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Abstract

Guaranteed Minimum Withdrawal Benefits (GMWB) have become popular riders on

variable annuities. The pricing of a GMWB contract was originally formulated as a singular

stochastic control problem which results in a Hamilton Jacobi Bellman (HJB) Variational

Inequality (VI). A penalty method method can then be used to solve the HJB VI. We

present a rigorous proof of convergence of the penalty method to the viscosity solution of

the HJB VI assuming the underlying asset follows a Geometric Brownian Motion. A direct

control method is an alternative formulation for the HJB VI. We also extend the HJB VI

to the case of where the underlying asset follows a Poisson jump diffusion.

The HJB VI is normally solved numerically by an implicit method, which gives rise

to highly nonlinear discretized algebraic equations. The classic policy iteration approach

works well for the Geometric Brownian Motion case. However it is not efficient in some

circumstances such as when the underlying asset follows a Poisson jump diffusion process.

We develop a combined fixed point policy iteration scheme which significantly increases the

efficiency of solving the discretized equations. Sufficient conditions to ensure the conver-

gence of the combined fixed point policy iteration scheme are derived both for the penalty

method and direct control method.

The GMWB formulated as a singular control problem has a special structure which re-

sults in a block matrix fixed point policy iteration converging about one order of magnitude

faster than a full matrix fixed point policy iteration. Sufficient conditions for convergence

of the block matrix fixed point policy iteration are derived. Estimates for bounds on the

penalty parameter (penalty method) and scaling parameter (direct control method) are

obtained so that convergence of the iteration can be expected in the presence of round-off

error.

iii



Acknowledgments

I would like to extend my sincere gratitude to Professor Peter A. Forsyth at the David

Cheriton School of Computer Science, University of Waterloo. I have benefited immensely

from his patient guidance and creative ideas, without which this thesis will not be possi-

ble. Professor Forsyth’s passion with computational finance research and way of thinking

influence me as well as many other students. I am deeply grateful for his trust in my desire

and potential of completing this thesis part-time. Thank you Professor Forsyth for the

continuous encouragement, support and numerous research discussions to help me walk

along this journey.

I would like to thank my thesis committee members Professors Min Dai, Yuying Li, Ken

R. Vetzal, and Justin W.L. Wan for taking time to read my thesis and provide constructive

and valuable feedback.

I would also like to thank Professor George Labahn for various helpful discussions in

matrix computation. He reviewed our joint work meticulously and always passes encour-

aging words every time we meet. I am also grateful to Professor Ken R. Vetzal, who has

always been willing to provide valuable guide in Finance research area. A special thank

goes to Professors Yuying Li and Justin W.L. Wan, who gave me valuable suggestions and

comments on the thesis proposal.

I gratefully acknowledge my employer, the Department of Electrical and Computer

Engineering in the Faculty of Engineering, University of Waterloo for supporting my part-

time Ph.D. study. Working in the ECE department undergraduate lab is very pleasant. I

owe a big thank you to all the faculty, staff and students in ECE for creating an inspirational

learning and working environment, where I work and study with a delightful heart.

Finally, my thanks go out to my family, especially my parents who have provided strong

and loving support continuously. Thank my mother for taking such a good care of my child

iv



so that I can work and study without worries at the back of my head. Thank my father

for sharing the load of various house chores to free me up for studying. Thank my sister

for various conversations where we shared laughters and tears. Thank my husband for

being understanding and supportive, taking the kid out for fun during many weekends and

holidays while I was writing. My thanks also go out to my parents in law for their generous

help. Last but not least, thank to my child, who has been such a bright star in my life and

has kept unveiling more and more truth of life.

v



Contents

List of Tables xiii

List of Figures xiii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Guaranteed Minimum Withdrawal Benefit (GMWB) . . . . . . 2

1.1.2 Pricing GMWB as a Singular Control Problems . . . . . . . . . . . 3

1.1.3 Iterative Methods for Solving HJB PIDEs . . . . . . . . . . . . . . 5

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Singular Control GMWB Pricing Problem 10

2.1 Formulation of HJB VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vi



2.2.2 The Terminal and Boundary Conditions . . . . . . . . . . . . . . . 14

2.3 Compact Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Penalty Method 20

3.1 Informal Derivation of HJB VI and the Penalized Form . . . . . . . . . . . 20

3.2 Discretized Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Penalty Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Discretization of the Penalized Equations . . . . . . . . . . . . . . . 23

3.3 Matrix Form of the Discretized Equations . . . . . . . . . . . . . . . . . . 29

3.4 Convergence of the Penalized PDE Discretization . . . . . . . . . . . . . . 32

3.4.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.3 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.4 Convergence in ΩL . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.5 Convergence in Ω∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Direct Control Method 46

4.1 The Scaled Direct Control Form . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Discretized Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Matrix Form of the Discretized Equations . . . . . . . . . . . . . . . . . . 50

vii



4.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Jump Diffusion 56

5.1 GMWB Pricing Problem with Jump Diffusion . . . . . . . . . . . . . . . . 56

5.1.1 Formulation of HJB PIDE . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.2 Penalized Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.3 Scaled Direct Control Form . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.2 Terminal and Boundary Conditions . . . . . . . . . . . . . . . . . . 59

5.3 Discretized PIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Discretized Integral Term J hV . . . . . . . . . . . . . . . . . . . . 62

5.3.2 Discretization: Penalty Method . . . . . . . . . . . . . . . . . . . . 63

5.3.3 Discretization: Direct Control Method . . . . . . . . . . . . . . . . 64

5.4 Convergence: Jump Diffusion Case . . . . . . . . . . . . . . . . . . . . . . 65

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Fixed Point Policy Iteration 67

6.1 Methods for Solving Algebraic Equations . . . . . . . . . . . . . . . . . . . 67

6.1.1 Matrix and Vector Notations . . . . . . . . . . . . . . . . . . . . . . 68

6.1.2 Discretized Equations in Matrix Form . . . . . . . . . . . . . . . . 69

viii



6.1.3 Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.4 Splitting Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1.5 Simple Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1.6 Fixed Point-Policy Iteration . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Convergence of the Fixed Point-Policy Iteration . . . . . . . . . . . . . . . 73

6.3 Full Matrix Fixed Point-Policy Iteration . . . . . . . . . . . . . . . . . . . 81

6.3.1 Full Matrix Iteration: Penalty Method . . . . . . . . . . . . . . . . 81

6.3.2 Full Matrix Iteration: Direct Control Method . . . . . . . . . . . . 85

6.4 Efficient Block Matrix Implementation . . . . . . . . . . . . . . . . . . . . 89

6.4.1 Block Implementation: Penalty Method . . . . . . . . . . . . . . . 91

6.4.2 Block Implementation: Direct Control . . . . . . . . . . . . . . . . 94

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Fixed Point Policy Iteration: Numerical Results 98

7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1.1 No-arbitrage fee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1.2 Full Matrix Iteration vs Block Matrix Iteration . . . . . . . . . . . 100

7.1.3 Fixed Point Policy Iteration vs Full Policy Iteration . . . . . . . . . 103

7.1.4 Effect of Maximal Use of Central Differencing on VW term . . . . . 105

7.1.5 Optimal Withdrawal Strategy . . . . . . . . . . . . . . . . . . . . . 109

7.1.6 Nodes Around Boundaries . . . . . . . . . . . . . . . . . . . . . . . 110

7.1.7 Comparison: Singular Control and Impulse Control . . . . . . . . . 110

7.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

ix



8 Floating Point Considerations 115

8.1 Floating Point Considerations: General Results . . . . . . . . . . . . . . . 115

8.2 Penalty Method Floating Point Considerations . . . . . . . . . . . . . . . . 118

8.3 Direct Control Method Floating Point Considerations . . . . . . . . . . . . 119

8.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9 Conclusions and Future Work 130

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

APPENDICES 133

A Hedging Argument for (3.1) 134

B Finite Difference Approximation 137

B.1 First and Second Derivatives Approximation . . . . . . . . . . . . . . . . . 137

B.2 Discrete Equation Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 138

C Maximal Use of Central Differencing: Direct Control Method 139

D M Matrix Property of Zn in the Direct Control Method 141

E Continuity of Local Optimization Objective Function 145

x



F Floating Point Arithmetic Error Analysis 148

F.1 Roundoff Error Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 148

F.2 Derivative Roundoff Error by Finite Difference . . . . . . . . . . . . . . . 149

F.3 Roundoff Error Estimation of Local Optimization Problem . . . . . . . . . 151

Bibliography 160

xi



List of Tables

7.1 A Sample GMWB contract parameters . . . . . . . . . . . . . . . . . . . . 99

7.2 Jump diffusion parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3 Grid and timestep data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.4 Convergence study for the fair insurance fee η . . . . . . . . . . . . . . . . 101

7.5 Convergence experiments of fixed point policy iteration . . . . . . . . . . . 102

7.6 Fixed point policy and full policy iteration experiments . . . . . . . . . . . 104

7.7 Effect of maximal use of central differencing . . . . . . . . . . . . . . . . . 106

7.8 Error Norm Convergence Ratio of Fully Implicit Method and Crank Nicolson

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.9 Convergence experiments for nodes near withdrawal boundaries . . . . . . 112

8.1 The effect of scaling factor Π and penalty parameter 1/ε . . . . . . . . . . 123

8.2 The effect of the scaling factor 1/ε and penalty parameter ε . . . . . . . . 124

8.3 The effect of Type I upper and lower bounds . . . . . . . . . . . . . . . . . 126

8.4 Experimental C∗ upper (C∗max )and lower (C∗min ) bounds . . . . . . . . . . 127

8.5 Experimental upper bounds (Πmax) for Π and 1/ε and lower bound for Π

(Πmin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xii



List of Figures

7.1 Vtt versus t for node (W = 100, A = 100) . . . . . . . . . . . . . . . . . . . 107

7.2 The contour plot of optimal withdrawal strategy at t = 0 . . . . . . . . . . 109

7.3 The contour plot of the optimal withdrawal strategy . . . . . . . . . . . . . 111

7.4 The contour plot for the withdrawal boundary versus time t at A = 100 . . 112

xiii



Chapter 1

Introduction

In this chapter we give an overview of the scope of this thesis followed by our major

contributions. Then we outline the organization of the thesis.

1.1 Overview

The main purpose of this thesis is to study numerical methods for pricing a Guaranteed

Minimum Withdrawal Benefit (GMWB), a popular rider on variable annuities, as a singular

control problem. In this section, we first introduce background information about GMWB

contracts. Then we discuss the previous research on pricing GMWBs with a focus on the

singular control formulation of the pricing problem. This results in a Hamilton Jacobi

Bellman (HJB) Variational Inequality (VI). The HJB VI under investigation is a non-

linear partial differential equation (PDE) for the case where the underlying asset follows a

standard Geometric Brownian Motion and a non-linear partial integro-differential equation

(PIDE) for the case where the underlying asset follows a Poisson jump diffusion process

[39, 15]. Finally we discuss iterative methods for solving the resulting non-linear system
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of discretized algebraic equations.

1.1.1 The Guaranteed Minimum Withdrawal Benefit (GMWB)

It is conventional wisdom that the long term investor is better off investing in equities as

opposed to risk free bonds, hence the advice to retirees to invest a significant portion of

their savings in equities. However, as discussed in [40], investing in equities can be very

risky, once retirees begin to draw down their savings. This is because the order of random

returns in this case becomes significant. Losses during the early years of retirement, coupled

with withdrawals, will have a very different end result compared with losses which occur

during the later years of retirement.

In order to mitigate this risk, insurance companies have developed guaranteed minimum

withdrawal benefit (GMWB) guarantees. This contract consists of a lump sum payment to

an insurance company. This initial sum is invested in risky assets. The holder can withdraw

a specified amount each year of the contract, regardless of the performance of the risky

asset. The holder can also withdraw more than the contract amount, subject to a penalty.

At expiry of the contract, the holder is entitled to the value of the investment amount

remaining. This contract allows the holder to participate in market gains, while providing a

certain minimum cash flow. In return for providing this guarantee, the insurance company

receives a proportional fee. Pricing and hedging these contracts is a problem of much

practical interest. For example, the total assets under management for variable annuity

accounts at the end of 2009 reached $1.35 trillion in the U.S. market alone [32]. In the

GMWB survey by Towers Watson, companies responded that an average of 67% of new

variable annuity policies (by premium) contained a GMWB rider [25] The total sales of

variable annuities with a guaranteed retirement income rose 8% to $102.8 billion through

September 30 2010 from a year earlier in the U.S. market [48].
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1.1.2 Pricing GMWB as a Singular Control Problems

There has been limited academic research in the pricing of GMWBs. Milevsky and Sal-

isbury were among the first to create two frameworks for pricing GMWBs [40]. The first

framework is a static approach where the policy holders statically withdraw the contract

amount each year. The annuity with a GMWB can then be decomposed into a Quanto

Asian Put plus a generic term-certain annuity. A similar decomposition approach is dis-

cussed in [36]. The second framework is a dynamic approach where policy holders are fully

rational and lapse the product when it is to their economic advantage. The pricing of a

GMWB guarantee is then formally formulated as a singular stochastic control problem in

[18]. In [11], a method is developed to solve an impulse control formulation of this problem.

Methods for cases where withdrawals are only allowed at discrete times are given in [6]

and [13].

Historically, it has been argued that the dynamic approach assumes optimal behavior of

consumers, which is unlikely in practice. The authors in [40] claimed that the true value of

the GMWB lies somewhere between the prices obtained by static and dynamic approaches.

However, it is now considered prudent to price these contracts assuming optimal behavior,

so that a worst case hedge can be constructed [16]. For an extension of these models to

cases involving sub-optimal consumer behavior, see [13].

In this thesis, we focus on the singular control formulation of the GMWB pricing

problem, which leads to an Hamilton Jacobi Bellman (HJB) Variational Inequality (VI).

Stochastic control problems arise in many financial applications [42]. When the set of

possible admissible controls becomes unbounded, the control problem is said to be singular.

A classical singular control problem in finance concerns optimal investment, where an

infinite control corresponds to an instantaneous reallocation between a risky and risk-free

asset [52]. In the context of GMWB pricing problem, the infinite control corresponds to
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an instantaneous withdrawal of a finite amount.

In general, the solutions of singular stochastic control problems in finance are not

smooth [42]. Hence, we seek the viscosity solution of such problems [17, 3, 5], well-known

to represent the financially relevant solution (the dynamic programming formulation). A

survey of numerical methods for stochastic control is given in [35] and [43]. Recently, a

penalty method has been suggested in [18] for solution of the HJB VI for pricing a GMWB

formulated as a singular control problem, assuming standard Geometric Brownian Motion.

This method is a generalization of the penalty method used for American options [27].

The penalty method has also been applied to a singular stochastic control formulation of

the continuous time portfolio selection problem [19]. In [18, 19], numerical examples were

given by the authors to show the convergence of the proposed penalty method. However

no formal proof of convergence was given.

The penalty method is extremely simple to implement, and hence merits thorough anal-

ysis. We conduct a rigorous proof of the convergence of the penalty method discretization

to the viscosity solution of the HJB VI. For a discussion of the advantages of the penalty

method compared with other numerical methods for singular control problems, we refer

the reader to [18] and [19].

As an alternative, a direct control method was suggested for solving American option

type problems in [31, 9]. We also apply this idea to the singular control formulation of

pricing GMWB problem. It is straight forward to extend the proof of convergence to the

viscosity solution for the direct control formulation.

We further extend both the penalty method and the direct control method to the case

where the underlying asset follows a Poisson jump diffusion process [39, 15], which is a

more realistic model of the real world risky asset stochastic process [24], compared with

the Geometric Brownian Motion.
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1.1.3 Iterative Methods for Solving HJB PIDEs

Both the penalty method and direct control method for pricing the GMWB formulated as a

singular control problem lead to nonlinear Partial Integro-Differential Equations (PIDEs).

This is often the case for problems which arise in the context of optimal stochastic control

[35, 42, 43], in which case the nonlinear PDEs and PIDEs are typically Hamilton Jacobi

Bellman (HJB) equations. Other examples include natural gas storage [10, 12, 51], asset

allocation [52, 19, 56], and optimal trade execution [1, 37].

Solutions to such equations are not necessarily unique and one must take care to pro-

vide numerical procedures which ensure convergence to the viscosity solution. In order to

ensure both numerical stability and convergence, implicit methods are typically chosen over

explicit methods. Unfortunately implicit methods result in a nonlinear system of algebraic

equations at each timestep. Solving these nonlinear equations is often the computational

bottleneck.

One popular approach for solving the nonlinear equations resulting from a fully implicit

discretization of HJB equations is based on the idea of policy iteration [35, 26, 9]. Policy

iteration proceeds by solving a linear system at every step and then finding the control

which gives the best local solution. The control which gives the optimal value is then used

for the next linear system and the iteration is repeated. Policy iteration is particularly

effective when the linear system is sparse or well structured and hence easy to solve.

When the underlying asset follows a Geometric Brownian Motion, the resulting iteration

matrix is sparse but highly structured. Policy iteration works efficiently in this case.

However, when we want to consider more sophisticated models for the underlying assets

that are more consistent with market data, such as jump diffusion process [39, 15], the

policy iteration matrix would be dense [21]. Hence the use of a direct solution of each

linear system is prohibitive in terms of cost. Difficulties also arise when the underlying
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stochastic process is modeled using regime switching, another model that better fits the

market data [29, 12]. In this case the associated linear system at each iteration is sparse

but the sparsity pattern has lost its structure. Using a direct solution method (even with

a good ordering technique) turns out to be no longer efficient.

We develop an efficient iteration scheme which we call a fixed point policy iteration

scheme for solving the nonlinear discretized equations which arise from fully implicit dis-

cretization of HJB equations. We show that our approach converges and that the method

is considerably more efficient than making use of a full policy iteration in the case that

the underlying risky asset follows a jump diffusion process. We show how this fixed point

policy iteration can be used to solve the discretized equations resulting from both penalty

and direct control methods in the case where the the underlying risky asset follows a jump

diffusion process [39, 15]. We refer the reader to [31] for another example of the use of

fixed point policy iteration method, in the case of an American option written on an asset

which follows a regime switching process [34].

The singular control formulation of the GMWB problem has a special structure that

makes a block matrix fixed point policy iteration about one order of magnitude faster than

a full matrix fixed point policy iteration. We derive sufficient conditions of the convergence

of the block matrix fixed point policy iteration and verify that both the penalty method

and the direct control method discretized equations can be solved by using the block matrix

fixed point policy iteration.

In some cases, we observe that the fixed point policy iteration method does not converge

even if theoretical conditions are satisfied. This can be explained by an analysis of the

effects of inexact floating point arithmetic. We derive bounds on the penalty parameter

(penalty method) and the scaling parameter (direct control method) so that convergence

is expected in the presence of inexact arithmetic.
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1.2 Contributions

The main contributions of this thesis are

• We review the formulation of the pricing GMWB as a singular control problem and

extend it to the case where the underlying asset follows a Poisson jump diffusion

process [39, 15]. This results in a HJB variational inequality, which is normally

solved numerically after discretizing the original equation.

• We formulate the discretized HJB variational inequality resulting from pricing a

GMWB as a singular control problem using both a penalty method [30] and a direct

control method [31]. We use the method described in [55], where central differencing

is used as much as possible, yet still results in a monotone scheme. This results in

noticeably faster convergence (as the mesh is refined) compared to the use of pure

upwinding schemes.

• We carry out a rigorous analysis of the penalty method in the context of the GMWB

HJB variational inequality when the underlying asset follows a standard Geometric

Brownian Motion. Assuming that the GMWB problem satisfies a strong comparison

principle, we verify that the penalty method is consistent, stable and monotone.

Hence from the results in [5, 3] we deduce convergence to the viscosity solution of

the GMWB HJB variational inequality. The analysis can be easily extended to both

the penalty method and the direct control method when the underlying asset follows

a Poisson jump diffusion process.

• We develop a fixed point policy iteration scheme that is more efficient than the

classical policy iteration in order to solve the algebraic equations resulting from a

class of implicitly discretized HJB PDEs arising in finance. The singular control
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formulation of the GMWB problem has a special structure that makes a block matrix

fixed point policy iteration about one order of magnitude more efficient than a full

matrix fixed point policy iteration. We derive sufficient conditions which ensure

convergence of the fixed point policy iteration and verify the conditions required for

convergence of both the full matrix and the block matrix fixed point policy iterations.

• Both the penalty method and the direct control method require specification of a

parameter, which may affect solution accuracy and convergence of the iteration. We

carry out an analysis of this parameter for both formulations. We estimate bounds

for the size of this parameter so that convergence can be expected taking into account

floating point errors. Numerical tests show that the solution is insensitive to the value

of the parameter over several orders of magnitude within the estimated bounds.

• We discuss the advantages and disadvantages, from a computational point of view,

of the singular control formulation compared to the impulse control formulation of

this problem.

• Although in this thesis we specifically consider the GMWB pricing problem, the

methods we analyze here can be easily applied to many other singular stochastic

control problems in finance.

• It appears that the direct control formulation has some advantages compared to the

penalty formulation. We recommend the use of the direct control formulation.

1.3 Outline

The rest of this thesis is organized as follows. In Chapter 2, the GMWB pricing problem

is formulated as a singular control problem with the assumption that the underlying asset
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follows a standard Geometric Brownian Motion. This leads to an HJB PDE/VI. In Chapter

3 a penalty method is introduced to solve the resulting PDE. The discretization of the PDE

by standard finite differences with maximal use of central differencing is discussed. The

proof of convergence of the discretization is then described. Chapter 4 introduces a direct

control method to solve the PDE and the discretization. In Chapter 5 we describe how

to extend the HJB PDE to the case where the underlying asset follows a Poisson jump

diffusion process for both the penalty method and the direct control method. The resulting

equation is an HJB PIDE/VI. Chapter 6 focuses on the iterative methods for solving the

discretized algebraic equations. We review various techniques and present the fixed point

policy iteration scheme. Sufficient conditions are derived to ensure the convergence of the

fixed point policy iteration. A full matrix and a block matrix fixed point policy iterations

are introduced for both the penalty method and the direct control method. Chapter 7

presents numerical results of fixed point policy iteration scheme. In Chapter 8, we discuss

floating point roundoff error considerations in the context of the fixed point policy iteration,

both for the penalty method and the direct control method. Numerical results are presented

to demonstrate the effect of the floating point error on the iteration. We draw conclusions

in Chapter 9.
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Chapter 2

Singular Control GMWB Pricing

Problem

In this chapter we formulate the pricing of a GMWB guarantee as a singular control prob-

lem assuming that the underlying asset follows a standard Geometric Brownian Motion.

In Section 2.1, the GMWB pricing problem is posed as an HJB PDE/VI. In Section 2.2

boundary conditions are discussed. In Section 2.3 the formal definition of the GMWB

as a singular control problem is given and viscosity solutions are briefly discussed. We

summarize the main results of this chapter in Section 2.4.

2.1 Formulation of HJB VI

This section briefly reviews the singular control formulation of pricing a GMWB guarantee

in [18] and introduces the notation to be used in the rest of this thesis. We use W ≡

W (t) to denote the amount in the variable annuity account and A ≡ A(t) to represent

the guarantee account balance. We assume that the risky asset S which underlies the
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variable annuity account (before the deduction of any proportional fees) follows a standard

Geometric Brownian Motion under the risk neutral measure. To be more precise, S satisfies

the following stochastic differential equation

dS = rSdt+ σSdZ, (2.1)

with r the risk free rate, dZ an increment of a standard Gauss-Wiener process, and σ the

volatility associated with dZ.

The major feature of the GMWB is the guarantee on the return of the entire premium

via withdrawal. The insurance company charges the policy holder a proportional annual

insurance fee η, in return for providing this guarantee. Consequently, we have the following

stochastic differential equation for W :

dW =


(r − η)Wdt+ σWdZ + dA if W > 0,

0 if W = 0.

(2.2)

Let γ ≡ γ(t) denote the withdrawal rate at time t and assume γ ∈ [0,∞). An infinite

withdrawal rate corresponds to an instantaneous withdrawal of a finite amount. The policy

guarantees that the sum of withdrawals throughout the policy’s life is equal to the premium

paid up front, which is denoted by ω0. As a result, we have A(0) = ω0, and

A(t) = ω0 −
∫ t

0

γ(u)du, A(t) ≥ 0 . (2.3)

In addition, almost all policies with a GMWB have a cap on the maximum allowed

withdrawal rate without penalty. Let G be such a contractual withdrawal rate, and κ < 1

be the proportional penalty charge applied on the portion of the withdrawal exceeding G.
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The net withdrawal rate f(γ) received by the policy holder is then

f(γ) =


γ 0 ≤ γ ≤ G,

G+ (1− κ)(γ −G) γ > G.

(2.4)

Let V (W,A, t) be the value of the variable annuity with a GMWB. The no-arbitrage

value V (W,A, t) of the variable annuity with a GMWB is therefore given by [18]

V (W,A, t) = max
γ∈[0,∞)

Et

[
e−r(T−t) max((1− κ)A(T ),W (T )) +

∫ T

t

e−r(u−t)f(γ(u))du

]
,

(2.5)

where T is the policy maturity time and the expectation Et is taken under the risk neutral

measure. The withdrawal rate γ is the control variable chosen to maximize the value of

V (W,A, t). Equation (2.5) represents the expected, discounted risk neutral cash flows from

the guarantee, as discussed in [18].

With an abuse of notation, we now (and in the rest of this thesis) let V = V (W,A, τ =

T − t). It is shown in [18] that the variable annuity value V (W,A, τ) is given by the

following Hamilton-Jacobi-Bellman (HJB) Variational Inequality (VI)

min

[
Vτ − LGV −Gmax(FV, 0), κ−FV

]
= 0 . (2.6)

where the operators LG and F are defined as

LGV =
σ2

2
W 2VWW + (r − η)WVW − rV ,

FV = 1− VW − VA . (2.7)

Equation (2.6) or the equivalent form (2.5) are commonly used by insurance firms to
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determine the no-arbitrage value of the GMWB contract. The solution is also used to

determine a hedging strategy for the contract [40, 6, 13, 28, 25].

2.2 Boundary Conditions

2.2.1 Localization

The original GMWB problem is posed on the domain Ω∞

(W,A, τ) ∈ [0,∞)× [0, ω0]× [0, T ] . (2.8)

For computational purposes, we define the GMWB problem on a finite computational

domain, as in [18],

ΩL = [0,Wmax]× [0, ω0]× [0, T ] . (2.9)

We will analyze the convergence of the numerical scheme to the problem defined on ΩL.

Later, we will show that by solving the GMWB problem on successively larger domains,

we converge to a unique limiting solution as Wmax → ∞. We will also confirm this from

some numerical experiments.
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2.2.2 The Terminal and Boundary Conditions

Define the following sets of points (W,A, τ) ∈ ΩL

Ωτ0 = [0,Wmax]× [0, ω0]× {0} ,

ΩW0 = {0} × (0, ω0]× (0, T ]

ΩWmax = {Wmax} × [0, ω0]× (0, T ]

ΩA0 = [0,Wmax)× {0} × (0, T ]

Ωin = ΩL\Ωτ0\ΩW0\ΩWmax\ΩA0

∂Ωin = Ωτ0 ∪ ΩW0 ∪ ΩWmax ∪ ΩA0 . (2.10)

For (W,A, τ) ∈ Ωin, we solve

min

[
Vτ − LGV −Gmax(FV, 0), κ−FV

]
= 0

(W,A, τ) ∈ Ωin . (2.11)

As discussed in [18], at maturity, the policy holder takes the remaining guarantee with-

drawal net of penalty charge or the remaining balance of the personal account, whichever

is greater. Therefore at τ = 0, the terminal condition is

V (W,A, τ = 0) = max

[
W, (1− κ)A

]
(W,A, τ) ∈ Ωτ0 . (2.12)

14



As W → 0, VW → 0 [18] (since W must be nonnegative). Thus, at W = 0, equation (2.6)

becomes

min

[
Vτ − rV −Gmax(1− VA, 0), κ− (1− VA)

]
= 0

(W,A, τ) ∈ ΩW0 . (2.13)

As W → ∞, according to [18], the withdrawal guarantee becomes insignificant for W

sufficiently large. More precisely, a straightforward financial argument shows that the

exact boundary condition at Wmax is

V (Wmax, A, τ) = e−ητWmax

(
1 +O

(
1

Wmax

))
; Wmax →∞ . (2.14)

Therefore as in [18, 23], we impose the following condition at Wmax

V (Wmax, A, τ) = e−ητWmax ,

(W,A, τ) ∈ ΩWmax . (2.15)

As A → 0, no withdrawal is possible, so the variational inequality becomes the following

linear PDE [11]

Vτ = LGV

(W,A, τ) ∈ ΩA0 . (2.16)

Note that as discussed in [18], no boundary condition is required at A = ω0 due to

hyperbolic nature of the variable A. Since equations (2.13), (2.16) can be solved without

any knowledge of the solution in the interior of ΩL, they are essentially Dirichlet conditions.
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2.3 Compact Representation

We now write the GMWB problem in a compact form, which includes the terminal and

boundary conditions as a single equation. Define vector x = (W,A, τ), and let DV (x) =

(VW , VA, Vτ ) and D2V (x) = VWW , and the equation

FΩLV ≡ F (D2V (x), DV (x), V (x),x) = 0,x ∈ ΩL, (2.17)

where operator FΩLV is defined by

FΩLV =



FinV ≡ Fin(D2V (x), DV (x), V (x),x), x ∈ Ωin,

FA0V ≡ FA0(D
2V (x), DV (x), V (x),x), x ∈ ΩA0 ,

FW0V ≡ FW0(DV (x), V (x),x), x ∈ ΩW0 ,

FWmaxV ≡ FWmax(V (x),x), x ∈ ΩWmax ,

Fτ0V ≡ Fτ0(V (x),x), x ∈ Ωτ0 ,

(2.18)

with operators

FinV = min [Vτ − LGV −Gmax(FV, 0), κ−FV ] , (2.19)

FA0V = Vτ − LGV, (2.20)

FW0V = min [Vτ + rV −Gmax(1− VA, 0), κ− 1 + VA] , (2.21)

FWmaxV = V − e−ητW, (2.22)

Fτ0V = V −max [W, (1− κ)A] . (2.23)

Definition 2.3.1 (Singular Control GMWB Pricing Problem). The pricing problem for
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the GMWB guarantee using a singular control formulation is defined as

FΩL(D2V (x), DV (x), V (x),x) = 0 . (2.24)

Clearly, FΩL satisfies the ellipticity condition

FΩL(D2V (x) + δ,DV (x), V (x),x) ≤ FΩL(D2V (x), DV (x), V (x),x) ; ∀δ ≥ 0 (2.25)

since the coefficient of D2V (x) in FΩL is non-positive. Note that FΩL is discontinuous [5, 3],

since we include the boundary equations in FΩL , which are in general not the limit of the

equations from the interior.

In the following, let u∗ (u∗) denote the upper (lower) semi-continuous envelope of the

function u : X → R, where X is a closed subset of RN , such that

u∗(x̂) = lim sup
x→x̂
x̂,x∈X

u(x), u∗(x̂) = lim inf
x→x̂
x̂,x∈X

u(x). (2.26)

In general, the solution to a singular stochastic control problem is non-smooth, and we

seek the viscosity solution.

Definition 2.3.2 (Viscosity Solution). A locally bounded function V : ΩL → R is a

viscosity subsolution (respectively supersolution) of (2.24) if and only if for all smooth test

functions φ(x) ∈ C2, and for all maximum (respectively minimum) points x of V ∗ − φ

(respectively V∗ − φ), one has

(FΩL)∗(D
2φ(x), Dφ(x), V ∗(x),x) ≤ 0(

respectively (FΩL)∗(D2φ(x), Dφ(x), V∗(x),x) ≥ 0

)
. (2.27)
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A locally bounded function V is a viscosity solution if it is both a viscosity subsolution and

a viscosity supersolution.

In [49], it is shown that an impulse control formulation of the GMWB pricing problem

(under a jump diffusion) satisfies a strong comparison principle. However, there does not

seem to be a proof of this result for the singular control formulation of this problem. [18]

states but does not prove the comparison principle for equation (2.24). Let Γ ⊂ ∂Ωin. We

make the following assumption.

Assumption 2.3.1 (Strong Comparison). The GMWB singular control problem as given

in Definition 2.3.1 satisfies a strong comparison result in Ωin∪Γ, Γ ⊂ ∂Ωin hence a unique

continuous viscosity solution exists in Ωin ∪ Γ.

Remark 2.3.1. We cannot in general hope for a continuous solution over the whole of

ΩL. It is possible that loss of boundary data can occur over parts of ∂Ωin. For example, for

points near ΩWmax, if it is optimal to withdraw a finite amount instantaneously, then the

HJB equation degenerates to a first order equation, with outgoing characteristics. Hence

the boundary condition at some points in ΩWmax may be irrelevant, in the sense that the

boundary condition at these points does not influence the interior solution.

[42] discusses another case where singular control problems cannot be continuous over

the entire closed solution domain. It may be the case that the terminal condition at Ωτ0 is

not compatible with the control problem in the sense that it may be optimal to immediately

make a transaction the instant after τ = 0. This would result in a discontinuity in the

solution as τ → 0, from points in ΩL\Ωτ0. However, this does not occur in our case, since

it is never optimal to make an instantaneous withdrawal at τ = 0+, with the particular

initial condition (2.12).

All these issues need to be addressed in proving a strong comparison property, in order

to define precisely those regions in Γ we can expect a continuous, unique viscosity solution.
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However, the location of Γ has little impact on the computational algorithm. The bound-

ary data is either used or irrelevant. In all cases we can consider the computed solution as

the limiting value approaching ∂Ωin from the interior.

Remark 2.3.2. Note that in the case that an asymptotic form of the solution as Wmax →∞

is not available, it is possible to impose an arbitrary boundary condition (satisfying certain

growth conditions) and take the limit as Wmax → ∞. This will converge to the viscosity

solution in the unbounded domain, as shown in [4].

2.4 Summary

The main results of this chapter are as follows:

• We formulate the pricing of GMWB as a singular control problem which results in

an HJB PDE/VI with the assumption that the underlying asset follows a standard

Geometric Brownian Motion.

• We discuss boundary conditions of the resulting PDE.

• We formally define the GMWB as a singular control problem in a compact represen-

tation and discuss viscosity solutions.
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Chapter 3

Penalty Method

This chapter discusses the numerical scheme for solving equations (2.6) by using a penalty

method. Section 3.1 informally derives the equation (2.6) to give some intuition for penalty

method numerical scheme. Section 3.2 discusses the finite difference discretization and how

to use central differences as much as possible for the penalty method. In Section 3.3 we use

a matrix form to represent the discrete penalized equations. In Section 3.4 a rigorous proof

is given to show that the discrete penalized equations converge to the viscosity solution of

the problem in Definition 2.3.2. Section 3.5 summarizes the main results of this chapter.

3.1 Informal Derivation of HJB VI and the Penalized

Form

We repeat here the informal derivation of equation (2.6) given in [18] to give some intuition

for the formulation of the penalized HJB PDE/VI. Suppose that we restrict the maximum

withdrawal range to be in γ ∈ [0, ϑ] with ϑ > G finite. Let ϑ = 1/ε. Then it is shown in

[18] that the variable annuity value parameterized by ε, denoted by V ε(W,A, τ) is given
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from the solution to the following HJB equation

V ε
τ = LGV ε + max

γ∈[0,ϑ]
h(γ), (3.1)

where LG is given in (2.7) and h(γ) is given by

h(γ) = f(γ)− γV ε
W − γV ε

A

=


(1− V ε

W − V ε
A)γ if 0 ≤ γ ≤ G,

(1− V ε
W − V ε

A − κ)γ + κG if γ > G.

(3.2)

An informal derivation of equation (3.1) using a hedging argument is given in Appendix

A. The function h(γ) is piecewise linear, so its maximum value is achieved when γ is 0, G,

or ϑ. Assuming ϑ > G, we then have

max
γ∈[0,ϑ]

h(γ) =


0 if FV ε ≤ 0,

GFV ε if 0 < FV ε < κ,

ϑ(FV ε − κ) + κG if FV ε ≥ κ.

(3.3)

The first two cases for max
γ∈[0,ϑ]

h(γ) in (3.3) are identical to Gmax(0,FV ε). Substituting

(3.3) into (3.1), we obtain (with ϑ = 1/ε)

− V ε
τ + LGV ε + max

[
Gmax(0,FV ε),

(FV ε − κ)

ε
+ κG

]
= 0 . (3.4)

The value function V ε(W,A, τ) is then the solution of

min

[
V ε
τ − LGV ε −Gmax(0,FV ε), V ε

τ − LGV ε − κG+
(κ−FV ε)

ε

]
= 0 . (3.5)
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We can rewrite (3.5) (since ε > 0) equivalently

min

[
V ε
τ − LGV ε −Gmax(0,FV ε), κ−FV ε + ε (V ε

τ − LGV ε − κG)

]
= 0 . (3.6)

Taking the limit ε → 0 (which corresponds to an instantaneous withdrawal of a finite

amount) gives the following HJB variational inequality

min

[
Vτ − LGV −Gmax(FV, 0), κ−FV

]
= 0 . (3.7)

Consequently, we can see, at least intuitively, that

lim
ε→0

{
V ε
τ − LGV ε −max

[
Gmax(0,FV ε),

(FV ε − κ)

ε
+ κG

]}
= 0 (3.8)

is equivalent to equation (2.6). Keeping ε finite, we can rewrite equation (3.8) in control

form

V ε
τ = LGV ε + max

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
ϕGFV ε + ψ

(
(FV ε − κ)

ε
+ κG

)]
. (3.9)

The basic idea of the penalty method is to discretize equation (3.9), and let ε → 0 as

the mesh and timestep size tend to zero. In Section 3.4, we will give a rigorous proof that

this algorithm converges to the viscosity solution of equation (2.6), provided that equation

(2.6) satisfies a strong comparison principle.
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3.2 Discretized Equation

3.2.1 Penalty Form

We will discretize the penalty form of the equations (3.9) and show that the discrete

equations converge to the viscosity solution of the problem in Definition 2.3.2. Using the

notation DWWV = VWW , DWV = VW and DAV = VA, in (W,A, τ) ∈ Ωin ∪ ΩA0 we will

discretize

V ε
τ = LGV ε + max

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
ϕGFV ε + ψ

(
(FV ε − κ)

ε
+ κG

)]
(W,A, τ) ∈ Ωin ∪ ΩA0 . (3.10)

where

LGV ε =
σ2

2
W 2DWWV

ε + (r − η)WDWV ε − rV ε , (3.11)

FV ε = 1−DWV ε −DAV ε . (3.12)

and we understand that φ = ψ = 0 in ΩA0 . At W = 0, we discretize

V ε
τ = −rV ε + max

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
ϕG(1−DAV ε) + ψ

(
(1−DAV ε − κ)

ε
+ κG

)]
(W,A, τ) ∈ ΩW0 . (3.13)

3.2.2 Discretization of the Penalized Equations

We will discretize equation (3.10) and equation (3.13) in the domain Ωin ∪ ΩA0 ∪ ΩW0 .

We use an unequally spaced grid in the W direction, given by {W1, . . . ,Wi, . . . ,Wimax}.
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The nodes in the A direction are denoted by {A1, . . . , Aj, . . . , Ajmax}, where W1 = A1 = 0,

Wimax = Wmax and Ajmax = ω0. We denote the nth time-step by τn = n∆τ , with N = T/∆τ .

We will always assume that Wimax � Ajmax .

Denote the approximate solution at (Wi, Aj, τ
n) by V n

i,j. We use a standard three point

finite difference method to approximate the DWWV derivative. This approximation is

second order for smoothly varying grid spacing. The DAV derivative is approximated by

a first order backward differencing method. The DWV derivative is approximated by a

second order central differencing or a first order forward/backward differencing. Let DhA,

DhW and DhWW (defined in Appendix B.1) denote the discretized first and second order

partial differential operators. The discretized LG and F operators can then be written as

LhGV n
i,j =


σ2

2
W 2
i DhWWV

n
i,j + (r − η)WiDhWV n

i,j − rV n
i,j, (Wi, Aj, τ

n) ∈ Ωin ∪ ΩA0

−rV n
i,j, (Wi, Aj, τ

n) ∈ ΩW0

,(3.14)

FhV n
i,j =


1−DhWV n

i,j −DhAV n
i,j, (Wi, Aj, τ

n) ∈ Ωin

1−DhAV n
i,j, (Wi, Aj, τ

n) ∈ ΩW0

0, (Wi, Aj, τ
n) ∈ ΩA0

. (3.15)

Using fully implicit time-stepping, equation (3.10) has the following discretized form

V n+1
i,j − V n

i,j

∆τ
= LhGV n+1

i,j + max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
ϕGFhV n+1

i,j + ψ

(
(FhV n+1

i,j − κ)

ε
+ κG

)]
i = 1, 2, . . . , imax − 1, j = 1, 2, . . . , jmax, n = 0, 1, . . . , N − 1 , (3.16)
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or equivalently

V n+1
i,j − V n

i,j

∆τ
= max

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
LhGV n+1

i,j + ϕGFhV n+1
i,j + ψ

(
(FhV n+1

i,j − κ)

ε
+ κG

)]
i = 1, 2, . . . , imax − 1, j = 1, 2, . . . , jmax, n = 0, 1, . . . , N − 1 , (3.17)

and finally (by expanding the LhG, Fh and DhA operators)

V n+1
i,j − V n

i,j

∆τ
= max

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
Ahϕ,ψV n+1

i,j + pn+1
i,j (ϕ, ψ)V n+1

i,j−1 + qn+1
i,j (ϕ, ψ)

]
,

i = 2, 3, . . . , imax − 1, j = 2, 3, . . . , jmax, n = 0, 1, . . . , N − 1 , (3.18)

where operator Ahϕ,ψ is defined as

Ahϕ,ψV n
i,j ≡ ani,j(ϕ, ψ)DhWWV

n
i,j + bni,j(ϕ, ψ)DhWV n

i,j − cni,j(ϕ, ψ)V n
i,j (3.19)

and

ani,j(ϕ, ψ) = σ2

2
W 2
i , pni,j(ϕ, ψ) =

(ϕG+ψ
ε

)

∆A−j
,

bni,j(ϕ, ψ) = (r − η)Wi − (ϕG+ ψ
ε
) , qni,j(ϕ, ψ) = ϕG+ ψ(1−κ

ε
+ κG) ,

cni,j(ϕ, ψ) = r +
(ϕG+ψ

ε
)

∆A−j
, ∆A−j = Aj − Aj−1 .

(3.20)

Remark 3.2.1. We have written the coefficient ai,j = ai,j(ϕ, ψ) although there is no explicit

dependence on (ϕ, ψ) in this case in order to keep the result more general.

Let

(
ϕni,j, ψ

n
i,j

)
= arg max

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
Ahϕ,ψV n

i,j + pni,j(ϕ, ψ)V n+1
i,j−1 + qni,j(ϕ, ψ)

]
i

. (3.21)
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Equation (3.18) becomes

V n+1
i,j − V n

i,j

∆τ
= Ah

ϕn+1
i,j ,ψn+1

i,j
V n+1
i,j + pn+1

i,j (ϕn+1
i,j , ψn+1

i,j )V n+1
i,j−1 + qn+1

i,j (ϕn+1
i,j , ψn+1

i,j ) ,

i = 2, 3, . . . , imax − 1, j = 2, 3, . . . , jmax, n = 0, 1, . . . , N − 1 . (3.22)

The discretized DhWV n
i,j term in Ahϕ,ψV n

i,j can be obtained by applying central, forward,

or backward differencing to the DWV ε term. A few steps of algebra show that the Ahϕ,ψ
operator can also be written equivalently as

Ahϕ,ψV n
i,j = αni,j(ϕ, ψ)V n

i−1,j −
(
αni,j(ϕ, ψ) + βni,j(ϕ, ψ) + cni,j(ϕ, ψ)

)
V n
i,j + βni,j(ϕ, ψ)V n

i+1,j,

i = 2, 3, . . . , imax − 1, j = 2, 3, . . . , jmax, n = 1, 2, . . . , N − 1 . (3.23)

The αni,j(ϕ, ψ) and βni,j(ϕ, ψ) in (3.23) are determined by the differencing method used in

W direction, αni,j ∈ {αni,j,cent, αni,j,for/back}, βni,j ∈ {βni,j,cent, βni,j,for/back}, which are defined

in Appendix B.2. We use central differencing as much as possible in the W direction to

ensure that the positive coefficient condition is satisfied (see [44])

αni,j ≥ 0 ; βni,j ≥ 0 . (3.24)

Because ci,j ≥ 0 always holds, condition (3.24) is a sufficient condition to ensure a positive

coefficient discretization scheme. Note that different nodes may use different differencing

schemes.

By applying forward or backward differencing to DWV ε in the equation (3.10), the

positive coefficient condition is guaranteed. In [18], central differencing is used on DWV ε

term in LGV ε and backward differencing is used onDWV ε term in FV ε. This requires a grid

spacing condition in order to satisfy the positive coefficient condition. Because backward
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differencing in FV ε gives a first order truncation error in the W direction, whereas central

differencing is second order correct (for smooth functions), we would like to use central

differencing as much as possible on the DWV ε term both in LGV ε and FV ε. However,

we must ensure that the positive coefficient condition (3.24) is satisfied. To use central

differencing on the DWV ε term and maintain a positive coefficient condition at the same

time, we require

1

Wi −Wi−1

≥
(r − η)− (ϕn+1

i,j G+
ψn+1
i,j
ε

)

Wi

σ2Wi

; (3.25)

1

Wi+1 −Wi

≥ −
(r − η)− (ϕn+1

i,j G+
ψn+1
i,j
ε

)

Wi

σ2Wi

. (3.26)

In [55], the authors discussed maximal use of central differencing for HJB PDEs. Note

that the differencing method to be used at a given node depends on the value of control

parameters. At a given node, for a given control parameter value, we first try to discretize

the DWV ε term by using central differencing. If this gives positive coefficients as described

in (3.24), central differencing will be used for the node for this given control parameter

value. Otherwise, either forward or backward differencing will be used for the node given

this control parameter value. In our case, since we have three possible control parameter

values, at each node we determine the differencing method for each one of the three control

parameter values. The local optimization criterion in (3.21) subsequently determines which

control parameter value is the optimal value. The differencing method corresponding to

this optimal control parameter value is then chosen to discretize the equation for the given

node. Note that it is shown in Appendix B.2 that at least one of central, forward or

backward differencing must result in a positive coefficient scheme.

Equation (3.22) holds for (Wi, Aj, τ
n+1) ∈ Ωin. The discrete forms of equations (2.12),
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(2.15), (2.16) and (3.13) are as follows. For (Wi, Aj, τ
n+1) ∈ Ωτ0 , (τn = 0) we have simply

V 0
i,j = max

[
Wi, (1− κ)Aj

]
. (3.27)

In the region (Wi, Aj, τ
n+1) ∈ ΩW0 condition (3.13) is imposed by using equation (3.22)

with

αn+1
1,j = βn+1

1,j = 0, j = 2, 3, . . . , jmax. (3.28)

For (Wi, Aj, τ
n+1) ∈ ΩA0 , condition (2.16) is imposed by using equation (3.22) with

ϕn+1
i,1 = ψn+1

i,1 = 0 ; i = 1, 2, . . . , imax − 1.

αn+1
i,1 = βn+1

i,1 = 0 ; i = 1 . (3.29)

At W = Wimax , or (Wi, Aj, τ
n+1) ∈ ΩWmax , we have (from equation (2.15))

V n+1
imax,j

eη∆τ = V n
imax,j, (3.30)

assuming V 0
imax,j = Wmax. By setting

cn+1
imax,j

= η ; αn+1
imax,j

= βn+1
imax,j

= ϕn+1
imax,j

= ψn+1
imax,j

= 0; (3.31)

j = 1, 2, . . . , jmax,

in equation (3.22) we obtain

(
1

∆τ
+ η)V n+1

imax,j
=

1

∆τ
V n
imax,j (3.32)

which is a locally second order approximation to equation (3.30). Consequently, at all

points (Wi, Aj, τ
n+1) ∈ ΩL\Ωτ0 , an equation of the form (3.22) holds, if we define V n+1

0,j =

28



V n+1
imax+1,j = V n+1

i,0 = 0.

3.3 Matrix Form of the Discretized Equations

It is convenient to use a matrix form to represent the discretized equations. In this section

we define a number of matrices and vectors to represent the discretized PDE in (3.22).

Define vectors

vn∗,j =
(
V n

1,j, V
n

2,j, . . . , V
n
imax,j

)′
vn =

(
(vn∗,1)′, (vn∗,2)′, . . . , (vn∗,jmax

)′
)′

. (3.33)

Define an imax× imax tridiagonal matrix An
j so that the entry on the ith row and kth column

is defined as

[An
j ]i,k =



−αni,j if k = i− 1, i = 2, . . . , imax

−βni,j if k = i+ 1, i = 1, . . . , imax − 1

1
∆τ

+ αni,j + βni,j + cni,j if k = i, i = 1, . . . , imax

0 otherwise .

(3.34)

Define an imax × imax diagonal matrix Pn
j so that entries on the diagonal are defined as

[Pn
j ]i,i =


pni,j if i ≤ imax − 1,

0 if i = imax.

(3.35)
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Let vectors qn∗,j and qn be defined by

qn∗,j =
(
qn1,j, q

n
2,j, . . . , q

n
imax−1,j, 0

)′
;

qn =
(
(qn∗,1)′, (qn∗,2)′, . . . , (qn∗,jmax

)′
)′
. (3.36)

We can write equation (3.22) as

An+1
j vn+1

∗,j −Pn+1
j vn+1

∗,j−1 = 1
∆τ
vn∗,j + qn+1

∗,j , (3.37)

where

{ϕn+1
i,j , ψn+1

i,j } =

arg max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[[
1

∆τ
I−An+1

j (ϕ, ψ)
]
vn+1
∗,j + Pn+1

j (ϕ, ψ)vn+1
∗,j−1 + qn+1

∗,j (ϕ, ψ)

]
i

. (3.38)

For notational completeness, we adopt the convention that vn+1
∗,0 = 0. Note that An+1

j =

An+1
j (ϕ, ψ), Pn+1

j = Pn+1
j (ϕ, ψ), qn+1

∗,j = qn+1
∗,j (ϕ, ψ), through the local optimization problem

(3.38). An exception occurs at j = 1, where P1
n+1 is a zero matrix and qn+1

∗,1 is a zero

vector. A1 no longer depends on the value of the control variables {ϕ, ψ} or time n∆τ

due to the boundary condition at A = 0. The matrix form of the degenerate equations

becomes

A1v
n+1
∗,1 =

1

∆τ
vn∗,1 (3.39)

on the boundary j = 1 (i.e. A = 0).
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Define matrix Zn such that

Zn =



An
1 0 0 · · · 0 0

−Pn
2 An

2 0 · · · 0 0

0 −Pn
3 An

3 · · · 0 0
...

...
. . . . . .

...
...

0 0 0
. . . An

jmax−1 0

0 0 0 · · · −Pn
jmax

An
jmax


(3.40)

We can write equation (3.22) as

Zn+1vn+1 =
1

∆τ
vn + qn+1 , (3.41)

where

{ϕn+1
i,j , ψn+1

i,j } = arg max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[[
1

∆τ
I− Zn+1(ϕ, ψ)

]
vn+1 + qn+1(ϕ, ψ)

]
i

. (3.42)

Remark 3.3.1. The matrix Zn is an M matrix, for it is strictly diagonally dominant with

non-positive off-diagonal entries [53].

Remark 3.3.2. We remind the reader that a matrix A is an M matrix if the offdiagonals

are nonpositive, A is nonsingular, and A−1 ≥ 0. A sufficient condition for a matrix to be

an M matrix is that the offdiagonals are nonpositive, and each row sum is strictly positive

(i.e. strictly diagonally dominant) [53].
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3.4 Convergence of the Penalized PDE Discretization

From [5, 3] we find that any scheme which is monotone, consistent (in the viscosity sense)

and l∞ stable converges to the viscosity solution. In the following sections, we will verify

each of these properties in turn for the penalty scheme.

It will be convenient at this point to introduce the following definitions

∆Wmax = max
i

(Wi+1 −Wi) ∆Wmin = min
i

(Wi+1 −Wi)

∆Amax = max
j

(Aj+1 − Aj) ∆Amin = min
j

(Aj+1 − Aj).

3.4.1 Stability

The stability of scheme (3.22), (3.27)-(3.32), is a direct result of the following Lemma:

Lemma 3.4.1 (Stability). If the discretized equation (3.22) satisfies the positive coefficient

condition (3.24), then scheme (3.22), (3.27)-(3.32), satisfies

e−ητ
n

Wi ≤ V n
i,j ≤ Wi + Aj (3.43)

for 0 ≤ n ≤ N as ∆τ → 0, ∆Wmin → 0, ∆Amin → 0.

Proof. Define a discrete bounding function Bn
i,j such that

Bn
i,j = Wi + Aj . (3.44)

Define vectors

bn∗,j =
(
Bn

1,j, B
n
2,j, . . . , Bimax,j

)
; bn =

(
bn∗,1, b

n
∗,2, . . . , b

n
∗,jmax

)′
(3.45)
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Then, some straightforward (but lengthy) algebra shows that

Zn+1(bn+1 − vn+1) =
1

∆τ
[bn − vn] + hn+1(vn+1) , (3.46)

where

[hn+1]i,j =


ηWi + rAj + (ϕn+1

i,j G+
ψn+1
i,j

ε
)(1− δi,0) + ψn+1

i,j κ(1/ε−G) i < imax, j > 1 ,

η(Wi + Aj) otherwise ,

(3.47)

where δi,j is the Kronecker delta. Since 1/ε > G, then hn+1 ≥ 0. Assume bn − vn ≥ 0,

then, since Zn+1 is an M matrix, bn+1 − vn+1 ≥ 0. Note from the initial condition (3.27),

we have b0 − v0 ≥ 0. Hence

V n
i,j ≤ Wi + Aj , ∀n . (3.48)

For the lower bound, define the lower bounding grid function

Lni,j =
Wi

(1 + η∆τ)n
. (3.49)

Following a similar approach as used for the upper bound, we find that

V n
i,j ≥

Wi

(1 + η∆τ)n
> e−ητ

n

Wi . (3.50)

Remark 3.4.1. For a given finite domain ΩL, bound (3.43) clearly implies that ‖V n‖∞

is bounded. However, note that for fixed (W,A, τ), bound (3.43) is independent of Wmax,
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which is an important property if we solve the problem in Definition (2.3.1) on a sequence

of larger domains.

3.4.2 Consistency

This section shows that the discretization scheme (3.22), (3.27)-(3.30) is consistent with

the singular control GMWB pricing problem as defined in Definition 2.3.2.

Consider the discretized equation (3.22), and the associated discretized boundary con-

ditions (3.27)-(3.32). We make the following assumption regarding the mesh/time-step

size.

Assumption 3.4.1. There exists a mesh/time-step size parameter h such that

h =
∆Wmax

C1

=
∆Amax

C2

=
∆τ

C3

=
ε

C4

, (3.51)

where Ci (i = 1, 2, 3, 4) are positive constants independent of h.

Equation (3.22) is equivalent to equation (3.16), which can be re-written as

V n+1
i,j − V n

i,j

∆τ
− LhGV n+1

i,j −max

(
Gmax(FhV n+1

i,j , 0),
(FhV n+1

i,j − κ)

ε
+ κG

)
= 0 , (3.52)

or equivalently

min

[
V n+1
i,j − V n

i,j

∆τ
− LhGV n+1

i,j − κG− 1

ε
(FhV n+1

i,j − κ),

V n+1
i,j − V n

i,j

∆τ
− LhGV n+1

i,j −Gmax(FhV n+1
i,j , 0)

]
= 0 . (3.53)
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Equation (3.53) implies that one of the following holds with equality:

V n+1
i,j − V n

i,j

∆τ
− LhGV n+1

i,j − κG− 1

ε
(FhV n+1

i,j − κ) ≥ 0, (3.54)

V n+1
i,j − V n

i,j

∆τ
− LhGV n+1

i,j −Gmax(FhV n+1
i,j , 0) ≥ 0. (3.55)

Since ε > 0, equation (3.54) is equivalent to

ε

(
V n+1
i,j − V n

i,j

∆τ
− LhGV n+1

i,j − κG
)

+ (κ−FhV n+1
i,j ) ≥ 0. (3.56)

As a result, equations (3.55) and (3.56) can be combined to give

Hn+1
i,j ≡Hn+1

i,j

(
h, V n+1

i,j ,
{
V n+1
a,b

}
a6=i

or b 6=j
, V n

i,j

)
= min

[
V n+1
i,j − V n

i,j

∆τ
− LhGV n+1

i,j −Gmax(FhV n+1
i,j , 0),

ε

(
V n+1
i,j − V n

i,j

∆τ
− LhGV n+1

i,j − κG

)
+ (κ−FhV n+1

i,j )

]
= 0,

(3.57)

where
{
V n+1
a,b

}
a6=i

or b 6=j
is the set of values V n+1

a,b , a = 1, 2, . . . , imax and b = 1, 2, . . . , jmax, (a, b) 6=

(i, j). We can re-formulate the discretization scheme (3.22), (3.27)-(3.32) at node (Wi, Aj, τ
n+1)

into one equation:

Gn+1
i,j

(
h, V n+1

i,j ,
{
V n+1
a,b

}
a6=i

or b 6=j
, V n

i,j

)

=


Hn+1
i,j , (Wi, Aj, τ

n+1) ∈ Ωin ∪ ΩW0 ∪ ΩA0 ,

V n+1
i,j (1 + η∆τ)− V n

i,j, (Wi, Aj, τ
n+1) ∈ ΩWmax

V n+1
i,j −max [Wi, (1− κ)Aj] , (Wi, Aj, τ

n+1) ∈ Ωτ0 .

=0. (3.58)
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We follow here the definition of consistency in the viscosity sense [3]. For an excellent

overview of this topic, we refer the reader to [33].

Definition 3.4.1 (Consistency). For any smooth test function φ(W,A, τ) with φn+1
i,j =

φ(Wi, Aj, τ
n+1), having bounded derivatives of all orders with respect to W , A, and τ ,

assuming the mesh/time-step size parameter h satisfies Assumption 3.4.1, the numerical

scheme Gn+1
i,j

(
h, φn+1

i,j ,
{
φn+1
a,b

}
a6=i

or b 6=j
,
{
φni,j
})

is consistent if ∀x̂ = (Ŵ , Â, τ̂) ∈ ΩL, ∀xn+1
i,j =

(Wi, Aj, τ
n+1) ∈ ΩL, the following two inequalities hold.

lim sup
xn+1
i,j →x̂

h→0
~→0

Gn+1
i,j

(
h, φn+1

i,j + ~,
{
φn+1
a,b + ~

}
a6=i

or b6=j
,
{
φni,j + ~

})
≤(FΩL)∗(φ(x̂)), (3.59)

lim inf
xn+1
i,j →x̂

h→0
~→0

Gn+1
i,j

(
h, φn+1

i,j + ~,
{
φn+1
a,b + ~

}
a6=i

or b6=j
,
{
φni,j + ~

})
≥(FΩL)∗(φ(x̂)). (3.60)

where (FΩL)∗ and (FΩL)∗ are the upper and lower semicontinuous envelopes of FΩL . Before

proving consistency, we shall need an intermediate result, which is given in the following

Lemma.

Lemma 3.4.2 (Local consistency). Suppose the mesh size and the time-step parameter

satisfy Assumption 3.4.1, then for any smooth function φ(W,A, τ) having bounded deriva-

tives of all orders in (W,A, τ) ∈ ΩL, with φn+1
i,j = φ(Wi, Aj, τ

n+1), and for h, ~ sufficiently
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small, we have that

Gn+1
i,j

(
h, φn+1

i,j + ~,
{
φn+1
a,b + ~

}
a6=i

or b 6=j
,
{
φni,j + ~

})

=



Finφ
n+1
i,j +O(h) +O(~) , (Wi, Aj, τ

n+1) ∈ Ωin ,

FW0φ
n+1
i,j +O(h) +O(~) , (Wi, Aj, τ

n+1) ∈ ΩW0 ,

FA0φ
n+1
i,j +O(h) +O(~) , (Wi, Aj, τ

n+1) ∈ ΩA0 ,

FWmaxφ
n+1
i,j +O(h) +O(~) , (Wi, Aj, τ

n+1) ∈ ΩWmax ,

Fτ0φn+1
i,j +O(~) , (Wi, Aj, τ

n+1) ∈ Ωτ0 ,

(3.61)

where ~ is a constant independent of xn+1
i,j .

Proof. Before proving the Lemma, we first define the following notations for the operators

applied to test functions, evaluated at node (Wi, Aj, τ
n+1).

LGφn+1
i,j ≡ LGφ(Wi, Aj, τ

n+1) , Fφn+1
i,j ≡ Fφ(Wi, Aj, τ

n+1) ,

(φW )n+1
i,j ≡ φW (Wi, Aj, τ

n+1) , (φA)n+1
i,j ≡ φA(Wi, Aj, τ

n+1) ,

(φτ )
n+1
i,j ≡ φτ (Wi, Aj, τ

n+1) .

By definitions of discrete operators LhG and Fh in (3.15), it can be easily verified that

LhG(φn+1
i,j + ~) = LhGφn+1

i,j − r~ , (3.62)

Fh(φn+1
i,j + ~) = Fhφn+1

i,j . (3.63)
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From Taylor series expansions and the last two equations above, we have that

LhG(φn+1
i,j + ~) = LGφn+1

i,j − r~ +O(∆Wmax), (3.64)

Fh(φn+1
i,j + ~) = Fφn+1

i,j +O(∆Wmax) +O(∆Amax), (3.65)

φn+1
i,j − φni,j

∆τ
= (φτ )

n+1
i,j +O(∆τ). (3.66)

By using equation (3.57) together with the discretization error estimation in the last

three equations above, and the inequality |min(x, y) − min(a, b)| ≤ max(|x − a|, |y − b|),

we can see for nodes (Wi, Aj, τ
n+1) ∈ Ωin:

∣∣∣∣∣Gn+1
i,j

(
h, φn+1

i,j + ~,
{
φn+1
a,b + ~

}
a6=i

or b 6=j
,
{
φni,j + ~

})
− Finφ

n+1
i,j

∣∣∣∣∣
≤ max

[∣∣∣∣∣φn+1
i,j − φni,j

∆τ
− LhG(φn+1

i,j + ~)−Gmax
[
Fh(φn+1

i,j + ~), 0
]

−
(
(φτ )

n+1
i,j − LGφn+1

i,j −Gmax
[
Fφn+1

i,j , 0
]) ∣∣∣∣∣,∣∣∣∣∣ε

(
φn+1
i,j − φni,j

∆τ
− LhG(φn+1

i,j + ~)− κG
)

+

(
Fφn+1

i,j −Fh(φn+1
i,j + ~)

)∣∣∣∣∣
]

≤ max

[∣∣∣∣∣O(∆τ) +O(∆Wmax) + r~ +G
∣∣∣Fh(φn+1

i,j + ~)−Fφn+1
i,j

∣∣∣∣∣∣∣∣,∣∣∣∣∣O(∆Wmax) +O(∆Amax)

+ ε

(
φn+1
i,j − φni,j

∆τ
− LhG(φn+1

i,j + ~)− κG

)∣∣∣∣∣
]
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= max

[∣∣∣∣∣O(∆τ) +O(∆Wmax) +O(∆Wmax + ∆Amax) + r~

∣∣∣∣∣,∣∣∣∣∣O(∆Wmax) +O(∆Amax)

+ ε
(
(φτ )

n+1
i,j − LGφn+1

i,j + r~− κG+O(∆τ)) +O(∆Wmax)
) ∣∣∣∣∣
]
.

(3.67)

By Assumption 3.4.1 and the inequality (3.67), we obtain

Gn+1
i,j

(
h, φn+1

i,j + ~,
{
φn+1
a,b + ~

}
a6=i

or b 6=j
,
{
φni,j + ~

})
= Finφ

n+1
i,j +O(h) +O(~). (3.68)

This proves the first equation in (3.61). The rest of the equations in (3.61) are proved by

following similar arguments.

Lemma 3.4.3 (Consistency). Assume that all conditions in Lemma 3.4.2 are satisfied,

then scheme (3.58) is consistent according to Definition 3.4.1.

Remark 3.4.2 (Consistency in the viscosity sense). Given the local consistency result in

Lemma 3.4.2, it is straightforward to show that scheme (3.58) is consistent in the sense

of Definition 3.4.1. We will include these steps here for the convenience of the reader,

although this is mainly an exercise in notational manipulation. In general, however, we

may not be able to get local consistency everywhere. As an example, in [11], there are nodes

in strips near the domain boundaries where local consistency is not achieved. In this case,

the more relaxed definition of consistency in the viscosity sense is particularly useful, and

the final steps required to prove consistency are non-trivial.

Proof. First we prove that the inequality (3.59) holds. From the definition of lim sup, there
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exists sequences ik, jk, nk, ~k and hk such that

as k →∞, xnk+1
ik,jk

→ x̂, ~k → 0, hk → 0, (3.69)

and

lim sup
k→∞

Gn+1
i,j

(
hk, φ

nk+1
ik,jk

+ ~k,
{
φnk+1
ak,bk

+ ~k
}

ak 6=ik
or bk 6=jk

,
{
φnkik,jk + ~k

})
= lim sup

xn+1
i,j →x̂

h→0
~→0

Gn+1
i,j

(
h, φn+1

i,j + ~,
{
φn+1
a,b + ~

}
a6=i

or b 6=j
,
{
φni,j + ~

})
(3.70)

From Lemma 3.4.2, we have for k sufficiently large, there exist positive constants C1, C2

independent of k such that

∣∣∣∣Gn+1
i,j

(
hk, φ

nk+1
ik,jk

+ ~k,
{
φnk+1
ak,bk

+ ~k
}

ak 6=ik
or bk 6=jk

,
{
φnkik,jk + ~k

})
− FΩLφ

nk+1
ik,jk

∣∣∣∣
≤ C1hk + C2~k ; (Wik , Ajk , τ

nk+1) ∈ ΩL . (3.71)

Remark 3.4.3. Suppose, for example, that x̂ ∈ ΩW0. Note that for k sufficiently large,

xnk+1
ik,jk

can be in either ΩW0 or Ωin. However, in each case, from Lemma 3.4.2, we have

that inequality (3.71) holds. This is a consequence of the definition of FΩL.

From equations (3.70) and (3.71), we obtain

lim sup
xn+1
i,j →x̂

h→0
~→0

Gn+1
i,j

(
h, φn+1

i,j + ~,
{
φn+1
a,b + ~

}
a6=i

or b 6=j
,
{
φni,j + ~

})

≤ lim sup
k→∞

FΩLφ
nk+1
ik,jk

+ lim sup
k→∞

[C1hk + C2~k]

≤(FΩL)∗(φ(x̂)) . (3.72)
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Similarly,

lim inf
xn+1
i,j →x̂

h→0
~→0

Gn+1
i,j

(
h, φn+1

i,j + ~,
{
φn+1
a,b + ~

}
a6=i

or b 6=j
,
{
φni,j + ~

})

≥ lim inf
k→∞

FΩLφ
nk+1
ik,jk

+ lim inf
k→∞

[−C1hk − C2~k]

≥(FΩL)∗(φ(x̂)). (3.73)

3.4.3 Monotonicity

Definition 3.4.2 (Monotonicity). The numerical scheme Gn+1
i,j

(
h, V n+1

i,j ,
{
V n+1
a,b

}
a6=i

or b 6=j
, V n

i,j

)
in (3.58) is monotone if for all Y n

i,j ≥ Xn
i,j,∀i, j, n

Gn+1
i,j

(
h, V n+1

i,j ,
{
Y n+1
a,b

}
a6=i

or b6=j
, Y n

i,j

)
≤ Gn+1

i,j

(
h, V n+1

i,j ,
{
Xn+1
a,b

}
a6=i

or b6=j
, Xn

i,j

)
. (3.74)

Lemma 3.4.4 (Monotonicity). If scheme (3.58) satisfies the positive coefficient condition

(3.24) then it is monotone according to Definition 3.4.2.

Proof. This is easily done using the same steps as in [26].

3.4.4 Convergence in ΩL

Theorem 3.4.1 (Convergence to the viscosity solution). Assume that scheme (3.58) sat-

isfies all the conditions required for Lemmas 3.4.1, 3.4.3, and 3.4.4, and that Assumption

2.3.1 holds, then the scheme (3.58) converges to the unique, continuous viscosity solution
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of the GMWB problem given in Definition 2.3.2, at any point in Ωin ∪Γ (see Definition of

Γ in Assumption 2.3.1).

Proof. Since the scheme is monotone, consistent and pointwise stable, this follows from

the results in [5].

Remark 3.4.4. Note that since we have assumed that strong comparison holds only in

Ωin ∪ Γ, then we can guarantee uniqueness and continuity only in Ωin ∪ Γ.

3.4.5 Convergence in Ω∞

The asymptotic form of the solution for W →∞ is given in [18], which we impose at finite

Wmax through boundary condition (2.15). This, of course, causes an error due to finite

Wmax (see equation (2.14)).

Consider a sequence of converged viscosity solutions (V (W,A, τ))k, which satisfy Defini-

tion 2.3.2 on the sequence of grids (ΩL)k, k →∞, with W k
max > W k−1

max . In [4], the limiting

problem of convergence to the viscosity solution on unbounded domains with quadratic

growth in the solution is discussed. It is possible to appeal to the results in [4] to show

convergence as (ΩL)k → Ω∞. However we can use a simpler approach for problem at hand.

For simplicity, and to avoid notational complexity, we consider only points in (Ωin)k in

the following, since from Theorem 3.4.1 we are ensured of convergence at least to points

in (Ωin)k.

We will use the following elementary Lemmas.

Lemma 3.4.5 (Bounds on solution on (Ωin)k). The converged viscosity solution on each

domain (Ωin)k has the bounds

e−ητW ≤ (V (W,A, τ))k ≤ W + A . (3.75)
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Proof. Since the discrete solution satisfies the bounds in Lemma 3.4.1, independent of h,

Wmax, we take the limit as h → 0, and hence the viscosity solution satisfies these same

bounds.

Lemma 3.4.6. The following bound holds

(V (W,A, τ))k+1 ≥ (V (W,A, τ))k ; (W,A, τ) ∈ (Ωin)k . (3.76)

Proof. We can regard (V (W,A, τ))k+1 on domain (ΩL)k, as the solution to the GMWB

pricing problem on (ΩL)k, but with a known boundary condition at W = W k
max, which in

general is not the same boundary condition as used for V (W,A, τ))k. From Lemma 3.4.5,

we have that

(V (W k
max, A, τ))k+1 ≥ e−ητW k

max = (V (W k
max, A, τ))k . (3.77)

Hence (V (W k
max, A, τ))k+1 and (V (W k

max, A, τ))k are solutions to the same PDE and bound-

ary conditions, with the exception of the boundary condition at W = W k
max, which satisfies

equation (3.77). Consider two discrete solutions (V (W,A, τ))kh, (V (W,A, τ))k+1
h , defined

on the same set of nodes in (ΩL)k, and assume that the discretization satisfies all the

conditions required for Theorem 3.4.1. Then, from Theorem 5.2 in [26], we have that

(V (W,A, τ))k+1
h ≥ (V (W,A, τ))kh at all the nodes. Take the limit as h → 0, and noting

that (V (W,A, τ))k+1
h → (V (W,A, τ))k+1 and (V (W,A, τ))kh → V (W,A, τ))k, we obtain

result (3.76).

Theorem 3.4.2 (Convergence in Ω∞). Consider the sequence of grids (ΩL)k, with W k+1
max >
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W k
max and

lim
k→∞

(ΩL)k = Ω∞ . (3.78)

For any fixed point (W,A, τ) ∈ (Ωin)∞ we have that the sequence (V (W,A, τ))k converges

to a unique value (V (W,A, τ))∞ as k →∞.

Proof. Given a fixed point (W,A, τ), from Lemma 3.4.6 we have that the solution is a non-

decreasing function of the domain index k. But from Lemma 3.4.5, the solution is locally

upper bounded independent of the domain index k. Hence the sequence (V (W,A, τ))k, k →

∞ is bounded and non-decreasing, and thus converges to a limit (V (W,A, τ))∞. Consider

another set of increasing domains (Ω̂L)k. Suppose this set of domains converges to a value

(V̂ (W,A, τ))∞ > (V (W,A, τ))∞ . (3.79)

But, applying Lemma 3.4.6 to subsequences of (ΩL)k and (Ω̂L)k leads to a contradiction,

hence the limit (V (W,A, τ))∞ is unique.

Remark 3.4.5. We apply scheme (3.58) to a sequence of problems with smaller h, for fixed

Wmax. We then increase Wmax and repeat the process. Since we use unequally spaced grids,

it is computationally inexpensive to choose a large Wmax, hence the process of determining

the limit Wmax →∞ is rapidly convergent, in practice.

3.5 Summary

This chapter focuses on using a penalty method to discretize the HJB PDEs resulting from

pricing GMWB as a singular control problem. The main results are
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• We informally derive the HJB PDE of (2.6), which gives some intuition for the

penalty method numerical scheme.

• The derivative terms are discretized by using standard three point finite difference

with maximal use of central differencing on the first derivative term while maintaining

a positive coefficient condition [44].

• We give a rigorous proof that on a finite domain, the discretization is monotone,

consistent and stable, hence assuming that a strong comparison property holds, we

can guarantee the convergence to the viscosity solution as the mesh size parameter

h→ 0.

• We show that as Wmax →∞, at any fixed point (W,A, τ), the discretization converges

to a unique limit. This proof makes use of the tight stability bounds in Lemma 3.4.1.
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Chapter 4

Direct Control Method

This chapter discusses a direct control method for solving the HJB PDE in (2.6). Section

4.1 introduces the scaled direct control form of the GMWB pricing problem. Section 4.2

presents the discretized scaled direct control form of the equation. Section 4.3 presents

the matrix form of the discrete equation. In Section 4.4, we discuss the convergence of

the numerical scheme and prove the stability of the direct control method. We finally

summarize the main results of this chapter in Section 4.5.

4.1 The Scaled Direct Control Form

A direct control technique was previously suggested for solving American option type

problems in [9, 31]. Similarly, for the GMWB problem, one can simply discretize the

control form of equation (2.6)

min
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
ψ(κ−FV ) + (1− ψ)(Vτ − LGV − ϕGFV )

]
= 0 . (4.1)
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Observe that the term κ − FV is dimensionless whereas Vτ − LGV − Gmax(FV, 0) has

dimensions of currency/time. Hence equation (4.1) compares quantities having different

units. Of course, in exact arithmetic, this is not an issue of importance. However, an

iterative procedure for solution of the discretized equations will involve a test comparing

two (in general) non-zero quantities. Hence scaling becomes important. Consequently, we

introduce a scaling factor Π > 0 into equation (4.1)

min
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
Πψ(κ−FV ) + (1− ψ)(Vτ − LGV − ϕGFV )

]
= 0 . (4.2)

Remark 4.1.1 (Scaling Factor). By introducing a scaling factor with dimension of cur-

rency/time, we ensure the comparison is conducted on two items with the same units. Of

course, this still leaves the size of the scaling factor as arbitrary. We will exploit this fact

to ensure the convergence of an iterative method in Chapter 6 with a suitable choice for Π.

4.2 Discretized Equation

We will discretize equation (4.2) in the domain Ωin∪ΩA0∪ΩW0 . We use the same unequally

spaced mesh and notations as defined in Section 3.2.2 for the penalty method discretization.

If we define V n+1
0,j = V n+1

imax+1,j = V n+1
i,0 = 0, then equation (4.2) can be written in the

following discrete form

(1− ψn+1
i,j )

(
1

∆τ
V n+1
i,j − LhGV n+1

i,j + ϕn+1
i,j G(DhWV n+1

i,j +DhAV n+1
i,j )

)
+Π ψn+1

i,j (DhWV n+1
i,j +DhAV n+1

i,j )

= (1− ψn+1
i,j )

1

∆τ
V n
i,j + Π ψn+1

i,j (1− κ) + (1− ψn+1
i,j )ϕn+1

i,j G

(Wi, Aj, τ
n+1) ∈ Ωin ∪ ΩA0 ∪ ΩW0 , (4.3)
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where

(ϕn+1
i,j , ψn+1

i,j ) = arg max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
−Π ψ(κ−FhV n+1

i,j )− (1− ψ)

(
V n+1
i,j − V n

i,j

∆τ

−
(
LhGV n+1

i,j + ϕGFhV n+1
i,j

))]
i

, (Wi, Aj, τ
n+1) ∈ Ωin , (4.4)

(ϕn+1
i,j , ψn+1

i,j ) = (0, 0) , (Wi, Aj, τ
n+1) ∈ ΩA0 , (4.5)

DWV n+1
i,j = 0 , (Wi, Aj, τ

n+1) ∈ ΩW0 , (4.6)

and we understand that ϕn+1
i,j = ψn+1

i,j = 0 in ΩA0 because no withdrawal is possible when

A = 0. At W = 0, we have DWV = VW = 0.

When ψn+1
i,j = 1, only first derivative terms appear in the equation. We use backward

differencing on both DhW and DhA operators and solve the following equation:

ψn+1
i,j Π

[
− 1

∆W−
i

V n+1
i−1,j + (

1

∆W−
i

+
1

∆A−j
)V n+1

i,j − 1

∆A−j
V n+1
i,j−1

]
= ψn+1

i,j Π(1− κ) ,

ψn+1
i,j = 1 , i = 2, . . . , imax − 1, j = 2, . . . , jmax, (4.7)

When ψn+1
i,j = 0, the DhA operator is still discretized by using backward difference.

However since the diffusion term appears in the equation, this allows us to use a central

difference for theDhW operator in the equation as long as we maintain the positive coefficient

condition in (3.24). Using a similar approach as in Section 3.2.2 for the penalty method, we

can write equation (4.3) for ψn+1
i,j = 0 case (by expanding LhG, Fh operators and backward
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differencing the DhA operator) in the following form

(1− ψn+1
i,j )

(V n+1
i,j − V n

i,j)

∆τ

= (1− ψn+1
i,j )

[
Bh
ϕn+1
i,j
V n+1
i,j + ϕn+1

i,j

G

∆A−j
V n+1
i,j−1 + ϕn+1

i,j G

]
,

ψn+1
i,j = 0 , i = 2, . . . , imax − 1, j = 2, . . . , jmax, n = 0, . . . , N − 1 , (4.8)

and operator Bhϕ has a similar form as the operator Ahϕ,ψ as in equation (3.19)

BhϕV n
i,j ≡ ani,j(ϕ)DhWWV

n
i,j + bni,j(ϕ)DhWV n

i,j − cni,j(ϕ)V n
i,j

= αni,j(ϕ)V n
i,j −

(
αni,j(ϕ) + βni,j(ϕ) + cni,j(ϕ)

)
V n
i,j + βni,j(ϕ)V n

i+1,j

but with different coefficients as follows

ani,j(ϕ) =
σ2

2
W 2
i , bni,j(ϕ) = (r − η)Wi − ϕG , cni,j(ϕ) = (r + ϕG

1

∆A−j
) , (4.9)

and αni,j and βni,j are computed by using the coefficient defined in (4.9). For maximal

use of central differencing, we discretize the term DhWV n
i,j in BhϕV n

i,j to ensure the positive

coefficient condition in (3.24). A more detailed description is given in Appendix C.

Equation (4.7) and (4.8) hold for (Wi, Aj, τ
n+1) ∈ Ωin. For (Wi, Aj, τ

n+1) ∈ ∂Ωin, the

results are the same as those in penalty method. We refer readers to equations (3.28) -

(3.32) in Section 3.2.2 for a detailed derivation and only present results here.

• For (Wi, Aj, τ
n+1) ∈ Ωτ0 ,

V 0
i,j = max[Wi, (1− κ)Aj] . (4.10)
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• For (Wi, Aj, τ
n+1) ∈ ΩW0

αn+1
1,j = βn+1

1,j = 0, j = 2, 3, . . . , jmax . (4.11)

• For (Wi, Aj, τ
n+1) ∈ ΩA0

ϕn+1
i,1 = ψn+1

i,1 = 0, i = 1, 2, . . . , imax−1 . (4.12)

αn+1
i,1 = βn+1

i,1 = 0, i = 1 . (4.13)

• For (Wi, Aj, τ
n+1) ∈ ΩWmax

cn+1
imax,j

= η ; αn+1
imax,j

= βn+1
imax,j

= ϕn+1
imax,j

= ψn+1
imax,j

= 0; (4.14)

j = 1, 2, . . . , jmax .

Consequently, for all nodes (Wi, Aj, τ
n+1) ∈ ΩL\Ωτ0 , an equation of the forms (4.7) and

(4.8) holds and we remind the reader that for notational completeness we define V n+1
0,j =

V n+1
imax+1,j = V n+1

i,0 = 0.

4.3 Matrix Form of the Discretized Equations

We use a matrix form to represent the discretized equations in (4.3), which consists of

equations (4.7) and (4.8), and the associated boundary conditions in (4.11)-(4.14). Define

an imax × imax tridiagonal matrix Dn
j so that the entry on the ith row and kth column is
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defined as

[Dn
j ]i,k =



−ψni,jΠ 1
∆W−i

− (1− ψni,j)αni,j if k = i− 1, i = 2, . . . , imax

−(1− ψni,j)βni,j if k = i+ 1, i = 0, . . . , imax − 1

ψni,jΠ( 1
∆W−i

+ 1
∆A−j

) + (1− ψni,j)( 1
∆τ

+ αni,j + βni,j + cni,j) if k = i, i = 1, . . . , imax

0 otherwise .

(4.15)

Define an imax × imax diagonal matrix Ln
j so that entries on the diagonal are defined as

[Ln
j ]i,i =


ψni,jΠ

1
∆A−j

+ (1− ψni,j)ϕni,j G
∆A−j

if i ≤ imax − 1,

0 if i = imax.

(4.16)

Define an imax length column vector hn∗,j such that the entry on the ith row is defined as

[hn∗,j]i = ψni,jΠ(1− κ) + (1− ψni,j)(
1

∆τ
V n−1
i,j + ϕni,jG) . (4.17)

We can then write equation (4.3) as

Dn+1
j vn+1

∗,j − Ln+1
j vn+1

∗,j−1 = hn+1
∗,j , (4.18)

where

{ϕn+1
i,j , ψn+1

i,j } =

arg max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
−Dn+1

j (ϕ, ψ)vn+1
∗,j + Ln+1

j (ϕ, ψ)vn+1
∗,j−1 + hn+1

∗,j (ϕ, ψ)

]
i

. (4.19)
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Similarly as for the matrix form of the discretized equations for the penalty method,

for notational completeness, we adopt the convention that vn+1
∗,0 = 0. Note that Dn+1

j =

Dn+1
j (ϕ, ψ), Ln+1

j = Ln+1
j (ϕ, ψ), hn+1

∗,j = hn+1
∗,j (ϕ, ψ), through the local optimization problem

(4.19). An exception occurs at j = 1, where Ln+1
1 is a zero matrix and hn+1

∗,1 = 1
∆τ
vn∗,j. The

matrix D1 no longer depends on the value of the control variables {ϕ, ψ} or time n∆τ

due to the boundary condition at A = 0. The matrix form of the degenerate equations

becomes

D1v
n+1
∗,1 =

1

∆τ
vn∗,1 (4.20)

on the boundary j = 1 (i.e. A = 0).

Let

Dn =


D1 0 · · · 0

0 Dn
2 · · · 0

...
...

. . .
...

0 0 · · · Dn
jmax

 , Ln =



0 0 · · · 0 0

−Ln
2 0 · · · 0 0

0 −Ln
3 · · · 0 0

...
...

. . .
... 0

0 0 · · · −Ln
jmax

0


(4.21)

and

Zn = Dn + Ln . (4.22)

Let vector hn be

hn =
(
(hn∗,1)′, (hn∗,2)′, . . . , (hn∗,jmax

)′
)′
. (4.23)

Using the the vn notation as defined in 3.3, we can write equation (4.3) as

Zn+1vn+1 = hn+1 , (4.24)
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where

{ϕn+1
i,j , ψn+1

i,j } = arg max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
−Zn+1(ϕ, ψ)vn+1 + hn+1(ϕ, ψ)

]
i

. (4.25)

Remark 4.3.1. It is easy to verify that matrix Zn has non-positive off-diagonal entries.

However, because when ψi,j = 1, the corresponding row sum of
[
Zn
]
i,j

equals zero. This

makes matrix Zn no longer diagonally dominant. Hence it is not obvious that Zn is an

M matrix. In order to see that Zn is an M matrix, we split the Zn into the sum of a

block diagonal matrix Dn and a lower triangular matrix Ln as defined in (4.21). The row

sums of Dn are strictly positive and the off -diagonals are non-positive due to a positive

coefficient discretization. Hence Dn consists of diagonal blocks, each of which is a strictly

diagonally dominant M matrix. Since −Ln is non-positive, a straightforward computation

shows that Zn is non-singular and that (Zn)−1 ≥ 0. The matrix Zn is therefore an M

matrix. Appendix D uses a 3×3 block Zn as an example to show (Zn)−1 exists and is non-

negative. Continuing in this way, it can be shown that (Zn)−1 exists and is non-negative

in general.

4.4 Convergence

For the proof of the convergence of the discretization scheme in (4.7), (4.8) and associated

terminal boundary conditions (4.10) - (4.14), consistency and monotonicity are relatively

straightforward. The stability proof is more involved. By taking a similar approach as

used to prove stability of the penalty method as in Section 3.4.1, we obtain the following

results.

Lemma 4.4.1 (Stability: Direct Control Method). If the discretized equations in (4.7) and

(4.8) satisfy the positive coefficient condition (3.24), then scheme (4.7), (4.8), (4.10)-(4.14),
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satisfies

e−ητ
n

Wi ≤ V n
i,j ≤ Wi + Aj (4.26)

for 0 ≤ n ≤ N as ∆τ → 0, ∆Wmin → 0, ∆Amin → 0.

Proof. We use the same discrete upper bounding functions Bn
i,j = Wi + Aj as defined in

(3.44) and the vector bn as defined in (3.45). Then, some straightforward (but lengthy)

algebra shows that

[
Zn+1(bn+1 − vn+1)

]
i,j

= (1− ψi,j)
1

∆τ
[bn − vn]i,j + [gn+1]i,j , (4.27)

where

[gn+1]i,j =


(1− ψn+1

i,j )
(
ηWi + rAj + (ϕn+1

i,j G(1− δi,0)
)

+ ψn+1
i,j Πκ i < imax, j > 1 ,

η(Wi + Aj) otherwise ,

(4.28)

where δi,j is the Kronecker delta. Assume bn − vn ≥ 0, then, (1− ψn+1
i,j )[bn − vn]i,j ≥ 0 .

Since gn+1 ≥ 0, then Zn+1(bn+1−vn+1) ≥ 0. Because Zn+1 is an M matrix, bn+1−vn+1 ≥

0. Note from the initial condition (3.27), we have b0 − v0 ≥ 0. Hence

V n
i,j ≤ Wi + Aj , ∀n . (4.29)

For the lower bound, following a similar approach as used for the upper bound, by using

the lower bounding function Lni,j = Wi/(1 + η∆τ)n as in (3.49), we find that

V n
i,j ≥

Wi

(1 + η∆τ)n
> e−ητ

n

Wi . (4.30)
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4.5 Summary

This chapter focuses on a direct control method to solve the GMWB pricing equation. The

main results of this chapter are

• We introduce a scaled direct control method to solve the HJB VI in (2.6).

• We describe the discretization of the scaled direct control form of equations.

• We prove the stability of the discretization. Together with consistency and mono-

tonicity (which can be proven using the same steps as in Chapter 3), and the as-

sumption of the strong comparison principle, the scaled direct control discretization

converges to the viscosity solution.
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Chapter 5

Jump Diffusion

In this chapter, we extend the GMWB pricing problem by assuming the underlying asset

follows a Poisson jump diffusion process. Section 5.1 formulates the GMWB pricing prob-

lem for the case of jump diffusion, which results in an HJB PIDE/VI. The resulting PIDE

is then written both in a penalized form and scaled direct control form. Boundary condi-

tions are discussed in Section 5.2. Section 5.3 describes the discretization of the resulting

PIDE. Section 5.4 briefly sketches the proof of convergence of numerical schemes. Section

5.5 summarizes the main results of this chapter.

5.1 GMWB Pricing Problem with Jump Diffusion

5.1.1 Formulation of HJB PIDE

Increasing empirical evidence shows that the standard Geometric Brownian Motion is not

consistent with market data [24]. A Poisson jump diffusion process [39, 15] is one of the

popular and more realistic models of the risky asset stochastic process. Assuming that the
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risky asset S which underlies the variable annuity account (before the deduction of any

proportional fees) follows a Poisson jump diffusion process as in [39], the risk neutral paths

followed by S then satisfy the following stochastic differential equation

dS

S
= (r − λρ)dt+ σdZ + (J − 1)dY, (5.1)

with r the risk free rate, dZ an increment of a standard Gauss-Wiener process, and σ the

volatility associated with dZ. In the above, dY is an independent Poisson process and λ

is the jump intensity representing the mean arrival rate of the Poisson process:

dY =


0 with probability 1− λdt

1 with probability λdt

, (5.2)

with J a random variable representing the jump size of S. We assume that J follows a

log-normal distribution p(J) given by

p(J) =
1√

2πζJ
exp
(
−(log(J)− ν)2

2ζ2

)
, (5.3)

with parameters ζ and ν, ρ = E[J − 1], where E[·] is the expectation, and E[J ] = exp(ν +

ζ2/2) given the distribution function p(J) in (5.3).

Generalizing the formulation in [40, 18, 30] to the case with stochastic process (5.1),

the value of the guarantee V (W,A, τ) is given from the solution to the following Hamilton-

Jacobi-Bellman (HJB) Variational Inequality (VI)

min

[
Vτ − LV − λJ V −Gmax(FV, 0), κ−FV

]
= 0 . (5.4)
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where the operators L,F and J are defined as

LV =
σ2

2
W 2VWW + (r − η − λρ)WVW − (r + λ)V

=
σ2

2
W 2DWWV + (r − η − λρ)WDWV − (r + λ)V

FV = 1− VW − VA = 1−DWV −DAV

J V =

∫ ∞
0

V (JW,A, τ)p(J) dJ (5.5)

while DA,DW and DWW denote the usual partial derivative operators.

5.1.2 Penalized Form

By extending the idea in Section 3.1, equation (5.4) can be reformulated in penalized form

as

V ε
τ = LV ε + λJ V ε + max

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
ϕGFV ε + ψ

(
(FV ε − κ)

ε
+ κG

)]
. (5.6)

5.1.3 Scaled Direct Control Form

By extending the idea in Section 4.1, one can simply discretize the control form of equation

(5.4), as in [9],

min
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
ψ(κ−FV ) + (1− ψ)(Vτ − LV − λJ V − ϕGFV )

]
= 0 . (5.7)
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Equivalently, with the scaling factor Π > 0 applied to equation (5.7), we obtain the fol-

lowing scaled direct control form of equation

min
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
Πψ(κ−FV ) + (1− ψ)(Vτ − LV − λJ V − ϕGFV )

]
= 0 . (5.8)

5.2 Boundary Conditions

5.2.1 Localization

The original problem (5.4), or equivalently, (5.6) or (5.8) is posed on the domain Ω∞ =

[0,∞]× [0, ω0]× [0, T ] as in (2.8). For computational purposes, we localize these equations

on the finite computational domain of ΩL = [0,Wmax]× [0, ω0]× [0, T ] as in (2.9).

5.2.2 Terminal and Boundary Conditions

Define the following sets of points (W,A, τ) ∈ ΩL

Ωτ0 = [0,Wmax]× [0, ω0]× {0} ,

ΩW0 = {0} × (0, ω0]× (0, T ]

ΩWmax = {Wmax} × [0, ω0]× (0, T ]

ΩA0 = [0,Wmax)× {0} × (0, T ]

∂Ωin = Ωτ0 ∪ ΩW0 ∪ ΩWmax ∪ ΩA0

ΩŴmax
= [Ŵmax,Wmax)× [0, ω0]× (0, T ]

Ωina = ΩL\∂Ωin\ΩŴmax

Ωinb = ΩL\∂Ωin\Ωina . (5.9)
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For (W,A, τ) ∈ Ωina , we solve

min

[
Vτ − LV − λJ V −Gmax(FV, 0), κ−FV

]
= 0

(W,A, τ) ∈ Ωina . (5.10)

The integral term in the equations are computed by transforming it to a correlation integral

which then can be computed efficiently by FFT. In [20], the author describes how to

determine the value of Wmax based on Ŵmax so that FFT wrap-around effects are less than

a user specified tolerance.

At expiry time τ = 0 and when W → 0, the terminal and boundary conditions are the

same as those for the standard Geometric Brownian Motion case.

V (W,A, τ = 0) = max

[
W, (1− κ)A

]
(W,A, τ) ∈ Ωτ0 ; (5.11)

min

[
Vτ − rV −Gmax(1− VA, 0), κ− (1− VA)

]
= 0

(W,A, τ) ∈ ΩW0 . (5.12)

As W → ∞, we make the common assumption that VWW ' 0 as in [23]. We assume

that for W > Ŵmax, V is linear and VWW = 0. Consequently, for (W,A, τ) ∈ Ωinb the

PIDE (5.4) reduces to the Black-Scholes PDE [8, 38, 20]. Effectively, assuming VWW = 0,

that is equivalent to setting λ = 0 in equation (5.4) and we solve

min

[
Vτ − LGV −Gmax(FV, 0), κ−FV

]
= 0

(W,A, τ) ∈ Ωinb . (5.13)

According to [18], the withdrawal guarantee becomes insignificant for W sufficiently
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large, so we use the same boundary condition as for the no jump case discussed in Section

2.2. The exact boundary condition at Wmax is

V (Wmax, A, τ) = e−ητWmax

(
1 +O

(
1

Wmax

))
; Wmax →∞ (5.14)

Therefore as in [18, 23], we impose the following condition at Wmax

V (Wmax, A, τ) = e−ητWmax ,

(W,A, τ) ∈ ΩWmax . (5.15)

Note that the integral term in equation (5.10) requires information for W > Wmax. Based

on equations (5.14) and (5.15), we assume that

V (W,A, τ) = e−ητW ; W > Wmax , (5.16)

so that the integral term can be written as as

J V (W,A, τ) =

∫ ∞
0

V (JW,A, τ)p(J) dJ

=

∫ Wmax/W

0

V (JW,A, τ)p(J) dJ +

∫ ∞
Wmax/W

e−ητWp(J) dJ

=

∫ Wmax/W

0

V (JW,A, τ)p(J) dJ + e−ητW

∫ ∞
Wmax/W

p(J) dJ (5.17)

Note that J V is non-zero only for W ≤ Ŵmax. As described in [23], we can select Ŵmax,

Wmax so that ∫ ∞
Wmax/Ŵmax

p(J)dJ < ε1 , (5.18)

where ε1 is any desired tolerance. In the following, we assume that we have selected ε1
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sufficiently small so that the integral term in (5.18) can be ignored, so that

J V (W,A, τ) '


∫Wmax/W

0
V (JW,A, τ)p(J)dJ if W ≤ Ŵmax ,

0 if W > Ŵmax .

(5.19)

As A→ 0, no withdrawal is possible, so the variational inequality becomes the following

PIDE

Vτ = LV + λJ V

(W,A, τ) ∈ ΩA0 . (5.20)

Note that as discussed in [18], no boundary condition is required at A = ω0 due to

hyperbolic nature of the variable A.

5.3 Discretized PIDE

5.3.1 Discretized Integral Term J hV

Aside from discretizing the PDE part, we need to further discretize the integral term J V

in equations (5.6) and (5.8). We use J hV to denote the discretized integral term. The

discretization technique is to transform the integral term into a correlation integral com-

bined with a use of the midpoint rule as described in detail in [23, 22, 54]. No information

is needed outside the domain (i.e. W > Wmax) since we assume equation (5.19) holds.
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5.3.2 Discretization: Penalty Method

As discussed in Section 3.4, with ε = C∆τ and The final discretized form of (5.6) becomes

1

∆τ
V n+1
i,j − LhV n+1

i,j + ϕ∗i,jG(DhAV n+1
i,j +DhWV n+1

i,j ) +
ψ∗i,j
ε

(DhAV n+1
i,j +DhWV n+1

i,j )

= λ[J hV n+1]i,j + ϕ∗i,jG+ ψ∗i,j(
1− κ
ε

+ κG) +
1

∆τ
V n
i,j , (5.21)

where

(ϕ∗i,j, ψ
∗
i,j) = arg max

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
ϕ G(1−Dh

AV
n+1
i,j −DhWV n+1

i,j )

+ ψ
(1−DhAV n+1

i,j −Dh
WV

n+1
i,j − κ

ε
+ κG

)]
i

. (5.22)

We can also rewrite equation (5.21) in an equivalent form (using a backward difference for

DhA)

1

∆τ
V n+1
i,j − LhV n+1

i,j + ϕ∗i,jG(
V n+1
i,j

∆A−j
+DhWV n+1

i,j ) +
ψ∗i,j
ε

(
V n+1
i,j

∆A−j
+DhWV n+1

i,j )

= λ[J hV n+1]i,j + ϕ∗i,jG+ ψ∗i,j(
1− κ
ε

+ κG) +
1

∆τ
V n
i,j

+(ϕ∗i,jG+
ψ∗i,j
ε

)
1

∆A−j
V n+1
i,j−1 . (5.23)
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5.3.3 Discretization: Direct Control Method

Equation (5.8) can be written in the following discrete form

(1− ψ∗i,j)
(

1

∆τ
V n+1
i,j − LhV n+1

i,j + ϕ∗i,jG(DhWV n+1
i,j +DhAV n+1

i,j )

)
+Π ψ∗i,j(DhWV n+1

i,j +DhAV n+1
i,j )

= (1− ψ∗i,j)
1

∆τ
V n
i,j + Π ψ∗i,j(1− κ) + (1− ψ∗i,j)

(
λ[J hV n+1]i,j + ϕ∗i,jG

)
, (5.24)

where

(ϕ∗i,j, ψ
∗
i,j) = arg max

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
Π ψ(κ−FhV n+1

i,j )− (1− ψ)

(
V n+1
i,j − V n

i,j

∆τ

−
(
LhV n+1

i,j + λ[J hV n+1]i,j + ϕGFhV n+1
i,j

))]
i

.

(5.25)

We can also rewrite equation (5.24) in an equivalent form (using a backward difference for

DhA)

(1− ψ∗i,j)
(

1

∆τ
V n+1
i,j − LhV n+1

i,j + ϕ∗i,jG(
V n+1
i,j

∆A−j
+DhWV n+1

i,j )

)
+ Π ψ∗i,j(

V n+1
i,j

∆A−j
+DhWV n+1

i,j )

= (1− ψ∗i,j)
1

∆τ
V n
i,j + Π ψ∗i,j(1− κ+

V n+1
i,j−1

∆A−j
)

+(1− ψ∗i,j)
(
λ[J hV n+1]i,j + ϕ∗i,jG(

V n+1
i,j−1

∆A−j
+ 1)

)
. (5.26)
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5.4 Convergence: Jump Diffusion Case

Using the methods in Chapter 3, we can show that discretizations (5.23) and (5.26) are

monotone, consistent and stable. The details are algebraically tedious and not particularly

illuminating given the results in Section 3.4, hence we give only a brief sketch of how this

can be done. We assume that J hV is discretized as in [23].

Monotonicity

The discretization in [23] uses the midpoint rule, hence the coefficients of V n+1
i,j in

[
J hV

]n+1

i,j

are non-negative and sum to less than or equal to unity [23]. Hence the additional discrete

term
[
J hV

]n+1

i,j
results in a positive coefficient discretization.

Consistency

Since the midpoint rule is O(h2) for smooth functions, this easily follows.

Stability

We can use the same method as used in Section 3.4.5. The easiest way to do this is to

alter the definition of the mean relative jump size ρ slightly. Recall that

ρ = E[J − 1] = E[J ]− 1 . (5.27)

Instead of using the exact expression for E[J ], we evaluate this using the same quadrature

rule used to evaluate the
[
J hV

]
, i.e. Eh[J ]. This is obviously a consistent approximation.

Then when we substitute the bounding function (3.44) into the discretization (5.23) or

(5.26), all the discrete jump terms cancel and we can proceed exactly as before. The lower
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bound proceeds in the same way by substituting the bounding function (3.49) into the

discretization.

5.5 Summary

This chapter describes how to extend the GMWB pricing equation to the case where the

underlying asset follows a jump diffusion process. The main results are

• The GMWB pricing equation is an HJB VI/PIDE for the jump diffusion case.

• Both the penalty method and the direct control method can be used to solve the

resulting PIDE.

• We use a slight modification to the Geometric Brownian Motion case for boundary

conditions. The region Ωin is further divided into Ωina and Ωinb with the assumption

of linear behavior for nodes in Ωinb .

• Using the technique of transforming the integral term into a correlation integral

combined with a use of the midpoint rule [23, 54] and the standard three point finite

difference for derivative terms, we discretize both the penalized form and the scaled

direct control form of the resulting PIDE.

• We briefly sketch how to extend the proof of convergence to the viscosity solution for

the standard Geometric Brownian Motion case to the jump diffusion case.
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Chapter 6

Fixed Point Policy Iteration

In this chapter we discuss a fixed point policy iteration scheme for solution of the discretized

equations for the singular control formulation of the GMWB pricing problem. Section 6.1

discusses existing iterative methods and presents the fixed point policy iteration scheme.

Section 6.2 derives sufficient conditions for the fixed point policy iteration to converge.

Section 6.3 discusses a full matrix fixed point policy iteration for solving the discretized

HJB PIDEs. Both the penalty method and the direct control method are discussed. Section

6.4 presents a block matrix fixed point policy iteration for solving the same problem with

a significant improvement of efficiency. We finally summarize main results of this chapter

in Section 6.5.

6.1 Methods for Solving Algebraic Equations

In [26] a number of problems in financial modeling were presented in a general form as

nonlinear HJB problems. These problems were then solved by implicitly discretizing the

resulting PDE and then solving the resulting discrete algebraic equations. For the appli-
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cations addressed in [26] an efficient method for solving the associated algebraic systems

made use of a (Newton-like) policy iteration scheme. The equations (5.21), (5.23), (5.24)

and (5.26) resulting from the GMWB pricing problem can also be written in such a gen-

eral form. However, when the risky assets follow a Poisson jump diffusion process, the

policy iteration has significant efficiency drawbacks. In this section we describe a new

procedure, called fixed point policy iteration which provides a method for overcoming these

computational bottlenecks. This method is a generalization of the method in [23].

6.1.1 Matrix and Vector Notations

It is convenient to use a matrix form to represent the discretized equations. Let N =

imax × jmax be the size of the W × A plane grid. We use the following notation for imax

length and N length vectors

v∗,j = (v1,j, v2,j, . . . , vimax,j)
′ ,

v = ((v∗,1)′, (v∗,2)′, . . . , (v∗,jmax)′)′; (6.1)

where v∗,j is of length imax and v is of length N . Similarly, we can write the controls as

vectors

χ∗,j = (χ1,j, χ2,j, . . . , χimax,j)
′ ,

χ = ((χ∗,1)′, (χ∗,2)′, . . . , (χ∗,jmax)′)′;

χi,j ∈ X =
{

(ϕ, ψ) | ϕ ∈ {0, 1}, ψ ∈ {0, 1}, ϕψ = 0
}
. (6.2)

Let

` = i+ (j − 1)imax with 1 ≤ i ≤ imax and 1 ≤ j ≤ jmax, (6.3)
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then

[v∗,j]i = vi,j

= v`

` = i+ (j − 1)imax . (6.4)

As a result, we will sometimes refer to the same entry in the N-length vector v as v` or vi,j,

which will be clear from the context. It is convenient to represent the algebraic equations

by matrix notation. In this thesis we use boldface capital letter T to represent an N ×N

matrix with entries [T]`,u = T`,u. We will also refer to the jth imax × imax subblock of T

using the notation Tj. These subblocks will be defined in Section 6.4.

6.1.2 Discretized Equations in Matrix Form

At each timestep, we solve for the unknowns V n+1
i,j in equations (5.21) and (5.24). Letting

[v∗,j]i = V n+1
i,j , the algebraic equations at each timestep can be represented in the following

general form as suggested in [26].

sup
χ∈X

{
−T(χ)v + c(χ)

}
= 0 , (6.5)

with T a square matrix, c, χ vectors and where X is a set of controls. Equation (6.5) is

interpreted as

T(χ∗)v = c(χ∗)

with χ∗` = arg max
χ`∈X

[
−T(χ)v + c(χ)

]
`

. (6.6)
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Thus the problem has a potentially different control for each row of the linear system. Note

that equation (6.5) is highly nonlinear.

Remark 6.1.1. It is important to note that due to the nature of the discretized HJB

equations [26], [T(χ)]`,u and [c(χ)]` depend only on χ`, and we restrict our attention to

matrices and vectors having this property throughout the remainder of this thesis.

The set of admissible controls X for our problems can be finite or infinite [55, 56], and

the local objective function

[
−T(χ)v + c(χ)

]
`

(6.7)

can be a discontinuous function of the control χ [55]. We make the following assumptions:

Assumption 6.1.1. Either

(a) The set of controls X is finite; or

(b) the set of controls X is compact, and the local objective function (6.7) is an upper

semi-continuous function of the controls.

Assumption 6.1.1 ensures that there always exists a χ∗ such that

−T(χ∗)v + c(χ∗) = sup
χ`∈X

{
−T(χ)v + c(χ)

}
= max

χ`∈X

{
−T(χ)v + c(χ)

}
. (6.8)

Note that this statement holds for each row. We remark that the assumption that the local

objective function is upper semi-continuous is not strictly necessary. However removing

this assumption results in tedious notational complication [55].
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6.1.3 Policy Iteration

Policy iteration is an iterative procedure which constructs a new solution v from an initial

approximation v0 by first finding a policy (i.e. an admissible control) which maximizes our

objective function and then solving a linear system to determine the next candidate. More

precisely, let vk denote the kth estimate for v (starting at v0). Then the policy iteration

approach for solution of equation (6.6) is given in Algorithm 6.1.1.

Algorithm 6.1.1 Policy Iteration

1: vk = (v)k with v0 = Initial solution vector of size N
2: for k = 0, 1, 2, . . . until converge do
3: Determine

χk = (χk1, χ
k
2, . . . , χ

k
N)

χk` ⇐ arg max
χ`∈X

[
−T(χ)vk + c(χ)

]
`

4: Solve the linear system
T(χk)vk+1 = c(χk)

5: if k > 0 and max
`

|vk+1
` − vk` |

max
[
scale, vk+1

`

] < tolerance then

6: break from the iteration
7: end if
8: end for

The term scale in Algorithm 6.1.1 is used to ensure that unrealistic levels of accuracy

are not required when the value is very small. Typically, scale = 1 for options priced in

dollars.

There are several possibilities for solving the linear system in the policy iteration

method. For example, if T is sparse, then direct or iterative methods (such as precon-

ditioned GMRES [46]) can be used.
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6.1.4 Splitting Methods

Unfortunately it is not always the case that one can easily solve the policy iteration matrix

T(χk) at each iteration. Indeed it is possible to spend a great deal of effort in solving

T(χk) at each iteration. In this thesis we isolate the part of the iteration matrix which

prevents efficient linear solution. At the same time there will need to be enough conditions

to ensure that any new iteration scheme still converges to the correct solution. Thus our

algebraic equations will now be written as

[
A(χ∗)−B(χ∗)

]
v = c(χ∗)

with χ∗` = arg max
χ`∈X

[
−
[
A(χ)−B(χ)

]
v + c(χ)

]
`

. (6.9)

We assume that this splitting is such that any linear system having A(χ) as its coefficient

matrix is easy to solve.

Remark 6.1.2. We remind the reader that [A(χ)−B(χ)]`,u and [c(χ)]` depend only on χ`,

as in Remark 6.1.1. In other words, given v, then the optimal control χ∗` can be determined

by examining only the `th row of −
[
A(χ)−B(χ)

]
v + c(χ).

6.1.5 Simple Iteration

Using the above notation, then at each step of full policy iteration, we solve

[
A(χk)−B(χk)

]
vk+1 = c(χk) . (6.10)

However, as discussed above, it may be very costly to solve equation (6.10) using a direct

method. An obvious alternative is to use an iterative method. If (vk+1)m is the mth
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estimate for vk+1, then simple iteration for solution of linear system (6.10) is

A(χk)
(
vk+1

)m+1
= B(χk)

(
vk+1

)m
+ c(χk) . (6.11)

6.1.6 Fixed Point-Policy Iteration

Instead of solving the linear system to convergence using simple iteration, it is natural to

ask whether it suffices to use only a single simple iteration at each nonlinear iteration. In

this case we replace Policy Iteration with what we refer to as Fixed Point Policy Iteration.

Algorithm 6.1.2 Fixed Point Policy Iteration

1: vk = (v)k with v0 = Initial solution vector of size N
2: for k = 0, 1, 2, . . . until converge do
3: Determine

χk = (χk1, χ
k
2, . . . , χ

k
N)

χk` ⇐ arg max
χ`∈X

[
−
[
A(χ)−B(χ)

]
vk + c(χ)

]
`

4: Solve the linear system
A(χk)vk+1 = B(χk)vk + c(χk)

5: if k > 0 and max
`

|vk+1
` − vk` |

max
[
scale, vk+1

`

] < tolerance then

6: break from the iteration
7: end if
8: end for

The above method requires only the solution of the sparse matrix A(χk) and a matrix-

vector multiply B(χk)vk at each nonlinear iteration.

6.2 Convergence of the Fixed Point-Policy Iteration

In [21], the convergence of an iterative scheme for a penalty formulation for American

options under a jump diffusion process was proven. This same idea was generalized for
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other HJB problems in [14]. While it is possible to use this approach to prove convergence

of iteration scheme in Algorithm 6.1.2, these proofs are algebraically complex. In the

following, we will present a simpler and more general method which proves convergence of

the iteration scheme in Algorithm 6.1.2.

In order to ensure convergence of our scheme we need to make some basic assumptions

which hold for the applications that are of interest.

Condition 6.2.1. The matrices A(χ),B(χ) and vector c(χ) satisfy:

(i) The matrices A(χ) and A(χ)−B(χ) are M matrices.

(ii) The matrices A(χ),B(χ), the vector c(χ), and ‖A−1(χ)‖∞ are bounded, independent

of χ.

(iii) There is a constant C1 < 1 such that

‖A−1(χk)B(χk−1)‖∞ ≤ C1 and ‖A−1(χk)B(χk)‖∞ ≤ C1. (6.12)

Remark 6.2.1. We remind the reader that a sufficient condition for a matrix to be an M

matrix is that the offdiagonals are nonpositive, and each row sum is strictly positive [53].

We will use this condition in the following. See Remark 3.3.2 for the definition of an M

matrix.

Remark 6.2.2. In order to ensure convergence, the discretizations of our financial prob-

lems as in (6.6) need to be monotone, consistent and `∞ stable. This requires a positive

coefficient discretization resulting in the M matrices of (i) and bounded matrices A(χ),

B(χ) and vector c(χ) of (ii). Property (iii) states that the B component is small (perhaps

using scaling) in comparison to A in order to ensure convergence of the discrete scheme.
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Before proving the main result of this section, it will be helpful to note the following

Proposition and Lemmas.

Proposition 6.2.1 (Convergent Sequence). Given a bounded infinite sequence (vn), such

that

vk+1 ≥ vk − βkα , (6.13)

where α is a constant independent of k, and |β| < 1, then the sequence converges.

Proof. An immediate consequence of property (6.13) is that, ∀ε > 0,∃N1 such that ∀k >

k′ > N1

vk ≥ vk′ −
ε

2
. (6.14)

Let s = lim sup vn. Recall the properties of the lim sup,

∀ε > 0,∃N2, s.t. ∀k > N2, vk < s+ ε (6.15)

∀ε > 0,∀N,∃j > N, s.t. vj > s− ε

2
. (6.16)

Choose N2 such that equation (6.15) holds. Choose N3 = max(N1, N2), so that ∀k > k′ >

N3

vk ≥ vk′ −
ε

2
From (6.14) (6.17)

vk < s+ ε From (6.15) (6.18)

75



Choose k′ > N3, such that (from (6.16))

vk′ > s− ε

2
. (6.19)

From equations (6.17) and (6.19), we have

∀ε > 0,∀k > k′, vk > s− ε . (6.20)

From equations (6.18) and (6.20) we have

∀ε > 0, ∃k′ s.t. ∀k > k′, |vk − s| < ε . (6.21)

Lemma 6.2.1 (Bounded Iterates). Let matrices A(χ),B(χ) and the vector c(χ) satisfy

Condition 6.2.1. Then ‖vk‖∞ is bounded independent of k.

Proof. From Algorithm 6.1.2 we have

‖vk+1‖∞ ≤ ‖A−1(χk)B(χk)‖∞‖vk‖∞ + ‖A−1(χk)c(χk)‖∞

≤ C1‖vk‖∞ + C2

(6.22)

for some constant C2 independent of k. Iterating equation (6.22) gives

‖vk+1‖∞ ≤ Ck+1
1 ‖v0‖∞ + C2

k∑
i=0

Ci
1

≤ ‖v0‖∞ +
C2

1− C1

, (6.23)
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which follows since C1 < 1.

Lemma 6.2.2 (Uniqueness of Solution). Assume that the set of controls satisfy Assumption

6.1.1 and that A(χ), B(χ), and c(χ) satisfy Condition 6.2.1. If the iterative scheme in

Algorithm 6.1.2 converges, then it converges to the unique solution of equation (6.9).

Proof. Manipulation of the method in Algorithm 6.1.2 results in

A(χk)(vk+1 − vk) = −A(χk)vk + B(χk)vk + c(χk)

= max
χ`∈X

{
−A(χ)vk + B(χ)vk + c(χ)

}
. (6.24)

Suppose limk→∞ vk = v∗ . Then

lim
k→∞

A(χk)(vk+1 − vk) = 0 (6.25)

since A(χ) is bounded. Consequently

0 = lim
k→∞

max
χ`∈X

{
−A(χ)vk + B(χ)vk + c(χ)

}
= max

χ`∈X

{
−A(χ)v∗ + B(χ)v∗ + c(χ)

}
, (6.26)

since max(·) is a continuous function of vk 1 , and hence v∗ is a solution of equation (6.9).

As for uniqueness, suppose there are two solutions u, v, such that

(A(χu)−B(χu))u = c(χu) ; χu` = arg max
χ`∈X

[
−A(χ)u + B(χ)u + c(χ)

]
`

(6.27)

(A(χv)−B(χv))v = c(χv) ; χv` = arg max
χ`∈X

[
−A(χ)v + B(χ)v + c(χ)

]
`

. (6.28)

1The proof of the continuity of max(·) is in Appendix E
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Manipulate equation (6.28) to obtain

(A(χu)−B(χu))v = (A(χu)−B(χu))v − (A(χv)−B(χv))v + c(χv) . (6.29)

Subtract equation (6.29) from equation (6.27) to obtain

(A(χu)−B(χu))(u− v) = −A(χu)v + B(χu)v + c(χu)

− (−A(χv)v + B(χv)v + c(χv)) . (6.30)

But χv maximizes (−A(χv)v + B(χv)v + c(χv)), hence the rhs of equation (6.30) is non-

positive. Since (A(χu)−B(χu)) is an M matrix, then (u− v) ≤ 0. Interchange u and v

to obtain (v − u) ≤ 0, hence u = v.

Theorem 6.2.1 (Convergence of Scheme). If the matrices A(χ),B(χ) and vector c(χ)

satisfy Condition 6.2.1, then the iteration scheme in Algorithm 6.1.2 converges to the

unique solution of equation (6.9), for any initial iterate vk.

Proof. Algorithm 6.1.2 can be written as

A(χk)(vk+1 − vk) = B(χk−1)(vk − vk−1)−A(χk)vk + B(χk)vk + c(χk)

−
(
−A(χk−1)vk + B(χk−1)vk + c(χk−1)

)
. (6.31)

Since χk maximizes (−A(χ)vk + B(χ)vk + c(χ)) we have

−A(χk)vk + B(χk)vk + c(χk)−
(
−A(χk−1)vk + B(χk−1)vk + c(χk−1)

)
≥ 0 . (6.32)

Equations (6.31) and (6.32) combined with the fact that A(χk) is an M matrix then implies

vk+1 − vk ≥
(
A−1(χk)B(χk−1)

)
(vk − vk−1) . (6.33)
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From Condition 6.2.1

‖A−1(χk)B(χk−1)‖∞ ≤ C1 < 1 (6.34)

and so we have

(vk+1 − vk) ≥ −Ck
1‖v1 − v0‖∞ e (6.35)

where e = (1, 1, ..., 1)′. Let C3 = ‖v1 − v0‖∞. Then, in component form we have

[vk+1]` ≥ [vk]` − Ck
1C3 . (6.36)

From Lemma 6.2.1, the sequence [vk+1]` is bounded, hence the iteration converges from

Proposition 6.2.1. In the limit, the iteration converges to the unique solution of equation

(6.9) from Lemma 6.2.2.

Remark 6.2.3 (Monotone Convergence). We can eliminate condition (6.34) if we require

that (v1 − v0) ≥ 0, and B(χ) ≥ 0, since then the iteration will generate a monotone non-

decreasing sequence from equation (6.33). Often, it is straightforward to enforce (v1−v0) ≥

0 by specifying v0 = 0 [21], and in many cases B(χ) ≥ 0. However, a natural choice for

v0 in time-dependent problems is the solution from the previous timestep, hence the choice

of v0 = 0 is a poor initial estimate. In fact, tests in [21] show that enforcing monotone

convergence using a special choice for the first iterate converges more slowly than using

the natural choice of the solution from the previous step, as one might expect. In addition,

numerical experiments indicate that floating point errors are amplified if condition (6.34)

is violated, and hence the sequence vk may not be non-decreasing (in inexact arithmetic)

even if (v1 − v0) ≥ 0.

Remark 6.2.4 (Previous Work). Various forms of modified policy iteration have been
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suggested in the context of infinite horizon Markov chain problems [35]. However, conver-

gence results in [45] require that the initial iterate be selected so as to enforce monotone

convergence (as in Remark 6.2.3). Moreover, we do not require that A(χ),B(χ), c(χ) be

continuous functions of the control χ [55].

Condition 6.2.1 involves bounding a matrix norm of the form

‖A−1B‖∞ = maxy 6=0
‖A−1By‖∞
‖y‖∞

= maxy 6=0
‖x‖∞
‖y‖∞

where Ax = By (6.37)

with A an M matrix. The following lemma will be useful in this regard.

Lemma 6.2.3. Suppose A is a strictly diagonally dominant M matrix and B ≥ 0. We

have

‖A−1B‖∞ ≤ max
`

Row Sum ` (B)

Row Sum ` (A)
(6.38)

Proof. Suppose Ax = By with A a strictly diagonally dominant M matrix and B ≥ 0.

Then for any ` such that |x`| = ‖x‖∞, by using the same type of maximum analysis as in

[21], we have

A`,`x` = −
∑
u6=`

A`,uxu +
∑
u

B`,uyu. (6.39)

Taking absolute values on both sides and using the fact that A`,u is nonpositive whenever

u 6= ` we have that

A`,`|x`| ≤ −(
∑
u6=`

A`,u)‖x‖∞ + (
∑
u

B`,u)‖y‖∞. (6.40)
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Since |x`| = ‖x‖∞, we obtain

(
∑
u

A`,u)‖x‖∞ ≤ (
∑
u

B`,u)‖y‖∞. (6.41)

Consequently

‖A−1B‖∞ = max
y 6=0

‖A−1By‖∞
‖y‖∞

= max
y 6=0

‖x‖∞
‖y‖∞

≤ max
`

∑
uB`,u∑
uA`,u

= max
`

Row Sum ` (B)

Row Sum ` (A)

≤ max
`

Row Sum ` (B)

Row Sum ` (A)
. (6.42)

6.3 Full Matrix Fixed Point-Policy Iteration

In this section, we write equations (5.21) and (5.24) in the general matrix form as in (6.9).

Then we show the fixed point policy iteration scheme in Algorithm 6.1.2 converges to the

unique solution of (6.9) by verifying Condition 6.2.1 for both equations.

6.3.1 Full Matrix Iteration: Penalty Method

We can represent the linear relationships given in equation (5.21) in matrix form as follows.

Let vector u be an N − length vector. Define square N × N matrices A,B and vector c
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of size N by

[A(χk)u]` = [Aku]` = u` −∆τLhu` + ϕk`G[Dh
Au` +Dh

Wu`]∆τ

+
ψk`
ε

[Dh
Au` +Dh

Wu`]∆τ[
B(χk)u

]
`

= [Bku]` = λ∆τ [J hu]`[
c(χk)

]
`

= ck` = ϕk`G∆τ + ψk`
[(1− κ)

ε
+ κG

]
∆τ + V n

` (6.43)

with controls

χk` = (ϕk` , ψ
k
` ) = arg max

ϕ`∈{0,1},ψ`∈{0,1}
ϕ`ψ`=0

[
−A(ϕ`, ψ`)u

k + B(ϕ`, ψ`)u
k + c(ϕ`, ψ`)

]
`

. (6.44)

The discretized equations (5.21) become

sup
χ`∈X

{
−A(χ)vn+1 + B(χ)vn+1 + c(χ)

}
= 0 . (6.45)

Remark 6.3.1. We have written the matrix B = Bk although there is no explicit depen-

dence on (ϕk` , ψ
k
` ) in this case in order to use the general form of the previous section.

Remark 6.3.2. Note that the separation of A(χ) and B(χ) in this case is carried out

by placing the discretization of the jump diffusion term entirely in B(χ). The case when

B(χ) = 0 (and λ = 0) corresponds to the underlying asset following Geometric Brownian

Motion. Consequently, A(χ) is easily seen to be a sparse, strictly diagonally dominant

M-matrix. In this case policy iteration is quite efficient. When there is a jump diffusion

term, difficulties arise since the discretization at any node is linked to all the other nodes

resulting in a dense system.

Remark 6.3.3. The discretization of the jump term J V (5.5) as in [23] results in a

dense matrix B. However the method of discretization used in that paper implies that
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vector product Bvn can be computed efficiently in O(N logN) operations using an FFT.

Recall that in order to ensure convergence to the viscosity solution of equation (5.4),

the discretization must be monotone, consistent and l∞ stable [5]. A positive coefficient

discretization guarantees monotonicity [26]. The positive coefficient condition and the

discretization of the jump term as in [23] give the following result.

Proposition 6.3.1. Suppose a positive coefficient discretization [26] is used and the jump

operator J h is discretized using the method in [23] with linear behavior assumed for i ≥ î

[23, 54]. Then

(a) B(χk) ≥ 0,

(b) Suppose row ` corresponds to grid node (i, j) as in (6.3). Then the `th row sums for

A(χk) and B(χk) are

Row Sum ` ( A(χk) ) =


1 + (r + λ)∆τ 2 ≤ i < î

1 + r∆τ i = î, . . . , imax − 1 or i = 1

1 i = imax

Row Sum ` ( B(χk) ) ≤


λ∆τ 2 ≤ i < î

0 i = î, . . . , imax − 1 or i = 1

(6.46)

(c) The matrices A(χ)−B(χ) and A(χ) in equation (6.45) are strictly diagonally dom-

inant M matrices.

Proof. The construction of B(χk) using the discretization of J V as detailed in [23] implies
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that

∑
u

[J h]`,u ≤ 1 and [J h]`,u ≥ 0. (6.47)

This holds since p(J) in (5.5) is a probability density function. When the grid node (i, j)

satisfies i = 1 or i > î then the `th row of B(χk)is identically zero. This gives (a) and the

second part of (b).

In order to prove the remaining part of (b) we note that the row sum is the same as

[A(χk)e]` with e = (1, ..., 1)′. Since DhWW1 = DhW1 = DhA1 = 0 we see that Lh1 = −(r+λ).

Thus [A(χk)e]` = 1 + (r+λ)∆τ for 2 ≤ i < î. A similar argument shows that [A(χk)e]` =

1 + r∆τ for î ≤ i < imax or i = 1. When i = imax then the corresponding row is just the `th

identity row (since it is just a boundary assignment) and hence its row sum is just unity.

(c) follows since the off-diagonals of A(χ)−B(χ) and A(χ) are non-positive (since the

discretization is monotone [26]) and from (b), the row sums are strictly positive.

Lemma 6.3.1. If the discretization for the GMWB problem satisfies the conditions required

for Proposition 6.3.1 then the discretization satisfies Condition 6.2.1.

Proof. Because B(χk) is independent of χk, we need only show that

‖A−1(χk)B(χk)‖∞ ≤ C1 (6.48)

for some constant C1 < 1. Lemma 6.2.3 combined with Proposition 6.3.1 implies that

‖A−1(χk)B(χk)‖∞ ≤ λ∆τ

1 + (r + λ)∆τ
< 1 . (6.49)

To prove that ‖A−1(χ)‖∞ is bounded independent of χ, we repeat the above argument

setting B to the identity matrix.
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Remark 6.3.4. The method in [23] uses the following technique to avoid FFT wrap-

around effects. Suppose the original computational domain is W ∈ [0, Ŵmax]. The domain

is extended to Wmax > Ŵmax and the solution in [Ŵmax,Wmax] is assumed to be linear in

W . This is essentially the same philosophy as used in equation (5.17) where the integral is

evaluated for W > Ŵmax by assuming linearity. Note that in [Ŵmax,Wmax], the assumption

of linearity causes the jump terms to cancel, leading to a standard Black-Scholes equation

[8, 38]. This makes this technique simple to implement.

6.3.2 Full Matrix Iteration: Direct Control Method

We define the full matrices and vectors used in Algorithm 6.1.2 (assuming discretization

(5.24)). Let y = (y1, y2, . . . , yN)′ be a vector of size N , and let

[A(χk)y]` = [Aky]` = (1− ψk` )

(
1

∆τ
y` − Lhy` + ϕk`G(DhWy` +DhAy`)

)
+Π ψk` (DhWy` +DhAy`)

= [Ak
Dy]` + [Ak

Ly]`

[Ak
Dy]` = (1− ψk` )

(
1

∆τ
y` − Lhy` + ϕk`G

(
DhWy` +

y`
∆A−j

))
+ Π ψk`

(
DhWy` +

y`
∆A−j

)
[Ak

Ly]` = −(1− ψk` )ϕk`G

(
y`−imax

∆A−j

)
− Πψk`

(
y`−imax

∆A−j

)
[
B(χk)y

]
`

=
[
Bky

]
`

= (1− ψk` )λ[J hy]`[
c(χk)

]
`

= (1− ψk` )
1

∆τ
V n
` + Π ψk` (1− κ) . (6.50)

Proposition 6.3.2. Suppose a positive coefficient discretization [26] is used and the jump

operator J h is discretized using the method in [23] with linear behavior assumed for i ≥ î

[23, 54]. Then discretization (6.50) satisfies
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(a) B(χ) ≥ 0,

(b) The `th row sum for B(χk) is

Row Sum ` ( B(χ) ) ≤


(1− ψk` )λ 2 ≤ i < î

0 i = î, ..., imax or i = 1

(6.51)

(c) The `th row sum for AD(χk) is

Row Sum ` ( AD(χk))

=


(1− ψk` )

(
1

∆τ
+ (r + λ) + ϕk`G

1
∆A−j

)
+ ψk`Π 1

∆A−j
i < î

(1− ψk` )
(

1
∆τ

+ r + ϕk`G
1

∆A−j

)
+ ψk`Π 1

∆A−j
i = î, . . . , imax − 1 or i = 1

1
∆τ

+ η i = imax

(6.52)

(d) The matrices A(χ)−B(χ) and A(χ) in equation (6.50) are M matrices.

Proof. To prove (a) and (b), we follow the same argument as in the proof of Proposition

6.3.1.

In order to prove (c), first observe the following

DhWW1 = 0 ; DhW1 = 0 ; DhWAj = 0 ; DhA1 = 0 ; DhAAj = 1

Lh1 =


−(r + λ) 2 ≤ i < î

−r î ≤ i < imax or i = 1

(6.53)

The row sum of AD is [AD(χk)e]i with e = (1, ..., 1)′, and consequently (c) follows using

results (6.53), for i < imax. When i = imax then from the boundary assignment of equation

(3.32), the row sum is just (1/∆τ + η).
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To prove (d), consider that A(χ) = AD(χ)+AL(χ). Note that AD(χ) is block diagonal,

and AL(χ) is lower triangular. From (c), the row sums of AD(χ) are strictly positive, and

off-diagonals are non-positive since a positive coefficient discretization is used. Hence

AD(χ) consists of diagonal blocks, each of which is a strictly diagonally dominant M

matrix. Since AL(χ) is non-positive, a straightforward computation shows that A(χ) is

non-singular and that A−1(χ) ≥ 0. Noting that A−B = A(I−A−1B), a similar argument

shows that A(χ)−B(χ) is also an M matrix.

Lemma 6.3.2. If the discretization for the GMWB penalty method satisfies the conditions

required for Proposition 6.3.2, and in addition

Π > Amaxλ
1 + (r + λ)∆τ

1 + r∆τ
, (6.54)

then the matrices A,B satisfy Condition 6.2.1, and hence from Theorem 6.2.1, Algorithm

6.1.2 converges.

Proof. We need to show that there is a constant C1 such that

‖A−1(χk)B(χp)‖∞ ≤ C1 , (6.55)

where p = k, k − 1. Consider an arbitrary vector z, and a vector y such that

A(χk)y = B(χp)z , (6.56)

then condition (6.55) is equivalent to requiring that

‖y‖∞
‖z‖∞

≤ C1 < 1 . (6.57)

From equation (6.50), we can see that [Ae]` = 0; i < î, ψk` = 1, hence we are obliged to
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use a different method from that in Section 6.3.1 to prove this result.

First, note that

[
A(χk)y

]
`

= [B(χp)z ]` ; ` = i+ (j − 1)imax ; 2 ≤ i < î (6.58)[
A(χk)y

]
`

= 0 ; ` = i+ (j − 1)imax ; i ≥ î or i = 1 (6.59)

due to the linear behavior assumed for i ≥ î (see equation(6.51)) [23]. Define a bounding

grid function ŷ

[ŷ]` =
‖z‖∞λ∆τ

1 + (r + λ)∆τ
+ Aj

‖z‖∞λ
Π

; ` = i+ (j − 1)imax . (6.60)

Noting properties (6.53), and substituting equation (6.60) into equation (6.50) gives

[
A(χk)ŷ

]
`
≥ ‖z‖∞λ ; 2 ≤ i < î (6.61)[

A(χk)ŷ
]
`
≥ 0 ; i ≥ î or i = 1 . (6.62)

Subtracting equation (6.58) from equation (6.61) yields (noting properties (a) and (b) of

B in Proposition 6.3.2)

[
A(χk) (ŷ − y)

]
`
≥ ‖z‖∞λ− [B(χp)z]`

≥ ‖z‖∞λ− ‖z‖∞λ

= 0 ; 2 ≤ i < î . (6.63)

Similarly, subtract equation (6.59) from equation (6.62) to give

[
A(χk) (ŷ − y)

]
`
≥ 0 ; i ≥ î or i = 1 . (6.64)
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Hence in all cases

A(χk) (ŷ − y) ≥ 0 . (6.65)

Since A(χk) is an M matrix, we have that y ≤ ŷ. Similar arguments give y ≥ −ŷ. Hence

‖y‖∞ ≤
‖z‖∞λ∆τ

1 + (r + λ)∆τ
+ Amax

‖z‖∞λ
Π

. (6.66)

If we require that ‖y‖∞ < ‖z‖∞, we obtain the condition on Π

Π > Amaxλ
1 + (r + λ)∆τ

1 + r∆τ
. (6.67)

6.4 Efficient Block Matrix Implementation

Let v∗,j = V n+1
∗,j , and let (v∗,j)

k be the kth iterate for v∗,j. From the boundary condition

(2.16), we can observe that v∗,1 can be computed without any knowledge of interior nodes

in the computational domain. To ensure a positive coefficient discretization, the DhA op-

erator is always backward differenced, hence v∗,j depends only on v∗,j−1 for j > 1. This

special structure of the system makes the iteration more efficient when we solve v∗,j before

proceeding to solve v∗,j+1. We write the full matrix system in (6.50) as an equivalent block
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matrix linear system as follows


A1 0 · · · 0

0 A2(χ∗,2) · · · 0
...

...
. . .

...

0 0 · · · Ajmax(χ∗,jmax)




v∗,1

v∗,2
...

v∗,jmax



=


B1 0 · · · 0

0 B2(χ∗,2) · · · 0
...

...
. . .

...

0 0 · · · Bjmax(χ∗,jmax)




v∗,1

v∗,2
...

v∗,jmax

+


c∗,1

c∗,2(χ∗,2, v∗,1))
...

c∗,jmax(χ∗,jmax , v∗,jmax−1)

 ,

(6.68)

with

χi,j = arg max
χi,j∈X

[
−Aj(χ∗,j)v∗,j + Bj(χ∗,j)v∗,j + c∗,j(χ∗,j, v∗,j−1)

]
i

. (6.69)

Note that A1,B1, c∗,1 are independent of χ. Each smaller block matrix system Ajv∗,j =

Bjv∗,j + c∗,j is then resolved by using a fixed point policy iteration as in Algorithm 6.1.2

with the previous computed v∗,j−1 appearing only in c∗,j. The detailed procedure is given

in Algorithm 6.4.1.

Algorithm 6.4.1 Block Matrix Fixed Point Policy Iteration

1: Solve v∗,1 from A1v∗,1 = B1v∗,1 + c∗,1
2: for j = 2, 3, . . . , jmax do
3: With initial solution (v∗,j)

0 = V n
∗,j, use Algorithm 6.1.2 to solve v∗,j from

Aj(χ∗,j)v∗,j = Bj(χ∗,j)v∗,j + c∗,j(χ∗,j, v∗,j−1)
4: end for
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6.4.1 Block Implementation: Penalty Method

Recall in Section 5.3.2, equation (5.21) is written equivalently as equation (5.23) assuming

that the first derivative in the A direction is always backward differenced. We can then

represent the linear relationships given in discretized equations (5.23) and (3.32) in block

matrix form. Let u = ((u∗,1)′, (u∗,2)′, . . . , (u∗,jmax)′)′ be an N length vector. The imax× imax

square matrices Aj,Bj and the vector c∗,j of size imax are given by

[
Aj(χ

k
∗,j)u∗,j

]
i

= [Aj
ku∗,j]i =

1

∆τ
ui,j − Lhui,j + ϕki,jG[

1

∆A−j
ui,j +DhWui,j]

+
ψki,j
ε

[
1

∆A−j
ui,j +DhWui,j][

Bj(χ
k
∗,j, )u∗,j

]
i

= [Bj
ku∗,j]i = λ[J h

j u∗,j]i[
c∗,j(χ

k
∗,j, u∗,j−1)

]
i

=
[
ck∗,j
]
i

= ϕki,jG+ ψki,j
[(1− κ)

ε
+ κG

]
+

1

∆τ
V n
i,j

+

(
ϕki,jG+

ψki,j
ε

)
1

∆A−j
ui,j−1 (6.70)

with controls

(χi,j)
k =

(
ϕki,j, ψ

k
i,j

)
= arg max

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
−Aj(ϕ∗,j, ψ∗,j)u∗,j

+Bj(ϕ∗,j, ψ∗,j)u∗,j + c∗,j(ϕ∗j, ψ∗,j, u∗,j−1)

]
i

, (6.71)

where J h
j is the subblock of J h which operates on u∗,j, where u∗,−1 = 0. The discretized

equations (5.21) become a set of equations as follows:

−Aju∗,j + Bju∗,j + c∗,j = 0 , j = 1

sup
χi,j∈X

[
−Aj(χ∗,j)u∗,j + Bj(χ∗,j)u∗,j + c∗,j(χ∗,j, u∗,j−1)

]
= 0 , j = 2, 3, . . . , jmax(6.72)
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Remark 6.4.1. We have written the matrix Bj = Bj
k although there is no explicit depen-

dence on (ϕk∗,j, ψ
k
∗,j) in this case in order to use the general form of the previous section.

Recall that in order to ensure convergence to the viscosity solution of equation (2.6),

the discretization must be monotone, consistent and l∞ stable [5]. A positive coefficient

discretization guarantees monotonicity [26]. The positive coefficient condition and the

discretization of the jump term as in [23] give the following result.

Proposition 6.4.1. Suppose a positive coefficient discretization [26] is used and the jump

operator J h
j is discretized using the method in [23] with linear behavior assumed for i ≥ î

[23, 54]. Then

(a) Bj(χ∗,j) ≥ 0,

(b) The ith row sums for Aj(χ
k
∗,j) and Bj(χ∗,jk) are

Row Sum i ( Aj(χ
k
∗,j) ) =


1

∆τ
+ (r + λ) + (ϕki,jG+

ψki,j
ε

) 1
∆A−j

2 ≤ i < î

1
∆τ

+ r + (ϕki,jG+
ψki,j
ε

) 1
∆A−j

i = î, . . . , imax − 1 or i = 1

1
∆τ

+ η i = imax

Row Sum i ( Bj(χ
k
∗,j) ) ≤


λ 2 ≤ i < î

0 i = î, . . . , imax or i = 1

(6.73)

(c) The matrices Aj(χ∗,j)−Bj(χ∗,j) and Aj(χ∗,j) in equation (6.72) are diagonally dom-

inant M matrices.

Proof. (a) and the second part of (b) follow in similar fashion as in the proof of Proposition

6.3.1.
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In order to prove the remaining part of (b) we note that the row sum is the same

as [Aj(χ
k
∗,j)e]i with e = (1, ..., 1)′. Noting properties (6.53), we see that [Aj(χ

k
∗,j)e]i =

1
∆τ

+(r+λ)+(ϕki,jG+
ψki,j
ε

) 1
∆A−j

for 2 ≤ i < î. A similar argument shows that [Aj(χ
k
∗,j)e]i =

1
∆τ

+r+(ϕki,jG+
ψki,j
ε

) 1
∆A−j

for î ≤ i < imax or i = 1. When i = imax then from the boundary

assignment of equation (3.32), its row sum is just (1/∆τ + η).

To prove (c), note that Aj and (Aj−Bj) have non-positive off-diagonals (since a positive

coefficient discretization is used [26]). From (b), the row sums of (Aj−Bj), Aj are strictly

positive. Hence Aj and (Aj −Bj) are M matrices [53].

We can now state the convergence result for the block matrix method, using the penalty

formulation.

Lemma 6.4.1. If the discretization for the GMWB penalty method satisfies the conditions

required for Proposition 6.4.1, then the matrices Aj,Bj satisfy Condition 6.2.1, and hence

from Theorem 6.2.1, Algorithm 6.4.1 converges.

Proof. Because Bj(χ
k
∗,j) is independent of χk∗,j, we only need to show that

‖Aj
−1(χk∗,j)Bj(χ

k
∗,j)‖∞ ≤ C1 (6.74)

for some constant C1 < 1. From Lemma 6.2.3 and Proposition 6.4.1, it implies that

‖Aj
−1(χk∗,j)Bj(χ

k
∗,j)‖∞ ≤ max

i,j

[
λ

1
∆τ

+ (r + λ) + (ϕki,jG+
ψki,j
ε

) 1
∆A−j

]
< 1 (6.75)

By setting Bj = I, we obtain immediately that Aj
−1(χk∗,j) is bounded independent of χ.
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6.4.2 Block Implementation: Direct Control

To use block matrix form to represent the discretized direct control equation, we use equa-

tion (5.26), which is equivalent as equation (5.24) with the first derivative in A direction

backward differenced. We represent the discretization (5.26) in terms of matrices Aj,Bj

and vector cj, given by

[Aj(χ
k
∗,j)u∗,j]i = [Aj

ku∗,j]i = (1− ψki,j)
(

1

∆τ
ui,j − Lhui,j + ϕki,jG(

ui,j
∆A−j

+DhWui,j)
)

+ψki,jΠ G(
ui,j

∆A−j
+DhWui,j)[

Bj(χ
k
∗,j)u∗,j

]
i

= [Bj
ku∗,j]i = (1− ψki,j)λ[J h

j u∗,j]i[
c∗,j(χ

k
∗,j, u∗,j−1)

]
i

= [c∗,j]
k
i = (1− ψki,j)

1

∆τ
V n
i,j + (1− ψki,j)ϕki,j

G

∆A−j
un+1
i,j−1

+ψki,jΠ(1− κ) + ψki,jΠ
1

∆A−j
un+1
i,j−1 (6.76)

with controls

(χi,j)
k =

(
ϕki,j, ψ

k
i,j

)
∈ arg max

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
−Aj(ϕ∗,j, ψ∗,j)u∗,j

+Bj(ϕ∗,j, ψ∗,j)u∗,j + c∗,j(ϕ∗,j, ψ∗,j, u∗,j−1)

]
i

. (6.77)

If we write control as in the form of (6.2), then the discretized equations (5.26) become a

set of equations as follows:

−Aju∗,j + Bju∗,j + c∗,j = 0 , j = 1

sup
χi,j∈X

[
−Aj(χ∗,j)u∗,j + Bj(χ∗,j)u∗,j + c∗,j(χ∗,j, u∗,j−1)

]
i

= 0 , j = 2, . . . , jmax(6.78)

Proposition 6.4.2. Suppose a positive coefficient discretization [26] is used and the jump
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operator J h is discretized using the method in [23] and linear behavior is assumed for i > î

[23, 54]. Then

(a) Bj(χ
k
∗,j) ≥ 0,

(b) The ith row sums for Aj(χ
k
∗,j) and Bj(χ

k
∗,j) are

Row Sum i ( Aj(χ
k
∗,j) )

=


(1− ψki,j)

(
1

∆τ
+ (r + λ) + ϕki,jG

1
∆A−j

)
+ ψki,jΠ

1
∆A−j

2 ≤ i < î

(1− ψki,j)
(

1
∆τ

+ r + ϕki,jG
1

∆A−j

)
+ ψki,jΠ

1
∆A−j

i = î, . . . , imax − 1 or i = 1

1
∆τ

+ η i = imax

Row Sum i ( Bj(χ
k
∗,j) )

=


(1− ψki,j)λ i < î

0 i = î, . . . , imax ,

(6.79)

(c) The matrices Aj(χ∗,j)−Bj(χ∗,j) and Aj(χ∗,j) in equation (6.78) are strictly diagonally

dominant M matrices.

Proof. The proof follows using similar arguments as in the proof of Proposition 6.4.1.

Define ∆Amax = maxj[Aj − Aj−1]. The following Lemma gives the conditions under

which Algorithm 6.4.1 converges.

Lemma 6.4.2. If the discretization for the GMWB direct control method satisfies the

conditions required for Proposition 6.4.2 and Π > λ∆Amax , then the matrices Aj,Bj

defined in equation (6.78) satisfy Condition 6.2.1, hence Algorithm 6.4.1 converges from

Theorem 6.2.1.
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Proof. Suppose

arg max
i

[
Row Sum i (Bj)

Row Sum i (A−1
j )

]
= p . (6.80)

If 2 ≤ p < î, and ψkp,j = 0, then Lemma 6.2.3 and Proposition 6.4.2 implies

‖Aj
−1(χk∗,j)Bj(χ

k
∗,j)‖∞ ≤

λ

1
∆τ

+ (r + λ) +
ϕkp,jG

∆A−j

< 1 (6.81)

When p ≥ î or p = 1, or ψkp,j = 1, Row Sum i (Bj(χ
k
∗,j)) = 0. In either case bound

(6.81) holds.

If 2 ≤ p < î, ψk−1
i,j = 0 and ψki,j = 1

‖Aj
−1(χk∗,j)Bj(χ

k−1
∗,j )‖∞ ≤

λ

Π 1
∆A−j

<
∆A−j

∆Amax

≤ 1 . (6.82)

In all other cases, ‖Aj
−1(χk∗,j)Bj(χ

k−1
∗,j )‖∞ ≤ C1 < 1 unconditionally. Repeating the above

argument setting Bj(χ∗,j) to the identity shows that ‖Aj
−1(χ∗,j)‖∞ is bounded independent

of χ.

Remark 6.4.2. Choosing a scaling factor which satisfies condition (iii) in Condition 6.2.1

means that this same scaling factor must be used in the optimization step in line 3 of

Algorithm 6.1.2. Consequently, choosing different scaling factors will result, in general, in

different choices for control at each iteration.

6.5 Summary

The main results of this chapter are as follows

• The conventional policy iteration suffers from computational inefficiency when solving
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discretized controlled HJB PIDEs in general. A modified policy iteration, fixed point

policy iteration, is developed by using a splitting method. This method permits

efficient solution of the discretized equations.

• Condition 6.2.1 is a sufficient condition for the fixed point policy iteration to converge.

This condition normally is easy to satisfy when a positive coefficient discretization is

used.

• Both the penalty discretization and the direct control discretization can be verified

to satisfy Condition 6.2.1, hence the discrete equations can be solved by using a fixed

point policy iteration each timestep.

• A block matrix fixed point policy iteration is more efficient since it takes advantage

of the special structure of the singular control formulation of the GMWB pricing

matrix.
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Chapter 7

Fixed Point Policy Iteration:

Numerical Results

In this chapter, several fixed point policy iteration numerical examples are presented. We

price an example GMWB contract used in [13]. The contract parameters are given in Table

7.1. The jump diffusion parameters are given in Table 7.2, which are typical market data

[2]. Table 7.3 gives the mesh size and timestep parameters. In the localized computational

domain, we set Wmax = 1000ω0. Section 7.1 presents our numerical results. Section 7.2

summarizes the main results of this chapter.

7.1 Results

7.1.1 No-arbitrage fee

Using the efficient block matrix fixed point policy as described in Algorithm 6.4.1, Table

7.4 presents the fair insurance fee η charged by the insurance company computed by solving
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Parameter Value
Expiry time T 10.0 years
Interest rate r 0.05
Maximum no penalty withdrawal rate G 10/year
Withdrawal penalty κ 0.10
Initial lump-sum premium ω0 100
Initial guarantee account balance A(0) 100
Initial personal annuity account balance W (0) 100

Table 7.1: A sample GMWB contract parameters used in the numerical experiments.

Parameter Value
ζ .45
ν -.9
λ .1

Table 7.2: Jump diffusion parameters.

Refine Level W Nodes A Nodes Time steps
1 125 111 120
2 249 221 240
3 497 441 480
4 993 881 960
5 1985 1761 1920

Table 7.3: Grid and timestep data for convergence experiments. At each refinement, new
fine grid nodes are introduced between each two coarse grid nodes, and the timesteps are
halved.

99



the following equation [30]

V (η;W = ω0, A = ω0, τ = T ) = ω0 (7.1)

with the nonlinear convergence tolerance for the fixed point-policy iteration set to

max
`

|vk+1
` − vk` |

max(scale, |vk+1
` |)

< 10−8 . (7.2)

Newton iteration is used to solve the equation with the convergence tolerance

|ηm+1 − ηk|
max(ηm+1, ηm)

< 10−8 , (7.3)

where ηm is the m′th iterate.

The results show that with jump diffusion assumptions, the fair insurance fee is notice-

ably higher than with the standard Geometric Brownian Motion assumption.

7.1.2 Full Matrix Iteration vs Block Matrix Iteration

Table 7.5 presents the convergence results for the GMWB for the penalty method and the

direct control method. Both the full matrix fixed point policy iteration scheme as described

in Algorithm 6.1.2 and the block matrix fixed point policy iteration scheme as described

in Algorithm 6.4.1 are used.

The penalty parameter was set to 1/ε = 104ω0/∆τ . Some intuition may be useful at

this point to justify the choice of ε. Recall from equation (3.1) that 1/ε = ϑ, which is the

maximum rate of withdrawal. Hence 1/ε should have units of dollars/time. If

1

ε
=

ω0

∆τ
, (7.4)
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Refine σ = 0.2 σ = 0.3
Level Fair Fee Ratio Fair Fee Ratio

Jump Diffusion Case
1 0.034427 N/A 0.046890 N/A
2 0.032854 N/A 0.045789 N/A
3 0.032439 3.79 0.045536 4.34
4 0.032329 3.78 0.045471 3.91
5 0.032297 3.37 0.045452 3.35

No Jump Diffusion Case
1 0.018705 N/A 0.033899 N/A
2 0.015245 N/A 0.031904 N/A
3 0.014245 3.19 0.031431 4.22
4 0.013961 3.38 0.031319 4.22
5 0.013886 3.80 0.031286 3.43

Table 7.4: Convergence study for the fair insurance fee η value with and without jump
diffusions. Contract parameters are given in Table 7.1. Jump diffusion parameters are
given in Table 7.2. Ratio is the ratio of successive changes in the solution as the mesh is
refined.

then the entire initial investment can be withdrawn in a single timestep, which would be

(effectively) an infinite rate. However, from equation (3.6), we can see that it is desirable

to make ε small at any finite grid size so that the term ε(V ε
τ −LGV ε−κG) is small. Hence

we choose 1/ε = 104ω0/∆τ .

The scaling factor parameter is set to Π = 103 in Algorithm 6.1.2, which satisfies the

condition (6.67) and Π = 1 in Algorithm 6.4.1, which satisfies the condition in Lemma

6.4.2. The nonlinear convergence tolerance for the fixed point-policy iteration is given by

max
`

|vk+1
` − vk` |

max(scale, |vk+1
` |)

< 10−6 . (7.5)

The results show that both the penalty method and the direct control method converge

and the computed results from both methods agree to seven digits. The number of itera-

tions for the full matrix fixed point policy iteration scheme is an order magnitude larger
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Refinement Penalty Method Direct Control Method
Level Value Itns/step Ratio Value Itns/step Ratio

Algorithm 6.4.1 Block Matrix Iteration
0 101.19905 4.28 N/A 101.19906 4.13 N/A
1 100.33789 4.16 N/A 100.33789 4.09 N/A
2 100.08441 4.03 3.40 100.08441 3.98 3.40
3 100.02144 3.89 4.03 100.02145 3.93 4.03
4 100.00498 3.89 3.82 100.00498 3.89 3.82
5 100.00003 3.88 3.33 100.00003 3.87 3.33

Algorithm 6.1.2 Full Matrix Iteration
0 100.19905 83.90 N/A 101.19906 57.63 N/A
1 100.33789 189.72 N/A 100.33789 100.83 N/A

Table 7.5: Convergence experiments for the GMWB guarantee value at t = 0 and W =
A = ω0 = 100 using penalty method (1/ε = 104ω0/∆τ) and direct control method (Π = 1).
Contract parameters are given in Table 7.1. Volatility σ = 0.3 and fair insurance fee η =
0.045452043 are imposed. Itns/step refers to the average number of iterations per timestep
for the lines 2−4 in Algorithm 6.4.1 and lines 2−8 in Algorithm 6.1.2 respectively. Ratio is
the ratio of successive changes in the solution as the mesh/timesteps are refined. Since the
no-arbitrage fee is imposed, the numerical solution should converge to V alue = ω0 = 100.
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than the number of iterations for the block matrix fixed point policy iteration scheme.

This is because the full matrix iteration does not take advantage of the special structure

of the matrix by computing vn+1
∗,j before computing vn+1

∗,j−1. The ratio of computational cost

for these two methods is approximately equal to the ratio of iterations per timestep. In

the rest of the numerical examples, we will consider only the block matrix scheme.

7.1.3 Fixed Point Policy Iteration vs Full Policy Iteration

Using fully implicit timestepping, Table 7.6 presents the convergence results for the GMWB

value with respect to two volatility values, assuming the no-arbitrage insurance fee is

imposed. We compared the block matrix fixed point-policy in Algorithm 6.4.1 with the

block matrix implementation of full policy iteration in Algorithm 6.1.1 1. A simple iteration

(6.11) method was used to solve the full policy iteration matrix equations. The nonlinear

convergence tolerance for the policy and fixed point-policy iteration is set to 10−8 A relative

update tolerance of 10−8 was also used for the simple iteration in Algorithm 6.11.

These two schemes show no difference in computed values to seven digits. However

the fixed point-policy scheme requires less than half the iterations that is required by the

full policy iteration. The computational cost for these methods is dominated by the FFTs

required to carry out the dense matrix-vector multiply, hence the CPU time is proportional

to the number of iterations. The results show that the fixed point-policy iteration scheme

requires significantly smaller computational cost compared to the full policy scheme.

1Using the block matrix definitions in Section 6.4, it is straight forward to implement the block matrix
full policy iteration scheme.
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Refine Value Total Itns/Step Outer Itns/Step Ratio
Level Fixed Pt Policy Full Policy Full Policy

σ = 0.2, η = 0.032297
1 100.6090 4.67 10.16 3.88 N/A
2 100.1775 4.57 9.32 3.92 N/A
3 100.0471 4.33 9.08 3.98 3.31
4 100.0108 4.21 8.64 4.02 3.59
5 99.9999 4.08 8.04 4.05 3.32

σ = 0.3, η = 0.045452
1 100.3375 4.91 10.94 4.18 N/A
2 100.0842 4.84 10.19 4.32 N/A
3 100.0213 4.64 9.89 4.38 4.03
4 100.0049 4.65 9.47 4.45 3.83
5 100.0000 4.44 8.81 4.42 3.34

Table 7.6: Iteration and convergence experiments for the GMWB guarantee value at t = 0
and W = A = ω0 = 100 using the fixed point-policy and full policy schemes. Contract
parameters are given in Table 7.1. Jump diffusion parameters are given in Table 7.2. Total
Itns/step refers to the average number of iterations per timestep to solve the equation.
Outer Itns/Step refers to the average number of outer iterations in the full policy iteration
scheme. Ratio is the ratio of successive changes in the solution as the mesh/timesteps are
refined. Since the fair insurance fee is imposed, the numerical solution should converge
to V alue = ω0 = 100. All methods used the same number of timesteps. Fully implicit
timestepping is used.
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7.1.4 Effect of Maximal Use of Central Differencing on VW term

Table 7.7 presents the convergence results for the GMWB value with respect to two volatil-

ity values, assuming the no-arbitrage insurance fee is imposed and there is no jump diffusion

process (i.e. λ = 0). In this case, the matrix B = 0, so the fixed point policy iteration de-

generates to conventional policy iteration. The penalty method is used in the experiment.

Aside from fully implicit timestepping, we have also carried out some tests using Crank

Nicolson timestepping, using an obvious modification of equation (3.22). Note that conver-

gence has only been proven for the fully implicit method since Crank Nicolson timestepping

is not monotone in general. The differencing method for the VW term, which uses central

differencing as much as possible, is also compared with forward or backward differencing

only for the VW term.

The Itns/step column in Table 7.7 shows the average number of iterations in each

timestep required for lines 2 − 4 in Algorithm 6.4.1. About 3 − 4 non-linear iterations

per timestep are required for the σ = .2 case, and about 4− 5 iterations per timestep are

required in the σ = .3 case. The convergence ratio in the table is the ratio of successive

changes in the solution, as the timestep and mesh size are reduced by a factor of two.

The number of iterations per timestep appears to be fairly insensitive to the grid size

in Table 7.7. Note that since the timestep is reduced as the grid spacing is reduced, we

have an excellent initial solution estimate at each timestep. This is consistent with the

results for time dependent problems as reported in [9]. For steady state problems, [47] and

[9] report grid dependent number of iterations for policy iteration.

It can be seen that using central differencing as much as possible for the VW term leads

to more rapid convergence (as the mesh is refined) compared to pure forward or backward

differencing for this term. Rather unexpectedly, the convergence ratios for both Crank

Nicolson and fully implicit timestepping are similar. Figure 7.1 shows a plot of Vtt versus
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Refinement Central Differencing First For/Backward Differencing Only
Level Value Itns/step Ratio Value Itns/step Ratio
σ = 0.2, η = 0.013886 Fully Implicit Method
1 101.3114 3.51 N/A 101.6030 3.47 N/A
2 100.4488 3.62 N/A 100.6914 3.55 N/A
3 100.1267 3.70 2.68 100.2816 3.66 2.22
4 100.0270 3.77 3.23 100.1082 3.74 2.36
5 99.9999 3.89 3.69 100.0346 3.88 2.36
σ = 0.2, η = 0.013886 Crank Nicolson Method
1 101.3085 3.39 N/A 101.6017 3.35 N/A
2 100.4474 3.49 N/A 100.6909 3.42 N/A
3 100.1261 3.55 2.68 100.2815 3.52 2.22
4 100.0262 3.55 3.22 100.1082 3.52 2.36
5 99.9995 3.57 3.75 100.0343 3.55 2.35

σ = 0.3, η = 0.031286 Fully Implicit Method
1 100.5946 4.19 N/A 100.8998 4.10 N/A
2 100.1488 4.31 N/A 100.3363 4.26 N/A
3 100.0357 4.33 3.94 100.1173 4.32 2.57
4 100.0081 4.39 4.09 100.0435 4.38 2.97
5 100.0000 4.38 3.40 100.0167 4.37 2.76
σ = 0.3, η = 0.031286 Crank Nicolson Method
1 100.5882 4.01 N/A 100.8949 3.93 N/A
2 100.1448 4.12 N/A 100.3342 4.08 N/A
3 100.0338 4.16 4.00 100.1154 4.14 2.56
4 100.0072 4.18 4.17 100.0426 4.17 3.00
5 99.9996 4.17 3.48 100.0163 4.16 2.78

Table 7.7: Convergence experiments for the GMWB guarantee value at t = 0 and W = A =
ω0 = 100 using a fully implicit method and Crank Nicolson method . The penalty method
is used. Contract parameters are given in Table 7.1. The column “Central Differencing
First” uses central differencing as much as possible for the VW term in the equation. The
column “For/Backward Differencing Only” uses forward or backward differencing for the
VW term in the equation. Itns/step refers to the average number of iterations per timestep
for the lines 2−4 in Algorithm 6.4.1. Ratio is the ratio of successive changes in the solution
as the mesh/timesteps are refined. Since the no-arbitrage fee is imposed, the numerical
solution should converge to V alue = ω0 = 100.
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Figure 7.1: Vtt versus t for node (W = 100, A = 100). σ = 0.3. Fair insurance fee (i.e.
η = 0.031286) is imposed. Contract parameters are given in Table 7.1.

(forward) time, at the node (W = 100, A = 100). At t = 0 (τ = T ), we can see that

Vtt ' 0, which would result in similar time truncation error for both Crank Nicolson and

fully implicit timestepping. We also computed the error norms at each level for all the nodes

in the W direction. The ratio of successive changes in the error norm then is computed as

the mesh/timesteps are refined. Table 7.8 shows the error norm convergence ratio results

for different volatilities when central differencing is used as much as possible. The fully

implicit method and the Crank Nicolson method appear to have a similar convergence

ratio.

Although the first column in Table 7.7 uses central differencing as much as possible,

there are large regions in the solution domain where the optimal strategy is to withdraw

a finite amount (an infinite rate), as shown in Figure 7.2. In these regions, forward or

backward differencing is used in both the W and A directions, which should result in first

order errors. However, in the finite withdrawal amount (infinite withdrawal rate) regions,

we essentially solve the PDE

1− VW − VA = κ . (7.6)
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Refinement l1 error norm ratio l2 error norm ratio l∞ error norm ratio
Level Fully Imp. CN Fully Imp. CN Fully Imp. CN
σ = 0.2, η = 0.031286
3 3.70 3.62 2.71 2.68 2.00 2.00
4 3.87 3.84 2.78 2.77 2.00 2.00
5 3.95 3.94 2.81 2.81 2.00 2.00
σ = 0.3, η = 0.013886
3 3.67 3.61 2.69 2.66 2.00 2.00
4 3.84 3.81 2.76 2.75 2.00 2.00
5 3.92 3.48 2.80 2.80 2.00 2.00

Table 7.8: Error norm convergence ratio experiments for the GMWB guarantee value at
t = 0 and A = ω0 = 100 using a fully implicit method and Crank Nicolson method. The
column “Fully Imp.” uses the fully implicit method. The column “CN” uses the Crank
Nicolson method. Error norms are computed at each refinement level. The error norm ratio
is the ratio of successive changes in the error norm as the mesh/timesteps are refined. The
penalty method is used. Contract parameters are given in Table 7.1. Central differencing
is used as much as possible for the VW term in the equation.

Noting that V is linear in A at W = 0, and linear in W as W → ∞, then the solution of

this PDE in the finite withdrawal region (assuming that this region is connected to W = 0

or W → ∞) will be a linear function of (W,A), hence the use of forward or backward

differencing is exact.

It is also interesting to see a region labeled Withdrawal at rate G or no withdrawal.

Recall that in the finite withdrawal region, the solution satisfies

Vτ = LV + max
γ∈[0,G]

[
γ(1− VW − VA)

]
. (7.7)

The solution in this region appears to converge to a value having (1− VW − VA) ' 0. This

suggests that the optimal control is a finite rate, but not unique, since either a rate of zero

or G is optimal. The value function is, however, unique. This is consistent with the results

in [11].
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Figure 7.2: The contour plot of optimal withdrawal strategy of the GMWB at t = ∆τ in
the (W,A)-plane. σ = 0.3. Fair fee η = .031286 is imposed. Jump diffusion is removed
from the underlying assets. Contract parameters are given in Table 7.1. This plot is similar
to the results in [11].

Since it appears (at least for this example) that fully implicit timestepping converges

at a similar rate compared to Crank Nicolson, and that convergence can only be proven for

fully implicit timestepping, it would appear that fully implicit timestepping is preferable

to Crank Nicolson.

7.1.5 Optimal Withdrawal Strategy

A GMWB contract holder is perhaps more interested in the optimal withdrawal strategy.

Figure 7.3 shows contour plots of the optimal withdrawal strategy at various times assuming

jump diffusion process. The top two plots in Figure 7.3 are generated by both the penalty

and direct control methods. It can be observed that these contour plots are very similar.

The differences are due to small differences in the computed values, which are amplified

by the contouring algorithm.

The other plots in Figure 7.3 are generated by the penalty method. It is interesting to

observe that the top left corner infinite withdrawal region is almost time-invariant, except

when the contract is close to expiration. The no withdrawal region widens as time moves
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forward. These results are consistent with the discrete withdrawal computations in [13].

7.1.6 Nodes Around Boundaries

It is also interesting to study the convergence of the singular control formulation for nodes

near (or at) the finite withdrawal boundary. Figure 7.4 shows the location of the withdrawal

boundaries at A = 100 versus t, when no insurance fee (η = 0) is imposed. Note that the

node (100, 100) is very near (or at) the boundary between a finite withdrawal rate and no

withdrawal at t = T .

Examination of the solution near maturity (which is near the start of the numerical

solution since we solve backwards in time) shows that the numerical solution changes

between being in the region of withdrawal at rate G to being in a region of zero withdrawal

at refinement level 4 and above. This occurs when central differencing is used as much as

possible. Table 7.9 gives the convergence results for this case (η = 0). We have proven

that this method is convergent, but clearly convergence can be erratic at some exceptional

nodes. Convergence (at this node) is smoother if the VW term is discretized using a forward

or backward differencing only.

7.1.7 Comparison: Singular Control and Impulse Control

As outlined in [57], it is almost always possible to formulate a singular control problem

as an impulse control problem, with arbitrarily small error. It is therefore interesting to

consider the computational issues for both formulations.

If h is the discretization parameter (as in Assumption 3.4.1), then the computational

110



(a) Direct control method t = 0 (b) Penalty method, t = 0

(c) Penalty method, t = 3 (d) Penalty method, t = 6

(e) Penalty method, t = 9 (f) Penalty method, t = 10−∆τ

Figure 7.3: Contour plot of the optimal withdrawal strategy for the GMWB guarantee at
different times in the (W,A) -plane. σ = 0.2. A fair insurance fee of η = 0.032296686 is
imposed. Contract parameters are given in Table 7.1 and jump diffusion parameters are
given in Table 7.2. The penalty parameter is set to 1/ε = 104ω0/∆τ and the scaling factor
is set to Π = 1. The iteration convergence tolerance is set to 10−6.
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Figure 7.4: The contour plot for the withdrawal boundary versus time t at A = 100,
σ = 0.3. No insurance fee (i.e. η = 0) is imposed. Contract parameters are given in Table
7.1. Maximal use of central differencing on VW term is applied.

Fully Implicit Method
Refinement Central Differencing First For/Backward Differencing Only

Value Itns/step Ratio Value Itns/step Ratio
1 116.0354 2.88 N/A 116.2730 2.88 N/A
2 115.9134 2.89 N/A 116.0339 2.91 N/A
3 115.8879 2.97 4.78 115.9477 3.00 2.77
4 115.8845 3.10 7.52 115.9143 3.12 2.59
5 115.8859 3.25 -2.40 115.9008 3.26 2.47
6 115.8876 3.38 0.86 115.8950 3.39 2.33
extrapolated value from [11] 115.8897

Table 7.9: Convergence experiments for the GMWB guarantee value at t = 0 and W = A =
ω0 = 100 by using the fully implicit method. σ = 0.3. No insurance fee (η = 0) is imposed.
Contract parameters are given in Table 7.1. The column “Central Differencing First” use
central differencing as much as possible for the VW term. The column “For/Backward
Differencing Only” uses forward or backward differencing for the VW term. Itns/step refers
to the average number of iterations per timestep for the lines 2 − 4 in Algorithm 6.4.1.
Ratio is the ratio of successive changes in the solution as the refinement is increased.
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complexity of the penalty method, singular control formulation is

Complexity: Penalty method = C ′h−3 (7.8)

where C ′ is the average number of iterations per step. Since it appears that C ′ is inde-

pendent of h, then for the block matrix iteration method, the complexity of the singular

control method is O(h−3). Note that for the full matrix iteration, the number of iterations

does appear to increase as h→ 0.

In the impulse control formulation, the numerical method described in [11] has a com-

plexity of O(h−4). This is due to the linear search required in the local optimization step

of the algorithm in [11]. The linear search guarantees location of the global maximum with

O(h) error for smooth test functions.

On the basis of complexity, it would appear that the singular control method is a clear

winner. However, as noted in [11], it is trivial to handle discrete withdrawal times and

complex contract features using an impulse control formulation. These generalizations may

be very difficult to handle with a singular control formulation. [57] suggests that an impulse

control formulation is preferred in general. In addition, the experimental convergence

rate in [11] is smooth as the mesh is refined. This contrasts with the sometimes erratic

convergence of the singular control method for nodes near the withdrawal boundaries. As

well, the impulse control formulation does not require an estimate of the constant for the

penalty parameter (for the penalty method) or the scaling factor (for the direct control

method). There also appears to be a limit on the solution accuracy, due to numerical

precision problems, with the singular control formulation. However, this limit is probably

at a level of accuracy which is far beyond what would be required in practice.
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7.2 Summary

• Numerical results show that the block matrix fixed point policy iteration is convergent

and efficient. It is superior to the full matrix fixed point policy iteration or the block

matrix simple iteration.

• Maximal use of central differencing leads to faster convergence in general, though

the nodes around withdrawal boundaries have a smoother convergence ratio if we

use forward or backward differencing for the VW term.

• The singular control formulation is computationally less expensive than the impulse

control formulation, but with loss of generality. A limit on the solution accuracy also

appears with the singular control formulation, though at a level which is far beyond

what would be required in practice.
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Chapter 8

Floating Point Considerations

In this chapter we discuss floating point issues in the fixed point policy iteration. The

discussion focuses on the block matrix fixed point policy implementation. Section 8.1

presents general results describing how roundoff errors affect convergence of the iteration.

Section 8.2 discusses the effect of roundoff error for the penalty method and estimates a

bound for the penalty parameter ε. Section 8.3 focuses on the effect of floating point error

for the direct control method. Bounds for the scaling parameter Π are estimated. Section

8.4 presents numerical results. Section 8.5 summarizes the main results of this chapter.

8.1 Floating Point Considerations: General Results

During the course of our numerical experiments, we observed that, even if the conditions

required by Theorem 6.2.1 were satisfied, the fixed point policy iteration in Algorithm

6.1.2 sometimes failed to converge for certain values of the penalty parameter or the direct

control scaling factor. This non-convergence was a result of the oscillatory behavior of the

iterates. These oscillations were above the level of the convergence tolerance, hence the
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scheme did not terminate.

Testing Algorithm 6.4.1 with B = 0 was revealing. In this case, we can see that in exact

arithmetic, equations (6.32-6.33) show that the iterates are monotone non-decreasing, i.e.

oscillations cannot occur. However, in floating point arithmetic, equation (6.32) is not

always true. When there is no jump diffusion, this problem can be ameliorated by forcing

the right hand side of equation (6.31) to be always non-negative. However, we cannot use

this approach here, when B 6= 0.

Let fl(x) be the floating point representation of a real number x. Define error vector

∆ekδ which is generated by the unit roundoff δ.

∆ekδ = fl
(
−A(χk)vk + B(χk)vk + c(χk)

)
−
[
−A(χk)vk + B(χk)vk + c(χk)

]
(8.1)

The floating point error in the fixed point policy iteration is dominated by the computa-

tion in equation (8.1), since the computation of these terms involves computing numerical

derivatives of vk. Numerical experiments showed that this source of error far outweighed

any other source of floating point error (e.g. the linear equation solve).

Note that in [7, 41], the effect of propagation of errors in policy iteration is discussed.

However, the error bound in [7, 41] depends on the effective discount rate. In our context,

the effective discount rate tends to unity as the mesh is refined, hence the upper bound for

the accumulated error in [7, 41] becomes infinite in this limit.

Consequently, we will adopt a somewhat informal, but instructive approach to analyze

these errors in the following. Suppose that in exact arithmetic Algorithm 6.1.2 would

terminate at step k+ 1. Let vk,vk+1 be the iterates computed in exact arithmetic, and let

∆vkδ be the floating point error in vk+1 generated by ∆ekδ at step k. Then, from equations
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(6.31), (8.1),

A(χk)
[
(vk+1 − vk) + ∆vkδ

]
=
[
−A(χk)vk + B(χk)vk + c(χk)

]
+ ∆ekδ , (8.2)

which gives ∆vkδ = A−1(χk)∆ekδ . Clearly, problems will arise if

|(∆vkδ )`|
max(scale, |vk+1

` |)
> tolerance (8.3)

since, even if
∣∣[(vk+1 − vk)

]
`

∣∣ is small, the iteration will not converge according to the

criteria in Algorithm 6.1.2.

Consequently, we can estimate bounds for parameters that will minimize the effect of

floating point errors by requiring that

max
`

[
|(∆vkδ )`|

max(|vk+1
` |, scale)

]
= max

`

[
[A−1(χk)∆ekδ ]`

max(|vk+1
` |, scale)

]
< tolerance . (8.4)

A rigorous bound for condition (8.4) is too pessimistic to be useful. We make the following

approximation

max
`

[
[A−1(χk)∆ekδ ]`

max(|vk+1
` |, scale)

]
' max

`

[
‖A−1(χk)‖∞|∆ekδ |`

max(|vk` |, scale)

]
, (8.5)

so that bound (8.4) is estimated as

max
`

[
‖A−1(χk)‖∞|∆ekδ |`

max(|vk` |, scale)

]
< tolerance . (8.6)
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8.2 Penalty Method Floating Point Considerations

For the penalty method, the floating point error of each iteration is dominated by compu-

tation of the following term in equation (8.1)

1

ε

(
1− κ− (DhWvki,j +DhWvki,j)

)
. (8.7)

The worst case roundoff error for this term occurs in the area where the grid is fine, where

we subtract two nearly equal numbers. This error is then magnified by dividing by the

grid spacing and by ε. In Appendix F.3, we obtain the following result (equation (F.20)),

∣∣∣[∆ekδ
]
i,j

∣∣∣ ≤ 4δ

ε
(

1

∆Wmin

+
1

∆Amin

) max(|vki,j|, scale) , (8.8)

where

∆Amin = min
j

(Aj − Aj−1) ; ∆Wmin = min
i

(Wi −Wi−1). (8.9)

From Lemma 6.2.3, and Proposition 6.4.1, and setting Bj = I, we obtain

‖Aj
−1(χk∗,j)‖∞ ≤ max

i

1

1
∆τ

+ (r + λ) + (ϕki,jG+
ψki,j
ε

) 1
∆A−j

≤ ∆τ . (8.10)

Consequently, from equations (8.8) and equation (8.10) we obtain

‖Aj
−1(χk∗,j)‖∞|∆ekδ |i,j ≤

4δ∆τ

ε
(

1

∆Wmin

+
1

∆Amin

) max(|vki,j|, scale) . (8.11)

Now substitute equations (8.11) into equation (8.6) to obtain

4δ∆τ

ε
(

1

∆Wmin

+
1

∆Amin

) < tolerance . (8.12)

118



In order to ensure that the penalty method is consistent with the original HJB vari-

ational inequality, we require that the penalty parameter ε = C∆τ for any constant

C > 0 [30]. Intuitively, 1/ε is the maximum withdrawal rate, so that it has dimensions of

dollars/time.

Define a dimensionless constant C∗ such that

1

ε
= C∗

ω0

∆τ
. (8.13)

Substituting equation (8.13) into equation (8.12)

C∗ <
1

4

(
tolerance

δ

)(
∆Wmin

ω0

)(
1

1 + ∆Wmin

∆Amin

)
. (8.14)

8.3 Direct Control Method Floating Point Consider-

ations

For the Direct Control approach, the worst case floating point error in equation (8.1) (for

Π large) will be generated by the term

Π
(
1− κ− (DhWvki,j +DhWvki,j)

)
. (8.15)

We can estimate the upper bound for Π, using the same approach as in Section 8.2, and we

can deduce the bound by setting Π = 1/ε in equation (8.12) to obtain (where we consider

Π→∞ when estimating ‖Aj
−1‖∞)

Π <
1

4

(tolerance

δ

)(∆Wmin

∆τ

)( 1

1 + ∆Amin

∆Wmin

)
. (8.16)
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Conversely, if Π is small, then the worst case floating point error will be generated by

the term 1
2
σ2W 2

i DhWWV
n+1
i,j in equation (5.24), since this term involves a numerical second

derivative. (See the definition of L in equation (5.5)). From the result in Appendix F,

equation (F.21), we have

|(∆ekδ )i,j| ≤ 4δ
σ2W 2

i

(∆Wmin)2
i

max(scale, |vi,j|) , (8.17)

where (∆Wmin) = min(Wi+1 −Wi,Wi −Wi−1). From Lemma 6.2.3 (setting Bj = I), using

Proposition 6.4.2, and considering the case where Π→ 0, we obtain

‖Aj
−1(χk∗,j)‖∞ ≤ ∆Amax

Π
, (8.18)

where ∆Amax = maxj(Aj − Aj−1). Substituting equations (8.17) and (8.18) into equation

(8.6) to obtain

Π > 4σ2∆Amax

(
W 2
i

(∆Wmin)2
i

)(
δ

tolerance

)
, (8.19)

where

max
i

(
W 2
i

(∆Wmin)2
i

)
=

W 2
i

(∆Wmin)2
i

. (8.20)

Combining equation Lemma 6.4.2 and (8.19) we obtain

Π > max

[
λ∆Amax, 4σ2∆Amax

(
W 2
i

(∆Wmin)2
i

)(
δ

tolerance

)]
. (8.21)

Unlike the penalty method, the discretized direct control method does not require the

existence of a constant C such that 1/Π = C∆τ to achieve the consistency. Recall from

Remark 4.1.1, that Π has dimensions of dollars/time. However, in order to compare the

direct control method with the penalty method, we also introduce a dimensionless constant
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C∗

Π = C∗
ω0

∆τ
. (8.22)

The upper and lower bounds of C∗ for the direct control method are then (from equations

(8.16), (8.21), (8.22)),

C∗ > max

(
λ∆Amax∆τ

ω0

, 4
(σ2∆Amin∆τ

ω0

)( W 2
i

(∆Wmin)2
i

)( δ

tolerance

))
,

C∗ <
1

4

(tolerance

δ

)(∆Wmin

∆ω0

)( 1

1 + ∆Amin

∆Wmin

)
. (8.23)

8.4 Numerical Results

In previous sections, we discussed expressing the penalty parameter ε in terms of a dimen-

sionless parameter C∗ as in (8.13). We also expressed the scaling factor Π also in terms of

C∗ as in (8.22) in order to compare the direct control method with the penalty method.

Note that the direct control method does not require the existence of a constant C such

that 1/Π = C∆τ . Writing Π = C∗ω0/∆τ is only for the purpose of comparing direct

control method with the penalty method.

We refer to the bound on C∗ imposed by effect of floating point arithmetic as a Type

I bound. The bound on C∗ imposed by requiring that ‖A−1(χk)B(χk−1)‖∞ < 1, will be

refereed to as a Type II bound.

Table 8.1 compares the GMWB value priced by both penalty method and direct control

method when C∗ ∈ [10−8, 106]. The left two columns show the estimated bounds of C∗

from equations (8.14) and (8.23). The finest grids are around node (W = 100, A = 100),

so we set Wi = 100, in the estimate of the floating point errors in equation (8.23). We take

double precision machine epsilon to be δ = 1.11 × 10−16. The “N/A” entries in the table

indicate that the iterative scheme did not satisfy the convergence criteria in Algorithm

121



6.1.2 after 6000 iterations.

For the entries where the computed values have asterisks, although the convergence

criterion in line 3 of Algorithm 6.1.2 was satisfied, we view these results as unreliable.

Note that the convergence criterion in Algorithm 6.1.2 is not able to clearly distinguish

between very slowly diverging sequences and truly converging sequences. We remind the

reader that the Type II bound from Lemma 6.4.2 is a sufficient condition for convergence

in exact arithmetic, from Condition 6.2.1.

However, choosing a C∗ smaller than the estimated lower bound of C∗ from bound (8.23)

produces questionable results. It is obvious the values with asterisks deviate somewhat from

the other values.

As discussed previously, the direct control method does not require Π to be scaled by

∆τ , whereas the penalty parameter ε is required to be scaled by 1/∆τ for consistency

purposes [30]. In order to compare the direct control method with the penalty method,

we present Table 8.2 where both ε and Π are not scaled by ∆τ . The other computational

parameters are the same as those used to compute Table 8.1. The values in the column

“Bound” are computed according to bounds (8.21) and (8.16).

In the previous numerical examples, the lower bound for the scaling factor Π is dom-

inated by a Type II bound. To see the effect of Type I lower bound in isolation, we

remove the jump diffusion from the underlying asset model (e.g. λ = 0). Consequently,

‖A−1(χk)B(χk−1)‖∞ < 1 always holds since ∀k,B(χk) = 0, hence the Type II bound

disappears.

Table 8.3 shows the GMWB values priced at refinement level 5 (λ = 0). Without

the presence of Type II bound, we can further decrease the scaling factor by three or-

ders of magnitude. The estimated Type I lower bound for C∗ is remarkably close to the

experimental result.
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tolerance = 10−6 Direct Control Penalty Method
Type Bound Π or 1/ε Value Itns/step Value Itns/step

I 0.67× 10−9ω0/∆τ 10−9ω0/∆τ N/A N/A
10−8ω0/∆τ 99.999992∗ 4.03
10−7ω0/∆τ 99.999992∗ 3.97

II 0.33× 10−6ω0/∆τ 10−6ω0/∆τ 100.00003 3.94
10−5ω0/∆τ 100.00003 3.89
10−4ω0/∆τ 100.00003 3.84
10−3ω0/∆τ 100.00003 3.31
10−2ω0/∆τ 100.00003 3.80
10−1ω0/∆τ 100.00003 3.82 99.969172 3.83

100ω0/∆τ 100.00003 3.83 99.996899 3.85
101ω0/∆τ 100.00003 3.87 99.999715 3.87
102ω0/∆τ 100.00003 3.88 99.999998 3.88
103ω0/∆τ 100.00003 3.88 100.00002 3.88
104ω0/∆τ 100.00003 3.88 100.00003 3.88
105ω0/∆τ 100.00003 3.88 100.00003 3.88

I 0.35× 106ω0/∆τ 106ω0/∆τ 100.00003 3.88 100.00002 3.88
107ω0/∆τ N/A N/A N/A N/A

Table 8.1: The effect of the scaling factor Π and penalty parameter 1/ε in terms of C∗ on
pricing the GMWB guarantee at refinement level 5. σ = 0.3,W = A = 100 and t = 0. Fair
insurance fee (i.e. η = 0.045452043) is imposed. Fully implicit method is used. Tolerance
for iteration is set to 10−6. Contract parameters are given in Table 7.1. Jump diffusion
parameters are given in Table 7.2. Itns/step refers to the average number of iterations per
timestep for the lines 2 − 4 in Algorithm 6.4.1. Type I bounds refer to bounds based on
floating point considerations. Type II bounds refer to sufficient conditions for convergence
in exact arithmetic, from Condition 6.2.1.
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tolerance = 10−6 Direct Control Penalty Method
Type Bound 1/ε or Π Value Itns/step Value Itns/step

I 0.13× 10−6 10−5 N/A N/A
10−5 N/A N/A
10−4 99.999908∗ 4.13
10−3 99.999930∗ 3.98

II 0.63× 10−2 10−2 100.00003 3.94
10−1 100.00003 3.90

100 100.00003 3.87
101 100.00003 3.02 96.209487 3.00
102 100.00003 3.78 99.472632 3.83
103 100.00003 3.82 99.941407 3.82
104 100.00003 3.82 99.994038 3.83
105 100.00003 3.86 99.999426 3.86
106 100.00003 3.88 99.999969 3.88
107 100.00003 3.88 100.00003 3.88
108 100.00003 3.88 100.00003 3.88
109 100.00003 3.88 100.00003 3.88

I 0.68× 1010 1010 100.00003 3.88 100.00003 3.88
1011 N/A N/A N/A N/A

Table 8.2: The effect of the scaling factor 1/ε and penalty parameter ε on pricing the
GMWB guarantee at refinement level 5. σ = 0.3,W = A = 100 and t = 0. Fair insurance
fee (i.e. η = 0.045452043) is imposed. Fully implicit method is used. Tolerance for iteration
is set to 10−6. Contract parameters are given in Table 7.1. Jump diffusion parameters are
given in Table 7.2. Itns/step refers to the average number of iterations per timestep for
the lines 2− 4 in Algorithm 6.4.1. Type I bounds refer to bounds based on floating point
considerations. Type II bounds refer to sufficient conditions for convergence in exact
arithmetic.
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Remark 8.4.1 (Range of Values). These examples clearly show that the range of useful

values of the scaling parameter for the direct control method is much larger than the range

of useful values for the penalty parameter in the penalty method.

We also carried out an experiment to determine the order of magnitude of [C∗min, C
∗
max],

as a function of convergence tolerance, such that ∀C∗ ∈ [C∗min, C
∗
max] the computed GMWB

values agree to (n+ 1)th digit, where tolerance = 10−n. Table 8.4 compares the computed

order of magnitude of C∗max and C∗min with the estimated C∗ upper and lower bounds from

equation (8.23).

A similar experiment was also conducted to seek the order of magnitude of the range

[Πmin,Πmax], as a function of iteration tolerance, such that ∀ Π ∈ [Πmin,Πmax] the computed

GMWB values agree to (n+ 1)th digit, where tolerance = 10−n. Table 8.5 compares the

computed order of magnitude of Πmax and Πmin with the estimated Π upper and lower

bounds from equations (8.16) and (8.21).

8.5 Summary

The main results of this chapter are as follows.

• Condition 6.2.1 is a sufficient condition for fixed point policy iteration to converge

under exact arithmetic. In practice, a floating point system is used and additional

conditions are required so that convergence can be expected in the presence of inexact

arithmetic.

• By Condition 6.2.1 together with an estimation of local optimization roundoff error,

we estimate bounds for the penalty parameter in the penalty method and the scaling
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tolerance = 10−6 Direct Control Penalty Method
Type Bound Π or 1/ε Value Itns/step Value Itns/step

10−11ω0/∆τ N/A N/A
10−10ω0/∆τ 115.88596 2.69

I 0.67× 10−9ω0/∆τ 10−9ω0/∆τ 115.88596 2.69
10−8ω0/∆τ 115.88596 2.69
10−7ω0/∆τ 115.88596 2.69

II 0.33× 10−6ω0/∆τ 10−6ω0/∆τ 115.88596 2.69
10−5ω0/∆τ 115.88596 2.69
10−4ω0/∆τ 115.88596 2.69
10−3ω0/∆τ 115.88596 2.68
10−2ω0/∆τ 115.88596 2.83
10−1ω0/∆τ 115.88596 2.84 115.85508 2.85

100ω0/∆τ 115.88596 2.85 115.88281 2.84
101ω0/∆τ 115.88596 2.85 115.88565 2.85
102ω0/∆τ 115.88596 2.85 115.88593 2.85
103ω0/∆τ 115.88596 2.85 115.88596 2.85
104ω0/∆τ 115.88596 2.85 115.88596 2.85
105ω0/∆τ 115.88596 2.85 115.88596 2.85

I 0.35× 106ω0/∆τ 106ω0/∆τ 115.88596 2.87 115.88596 2.86
107ω0/∆τ N/A N/A N/A N/A

Table 8.3: The effect of Type I upper and lower bounds on the scale factor Π and penalty
parameter 1/ε on pricing the GMWB guarantee at refinement level 5. No jump diffusion
presented. σ = 0.3,W = A = 100 and t = 0. No insurance fee (i.e. η = 0) is imposed.
Fully implicit method is used. Contract parameters are given in Table 7.1. Itns/step refers
to the average number of iterations per timestep for the lines 2 − 4 in Algorithm 6.4.1.
Type I bounds refer to bounds based on floating point considerations. Type II bounds
refer to sufficient conditions for convergence in exact arithmetic. In this case the Type II
bound is not required since the jump term is absent.
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Tolerance
10−6 10−8 10−10

Level C∗ upper bound C∗max C∗ upper bound C∗max C∗ upper bound C∗max

0 0.11× 108 108 0.11× 106 107 0.11× 104 106

1 0.56× 107 107 0.56× 105 106 0.56× 103 105

2 0.28× 107 107 0.28× 105 105 0.28× 103 105

3 0.14× 107 107 0.14× 105 105 0.14× 103 104

4 0.70× 106 106 0.70× 104 104 0.70× 102 103

5 0.35× 106 106 0.35× 104 104 0.35× 102 102

Level C∗ lower bound C∗min C∗ lower bound C∗min C∗ lower bound C∗min

0 0.33× 10−3 10−4 0.33× 10−3 10−4 0.33× 10−3 10−4

1 0.83× 10−4 10−4 0.83× 10−4 10−5 0.83× 10−4 10−5

2 0.21× 10−4 10−5 0.21× 10−4 10−6 0.21× 10−4 10−5

3 0.52× 10−5 10−5 0.52× 10−5 10−7 0.67× 10−5 10−5

4 0.13× 10−5 10−5 0.13× 10−5 10−6 0.67× 10−5 10−5

5 0.33× 10−6 10−6 0.33× 10−6 10−7 0.67× 10−5 10−5

Table 8.4: Experimental C∗ upper (C∗max )and lower (C∗min ) bounds as a function of itera-
tion convergence tolerance. The theoretical bounds C∗ upper bound and C∗ lower bound
are also shown. Both penalty and direct control method with block matrix implementation
as in Algorithm 6.4.1 and produce the same results of C∗max. Direct control method is used
for computing C∗min. Contract parameters are in Table 7.1. Jump diffusion parameters are
in Table 7.2. σ = 0.3, η = 0.045452043. Finest grids are around node (W,A) = (100, 100),
which are used to compute the bounds.
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Tolerance
10−6 10−8 10−10

Level Π upper bound Πmax Π upper bound Πmax Π upper bound Πmax

0 0.68× 1010 1011 0.68× 108 109 0.68× 106 109

1 0.68× 1010 1011 0.68× 108 109 0.68× 106 108

2 0.68× 1010 1010 0.68× 108 109 0.68× 106 108

3 0.68× 1010 1010 0.68× 108 109 0.68× 106 107

4 0.68× 1010 1010 0.68× 108 108 0.68× 106 107

5 0.68× 1010 1010 0.68× 108 108 0.68× 106 106

Level Π lower bound Πmin Π lower bound Πmin Π lower bound Πmin

0 0.20× 100 10−2 0.20× 100 10−2 0.20× 100 10−2

1 0.10× 100 10−1 0.10× 100 10−2 0.10× 100 10−2

2 0.50× 10−1 10−1 0.50× 10−1 10−2 0.50× 10−1 10−1

3 0.25× 10−1 10−2 0.25× 10−1 10−3 0.32× 10−1 10−1

4 0.13× 10−1 10−1 0.13× 10−1 10−2 0.64× 10−1 10−1

5 0.63× 10−2 10−2 0.63× 10−2 10−2 0.13× 100 100

Table 8.5: Experimental upper bounds (Πmax) for Π and 1/ε and lower bound for Π (Πmin),
as a function of iteration convergence tolerance. The theoretical bounds Π upper bound
and Π lower bound also shown. Both penalty and direct control method with block matrix
implementation as in Algorithm 6.4.1 are used in upper bound experiment and produce
the same results for Πmax. Direct control method is used to compute Πmin. Contract
parameters are in Table 7.1. Jump diffusion parameters are in Table 7.2. σ = 0.3, η =
0.045452043. Finest grids are around node (W,A) = (100, 100). These nodes are used to
compute the theoretical bounds.
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parameter in the direct control method so that we expect the fixed point policy

iteration will converge in the presence of roundoff error.

• Numerical results show that the estimated bounds are of the correct order of mag-

nitude. The useful numerical range of the scaling parameter for the direct control

method is much larger than the penalty parameter for the penalty method.

• A useful rule of thumb is to choose the penalty parameter or the direct control scaling

parameter two orders of magnitude less than the upper bound estimate.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

This thesis studies numerical methods for solving the HJB PIDE/VI resulting from pricing

a GMWB as a singular control problem [40] with the additional assumption that the

underlying asset follows a Poisson jump diffusion process. We extend the penalty method

[18] and direct control method [9] to solve the resulting HJB PIDE/VI. Provided the

original problem satisfies a strong comparison property, we prove that the penalty method

discretization converges to the unique viscosity solution of the HJB VI for the case of

standard Geometric Brownian Motion. We discuss the proof of the convergence of the

direct control method discretization to the unique viscosity solution of the HJB VI by

giving detailed proof of the stability for the case of standard Geometric Brownian Motion.

We also briefly sketch the proof of the convergence of both the penalty method and the

direct control method discretizations to the unique viscosity solution of the HJB VI for

the jump diffusion case. Maximal use of central differencing [55] results in noticeably

faster convergence (as the grid/timesteps are refined) compared to forward or backward
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differencing only discretization.

An efficient fixed point policy iteration scheme is developed to solve a class of dis-

cretized controlled HJB PDEs in finance including but not limited to the PDE resulting

from pricing a GMWB as a singular problem. This method is particularly useful if the

risky asset (in a financial application) follows a jump diffusion or regime switching process.

Sufficient conditions are derived to ensure the convergence of the fixed point policy iter-

ation. In the penalty method case, these conditions are typically satisfied if a monotone

discretization method is used, which is normally required in order to ensure convergence

to the viscosity solution. In case of the direct control method, we applied a scaling factor

to the discrete equation. The convergence of the fixed point policy iteration in this case

can only be guaranteed if the scaling parameter satisfies certain conditions. However it is

always possible to select a scaling parameter which satisfies this condition.

The singular control formulation of a GMWB has a special structure that can signif-

icantly improve the efficiency of solving the resulting nonlinear system. A block matrix

fixed point policy iteration scheme is developed and the conditions required for convergence

are determined. Numerical results show that this method is an order of magnitude better

in terms of number of iterations compared to a full matrix formulation.

Both the penalty method and the direct control method require specification of a pa-

rameter. This parameter affects both convergence and accuracy. We estimate bounds for

these parameters for both methods, so that convergence in floating point arithmetic can be

expected. To the best of our knowledge, such analysis has not been carried out previously.

Numerical experiments indicate that these estimates are reasonably accurate.

Our experimental results show that the singular control formulation has some limi-

tations in determining the withdrawal boundaries to high accuracy. For nodes near the

withdrawal boundaries, convergence is somewhat erratic. However, the singular control
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formulation is easy to implement and convergence is fast to a level of accuracy probably

far beyond what would be required in practice. This method has a lower complexity than

the impulse control approach in [11], though at the expense of some loss of generality.

9.2 Recommendations

Based on our analysis and numerical experiment results, we make the following recommen-

dations from a practical perspective regarding pricing a GMWB.

• The singular control formulation for pricing a GMWB is easy to implement and

converges rapidly. In a situation where speed over-weighs unnecessary accuracy, a

singular control formulation appears to be a good methodology. However, complex

contractual features may be difficult to implement with a singular control formulation.

• The block matrix fixed point policy iteration is a recommended efficient implemen-

tation to solve the resulting nonlinear system for both the penalty method and the

direct control method.

• It is safe to choose the penalty parameter and the direct control scaling factor two

orders of magnitude away from the estimated bounds (based on floating point error

analysis).

• It would appear that the order of magnitude useful range of the scaling parameter

for the direct control method is much larger than the useful range for the penalty

parameter in the penalty method. The accuracy and convergence rate for both

methods are similar for parameters within the useful range. Consequently, it would

appear that the direct control method is superior to the penalty method in this

regard.
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9.3 Future Work

A few interesting future research directions appear while we are studying the GMWB

pricing problem and they are as follows.

• A singular control formulation is an often used methodology for modeling problems

in finance. The fixed point policy iteration scheme described in this thesis is based

on a very general form of discretized controlled HJB equation, which may be applied

to other singular control problems in finance beyond the GMWB pricing problem. It

would be worthwhile to explore how the fixed point policy iteration performs with a

wider range of singular control problems in finance.

• Both Poisson jump diffusion and regime switching are considered better models for

the underlying assets that are more consistent with market data. Studying the

GMWB problem as a singular control problem under regime switching is also an

interesting research direction.

• The scaling factor in the direct control method appears to be a newly observed

parameter and merits further study.
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Appendix A

Hedging Argument for (3.1)

In this Appendix, we give an informal hedging argument for deriving equation (3.1). Con-

sider the following scenario. The underlying asset W (a mutual fund) in the investor’s

account follows the process

dW = (µ− η)Wdt+WσdZ , (A.1)

where µ is the drift rate, η is the fee for the guarantee, and dZ is the increment of a Wiener

process.

We assume that the mutual fund tracks an index Ŵ which follows the process

dŴ = µŴdt+ ŴσdZ . (A.2)

We assume that it is not possible to short the mutual fund, so that the obvious arbitrage

opportunity cannot be exploited. (This is typically a fiduciary requirement.) We further

assume that it is possible to track the index Ŵ without basis risk.

Now, consider the writer of the GMWB contract, with no-arbitrage value V (W,A, t).
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The writer sets up the hedging portfolio

Π(W, Ŵ ,A, t) = −V (W,A, t) + xŴ , (A.3)

where x is the number of units of the index Ŵ .

Over the time interval t→ t+ dt, assuming that Ito’s Lemma can be used, we obtain

dΠ = −
[(
Vt + (µ− η)WVW +

1

2
σ2W 2VWW + f(γ)− γVW − γVA

)
dt+ σWVWdZ

]
+ x[µŴdt+ σŴdZ] , (A.4)

where γ is the (finite) rate of withdrawal by the contract holder.

Choose

x =
W

Ŵ
VW , (A.5)

so that equation (A.4) becomes

dΠ = −
[(
Vt − ηWVW +

1

2
σ2W 2VWW + f(γ)− γVW − γVA

)
dt

]
. (A.6)

The worst case for the hedger will be when the contract holder chooses an action to

minimize the value of the hedging portfolio (this of course corresponds to the contract

holder maximizing her no-arbitrage long position), so that

dΠ = min
γ

[
−
(
Vt − ηWVW +

1

2
σ2W 2VWW + f(γ)− γVW − γVA

)
dt

]
. (A.7)

Let r be the risk free rate, and so setting dΠ = rΠ dt (since the portfolio is now riskless)
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gives

r (−V + VWW ) = −max
γ

[(
−Vτ − ηWVW +

1

2
σ2W 2VWW + f(γ)− γVW − γVA

)]
= Vτ + ηWVW −

1

2
σ2W 2VWW −max

γ

[
f(γ)− γVW − γVA

]
, (A.8)

which is equation (3.1).

Another way to verify this equation is the following. Imagine that the hedger replicates

the cash flows associated with the total GMWB contract. In this case, the underlying

mutual fund can be regarded as a purely virtual instrument, following process (A.1). The

actual hedging instrument on the other hand follows process (A.2). Having eliminated the

random term by delta hedging, the hedger then assumes the worst case which occurs when

the contact holder maximizes (deterministically) the no-arbitrage value of the contract. In

this case, V = U + W , where V is the value of the entire contract, and U is the value

of the guarantee. We can obtain an equation for the guarantee portion U by substituting

V = U +W into equation (A.8).

[13] uses a similar argument to value the guarantee portion of the GMWB using the

impulse control formulation.

Of course, the above arguments assume that the rate of withdrawal is finite, and that

the solution is sufficiently smooth so that Ito’s Lemma can be applied. These assumptions

are not in general valid (i.e. we take the limit as the maximum withdrawal rate becomes

infinite), and a much more careful analysis is required to derive the singular control problem

in rigorous fashion. Delta hedging strategies for GMWB contacts are commonly used in

the insurance industry [6, 28], although usually based on the impulse control formulation.
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Appendix B

Finite Difference Approximation

B.1 First and Second Derivatives Approximation

In this appendix, we use a standard finite difference method to approximate the first and

second partial derivatives in the PDE. The discretized differential operators DhA, DhW and

DhWW are given by

DhAV n
i,j =

V n
i,j − V n

i,j−1

∆A−j
, backward differencing, (B.1)

DhWV n
i,j =



V ni,j−V ni−1,j

∆W−i
backward differencing,

V ni+1,j−Vi,j
∆W+

i

forward differencing,

V ni+1,j−V ni−1,j

∆W±i
central differencing,

(B.2)

DhWWV
n
i,j =

V ni−1,j−V ni,j
∆W−i

+
V ni+1,j−V ni,j

∆W+
i

∆W±i
2

=
DhWV n

i+1,j −DhWV n
i,j

∆W±i
2

(DhW is backward differenced). (B.3)
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where

∆A−j = Aj − Aj−1, ∆W−
i = Wi −Wi−1, ∆W+

i = Wi+1 −Wi, and ∆W±
i = Wi+1 −Wi−1.

B.2 Discrete Equation Coefficients

Let {ϕ, ψ} denote the local control parameter value for node (Wi, Aj, τ
n).

Ahϕ,ψV n
i,j = ai,j(ϕ, ψ)DhWWV

n
i,j + bi,j(ϕ, ψ)DhWV n

i,j − ci,j(ϕ, ψ)V n
i,j

= αi,j(ϕ, ψ)V n
i−1,j − [αi,j(ϕ, ψ) + βi,j(ϕ, ψ) + ci,j(ϕ, ψ)]V n

i,j + βi,j(ϕ, ψ)V n
i+1,j.

If central differencing is used for the DhWV n
i,j term, then

αi,j,cent =
2ai,j(ϕ, ψ)

∆W±
i ∆W−

i

− bi,j(ϕ, ψ)

∆W±
i

,

βi,j,cent =
2ai,j(ϕ, ψ)

∆W±
i ∆W+

i

+
bi,j(ϕ, ψ)

∆W±
i

. (B.4)

When a forward/backward differencing is used for the DhWV n
i,j term, we obtain

αi,j,for/back =
2ai,j(ϕ, ψ)

∆W±
i ∆W−

i

+ max

[
0,
−bi,j(ϕ, ψ)

∆W−
i

]
,

βni,j,for/back =
2ai,j(ϕ, ψ)

∆W±
i ∆W+

i

+ max

[
0,
bi,j(ϕ, ψ)

∆W+
i

]
. (B.5)

where

∆W−
i = Wi −Wi−1, ∆W+

i = Wi+1 −Wi, and ∆W±
i = Wi+1 −Wi−1.
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Appendix C

Maximal Use of Central Differencing:

Direct Control Method

Similar to the penalty method discretization, the discretized DhWV n
i,j term in BhϕV n

i,j in

equation (4.8) can be obtained by applying central, forward, or backward differencing to

the DWV ε term. We again write the Bhϕ operator in the following form

BhϕV n
i,j = αi,j(ϕ)V n

i−1,j −
(
αi,j(ϕ) + βi,j(ϕ) + ci,j(ϕ)

)
V n
i,j + βi,j(ϕ)V n

i+1,j,

i = 2, 3, . . . , imax − 1, j = 1, 2, . . . , jmax, n = 1, 2, . . . , N − 1 . (C.1)

The αi,j(ϕ) and βi,j(ϕ) in (C.1) are determined by the differencing method used in W

direction, αi,j ∈ {αi,j,cent, αi,j,for/back}, βi,j ∈ {βi,j,cent, βi,j,for/back}, which are defined in

Appendix B.2. Although the αi,j and βi,j for the direct control method does not have a

dependency on the control variable ψ, the method in Appendix B.2 is written in a general

form so that it can handle this case as well. We use the coefficients as in (4.9) to compute

αi,j and βi,j for the direct control method. The positive coefficient condition (see [44])
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requires

αi,j ≥ 0 ; βi,j ≥ 0 . (C.2)

Because ci,j ≥ 0 always holds, condition (3.24) is a sufficient condition to ensure a posi-

tive coefficient discretization scheme. To use central differencing on the DWV term and

maintain a positive coefficient condition at the same time, we require ψn+1
i,j = 0 and

1

Wi −Wi−1

≥
(1− ψn+1

i,j )(ri − η)− (1−ψn+1
i,j )ϕG+ψΠ

Wi

(1− ψn+1
i,j )σ2Wi

; (C.3)

1

Wi+1 −Wi

≥ −
(1− ψn+1

i,j )(ri − η)− (1−ψn+1
i,j )ϕG+ψΠ

Wi

(1− ψn+1
i,j )σ2Wi

. (C.4)
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Appendix D

M Matrix Property of Zn in the

Direct Control Method

Since Zn is a block lower triangular matrix, its inverse (Zn)−1 is also a block lower triangular

matrix if (Zn)−1 exists. When Zn is a 2× 2 block matrix, it is easy to show that Zn is an

M matrix. We use a 3 × 3 block matrix as a non-trivial example to show that (Zn)−1 is

nonsingular and (Zn)−1 ≥ 0.

Let

Zn =


D1 0 0

−Ln
2 Dn

2 0

0 −Ln
3 Dn

3

 ; X =


X11 0 0

X21 X22 0

X31 X32 X33

 , (D.1)

where Xij (1 ≤ j ≤ i ≤ 1, 2, 3) is a block matrix that has the same dimension as D1 and

Dn
i (i = 2, 3). We remind the reader that D1 and Dn

i (i = 2, 3) are block M matrices

and Ln
i (i = 2, 3) is non-negative. If the following set of equations in (D.2) have a unique

solution X, then (Zn)−1 = X. In (D.2), Ii (i = 1, 2, 3) is the identity matrix with the same
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dimension as D1 and Dn
i (i,= 2, 3).


D1 0 0

−Ln
2 Dn

2 0

0 −Ln
3 Dn

3




X11 0 0

X21 X22 0

X31 X32 X33

 =


I1 0 0

0 I2 0

0 0 I3

 . (D.2)

The system of equations in (D.2) are equivalent to three sets of matrix equations as follows.


D1 0 0

−Ln
2 Dn

2 0

0 −Ln
3 Dn

3




X11

X21

X31

 =


I1

0

0

 , (D.3)


D1 0 0

−Ln
2 Dn

2 0

0 −Ln
3 Dn

3




0

X22

X32

 =


0

I2

0

 , (D.4)


D1 0 0

−Ln
2 Dn

2 0

0 −Ln
3 Dn

3




0

0

X33

 =


0

0

I3

 . (D.5)

Since Zn is a block lower triangular matrix, one can use forward substitution to solve the

equations in (D.3), (D.4) and (D.5). We use (D.3) as an example, which can be written as
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a system of linear equations as follows.

D1X11 = I1 (D.6)

−Ln
2X11 + Dn

2X21 = 0 (D.7)

−Ln
3X21 + Dn

2X31 = 0 (D.8)

The first equation (D.6) only involves X11, thus one can solve for X11 directly. The second

equation (D.7) only involves X11 and X21, and thus can be solved once the already solved

value for X11 is substituted in. Continuing in this way, the third equation (D.8) only

involves X21 and X31, and one can solve for X31 using the previously solved values for

X21. The resulting solution is

X11 = D−1
1 , (D.9)

X21 = (Dn
2)−1Ln

2D−1
1 , (D.10)

X31 = (Dn
3)−1Ln

3(Dn
2)−1Ln

2D−1
1 . (D.11)

Using the same forward substitution approach, one can solve equations in (D.4) and (D.5).

Finally we obtain the solution of X.

X =


D−1

1 0 0

(Dn
2)−1Ln

2D−1
1 (Dn

2)−1 0

(Dn
3)−1Ln

3(Dn
2)−1Ln

2D−1
1 (Dn

3)−1Ln
3(Dn

2)−1 (Dn
3)−1

 (D.12)

The matrix X is a block lower triangular matrix with (D1)−1 and (Dn
i )−1 (i = 2, 3) on

the block diagonals. The determinant det(X) = det(D1
−1) det((Dn

2)−1) det((Dn
3)−1). Since

D1 and Dn
i (i = 2, 3) are block M matrices, D1

−1 and (Dn
i )−1 (i = 2, 3) are non-singular.

So determinants det(D1
−1) 6= 0 and det((Dn

i )−1) 6= 0 (i = 2, 3). Therefore det(X) 6= 0,
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hence X is nonsingular. This proves that (Zn)−1 is nonsingular.

Due to the fact that D1 and Dn
i (i = 2, 3)are M matrices, we have (D1)−1 ≥ 0 and

(Dn
i )−1 ≥ 0 (i = 2, 3). Together with the fact that Ln

i ≥ 0, it follows that Xij ≥ 0

(i, j = 1, 2, 3). Because (Zn)−1 = X is nonsingular and (Zn)−1 ≥ 0, Zn is an M matrix.

Continuing the same way of forward substitution when Zn is a jmax × jmax block ma-

trix, one can obtain the solution of the block lower triangular matrix X shown in (D.13).

Similarly, we can prove that Zn is an M matrix for jmax > 3.

Xij =



(D1)−1, (i = j = 1)

(Dn
i )−1, (1 < i = j ≤ jmax)

0, (1 ≤ i < j ≤ jmax)

(Dn
i )−1Ln

i (Dn
i−1)−1Ln

i−1 . . . (D
n
j+1)−1Ln

j+1(Dn
j )−1, (1 < j < i ≤ jmax)

(Dn
i )−1Ln

i (Dn
i−1)−1Ln

i−1 . . . (D
n
2)−1Ln

2D−1
1 , (1 = j < i ≤ jmax) .

(D.13)
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Appendix E

Continuity of Local Optimization

Objective Function

Define local optimization problem objective function as

G(v) = max
χ`∈X

{
−A(χ)vk + B(χ)vk + c(χ)

}
. (E.1)

We would like to show that G(vk) is a continuous function of vk . That is

lim
vk→v∗

G(vk) = G(v∗) . (E.2)

Proof. Let

χk = arg max
χ`∈X

{
−A(χ)vk + B(χ)vk + c(χ)

}
, (E.3)
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then by definition of G(v) in (E.1), we have

G(vk) = −A(χk)vk + B(χk)vk + c(χk) , (E.4)

G(vk) ≥ −A(χ)vk + B(χ)vk + c(χ) ,∀χ ∈ X. (E.5)

Similarly, let

χ∗ = arg max
χ`∈X

{
−A(χ)v∗ + B(χ)v∗ + c(χ)

}
, (E.6)

we have

G(v∗) = −A(χ∗)vk + B(χ∗)vk + c(χ∗) , (E.7)

G(v∗) ≥ −A(χ)vk + B(χ)vk + c(χ) ,∀χ ∈ X . (E.8)

Since (E.8) holds for all χ ∈ X, it also holds for χk. Substitute χ with χk into (E.8)

and then subtract the resulting equation from equation (E.4), we obtain

G(vk)−G(v∗) ≤ −A(χk)vk + B(χk)vk + c(χk)

−
[
−A(χk)v∗ + B(χk)v∗ + c(χk)

]
=

[
−A(χk) + B(χk)

]
(vk − v∗) . (E.9)

Similarly, substitute χ with χ∗ into equation (E.5) and together with equation (E.7), we
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obtain

G(vk)−G(v∗) ≥ −A(χ∗)vk + B(χ∗)vk + c(χ∗)

−
[
−A(χ∗)v∗ + B(χ∗)v∗ + c(χ∗)

]
=

[
−A(χ∗) + B(χ∗)

]
(vk − v∗) . (E.10)

Consequently, we have

[
−A(χ∗) + B(χ∗)

]
(vk − v∗) ≤ G(vk)−G(v∗) ≤

[
−A(χk) + B(χk)

]
(vk − v∗) .

(E.11)

Since A(χ) and B(χ) are bounded independent from χ (by Condition 6.2.1), then we have

lim
vk→v∗

G(vk)−G(v∗) = 0 . (E.12)
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Appendix F

Floating Point Arithmetic Error

Analysis

F.1 Roundoff Error Propagation

Let x = (x1, x2, . . . , xn)′. To compute a function y = φ(x) by using floating point arith-

metic, an error ∆y of yδ0 has to be expected, where |δ0| < δ, the machine epsilon [50].

Furthermore, there exists an input error ∆x = (∆x1,∆x2, . . . ,∆xn)′ due to the float-

ing point representation of real numbers or previous calculation of x (we do not consider

the measurement input error because it is beyond the control of numerical computation

method). The two sources of error are unavoidable no matter how we arrange the floating

point operations. The third source of error comes from the intermediate roundoff errors

and it depends how we arrange the floating point operations. Based on differential error

analysis, the total floating point arithmetic error of computing y denoted by ∆y, to the
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first order approximation, is given by

∆y = Dφ(x)∆x + yδ0 +
r∑
i=1

∆(i)y (F.1)

with Dφ(x) being the Jacobian matrix of φ(x) and ∆(i)y being the intermediate roundoff

error generated at step i. We assume there are r intermediate steps and each step performs

elementary operations such as +,−,×,÷ and
√

[50].

F.2 Derivative Roundoff Error by Finite Difference

Using the standard finite difference method to compute the first derivative involves floating

point arithmetic of computing the function with form

y = φ1(x) =
x1 − x2

x3

. (F.2)

Let the input relative error be denoted by δx = (δx1 , δx2 , δx3)
′ = (∆x1/x1,∆x2/x2,∆x3/x3)′ .

If we compute y1 = x1 − x2 first, then proceed to divide the intermediate result y1 by x3,

from equation (F.1), we have

∆y = δx1

x1

x3

− δx2

x2

x3

− δx3y + δ0y + δ1y

where |δi| < δ(i = 1, 2) and δ1y is the intermediate roundoff error. Further assuming

|δx3 | ≤ δ and |x3| ≤ ∆hmin, we obtain the bound of ∆y as follows

|∆y| ≤ |δx1|
|x1|

∆hmin

+ |δx2|
|x2|

∆hmin

+ 3δ|y| . (F.3)
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Let

x2 = (1 + a1)x1, x1 = (1 + a2)x2, |x3| ≤ ∆hmin . (F.4)

The bound of y is given by

|y| ≤ |ai|
|xi|

∆hmin

, i = 1, 2 . (F.5)

Suppose input error ∆x is due to representing the real number in the floating point system

or from a previous calculation whose error is within machine epsilon δ, so we have ‖δx‖∞ ≤

δ and consequently

|∆y| ≤ δ(2 + 4|ai|)
|xi|

∆hmin

i = 1, 2 . (F.6)

Applying the result to discretized DhWV n+1
i,j and DhAV n+1

i,j in equation (B.3), we obtain

the absolute roundoff error of computing first derivatives by using backward difference as

follows

|∆DhAV n+1
i,j | ≤ δ(2 + 4|a3|)

|V n+1
i,j |

∆A−j
, V n+1

i,j−1 = (1 + a3)V n+1
i,j

|∆DhWV n+1
i,j | ≤ δ(2 + 4|a4|)

|V n+1
i,j |

∆W−i
, V n+1

i−1,j = (1 + a4)V n+1
i,j

|∆DhWV n+1
i+1,j| ≤ δ(2 + 4|a5|)

|V n+1
i,j |

∆W+
i

, V n+1
i+1,j = (1 + a5)V n+1

i,j . (F.7)

Applying the result in equation (F.5) to DhAVi,j, DhWVi,j and DhWV n+1
i+1,j, we have

|DhAV n+1
i,j | ≤ |a3|

|V n+1
i,j |

∆A−j
, |DhWV n+1

i,j | ≤ |a4|
|V n+1
i,j |

∆(Wmin)i
, |DhWV n+1

i+1,j| ≤ |a5|
|V n+1
i,j |

∆(Wmin)i
, (F.8)

where (∆Wmin)i = mini(Wi+1−Wi,Wi−Wi−1). Together with the standard 3 point finite
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difference method to compute the second derivative as in equation (B.3) , we obtain

|DhWWV
n+1
i,j | ≤ (|DhWV n+1

i+1,j|+ |DhWV n+1
i,j |)

1

(∆Wmin)i

≤ (|a4|+ |a5|)
|V n+1
i,j |

(∆Wmin)2
i

. (F.9)

To bound the roundoff error of DhWWV
n+1
i,j , set

x = (DhWV n+1
i+1,j,DhWV n+1

i,j ,
∆W±

i

2
)′ , δx = (

∆DhWV n+1
i+1,j

DhWV
n+1
i+1,j

,
∆DhWV n+1

i,j

DhWV
n+1
i,j

, δx3)
′ . (F.10)

Assuming |δx3| < δ, by equations (B.3), (F.3), (F.8) and (F.9) and the fact that ∆W±
i /2 ≥

∆Wmin, we obtain the following bound

|∆DhWWV
n+1
i,j | ≤

|∆DhWV n+1
i,j |+ |∆DhWV n+1

i+1,j|
∆Wmin

+ 3|DhWWV
n+1
i,j |

≤ δ(4 + 5|a4|+ 5|a5|)
|V n+1
i,j |

(∆Wmin)2
i

. (F.11)

F.3 Roundoff Error Estimation of Local Optimization

Problem

During each iteration, we solve a local optimization problem and the objective function

involves calculating the following two terms

f1(Wi, Aj, τ
n+1) = κ− 1 +DhWV n+1

i,j +DhAV n+1
i,j (F.12)

f2(Wi, Aj, τ
n+1) =

σ2W 2
i

2
DhWWV

n+1
i,j +O(Wi) . (F.13)

Computing f1 involves calculating a function of the form g(x) = (x1 + x2) + (x3 + x4).
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From equation (F.1), we obtain

|∆g| ≤
4∑
i=1

|∆xi|+ δ|g|+ δ|x1 + x2|+ δ|x3 + x4| (F.14)

≤
4∑
i=1

|∆xi|+ 2δ|x1 + x2|+ 2δ(|x3|+ |x4|) . (F.15)

Setting x1 = κ, x2 = −1, x3 = DhWV n+1
i,j , x4 = DhAV n+1

i,j and applying equations (F.7) and

(F.8) with the fact that 0 < κ < 1, we obtain the bound of absolute roundoff error of f1

as follows

|∆f1| ≤ δ(2 + 6|a3|)
|V n+1
i,j |

∆Amin

+ δ(2 + 6|a4|)
|V n+1
i,j |

(∆Wmin)i
+ 3(1− κ)δ

/ 2δ(
1 + 3|a3|
∆Amin

+
1 + 3|a4|
∆Wmin

)|V n+1
i,j | , (F.16)

where we discard the smaller error term of 3δ(1− κ), and ∆Amin = minj(Aj − Aj−1) and

∆Wmin = mini(Wi −Wi−1).

To analyze the roundoff error of f2, we notice that only multiplication and division

operations are involved given DhWWV
n+1
i,j as one of the operands. From equation (F.1), it

can be easily seen that the roundoff error of

g2(x) = x1 × x2 |∆g2| ≤ (|δx1|+ |δx2|+ |δ0|)|g2| (F.17)

g3(x) = x1 ÷ x2 |∆g2| ≤ (|δx1|+ |δx2|+ |δ0|)|g3| . (F.18)

So computing of ci = σ2W 2
i /2 will accumulate 9δ|ci| roundoff errors assuming the input

error of σ and Wi is smaller than δ, the machine epsilon. The final roundoff error of
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f2 = ciDhWWV
n+1
i,j is then given by

|∆f2| ≤ (10|δ|+
|∆DhWWV

n+1
i,j |

|DhWWV
n+1
i,j |

)|ci||DhWWV
n+1
i,j |

≤ δ(4 + 15|a4|+ 15|a5|)
σ2W 2

i

2(∆Wmin)2
i

|V n+1
i,j | . (F.19)

In the area where the grids are fine, we have Vi,j ≈ Vi±1,j ≈ Vi,j−1. So normally |ai| � 1

for i = 3, 4, 5. It may be safe to estimate that |ai| ≤ 0.1, i = 3, 4, 5. Finally the following

estimation of roundoff errors of computing f1 and f2 are obtained

|∆(κ− 1−DhWV n+1
i,j +DhAV n+1

i,j )| ≤ 4δ(
1

∆Amin

+
1

∆Wmin

)|V n+1
i,j |

≤ 4δ(
1

∆Amin

+
1

∆Wmin

) max(|V n+1
i,j |, scale) ,

(F.20)

|∆(
σ2W 2

i

2
DhWWV

n+1
i,j )| ≤ 4δ

σ2W 2
i

∆W 2
min

|V n+1
i,j |

≤ 4δ
σ2W 2

i

∆W 2
min

max(|V n+1
i,j |, scale) . (F.21)
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