 ⊗ Y1, . . . ,Xm ⊗ Ym) ⊆ Herm (X1 ⊗ · · · ⊗ Xm ⊗ Y1 ⊗ · · · ⊗ Ym).

We now use Lemma 45 to construct two operators in Sep∗(X1 ⊗ Y1, . . . ,Xm ⊗ Ym),
the appropriate convex combination of which is the dual feasible solution we are seeking.
Specifically, observe first that since for the two instances of the SepQMA(m) protocol,
we have C1 ∈ Sep (X1, . . . ,Xm) and C2 ∈ Sep (Y1, . . . ,Ym), and since IX and IY are fully
separable operators, it follows that

t1IX + C1 ∈ Sep(X1, . . . ,Xm) and t2IY + C2 ∈ Sep(Y1, . . . ,Ym)

for all t1, t2 ≥ 0. Using Lemma 45, we thus obtain operators

(t1IX − C1)⊗ (t2IY + C2) ∈ Sep∗(X1 ⊗ Y1, . . . ,Xm ⊗ Ym) (8.4)

and
(t1IX + C1)⊗ (t2IY − C2) ∈ Sep∗(X1 ⊗ Y1, . . . ,Xm ⊗ Ym) (8.5)

where t1IX −C1 ∈ Sep∗(X1, . . . ,Xm) by the constraints of (D1), and similarly for t2IY−C2.
Since Sep∗(X1 ⊗ Y1, . . . ,Xm ⊗ Ym) is a convex cone, it follows that the average of (8.4)
and (8.5) yields the desired operator

W := t1 · t2 IX⊗Y − C1 ⊗ C2 ∈ Sep∗(X1 ⊗ Y1, . . . ,Xm ⊗ Ym).

We conclude that (t1 · t2,W ) is a feasible solution of the dual problem (D) with objective
value t1 · t2 as desired. This implies the perfect parallel repetition for SepQMA(m) for any
choice of m.

We remark that the case of separable measurement operator corresponding to outcome
accept is not the only case when perfect parallel repetition theorem holds. Harrow and
Montanaro [HM10] showed that the maximum acceptance probability of a QMA(2) pro-
tocols is equal to the maximum output ∞-norm of an associated super-operator. To be
more precise, let C ∈ Pos (Y ⊗ X ) be the measurement operator corresponding to out-
come accept of a QMA(2) protocol and let Φ : L (X ) → L (Y) be a completely positive
map such that C = J(Φ), the Choi-Jamio lkowski representation of the super-operator. For
any completely positive map Φ : L (X )→ L (Y), the maximum output ∞-norm is defined
as

‖Φ‖1→∞ = max
ρ∈D(X )

{‖Φ(ρ)‖∞} .
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Using (2.2), we have that

‖Φ‖1→∞ = max
ρ∈D(X )

{∥∥TrX
(
C(IY ⊗ ρ>)

)∥∥
∞

}
= max

ρ∈D(X )
max
σ∈D(Y)

{
Tr
[
σTrX

(
C
(
IY ⊗ ρ>

))]}
= max

ρ∈D(X )
max
σ∈D(Y)

{Tr [(σ ⊗ IX )C (IY ⊗ ρ)]}

= max
ρ∈D(X )

max
σ∈D(Y)

{〈C, σ ⊗ ρ〉} .

As a result, the question of perfect parallel repetition for QMA(2) protocols is equiv-
alent to the multiplicative property of maximum output ∞-norm of the associated super-
operator. This follows from the fact that for two super-operators Φ and Ψ, the Choi-
Jamio lkowski representation of Φ⊗Ψ is J(Φ)⊗J(Ψ) up to reordering of operator spaces. Vi-
olations of the multiplicative property is known to hold for super-operators [GHP10, HW08,
WH02] and that translates directly into QMA(2) protocols for which perfect parallel repe-
tition does not hold. For instance, the Werner-Holevo channel [WH02] Φ : L (X )→ L (X )
defined as

Φ(X) =
1

N − 1

(
Tr(X) I −X>

)
for X = CN forms an instance of QMA(2) protocol where perfect parallel repetition does
not hold. Werner and Holevo showed that ‖Φ‖1→∞ is not multiplicative for N = 3. For
N = 2, the Choi-Jamio lkowski representation of Φ is a rank-one projection operator and
the perfect parallel repetition does hold in this case. In fact, since the super-operator Φ is
not entanglement breaking and hence C is not a separable operator [HSR03], it gives us a
concrete example of perfect parallel repetition property that is not covered in this section.

Finally, we note that it is known that entanglement breaking maps do satisfy the mul-
tiplicative property of maximum output ∞-norm. For such maps, it holds that the Choi-
Jamio lkowski representation is a separable operator [HSR03], a case which we have covered
in this section.
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Chapter 9

Conclusion and future work

In this thesis, we explored two questions on quantum interactive proof systems and their
multi-prover variants. The first question we addressed pertains to the expressive powers
of such models with or without resource constraints. The second question was related to
error reduction technique of such proof systems via parallel repetition. We obtain few
results that are summarized in the next section. We discuss few open problems related to
the results presented in this thesis in the next section.

9.1 Conclusion

The question related to the expressive power of models of quantum interactive proof sys-
tems and their variants lead us to the following results. While the first result is obtained
by an algorithmic technique described in Chapter 5, the next two results are obtained by
protocol simulations as discussed in Chapter 8.

1. We saw that the expressive power of quantum interactive proof systems is exactly
PSPACE, the class of problems that also admit a classical interactive proof systems.
This result shows that in terms of complexity-theoretic characterization, both the mod-
els are equivalent. However, one should note that while three-message quantum inter-
active proof systems are sufficient to characterize PSPACE, classically the prover and
the verifier require polynomial number of interactions for the same under complexity-
theoretic assumptions. That the classical and quantum interactive proof systems have
equivalent power should not be meant as the weakness of the quantum model for because
they can simulate the classical model with constant number of interaction. The result
should be viewed as extreme robustness of PSPACE. It is known that polynomial-space
deterministic Turing machine can simulate their non-deterministic, probabilistic, and
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quantum variants. This result merely tells us that the power of quantum interaction in
single-prover interactive proof system models is also subsumed by PSPACE.

2. We also saw that polynomially many logarithmic-size unentangled quantum proofs are
no more powerful than classical proof if the verifier has the ability to process quantum
information. This result follows from an observation that logarithmic-size quantum
states can be efficiently represented classically. Our result is in contrast with a result
of Marriott and Watrous [MW05] who show that a single logarithmic-size quantum
proof does not provide any advantage to the verifier. One can even think of them
model of quantum interactive proof system with constant number of interactions, each
of logarithmic-size message. This model is also known to characterize BQP [BSW11].

3. We also established that the model of multi-prover quantum Merlin Arthur proof sys-
tem, where the verifier can only apply nonadaptive unentangled measurement on each
proof and then apply a quantum circuit on the classical outcomes, under some restric-
tions is no more powerful than QMA. More specifically, under the restriction that there
are only polynomial number of outcomes per proof, the multi-prover QMA protocol can
be simulated by a (single-prover) QMA protocol. We view this result as a step towards
answering the question on whether such restrictive verification procedure with multiple
proofs can be simulated by a verification procedure with single proof.

The question related to error reduction via parallel repetition lead us to following results
on a class of two-prover one-round quantum games and a class of multi-prover QMA proof
systems. The first two results are obtained by using duality of semidefinite programming
(discussed in Chapters 6 and 7) and th final result is obtained via cone programming
duality (see Chapter 8).

1. We established that in the presence of quantum information, certain class of two-prover
one-round games known as the XOR games, admit a perfect parallel repetition theorem
in the following sense. When the provers play a collection of XOR games, an optimal
strategy of the provers is to play each instance of the collection independently and
optimally. In particular, the success probability of the quantum provers in the n-fold
repetition of an XOR game G with quantum value ωq(G) is exactly (ωq(G))n. Our
result together with the results of Cleve, Høyer, Toner and Watrous [CHTW04a] also
established a better bound on the n-fold repetition of classical XOR games, which was
proven tight by Raz [Raz11].

2. We also established a parallel repetition theorem for two-prover one-round unique games
with quantum provers. Our result was obtained independently of Kempe, Regev and
Toner [KRT10]. More specifically, we showed that if the quantum value of a unique
game is 1 − ε, then the quantum value of n-fold repetition of the game is at most
(1− Ω(ε2))

n
. This bound was proven tight by Kempe and Regev [KR10]. We also
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established that for certain class of unique games, the MODk games, the quantum
value of the n-fold repetition of the game is at most (1− Ω(ε))n. Our proof technique
also gave an alternate proof of perfect parallel repetition theorem for XOR games.

3. Our final result on parallel repetition is concerned with SepQMA(m) proof systems,
where the verifier receives m unentangled quantum proofs and the measurement opera-
tor corresponding to outcome accept is a fully separable operator. We give an alternate
proof of a result of Harrow and Montanaro [HM10] that states that perfect parallel
repetition theorem holds for such proof systems. Our proof goes via cone programming
duality.

9.2 Future work

This section intends to summarize open problems and pointers to future research projects
pertinent to the models, the results, and the techniques used in this thesis.

1. Error reduction of two-prover one-round quantum games: In the classical
case, the question of parallel repetition of two-prover one-round games was an impor-
tant question with implications to hardness of approximation. A series of results have
established almost tight bounds on parallel repetition of such games [Hol07, Rao08,
Raz98, Raz11]. As discussed in Chapters 6 and 7, parallel repetition theorem holds
for certain class of two-prover one-round games with quantum provers. However, the
proof technique seems to be inherently limited. One may not obtain such a parallel
repetition theorem for any two-prover one-round game with quantum provers using
semidefinite programming. A recent result of Kempe and Vidick [KV11] do provide
an error reduction technique for such games but they do not show the type of parallel
repetition theorems discussed in this thesis and their bound is significantly weaker than
the bounds obtained in this thesis. An open question related to this thesis is to obtain
parallel repetition theorems for such games.

2. Classical and quantum XOR proof systems: The parallelizability of any quan-
tum interactive protocol into a three–message quantum interactive protocol is an ev-
idence, which substantiates the belief that quantum information is beneficial in the
context of interactive proof systems. However, interactive proof systems provide a
counter-intuitive perspective too. As mentioned in Chapter 6, due to H̊astad’s seminal
work [H̊as01], we know that the class of problems accepted by classical XOR proof sys-
tems is NEXP for certain completeness and soundness probability. On the other hand,
it is known that the quantum analogue of XOR proof systems follow the following
relationship [JUW09, Weh06]:

⊕MIP∗(2, 1) ⊆ PSPACE.
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This gives us an evidence that quantum entanglement can strictly weaken the expres-
sive power of proof systems (of course, under the widely believed assumption that
PSPACE 6= NEXP). The question of possibly larger complexity-theoretic separation
between the two models remains open.

3. Classical and quantum values of binary games: It is known that for binary games,
a perfect quantum strategy implies a perfect classical strategy [CHTW04a]. This gives
us a qualitative relationship between the two quantities. A quantitative relationship
between these two quantities remains an open question. In a recent paper, Beigi [Bei10]
showed that for such games, existence of a perfect classical strategy is guaranteed if
the optimum value of a semidefinite programming relaxation for quantum strategies is
1 [KRT10]. This relaxation gives us hope to find a quantitative relationship between
classical and quantum value of binary games similar to XOR games. Another natural
question to ask in the wake of results presented in Chapter 7 is whether the second
semidefinite programming relaxation can be used to obtain a parallel repetition theorem
for binary games.

4. Expressive power of multiple Merlins: Quantum information allows us to study
the models of proof systems for which no non-trivial classical analogues exist. One
such model is discussed in this thesis, where multiple Merlins send quantum proofs
that are guaranteed to be unentangled. For such proof systems, it is known that two
provers are sufficient to simulate polynomial number of provers. However, no non-
trivial complexity-theoretic lower or upper bound is known for such proof systems.
An obvious question is to come up with a better complexity-theoretic bounds on such
proof systems. In Chapter 8, we discussed a restrictive variant of QMA(poly) known
as BellQMA(poly) (see the Ref. [GSU11]). Whether this class collapses to QMA or its
expressive power is more than that of QMA is an open problem worth exploring.

5. Multiplicative property of semidefinite programs: Recently, there has been lot
of interest in characterizing semidefinite programs that follow multiplicative property
under a product operation defined on them [LM08, MS07]. The product operations are
generally motivated from the applications and can be tensor product [LM08, MS07],
bipartite tensor product [CSUU08, FL92, KRT10, Upa07], or graph product [Lov79].
This property has found applications in areas such as communication complexity, graph
theory, and error reduction by parallel repetition. As such, a thorough study of the
property is desirable.
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