
Hermite Forms of Polynomial
Matrices

by

Somit Gupta

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2011

c© Somit Gupta 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis presents a new algorithm for computing the Hermite form of a polynomial
matrix. Given a nonsingular n×n matrix A filled with degree d polynomials with coefficients
from a field, the algorithm computes the Hermite form of A using an expected number of
(nωd)1+o(1) field operations. The algorithm is randomized of the Las Vegas type.

iii

Acknowledgements

I am greatly indebted to my supervisor professor Arne Storjohann for introducing
me to the world of symbolic computation and providing the direction for my research. I
have benefited a lot from his attention to detail and planning, and emphasis on clarity of
presentation. I hope I will be carrying back some these qualities with me.

I am grateful to my readers professor George Labahn and professor Mark Giesbrecht
for taking time out to read the thesis and provide their valuable feedback. Their friendly
advise on research, presentation and writing has been very helpful to me.

I want to express my gratitude to all my teachers who have all always encouraged my
inquisitiveness and helped me take it further. I thank professor R. B. Bapat for helping me
take my first steps in research and introducing me to the area of matrix algebra.

Finally, I thank my family and friends for their constant support and encouragement,
without which it would not have been possible to complete this thesis.

iv

Dedication

This thesis is dedicated to my mother Vinod Bala Gupta.

v

Contents

List of Figures viii

1 Introduction 1

1.1 Cost Model and Operations over K[x] . 2

1.1.1 Operations over K[x]/〈s〉 . 4

1.2 Preliminaries . 5

1.2.1 Hermite Form . 6

1.2.2 Smith Form . 6

1.3 Overview . 7

2 Partial Product 11

2.1 Scalar Case: Computing Rem(Rem(fg, s), xd) 12

2.2 Vector Case: Computing Rem(Rem(FG, s), xd) 20

2.3 Array Case: Computing Rem(Rem(hAB, s), xd) 22

2.4 Extension: Compute Quo(Rem(Rem(hAB, s), Xk+1), Xk) 23

3 Reduced Smith Transform 30

3.1 Reduced Smith Decomposition of B . 32

3.1.1 Iterative Approach . 33

3.1.2 Recursive Approach . 35

3.2 Reduced Smith Decomposition of snA
−1 37

3.2.1 Blocking . 38

3.2.2 Delayed Updates: the Outer Product Formula 44

3.2.3 Computation of B
(j)
c and B

(j)
r . 45

vi

4 Diagonal Entries of the Hermite Form 50

4.1 Hermite form via Howell form . 50

4.2 Hermite form via kernel basis . 54

4.3 The algorithm for diagonal entries . 56

4.3.1 Via matrix multiplication . 62

5 Diagonal to Hermite Form 68

5.1 From genset to Hermite form . 69

5.2 Hermite form via kernel basis . 70

5.3 Hermite via minimal approximant basis . 71

6 Conclusion 76

Bibliography 83

vii

List of Figures

2.1 Algorithm MiddleProduct . 14

2.2 Algorithm PartialProduct(f, g, s, d) . 19

2.3 Algorithm PartialProduct(F,G, s, d) . 21

2.5 Algorithm PartialProduct(f, g, s, d, k) 27

2.6 Algorithm PartialProduct(h,A,B, s, d, k) 29

3.1 Smith Decomposition . 36

3.2 Reduced Smith Transform . 46

3.3 Computing Rem(Rem(P (j−1)I
(j)
c , sn), xnd/2

j
) 49

4.1 Algorithm DiagonalHermite . 61

4.2 Blocking to compute the diagonal entries of the Hermite form. 64

4.3 Algorithm BlockDiagonalHermite . 65

4.4 Shape of the work matrix after an iteration of Algorithm BlockDiagonalHermite

in Figure 4.3. 66

6.1 Algorithm Hermite Form Computation 77

viii

Chapter 1

Introduction

Among the classical normal forms for matrices over a principal ideal domain, the Hermite
form is the best known. Recall the definition of the form over the ring K[x] of univariate
polynomials over a field K. Corresponding to any nonsingular A ∈ K[x]n×n is a unimodular
matrix U ∈ K[x]n×n such that

H = UA =

h1 h̄12 · · · h̄1n

h2 · · · h̄2n

. . .
...
hn

is upper triangular, hj is monic for 1 ≤ j ≤ n, and deg h̄ij < deg hj for 1 ≤ i < j ≤ n. The
problem of computing the Hermite form has received a considerable amount of attention.
For example, the theses [5, 25, 22, 35, 6, 26] and ISSAC papers [33, 31, 34, 23] have
addressed this topic.

Modulo determinant algorithms [14, 16, 8], see also [4], compute the Hermite form of
A working modulo the determinant and require O (̃n4d) field operations from K. Matrix
multiplication can be introduced [14, 31] to reduce the cost to O (̃nω+1d), where 2 < ω ≤ 3
is the exponent of matrix multiplication. The iterative approach in [24] gives a deterministic
O(n3d2) algorithm, achieving a running time that is cubic in n but at the cost of increasing
the exponent of d to two. In [13] we give a Las Vegas algorithm to compute H using an
expected number of O (̃n3d) field operations from K. In this thesis we give a Las Vegas
algorithm to compute H using an expected number of O (̃nωd) field operations from K.

Our result closes the time complexity gap between the computation of the Hermite form
and many problems on polynomial matrices that have an algorithm which costs O (̃nωd)
field operations. Examples include the high-order lifting based linear solving, determinant
and Smith form algorithms in [27, 28], the fast row reduction algorithm of [11] and minimal

1

approximant basis algorithms in [11, 36]. The techniques in [21] can be adapted to the case
of polynomial matrices and achieve algorithms that are subcubic in n for many problems. It
is even known that the explicit inverse of A, which has total size Ω(n3d), can be computed
in nearly optimal time O (̃n3d) [18, 30].

The rest of the chapter is organised in the following manner. Subsection 1.1 defines the
cost model over which we work and the cost of some common operations. In Subsection 1.2,
we introduce some preliminaries and recall a few definitions and results which will be used
often in the thesis. Subsection 1.3 gives the overview of the thesis.

1.1 Cost Model and Operations over K[x]

Algorithms are analyzed by bounding the number of required field operations from a field K
on an algebraic random access machine; the operations +, −, × and “divide by a nonzero”
involving two field elements have unit cost.

We use the cost function M for polynomial multiplication: let M :Z≥0 → R>0 be such
that polynomials in K[x] of degree bounded by d can be multiplied using at most M(d) field
operations from K. The operation of multiplying by a power of x is free. We shall often use
the fact that M is a super-linear function:

M(ab) ≤ M(a)M(b), (1.1)

for a, b ∈ Z>0. Note that superlinearity also implies that for any t ∈ Z>0, t ∈ O(M(t)).

We use the cost function MM for matrix multiplication: let MM :Z>0 → R>0 be such
that two matrices, of dimensions bounded by n, filled with entries from K can be multiplied
using at most MM(n) field operations from K. Throughout the thesis we shall assume that

MM(n) ∈ O(nω), (1.2)

where 2 < ω ≤ 3 denotes the exponent of matrix multiplication. As can be seen from (1.2)
MM is super-linear:

MM(ab) ≤ MM(a)MM(b), (1.3)

for a, b ∈ Z>0. In fact we assume that MM is super-quadratic function:

MM(n) ∈ Ω(n2+ε),

for some ε > 0.

For multiplication of rectangular matrices, let MM :Z>0 × Z>0 × Z>0 → R>0 be such
that a scalar matrix ∈ Ka×b can be multiplied with a scalar matrix ∈ Kb×c in cost bounded
by MM(a, b, c). Using an obvious block decomposition we get

MM(a, b, c) ≤ da/re · db/re · dc/re ·MM(r), (1.4)

2

where r = min(a, b, c).

Now consider the multiplication of polynomial matrices. The degree of a matrix over
K[x] is the maximum of the degrees of the entries. Let MM :Z>0×Z≥0 → R>0 be such that
two matrices over K[x], of dimensions bounded by n and degree at most d, can be multiplied
using at most MM(n, d) field operations from K. We can similarly define MM(a, b, c, d) as
the bound for the cost of multiplication of a matrix ∈ K[x]a×b by a matrix ∈ K[x]b×c, where
the degrees of the matrices are bounded by d. We shall often use the fact we can multiply
two polynomial matrices using the procedure to multiply two scalar matrices but replacing
the scalar operations with polynomial operations. This gives

MM(n, d) ≤ MM(n) M(d) and MM(a, b, c, d) ≤ MM(a, b, c) M(d). (1.5)

We refer to [10] for more details and references about ω and M. Some of our complexity
estimates will explicitly make the assumption that

M(t) ∈ O(tω−1). (1.6)

This assumption states that if fast matrix multiplication techniques are used, then fast
polynomial multiplication should also be used.

Given two polynomials a, b ∈ K[x] with b nonzero, we use the subroutines Rem(a, b) and
Quo(a, b) in our algorithms to return the unique polynomials such that a = Quo(a, b) b+
Rem(a, b) with deg Rem(a, b) < deg b. If a and b have degree bounded by d then the
Rem operation has cost O(M(d)) and Quo operation has cost O(M(deg a − deg b)) =
O(M(deg Quo(a, b))). Note that if b is a power of x then both the Rem and Quo operation
are free in our cost model. If the first argument of Rem or Quo is a matrix or vector the
intention is to apply the operation element wise to the entries.

The gcd problem takes as input two polynomials a, b ∈ K[x] and asks as output the
monic greatest common divisor of a and b. The extended gcd problem takes as input two
polynomials a, b ∈ K[x], and asks as output polynomials g, s, t, u, v ∈ K[x] such that[

s t
u v

] [
a
b

]
=

[
g
0

]
, (1.7)

with g as the monic greatest common divisor of a and b, and sv − tu a nonzero constant
polynomial. In our algorithms, we denote by Gcd(a, b) and Gcdex(a, b) the subroutines
that return g and the tuple (g, s, t, u, v) as described above.

It will be useful to define an additional cost function B to bound the cost of the extended
gcd operation, as well as other gcd-related computations. We can take

B(d) ≤ min{M(d) log d, d2}. (1.8)

3

Then the extended gcd problem with two polynomials in K[x] of degree bounded by d can
be solved in time O(B(d)). Due to the superlinearity of M, (1.1), and (1.8) B is super-linear:

B(ab) ≤ B(a)B(b) (1.9)

for a, b ∈ Z>0.

1.1.1 Operations over K[x]/〈s〉

Throughout the thesis we shall deal with two kinds of algebraic structures: the principal
ideal domain (PID) K[x], and principal ideal rings (PIR) of the form R = K[x]/〈s〉, s ∈ K[x]
nonzero. A PIR is a nonzero commutative ring whose ideals are principal, i.e., can be
generated by a single element. A PID is a PIR with no zero divisors. In the previous
subsection we have already defined the operations Rem, Quo, Gcd and Gcdex over K[x].
In this subsection we define some additions operations and show how their analogues can
be computed over the residue class ring K[x]/〈s〉.

Let R be a principal ideal ring (either K[x] or K[x]/〈s〉). An element a ∈ R is said to be a
unit if and only if there exists an element b ∈ R such that ab = ba = 1. In other words a ∈ R
is a unit if and only if it is invertible. Two elements a1, a2 ∈ R are said to be associates of
each other if and only if there exists a unit u ∈ R such that a1 = ua2. A set of elements of
R, one from each associate class, is called a prescribed complete set of non-associates; we
denote such a set by A(R). Two elements a1, a2 ∈ R are said to be congruent to each other
with respect to another element 0 6= b ∈ R if and only if b | (a1 − a2). Corresponding to an
element b ∈ R, a set of elements, one from each congruence class, is said to be a prescribed
complete set of residues with respect to b; we denote such a set by R(R, b).

The natural and canonical choice for A and R over K[x] are A(K[z]) = {0}∪ {f ∈ K[z] |
f is monic} and R(K[z], s) = {f ∈ K[z] | deg f < deg s}. For a nonzero s, we can identify
the residue class ring K[x]/〈s〉 with the set of elements R(K[x], s), and define

A(K[x]/〈s〉) = {gcd(a, s) | a ∈ Rem(K[x], s)}

and
R(K[x]/〈s〉, b) = R(K[x], gcd(b, s)).

For a a ∈ R, the operations Ass(a) returns the associate of a in the proscribed set of
associates A(R), and the operation Unit(a) returns a unit u ∈ R such that Ass(a) = ua ∈
A(R). For R = K[x] and a ∈ K[x], Unit(a) returns 1 if a is zero, and the inverse of the
leading coefficient of a otherwise.

We shall often pass back and forth between K[x] and its residue class ring K[x]/〈s〉. A
homomorphism φs : K[x] −→ K[x]/〈s〉 can be naturally defined as φs(a) = Rem(a, s) for

4

a ∈ K[x]. We choose to denote by φ−1
s : K[x]/〈s〉 −→ K[x], such that for any ā ∈ K[x],

φ−1
s (ā) is the unique element of R(K[x], s) that maps to b under φ. For example if
ā = 3x+ 1 ∈ K[x]/〈x3 + x〉, then φ−1

x3+x(3x+ 1) = 3x+ 1 ∈ K[x].

For ā, b̄ ∈ K[x]/〈s〉, let a = φ−1
s (ā) and b = φ−1

s (b̄). We can do the following basic
operations over K[x]/〈s〉 by translating them into operations over K[x]:

• ā � b̄ = φs(Rem(a � b, s)), where � ∈ {+,−, ∗}.

• ā/b̄ = φs(a/b). This operation is valid only if b | a.

• Unit(ā) =

[
(∗, u, ∗, ∗, ∗) = Gcdex(a, s)
return φs(u).

• Ass(ā) = Unit(ā) ∗ ā.

• Gcd(ā, b̄) = Ass(φs(Gcd(a, b))).

• Rem(ā, b̄) = φs(Rem(a,Gcd(b, s))).

• Quo(ā, b̄) = Unit(b̄)((ā− Rem(ā, b̄))/Ass(b̄)).

Thus we see that that any basic operation in K[x]/〈s〉 has a cost bounded by O(B(deg s))
basic operations from K.

1.2 Preliminaries

We shall be working primarily with square matrices. For any square matrix A of dimension
n, we denote by A[i, j] the i, j entry of A, 1 ≤ i, j ≤ n. We will often use ∗ to denote
an index which takes values from the entire domain. For example A[∗, i] implies the i-th
column of A. We denote by A[S|T] the submatrix of A comprised of the intersection of only
those rows of A whose index is in the list S and only those columns of A whose index is in
the list T . For A ∈ K[x]n×n, we denote ∆i(A) to be the gcd of all i × i minors of A and
∆c
i(A) to be the gcd of all i× i minors of the first i columns of A. Let ∆0(A) = ∆c

0(A) = 1.

Next we describe two normal forms of matrices over K[x] and some of their properties
that we shall use often.

5

1.2.1 Hermite Form

Definition 1.1. A matrix H ∈ K[x]n×n is said to be in Hermite form if H can be written
as

h1 h̄12 h̄13 · · · h̄1n

h2 h̄23 · · · h̄2n

h3 · · · h̄3n

. . .
...
hn

 ∈ Rn×n,

with

• hi is monic for all 1 ≤ i ≤ n, and

• deg h̄ij < deg hj for 1 ≤ i < j ≤ n.

Corresponding to every nonsingular A ∈ K[x]n×n, there exists a unimodular U ∈ K[x]n×n

and the unique H ∈ K[x]n×n in Hermite form such that

H = UA.

H is called the Hermite Form of A; hnf(A) = H.

Theorem 1.2. [19] For the Hermite form H ∈ K[x]n×n of a nonsingular A ∈ K[x]n×n, the
following properties hold:

• h∗i =
∏i

j=1 hj = ∆c
i(A), for all 1 ≤ i ≤ n,

• hi = ∆c
i(A)/∆c

i−1(A), for all 1 ≤ i ≤ n, and

• deg hi ≤ i degA, for all 1 ≤ i ≤ n,

where ∆c
i(A) is the gcd of all i× i minors of the first i columns of A.

1.2.2 Smith Form

Definition 1.3. A matrix S ∈ K[x]n×n is said to be in Smith form if S can be written as
diag(s1, s2, s3, . . . , sn) ∈ Rn×n with

• si is monic for all 1 ≤ i ≤ n, and

• si | si+1 for all 1 ≤ i < n.

6

Corresponding to every A ∈ Rn×n there exist unimodular matrices P,Q ∈ Rn×n, and
the unique S ∈ Rn×n in Smith form such that

S = PAQ.

S is called the Smith Form of A; snf(A) = S.

Theorem 1.4. [19] For the Smith form S ∈ K[x]n×n of a nonsingular A ∈ K[x]n×n, the
following properties hold:

• s∗i =
∏i

j=1 sj = ∆i(A), for all 1 ≤ i ≤ n,

• si = ∆i(A)/∆i−1(A), for all 1 ≤ i ≤ n, and

• deg si ≤ n
n−i+1

degA, for all 1 ≤ i ≤ n,

where ∆i(A) is the gcd of all i× i minors of A.

Note that Smith form is also a canonical form over R = K[x]/〈s〉 and for the Smith form
S ∈ Rn×n of a A ∈ Rn×n, s1 divides all the entries of A.

1.3 Overview

We present a brief overview of our algorithm developed in the thesis. Given a nonsingular
A ∈ K[x]n×n with the degree of each element bounded by d, we aim to develop a Las Vegas
algorithm to compute the Hermite form H of A in cost O (̃nωd).

The main difficulty to obtain fast algorithms for the Hermite form seems to be the
unpredictability and non uniformity of the degrees of the diagonal entries. The best a priori
bound for deg hj is jd, 1 ≤ j ≤ n. Summing these a priori bounds gives

∑n
j=1 jd ∈ Θ(n2d),

which overshoots by a factor of n the a priori bound
∑n

j=1 deg hj = detA ≤ nd. For

comparison, for the diagonal Smith form S := ŪAV̄ = Diag(s1, . . . , sn) of A, a canonical
form under left and right unimodular multiplication, we have the a priori bounds deg sj ≤
(n/(n− j + 1))d; summing these yields Θ(nd log n). These good a priori bounds for the
invariant factors sj are exploited, for example, in [27, 9] to get improved algorithms for
computing the Smith form.

Consider the following nonsingular matrix

A =

[d] [d] [d] [d]
[d] [d] [d] [d]
[d] [d] [d] [d]
[d] [d] [d] [d]

 ∈ K[x]4×4,

7

where [d] represents a polynomial with degree bounded by d. The a priori bounds for the
entries of the Hermite form of A are the following:

[d] (2d) (3d) (4d)
[2d] (3d) (4d)

[3d] (4d)
[4d]

 ,
where (t) represents a polynomial of degree strictly less than t. The a priori bounds for the
entries of the Smith form of A are the following:

[d]
[4/3 d]

[2d]
[4d]

 .
Thus, while the degree bounds for the diagonal entries of the Hermite form decrease in a
arithmetic progression from the last diagonal entry to the first, the degree bounds for the
diagonal entries of the Smith form decrease faster in a harmonic progression.

The key to our approach in the thesis is to use the Smith form S of A, together with
partial information of a right unimodular transform V̄ , in order to obtain the Hermite form
H of A. Our algorithm has four main phases.

The first phase computes a row reduced form of the input matrix A. We use existing
algorithms [12] to compute the row reduced form.

The second phase is to compute the Smith form S, and V , such that A ≡ USV mod sn.
In Chapter 3, we modify the OuterProductAdjoint algorithm of [30] by working over blocks
of columns of A instead of one column at a time. The major hurdle in reducing the cost of
this phase to O (̃nω d) is carrying out an operation of the type Rem(Rem(FG, s), xd) where
F ∈ K[x]n×1, G ∈ K[x]1×n with degree of each term in F and G bounded by deg s ≤ nd.

For example, consider the following matrix with the Smith form diag(s1, s2, · · · , sn):

A =

[d] [d] · · · [d]
[d] [d] · · · [d]
...

...
...

...
[d] [d] [d] [d]

 ∈ K[x]n×n.

The outer product decomposition of this matrix will look like the following:

snA
−1 ≡

[nd]
[nd]

...
[nd]

 [[nd] [nd] · · · [nd]
]

+ sn/sn−1 ∗ mod sn.

8

In the course of computing a reduced Smith decomposition of A, we need to compute
entities of the following shape and bounds on the degree of the entries:

Rem

Rem

F︷ ︸︸ ︷
[nd]
[nd]

...
[nd]

G︷ ︸︸ ︷[

[nd] [nd] · · · [nd]
]
, sn

, xd

.

Notice that the size of the input and output in this operation is bounded by n2d, but
we are not aware of any known algorithm which can compute this in O (̃nω d) operations
from K. The direct way to perform the above operation is to first compute Rem(FG, sn)
and then reduce it modulo xd. The direct method costs O(n3d) basic operations from K.

In Chapter 2, we develop a procedure PartialProduct to compute Rem(Rem(FG, s), xd)
in O (̃nωd) operations from K. The main idea is to use the Sylvester matrix representation
for multiplying two polynomials. For example consider the following operation:

Rem

Rem

F︷ ︸︸ ︷[

[2d]
[2d]

] G︷ ︸︸ ︷[
[2d] [2d]

]
, [2d]

 , xd

 .

We transform it to the following:

Rem

Rem

[

1 xd x2d 0 0 0
0 0 0 1 xd x2d

]

(d)
(d) (d)

(d)
(d)
(d) (d)

(d)

[

(d) (d)
(d) (d)

]
, [2d]

 , xd

 .

After some preprocessing the above procedure reduces to two matrix multiplications of
matrices with degree of entries bounded by d.

The third phase is to compute the degrees of the diagonal entries of H. In Chapter 4,
We show that this can be accomplished via a unimodular matrix triangularization:[

S
V In

]
−→

[
In ∗

T

]
∈ K[x]2n×2n. (1.10)

The matrix V is obtained from V̄ by reducing entries in column j modulo sj , 1 ≤ j ≤ n. We
show that the submatrix T in (1.10) will be left equivalent to A and thus, up to associates,

9

has the same diagonal entries as H. When performing the triangularization in (1.10), we
exploit the fact that S is diagonal by keeping off-diagonal entries in the first n columns of
the work work matrix reduced modulo the diagonal entry in the same column. Using the
upper bound

∑n
j=1 deg sj ≤ nd, and by avoiding explicit computation of the off-diagonal

entries of T and the block above T , we can compute the diagonal entries of T in O (̃nω d)
operations from K.

Chapter 5 describes the fourth phase of our algorithm. It uses the knowledge of the
degrees of the diagonal entries of H to set up a minimal approximant basis problem for
recovering H. In particular, the Hermite form H can recovered by computing a left kernel
basis in canonical form for the first n columns of the matrix in (1.10):

[
−HV S−1 H

] [S
V

]
= 0.

We show how to transform the kernel computation shown above to an equivalent problem
that can be solved in time O(nω B(d)) using the fast minimal approximant basis algorithm
of [11]. Our problem transformation makes use of the partial linearization and reduction of
order techniques in [29].

Chapter 6 sums up the whole algorithm and recalls the main result of the thesis. It also
discusses some future directions of research.

10

Chapter 2

Partial Product

Let K be a field. Let A ∈ K[x]n×`, B ∈ K[x]l×n, and s, h ∈ K[x]. We want to compute

Rem(Rem(hAB, s), xd).

Our target cost in terms of number of basic operations from K is O(MM(n, d)) subject to the
conditions that degB, deg h < deg s, and l degA, ` degB, deg s ∈ O(nd). If we measure the
size of the input and output in terms of the number of elements from K required to describe
the input, it is interesting to note that in this case even though the size of the input and
the output is bounded by O(n2d), the direct method which computes Rem(hAB, s) as an
intermediate quantity would require Ω(n3d) operations to compute Rem(Rem(hAB, s), xd)
since the size of Rem(hAB, s) can potentially be of the order O(n3d). Consider the following
example of solving the problem by the conventional method.

Example 2.1. Let K = Z7,

A =

 4x2 + 2x+ 1
3x2 + x+ 5
x2 + 2

 , B =
[
x2 + 3 5 x2 + x+ 4 3x2 + 6

]
,

s = x6 + 5x5 + 3x4 + 2x+ 2, h = 5x5 + 3x4 + 2x3 + x2 + 3x, and d = 2.

To find Rem(Rem(hAB, s), x2), one would first find the product

AB =

4x4 + 2x3 + 6x2 + 6x+ 3 6x4 + 2x2 + 2x+ 4 5x4 + 6x3 + 6x2 + 5x+ 6

3x4 + x3 + 3x+ 1 x4 + x3 + 3x2 + 2x+ 6 2 x4 + 3x3 + 5x2 + 6x+ 2

x4 + 5x2 + 6 5 x4 + x3 + 2x+ 1 3x4 + 5x2 + 5

11

and then multiply it by h and reduce mod s as
Rem(hAB, s) =5x5 + x4 + 6x3 + 3x2 + 6x+ 3 6x5 + 3x4 + 3x3 + 6x+ 2 4x5 + 3x4 + 5x3 + 3x2 + 4x+ 3

6x5 + 6x4 + 6x3 + 6x+ 2 2x5 + x4 + 5x3 + 6x2 + 4x+ 5 4x5 + 4x4 + 3x2 + 5x+ 4

x4 + 5x3 + 2x2 + 4x+ 6 6x5 + x4 + 3x3 + 5x2 + 5x+ 4 x5 + x4 + x3 + 2x2 + 4x+ 5

 .
Finally, we get

Rem(Rem(hAB, s), x2) =

6x+ 3 6x+ 2 4 x+ 3

6x+ 2 4x+ 5 5 x+ 4

4x+ 6 5x+ 4 4 x+ 5

 .
In this chapter, we shall discuss a new method to compute Rem(Rem(hAB, s), xd)

efficiently, without calculating Rem(hAB, s) explicitly.

To explain the different ideas used we proceed in three subsections. For f, g, s ∈ K[x]
and d ∈ Z>0, Subsection 2.1 presents the algorithm to reduce the operation of computing
Rem(Rem(fg, s), xd) to that of computing the dot product of two polynomial vectors with
degree bounded by O(d). In Subsection 2.2, we extend the idea of the previous subsection
to accommodate vectors F ∈ K[x]n×1 and G ∈ K[x]1×n, reducing the computation of
Rem(Rem(FG, s), xd) to that of multiplying together two matrices degree O(d). Finally,
for A ∈ K[x]n×`, B ∈ K[x]l×m, h ∈ K[x], Subsection 2.3 reduces the operation of computing
Rem(Rem(hAB, s), xd) to polynomial matrix multiplication.

Section 2.4 gives a generalization of the technique described up to this point in the
chapter. For any k ≥ 0, not just k = 0, we show how to find the coefficient of Xk in the
X-adic expansion of Rem(hAB, s), X = xd.

2.1 Scalar Case: Computing Rem(Rem(fg, s), xd)

Let f, g, s ∈ K[x] and d ∈ Z>0. In this section we show how to transform the problem of
computing Rem(Rem(fg, s), xd) to that of computing two dot products of vectors with
degree bounded by O(d).

We can write f, g ∈ K[x] uniquely in xd-adic expansion as

f = f0 + f1x
d + f2x

2d + · · ·+ ftx
td (2.1)

and
g = g0 + g1x

d + g2x
2d + · · ·+ gux

ud, (2.2)

12

where u = b(deg f)/dc, t = b(deg g)/dc, and deg fi < d, deg gj < d for 0 ≤ i ≤ t and
0 ≤ j ≤ u. Let X = xd,

Ĥ = [1 X X2 · · · Xu+t−1 Xu+t], (2.3)

G = [g0 g1 g2 · · · gu−1 gu]T , (2.4)

and

F =

f0

f1 f0

f1
. . .

...
... f0

f1

ft

ft
...

. . .

ft

∈ K[x](u+t)×u. (2.5)

We can now express the product of f with g as

fg = ĤFG, (2.6)

where degF, degG < d. Thus the polynomial multiplication can be done through a
multiplication of a vector with a Toeplitz matrix and vector dot product. We shall develop
this idea further to compute Rem(Rem(fg, s), xd). First we recall that we can also go
in the other direction, i.e., reduce a multiplication of a vector with a Toeplitz matrix to
multiplication of polynomials.

MiddleProduct

Algorithm MiddleProduct in Figure 2.1 is used to the compute the product of a polynomial
vector with a Toeplitz matrix by reducing it to polynomial multiplication. Algorithm
MiddleProduct in Figure 2.1 takes as input H ∈ K[x]1×` and f ∈ K[x] and outputs HF,
where F is a Toeplitz matrix as described in the algorithm.

13

MiddleProduct(f,H, `,m, d)
Input: H ∈ K[x]1×`, f ∈ K[x],m, d ∈ Z>0

Condition: deg f < (l −m+ 1)d.
Let t = `−m, u = m− 1, write f as f = f0 + f1x

d + · · ·+ ftx
td

Let F =

f0

f1 f0

f1
. . .

...
... f0

f1

ft

ft
...

. . .

ft

∈ K[x]`×m

Output: HF ∈ K[x]1×m

γ = deg(H) + d;
fexp := ft + ft−1x

γ + ft−2x
2γ + · · ·+ f0x

tγ;
hexp := (H)1 + (H)2x

γ + (H)3x
2γ + · · ·+ (H)`x

(l−1)γ;
aexp := fexp × hexp;
Write aexp as aexp = a0 + a1x

γ + a2x
2γ + · · ·+ at+l−1x

(t+l−1)γ

return [at at+2 · · · at+u]

Figure 2.1: Algorithm MiddleProduct

First, the algorithm augments the matrix F to

Faug =

ft · · · f1 f0

ft · · · f1 f0

ft · · · f0 f1
. . .

. . .
...

... f0

f1 f0

ft f1 f0

ft
...

... f1 f0

. . .
...

. . .

ft
ft ft−1 · · · f1 f0

∈ K[x]`×(m+2t)

14

We now compute HFaug, instead of HF , as we can compute HFaug using polynomial
multiplication of

fexp =ft + ft−1y + ft−2y
2 + · · ·+ f0y

t ∈ K[x][y]

with

hexp =(H)1 + (H)2y + (H)3y
2 + · · ·+ (H)`y

(l−1).

Next, we use Kronecker substitution, y = xγ , to obtain the same result in xγ-adic expansion,
where degx fexp + degx hexp < γ = deg(H) + d. This shift from xd-adic system to xγ-adic
system ensures a one to one correspondence between the xγ-adic coefficients of the product
and the entries of the vector HFaug. Finally, we multiply

fexp =ft + ft−1x
γ + ft−2x

2γ + · · ·+ f0x
tγ

with

hexp =(H)1 + (H)2x
γ + (H)3x

2γ + · · ·+ (H)`x
(l−1)γ.

The coefficients in the middle of the polynomial give the entries of the vector HF .

Algorithm MiddleProduct(f,H, `,m, d) in Figure 2.1 involves only a single multipli-
cation of two univariate polynomials of degree less than l · (degH + d). We obtain the
following result.

Lemma 2.2. Algorithm MiddleProduct in Figure 2.1 is correct and costs M(l ·(degH+d))
basic operations from K.

Here is an illustration of Algorithm MiddleProduct in Figure 2.1.

Example 2.3. Let us work in the field Z7. Let

H = [6x3 + 6x2 + 4x+ 1 4x2 + 5x+ 4 3x3 + 6x2 + 4x+ 3 4x+ 4]

f = 2x3 + 4x2 + 4x+ 2

d = 2

F =

4x+ 2
2x+ 4 4x+ 2

0 2x+ 4
0

15

To compute HF , we shall augment the matrix F to

Faug =

0 2x+ 4 4x+ 2

0 2x+ 4 4x+ 2
0 2x+ 4 4x+ 2

0 2x+ 4 4x+ 2

 .
So we get

γ =5,

fexp =4x11 + 2x10 + 2x6 + 4x5,

hexp =4x16 + 4x15 + 3x13 + 6x12 + 4x11 + 3x10 + 4x7 + 5x6 + 4x5 + 6x3 + 6x2 + 4x+ 1,

and

hexpfexp =(2x2 + 3x+ 1)× x25 + (5x4 + 2x3 + x2 + 2x+ 1)× x20 + (6x4 + 5x3 + 4x2 + 6x+ 6)× x15

+ (3x4 + 2x3 + 5x2 + 5x+ 4)× x10 + (5x4 + x3 + 4x2 + 4x+ 4)× x5.

The part corresponding to HF would be coefficient of x10 and x15, i.e.,

[3x4 + 2x3 + 5x2 + 5x+ 4 6x4 + 5x3 + 4x2 + 6x+ 6].

PartialProduct

Now we turn to the main problem of this section: calculate Rem(Rem(fg, s), xd). Algorithm
PartialProduct(f, g, s, d) in Figure 2.2 calculates Rem(Rem(fg, s), xd), where f, g, s ∈
K[x] and d ∈ Z>0. As we calculate only the low order coefficients of the product Rem(fg, s),
we call this algorithm “PartialProduct.” In the next section we shall scale this method to
handle vector outer products. The cost of the PartialProduct(f, g, s, d) method, for two
polynomials, is O((deg s)/d ·M(deg s)). This cost is much higher than that of the standard
method; it is only presented to help understand the case where single polynomials are
replaced by column and row vectors.

Consider the problem of multiplication of two polynomials f, g ∈ K[x]. Using equations
(2.1)− (2.5), we get

fg = ĤFG,

Rem(Rem(fg, s), xd) = Rem(Rem(ĤFG), xd)

= Rem(Rem(Rem(Ĥ, s)FG, s), xd).

16

Let H = Rem(Ĥ, s) and q = Quo(HFG, s), we get

Rem(Rem(fg, s), xd) = Rem(Rem(HFG, s), xd)

= Rem(HFG− qs, xd)
= Rem(HFG, xd)− Rem(qs, xd)

= Rem(HFG, xd)− Rem(qRem(s, xd), xd). (2.7)

It is given that

degF < d,

degG < d,

degH < deg s (by assumption),

thus,

degHFG < deg s+ 2d,

deg q < 2d.

Let z = ddeg s/de. We split H = H(l) +H(u), where H(l) consists of the low order terms of
H :.

H(l) =Rem(H, xd(z−2)),

H(u) =H −H(l),

HFG =H(l)FG+H(u)FG.

Since deg(H(l)FG) < deg s, H(l)FG does not contribute to Quo(HFG).

Quo(HFG, s) = Quo(H(u)FG, s)

= Quo(xd(z−2)Quo(H, xd(z−2))FG, s). (2.8)

Let X = xd, putting (2.7) and (2.8) together we get

Rem(Rem(fg, s), xd) =Rem(HFG, xd)− Rem(qRem(s, xd), xd)

=Rem(Rem(H,X)FG,X)

− Rem(Quo(Xz−2Quo(H,X(z−2))FG, s)Rem(s,X), X).
(2.9)

Equation (2.9) summarizes the whole Algorithm 2.2. We next analyze the cost of
Algorithm 2.2.

17

The cost of Preprocessing phase of Algorithm PartialProduct in figure 2.2 is bounded
by the cost of computing H, i.e., O((u+t)·(M(deg s)+M(d))) basic operations from K. Using
the fact that u, t ∈ O((deg s)/d), we can bound the cost of phase 1 by O((deg s)/d·M(deg s)).
The cost of MiddleProduct phase is bounded by O(M((u+ t)d)), using lemma 2.2. Using
the bounds on u and v, this cost reduces to O(M(deg s)). The cost of Vector dot product
phase is bounded by O(uM(d)), which reduces to O((deg s)/dM(d)). Putting everything
together to get the final result in phase 4 costs O(M(d)) basic operations from K. Therefore,
the cost of the algorithm is dominated by the first phase. We can now state the following
result.

Lemma 2.4. Algorithm PartialProduct(f, g, s, d) in Figure 2.2, is correct and costs

O((deg s)/d (M(deg s) + M(d)))

basic field operations from K.

Let us illustrate Algorithm 2.2 with the following example.

Example 2.5. Let us work in Z7. We want to find Rem(Rem(fg, s), xd), where

f = 4x5+6x3+3x2+3x+4, g = 2x5+x4+6x3+x+3, s = 4x6+2x5+3x4+6x2 and d = 2.

In Preprocessing phase , we compute H and trim it to the required low order and high order
parts H(l) and Ĥ.

H =[1 x2 x4 3x5 + x4 + 2x2 5x5 + 5x4 + 6x3 + 6x2 x5 + 5x4 + 3x3 + 5x2]

H(l) =[1 0 0 0 0 0 0 0]

H(u) =[0 1 x2 3x3 + x2 + 2 5x3 + 5x2 + 6x+ 6 x3 + 5x2 + 3x+ 5].

In MiddleProduct phase we compute the middle product of H(l) and H(u) with f to get F (l)

and F (u) using algorithm 2.1.

F (l) =[3x+ 4 0 0]

F (u) =[4x3 + 6x+ 3 5x4 + 3x3 + 3x2 + 4x+ 4 3x4 + 3x3 + 3x2 + x+ 6].

In Vector dot product phase, we find the dot product of F (l) with G and F (u) with G.

p(l) =3x2 + 6x+ 5,

p(u) =x5 + 3x4 + 4x3 + 2x+ 1

where
G = [x+ 3 6x 2x+ 1]T .

In phase 4, we compute q = 2x+ 5 and finally put together everything to get the result

Rem(3x2 + 6x+ 5, x2)− Rem((2x+ 5)Rem(4x6 + 2x5 + 3x4 + 6x2, x2), x2) =6x+ 5.

18

PartialProduct(f, g, s, d)
Input: s, f, g ∈ K[x], d ∈ Z>0

Condition: s 6= 0, f = Rem(f, s), g = Rem(g, s)
Output: Rem(Rem(fg, s), xd)

if deg(s) ≤ 2d
return Rem(Rem(fg, s), xd)

fi
t, u, z,X = bdeg(f)

d
c, bdeg(g)

d
c, bdeg(s)

d
c, xd;

[1: Preprocessing]
Ĥ = [1 X X2 · · · X t+u+1];

H := Rem(Ĥ, s);
H(l) := Rem(H,X) , H(u) := Quo(H,Xz−2);

[2: MiddleProduct]
F (l) := MiddleProduct(f,H(l), u+ t+ 1, u+ 1, d) ∈ K[x]1×u+1;
F (u) := MiddleProduct(f,H(u), u+ t+ 1, u+ 1, d) ∈ K[x]1×u+1;

[3: Vector dot product]
Write g as: g = g0 + g1X + g2X

2 + · · ·+ guX
u

G =
[
g0 g1 g2 · · · gu

]T
;

p(l), p(u) := F (l).G, F (u).G;

[4:Combining the terms]
q := Quo(xd(z−2)p(u), s)
return Rem(p(l), X)− Rem(q × Rem(S,X), X)

Figure 2.2: Algorithm PartialProduct(f, g, s, d)

19

2.2 Vector Case: Computing Rem(Rem(FG, s), xd)

Let F ∈ K[x]n×1, G ∈ K[x]1×n, and degF, degG < deg s. This section deals with the problem
of computing Rem(Rem(FG, s), xd). Algorithm PartialProduct(F,G, s, d) in Figure 2.3
is analogous to Algorithm 2.2, with polynomials f and g replaced by vectors of polynomials
F and G.

The preprocessing phase in Algorithm 2.3 is same as that in Algorithm 2.2 and costs
O((deg s)/d ·M(deg s)) operations from K. MiddleProduct phase is also same as that in
algorithm 2.2 except that we repeat the procedure for every entry in F . The cost of this phase
is bounded by O(nM(deg s)) operations from K (Lemma 2.2). The MatrixMultiplication
phase in Algorithm 2.3 involves matrix multiplication instead of dot product and costs
O(MM(n, (deg s)/d, n, d)) operations from K. The last phase puts everything together and
costs O(deg s+ n2 M(d)) operations from K.

The cost of Algorithm 2.2 was dominated by the preprocessing phase. The cost of
Algorithm 2.3 is dominated by the matrix multiplication step in Phase 3. This is due to the
fact that the cost of the preprocessing phase is not related to the number of polynomials
but the degree bounds on the polynomials. Thus as the number of terms increase the cost
of Phase 3 dominates the cost of the algorithm. Now we can state the following result:

Theorem 2.6. The algorithm 2.3, PartialProduct, is correct and costs

O(MM(n, (deg s)/d, n, d))

operations from K.

Let us illustrate Algorithm 2.3 with the following example.

Example 2.7. Let us work in Z7. Let

F =[0 x3 + x2 + 5x+ 6 6x+ 1]T ,

G =[0 6x4 + 6x3 + 2x2 + 4x+ 1 4x5 + 5x4 + 3x3 + 3x2 + 2],

s =6x6 + 6x5 + x4 + 6x3 + 4x2 + 3, and d = 2.

In Preprocessing phase, we compute H and trim it to low order and high order parts
H(l) and H(u), required for the computation.

H =[1 x2 x4 6x5 + x4 + 6x3 + 4x2 + 3 3x5 + x3 + 4x2 + 4x+ 6],

H(l) =[1 0 0 3 4x+ 6],

H(u) =[1 0 x2 6x3 + x2 + 6x+ 4 3x3 + x+ 4].

20

PartialProduct(F,G, s, d)
Input: s ∈ K[x], F ∈ K[x]n×1, G ∈ K[x]1×n, d ∈ Z>0

Condition: s 6= 0, G = Rem(G, s), F = Rem(F, s)
Output: Rem(Rem(FG, s), xd)

if deg(s) ≤ 2d
return Rem(Rem(FG, s), xd);

fi
t, u, z,X := bdeg(F)

d c, bdeg(G)
d c, bdeg(z)

d c, xd;

[1: Preprocessing]
Ĥ := [1 X X2 · · · Xt+u+1];
H := Rem(Ĥ, s);
H(l) := Rem(H,X) , H(u) := Quo(H,Xz−1);

[2: MiddleProduct]
for i = 1 to n

F
(l)
i := MiddleProduct(Fi, H

(l), u+ t+ 1, u+ 1, d) ∈ K[x]1×u+1;
F

(u)
i := MiddleProduct(Fi, H

(u), u+ t+ 1, u+ 1, d) ∈ K[x]1×u+1;
od

[Phase 3: Matrix multiplication]
Write Gi as: (G)i = gi,0 + gi,1X + gi,2X

2 + · · ·+ gi,uX
u for 1 ≤ j ≤ n.

G =

g1,0 g2,0 g3,0 · · · gn,0

g1,1 g2,1 g3,1 · · · gn,1

g1,2 g2,2 g3,2 · · · gn,2

...
...

... · · ·
...

g1,u g2,u g3,u · · · gn,u

 ∈ K[x](u+1)×n.

F
(l)
M , F

(u)
M =

FL1

FL2

FL3

...

FLn

,

FU1

FU2

FU3

...

FUn

∈ K[x]n×(u+1).

P (l), P (u) := F
(l)
M .G, F

(u)
M .G

[Phase 4: Combining the terms]
Q := Quo(xd(z−2) P (u), s)
return Rem(P (l), X)− Rem(Rem(Q,X) · Rem(s,X), X);

Figure 2.3: Algorithm PartialProduct(F,G, s, d)

21

In MiddleProduct phase, we compute the middle product of H(l) and H(u) with each
entry in F to get F

(l)
M and F

(u)
M using Algorithm 2.1.

F
(l)
M =

 0 0 0
5x+ 6 0 3x+ 3
6x+ 1 0 0

F

(l)
M =

 0 0 0
x+ 1 x3 + x2 + 5x+ 6 6x4 + 5x3 + 6x2 + 3x+ 4

0 6x+ 1 6x3 + x2

 .
We then multiply the matrices F

(l)
M and F

(u)
M with G to get P (l) and P (u) in MatrixMul-

tiplication phase:

G =

0 4x+ 1 2
0 6x+ 2 3x+ 3
0 6 4x+ 5

P (l) =

0 0 0
0 6x2 + 5x+ 3 5x2 + 2x+ 6
0 3x2 + 3x+ 1 5x+ 2

P (u) =

0 0 0
0 3x3 + 2x2 + 6x+ 2 3x5 + 4x4 + 6x3 + 4x2 + 3x+ 5
0 x3 + 4x+ 2 3x4 + 6x3 + 2x2 + 3

 .
Finally we find the quotient and put everything together in phase 4.

Q =Quo(x2 P (u), s)

=

0 0 0
0 0 4x+ 6
0 0 4

 .
Thus the output is 0 0 0

0 5x+ 3 4x+ 2
0 3x+ 1 5x+ 4

 .

2.3 Array Case: Computing Rem(Rem(hAB, s), xd)

We now extend the PartialProduct algorithm to compute Rem(Rem(hAB, s), xd), where
A ∈ K[x]n×`, B ∈ K[x]`×m, h, s ∈ K[x] and d ∈ Z>0, along with the conditions that

22

degA, degB, deg h < deg s. The problem in this section is more general than the problems
tackled in the previous sections, but the central idea remains the same. To keep the
description of the main idea simple, we chose to solve a slightly simplified problem in the
previous sections.

Algorithm PartialProduct(h,A,B, s, d) in Figure 2.4 describes the procedure to com-
pute Rem(Rem(hAB, s), xd). It is exactly analogous to algorithm 2.2 and algorithm 2.3,
except for phase 1 which accommodates for the multiplication of h by AB, (The same
change would be required for computation of Rem(Rem(hfg, s), xd) by Algorithm 2.2. This
can be seen easily by multiplying both sides of (2.6) by h.)

We now discuss the cost of Algorithm 2.4. The cost of the preprocessing phase is
bounded by O((u+ t) ·M(deg s)). Using lemma 2.2, we can bound the cost of the Middle
Product phase by O(nlM((u + t)d)). The matrix multiplication phase has cost bounded by
O(MM(n, (u+ 1)l,m, d)) and the cost of the last phase is bounded by O(nmM(d)). Thus
we can state the following result.

Lemma 2.8. The cost of Algorithm PartialProduct(h,A,B, s, d) in Figure 2.4 is bounded
by O(1/d (degA+degB)M(deg s+d)+nlM(degA+degB)+MM(n, ` degB/d,m, d)) basic
operations from K. Here A ∈ K[x]n×` and B ∈ K[x]`×m.

We also like to mention the following corollary, which will be useful in the next chapter.

Corollary 2.9. If A ∈ K[x]n×`, B ∈ K[x]`×m, l degB, ` degA ∈ O(nd) and deg s ≤ nd, then
the cost of Algorithm PartialProduct(h,A,B, s, d) in Figure 2.4 is bounded by O(nM(nd)+
nω M(d)) basic operations from K.

2.4 Extension: Compute Quo(Rem(Rem(hAB, s), Xk+1), Xk)

We can easily extend Algorithm 2.4 to find any xd-adic coefficient of Rem(hAB, s) in the
same cost. For the sake of keeping the presentation simple and the use of this algorithm in
the rest of the paper, we have described the algorithm only for the trailing coefficient case,
in the previous sections.

Let X = xd. The basis of all PartialProduct algorithms described in previous sections
has been (2.9). We shall now derive a similar equation for the case of finding the X adic
coefficient of Xk in Rem(fg, s), i.e.,

Quo(Rem(Rem(fg, s), Xk+1), Xk).

23

PartialProduct(h,A,B, s, d)
Input: A ∈ K[x]n×l, B ∈ K[x]l×m, s, h ∈ K[x], d ∈ Z>0

Condition: s 6= 0, h = Rem(h, s), A = Rem(A, s) and B = Rem(B, s)
Output: Rem(Rem(hAB, s), xd) ∈ K[x]n×m

if deg(s) ≤ 2d
return Rem(Rem(hAB, s), xd);

fi
u, t, z,X := bdeg(B)

d c,max{bdeg(A)
d c, u}, bdeg(s)

d c, xd;

[1 : Preprocessing]
Ĥ = [h hX hX2 · · · hXt+u+1];
H := Rem(Ĥ, s);
H(l), H(u) := Rem(H,X),Quo(H,Xz−1);

[2: MiddleProduct]
for each fij = Aij

F
(l)
ij := MiddleProduct(fij , H

(l), u+ t+ 1, u+ 1, d) ∈ K[x]1×u+1;

F
(u)
ij := MiddleProduct(fij , H

(u), u+ t+ 1, u+ 1, d) ∈ K[x]1×u+1

od

[3: Matrix multiplication]
for i = 1 to l

Write Bij = gj,0 + gj,1X + · · ·+ gj,uX
u, for 1 ≤ j ≤ m.

Gi =

g1,0 g2,0 · · · gm,0

g1,1 g2,1 · · · gm,1

...
... · · ·

...
g1,u g2,u · · · gm,u

 ∈ K[x](u+1)×m

od

G =

G1

...
Gl−1

Gl

∈ K[x](u+1)l×m,

F
(l)
M , F

(u)
M =

F

(l)
11 F

(l)
12 · · · F

(l)
1(l−1) F

(l)
1l

F
(l)
21 F

(l)
22 · · · F

(l)
2(l−1) F

(l)
2l

...
...

...
...

F
(l)
n1 F

(l)
n2 · · · F

(l)
n(l−1) F

(l)
nl

 ,

F

(u)
11 F

(u)
12 · · · F

(u)
1(l−1) F

(u)
1l

F
(u)
21 F

(u)
22 · · · F

(u)
2(l−1) F

(u)
2l

...
...

...
...

F
(u)
n1 F

(u)
n2 · · · F

(u)
n(l−1) F

(u)
nl

P (l), P (u) := F

(l)
M .GM , F

(u)
M .GM ∈ K[x]n×m;

[4: Combining the terms]
Q := Quo(Xz−2P (u), s)
return Rem(P (l), X)− Rem(Rem(Q,X)× Rem(s,X), X);

Figure 2.4: Algorithm PartialProduct(h,A,B, s, d)

24

We use (2.1)− (2.5) to get

fg = ĤFG

⇒ Rem(Rem(fg, s), Xk+1) = Rem(Rem(ĤFG), Xk+1)

= Rem(Rem(Rem(Ĥ, s)FG, s), Xk+1).

Let H = Rem(Ĥ, s) and q = Quo(HFG, s), now the above equation can be written as

Rem(Rem(fg, s), Xk+1) = Rem(Rem(HFG, s), Xk+1)

= Rem(HFG− qs,Xk+1)

= Rem(HFG,Xk+1)− Rem(qs,Xk+1)

= Rem(HFG,Xk+1)− Rem(qRem(s,Xk+1), Xk+1)

= Rem(Hk+1FG,X
k+1)

− Rem(qRem(s,Xk+1), Xk+1), (2.10)

where Hk+1 = Rem(H,Xk+1). It is given that

degF <d,

degG <d, and

degH < deg s (by definition),

thus,

degHFG < deg s+ 2d, and

deg q <2d.

Let z = ddeg s/de. We split H = H(l) +H(u), where H(l) contains the lower order terms of
H, in the following manner:

H(l) =Rem(H,Xz−2),

H(u) =H −H(l)

⇒ HFG =H(l)FG+H(u)FG.

Since deg(H(l)FG) < deg s

Quo(HFG, s) = Quo(H(u)FG, s)

= Quo(Xz−2Quo(H,Xz−2)FG, s). (2.11)

25

Putting (2.10) and (2.11) together we get as before (2.9)

Rem(Rem(fg, s), Xk+1) =Rem(Hk+1FG,X
k+1)− Rem(qRem(s,Xk+1), Xk+1) (2.12)

=Rem(Hk+1FG,X
k+1)

− Rem(Quo(Xz−2Quo(H,X(z−2))FG, s)Rem(s,Xk+1), Xk+1).

We now split Hk+1 as

Hk+1 = H
(1)
k+1 +Xk−2H

(2)
k+1,

where

H
(1)
k+1 =Rem(H,Xk−2).

Therefore

Hk+1FG = H
(1)
k+1FG+X(k−2)H

(2)
k+1FG

⇒ Rem(Hk+1FG,X
k+1) = Rem(H

(1)
k+1FG,X

k+1)

+ Rem(X(k−2)H
(2)
k+1FG,X

k+1). (2.13)

Since the degree of the first term in (2.13) is less than kd, we get

Quo(Rem(Hk+1FG,X
k+1), Xk) = Quo(Rem(Xk−2H

(2)
k+1FG,X

k+1), Xk). (2.14)

Similarly let Rem(s,Xk+1) = sk+1 and let sk+1 = s
(1)
k+1 +Xk−2s

(2)
k+1. We get

Quo(Rem(qRem(s,Xk+1), Xk+1), Xk) = Quo(Rem(qXk−2s
(2)
k+1, X

k+1), Xk). (2.15)

Using (2.12), (2.14) and (2.15) together we get

Quo(Rem(Rem(fg, s), Xk+1), Xk) = Quo(Rem(Xk−2H
(2)
k+1FG,X

k+1), Xk)

−Quo(Rem(qXk−2s
(2)
k+1, X

k+1), Xk), (2.16)

where

H = Rem(Ĥ, s),

H
(2)
k+1 = Quo(Rem(H,Xk+1), Xk),

s
(2)
k+1 = Quo(Rem(s,Xk+1), Xk), and

q = Quo(Quo(H,Xz−2)FG, s).

26

PartialProduct(f, g, s, d, k)
Input: s, f, g ∈ K[x], d, k ∈ Z>0

Condition: s 6= 0, f = Rem(f, s), g = Rem(g, s), kd < deg s
Let X = xd.
Output: Quo(Rem(Rem(fg, s), Xk+1), Xk)

if deg(s) ≤ 2d
return Quo(Rem(Rem(fg, s), Xk+1), Xk)

fi
t, u, z = bdeg(f)

d
c, bdeg(g)

d
c, bdeg(s)

d
c;

[1: Preprocessing]
Ĥ = [1 X X2 · · · X t+u+1];

H := Rem(Ĥ, s);
H(l), H(u) := Quo(Rem(H,Xk+1), Xk),Quo(H,Xz−2);
sl = Quo(Rem(s,Xk+1), Xk)

[2: MiddleProduct]
F (l) := MiddleProduct(f,H(l), u+ t+ 1, u+ 1, d) ∈ K[x]1×u+1;
F (u) := MiddleProduct(f,H(u), u+ t+ 1, u+ 1, d) ∈ K[x]1×u+1;

[3: Vector dot product]
Write g as: g = g0 + g1X + g2X

2 + · · ·+ guX
u

G =
[
g0 g1 g2 · · · gu

]T
;

p(l), p(u) := F (l).G, F (u).G;

[4:Combining the terms]
q := Quo(Xz−2p(u), s)
return Quo(Rem(Xk−2p(l), Xk+1), Xk)−Quo(Rem(qXk−2sl, X

k+1), Xk)

Figure 2.5: Algorithm PartialProduct(f, g, s, d, k)

27

Equation (2.16) summarizes Algorithm PartialProduct(f, g, s, d, k) in Figure 2.5. This
algorithm is almost same as Algorithm PartialProduct(f, g, s, d) in Figure 2.2 but for
slight modifications.

Similarly, analogous to Algorithm PartialProduct(h,A,B, s, d) in Figure 2.4, we can
describe Algorithm PartialProduct(h,A,B, s, d, k) in Figure 2.6, to compute

Quo(Rem(Rem(hAB, s), Xk+1), Xk),

where A ∈ K[x]n×`, B ∈ K[x]`×m and h ∈ K[x].

Using cost estimates similar to one used in lemma 2.8, we can state the following results

Lemma 2.10. The cost of Algorithm PartialProduct(h,A,B, s, d, k) in Figure 2.6, is
bounded by O(1/d (degA+ degB)M(deg s) +nlM(degA+ degB) + MM(n, ` degB/d,m, d))
basic operations from K. Here A ∈ K[x]n×` and B ∈ K[x]`×m.

Corollary 2.11. If A ∈ K[x]n×`, B ∈ K[x]`×m, degB×`, degB×` ∈ O(nd) and deg s ≤ nd,
then the cost of Algorithm PartialProduct(h,A,B, s, d, k) in Figure 2.6, is bounded by
O(nM(nd) + nω M(d)) basic operations from K.

28

PartialProduct(h,A,B, s, d, k)
Input: A ∈ K[x]n×l, B ∈ K[x]l×m, s, h ∈ K[x], k, d ∈ Z>0

Condition: s 6= 0, h = Rem(h, s), A = Rem(A, s) B = Rem(B, s), kd < deg s
Output: Quo(Rem(Rem(hAB, s), Xk+1), Xk) ∈ K[x]n×m

if deg(s) ≤ 2d
return Rem(Rem(hAB, s), xd);

fi
u, t, z,X := bdeg(B)

d c,max{bdeg(A)
d c, u}, bdeg(s)

d c, xd;

[1 : Preprocessing]
Ĥ = [h hX hX2 · · · hXt+u+1];
H := Rem(Ĥ, s);
H(l), H(u) := Quo(Rem(H,Xk+1), Xk),Quo(H,Xz−1);
sl = Quo(Rem(s,Xk+1), Xk)

[2: MiddleProduct]
for each fij = Aij

F
(l)
ij := MiddleProduct(fij , H

(l), u+ t+ 1, u+ 1, d) ∈ K[x]1×u+1;

F
(u)
ij := MiddleProduct(fij , H

(u), u+ t+ 1, u+ 1, d) ∈ K[x]1×u+1

od

[3: Matrix multiplication]
for i = 1 to l

Write Bij = gj,0 + gj,1X + · · ·+ gj,uX
u, for 1 ≤ j ≤ m.

Gi =

g1,0 g2,0 · · · gm,0

g1,1 g2,1 · · · gn,1

...
... · · ·

...
g1,u g2,u · · · gm,u

 ∈ K[x](u+1)×m

od

G =

G1

...
Gl−1

Gl

∈ K[x](u+1)l×m,

F
(l)
M , F

(u)
M =

F

(l)
11 F

(l)
12 · · · F

(l)
1(l−1) F

(l)
1l

F
(l)
21 F

(l)
22 · · · F

(l)
2(l−1) F

(l)
2l

...
...

...
...

F
(l)
n1 F

(l)
n2 · · · F

(l)
n(l−1) F

(l)
nl

 ,

F

(u)
11 F

(u)
12 · · · F

(u)
1(l−1) F

(u)
1l

F
(u)
21 F

(u)
22 · · · F

(u)
2(l−1) F

(u)
2l

...
...

...
...

F
(u)
n1 F

(u)
n2 · · · F

(u)
n(l−1) F

(u)
nl

P (l), P (u) := F

(l)
M .G, F

(u)
M .G ∈ K[x]n×m;

[4: Combining the terms]
Q := Quo(Xz−2P (u), s)
return Quo(Rem(Xk−2P (l), Xk+1), Xk)−Quo(Rem(QXk−2sl, X

k+1), Xk);

Figure 2.6: Algorithm PartialProduct(h,A,B, s, d, k)
29

Chapter 3

Reduced Smith Transform

In this chapter R represents either K[x] or K[x]/〈s〉, for s 6= 0 ∈ K[x]. We need a few
definitions before we describe the central problem dealt with in this chapter. Recall from
Chapter 1, Definition 1.3, the notion of Smith form that S ∈ Rn×n is said to be in Smith
form if S can be written as diag(s1, s2, . . . , sn) ∈ Rn×n with

• si ∈ A(R) for all 1 ≤ i ≤ n, and

• si | si+1 for all 1 ≤ i < n.

We now define the notion of a Smith transform, a reduced Smith transform, a Smith
decomposition and a reduced Smith decomposition as follows:

Definition 3.1. A Smith transform of A ∈ Rn×n is a tuple (U, V) such that

• U, V ∈ Rn×n are unimodular, and

• UAV = S ∈ Rn×n, where S is the Smith form of A.

We call the tuple (Ū , V̄) a reduced Smith transform if V̄ [∗, i] = Rem(V [∗, i], si) and
Ū [i, ∗] = Rem(U [i, ∗], si), for 1 ≤ i ≤ n, for some Smith transform (U, V).

Definition 3.2. A Smith decomposition of B ∈ Rn×n is a tuple (U, S, V) such that

• U, V ∈ Rn×n are unimodular, and

• B = USV ∈ Rn×n, where S is the Smith form of B.

We call the tuple (Ū , S, V̄) an s-reduced Smith decomposition if

30

• B = Rem(ŪSV̄ , s), and

• deg Ū [∗, i] < deg s/si and deg V̄ [i, ∗] < deg s/si, for 1 ≤ i ≤ n,

where s is a multiple of the largest Smith invariant of B. When s = sn, the largest invariant
factor of B, we call the tuple (Ū , S, V̄) a reduced Smith decomposition of B.

Note that if A ∈ K[x]n×n with degA ≤ d, then the size of a reduced Smith transform is
a priori bounded by O(n2d) elements from K. This is a direct consequence of the bounds
on the degree of the invariant factors of A as given in Theorem 1.4.

Given a nonsingular A ∈ K[x]n×n along with S = snf(A) ∈ K[x]n×n, where degA ≤ d,
we want to find a reduced Smith transform of A. Our target cost is O (̃nωd) basic
operations from K. It is not unreasonable to assume that we are given S, the Smith form
of B, as there exists a Las Vegas algorithm that computes S, given B over K[x], in cost
O(nω (log n)2B(d)) [28]. We compute a reduced Smith transform of A by reducing the
problem to the computation of a sn-reduced Smith decomposition of snA

−1. The following
lemma shows the connection between a reduced Smith transform of A and a sn-reduced
Smith decomposition of snA

−1.

Lemma 3.3. Given a nonsingular A ∈ K[x]n×n, and S = snf(A) ∈ K[x]n×n, with the
condition that deg snA

−1 < deg sn. The following statements are equivalent:

• (U, V) is a reduced Smith transform of A,

• (V P, PsnS
−1P, PU) is a sn-reduced Smith decomposition of snA

−1,

where P ∈ K[x]n×n is a permutation matrix with 1 on the antidiagonal.

Proof. Let (W,Y) be a Smith transform of A. Then

WAY = S ∈ K[x]n×n

⇔ snA
−1 = Y snS

−1W ∈ K[x]n×n (3.1)

⇔ snA
−1 = Y P (PsnS

−1P)PW ∈ K[x]n×n.

Note that
PsnS

−1P = snf(snA
−1) = diag(sn/sn, sn/sn−1, . . . , sn/s1). (3.2)

This implies that (Y P, PW) is a Smith decomposition of snA
−1. Therefore, (W,Y) is a

Smith transform of A if and only if (Y P, PW) is a Smith decomposition of snA
−1. Let wi

be the i-th row of W and yi be the i-th column of Y , for 1 ≤ i ≤ n. Equation (3.1) can
now be written as

snA
−1 =

sn
sn
ynwn +

sn
sn−1

yn−1wn−1 + · · ·+ sn
s1

y1w1. (3.3)

31

Consider taking equation (3.3) modulo sn. The left hand side remains unchanged as we
assume that deg snA

−1 < deg sn. Since each yiwi is scaled by sn/si, the equation will still
hold if entries in wi and yi are reduced modulo si to Rem(wi, si) and Rem(yi, si), 1 ≤ i ≤ n.
Let U = [wT1 | wT2 · · · | wTn]T and V = [y1 | y2 · · · | yn]. A sn reduced Smith decomposition
of snA

−1 is
snA

−1 = Rem(V P (PsnS
−1P)PU, sn),

with deg((V P)[∗, i]) < deg sn−i+1 and deg((PU)[i, ∗]) < deg sn−i+1 for 1 ≤ i ≤ n, which
simplifies to deg V [∗, i] < deg si and degU [i, ∗] < deg si, 1 ≤ i ≤ n. This is equivalent to
stating that a reduced Smith transformation of A is (U, V) where U [i, ∗] = Rem(W [i, ∗], si)
and V [∗, i] = Rem(Y [∗, i], si).

Note that if A is row reduced, then deg snA
−1 < deg sn.

We can infer from the above lemma that, for a nonsingular A ∈ K[x]n×n with degA = d,
the a priori size of a sn-reduced Smith decomposition of snA

−1 is same as that of a
reduced Smith transform of A and is bounded by O(n2d) elements from K. This is a direct
consequence of the bounds on the degree of each invariant factor of A (Theorem 1.4).

From now on we focus on computing a reduced Smith decomposition of snA
−1 modulo sn.

A iterative algorithm for computing a reduced Smith decomposition of snA
−1 is given in [30].

It computes a sn-reduced Smith decomposition of snA
−1 in cost O(n2 B(nd)) operations from

K, when deg snA
−1 < deg sn. We adapt the iterative algorithm in [30] to give an algorithm

to compute a sn-reduced Smith decomposition of snA
−1 in cost O(nω(log n)2 B(d)).

In the Section 3.1, we discuss the problem of computing a reduced Smith decomposition
of nonsingular B ∈ K[x]n×n, where S = diag(s1, s2, · · · , sn) is the Smith form of B. In
Section 3.2 we adapt the techniques developed in Section 3.1 to compute a sn-reduced Smith
transform of snA

−1 from A and S, where degA ≤ d and snf(A) = S = diag(s1, s2, . . . , sn).
Our target cost is O (̃nωd) basic operations from K. We cannot achieve the target cost by
directly working over snA

−1 as the size of snA
−1 in terms of number of elements from K

can potentially be O(n3d). To achieve the target cost, algorithm in Section 3.2 takes A as
an input and works implicitly on snA

−1 by using the high order lifting technique [28] and
the partial product technique from Chapter 2.

3.1 Reduced Smith Decomposition of B

Given a nonsingular B ∈ K[x]n×n and S = diag(s1, s2, . . . , sn) ∈ K[x]n×n, the Smith form of
B, we want to compute (U, V) a sn-reduced Smith decomposition of B :

B = USV mod sn. (3.4)

32

Let R = K[x]/〈sn〉 (refer to Section 1.2 for details). Recall from Section 1.2, φsn is
the homomorphism from K[x] to R defined by φsn(b) = Rem(b, sn) ∈ R, for b ∈ K[x]. Let
B̄ = φsn(B) ∈ Rn×n. A reduced Smith decomposition (U, V) of B ∈ K[x]n×n satisfying
equation (3.4) can be obtained by computing a Smith decomposition of B̄ over the ring R.
From now on we concern ourselves with computing a Smith decomposition of B̄ over the
ring R. We make the following assumption about B̄ ∈ Rn×n:

snf(B̄[1,...,i|1,...,i]) = diag(s1, s2, · · · , si) ∈ Rn×n (3.5)

for all 1 ≤ i ≤ n. For a sufficiently large field K, any B ∈ K[x]n×n, and unit upper and
unit lower triangular matrices U,L ∈ K[x]n×n where the nonzero, non diagonal entries are
chosen at random from K, φsn(UBL) satisfies the equation (3.5) with high probability [20].
Thus the assumption (3.5) is not a limiting assumption.

Subsection 3.1.1 presents an iterative method to compute a Smith decomposition of
B̄ in O(n3) operations from R. Subsection 3.1.2 builds on Subsection 3.1.1 to compute a
Smith decomposition of B̄ in O(nω) operations from R.

3.1.1 Iterative Approach

Let R = K[x]/〈s〉, 0 6= s ∈ K[x]. Given B ∈ Rn×n and S = snf(B) ∈ Rn×n, we outline a
algorithm for finding a Smith decomposition of B, where B satisfies property (3.5). We also
assume that none of the invariant factors of B are zero. This is not a limiting assumption;
if only the first r invariant factors of B are nonzero, then using assumption (3.5) we can
work over the smaller matrix B[1,...,r|1,...,r] to get a Smith decomposition of B.

Let B(1) = B ∈ Rn×n. Due to (3.5), there is a unit t1 ∈ R such that

t1 ×B(1)[1, 1] = s1 ∈ Rn×n.

Let
C(1) = diag(t1, 1, 1, . . . , 1)B(1).

Note that
C(1) ≡L B(1) ∈ Rn×n. (3.6)

By Theorem 1.4, s1 divides all the entries of C(1), hence using elementary row and
column operations we can eliminate the non diagonal entries in the first row and first
column of C(1) to get B(2):[

1 0

−C(1)
[2,...,n|1]/s1 I

]
C(1)

[
1 −C(1)

[1|2,...,n]/s1

0 B(2)

]
=

[
s1 0

0 B(2)

]
∈ Rn×n.

33

We are careful of the fact that for a, b ∈ R, the operation a/b is not defined for a nonunit b
with any a ∈ R. We only use a/b when ever we are sure that b divides a in R and b ∈ A(R).
Using (3.6) we get[

t1 0

−C(1)
[2,...,n|1]/s1 I

]
B(1)

[
1 −C(1)

[1|2,...,n]/s1

0 B(2)

]
=

[
s1 0

0 B(2)

]
∈ Rn×n.

Thus B(1) decomposes in the following manner:

B(1) =

U(1)︷ ︸︸ ︷[
t−1
1 0

t−1
1 C

(1)
[2,...,n|1]/s1 I

][
s1 0

0 B(2)

] V (1)︷ ︸︸ ︷[
1 t−1

1 C
(1)
[1|2,...,n]/s1

0 B(2)

]
∈ Rn×n.

We know from (3.5)

snf(B
(1)
[1,2|1,2]) = diag(s1, s2).

Therefore B(2)[1, 1] must be an associate of s2. Thus we follow the same procedure on B(2)

and so on to get a complete Smith decomposition.

For B ∈ R3×3, the matrix B decomposes in the following manner:

B(1)︷ ︸︸ ︷[∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

]
=

U(1)︷ ︸︸ ︷[
t−1
1∗ 1
∗ 1

] diag(s1,B(2))︷ ︸︸ ︷[
s1 ∗ ∗
∗ ∗

] V (1)︷ ︸︸ ︷[
1 ∗ ∗

1
1

]
=

U(2)︷ ︸︸ ︷[
1
t−1
2∗ 1

] U(1)︷ ︸︸ ︷[
t−1
1∗ 1
∗ 1

] diag(s1,s2,B(3))︷ ︸︸ ︷[
s1
s2 ∗

] V (1)︷ ︸︸ ︷[
1 ∗ ∗

1
1

] V (2)︷ ︸︸ ︷[
1

1 ∗
1

]

=

U(3)︷ ︸︸ ︷[
1

1
t−1
3

] U(2)︷ ︸︸ ︷[
1
t−1
2∗ 1

] U(1)︷ ︸︸ ︷[
t−1
1∗ 1
∗ 1

] diag(s1,s2,s3)︷ ︸︸ ︷[
s1
s2
s3

] V (1)︷ ︸︸ ︷[
1 ∗ ∗

1
1

] V (2)︷ ︸︸ ︷[
1

1 ∗
1

] V (3)︷ ︸︸ ︷[
1

1
1

]

Finally we get the Smith Decomposition as:

=

U︷ ︸︸ ︷ t−1
1

∗ t−1
2

∗ ∗ t−1
3

diag(s1,s2,s3)︷ ︸︸ ︷ s1

s2

s3

V︷ ︸︸ ︷ 1 ∗ ∗
1 ∗

1

,
where U = U (3)U (2)U (1) and V = V (1)V (2)V (3). We obtain the following result:

Lemma 3.4. Let R = K[x]/〈s〉, s 6= 0 ∈ K[x]. If B ∈ Rn×n, with S = snf(B) ∈ Rn×n,
satisfies the condition that:

snf(B[1,...,i|1,...,i]) = diag(s1, s2, · · · , si) ∈ Rn×n

34

for all 1 ≤ i ≤ n, then B admits a Smith decomposition (U, S, V) over R, where U is
unimodular lower triangular and V is unit upper triangular. We can compute this Smith
decomposition in O(n3) basic operations from R.

In the next section, we introduce matrix multiplication and try to reduce the number of
operations over R to O(nω).

3.1.2 Recursive Approach

As in Subsection 3.1.1, let R = K[x]/〈s〉, 0 6= s ∈ K[x]. Given B ∈ Rn×n and S = snf(B) ∈
Rn×n, we outline a recursive algorithm for finding a Smith decomposition of B, where B
satisfies property (3.5). We assume that none of the invariant factors of B are zero. This
is not a limiting assumption; if only the first r invariant factors of B are nonzero, then
using assumption (3.5) we can work over the smaller matrix B[1,...,r|1,...,r] to get a Smith
decomposition. The algorithm returns ”fail” if (3.5) is not satisfied. Let this algorithm be
called SD(B, S, n, s). Algorithm SD works over R. Let us write B in the following manner:

B =

[
B1 B2

B3 B4

]
∈ Rn×n,

where B1 ∈ Rn1×n1 , for some 0 < n1 < n. Applying recursively SD on B1 we get:

U1, S1, V1 = SD(B1, S[1,...,n1|1,...,n1], n1, s) ∈ Rn1×n1 .

We then apply the following unimodular transformation on B̄:[
U−1

1

I

] [
B1 B2

B3 B4

] [
V −1

1

I

]
=

[
S1 B̂2

B̂3 B4

]
∈ Rn×n.

As in Subsection 3.1.1, due to Theorem 1.4 every element in B̂2[i, ∗] and B̂3[∗, i] is divisible
by S1[i, i], 1 ≤ i ≤ n1. This suggests that S−1

1 B̂2 ∈ Rn1×(n−n1) and B̂3S
−1
1 ∈ R(n−n1)×n1 .

Thus we can apply the following unimodular operation:[
I

−B̂3S
−1
1 I

] [
S1 B̂2

B̂3 B4

] [
I −S−1

1 B̂2

I

]
=

[
S1

B̂4

]
∈ Rn×n.

Therefore we reduce the matrix B in the following manner:[
U−1

1

−B3V
−1
1 S−1

1 I

] [
B1 B2

B3 B4

] [
V −1

1 −S−1
1 U−1

1 B2

I

]
=

[
S1

B̂4

]
∈ Rn×n.

35

SD(B, S, n, s)
R = K[x]/〈s〉.
Input: B ∈ Rn×n, S = snf(B) ∈ Rn×n with S[n, n] 6= 0, n ∈ Z>0, 0 6= s ∈ K[x].
Condition: : snf(B[1,...,i|1,...,i]) = diag(s1, s2, · · · , si) ∈ Ri×i, 1 ≤ i ≤ n.
Output: U, S, V ∈ Rn×n : A = USV ∈ Rn×n or fail if the condition above is not satisfied.

if n = 1 then

t1 := Unit(B[1, 1]);
if t1B[1, 1] 6= S[1, 1] then return fail fi
return (t1, S, I)

fi
n1 := bn/2c;
U1, S1, V1 := SD(B[1,...,n1|1,...,n1], S[1,...,n1|1,...,n1], n1, s);[
S1

B̂4

]
=

[
U−1

1

−B3V
−1
1 S−1

1 I

]
B

[
V −1

1 −S−1
1 U−1

1 B2

I

]
∈ Rn×n;

U2, S2, V2 := SD
(
B̂4, S[n1+1,...,n|n1+1,...,n], n− n1, s

)
;

return

[
U1

B3V
−1
1 S−1

1 U1 U2

]
, S,

[
V1 V1S

−1
1 U−1

1 B2

V2

]
∈ Rn×n;

Figure 3.1: Smith Decomposition

This also gives the following decomposition of B:[
B1 B2

B3 B4

]
=

[
U1

B3V
−1
1 S−1

1 U1 I

] [
S1

B̂4

] [
V1 V1S

−1
1 U−1

1 B2

I

]
∈ Rn×n.

Now we compute a Smith decomposition of B̂4:

U2, S2, V2 = SD(B̂4, S[n1+1,...,n|n1+1,...,n], n− n1, s).

Finally we compile the result and give a Smith decomposition of B as:

B =

[
U1

B3V
−1
1 S−1

1 U1 U2

]
S

[
V1 V1S

−1
1 U−1

1 B2

V2

]
∈ Rn×n.

SD(B, S, 1, s) is the base case, where B, S ∈ R1×1. If there exists a unit t such that
tB[1, 1] = S[1, 1], we return (t, S[1, 1], I) else we return fail. Figure 3.1 summarizes
Algorithm SD.

We now analyze the cost of Algorithm SD(B, S, n, s) in Figure 3.1. The multiplication
of B3 with V −1

1 and B3V
−1
1 S−1

1 with U1 will cost MM(n − n1, n1, n1) operations from R

36

each. Similarly the multiplication of U−1
1 with B2 and V1S

−1
1 U−1

1 with B2 can be computed
in MM(n1, n− n1, n1) operations from R each. We need n1(n− n1) operations from R to
apply S−1. Thus in all we need 2MM(n− n1, n1, n1) + 2MM(n1, n− n1, n1) + 2n1(n− n1)
operations from R in each recursive call to SD(B, S, n, s). If n1 = bn/2c and T (n) is the
bound on the cost of SD(B, S, n, s) in terms of the number of basic operations from R, we
get the following relation:

T (n) ≤ T (bn/2c) + T (dn/2e) + cnω,

for some constant c ∈ Z>0 and T (1) = 1. This implies that T (n) is bounded by O(nω). We
obtain the following result

Lemma 3.5. Let R = K[x]/〈s〉, 0 6= s ∈ K[x]. Given B ∈ Rn×n satisfying (3.5) and
S ∈ Rn×n, the Smith normal form of B, with S[n, n] 6= 0. Algorithm SD in Figure 3.1,
returns a Smith decomposition (U, S, V) of B in O(nω) basic operations from K[x]/〈s〉. SD

returns fail if S is not the Smith normal form of B.

3.2 Reduced Smith Decomposition of snA
−1

In Section 3.1, we discussed an algorithm to find a reduced Smith decomposition of
B ∈ K[x]n×n, given nonsingular B and S, the Smith form of S, by finding a Smith
decomposition of φsn(B) over the ring R = K[x]/〈sn〉. Let nonsingular A ∈ K[x]n×n with
degA ≤ d and S = snf(A) = diag(s1, s2, . . . , sn) ∈ K[x]n×n. In this section we adapt the
technique used in Section 3.1 to compute a sn-reduced Smith decomposition of snA

−1, given
A and S, i.e., we want to compute U, V ∈ K[x] such that:

snA
−1 ≡ Usnf(snA

−1)V mod sn.

If we directly apply Algorithm SD in Figure 3.1 on snA
−1, the cost of computing a sn-reduced

Smith decomposition will be O(nω B(nd)). This estimate uses the bound that deg sn ≤ nd
(Theorem 1.4) and the fact stated in Section 1.1.1, that every basic operation in R can be
done in O(deg sn) operations from K. In this Chapter, we reduce the cost of computing a
sn-reduced Smith decomposition of snA

−1 to O (̃nωd) basic operations from K. We know
that

snf(snA
−1) = diag(sn/sn, sn/sn−2, . . . , sn/s1) ∈ K[x]n×n.

We make the fast multiplication assumption (1.6) in this section: M(t) ∈ O(tω−1). Also,
in line with Lemma 3.3 we assume that

deg snA
−1 < deg sn. (3.7)

37

As in Section 3.1, we work over the ring R = K[x]/〈sn〉 to find a Smith Decomposition
of φ−1

sn
(snA

−1) which translates into a sn-reduced Smith decomposition of snA
−1 over K[x].

Let snA−1 = φ−1
sn

(snA
−1) . Analogous to (3.5), we make the assumption that

snf(snA−1
[1,...,i|1,...,i]) = diag

(
sn
sn
,
sn
sn−1

, . . . ,
sn

sn−i+1

)
∈ Ri×i, (3.8)

for 1 ≤ i ≤ n. As stated in Section 3.1 this is not a limiting assumption. For a sufficiently
large field K, any snA

−1 ∈ K[x]n×n, and unit upper and unit lower triangular matrices
U,L ∈ K[x]n×n where the nonzero, non diagonal entries are chosen at random from K,
φsn(UsnA

−1L) satisfies the equation (3.8) with high probability [20]. Applying U,L to
snA

−1 to get UsnA
−1L is same as applying L−1, U−1 to A and get Â = L−1AU−1 and then

computing snÂ
−1, i.e., UsnA

−1L = snÂ
−1.

In Subsection 3.2.1, we work on snA
−1 directly and introduce ideas which exploit the

structure of snA
−1. In Subsection 3.2.2 we introduce ideas to work without having snA

−1

explicitly, rather we will compute the parts of snA
−1 needed in each step and in this manner

achieve the target cost bound of O (̃nωd) operations from K.

3.2.1 Blocking

We are given a matrix snA
−1 ∈ K[x]n×n satisfying (3.8) and (3.7), and Ŝ ∈ K[x]n×n,

the Smith normal form of snA
−1. We develop an algorithm to find a sn-reduced Smith

decomposition of snA
−1 by computing a Smith decomposition (U, φsn(Ŝ), V) of snA−1 over

R. The algorithm returns ”fail” if (3.8) is not satisfied. The algorithm works over R. For
the sake of simplicity, let us assume that

n =
t∑
i=0

2i = 2t+1 − 1. (3.9)

This assumption can be made without loss of generality as we can always augment a matrix
snA

−1 to diag(I, snA
−1) to fulfill (3.9), where the dimension of I is less than the dimension

of snA
−1. We know from Lemma 3.4 that snA−1 has a Smith decomposition (U, φsn(Ŝ), V),

where U is lower triangular and V is upper triangular. We divide the columns of snA−1

and U into blocks of sizes 1, 2, 22, . . . , 2t. Similarly we divide the rows of V into blocks of
sizes 1, 2, 22, . . . , 2t. The following diagram shows the division of U, Ŝ, V ∈ R7×7.

38

@
@

@
@

@
@

@
@

@
@

@
@

@
@

U[∗|1] U[∗|2,3]

U[∗|4,...,7]

Ŝ[1|1]

Ŝ[2,3|2,3]

Ŝ[4,...,7|4,...,7]

@
@

@
@

@
@

@
@

@
@

@
@

@
@

V[1|∗]

V[2,3|∗]

V[4,...,7|∗]

As explained at the beginning of this chapter, the column U[∗|i] is bounded by deg si,
which by Theorem 1.4 is bounded by nd/(n− i+ 1). Thus, the a priori bounds on the size
of each block is O(n2d) symbols from K. If we denote by precision the a priori bound on
the degree, then the dimension of each block times the precision will be bounded by O(n2d).
The idea to partition a problem into log n subproblems of size O(n2d), and compute each
subproblem in O (̃nωd) basic operations from K to solve the whole problem in cost O (̃nωd)
operations from K is also used in [12]. In Subsection 3.1.1 we recovered j-th Smith invariant
of B in the j-th iteration. Now, we recover (sn/sn−2j+1, sn/sn−2j , . . . , sn/sn−2j+1+2) and
corresponding columns and rows of U and V in the j-th iteration, j starting from 0 and
going up to t.

We start with B(0) = snA−1. At iteration t = 0 we recover sn/sn in exactly the same
manner as done in Subsection 3.1.1. At the end of iteration t = 0, we have unimodular
U, V and B(1):

snA−1 = U

[
sn/sn

B(1)

]
V ∈ Rn×n. (3.10)

For the next iteration, we try to recover the next two invariant factors. From (3.10)
and (3.5), we know that:

snf(B
(1)
[1|1]) = sn/sn−1,

snf(B
(1)
[1,2|1,2]) = diag(sn/sn−1, sn/sn−2).

Using Algorithm 3.1, SD, we can find unimodular T
(1)
l , T

(1)
r ∈ R2×2 such that

B
(1)
[1,2|1,2] = T

(1)
l diag(sn/sn−1, sn/sn−2)T

(1)
r .

Let

C(1) =

[
(T

(1)
l)−1

In−1

]
B(1)

[
(T

(1)
r)−1

In−3

]
.

39

Thus
C

(1)
[1,2|1,2] = diag(sn/sn−1, sn/sn−2).

As is clear from the iterative approach in Subsection 3.1.1, sn/sn−1 divides all the entries
in the first row and first column of C(1) and sn/sn−2 divides all the entries in the second
row and second column of C(1). We can infer that:

(C
(1)
[1,2|1,2])

−1C
(1)
[1,2|∗] ∈ R2×(n−1),

C
(1)
[∗|1,2](C

(1)
[1,2|1,2])

−1 ∈ R(n−1)×2.

Thus we can eliminate the non diagonal entries in the first and second row and column of
C(1) to get B(2):[
sn/sn−1

sn/sn−2

B(2)

]
=

[
I2

C
(1)
[3,...,n−1|1,2](C

(1)
[1,2|1,2])

−1 In−3

]
C(1)

[
I2 (C(1)

[1,2|1,2])
−1C

(1)
[1,2|3,...,n−1]

In−3

]
.

Therefore B(2) can be recovered from B(1) in the following manner:[
sn/sn−1

sn/sn−2

B(2)

]
=

[
(T

(1)
l)−1

C
(1)
[3,...,n−1|1,2]

(C
(1)
[1,2|1,2]

)−1 In−3

]
B(1)

[
(T

(1)
r)−1 (C

(1)
[1,2|1,2]

)−1C
(1)
[1,2|3,...,n−1]

In−3

]
.

Thus, B(1) has been decomposed in the following fashion:

U(1)z }| {"
T

(1)
l

−C(1)
[3,...,n−1|1,2]

(C
(1)
[1,2|1,2]

)−1T
(1)
l In−3

24 sn/sn−1
sn/sn−2

B(2)

35
V (1)z }| {24 T

(1)
r −T (1)

r (C
(1)
[1,2|1,2]

)−1C
(1)
[1,2|3,...,n−1]

In−3

35,
where degU (1), deg V (1) < deg sn−1. We follow the same procedure on B(2) but with the

aim to recover the next 4 entries and so on. Finally snA−1 will have the following Smith
decomposition over R:

snA−1 = UŜV,

where

U =
t∏

j=0

[
I2j−1

U (j)

]
and

V =
0∏
j=t

[
I2j−1

V (j)

]
.

40

For snA
−1 ∈ R7×7, the shape of the decomposition is as follows:

I

s7A−1︷ ︸︸ ︷
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

 I =

∗
∗ 1
∗ 1
∗ 1
∗ 1
∗ 1
∗ 1

s7/s7 ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗ ∗ ∗
1

1
1

1
1

1

=

∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ 1
∗ ∗ ∗ 1
∗ ∗ ∗ 1
∗ ∗ ∗ 1

sn/s7

s7/s6

s7/s5 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗
1

1
1

1

=

∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

s7/s7

s7/s6

s7/s5

s7/s4

s7/s3

s7/s2

s7/s1

1 ∗ ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗
1 ∗ ∗ ∗

1 ∗ ∗
1 ∗

1

The following procedure summarizes the whole process.

B(0), U, V = snA−1, In, In ∈ Rn×n

for j from 0 to t do

J = 1, 2, . . . , 2j

nj = n− 2j + 1

[1. Find the Smith Decomposition]
S(j) = diag(sn/sn−2j+1, sn/sn−2j , . . . , sn/sn−2j+1) ∈ R2j×2j

T
(j)
l ,W, T

(j)
r = SD(B

(j)
[J |J], S

(j), 2j, snj
) ∈ R2j×2j

;

[2. Eliminate rows and columns]

C(j) := diag((T
(j)
l)−1, In−2j+1+1)B

(j)diag((T
(j)
r)−1, In−2j+1+1) ∈ Rnj×nj ;[

S(j)

B(j+1)

]
:=

[
I2j

C
(j)

[2j+1,...,n−1|J]
(C

(j)
[J |J])

−1 In−2j+1+1

]
C(j)

[
I2j (C

(j)
[J |J])

−1C
(j)

[J |2j+1,...,n−1]

In−2j+1

]
;

[3. Update]

U (j) := Rem

([
T

(j)
l

−C(j)

[2j+1,...,n−1|J]
(C

(j)
[J |J])

−1T
(j)
l In−2j+1+1

]
, snj

)
∈ Rnj×nj ;

41

V (j) := Rem

([
T

(j)
r −T (j)

r (C
(j)
[J |J])

−1C
(j)

[J |2j+1,...,n−1]

In−2j+1+1

]
, snj

)
∈ Rnj×nj ;

U := U

[
I2j−1

U (j)

]
∈ Rn×n;

V :=

[
I2j−1

V (j)

]
V ∈ Rn×n;

Assert: snA−1 = Udiag(S(0), . . . , S(j), B(j+1))V ∈ Rn×n

od

In the j-th iteration, we can bound the cost of Phase 1 by O(2jω) operations from R using
Lemma 3.5. It translates to O(2jωB(deg sn)) basic operations from K. Using Theorem 1.4,
the cost of Phase 1 simplifies to O(2jω B(nd)) basic operations from K. Phase 2 costs
O((n− 2j + 1)ω) operations from R which can be achieved by O((n− 2j + 1)ω B(deg sn))
basic operations from K which simplifies to O((n− 2j + 1)ω B(nd)) operations from K. The
shape of U , before Phase 3, is

U =

[
∗
∗ In−2j+1

]
.

Thus updating U and V is free and the cost of Phase 3 is just the cost of computing U (j)

and V (j). Since degU (j), deg V (j) < deg snj
, the cost of computing U (j), V (j) is bounded

by MM(n, 2j, 2j)B(deg snj
) and MM(2j, 2j, n)B(deg snj

) respectively, which simplifies to

O((n2j(ω−1)B(deg snj
)) operations from K. Using Theorem 1.4 this cost bound simplifies

to O((n2j(ω−1)B(nd/2j)) basic operations from K. This can be further simplified using the
superlinearity of B (1.9) and the fast multiplication assumption (1.6) to O(nω log nB(d))
operations from K. Therefore, the cost of the algorithm is dominated by the cost of Phase 1
and Phase 2. The cost of the Algorithm is bounded by O(nω B(nd)) basic operations from
K. The cost of first two phases is higher than the target cost of O (̃nωd). The next idea
deals with reducing the cost of Phase 1, i.e., the Smith decomposition phase.

Notice that the smallest invariant of B(j) is sn/sn−2j+1. By Theorem 1.4, we know that
sn/sn−2j+1 must divide the entries of B(j) and since degB(j) < sn, deg(sn−2j+1/snB

(j)) <

deg sn−2j+1. We also know that deg T
(j)
l , deg T

(j)
r < deg sn−2j+1, and sn−2j+1/snS

(j) =
diag(sn−2j+1/sn−2j+1, sn−2j+1/sn−2j , . . . , sn−2j+1/sn−2j+1). Therefore

B
(j)

[1,2,...,2j |1,2,...,2j]
= T

(j)
l S(j)T (j)

r ∈ (K[x]/〈sn〉)2j×2j

⇔ s
n−2j+1

sn
B

(j)

[1,2,...,2j |1,2,...,2j]
= T

(j)
l

(
sn−2j+1

sn
S(j)

)
T (j)
r ∈ (K[x]/〈sn−2j+1〉)2j×2j

.

The idea is to reduce the entries of B(j) by pulling out the greatest common factor (the
smallest invariant factor) and find a Smith decomposition of B(j) working over the ring

42

K[x]/〈sn−2j+1〉. Now the cost of Phase 1 becomes O(2jω B(deg sn−2j+1)). Using Theorem 1.4
the cost is bounded by O(2jω B(nd/2j)). Using superlinearity of B (1.9), the bound on cost
of B (1.8) and the fast multiplication assumption (1.6), the cost of Phase 1 is bounded by
O(nω (log n)B(d)) basic operations from K.

Thus the algorithm now becomes:

B(0), U, V = snA−1, In, In ∈ Rn×n

for j from 0 to t do

J = 1, 2, . . . , 2j

nj = n− 2j + 1

[1. Find the Smith Decomposition]
S(j) = diag(sn−2j+1/sn−2j+1, sn−2j+1/sn−2j , . . . , sn−2j+1/sn−2j+1)

T
(j)
l ,W, T

(j)
r = SD(B

(j)
[J |J], S

(j), 2j, snj
) ∈ (K[x]/〈snj

〉)2j×2j
;

[2. Eliminate rows and columns]

C(j) := diag((T
(j)
l)−1, In−2j+1+1)B

(j)diag((T
(j)
r)−1, In−2j+1+1) ∈ Rnj×nj ;[

S(j)

B(j+1)

]
:=

[
I2j

C
(j)

[2j+1,...,n−1|J]
(C

(j)
[J |J])

−1 In−2j+1+1

]
C(j)

[
I2j (C

(j)
[J |J])

−1C
(j)

[J |2j+1,...,n−1]

In−2j+1

]
;

B(j+1) :=
s
n−2j+1+1

s
n−2j+1

B(j+1);

[3. Update]

U (j) := Rem

([
T

(j)
l

−C(j)

[2j+1,...,n−1|J]
(C

(j)
[J |J])

−1T
(j)
l In−2j+1+1

]
, snj

)
∈ Rnj×nj ;

V (j) := Rem

([
T

(j)
r −T (j)

r (C
(j)
[J |J])

−1C
(j)

[J |2j+1,...,n−1]

In−2j+1+1

]
, snj

)
∈ Rnj×nj ;

U := U

[
I2j−1

U (j)

]
∈ Rn×n;

V :=

[
I2j−1

V (j)

]
V ∈ Rn×n;

Assert: snA
−1 = Udiag(sn/snS

(0), . . . , sn/sn−2j+1S
(j), sn/sn−2j+1+1B

(j+1))V mod sn
od

The cost Phase 2, i.e., the Eliminate rows and columns phase, still remains higher than
the target cost of O (̃nωd) basic operations from K. The basic problem in reducing the cost
of Phase 2 is that the size of B(j) can be potentially O(n3d) in terms of number of terms
from K. Subsection 3.2.2 develops new ideas to reduce this cost.

43

3.2.2 Delayed Updates: the Outer Product Formula

For nonsingular A ∈ K[x]n×n with degA ≤ d, we cannot work explicitly with snA
−1 to

compute a sn-reduced Smith decomposition, (U, snf(snA
−1), V), of snA

−1 in cost bounded
by O (̃nωd), as the size of snA

−1 can potentially be in the order of O(n3d) elements from K.
This is the basic hurdle faced by algorithm in Subsection 3.2.1 to achieve the O (̃nωd) cost
bound. This subsection discusses an idea which provides a way out and improves on the
algorithm discussed in Subsection 3.2.1 to achieve the target cost. The special shape of U
and V will be helpful in this cause.

Consider the algorithm developed in the end of Subsection 3.2.1. The following is
the shape of U , diag(S(0), s7/s6S

(1).s7/s4B
(2)) and V after the 1-st iteration on a matrix

A ∈ R7×7. Note that the iterations are numbered from 0.

@
@

@
@

@
@

@
@

@
@

@
@

@
@

U
(0)
[∗|1] U

(1)
[∗|1,2]

I4

S(0)

s7/s6S
(1)

s7/s4B
(2)

@
@

@
@

@
@

@
@

@
@

@
@

@
@

V
(0)
[1|∗]

V
(1)
[1,2|∗]

I4

Due to the structure of U, V and diag(S(0), . . . , sn/sn−2j+1S
(j), sn/sn−2j+1+1B

(j+1)) we
can modify our assertion. Let

Ū (j) =

[
0

U
(j)

[∗|1,2,...,2j]

]
∈ Rn×2j

, V̄ (j) =
[

0 V
(j)

[1,2,...,2j |∗]

]
∈ R2j×n.

After j-th iteration, we can assert

snA−1 =

P (j)︷ ︸︸ ︷(
j∑
i=0

sn/sn−2i+1Ū
(i)S(i)V̄ (i)

)
+sn/sn−2j+1+1

[
0

B(j+1)

]
∈ Rn×n. (3.11)

Let

P (j) =

j∑
i=0

sn/sn−2i+1Ū
(i)S(i)V̄ (i) mod sn ∈ Rn×n. (3.12)

44

Rearranging the terms in (3.11) we get[
0

B(j+1)

]
=
sn−2j+1+1

sn

(
snA−1 − P (j)

)
∈ Rn×n. (3.13)

Further observe that to compute Ū (j+1) and V̄ (j+1), the algorithm needs only B
(j+1)
r =

Rem(B
(j+1)

[1,2,...,2j |∗], sn−2j+1) and B
(j+1)
c = Rem(B

(j+1)

[∗|1,2,...,2j]
, sn−2j+1). This can be done effi-

ciently in cost bounded by O(nω log nM(d)) operations from K. See Section 3.2.3 for details.
Figure 3.2 describes the algorithm to get a reduced Smith transform of A or a reduced
Smith Decomposition of snA

−1 (Lemma 3.3).

For the j-th iteration, the cost of Computing B
(j)
c and B

(j)
r phase is bounded by

O(nω log nM(d)), using Lemma 3.8. As proved in the end of the last section, the cost of
Smith decomposition phase is bounded by O(nω(log n)B(d)) basic operations from K. The
cost of phase 3 and phase 4 is bounded by the cost of multiplications of matrices of dimensions
2j×2j and 2j×n, where every term is reduced modulo sn−2j+1. Therefore the cost is bounded
by O(n/2j 2jωB(deg sn−2j+1)). Using Theorem 1.4, fast multiplication assumption (1.6),
and superlinearity of B (1.9), we can simplify this bound to O(nω(log n) B(d)). We can now
state the following result

Theorem 3.6. Algorithm RST in Figure 3.2 is correct. Its cost is bounded by O(nω(log n)2 B(d))
basic operations from K. We assume M(t) ∈ O(tω−1) for t ∈ Z>0.

3.2.3 Computation of B
(j)
c and B

(j)
r

In this subsection we show how to efficiently compute B
(j)
r = Rem(B

(j)

[1,2,...,2j |∗], sn−2j+1) and

B
(j)
c = Rem(B

(j)

[∗|1,2,...,2j]
, sn−2j+1). We calculate these quantities over K[x] and then reduce

them over R using φsn . For this subsection, we avoid the use of φ to keep the presentation
simple. Whenever for an object a over R, we state a over K[x] we imply φ−1

sn
(a) over K[x].

Using (3.13), [
0

B(j)

]
≡ sn−2j+1

sn

(
snA

−1 − P (j−1)
)

mod sn ∈ K[x]n×n

⇒
[

0 B
(j)
r

]
≡

I
(j)
r︷ ︸︸ ︷

[0 I2j 0]

(
sn−2j+1

sn

(
snA

−1 − P (j−1)
)

mod sn

)
mod sn−2j+1 ∈ K[x]2

j×n

(3.14)

45

RST(A,S)
Input: Nonsingular A ∈ K[x]n×n, Smith form S ∈ K[x]n×n of A, with d = degA.

R = K[x]/〈sn〉.
snA−1 = φsn

(snA
−1).

Condition: • deg snA
−1 < deg sn.

• snf(snA−1
[1,...,i|i,...,i]) = diag

(
sn

sn
, sn

sn−1
, . . . , sn

sn−i+1

)
∈ Ri×i, 1 ≤ i ≤ n.

Output: (U, V) ∈ K[x]n×n, a reduced Smith transform of A or fail if the second condition is invalid.

[Working over R: Computing a reduced Smith Decomposition of snA−1]

B(0), U, V = snA−1, In, In ∈ Rn×n

for j from 0 to t do

[1. Compute Br, Bc]
J = 1, 2, . . . , 2j

nj = n− 2j + 1
B

(j)
r := Rem(

[
I2j 0

]
B(j), sn−2j+1) ∈ R2j×nj ;

B
(j)
c := Rem(B(j)

[
I2j 0

]T
, sn−2j+1) ∈ Rnj×2j

;

[2. Find the Smith Decomposition]
S(j) = diag(sn−2j+1/sn−2j+1, sn−2j+1/sn−2j , . . . , sn−2j+1/sn−2j+1)
T

(j)
l ,W, T

(j)
r = SD((B(j)

r)[J |J], S
(j), 2j , snj) ∈ (K[x]/〈snj 〉)2

j×2j

;

[3. Eliminate rows and columns]
C

(j)
r := Rem((T (j)

l)−1B
(j)
r , snj) ∈ R2j×n;

C
(j)
c := Rem(B(j)

c (T (j)
r)−1, snj) ∈ Rn×2j

;

[4. Update]

U (j) := Rem

([
T

(j)
l

−(C(j)
c)[2j+1,...,n−1|∗]((C

(j)
c)[J |∗])−1T

(j)
l In−2j+1+1

]
, snj

)
∈ Rnj×nj ;

V (j) := Rem
([

T
(j)
r −T (j)

r ((C(j)
r)[∗|J])−1(C(j)

r)[∗|2j+1,...,n−1]

In−2j+1+1

]
, snj

)
∈ Rnj×nj ;

Ū (j) :=
[

O

U (j)

]
∈ Rn×2j

;

V̄ (j) :=
[

0 V (j)
]
∈ R2j×n;

Assert: snA−1 =
(∑j

i=0 sn/sni
Ū (i)S(i)V̄ (i)

)
+ sn/snj+1

[
0

B(j+1)

]
∈ Rn×n

od

P ∈ K[x]n×n be a Permutation matrix with 1 on the anti diagonal.
return Pφ−1

sn

([
(V̄ (0))T · · · (V̄ (t))T

]T)
, φ−1

sn

([
Ū (0) · · · Ū (t)

])
P ∈ K[x]n×n;

Figure 3.2: Reduced Smith Transform

46

[
O

B
(j)
c

]
≡
(
sn−2j+1

sn

(
snA

−1 − P (j−1)
)

mod sn

) I
(j)
c︷ ︸︸ ︷ 0
I2j

0

 mod sn−2j+1 ∈ K[x]n×2j

.

(3.15)

The problem of computing B
(j)
r and the problem of computing B

(j)
c are similar. Thus let us

consider computing B
(j)
c . Note that I

(j)
c is a scalar matrix and hence(

sn−2j+1

sn

(
snA

−1 − P (j−1)
)

mod sn

)
I(j)
c mod sn−2j+1

≡
(
sn−2j+1

sn

(
snA

−1I(j)
c − P (j−1)I(j)

c

)
mod sn

)
mod sn−2j+1

Note that even though sn−2j+1/sn
(
snA

−1 − P (j−1)
)

is over K[x], sn−2j+1A
−1Ijc and

sn−2j+1/snP
(j−1)Ijc may not be over K[x]. Thus, to get B

(j)
c , we compute the series expansion

of Rem(sn−2j+1A
−1Ijc , sn) and Rem(sn−2j+1/snP

(j−1)I
(j)
c , sn) over K[[x]] up to a required

precision.

To bound the precision, as in [30], we make use of the following fact.

Lemma 3.7. Let a,N ∈ K[x] with N nonzero. Then a = Rem(a,N) if degN ≥ deg a+ 1.

We can bound the degree of sn−2j+1/sn

(
snA

−1I
(j)
c − P (j−1)I

(j)
c

)
, using (3.7), (3.12) and

Theorem 1.4,:

deg
sn−2j+1

sn

(
snA

−1I(j)
c − P (j−1)I(j)

c

)
≤ deg sn − deg sn + deg sn−2j+1

= deg sn−2j+1 ≤ nd
2j .

Using Lemma 3.7, we get

sn−2j+1

sn

(
snA

−1I(j)
c − P (j−1)I(j)

c

)

= Rem

sn−2j+1

W1︷ ︸︸ ︷
Rem(A−1Ijc , x

nd/2j

)−sn−2j+1/sn

W2︷ ︸︸ ︷
Rem

(
Rem(P (j−1)I(j)

c , sn), xnd/2
j
)
, xnd/2

j

 .

and as sn−2j+1 | sn, we get that

Rem

(
Rem

(
sn−2j+1

sn

(
snA

−1I(j)
c − P (j−1)I(j)

c

)
, sn

)
, sn−2j+1

)
47

= Rem
(

Rem
(
sn−2j+1W1 − sn−2j+1/snW2, x

nd/2j
)
, sn−2j+1

)
.

W1 can be computed in cost O(nω log nM(d)) using the high order-lifting techniques in [28,
Section 9]. For the computation of W2 we use the techniques developed in Section 2.3.
Algorithm 3.3 describes how we compute W2.

From (3.12), we know:

P (j−1) ≡
j−1∑
i=0

sn/sn−2i+1Ū
(i)S(i)V̄ (i) mod sn ∈ K[x]n×n.

Therefore

Rem
(
P (j−1)I(j)

c , sn
)

=
∑j−1

i=0 Rem
(
sn/sn−2i+1Ū

(i)S(i)V̄ (i)I
(j)
c , sn

)
=
∑j−1

i=0 sn/sn−2i+1Rem

 Us︷ ︸︸ ︷
Ū (i)S(i)

Vs︷ ︸︸ ︷
V̄ (i)I(j)

c , sn−2i+1

 .

This implies

W2 = Rem
(

Rem(P (j−1)I
(j)
c , sn), xnd/2

j
)

=
∑j−1

i=0 Rem
(

Rem (UsVs, sn−2i+1) , x
nd/2j

)
In iteration i of Algorithm 3.3, we compute Rem

(
Rem (UsVs, sn−2i+1) , x

nd/2j
)

by invoking

Algorithm 2.4. Recall Ū (i) ∈ K[x]n×2i
, V̄ (i) ∈ K[x]2

i×n, S(i) ∈ K(x)2i×2i
. Computing Us is just

multiplying every entry in the k-th column of Ū (i) by S
(i)
i,i , for 0 < i ≤ 2i. Since every entry

in S(i) is a proper fraction or scalar, degUs < deg Ū (i). The cost of computing Us is bounded
by n2iM(deg sn−2i+1). Using Theorem 1.4, we can bound this cost by O(n2i M(nd/2i)).
This bound can be further simplified to O(nM(nd)) by using (1.1) the superlinearity of M.
The nonzero entries of Vs are read of from the corresponding entries in V̄ i, thus it entails no
cost. Lastly the cost of PartialProduct operation is bounded by O(nM(nd) + nω M(d)),
using Corollary 2.9. Thus the total cost of one iteration of Algorithm 3.3 is bounded
by O(nM(nd) + nω M(d)). Using the fast multiplication assumption (1.6), we can bound
the cost of each iteration by O(nω M(d)). As j is bounded by log n, the total cost of
Algorithm 3.3 is bounded by O(nω(log n) M(d)). We can state the following lemma:

Lemma 3.8. B
(j)
c and B

(j)
r can be computed in O(nω(log n) M(d)) basic field operations

from K. We assume that M(t) ∈ O(tω−1) for t ∈ Z>0.

48

Computing Rem(Rem(P (j−1)I
(j)
c , sn), xnd/2

j
)

Input: sn,
(
sn−2i+1, Ū

(i), S(i), V̄ (i)
)
0≤i≤j−1

, Y,N

Output: Rem(Rem(sn−2j+1/snP
(j−1)I

(j)
c , sn), xnd/2

j
) ∈ K[[x]]n×2j

for i = 0 to j − 1
Comment Calculating Rem(Rem(sn/sn−2i+1Ū

(i)S(i)V̄ (i)I
(j)
c , sn), xnd/2

j
)

Us := Rem(Ū (i)S(i), sn−2i+1) ∈ K[x]n×2i
;

Vs := V̄ (i)I
(i)
c ∈ K[x]2

i×n;
τk−j := PartialProduct(sn/sn−2i+1, Us, Vs, sn, dnd/2je) ∈ K[[x]]n×n

od
return

∑i−1
j=0 τk−j;

Figure 3.3: Computing Rem(Rem(P (j−1)I
(j)
c , sn), xnd/2

j
)

49

Chapter 4

Diagonal Entries of the Hermite
Form

Throughout this chapter let A ∈ K[x]n×n be nonsingular with degree d.

In this chapter we show how to pass over the Smith form of A in order to recover the
degrees of the diagonal entries of the Hermite form of A. The algorithm actually recovers
the diagonal entries and not just the degrees, but it is the degrees that will be required
by our Hermite form algorithm in the next chapter. Section 4.1 details a way of efficiently
computing the Hermite form of a matrix where the largest invariant factor of the input
matrix is small. Some mathematical background and previous results are developed and
recalled in Section 4.2. Finally, the algorithm for computing the diagonal entries is given in
Section 4.3.

4.1 Hermite form via Howell form

The classical method to compute the Hermite form is to work modulo the determinant [8, 7,
16, 17, 14]. Given Rem(A, detA) and detA, this leads to an O(nω B(deg detA)) algorithm
for computing the Hermite form. For some input matrices, though, the largest Smith
invariant factor may be much smaller in degree than the determinant of the matrix. The
following example shows a matrix of the type we might expect to encounter in our algorithm
to compute the diagonal entries of the Hermite form. Note that the largest invariant factor

50

of the matrix is xd, while the the determinant of the matrix is xnd.

xd

xd

. . .

xd

∗ ∗ · · · ∗ 1 ∗ · · · ∗
∗ ∗ · · · ∗ 1 ∗
...

... · · · ...
. . .

...
∗ ∗ · · · ∗ 1

∈ K[x]2n×2n

To make the cost of computing the Hermite form sensitive to the largest invariant factor,
we work with precision just enough to contain the largest invariant factor. For nonsingular
A ∈ K[x]n×n, let sn be the largest invariant factor. We will work over R = K[x]/〈xsn〉 (see
Section 1.2 for details on the proscribed set of associates and residues in R, and the basic
operations in R). The ring R is not a PID because of the presence of zero divisors and
hence the Hermite form is not a canonical form over R. For example both of the following
matrices are in Hermite form over Z7[x]/〈x3 + 2x2〉, and they are left equivalent over R.
The largest Smith invariant of the matrix on the left is x2 + 5x+ 6 over K[x].[

x+ 2 1
x+ 3

]
≡L
[
x+ 2 1

x2 + 5x+ 6

]
∈ (Z7[x]/〈x3 + 5x2 + 6x〉)2×2.

We need to introduce some notions over R, which will be helpful in the computation of the
Hermite form of A ∈ K[x]n×n.

Let R be any principal ideal ring. For a matrix A ∈ Rn×m we write S(A) to mean the set
of all R-linear combinations of rows of A and Sj(A) to mean the subset of S(A) comprised
of all rows which have first j entries zero. We can now define the Howell form over R.

Definition 4.1. Corresponding to every A ∈ R∗×m is an H ∈ R∗×m that satisfies:

1. Let r be the number of nonzero rows of H. Then the first r rows of H are nonzero.
For 0 ≤ i ≤ r let H[i, ji] be the first non zero entry in row i. Then 0 = j0 < j1 <
j2 < · · · < jr.

2. H[i, ji] ∈ A(R) and H[k, ji] ∈ R(R, H[i, ji]) for 1 ≤ k < i ≤ r.

3. Rows i+ 1, i+ 2, . . . , r of H generate Sji(A).

H is the Howell canonical form of A [15].

51

For the rest of this section let R = K[x]/〈xs〉. Recall from Section 1.2 that φxsn : K[x]→ R
is the homomorphism φxsn(a) = Rem(a, xsn), for a ∈ K[x]. For any b ∈ R, we defined
φ−1
xsn

(b) as the unique element of R(K[x], xsn) that maps to b under φ. For example if
b = 3x+ 1 ∈ K[x]/〈x3 + x〉, then φ−1

x3+x(3x+ 1) = 3x+ 1 ∈ K[x]. For a matrix A ∈ K[x]n×m,
we write L(A) to mean the set of all K[x]-linear combination of rows of A. The next two
lemmas show how we can compute the Hermite form of a nonsingular A ∈ K[x]n×n, by
passing over the Howell form of φxsn(A) over R = K[x]/〈xsn〉.

Lemma 4.2. Let A ∈ K[x]n×n be nonsingular with Hermite form

H =

h1 h̄12 · · · h̄1n

h2 · · · h̄2n

. . .
...
hn

and Smith form

S =

s1

s2

. . .

sn

 .
Then hi | sn for 1 ≤ i ≤ n. Furthermore, for any s ∈ K[x] we have sn | s if and only if
sIn ∈ L(A).

Proof. Let s∗i be the gcd of all i× i minors of A, where s∗0 is defined to be 1. Let h∗i be the
gcd of all i× i minors of A[∗|1,2,...,i], where h∗0 is defined to be 1. We know from Theorem 1.4
and Theorem 1.2 that si = s∗i /s

∗
i−1 and hi = h∗i /h

∗
i−1. Note h∗n = s∗n, therefore hn | sn.

Hence snI[n, ∗] ∈ L(A). We can swap columns i and n in A and repeat the whole argument
and swap the columns i and n back to get that hi | sn and snI[i, ∗] ∈ L(A). Therefore
snI ∈ L(A) and hence sI ∈ L(A) if sn | s.

To complete the proof we prove that if sIn ∈ L(A), then sn | s. We know that sIn ∈ L(A),
which implies that sIn = U ′A, for a nonsingular U ′ ∈ K[x]n×n. Since snf(A) = S, A = USV ,
for some unimodular U, V ∈ K[x]n×n. Therefore

sIn = U ′A

⇔ sIn = U ′USV

⇔ sV −1 = U ′US

⇔ sIn = V U ′US,

where V U ′U is nonsingular over K[x], hence sIn ∈ L(S), thus sn|s.

52

Lemma 4.3. For nonsingular A ∈ K[x]n×n and nonzero s ∈ K[x] such that sIn ∈ L(A), we
have

Hermite(A) = φ−1
xs (Howell(φxs(A))). (4.1)

Proof. Let H be the Hermite form of A over K[x] and let R be the residue class ring
R = K[x]/〈xs〉. To prove the result it will suffice to show that H̄ = φxs(H) ∈ Rn×n is in
Howell form over R.

The definition of the Howell form is given in Definition 4.1. Note that the first condition
of the Howell form is satisfied by H̄ by definition of Hermite form given in Definition 1.1 as
H̄ is upper triangular. For H̄ to satisfy the second condition of Definition 4.1 it is enough
to show that the diagonal entries of H are divisors of xs. Since xs ∈ L(A), by Lemma 4.2
the diagonal entries of H divide xs.

We shall now show that H̄ obeys the third property as well, i.e., rows i+ 1, i+ 2, . . . , n
of H̄ generate Si(A) over R. We now prove the third property for i = 1. Let r̄ ∈ S1(A):

r̄ = ā1H̄[1, ∗] + ā2H̄[2, ∗] + · · ·+ ānH̄[n, ∗] ∈ S1(A) over R,

r = a1H[1, ∗] + a2H[2, ∗] + · · ·+ anH[n, ∗] ∈ K[x], (4.2)

where ai = φ−1
xs (āi), 1 ≤ i ≤ n. Therefore

r̄ = φxs(r)

Since r̄[1] = 0, by definition of S1(A), ā1 is an annihilator of H̄[1, 1], i.e., ā1H̄[1, 1] = 0 ∈ R.
This implies that for some c ∈ K[x],

a1H[1, 1] = c(xs) ∈ K[x].

We know that sI[1, ∗] ∈ L(A) over K[x]. Thus

cxsI[1, ∗] =
[
a1H[1, 1] 0 · · · 0

]
∈ L(A). (4.3)

Hence subtracting 4.3 from 4.2, we get r′ ∈ L(A) with r′[1] = 0:

r′ = r − csxI[1, ∗] ∈ S1(A) ∈ K[x]1×n.

Note that
r̄ = φxs(r

′). (4.4)

Since over K[x] the Hermite form is also in a Howell form, rows 2, 3, . . . , n of H can
generate r′, i.e.,

r′ = b2H[2, ∗] + b3H[3, ∗] · · ·+ bnH[n, ∗] ∈ K[x]

53

for some bi ∈ K[x].

By (4.4), r̄ = φxs(r
′). Thus r̄ ∈ S1(A) over R can be generated by rows 2, 3, . . . , n

of H̄. By induction on i, 1 ≤ i ≤ n, we can argue that Si(A) is generated by the rows
i+ 1, i+ 2, . . . , n of H̄ over R for all 1 ≤ i ≤ n.

Using (4.1) and the result from [32, Section 4], [26, Proposition 4.8] on computation of
Howell form we have the following result.

Theorem 4.4. Given a nonsingular A ∈ K[x]n×n together with a nonzero s ∈ K[x] such
that sI ∈ L(A), the Hermite form of A over K[x] can be computed in O(nω B(deg s)) basic
operations from K.

We like to comment that for s = xsn all the conditions in Theorem 4.4 are satisfied,
where sn is the largest Smith invariant factor of A. The conditions in Theorem 4.4 are
also satisfied for s = x det(A). Thus we can compute the Hermite form of a matrix via the
Howell form in cost bounded by O(nω B(nd)). If we know sn, then we can compute it in
cost O(nω M(deg sn) + n2 B(deg sn)) basic operations from K. The O(n2 B(deg sn)) part of
the cost is just to reduce all the entries of the input matrix modulo xsn.

4.2 Hermite form via kernel basis

The Hermite form is a canonical form for left equivalence over K[x]. Recall from Section 1.2
that a Hermite form H is the Hermite form of A if H is left equivalent to A: H = UA for a
unimodular transformation U . Solving for U gives U = HA−1. The following lemma gives
an alternative, equivalent criteria for a Hermite form H to be left equivalent to A that does
not explicitly involve U .

Lemma 4.5. A Hermite form H is the Hermite form of A if deg detH ≤ deg detA and
HA−1 is over K[x].

To obtain a more compact representation of the matrix A−1 in Lemma 4.5 we will pass
over the Smith form. Recall from definition 1.3: corresponding to A are unimodular matrices
Ū , V̄ ∈ K[x]n×n such that S = ŪAV̄ = Diag(s1, . . . , sn) is the Smith canonical form of A,
that is, each si is monic and si | si+1 for 1 ≤ i ≤ n−1. Solving for A−1 gives A−1 = V̄ S−1Ū .
Considering Lemma 4.5, and noting that Ū is unimodular, we may conclude that, for any
matrix H ∈ K[x]n×n, HA−1 is over K[x] if and only if HV̄ S−1 is over K[x]. Multiplying S−1

by sn, the largest invariant factor, gives snS
−1 = Diag(sn/s1, . . . , sn/sn) ∈ K[x]n×n. We

conclude that HV̄ S−1 is over K[x] if and only if HV̄ (snS
−1) ≡ 0 mod sn. We obtain the

following result.

54

Lemma 4.6. Suppose S = ŪAV̄ = Diag(s1, . . . , sn) is the Smith form of A, where Ū
and V̄ are unimodular, and let V ∈ K[x]n×n be the matrix obtained from V̄ by reducing
column j of V̄ modulo sj, 1 ≤ j ≤ n. Then a Hermite form H is the Hermite form of A if
deg detH ≤ deg detA and HV (snS

−1) ≡ 0 mod sn.

The following corollary of Lemma 4.6 is the basis for our approach to compute the
diagonal entries of the Hermite form of A.

Corollary 4.7. Let V and S be as in Lemma 4.6. The Hermite form of[
S
V In

]
∈ K[x]2n×2n (4.5)

has the shape [
In ∗

H

]
∈ K[x]2n×2n, (4.6)

where H is the Hermite form of A.

Proof. First note that [
S

V

]
≡L

[
S

V̄

]
,

where V is a unimodular matrix. It follows that the principal n × n submatrix of the
Hermite form of the matrix in (4.5) must be In. It remains to prove that H is the Hermite
form of A. The unimodular transformation that transforms the matrix in (4.5) to its
Hermite form in (4.6) must have the following shape:[

∗ ∗
−HV S−1 H

] [
S
V In

]
=

[
In ∗

H

]
.

The result follows as the last n rows
[
−HV S−1 H

]
of the transformation matrix are a

left kernel basis for [
S
V

]
.

Theorem 4.8. Let A ∈ K[x]n×n be nonsingular of degree d. If #K ≥ 8n3d, matrices S and
V as in Lemma 4.6 can be computed in a Las Vegas fashion with an expected number of
O(nω(log n)2 B(d)) operations from K.

55

Proof. First compute a row reduced form R of A using the algorithm of [11], or the
deterministic variant in [12]. Then transform R into R′ = LRU , where L ∈ Kn×n is a
unit lower triangular matrix and U ∈ Kn×n is a unit upper triangular matrix with the non
diagonal, non zero entries filled with elements from K, chosen uniformly at random. Note
that R′ is still row reduced. This ensures that with probability at least 1/2 the preconditions
of Algorithm RST in Figure 3.2 are satisfied. We can now use the RST algorithm to get
(U ′, V ′), a reduced Smith transform of R′ in the allotted cost (Theorem 3.6). Finally we
reverse the preconditioning to get V = UV ′.

4.3 The algorithm for diagonal entries

Corresponding to a nonsingular input matrix A ∈ K[x]n×n of degree d, let S and V be as
in Lemma 4.6. Instead of working with the matrix in (4.5) it will be useful to reverse the
columns of V . To this end, let P be the n× n permutation matrix with ones on the anti
diagonal. Note that post multiplying a matrix by P reverses the order of the columns. Our
input matrix has the shape

G =

[
P

I

] [
S
V I

] [
P

I

]

=

sn
sn−1

. . .

s1

∗ ∗ · · · ∗ 1
∗ ∗ · · · ∗ 1
...

... · · · ...
. . .

∗ ∗ · · · ∗ 1

∈ K[x]2n×2n, (4.7)

and satisfies the following properties:

1. Diag(s1, . . . , sn) is the Smith form of A and hence satisfies
∑n

j=1 deg sj = deg detA ≤
nd, where d = degA.

2. Off diagonal entries in column j of G have degree less than the diagonal entry in the
same column, 1 ≤ j ≤ n.

Our goal is to recover the last n diagonal entries of the Hermite form of G. The standard
approach to triangularize G, without any regard to cost or concern for growth of degrees, is

56

to use extended gcd computations and unimodular row operations to zero out entries below
the pivot entry in each column.

for j from 1 to 2n− 1 do
for i from j + 1 to 2n do

(g, s, t, u, v) := Gcdex(G[j, j], G[i, j]);[
G[j, ∗]
G[i, ∗]

]
:=

[
s t
u v

] [
G[j, ∗]
G[i, ∗]

]
od

od

Note that, for j = 1, 2 . . . , n− 1, the first n− j iterations of the inner loop do nothing
since the principal n × n block of G remains upper triangular during the elimination;
omitting these vacuous iterations, the following example shows how the shape of the work
matrix changes as in the case n = 3:

s3

s2

s1

∗ ∗ ∗ 1
∗ ∗ ∗ 1
∗ ∗ ∗ 1

→

∗ ∗ ∗ ∗

s2

s1

∗ ∗ ∗
∗ ∗ ∗ 1
∗ ∗ ∗ 1

→

∗ ∗ ∗ ∗ ∗

s2

s1

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ 1

→

∗ ∗ ∗ ∗ ∗ ∗

s2

s1

∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

→

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

s1

∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

→ · · ·
Note that even after only the first column has been eliminated, the upper triangular
structure of the trailing n× n block has been lost, thus necessitating that j range up to 2n.
Our first refinement of the algorithm is to reverse the order of elimination of entries in the
southwest block of G, thus preserving the upper triangularity of the southeast block.

for j from 1 to n do
for i from 2n by −1 to n+ 1 do

(g, s, t, u, v) := Gcdex(G[j, j], G[i, j]);[
G[j, ∗]
G[i, ∗]

]
:=

[
s t
u v

] [
G[j, ∗]
G[i, ∗]

]
57

od
od

The following example for n = 3 shows how the shape of the shape of the work matrix
changes during the first few iterations:

s3

s2

s1

∗ ∗ ∗ 1
∗ ∗ ∗ 1
∗ ∗ ∗ 1

→

∗ ∗ ∗ ∗

s2

s1

∗ ∗ ∗ 1
∗ ∗ ∗ 1
∗ ∗ ∗

→

∗ ∗ ∗ ∗ ∗

s2

s1

∗ ∗ ∗ 1
∗ ∗ ∗ ∗
∗ ∗ ∗

→

∗ ∗ ∗ ∗ ∗ ∗

s2

s1

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

→

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

s1

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗

→ · · ·

Initially, we assume that the offdiagonal entries in G are reduced modulo the diagonal
entry in the same column. As the algorithm eliminates entries in column j, we can implicitly
perform unimodular row operations to reduce entries in column j + 1, . . . , n modulo the
diagonal entry in the same column. In the following example, entries that are kept reduced
modulo the diagonal entry in the same column are represented by ∗̄.

s3

s2

s1

∗̄ ∗̄ ∗̄ 1
∗̄ ∗̄ ∗̄ 1
∗̄ ∗̄ ∗̄ 1

→

∗ ∗̄ ∗̄ ∗

s2

s1

∗ ∗̄ ∗̄ 1
∗ ∗̄ ∗̄ 1
∗̄ ∗̄ ∗

→

∗ ∗̄ ∗̄ ∗ ∗

s2

s1

∗ ∗̄ ∗̄ 1
∗̄ ∗̄ ∗ ∗
∗̄ ∗̄ ∗

→

∗ ∗̄ ∗̄ ∗ ∗ ∗

s2

s1

∗̄ ∗̄ ∗ ∗ ∗
∗̄ ∗̄ ∗ ∗
∗̄ ∗̄ ∗

→

∗ ∗ ∗̄ ∗ ∗ ∗
∗ ∗̄ ∗

s1

∗ ∗̄ ∗ ∗ ∗
∗ ∗̄ ∗ ∗
∗̄ ∗

→ · · · (4.8)

58

The second refinement of the algorithm is to keep the ∗̄ entries reduced modulo the diagonal
entry in the same column during the elimination.

for j from 1 to n do
for i from 2n by −1 to n+ 1 do

(g, s, t, u, v) := Gcdex(G[j, j], G[i, j]);

G[j, j], G[i, j] := g, 0;

U :=

[
s t
u v

]
;

for k from j + 1 to n do[
G[j, k]
G[i, k]

]
:= Rem

(
U

[
G[j, k]
G[i, k]

]
, sn−k+1

)
od;
for k from n+ 1 to 2n do[

G[j, k]
G[i, k]

]
:= U

[
G[j, k]
G[i, k]

]
od

od
od

Notice in (4.8) that entries in the last n columns of the work matrix G are not kept
reduced and can suffer from expression swell. However, our goal is to recover only the
trailing n diagonal entries of the last n columns of the triangularization of G. To avoid
the cost associated with performing the unimodular row operations on the last n columns
of the work matrix, we can exploit the special structure of the work matrix and modify
the elimination procedure to only keep track of the the last n diagonals. The following
illustrates our point with an example for n = 3. Let

G =

s3

s2

s1

∗ ∗ ∗ 1
∗ ∗ ∗ 1
a1 ∗ ∗ 1

 .

59

The first elimination step computes the extended gcd of s3 and a1, (g, s, t1, u, v1) =
Gcdex(s3, a1), and updates the work matrix to have the following shape:

s t1
1

1
1

1
u v1

s3 0

s2

s1

∗ ∗ ∗ 1
∗ ∗ ∗ 1
a1 ∗ ∗ 1

 =

g ∗ ∗ t1

s2

s1

∗ ∗ ∗ 1
a2 ∗ ∗ 1
∗ ∗ v1

 .

Continuing the elimination gives

∗ ∗ ∗ t1

s2

s1

∗ ∗ ∗ 1
a2 ∗ ∗ 1
∗ ∗ v1

→

∗ ∗ ∗ t2 ∗

s2

s1

a3 ∗ ∗ 1
∗ ∗ v2 ∗
∗ ∗ v1

→

∗ ∗ ∗ t3 ∗ ∗

s2

s1

∗ ∗ v3 ∗ ∗
∗ ∗ v2 ∗
a4 ∗ v1

→

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ t4

s1

∗ ∗ v3 ∗ ∗
∗ ∗ v2 ∗
∗ v1v4

 · · ·

The key observation is that, although the offdiagonal entries in the last n columns are
modified during the elimination, they never affect the last n diagonal entries entries which
will depend only on the vi computed by the calls to Gcdex. Our third refinement of the
algorithm is to avoid storing and updating any of the offdiagonal entries in the last n
columns of the matrix. Instead, we can keep track of the last n diagonal entries using a
vector D ∈ K[x]1×n. Thus, now we work on

G =

[
P

I

] [
S
V

]
P ∈ K[x]2n×n, (4.9)

instead of G in (4.7).

For n = 3, the following shows the state of G and D during the execution of Algorithm
DiagonalHermite in Figure 4.1. Here vi is the value of v on the i’th call to Gcdex in the

60

DiagonalHermite(S, V)
Input: • S ∈ K[x]n×n, the Smith form of a

nonsingular A ∈ K[x]n×n of degree d.
• V ∈ K[x]n×n, deg Col(V, j) < deg sj, 1 ≤ j ≤ n.

Output: D ∈ Z1×n, the degrees of the last n diagonal entries

in the Hermite form of

[
S
V I

]
.

Let P be equal to In with columns reversed.

Initialize G =

[
P

I

] [
S
V

]
P .

Initialize D = [1, . . . , 1].

for j from 1 to n do
for i from 2n by −1 to n+ 1 do

(g, s, t, u, v) := Gcdex(G[j, j], G[i, j]);

G[j, j], G[i, j] := g, 0;

U :=

[
s t
u v

]
;

for k from j + 1 to n do

U := Rem(U, sn−k+1);[
G[j, k]
G[i, k]

]
:= Rem

(
U

[
G[j, k]
G[i, k]

]
, sn−k+1

)
od;
D[i− n] := D[i− n]× v

od
od;
return [degD[1], . . . , degD[n]]

Figure 4.1: Algorithm DiagonalHermite

61

above algorithm.

G =

s3

s2

s1

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 →

∗ ∗ ∗

s2

s1

∗ ∗ ∗
∗ ∗ ∗
∗ ∗

 · · · →

∗ ∗ ∗

s2

s1

∗ ∗
∗ ∗
∗ ∗

 →

∗ ∗ ∗
∗ ∗

s1

∗ ∗
∗ ∗
∗

 · · ·

D =
[

1, 1, 1
] [

1, 1, v1

] [
v3, v2, v1

] [
v3, v2, v1v4

]
We now bound the running time of Algorithm DiagonalHermite in Figure 4.1. During

the elimination of column j, entries in column j remain bounded in degree by the diagonal
entry, a divisor of sn−j+1. Thus, each call to Gcdex is bounded by B(deg sn−j+1) operations
from K. The cost of all n2 calls to Gcdex is thus bounded by n

∑n
j=1 B(deg sj) ≤ nB(nd),

using
∑n

j=1 deg sj ≤ nd.

The cost of applying the transformation U , in each iteration of i, is bounded by
c1
∑n−j+1

k=1 M(deg sk) for some constant c1 > 0. For every column j, the total cost of

applying transformations is bounded by nc1
∑n−j+1

k=1 M(deg sk). Thus the cost of applying
the transformation U , in all iterations, is bounded by

nc1

n∑
j=1

n−j+1∑
k=1

M(deg sk) ≤ c1n
2 M(nd),

using the superlinearity of M and that fact that
∑n

j=1 deg sj ≤ nd.

Each entry in D is updated n times and also at any time during the execution of the
algorithm

∑n
i=1 degD[i] ≤ nd. This provides a bound for the cost of all updates to D as

O(nM(nd)).

We obtain the following result.

Theorem 4.9. Algorithm DiagonalHermite in Figure 4.1 is correct. The cost of the
algorithm is O(n2 M(nd) + nB(nd)) operations from K.

4.3.1 Via matrix multiplication

In this section we adapt Algorithm DiagonalHermite in Figure 4.1 to a faster version using
matrix multiplication. For the sake of simplicity assume that

n =
t∑
i=0

2i = 2t+1 − 1

62

This assumption can be made without loss of generality as we can always embed S and V
into matrices diag(I, S) and diag(0, V) to get the required dimension and the new dimension
shall at be at most twice of the original dimension.

We now introduce blocking. Figure 4.2 shows a block decomposition for a 14× 7 matrix

G =

[
P

I

] [
S
V

]
P,

from (4.9), where P ∈ K[x]7×7 is a permutation matrix with 1 on the anti diagonal. The
lower part is 7 × 7 matrix, we add a additional 0 row at the bottom for convenience of
blocking.

Thus, for G ∈ K[x]2n×n, instead of working on each entry one by one as in Algorithm
DiagonalHermite in Figure 4.1, we shall split V , the lower part of G, into square blocks of
sizes 2i, for i = 0, . . . , t. For keeping things simple, we pad V with an extra zero row to
keep the dimension of V as 2t+1 × (2t+1 − 1). We iterate on each block in the same order
as we did in DiagonalHermite algorithm. For n = 7, Figure 4.2 shows the partition of the
lower part of G. The numbers on the blocks are the order in which the algorithm iterates
on the blocks.

Working over blocks instead of individual entries of the matrix, requires appropriate
changes in the Eliminate, Apply Transformation and Update Diagonal steps of the algorithm.
Figure 4.3 gives the basic scheme of BlockDiagonalHermite Algorithm. Figure 4.4 shows
the shape of the matrix G before and after an iteration of BlockDiagonalHermite algorithm.
The matrix on the left in Figure 4.4 is the shape of the matrix before Block Eliminate Phase
and the matrix on the right is the shape of the matrix after Apply Block Transformation
Phase. Non shaded area represents zero entries. The area boxed in the rectangle containing
rows indexed by elements from S is the area affected by Apply Block Transformation Phase.

In Phase A, we compute the Hermite form H of W in cost O(2jω B(deg sn−2j+1)) using
the result in Theorem 4.4. To see that sn−2j+1I ∈ L(W), note snf(W) = diag(I, snf(GJ ,J)).
If we can show that sn−2j+1 is a multiple of the largest invariant factor of GJ ,J , then by
Lemma 4.2 we are done.

Initially G
(0)
J ,J = diag(sn−2j+1, sn−2j , . . . , sn−2j+1+2), hence sn−2j+1 is the largest invariant

factor of G
(0)
J ,J . In the next iteration, G

(1)
J ,J is the Hermite basis of[
G

(0)
J ,J

G
(0)
J ,I

]
.

By Lemma 4.2, sn−2j+1 is a multiple of the largest invariant factor of G
(1)
J ,J . Using similar

arguments, sn−2j+1 is a multiple of the largest invariant factor of G
(∗)
J ,J .

63

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s7

s6

s5

s4

s3

s2

s1

Figure 4.2: Blocking to compute the diagonal entries of the Hermite form.

Each iteration of Phase A costs O(2jω B(deg sn−2j+1)) operations from K. For every
j = 0, 1, · · · , t, there are O(n/2j) iterations. We shall now use the following fact from
Theorem 1.4

deg sk ≤ nd/(n− k + 1)

Thus there exists c2 > 0, such that the total cost of all Block Eliminate steps is bounded by

c2

t∑
j=0

2jω B(nd/2j)× n/2j ≤ c2

t∑
j=0

2jω B(d)B(n/2j)× n/2j,

using the superlinearity of B (1.9). We now use the fast multiplication assumption (1.6)
along with the bound on B (1.8) to get B(t) ∈ O((MM(t)/t) log t) and hence there exists a
c3 > 0:

c2

t∑
j=0

(2jω B(d)(n/2j)ω × log(n/2j)) ≤ c3(n
ω B(d)

t∑
j=0

log(n/2j)).

64

BlockDiagonalHermite(V, S)
Input: V ∈ K[x]n×n, diagonal matrix S ∈ K[x]n×n is the Smith form of nonsingular A ∈ K[x]n×n, with
d = degA.
Output: D ∈ Z1×n, the vector containing the degrees of the trailing n diagonal entries of the Hermite form

of
[
S
V I

]

Initialize D := [1, 1, . . . , 1];
P is a n× n permutation matrix with ones on the anti diagonal;

G =
[
P

I

] [
S
V

]
P ;

for j from 0 to t do
J := (2j , . . . , 2j+1 − 1);

for i from 2n+ 1 by 2j to n+ 2j do

I := (i− 2j + 1, . . . , i);
A:[Block Eliminate]

H︷ ︸︸ ︷[
H1 H2

H4

]
:= Hermite

W︷ ︸︸ ︷([
GJ ,J
GI,J I

])
; /*H = φ−1

xsn−2j+1
(Howell(φxsn−2j+1

(W)))*/[
GJ ,J
GI,J

]
=
[
H1

]
;

B:[Apply Block Transformation]

U := H

W−1︷ ︸︸ ︷[
G−1
J ,J

−GI,JG
−1
I,I I

]
;

for k from j + 1 to t do
K = (2k, 2k + 1, . . . , 2k+1 − 1);
U := Rem(U, sn−2k−1);[
GJ ,K
GI,K

]
:= Rem

(
U

[
GJ ,K
GI,K

]
, sn−k+1

)
;

od
C:[Update Block Diagonal]

for every index k in I do
D[k] := D[k]×H4[k − i+ 2j];

od
od

od

return [degD[1],degD[2], . . . ,degD[n]]

Figure 4.3: Algorithm BlockDiagonalHermite

65

Figure 4.4: Shape of the work matrix after an iteration of Algorithm BlockDiagonalHermite

in Figure 4.3.

Thus the cost of all Block Eliminate steps is O(nω(log n)2 B(d)).

Now let us account for the cost of Phase B. The following lemma shows that the cost of
all Apply Block Transformations is bounded by O(nω(log n)2 M(d)).

Lemma 4.10. The cost of all iterations of Phase B in BlockDiagonalHermite is bounded
by O(nω(log n)2 M(d)). Assuming that that M(t) ∈ O(MM(t)/t).

Proof. Note that GJ ,J is in Hermite form. Thus G−1
J ,J is a proper matrix fraction. Hence

degU ≤ degH ≤ deg(sn−2j+1). Therefore, there exists a constant c4 > 0, such that each
iteration of Phase B costs

c4(MM(2j, deg sn−2j+1)+
t∑

k=j+1

MM(2j, 2j, 2k, deg sn−2k−1)) = c4(
t∑

k=j

MM(2j, 2j, 2k, deg sn−2k−1))

operations. Also for every j there will be O(n/2j) iterations. Using the properties of
MM; (1.5) and (1.4), we can state that there exist constants c5, c6 > 0 such that the total
cost of all Apply Block Transformation steps is:

66

c5

(
t∑

j=0

n/2j
t∑

k=j

MM(2j, 2j, 2k, deg sn−2k−1)

)
= c6

(
t∑

j=0

n/2j
t∑

k=j

2jω 2k−jM(deg sn−2k−1)

)

= c6

(
n

t∑
j=0

2j(ω−2)

t∑
k=j

2kM(deg sn−2k−1)

)

= c6

(
n

t∑
k=1

2kM(deg sn−2k−1)
k∑
j=0

2j(ω−2)

)

≤ 2c6

(
n

t∑
k=1

2kM(deg sn−2k−1)k2k(ω−2)

)

= 2c6

(
n

t∑
k=1

k2k(ω−1)M(deg sn−2k−1)

)

≤ 2c6

(
n

t∑
k=1

k2k(ω−1)M(nd/2k)

)
(4.10)

≤ 2c6

(
n

t∑
k=1

k2k(ω−1)M(n/2k)M(d)

)
.

Note that in (4.10), we use the bound on the degree of Smith invariants in Theorem 1.4.
Now we use the assumption that M(t) ∈ O(MM(t)/t). Thus, there exists a c6 > 0 such that
the cost of all Apply Block Transformation steps is bounded by:

2c5

(
t∑

k=1

k2k(ω)n/2kM(n/2k)M(d)

)
≤ c6

(
t∑

k=1

knω M(d)

)
≤ c6(n

ω(log n)2 M(d)).

The cost of Update Block Diagonal steps remains the same as in the iterative case, that
is, O(nB(nd)). Thus, the total cost of finding the diagonal entries of the Hermite form of A
using matrix multiplication, given S and V such that A = V S−1∗, is O(nω(log n)2 B(d)).

We can now state the following result.

Theorem 4.11. Algorithm BlockDiagonalHermite in Figure 4.3 is correct. The algorithm
uses O(nω(log n)2 B(d)) field operations from K. This cost estimate assumes that M(t) ∈
MM(t)/t.

67

Chapter 5

Diagonal to Hermite Form

In this chapter we will recover the Hermite form of a nonsingular matrix A ∈ K[x]n×n, using
the information about the Smith form of A, the reduced Smith decomposition of A and the
degrees of the diagonal entries of the Hermite form. Section 5.1 details a way to recover
the Hermite form from a genset for a sub lattice of A. Section 5.2 gives a way to recover
the Hermite form from the kernel basis of a matrix containing the Smith form of A and
its reduced Smith transform. Finally Section 5.3 improves on Section 5.2 to compute a
genset for a sub lattice of A in cost of the order of the matrix multiplication of polynomial
matrices of the same dimension and degree bounds.

We begin by defining some notation. Let e = (e1, . . . , en) be a tuple of integers and
u =

[
u1 · · · un

]
∈ K[x]1×n. Following [2], the e-degree of u is equal to mini deg ui − ei.

We define Le(A) to be the set of row vectors of L(A) that have nonpositive e-degree, that
is, those vectors u that satisfy deg ui ≤ ei, 1 ≤ i ≤ n.

Definition 5.1. Let L ∈ K[x]∗×n and e = (e1, . . . , en) be a tuple of degree constraints. A
matrix G ∈ K[x]∗×n is a genset of type e = (e1, . . . , en) for Le(L) if

• every row of G has nonpositive e-degree,

• Le(G) = Le(L).

Note that for some tuples e we may have L(Le(A)) ⊂ L(A). In other words, there
may not exist a basis for the lattice L(A) for which every row in the a basis has degree
bounded by e. An obvious example is when e = (−1, . . . ,−1), in which case L(Le(A)) has
dimension zero.

68

5.1 From genset to Hermite form

Let d = (d1, . . . , dn) be the degrees of the diagonal entries of the Hermite form H of a
nonsingular A ∈ K[x]n×n. Because H is a basis for L(A), and each row of H has nonpositive
d-degree, we have the following result.

Lemma 5.2. L(Ld(A)) = L(A).

The following lemma shows how to recover H from a genset H̄ of type d for Ld(A).
The lemma follows as a corollary of Lemma 5.2.

Lemma 5.3. Suppose H̄ ∈ K[x]m×n is a genset of type d for Ld(A) with m ≥ n and H is
the Hermite form of A. Let L ∈ Km×n : Col(L, j) = Coeff(Col(H̄, j), xdj), 1 ≤ j ≤ n. If
U ∈ Km×m is a nonsingular matrix such that UL is in reduced row echelon form, then UH̄
will have principal n× n submatrix equal to H, and last m− n rows zero.

Proof. Suppose UH̄ did not have principal n× n submatrix equal to H. Let the i, j - th
entry of UH̄ be a 6= 0 for some i, j such that n ≥ i > j. Since UL is in row reduced form,
the deg a < dj. This is a contradiction as we know that the degree of the j-th diagonal
entry of the Hermite form is dj, and from among all rows of L(A) which have first i− 1
entries zero and entry i nonzero, the i’th row of the Hermite form has i’th entry of minimal
degree, 1 ≤ i ≤ n.

Since the i, j entries of UH̄ are zero for all n ≥ i > j and the degrees of diagonal entries
are same as that of H, by uniqueness of the Hermite form the principal n× n submatrix of
UH̄ is H.

Example 5.4. Let K = Z/(7), and consider the following Hermite form H ∈ K[x]3×3,
together with a genset H̄ ∈ K[x]5×3 of type (1, 3, 2) for L(H):

H =

 x x2 + 1 x+ 2
x3 + 2x2 x+ 3

x2 + 2

 ,

H̄ =

4x 6x3 + 2x2 + 4 6x2 + 3x+ 3
x 4x3 + 2x2 + 1 5x2 + 5x+ 3
x 2x3 + 5x2 + 1 3x2 + 3x
3x 5x3 + 6x2 + 3 4x2 + x+ 1
2x 2x2 + 2 4x2 + 2x+ 5

 .
The following shows the leading coefficient matrix L of H̄, together with a nonsingular
matrix U ∈ K5×5 that transforms L to reduced row echelon form, which due to Lemma 5.3

69

will necessarily have principle 3× 3 submatrix equal to I3.

U
2 1 6 0 0
2 6 0 0 0
5 5 3 0 0
6 3 5 1 0
2 3 2 0 4

L

4 6 6
1 4 5
1 2 3
3 5 4
2 0 4

=

1

1
1

UH̄ is equal to the Hermite form H augmented with two zero rows.

5.2 Hermite form via kernel basis

The quantities defined in this subsection will be used in the remaining subsections. Let
A ∈ K[x]n×n be nonsingular, with the following quantities precomputed:

• The Smith form S = Diag(s1, . . . , sn) ∈ K[x]n×n of A.

• A matrix V ∈ K[x]n×n such that u ∈ L(A) if and only if uV S−1 is over K[x]. The i’th
column of V has entries of degree less than deg si.

• The degrees d = (d1, . . . , dn) of the diagonal entries of the Hermite form H of A.

Let R := −HV S−1 ∈ K[x]n×n. Then[
R H

] [S
V

]
= 0. (5.1)

Since column i of V has degree strictly less than deg si, we have degR ≤ D where
D = maxi di − 1. Let D = (D, . . . , D), of length n. The matrix

[
R H

]
is a basis

(with all rows of nonpositive (D,d)-degree) for the left kernel of
[
S V T

]T
. In fact, by

Lemma 5.3, to recover H it will be sufficient to compute a genset
[
R̄ H̄

]
of type (D,d)

for L(D,d)(
[
R H

]
). The next subsection computes such a genset using fast minimal

approximant basis computation.

We remark that the transformation of a canonical form computation to that of a kernel
computation is used in [2, 3]. In particular, note that[

U H
] [A

In

]
= 0. (5.2)

The setup in (5.2) requires no precomputation, and is useful if the unimodular transformation
U to achieve the Hermite form is also required. What is important in our approach shown
in (5.1) is the shape of the input problem: we will exploit the fact that S is diagonal, with
sum of column degrees in both S and V bounded by nd.

70

5.3 Hermite via minimal approximant basis

Let G ∈ K[x]n×m and e be a tuple of nonnegative integers. The entries of e may be
considered to be degree constraints. Recall that an order N minimal approximant basis
(or σ-basis [1]) of type e for G is a nonsingular and row reduced matrix M ∈ K[x]n×n such
that MG ≡ 0 mod xN . The minimality condition means that the rows of M have e-degrees
as small as possible.

Lemma 5.5. Let M ∈ K[x]2n×2n be an order N = D + deg sn + 1 minimal approximant

basis of type (D,d) for
[
S V T

]T
. The submatrix of rows of M that have nonpositive

(D,d)-degree comprise a basis for L(
[
R H

]
).

Proof. Let v ∈ K[x]1×2n have nonpositive (D,d)-degree. The order N is high enough that

v
[
S V T

]T
= 0 if and only if v

[
S V T

]T ≡ 0 mod xN .

Example 5.6. Consider the matrix H from Example 5.4. The degrees of the diagonal entries
of H are (1, 3, 2) and thus D = 2. The Smith form of H is diag(1, 1, x6 + 2x5 + 2x4 + 4x3).
Since the first two invariant factors are trivial, we can restrict S to its last entry and V to
its last column as the input:

[
S
V

]
=

x6 + 2x5 + 2x4 + 4x3

5x5 + x3 + 6x2 + 6
6x5 + 3x4 + 3x3 + x

4x5 + 2x4 + 2x3

 . (5.3)

The following shows an order 9 minimal approximant basis M of type (2, 1, 3, 2) for[
S V T

]T
, rows permuted to be in nondecreasing (D,d)-degree.

M =

3x+ 6 x2 + 2
x x x2 + 1 x+ 2

x2 + 4x+ 5 x3 + 2x2 x+ 3
x4 + 5x3 + 2x2 + x+ 4 0 5x2 x

Exactly the first n = 3 rows have nonpositive (D,d)-degree. For this example, the northeast
block of M is the Hermite form of A up to a row permutation. In general, the northeast
block will be a genset of full row rank for Ld(H).

Using directly the approach of Lemma 5.5 to recover H is too expensive because the
required order N = D + deg sn + 1 of the minimal approximant basis computation is too
high. Indeed, we may have N ∈ Ω(nd). The reduction of order technique in [29, Section 2]
can be used to reduce the order down to one more than times the maximum of the degree

71

constraints in (D,d). Unfortunately, the largest entry in d and D may be Ω(nd). Before
applying the reduction of order technique we apply the partial linearization technique
from [29, Section 3] to transform to a new minimal approximant basis problem of type
(D,d1), with all entries of d1 bounded by d.

We need to recall some notation from [29]. The norm of a tuple of degree constraints d
is defined to be ‖d‖ = (d1 + 1) + · · · + (dn + 1). For b ≥ 0, let φb be the function which
maps a single degree bound di to a sequence of degree bounds, all element of the sequence
equal to b except for possibly the last, and such that ‖(di)‖ = di + 1 = ‖(φb(di))‖. Let
len(φb(di)) denote the length of the sequence. For example, we have φ3(10) = 3, 3, 2 with
len(φ3(10)) = 3, while φ2(11) = 2, 2, 2, 2 and len(φ2(11)) = 4. Computing a genset of type
(D,d) for L(D,d)(

[
R H

]
) can be reduced to computing an order N genset of type d1 =

(φb(d1), . . . , φb(dn)). Corresponding to d1 define the following n̄×n expansion/compression
matrix

B :=

1
xb+1

...
x(b+1)len(φb(d1))−1

1
xb+1

...
x(b+1)(len(φb(d2))−1)

. . .

,

where n̄ =
∑n

i len(φb(di)) =
∑n

i d(di + 1)/(b+ 1)e.

Lemma 5.7. Let b ≥ 0 and define ei = d(di + 1)/(b+ 1)e, 1 ≤ i ≤ n. Let M1 be an order

N = D + deg sn + 1 minimal approximant basis of type (D,d1) for
[
S (BV)T

]T
, where

d1 = (φb(d1), . . . , φb(dn)). If
[
R̄1 H̄1

]
is the subset of rows of M1 which have degree

bounded by (D,d1), then
[
R̄1 H̄1B

]
is a genset of type (D,d) for L(D,d)(H).

Furthermore, with the choice b = d the row dimension n̄ of BV will satisfy n̄ ∈ O(n).

Example 5.8. The problem in Example 5.6 was to compute a minimal approximant of
type (D,d) = (2, 1, 3, 2) for the 4 × 1 input matrix shown in (5.3). Consider setting the
linearization parameter b in Lemma 5.7 as b = 1. The expanded problem BV is

B
1

1
x2

1
x2

 V =

BV
5x5 + x3 + 6x2 + 6

6x5 + 3x4 + 3x3 + x
6x7 + 3x6 + 3x5 + x3

4x5 + 2x4 + 2x3

4x7 + 2x6 + 2x5

 . (5.4)

72

The degree constraints for the expanded problem are

(D,d1) = (2, φ1(1), φ1(3), φ1(2))

= (2, 1, 1, 1, 1, 0).

The following shows an order 9 minimal approximant basis of type (2, 1, 1, 1, 1, 0) for[
S (BV)T

]T
.

M =

3x+ 6 0 0 0 2 1

x2 + 4x+ 5 0 0 x+ 2 x+ 3 0
x x 1 1 x+ 2 0

3x+ 6 0 0 0 x2 + 2 0
0 0 x2 6 0 0

x4 + 5x3 + 2x2 + x+ 4 0 0 5 x 0

The first 3 rows of M have nonpositive (D,d1)-degree. Applying the compression matrix to
the northwest block of M gives a genset H̄ of type d for Ld(H):

 0 0 0 2 1
0 0 x+ 2 x+ 3 0
x 1 1 x+ 2 0

B =

H̄ 0 0 x2 + 2
0 x3 + 2x2 x+ 3
x x2 + 1 x+ 2

 .
Note that in this example H̄ has full row rank. We remark that, in general, the genset
produced using this expansion/compression technique may have linearly dependent rows.

At this point, we have reduced the problem of computing H to that of computing the
rows

[
R̄1 H̄1

]
of nonpositive (D,d1)-degree in an order N = D + deg s1 + 1 minimal

approximant basis of type (D,d1), namely[
R̄1 H̄1

] [S
BV

]
= 0 mod xN .

The degree constraints D = (D, . . . , D) corresponding the columns of R̄1 may still be too
large in general, since D = maxi di − 1 ∈ Ω(nd) in the worst case. The key idea now is
that R̄1 is not required. Let C be a matrix such that BV − CS has each column of degree
bounded by si, and consider the transformed input:[

In
−C I

] [
S
BV

]
=

[
S
E

]
. (5.5)

Note that each column in E has degree strictly less than the corresponding diagonal entry
in S.

73

Lemma 5.9. Let D1 = (d − 1, . . . , d − 1), of length n. Let M2 be an order N = D +

deg sn + 1 minimal approximant basis of type (D1,d1) for
[
S ET

]T
. Let

[
R̄2 H̄2

]
be

the submatrix of M2 comprised of rows that have nonpositive (D1,d1)-degree. Then H̄2B is
a genset of type d for Ld(H).

Proof. The order N is large enough to ensure that[
R̄2 H̄2

] [
S ET

]T
= 0,

and (5.5) gives that
[
R̄2 − H̄2C H̄2

] [
S (BV)T

]T
= 0, which implies that[

R̄2 − H̄2C H̄2B
] [S

V

]T
= 0,

with all rows in H̄2B of nonpositive d-degree. But since V has degrees of entries bounded by
the corresponding diagonal entry of S, each row of R̄2 − H̄2 has nonpositive D degree. We
conclude that

[
R̄2 − H̄2C H̄2

]
⊆ L(D,d)(

[
R H

]
). The other direction is similar.

Provided we have chosen the linearization parameter b in Lemma 5.7 to satisfy b ∈ Θ(d)
(e.g., b = d will suffice), the final minimal approximant problem in Lemma 5.9 will have
dimension O(n) × n. Note that entries of the compression/expansion matrix B are all
powers of x. Thus, the only computation (in terms of field operations) required to construct
the input problem in Lemma 5.9 is to construct E from BV by reducing entries in each
column i modulo the diagonal entry in the same column of S, 1 ≤ i ≤ n.

Example 5.10. The problem in Example 5.8 was to compute a minimal approximant of
type (D,d1) = (2, 1, 1, 1, 1, 0) for the partially linearized 6×1 input matrix B shown in (5.4).
Reducing the last 5 entries modulo the the principal entry we obtain the new input

[
S
E

]
=

x6 + 2x5 + 2x4 + 4x3

5x5 + x3 + 6x2 + 6
6x5 + 3x4 + 3x3 + x

2x5 + x4 + 2x3

4x5 + 2x4 + 2x3

6x5 + 3x4 + 3x3

 . (5.6)

The following shows the submatrix of an order N = D + deg sn + 1 = 9 minimal approxi-

mant basis of type (D1,d1) = (0, 1, 1, 1, 1, 0) for
[
S ET

]T
comprised of rows that have

nonpositive (D1,d1)-degree:

[
R̄2 H̄2

]
=

 0 0 0 0 2 1
0 x 1 2x+ 5 3x+ 1 0
1 0 0 x+ 2 x+ 3 0

 .
Applying the compression matrix B to H̄2 yields a genset H̄2B of type d for Ld(H).

74

At this point (Lemma 5.9) we have reduced the problem of computing H to that of
computing the rows

[
R̄2 H̄2

]
of nonpositive (D1,d1)-degree of a minimal approximant

basis of order N = D + deg sn + 1 for an input
[
S ET

]T
. If the partial linearization

parameter in Lemma 5.7 was chosen as b = d, then E has dimension O(n) × n, and all
degree constrains in (D1,d1) are bounded by d. Since the sum of the column degrees in[
S ET

]T
is bounded by nd, the reduction of order technique in [29, Section 2] can be

used to transform to an equivalent problem of dimension O(n) × O(n) and order only
2d+ 1. We refer to [29] for details of the reduction of order technique, and only illustrate
the technique here on our running example.

Example 5.11. In Example 5.10 we computed an order 9 minimal approximant basis of

type (D1,d1) = (0, 1, 1, 1, 1, 0) for the 6× 1 input F :=
[
S ET

]T
shown in (5.6). Since

the maximum degree constraint is 1, we can instead compute an order 2 · 1 + 1 = 3 minimal
approximant basis M̄ of type (D1,d1, d− 1, d− 1) = (0, 1, 1, 1, 1, 0, 0, 0) for the following
input:

F̄ =

 F Quo(F, x2) Quo(F, x4)
1

1

 ∈ K[x]8×3.

Indeed, the submatrix of M̄ comprised of rows that have nonpositive (D1,d1, 0, 0)-degree
can be written as

[
W ∗

]
, where W is the submatrix of an order 9 minimal approximant

basis of type (D1,d1) for F .

Theorem 5.12. Let A ∈ K[x]n×n be nonsingular of degree d. Assuming #K ≥ 8n3d, there
exists a Las Vegas probabilistic algorithm that computes the Hermite form H of A with
probability greater than 1/2 or returns fail, using O(nω(logn)2 B(d)) field operations from K.

Proof. By Theorem 4.8, the Smith form S of A and corresponding V as described in
Subsection 5.2 can be computed in a Las Vegas fashion in the allotted time. By Theorem 4.11,
the degrees of the diagonal entries of H can be computed in the allotted time using Algorithm
BlockDiagonalHermite in Figure 4.3. Construct column i of the block E of the input[
S ET

]T
to the minimal approximant problem of Lemma 5.9 by reducing modulo si

the entries in column i of BV , 1 ≤ i ≤ n. Compute the rows of nonpositive degree in
the minimal approximant indicate in Lemma 5.9 by first applying the reduction of order
technique from [29, Section 2] to obtain a new problem of dimension O(n)×O(n) and order
2d+ 1, and then apply algorithm PM-Basis from [11] in time O(nω B(d)) operations from
K. Finally, use the approach of Lemma 5.3 to recover the Hermite form from the genset for
Ld(H).

75

Chapter 6

Conclusion

In this chapter we collate the results in the previous chapters to give an algorithm to
compute the Hermite form of a nonsingular A ∈ K[x]n×n. The algorithm is described in
Figure 6.1. The central result of this thesis is the following.

Theorem 6.1. Let A ∈ K[x]n×n be nonsingular of degree d. Algorithm Hermite(A, n, d) in
Figure 6.1 is correct and it computes the Hermite form H of A with probability greater than
1/2 or returns fail, using O(nω(log n)2 B(d)) field operations from K.

The preconditioning phase of Algorithm Hermite in Figure 6.1, makes sure that the
preconditions of Algorithm RST in Figure 3.2 are satisfied. The deterministic row reduction
algorithm from [12] takes O(nω(log n)2 B(d)) basic operations from K. The probabilistic
algorithm [11] can also be used here for row reduction and it costs O(nω(log n)B(d)) basic op-
erations from K. The Smith form of A can be computed using [28] in cost O(nω(log n)2 B(d))
operations from K. It is a Las Vegas type algorithm which succeeds when the determinant
of the input matrix has a non zero constant term. After the end of the preconditioning
phase, we will work to compute the Hermite form of R, a row reduced form of A. Since,
R ≡L, the Hermite form of R gives the Hermite form of A.

After A has been preconditioned into R′, the computation of a reduced Smith transform
phase computes a reduced Smith transform of R, using Algorithm RST in Figure 3.2 in cost
O(nω(log n)2 M(d)) operations from K (see Theorem 4.8). It is a Las Vegas type algorithm
which succeeds with probability at least 1/2 when the field K has at least 8n3d elements.
In case the field is small we can work over an algebraic extension field of K at an added
cost. Algorithm BlockDiagonalHermite in Figure 4.3 is a deterministic algorithm, and
costs O(nω(log n)2 B(d)) operations from K (see Theorem 4.11).

Finally, in fast minimal approximant basis phase, we use the information computed in all
the previous phases to compute the Hermite form of A. This phase consists of deterministic
procedures and costs O(nω B(d)) operations from K (see Theorem 5.12).

76

Hermite(A, n, d)
Input: Nonsingular A ∈ K[x]n×n, with d = degA.
Condition: #K ≥ 8n3d.
Output: H ∈ K[x]n×n, the Hermite form of A or fail.

[Preconditioning]

R := Row reduced form of A ∈ K[x]n×n; /* Using [12] */
L,U ∈ Kn×n be unit lower and unit upper triangular matrices with non-zero non diagonal
entries chosen uniformly at random from K;
R′ := LRU ∈ K[x]n×n;
S := SmithForm(A); /*Using [28]*/

[Compute a reduced Smith Transform]
(U ′, V ′) := RST(R′, S) ∈ K[x]n×n;
V := UV ′ ∈ K[x]n×n;

[Compute the degree of the diagonal entries of the Hermite form]
d :=BlockDiagonalHermite(V, S);

[Fast minimal approximant basis]

Recover H by computing the minimal approximant basis of

[
S
V

]
/* Chapter 5 */

return H;

Figure 6.1: Algorithm Hermite Form Computation

As expected the computation of the Hermite form of a nonsingular matrix is at least as
hard, up to a constant factor, as multiplication of two matrices if the degree bounds in both
cases are the same. The reduction of matrix multiplication to computation of the Hermite
from was first shown by [11]. We present another reduction of matrix multiplication to
the computation of the Hermite form. We show that we can compute the product of two
matrices A and B ∈ K[x]n×n of degree bounded by d, by computing the Hermite form of a
matrix whose dimensions are in O(n). Consider the following matrix:

E :=

[
−I C
C

]
.

Where C is a nonsingular square matrix in Hermite form with all diagonal entries of the

77

same degree. For C ∈ K[x]4×4, the matrix C and C2 will look like the following:

C =

xd + ∗ (d) (d) (d)

xd + ∗ (d) (d)
xd + ∗ (d)

xd + ∗

 ,

C2 =

x2d + ∗ (2d) (2d) (2d)

x2d + ∗ (2d) (2d)
x2d + ∗ (2d)

x2d + ∗

 .
Therefore, if C is in Hermite form with all diagonal entries of the same degree then C2 will
also be in Hermite form. The following will be the Hermite transformation for E:[

I
C I

] [
−I C
C

]
=

[
−I C

C2

]
.

Thus computing the Hermite form of the matrix E gives us the square of matrix C. Now
let us define C as the following:

C =

xd+1In A

xd+1In

0
B

xd+1In
xd+1In

 ∈ K[x]4n×4n.

C is in Hermite form and all its diagonal entries are same. C2 has the following shape:

C2 =

x2(d+1)In 2xd+1A

x2(d+1)In

0 AB
2xd+1B

x2(d+1)In
x2(d+1)In

 .
Thus we can multiply any two matrices A,B ∈ K[x]n×n with degree bounded by d by finding
the Hermite form of a matrix E ∈ K[x]8n×8n with degree bounded by d+ 1.

Algorithm Hermite in Figure 6.1 can be easily extended to find the Hermite form of a
rectangular matrix of an arbitrary rank (see [26, Chapter 6]). Also, we can easily find a
Hermite decomposition of A = UH, given the Hermite form H of A. The the degree of U
is bounded by the degree of A, hence the operation U = Rem(AH−1, X), can be carried
out in cost O(nω,B(d)), where X is an polynomial of degree d+ 1 such that X ⊥ detA.

The problem of derandomizing the computation of a Hermite decomposition is at least
as hard as the problem of derandomizing the computation of a Smith decomposition. The

78

randomization in Algorithm Hermite in Figure 6.1 stems from the randomization needed to
compute the Smith form and a reduced Smith transform which can be found by a reduced
Smith decomposition of snA

−1.

The Hermite form of integer matrices has applications in integer programming and
solutions to linear Diophantine equations. Unfortunately, we cannot directly use the
Algorithm Hermite in Figure 6.1 to compute the Hermite form of integer matrices. The
major hurdle to extend Algorithm Hermite in Figure 6.1 to integer matrices is that there
is no equivalent of minimal approximant basis over Z. Also, there is a problem of carry
with integer computations. It would be possible to get the diagonal entries of the Hermite
form of integer matrices using the techniques in this thesis but we would need a different
approach to go from diagonal entries to the computation of the Hermite form.

79

Bibliography

[1] B. Beckermann and G. Labahn. A uniform approach for the fast computation of
matrix–type Padé approximants. SIAM Journal on Matrix Analysis and Applications,
15(3):804–823, 1994. 71

[2] B. Beckermann, G. Labahn, and G. Villard. Shifted normal forms of polynomial matri-
ces. In S. Dooley, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation:
ISSAC ’99, pages 189—196. ACM Press, New York, 1999. 68, 70

[3] B. Beckermann, G. Labahn, and G. Villard. Normal forms for general polynomial
matrices. Journal of Symbolic Computation, 41(6):708–737, 2006. 70

[4] H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag,
1996. 1

[5] P. D. Domich. Three new polynomially-time bounded Hermite normal form algorithms.
Master’s thesis, School of Operations Research and Industrial Engineering, Cornell
University, Ithaca, NY, 1983. 1

[6] P. D. Domich. Residual Methods for Computing Hermite and Smith Normal Forms. PhD
thesis, School of Operations Research and Industrial Engineering, Cornell University,
Ithaca, NY, 1985. 1

[7] P. D. Domich. Residual Hermite normal form computations. ACM Trans. Math.
Software, 15:275–286, 1989. 50

[8] P. D. Domich, R. Kannan, and L. E. Trotter, Jr. Hermite normal form computation
using modulo determinant arithmetic. Mathematics of Operations Research, 12(1):50–
59, 1987. 1, 50

[9] W. Eberly, M. Giesbrecht, and G. Villard. Computing the determinant and Smith
form of an integer matrix. In Proc. 31st Ann. IEEE Symp. Foundations of Computer
Science, pages 675–685, 2000. 7

80

[10] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 2nd edition, 2003. 3

[11] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial matrix
computations. In R. Sendra, editor, Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC ’03, pages 135–142. ACM Press, New York, 2003. 1, 2, 10, 56,
75, 76, 77

[12] S. Gupta, S. Sarkar, A. Storjohann, and J. Valeriote. Triangular x-basis decompositions
and derandomization of linear algebra algorithms over K[x]. Journal of Symbolic
Computation, October 2010. Festschrift for the 60th Birthday of Joachim von zur
Gathen. Accepted for publication. 8, 39, 56, 76, 77

[13] S. Gupta and A. Storjohann. Computing hermite forms of polynomial matrices. In
A. Leykin, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC
’11, pages 155–162. ACM Press, New York, 2011. 1

[14] J. L. Hafner and K. S. McCurley. Asymptotically fast triangularization of matrices
over rings. SIAM Journal of Computing, 20(6):1068–1083, December 1991. 1, 50

[15] J. A. Howell. Spans in the module (Zm)s. Linear and Multilinear Algebra, 19:67—77,
1986. 51

[16] C. S. Iliopoulos. Worst-case complexity bounds on algorithms for computing the
canonical structure of finite abelian groups and the Hermite and Smith normal forms
of an integer matrix. SIAM Journal of Computing, 18(4):658–669, 1989. 1, 50

[17] C. S. Iliopoulos. Worst-case complexity bounds on algorithms for computing the
canonical structure of infinite abelian groups and solving systems of linear diophantine
equations. SIAM Journal of Computing, 18(4):670–678, 1989. 50

[18] C. P. Jeannerod and G. Villard. Essentially optimal computation of the inverse of
generic polynomial matrices. Journal of Complexity, 21:72–86, 2005. 2

[19] T. Kailath. Linear Systems. Prentice Hall, Englewood Cliffs, N.J., 1980. 6, 7

[20] E. Kaltofen, M. S. Krishnamoorthy, and B. D. Saunders. Fast parallel computation
of Hermite and Smith forms of polynomial matrices. SIAM Journal of Algebraic and
Discrete Methods, 8:683–690, 1987. 33, 38

[21] E. Kaltofen and G. Villard. On the complexity of computing determinants. Computa-
tional Complexity, 13(3–4):91–130, 2004. 2

81

[22] S. E. Labhalla. Complexité en temps polynomial : calcul d’une réduite d’Hermite, les
différentes représentations des nombres réels. Doctorat d’Etat, Université Cadi Ayyad,
Faculté des Sciences Semlalia, Marrakech, 1991. 1

[23] D. Micciancio and B. Warinschi. A linear space algorithm for computing the Hermite
normal form. In B. Mourrain, editor, Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC ’01, pages 231—236. ACM Press, New York, 2001. 1

[24] T. Mulders and A. Storjohann. On lattice reduction for polynomial matrices. Journal
of Symbolic Computation, 35(4):377–401, 2003. 1

[25] A. Storjohann. Computation of Hermite and Smith normal forms of matrices. Master’s
thesis, Dept. of Computer Science, University of Waterloo, 1994. 1

[26] A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Swiss Federal
Institute of Technology, ETH–Zurich, 2000. 1, 54, 78

[27] A. Storjohann. High–order lifting. Extended Abstract. In T. Mora, editor, Proc. Int’l.
Symp. on Symbolic and Algebraic Computation: ISSAC ’02, pages 246–254. ACM
Press, New York, 2002. 1, 7, 82

[28] A. Storjohann. High–order lifting and integrality certification. Journal of Symbolic
Computation, 36(3–4):613–648, 2003. Extended abstract in [27]. 1, 31, 32, 48, 76, 77

[29] A. Storjohann. Notes on computing minimal approximant bases. In W. Decker,
M. Dewar, E. Kaltofen, and S. Watt, editors, Challenges in Symbolic Computation
Software, number 06271 in Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006. 10,
71, 72, 75

[30] A. Storjohann. On the complexity of inverting integer and polynomial matrices.
Computational Complexity, 2010. Accepted for publication. 2, 8, 32, 47

[31] A. Storjohann and G. Labahn. Asymptotically fast computation of Hermite normal
forms of integer matrices. In Y. N. Lakshman, editor, Proc. Int’l. Symp. on Symbolic
and Algebraic Computation: ISSAC ’96, pages 259–266. ACM Press, New York, 1996.
1

[32] A. Storjohann and T. Mulders. Fast algorithms for linear algebra modulo N . In
G. Bilardi, G. F. Italiano, A. Pietracaprina, and G. Pucci, editors, Algorithms — ESA
’98, LNCS 1461, pages 139–150. Springer Verlag, 1998. 54

82

[33] G. Villard. Computing Popov and Hermite forms of polynomial matrices. In Y. N.
Lakshman, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC
’96, pages 251–258. ACM Press, New York, 1996. 1

[34] U. Vollmer. A note on the Hermite basis computation of large integer matrices. In
R. Sendra, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC
’03, pages 255–257. ACM Press, New York, 2003. 1

[35] C. Wagner. Normalformberechnung von Matrizen über euklidischen Ringen. PhD
thesis, Universität Karlsruhe, 1998. 1

[36] W. Zhou and G. Labahn. Efficient computation of order basis. In J. P. May, editor,
Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC ’09, pages 375–384.
ACM Press, New York, 2009. 2

83

	List of Figures
	Introduction
	Cost Model and Operations over K[x]
	Operations over K[x]/"426830A s "526930B

	Preliminaries
	Hermite Form
	Smith Form

	Overview

	Partial Product
	Scalar Case: Computing Rem(Rem(fg,s),xd)
	Vector Case: Computing Rem(Rem(FG,s),xd)
	Array Case: Computing Rem(Rem(hAB,s),xd)
	Extension: Compute Quo(Rem(Rem(hAB, s),Xk+1),Xk)

	Reduced Smith Transform
	Reduced Smith Decomposition of B
	Iterative Approach
	Recursive Approach

	 Reduced Smith Decomposition of snA-1
	Blocking
	Delayed Updates: the Outer Product Formula
	Computation of B(j)c and B(j)r

	Diagonal Entries of the Hermite Form
	Hermite form via Howell form
	Hermite form via kernel basis
	The algorithm for diagonal entries
	Via matrix multiplication

	Diagonal to Hermite Form
	From genset to Hermite form
	Hermite form via kernel basis
	Hermite via minimal approximant basis

	Conclusion
	Bibliography

