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Abstract

With rapid technology scaling, flip-flops are becoming more susceptible to metastability

due to tighter timing budgets and the more prominent effects of process, temperature,

and voltage variation that can result in frequent setup and hold time violations. This

thesis presents a detailed methodology and analysis on the design of metastable-hardened,

high-performance, and low-power flip-flops.

The design of metastable-hardened flip-flops is focused on optimizing the value of τ

mainly due to its exponential relationship with the metastability window δ and the mean-

time-between-failure (MTBF). Through small-signal modeling, τ is determined to be a

function of the load capacitance and the transconductance in the cross-coupled inverter

pair for a given flip-flop architecture. In most cases, the reduction of τ comes at the

expense of increased delay and power. Hence, two new design metrics, the metastability-

delay-product (MDP) and the metastability-power-delay-product (MPDP), are proposed

to analyze the tradeoffs between delay, power and τ . Post-layout simulation results have

shown that the proposed optimum MPDP design can reduce the metastability window δ

by at least an order of magnitude depending on the value of the settling time and the

flip-flop architecture.

In this work, we have proposed two new flip-flop designs: the pre-discharge flip-flop

(PDFF) and the sense-amplifier-transmission-gate (SATG) based flip-flop. Both flip-flop

architectures facilitate the usage in both single and dual-supply systems as reduced clock-

swing flip-flop and level-converting flip-flop. With a cross-coupled inverter in the master-

stage that increases the overall transconductance and a small load transistor associated

with the critical node, the architecture of both the PDFF and the SATG is very attractive

for the design of metastable-hardened, high-performance, and low-power flip-flops. The
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amount of overhead in delay, power, and area is all less than 10% under the optimum

MPDP design scheme when compared to the traditional optimum PDP design.

In designing for metastable-hardened and soft-error tolerant flip-flops, the main method-

ology is to improve the metastability performance in the master-stage while applying the

soft-error tolerant cell in the slave-stage for protection against soft-error. The proposed

flip-flops, PDFF-SE and SATG-SE, both utilize a cross-coupled inverter on the critical path

in the master-stage and generate the required differential signals to facilitate the usage of

the Quatro soft-error tolerant cell in the slave-stage.
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Chapter 1

Introduction

1.1 Design for Reliable, High-Performance, and Low-

Power, Flip-Flops

Traditional flip-flop designs have mostly focused on balanced design tradeoff between delay

and power, as indicated by the optimum power-delay-product (PDP) value. As the CMOS

technology continues to scale, flip-flops are more susceptible to reliability issues such as

metastability and soft-errors. While numerous studies have been performed on soft-error

tolerant flip-flop designs, the design for metastable-hardened flip-flops has largely been

missing in the literature. Metastability is a phenomenon where a bi-stable element enters

an undesirable third state in which the output is stuck at an intermediate level between

logic “0” and “1”. In both synchronous and asynchronous systems, flip-flops are prone to

metastability because its two inputs, the input data D and the CLK signal, potentially

can make simultaneous transitions and violate the flip-flop setup and hold time constraints

such that the resulting state would depend on the order of the input events. In either case,
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metastability causes the flip-flop output to behave unpredictably (Figure 1.1(a)), taking

an unbounded amount of time to settle to a stable state (Figure 1.1(b)), or even oscillating

several times before settling to a stable state (Figure 1.1(c)). Flip-flop metastability can

(a) Random Data [4] (b) Unbounded Settling Time [5] (c) Oscillation [6]

Figure 1.1: Illustration of Metastability

cause corruption of data if the state is not stable before another circuit uses its value.

As such, the ability of the flip-flops to resolve from the metastable region is extremely

important to maintain a reliable operation by avoiding metastable output that may (i)

prevent the correct functionality of the handshaking protocol in asynchronous domains, or

(ii) propagating from stage to stage in the pipeline systems and ultimately results in system

failures. As described by the famous Moore’s Law, the downscaling of minimum dimensions

enables the integration of an increasing number of transistors on a single chip. In fact,

Moore predicted that the microprocessor unit (MPU) performance will double every 1.5

to 2 years [7]. The continuous push for higher clock rates and higher performance has led

microprocessor designers in recent years to build super-pipelined machines with multiple

functional units that can execute operations concurrently. The tighter timing budgets
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along with the impact of process, voltage, and temperature (PVT) variations all make

the flip-flops more susceptible to metastable output states. Therefore, metastability is

becoming an important design consideration for flip-flop designs.

In order for the pipeline system to function correctly, Equation (1.1) must be satisfied

where Tstage represents the minimum clock period, tC−Q and tsetup are the delay and setup

time of the flip-flop respectively, and tlogic is the delay of the logic inserted between the

flip-flops.

Tstage = tC−Q + tsetup + tlogic (1.1)

The aforementioned high clock rates in high-performance microprocessors are often achieved

with fine granularity pipelining, for which there are relatively few levels of logic per pipeline

stage. One direct consequence of this design trend is that the pipeline overhead, such as

the latency of the flip-flop (i.e. tC−Q and tsetup) is becoming more significant. Therefore,

high-performance flip-flop designs are essential to sustain high latency in deep pipelined

systems.

While the performance constraint is an important design consideration in pipelined sys-

tems, power consumption has also become an equally critical constraint in high-performance

designs. Recent reported power consumption breakups have shown that the clock system

consumes anywhere between 20%-50% of the total chip power. This ratio is expected to

grow further due to the constant frequency increase trends and the reduction of number of

logic gates per pipeline stage. Because the clock systems drive millions of flip-flops in micro-

processors, considerable power savings can be achieved on the clock system with low-power

flip-flop designs. Among all the techniques in minimizing power consumption, reduction in

supply voltage (VDD) is the most effective method due to the quadratic relationship shown

in Equation (1.2)

P = αCVswingVDDf (1.2)
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where α is the data activity factor, C represents the load capacitance, VDD is the supply

voltage, Vswing is the value of the signal, and f is the switching frequency. Although direct

voltage scaling results in significant performance degradation, a more common approach is

to use a dual-supply technique to minimize the performance degradation while achieving

reduction in power dissipation. Due to the 100% transition probability, significant power

consumption savings can be achieved on the clock system by simply reducing the swing

on the clock signal to a lower voltage (VDDL). As such, reduced-clock swing flip-flops

(RCSFF) [8][9] have been used to implement such system. Other dual-supply systems

including the clustered voltage scaling (CVS) scheme [10][11][12] where lower supply voltage

(VDDL) is used in non-critical paths while placing the nominal supply voltage (VDDH) on

the critical paths. In such design, level-converting flip-flops (LCFF) are placed at the

boundary between the VDDL and the VDDH domains to provide full swing input to the

VDDH domain.

1.2 Impact of Technology Scaling

The first CMOS scaling theory [13] is based on a model formulated by Robert Dennard.

This theory states that the characteristic of an MOSFET device can be maintained and

the basic operational characteristics can be preserved if the critical parameters of a device

are scaled by a dimensionless factor S. In general, there are two types of scaling: constant

field scaling and constant voltage scaling. In constant field scaling, all device dimensions,

including channel length L, width W , and oxide thickness tox are reduced by a factor of 1/S

while the supply voltage VDD is also reduced by the same factor. Since both dimension

and voltage are scaled equally, the electric field remains constant. In constant voltage

scaling, the electric field is increased in devices because the dimensions are shrunk by 1/S
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but the voltage remains unaffected. As the CMOS technology continues to scale into the

deep-submicron (DSM) regime, the effect of velocity saturation was significant enough that

decreasing feature size no longer improved the device current. This couples with the risks

of device breakdown at high field has made constant field scaling a popular choice for

modern CMOS technologies. Table 1.1 summarizes the effect of both constant field and

constant voltage scaling.

Table 1.1: Effects of Constant Field and Constant Voltage Scaling

Relation Constant Field Scaling Constant Voltage Scaling

L 1/S 1/S

W 1/S 1/S

tox 1/S 1/S

Electric Field 1 S

VDD, Vth 1/S 1

Current 1/S 1

Gate Capacitance εox
tox
WL 1/S 1/S

Intrinsic Delay CLVDD
Iavg

1/S 1/S

Intrinsic Power
CLV

2
DD

tdelay
1/S2 S

Intrinsic Energy CLV
2
DD 1/S3 S

The benefits of CMOS scaling is reflected in the reductions of transistor parasitic capac-

itance, lower gate level average power, switching energy, and most importantly, improved

propagation delay. If a scaling factor of 0.7 is considered to shrink the feature size from

one CMOS generation to the next, based on the expressions shown in Table 1.1, the

capacitance, average power, energy, and propagation delay should all be decreased by
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approximately 30%, 50%, 65%, and 30% respectively.

The energy and delay improvements resulted from CMOS scaling has led to a rapid

increasing in frequencies and levels of integration for microprocessors, as indicated by

the data forecasted by the International Technology Roadmap for Semiconductors (ITRS)

shown in Table 1.2. As seen from the table, it is expected that by the year 2021, the

Table 1.2: 2010 ITRS Forecasts [1]

Year 2011 2013 2015 2017 2019 2021

Feature size (nm) 28 23 18 14.2 11.3 8.9

Millions of Transistors/Chip 3092 3092 6184 12368 12368 24736

On-Chip Clock Rate (GHz) 6.329 7.344 8.522 9.889 11.475 14.343

Supply Voltage (V ) 0.93 0.87 0.81 0.76 0.71 0.66

CMOS technology will reach the 8.9nm node with an on-die transistor count of 24736

millions and an on-chip clock frequency of 14.343GHz.

1.3 Motivation

While metastability has been present in digital systems for many years, the amount of

research is less prevalent when compared to other areas. This is evident in the number of

publications relating to metastability in the last 50 years or so (Figure 1.2). Past works

on metastability have mostly concentrated on theoretical modeling, experimental measure-

ments and the effects of various circuit parameters for a given latch or flip-flop. Works from

two decades ago, [14][15][16][17][18], have formed the foundation for metastability analysis
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Figure 1.2: Number of Publications on Metastability [2]

by solving small-signal equations for the time-resolving constant τ in the cross-coupled

inverter pair. The work presented in [3][19][20] describes the challenges and methodologies

involved in on-chip metastability measurement of a particular synchronizer, jamb-latch

flip-flop. Different techniques have been proposed in [21][22] to improve metastability in

the jamb-latch flip-flop under process variation and in sub-threshold operations. In [23],

metastability parameters are extracted from simulation results along with delay and power

analysis for various transmission-gate based flip-flops. In the past, metastability typically

exists when flip-flops are synchronizing two unrelated signals in asynchronous systems. As

CMOS technology continues to scale, tighter timing budgets due to higher clock rates and

smaller intrinsic gate delays along with PVT variations have all contributed to the increas-

ing susceptibility of the flip-flops to enter metastability in the synchronous systems. As

a result, the number of research work relating to error-resilient design and metastability-

correction circuits has shown a steady increase in the past few years [24][25][26][27][28][29].
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Overall, the potential to explore metastability-related research topics is rapidly growing.

With various flip-flop architectures proposed in today’s VLSI systems to achieve differ-

ent design objectives, a detailed analysis and design optimization on the flip-flop metasta-

bility has largely been missing. While the gate delay may be reduced by a factor of 0.7 for

every technology generation, the flip-flop metastability performance may not necessarily

follow the same scaling trend, as will be shown later in this thesis. The scaling of supply

voltage and threshold voltage Vth along with other device parameters such as hole/electron

mobility and parasitic capacitances all have a direct impact on the ability of the flip-

flops to resolve quickly from the metastable region. Hence, appropriate transistor sizing

and novel architectures have become important considerations for metastable-hardened

flip-flops designs. In this thesis work, we will provide a detailed methodology and anal-

ysis on designing metastable-hardened, high-performance, and low-power flip-flops. We

will demonstrate how metastability performance can be improved on previously proposed

flip-flop architectures while maintaining an appropriate tradeoff in delay and power. We

will also propose two new flip-flop architectures that are suitable for metastable-hardened,

high-performance, and low-power design in both the single and the dual-supply systems.

In addition, the proposed flip-flops are also able to include the soft-error tolerant feature

in the design. Overall, this thesis has made contributions in the following areas.

• Propose two novel flip-flop designs with architectures suitable for metastable-hardened,

high-performance, and low-power in both the single and the dual-supply systems.

• Develop a detailed methodology in designing metastable-hardened, high-performance,

and low-power flip-flops.

– Provide qualitative analysis on the metastable behavior for a given flip-flop

architecture.
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– Develop transistor sizing methodology to vary the value of the time-resolving

constant τ .

– Apply small-signal modeling on different flip-flop architectures to estimate τ .

– Propose two new design metrics in analyzing the design tradeoffs between metasta-

bility, performance, and power.

• Propose a mixed-Vth technique that can dramatically improve flip-flop metastability

in the sub-threshold region.

• Studies the flip-flop metastability behavior for CMOS technologies below the 65nm

regime using Predictive Technology Modeling.

• Analyze detailed methodology in designing metastable-hardened and soft-error tol-

erant flip-flops.

1.4 Thesis Overview

This thesis is organized in the following manner. Chapter 2 provides the basic back-

ground information on flip-flop metastability including characterization, modeling, past

mitigation techniques, simulation techniques, as well as the impact of process, voltage,

and temperature (PVT) variation. Chapter 3 proposes two new flip-flop designs as well as

reviewing various flip-flop architectures including high-performance and low-power designs

along with reduced-clock swing flip-flops (RCSFF) and level-converting flip-flops (LCFF).

Chapter 4 offers detailed analysis and design methodologies on metastable-hardened, high-

performance, and low-power flip-flops. Chapter 5 analyzes the design methodologies behind

metastable-hardened, soft-error tolerant flip-flops. Finally, concluding remarks and future

work will be given in Chapter 6.
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Chapter 2

Background on Metastability

In this chapter, we present a thorough and detailed background information on flip-flop

metastability. The basic timing parameters of the flip-flops will be described in detail.

An introduction on both the synchronous and the asynchronous systems is provided to

illustrate the respective usage of the flip-flops. Metastability is discussed in terms of

its origin, qualitative and quantitative characteristics, and small-signal modeling. Past

metastability mitigation techniques in both circuit and system levels are also presented.

Finally, the impact of process, voltage, and temperature variation on the value of τ is also

described in this chapter.

2.1 Basic Flip-Flop Characteristics

The general timing parameters of a flip-flop (Figure 2.1) are provided by [30] and described

below.

• C-Q Delay (tC−Q): Propagation delay from the CLK to the output Q, assuming that
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the input data D has been set early enough relative to the leading edge of the CLK.

• D-Q Delay (tD−Q): Propagation delay from the input data to the output Q, assuming

the CLK has been turned on early enough relative to the transition in D.

• Setup Time (tsetup): The minimum time between a transition in D and the sam-

pling edge of the CLK such that, even under worst case conditions, the Q will be

guaranteed to change so as to become equal to the new D value.

• Hold Time (thold): The minimum time that the D must be held constant after the

sampling edge of the CLK so that, even under worst case conditions, and assuming

that the most recent transition in D occurred no later than tsetup prior to the sampling

edge of CLK, the Q output will remain stable after the end of the CLK pulse.

CLK

D

Q

tsetup

thold

tD-Q

tC-Q

Figure 2.1: Timing Parameters of a Typical Flip-Flop

Figure 2.2 illustrates the timing characteristic curve of a flip-flop. In general, the

curve can be divided into three regions: stable, quasi-metastable region, and metastable

[31]. In the stable region, the C-Q delay of the flip-flop is constant regardless of the data
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Figure 2.2: Flip-Flop Delay Characteristic Curve

arrival time (tD−C). As tD−C decreases, the C-Q delay starts to rise monotonously in the

quasi-metastable region but the D-Q delay reaches its minimum value. We refer the D-C

delay at that point as the optimum setup time, which presents the limit beyond which the

performance of the flip-flop is degraded and the reliability is endangered. The third region

is the region of metastability where the C-Q delay is much larger than the normal delay

and increases exponentially. More details on the metastable region of the flip-flop curve

will be provided in the next few sections.

In high-performance systems, the amount of cycle time taken out by the flip-flop consists

of the sum of setup time (tsetup) and clock-output (tC−Q) delay. As a result, the true flip-

flop delay, given by Equation (2.1) should be measured as the time between the latest

point of data arrival and the corresponding output transition such as tD−Q [32].

tD−Q|min = tC−Q|minD−Q + tsetup|minD−Q (2.1)

From the high-performance and reliability point of view, it is also desirable to maintain a

smaller aperture window (taperture) value, which is simply the sum of the minimum setup
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and hold time requirement, as shown in Equation (2.2). Intuitively, taperture is the period

of time around the clock edge during which the data must not transition if the flip-flop is

to produce the correct and stable output.

taperture0−1 = tsetup0−1 + thold1−0

taperture1−0 = tsetup1−0 + thold0−1

(2.2)

2.2 Introduction to Synchronous System

In digital logic design, the flow of data in synchronous systems is synchronized with the

clock signal such that the data can be sampled directly without any uncertainty. The

concept of a positive edge-triggered synchronous system is shown in Figure 2.3.

For the system shown in the figure, all the data is sampled at the rising edge of the

clock signal for the register. Here, the data signal D1 is sampled by flip-flop FF1 to yield

the output signal Out1. In turn, Out1 passes through the combinational logic block and

produces D2 after a certain propagation delay. Finally in synchronization with the clock,

Out2 becomes valid after D2 is sampled by flip-flop FF2. The worst propagation delay in

the combinational logic block, or the longest time it would take for D2 to become valid,

places an upper bound on the performance of the synchronous system. The requirement

for the minimum clock period is discussed in more detail in the following paragraph.

There are three important flip-flop-related timing parameters in any synchronous sys-

tem: (i) propagation delay of the flip-flop (tC−Q), (ii) setup and (iii) hold time associated

with a flip-flop [30]. The other timing parameter that must be considered in a synchronous

system includes the maximum delay of the combinational logic (tlogic). Under the ideal con-

ditions, the phase of the clock signal at various locations of the system should be exactly

identical where the clocks at FF1 and FF2 shown in Figure 2.3 should have the same

13
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Figure 2.3: Block Diagram of a Synchronous System

period and transition at the exact same time. Under such ideal assumption, the minimum

clock period must be long enough for the data to propagate through the flip-flops and logic

and be setup for the destination flip-flop before the next rising edge of the clock. This

requirement is shown in Equation (2.3).

T > tC−Q + tlogic + tsetup (2.3)

Similarly, Equation (2.4) shows that the hold time of the destination register must be

shorter than the minimum propagation delay through the logic network and the flip-flop

in order to avoid the race condition.

thold < tlogic + tC−Q (2.4)

2.3 Introduction to Asynchronous System

While the synchronous system described in the previous section has some clear advantages

such as a structured and deterministic approach as well as robust and easy design, it still

presents several disadvantages as stated below.

• Presence of clock skew and jitter, which complicates and restricts certain physical

and logical constraints.
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• Significant power consumption in the clock network.

• System performance is limited by the slowest stage in the pipeline.

One way to avoid these problems is to eliminate the global CLK signal and adopt an

asynchronous design where the logical ordering of the events is dictated by the structure

of the transistor network and the relative delays or the signals. In asynchronous designs,

careful timing analysis of the network must be performed to ensure a correct circuit op-

eration that avoids all potential race conditions under any operation condition and input

sequence.

An example of the asynchronous system is illustrated in Figure 2.4 where System A

is controlled by CLKA and needs to transmit data to System B controlled by CLKB. In

this system, System A must guarantee that the data is stable when the flip-flops in System

B sample the data. It indicates when new data is valid by using a request signal (Req)

so System B receives the data exactly once. System B replies with an acknowledge signal

(Ack) when it has sampled the data so System A can put new data on the bus. The request

and acknowledge signals are called handshaking lines, which can be a two-phase or four-

phase protocols. The four-phase handshake is level-sensitive and the two-phase handshake

is edge-triggered. In the two-phase handshake, System A places data on the bus, it then

changes Req to indicate that the data is valid. System B samples the data when it detects

change in the level of Req and toggles Ack to indicate the data has been captured. In

the two-phase handshaking system shown in Figure 2.4, CLKA and CLKB operate

independently at unrelated frequencies. Each system contains a synchronizer, a level-to-

pulse converter, and a pulse-to-level converter. System A asserts ReqA for one cycle when

DataA is ready, and this will be referred to as a pulse. The XOR gate and the flip-flop

form a pulse-to-level converter that toggles the level of Req. This level is synchronized to
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Figure 2.4: Block Diagram of an Asynchronous System

CLKB. When an edge is detected, the level-to-pulse converter produces a pulse on ReqB.

This pulse in turn toggles Ack. The acknowledge level is synchronized to CLKA and

converted back to pulse on AckA. The usage of the synchronizers add significant latency

such that the throughput of asynchronous communication is much lower than that of the

synchronous communication.

2.4 What is Metastability

Metastability is a phenomenon where a bi-stable element enters an undesirable third state

in which the output is at an intermediate level between logic “0” and “1”. Flip-flops, in

particular, enter the metastable region when they violate the setup or hold time constraints

when the input data D makes a transition within taperture (Figure 2.5).

Because a typical master-slave flip-flop composes of two identical latches, a simplified
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model for a static latch is often used to illustrate the theories behind metastability (Figure

2.6). The switches shown in the figure are typically implemented using CLK-controlled

transmission gates in practice. When the latch is transparent, the sample switch is closed

and the hold switch opens Figure 2.6(a). When the latch becomes opaque, the sample

switch opens and the hold switch closes (Figure 2.6(b)). The resulting DC transfer

characteristic curve of the two inverters is plotted in Figure 2.6(c). When the latch is

opaque, VA=VB and maintains a stable state of either logic “0” or logic “1”. During the

voltage transfer, both VA and VB can reach the metastable state of Vm, which is an illegal

state some where between logic “0” and logic “1”. This point is called metastable because

the voltages are self-consistent and can remain there indefinitely. However, any noise or

other disturbance will cause VA or VB to switch to one of the stable states. The idea of

metastability can also be illustrated by the location of a ball on a rolling hill (Figure
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Figure 2.6: Metastability in a Static Latch

2.6(d)). The stable states of the latch is equivalent to the ball being at the bottom of

the hill where any disturbance cannot easily alter the stability of the current state. At the

top of the hill, however, the ball is at a very fragile state where it can theoretically stay

there for an indefinite amount of time. This is the metastable state where the slightest air

current would eventually cause the ball to roll down to either side of the hill and reach a

stable state. Similarly in a latch, any thermal and induced noise will cause it to move from

the metastable state into either the logic “0” or logic “1” state.

In order to achieve high-performance datapaths, flip-flops in the synchronous pipelined
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systems may require to operate close at the minimum D-Q delay in order to satisfy the

timing constraints. In such case, the ability of the flip-flops to resolve from the metastable

region is extremely important to maintain a reliable operation by avoiding metastable

output that may ultimately results in system failures. As the integration complexity and

clock frequency are rapidly increasing under a tight timing budget, the presence of process,

voltage and temperature (PVT) variations cause the flip-flops to become more susceptible

to produce metastable outputs when setup and/or hold time violations occur during the

intra-domain data transfer [26]. The emergence of various power management techniques

such as multiple voltage domains, reduced clock swing, and dynamic voltage scaling (DVS)

further aggravates the metastability problem during the data transfer between different

domains. A few examples of such scenario are listed below and illustrated in Figure 2.7.

• A voltage droop on the combinational logic may prolong the tlogic value and cause

setup time violation in subsequent flip-flop.

• The impact of clock skew results in race condition and subsequently violation of the

flip-flop hold time.

• Presence of glitches during data transfer from the VDDL domain to the VDDH domain.

In the asynchronous system shown in Figure 2.4, the signals interfacing the two do-

mains are sampled by synchronizers controlled by the CLK signal. If System A and

System B are operating at different frequencies or at the same frequency but with different

phases, synchronizers can also produce metastable outputs if the asynchronous and unre-

lated handshaking signals of Ack and Req make transitions that violate the setup and hold

time constraints.
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2.5 Characterization of Metastability

Past studies have shown that the flip-flop delay in the metastable region is exponential in

nature where two parameters (τ and T0) can be extracted from simulation to model and

analyze the delay behavior in the metastable region (Figure 2.8) [17][33]. A common

metric used to quantify metastability is the metastability window δ, given in Equation

(2.5),

δ = T0e
−ts/τ (2.5)

where T0 is the asymptotic width of the metastability window with no settling time, and τ

is the resolution time constant that represents the inverse of the gain-bandwidth product
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of the feedback element in the flip-flop. Intuitively, one can think T0 is the normalized

time aperture when metastability can occur. Hence T0 is closely related to the aperture

window taperture. τ , on the other hand, determines how long the metastable state will last

if the device enters such state. In general, metastability window δ can be defined as the

time period where data transitions cannot be resolved within a given settling time ts, and

as such it should be kept as small as possible. Since τ is exponentially proportional to δ, a

slight improvement in τ can cause a significant reduction in δ. For this reason, a majority

of the design effort is focused on minimizing the value of τ .

If the data transitions at a frequency of fD with respect to the clock which has a

frequency of fCLK , the mean-time-between-failures (MTBF) is then given in Equation

(2.6).

MTBF =
1

fDfCLKT0e−ts/τ
(2.6)

In general, the MTBF indicates the average time interval between two successive failures

in a system. Hence, a higher MTBF value increases the overall reliability of the system.
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Figure 2.9 illustrates the MTBF of three different flip-flop designs assuming the following

parameters: fD=1GHz, fCLK=2GHz, ts=400ps. Among them, FF#1 has the lowest τ
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Figure 2.9: Comparison of τ , T0, and MTBF for Different Flip-Flop Designs

value, and its MTBF is approximately 20 years. On the other hand, the τ of FF#3 is

the highest and thus only results in an MTBF of 9.6 hours. Thus, the impact of the

time-resolving constant τ on MTBF can be significant due to the exponential relationship.

Because MTBF depends in the data and clock frequency of a system, the metastability

window δ, given in Equation (2.5), is often used as the main parameter in discussion of

flip-flop metastability. Figure 2.10 illustrates the values of δ as a function of the settling

time ts for each of the flip-flop shown in Figure 2.9.

From Equation (2.6), it is evident that the value of MTBF also has an exponential

relationship with the settling time ts. In synchronous pipelined systems, ts, given by

Equation (2.7), is simply the amount of slack time available in a given pipeline stage for
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the output to settle to a stable state.

ts = TCLK − tC−Q − tsetup − tlogic (2.7)

ts may vary from stage to stage depending on the value of the propagation delay in the

combination logic (tlogic) for a particular stage. For a given flip-flop with T0=16.6ps and

τ=18.6ps, Figure 2.11 plots the MTBF for various ts values as a function of three different

clock frequencies and assuming fD = 0.5fCLK . From the data shown, it is evident that

the exponential relationship of ts also has an significant impact on MTBF. For a given

clock frequency, the MTBF increases exponentially as ts increases. As the clock frequency

increases, the MTBF decreases as a result of a smaller settling time ts.

From the analysis provided above, to increase the reliability of a system with higher

MTBF values, the designers have the choice of either adjusting the parameters of the

overall system or designing for metastable-hardened flip-flops. In the first approach, system
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performance can be decreased by running at slower data (fD) and clock frequencies (fCLK)

along with a higher settling time ts. However, the overall system performance is often not

compromisable, and hence a better approach is to design metastable-hardened flip-flops

with smaller T0 and τ values.

2.6 Metastability Modeling

From Equation (2.6), it is clear that τ has the greatest effect on the MTBF due to

the exponential term. A small τ value results in fast flip-flop resolution time from the

metastable region and thus increases the MTBF [34]. To model and examine the time

resolving constant τ , a simplified CMOS latch composed of cross-coupled inverter pair

(Figure 2.12) is used. The voltage-transfer curve (VTC) of the back-to-back inverter is
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also shown in Figure 2.12. During the normal operation of the latch, the outputs of the

loop (VQ and V ′Q) will reach a stable state of either logic “0” or logic “1”. In the metastable

condition, however, the outputs are at a voltage level of Vm, which is an intermediate level

somewhere between logic “0” and “1”. At Vm, the inverters act as amplifiers with positive

feedback causing the loop to eventually settle to one of the two stable logic values.

CQCQ’

gm

VQ

VQ’

Vm

Stable

Stable
0

Vdd

Vdd

Metastable
VQ

VQ’

Figure 2.12: Metastability Modeling using Cross-Coupled Inverter

A small signal model (Figure 2.13) can be used to perform transient analysis of this

situation given the fact that (i) the DC bias point can be calculated as the voltage at which

VTC intersects VQ = V ′Q = Vm, and (ii) VTC behaves approximately linearly around the

bias point Vm. gm represents the total transconductance contribution from both the PMOS

and NMOS transistors in the inverter pair. Similarly, R and CQ are the respective lumped

resistance and capacitance values from various sources. The set of equations describing

this system can be written in the form of Equation (2.8).

gmVQ + 2CM
d(V ′Q − VQ)

dt
+
V ′Q
R

+ CQ
dV ′Q
dt

= 0

gmV
′
Q + 2CM

d(VQ − V ′Q)

dt
+
VQ
R

+ CQ
dVQ
dt

= 0

(2.8)
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If the solution of VQ and V ′Q is assumed to be in the exponential form, then

VQ = VQ(0)e
t
τ (2.9)

where

τ =
CQ + 4CM
gm − 1

R

≈ CQ + 4CM
gm

(2.10)

if we assume gmR >> 1. Typically, CQ includes the gate and the diffusion capacitances of

the transistors while CM is the Miller capacitance, which is simply the coupling capacitance

between the gate and the source/drain terminal of a MOSFET device. Equation (2.10)

[18][35][36] provides a quick first order calculation of τ based on the value of capacitance

and the transconductance.

2.7 Techniques for Metastability Mitigation

Like other reliability issues, metastability is a phenomenon that cannot be completely

eliminated but can be mitigated using various design techniques both on the system and

the circuit level.
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2.7.1 Synchronization Techniques

During asynchronous data transfers, the most common way to tolerate metastability is to

cascade one or more successive synchronizing flip-flops in series to the synchronizer. Figure

2.14 illustrates an example of a one-stage, two-stage, and three-stage synchronizer. This
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Figure 2.14: Single and Multi-Stage Synchronizer

approach allows the first synchronizing flip-flop to resolve from metastable events for an

entire clock period (excluding the setup time of the successive flip-flop), and thus reducing

the probability of metastable inputs into the successive flip-flops. Even if the first flip-flop

is unable to resolve from the metastable state, the second flip-flop also has an entire clock

period to resolve the output to a stable state, and so on. Assume all the flip-flops in the

synchronizer have identical parameters (τ , T0), the MTBF of a single-stage synchronizer can

be calculated using Equation (2.6). For the two-stage synchronizer, Equation (2.11)

calculates fD2 by assuming it is the probability that the first flip-flop has not settled to a

stable state within one clock cycle. For simplicity, we ignore the setup time of the second

flip-flop in our calculation.

fD2 =
1

MTBF1

= fD1fCLKT0e
1

fCLK
/τ

(2.11)
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Equation (2.12) provides the calculation for a two-stage synchronizer.

MTBFtwo−stage =
1

fD2fCLKT0e
1

fCLK
/τ

=
1

fDf 2
CLKT

2
0 e

2
fCLK

/τ
(2.12)

A similar analysis can be extended to calculate the MTBF of a three-stage synchronizer.
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Figure 2.15: MTBF Comparison of Single and Multi-Stage Synchronizer

Figure 2.15 shows the MTBF for three different types of synchronizers as a function

of clock frequency ranging from 1GHz to 3GHz. It is evident that using an extra stage

synchronizer can improve the MTBF by a least ten orders of magnitude. For example, the

MTBF of a single-stage synchronizer is only 0.00506 years (equivalent to 44.4 hours) when

the clock frequency is 1.5GHz. When two-stage and three-stage synchronizer are used, the

MTBF increases to 6.06 × 1011 and 7.26 × 1025 years, respectively. While the usage of

multi-stage synchronizer increases the MTBF of the system significantly, it also increases

the overall latency of the system.
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2.7.2 Circuit Techniques

Another method to improve metastability is to design metastable-hardened flip-flops with

smaller T0 and τ values. In particular, these flip-flops must have a feedback path loop

with a high-gain-bandwidth product to achieve a lower value of τ due to its exponential

relationship with the metastability window δ and the MTBF. A common synchronizer used

in asynchronous designs is the jamb-latch flip-flop [3], which consists of master and slave

jamb-latches (Figure 2.16). Each latch is reset to logic “0” while the input data D is

low. When D rises before the CLK, the master output X is driven high. This in turn

drives the slave output Q high when the CLK rises. The pull-down transistors should

be sized large enough to over-power the cross-coupled inverters. The jamb-latch flip-flop

exhibits good metastability due to the cross-couple inverter pair and a relatively small

loading on the feedback loop. A modified version of the jamb-latch was proposed in [21]

CLK

D

Reset

QX

Pull-down 

transistors

Cross-coupled 

Inverter Pair

Figure 2.16: Schematic Diagram of the Jamb-Latch Flip-Flop

to exhibit more robustness against voltage and temperature variation. While jamb-latch

flip-flop exhibits good metastability, it is not a conventional design that can be used in

synchronous pipelined systems because of its inability to sample a logic “0” without a
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“Reset” signal.

In synchronous pipelined systems, Razor flip-flop (RFF) shown in Figure 2.17, pro-

posed in [37], can be used to provide an in-situ error detection and correction mechanism to

recover from timing errors. The RFF composes of a standard D-flip-flop (DFF) , a shadow

latch, a metastability detection circuit, and a comparator circuit. While the positive-edge

triggered flip-flop samples the data, the input data D is given the duration of the positive

CLK phase to settle down to its correct state before the shadow latch samples it at the

negative edge of the CLK. An XOR comparator flags a timing error when it detects a

discrepancy between the input data sampled at the DFF and the shadow latch. As part

of the RFF, an additional detector is required to correctly flag the occurrence of metasta-

bility at the output of the DFF. Overall, the outputs of the metastability detector and the

error comparator are ORed to generate the error signal of the RFF. Once metastability

is detected, a restore signal overwrites the shadow latch data into the main flip-flop, and

therefore restoring the correct state in the pipeline following the errant cycle. Although
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Figure 2.17: Schematic Diagram of the Razor Flip-Flop

the RFF provides error protection and correction mechanism, the amount of power and
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area overhead associated with such design can be substantial when compared to a standard

D-flip-flop.

2.8 Extraction Method of Flip-Flop Metastability

To extract τ and T0 from simulation for metastability analysis, the C-Q delay vs.displacement

between the input data and the clock signal is plotted for a given flip-flop architecture. In

order to obtain accurate results in the metastable region, the data arrival time is varied at

an interval of 1fs to generate the corresponding C-Q delay. From the plot, the metastable

point, (tmeta), at which the flip-flop fails to capture the correct data can be easily obtained,

and the last 500 data points before tmeta is collected for analysis. The next step is to obtain

a theoretical linear curve from the C-Q delay vs. the time displacement between the input

data and tmeta plot on a semi-log scale (linear scale on Y-axis and log-scale on X-axis).

The slope of this line is the time resolving constant τ and the X-intercept is log(T0/2)

Figure 2.18: Illustration for Extracting Metastability Parameters

(Figure 2.18) [23][38][33]. It is possible that the curve obtained is not perfectly linear

because the slope in the quasi-metastable and the metastable region could be different. To
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be conservative in the analysis, we use the largest slope value and the corresponding X-

intercept in the linear curve in extracting τ and T0. The 500 data points collected translate

into a near-metastable region of 0.5ps, which is adequate enough to obtain a meaningful

extraction on the metastability parameters [3].

All the flip-flop metastability parameters in this work are extracted using the method

described above. Figure 2.19 shows a sample extraction of different sets of τ and T0 for

a given flip-flop architecture obtained via transistor sizing.
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Figure 2.19: Sample Extraction of the Metastability Parameters
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2.9 Impact of Process, Voltage, and Temperature Vari-

ation On Metastability

In this section, the effects of process, voltage, and temperature variation on the τ of the

jamb-latch flip-flop will be illustrated using results obtained from Spice simulation in both

0.18µm and 65nm technology. We focus on the analysis of τ exclusively because it has the

greatest impact on the metastability window δ and the MTBF. As evident from Equation

(2.10), τ has an inverse relationship with the transconductance gm, and Figure 2.20 plots

both the value of τ as well as the sum of gm for a NMOS and PMOS transistor.

Figure 2.20(a) shows that a reduction in the supply voltage VDD results in an expo-

nential decrease of the gm, which results in an exponential increase in τ . Figure 2.20(b)

illustrates a linear relationship between gm and the temperature, which coincides with the

previous studies that demonstrate the dependence of transistor characteristics on temper-

ature [39][40][41][42]. A linear relationship between gm and temperature also translates to

a linear change of τ with respect to the temperature. While the FF and SS corner have

resulted in smaller and larger τ values than the TT corner, as shown in Figure 2.20(c),

it is interesting to notice that both the SF and the FS corner have resulted in similar τ

values as the TT corner. This is because the PMOS and the NMOS transistors under

different process variations (i.e. sNfP) in the inverter pair compensate each other to re-

solve data. For example, the maximum deviation of τ in the SF and FS corner is only

around ±7% of the TT corner in both 0.18µm and 65nm technology. Figure 2.20(d)

illustrates the simultaneous effect of process, voltage and temperature variation on τ with

Table 2.1 showing the simulation conditions in both 0.18µm and 65nm technology. While

Monte Carlo simulations provide the distribution of τ due to random variations, both the

“FF PVT” and the “SS PVT” simulation conditions shown in Table 2.1 provide the lower
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Figure 2.20: Effects of Process, Voltage, and Temperature Variation on τ

and upper bound limits on τ in order to achieve the appropriate MTBF values under the

best and the worst conditions.
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Table 2.1: Simulation Conditions for Different Process Corners

Corner Temperature VDD (0.18µm) VDD (65nm)

FF PVT −40◦C 1.98V 1.1V

SS PVT 110◦C 1.62V 0.9V

2.10 Summary

In this chapter, various background information on flip-flop metastability is examined and

analyzed. Flip-Flop metastability can exists in both synchronous and asynchronous sys-

tems. It is a phenomenon where the flip-flop violates the setup and hold time constraints

and subsequently enters an undesirable third state in which the output is stuck at an in-

termediate level between logic “0” and “1”. Metastability is quantitatively characterized

by the metastability window δ and the mean-time-between-failure (MTBF), where both

metrics are a function of T0, τ , and ts. Among them, T0 and τ are related to the flip-flop ar-

chitecture while the settling time ts depends on the design of the overall system. However,

τ and ts have the greatest impact on metastability due to an exponential relationship. The

small signal modeling of a cross-coupled inverter pair provides the foundation for the anal-

ysis of τ , which is a function of the transconductance gm and the parasitic capacitances CQ.

Various metastability mitigation techniques have been proposed both at the circuit and

the system level. On the system level, multi-stage synchronizer can significantly increase

the MTBF of the system at the expense of increased latency. From the circuit perspective,

the Jamb latch-based flip-flop exhibits low value of τ but is exclusively used in synchro-

nizer circuits while the Razor flip-flop enhances the reliability of the pipeline system but

encounters significant overhead in both area and power consumption. Finally, the impact

of process, voltage, and temperature variation on the value of τ have been shown to have
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an inverse relationship with the transconductance gm. In general, τ has an exponential

and linear relationship with the supply voltage VDD and temperature, respectively. As for

the process corner, the FF and the SS corner result in lower and higher values of τ than

the TT corner while the impact of the FS and the SF corner is negligible when compared

to the TT corner. The simultaneous effect of process, voltage, and temperature provides

an upper and lower bound on τ for a given flip-flop architecture.
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Chapter 3

High-Performance and Low-Power

Flip-Flop Architectures

In this chapter, we discuss in details the design of high-performance, low-power flip-flop

architectures that can be used in either single and dual-supply systems. Flip-flop is a vital

component for high-performance and reliable deep-pipelined systems in digital micropro-

cessors. Various flip-flop architectures have been proposed in the past to facilitate different

design objectives such as performance, power, and area constraints. The most notable de-

sign techniques include transmission-gate based, tri-state inverter based, pulse-triggered,

conditional capturing, and single-clocked phase. While most of the flip-flops are designed

for single-supply systems, the recent trend for low-power systems have engaged more flip-

flop designs for dual-supply systems. In dual-supply systems, there are mainly two types

of flip-flop designs: reduced-clock-swing flip-flops (RCSFF) and level-converting flip-flops

(LCFF). In RCSFF, the voltage swing of the CLK is reduced to VDDL while the remaining

circuit is still operating on the nominal supply voltage VDDH . In LCFF, the voltage swing
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of both the input data D and the CLK signals are reduced to VDDL while the final output

Q maintains a voltage swing of VDDH . In any case, flip-flop designs are more challenging

in dual-supply systems because special architectures are required such that the reduced

swing signals cannot be applied directly to the gate of PMOS transistors to avoid static

power dissipation.

Two new high-performance and low-power flip-flop designs are proposed in this work.

The main objective behind the proposed designs is to use the same architecture and achieve

high-performance and low-power in both the single and dual-supply systems. The first de-

sign is called the pre-discharge flip-flop (PDFF) where high-performance is achieved by

reducing the number of transistors in the critical path. With fewer transistors in the crit-

ical path, the amount of power consumption and total transistor widths have also been

reduced accordingly. The second design is called the sense-amplifier transmission-gate

flip-flop (SATG) . The master-stage of the SATG utilizes a sense-amplifier like structure

with NMOS-pass transistors along with “helper” discharge paths for performance enhance-

ment. While the performance of the SATG is not as good as the PDFF, it exhibits a very

good performance and low-power consumption in the dual-supply system. The detailed

operation and architecture of the proposed flip-flop designs are provided in this chapter.

Extensive post-layout results will be provided to compare the proposed designs with the

previous flip-flop architectures in terms of performance and power consumption. Perfor-

mance comparison includes propagation delays such as CLK-Q and Data-Q as well as the

setup and hold time constraints along with the flip-flop aperture window taperture. Power

consumption will be analyzed for various data activities ranging from 0%-100%. The overall

comparison merit will be determined by the power-delay-product (PDP), which determines

the amount of tradeoff between delay and power consumption.
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3.1 Single-Supply Flip-Flops

3.1.1 Single-Ended Flip-Flops

Transmission-gate flip-flops [23] exhibit high-performance and low-power characteristics

due to its low-impedance paths. Among them, the PowerPC [43] shown in Figure 3.1(a)

is a classical single-ended master-slave structure with short direct path and low-power con-

sumption. The good performance of the PowerPC when compared with other transmission-

gate based flip-flops comes from the use of complementary pass-gates and low-power feed-

back. However, the usage of both the CLK and CLK ′ signal increases the sensitivity to

race through in the period of one gate delay in which the two phases overlap. Moreover, its

positive setup time makes the overall performance less superior than the pulsed-triggered

flip-flops.

The modified C2MOS (mC2MOS) [32] is composed of two identical cascaded latches

that is insensitive to clock overlap, as long as the rise/fall times of the CLK signal are

sufficiently small. Its schematic diagram is shown in Figure 3.1(c). The performance of

this flip-flop is slower than the PowerPC because of a large capacitive load associated at

the critical nodes. While it exhibits low-power properties featuring small clock load, the

local clock buffering still makes its overall power consumption relatively high.

The True Single-Phase Clocked (TSPC) flip-flop, proposed in [44], uses only a single

clock phase. While the usage of one clock phase is attractive for many reasons such

as smaller clock load and the elimination of clock overlap, its architecture produces a

momentary glitch at the dynamic nodes after the rising CLK edge when the D is low for

multiple cycles, which increases the overall power consumption. The schematic diagram of

the TSPC is shown in Figure 3.1(b).

39



D

CLK

CLK’

Q
CLK’

CLK

CLK’

CLK

CLK

CLK’

X

(a) PowerPC

D CLK

CLK

CLK

CLK

Q

(b) TSPC

CKB

CK

CK

CKB

CKB

CK

CKB

CK

CKBCLK CK

D
Q

(c) mC2MOS

Figure 3.1: Single-Ended Flip-Flops

3.1.2 Pulse-Triggered Flip-Flops

The hybrid-latch flip-flop (HLFF) [45] and the semi-dynamic flip-flop (SDFF) [46] best

represent the pulsed-triggered flip-flops where performance is greatly enhanced due to neg-

ative setup because data is captured during a brief transparent period created by the pulse
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generator. Other than very good performance, these flip-flops exhibit soft-edge property

where the robustness against clock skew is greatly enhanced. Due to their respective ar-

chitecture, the overall D-Q delay of the HLFF and the SDFF is a strong function of the

negative setup time, and hence resulting in a large hold time as well. The schematic

diagram of the HLFF and the SDFF is shown in Figure 3.2(a) and 3.2(b), respectively.
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Figure 3.2: Pulsed-Triggered Flip-Flops

In the HLFF, a local pulse generator was built into the flip-flop itself. When the CLK is
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low, transistor M3 and M8 are off while M4 is turned on. Hence, node “X” is pre-charged to

logic “1”, and the output node Q is decoupled from “X” and holds the previous state. On

the rising edge of the CLK, M3 and M8 are turned on while M1 and M10 also stay on for a

short period of time, which is determined by the delay in the pulse generator. During this

interval, the entire flip-flop is transparent as the input data D is sampled. Once the pulsed

CLK goes low, node “X” is decoupled from the input and is either remains unchanged or

begins to pre-charge to VDD through transistor M4.

The SDFF is another pulse-triggered flip-flop that exhibits extremely high-performance.

It is called semi-dynamic because it combines the dynamic input stage with static operation.

When the CLK is low, node “X” pre-charges to logic “1” and the output Q holds the

previous state. When the CLK rises, the dynamic NAND gate evaluates. If the D is

logic “0”, “X” remains at logic “1” and NMOS transistor M2 is turned off. If the D is

logic “1” and “X” starts to discharge to cause an output transition. The SDFF is slightly

faster than the HLFF but loses the skew tolerance and time-borrowing capability. Its main

disadvantages include bigger clock load and large effective pre-charge capacitance, which

results in increased power consumption especially when there is more logic “1” in the input

data.

3.1.3 Differential Flip-Flops

The sense-amplifier flip-flop (SAFF) [47] is a pure differential flip-flop that receives differ-

ential inputs and produce different outputs. When the CLK is low, the internal nodes “X”

are pre-charged to VDD. On the rising edge of the CLK, one of the two nodes is pulled

down, and the cross-coupled PMOS transistors act as a keeper for the other node. The

slave-stage of the SAFF is composed of a cross-coupled SR NAND gates that captures the
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Figure 3.3: Differential Flip-Flops

output and holding through the pre-charge period. This flip-flop is able to amplify and

respond to small differential input voltages and has a small clock load and avoids the need

for an inverted clock. A modification of the original SAFF design was made in [48] where

a weak NMOS transistor is added to fully staticize the flip-flop by avoiding float internal

nodes. Another modification to the design was made by [49] where HI-skew inverters re-

placed the cross-coupled NAND gate in the slave-stage to result in a more even propagation

delay for both the 0-1 and 1-0 output transitions. Although the sense amplifier stage is

fast, the propagation delay through the cross-coupled slave-stage and the pre-charge ac-

tivity during every clock cycle hurts its overall performance and power consumption. The

schematic diagram of the SAFF is shown in Figure 3.3(a).

The Static Single Transistor Clocked (SSTC) flip-flop [50] is an example of a differential
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flip-flop that utilizes just one clock phase. The master-stage of the SSTC asserts the “Set”

or the “Reset” signal when the CLK is low. The slave-stage then uses these signals to

change the outputs during the evaluation period when the CLK is high. The extra inverter

and NMOS transistors in the master-stage discharge the “Set” and “Reset” signal to logic

“0” if the inputs change when the CLK is high. SSTC suffers from substantial voltage

drop at the outputs due to the capacitive coupling effect between the common node of

the slave-stage and the floating high output node of the master-stage. This voltage drop

decreases the driving capabilities of the master-stage and this causes an increase in both

delay and power consumption. The schematic diagram of the SSTC is shown in Figure

3.3(b).

3.1.4 Conditional Capture Flip-Flops

A new family of low-power flip-flops, namely the conditional-capture flip-flop (CCFF) ,

was presented in [51]. The motivation behind the conditional capture technique is that

considerable portion of power is consumed for driving internal nodes even when the input

data activity is low such that the value of the output does not change very often. To

accomplish this, the flip-flop conditionally enables the discharge path and turns it off after

a brief sampling period. The schematic diagram of the CCFF is shown in Figure 3.4.

The CCFF consists of two stages: a differential master-stage with a pair of NOR gates

and clocked inverters and a cross-coupled SR latch in the slave-stage. The NOR gates

are driven by the outputs to make the discharge of the pre-charge nodes, SB and RB,

conditional depending on the input and output data. They are also controlled by the

delayed CLK signal to determine the transparency period. The outputs of the master-

stage, S/SB and R/RB, are fed into the slave-stage to the SR larch, which captures each
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transition and holds the outputs until the next pull-down transition occurs on one of the

pre-charged nodes.

While the CCFF achieves statistical power reduction by eliminating redundant internal

transitions, the amount of area overhead is substantial. Furthermore, the amount of power

overhead due to extra transistors and a large clock load can actually offset the amount

of power reduction achieved, even at low data activities. Nonetheless, the conditional-

capturing technique is still being utilized in many low-power flip-flop designs.

3.2 Reduced Clock-Swing Flip-Flops

In VLSI systems, a large portion of the power consumption comes from the clock subsys-

tems, including clock generation, distribution, and the final sequential elements load. Due

to high frequencies, low skew requirements, and deep pipelining, the clocking power has

been increasing with each processor generation [52]. In fact recent studies have shown that
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the clock system consumes anywhere between 20-45% of the total chip power with approx-

imately 90% of the clocking power used to drive storage elements such as flip-flops [53][54].

More specifically, a typical arithmetic logic unit (ALU) design in 0.18µm has shown that

the entire clock network contributes to 59.4% of the ALU total energy. This is illustrated

in Figure 3.5. The significant power consumption of the clock system comes from the

fact that the transition probability of the clock signal is 100%. Therefore, reduced-swing

clocking, where the clock is distributed at a lower voltage (VDDL) than the rest of the

system that is operating at the nominal supply voltage of VDDH , is a viable technique for

the overall power reduction. Equation (3.1) shows that the amount of power reduction

on the clock system can be significant due to the quadratic relationship.
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Figure 3.5: Energy Breakdown of an ALU in 0.18µm Technology

Pclk = αCclkVDDVclk−swingfclk (3.1)

While reduced clock-swing system results in power consumption, it also suffers in circuit

performance degradation due to a smaller overdrive voltage driving the gate of the tran-
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sistors. Hence, past studies have shown the region of minimum energy operation occurs

when VDDL = 0.7 − 0.75VDDH while the region of minimum energy-delay product (EDP)

operation is VDDL = 0.85− 0.9VDDH [55].

Reduced-swing clocking cannot be implemented simply by scaling down the supply

voltage of the clock system. Standard flip-flops for traditional full-swing clocking cannot

be used with reduced clock-swing system because any clocked-PMOS transistors will not

fully turn off, and thus causing static current consumption and reduced noise margin. The

first idea to alleviate this problem is to insert a level converter in front of standard flip-

flops to regenerate full clock swings. However, this does not result in much power savings

since voltage swings are reduced only on the clock distribution network while the large

number of level converters result in significant power overhead. Furthermore, the insertion

of level converters result in significant delay penalty in the critical path. Hence, a more

efficient approach would be to design flip-flops that can directly receive a reduced clock

swing signal.

One of the first proposed reduced clock-swing flip-flop (RCSFF) [54] uses the SAFF

architecture. It has only one clocked transistor in the critical path and results in the

smallest performance degradation as the clock swing is lowered to VDDL. However, the

clocked pre-charge PMOS transistors results in a direct current path and significant power

consumption. Although the reverse body-bias (RBB) technique is used to mitigate this

problem, it becomes less attractive in smaller technologies due to the extra area requirement

for the separate n-well and the reduced effectiveness of the RBB technique in increasing

Vth.

The NAND-type keeper flip-flop (NDKFF) , Figure 3.6(a), was proposed in [8] where

only NMOS transistors are clocked and thus eliminate the leakage power problem for

reduced clock swing. This flip-flop modifies the HLFF architecture and results in high-
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Figure 3.6: Reduced Clock-Swing Flip-Flops

performance due to the pulse-triggered operation. However, two internal nodes (“X0−1”

and “X1−0”) are subject to contention. This requires larger transistor sizing in the critical

path to overcome the feedback transistors and cause the internal nodes to make the correct
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transitions. In addition to the issue of contention, the high-stacked transistor in series is

undesirable for scaled technologies with smaller nominal supply voltage VDD. For example,

simulation results show that the NDKFF fails to function in 65nm technology when VDDL

is lowered to 1
2
VDD = 0.5V because the reduced current drive due to lowered clock swing

is unable to switch the huge capacitance associated at nodes “X0−1” and “X1−0”.

In [9], a new reduced clock-swing and contention-reduced flip-flop (CRFF) , Figure

3.6(b), is proposed to reduce the effect of stacked transistor in series and contention at

highly capacitive node. Contention currents are reduced in two ways. First of all, the

pull-up circuit is controlled by the input data D through transistor M7 and M8 to reduce

the contention with NMOS-pass transistors. Secondly, clock-driven transistors M5 and

M6 disconnect the cross-coupled latch from VDD during the transparency window. This

type of flip-flop is pulsed-triggered and uses NMOS-only transmission-gates in the critical

path where the propagation delay of writing a logic “0” and logic “1” can be significantly

different. Furthermore, the decreased driving capability of the transmission-gate at reduced

clock-swing results in significant performance degradation.

3.3 Level-Converting Flip-Flops

Another method of reducing power consumption in digital systems is to adopt a clustered

voltage scaling (CVS) scheme where lower supply voltage (VDDL) is used in non-critical

paths while placing the nominal supply voltage (VDDH) on the critical paths [10][11][12].

Such scheme does not degrade system performance while resulting in power reduction. An

example of the CVS scheme is shown in Figure 3.7. The shaded logics and flip-flops

indicate they are operating at VDDL.

To implement the CVS scheme on a chip, a level converter must be used when interfacing
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two gates on different supply voltages to avoid static power dissipation. The usage of level

converters, however, encounter huge amount of performance and power overhead for the

same reasons stated in the previous section. Thus, integrating the level conversion in the

flip-flops have become a more popular design choice. In LCFFs, the voltage swing of both

the D and the CLK signal is at VDDL while the final output Q is at VDDH [56].

One of the level-converting flip-flop proposed is the Clock-level Shifted Sense Amplifier

(CSSA) flip-flop [57]. The CSSA is very much similar to the SAFF described previously

except the clock-signal is level shifted to VDDH to avoid static power dissipation during

the pre-charge cycle. In addition to the problems associated with the SAFF, the level-

converting circuit in this design also consumes a substantial amount of power. While the
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potential of static power dissipation is eliminated when lower swing signals are connected

to PMOS transistors, the level-shifting circuit itself is consuming a significant amount of

power. Hence, the benefit of level-shifting may not actually outweigh the drawback of

static power dissipation as the CMOS technology scales deep into the sub-micron regime.

The schematic diagram for the CSSA is shown in Figure 3.8(a).

A new improved level-converting flip-flop called Self-Pre-charging Flip-Flop (SPFF)

was proposed in [58]. The SPFF, shown in Figure 3.8(c), employs a self-pre-charging

technique to pre-charge the dynamic nodes, which eliminates the need for the CLK to

drive the PMOS transistors. This flip-flop also employs the conditional capturing technique

to remove redundant internal transitions while exhibiting high-performance with negative

setup time. The operation of the SPFF is very similar to that of the CCFF described

previously. The amount of power saving achieved by internal gating is larger than the

incurred power overhead for relative low data switching activities. For high data activities,

however, the conditional capturing technique may not be of benefit since there is less

chance to prevent redundant internal switching. The order of the transistor stack in the

sampling path of the master-stage is based on the arrival time of the signals and increases

the flip-flop performance and allows for negative setup time. A clock pulse is generated

to control the NMOS transistors M1 and M2 to allow enough time for the output to make

the correct transition before shutting the discharge paths. The slave-stage of the SPFF is

a modified set-reset latch proposed in [49] which allows a balanced delay for 0-1 and 1-0

output transitions. Similar to the CCFF, the main drawback of the SPFF is the substantial

area and power consumption overhead encountered.

A clocked-pseudo-NMOS (CPN) level-converting flip-flop was proposed in [59]. The

CPN uses a pseudo-NMOS scheme with the conditional discharge technique [60] where a

feedback signal Q fdbk controls the transistor M1 in the discharge path. A weak pull-up
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Figure 3.8: Level-Converting Flip-Flops
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PMOS device M5 is used to pre-charge the internal node “X” instead of using clocked

pre-charging devices. While M1 is always on, static current only occurs when the input D

makes a 0-1 transition, and the discharge path is disconnected by Q fdbk. Transistors in

the discharge path (M1, M2, M3, M4) should all be sized appropriately to ensure adequate

noise margin. The clock pulse generated must have adequate timing margin to allow a

complete discharge of node “X” or “Y” depending on the data transition. Because of the

clock pulse, the CPN also has the property of negative setup time to enhance the overall

performance. While using fewer transistors than the SPFF, stacking four transistors in

the critical discharge path require larger sizing in order to obtain optimum performance.

Because of the pseudo-NMOS scheme and high transistor stack, the sizing scheme in the

CPN is very critical in maintaining the correct circuit functionality. Furthermore,the design

is very sensitive to process variation. The schematic diagram for the CPN is shown in

Figure 3.8(b).

3.4 Proposed Flip-Flop Designs

3.4.1 Pre-Discharge Flip-Flop (PDFF)

In this work, we propose a pre-discharge flip-flop (PDFF) that exhibits both the charac-

teristic of high-performance and low-power. The master-stage of the PDFF consists of a

differential cross-coupled inverter with positive feedback in the critical path. A novel de-

sign is proposed to connect the CLK to the drain of the PMOS transistors. An equalizer

transistor M4 is used to discharge the internal nodes “Set” and “Reset” when the CLK is

low. When the CLK becomes high, the critical path in the master-stage has been reduced

to just a PMOS-pass transistor (M5 or M6) to charge one of the internal nodes to logic “1”
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while the discharge paths are simply present to prevent false evaluation. A transparency

window is created using a pulse generator to allow negative setup time for performance

improvement as well as soft-edge robustness against clock skew. Due to the discharging in

the master-stage when the CLK is low, the footer clocked-NMOS transistor in the slave-

stage can be eliminated to further enhance the flip-flop performance. The output data

is retained in the slave-stage by the SRAM-based cross-coupled inverter pair [61]. The

schematic diagram of the PDFF is shown in Figure 3.9.
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Figure 3.9: Schematic Diagram of the Pre-Discharge Flip-Flop Design

The detailed operation of the PDFF is as follows. During the period in which the

transparency window is closed, both pull-down paths in the master-stage is off, and while

the CLK is low, CLK ′ activates M4 and pre-discharges the nodes “Set” and “Reset” to
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logic “0”. When both “Set” and “Reset” remain at logic “0”, the SRAM-latch in the

slave-stage does not turn on the NMOS transistors and holds the data to its current state.

When the transparency window is open, M4 is off, and depending on the input D, one of

the pull down path is on while the other is off such that either “Set” or “Reset” will remain

at logic “0” and the other node will be pulled up to logic “1” from the cross-coupled PMOS

transistors M5 and M6. If “Set” remains at logic “0”, it will turn on M5 with the CLK

being high and charges “Reset” to logic “1”, which then turns on M9 to bring the output

Q to a logic “1”. Due to the pre-discharging, the pull-down path in the master-stage is

no longer on the critical path because it simply prevents any wrong evaluation outside the

transparency period. As soon as M4 is off, evaluation begins, and the critical path in the

master-stage becomes just a single PMOS transistor of either M5 or M6 raising the signal

“Set” or “Reset” to a logic “1” while the CLK is high. Together, transistor M5, M6, M7,

and M8 form a clocked cross-coupled inverter pair in the master-stage of the PDFF. The

timing diagram of the PDFF is given in Figure 3.10.
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Figure 3.10: Timing Waveform of the Proposed Pre-Discharge Flip-Flop Design

55



VDDHQ

Reset

Set

D

CLK VDDH

VDDH

Pre-Discharge Period

(a) PDFF

VDDHQ

D

CLK

Reset

Set

VDDL

VDDH

(b) RCSPDFF

VDDHQ

D

Reset

Set

CLK

VDDL

VDDL

(c) LCPDFF

Figure 3.11: Simulation Waveforms for the PDFF in Single and Dual-Supply Systems

The high-performance of the PDFF mainly comes from the fact that it has very few

transistors in the critical path. Not including the output buffer, the number of critical
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transistors in the worst case is only 2P+N. This is less than the worst case delay of 3N+P

in the HLFF and the SDFF, which are widely regarded as the fastest flip-flop architectures

[32]. Due to fewer transistors in the critical path, the PDFF is also more area-efficient

than the other flip-flop architectures when designing for optimal performance such that

fewer critical transistors need to be sized up while the rest can be kept at or close to

minimum size. A smaller total transistor widths of the PDFF also means its overall power

consumption will be lower despite the high-performance characteristics.

The architecture of the PDFF also allows it to function as a high-performance reduced

clock-swing flip-flop or level-converting flip-flop because neither the CLK or the data D

signal is applied to the gate of PMOS transistors to cause significant leakage power. When

the voltage swing on the CLK is reduced to VDDL, the voltage swing on both the “Set”

and the “Reset” are also reduced to VDDL. Thus, an important reason that the SRAM-

latch is chosen to be the slave-stage is because such architecture allows the internal nodes

“Set” and “Reset” from the master-stage to only drive NMOS transistors. When used as

a RCSFF and LCFF, the PDFF will be referred to as the RCSPDFF and the LCPDFF in

this thesis respectively. Figure 3.11 illustrates the simulated waveform for the PDFF, the

RCSPDFF, and the LCPDFF. Appropriate voltage swing on the input and output signals

is indicated for the respective flip-flop designs.

3.4.2 Sense-Amplifier-Transmission-Gate Flip-Flop (SATG)

While considering the design drawback of the SAFF, a new sense-amplifier-transmission-

gate (SATG) flip-flop is proposed in this thesis work. As described earlier, the pre-charging

of internal nodes that SAFF employs during every clock cycle increases the overall power

consumption of the flip-flop. Furthermore, the stacking of three NMOS transistors in the

57



critical discharge path in the master-stage along with the cross-coupled NAND gate in the

slave-stage have significantly impact its performance. In the master-stage of the SATG,

transistor M1 −M5 form a sense-amplifier like architecture with a cross-coupled inverter

pair along with the clocked NMOS transistor in the discharge path. The pre-charging

transistors in SAFF are replaced with NMOS-pass transistors (M10 and M11) that write

differential data into the flip-flop. Additional discharge paths are added to enhance the

performance by reducing the required setup time. The differential signals produced by

the master-stage (Q1 and Q1B) facilitate the usage of the SRAM-latch in the slave-stage.

Unlike the PDFF, however, an extra clocked footer NMOS transistor M12 must be present

in the slave-stage to ensure the correct operation. The schematic diagram of the SATG is

shown in Figure 3.12.
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Figure 3.12: Schematic Diagram of the Sense-Amplifier Transmission-Gate Flip-Flop De-
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58



The detail operation of the SATG is given as follows. When the CLK is low, the

master-stage becomes transparent as CLKB turns on the NMOS-only pass transistors. If

the input data D is logic “1”, the differential data allows the cross-coupled inverter pair

to restore the voltage swing on node Q1 to full VDD instead of VDD − Vthn when only the

NMOS pass transistor is present. If the input data D is logic “0”, the discharge path

further enhances the flip-flop performance by assisting in pulling the node Q1 to a logic

“0”. When the CLK becomes high, the differential signal of Q1 and Q1B will turn on

either M13 or M14 while the other one is off.

Because both the CLK and D signals are only driving NMOS transistors, the architec-

ture of the SATG also allows it to function as RCSFF and LCFF. When used as a RCSFF

and LCFF, the SATG will be referred to as the reduced clock-swing SATG (RCSSATG)

and the level-converting SATG (LCSATG) , respectively. While the overall PDP perfor-

mance of the SATG is not as superior as the PDFF in the single-supply system, its PDP

values are much more comparable in the dual-supply systems. As will be discussed in more

details in the next chapter, the architecture of the SATG is very suitable for metastable-

hardened flip-flop designs, especially in the dual-supply systems. Figure 3.13 illustrates

the simulated waveform for the SATG, the RCSSATG, and the LCSATG.

3.5 Design Methodology and Test Bench Setup

3.5.1 Design Methodology

In any digital circuit designs, tradeoff always exists between delay and power. In low-

power and high-performance designs, it is important to optimize both criteria. A common

metric such as the power-delay-product (PDP) is often used to analyze the tradeoff between
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Figure 3.13: Simulation Waveforms for the SATG in Single and Dual-Supply Systems

the propagation delay and power consumption. PDP, given in Equation (3.2), simply
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represents the average energy consumed per switching event [62].

PDP = Delay × Power (3.2)

Because a typical flip-flop design consists of 20-30 transistors, the role of transistor sizing

can result in substantial power-delay tradeoff. We use the mC2MOS flip-flop as an example

to illustrate such tradeoff. The architecture of the mC2MOS is rather simple to analyze

because it consists of clocked inverters. The feedback transistors are kept to minimum sizes

while the feedforward transistors in the critical path are sized as a function of W with an

aspect ratio of 1.5 between PMOS and NMOS transistors. The normalized delay, power,

and PDP values is shown in Figure 3.14(a).
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Figure 3.14: Tradeoff between Delay and Power in Flip-Flop Design

As the value of W increases, the propagation delay initially decreases and gradually

settles to a constant value when the self-loading effect becomes more dominant. The power

consumption increases in an almost linear relationship with transistor width W . Because

the rate of change for delay and power as a function of W is different, this results in the
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minimum PDP point, which also represents the optimal energy design. Figure 3.14(b)

illustrates the optimum PDP point typically occurs at the knee region of the delay vs. power

curve. Using iterative analysis, all the flip-flops analyzed in this chapter are designed to

be positive-edge triggered and sized at the optimum PDP point.

3.5.2 Test Bench Setup

The simulation test bench setup [32] is shown in Figure 3.15. All simulation runs are

done in Cadence environment using 0.18µm TSMC CMOS bulk technology with 1.8V as the

nominal supply voltage VDDH at 27◦C. A second supply voltage VDDL is used for RCSFFs

and LCFFs. The clock frequency used in the simulation is 100MHz. Input buffers are used

to ensure realistic waveforms are being fed into the flip-flop. For performance measurement

purposes, the inputs data D and the CLK of the flip-flops are measured at the 50% point

of VDDH or VDDL while the rising and the falling edge of output (Q) is measured at the

50% of VDDH . For fair comparison, the output buffer of each flip-flop architecture is sized

identically to drive the 20fF output load that simulate the fan-out signal degradation

caused by the succeeding stages.
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Figure 3.15: Simulation Test Bench
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All the performance-related values given in this work are the worst case value of the 0-1

and 1-0 transition measured at 50% delay points. Since some of the flip-flops analyzed have

negative setup time, the timing parameter that best characterizes the delay performance

of a flip-flop is the minimum D-Q delay [32]. Figure 3.16 illustrates the methodologies

involved in measuring the various flip-flop timing parameters. The C-Q delay is obtained

under the relaxed timing condition between the input data D and the CLK signal (Figure

3.16(a)). To obtain the minimum D-Q delay, the arrival time of the D with respect to

the CLK is varied at an interval of 1ps (Figure 3.16(b)). The setup time refers to the

last data arrival time when the input data D is correctly captured at the output (Figure

3.16(c)). The hold time is obtained by setting the data arrival time at the setup time

and varying the width of the pulse to see when the output fails to sample the correct data

(Figure 3.16(d)). The aperture window (taperture) of the flip-flop is calculated as the sum

of the setup and hold time.

Because flip-flop architectures may exhibit different behavior under different input data

pattern, four different data activity factors are considered for the analysis of power con-

sumption: 0%, 25%, 50%, and 100%. The data activity is defined by Equation (3.3).

DataActivity(α) =
#ofSignalTransitions

#ofSignals×#ofClockCycles
(3.3)

The power measurement of the flip-flops includes the total power dissipated in the flip-flop

as well as the local data and clock power [32]. It is measured over 100 clock cycles. PDP

is calculated as the product of the worst D-Q delay and the power dissipation for a given

data activity.
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3.6 Post-Layout Simulation Results

In this section, all the analyzed flip-flops are implemented in layout using the 0.18µm

technology. In general, the post-layout results do not deviate very much from the schematic

simulation results with an approximately 10% degradation in terms of delay and power.
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3.6.1 Flip-Flops in Single-Supply Systems

The performance characteristics of the flip-flops in single-supply supply system are listed

in Table 3.1. We have limited the analysis to the proposed PDFF along with three other

flip-flops (PowerPC, SDFF, and SAFF) because those are some of the most referenced

architectures in the literature.

Due to the pre-charging and negative setup time characteristic, the 1-0 D-Q delay in

the SDFF is considerably faster than the 0-1 D-Q delay. The cross-coupled NAND in

the slave-stage of the SAFF has significantly degraded its overall D-Q delay. Overall, the

reduced critical path in the PDFF has resulted in 26%, 36%, and 18% D-Q delay reduction

when compared to the PowerPC, the SAFF, and the SDFF respectively. Due to its positive

setup time, the aperture window (taperture) of the PowerPC is the smallest among all the

flip-flops. When compared to the SDFF, taperture of the PDFF is considerably smaller

despite the negative setup time characteristic.

Table 3.1: Performance Comparison of the Single-Supply Flip-Flops

C-Q Delay D-Q Delay Setup Time Hold Time taperture

(ps) (ps) (ps) (ps) (ps)

PowerPC 146.7 189.3 30.23 -38.77 52.15

SDFF 172.5 172.3 -50.28 -195.9 145.62

SAFF 209.9 221.3 -20.36 -77.66 57.3

PDFF 129.9 141.2 -18.26 -89.16 67.12

Figure 3.17(a) and 3.17(b) illustrate the power consumption and PDP comparison

of the single-supply flip-flops at different activity factors. The percentage numbers shown
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in the figures indicate the relative power consumption and PDP values when compared to

the PowerPC. For example, at activity factor of 50%, the SDFF, the SAFF, and the PDFF

consume 62%, 33%, and 15% more power than the PowerPC, respectively.
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Figure 3.17: Power and PDP Comparison of Flip-Flops in Single-Supply Systems

With its low-impedance paths, the PowerPC exhibits the lowest power consumption

for all data activity factors. At low data activity factor (0% and 25%), due to con-

stant pre-charing activities during every clock cycle, the power consumption of the SDFF

and the SAFF is anywhere from 40%-93% higher than the PowerPC. Those percentages

have decreased significantly with an increase in the data activity factor. Despite the pre-

discharging activity, a reduced critical path keeps the overall power consumption of the

PDFF lower than the SDFF and the SAFF as well as approximately 16% higher than the

PowerPC at all data activity factors. In terms of PDP comparison, the PDP of the Pow-

erPC is much lower than the SDFF and the SAFF. The low-power and high-performance

characteristics of the PDFF have resulted in significant PDP reduction for all data activity
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factors. For all data activity factors, the PDP of the PDFF is somewhere between 13%-16%

lower than the PowerPC.

In this work, we have also analyzed the behavior of the flip-flop architectures against

process variations and mismatches for the three different regions described in Section 2.1.

For each flip-flop, the data arrival time in which the flip-flop fails to capture the correct data

will be referred to as tmeta, the point where the flip-flop is very close to or at the metastable

region. For each data arrival time normalized to tmeta, a Monte Carlo simulation of 5000

iterations with both process variations and mismatches was performed to analyze the flip-

flop C-Q delay distribution. Figure 3.18(a) plots the standard deviation (SD) of the C-Q

delay as a function of the normalized data-arrival time with respect to CLK for the four

flip-flops analyzed. In the stable region, the SD values are very similar for all the flip-flops

where the effects of the random variations and mismatches are less prevalent since the C-Q

delay is independent of the data arrival time. As the data-arrival time enters the quasi-

metastable and the metastable region, the C-Q delay becomes a strong function of the data

arrival time. As a result, the SD value of all the flip-flops is becoming higher because a

small variation in the data arrival time due to the effects of variations and mismatches can

significantly change the C-Q delay. This effect is especially prominent in the SDFF where

the C-Q delay is a strong function of the data arrival time due to the circuit topology

and the negative setup time characteristics. Among the flip-flops analyzed, the SD of the

PDFF is the lowest across all three regions of operation.

Figure 3.18(b)-3.18(d) illustrate the C-Q delay distribution of the analyzed flip-flops in

the three regions of operation. Due to the large SD values, the C-Q delay distribution of the

SDFF in the quasi-metastable and the metastable region is the widest among the flip-flops

analyzed. Hence, extra timing margins must be provided when using the SDFF in order

to meet the timing constraints in the pipeline systems by taking into account the possible
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Figure 3.18: Comparison of Flip-Flop Robustness against Process Variations and Mis-

matches
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delay variations caused by process variations and transistor mismatches. On the other

hand, the PDFF has the smallest SD values and the narrowest C-Q distribution across

all three regions. Overall, it demonstrates the best robustness against random process

variations and mismatches with less susceptibility in violating the setup and hold time

requirements that may result in metastable conditions.

3.6.2 Reduced Clock-Swing Flip-Flops

The performance characteristics of all the reduced clock-swing flip-flops are listed in Ta-

ble 3.2. All the values listed are obtained for VDDL = 1.3V , which is approximately

equal to 0.7VDDH in the 0.18µm technology. In the RCSPDFF, it is evident that the

high-performance characteristic of the PDFF architecture is also extended to the reduced

clock-swing flip-flops. The D-Q delay of the RCSPDFF is 13%, 14%, and 34% lower than

the NDKFF, the RCSSATG, and the CRFF, respectively. While the D-Q delay of the RC-

SSATG and the NDKFF is approximately the same, the good performance of the NDKFF

comes at the expense of high tapeture due to the negative setup time. In fact, the proposed

flip-flops, the RCSPDFF and the RCSSATG, have much lower taperture values than the

NDKFF and the CRFF. Without the usage of a clock pulse generator, the SATG requires

a much lower hold time than the other flip-flops, and thus resulting in a smaller taperture

value. While the RCSPDFF uses a clock pulse, it is only present to allow negative setup

time and soft-edge property, and has no significant impact on the overall flip-flop perfor-

mance. Because the clocked transistor is not in the critical path, the hold time required

in the RCSPDFF is not as large as the other pulsed-triggered flip-flops. By contrast, both

the NDKFF and the CRFF have transistors in the critical path that are controlled by the

clock pulse signals, and thus results in a much higher taperture value.
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Table 3.2: Performance Comparison of the Reduced Clock-Swing Flip-Flops at VDDL =

1.3V

C-Q Delay D-Q Delay Setup Time Hold Time taperture

(ps) (ps) (ps) (ps) (ps)

NDKFF 197.8 205.4 -57.38 -326.3 240.13

CRFF 230.9 269.9 8.574 -258.3 238.47

RCSPDFF 177.4 178.6 -42.06 -156.58 112.5

RCSSATG 120.3 208.1 39.78 -54.22 94
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Figure 3.19: D-Q Delay and taperture Comparison of the Reduced Clock-Swing Flip-Flops

In dual-supply systems, it is also important to analyze the flip-flop characteristics across

various VDDL values. Figure 3.19(a) and 3.19(b) illustrate the D-Q delay and taperture of

the different RCSFFs for VDDL values ranging from 1V-1.5V. Due to its unique architecture,
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the D-Q delay of the RCSPDFF is the lowest among all the flip-flops across all supply

voltages. In the critical path of the RCSPDFF, the reduced clock-swing signal CLK

passes through the PMOS transistor (M5 or M6) in the master-stage and propagate to the

slave-stage to turn on either NMOS transistor M9 or M10. Thus only one transistor in the

critical path is affected by the reduced clock-swing. In contrast, the NDKFF, the CRFF,

and the RCSSATG all have two clocked transistors in the critical path. The CRFF has

the highest D-Q delay because a reduced clock-swing further degrades the performance of

the NMOS-pass transistor in the critical path. Despite its negative setup time, the D-Q

delay of the NDKFF is only slightly better than the RCSSATG largely due to the stacking

of three NMOS transistors in the critical path.

As evident from the figure, taperture of all the flip-flops increases with the reduction in the

clock-swing. At lower clock-swings, the clock pulse generated in the NDKFF, the CRFF,

and the RCSPDFF is becoming larger due to the slower propagation in the inverter chain.

While this allows for more negative setup time, the hold time required for the flip-flops is

also becoming greater. In general, an overall increase in taperture suggests the increase in the

hold time is greater than the setup time. As in the case when VDDL = 1.3V , the taperture of

the RCSPDFF and the RCSSATG is much lower than those of the CRFF and the NDKFF.

A smaller taperture value reduces the likelihood of the flip-flops entering metastability, and

thus improves the flip-flop reliability.

Table 3.3 and 3.4 show the power consumption and PDP of the different RCSFFs at

four different data activity factors at VDDL = 1.3V . With fewer transistors in the critical

path, the power consumption of the RCSPDFF is the lowest among the flip-flops analyzed

except when there is no data activity. Despite the poor performance, the additional cir-

cuitry that the CRFF employs to reduce the amount of contention at reduced clock-swings

result in much lower power consumption than the NDKFF and the RCSSATG at most of

71



the data activity factors. For data activity factor of 100%, the reduced-swing signals from

the master-stage in the RCSSATG weakens the discharge paths in the slave-stage. This

in turn has resulted in more power dissipation due to the contention in the cross-coupled

inverter. At lower data activity factors (≤ 25%), however, the power consumption of the

RCSSATG is very much comparable to those of the CRFF and the RCSPDFF.

Table 3.3: Power Comparison of the Reduced Clock-Swing Flip-Flops at VDDL = 1.3V

α = 0% α = 25% α = 50% α = 100%

(µW ) (µW ) (µW ) (µW )

NDKFF 37.74 74.13 109.43 180.43

CRFF 30.163 62.343 92.65 154.89

RCSPDFF 34.68 62.24 88.66 142.26

RCSSATG 21.886 65.027 106.99 191.578

The PDP of the RCSPDFF achieves a minimum of 18%, 27%, and 29% reduction from

the other flip-flops for data activity factor of 25%, 50%, and 100%, respectively. Because of

the smaller power consumption at lower data activity factors, the PDP of the RCSSATG

is 8% and 20% lower than the NDKFF and the CRFF for 25% data activity factor. For

data activity factor of zero, the PDP of the RCSSATG is 39% and 44% lower than the

NDKFF and the CRFF.

Figure 3.20(a) and 3.20(b) illustrate the power consumption and PDP of the different

RCSFFs for VDDL values ranging from 1V-1.5V at a data activity factor of 25%. We have

chosen a low data activity factor for analysis because static logic typically has an activity

factor close to 10% [61]. Generally, the power consumption of the CRFF and the RCSPDFF
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Table 3.4: PDP Comparison of the Reduced Clock-Swing Flip-Flops at VDDL = 1.3V

α = 0% α = 25% α = 50% α = 100%

(fJ) (fJ) (fJ) (fJ)

NDKFF 7.465 14.662 21.645 35.689

CRFF 8.141 16.826 25.006 41.805

RCSPDFF 6.194 11.116 15.835 25.408

RCSSATG 4.554 13.532 22.265 39.867

is approximately 15% lower than the NDKFF across all voltages. At higher VDDL values,

the power consumption of the RCSSATG is very similar to those of the CRFF and the

RCSPDFF. As VDDL is reduced, however, the power dissipation due to node contention

in the RCSSATG offsets the the power reduction resulting from a reduced clock signal.

In fact, the minimum power consumption for the RCSSATG occurs when VDDL = 1.2V .

For a data activity factor of 25%, the PDP of the RCSPDFF is at least 13% lower than

the other flip-flops for all VDDL values. The PDP of the RCSSATG is lower than those of

the CRFF and the NDKFF for VDDL ≥ 1.2V . The high delay values of the CRFF have

resulted in a much higher PDP values than the other flip-flops. The minimum PDP point

of all the flip-flops occurs when VDDL = 1.2V , which coincides with the previous studies

stating that VDDL should be around 0.7VDDH for optimum PDP operation.

3.6.3 Level-Converting Flip-Flops

The performance characteristics of all the level-converting flip-flops are listed in Table 3.5

for VDDL = 1.3V . Like its PDFF counterparts, the LCPDFF also demonstrates the best
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Figure 3.20: Power and PDP Comparison of the Reduced Clock-Swing Flip-Flops for 25%

Data Activity Factor

performance among all the LCFFs analyzed in this work. In fact, the D-Q delay of the

LCPDFF is 15%, 11%, and 19% lower than the LCSATG, the SPFF, and the CPN, respec-

tively. Since both the CPN and the SPFF employ the technique of conditional capturing

and negative setup time, extra hold time on the input data is required to ensure the output

makes the correct transition and consequently turn off the corresponding discharge paths.

Therefore, both the CPN and the SPFF have higher taperture values than the LCPDFF and

the LCSATG.

Figure 3.21(a) and 3.21(b) illustrate the D-Q delay and taperture of the different

LCFFs for VDDL values ranging from 1V-1.5V. Overall, the LCPDFF is at least 11% faster

in D-Q delay than the other LCFFs. As for taperture, both the CPN and the SPFF have

higher values than the LCPDFF and the LCSATG across all VDDL values. Although the

architecture of the LCPDFF and the LCSATG is identical to those for the RCSPDFF and
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Table 3.5: Performance Comparison of the Level-Converting Flip-Flops at VDDL = 1.3V

C-Q Delay D-Q Delay Setup Time Hold Time taperture

(ps) (ps) (ps) (ps) (ps)

SPFF 209.8 216.8 -48.55 -193.2 128.85

CPN 242.6 238.2 -66.75 -277.5 174.3

LCPDFF 185.8 193.3 -28.27 -130.5 102.23

LCSATG 133.3 228.0 43.01 -57.03 100.04

the RCSSATG, the additional reduced swing on the input data D has resulted in a slight

increase in both the D-Q delay and taperture.
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Figure 3.21: D-Q Delay and taperture Comparison of the Level-Converting Flip-Flops

Table 3.6 and 3.7 shows the power consumption and PDP of the different LCFFs at

four different data activity factors at VDDL = 1.3V . By employing the conditional capturing
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technique, the power consumption of the CPN and the SPFF at low data activity factor is

similar to those of the LCPDFF and the LCSATG. For data activity factor greater than

50%, the power consumption of the LCPDFF is at least 13% lower than the rest of the

flip-flops. The performance advantage of the LCPDFF has resulted in the lowest PDP

values for data activity factor greater than 25%. The PDP values of the LCSATG are very

similar to the CPN and the SPFF for all data activity factors.

Table 3.6: Power Comparison of the Level-Converting Flip-Flops at VDDL = 1.3V

α = 0% α = 25% α = 50% α = 100%

(µW ) (µW ) (µW ) (µW )

SPFF 24.684 63.331 107.64 169.62

CPN 32.275 66.405 100.94 167.62

LCPDFF 36.037 62.078 87.028 116.73

LCSATG 23.605 63.573 102.415 159.75

Table 3.7: PDP Comparison of the Level Converting Flip-Flops at VDDL = 1.3V

α = 0% α = 25% α = 50% α = 100%

(fJ) (fJ) (fJ) (fJ)

SPFF 5.351 13.73 23.337 36.774

CPN 7.575 15.585 23.691 39.34

LCPDFF 7.254 12.496 17.519 23.498

LCSATG 5.382 14.495 23.351 36.423
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Figure 3.22(a) and 3.22(b) illustrate the power consumption and PDP of the different

LCFFs for VDDL values ranging from 1V-1.5V at a data activity factor of 25%. For VDDL ≥

1.3V , the power consumption of the CPN is approximately 5% higher than the SPFF, the

LCSATG, and the LCPDFF. As VDDL is reduced below 1.2V, the power consumption of

the LCPDFF becomes the lowest among all the flip-flops analyzed. Once again, the PDP

of the LCPDFF is the lowest for all the VDDL values except when it reaches 1V.
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Figure 3.22: Power and PDP Comparison of the Level-Converting Flip-Flops for 25% Data

Activity Factor

3.7 Summary

In this chapter, we examined the architectures and characteristic of various flip-flops in

both single and dual-supply systems. We also proposed two new flip-flops, namely the pre-

discharge flip-flop (PDFF) and the sense-amplifier-transmission-gate (SATG) flip-flop. The
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PDFF achieves very high-performance by adopting a pre-discharge scheme. The SATG uses

a sense-amplifier structure along with NMOS pass transistors in the master-stage instead

of the traditional pre-charging scheme used in the SAFF, and thus achieves low-power

consumption at low data activity factors. The architecture of these flip-flops facilitate

the usage in both single and dual-supply systems. A detailed comparison between various

flip-flop architectures is performed in terms C-Q delay, D-Q delay, setup and hold time,

taperture, power consumption, and power-delay-product (PDP). The high-performance and

low-power characteristics of the PDFF have been demonstrated in both single and dual-

supply systems. The overall D-Q delay, power consumption, and PDP of the PDFF, the

RCSPDFF, and the LCPDFF are much lower than most of the previously proposed flip-

flops analyzed in this work. The overall D-Q delay, power consumption, and PDP of

the RCSSATG and the LCSATG have also been very much comparable to the analyzed

flip-flops in the dual-supply systems. Both proposed flip-flops have shown to have smaller

taperture values, which increases the flip-flop reliability by reducing the likelihood of entering

metastability.
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Chapter 4

Design and Analysis for

Metastable-Hardened,

High-Performance, Low-Power

Flip-Flops

In this chapter, a detailed analysis and methodologies on designing flip-flops with im-

proved metastability performance while maintaining high-performance and low-power are

presented. We will use the term “metastable-hardened” when referring to flip-flops that

are less susceptible to metastability by having improved design parameters such as re-

duced τ . Past flip-flop designs have mainly focused on optimizing the tradeoff between

performance and power consumption by designing for optimum PDP through transistor

sizing. Of the various flip-flop architectures proposed in today’s VLSI systems, a more

detailed and in-depth analysis on the flip-flop metastable behavior is largely absent. Us-
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ing the fundamental metastability modeling theories, both qualitative and quantitative

analysis are provided to demonstrate that flip-flop metastability can be varied accordingly

based on transistor sizing. Theoretical calculations will demonstrate the proposed sizing

methodology will have a dramatic impact on the value of the time-resolving constant τ .

New design metrics called the metastability-delay-product (MDP) and the metastability-

power-delay-product (MPDP) are introduced to illustrate the various tradeoffs in flip-flop

designs between delay, power, and metastability. The analysis is performed for selected

flip-flops in both single and dual-supply systems. In keeping with recent trends of green

energy and low-power VLSI designs, flip-flop metastability in the sub-threshold region will

be discussed and analyzed. We also examine the impact of technology scaling on τ for

technologies below the 65nm regime. Finally, the implementation of an all-digital on-chip

metastability measurement circuit will also be given in this chapter as well.

4.1 General Design Methodology

In edge-triggered flip-flops, input data is captured by an intermediate critical node in the

master-stage before it is propagated to the output through the slave-stage. The critical

nodes that potentially cause metastability due to synchronization of the CLK and the input

D signals are stabilized by some form of cross-coupled inverter pair shown in Figure 2.12.

While T0 is important to determine the metastability window δ and the MTBF of a flip-

flop, the impact of τ is far more greater due to the exponential term in Equation (2.5) and

(2.6). Hence, the metastability analysis in this work mainly focuses on the optimization

of τ where the small signal modeling described in Chapter 2 forms the foundation for

the analysis of τ in various flip-flops architectures because each parameter in Equation

(2.10) can be represented as a function of the transistor width W . As a simple first-
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order approximation, the transconductance, diffusion (Cdiff ) and gate capacitance (Cg) of

a MOSFET device are given in Equation (4.1)-(4.3) [62].

gm = k′
W

L
(Vgs − Vt) (4.1)

Cg =
2

3
CoxWL+ 2CgoW (4.2)

Cdiff = CjLsW + Cjs(2Ls +W ) (4.3)

The transconductance gm and the capacitance CCrit associated with the critical nodes

are functions of the flip-flop circuit topology, and thus result in different time-resolving

constant τ . As such, τ can be varied through transistor sizing for a given flip-flop architec-

ture. Based on Equation (4.1), it is desirable to have large transistor widths to increase

gm in the inverter pair while the width of the load transistors should be kept small to min-

imize the value of CCrit. The contribution of CCrit at the critical node mainly comes from

two different sources: (i) the Miller capacitances (CM) associated with the cross-coupled

inverter, and (ii) the lumped capacitance (CQ), which includes all the gate and diffusion

capacitances associated with the critical node from both the master and the slave-stage.

Because of this, continuous width increase in the inverter pair does not further reduce τ as

any increase in gm is offset by the increase in capacitance CM . While there may be many

transistors associated with the critical node, only those non-minimum transistor sizes will

be considered for the analysis of CQ. In most cases, these transistors will also have a

significant impact on the performance of the flip-flops. In our analysis, the value of CM

is considered part of the transconductance gm variation while CQ specifically refers to the

variation of the load transistors associated with the critical node. Figure 4.1 illustrates

the general design methodology for the metastable-hardened flip-flops. Because each flip-

flop may have its own unique architecture, it is sometimes difficult to clearly identify a

master and slave stage. In cases where a master and a slave stage can be clearly identified,
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Figure 4.1: Conceptual Diagram of Metastable-Hardened Flip-Flop Design

the sizing variation of the inverter pair is performed in the master-stage with the variation

of the load transistors coming both from the master and the slave-stage. The reason we

chose to vary gm in the master-stage is because that is where the initial synchronization

occurs. If τ is improved in the master-stage, the probability of metastability happening

in the slave-stage can be reduced significantly due to more settling time despite another

synchronization with the CLK signal occurs in some flip-flop topologies [22]. When no

clear-cut master and slave-stage is present in the flip-flop architecture, τ is varied by sim-

ply changing the size of the cross-coupled inverter that stabilizes the critical node which

causes contention or changing the size of the load transistors associated with the critical

node. Either way, the design and analysis methodology is identical in both cases.

While the proposed designs of the SATG and the PDFF described in Chapter 3 demon-

strate the characteristics of low-power and high-performance, their circuit topologies are

even more attractive for metastable-hardened flip-flops designs based on the following rea-

sonings. First of all, the taperture of these flip-flops is significantly smaller than the other

analyzed flip-flops in both the single and the dual-supply systems. As previously men-
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tioned, a smaller taperture means the flip-flops are less susceptible to violating the setup and

hold time constraints that may result in metastability. With respect to circuit topology,

both flip-flops adopt a cross-coupled inverter structure in the master-stage and a small load

transistor in the slave-stage. By having the cross-coupled inverter pair on the critical path

in the master-stage, transistors can be sized up to increase the transconductance gm in

the loop pair while maintaining high-performance and correct functionality. Furthermore,

both proposed flip-flops have similar slave-stage topology to minimize the load capacitance

such that the critical nodes from the master-stage only drives a single NMOS transistor.

According to Equation (2.10), both of these features are able to reduce the time-resolving

constant τ dramatically by minimizing the capacitance terms in the numerator of the

equation and increasing the transconductance term in the denominator of the equation.

While the τ of the PDFF can be significantly reduced in single-supply systems, it will ac-

tually increase in an exponential manner when working as the RCSPDFF or the LCPDFF

in the dual-supply systems because the reduced clock-swing is connected to the drain of

the PMOS transistors. Therefore, the RCSSATG and the LCSATG are more suitable for

metastable-hardened flip-flop designs in the dual-supply systems as VDDL is reduced.

In the rest of this chapter, the metastability of selected flip-flop architectures described

in Chapter 3 will be analyzed, and are listed below.

• Single-Supply Flip-Flops

– PowerPC, SDFF, SAFF, PDFF

• Dual-Supply Flip-Flops

– Reduced Clock-Swing Flip-Flops

∗ NDKFF, CRFF, RCSPDFF, RCSSATG
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– Level-Converting Flip-Flops

∗ CPN, SPFF, LCPDFF, LCSATG

The schematic diagrams of all the flip-flops analyzed for metastability are shown in Figure

4.2, 4.4, and 4.5. The critical node of each flip-flop architecture is marked by “X” in the

schematics. The corresponding transistors that are relevant to flip-flop metastability either

through transconductance or load variation have been highlighted by gm and CQ on the

figures respectively. Due to the identical topology with the PDFF, the schematic diagrams

of the RCSPDFF and the LCPDFF are not shown but will be analyzed quantitatively.

Similarly, the schematic diagram of the LCSATG is not shown because its topology is

identical to the RCSSATG.

4.2 Qualitative Analysis of Flip-Flop Metastability

4.2.1 Flip-Flops in Single-Supply System

In the PowerPC (Figure 4.2(a)), the critical node “X” is chosen right after the transmission-

gate in the master-stage due to the initial synchronization of the CLK and the input data

D. It is stabilized by a CLK-controlled feedback inverter as well as a forward inverter on

the critical path. Due to the topology, the transistors in the forward inverter (Wp1 and

Wn1) is sized up to maintain high-performance on the critical path. To improve metasta-

bility, however, the size of the feedback transistors (Wp2, Wn2) must be sized up to increase

gm in the cross-coupled inverter pair. Alternatively, the size of the transmission-gate tran-

sistors (Wp3, Wn3) can also be manipulated to obtain different τ values by changing the

load capacitance of the critical node. The waveform that demonstrates the contention at

node “X” during the metastable period for the PowerPC is shown in Figure 4.3(a).
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Figure 4.2: Schematic Diagram of Single-Supply Flip-Flops for Metastability Analysis

In the SDFF (Figure 4.2(b)), metastability occurs because input data is allowed to

transition after the rising edge of the CLK, which in turn causes contention at the critical

node “X”. Such contention is more prominent when input data makes a 1-0 transition.

Initially after the rising edge of the CLK, the input data D does not make the 1-0 transition

because of the negative setup time, and hence node “X” is falsely discharged until either
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the data makes the 1-0 transition or the NAND gate produces a logic “0” which would turn

Wn2 off. Due to the semi-dynamic nature of the SDFF, once node “X” is falsely discharged,

the only mechanism that can restore it back to logic “1” is through the weakly sized cross-

coupled inverter pair. Thus, the extreme fast performance in the 1-0 output delay of

the SDFF comes at the expense of very poor metastability. This is a classic example of

demonstrating flip-flop metastability behavior for a given output transition largely depends

on the circuit architecture instead of their propagation delay. The metastability of the

SDFF can be improved by (i) increasing the size of the cross-coupled inverter pair (both

size to Wp1 and Wn1) that stabilizes the critical node “X” or (ii) reduce the transistor size

surrounding the critical node to minimize the associated capacitance. The waveform that

demonstrates the contention at node “X” during the metastable period for the SDFF is

shown in Figure 4.3(b).

The critical node (s) “X” in the sense-amplifier flip-flop (SAFF, Figure 4.2(c)) are

being pre-charged to logic “1” when the CLK phase is low and stabilized during the eval-

uation period by a cross-coupled inverter pair formed by transistor Wp1 and Wn1. PMOS

transistor Wp1 is typically designed to have smaller sizes while Wn1 is on the critical path

of the flip-flop and thus sized up to achieve high-performance. To improve τ , however, the

size of Wp1 must be increased to enhance the overall gm value. Because the transconduc-

tance in the master-stage is limited by the fact that path to Vss is formed by three NMOS

transistors in series, a more effective method to improve τ is to reduce the transistor size

of the NAND gates (Wp4 and Wn4) in order to minimize the amount of capacitance the

critical signals drive in the slave-stage. The waveform that demonstrates the contention at

node “X” during the metastable period for the SAFF is shown in Figure 4.3(c).

When the CLK is low, the critical nodes “X” in the PDFF have been pre-discharged to

logic “0”. During the evaluation phase, the cross-coupled inverter pair formed by transistor
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Wp1 and Wn1 reduces the contention during the synchronization of the CLK and the input

data D signal. The load transistor of the PDFF consists of only a single NMOS transistor in

the slave-stage. The PDFF demonstrates good metastability because (i) a cross-coupled

inverter formed by Wp1 and Wn1 in the master-stage can be sized up to increase the

transconductance without sacrificing much performance, and (ii) the load “X” drives in

the slave-stage is only a single NMOS transistor. The waveform that demonstrates the

contention at node “X” during the metastable period for the PDFF is shown in Figure

4.3(d).

(a) PowerPC (b) SDFF

(c) SAFF (d) PDFF

Figure 4.3: Metastable Contention Nodes for Single-Supply Flip-Flops

4.2.2 Flip-Flops in Dual-Supply System

In the CRFF (Figure 4.4(a)), because data is written into the flip-flop via the NMOS-

only pass transistors, its critical nodes “X” are chosen right after the second pass transistor

Wn2 in the critical path. A cross-coupled inverter pair formed by transistor Wp4 and Wn4

can be sized up to increase the transconductance while reducing τ . The load transistors
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of the cross-coupled inverter pair consists of transistor Wn2 and Wp2. The waveform that

demonstrates the contention at node “X” during the metastable period for the CRFF is

shown in Figure 4.6(a).

The critical node for metastability in the NDKFF (Figure 4.4(b)) is different for

0-1 and 1-0 data transition. In the 0-1 input data transition, the node “X0−1” is under

contention because the feedback PMOS transistor Wp2 is turned on initially by node “X1−0”

and fights with the discharge path of the stacked NMOS transistors Wn1, Wn2, and Wn3.

Around the metastable region, this contention can last for a long time because Wp2 is

turned off only when “X1−0” completes the 0-1 transition. To improve metastability for

0-1 data transition, (i) larger feedback transistors Wp2 and Wn4 can be used to increase

the transconductance in the inverter pair formed by the feedback transistors along with

Wp3 and Wn7, and (ii) decrease the size of the load transistor Wp1 and Wn3. The same

contention in 0-1 data transition does not exist for the 1-0 input data transition because

Wn4 cuts off the contention path. The critical node in this case is “X1−0” where it takes a

certain amount of time to settle to stable value mainly due to the closing of the transparency

window from the falling edge of “CLK D”. In this case, the contention at the critical node

can be reduced by either sizing up transistor Wp9 and Wn9 in the inverter pair or reduce size

of the load transistors such as Wp2, Wn4, Wp3, and Wn7. The waveform that demonstrates

the contention at node “X” during the metastable period for the NDKFF is shown in

Figure 4.6(b) and 4.6(c) for 0-1 and 1-0 data transition.

In the RCSSATG, the critical nodes “X” are chosen right after the NMOS-only pass

transistor due to the initial synchronization between the CLK and the input data D.

Similar to the PowerPC, the metastable period is prolonged because the input data is

allowed to pass through via the low-impedance path. The two additional discharge paths

improve the setup time of the flip-flops but do not enhance metastability. The gm in the
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Figure 4.4: Schematic Diagram of Reduced Clock-Swing Flip-Flops for Metastability Anal-

ysis

cross-coupled inverter pair can be manipulated by varying the size of transistor Wp1 and

Wn1. The load transistor that the critical signals in the SATG drive in the slave-stage is

only a single NMOS transistor (Wn5), which is very desirable for enhanced metastability due

to smaller parasitic capacitance values. The waveform that demonstrates the contention

at node “X” during the metastable period for the SATG is shown in Figure 4.6(d).
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The qualitative metastability analysis for the RCSSATG and the LCSATG is identical.

Similarly, the qualitative analysis for the RCSPDFF and the LCPDFF is identical to the

PDFF and will not be repeated here.
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Figure 4.5: Schematic Diagram of Level-Converting Flip-Flops for Metastability Analysis

Because both the CPN and the SPFF employ the conditional-capturing technique, a

temporary pulse is generated at the critical node during the evaluation phase until the

output makes the corresponding transition and consequently cut off the discharge paths.

In the CPN, node “Y” is always pre-charged to logic “1” because the weakly sized transistor

Wp1 is always turned on. During the 0-1 data transition, a temporary negative pulse is

generated at node “Y”, and in turn causes contention at node “X” between transistor Wp2

and the discharge path formed by transistor Wn5, Wn6, and Wn7. While node “Y” does

not contribute to the 1-0 data transition, the same contention exists at node “X” during

the metastability period due to the synchronization between the CLK and the input data

D signals. The cross-coupled inverter pair formed by transistor Wp8 and Wn8 is used to

stabilize the critical node. Alternative, metastability can also be enhanced by using smaller

transistor Wp2 and Wn7 to reduce the amount of capacitance associated at node “X”. The
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waveform that demonstrates the contention at node “X” during the metastable period for

the CPN is shown in Figure 4.6(e). In the SPFF, the temporary pulse is generated at the

critical node “X”, which is stabilized by the cross-coupled inverter pair formed by transistor

Wp4 and Wn4. The load transistor for metastability analysis in the SPFF include Wn3 as

well as the SR-latch transistors in the slave-stage. The waveform that demonstrates the

contention at node “X” during the metastable period for the SPFF is shown in Figure

4.6(f).

(a) CRFF (b) NDKFF0-1

(c) NDKFF1-0 (d) RCSSATG

(e) CPN (f) SPFF

Figure 4.6: Metastable Contention Nodes for Dual-Supply Flip-Flops
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4.3 Quantitative Design Methodology for Metastable-

Hardened Flip-Flops

4.3.1 Transistor Sizing

In this work, the value of τ is manipulated by varying the transconductance gm of the

inverter pair and the relevant capacitances associated with the critical nodes through tran-

sistor sizing. Because flip-flops have two types of data transitions (0-1 and 1-0), transition

with the worst τ is chosen for analysis in this section.

Two types of analysis are performed on the variation of τ in flip-flops based on transistor

sizing: (i) Transconductance (gm) Variation (TV) and (ii) Load Variation (LV) . In the TV

analysis, gm of the inverter pair is varied accordingly while keeping the load capacitance CQ

constant. The LV method changes the value CQ with a fixed gm value. While a typical flip-

flop design features 20-30 transistors, this work will only focus those that have an impact

on τ either through transconductance or load variation. The transistor sizing approach

used for analysis of τ is outlined below.

• Size the flip-flop for optimum PDP.

• Vary the size of the transconductance transistors for TV analysis.

• Fix the transconductance transistors sizing based on optimum τ value obtained.

• Vary the size of the load transistors for LV analysis.

We found the sizing for optimum PDP is a very good starting point for analyzing and

optimizing τ because it also takes into account the design tradeoff between delay and
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power dissipation which will be discussed later in this chapter. All the sizing schemes

used in analysis ensure the correct functionality of the flip-flop. For a given analysis, the

corresponding transistors used to vary the gm and CQ values are listed in Table 4.1. It is

important to point out the optimum τ value obtained from the TV analysis may not be

the absolute minimum value but rather the value around the knee of the curve.

For single-supply flip-flops, the size of Wp2 and Wn2 in the PowerPC is varied for TV

analysis to change gm in the inverter pair but always maintain an aspect ratio of 1 in order

to yield optimum τ [14][16]. For LV analysis, Wp2 and Wn2 are fixed at identical sizes while

Wp3 and Wn3 are varied to generate different load values at the critical node. For the SAFF,

the size of Wn1 does not change in any scenario in order to maintain high-performance,

and the sizing of Wp1 is responsible for the manipulation of gm in TV analysis. In the

LV scenario, the size of Wp1 and Wn1 does not change while the size of Wp4 and Wn4 in

the NAND gate is varied for different load values. The sizing scenario of the PDFF is

very similar to that of the SAFF except Wn1 replaces Wp1 as the transistor responsible for

gm variation in the master-stage and NMOS Wn2 becomes the load transistor. The TV

analysis in the SDFF involves changing the size of Wp1 and Wn1 with an aspect ratio of 1

while the LV analysis varies the three transistors (Wp3, Wn2, Wn6) that are on the critical

path and connecting to the critical node.

For dual-supply flip-flops, the TV and the LV analysis of the RCSPDFF and the

LCPDFF is identical to those of the PDFF. For both the RCSSATG and the LCSATG,

the TV analysis involves changing the sizes of transistor Wp1 and Wn1 with an aspect ratio

of 1 while the LV analysis varies the size of the NMOS transistor Wn5 with constant gm

transistors. For analysis purposes, the 0-1 output transition in the NDKFF will be used

since it has a higher value of τ than the 1-0 transition. The TV analysis of the NDKFF

involves changing the size of the feedback transistors Wp2 and Wn4 with an aspect ratio of
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1 while the LV analysis varies the sizing of transistor Wp1 and Wn3 that are connecting to

the critical node. In the CRFF, transconductance gm is manipulated by varying transistor

Wp4 and Wn4 with an aspect ratio of 1, and the size of transistor Wp2 and Wn2 are changed

accordingly for LV analysis. The TV and the LV analysis in the CPN and the SPFF is

rather similar. The TV analysis involves changing the size of the cross-coupled inverter

pair to stabilize the contention at the critical node while the LV analysis deals with the

transistors associated with the critical node in the discharge paths (Wn3 for the SPFF and

Wn7 for the CPN). Although Wp2 in the CPN and Wp1 in the SPFF are also connected

to the critical node in the respective flip-flop, their size must be kept constant in order to

ensure the correct functionality of the flip-flop.

Table 4.1: Flip-Flop Transistor Sizing Schemes for Transconductance gm and Load CQ

Variation

Transconductance (gm) Variation Load (CQ) Variation

SAFF Wp1 Wp4, Wn4

PowerPC Wp2=Wn2 Wp3,Wn3

SDFF Wp1=Wn1 Wp3, Wn2, Wn6

PDFF, RCSPDFF, LCPDFF Wn1 Wn2

RCSSATG, LCSATG Wp1=Wn1 Wn5

0-1 NDKFF Wp2 = Wn4 Wp1, Wn3

CRFF Wp4=Wn4 Wp2, Wn2

SPFF Wp4=Wn4 Wn3

CPN Wp8=Wn8 Wn7

In the TV analysis of single-supply flip-flops (Figure 4.7(a)), increase the relevant
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Figure 4.7: Impact of Transistor Sizing on τ using Transconductance and Load Variation

in Single-Supply Flip-Flops

transistor widths in the master-stage can significantly reduce τ when compared to the op-

timum PDP sizing scheme. For example, increase gm in the master-stage of the PDFF can

reduce τ by 35% from the optimum PDP design point. However, further increase in width

beyond the values shown in the figure will increase the value of τ because the capacitance

terms in the numerator of Equation (2.10), especially the Miller capacitances, begins

to dominate over gm in the denominator. Hence, the knee of the curve is important in

determining the optimum sizing scenario for τ in order to prevent over-sizing that can

further impact power and performance. Due to their respective architecture, it is clear

from Figure 4.7(a) that the minimum τ value achieved by the TV analysis in the SAFF

and the SDFF is higher than that of the PowerPC and the PDFF. In the SAFF, gm in the

master-stage is limited by the fact that path to VSS is formed by three NMOS transistors in

series instead of just of a single transistor. As for the SDFF, the inverter pair that stabilizes
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the critical node is not on the critical path, and hence cannot be sized up significantly in

order to maintain flip-flop’s correct functionality. In general, the minimum τ achieved in

TV analysis is limited by the gm transistor sizes in the master-stage before the saturation

occurs. According to Equation (4.2) and (4.3), decrease in load transistor width results

in a linear decrease in the capacitance, which translates to a linear reduction in τ given a

constant gm. This is illustrated in Figure 4.7(b) when the LV analysis is performed by

varying the size of the load transistors. In this case, τ reduction is more significant than

the TV analysis because the size of load transistors can be reduced continuously as long

as the flip-flops retains the correct functionality. For example, using smaller transistors for

the cross-coupled NAND gates in the slave-stage of the SAFF can further reduce τ by 45%

from the optimum value obtained from the TV analysis.

For the dual-supply flip-flops, both the TV and the LV analysis is performed for VDDL =

1.4V . However, the analysis can easily be extended to other VDDL values using the same

methodology. Figure 4.8 and 4.9 illustrate the TV and LV analysis of the reduced clock-

swing and level-converting flip-flops, respectively.

Similar to the flip-flops in the single-supply system, the reduction of τ in the TV and

the LV analysis is also evident in both reduced clock-swing and level-converting flip-flops.

For example, increase gm of the CRFF reduces τ by 60% when compared to the optimum

PDP design, and a further 20% reduction can be achieved using the LV analysis. However,

it is also clear that the inverter pair (Wp4, Wn4) in the CRFF cannot be sized above 2.2µm

in order to keep the parasitic capacitances surrounding the critical node small enough to

allow the input data to be correctly written via the NMOS-pass transistors. A similar

argument can be made for the NDKFF where the gm transistors cannot be increased

beyond 1.5µm in the TV analysis in order to maintain the correct functionality because

the feedback path would then be too strong to prevent the flip-flop from sampling new
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Figure 4.8: Impact of Transistor Sizing on τ using Transconductance and Load Variation

in Reduced Clock-Swing Flip-Flops
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Figure 4.9: Impact of Transistor Sizing on τ using Transconductance and Load Variation

in Level-Converting Flip-Flops
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data. The LV analysis of the NDKFF is limited by the effect of transistor stacking where

the size of the load transistors (Wp1, Wn3) cannot be reduced significantly to maintain the

flip-flop functionality, and thus only an additional 5% reduction of τ is achieved from the

TV analysis. For the CPN and the SPFF, because both the forward and feedback inverter

in the cross-coupled inverter are sized identically to ensure optimum τ , the additional

parasitic capacitances added to the critical node due to the feedback inverter limits the

transconductance value in the inverter pair and subsequently the value of τ . In terms of

the LV analysis, an additional 14%-17% of reduction in τ can be achieved in the CPN and

the SPFF, respectively, before the flip-flop fails to function. The general trend displayed

in the TV and the LV analysis for the RCSPDFF and the LCPDFF is very much identical

to those of the PDFF except for the higher τ values because the reduced clock-swing signal

connected to the drain terminal of the PMOS devices result in an exponential increase of

τ . It is also evident that the architecture of the SATG is very desirable for metastable-

hardened flip-flops designs, especially for dual-supply systems because the cross-coupled

inverter pair can be sized up to simultaneously achieve good performance and reduce τ

without any restriction on maintaining the functionality of the flip-flop. For example, the

TV analysis reveals that the value of τ for the RCSSATG and the LCSATG is much lower

than the other flip-flops at the optimum PDP design point. Continuous increase in the

size of the cross-coupled inverter beyond the optimum PDP point will result in further

reduction in τ . Because of the small load transistor in the slave-stage, the TV analysis has

been shown to be a more effective method in reducing τ than the LV analysis.

The transistor sizing scheme using transconductance variation (TV) and load variation

(LV) have shown consistent results across various flip-flop architectures in both single and

dual-supply systems. An initial increase in the size of the cross-coupled inverter that

stabilizes the critical nodes will result in dramatic reduction in τ before it saturates to a
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constant value. Further linear reduction in τ can be achieved by varying the size of the load

transistors surrounding the critical node. Due to the different architectures, the amount of

reduction in τ via transistor sizing will vary between flip-flops to ensure the correct circuit

functionality is still maintained.

4.3.2 Flip-Flop Metastability Modeling

In this section, a simple “back of the envelope” method is demonstrated for quick estima-

tion and evaluation of τ for different flip-flop topologies as a function of transistor widths.

We will also show the proposed transconductance variation (TV) and load variation (LV)

analysis can be modeled on the selected flip-flop architectures using the approach described

in this section. Although we have included only three flip-flops for analysis in this section

(PowerPC, SAFF, and PDFF), the idea can easily be extended to other flip-flop architec-

tures.

The general modeling methodology involves the calculation of the transconductance gm

as well as the modeling of the parasitic capacitances of CQ and CM surrounding the critical

node of each flip-flop. The calculation of gm, given in Equation (4.4) is identical to the

one described in [18].

gm = gmn + gmp

= (µnCox
Wn

L

1

1 +
√
a

+ µpCox
Wp

L

√
a

1 +
√
a

)(VDD − |Vtp| − Vtn)
(4.4)

where

a =
µn
µp

Wn

Wp

Two types of capacitance are generally considered when modeling a MOSFET device,

namely the gate and the diffusion capacitance. The gate capacitance consists of Cgs,
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Cgd, and Cgb, while diffusion capacitance is composed of Csb and Cdb. A detailed model

of MOSFET capacitance is shown in Figure 4.10. For simplicity reasons, we assume

G

DS

B

Cgs Cgd

CdbCsb Cgb

Figure 4.10: Capacitance Modeling of a MOSFET Device

Cg = Cgs = Cgd = Cgb and Cdiff = Csb = Cdb. The equations for the calculation of Cg and

Cdiff are given in Equation (4.2) and (4.3). Since the Miller capacitance (CM) is the

coupling capacitor between the gate and the drain terminal of the MOSFET, its value is

identical to that of Cgd. We also ignored the effect of Cgb in our analysis.

Based on the critical nodes identified in Figure 4.2, the corresponding gm and the total

capacitance surrounding the critical node can be calculated. In order to apply Equation

(4.2)-(4.4), the technology parameters and the parasitic capacitances listed in Table 4.2

must be available for both the PMOS and NMOS transistors.

Table 4.2: Technology Parameters Required for the Calculation of τ

Technology Parameters µ0, Cox, VDD, Vt0, Ls

Parasitic Capacitances Cgo, Cj, Cjs
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Figure 4.11: Modeling of the Critical Node for Single-Supply Flip-Flops
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Figure 4.11 illustrates a detailed modeling of the capacitance at the critical node

for each respective flip-flop. The subscript “n” and “p” denote NMOS and PMOS devices

respectively. For flip-flops with differential critical signals in the master-stage, the modeling

is only illustrated on one of the signals due to symmetry. The relevant transistors used

in calculating gm and the Miller capacitance (CM) in the inverter pair are labeled as

Wp and Wn. In cases where multiple devices are in series, an effective width is used in

the calculation. Once the effective transistor width is determined, the calculation of gm is

straightforward using Equation (4.4). The term CM shown in Equation (2.10) is simply

the sum of the Cgdn and Cgdp in the inverter. The parasitic capacitance (CQ) at the critical

node is the lumped value that includes contribution from various diffusion capacitances

and the gate capacitances from the inverter pair in the master-stage as well as the load

transistors in the slave-stage.

By inputting Equation (4.2)-(4.4) and technology parameters using tools such as Mi-

crosoft Excel, the time-resolving constant τ for a given flip-flop topology can be calculated

for various transistor sizing scenarios. A sample worksheet for calculating τ in the PDFF

is shown in Table 4.3 where WS is the size of the load transistor in the slave-stage while

Wp and Wn are the transistor size of the inverter pair in the master-stage.

The proposed modeling and estimation tool allows the designers to generate different τ

values for various combination of sizing scenarios by simply changing the relevant values in

the spreadsheet. The sample data shown in Figure 4.12(a) and 4.12(b) are calculated

using the proposed estimation methodology and generated using the spreadsheets. In

Figure 4.12(a), the τ of the SAFF is plotted for different series of Wn1 values as a

function of Wp1. Similarly, Figure 4.12(b) illustrates the τ values of the SAFF for series

of different Wp1 and Wn1 values with an aspect ratio of 1 as a function of the load transistor

sizing (Wp4, Wn4) in the slave-stage. Using the data generated by the estimation tool, the
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Table 4.3: Sample Microsoft Excel Spreadsheet

Wp Wn Ws gm CQ CM τ

(µm) (µm) (µm) (µA/V ) (fF) (fF) (ps)

1.2 0.2 1.5 549.76 5.111 3.03 31.35

1.2 0.25 1.5 614.65 5.208 3.14 28.93

1.2 0.5 1.5 869.24 5.687 3.71 23.6

1.2 0.75 1.5 1064.6 6.166 4.27 21.84

1.2 1 1.5 1229.29 6.645 4.84 21.14

1.2 1.2 1.5 1346.62 7.028 5.29 20.92

1.2 1.5 1.5 1505.57 7.603 5.96 20.89

1.2 2 1.5 1738.48 8.561 7.09 21.24

designers are able to quickly estimate the value of τ and analyze the tradeoffs between τ

and other design constraint factors such as area, power, and performance.

To verify our proposed model, we compared the calculated τ values with those obtained

in simulation across three different technology nodes: 0.18µm, 90nm, and 65nm. The tech-

nology parameters for 0.18µm technology are obtained from models provided by MOSIS

[63]. The parameters for 90nm and 65nm are taken from the BSIM4 model files available

in Predictive Technology Model (PTM) [64] . Table 4.4 summarizes the main technology

parameters for the three technology nodes.

Figure 4.13(a)-4.13(c) illustrate the comparison for the calculated and the simulated

τ values for each flip-flop architecture across three different technology nodes. The data

shown in these figures correspond to the TV analysis where the value of gm in the inverter

pair is changed while the size of the load transistor remains constant. The methodology
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Figure 4.12: Series of SAFF τ Values Generated by the Proposed Modeling Due to

Transconductance and Load Variation

Table 4.4: Selected Process Parameters for Different Technologies

VDD Vthn Vthp K ′n K ′p

(V) (V) (V) (µA/V 2) (µA/V 2)

0.18µm 1.8 0.53 0.51 170 37

90nm 1.2 0.397 0.339 687 85

65nm 1 0.368 0.297 1145 127

for transistor sizing in each flip-flop is identical to those previously described. From these

figures, it is clear that the calculated values match very well with the simulated values

across all three technology nodes for the flip-flops analyzed where the maximum deviation

is 17%. More importantly, the calculated values accurately estimate the knee of the curve as
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(f) LV Analysis for PowerPC

Figure 4.13: Comparison between Simulated and Calculated τ values
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a function of transistor sizing. This is important in designing reliable systems because the

knee point indicates the optimum value on τ for a specific sizing scheme given a particular

flip-flop topology.

As evident from Figure 4.12(b), τ changes in a linear manner as the size of the load

transistors in the slave-stage varies using the LV analysis. This observation is also evident

in Figure 4.13(d)-4.13(e). In these figures, the values obtained from simulation are

the normalized τ values while the calculated values are the normalized total capacitance

shown in the numerator of Equation (2.10) (CQ+4CM). Without changing the size in

the inverter pair in the master-stage, the value of gm in the denominator of Equation

(2.10) remains unchanged. Hence, the value of τ should have a direct linear relationship

with the total capacitance value as the size of the load transistors varies. In fact, this is

evident in Figure 4.13(d)-4.13(e) where the amount of change in the simulated τ values

closely resembles the percentage change in the total capacitance calculated for various load

transistor sizes.

The data shown Figure 4.13(d) and 4.13(e) is obtained from the SAFF and the PDFF

where the contribution of load capacitance is dominated by gate capacitances. A similar

load transistor variation analysis was also performed on the PowerPC (Figure 4.13(f)),

but the discrepancy between the simulated and the calculated values was quite large with

a maximum deviation of approximately 50%. We believe a couple of reasons may have

contributed to this deviation. First of all, majority of the load capacitance contribution

in the PowerPC comes from the diffusion capacitance (Cdiff ), and the equation we use to

model diffusion capacitance is only a first-order approximation. In reality, the calculation

of Cdiff has a dynamic behavior and can be more accurately modeled by Equation (4.5).

Cdiff =
Cdiff0

(1 +
Vj
V0

)
m (4.5)
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where Vj is the magnitude of the junction reverse-bias voltage, Cdiff0 is the diffusion ca-

pacitance at zero reverse-bias voltage, V0 is the junction built-in potential, and m is the

grading coefficient. Therefore, in order to accurately calculate the diffusion capacitance

associated at the critical node of a flip-flop, an important parameter that must be consid-

ered is the node voltage, which can only be obtained accurately from simulation. While a

value of VDD/2 can be assumed as the node voltage during metastability, the exponential

relationship shown in Equation (4.5) means that a small deviation from that value can

potentially result in large deviation from the actual capacitance value. The modeling of

the diffusion capacitance does not impact the analysis in the SAFF and the PDFF because

its value is generally much smaller than the gate capacitances [62]. A second possible

reason that resulted in the deviation is the neglecting of the lumped resistances in our

calculation. Because a transmission-gate topology is associated with the critical node in

the PowerPC, the effects of the source-drain resistance may have played a more prominent

role in determining τ than other flip-flop topologies such as the PDFF and the SAFF.

4.3.3 Proposed Design Metrics

In this section, two new design metrics, namely the metastability-delay-product (MDP) and

the metastability-power-delay-product (MPDP), are proposed to provide an illustration in

analyzing the design tradeoff between delay, power, and metastability. In traditional flip-

flop designs, power vs. delay curve (Figure 3.14(b)) is an useful illustration in analyzing

the tradeoff between the delay and power consumption. The best design tradeoff usually

occurs around the knee of the curve, and thus indicating a minimum PDP value. In

this work, both the τ vs. delay and the τ vs. PDP curve illustrate a similar tradeoff

analysis and provide a useful illustration in exploring the design space between enhancing
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the metastability performance of the flip-flops while still satisfying the timing and power

design constraints. The τ vs. delay curve illustrates the design tradeoff between τ and

delay, and the knee of the curve usually indicates the optimum MDP design. Likewise, the

knee of the τ vs. PDP curve indicates the optimum MPDP design point, which is typically

the best design tradeoff point between τ and PDP. These curves can be generated using the

aforementioned transistor sizing schemes such as the transconductance and load variation

method. For dual-supply flip-flops, both the TV and the LV analysis are again performed

for VDDL = 1.4V .

MDP:

While appropriate transistor sizing can reduce the value of τ significantly, it often comes at

the expense of performance degradation. In the PowerPC, for example, sizing up transistor

Wp2 and Wn2 increases the gm to reduce τ but also adds more capacitances to the critical

node, and thus increases the delay in the critical path. Although small load transistors in

the slave-stage of the SAFF results in smaller τ , it also increases the delay considerably. The

PDFF is an example where delay and τ can be simultaneously reduced because transistor

Wp1 is on the critical path and also responsible for gm in the master-stage. However,

increasing the size of Wn1 in the PDFF to improve gm will result in higher delay by adding

capacitances to the critical node. The SDFF is an interesting case to analyze for the 1-0

data transition. While sizing up the inverter pair (Wp1, Wn1) improves metastability, it also

maintains the pre-charged logic “1” at the critical node from temporary false-discharging

and thus enhances the overall flip-flop performance.

Figure 4.14 plots the τ vs. delay curve of the analyzed flip-flops in single-supply

system for both the TV and the LV analysis. With the exception to the SDFF, the D-Q

delay of the PDFF clearly is lower than the PowerPC and the SAFF while maintaining
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Figure 4.14: Illustration of MDP in Single-Supply Flip-Flops using τ vs. Delay Curve via

Transistor Sizing

a lower τ value. Although the D-Q delay of the SDFF is lower than the PDFF, it comes

largely at the expense of a much higher τ value. In most cases, transistor sizing has an

opposite effect on delay and τ , and thus there must exists a point which offers the best

design tradeoff between these two parameters. Here, we introduce a new design metric

called the metastability-delay-product (MDP) to analyze and balance this tradeoff. As

shown in Equation (4.6), MDP is simply the product between τ and the flip-flop delay

for a given transistor sizing scheme.

MDP = τ ×Delay (4.6)

The design tradeoff between delay and metastability in flip-flops can be illustrated using

both the TV and the LV analysis. Using the PowerPC and the SDFF as examples, the

region for optimum delay, optimum τ , and optimum MDP are labeled in Figure 4.14. In
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the case of the PowerPC (Figure 4.14(a)), the value of τ at the optimum delay point

is 2× greater than the optimum τ value. Similarly, the delay at the optimum τ value is

1.25× higher than the optimum delay value. At the optimum MDP point, however, these

values have been reduced to 1.17× and 1.14× respectively, and thus indicating a better

design tradeoff between performance and metastability. A similar analysis can be done for

the SDFF example shown in Figure 4.14(b) for the LV analysis. For either TV or LV

analysis, the optimum MDP point in each respective analysis occurs around the knee region

of the τ vs. delay curves due to the inherent design tradeoff. However, the absolute lowest

MDP value for a given flip-flop can come either from the TV or LV analysis depending on

the architecture. For example, the lowest MDP value for the SAFF comes from the LV

analysis while the lowest MDP value for the PDFF is from the TV analysis. Overall, MDP

is an important metric to consider when designing digital datapaths where reliability and

high-performance are the primary objectives.

Figure 4.15 plots the τ vs. delay curve of the reduced clock-swing flip-flops for both

the TV and the LV analysis. Using the TV analysis of the NDKFF as an example, the

value of τ at the optimum delay point is 2.1× greater than the optimum τ value. On the

other hand, the delay at the optimum τ value is 1.25× higher than the optimum delay

value. At the optimum MDP point, however, these values have been reduced to 1.09× and

1.11× respectively, and thus indicating a better design tradeoff between performance and

metastability. In the LV analysis of the CRFF, the optimum MDP point yields an 1.11×

and 1.14× increase from the optimum delay and the optimum τ value, respectively. How-

ever, both values still demonstrate better design tradeoff than the 1.65× increase in delay

at the optimum τ value and a 1.31× increase in τ at the optimum delay point. While the

delay of the RCSPDFF is the lowest among the analyzed reduced clock-swing flip-flops, the

RCSSATG exhibits the best design tradeoff between performance and metastability. This
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Figure 4.15: Illustration of MDP in Reduced Clock-Swing Flip-Flops using τ vs. Delay

Curve via Transistor Sizing

is especially evident in an iso-delay comparison of the LV analysis where the RCSSATG is

able to achieve the same delay as the RCSPDFF but at a much lower value of τ .

Figure 4.16 plots the τ vs. delay curve of the level-converting flip-flops for both the

TV and the LV analysis. A similar design tradeoff between performance and metastability

exists for all the flip-flops analyzed. In the TV analysis, the shape of the τ vs. delay curve

is similar for the CPN, the SPFF, and the RCSSATG. Because the forward inverter in the

cross-coupled inverter pair of the CPN and the SPFF is also on the critical path, sizing up

the inverter pair initially decreases both the delay and τ . As the inverter size continues to

increase, the value of τ still decreases but the additional parasitic capacitances added to

the critical node due to the feedback inverter subsequently contributes to an increase in

the overall delay. A similar analysis can be made for the LCSATG. Regardless of the curve

shape, the optimum MDP point still results in the best tradeoff between performance and
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Figure 4.16: Illustration of MDP in Level-Converting Flip-Flops using τ vs. Delay Curve

via Transistor Sizing

metastability. The TV analysis for the SPFF shows the optimum MDP design results in

an 1.04× and 1.21× increase from the optimum delay and optimum τ value as opposed to

the 1.84× increase in τ at the optimum delay point or an 1.22× increase in delay at the

optimum τ point. A similar design tradeoff is also illustrated for the SPFF using the LV

analysis.

MPDP:

Power consumption is another important factor that must be considered in flip-flop designs.

Hence, another design metric called the metastability-power-delay-product (MPDP), given

by Equation (4.7), is also introduced to design metastable-hardened, high-performance,

and low-power flip-flops.

MPDP = τ × Power ×Delay (4.7)
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Figure 4.17 illustrates the τ vs. PDP curve for the single-supply flip-flops using both the

TV and the LV analysis. In the TV analysis of single-supply flip-flops (Figure 4.17(a)),
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Figure 4.17: Illustration of MPDP in Single-Supply Flip-Flops using τ vs. PDP Curve via

Transistor Sizing

the small PDP values indicate the size of the inverter pair in the master-stage is small,

which typically results in lower power and delay but higher τ values. As the inverter pair

size increases, the reduction of τ comes at the expense of overall PDP increase. Clearly, a

tradeoff exists between τ and the PDP in all flip-flop architectures such that the optimum

MPDP point is around the knee region of the curve. For the PDFF, the τ and PDP value

at the optimum MPDP point is 1.06× and 1.2× higher than the optimum τ and PDP

value respectively. This is a better tradeoff than designing at either the optimum τ or

the optimum PDP value where the amount of increase in PDP and τ is 1.5× and 1.52×,

respectively. In the LV analysis (Figure 4.17(b)), a different shape of the τ vs. PDP curve

is observed. Generally, the curve can be divided into three regions: (i) high-performance,
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(ii) optimum PDP, and (iii) optimum τ . In the first region, the load transistors have been

sized up to achieve high-performance at the expense of higher τ and power consumption.

The optimum PDP regions indicates the best tradeoff between performance and power

consumption. In the last region, the small load transistors result in a significant increase

in delay, which translates into an overall PDP increase. However, simultaneous reduction

in power dissipation and τ due to smaller load transistors means the optimum MPDP

design point is often found between the optimum PDP and the optimum τ region.

Figure 4.18 plots the τ vs. PDP curve of the reduced clock-swing flip-flops for both

the TV and the LV analysis. For the same reasonings stated previously, the shape of the
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Figure 4.18: Illustration of MPDP in Reduced Clock-Swing Flip-Flops using τ vs. PDP

Curve via Transistor Sizing

curve for the NDKFF, the CRFF, and the RCSPDFF all indicate the optimum MPDP

point is around the knee of the curve in the TV analysis. The curves in the TV analysis

of the RCSSATG and the LV analysis of all the RCSFFs closely resemble the shape of
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three regions identified previously: high-performance, optimum PDP, and optimum τ . As

such, the optimum MPDP point in these cases occur somewhere between the optimum

PDP and the optimum τ region. The less curvature in the LV analysis of the NDKFF

and the corresponding high values of τ indicate the sizing scheme is limited due to the

flip-flop architecture. While the TV analysis for the CRFF shows a comparable values

of τ to those of the RCSPDFF and the NDKFF, the curve is more to the right than the

other curves, which indicates its overall PDP and MPDP values are much higher than

the other flip-flops. Although the PDP values of the RCSPDFF are the lowest among

all the flip-flops, its values of τ are higher than those of the RCSSATG. Overall, it is

clear that the RCSSATG is a more metastable-hardened flip-flop than the other flip-flops

while maintaining a small PDP value. In the iso-PDP comparison of the TV analysis, the

value of τ in the RCSSATG is 19% and 52% lower than the RCSPDFF and the NDKFF,

respectively. In the LV analysis, the iso-PDP comparison shows the value of τ in the

RCSSATG is 21% and 39% lower than the RCSPDFF and the NDKFF.

Figure 4.19 plots the τ vs. PDP curve of the level-converting flip-flops for both the

TV and the LV analysis. The region of high-performance, optimum PDP, and optimum

τ is clearly demonstrated in both the TV and the LV analysis of all the LCFFs except

the TV analysis in the LCPDFF. Coincides with the previous observations, the optimum

MPDP design point for most of the flip-flops occurs somewhere between the optimum

PDP and the optimum τ region. Among the flip-flops analyzed, the LCSATG exhibits

the best metastability along with the lowest PDP value. In the TV analysis, the iso-PDP

comparison shows the value of τ in the LCSATG is 22%, 27%, and 42% lower than the

CPN, the LCPDFF and the SPFF, respectively. At the iso-PDP point in the LV analysis,

the τ of the LCSATG is 14% and 25% lower than the CPN and the LCPDFF.
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Figure 4.19: Illustration of MPDP in Level-Converting Flip-Flops using τ vs. PDP Curve

via Transistor Sizing

Key Remarks:

Because the concept of MDP and MPDP is first introduced in this work, we want to

highlight a few key observations in using these new design metrics. First of all, the τ vs.

delay and the τ vs. PDP curve allow the circuit designers to explore the design space for

the tradeoff between τ , delay, and PDP based on the design requirements. If the delay is

the most critical design consideration, one may sacrifice metastability and size the flip-flops

to achieve the lowest delay value. Conversely, if reliability is the most important factor

such as for systems in spacecrafts and medical equipments, then flip-flops maybe designed

to sacrifice significant delay to achieve the optimum τ value for a specific MTBF value. The

knee region of the τ vs. delay curve typically yields the best design tradeoff between τ and

the flip-flop delay. A similar analysis can be performed for the tradeoff between τ and PDP.

The second observation is that the location of the optimum MDP and MPDP point can
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be different than the optimum PDP point in flip-flop designs. This means different sizing

schemes must be adopted from the traditional PDP design in order to make the flip-flops

more metastable-hardened. Thirdly, either the transconductance or the load variation may

prove to be the more effective approach in obtaining the optimum MDP or MPDP design,

depending on the flip-flop architecture. For instance, the TV method is more attractive

for the PDFF mainly because the load in the slave-stage is small and therefore it is more

effective to increase the gm in the master-stage. On the other hand, minimize the load in

the slave-stage reduces the τ significantly for the SAFF, and thus yielding the optimum

MDP and MPDP design. At the iso-PDP region for the SAFF shown in Figure 4.17, the

value of τ obtained in the LV analysis is 17% lower than the TV analysis.
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Figure 4.20: Comparison between Optimum PDP and Optimum MPDP Designs

Generally, the optimum MPDP design involves sizing up the cross-coupled inverter pair

117



and/or reducing the size of the load transistors to optimize the value of τ , and hence the

resultant PDP value will most likely be higher than the optimum PDP value due to the

combination of delay and/or power increase. A small increase in PDP value indicates

the flip-flop architecture is suitable for metastable-hardened designs because metastability

performance can be improved dramatically without significant sacrifice in delay and power.

This observation is illustrated in Figure 4.20(a) where the PDP vs. MPDP curve of

three sample flip-flops is plotted for both the TV and LV analysis. While all the values

are normalized to create enough separation between the curves in order to provide a clear

illustration for each flip-flop, the relative difference is not affected by such normalization.

For the NDKFF and the SAFF, the optimum MPDP value is obtained through the LV

analysis and comes at the expense of an 22% and 30% increase, respectively, in PDP from

the optimum PDP value. On the other hand, the LCSATG only encounters an 7% overhead

in PDP when designed for optimum MPDP. Figure 4.20(b) shows the percentage increase

in PDP from the optimum PDP value when the analyzed single and dual-supply flip-flops

are designed for optimum MPDP. It is clear that the proposed flip-flop architectures of the

PDFF and the SATG are more suitable for metastable-hardened designs, as indicated by

the smallest PDP overhead among all the flip-flops analyzed. Overall, the PDP vs. MPDP

curve is an useful illustration to analyze the amount of tradeoff in PDP when designed

for optimum MPDP. A similar analysis can also be performed for the amount of tradeoff

between delay and MDP using the delay vs. MDP curve.
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4.4 Post-Layout Simulation Results

4.4.1 Test Bench and Measurement Setup

All the flip-flops analyzed in this chapter are implemented in layout in the 0.18µm TSMC

technology using the optimum MPDP design. The flip-flop layouts can be found in Ap-

pendix A. The values of all the delay, τ , PDP, MDP, and MPDP given in this work are

the worst case value of either the 0-1 or 1-0 data transition. Hence, the PDP, MDP, and

MPDP values shown may not necessary be the product of the delay, τ , and power given in

the tables. We have chosen 25% data activity factor for power consumption measurement.

The simulation test bench setup is identical to the one shown in Figure 3.15. The method

for extraction of the metastability parameters τ and T0 is identical to the one described

in Chapter 2. The flip-flop area refers to the total transistor widths. All the dual-supply

flip-flops are designed under the optimum MPDP scheme specifically for VDDL = 1.3V ,

which is approximately 0.7VDDH . Once again, the post-layout simulation values of τ , on

average, are approximately 10% higher than the schematic simulation results.

4.4.2 Flip-Flops in Single-Supply Systems

Table 4.5 summarizes the simulation results for the analyzed single-supply flip-flops. As

evident from the data, the value of τ for the SAFF, the PowerPC, and the PDFF is very

similar to each other while the SDFF is approximately 1.37× higher than the SAFF. The

high-performance characteristic of the PDFF is demonstrated by the fact that its delay is at

least 22% lower than the other flip-flop architectures. With fewer transistors in the critical

path, this performance advantage does not come at the expense of significant increase in

area or power consumption. The power consumption of the PDFF is only 13% higher
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than the PowerPC but 3% and 53% lower than the SAFF and the SDFF, respectively.

The total transistor widths of the PDFF is also the lowest among all the flip-flops when

designed for optimum MPDP. Overall, PDFF the offers the best design tradeoff between

delay, power and metastability, as evident by a 32%, 42%, and 34% reduction in PDP,

MDP, and MPDP, respectively, from the next lowest values.

Table 4.5: Simulation Results for Optimum MPDP Designed Single-Supply Flip-Flops

Delay Power τ PDP MDP MPDP Area

(ps) (µW ) (ps) (fJ) (ps2) (fJ·ps) (µm)

SAFF 307.8 109.6 43.9 33.7 13520 1482.1 50.75

PowerPC 246.1 93.76 44.4 23.1 10595 993.3 29.65

SDFF 190.3 224.0 61.0 42.6 10951 2453.4 41.75

PDFF 148 106.4 41.5 15.7 6150 654.5 27.9

Figure 4.21 illustrates the design tradeoff comparison between the optimum PDP and

MPDP design for the analyzed single-supply flip-flops. The percentage indicated in the

figure refers to the amount of increase (+) or decrease (-) that results from the optimum

MPDP design when compared to the optimum PDP design in terms of delay, power, τ and

area. While it is true that similar τ values can be achieved in the SAFF, the PowerPC,

and the PDFF under the optimum MPDP design, the amount of tradeoff in terms of other

design criteria can vary significantly between them. The optimum MPDP design for the

SAFF is able to achieve 54%, 12%, and 32% reduction in τ , power, and area respectively

but an 39% increase in delay. The usage of smaller transistors in the slave-stage not only

reduces τ but also results in lower power dissipation and smaller area. In the PowerPC,

the 37% reduction in τ comes at the expense of 30%, 3%, and 23% increase in delay, power,
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Figure 4.21: Comparison and Analysis between the Optimum PDP and the Optimum

MPDP Design for Single-Supply Flip-Flops

and area. This is largely due to sizing up the transistors in the feedback path, which not

only increases power and area but also adds capacitances to the critical path to degrade

performance. The 13% reduction of τ in the SDFF is achieved by sizing up the inverter

pair to stabilize the critical node, but again this translates into 10%, 35%, and 7% increase

in delay, power, and area. While the reduction of τ in the PDFF is 32% from the optimum

PDP to the optimum MPDP design, the amount of increase in delay, power, and area is

all less than 10%, which is significantly less than all the other flip-flops. This suggests

the architecture of the PDFF with a cross-coupled inverter pair in the critical path of the

master-stage and small load in the slave-stage is very suitable to achieve good metastability

without much compromise in delay, power, and area.

Although the majority of analysis in this work is focused on τ , metastability window δ

is often used as the main parameter in measuring metastability instead of the mean-time-

121



between-failure (MTBF) since it is independent of the data and clock frequency, which are

determined by the system. Figure 4.22 plots the metastability window as a function of

the settling time (ts). Two sets of δ values are plotted for each flip-flop: the optimum PDP

and the optimum MPDP design. In the optimum PDP designs, the δ of the PDFF is a

minimum 1-3 orders of magnitude lower than the other flip-flops. Thus, the architecture of

the PDFF is able to achieve good metastability without much optimization when compared

to other flip-flops. With the optimum MPDP design, it is very clear that the metastability

window is at least few orders of magnitude lower than the optimum PDP design for all the

flip-flops because the effect of reducing τ is magnified by its exponential relationship with

δ. δ of the PowerPC reduces by three orders of magnitude when ts is 600ps and six orders

of magnitude lower when the settling time increases to 1000ps. While the metastability

window of the SDFF is higher than the other flip-flops analyzed in this work, using the

optimum MPDP design still achieves a few orders of magnitude lower δ than the optimum

PDP design. All in all, the significant reduction in δ using the optimum MPDP design flip-

flops greatly reduces the likelihood of the flip-flops with unresolved data in the metastable

region.

4.4.3 Reduced Clock-Swing Flip-Flops

Table 4.6 summarizes the simulation results for the analyzed reduced clock-swing flip-

flops at VDDL = 1.3V . Despite the lowest value of D-Q delay, the τ of the RCSPDFF in

dual-supply systems is higher than its counterpart in the single-supply system due to the

exponential increase when the clock-swing is reduced. Similar to the SDFF, this is an exam-

ple of suggesting high-performance flip-flops do not necessarily result in fast time resolving

constant τ . It is the circuit architecture that largely determines the flip-flop metastability
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Figure 4.22: Metastability Window Analysis for Single-Supply Flip-Flops

behavior. Despite a higher value of τ , the MPDP value of the RCSPDFF is still 11% and

28% lower than the NDKFF and the CRFF largely due to its high-performance and low

characteristics that yield a minimum 8% lower PDP than the other analyzed flip-flops. The

post-layout results have clearly shown that the RCSSATG demonstrates the best design

tradeoff between delay, power, and metastability in the dual-supply system. While its over-

all delay and power consumption are almost identical to those of the RCSPDFF such that

the overall PDP value is only 8% higher, the value of τ is 40% lower than the RCSPDFF.

Subsequently, the RCSSATG achieves a minimum 32% and 35% reduction in MDP and

MPDP, respectively, when compared to the other flip-flops. Because the architecture of

the RCSPDFF and the RCSSATG are suitable for metastable-hardened flip-flop designs,

therefore the total transistor widths of these flip-flops under the optimum MPDP design

are much lower than the NDKFF and the CRFF.
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Table 4.6: Simulation Results for Optimum MPDP Designed Reduced Clock-Swing Flip-

Flops at VDDL = 1.3V

Delay Power τ PDP MDP MPDP Area

(ps) (µW ) (ps) (fJ) (ps2) (fJ·ps) (µm)

NDKFF 247.9 73.487 75.893 18.217 17559.5 1382.6 44

CRFF 342 70.351 71.492 24.06 24450.3 1720.1 42.45

RCSPDFF 201.6 68.11 83.612 14.8 18168.9 1237.5 32.3

RCSSATG 215.8 66.886 50.4 15.966 12031.9 804.77 34.25

Figure 4.23 illustrates the design tradeoff comparison between the optimum PDP and

the optimum MPDP design for the reduced clock-swing flip-flops. Under the optimum

MPDP design, the 13% reduction of τ in the NDKFF is achieved by sizing up the feedback

transistors and reducing the size of the load transistors. While the effect on area and

power consumption is almost negligible, the optimum MPDP design results in a 40% delay

penalty when compared to the optimum PDP design. In the CRFF, the 45% reduction in τ

from sizing up the cross-coupled inverter pair comes at the expense of 27%, 14%, and 14%

increase in delay, power, and area. While its overall value of τ is higher, the architecture of

the RCSPDFF is still suitable for metastable-hardened flip-flop designs, as evident by 14%,

8%, and 18% increase in delay, power, and area while achieving a 35% reduction in τ when

comparing the optimum MPDP and the optimum PDP designs. Finally, the RCSSATG

encounters the smallest overhead under the optimum MPDP design where the amount of

increase in delay, power, and area from the optimum PDP design is only approximately

3% along with a 27% reduction in τ .

Figure 4.24 plots the metastability window δ as a function of the settling time (ts) for
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Figure 4.23: Comparison between Optimum PDP and Optimum MPDP Design for Re-

duced Clock-Swing Flip-Flops at VDDL = 1.3V

the reduced clock-swing flip-flops. Two sets of δ values are plotted for each flip-flop: the

optimum PDP and the optimum MPDP design. In general, the optimum MPDP design of

all the flip-flops has reduced the metastability window δ by at least an order of magnitude

from the optimum PDP design. The δ of the RCSSATG under the optimum PDP design

is at least one magnitude lower than the other flip-flops under both the optimum PDP and

MPDP designs. The optimum MPDP design of the RCSSATG has resulted in a further

two orders of magnitude reduction in δ from the optimum PDP design. The significant

reduction of the metastability window clearly indicates the architecture of the RCSSATG

is very desirable for designing metastable-hardened flip-flops.

4.4.4 Level-Converting Flip-Flops

Table 4.7 summarizes the simulation results for the analyzed level-converting flip-flops at

VDDL = 1.3V designed for optimum MPDP. With similar architectures, the values of the
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Figure 4.24: Metastability Window Analysis for Reduced Clock-Swing Flip-Flops at

VDDL = 1.3V

LCPDFF and the LCSATG are very similar to those of the RCSPDFF and the RCSSATG.

The high-performance and low-power characteristics of the PDFF architecture resulted in

a minimum 13% lower PDP value than the other LCFFs. Its value of τ , however, is 60%

higher than the LCSATG. Despite a 15% higher delay value, the overall MDP and MPDP

value of the LCSATG is both 28% lower than the LCPDFF. Once again, the total transistor

widths of both the LCPDFF and the LCSATG are the lowest among the analyzed flip-flops.

Figure 4.25 illustrates the design tradeoff comparison between the optimum PDP and

the optimum MPDP design for the level-converting flip-flops. Due to transistor stacking

in the discharge paths, the reduction of τ in the CPN and the SPFF under the optimum

MPDP design is only limited to 10% and 15%, respectively, while encountering delay

overhead of 27% and 19%. All of these considerations indicate the architecture of the CPN
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Table 4.7: Simulation Results for Optimum MPDP Designed Level-Converting Flip-Flops

at VDDL = 1.3V

Delay Power τ PDP MDP MPDP Area

(ps) (µW ) (ps) (fJ) (ps2) (fJ·ps) (µm)

CPN 303.7 70.174 67.355 21.312 20455.71 1435.46 39.15

SPFF 258.4 72.627 90.726 18.767 20912.34 1702.64 56.2

LCPDFF 223 60.048 81.517 13.39 18178.3 1091.57 31.3

LCSATG 256.7 59.808 51.04 15.353 13102.5 783.63 34.65

and the SPFF is not very attractive for metastable-hardened flip-flop design because the

benefit of reducing τ using the optimum MPDP design is outweighed by the overhead in

other design considerations. Conversely, the optimum MPDP design in the LCPDFF and

the LCSATG achieves 25% and 34% reduction in τ when compared to the optimum PDP

design while keeping the overhead in other design considerations less than 10%.

Figure 4.26 plots the metastability window δ as a function of the settling time (ts)

for the level-converting flip-flops. Once again, two sets of δ values are plotted for each flip-

flop: the optimum PDP and the optimum MPDP design. With less than 15% reduction

in τ , the amount of reduction in δ for both the CPN and the SPFF is less than an order

of magnitude under the optimum MPDP design scheme. Depending on the value of the

settling time, the optimum MPDP design of the LCSATG can achieve up to three orders

of reduction in τ when compared to the optimum PDP design.
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Figure 4.25: Comparison between optimum PDP and optimum MPDP Design for Level-

Converting Flip-Flops at VDDL = 1.3V
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Figure 4.26: Metastability Window Analysis for Level-Converting Flip-Flops
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4.5 Metastability in the Sub-Threshold Region

Recently, significant research effort has been made on sub-threshold circuit designs in

order to facilitate ultra-low-power applications such as sensor networks, bio-implantables,

and RFID tags. Previous work has shown the optimum energy operation occurs in the

sub-threshold region where the supply voltage VDD is less than the threshold voltage Vth

[65][66][67]. While the concept of energy harvesting is attractive in sub-threshold designs,

reliability issues should not be overlooked in order to maintain reliable system operations.

Past works have analyzed flip-flops in the sub-threshold region in terms of delay and

power [68] as well as variability under process variation [69][70]. In this section, flip-flop

metastability is analyzed in the sub-threshold region using the optimum MPDP design as

well as a proposed mixed-Vth technique. We will refer the region where VDD < Vth as the

sub-threshold region and VDD > Vth as the super-threshold region.

Similar to the super-threshold region, the key in designing metastable-hardened flip-

flops in the sub-threshold region is to optimize the time resolving constant τ . However, the

transconductance equation [41] in the sub-threshold region is dramatically different than

the super-threshold region. The current equation in the sub-threshold region is given by

IDS = µnCox
W

L
(n− 1)V 2

T e
VGS−Vth
nVT (4.8)

where VT is the thermal voltage, n is the sub-threshold slope, and VGS is typically close to

VDD/2 during metastability. Furthermore, the transconductance gm in the sub-threshold

region can be calculated by Equation (4.9).

gm =
IDS
nVT

(4.9)

Figure 4.27 plots the transconductance gm and τ as a function of the supply voltage VDD in

log-scale on the Y-axis. Simple derivations from Equation (4.8) and (4.9) will reveal that
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gm has an exponential relationship with VGS in the sub-threshold region. Consequently,

this also translates into an exponential relationship between the time-resolving constant

τ and VDD. With the exponential relationship, it is evident that slight variation in VDD

and/or gm can result in significant changes in the value of τ .
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Figure 4.27: Plot of τ and gm as a Function of VDD

Three flip-flops are chosen for metastability analysis in the sub-threshold region (Pow-

erPC, SAFF, and PDFF) using the TSMC 65nm CMOS technology. The test bench used

in the sub-threshold region is similar to the one previously described but with some dif-

ferences. Four different supply voltage values are used for sub-threshold region analysis:

0.15V, 0.2V, 0.3V, and 0.4V. The clock frequency used for extraction of τ and delay mea-

surement is 300KHz to ensure the output is given enough time to settle to a stable value

when it is in the metastable region. In the sub-threshold region, clock frequency (fCLK)

has a significant impact on the power measurement because the distribution of dynamic

and leakage power can be significantly different. Unless specifically mentioned, the average

power is measured over 100 clock cycles by assuming fCLK = 10td where td represents the

worst flip-flop delay for a given supply voltage. When extracting τ , a step size of 1ps is

130



used in manipulating the data arrival time with respect to the CLK.

While the design for optimum MPDP via transistor sizing is identical to the super-

threshold region described previously, a mixed-Vth technique will be demonstrated to sig-

nificantly reduce τ and be more energy efficient than the single standard-Vth design if the

appropriate supply voltage is selected. As seen from Equation (4.8)-(4.9), lowering the

threshold voltage Vth in the sub-threshold region results in an exponential increase in gm.

The proposed design methodology in the sub-threshold region is to apply low-Vth transis-

tors only on the inverter pair that stabilizes the critical node in order to increase gm while

the remaining circuit uses standard-Vth transistors. The low-Vth transistors are identical

to those listed in Table 4.1 for the selected flip-flops except Wp1 and Wn1 in the PowerPC

are also low-Vth transistors since they are part of the inverter pair.

Figure 4.28 shows the gm comparison for a standard-Vth and low-Vth NMOS/PMOS

transistor respectively at VDD ranging from 0.1V to 1V. In the sub-threshold region, low-Vth
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Figure 4.28: Impact of Mixed-Vth Design on gm and τ

NMOS and PMOS result in a minimum 2.2× and 1.7× increase in gm than the standard-Vth
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transistors, which is much more significant when compared to the super-threshold region.

This suggests using the mixed-Vth technique in reducing τ is much more effective in the

sub-threshold region than the super-threshold region. For all three flip-flops analyzed,

using low-Vth transistors results in a minimum of 67% reduction in τ (Figure 4.28) for a

given VDD in the sub-threshold region.

While the mixed-Vth design can significantly reduce τ in the sub-threshold region, its

power-delay-product (PDP) must be carefully analyzed to determine if such design is still

energy efficient. Using the PowerPC as an example, Figure 4.29 illustrates the τ vs.

PDP plot for both the single-Vth (SVT) and mixed-Vth (MVT) design at two different

clock frequencies under different sub-threshold supply voltages. For the most part, the

PDP of the MVT design is very comparable to the SVT design at a given VDD value

because the increased power consumption due to low-Vth transistors is compensated by

an improved performance. At VDD = 0.15V , the PDP of the MVT design is only ≈10%

higher than the SVT design for both clock frequencies. For VDD above 0.2V, the PDP of

the MVT design is about 10% and 13% lower than the SVT design at the slower and faster

clock frequency respectively. For iso-PDP comparison, the MVT design is able to achieve

significant reduction in τ than the SVT design. Figure 4.29 also shows that at extremely

low supply voltage (i.e. VDD ≤ 0.2V ), the SVT design can be more energy efficient and

equally metastable-hardened than the mixed-Vth design by selecting an appropriate VDD

value. At the iso-τ region shown in the figure, the SVT design at 0.3V has a lower PDP

value than the MVT design at 0.2V. For VDD > 0.2V , however, MVT design becomes

more energy efficient for iso-τ comparison. The cross-over point between the two curves

determines the region where the MVT design becomes more energy efficient than the

SVT design for iso-τ comparison. Overall, the MVT design is an attractive method to

design metastable-hardened flip-flops in the sub-threshold region without much energy
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consumption penalty, especially in designs where the supply voltage is fixed at a given

value.
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Figure 4.29: Comparison between Single-Vth and Mixed-Vth Flip-Flop Design

The flip-flops analyzed in this work have been implemented in layout using two different

designs: (i) optimum PDP sizing using standard-Vth transistors and (ii) optimum MPDP

sizing using mixed-Vth transistors. Figure 4.30 shows the post-layout simulation results

of the τ vs. PDP curves. In the PDFF, optimum MPDP design achieves a 4× to 5×

reduction in τ while maintaining the same PDP as the optimum PDP design for a given

VDD. While the reduction in τ ranges from 6× to 9× in the PowerPC for the optimum

MPDP design, it comes with a 10-15% increase in PDP for VDD ≤ 0.2V . In the SAFF, the

delay improvement gained from the optimum MPDP design results in lower PDP values

along with a 2× to 7× lower τ than the optimum PDP design for a given VDD. Overall,

the optimum MPDP design in iso-PDP comparisons achieves significant reduction in τ

for each flip-flop while becoming more energy efficient than the optimum PDP design for

VDD > 0.2V in the iso-τ comparison. Under the optimum MPDP design, the value of τ
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Figure 4.30: τ vs. PDP Curve for Post-Layout Simulation

for all three flip-flops is very similar for VDD > 0.2V . At 0.15V and 0.2V, respectively,

the τ of the SAFF is approximately 1.7× and 4.6× higher than the PowerPC and the

PDFF. This indicates the impact of stacking three NMOS transistors in the inverter pair

on τ is much more significant at extremely low voltages. Despite the similarities in τ , the

PDP of the PDFF is much lower than the the PowerPC and the SAFF when performing

iso-τ comparisons across all supply voltage values. This result coincides with an earlier

observation where the architecture of PDFF is able to achieve more balanced design tradeoff

between τ , delay, and power, as evident by the lowest MPDP values listed in Table 4.8

for all supply voltages.

Table 4.9 shows the impact of process variations on τ in the sub-threshold region for

the flip-flops analyzed across five different process corners. When compared to the TT

corner, the FF and the SS corner results in approximately 2.8× to 3.3× improvement and

3.4× to 3.8× degradation, respectively, in τ for all flip-flops at voltages ranging from 0.2V

134



Table 4.8: Post-Layout Simulation Results of MPDP (fJ ·ns) in the Sub-Threshold Region

0.15V 0.2V 0.3V 0.4V

PowerPC 18.67 5.20 0.96 0.34

SAFF 109.00 11.147 1.373 0.395

PDFF 11.74 3.27 0.64 0.22

to 0.4V. At 0.15V, the effect of these corners becomes more prominent in the PowerPC

and the SAFF where the master-stage consists of stacked transistors in the inverter pair.

Because the inverter pair in the PDFF consists of a single transistor to VDD and VSS,

the impact of the SS and the FF corners is mostly consistent across all supply voltages

relative to the TT corner. Due to the three NMOS transistors stacked in series in the

master-stage, the impact of the SF corner results in higher τ value than the FS corner in

the SAFF, especially at 0.2V and below. For the PDFF, the τ value for the FS and the

SF corners does not deviate too much from the TT corner because the PMOS and NMOS

transistors under different process variations in the inverter pair compensate each other.

In the PowerPC, the effect of stacking two transistors in series becomes more prominent

at lower supply voltages, and results in greater deviation of τ between the FS and the SF

corner.

4.6 Impact of Technology Scaling on Metastability

Using the predictive technology modeling (PTM) provided by [64], this section exam-

ines the impact of technology scaling on the metastability time-resolving constant τ for

advanced technologies below the 65nm regime. In this work, we consider two types of
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Table 4.9: Post-Layout Simulation Results of τ (ns) in the Sub-Threshold Region under

Different Process Corners at 27◦C

PowerPC SAFF PDFF

0.15V 0.2V 0.3V 0.4V 0.15V 0.2V 0.3V 0.4V 0.15V 0.2V 0.3V 0.4V

FF 15.69 5.90 1.50 0.43 29.67 7.44 1.48 0.43 16.20 6.35 1.48 0.46

FS 92.88 33.89 5.93 1.58 137.1 22.22 3.94 1.12 75.32 22.51 4.91 1.37

TT 49.94 19.54 4.63 1.30 233.19 33.91 5.17 1.19 50.21 20.38 4.62 1.27

SF 44.8 17.45 5.09 1.52 466.4 61.39 7.40 1.43 51.30 20.28 4.87 1.30

SS 267.7 73.78 17.92 4.67 1283.9 128.9 18.72 4.00 189.5 75.13 17.12 4.83

CMOS technology: (i) CMOS bulk technology with high-K/metal gate (MGHK) , and (ii)

CMOS bulk technology with high-K/metal gate and strained-silicon (Strained-Si) . In sub-

100nm regime, MOSFETs with strained-Si structures are promising for high-performance,

low-power CMOS applications because of the high electron and hole mobility caused by

strained-induced band splitting [71]. The MGHK technology model files are available from

65nm to 22nm while the Strained-Si model files are available from 45nm to 16nm. For the

Strained-Si model, we have chosen the high-performance (HP) kit over the low-power (LP)

kit to engage a fair comparison with the MGHK model.

While the gate delay is expected to be reduced by 30% for each generation of technology

scaling [72], the value of τ may not necessarily scale by the same amount. Based on

Equation (2.10), a first order approximation reveals a general equation of τ if we simplify

the capacitance value equal to the gate capacitance given by Equation (4.2) and a loop

transconductance (gm) equal to the summation of the transconductance of the NMOS
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(gmn) and the PMOS (gmp) transistor, as given by Equation (4.1).

τ ≈ C

gm
≈

2
3
WLeffCox

gmn + gmp

=
2
3
WLeffCox

µn(Vgs − Vtn) + µp(Vgs − Vtp)

=
2
3
Leff

2

µn(Vgs − Vtn) + µp(Vgs − Vtp)

(4.10)

VDD/2 is substituted into the equation for Vgs to emulate the critical node voltage during

metastability [73]. To include the effects of the short-channel and the drained-induced

barrier lowering, Equation (4.11) is used to calculate the threshold voltage Vtn and Vtp

across different technologies from the model file.

Vth = Vth0 − Vds · exp(−
Leff
l′

) (4.11)

l′ is the characteristic length that can be derived by Equation (4.12) [74] where each

parameter can be found in the model file.

l′ =

√
εsi · TOXE ·Xdep

EPSROX · η
(4.12)

Table 4.10 displays the values of the calculated threshold voltage as well as the supply

voltage and the electron and hole mobility provided by the model files for the two types of

transistor models. As expected, the electron and hole mobility of the Strained-Si devices are

much higher than those of the MGHK devices. By inputting these values into Equation

(4.10), Figure 4.31 plots the calculated values of τ for both the MGHK and the Strained-

Si devices. All MGHK values are normalized with respect to the 65nm node and all

the Strained-Si values are normalized to the 45nm node. Because the values shown are

approximated using the first-order equation, the absolute values are not as important as

the relative values. For the MGHK model, an infliction point is observed at the 32nm
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Table 4.10: Device Parameters for Different Technology Nodes

MGHK Strained-Si

VDD µn µp Vtn Vtp µn µp Vtn Vtp

(V) (m2/V · s) (m2/V · s) (V) (V) (m2/V · s) (m2/V · s) (V) (V)

65nm 1 0.049 0.006 0.368 0.297 N/A N/A N/A N/A

45nm 1 0.044 0.004 0.376 0.307 0.054 0.02 0.404 0.413

32nm 0.95 0.039 0.003 0.386 0.31 0.05 0.014 0.4 0.383

22nm 0.9 0.018 0.002 0.408 0.23 0.04 0.01 0.38 0.326

16nm 0.8 N/A N/A N/A N/A 0.03 0.006 0.341 0.28

node where the τ of the 22nm node is higher than the 32nm. In the case of Strained-Si,

however, no infliction point is observed as τ continues to decrease from the 45nm node

to the 16nm node, although the value calculated at the 22nm and the 16nm node is very

similar. The theoretical model derived from Equation (4.10) can provide some insights

into this phenomena. From previous analysis, it is clear that τ has an inverse relationship

with the transconductance gm, which is a function of the overdrive voltage Vgs − Vth. For

analysis purposes, we can assume Vth is the sum of Vtn and Vtp. During metastability,

the overdrive voltage is around VDD − Vth in a cross-coupled inverter pair. With rapid

technology scaling, the value of VDD is decreasing faster than Vth because the latter cannot

be scaled as aggressive for reasons such as suppressing the leakage power. Therefore, the

value of VDD is quickly approaching the value of Vth, and at the same time reducing the

effective value of gm. The other parameters in Equation (4.10), Leff and µ, are also

contributing to the calculation of τ . As Leff is decreasing by a factor of 0.7 for each
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technology generation, the numerator of the equation is decreasing in a quadratic manner.

However, the hole and electron mobility in the denominator of the equation is also scaling

with the technology. At the 22nm node of the MGHK model, the amount of reduction in

the denominator exceeds the amount of reduction in the numerator when compared to the

32nm node, and thus results in an infliction point at the 32nm node. For the Strained-Si

model, the higher hole and electron mobility values contribute to the continuous decrease

in τ to the 16nm node, and thus no infliction point is observed.
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Figure 4.31: Impact of Technology Scaling on τ

To verify the observations from Figure 4.31, Spice simulations were performed on

three flip-flop architectures (PowerPC, SAFF, and PDFF) using the model files for both

the MGHK and the Strained-Si technology. For each technology node, both the transcon-

ductance variation (TV) and the load variation (LV) analysis are performed on each flip-flop

via transistor sizing. Subsequently, the τ vs. delay curves (Figure 4.32) are plotted to

determine the optimum MDP point using either the TV or the LV analysis. As evident

139



3 0 4 0 5 0 6 0 7 0 8 0
1 0

2 0

3 0

4 0

t (
ps

)

D - Q  D e l a y  ( p s )

 6 5 n m
 4 5 n m
 3 2 n m
 2 2 n m

(a) MGHK Results for PowerPC

2 5 3 0 3 5 4 0 4 5 5 0 5 5

8

1 0

1 2

1 4

1 6

t (
ps

)

D - Q  D e l a y  ( p s )

 4 5 n m
 3 2 n m
 2 2 n m
 1 6 n m

(b) Strained-Si Results for Pow-

erPC

4 0 6 0 8 0 1 0 0 1 2 0 1 4 0

1 5

2 0

2 5

3 0

3 5

4 0

t (
ps

)

D - Q  D e l a y  ( p s )

 6 5 n m
 4 5 n m
 3 2 n m
 2 2 n m

(c) MGHK Results for SAFF
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Figure 4.32: Simulation Results of τ for Flip-Flops in MGHK and Strained-Si Technology
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from Figure 4.32, the D-Q delay of the flip-flops is decreasing with each technology gen-

eration for both models. However, the behavior of τ varies. For example, the τ of all the

flip-flop in the 22nm MGHK model is higher than the 32nm, and thus coincides with the

earlier observation of the infliction point. Similarly, the τ of all the flip-flops in the 16nm

Strained-Si model is lower than the 22nm.

To obtain a fair comparison, the value of τ for each respective flip-flop obtained at

the optimum MDP design point for each technology node in both models is used for

comparison and analysis. In addition, the transistor sizes at the optimum MDP point are

used to calculate a set of theoretical values of τ based on the methodology described in

Section 4.3.2. Figure 4.33 shows both the simulated and the calculated values of τ at

the optimum MDP design point for the three flip-flops analyzed. Overall, the calculated

values are slightly higher than the simulated values but both sets display a consistent trend

in the variation of τ in all flip-flops across different technology nodes for both models. In

Figure 4.33(a), the infliction point at the 32nm node of the MGHK model is evident for

all three flip-flops. Figure 4.33(b), on the other hand, shows a continuous reduction in

τ with respect to the scaling of the technology node.

4.7 An All-Digital On-Chip Flip-Flop Metastability

Measurement Test Chip

4.7.1 Test Chip Design

An all digital on-chip flip-flop metastability measurement test chip was designed and fab-

ricated in TSMC 0.18µm CMOS technology. The main block diagram of the test chip is
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Figure 4.33: Simulated and Calculated Values of τ at Different Technology Nodes for

MGHK and Strained-Si Models

shown in Figure 4.34. The test chip can be divided into the following components:

• Input Circuitry

• Flip-Flops under Test

• Timing Block

• Metastability Detector Circuitry

• Counter Circuitry

Input Circuitry

The input circuitry consists of a digitally-controlled delay line as well as a distribution

network to provide appropriate signal buffering for both the CLK and the input data D

142



Q

Q
SET

CLR

D

20-Bit Counter
8 to 1 

Multiplexer

EN

Digitally-Controlled 

Delay Line

Clock 

Distribution 

Network

CLK<0:7>

Digitally-Controlled 

Delay Line

Data 

Distribution 

Network

D<0:7>

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

…
..
.

Q

Q
SET

CLR

D

Counter Serializer

CLK
Shift Register

Shift Register

Clock Divider & Variable 

Delay Line #2

Variable Delay 

Line #1

8 to 1 

Multiplexer

…
..
.

CLK_IN

Data_IN

C
L

K
_

O
U

T

D
a

ta
_

O
U

T

Q_OUT

C
o

u
n

t_
O

U
T

Count_EN

Metastability 

Detector Circuit

Input Circuitry

F
li
p

-F
lo

p
s

U
n

d
e

r 
T

e
s

t
Counter Circuitry

Timing Block

CLK_1

CLK_3

CLK_2

Figure 4.34: Schematic Diagram of an All-Digital On-Chip Flip-Flop Metastability Mea-

surement Circuit

signal. The main purpose of the delay lines is to control the relative timing difference

between the CLK and the D signal in order to generate metastable events on the flip-

flops. The delay line is controlled by a 21-bit digital code that provides both coarse and

fine delay adjustments for a total delay range of 500ps. The first two bits of the digital code

are binary code that provides the coarse delay of 400ps with a step size of 100ps. A 19-bit

thermometer code is used to provide fine delay step of 1ps and 10ps. The thermometer code

is used to provide monolithic linearity on the delay line [75]. The delay line is composed of

seven digitally-controlled delay element (DCDE) [76] that is responsible for the fine delay

and a chain of inverters that provide the coarse delay range. The schematic diagram of

the DCDE and the digital coding scheme are illustrated in Figure 4.35.
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Figure 4.35: Schematic of the Delay Element and the Digital Coding Scheme

A reset mechanism must be implemented on the flip-flop output to ensure a possible

metastable event is always generated and can be detected. For instance, if the flip-flop

correctly samples a logic “1” on the current CLK edge, then the output must be reset to

logic “0” prior to the next CLK edge in order to detect if another logic “1” is correctly

sampled on the next CLK edge. In this design, the period of the input data D is set to

twice as much as the period of the CLK signal with a non-50% duty cycle to ensure the

output is reset appropriately. While a possible metastable event is created only once every

two clock cycles, it eliminates additional circuitry required to implement an asynchronous

reset mechanism. The timing waveform is illustrated in Figure 4.36.

Flip-Flops Under Test

Table 4.11 lists the 16 flip-flops under test (FUT) that have been implemented on the

test chip for metastability testing. The word after the “ ” indicates weather the flip-flop

is designed for optimum PDP or optimum MPDP. In addition to the flip-flops analyzed in
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Figure 4.36: Metastability Testing Waveform for the Input Circuitry

this section, a few other flip-flop architectures, indicated by “SE”, designed for metastable-

hardened and soft-error tolerant are also included on the test chip. For the SAFF and the

PowerPC, a third sizing scheme design was also implemented.

Table 4.11: Flip-Flops Under Test

1 SDFF MPDP 9 SAFF SE

2 SDFF PDP 10 PDFF MPDP

3 PowerPC MPDP 11 PDFF PDP

4 PowerPC PDP 12 PDFF SE

5 PowerPC Size3 13 SATG MPDP

6 SAFF MPDP 14 SATG PDP

7 SAFF PDP 15 SATG SE

8 SAFF Size3 16 Hazucha SE
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Timing Block

The timing block consists of two variable delay line circuits that provide the CLK signal for

the metastability detector circuit and the counter circuit. The input of the first delay line

comes from the CLK 1 signal that is also sent to the FUT circuit. It generates the CLK 2

for the metastability detector circuit. Because it controls the shadow flip-flop, the phase

of CLK 2 is inverted from that of CLK 1 with an adjustable delay offset between the two

signals. The second delay line generates the CLK 3 signal for the counter circuit with the

input coming from the CLK 2. Because possible metastable event only occurs once during

two clock periods, a clock divider is used to divide the frequency of the CLK 3 to be half

as much as CLK 1 with a certain delay offset with respect to CLK 2 to ensure the enable

signal is properly generated. The timing waveform of the CLK signals is illustrated in

Figure 4.36.

Metastability Detector

The metastability detector circuit is very similar to the one implemented for the Razor

flip-flop where a shadow flip-flop is adopted to double sample the output data of the FUT.

In the possible event of metastability, the output of the FUT is given a certain amount of

time, depending on the adjustable delay values, to settle to a stable value since the shadow

flip-flop is triggered by CLK 2. The output of the shadow flip-flop is compared with the

output of the flip-flop under test using an XOR gate to generate a signal to indicate if a

metastability event has been detected. In the testing circuitry, a total of eight flip-flops

are under test, which requires a total of eight metastability detectors. Therefore, an 8-to-1

multiplexer is used to select the appropriate enable signal to be sent to the counter circuit.
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Counter Circuitry

A 20-bit synchronous counter is designed to count the number of flip-flop metastable events

detected. An AND gate combines a global enable signal with the enable generated from

the metastability detector circuit to produce an output that activate the counter. The

global signal is essentially a positive pulse signal that can last from a few seconds to a

few minutes to determine the time period of the metastability testing. While the counter

generates a 20-bit output, it is impossible to simultaneously output every single bit due to

the limitations on the number of available I/O pins. Hence, a counter serializer, or simply

an output shift register, is used to output the count in a bit-by-bit fashion. The detailed

schematic diagram of the counter serializer and the corresponding waveform is illustrated

in Figure 4.37.
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Chip Layout

The overall layout of the test chip is shown in Figure 4.38. Two identical testing circuits

are implemented on the chip to facilitate the testing of 16 flip-flops. The appropriate

components of the testing circuit are labeled on the layout: (1) delay line, (2) flip-flops

under test, (3) metastability detector, and (4) counter.

1
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m
m

2.2mm

1

4 4

2 23 3

Figure 4.38: Layout of the Flip-Flop Metastability Testing Chip

4.7.2 Testing Methodology

Three different methodologies can be used to measure the time-resolving constant τ of the

flip-flops. By outputting the CLK, D, and the output Q signal, the first measurement
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methodology is identical to the one presented in [77] and [3]. It involves the usage of a

clock pulse generator and a data pulse generator that runs at slightly different frequencies.

This method ensures any input data transition that caused an output transition of the

FUT occurred within a certain period of the clock edge, and thus resulting in a uniform

distribution of the output data around the clock edge. For example, if the clock is running

at 101MHz and the data is running at 100MHz, the input data transition will always

occur within approximately 1ns of the clock edge. This method requires the usage of

an oscilloscope and digital timing system to collect millions of data points such that a

histogram (Figure 4.39) can be generated to extract the value of τ .

Figure 4.39: Sample Histogram for Metastability Testing [3]

The second measurement method is a digitally-controlled technique that combines var-

ious testing features from the previous works [20][78][79][80]. The delay lines should be

characterized to determine the relative delays between the CLK and the input data D

signal for different combinations of digital code. By fixing the digital code to the CLK
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delay line, the code for the input data D signal can be manipulated to vary the data arrival

time with respect to the CLK. For a given data arrival time, the counter will count the

number of metastable events detected. τ can be extracted as a function of the data arrival

time and the number of metastable events detected.

In the third method, the digital code of the CLK and the D delay line can be adjusted

accordingly and fixed such that the data time arrival time is always around the metastable

region. After that, the variable delay line #1 should be adjusted to change the settling

time given for the output of the FUT to reach a stable state while the counter counts the

number of metastable events detected. τ can be extracted as a function of the settling

time and the number of metastable events detected.

4.8 Summary

In this chapter, a detailed analysis and methodologies for the design of metastable-hardened,

high-performance, and low-power flip-flops in both the single and the dual-supply systems

is presented. Because the metastability window δ and the MTBF of a flip-flop is largely

determined by its time-resolving constant τ , the design of metastable-hardened flip-flops is

focused on optimizing the value of τ . Through small-signal modeling, τ is determined to be

a function of the load capacitance and the transconductance in the cross-coupled inverter

pair for a given flip-flop architecture. In this work, we have shown two ways that can result

in significant variation of τ in a flip-flop: (i) vary the transconductance by changing the

size of the cross-coupled inverter, and (ii) vary the size of the load transistors associated

with the critical node.

In most cases, the reduction of τ through transistor sizing comes at the expense of

increased delay and power. Hence, metastability-delay-product (MDP) and metastability-
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power-delay-product (MPDP) are introduced to analyze the design tradeoffs between delay,

power and τ . Depending on the flip-flop architecture, either the transconductance or

the load variation method will yield the optimum MDP and MPDP design, which, in

most cases, is different than the traditional optimum PDP design. With a cross-coupled

inverter pair in the critical path of the master-stage and a small load in the slave-stage, the

architecture of the PDFF and the SATG is very attractive to achieve good metastability

while maintaining high-performance and low-power. For the PDFF in the single-supply

system and the SATG in the dual-supply systems, the amount of compromise in delay,

power, and area to achieve the optimum MPDP design when compared to the traditional

optimum PDP design are all less than 10% , which is significantly less than the other flip-

flops analyzed in this work. For all the analyzed flip-flops, simulation results have shown

that the optimum MPDP design can reduce the metastability window δ by at least an order

of magnitude depending on the value of the settling time and the flip-flop architecture.

In the sub-threshold region, the proposed mixed-Vth technique can reduce the τ of the

flip-flops by more than 2× depending on the flip-flop architecture and be more energy

efficient than the single standard-Vth design if the appropriate supply voltage is selected.

The metastable-hardened characteristic of the PDFF is also demonstrated in the sub-

threshold region with the lowest MPDP value among the flip-flops analyzed.

The study on the impact of technology scaling has shown that the value τ does not

necessarily scale in the same fashion as the gate delay with each generation of the technology

node. While τ continues to decrease from the 45nm node down to the 16nm node when

the Strained-Si model is used, an infliction point in τ is observed at the 32nm node for

the MGHK model. This trend in τ is shown in both the simulated and the theoretical

calculated values for the three flip-flops analyzed.

A detailed description on an all-digital on-chip flip-flop metastability testing circuit is
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also given in this chapter. The chip is implemented in TSMC 0.18µm technology with var-

ious flip-flop architectures implemented using both the optimum MPDP and the optimum

PDP design schemes. The main components of the chip design include digitally-controlled

delay line, flip-flops under test, metastability detector, and a 20-bit digital counter.
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Chapter 5

Design for Metastable-Hardened,

Soft-Error Tolerant Flip-Flops

As size and complexity of chip design are rapidly growing, reliability is becoming an im-

portant factor to consider when designing nanometer circuits and systems. In addition to

metastability, another reliability concern associated with flip-flop design is soft-errors. In

this chapter, we will analyze the techniques involved in designing high-performance and

low-power flip-flops while addressing the reliability issues of metastability and soft-error.

By extending the methodology for metastable-hardened flip-flop designs, soft-error tolerant

cells will also be incorporated into the flip-flop designs. We will apply the idea of using

cross-coupled inverter and soft-error tolerant cells on various past flip-flop architectures

as well as the two proposed designs, namely the PDFF-SE and SATG-SE . Following our

main design approach, both PDFF-SE and SATG-SE use a cross-coupled inverter on the

critical path in the master-stage to achieve good metastability while generating differential

signals to facilitate the usage of the Quatro cell in the slave-stage to protect against soft-
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errors. PDFF-SE is designed to achieve very high performance with good metastability

while SATG-SE is a low-power design also with good metastability. Detailed analysis and

simulation results will be given on the techniques and issues involved in designing reliable

and robust flip-flops.

5.1 Background on Soft-Errors

Cosmic radiation-induced single-event transient (SET) , also known as soft-error, has be-

come a major reliability concern in today’s integrated circuits (Figure 5.1). Consequently,

factors such as increasing clock frequencies and decreasing node capacitances and supply

voltage all contribute to a drastic increase in the soft-error susceptibility of both combina-

tional and sequential circuits to alpha particle and cosmic neutron strikes. In combinational

CLK

CLKB

Q

CLKB

CLK

CLK CLKB

X1Data

SET

+

+ +
- -

+

Figure 5.1: Illustration of Soft-Error in Flip-Flop

circuits, phenomenon such as logical masking, electrical masking, and latch-window mask-

ing can all mask the glitches caused by soft-errors [81]. Such masking, however, does not

exist in sequential elements such as latches and flip-flops, which contribute to approxi-

mately 50% of the soft-errors observed in various processors [82]. Recently, the usage of

tolerant cells [83][84][85] has emerged as a more popular technique for soft-error protection
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in flip-flops over other techniques such as error-correction code (ECC) and redundancy

due to more design robustness along with less delay, power, and area overhead. For exam-

ple, more than 99% of the latches in the system interface are soft-error protected in the

state-of-the-art microprocessor design [86].

5.2 Analysis of Soft-Error Tolerant Cells

5.2.1 Operation

A number of soft-error tolerant cells have been proposed in the past. In this work, we

will focus on two particular cells: DICE [87] and Quatro [88]. The Dual-Interlocked Cell

(DICE) (Figure 5.2(a)) stores a logic “0” or “1” as a combination of four node voltages:

two nodes holding the original data and two nodes retain the complement of the data.

When the value stored at any node (i.e. X1) is modified due to SET, other unaffected

nodes (X2, X3, and X4) will help to restore the correct value of the affected node because

one transistor of each inverter driving one of the affected nodes is driven by one unaffected

node. The Quatro cell (Figure 5.2(b)) also has four storage nodes. Each of these nodes

is driven by an NMOS and a PMOS transistor with their gates connected to two different

nodes. If an SET upsets a node voltage, the affected node is restored by the corresponding

“ON” PMOS (NMOS) transistor connected to the node and driven by an unaffected node.

A detailed operation and simulation waveforms on the usage of the Quatro cell in SRAM

and flip-flop design is given in [88] and [89].

In soft-error tolerant flip-flops, the critical internal nodes are protected by being written

into the tolerant cells. When writing into the DICE cell, the two nodes must have the same

phase and written into cell location of either X1 and X2 or X3 and X4. Hence, the usage
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Figure 5.2: Soft-Error Tolerant Cells

of the DICE cell requires the flip-flop architecture to produce identical signals, which is

typically accomplished by using duplicated datapath [83]. The Quatro cell, on the other

hand, facilitates many differential flip-flop architectures because it requires differential

signals to be written into the cell location of either X1 and X2 or X3 and X4.

5.2.2 Performance

While the addition of the tolerant cells increases the immunity of the flip-flops against

soft-errors, it also impacts its performance by adding more resistivity in terms of changing

the values stored at the critical nodes during the normal operation of the flip-flops. Hence,

a modified version of the DICE and the Quatro cell is shown in Figure 5.3 where two

additional CLK-controlled transistors are added to the DICE (M5 and M8) and the Quatro

(M9 and M10) cell respectively in order to maintain high-performance.

Depending whether the cells are used in the master or the slave-stage, these transistors

are controlled either by the CLK in the master-stage or the CLKB in the slave-stage.
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Figure 5.3: Modified Soft-Error Tolerant Cells

Assuming the flip-flop is positive-edge triggered, for example, during the evaluation period

in the slave-stage, the CLKB cuts off the NMOS path that holds a logic “0” in the

hardened cell, which allows the node to be flipped to logic “1”. If these two transistors are

not present, contention exists between the flip-flop and the hardened cell in changing the

node value from 0-1, which results in significant performance degradation. Alternatively,

two more clocked-transistors can be added in the PMOS paths that holds a logic “1”,

however the amount of performance degradation without these two transistors is not as

significant when changing the node value from 1-0 due to the relative weaker strength of

the PMOS transistors when compared to the NMOS transistors. Simulation results have

shown that the presence of these transistors in the tolerant cells improve the performance

by at least 10% depending on the flip-flop architecture. Such performance enhancement,

however, may come at the expense of reduced soft-error immunity of the tolerant cell.

Simulation results have shown that the implementation of the clocked-transistors in the
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Quatro cell reduces the critical charge by approximately 1.4×-1.5× for the 0-1 and 1-0

data transition.

5.2.3 Power Consumption

The power consumption of the DICE and the Quatro cell is also analyzed in this work.

Ideally, there is no phase offset between the signals being written into the DICE cell. Due

to PVT variations and transistor mismatches, it is possible that the two signals can have

a small static offset of ∆ (i.e. X1 arrives earlier than X2 or vice versa) and consequently

results in a few static power dissipation paths in the cell for a given data transition. In

the Quatro cell, a static offset of ∆ exists even without the presence of PVT variations

and mismatches due to the inverter delay required to generate the differential signal such

that the signal transition of X2 will always arrive later than that of X1. If X1 makes a

0-1 transition, X2 will make a 1-0 transition after an inverter delay. During this period,

however, four potential paths in the Quatro cell could result in static power dissipation by

simultaneously turning on both the PMOS and NMOS transistors. The same scenario does

not occur when X1 is making a 1-0 transition and X2 is making a 0-1 transition because

all the NMOS transistors are turned off. The potential static power dissipation paths have

been marked in red in Figure 5.3(a) and Figure 5.3(b), respectively, for the DICE and the

Quatro cell.

A simple test bench was setup to measure the power consumption (Figure 5.4) of the

DICE and the Quatro cell using a data activity of 25% with equal number of 0-1 and 1-0

data transitions for input signal (X1 and X2) having two sets of rise/fall time: 50ps and

100ps. +∆ indicates signal X2 arrives later than X1 in both the DICE and the Quatro

cell respectively, and vice versa for −∆. From the figure, it is evident that the power
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consumption in the DICE cell is symmetrical about the point where the static phase offset

∆ is 0, which means power consumption only depends on the absolute value of the phase

offset and indifferent to the arrival order of the input signals. In the Quatro cell, the power

consumption for a rise/fall time of 50ps is symmetrical about the ∆=10ps point, which

is roughly equivalent to an inverter delay for the corresponding signal rise/fall time. The

symmetry point moves to 40ps when the rise/fall time is 100ps, which suggests the inverter

delay degrades with input signals having a higher rise/fall time. Once again, the power

consumption is irrelevant to the arrival of the input signals in the Quatro cell as long as

the number of 0-1 and 1-0 data transitions is equal. If the input data vector has more 0-1

transitions, then the power dissipated will be significantly higher than when there is more

1-0 transitions. Under such scenario, the power consumption will no longer be symmetrical

for +∆ and −∆ offset. Finally, a faster rise/fall time will result in significant power saving

in both the DICE and the Quatro cell, as evident by the data comparison between 50ps

and 100ps rise/fall time shown in Figure 5.4. The effect of higher rise/fall time is more

prominent in the Quatro cell where both the short-circuit and static power dissipation

contribute to the overall power consumption. Based on the above analysis, it is clear that

the power consumption of the Quatro cell is generally higher than that of the DICE cell.

5.2.4 Radiation Testing

As part of the research collaboration, a test chip was designed and fabricated in the TSMC

40nm CMOS technology to provide some insights in comparing the flip-flop soft-error rates

of using the DICE and the Quatro tolerant cells. Three types of flip-flops are implemented

on the test chip: (i) a master-slave C2MOS configuration without any soft-error protection,

(ii) a master-slave C2MOS configuration using the DICE cell on the slave-stage, and (iii)
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Figure 5.4: Power Consumption of the Soft-Error Tolerant Cells

a master-slave C2MOS configuration using the Quatro cell on the slave-stage. A shift-

register test structure was utilized because it is the densest array of flip-flops, and as

such is commonly used to validate the SET robustness of flip-flops in an area-efficient

manner [90]. Shift registers were created utilizing the previously described flip-flops, with

each shift register contained 8000 flip-flops. The test chip implemented the Circuit for

Radiation Effects Self Test (CREST) methodology [91], to enable at-speed soft-error rate

testing.

A total of three different sets of testing were conducted in this study. The accelerated

radiation testing was performed by Vanderbilt University. Accelerated neutron radiation

testing was conducted at the Tri-University Meson Facility (TRIUMF) at the University of

British Columbia, Vancouver as well as the Los Alamos Neutron Science Center (LANSCE)

in Los Alamos, New Mexico, USA. The results of the neutron radiation experiments and
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the alpha radiation experiments are illustrated in Figure 5.5. From the results of the
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Figure 5.5: Results of Radiation Testing

neutron radiation testing and the alpha radiation testing, it is clear that the usage of the

DICE and the Quatro cell have reduced the soft-error rate significantly when compared to

the flip-flop without any protection. Furthermore, the Quatro cell yields a lower soft-error

rate (SER) than the DICE cell, as evident by the percentage of SER reduction shown in

Figure 5.5.

5.3 Analysis and Design Methodology

In this work, we have analyzed the usage of the DICE and the Quatro cells along with the

cross-coupled inverter structure on various flip-flops architectures in order to simultane-

ously achieve good metastability and soft-error protection while maintaining the character-

istic of high-performance and low-power. The main approach is to resolve metastability in

the master-stage with a cross-coupled inverter pair while adding the soft-error tolerant cell

in the slave-stage to protect the output nodes against possible SET (Figure 5.6). Because

duplicated or redundant signals must be generated to use the DICE cell while differential
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Figure 5.6: Design Methodology of Metastable-Hardened, Soft-Error Tolerant Flip-Flops

signals are required for the Quatro cell, special flip-flop architectures are required to facil-

itate the usage of these cells. As such, flip-flops analyzed in the previous chapter may not

be suitable for metastable-hardened and soft-error tolerant designs because the amount of

area and power overhead associated can be substantial.

Two C2MOS-based architectures are analyzed in this work (Figure 5.7(a) and 5.7(b)).

In the Quatro-C2MOS configuration, a cross-coupled inverter pair is used to stabilize the

dynamic nodes of T1 and T2 while improving metastability. The DICE-C2MOS configu-

ration does not produce differential signals, and hence separate inverter pairs are used on

each datapath to improve the metastability in the master stage. The value of τ is limited

by the size of the feedback inverter, which must be kept close to minimum size to reduce the

amount of parasitic capacitance at critical nodes in order to maintain good performance

and functionality.

A special soft-error robust latch based on transmission-gate and DICE cell was proposed

in [85]. In this work, we modify the design slightly to create a Hazucha flip-flop (Figure

5.7(c) and 5.7(d)) using both the DICE and the Quatro tolerant cell by cascading two

identical latches. Instead of using the traditional cross-coupled inverter in the master-stage

to improve metastability, the DICE and the Quatro cell are used in each respective design
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because the cross-coupled inverter structure with feedback paths still exists in these cells

to improve the immunity against soft-errors.
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Figure 5.7: Metastable-Hardened, Soft-Error Tolerant Flip-Flop Designs

From the data illustrated in Figure 5.5, it is evident that the usage of the Quatro cell

has resulted in a lower SER than the DICE cell in the nanoscale CMOS technologies. Fur-

thermore, the usage of a cross-coupled inverter pair in the critical path of the master-stage
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can significantly improve metastability while generating the differential signals required for

the Quatro cell. The combination of these attractive features suggest the master-stage of

the PDFF and the SATG are very attractive in designing metastable-hardened and soft-

error tolerant flip-flops. Hence, two new differential flip-flops are proposed in this work: (i)

pre-discharge soft-error tolerant flip-flop (PDFF-SE, Figure 5.8(a)) (ii) sense-amplifier

transmission-gate soft-error tolerant flip-flop (SATG-SE, Figure 5.8(b)). Both designs

can achieve good metastability with a cross-coupled inverter in the master-stage and soft-

error protection by using the Quatro cell in the slave-stage. The cross-coupled inverter

structure in the master-stage can be sized up to simultaneously achieve good performance

and metastability while the differential nature facilitates the usage of the Quatro cell in

the slave-stage. The design of the PDFF-SE is targeted towards very high-performance

with good metastability while the SATG-SE is designed to have low-power consumption

also with good metastability.

While the master-stage of the PDFF-SE and the SATG-SE is identical to that of the

PDFF and the SATG described previously, the design of the slave-stage is modified in

order to minimize the power consumption by balancing the arrival time of the input sig-

nals written into the Quatro cell. PDFF-SE utilizes a tri-state inverter architecture and

SATG-SE uses the CLK-controlled transmission-gates architecture. With careful design

considerations, the power consumption of and PDFF-SE and SATG-SE can be reduced

significantly with reasonable performance despite the usage of the Quatro cell.

5.4 Results and Discussion

Table 5.1 summarizes the schematic simulation results of delay, power, and τ for all the

metastable-hardened and soft-error tolerant flip-flops analyzed in this work. All the results
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Figure 5.8: Proposed Metastable-Hardened, Soft-Error Tolerant Flip-Flop Designs

are obtained using the 65nm STM CMOS bulk technology. The simulation test bench setup

used is identical to the one shown in Figure 3.15. Two sets of data activity factors are

used for analysis: 10% and 50%. Iterative process was used in transistor sizing in order

to achieve the optimum MPDP flip-flop design for the best possible combination between

delay, power, and τ . Minimum-sized transistors are used in all the DICE and Quatro cells

along with the implementation of the CLK-controlled transistors.

The addition of the minimum-sized cross-coupled inverter on the dynamic nodes of the

C2MOS flip-flops to enhance metastability significantly degrade its performance. Without

these inverters, however, the value of τ can be as much as 40× higher. The performance of

the Quatro-Hazucha is worse than the DICE-Hazucha because the Quatro cell is more

resistant in writing data for 1-0 transition which consequently results in higher setup

time when it is used in the master-stage. Based on the reasonings from earlier analysis,
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the power consumption of the Quatro-C2MOS and the Quatro-Hazucha are shown to be

higher, especially at higher data activity, than the same flip-flop architectures when DICE

cell is used. Minimum transistor sizing is used on the cross-coupled inverter structure in

the C2MOS and Hazucha architectures, and therefore their respective τ is very similar

with the difference coming from the parasitic capacitance surrounding the critical node.

The proposed PDFF-SE results in at least 17% performance improvement over the other

flip-flop architectures, but the pre-discharging of the internal nodes during every clock

cycle makes its power consumption higher than the other flip-flops, especially at low data

activity. The proposed SATG-SE maintains a very comparable performance to the other

analyzed flip-flops while achieving a minimum 18% and 6% power reduction for 10% and

50% data activity respectively. The size of the cross-coupled inverter in both the PDFF-SE

and the SATG-SE can be sized up significantly higher than minimum size because they

are on the critical path, and thus results in a lower value of τ . The τ of the PDFF-SE and

the SATG-SE is at least 21% and 14% lower than the other flip-flops respectively.

Table 5.2 summarizes the design metrics of PDP, MDP, and MPDP for all the metastable-

hardened and soft-error tolerant flip-flops analyzed in this work. Once again, data activity

of 10% and 50% are used for the analysis of PDP and MPDP. The PDP of the SATG-

SE and the PDFF-SE is the lowest among all flip-flops for data activity of 10% and 50%

respectively. The PDP value of the DICE-Hazucha is also small for both data activity

factors. Since the PDFF-SE exhibits both the best performance and metastability, its

MDP value is significantly lower than the other flip-flops such as a 43% reduction than the

DICE-Hazucha, and thus indicating a well-balanced design tradeoff between performance

and metastability. While higher than the PDFF-SE, the MDP of the SATG-SE is still at

least 12% lower than the other flip-flops. For 10% data activity, the MPDP of the PDFF-

SE and the SATG-SE is 16% and 32% lower than the DICE-Hazucha flip-flop. At 50%
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Table 5.1: Simulation Results of Metastable-Hardened, Soft-Error Tolerant Flip-Flops:

Delay, Power, τ

Delay 10% Power 50% Power τ

(ps) (µW) (µW) (ps)

DICE-C2MOS 79.34 3.61 6.95 24.26

Quatro-C2MOS 73.55 3.88 7.95 27.49

DICE-Hazucha 52.57 3.89 6.88 25.2

Quatro-Hazucha 89.58 4.19 8.32 28.12

PDFF-SE 39.68 5.66 8.05 19.2

SATG-SE 56.29 2.97 6.48 20.86

data activity, the minimum MPDP reduction of the PDFF-SE and the SATG-SE from

other flip-flops is 33% and 17% respectively.

In this work, we also analyze the robustness of each flip-flop architecture against process

variations and mismatches when it is operating near or at the metastable region. For each

flip-flop, the data arrival time in which the flip-flop first fails to capture the correct data

was determined and will be referred to as tmeta, the point where the flip-flop is very close or

at the metastable region. A Monte Carlo simulation of 2000 iterations with both process

variations and mismatches was performed to determine the number of clock cycles where

the correct data was sampled. Then the data arrival time of the flip-flop is relaxed from

tmeta by a certain value, and another set of Monte Carlo simulation is performed. This

procedure (Figure 5.9) is repeated for a number of data arrival time values until the

sampled data is 100% correct. Based on previous studies and simulation results, a 20ps
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Table 5.2: Simulation Results of Metastable-Hardened, Soft-Error Tolerant Flip-Flops:

PDP, MDP, MPDP

MDP 10% PDP 50% PDP 10% MPDP 50% MPDP

(ps2) (fJ) (fJ) (fJ·ps) (fJ·ps)

DICE-C2MOS 1614.97 0.286 0.551 5.829 13.367

Quatro-C2MOS 1865.13 0.285 0.584 7.239 16.054

DICE-Hazucha 1324.76 0.204 0.362 5.153 9.114

Quatro-Hazucha 1605.09 0.375 0.745 6.720 20.949

PDFF-SE 761.86 0.225 0.319 4.312 6.133

SATG-SE 1174.10 0.167 0.365 3.488 7.609

flip-flop metastable region from tmeta is assumed.

CLK

Data tmeta

Relaxed 

Data Arrival Time

Q

Logic “1” Correctly 

Sampled
Logic “1” Incorrectly 

Sampled as Logic “0”

Metastable Region

(20ps)

Figure 5.9: Waveform for Monte Carlo Simulation

Figure 5.10 shows the Monte Carlo simulation results of each flip-flop architecture
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for both the 0-1 and 1-0 data transition at various data arrival times. At tmeta for each

respective flip-flop, the percentage of correctness is approximately 50%, which suggests

total randomness when the flip-flop is going under metastability [92]. As the data arrival

time is relaxed, the percentage gradually increases at various rates for different flip-flops

depending on their resolving time constant. It is interesting to note that the flip-flops

with a lower τ value have an overall higher percentage of correctness, and thus are more

robust against process variations and mismatches. For example, the PDFF-SE and the

SATG-SE have an overall 83% and 81% correctness respectively in the metastable region

for 0-1 data transition and 81% and 78% for 1-0 data transition. the Quatro-C2MOS and

the Quatro-Hazucha, on the other hand, have the highest τ values and consequently yield

the lowest overall percentage of 75% and 74% for 0-1 data transition and 75% and 71% for

1-0 data transition respectively.
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Figure 5.10: Flip-Flop Robustness against Process Variations and Mismatches
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5.5 Summary

In this chapter, we have analyzed the design of metastable-hardened and soft-error tolerant

master-slave flip-flops as well as proposing two new flip-flop designs. The main approach is

to resolve metastability in the master-stage with a cross-coupled inverter pair while adding

the soft-error tolerant cell in the slave-stage to protect the output nodes against possible

soft-errors. To achieve good metastability, it is desirable to have the cross-coupled inverter

on the critical path of the flip-flops in order to increase the overall loop gain and lower

the value of τ . The DICE and the Quatro cell are the two soft-error tolerant cells used

in the flip-flop design to provide protection against soft-errors. The former requires the

flip-flop to generate duplicated signals to be written into the cell while a differential signal

is needed in the latter cell. Additional clocked-transistors are added to both cells in this

work when compared to the traditional design in order to maintain high-performance. The

power dissipation of the Quatro cell is higher than the DICE cell due to an inverter delay

that generates the differential path as well as more leakage paths.

The design of the proposed flip-flop PDFF-SE and SATG-SE uses a cross-coupled in-

verter on the critical path in the master-stage to achieve good metastability while generat-

ing differential signals to facilitate the usage of the Quatro cell in the slave-stage to protect

against soft-error. The PDFF-SE is designed to achieve very high-performance with good

metastability while the SATG-SE is a low-power design also with good metastability. Sim-

ulation results have shown that both designs achieve significant reduction in MDP and

MPDP when compared to other flip-flop architectures analyzed in this work. Monte Carlo

simulation results demonstrate that the two proposed flip-flops are very robust against

process variations and mismatches.
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Chapter 6

Conclusions and Future Work

In this thesis, we present a detailed analysis and designed methodology on metastable-

hardened, high-performance, and low-power flip-flops. While the design of high-performance

and low-power flip-flops has been a popular research topic, the issue of flip-flop metasta-

bility has rarely being dealt with. The following points summarize the key contributions

of this research work.

• Proposed flip-flop architectures that achieve high-performance, low-power, and good

reliability that can function in both the single and the dual-supply systems.

• Proposed and developed methodologies in analyzing flip-flop metastability in both

qualitative and quantitative manner.

– Developed methodology of transconductance and load variation to vary flip-flop

metastability performance using transistor sizing.

– Developed calculation methodologies to model the value of τ for a given flip-flop

architecture.
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– Proposed design metrics (MDP and MPDP) that analyze the tradeoff between

performance, power, and metastability.

– Demonstrated the proposed flip-flop architectures of the PDFF and the SATG

are suitable for metastable-hardened designs with small penalties in delay and

power consumption.

– Proposed a novel mixed-Vth technique that can improve flip-flop metastability

in the sub-threshold region.

– Analyzed the impact of scaling in sub-65nm technologies on flip-flop metasta-

bility.

• Analyzed methodologies of designing metastable-hardened and soft-error tolerant

flip-flops and proposed two new flip-flop designs.

6.1 High-Performance, Low-Power Flip-Flop Designs

The proposed pre-discharge flip-flop (PDFF) has demonstrated low-power and high-performance

characteristics in both the single and the dual-supply systems. The worst critical path has

been reduced to a maximum of three transistors, and thus results in a smaller D-Q delay.

With fewer transistors on the critical path, the total transistor widths of the PDFF is

reduced and also results in smaller power consumption. When comparing to the single-

supply flip-flops, post-layout simulation results have shown the PDFF yields a minimum

of 18% and 13% reduction in D-Q delay and PDP, respectively, than the other flip-flops.

The power consumption of the PDFF is only 15% higher than the PowerPC but more than

15% lower than the other analyzed flip-flop architectures. When functioning as a reduced

clock-swing flip-flop, along with comparable power consumption across all data activity
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factors, the RCSPDFF also results in a minimum 40% and 18% reduction in D-Q delay

and PDP, respectively, when compared to other flip-flops for VDDL = 1.3V . In the case

of level-converting flip-flops, the LCPDFF outperforms its counterparts by at least 11%

in D-Q delay, 18% reduction in PDP, and 15% reduction in power consumption for data

activity factor higher than 50%.

The sense-amplifier-transmission-gate (SATG) flip-flop was proposed specifically for

the dual-supply systems to function both as reduced clock-swing and level-converting flip-

flops. While its overall performance and power characteristics are not as superior as those of

the RCSPDFF and the LCPDFF, both the RCSSATG and the LCSATG still exhibit high-

performance as well low-power characteristics at low data activity factors. At VDDL = 1.3V ,

the D-Q delay of RCSSATG is only 1.3% higher than the previously proposed reduced

clock-swing flip-flops with a 28% lower power consumption at zero data activity. At 0%

and 25% data activity factor, the PDP of the RCSSATG is 39% and 8% lower than the

previous designs. Detailed comparisons with level-converting flip-flops reveal that the delay

of the LCSATG is 5% higher than the previous design with very similar power consumption

values at 0% and 25%. With similar delay and power values, the PDP of the LCSATG

across all data activities is almost identical to the previous level-converting flip-flop designs.

An important flip-flop design criteria that is often overlooked in past designs is the

flip-flop aperture window. A smaller aperture window reduces the likelihood of the flip-

flop entering metastability, and thus increases the reliability of the flip-flop. In this work,

we have shown that the PDFF and the SATG have demonstrated a very small aperture

window value in both the single and the dual-supply systems.

173



6.2 Metastable-Hardened Flip-Flop Designs

Unlike past works where performance and power are the main design criteria, this research

work also incorporates the element of metastability into the flip-flop designs. Various

design and analysis methodologies are proposed in order to design metastable-hardened,

high-performance, and low-power flip-flops. Because the time-resolving constant τ has

the greatest impact on the mean-time-between-failure (MTBF) of the flip-flop due to its

exponential relationship, the design of metastable-hardened flip-flops is focused exclusively

on the optimization of τ . τ can be varied via transistor sizing in two ways: (i) vary

the transconductance changing the size of the cross-coupled inverter that stabilizes the

critical node, and (ii) vary the size of the load transistors associated with the critical

node. Depending on the flip-flop architecture, appropriate transistor sizing can reduce

the value of τ by a minimum of 30% from the traditional optimum PDP design point.

By applying small-signal modeling, the manipulation of τ due to transconductance and

load variation analysis of a given flip-flop architecture can be theoretically modeled by

calculating the transconductance in the cross-coupled inverter pair and the amount of

parasitic capacitances surrounding the critical code.

While appropriate transistor sizing can improve the flip-flop metastability with the

reduction of τ , it often comes at the expense of an increase in delay and power consumption.

Therefore, both the τ vs. delay and the τ vs. PDP curve can be used to illustrate the

tradeoff between delay, power, PDP, and τ . Subsequently, two new design metrics, the

metastability-delay-product (MDP) and the metastability-power-delay-product (MPDP),

are proposed in this work to analyze the optimum tradeoff between τ and delay as well

as τ and PDP. Depending on the flip-flop architecture, either the transconductance or the

load variation analysis may result in the optimum MDP and MPDP design point, which
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is usually different from the optimum PDP point under the traditional design scheme.

With a cross-coupled inverter in the master-stage that increases the overall transcon-

ductance and a small load transistor associated with the critical node, the architecture

of both the PDFF and the SATG is very suitable for the design of metastable-hardened,

high-performance, and low-power flip-flops. The amount of overhead in delay, power, and

area is all less than 10% under the optimum MPDP design scheme when compared to the

traditional optimum PDP design. For single supply flip-flops, the optimum MPDP design

of the PDFF has produced a minimum reduction of 42% and 34% in MDP and MPDP,

respectively. While the MDP and MPDP of the RCSPDFF and the LCPDFF are still

lower than the previous reduced clock-swing and level-converting flip-flops, the amount

of reduction in the RCSSATG and the LCSATG for the optimum MPDP design is even

greater. For example, the MDP and MPDP for the RCSSATG is 34% and 35% lower

than the RCSPDFF while the LCSATG is 28% and 25% lower than the LCPDFF for the

level-converting flip-flops.

For all the flip-flop architectures analyzed, the reliability of all the analyzed flip-flops

under the optimum MPDP design scheme is greatly improved when compared to the tradi-

tional optimum PDP design, as evident by a minimum of one order of magnitude reduction

in the metastability window δ.

In the sub-threshold region, the proposed mixed-Vth technique can reduce the τ of the

flip-flops by more than 2× depending on the flip-flop architecture and be more energy

efficient than the single standard-Vth design if the appropriate supply voltage is selected.

The metastable-hardened characteristic of the PDFF is also demonstrated in the sub-

threshold region with the lowest MPDP value among the flip-flops analyzed.

The study on the impact of technology scaling has shown that the value τ does not
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necessarily scale in the same fashion as the gate delay with each generation of the technology

node. While τ continues to decrease from the 45nm node down to the 16nm node when

the Strained-Si model is used, an infliction point in τ is observed at the 32nm node for

the MGHK model. This trend in τ is shown in both the simulated and the theoretical

calculated values for the flip-flops analyzed.

6.3 Metastable-Hardened and Soft-Error Tolerant Flip-

Flop Designs

The work presented in this thesis also attempts to increase the reliable operation of the

flip-flops by incorporating soft-error mitigation techniques into the design of metastable-

hardened flip-flops. The main design approach is to resolve metastability in the master-

stage with a cross-coupled inverter pair in the critical path while adding the soft-error

tolerant cell in the slave-stage to protect the output nodes against possible soft-errors. In

particular, two soft-error tolerant cells, DICE and Quatro, are analyzed in detail from the

perspective of performance, power consumption, and immunity against soft-errors. For

both cells, the addition of clock-transistors to cut the feedback paths during a particular

clock cycle can improve the flip-flop performance by at least 10% but suffers a decrease in

soft-error immunity with an approximately 1.5× reduction in critical charge. The overall

power consumption of the Quatro cell is higher than the DICE mainly due to the different

arrival time of the two signals being written into the cell. With careful design consider-

ations, however, the power consumption of the Quatro cell can be minimized. Radiation

testings have shown the soft-error rate (SER) is much lower when the Quatro cell is applied

on the slave-stage of the flip-flops.
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Based on the above analysis, two new flip-flop designs are proposed: PDFF-SE and

SATG-SE. Both flip-flops utilize a cross-coupled inverter on the critical path in the master-

stage and generate the required differential signals to facilitate the usage of the Quatro cell

in the slave-stage. While being soft-error protected, the optimized τ of both flip-flops is a

minimum of 14% lower from the other analyzed flip-flops. and subsequently results lower

MDP and MPDP. The MDP of the PDFF-SE is a minimum 43% lower than the other

flip-flops. At 50% data activity factor, the minimum MPDP reduction of the PDFF-SE

and the SATG-SE from other flip-flops is 33% and 17% respectively. Finally, both flip-flops

have shown better robustness against process variations near the metastable region.

6.4 Future Work

In this work, we have focused on the analysis and optimization of flip-flop metastability

from the perspective of circuit design on the transistor level. Further research work can be

explored on developing techniques on multi-stage synchronizer designs to further improve

the mean-time-between-failure of the system without compromising in the overall latency

of the system. The principle of metastability can be extended to other applications such

as phase-detectors. When the zero-crossing points of the recovered clock fall in the vicin-

ity of data transitions, the flip-flops comprising the phase detector (PD) may experience

metastability, and therefore generating an output lower than the full logic level for an ex-

tended period of time [93]. A detailed study can be performed to establish a relationship

between the metastability parameters of T0 and τ and the phase errors generated by the

PD using various flip-flop architectures with different metastability behaviors.
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Appendix A

Flip-Flop Layouts

Figure A.1: Layout Diagram of the PDFF

178



Figure A.2: Layout Diagram of the PowerPC

Figure A.3: Layout Diagram of the SAFF
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Figure A.4: Layout Diagram of the SDFF

Figure A.5: Layout Diagram of the RCSPDFF

Figure A.6: Layout Diagram of the RCSSATG

180



Figure A.7: Layout Diagram of the NDKFF

Figure A.8: Layout Diagram of the CRFF

Figure A.9: Layout Diagram of the LCPDFF
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Figure A.10: Layout Diagram of the LCSATG

Figure A.11: Layout Diagram of the CPN

Figure A.12: Layout Diagram of the SPFF
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