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Abstract 
 

Stem and progenitor cells have the ability to regulate fate decisions through asymmetric 

cells divisions. The coordinated choice of cell division symmetry in space and time contributes 

to the physiological development of tissues and organs. Conversely, deregulation of these 

decisions can lead to the uncontrolled proliferation of cells as observed in cancer. Understanding 

the mechanisms of cell fate choices is necessary for the design of biomimetic culture systems 

and the production of therapeutic cell populations in the context of regenerative medicine. 

 

Environmental signals can guide the fate decision process at the single level but the exact 

nature of these signals remains to be discovered. Gradients of factors are important during 

development and several methods have been developed to recreate gradients and/or pulses of 

factors in vitro. In the context of asymmetric cell division, the effect of the soluble factor 

environment on the polarization of cell surface receptors and intracellular proteins has not been 

properly investigated. 

 

We developed a finite-element model of a single cell in culture in which epidermal 

growth factor (EGF) was delivered through a micropipette onto a single cell surface. A two-

dimensional approach initially allowed for the development of a set of metrics to evaluate the 

polarization potential with respect to different delivery strategies. We further analyzed a three-

dimensional model in which conditions consistent with single cell polarization were identified. 

The benefits of finite-element modeling were illustrated through the demonstration of complex 

geometry effects resulting from the culture chamber and neighboring cells. 

 

Finally, physiological effects of in vitro polarization were analyzed at the single cell level 

in HeLa and primary cells. The potential of soluble factor signaling in the context of directed fate 

control was demonstrated. Long term phenotypical effects were studied using live-cell imaging 

which demonstrated the degree of heterogeneity of in vitro culture systems and future challenges 

for the production of therapeutic cell populations.  
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1 Chapter 1: Introduction  

 
The field of medicine has made considerable progress over the past decades in the 

treatment of degenerative diseases. While the implementation of surgical procedures to 

transplant organs and replace malfunctioning tissues has proven effective, the shortage of organ 

donors is a major drawback. Most degenerative diseases do not have a cure and only palliative 

care is provided to improve the patient’s quality of life when transplantation is not possible. 

Aging of the population will contribute to the doubling of healthcare expenses by 2030, with 

costs representing up to 25% of the Gross Domestic Product of a country such as the United 

States (Committee on the Biological and Biomedical Applications of Stem Cell Research, 2002). 

There is an important need for new therapies in the context of degenerative diseases. 

 

There are great expectations associated with the application of regenerative medicine. 

Harnessing the power of stem cells of various origins could lead to new therapies specifically 

tailored for patients while avoiding immune rejection. Embryonic stem cells, adult stem cells or 

the recently discovered induced pluripotent stem cells are candidates for cellular therapies. These 

cells could be used in vivo for de novo engineering techniques in which the body environment 

would harness the cells’ regenerative potential or in vitro through directed production of tissues 

that could be used for transplant. The latter approach should be most effectively developed based 

on an in-depth understanding of stem cell biology and mechanisms by which cells receive and 

integrate signals from the environment to trigger appropriated and coordinated responses in 

space and time.  
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While significant progress has been made in understanding stem cell biology, the 

translation towards the clinic is slow. The first embryonic stem-cell based human clinical trial 

was approved in July 2010 (Geron), approximately 45 years after stem cells were first reported 

by Till and McCulloch (Till, McCulloch et al. 1964). Human embryonic stem cells (hESC) are 

used to produce a population of oligodendrocyte progenitors injected at the lesion site of patients 

with acute spinal cord injury. In the laboratory, cells are cultivated adherently in flasks and are 

submerged in liquid media containing various sources of carbon, nitrogen, but also growth 

factors. Drugs can be tested on different stem cell populations to evaluate their potential for self-

renewal or directed commitment towards a specific lineage for the production of therapeutically 

relevant population of cells. While our theoretical knowledge of stem cells has been constantly 

supported by an increasing literature, the translation of experimental findings to in vivo situations 

is generally unsuccessful. 

 

Stem cell populations are heterogeneous based on expression levels of known 

transcription factors and also analysis of self-renewal and developmental potential (Singh et al., 

2007). This may explain the variation in susceptibility to differentiation observed within cell 

cultures (Smith, 2001). The population level analysis of responses to various chemicals may 

represent an average over several subpopulations and seriously compromise the unbiased 

interpretation of data. Also, the production of a pure population of cells still remains a major 

challenge and defined cultures are required for clinical applications. Transplantable volumes of 

cellular cultures represent in the order of 109 cells all of which should have been tested prior to 

implantation in a tissue. Methods have been developed to enrich cell subpopulations in a 
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mixture, but these techniques do not exceed 95% purity and can be to some extent destructive 

(Jing et al., 2007; Chou et al., 2005; Martin-Henai et al., 2002).  

 

The development of biomimetic systems can help harness stem cells’ potential. The 

analysis of cellular behavior and response to potential therapeutics in vitro will allow for a better 

appreciation of physiological significance if experimental conditions mimic in vivo situations. 

For example, embryonic or neural stem cells can be cultured as embryoid bodies or neurospheres 

respectively in which cells aggregate and form complex and heterogeneous three-dimensional 

colonies. These configurations allow for a level of complexity not attained by conventional 

adherent culture systems and reproduce more accurately in vivo situations.  

 

In the context of stem cells, the symmetry of division is of utmost importance for fate 

determination. In vivo, the switch between symmetric (stem cell expansion) and asymmetric 

divisions (production of committed cells) is finely coordinated in space and time and allows for 

the formation of structured three-dimensional tissues. Before a cell asymmetrically divides 

various signals from the direct microenvironment convey positional information. Messages are 

transmitted through cellular interactions with the extracellular matrix, neighboring cells or 

through binding with soluble factors. This results in the polarization of cytoplasmic protein 

complexes at the cell cortex. Conventional adherent culture systems are highly heterogeneous in 

terms of local microenvironments and could generate a mosaic of positional information among 

a cell population, which indicates control of cell division symmetry at the single cell level should 

be investigated. This led us to the following hypothesis: 
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Hypothesis 1: Controlling mechanisms of asymmetric cell division at the single cell level is a 

requirement for the scale-up of culture systems in the context of the production of 

homogeneous cell populations. 

 

While growth factors diffuse rapidly in vitro and are supplemented in the media in large 

quantities, in vivo growth factors experience a slow apparent diffusion in the extracellular 

compartment due to possible entrapment in the matrix (Dowd, Cooney et al. 1999). They can 

differentially affect cell populations based on their concentration (as in the case of morphogens) 

and have a regulated temporal expression profile in tissues. Working at the single cell level can 

reduce signaling complexity and limit the interpretation of environmental information to soluble 

factor signaling only. We decided to study how engineered microenvironments of soluble factors 

could affect the symmetry of cell division and made the two following hypotheses: 

 

Hypothesis 2: Single cell level analysis and experiments will allow for a reduction of the 

complexity of cellular microenvironments and permit the analysis and prediction of soluble 

factor binding. 

 

Hypothesis 3: Soluble factor signaling alone can dictate the symmetry of cell division. 

 

Epidermal growth factor receptor (EGFR) asymmetric partitioning has been reported at 

the time of mitosis in cancer keratinocytes and mouse neural stem cells from the ventricular and 

subventricular zone (Le Roy, Zuliani et al. ; Sun, Goderie et al. 2005). The asymmetric 

partitioning was linked with different fate and proliferative potential which illustrated the 
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interplay between soluble factor signaling and cell fate. It is unclear if this mechanism is intrinsic 

and exclusively controlled by genetic factors, or extrinsic and resulting from heterogeneities in 

the soluble microenvironment of EGF. We propose that the engineering of asymmetric 

environments of EGF around a single cell in vitro could help elucidate the existence of the 

extrinsic mechanism, which led to the two following hypotheses: 

 

Hypothesis 4: Asymmetric environments of soluble factors (EGF) can be induce the 

asymmetric partitioning of receptor-ligand complexes (EGF-EGFR) at the single cell level. 

 

Hypothesis 5: Asymmetric partitioning of receptor-ligand complexes at the single-cell level 

might allow the asymmetric partitioning of activated signaling molecules at the time of mitosis 

which could be a regulatory mechanism for asymmetric cell division and cell fate decisions. 

 

Project Summary: 

 

Computational methods are a valuable tool for the analysis and engineering of 

asymmetric environments of soluble factors around single cells. In silico methods will 

be developed to evaluate various strategies for controlled factor release in the context 

of single cell polarization. Using two and three-dimensional modeling, we will further 

analyze the complex interplay between culture systems, neighboring cells and soluble 

signaling at the single cell level. Once the model significance will be established, we 

will evaluate the potential for polarization and cell fate control both in the short and 

long-term. Understanding and engineering cell fate decisions at the single cell level will 
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help design new culture systems and techniques that allow for optimal control of cell 

fate decisions. We expect these findings to help increase the purity of cell populations in 

vitro and contribute to the development of biomimetic culture systems. These 

approaches could be significant in the translational research towards the clinic and 

ultimately benefit human health. 

 

The following objectives were identified: 

 

Milestone 1: Development of a two-dimensional computational framework for the analysis of 

asymmetric environments of soluble factors in silico; 

 

Milestone 2: Development of a three-dimensional model, analysis of chamber design and cell 

colony effects, demonstration of model significance; 

 

Milestone 3: Analysis of short and long-term physiological effects of asymmetric soluble factor 

delivery. 
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2 Chapter 2: Background  
 

The formation of tissues and organs during development is the result of coordinated 

responses of cell populations to environmental stimuli modulated in space and time. These 

signals ensure the proper balance between proliferation and differentiation throughout 

developmental stages and thereby coordinate the growth and specialization of tissues into 

functional units achieving defined tasks. In vivo, cells are under the constant stimulation of a 

variety of signals and proper integration of these messages will ensure adequate responses 

throughout development. Among these signals, soluble factors can be secreted by a cell, 

transported by the blood (endocrine signaling) or diffuse in the extracellular fluid /matrix and 

reach a target cell (paracrine signaling). These molecules can be soluble proteins as in the case of 

growth factors or steroid hormones with the ability to cross the lipid bilayer. In tissues, cells 

interact with each other and can also communicate through direct cell-cell contact while the 

extracellular matrix (ECM) also provides another mechanism for cell communication. Cells 

present on their cellular membrane a variety of surface receptors. These are generally 

transmembrane proteins with the ability to bind various ligands with different affinities. The 

mechanisms by which signals are transmitted from the extracellular to the cytoplasmic 

compartment are varied, but ultimately external signals modify the level of expression of target 

genes and allow for the regulation of cell metabolism. This process is referred to as signal 

transduction and will affect cell growth, proliferation, differentiation, migration, adhesion, 

senescence or apoptosis through selective expression or repression of genes resulting from the 

activation or repression of a transcription factor (Lodish et al., 2005). 
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Dysfunction of these communication systems can lead to serious aberrations such as 

abnormal proliferation as observed in cancer. Understanding mechanisms by which signals are 

regulated will allow for the development of new in vitro culture systems reproducing more 

accurately physiological conditions of proliferation and differentiation while increasing the 

understanding of physiological and pathological developmental processes. A review of 

fundamental biological properties of stem cells and progenitor cells is necessary to develop the 

key concepts required for the development of these systems. 

 

2.1 Stem Cell Biology 

2.1.1 Mammalian Embryology 

The ovum and spermatozoon, the respective female and male gametes in mammals are 

haploid. After fertilization, meiosis II is triggered in the ovum and the sperm and ovum nucleus 

are unified to restore the diploid condition. The resulting fertilized egg or zygote is the first cell 

of the new organism. Early development occurs in the uterine tube up to day six. After the initial 

cell cleavage, the following dividing stages are referred to as morula. Starting at day seven, the 

ball of dividing cells implants itself in the uterine wall, and will be referred to as embryo up to 

the eighth week. At this stage, the dividing cells give rise to an organized cellular structure called 

the blastocyst and the developing organism is called a fetus after the eighth week. 

The mammalian blastocyst has developed three different cell lineages by the time of 

implantation: an outer layer called trophoblast that encloses the blastocoelic cavity or 

blastocoele; the inner cell mass (ICM) that consists of epiblast (primitive ectoderm) covered by a 

monolayer of primitive endoderm. Cells isolated from the primitive ICM are referred to as 
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Embryonic Stem (ES) cells. Gastrulation begins shortly after implantation in the uterus and is 

defined as the formation of the three primary germ layers of the embryo from the ICM: 

ectoderm, endoderm and mesoderm.  During gastrulation, only one new layer is produced 

(mesoderm) as both primitive endoderm and ectoderm will be replaced by their definitive 

counterparts. Each layer gives rise to a distinct set of tissues and organs: the digestive organs and 

lungs come from the endoderm; muscles, the heart and blood system come from the mesoderm; 

the nervous system and skin come from the ectoderm. In mammals, a transient structure called 

the primitive streak (PS) is formed in the region of the epiblast when gastrulation begins that will 

ultimately form the posterior end of the embryo (Tam and Behringer 1997). The PS is located in 

the middle of the disc and is responsible for the formation of the mesoderm during gastrulation. 

Uncommitted cells move across the PS and exit either as mesoderm or definitive endoderm. 

Anterior, mid and posterior regions of the PS have been defined according to gene expression 

profiles. The ectoderm derives from the anterior region of the epiblast that does not enter the PS.  

This review of embryology highlighted some of the properties of embryonic stem cells 

and these will be reviewed in more details in the following section. 

 

2.1.2 Stem Cell Properties 
 

ES cells can be defined on a functional aspect as they can regenerate any tissue. From 

this definition can be deduced two properties. First, stem cells have an unlimited self-renewal 

potential and can produce more stem cells during each round of mitotic divisions, contrary to 

differentiated cells that cannot self-renew over long periods of time. This makes stem cells the 

only primary cell type that can in theory be cultured indefinitely in vitro under appropriate 
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conditions. Second, ES cells have a multilineage potential and can give rise to several committed 

and differentiated cell types which lose the self-renewal potential (i.e. developmental restriction) 

(Till, McCulloch et al. 1964). The properties of stem cells can be studied in vitro using 

clonogenic assays in which their self-renewal and multilineage potential can be evaluated 

(Friedenstein, Deriglasova et al. 1974; Friedenstein, Gorskaja et al. 1976) and the ectopic 

formation of carcinoteratomas is also used for the assessment of stem cell properties in vivo 

(Thomson, Itskovitz-Eldor et al. 1998; Chambers and Smith 2004). The degree of multilineage 

potential differs based on the origin of stem cells. ES cells come from the primitive ICM of the 

blastocyst stage and have the broadest biological potential. ES cells are pluripotent and can give 

rise to all derivatives of all three germ layers from the early embryo (ectoderm, endoderm and 

mesoderm) (Pera, Reubinoff et al. 2000). Totipotent cells come from the fertilized egg (zygote) 

and the 8 cells produced by its cleavage (morula), and can give rise to all cells coming from the 

ICM and the trophoblast of the early embryo. It should be noted that at the stage of 16 cells, 

totipotency is already lost as cells start to commit in different lineages. Conversely, multipotency 

refers to cells that can produce cells of a related family such as the hematopoietic system. 

Finally, most progenitor cells are unipotent meaning that they can only give rise to a single cell 

type. During development, pluripotency is lost in a process called lineage restriction. Only the 

embryonic germ cells coming from the gonad ridge (leading to the production of gametes) 

remains pluripotent (Pera, Reubinoff et al. 2000).  

 

Stem cells are not only restricted to the early stages of development but are also present 

in several adult tissues. Adult-derived stem cells exhibit the same properties except that somatic 

stem cells are multipotent. These cells contribute to the regeneration and repair of specific tissues 
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(Brehm, Zeus et al. 2002). Some evidence also indicates the existence of pluripotent adult stem 

cells that violate the germinal restriction (Coulombel 2007). Examples of organs or tissues that 

contain stem cells are the liver (Alison, Golding et al. 1996), brain (Taupin 2006), lungs 

(Gomperts and Strieter 2007), muscles (Seale and Rudnicki 2000), skin (Watt and Hogan 2000) 

and blood (Muller, Medvinsky et al. 1994). 

 

The complete development from the early embryo to a fully mature organism is a highly 

coordinated process in which cells alternate cycles of proliferation, migration and differentiation 

to produce organized tissues and organs. Central to this process is cell communication or 

signaling as populations must communicate to choose between coordinated cycles in space and 

time, thereby leading to the formation of functional mature tissues. A better understanding of the 

signals required along different cellular lineages has emerged over the past years and several 

differentiation trajectories have now been defined (Ortega-Perez, Murray et al. 2007; Orkin and 

Zon 2008).  

 

A major effort has been made to define genetic markers associated with the stem-cell state. 

Several transcription factors have been identified including Oct4 (Niwa, Miyazaki et al. 2000), 

Nanog (Chambers, Colby et al. 2003) and Sox2 (Masui, Nakatake et al. 2007), found in both 

mouse and human stem cells. The stem cell state was further characterized by an autoregulatory 

loop of factors that control the switch between pluripotency and commitment. In mouse ES cells, 

autocrine production of Fibroblast Growth Factor 4 (Fgf4) directed by Oct4 and Sox2 activates 

the Extracellular signal-Regulated Kinases (Erk) signaling pathway. This promotes a state in 

which mESC are not restricted to the stem-cell fate but can commit to different lineages with the 
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appropriate factors, a process that can be reversed by Nanog (Kunath, Saba-El-Leil et al. 2007; 

Silva and Smith 2008). The fine tuning of the expression of each factor is thus the key to the 

stem cell state, as shown in Figure 2-1. 

 

 
Figure 2-1: Interplay between autocrine signaling and the stem cell state. The genetic expression of markers 
such as Oct4, Sox2 and Nanog specifically characterizes stem cells. Autocrine induction by FGF4 activates the 
Erk pathway that triggers a switch to a state in which stem cells are receptive to commitment signals (right). 
Conversely, Nanog reverses this switch to a state where stem cells are refractory to these signals and remain 
stem cells (left). This state is finely regulated by expression levels of each factor (adapted from Silva and 
Smith, 2008). 

 

This demonstrates how extracellular signals modulate and regulate cellular properties. 

Signal transduction cascades have been studied for decades and one of the most studied signaling 

pathways is the Epidermal Growth Factor Receptor (EGFR) system which activates the Erk 

pathway. It is documented in over 17000 (Pubmed) papers as of 2011 and we will review the 

EGFR family of receptor, their common structure, mode of action and the role EGFR can play on 

cell fate determination. 

 

2.2 EGF Signaling 

2.2.1 EGFR Family of Receptor 
 

The first receptor tyrosine kinase (RTK) was discovered over 25 years ago and since then 

a significant number of members of this family have emerged as key regulators of cellular 
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processes such as growth, migration, proliferation, survival and differentiation (Ullrich and 

Schlessinger 1990; Blume-Jensen and Hunter 2001). Due to the ubiquitous nature of the 

mechanisms these receptors control, their structure and mode of action are extremely conserved 

from mammals to C. elegans and Drosophila (Aroian, Koga et al. 1990; Wasserman and 

Freeman 1997). Nonetheless, the EGFR/ErbB family has evolved in vertebrates towards higher 

signal diversity as it consists of four RTKs; EFGR (ErbB1/HER1), ErbB2/HER2/Neu, 

ErbB3/HER3 and ErbB4/HER4 (Yarden and Sliwkowski 2001; Schlessinger 2004). Each family 

exhibits a specificity of substrate as well as a specificity of downstream activated signaling 

pathways (Riese and Stern 1998). EGFR binds ligands such as EGF and Transforming Growth 

Factor β (TGF-β), ErbB2 does not have any known active ligand and relies on association with 

other ErbBs for activation (Cho, Mason et al. 2003; Garrett, McKern et al. 2003), ErbB3 binds 

neuregulins (Schaefer, Brachwitz et al. 2006) and ErbB4 binds neuregulins and EGF-like 

ligands. While insufficient ErbB signaling is a hallmark of neurodegenerative diseases (Bublil 

and Yarden 2007), overexpression and mutations of ErbB family of receptors lead to the 

development of a variety of cancers (Yarden and Sliwkowski 2001; Zhang, Berezov et al. 2007). 

Specifically, EGFR is expressed in a wide variety of cell types, including all cells from 

mesodermal and ectodermal origin (Yarden and Sliwkowski 2001). The significance of EGFR is 

illustrated by the lethal phenotype of EGFR null mutations in mice (Sibilia and Wagner 1995; 

Sibilia, Steinbach et al. 1998) and occurrence of tumors with mutated and/or overexpressed 

EGFRs as observed in glioblastomas, breast cancer and non small-cell lung cancer (Wikstrand, 

Reist et al. 1998; Olayioye, Neve et al. 2000; Yarden and Sliwkowski 2001; Lynch, Bell et al. 

2004; Paez, Janne et al. 2004; Pao, Miller et al. 2004). 
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2.2.2 Structure 
 

The EGFR and all members of the RTK family of receptors share a similar structure. The 

extracellular domain comprises four domains: two ligand-binding regions called domain I and III 

sharing approximately 40% sequence identity and domain II and IV rich in cystine. The 

intracellular region comprises a regulatory domain with tyrosine residues, several accessory 

regulatory regions and a tyrosine kinase domain. It is linked to the extracellular compartment 

through a single transmembrane helix. The extracellular domains I and III contain several β-

helices while domain II and IV exhibit extended structures containing several disulfide bonds. 

 

2.2.3 Mode of Action 

Activation 
 

Early studies of RTKs demonstrated a simple mechanism in which a bivalent ligand 

binds two monomeric receptors and triggers a ligand-based dimerization in which receptors do 

not interact. In the case of Nerve Growth Factor (NGF), the bivalent ligand triggers the 

dimerization of receptors through the Ig-C2 domain without a direct contact between receptors 

(Wiesmann, Ultsch et al. 1999). Other examples later demonstrated dimerization could be 

entirely dictated by the receptors as in the case of EGF. Before ligand binding, the dimerization 

“arm” or domain II is buried through intramolecular interactions with domain IV in a 

conformation referred to as “tethered”. Interactions between regions II and IV further contribute 

to inhibit dimerization and maintain the tethered configuration. Binding of EGF to sites I and III 

triggers a conformational change exposing the dimerization domain II and thereby initiating the 

formation of EGFR dimers (Burgess, Cho et al. 2003). This conformational reorganization will 
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subsequently expose the Tyrosine Kinase Domains (TKD) of the intracellular region (Yarden 

and Schlessinger 1987; Ferguson, Berger et al. 2003).   

 

The transphosphorylation of cytoplasmic tyrosine residues represents the start of the 

signaling cascade (Honegger, Kris et al. 1989). This mechanism varies significantly between 

classes of RTKs but generally, transphosphorylation of tyrosine residues in a TKD contributes to 

the removal of cis-autoinhibitory interactions leading to the activation of TKD activity. In the 

case of EGFR, the tyrosine kinase domain (TKD) of a RTK is allosterically activated by direct 

proximity contacts between the C-terminal region of one TKD and the N-terminal region of 

another TKD (Zhang, Gureasko et al. 2006; Jura, Endres et al. 2009). Recent reports indicate 

EGFR can dimerize before binding of any ligand and receptor activation on the cell surface and 

these receptors may exhibit a higher affinity for EGF than monomeric receptors (Gadella and 

Jovin 1995; Clayton, Tavarnesi et al. 2007).  

 

The dimerization process can generate homo or heterodimeric receptors, as a single 

EGFR can be asymmetrically activated by ErbB1 (Hynes and Lane 2005), ErbB2 (Holbro and 

Hynes 2004), ErbB3 (Plowman, Whitney et al. 1990) or ErbB4 (Plowman, Culouscou et al. 

1993; Arasada and Carpenter 2005). The relative balance of homo and heterodimers will dictate 

specific responses following extracellular protein binding.  
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Signal Transduction 
 

Due to the variety of ErbB ligands and signaling intermediates, signals coming from 

these receptors are part of a very complex network of intricate signals, where the intensity, 

duration and frequency of signals will have a significant impact on gene expression. A detailed 

review of the complexity of ErbB signaling is available elsewhere (Yarden and Sliwkowski 

2001) and we will focus on EGFR/ErbB1 in this section. 

 

 

Figure 2-2: EGFR family of receptor signaling network. Homodimeric EGFRs (green) can generate over 10 
different types of signals leading to the activation of five pathways (PKC, Akt, MAPK/Erk, JNK and Abl) 
regulating the expression of target genes (adapted from Yarden, 2001). 

 

Following activation, EGFR signals (from homodimeric ErbB1 receptors) proceed in the 

intracellular compartment through several pathways such as Mitogen Associated Protein Kinase / 

Extracellular Regulated Kinase (MAPK/Erk), Protein Kinase C (PKC), Akt pathway and c-Jun 
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N-terminal kinase (JNK) as shown in Figure 2-2 (Oda, Matsuoka et al. 2005). The MAPK/Erk is 

the most ubiquitous of these systems and can be activated following EGF signaling in a Shc-

dependent or independent manner, ultimately leading to the activation of Ras (Buday and 

Downward 1993; Batzer, Blaikie et al. 1995). 

 

The first step in the signaling cascade is the recruitment of cytoplasmic adaptor proteins 

with Src Homology 2 (SH2), PhosphoTyrosine Binding (PTB) and Src Homology 3 (SH3) 

domains binding phosphotyrosine residues (Bertics and Gill 1985; Schlessinger 2000). These 

molecules can be recruited directly or indirectly following trans-phosphorylation of cytoplasmic 

tyrosine residues and the identity of these partners will dictate signal specificity (Schlessinger 

and Lemmon 2003; Pawson 2004). In the context of Erk, growth factor receptor-bound protein 2 

(Grb2) is an adaptor protein with a SH2 domain that allows for binding to the phosphorylated 

EGFR. Grb2 also exhibits SH3 domains that recruit and activate Son of Sevenless (Sos) (Pawson 

1995). Sos is a Guanine Exchange Factor (GEF) that allows the binding of Guanine Tri-

Phosphate (GTP) to Ras and further activation (Hu and Bowtell 1996). Ras is a GTPase cycling 

between an inactive GDP-bound form and an active GTP-bound form (Vetter and Wittinghofer 

2001). The catalytic activity of Ras is low and accelerated by GTPase Activating Protein (GAP) 

(Feig 1999). Ras-GTP binds the regulatory domain of Raf to activate a serine threonine kinase 

activity (Morrison and Cutler 1997). Hydrolysis of Ras-GTP in Ras-GDP liberates activated Raf 

that in turns phosphorylates and activates MAPK/Erk kinase (MAPKK or MEK). Activated 

MEK in turns activates and phosphorylates Erk1 and Erk2 which dimerize and are translocated 

towards the nucleus. Activated Erk phosphorylates and regulates several proteins and 

transcription factors, thereby controlling expression of target genes (Karin and Hunter 1995; 



18 
 

Morrison and Cutler 1997). These include proto-oncogenes such as fos, jun and myc as 

immediate-early genes (Cohen 1997; Kyriakis and Avruch 2001). Products of these genes 

contribute to the formation of Activator Protein 1 (AP-1, heterodimeric protein composed of fos 

and jun) which will ultimately act as a transcription factor and regulate the expression of late 

genes, thereby demonstrating the potential short and long-term metabolic effects of MAPK/Erk 

signaling (Hess, Angel et al. 2004). 

 

While some receptors can activate several downstream pathways, they also present some 

specificity. The nature of homo or heterodimerization has significant effect on cellular responses 

as it has been demonstrated ErbB2 containing heterodimers are the most mitogenic (Pinkas-

Kramarski, Soussan et al. 1996). Of relevance, the subcellular localization of complexes will 

dictate association with specific pools of adaptor proteins which contribute to the specificity of 

downstream signaling. For example, the Ras pathway can be activated by both surface and 

cytoplasmic EGFR while other adaptor molecules can be found exclusively at the membrane or 

cytoplasmic domains, thereby illustrating the importance of receptor trafficking on signaling 

(Burke, Schooler et al. 2001). 

 

EGFR Trafficking 
 

EGFR trafficking has been well characterized. Following EGF binding, dimerization and 

activation of EGFRs, dimerized receptors aggregate in clathrin coated pits through the adaptor 

protein adaptin (Haigler, McKanna et al. 1979; Sorkin and Carpenter 1993; Vieira, Lamaze et al. 

1996; Wiley and Burke 2001). Receptor-mediated endocytosis proceeds rapidly (on the order of 
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five minutes) through invagination of the extracellular membrane and is dictated by motifs 

present on the cytoplasmic side of the receptor (Sorkin, Di Fiore et al. 1993). This process is 

saturable based on the availability of adaptor proteins (Wiley 1988; Lund, Opresko et al. 1990). 

Internalization acts as a regulator of ErbB functions as it allows for the control of receptor 

numbers on the cell surface and contributes to the downregulation of EGFR through lysosomal 

targeting. Early and late endosomal vesicles are characterized by an acidic pH and the presence 

of hydrolytic enzymes degrading receptor-ligand complexes. Sorting in early endosomes occurs 

between five and 20 minutes and is dependent upon the stability of association of 

homo/heterodimers at mildly acidic pH. Hence the nature of homo or heterodimers will affect 

sorting with ErbB1 being primarily targeted to the lysosomes (Waterman, Sabanai et al. 1998). It 

is now widely accepted that internalized receptors contribute to signaling (Burke, Schooler et al. 

2001) and their activation state seems to dictate sorting choices, with dissociated complexes 

recycled towards the cell surface while activated complexes in the late endosomes (between 20 

and 60 minutes post binding) will see the recruitment of c-Cbl ubiquitin ligase (Muthuswamy, 

Gilman et al. 1999). Signaling is stopped through ubiquitination of the receptor which initiates its 

degradation through targeting towards the lysosomal compartment in a time frame generally over 

one hour (Levkowitz, Waterman et al. 1998; Kirkin and Dikic 2007).  

 

We have discussed numerous examples by which a soluble extracellular protein such as 

EGF can initiate various signals in the intracellular compartment through cascades of kinase for 

example. These signals will regulate the activated/repressed state of various transcription factors 

and genes, thereby allowing for metabolic responses following soluble signaling. In the context 

of EGFR, we will further discuss cell systems in which EGF directly affects cell fate. 
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2.2.4 EGFR and Cell Fate 
 

Temple and coworkers were among the first to demonstrate a link between asymmetric 

EGFR partitioning and asymmetric fates in mouse neural stem cells (mNSCs) derived from the 

ventricular and subventricular forebrain (Sun, Goderie et al. 2005). EGFR was shown to be 

asymmetrically partitioned during mitosis in up to 25% of E13 cells from the mouse ventricular 

and subventricular zones. Dividing cells exhibited an asymmetric partitioning of EGF and Numb 

in 70% of cases which was indicative of different fates in the daughter cells. This was further 

confirmed as the daughter cell with high EGFR also exhibited radial glial/astrocytic markers 

which were absent in cells with low EGFR levels. Post-mitotic cells also demonstrated different 

proliferative potential based on BrdU analysis, consistent with prior reports of EGF as a potent 

mitogen in neural cells (Weiss, Reynolds et al. 1996)(Sun, Goderie et al. 2005).  This analysis 

was the first to illustrate that the asymmetric nature of target signaling pathways at the time of 

division could allow for fate determination in the context of stem cells. Asymmetric partitioning 

of EGFR at the time of mitosis was also reported in normal human keratinocytes, squamous cell 

carcinoma A431 cells and primary basal cell carcinoma (Le Roy, Zuliani et al.). Because these 

divisions generate daughter cells with different fates, they are referred to as asymmetric cell 

divisions.  
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2.3 Symmetry of Cell Division 

2.3.1 Lessons from Development 

Concentration Gradients of Regulatory Factors 
 

A single cell or cell population secreting a diffusing factor produces a concentration 

gradient in the extracellular compartment. Neighboring cell populations may be affected 

differently based on the distance from the emitting cell(s). Morphogens are important during 

embryonic development and allow for the creation of positional information in tissues (Wolpert 

1989). Morphogens will be effective in a cellular context only if the pathway activated by the 

molecule exhibit different qualitative outcomes (Gurdon and Bourillot 2001). Among factors 

acting as morphogens, Activin, BMPs and Sonic Hedgehog (Shh) have been identified in 

Xenopus and vertebrates (Artavanis-Tsakonas, Rand et al. 1999; De Robertis, Larrain et al. 2000; 

Jessell 2000). 

 

Lateral Inhibition 
 

The cell-cell communication provides another mechanism of signal induction. The Notch 

signaling pathway is an example of this relay induction in which signaling from a cell to another 

operates through direct cell-cell contact. In the Notch system, one cell expresses the 

transmembrane receptor Notch on the surface while another expresses the surface ligand Delta 

(Wharton, Johansen et al. 1985). Following cell contact and ligand-receptor binding, the complex 

is cleaved and the extracellular portion of Notch remains bound with the ligand on the ligand-

expressing cell while the Notch intracellular domain is internalized in the receptor-expressing 

cell and further regulates gene expression (Brou, Logeat et al. 2000; Nichols, Miyamoto et al. 

2007). If Notch is predominant in a cell, it will activate its own synthesis in a positive feedback 
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loop and repress the synthesis of Delta. This contributes to the amplification of potential initial 

differences in Notch (N) and Delta (Dl) expression levels in two neighboring cells and produces 

one cell with high levels of Notch expression and one cell with high levels of Delta expression. 

This mechanism is called lateral inhibition and has numerous implications during development. 

Because two cells in contact are triggered to behave differently, this contributes to the creation of 

cellular frontiers or the isolation of a single-cell around a cell population as illustrated in Figure 

2-3 (Artavanis-Tsakonas, Rand et al. 1999). 

  

  
Figure 2-3: Mechanism of lateral inhibition. Notch signaling is used to amplify differences between levels of 
expression of Notch (N) and ligand delta (Dl) in adjacent cells. This contributes to the creation of cellular 
frontiers or cell cluster (adapted from Artavanis-Tsanokas et al., 1999). 
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Planar Cell Polarity  
 

In Drosophila, the receptor Frizzled has been implicated in the polarization of fields of 

cells leading to planar cell polarity (PCP) through the non-canonical Wnt pathway (Adler 1992). 

PCP mechanism can be defined as the polarization of a cell population consistent with the body 

plan. This leads to a common cell orientation or motility and is achieved through the polarization 

of members of the frizzled-PCP pathway along the apical-basal axis (Wu, Klein et al. 2004; 

Seifert and Mlodzik 2007). 

The first complex is composed of frizzled (Fz), Dishevelled (Dsh) and Diego (Dgo) in 

Drosophila (Klingensmith, Nusse et al. 1994; Feiguin, Hannus et al. 2001). Fz recruits Dsh and 

Dgo to the cell membrane (Wu, Klein et al. 2004; Jenny, Reynolds-Kenneally et al. 2005); the 

complex promotes the activation of the signaling pathway through the appropriate set of 

downstream effectors. An antagonist complex composed of Strabismus (Stbm) and Prickle (Pk) 

(Taylor, Abramova et al. 1998; Jenny, Darken et al. 2003) is accumulating on the opposite cell 

side (Tree, Shulman et al. 2002). The two complexes interact, as Pk has been reported to interact 

with Dsh and thus prevent its recruitment on the cell surface with Fz. This also explains why this 

complex acts as an antagonist in vivo. Dgo can compete with Pk to bind Dsh and therefore 

antagonizes the action of Pk. A polarization is thus created in the cellular compartment based on 

the partitioning of the pathway components. These analyses of subcellular localization have been 

extended to vertebrates (Montcouquiol, Sans et al. 2006).  

 

This example highlights the importance of cell and population polarization during 

development. Most importantly, we have seen that the polarization of a signaling pathway itself 

at the single-cell level is necessary to achieve complex developmental processes. This aspect of 
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polarization and asymmetry is not only restricted to PCP but is also important in the context of 

cell fate determination. 

 

2.3.2 Concepts 

An asymmetric division gives rise to two daughter cells with different fates. In the 

context of stem cells, one cell may fully retain stem cell properties while the other becomes 

committed to a specific lineage. Conversely, symmetric divisions give rise to two identical 

daughter cells whose characteristic can be identical or not to the parent cell. An asymmetric 

division can be generated in a great variety of ways that will be discussed conceptually. 

 

  

Figure 2-4: Examples of intrinsic asymmetric division. On the left side, daughter cells inherit different pool of 
intracellular molecules responsible for fates A and B. On the right side, the division plane at the time of 
mitosis is not centered, generated daughter cells with different volumes and ultimately different fates 
(adapted from Horvitz and Herskowitz 1992). 

 
 

As pictured in Figure 2-4, molecules localized in specific regions of the cytoplasm can be 

asymmetrically partitioned between the two daughter cells, resulting in different cell fates (e.g. 

fates A and B). These molecules can be proteins, metabolites, mRNA or transcription factors 
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resulting in different genes activation and repression profiles in the daughter cells. One could 

also imagine a different epigenetic profile during chromosomal partitioning (Kim-Ha, Smith et 

al. 1991; Horvitz and Herskowitz 1992). Once partitioned between the daughter cells, these 

molecules are responsible for different fates and will be referred to as Cell Fate Determinants 

(CFD) (Cohen and Hyman 1994). In a second mechanism, the asymmetric localization of the 

mitotic spindle triggers the formation of two cells with different sizes. In conjunction with the 

appropriate cellular context, this could result in the acquisition of different fates. In both cases, 

the mechanism of asymmetric division can be referred to as intrinsic, meaning that the 

asymmetry is acquired during cell division. These two mechanisms are not exclusive and one 

could imagine a combination of the two to trigger an asymmetric division (Horvitz and 

Herskowitz 1992). Nevertheless, the daughter cells do not need to be different right after division 

in order to exhibit different fates in the long term. 

 

  

Figure 2-5: Examples of extrinsic asymmetric division. On the left side, identical daughter cells following 
mitosis will be subject to different environmental signals thereby inducing different fates. On the right side, 
identical daughter cells following division  (adapted from Horvitz and Herskowitz 1992) 
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In Figure 2-5, the two daughter cells can follow either fate A or B after division. In the 

first case, signals coming from the microenvironment direct a daughter cell towards a given fate. 

This mechanism can be defined as passive, and the proximity or distance from the source of a 

signal (concentration gradient) determines which fate to express. In the second or active case, the 

two cells exchange signals to prevent them from entering the identical lineage restriction 

(Horvitz and Herskowitz 1992). We will focus on the intrinsic asymmetric division in the next 

section and will review mechanisms of regulation and illustrate two important requirements: 

first, the mother cell must be polarized; second, the mitotic spindle must be aligned with the axis 

of polarity to produce two daughter cells with a difference in CFD content.  

 

2.3.3 Regulation of Asymmetric Cell Division and Cell Fate 

In the intrinsic mechanism, a polarity axis is defined in the parent cell right before 

division and leads to the asymmetric repartitioning of polarity components. In this case, 

asymmetry is guided by either apical-basal or planar polarity of the surrounding cells (Knoblich 

2008). Polarity complexes have two distinct roles in vivo: they polarize the cell domain into 

several distinct compartments (e.g. apical, lateral, basal) but they also direct the subsequent 

localization of CFDs. Because the spindle orientation is correlated in vivo with the polarity axis, 

daughter cells inherit a different CFD content after division and are thus committed to different 

fates, as shown in Figure 2-6. 
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Figure 2-6: Mechanism of intrinsic asymmetric cell division as observed during embryological development 
(adapted from Knoblich 2008) 

 
 

The Drosophila neuroepithelium in the central nervous system (CNS) is an example of an 

intrinsic pathway where Partitioning defective (Par) proteins are required for the CFDs 

distribution in the daughter cells. This epithelium is composed of neuroblasts (NBs) that 

delaminate in the embryo ventral neurogenic region. The NBs divide asymmetrically along the 

apical-basal axis to produce a large apical NB and a smaller basal precursor called ganglion 

mother cell (GMC). These GMCs will produce neurons and glia of the CNS after another round 

of asymmetric division (Wodarz and Huttner 2003). In this scenario, the apical-basal polarity of 

the epithelium is used to asymmetrically partition polarization components. 

 

The apical cell cortex is the site of localization of several polarity complexes, including 

the Par complex: Par-3, Par-6 and atypical protein kinase C (aPKC) (Wodarz, Ramrath et al. 

2000; Ohno 2001; Petronczki and Knoblich 2001). Following entry into mitosis, two kinases are 
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activated; Aurora-A is implicated in centrosome maturation and spindle formation, and Polo 

controls the spindle checkpoint and cytokinesis (Knoblich 2008). The correlation between the 

polarity axis and mitotic spindle orientation is achieved through the protein Inscuteable (Kraut, 

Chia et al. 1996). Inscuteable is apically localized and can bind Partner of Inscuteable (Pins) and 

Par-3, thereby linking the Par complex with a second apically localized protein complex 

composed of Pins and the α subunit of heterotrimeric G proteins Gαi (Wodarz and Huttner 2003; 

Betschinger and Knoblich 2004; Goldstein and Macara 2007). Par-3 binding to Inscuteable 

triggers the recruitment of Pins in the Par-3 / Inscuteable complex. Binding of Gαi to Pins 

(Nipper, Siller et al. 2007) induces a conformational change that allows for the recruitment of 

Mud into the cortical complex. Mud in turn recruits astral microtubules to the cell cortex and 

thus provides a mechanism by which cortex polarization and spindle poles orientation are 

correlated in vivo (Izumi, Ohta et al. 2006). In this case, the polarity axis intrinsically defined in 

interphase based on the partitioning of Par and aPKC proteins is consistent with the apical-basal 

polarity of the epithelium. The protein Lethal Giant Larvae (Lgl) is initially apically localized 

through a protein-protein interaction with Par-6 and is phosphorylated by aPKC (Betschinger, 

Mechtler et al. 2003). Following phosphorylation, Lgl is dissociated from the complex and 

becomes restricted to the opposite cell cortex. The differential localization of these complexes 

along the apical-basal axis creates a polarity axis inside the cell that can in turn be used to direct 

the localization of CFDs on the basal cortex. These include Numb, an endocytic protein acting as 

an inhibitor of Notch signaling (Frise, Knoblich et al. 1996) and Prospero, a homeodomain 

protein (Chu-Lagraff, Wright et al. 1991). Due to their asymmetric localization they 

asymmetrically partition during division in the GMC where Numb inhibits Notch signaling. 

Prospero regulates transcription of target genes and Brat function is unknown (Knoblich 2008). 
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The segregation of these components is mediated by two adaptor proteins Miranda and Partner of 

Numb (Pon) (Betschinger and Knoblich 2004). All the proteins involved in this mechanism have 

homologues in mammals: mPar-3 (Izaki, Kamakura et al. 2005), mPar-6 (Noda, Takeya et al. 

2001), aPKC, Lgl with Hugl-1 (Grifoni, Garoia et al. 2004), Prospero with Prox-1 and Numb 

(Dho, French et al. 1999) and their potential role in the regulation of mammalian fate is under 

investigation. 

 

Several studies have documented the interplay between asymmetric cell division and 

signaling. One of the most documented examples is the negative regulation of Notch by Numb in 

Drosophila. After an asymmetric cell division, the cell that receives high levels of Numb 

downregulates Notch signaling; the cell with low Numb levels maintain it (Frise, Knoblich et al. 

1996). A relationship between Notch as a regulator of Numb has also been reported (Chapman, 

Liu et al. 2006). The extrinsic mechanism of asymmetric cell division is an example of how local 

microenvironments modulate cell fate. 

 

2.4 Signaling Modulation by Local Microenvironments 
 

In general, cellular growth, differentiation, migration, apoptosis and other specific 

cellular functions are externally regulated by the interplay of soluble factors, insoluble ECM and 

cell-cell interactions (Bottaro, Liebmann-Vinson et al. 2002). These factors are spatially and 

temporally coordinated to regulate the dynamic state of a tissue (Lutolf and Hubbell 2005). 

Soluble factors such as cytokines, growth factors, peptides, steroids and ions feed into complex, 

and often overlapping signal transduction pathways that may share common receptors and are 

therefore required in the appropriate combination and concentrations to be effective (Bottaro, 
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Liebmann-Vinson et al. 2002). A wide range of intracellular signaling pathways are activated or 

altered by these external factors, including those responsible for cytoskeletal turnover, cell 

motility, cell cycle and mitosis, and apoptosis (Howe, Aplin et al. 1998). This highlights the 

modulatory effects of local microenvironments.  

 
In vitro culture thus appears as a very incomplete approach to the analysis of biological 

systems. Cells cultivated adherently in culture flasks grown in media containing various factors 

will lack important environmental cues to reproduce accurately physiological conditions and 

efforts have been made to improve the biological relevance of culture techniques. In this section, 

some of the methods developed for the control of soluble factor delivery and generation of 

soluble factor gradients are presented. In the context of this project, the selected method should 

allow for the targeting of single cells, fluorescence microscopy and should also be readily 

available. 

 

Recent advances in the field of microfluidics have provided the scientific community 

with numerous approaches to generate radial or linear gradients of soluble factors in vitro 

(Dertinger, Jiang et al. 2002; Li Jeon, Baskaran et al. 2002; Fosser and Nuzzo 2003; Burdick, 

Khademhosseini et al. 2004; Chung, Flanagan et al. 2005; Gunawan, Choban et al. 2005; Lin, 

Nguyen et al. 2005; Abhyankar, Lokuta et al. 2006; Gunawan, Silvestre et al. 2006). Zigmond 

and Dunn chambers were also developed to study migratory effects under concentrations 

gradients (Zigmond 1977; Zicha, Dunn et al. 1997). New biomaterials allowed for the controlled 

release of factors from biological hydrogel carriers (Foxman, Campbell et al. 1997; Chen, He et 

al. 1998) or polymer scaffolds allowing dual factor delivery (Richardson et al., 2001).  
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Interestingly, all these methods mostly apply to cell populations, but some techniques 

have been developed that can be used to work at a single-cell level. Of particular relevance is the 

use of micropipettes (Zhelev, Alteraifi et al. 1996; Servant, Weiner et al. 1999; Servant, Weiner 

et al. 2000; Dehghani Zadeh, Seveau et al. 2003; Zadeh and Keller 2003; Zhelev, Alteraifi et al. 

2004; Wong, Pertz et al. 2006).  For example, delivery of chemoattractant in a single-cell 

microenvironment was performed to study the directional sensing in the eukaryotic mold 

Dictyostelium discoideum. The release of factor was controlled using a positive pressure in the 

micropipette and the authors showed that a constant gradient was created consistent with the 

formation of pseudopods (Zhelev, Alteraifi et al. 2004). Micropipettes can be implemented on a 

microscope and controlled release can be followed using fluorescence imaging. Using the proper 

stage, the positioning can be controlled with a submicrometer accuracy thus enabling accurate 

targeting of single cells. Micropipettes were therefore selected as the delivery system for this 

project. 
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3 Chapter 3: Two-dimensional Finite-Element Modeling of 
Controlled EGF Release to a Single Cell  

 

3.1 Summary 
 

In the context of engineering bioprocesses for the manufacture of cells for regenerative 

medicine, stem cells and progenitors can divide symmetrically or asymmetrically. Directing 

asymmetric division decisions during cell expansion in culture could allow for the commitment 

of stem/progenitor cells to a specific lineage while maintaining the stem/progenitor pool for 

ongoing cell expansion. Engineering asymmetric divisions using insights gained from in vivo 

systems also represents a paradigm for the development of biomimetic culture techniques. In 

vivo, local microenvironments induce complex developmental processes through different modes 

of extrinsic signaling (i.e. soluble factors, cell-cell interactions and cell extracellular matrix 

interactions). In vitro, the creation of local gradients of soluble factors alone might recreate 

environmental cues that could be interpreted at the single cell level as tissue-induced polarity 

signals to guide asymmetric cell division. 

 

Herein, the primary objective is to engineer a system for the generation of asymmetric 

microenvironments of soluble factors in vitro. Controlled release from a micropipette positioned 

near an individual cell in culture media is simulated to analyze soluble factor gradients in the 

cell’s microenvironment. This configuration establishes an asymmetry of receptor binding on the 

cell surface that we will refer to as induced cell polarization. Evaluation of the potential for 

directed polarization in vitro requires the development of quantitative metrics to examine system 

parameter sensitivity and more importantly allows for the formulation and evaluation of process 

strategies. Ligand receptor complexes involved in the binding, internalization and signaling of a 
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growth factor will be used to produce a partial differential equation (PDE) based model of 

polarization. The epidermal growth factor (EGF) and EGF receptor (EGFR), a member of the 

tyrosine kinase family of receptors, have been studied extensively. The EGFR is involved in a 

variety of stages in embryonic/post-natal and tumorigenic development (Sibilia, Steinbach et al. 

1998; Kim and Muller 1999). Affected cell processes include proliferation, growth inhibition, 

differentiation and apoptosis (Darcy, Wohlhueter et al. 1999). The wealth of kinetic data 

available from a variety of sources along with its involvement in the regulation of fate 

determination in several cell types (Le Roy, Zuliani et al. ; Sun, Goderie et al. 2005) makes this 

factor a reasonable choice to develop and test the robustness of our proposed computational 

methodology. In this chapter, finite-element modeling is used to develop a two-dimensional 

simulation in which continuous diffusive transport from a point source (micropipette) delivers 

EGF onto a cell surface at which a model for EGF binding and trafficking is defined (i.e. reactive 

boundary conditions). Several metrics such as the Polarization Index (PI) and Percentage of 

Receptor Occupancy (PO) will be developed to evaluate system response with respect to various 

experimental geometries (micropipette and cell diameter, micropipette distance from the cell 

surface) but also to identify important kinetic parameters. The analysis of these metrics along 

with the concentration and velocity of formation of key members of the signaling pathway will 

be performed to evaluate two delivery strategies in the context of controlled EGF release in the 

direct cell vicinity. 
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3.2 Model Formulation  

3.2.1 Mass Transfer Modeling 
 
The first relationship that should be presented is Fick’s first law of diffusion: 

     z

x
CDJ i

i 


              (1) 

Ji is the flux of i in the z direction (mole/length2.time), D is the diffusion coefficient 

(length2/time), xi is the mole fraction, C is the molar concentration (mole/length3). The molar 

concentration of i can be defined as (mole/unit volume). This equation states that the molar flux 

of component i per unit of cross-sectional area perpendicular to the direction of the flux is 

proportional to the diffusion coefficient. The negative sign indicates that the diffusion occurs in 

the direction of decreasing concentration; that is to say from a highly concentrated region to one 

of low concentration. 

The molar concentration C is the sum of the molar concentrations of all components of the 

mixture: 

                
C  Ci

i1

n

              (2)  

with the molar fraction Xi 
Ci

C
 

To describe the different flux relationships, the reference must be accurately defined. It can be a 

fixed reference frame and the molar flux of I can be expressed as 

        Ni  CiUi              (3) 

Ni is the molar flux of i (moles/length2.time) and Ui is the velocity of i with respect to a fixed 

reference frame (length/time). The total flux of i can also be written with respect to some 

reference other than a fixed set of coordinates: 
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  0 Ji  Ci Ui U 0               (4) 

0Ji is the molar flux with respect to the reference velocity U0, chosen so that: 

     
U 0  iUi

i1

n

              (5) 

and i  1
i1

n

  

 i  is the weighting factor relating the contribution of each species to the reference velocity. The 

most widely used velocities are the molar and volume average velocity: 
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            (7) 

The molar flux with respect to the mass average velocity can be obtained:  

M Ji  Ci Ui U M              (8) 

These flux expressions can be combined to describe a particular physical system. Using equation 

(4): 

M Ji CiUi CiUM              (9) 

         Ni m Ji CiUM  CDixi CiUM           (10) 

The total molar flux of i relative to a fixed reference frame is equal to the molar flux of i (due to 

diffusion relative to the molar average velocity) plus the bulk flow of i with respect to a fixed 

reference frame. Using the definition of the molar average velocity: 

        
Ni m Ji 

Ci

C
CiUi

i1

n

 m Ji  xi Ni
i1

n

           (11) 
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For mixtures in which xi is very small, the bulk flow term can be neglected. 

 

3.2.2 Microscopic Mass Balance 

We consider a differential volume element of fixed shape and account for the flow 

entering and leaving the element (Eulerian approach): 

t

C
ZYX

ZYXrYXNNZXNNZYNN

A

v
AZZAZZAZYYAYYAYXXAXXAX









)()()(

        
 (12) 

)(
XXAXXAX NN


  is the mole flux term (mole/area.time), ZY the surface, 

ZYNN
XXAXXAX 


)(  represents the rate of transfer through the considered area along the 

considered axis, Ca is the mole concentration (mole/volume) v
Ar  is the reaction term representing 

generation minus consumption (or rate of volumetric production in mole/volume.time). If the 

equation is divided by ZYX  as the limit of the volume of the element goes to 0: 
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







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
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



          (13) 

Or in vector notation: 

         
0


 v

AA
A rN

t

C
           (14) 

Using equation (4): 

      
0


 v

AAA
A rUC

t

C
          (15) 

The flux can then be expressed with reference to an arbitrary reference velocity: 

        )( 00 UUCJ AAA             (16) 

         
0

0 UCJUC AAAA             (17) 



37 
 

Then the generalized conservation equation can be written: 

0)( 0
0 


 v

AAA
A rUCJ

t

C
         (18) 

AJ0  is the diffusive flux and )( 0UCA  is the convective flux (from Hines and Maddox, 

1985). 

3.3 Finite-Element Modeling 

3.3.1 Two-Dimensional Geometry 
 

A two-dimensional mathematical model was developed using a finite-element modeling 

software (COMSOL 3.4, Burlington, MA) with MATLAB (Mathworks, USA) as shown in 

Figure 3-1 below. In the following example, a culture chamber was modeled as a square with 50 

µm sides and the cell was a circle of 10 µm diameter. The delivery system was depicted as a tube 

with an inner diameter of 2.5 µm and a wall thickness of 0.25 µm (dimensions consistent with 

readily manufactured micropipettes). These types of design have previously been used to 

asymmetrically deliver chemoattractant molecules to human neutrophils (Zhelev, Alteraifi et al. 

1996; Zhelev, Alteraifi et al. 2004). The initial distance between the micropipette and the cell 

surface was set to 5 µm.  

 



38 
 

 

Figure 3-1: Typical two-dimensional model consisting of 21 boundaries and 6 subdomains. Because the cell 
division plane is considered perpendicular to the pipette axis, the front side refers to the half cell surface 
facing the pipette. R1 to R4 refer to the four rectangles used to design the micropipette. 

 
 

Initial concentration of EGF is L0 = 100 ng/mL inside the micropipette (R1) and 

movement of EGF in the pipette and in the media is diffusive only:  

0)(
t

L





LD            (19) 

L is EGF concentration (mol/m3), 
t

L




 the concentration variation over time, and )( LD  

the diffusive flux (assumed uniform) in the x and y direction. This equation directly results from 

equation (18) without convective flux and in the absence of any chemical reaction in the media. 

The equation used in COMSOL is: 

  
LuRTLD 




)(
t

L
         (20) 

in which both the reaction term R and the convective term Lu   are set to 0. Initial conditions 

for the diffusion coefficient will be discussed further as diffusion in the micropipette (Dtube) and 

in the culture media (Dmed) will be considered as variables to evaluate potential delivery 

strategies.  
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3.3.2 EGF Binding and Trafficking 
 

On the cell surface, boundaries are defined with the following inward flux of EGF: 

CkRLkN rf 0            (21) 

Equation (21) represents the binding of diffusing EGF from the media on the cell surface and 

also the release of EGF from complexes (C) returning to the state of free receptors (R). The 

kinetic model of EGF binding has been widely described and is presented below in Figure 3-2.  

 

 

Figure 3-2: EGF binding and trafficking model. The EGFR (R) is synthesized from the Golgi (ks). Shortly 
after binding of EGF (L) to EGFR (kf), the complex (C) dimerises (kfd). Dimers (D) are the first potential 
signal transducers as dimerization is transduced into a conformational change activating the receptor. 
Dimers can either be internalized through a constitutive pathway (kt), non specific and non saturable (smooth 
pits) or through an induced pathway (kt_cp in the coated-pits). Free receptors R, complexes C and dimerized 
complexes D can be internalized in the endosomes (IR, IC and ID respectively with the same internalization 
rate kt dictated by membrane turnover). In the induced pathway, receptors reversibly gather in coated pits 
(H with a forward rate kc) where they are bound together through adaptor proteins. Except for the dimers 
coming from the coated pits (IH), IC and ID can be recycled to the cell surface (kx). All internalized members 
of the system can be either degraded and processed towards the lysosomes (khd and khc) or recycled to the 
cell surface (kx). 
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Following EGF binding, the newly formed complexes (C) rapidly dimerize (D). The 

dimerization step triggers a conformational change in the receptor structure, initiating the 

activation of a cytoplasmic tyrosine kinase which initiates the signal transduction cascade 

(Bertics and Gill 1985). Dimerized receptor-ligand complexes D can be internalized through a 

constitutive pathway (kt), non-specific non-saturable and dictated by membrane turnover. As 

internalized vesicles are smooth (uncoated), it is commonly said that these dimerized receptor-

ligand complexes are in the smooth pits (D). Membrane turnover overall allows for the non-

specific internalization of R, C and D (IR, IC and ID respectively with the same internalization 

rate kt). 

In the induced pathway, dimerized ligand-receptor complexes D reversibly gather in 

coated pits (H with a forward rate kc) in which they are bound through adaptor proteins (Mayo, 

Nunez et al. 1989) directly associated with the clathrin coat (Pearse and Robinson 1990). This 

internalization pathway is saturable depending on the amount of adaptor proteins available and 

non-reversible (kt_cp) (van Deurs, Petersen et al. 1989) as modeled by Starbuck and 

Lauffenburger (Starbuck and Lauffenburger 1992). As adaptor proteins were not considered in 

this study, constitutive and induced internalization can be referred to as quasi first-order 

processes.  

In the endosomal compartment, kinetic parameters differ from those on the cell surface 

due to the acidic environment. kui2 and kci2 are set equal to ku and kc respectively, as it is 

proposed that the acidic environment of the endosomes does not affect the association / 

dissociation constant of the cytoplasmic adaptor proteins. After internalization, IH, ID, IC and IR 

can be either degraded and processed towards the lysosomes (khd / khc) or recycled towards the 

cell surface. The internalized ligand can also be degraded (khl) but cannot be recycled to the cell 
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surface, as EGF is known to remain predominantly bound to EGFR in the endosomes. Various 

values of endosomal volume have been used in the literature, ranging from the volume of a 100 

nm diameter sphere (Schoeberl, Eichler-Jonsson et al. 2002) to the approximate volume of a 30 

μm diameter cell (Starbuck and Lauffenburger 1992). In the following simulations, we assumed 

the volume of the endosomal compartment identical to the cell volume, hence allowing for the 

definition of internalized members of the pathway on the cell surface.  The reaction terms were 

defined as nine coupled, non-linear PDEs and the weak formulation was used to couple the 

reaction terms with surface diffusion of each member of the pathway on the cell surface as 

shown in Table 1: 
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Component PDE 

R CkRLkRkkRD
t

R
rftsR 




                                               (22)
 

C DkICkCCkCkCkRLkCD
t

C
rdxfdtrfC 




         (23)
 

D DkHkDkIDkDkCCkDD
t

D
rducxtfdD 




           (24)
 

IC IDkICICkILIRkICkICkICkCk
t

IC
uicifirihcxt 11. 




   (25)
 

ID IDkIHkIDkICICkIDkIDkDk
t

ID
ciuiuicihdxt 2211 




   (26)
 

H HkHkDk
t

H
cptuc _




                                                                    (27)
 

IH IDkIHkIHkHk
t

IH
ciuihdcpt 22_ 




                                              (28)
 

IR IRkILIRkICk
t

IR
hcfiri 




.
                                                              (29)

 

IL ILkILIRkICk
t

IL
hlfiri 




.
                                                               (30)

 

 

Table 1: System of equations for the computation of surface concentrations in COMSOL.  

 
The surface diffusion for R, C and D was set to 1x10-9 m2/sec and 1x10-10 m2/sec 

respectively (Kusumi, Sako et al. 1993; Shvartsman, Wiley et al. 2001) and no surface diffusion 

was defined for internalized members of the system. Because no cytoplasmic domain was 

defined in COMSOL, endosomal trafficking was not considered and internalized members were 
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assumed immobile. The parameters are estimates from the literature and are presented in Table 

2: 

 

  

Table 2:  Literature constants. 1. Tzafriri AR, Edelman ER. 2006. 2. C. Starbuck, D.A. Lauffenburger.  1992.  
3. Resat H, Ewald JA, Dixon DA, Wiley SH. 2003.  4. Kholodenko BN, Demin OV, Moehren G, Hoek JB. 
1999. 
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3.4 Results 

3.4.1 Model Validation 
 

The accuracy and stability of computations were evaluated based on model convergence 

with progressive finite-element mesh refinement. All simulations were performed on an Intel  

Core-i7 3.07 GHz processor with 12 gigabytes of RAM using the time dependent solver. Initial 

computations were performed over a time scale of 1200 seconds and a time step of one second. 

The chosen solver uses a time stepping algorithm with an absolute and relative tolerance (Atol and 

Rtol). The error vector (e) is calculated such that the following equation is satisfied before the 

solver proceeds to the next iteration: 

 

                  iyAtoliyRtolie                  (31) 

 

e is the error vector, y the vector of dependent variables and i is the iteration step. Rtol should be 

set at least one order of magnitude lower than the expected deviation. The convergence and 

accuracy of computations were studied by comparing different Rtol values and different mesh 

refinements using fixed Atol. The basic mesh of the two-dimensional system consisted of 4503 

degrees of freedom (df); three successive global refinements were performed using the mesh 

refine function in COMSOL with 16759, 64527 and 253087 df respectively. Model deviation 

decreased between refinements, with similar improvements at 30 and 60 seconds, as shown in 

Figure 3-3.  
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Figure 3-3: Convergence and accuracy of computations. Model deviation was measured at different mesh 
refinements for the highest and lowest computed surface concentrations (receptor-ligand complexes C and 
internalized dimerized ligand-receptor complexes from the coated pits IH respectively) and successive 
improvements were evaluated. Red: normalized deviation between the standard mesh and the first 
refinement. Green: normalized deviation between the first and second mesh refinement. Yellow: normalized 
deviation between the second and third mesh refinement. 

 
 

The deviation between the second and third level of refinement was less than 0.5% for 

maximum concentrations and less than 1% for minimum concentrations at 30 seconds, with 

subsequent improvements at 60 seconds. The second level of refinement was preferred because 

of the reasonable solving time (approximately five minutes). Three values of Rtol (1e-6, 1e-9 and 

1e-12) were compared to study the accuracy of computations. For all mesh refinements, the 

deviations between maximum and minimum computed IH concentrations were identical up to 

the fifth significant digit, indicating that the results had converged and the error from the 

numerical solver was negligible. An Rtol value of 1e-6 was chosen to ensure a reasonable solving 

time. 
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3.4.2  Surface Responses of Controllable Variables 
 

As the system geometry is included in the finite-element model, the cell size, 

micropipette diameter and micropipette distance from the cell need to be carefully selected. In 

these simulations, the diffusion coefficient both in the media and micropipette was set to 1.84e-

10 m2/s (diffusion in water at 20ºC) which was calculated using the Stokes-Einstein equation and 

the viscosity of water at 20ºC μwater = 1 mPa.s. This temperature was selected as subsequent 

experiments were performed at room temperature. To evaluate the system response for various 

geometries, surface plots were generated for two metrics, the Polarization Index (PI) and 

Percentage of receptor Occupancy (PO). PI was used to quantify the degree of asymmetry based 

on the ratio of computed surface concentrations between the half-front and half-back cell 

surfaces with respect to the point source of delivery: 
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High PI values will indicate a markedly asymmetric cell, while PI = 1 will indicate a 

complete loss of asymmetry. Equations 32 to 34 were defined based on signaling-potent 
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members of the signaling pathway exclusively (dimerized ligand-receptor complexes in the 

smooth pits D and coated pits H). Computed PI values were identical for all equations and D and 

H were not included simultaneously due to the higher order of magnitude of D concentrations. 

Similar results were obtained when endosomal fractions were substituted in equations 32 and 33 

and equation 32 was selected for further analysis. A generalized definition applicable to alternate 

and multiple signaling pathways was also defined: 
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The m elements of the matrix refer to the different possible metrics of asymmetry for a 

given signaling pathway, and the n elements refer to n possible signaling pathways that can be 

considered at a time. J possible elements are present in the first pathway but the other signaling 

pathways can have a different number of metrics with either k > j or k < j. For all n possible 

pathways, m different indicators of efficiency can be developed. In conjunction with PI, PO was 

used to evaluate the degree of EGF binding on the cell surface, and hence the potential for the 

delivery to trigger signaling responses: 

 

   ܱܲሺݐ, തܱሻ ൌ  ቈ1 െ ቆ
׬ ሺோାூோሻௗௌା׬ ሺோାூோሻௗௌ್ೌ೎ೖೄ೑ೝ೚೙೟ೄ

׬ ሺோ೔೙೔೟ାூோ೔೙೔೟ሻௗௌೄ

ቇ቉         (36) 
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Computations were performed on a time scale of 1200 seconds with a time step of one 

second, PI and PO were computed at 6 time points (30s, 1, 2, 5, 10 and 20 min) as previously 

defined and three-dimensional surface plots produced in MATLAB. Initial EGF concentration in 

the micropipette was 100 ng/mL. The levels selected for the controlled variables (micropipette 

distance from the cell, micropipette diameter and cell diameter) were 2.5, 5, 10, 20 and 40 μm. 

For every combination of parameters analyzed, the third parameter value was set to 10 μm. The 

initial number of receptors was defined based on Table 2 and was kept constant for the varying 

cell diameters (hence receptor density varied between different cell diameters). Prior to the 

analysis, finite-element model significance was evaluated using published literature values from 

Schoeberl and colleagues (Schoeberl, Eichler-Jonsson et al. 2002). Simulations yielded PO = 

98% in 30 seconds with 50 ng/mL EGF in the culture media using Rinit = 50000 receptors, 

confirming model consistency with respect to published observations (Saso, Moehren et al. 

1997). This was performed to ensure 

 

Surface response plots in terms of PI and PO will be presented in the following pages 

with respect to the controlled variables (micropipette distance from the cell, micropipette 

diameter and cell diameter: Figure 3-4 to Figure 3-9). These plots will illustrate the response of 

the system for various experimental conditions at different times and will allow for the selection 

of a working range of experimental conditions that will be used for subsequent simulations. 

Scaled surface responses will be presented on the left panels to best show response shape, while 

responses scaled to the same absolute value will be presented on the right panels. Responses 

scaled to the same absolute magnitude will be useful in evaluating changes in the range of 

computed PI and PO over time. 
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Figure continues on next page 

Response: PI 
Variables: cell diameter & pipette diameter 
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Figure 3-4: Surface responses PI plots for cell diameter versus micropipette diameter. Responses with respect 
to the same absolute values are presented on the right side. The micropipette distance from the cell surface 
was set to 10 μm. 

Response: PI 
Variables: cell diameter & pipette diameter 
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Figure continues on next page 

Response: PO 
Variables: cell diameter & pipette diameter 
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Figure 3-5: Surface responses PO plots for cell diameter versus micropipette diameter. Responses with 
respect to the same absolute values are presented on the right side. The micropipette distance from the cell 
surface was set to 10 μm. 

Response: PO 
Variables: cell diameter & pipette diameter 
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Figure continues on next page 

 
  

Response: PI 
Variables: pipette distance & cell diameter 
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Figure 3-6: Surface response PI plots for micropipette distance versus cell diameter. Responses with respect 
to the same absolute values are presented on the right side. The micropipette diameter was set to 10 μm. 

Response: PI 
Variables: pipette distance & cell diameter 
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Figure continues on next page 

 

Response: PO 
Variables: pipette distance & cell diameter 
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Figure 3-7: Surface response PO plots for micropipette distance versus cell diameter. Responses with respect 
to the same absolute values are presented on the right side. The micropipette diameter was set to 10 μm. 

Response: PO 
Variables: pipette distance & cell diameter 
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Figure continues on next page 

Response: PI 
Variables: pipette diameter & pipette distance 
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Figure 3-8: Surface response PI plots for micropipette distance versus micropipette diameter. Responses with 
respect to the same absolute values are presented on the right side. The cell diameter was set to 10 μm. 

Response: PI 
Variables: pipette diameter & pipette distance 
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Figure continues on next page 
 

Response: PO 
Variables: pipette diameter & pipette distance 
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Figure 3-9: Surface response PO plots for micropipette distance versus micropipette diameter. Responses 
with respect to the same absolute values are presented on the right side. The cell diameter was set to 10 μm. 

Response: PO 
Variables: pipette diameter & pipette distance 
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As shown in Figure 3-4, decreasing the diameter of the delivery system allows for higher 

computed PI for a cell diameter between 20 and 40 μm.  Hence, a decrease in the amount of EGF 

molecules released in the cell vicinity allows for higher polarization when the cell diameter is 

significantly larger than the pipette diameter. This phenomenon is further amplified at later time 

points.  Therefore, the design of the smallest source of EGF appears to be the optimal approach 

to maximize PI. Polarization is also affected by the cell diameter as shown in Figure 3-4 and 3-6; 

higher cell diameters allow for up to 3.5 fold increase in PI. After 10 minutes, the increase in PI 

with increasing cell diameter exhibited a saturable profile with no significant improvements 

computed for cell diameters greater than 20 μm. Regarding the micropipette distance from the 

cell, shorter distances allowed for slightly higher PI values as shown in Figure 3-8 thus 

indicating distances below 10 μm from the cell should be preferred in our analysis. As 

demonstrated with the non-scaled surface plots, the magnitude of responses significantly 

decreases over time. The selection of experimental conditions will affect PI in the early stages of 

delivery, as in most conditions PI converges towards 1 after 10 minutes thereby demonstrating 

the loss of polarized signal over time.  

 

Results were reversed for PO as shown in Figure 3-5. Changes in cell diameter did not 

generate significant variations of computed PO values with a maximum computed occupancy 

difference of 6% between a 2.55 and 40 μm diameter cell after one minute. The initial number of 

receptor was kept constant in all simulations hence indicating a larger cell had a lower receptor 

density compared to a smaller cell. We analyzed the effect of constant receptor density between 

cell dimensions on computed occupancy values and demonstrated less than 3% occupancy 

differences between the largest and smallest cell diameter on the cell surface (data not shown). 
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This indicates the kinetic of binding on the cell surface dominates for a given ratio of the initial 

concentration compared to the availability of free receptors with the diffusion in water being the 

main system parameter. For the given number of receptors, the concentration of EGF reaching 

the surface for receptor binding will dictate responses with respect to PO, thereby indicating the 

controllable parameters of the delivery system (micropipette diameter and distance from the cell) 

should allow for the control of target occupancy values. Only an increase in the number of 

receptors to unrealistically high values will significantly affect the response with respect to PO. 

As shown in Figure 3-9, large pipette diameters allowed for increased occupancy levels; pipette 

diameters greater than 10 μm did not produce further improvements of computed PO after 10 

minutes. Finally, the distance from the cell surface had no significant effects on PO when 

diffusion in water was selected, as shown in Figure 3-7 and 3-9. 

 

Optimal system conditions for PI and PO differ. Maximal polarization is reached for 

large cells with a small micropipette positioned close to the cell surface. Conversely, maximum 

occupancy levels will be reached with a delivery system of large diameter independently of the 

cell size, thereby demonstrating perfectly polarized and signaling-potent states are reached under 

different experimental conditions. To develop an approach for polarization in the context of 

signaling, levels of receptor occupancy need to be analyzed in the context of downstream 

signaling pathways, such as the MAPK / Erk as described previously. Schoeberl and colleagues 

demonstrated the phosphorylation of Erk in the intracellular compartment is subject to signal 

amplification in HeLa cells. A similar amount of phosphorylated Erk were computed for EGF 

concentrations in the media ranging between 50 and 0.5 ng/mL after five minutes while 0.125 

ng/mL EGF allowed for 70% of the maximum amplitude of Erk activation after 12 minutes 
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(Schoeberl, Eichler-Jonsson et al. 2002). Signal amplification permits activation of downstream 

effectors of the signaling cascade over a wide range of concentration of dimerized / activated 

receptors. Using kinetic parameters from Schoeberl’s analysis, we analyzed occupancy levels 

(PO) on a single cell (10 μm diameter) cultivated in media containing 0.5 and 0.125 ng/mL EGF, 

as shown in Figure 3-10. 

 

 

Figure 3-10: Analysis of receptor occupancy levels on a single cell cultivated in 0.5 ng/mL (left panel) and 
0.125 ng/mL EGF (right panel) using kinetic parameters from Schoeberl, Eichler-Jonsson et al., 2002. The 
cell diameter was 10 μm. PO was computed as shown in equation (36). 

 

0.5 ng/mL EGF in the media generated occupancy levels of 55% after five minutes at 

which 90% of the maximum Erk activation was possible based on Schoeberl’s analysis. With 

0.125 ng/mL EGF, 70% of the maximal MAPK activation was observed after 12 minutes and our 

simulation demonstrated occupancy levels of 15% at this time. Our model results are consistent 

with Schoeberl et al.’s findings which demonstrated that 32% of receptors are 

autophosphorylated after five minutes with 0.5 ng/mL EGF and 14% after 12 minutes with 0.125 

ng/mL (Schoeberl, Eichler-Jonsson et al. 2002). This approach allows for the definition of target 

occupancy levels consistent with signal transduction following delivery. Therefore, 15% receptor 

0.5 ng/mL EGF 0.125 ng/mL EGF 
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occupancy (PO) was selected as a lower threshold to ensure asymmetric signal significance 

following EGF delivery (minimum of 70% of maximal MAPK activation). The target of this 

approach is not to completely prevent MAPK signaling on a specific cell side, but rather generate 

heterogeneities in the magnitude of MAPK activation sufficiently large to enable different 

responses after cell division. In this context, variations between 70 to 90% of signaling could 

generate various pools of early gene products (jun and fos for example) leading to differential 

late genes profiling through proteins such as AP-1, a heterodimer of jun and fos (Hess, Angel et 

al. 2004). 

 

The number of EGF receptors is subject to significant variations between cell types, 

ranging between Rinit = 3x106 receptors/cell in EGFR-overexpressing A431 cells and HER82 

(Defize, Arndt-Jovin et al. 1988) (Benveniste, Livneh et al. 1988) to normal levels of expression 

between 1x104 – 2x105 receptors/cell as observed  in HeLa (Berkers, van Bergen en 

Henegouwen et al. 1991), B82, COS, NIH-3T3, HER84, HER22 and human glioma cell. These 

variations will significantly affect PO for the same delivery strategy. The occupancy range 

between 15% and 55% was selected as a reference to enable comparison between different 

cellular systems.  

 

Regarding system design, a micropipette diameter of 2.5 μm was selected. The analysis 

demonstrated that this size allowed for occupancy levels to be consistent with signaling while 

maximizing PI as shown in Figures 3-8 and 3-9. The chosen distance between the cell surface 

and the micropipette was 5 μm. This distance was preferred as it represents a more achievable 

target experimentally while allowing for submaximal PI values. For the cell dimensions, we 
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demonstrated that larger diameters allowed for higher PI values at early time points, while 

diameters over 20 μm exhibited no improvements at later time points. A diameter of 10 μm was 

selected, a size consistent with reported diameters of suspension (rounded) mammalian cells 

such as 13 μm for HeLa (Fujioka, Terai et al. 2006) and 14 μm for fibroblasts (Frisch and 

Thoumine 2002). Cell types need to be carefully selected during experimental design to ensure 

proper diameter range and polarization potential. 

 

3.4.3 Sensitivity Analysis on the Parameters 
 

All kinetic parameters identified in the literature can be considered as starting points to 

define the range of biologically relevant parameters. The robustness of the developed metrics (PI 

and PO) was studied to evaluate the impact of parameter uncertainty on these indicators. This 

analysis should provide insights into key regulatory steps in the process based on polarization 

(PI) and signaling potential metrics (PO). Only relative measures are discussed in this section as 

the potential effects of experimental error on the analysis were not strictly assessed with this 

mathematical model. A ‘design of experiments’ approach was used to minimize the required 

number of simulations and Plackett-Burman (PB) designs (resolution III) were selected. 

Sensitivity analysis was performed in COMSOL with MATLAB using a hadamard 24 matrix. 23 

parameters were evaluated in 24 runs and all parameters were varied 10-fold for the analysis. 

The dependant variables selected were computed at two time points (30 seconds and 2 minutes) 

and computed effects were presented using Pareto charts in MATLAB. The finite element model 

was built as defined previously and initial EGF concentration in the micropipette was 100 

ng/mL. 
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Figure 3-11: Pareto charts for PI and PO after 30 seconds and 2 minutes of delivery (D = 1.84x10-10 m2/s). Top 
left: PI after 30 seconds. Top right: PO after 30 seconds. Bottom left: PI after 2 minutes. Bottom right: PO 
after 2 minutes. The blue line indicates cumulative effects presented in percentage of total computed effects 
(right y-axis). 

 
 

The left axis of the Pareto Charts indicates the change in computed metric (PI or PO) 

when the independent variable value goes from upper to lower bound. On the right side, 

cumulative effects are presented. As shown in Figure 3-11, the pool of most important 

parameters for PI at 30 seconds was kfd (dimerization of receptor-ligand complexes), the initial 

number of receptor (Rinit) and the initial EGF concentration in the delivery system (a0).  These 

three parameters accounted for approximately 50% of the overall measured effects. Interestingly, 

we found kci2 (endosomal uncoupling constant) in the second category of significant parameters 

30 s 

2 min 

30 s 

2 min 

Pareto Chart PI 

Pareto Chart PI 

Pareto Chart PO 

Pareto Chart PO 
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along with other parameters affecting the concentration of dimerized receptor-ligand complexes 

in the smooth pits D (ku for dimerized complexes going from the coated pits to the smooth pits 

and kx for the recycling rate of internalized dimerized complexes ID to the cell surface in the 

smooth pits). After 2 minutes of delivery, PI lost sensitivity to the initial number of receptor and 

to the initial concentration of EGF. Therefore, the initial EGF concentration affects PI at early 

time points when the first wave of EGF molecules reaches the cell surface. As concentration 

around the cell rapidly homogenizes, EGF concentration has no effect on PI. For PO, this is 

notably different as a0 was the most significant parameters both at 30 seconds and 2 minutes. For 

PO, we identified the forward rate constant of binding kf, Rinit and the rate of synthesis of new 

receptors ks as significant. 

 

In the following section, we will evaluate two strategies for controlled delivery of EGF in 

the cell microenvironment. PI, PO and a new set of metrics such as surface concentrations and 

velocity of formation of dimerized receptor-ligand complexes in the smooth (D) and coated (H) 

pits will be used to assess the potential of each method. In a first approach, a single cell will be 

cultured in a collagen matrix (low diffusion coefficient) and the micropipette will be loaded with 

a solution containing EGF (diffusion in water). For the second strategy, a micropipette will be 

loaded with a gel of controlled porosity such as acrylamide (low diffusion coefficient) and EGF 

will diffuse in water in the culture chamber. Experimental conditions (cell diameter, micropipette 

diameter and distance from the cell surface) will be defined according to section 3.4.2. 
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3.4.4 Diffusion in the Media as a Controlled Variable 
 

In this section all computations were performed on a time scale of 1200 seconds with a 

time step of 1 second. Initial conditions are presented in matrix O  [ Qi=1,…,J ; Rk=1,…,L ; Sm=1,…,N ; 

To=1,…,P ] (37) in which Q is the set of J initial kinetic conditions including all rate constants; R is 

the set of L initial chemical conditions including initial concentration and diffusion values; S is 

the set of N initial geometrical conditions including micropipette distance and diameter, array 

volume/surface and boundary conditions; and T is the set of solver parameters including 

tolerances, type and settings of the numerical solver used. We defined a range of viscosity values 

for the analysis based on published viscosity measurements with up to 0.1% glutaraldehyde used 

for cross-linking (Ho, Lin et al. 2001): 

 50 cp = 0.050 kg m-1 s-1 (D50 = 3.69x10-12 m2/s) 

 100 cp = 0.100 kg m-1 s-1 (D100 = 1.84x10-12 m2/s) 

 150 cp = 0.150 kg m-1 s-1 (D150 = 1.23x10-12 m2/s) 

 

The diffusion coefficient D was estimated using the Stokes-Einstein equation: 

      R

kT
D

6
                       (38) 

 

k is the Boltzmann constant (1.38x10-23 m2.kg.s-2.K-1), T is the temperature (298 ºK) and μ is the 

viscosity of the media. R is the radius of a spherical particle: 

           ܴ ൌ ටଷெௐఘ
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MW is the molecular weight of the protein at 6045 Da and ρ is the density at 0.69 g/cm3. In this 

system, concentration of EGF was 100 ng/mL in the micropipette. The diffusion coefficient for 

EGF in the micropipette was estimated based on the viscosity of water at 20ºC (Dtube=1.84x10-10 

m2/s). The diffusion coefficient in the media was a controlled variable (Dmed = D50; D100; D150). 

 
 

Concentrations 
 

We first analyzed concentrations of various members of the kinetic system on the cell 

surface to identify spatial heterogeneities. Line integrals were used to estimate concentrations for 

the model system and results are presented in Figure 3-12. The integrals were the appropriately 

oriented line integrals over the cell surface facing (frontS) and away (backS) from the source(s) 

of free ligand. The domain of these integrals can be assigned as desired, and orthonormal 

projections of the cell relative to the pipette were used.  
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Figure 3-12: Analysis of computed concentrations of various members of the kinetic system (receptor-ligand 
complexes C, dimerized receptor-ligand complexes in the smooth pits D, dimerized receptor-ligand complexes 
in the coated pits H) for D50 = 3.69x10-12 m2/s. Top left: Computed concentration of C (blue) and D (green) on 
the back cell side. Top right: Computed concentration of C (blue) and D (green) on the front cell side. Bottom 
left: Computed concentration of D (blue) and H (green) on the back cell side. Bottom right: Computed 
concentration of D (blue) and H (green) on the front cell side. 

 
 
 

The various ranges of concentration of the different members of the system for the 

highest diffusion coefficient value (D50) indicate the dimerization process generates a significant 

reduction in computed concentrations compared to ligand-receptor complexes C, with C values 

ranging around 10-15 mole/m3, dimerized ligand-receptor complexes in the smooth pits D around 

10-17 mole/m3 and dimerized ligand-receptor complexes in the coated pits H around 10-22 

mole/m3. This is a result of the second order kinetics for receptor-ligand complex dimerization; 

potential signal transducers (D, H) are significantly less concentrated than non-transducers (C). 

Concentration = f(t) / back cell side 

Concentration = f(t) / back cell side Concentration = f(t) / front cell side 

Concentration = f(t) / front cell side 
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Interestingly, concentrations of D and H steadily increased over the course of computations, 

indicating no saturation was reached over the period investigated while C reached a plateau after 

7 minutes. This is indicative of equilibrium between the formation of C and its subsequent 

involvement in dimerization and non-specific internalization. The analysis of the percentage 

occupancy will demonstrate that this is not a result of receptor saturation on the cell surface after 

7 minutes. We next analyzed the concentration differences between the user-defined front and 

back cell sides with respect to the position of the point source of delivery as shown in Figure 3-

13.  
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P is the cell perimeter. 
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Figure 3-13: The measurement of the differential concentration between the front and back cell side for three 
diffusion coefficients demonstrates the effect of mass transfer limitation for the creation of spatial 
heterogeneity of concentrations. Left: differential of D concentration computed as per equation (40).  Right: 
differential of H concentration computed as per equation (41). (D50 = 3.69x10-12 m2/s, D100 = 1.84x10-12 m2/s, 
D150 = 1.23x10-12 m2/s). 

 
 

These types of windows represent ways by which cellular responses could be elicited in a 

spatially controlled manner. A focus was given to the members with the potential to elicit 

intracellular signals, i.e. the dimerized receptor-ligand complexes both in the smooth and coated 

pits. In the case of D, concentration differences were measured on the cell surface as shown in 

Figure 3-13. A decrease of the diffusion coefficient contributed to an increase in computed 

spatial heterogeneities at the expense of time. The differential D concentration exhibited a non 

monotonic profile, with maximum computed differences between the front and the back cell 

sides shifting in time as the diffusion coefficient was decreased (14 minutes for D50, 15 minutes 

for D100 and 17 minutes for D150). Hence mass transfer limitation in the direct cell 

microenvironment could contribute to the generation of greater polarized signals in the later 

stages of delivery, as computed differentials were almost identical up to 4 minutes. Similar 

results were observed for H, which were adjusted in the relative range of concentration. 

 

Differential Concentration D = f(t) Differential Concentration H = f(t) 

  
D50 

D100

D150 

D50 

D100 

D150 
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During signal transduction, concentration information outside the cell (EGF) is translated 

in kinetic information in the cytoplasmic compartment through the velocity of phosphorylation 

of target molecules; we further analyzed computed velocities in the system to evaluate the 

potential for MAPK activation. 

 

Velocity of Formation 
 

Prior reports of modeling of the EGF signaling cascade demonstrated the velocity of 

receptor activation (i.e. phosphorylation) is a rate controlling step in signal amplification for 

homodimeric receptors (Schoeberl, Eichler-Jonsson et al. 2002). As the present model does not 

include the signaling pathway itself, we considered the velocity of receptor dimerization and 

aggregation in the coated pits (velocity of formation of dimerized receptor-ligand complexes in 

the smooth pits D (vD) and velocity of formation of dimerized receptor-ligand complexes in the 

coated pits H formation (vH)) as potential indicators of the strength of signal transduction 

initiation. We expect these velocities to be correlated with the velocity of dimerized receptor 

phosphorylation experimentally and computational results are presented in Figure 3-14.  
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Figure 3-14: Velocity of formation of dimerized receptor-ligand complexes in the smooth pits D and 
dimerized receptor-ligand complexes in the coated pits H for three different diffusion coefficients and 
illustration of the effect of mass transport limitation on the velocity profiles. Top left: Velocity of formation of 
D on the back cell side computed as per equation (42). Top right: Velocity of formation of D on the front cell 
side computed as per equation (43). Bottom left: Velocity of formation of H on the back cell side computed as 
per equation (44). Bottom right: Velocity of formation of H on the front cell side computed as per equation 
(45) (D50 = 3.69x10-12 m2/s, D100 = 1.84x10-12 m2/s, D150 = 1.23x10-12 m2/s). 

 
 

Velocity = f(t) / back cell side Velocity = f(t) / front cell side 

Velocity = f(t) / back cell side Velocity = f(t) / front cell side 

  

  

D50 

D100

D150 

D50 

D100

D150 

D50 

D100
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The plots generated for D and H exhibited a non monotonic profile observed at the 

highest diffusion coefficient (D50). In this case, the maximum velocity capacity is reached in 

approximately 10 minutes while with mass transfer limitation (D100 and D150), maximal velocity 

is reached at a later time point and its amplitude is reduced. This indicates mass transfer 

limitations in the cell vicinity could affect the rate of receptor autophosphorylation following 

delivery and ultimately Erk activation. The time needed to reach this maximum amplitude with 

mass transfer limitation was consistent with computed times for maximal autophosphorylation 

levels in non-saturating EGF conditions between 15 and 20 minutes (Schoeberl, Eichler-Jonsson 

et al. 2002). This indicates system response, in terms of MAPK activation, can be different 

according to various delivery strategies. Of relevance, the effect of the diffusion coefficient on 

the velocity was reversed when the differential velocities of formation of D and H were 

analyzed. 
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Figure 3-15: The measurement of the differential velocities between the front and back cell side for three 
diffusion coefficients demonstrates the effect of mass transfer limitations for the creation of spatial 
heterogeneity of velocities. Left: differential of D velocity computed as per equation (46). Right: differential of 
H velocity computed as per equation (47).  (D50 = 3.69x10-12 m2/s, D100 = 1.84x10-12 m2/s, D150 = 1.23x10-12 m2/s). 

 
 

As shown in Figure 3-15, a small increase in the differential velocity was observed when 

the diffusion coefficient was decreased (smaller compared to what was observed with 

concentrations). In this situation, the monotonic profile exhibited a limited temporal shift 

compared to what was observed with the computed concentrations and maximal differential 

values were obtained at earlier time points (2 minutes for D50, 3 minutes for D100 and 4 minutes 

for D150 in the case of D). The conclusions were similar for H. Two major events seem to occur 

during the polarization process:  

 

 The differential rate of formation of dimerized receptor is maximal at early time points (2 

–  6 minutes) and is slightly affected by the diffusion coefficient; 

 The differential concentration of dimerized receptor is maximal at later time points (10 – 

18 minutes) and is greatly affected by the diffusion coefficient. 

 

Differential Velocity D = f(t) Differential Velocity H = f(t) 
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This analysis provided guidelines as how to engineer systems in the context of polarized 

signaling. A decrease of the diffusion coefficient in the cell microenvironment slowed down the 

velocity profile of receptor dimerization and by inference of receptor phosphorylation / 

activation, while at the same time allowed for maximal computed differentials (concentration 

and velocity of formation) between the front and back cell sides. Internalization plays an 

important role in the regulation of EGF signalling. At low EGF concentrations, the 

phosphorylation kinetic is slowed down thereby increasing the relative importance of endosomal 

signals while at high EGF concentrations the rapid phosphorylation kinetic gives little 

importance to endosomal signals (Schoeberl, Eichler-Jonsson et al. 2002). An approach in which 

the diffusion coefficient is decreased in the direct cell vicinity could increase the significance of 

endosomal signals in the context of global cellular responses.  

 

Receptor dimerization is also the prerequisite to the transphosphorylation step initiating 

the kinase activity. However, the role of kinase initiation on EGFR internalization is not clear. 

Some reports indicate the two processes are independent and that clathrin exclusively dictates 

EGFR complexes internalization (Luo, Cheng et al. 2011). Conversely, others report the 

dimerization of receptors controls the internalization process (Wang, Villeneuve et al. 2005). We 

propose the high velocity differential computed at early time points could elicit different kinetics 

of endocytosis in the cytoplasm between the front and back cell sides with respect to the point 

source of delivery.  

 

Finally, EGF-EGFR complexes signal once in the endosomes and the subcellular 

diversity of protein complexes docking the Grb2-SOS system leads to different signaling 
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outcomes with respect to surface signals (Haugh and Lauffenburger 1998; Wang, Pennock et al. 

2002). Also, a high initial velocity of heterodimer formation in E1/4 cells (which express both 

EGFR and Erbb4) contributes to selective binding of Grb2-SOS complexes to heterodimers 

versus homodimers (Nakakuki, Yumoto et al. 2008), thus demonstrating another mechanism of 

signal specificity directed by kinetic information.  

 

Two successive events occur during polarization, with high velocity differentials 

computed initially followed by high concentration differentials at later time points. The 

maximum velocity of formation of dimerized receptors reached in the first ten minutes indicates 

maximum Erk activation would occur during this time frame. Mass transfer limitation could 

contribute to heterogeneous activation due to high velocity differentials computed in the first six 

minutes of delivery. The spatial impact on cellular processes such as internalization and signal 

specificity illustrate the potential effect of controlled release of growth factors around a single 

cell in the context of signaling. To further analyze the spatial asymmetry in the system, we 

evaluated the Polarization Index PI as described above. 
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Polarization Index 

 

Figure 3-16:  Asymmetric delivery on the scale of a single cell is a fast process. PI demonstrates the rapid 
decrease of dimerized receptors asymmetry on the cell surface over time. Comparison between different 
values of diffusion coefficient demonstrates a modification of PI during the first minutes, with increased mass 
transfer limitation contributing to an increase in PI (D50 = 3.69x10-12 m2/s, D100 = 1.84x10-12 m2/s,                  
D150 = 1.23x10-12 m2/s). 

 
PI was computed as previously using equation (32). Figure 3-16 shows typical simulation 

results in which maximal PI was achieved at the beginning of the process followed by a rapid 

decrease in magnitude as the ligand subsequently diffuses to the back side of the cell. PI reached 

an approximate value of 1.1 in five minutes, which indicates a loss of polarized bound entities on 

the cell surface. The initial wave of molecules is responsible for the maximal PI value, as with 

mass transport limitations the time required to reach the back cell side via diffusion increases. 

The early polarized state is thus consistent with highly heterogeneous velocities but not 

concentrations, as demonstrated in the previous section. Hence, while the maximum asymmetry 

of surface concentrations is reached initially, the maximum differential of concentrations is 

reached after 10 minutes. This result is due to the considerably low range of initial computed 

concentrations.  

 
D50 

D100

D150 
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The polarization strategy in the context of EGF binding and trafficking favors velocity 

sensitive systems and thus allows for spatially-controlled elicited MAPK signals at the single-

cell level. Signal control could occur both in terms of the amount of phosphorylated downstream 

effectors (MEK, Erk) regulating signal intensity and in terms of signal specificity as discussed 

previously. While PI does not provide additional information compared to the analysis of 

concentrations and velocities, PI is non-dimensional and can serve as a reference for the 

comparison of polarization strategies and efficiencies between different delivery systems. PI can 

also be evaluated experimentally by measuring the ratio of fluorescence intensities on a cell 

surface. PI will be used for model fit with experimental data. To ensure that the computed 

differentials are consistent with signaling, we further studied the percentage of receptor 

occupancy (PO) as shown in Figure 3-17. 

 

Percentage Occupancy 
 

 
Figure 3-17: Analysis of percentage of receptor occupancy PO computed as per equation (36) for three 
diffusion coefficients. The computations indicate that levels of binding on the cell surface are consistent with 
signaling levels and a reduction in the diffusion coefficient slightly affects the profile of occupancy over time 
(D50 = 3.69x10-12 m2/s, D100 = 1.84x10-12 m2/s, D150 = 1.23x10-12 m2/s). 
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Computed concentrations on the cell surface were consistent with signaling potential. PO 

exhibited a monotonic profile with increasing computed values over the course of the 

computation, indicating saturation of free receptors did not occur.  With the highest diffusion 

coefficient (D50), a PO of 25% was reached in two minutes. In the case of EGFR, we discussed 

previously that 70 to 90% of maximal Erk activation can be observed for occupancy ranges 

between 15 and 55%. Occupancy levels after one minute under diffusive mass transport 

limitations were thus consistent with signal activation. Furthermore, we investigated the 

differential occupancy levels between the front and back cell side with respect to the point source 

of factor delivery as shown in Figure 3-18: 
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Figure 3-18: Comparison between front and back computed percentage occupancy (PO computed as per 
equation (36)) with respect to the point source of factor delivery for three different diffusion coefficient 
values. Maximum computed occupancy differences are indicated in red. Top left: D50 = 3.69.10-12 m2/s. Top 
right: D100 = 1.84.10-12 m2/s. Bottom left: D150 = 1.23.10-12 m2/s.  

 
 

The plots above illustrate the “polarization window” available to reach a threshold on the 

front cell side while not initiating signals on the back cell side, hence activating the signaling 

pathway in a spatially controlled manner. The maximum computed window between the front 

and back cell side was reached during the first three minutes of the polarization process with a 

10% window reached after two minutes for D50, 13% after two minutes 30 seconds for D100 and 

16% after three minutes for D150. As the diffusion coefficient in the microenvironment was 

decreased, the maximum occupancy differential was reached at later time points but no later than 

three minutes post-delivery, time frame consistent with the previously identified ‘velocity 

D50 D100 

D150 
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polarized” state. Based on Schoeberl’s analysis, their results demonstrated that heterogeneity of 

occupancy levels on the cell surface were not compatible with asymmetric activation of Erk in 

the cytoplasmic compartment after three minutes as all systems will have reached the lower 

threshold of 15% PO on the back cell side by this time. Occupancy levels were completely or 

near-completely homogeneous after 10 minutes. This demonstrates that the constant release of 

factor in the cell vicinity may not be consistent with achieving polarization, and that shorter 

lengths of EGF pulses should be studied. Engineered microenvironments of soluble factor can be 

translated in heterogeneous occupancy levels on the cell surface at early time points (< 3 min), 

thus offering the possibility for transient signals activated in a spatially controlled manner.  

 

Experimental Results 
 

Delivery experiments of FITC in collagen were performed to estimate gel viscosity and 

define necessary collagen concentrations to ensure consistency with preliminary computations. 

Experimentally, several technical difficulties were encountered: 

 

 The concentration of collagen consistent with preliminary computations and analysis was 

not compatible with imaging and the high gel density did not allow for brightfield / phase 

contrast / DIC imaging; 

 Collagen autofluorescence was observed in the FITC channel, along with 

autofluorescence from the culture media; 

 Collagen adherence in glass chambers was limited and cast gels detached from the glass 

surface upon media addition. To circumvent this issue, collagen coating of glass was 

performed with no observed improvements; 



84 
 

 Collagen dehydration was observed, even when the gel was submerged in culture media 

and it was hypothesized this was caused by the high gel density; 

 The micropositioning of the delivery system in the cell vicinity significantly disturbed the 

collagen matrix. Thus the diffusion properties of EGF molecules in the cell 

microenvironment could have been considerably altered.  

 

We were not able to accurately measure the diffusion of FITC in collagen gels and hence 

evaluate experimentally gel viscosity and diffusivity. Also, these challenges illustrated the 

difficulty associated with high resolution fluorescent imaging of cells cultivated in collagen 

matrices necessary for polarization analysis in vitro. 

 

Summary 
 

We demonstrated how a two-dimensional finite-element model of diffusing ligand with 

binding to surface receptors could be used to analyze the spatial distribution of molecules. We 

developed a set of metrics to analyze and quantify the degree of both asymmetry and occupancy 

at the single cell level. Two successive stages were identified during the controlled delivery 

process: a “velocity polarized” state followed by a “concentration polarized” phase, the latter 

being the most influenced by the diffusion coefficient in the media. The analysis of PI 

demonstrated the transient nature of bound molecules asymmetry on the cell surface and how a 

decrease of the diffusion coefficient in the microenvironment could contribute to improvements 

of PI at early time points. Even with high mass transfer limitation, the evaluation of occupancy 

levels indicated that local concentrations were consistent with the activation of downstream 

signaling pathways such as MAPK/Erk. When studying the occupancy differentials, we 
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demonstrated that a polarization window can be created during the first minutes. In conjunction 

with the velocity polarized state, the first minutes of the delivery offer the possibility for spatially 

controlled signals both in terms of intensity and specificity. Spatial heterogeneities in the 

velocity of formation of target members of the pathway could be responsible for various kinetics 

of internalization and associated pools of cytoplasmic adaptor proteins. Nonetheless, these 

effects would be transient as computed velocities of formation were homogeneous after ten 

minutes along with occupancy levels. As such, polarization could be achieved only if it is 

correlated with the cell cycle, thus ensuring the cell will divide before asymmetry is lost. 

 

3.4.5 Diffusion in the Micropipette as a Controlled Variable 
 

In this section, a second strategy for controlled EGF release was evaluated. For this 

model, the cell was cultured in media (diffusion of EGF in water at 20ºC), and polarized delivery 

was accomplished through a micropipette loaded with a gel of controlled porosity. Acrylamide 

was selected and preliminary experiments were performed to evaluate the diffusion coefficient in 

acrylamide gels at different percentage of cross-linking. Initial experiments were performed in 

glass tubes (length of four centimeters, diameter of 5 millimeters) loaded with Fluorescein 

IsoThioCyanate (FITC, Molecular Probes, Canada) at a concentration of 50 μg/mL. FITC 

Release experiments from acrylamide gels were performed to evaluate gel viscosity and further 

assess the diffusion coefficient of EGF in the micropipette. 
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Material and Methods 
 
Samples of various polyacrylamide gels were prepared as outlined in Table 3.   

 

Table 3: Preparation of polyacrylamide gels. 

 
 

The various gels were prepared by mixing the reported volumes of 30% / 0.8% 

Acrylamide/Bis-acrylamide stock solution (Invitrogen, Canada), phosphate buffer solution (PBS 

2x, Invitrogen Canada) and de-ionized water.  FITC solution was added to the gels and the 

mixture was subsequently degassed for two to five minutes. After degassing, 10 μL of 

Ammonium PerSulfate (APS, Gibco, Canada) and TEtraMethylEthyleneDiamine (TEMED, 

Invitrogen, Canada) were added to the solution to initiate gelling. The mixture was immediately 

transferred into a tube and covered with a lightly greased cover slip to prevent oxygen from 

entering the system.  

 

A Cary Eclipse spectrofluorimeter (courtesy of Professor Guillemette, Department of 

Chemistry, University of Waterloo) was used to measure sample fluorescence.  Each cuvette was 

filled with a PBS buffer solution and a micro-stir bar was inserted to ensure proper 

homogenization and accurate fluorescence readings.  The loaded tube to be examined was 

inverted and placed on top of the cuvette to ensure contact with PBS solution. The diffusion of 

FITC through various gel concentrations was determined by examining the increase of 

fluorescence of each sample in the cuvette.  The following setup was used for analysis: 
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 Carry Eclipse: kinetics mode 

 Excitation Wavelength: 485 nm ; Excitation Slit: 2.5 nm 

 Emission: 520 nm; Emission Slit: 5 nm 

 Average time: 1 s 
 

Experimental Results 
 
The release of FITC from various polyacrylamide gels and increase of FITC fluorescence in the 

cuvette is presented in Figure 3-19: 

 

Figure 3-19: Fluorescence time-course of FITC release from gels of various % polyacrylamide. 5% 
polyacrylamide: Dark blue; 7.5% polyacrylamide: Brown; 12.5% polyacrylamide: Light blue; 20% 
polyacrylamide: Pink. 

 
 

The data presented above demonstrated a correlation between polyacrylamide gel 

percentage and release of FITC from the gel. Lower percentage gels released FITC more rapidly 

in the cuvette but some discrepancy was observed between the 7.5% and 12.5% polyacrylamide 

gels; possible causes will be discussed below. This data was further used to estimate the initial 

release rate from the macrotube as shown in Figure 3-20: 
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Figure 3-20: Initial Diffusion Rates of FITC from polyacrylamide gels at various percentages. 

 
 

The results above exhibited a linear relationship between the initial diffusion rate of FITC 

and the gel concentrations. Using Fick’s first law, we calculated the diffusion coefficient for 

three percentages of cross-linking (5%, 10% and 20%). The Stokes-Einstein equation, the 

molecular weight and density of FITC (MW = 389.38 Da; ρ = 1.548 g/cm3) were further used to 

assess the viscosity of each gel: 

 5% : DFITC1 = 2.4x10-13 m2/s and μ1 =  1.46 kg/m.s 

 10% : DFITC2 = 1.6x10-13 m2/s and μ2 =  2.2 kg/m.s 

 20% : DFITC3 = 8x10-13 m2/s and μ3 = 4.39 kg/m.s 

Using these viscosity values, the diffusion of EGF in these gels was measured: 

 D5 = 1.26e-13 m2/s;  

 D10 = 8.4e-14 m2/s;  

 D20 = 4.2e-14 m2/s.  
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During FITC delivery experiments, several technical difficulties were encountered. First, 

rapid cross-linking of highly viscous solutions (cross-linking > 10%) prevented homogeneous 

loading of macrotubes. Even for lower cross-linking values, gel loading was affected by bubble 

formation occurring during the degassing step. Following loading, gels exhibited some 

contraction from the macrotube walls, thereby increasing the surface directly in contact with the 

media and potentially affecting the actual release rate. This phenomenon could explain the 

discrepancy observed between the 7.5% and 12.5% polyacrylamide gels. Finally, the loading 

process was unsuccessful during scale-down experiments, raising a feasibility concern with 

respect to the preparation of homogeneously loaded micropipettes in the μm range. 

 

Concentrations 
 

In this section, we focus on the differences observed with respect to the first delivery 

strategy. The two-dimensional finite-element model used in COMSOL was identical to the one 

used in the previous section apart from the changes for the diffusion coefficient. The diffusion 

coefficient in the media was defined based on diffusion in water at 20ºC (Dmed = 1.84 e-10 m2/s). 

Diffusion in the micropipette was a controlled variable (D5, D10 and D20). 
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Figure 3-21: Analysis of computed concentrations of various members of the kinetic system (receptor-ligand 
complexes C, dimerized receptor-ligand complexes in the smooth pits D, dimerized receptor-ligand complexes 
in the coated pits H) for D5 = 1.26x10-13 m2/s in the delivery system. Top left: Computed concentration of C 
(blue) and D (green) on the back cell side. Top right: Computed concentration of C (blue) and D (green) on 
the front cell side. Bottom left: Computed concentration of D (blue) and H (green) on the back cell side. 
Bottom right: Computed concentration of D (blue) and H (green) on the front cell side. 

 
 

We first analyzed computed concentrations of C, D and H on the front and back cell 

surface for the highest diffusion coefficient D5 as shown in Figure 3-21. In the acrylamide 

system, these values were on average two orders of magnitude lower than in the collagen system. 

Based on the apparent diffusion coefficient in the micropipette, this approach significantly 

reduced the amount of EGF molecules delivered in the media but did not slow down the motion 

Concentration = f(t) / back cell side

Concentration = f(t) / back cell side Concentration = f(t) / front cell side 

Concentration = f(t) / front cell side 
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of EGF molecules following release. Concentrations were increasing steadily over the course of 

the computations, indicating ligand was limiting and that the system did not reach saturation. 

 

  

Figure 3-22: The measurement of the differential concentration between the front and back cell side for three 
different diffusion coefficients exhibits opposite response to mass transfer limitation  compared to the 
collagen system. Left: differential of D concentration computed as per equation (40).  Right: differential of H 
concentration computed as per equation (41). (D5 = 1.29x10-13 m2/s, D10 = 8.4x10-14 m2/s, D20 = 4.2x10-14 m2/s) 

 

When looking at the differential concentration of dimerized receptor-ligand complexes in 

the smooth pits (D) and coated pits (H), significant differences were observed when compared to 

the collagen system as shown in Figure 3-22. First, the computed differences were significantly 

smaller (four orders of magnitude smaller for D, three for H), thus raising the possibility that a 

polarization window was not effectively created in this system on the basis of surface 

concentrations. Also, the effect of the diffusion coefficient in this system was reversed: 

decreasing the diffusion coefficient in the micropipette led to a reduction of differential 

concentrations. Without diffusion limitation in the direct cell microenvironment, limiting the 

amount of molecules delivered had no beneficial effect on polarization as diffusion between the 

front and back cell side occurs rapidly. Consistent with these findings, no time shift could be 

observed to reach the maximum differential when the diffusion coefficient was decreased, 

Differential Concentration D = f(t) Differential Concentration H = f(t) 
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indicating the diffusion in the media was governing once EGF molecules are released. We next 

analyzed the velocity of formation of (D) and (H) on the cell surface. 

 

Velocities of Formation 
 

  
  

 

  
  

  

Figure 3-23: Velocity of formation of dimerized receptor-ligand complexes in the smooth pits D and 
dimerized receptor-ligand complexes in the coated pits H for three different diffusion coefficients and 
illustration of the effect of mass transport limitation on the velocity profiles. Top left: Velocity of formation of 
D on the back cell side computed as per equation (42). Top right: Velocity of formation of D on the front cell 
side computed as per equation (43). Bottom left: Velocity of formation of H on the back cell side computed as 
per equation (44). Bottom right: Velocity of formation of H on the front cell side computed as per equation 
(45). (D5 = 1.29x10-13 m2/s, D10 = 8.4x10-14 m2/s, D20 = 4.2x10-14 m2/s). 
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Figure 3-24: The measurement of the differential velocities between the front and back cell side for three 
diffusion coefficients demonstrates the effect of mass transfer limitations for the creation of spatial 
heterogeneity of velocities. Left: differential of D velocity computed as per equation (46). Right: differential of 
H velocity computed as per equation (47). (D5 = 1.29x10-13 m2/s, D10 = 8.4x10-14 m2/s, D20 = 4.2x10-14 m2/s) 

 
 

The analysis of velocities of formation of D and H demonstrated the lower order of 

magnitude of computed velocities compared to the collagen system as shown in Figure 3-23. 

Velocity profiles were non-monotonic with maximum differential reached in the first five 

minutes for all diffusion coefficients tested. Nonetheless, computed differences were smaller 

than in the collagen system (three orders of magnitude on average) as shown in Figure 3-24 

raising the possibility these differentials may not be significant in the context of signaling. The 

effect of the diffusion coefficient was reversed compared to the collagen system, and no time 

shift was observed for the maximal differential when mass transfer limitation was increased in 

the delivery system.  
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Differential Velocity D = f(t) Differential Velocity H = f(t) 
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Polarization Index 
 

 

Figure 3-25: The acrylamide system (left) exhibits an important loss of polarization when molecules freely 
diffuse in the cell microenvironment compared to collagen embedding technique (right). For the acrylamide 
system: D5 = 1.29x10-13 m2/s, D10 = 8.4x10-14 m2/s, D20 = 4.2x10-14 m2/s. For the collagen system: D50 = 3.69x10-12 
m2/s, D100 = 1.84x10-12 m2/s, D150 = 1.23x10-12 m2/s.  PI was computed as per equation (32). 

 

A shown in Figure 3-25, the diffusion in water in the direct cell vicinity triggered a 

significant decrease in computed PI values, with a maximum of 3.25 for the first time point. PI 

decreased to 1.1 in 30 seconds, indicative of the speed at which asymmetry was lost in this 

system. A decrease of the diffusion coefficient in the micropipette exhibited no effect on PI 

profile which demonstrated the asymmetry of soluble molecules binding on the cell surface is 

dependent upon mass transfer limitation in the cell microenvironment rather than on the amount 

of soluble molecules released from a point source when diffusion around the cell is rapid. 
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Percentage Occupancy 
 

 

Figure 3-26: Percentage of receptor occupancy. The computations indicate that levels of binding on the cell 
surface are not consistent with signaling levels in the acrylamide system and a reduction of the diffusion 
coefficient in the micropipette did not produce significant changes of occupancy profiles (D5 = 1.29x10-13 m2/s, 
D10 = 8.4x10-14 m2/s, D20 = 4.2x10-14 m2/s). PO was computed as per equation (36). 

 

Finally, the computed occupancy levels as shown in Figure 3-26 demonstrated PO was 

below 5% at all times, thus indicating that levels of EGF in the culture media were not consistent 

with MAPK activation. The comparison between front and surface occupancies demonstrate that 

spatial heterogeneity was not achieved in this system, with a maximum computed PO difference 

below 1e-3% in the first minute of the process (data not shown). 

 

3.5 Conclusions and Future Directions 
 

We have developed a comprehensive two-dimensional finite-element model of single cell 

polarization with soluble factors that considers mass transfer and reaction kinetics to analyze the 

creation of controlled polarized microenvironments in vitro. Metrics were developed that account 

for (I) the asymmetry of ligand binding on the cell surface (PI); (ii) the percentage of occupancy 
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of receptors on the cell surface; and (iii) the concentration and velocity differentials for 

dimerized ligand-receptor complexes in the smooth (D) and coated (H) pits with respect to the 

point source of delivery. Focusing on the applicability of this computational framework to other 

signaling pathways, general definitions were proposed that can be adapted for other binding and 

trafficking models. Structured metrics and parameter sets are needed for informatics-based post 

hoc analysis.  

 

We initially analyzed the effect of system geometry on response profiles for the 

Polarization Index PI and the Percentage of receptor Occupancy PO, which illustrate both the 

asymmetry and signaling potential following controlled release. The advantages of finite-element 

models were illustrated, as geometrical effects were important at the single-cell level. The 

analysis of surface response profiles allowed for the definition of working micropipette 

dimensions and distance from the target cell. Of relevance, the importance of the cell diameter 

was demonstrated, highlighting the need for predefined cellular systems. Based on the proposed 

metrics and the defined micropipette configuration, our analysis subsequently focused on two 

distinct strategies for controlled EGF release: one in which EGF was delivered from a 

micropipette (i.e. point source of delivery) in a collagen matrix in which the cell was embedded, 

and one in which the cell was cultured in media (diffusion in water) with controlled EGF release 

from a micropipette loaded with an acrylamide gel of controlled porosity. 

 

In a system in which collagen limits the diffusion of molecules in the cell 

microenvironment, polarization is high. Slowed motion of EGF molecules around the cell 

increases the time needed for diffusing molecule to go from the front to the back cell side with 
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respect to the point source of delivery. Hence, the polarization window is improved and a initial 

conditions allowed for occupancy levels consistent with downstream signaling through the 

MAPK/Erk pathway. When looking at the diffusion effect on concentrations and velocities of 

formation of key pathway members, we observed a biphasic response in which the system was 

initially “velocity polarized” and subsequently “concentration polarized”, phenomenon further 

amplified by the reduction of the diffusion coefficient in the direct cell vicinity. The velocity 

polarized system is of particular relevance in the case of EGF as this type of kinetic information 

is consistent with activation of downstream signaling cascades, such as intracellular Erk. We 

demonstrated that heterogeneities in local EGF concentrations can be translated in 

heterogeneities of occupancy levels on a single cell surface with respect to the point source of 

delivery, thus enabling polarization windows in which different levels of MAPK activation can 

be reached on the front and back cell sides. Several reports (as previously stated) indicate the 

velocity of receptor activation can control the specificity of docking proteins and internalization 

through the clathrin-mediated pathway. Elicited signals could thereby be different based on 

different kinetic states and different subcellular localization of dimerized complexes. Controlled 

EGF release could thus transiently enable different signal intensity but also specificity between 

the front and back cell side with respect to the point source of delivery.  

 

When the delivery was exclusively controlled through the porosity of a gel inside the 

micropipette, no improvements of polarization were observed as the rapid diffusion of EGF 

molecules around the cell did not allow for the asymmetric delivery of molecules. Also, levels of 

occupancy computed for experimental values of acrylamide gel viscosity were not compatible 

with MAPK signal responses. 
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At the single cell level, limiting the diffusion of soluble molecules in the cell vicinity is a 

requirement for polarization and the translation of asymmetric environment of soluble factors to 

an asymmetry of receptor occupancy on the cell surface. In vivo, diffusion of soluble molecules 

is restricted in the cell microenvironment as local gradients of factors can be created by 

entrapment of molecules in the extracellular matrix (Dowd, Cooney et al. 1999). This indicates 

that natural tissues have a predisposition to polarize cells as molecules in the extracellular matrix 

exhibit a slower apparent diffusion coefficient. As a result, culture system design should move 

towards more biomimetic transport rates to allow for the development of polarization. 

 

In the literature, different percentages of the total cell volume have been used to model 

the endosomal compartment, ranging from 0.00003% (Schoeberl et al., 2002) to 100% (Athale, 

Mansury et al. 2005). A modification of the endosomal volume would have significant effects on 

our computations, and this raises concerns with respect to the inclusion of the endosomal fraction 

in the model. To improve model relevance, the system should be tailored for a specific cell type 

that can be studied experimentally. In this context, the HeLa CCL2 system (expressing EGFR) 

was selected due to its wide availability, ease of culture and extensive literature available for 

estimation of kinetic parameters. Additionally, to ensure model relevance, the system should also 

be simplified to include kinetic parameters that can be measured experimentally. The two 

strategies for controlled EGF release demonstrated technical challenges. Also, the stiffness of the 

extracellular matrix can influence the differentiation of stem cells (Even-Ram et al., 2006). This 

indicates that cultivating cells in a matrix could provide environmental signals that would bias 

our analysis of polarization with soluble factors. The effect of local absorbing and non-absorbing 

boundaries in the cell microenvironment should be studied as an alternative to embedding in 
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collagen as collagen embedding may perturb cell fate decisions independent of soluble factor 

gradients. Local boundaries could limit the free diffusion of molecules around a cell and could 

possibly help potentiate polarized signals in vitro. For all these reasons, we propose the 

following improvements to the existing model: 

 

 Modeling should be performed in three dimensions and the effect of the local geometry 

(addition of reflective surfaces to model adherent culture conditions) on the delivery 

strategy should be evaluated;  

 Diffusion in water should be preferred in the analysis but the effect of neighboring cells 

on polarization should be investigated; 

 The kinetic model should be developed according to the HeLa cell system and the finite-

element model should be updated to account for a cell diameter of 20 μm; 

 A new strategy of delivery should be experimented in which we compare different 

lengths of delivery pulse;  

 Model should be simplified to include experimentally identifiable parameters and 

evaluation of kinetic constants for the selected cell system should be performed (kf  and 

Rinit); 

 The model should be correlated to experimental PI measurements. 
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4 Chapter 4: Three-Dimensional Finite-Element Modeling of 

Controlled EGF Release to a Single Cell 

4.1 Overview 
 

Receptor Tyrosine Kinases (RTKs) have been studied for over three decades and their 

mechanism of activation and signal transduction are well understood (Cohen and Carpenter 

1975). Once a factor binds to its specific receptor, the newly formed complex is internalized and 

triggers the activation of cytoplasmic proteins through phosphorylation. This cascade of protein 

and small molecules moves to the nucleus where they act as transcription factors to control the 

expression of target genes and initiate cellular responses. Regulatory mechanisms involve early 

and late endosomal compartments in which complexes are dissociated, growth factors directed 

towards lysosomes for subsequent degradation and receptors recycled to the cell surface (Vieira, 

Lamaze et al. 1996; Zheng, Lavoie et al. 2004; Mizuno, Iura et al. 2005; Sorkin and Goh 2009). 

Among this family of receptors, the Epidermal Growth Factor (EGF) and EGF receptor (EGFR) 

have been studied extensively. EGFR signaling is involved in a variety of stages in 

embryonic/post-natal and tumorigenic development (Carpenter 1987; Steinbach, Borchers et al. 

1998) and can elicit various cellular responses including proliferation, growth inhibition, 

differentiation, cell migration and apoptosis (Carpenter 1987; Darcy, Wohlhueter et al. 1999; 

Schlessinger 2000; Schlessinger 2004). Upon EGF binding, receptors dimerize which triggers 

the transphosphorylation step of the EGFR cytoplasmic domain. Src homology domain 2 (SH2) 

or phosphotyrosine binding (PTB) domain-containing transducers are then recruited which 

initiates the phosphorylation cascade (Schlessinger and Ullrich 1992; Schlessinger 2002). 



101 
 

Ultimately, target genes are activated through several signaling pathways including the Mitogen 

Activated Protein Kinase / Extracellular Regulated Kinase (MAPK/Erk).  

 

In the context of cell fate, the subcellular localization of factors, associated receptors, 

proteins and RNA at the time of mitosis is responsible for many cell fate decisions. For example, 

asymmetric EGFR distribution (or EGFR polarization) at the time of mitosis has been correlated 

with control of cell fate in cancer keratinocytes and mouse cortical stem cells in vitro (Le Roy, 

Zuliani et al. ; Sun, Goderie et al. 2005). It is unclear whether EGFR localization in these 

systems is the result of an intrinsic genetic program or extrinsic heterogeneities in the cell 

microenvironment such as local gradients. The controlled release of soluble factors in vitro and 

analysis of polarization at the single cell level will elucidate the existence of the extrinsic 

mechanism in the context of EGF. 

 

Gradients of soluble factors are biologically significant as illustrated during 

embryogenesis. Spatial and temporal modulation of gradients creates heterogeneous cell 

populations which ultimately give rise to differentiated specialized tissues. Manipulating and 

controlling gradients in vitro is thus a necessary step towards more comprehensive and 

physiological culture systems and can provide clues with respect to the control of cell identities 

both at the colony and single cell level. To date, several approaches have been investigated to 

create linear or radial gradients and control the release of soluble factors over time: optical 

tweezers (Kress, Park et al. 2009); biological hydrogels (Foxman, Campbell et al. 1997; Chen, 

He et al. 1998); micropipettes (Zhelev, Alteraifi et al. 1996; Servant, Weiner et al. 1999; Servant, 

Weiner et al. 2000; Dehghani Zadeh, Seveau et al. 2003; Zadeh and Keller 2003; Zhelev, 
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Alteraifi et al. 2004; Wong, Pertz et al. 2006); Zigmond chamber (Zigmond 1977); Dunn 

chambers (Zicha, Dunn et al. 1997) and microfluidic devices (Dertinger, Jiang et al. 2002; Li 

Jeon, Baskaran et al. 2002; Fosser and Nuzzo 2003; Burdick, Khademhosseini et al. 2004; 

Chung, Flanagan et al. 2005; Gunawan, Choban et al. 2005; Lin, Nguyen et al. 2005; Abhyankar, 

Lokuta et al. 2006; Gunawan, Silvestre et al. 2006). Understanding the interplay between 

gradients and differential signaling responses at the colony and single cell level will benefit from 

further characterization, both theoretically and experimentally. 

 

Gradients of factors such as EGF can be analyzed by modeling diffusion and convection. 

Finite-element models are of interest as they can incorporate complex two or three-dimensional 

geometries with diffusive models and reactive boundary conditions. As such, diffusion of soluble 

molecules should be investigated with cell-representing reflecting or adsorbing boundaries in 

various culture systems and cell colony configurations. The combination of finite-element 

models of diffusion with kinetic models of binding and trafficking on cell surfaces can provide a 

valuable framework to elucidate complex signaling responses at the single cell level. The EGF 

system has pioneered the development of kinetic models of cell growth and signaling both at the 

receptor (Starbuck and Lauffenburger 1992) and signaling intermediate levels (Schoeberl, 

Eichler-Jonsson et al. 2002; Aksan and Kurnaz 2003). The extensive kinetic data available in the 

literature in conjunction with EGF biological significance makes it ideal for the development of 

such a framework. 

 

 



103 
 

To test the relevance of the model, the experimental system should resolve the technical 

difficulties associated with colony and sub-colony level analysis of gradient effects. The ideal 

system should allow for: long-term culture and imaging of cells; control of delivery intensity and 

duration; delivery reproducibility; fluorescence measurement online and endpoint 

immunofluorescence analysis of the cell(s). We selected a combinatorial approach of live-cell 

imaging with micropipette delivery. Our group has developed an expertise in the development of 

culture chambers for long-term imaging in which cell colonies can be restricted to a monolayer 

(Moogk, Hanley et al. 2007; Ramunas, Montgomery et al. 2007) and immunofluorescence 

performed in situ. An automated system for long-term imaging and tracking was developed 

which includes a robotic axis for micropipette positioning with sub-micrometer accuracy. This 

system allows for on-demand spatially and temporally controlled delivery with single-cell level 

accuracy for asymmetric delivery of molecules to a cell (Zhelev, Alteraifi et al. 2004). 

 

Herein we present the in silico design analysis for asymmetric delivery of factors to 

single cells and/or cell subpopulations in vitro. We developed a three-dimensional finite-element 

model in which continuous diffusive transport delivers EGF to a cell surface at which a model 

for EGF binding and trafficking is defined (i.e. reactive boundary conditions) based on published 

HeLa kinetics. To our knowledge, this study is the first to analyze the subcellular localization of 

receptor-ligand complexes to enable the study of receptor-ligand asymmetry across a cell. In a 

first step, a sensitivity analysis is performed to identify the significant kinetic constants based on 

a defined set of metrics to simplify and permit experimental validation of the kinetic model. By 

characterizing the delivery in terms of factor asymmetry and percentage of receptor occupancy, 

we compare two strategies for controlled EGF release in the media and analyze the effect of 
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culture system geometry and mass transfer limitation on polarization. We demonstrate that 

limiting diffusion of molecules in the cell microenvironment, either through a reduced diffusion 

coefficient or increased tortuosity in the cell vicinity greatly enhances polarization and the 

potential for asymmetric signaling. Our conclusions are confirmed experimentally using a 

combination of point source and bulk delivery approaches as the polarization index is measured 

experimentally and correlated with model predictions in two different cell systems. This 

computational framework is readily applicable to other cell systems and signaling networks to 

investigate the extrinsic nature of asymmetric factor partitioning and cell fate decisions. 

 

4.2 Material and Methods 

4.2.1 Micropipette Manufacture 

A horizontal automated P-97 flaming micropipette puller (Sutter Instrument Company, 

Novato, USA) was used (collaboration with Professor J. Spafford, University of Waterloo) with 

standard wall borosilicate tubings of 0.86mm inner diameter (ID) and 1.5mm outer diameter 

(OD) (ref. BF-150-86-15, Sutter Instrument Company, Novato, USA).  Initial ramp tests were 

performed and measured a melting temperature of 241oC that was used in the following program 

for the manufacture of micropipettes with ID = 5 ± 2 µm: 

 

 Temperature (ºC) Pulling Force Velocity Time Pressure 

Line 1 (*4) Ramp +10 30 50 150 300 

 

Table 4: Selected program for the manufacture of micropipettes with ID = 5 ± 2 µm. 
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4.2.2 Cell Culture and Time-Lapse Imaging 

 
EGF and TRITC-EGF were obtained from Gibco and Molecular Probes (Invitrogen, 

USA). EGF stock was resuspended in PBS 0.5% BSA (Bovine Serum Albumin) and aliquoted at 

a final concentration of 100 ng/mL. TRITC-EGF was reconstituted in deionized water at a 

concentration of 40 μg/mL and aliquots were stored at -35ºC protected from light. 

 
HeLa CCL2 cells expressing EGFR were obtained from ATCC and cultivated in DMEM-

F12 (Gibco, Canada) supplemented with 10% FBS (Gibco, Canada) in a controlled atmosphere 

37oC / 5% CO2 until confluent upon which cells were split following trypsin (Sigma, Canada) 

treatment. The gap chamber culture system illustrated in Figure 4-1 was selected for time-lapse 

imaging and was assembled and loaded as previously described (Ramunas, Illman et al. 2006; 

Moogk, Hanley et al. 2007). One ounce, 22 mm by 60 mm, No. 1 coverslips (VWR Scientific, 

West Chester PA) were used as a culture surface.  Glass tubing with an internal diameter of 15 

mm was cut to a length of roughly 1 cm and one axial edge of the tube was lightly coated with 

silicon type A medical adhesive Silastic (Dow Corning, MI, USA), pressed gently on the 

coverslip surface and allowed to dry overnight.  To construct a lid for the well, a similar length 

of tubing with an internal diameter of 18 mm was cut and glued to a 22 mm by 22 mm, No. 1.5 

coverslip (VWR Scientific, West Chester, PA) and allowed to dry.  Prior to use the wells and lids 

were autoclaved while submersed in deionized water in an enclosed beaker. Following 

sterilization, the water was removed and the wells were dried in a sterile laminar flow hood.  
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Figure 4-1: A 1 mm by 8 mm piece of microscope slide is cut and positioned in the center of a 
coverslip with medical grade silicone used at both sides. Polystyrene beads are used in the cell 
population cultured. The beads act as spacers between the coverslip and cut glass segment, which 
otherwise are held firmly together by the adhesive. 

 
Cells were treated for 5 minutes with trypsin, resuspended in DMEM-F12 and 

centrifugated for 5 minutes at 1000 rpm. Following supernatant removal, cells were resuspended 

in DMEM-F12 10% FBS with 10 µm polystyrene beads at a concentration of 1x104 beads/mL 

(Polysciences, USA) and loaded in gap chambers at a concentration of 2x107 cells/mL. The bead 

size defines the thickness of the two-dimensional cell culture. For TRITC-EGF delivery 

experiments, bulk media change (infinite source) and micropipette (point source) approaches 

were tested. For the bulk delivery, cells were washed in phenol-free DMEM-F12 (Gibco, 

Canada) for 10 minutes and then 2 mL of phenol-free DMEM-F12 containing 100 ng/mL 

TRITC-EGF was added in the culture chamber for 2 minutes. 2 mL of phenol-free DMEM-F12 

was subsequently added to the culture chamber and time-lapse imaging was started at a time 

interval of 6 minutes in brightfield and fluorescence. For the point source delivery, micropipette 

positioning was performed using a x,y,z-axis controlled stage with sub-micrometer accuracy. 

The pipette holder was implemented on a motorized axis (referred to as w-axis) to enable 

automated entrance and removal from the imaging region with minimum perturbation. A 

micropipette was pre-loaded with phenol-free DMEM-F12 containing 100 ng/mL TRITC EGF 
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and the region of delivery was selected based on cell density and configuration. The 

micropipettes were sealed following loading using medical adhesive Silastic to ensure that the 

delivery of TRITC-EGF through the micropipette boundary was diffusive only. Once 

micropipette tip focus was achieved and target distance from the cell / colony reached, image 

acquisition was started at a time interval of two/three minutes in brightfield and fluorescence.  

 

Imaging was performed on an Axiovert 200 inverted microscope with a 40x objective 

(Zeiss, Germany) on a humidified stage with controlled temperature and a digital camera XCD-

SX900 (Sony, Japan) was used for image acquisition using custom software.  

 

4.2.3 Image Analysis 

Image analysis was performed in Image J (NIH, USA). For single cells, the threshold 

level of fluorescent images was used to identify cells boundaries. This method exhibits 

satisfactory time accuracy as masks can be redefined at each time point, thus accounting for 

minute variations in cell shape and positioning. Following threshold adjustment, masks whose 

size was greater than 1000 pixels2 were selected and the mask of interest defined as a Region of 

Interest (ROI) used for fluorescence intensity measurements. As fluorescence intensities were 

low for the first time point, the threshold selection was not efficient and the second fluorescent 

image was used to generate a mask for the first two images. Background removal was performed 

prior to fluorescence intensity measurements. For polarization index measurements, a macro was 

developed to split ROIs vertically into two equal surfaces (see Appendix C) and extract mean 

gray values. For multicellular system, the threshold approach was not applicable and masks were 

drawn manually. In the context of cell colonies, the axis of separation for PI measurements was 
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not defined with respect to the source of factor delivery but accordingly to the orientation of 

membrane surfaces available to the media. 

4.2.4 Parameters Estimation 

HeLa CCL2 cells were cultivated in T75 flasks in DMEM-F12 10% FBS (Invitrogen, 

CA) until confluent. 12 hours prior to the experiment, cells were FBS starved and incubated in 

phenol-free DMEM-F12 with 0.75% Bovine Serum Albumin (BSA) (Invitrogen, CA). Following 

FBS starvation, cells were incubated in 3 mL of phenol-free DMEM-F12, 5% BSA with 5 ng/mL 

TRITC-EGF (Invitrogen, CA). Gentle agitation was performed to ensure homogenous covering 

of the flask surface. Cells were incubated for various times (1, 3, 5, 10, 30 and 45 min) after 

which cells counts were performed and residual fluorescence intensity in the media measured on 

a QuantamasterTM Fluorimeter  (Photon Technology International, USA) with lamp power supply 

LPS220B. The excitation wavelength was set to 555 nm and the emission spectrum was scanned 

between 568 and 585 nm with an integration time of 3 seconds and a step of 1 nm. Three 

replicates were performed on every sample for subsequent data analysis. The concentration of 

TRITC-EGF in each sample was subtracted from the average emission from the samples that 

contained unlabeled EGF (10-fold excess) and this difference was used to calculate the number 

of molecules of bound TRITC-EGF per cell. Data was fitted to a simple on-binding model using 

a non-linear regression in MATLAB and kf and Rinit were estimated. 
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4.3 Mathematical Model 

In this section, the chosen kinetic model is presented in Figure 4-2: 

 

Figure 4-2: EGF binding and trafficking model. Shortly after the reversible binding of EGF (L) to EGFR (R), 
the newly formed complex (C) is internalized. This model is simplified from Figure 3-2. 

 
 

The binding of EGF (L) on a receptor (R) triggers the formation of a ligand-receptor 

complex (C). The complex is internalized (I) towards the endosomal compartment modeled on 

the cell surface. k1 is the second order forward rate constant for binding of EGF on the receptor, 

and ki is a first order rate constant for internalization of the complex. The parameters estimates 

were identified in the literature for the HeLa cell line and are presented in Table 5 (Teramura, 

Ichinose et al. 2006; Schmidt-Glenewinkel, Reinz et al. 2009; Yu, Hale et al. 2009). 

 

Model 1:    ܴ ൅ ܮ
୩౜/୩౨
ሱۛ ሮۛ ܥ

௞೔
՜  ܫ

 

ܴ݀
ݐ݀

ൌ
ܮ݀
ݐ݀

ൌ െ݇௙ܴܮ ൅ ݇௥ܥ 

kf 

kr 
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ܥ݀
ݐ݀

ൌ ݇௙ܴܮ െ ሺ݇௥ ൅ ݇௜ሻܥ 

ܫ݀
ݐ݀

ൌ ݇௜ܥ 

Model 2:    ܴ ൅ ܮ
௞೑
ሱሮ  ܥ

 

ܴ݀
ݐ݀

ൌ
ܮ݀
ݐ݀

ൌ െ݇௙ܴܮ 

ܥ݀
ݐ݀

ൌ ݇௙ܴܮ 

 

Parameter Value 

kf 20150 ቆ
mଷ

mol · sec
ቇ

kr 4.17 ൈ 10ିଷ 1
sec

 

ki 8.34 ൈ 10ିଷ 1
sec

 

Rinit 47000 receptors 

 

Table 5: Kinetic parameters for the three-dimensional model. 

 

4.3.1 Model Equations 
 

As in the two-dimensional analysis, EGF transport in the media was assumed diffusive 

only. The diffusion coefficient in the media and in the micropipette was set to Dmed = Dtube = 1.89 

x 10-10 m2/s calculated for EGF using the Einstein-Stokes equation and published RG value 
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(Lemmon, Bu et al. 1997). Initial EGF concentration in the delivery pipette was set to 10 and 200 

ng/mL for the sensitivity analysis and 100 ng/mL in subsequent simulations. 

 

4.3.2 Finite-Element Model Setup 

Finite-element modeling was performed in COMSOL Multiphysics (version 3.5, USA) 

with MATLAB (version 2008b, Mathworks, Inc., Natick, MA) and model sketches are presented 

in Figure 4-3. The batch-type culture region was defined as a cube of 100 µm sides containing 

the growth medium (diffusion Dmed). The delivery system was modeled as a cylinder with an 

inner diameter of 5 µm, wall thickness of 0.5 µm (dimensions consistent with readily 

manufactured micropipettes) and a length of 10 µm positioned at a distance of 10 µm from the 

cell surface. Similar micropipette designs have previously been used to asymmetrically deliver 

chemoattractant molecules to human neutrophils (Zhelev, Alteraifi et al. 1996; Zhelev, Alteraifi 

et al. 2004). A diameter of 20 μm was selected for HeLa cells based on experimental 

measurements of HeLa cells diameter. The cell was depicted as a sphere with a radius of 10 µm 

in the suspension model, a semi-sphere with a radius of 12.6 µm in the adherent system and a 

cylinder of 11.55 µm radius and 5 µm height in the gap chamber to ensure conservation of 

volume. In the case of the gap chamber, the delivery system was positioned 1 µm outside the gap 

chamber interface. 
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Figure 4-3: Finite-element model sketches (left) and meshes (right) for the three different culture systems. 
Top: suspension system. Middle: adherent system. Bottom: gap chamber system. 
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4.3.3 Boundary Conditions 

Reflective surfaces in the adherent and gap chamber culture systems as well as the culture 

chamber boundaries are accounted for using an insulation / symmetry condition in which: 

00 N  

The culture chamber walls were defined distant enough from the point source not to 

affect EGF profile in the cell vicinity. The cell boundaries are defined with the following inward 

flux of EGF in mol/m2.s in which the rate of flux is equal to the kinetic rate at the boundary:
  

Model 1:                                   CkRLkN rf 0                                                           
 

Model 2:      RLkN f0                                                              
  

 

The reaction and surface diffusion system on the cell surface (DR = 1x10-13 m2/s; DC = 

1x10-14 m2/s; DI = 0) (Shvartsman, Wiley et al. 2001) were defined as coupled, linear PDEs as 

shown in Table 6. Similar to model design in the two-dimensional analysis, internalized 

complexes were modeled on the cell surface. 

 

Component PDE Model 1 PDE Model 2 

R RLkCkRD
t

R
frR 




 RLkRD
t

R
fR 




 

C  irfC kkCRLkCD
t

C





 RLkCD
t

C
fC 




 

I Ck
t

I
i




 None 

 

Table 6: System of equations for the computation of surface concentrations in COMSOL. 
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4.3.4 Non-Dimensional Parameters 

We defined a matrix of initial conditions O  in which the simulation results are valid:  

[ Qi=1,…,J ; Rk=1,…,L ; Sm=1,…,N ; To=1,…,P ] where Q is the set of J initial kinetic conditions including 

all rate constants; R is the set of L initial chemical conditions including initial concentrations, 

diffusion values; S is the set of N initial physical conditions including model geometry, 

micropipette distance and diameter, array volume/surface and boundary conditions; T is the set 

of simulation parameters including tolerances, type and settings of the numerical solver used. 

The cell surface was split into two half-domains (frontS and backS) with respect to the position 

of the source of factor delivery. The polarization index (PI) was defined by comparing surface 

concentration integrals of bound entities on the front and back cell sides: 

 

Model 1:                                 ܲܫሺݐ, തܱሻ ൌ  
׬ ሺ஼ሻௗௌ೑ೝ೚೙೟ೄ ା׬ ሺூሻௗௌ೑ೝ೚೙೟ೄ

׬ ሺ஼ሻௗௌ್ೌ೎ೖೄ ା׬ ሺூሻௗௌ್ೌ೎ೖೄ

                                              (48) 

Model 2:                                 ܲܫሺݐ, തܱሻ ൌ  
׬ ሺ஼ሻௗௌ೑ೝ೚೙೟ೄ

׬ ሺ஼ሻௗௌ್ೌ೎ೖೄ

                                                                 (49) 

This equation was derived, giving: 

,ݐሺܫܲ     തܱሻ ൌ  
భ
మ ׬ ሺோ೔ሻௗௌೄ ׬ି ሺோሻௗௌ೑ೝ೚೙೟ೄ
భ
మ ׬ ሺோ೔ሻௗௌೄ ׬ି ሺோሻௗௌ್ೌ೎ೖೄ

                                (50) 

Ri is the initial number of receptors. The integrals were the appropriately oriented surface 

integrals over the cell surface facing (frontS) and away (backS) from the source(s) of free ligand. 

The domain of these surface integrals can be assigned as desired, but orthonormal projection of 

the cell relative to the delivery pipette were used. The percentage of receptor occupancy (PO) 

was computed (on the entire cell surface S, frontS and backS) to assess the potential for signaling 

following delivery: 
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Model 1:                                  ܱܲሺݐ, തܱሻ ൌ ሺூሻௗௌ׬ሺ஼ሻௗௌା׬ 

ሺோሻௗௌ׬ሺூሻௗௌା׬ሺ஼ሻௗௌା׬
                                                (51) 

Model 2:                                  ܱܲሺݐ, തܱሻ ൌ ሺ஼ሻௗௌ׬ 

ሺோሻௗௌ׬ሺ஼ሻௗௌା׬
                                                           (52) 

This equation was derived, giving: 

            ܱܲሺݐ, തܱሻ ൌ  ቈ1 െ ቆ
׬ ሺோሻௗௌା׬ ሺோሻௗௌ್ೌ೎ೖೄ೑ೝ೚೙೟ೄ

׬ ሺோ೔ሻௗௌೄ

ቇ቉                                 (53) 

As absolute occupancy levels cannot be evaluated experimentally at the single cell level, PI will 

be used for model correlation with experimental data. The Damköhler number was also 

computed for different diffusion coefficient values to assess the effect of mass transport versus 

kinetic limitations in the system: 

 

    Da ൌ  ௞భ ൈ ௌ௨௥௙௔௖௘ ோ௘௖௘௣௧௢௥ ஽௘௡௦௜௧௬ ൈ ோ௔ௗ௜௨௦ 

஽೘೐೏
                                  (54) 

The receptor density on the cell surface was calculated as the ratio between the receptor 

concentration and the cell surface area and was adjusted for the three geometries studied to 

ensure conservation of the initial number of receptors. 

 

4.3.5 Numerical Solution, Solver Parameter and Model Validation 

A time-dependent solver was used in COMSOL with a time step of one second and a 

time scale of 1200 seconds. The accuracy and stability of computed concentrations were 

evaluated based on the convergence of computations with progressive finite-element mesh 

refinement. The solver selected uses a time stepping algorithm with both an absolute and relative 

tolerance (Atol and Rtol) and the error vector (e) is calculated such that the following equation is 

satisfied before the solver proceeds to the next iteration: 
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      iyAtoliyRtolie             (55) 

e is the error vector, y the vector of dependent variables and i is the iteration step. Rtol should be 

set at least one order of magnitude lower than the expected deviation.  

 

4.3.6 Sensitivity Analysis 

The COMSOL with MATLAB software package was used to perform the statistical 

analysis. The following formulation of the experimental design was incorporated into a 

MATLAB code (see Appendix B) that solves the COMSOL model for all of the experimental 

runs as proposed. A 27-2 factorial design (resolution V) was selected as it allows for the analysis 

of two-factor interactions which are generally significant in the context of signaling kinetics 

(Mahdavi, Davey et al. 2007). All kinetic parameters were included along with the diffusion 

coefficient Dmed and initial number of EGF receptors (Ri). The kinetic parameters and initial 

number of receptors were varied by 10-fold. The bounds for the diffusion coefficient were 

6.34x10-11 – 1.84x10-10 m2/s and 10 – 200 ng/mL for initial EGF concentration. Regarding the 

diffusion coefficient, the higher bond was evaluated using the diffusion of EGF in water at 40 ºC 

and the lower bound was estimated using viscosity measurements of the normal leg tissue of a 

mouse (Halpern, Chandramouli et al. 1999). Effects were measured after 2 and 10 minutes using 

the following equations: 

 

,ݐሺݐ݂݂ܿ݁݁ ܫܲ                തܱሻ ൌ തതത௫ܫܲ
ା െ തതത௫ܫܲ

ି         (56) 

,ݐሺݐ݂݂ܿ݁݁ ܱܲ                         തܱሻ ൌ ܱܲതതതത௫
ା െ ܱܲതതതത௫

ି         (57) 
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with x the independent variable (or two-factor interaction) being studied and ܲܫതതത௫
ା (ܱܲതതതത௫

ା) and ܲܫതതത௫
ି  

(ܱܲതതതത௫
ି) the averaged computed PI (PO) at higher and lower bounds respectively. The effects were 

presented using Pareto charts in MATLAB.  

 

4.3.7 EGF Binding Kinetics: Model Fit, kf and Ri Estimation 

Following the sensitivity analysis, the simplified kinetic model is used and as shown previously: 

ܴ ൅ ܮ
௞೑
ሱሮ  ܥ

Hence 

ܴ݀
ݐ݀

ൌ െ݇௙ܴܮ 

ܮ݀
ݐ݀

ൌ െ݇௙ܴܮ 

ܥ݀
ݐ݀

ൌ ݇௙ܴܮ 

With the initial conditions in mol/m3: 

ܴሺ0ሻ ൌ ܴ௜௡௜௧  

ሺ0ሻܮ ൌ   ଴ܮ

ሺ0ሻܥ ൌ 0  

It can be observed that 

ܴ݀
ݐ݀

ൌ
ܮ݀
ݐ݀

ൌ െ
ܥ݀
ݐ݀

 

Hence 

ܮ ൌ ܴ ൅ ݇ଵ 

with k1 equal to the difference between L0 and Rinit (as in this system L>>R) 

݇ଵ ൌ ଴ܮ െ ܴ௜௡௜௧ 
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Then 

     
ௗ௅

ௗ௧
ൌ ݇௙ܮ൫ܮ െ ሺܮ଴ െ ܴ௜௡௜௧ሻ൯ ൌ ݇௙ܮሺܮ ൅ ܴ௜௡௜௧ െ  ଴ሻ         (58)ܮ

 
 
The solution of this differential equation can be obtained using the separation of variables 

and partial fraction decomposition as shown in Appendix, leading to the following solution: 

 

ܮ         ൌ
ோ೔೙೔೟ି௅బ

ೃ೔೙೔೟
ಽబ

ୣ୶୮ൣ௞೑௧ሺ௅బିோ೔೙೔೟ሻ൧ିଵ
               (59) 

 

The fluorescence data was fitted to this function in MATLAB using a non-linear regression and 

the forward rate constant kf and initial number of free receptors Rinit were estimated. 

 

4.4 Results 

4.4.1 Sensitivity Analysis 

The sensitivity analysis was performed on the suspension system using a constant release 

of factor (100 ng/mL EGF) from a point source of delivery (micropipette) as described 

previously. The Polarization Index (PI) was measured as the ratio of front versus back bound 

entities on the cell surface with respect to the source of factor delivery (EGF-EGFR complexes C 

and internalized complexes I in model 1, equation 50). As the kinetic model in the study did not 

include downstream effectors of the EGF pathway, the percentage of receptor occupancy (PO) 

was studied to evaluate the capacity to initiate signal transduction, as shown in equation (53). As 

discussed in Chapter 3, the bounds of 15 and 55% occupancy levels on the cell surface to ensure 

between 70 and 90% of maximum downstream Erk activation will be used in this analysis. The 
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sensitivity analysis performed on model 1 using published kinetic data was used to identify 

parameters significantly affecting PI and PO.  

 

 

Figure 4-4: Pareto chart for the sensitivity analysis on PI as a dependant variable after two minutes (left) and 
ten minutes (right). The blue line represents the cumulative computed effects for the independent variables 
(right y-scale). 

 

As illustrated in Figure 4-4, after two minutes, PI is strongly influenced by the diffusion 

coefficient in the media (D = Dmed), the initial number of receptor (Ri) and the interaction 

between D and Ri, which together account for over 50% of the overall computed effects. 

Initially, polarization is driven by the motion of molecules in the cell environment. High 

diffusion values will allow for the rapid motion of soluble molecules to front and back cell 

surfaces hence triggering the loss of asymmetry. This is illustrated by the system desensitization 

as the absolute effect of the diffusion coefficient exhibits a six-fold decrease after ten minutes. 

The concentration of soluble EGF becomes gradually homogeneous around the cell which only 

induces transient asymmetry.  

 

Pareto Chart PI Pareto Chart PI 

10 min 2 min 
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Figure 4-5: Pareto chart for the sensitivity analysis on PO as a dependant variable after two minutes (left) 
and ten minutes (right). The blue line represents the cumulative computed effects for the independent 
variables (right y-scale). 

 

As shown in Figure 4-5, the sensitivity analysis for PO demonstrated the importance of 

the initial concentration of ligand L0, forward constant of binding k1 as well as the diffusion 

coefficient D, the combination of these three parameters accounting for over 70% of the 

computed effects. The reverse rate kr and internalization constant kf were found to have minor 

effects on PO and PI. The diffusion coefficient D and initial EGF concentration L0 are 

controllable variables that can be optimized for target PI and PO values and such analysis 

provides clues with respect to possible strategies for the engineering of polarization. In this 

context, the effect of the diffusion coefficient in the culture media should be studied along with 

strategies to control the amount of EGF molecules released in the media through pulses of 

adjustable length. Finally, as kr and ki demonstrated no significant effects on polarization 

independently of the metric studied, the kinetic model was further simplified by reducing it to a 

simple on-binding step (kf only, model 2) which was measured experimentally along with the 

initial number of free receptors Ri to improve model significance.  

 

Pareto Chart PO Pareto Chart PO 

10 min 2 min 
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4.4.2 Measurement of Forward Rate Constant kf and Initial Number of 

Receptors Ri 

Depletion experiments of TRITC-EGF in HeLa cultures cultivated in phenol-free 

DMEM-F12 were performed as described in Material and Methods and results are presented in 

Figure 4-6. Model fit was performed in MATLAB using a non-linear regression (see Appendix 

A) and estimated kf = 1.3 x 105 m3/mol.s and Ri = 47362 receptors were used in subsequent 

simulations. 

 
 

 

Figure 4-6: Model fit to experimental data. Left: Calibration curve for various concentration of TRITC-EGF 
on the QuantmasterTM spectrofluorimeter. Right: Model fit to experimental data for TRITC-EGF depletion 
experiments in HeLa cultures as described in Material and Methods. Error bars represent one standard 
deviation. 

 

4.4.3 Temporal Profiles 

In this section we analyzed the temporal profiles of PI and PO and compared the three 

different culture systems (suspension, adherent and gap chamber) as described in Material and 

Methods. Two delivery strategies were investigated: continuous EGF release and a two-minute 
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EGF pulse both at a concentration L0 = 100 ng/mL in the micropipette. Computations for the 

pulse delivery were performed in two steps: model was solved as previously described for two 

minutes and solutions were used as initial conditions of a second model solved for 18 minutes 

with L0 = 0. 

Polarization Index 
 
 

  

 

Figure 4-7: Analysis of Polarization Index PI computed as per equation (50). Top left: suspension system. Top 
right: adherent system. Bottom: gap chamber. Blue line: constant EGF release. Black line: two-minute EGF 
pulse. 
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Figure 4-8: Analysis of Polarization Index PI computed as per equation (50) for the three different culture 
systems and illustration of the effect of reflective boundaries in the cell microenvironment. Left: constant 
EGF release. Right: two-minute EGF pulse. Black line: suspension system. Blue line: Adherent system. Green 
line: Gap chamber. 

 
 

Figure 4-7 and 4-8 depict typical simulation results for PI with a maximum value of 

11.33 for the hypothetical suspension system at the first time point. Asymmetric delivery is a 

transient process with a PI value of 1.08 after 10 minutes and 1.02 after 20 minutes indicating the 

loss of polarization. The fast diffusion of molecules around the cell is responsible for the rapid 

decrease of asymmetry on the cell surface. The two-minute pulse of EGF exhibited some 

improvements, with a PI value of 1.61 after 10 minutes. When release from the point source of 

delivery is stopped, homogenization of concentrations around the cell surface in a purely 

diffusive system is slowed down, thus contributing to the maintenance of a higher polarization 

degree over the course of computations. The implementation of the adherent system 

demonstrated improvements in terms of initial PI values (maximum value of 18.6) while PI 

values were below computed values for the suspension system after 1.2 minutes. Two 

combinatorial effects can be hypothesized; the absolute number of paths towards the back cell 
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surface is reduced when a reflective surface is added and reflection of diffusing molecules on the 

bottom surface contributes to a local increase in EGF concentrations. This increase is initially 

observed facing the point source of delivery and gradually spreads around the cell, thus 

contributing to a decrease in PI values at later time points compared to the suspension system. It 

should be noted the time at which reversal of effects occurs (i.e. 1.2 minutes in Figure 4-8 left 

panel) is entirely dependent upon initial conditions and system design. When EGF was pulsed 

for two minutes, PI was improved following pipette removal compared to the constant release in 

all culture conditions until the end of computations (Figure 4-8 right panel). Of relevance, the 

suspension system exhibited the most rapid decrease in PI values until the end of computations, 

highlighting the positive effect of reflective boundaries on the maintenance of asymmetry. Using 

the pulse approach, the gap chamber system demonstrated the highest PI values at all time which 

indicates the addition of reflective surfaces in the cell environment potentiates the increase in 

computed PI values with pulse delivery. Interestingly, this effect was reversed with constant 

EGF release, as the gap chamber while presenting the highest initial PI values became the least 

efficient system after two minutes.  

The effect of the culture system geometry is double: at early time points reflective 

surfaces contribute to an increase in local EGF concentrations facing the point source of 

delivery, leading to an increase in computed PI values. At later time points, local EGF 

concentrations are increased around the entire cell surface and asymmetry is lost more rapidly 

with the addition of reflective boundaries. Using a pulse approach, heterogeneity in 

concentrations around the cell surface is improved at all times, with the effect further amplified 

by the addition of reflective surfaces. The culture system is thus a major effector of the 

polarization process. Depending on delivery strategies, we demonstrated that geometry effects 
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can potentiate or impair polarization signals at the single cell level, illustrating the benefits of 

finite-element models in the context of soluble factor signaling analysis.  

Percentage of Receptor Occupancy 
 

   
 

 
 

Figure 4-9: Analysis of Percentage Occupancy PO computed as per equation (53). Top left: suspension 
system. Top right: adherent system. Bottom: gap chamber. Blue line: constant EGF release. Black line: two-
minute EGF pulse. 

 
 

Figure 4-9 depicts typical simulation results in which PO exhibits a monotonic profile 

with 48% occupancy reached in two minutes, 80% occupancy in five minutes and near cell 

saturation by the end of the delivery in the suspension system using constant EGF release. The 
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pulse approach significantly reduces the amount of factor delivered in the media and PO 

decreases to 62% by the end of the computations in the suspension system. The effects observed 

with the addition of one or two reflective surfaces confirm the previous hypothesis as PO 

increases after two minutes to 60% and 69%, respectively. In these systems, occupancy levels 

exhibited a 7 to 10% increase by the end of simulations following pipette removal, indicating the 

pulse approach allows for a relative stabilization of PO values to two-minute occupancy levels. 

These occupancy values also indicate the pulse delivery strategy is consistent with downstream 

MAPK/Erk activation in all culture systems as discussed previously. To further characterize 

asymmetric signaling potential, PO was computed on the front and back cell side (POfront and 

POback respectively) to differentiate signaling potential with respect to delivery asymmetry.  
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Figure 4-10: Analysis of Percentage Occupancy PO computed on the front and back cell side respectively as 
per equation (53). Top left: suspension system. Top right: adherent system. Bottom: gap chamber. Red line: 
POback constant EGF release. Green line: POfront constant EGF release. Black line: POback two-minute EGF 
pulse. Blue line: POfront two-minute EGF pulse. 
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Figure 4-11: Analysis of PO differential between the front and back cell surfaces with respect to the point 
source of factor delivery for the three different culture systems. Left: Constant EGF release. Right: two-
minute EGF pulse. Black line: suspension system. Blue line: adherent system. Green line: gap chamber. 

 
 

As shown in Figure 4-10 and 4-11, Computed POfront and POback exhibited different 

values, indicating controlled release of EGF from a point source can be translated in spatially 

heterogeneous occupancy levels on the cell surface. In the suspension system, the maximum 

differential of 30% was computed after two minutes and 30 seconds, with 72% occupancy on the 

front cell side and 42% on the back cell side. Occupancy levels demonstrated saturation of both 

cell sides by the end of experiment. Pipette removal stabilizes the occupancy difference to a 

relatively steady level until the end of computations (from 29% differential after two minutes to 

18% after 20 minutes) indicating pulse delivery provides improvements for the generation of 

occupancy differentials in the case of the suspension system. With the addition of one reflective 

boundary, the effect of pipette removal was further improved: the initial increase in local EGF 

concentrations contributed to higher occupancy levels on the front cell side (78% after two 

minutes compared to 63% in the suspension system) while occupancy levels at the back cell side 

were slightly increased (42% compared to 34% in the suspension system). Hence, a higher 
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differential was reached at all times following EGF pulse with the addition of one reflective 

boundary. In this system, the benefit of pipette removal compared to constant release was 

observed after three minutes with higher computed occupancy differentials. This confirms that 

Brownian motion of molecules hitting reflective boundaries increases local EGF concentrations. 

When release is constant, the differential PO is transient, as concentration around the cell rapidly 

homogenizes, whereas the pulse approach allows for higher differential occupancy levels with 

reflective boundaries in the cell microenvironment (Figure 4-11). This was confirmed with the 

gap chamber system in which PO = 93% was reached after two minutes on the front cell side, 

and pipette removal allowed for occupancy differential levels up to 47% after two minutes and 

33% by the end of computations. This represents significant improvements compared to the 

constant EGF release, as in this case saturation of the entire cell was reached in ten minutes.  

As signal amplification along the MAPK/Erk pathway allows for subsequent 70% Erk 

duo-phosphorylation with PO as low as 15%, a stringent asymmetry of occupancy levels is 

required on the cell surface to reach conditions for asymmetric Erk activation. While differentials 

were improved with the addition of one and two reflective boundaries in the pulse approach, the 

range of computed occupancy values was increased and demonstrated the gap chamber was not 

compatible with asymmetric signaling as PO>15% on the back cell side after 50 seconds. 

In vivo, cells are confined in complex three-dimensional environments constituted of 

neighboring cells and extracellular matrix limiting diffusion of soluble molecules. Soluble 

factors experience restricted diffusion in tissue in which gradients can be generated by 

entrapment in the extracellular matrix (Dowd, Cooney et al. 1999). This is a prerequisite for the 

formation of polarized systems such as epitheliums in which relative positional information 

allows for the creation of basal, lateral and apical membrane domains. It indicates that the 
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addition of supplementary artificial boundaries in a cell microenvironment may be one logical 

step towards further improvement of in vitro culture techniques. Also, the preliminary results of 

the sensitivity analysis led us to introduce the Damköhler number (Da) to study the effect of mass 

transport limitations in the system. 

 

4.4.4 Effect of the Diffusion Coefficient 

In this section we analyzed how transport limitation of soluble molecules in the cell 

microenvironment affects the polarization process as PI and PO were computed for 10 different 

apparent diffusion coefficient values (D). The bounds for D were defined using the viscosity of 

water at 20ºC and microviscosity of a normal mouse leg tissue (Halpern, Chandramouli et al. 

1999). Da was calculated as per equation (54) and the EGF pulse approach was selected for 

analysis. The correlation between diffusion coefficients and the specific Da values used is 

presented in Appendix D. 
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Figure 4-12: Effect of mass transfer limitation on PI computed as per equation (50) for the three different 
culture systems. High Da values indicate high mass transfer limitations in the cell vicinity. PI was computed 
after 1 (black line), 2 (blue line), 5 (red line), 10 (cyan line) and 20 minutes (green line). Top left: suspension 
system. Top right: adherent system. Bottom: gap chamber. 
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Figure 4-13: Effect of mass transfer limitation on PO computed as per equation (53) on the entire cell surface 
for the three different culture systems. PO was computed after 1 (black line), 2 (blue line), 5 (red line), 10 
(cyan line) and 20 minutes (green line). Top left: suspension system. Top right: adherent system. Bottom: gap 
chamber. 

 

Figure 4-12 exhibits the significant increase in computed PI values with mass transport 

limitation at early time points (PI > 20 as Da > 18 after one minute). With Da = 10 (D = 0.0095e-

10 m2/s), some improvements in PI could be observed up to 20 minutes in the suspension system 

while polarization was rapidly lost when EGF diffused in media at 20ºC. This indicates the slow 

motion of EGF in the cell microenvironment potentiates polarized signals in the short and long 
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term. The addition of reflective surfaces in the cell vicinity contributed to significant 

improvements of PI at early time points for Da ≥ 20 and minor improvements were also observed 

at later time points compared to the suspension system. The gap chamber exhibited the most 

pronounced improvements with increased computed PI over the entire spectrum of Da values. 

Significantly, PI = 18 can be maintained until the end of delivery with Da = 100 in the gap 

chamber, indicating that with a low diffusion coefficient, homogenization of EGF concentrations 

around the entire cell occurs slowly, phenomenon further amplified by the addition of reflective 

boundaries in the cell vicinity. Hence, tissue-type culture conditions in which the apparent 

diffusion is reduced in the extracellular space potentiate polarized signals.  

 

The positive effect of mass transport limitation on PI occurs at the expense of occupancy 

values, as shown in Figure 4-13. In the suspension system, computed PO values were below 15% 

occupancy levels after two minutes with Da ≥ 5 indicating mass transport limitation could be 

responsible for low levels of Erk activation. The adherent and gap chamber systems exhibited 

improvements, allowing for occupancy levels consistent with high MAPK activation with higher 

mass transfer limitations. Specifically in the case of the gap chamber system, Da values as high 

as 13 were consistent with a minimum of 15% occupancy after two minutes. A perfectly 

asymmetric system may thus not be able to elicit cellular responses, whereas a perfectly signal-

potent system may not be asymmetric. A balance must be reached to ensure the creation of a 

polarized environment capable of triggering signaling responses in a spatially controlled manner, 

as shown with the analysis of POfront and POback.  
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Figure 4-14: Effect of mass transfer limitation on PO computed as per equation (53) on the front and back 
cell surfaces for the suspension system. POfront: Black line. POback: Blue line. PO difference between the front 
and back surfaces: grey line. Top left: Computation results after two minutes. Top right: Computation 
results after five minutes. Bottom left: Computation results after ten minutes. Bottom right: Computation 
results after 20 minutes. 
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Figure 4-15: Effect of mass transfer limitation on PO computed as per equation (53) on the front and back 
cell surfaces for the adherent system. POfront: black line. POback: Blue line. PO difference between the front 
and back surfaces: grey line. Top left: Computation results after two minutes. Top right: Computation 
results after five minutes. Bottom left: Computation results after ten minutes. Bottom right: Computation 
results after 20 minutes. 
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When further analyzing the POfront and POback values as shown in Figure 4-14, 4-15 and 

4-16, we demonstrated that mild transport limitations in the cell vicinity (Da > 4 in all systems) 

allowed for occupancy levels on the distal cell side below 15% at all times and thus represent 

conditions for spatially controlled elicited signals in the cytoplasm. This analysis also 

demonstrated the differential occupancy level could be maximized for a specific Da value (Da = 3 

Figure 4-16: Effect of mass transfer limitation on PO computed as per equation (53) on the front and back 
cell surfaces for the gap chamber. POfront: black line. POback: Blue line. PO difference between the front and 
back surfaces: grey line. Top left: Computation results after two minutes. Top right: Computation results 
after five minutes. Bottom left: Computation results after ten minutes. Bottom right: Computation results 
after 20 minutes. 
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in all systems) indicating a balance is needed to ensure enough binding of molecules on one cell 

side while limiting the diffusion of EGF to the back cell side. The combination of mass transfer 

limitation and reflective boundaries in the direct cell vicinity generates the highest computed 

polarized signals at the single cell level as the computed differentials increase with the addition 

of reflective boundaries (28% after five minutes in the suspension system, compared to 40% and 

61% in the adherent and gap chamber systems respectively after five minutes for Da = 3). 

 

While this analysis may not be applicable experimentally to the gap chamber system, 

these plots illustrate conditions practically applicable to adherent culture systems in which cells 

are grown in various matrices. The use of the Damkhöler number enables one to define Da values 

for specific cellular / signaling systems and specific matrix viscosities, hence allowing one to 

evaluate asymmetric MAPK potential for the specific geometry analyzed. Nonetheless, the use of 

matrices for cell culture also involves potential limitations of oxygen and nutrients. As the 

microenvironment is a strong effector of polarization, we decided to further analyze the impact 

of neighboring cells on polarization. 

 

4.4.5 Effect of the Cell Configuration 
 

A single-cell system offers numerous advantages both computationally and 

experimentally. The absence of cellular neighbors also affects the cell microenvironment in 

terms of potential cell-cell and cell-ECM interactions. In this context, it is possible the designed 

microenvironment will lack primordial cues to translate polarized signals of soluble factors into 

changes of genetic and metabolic activity leading to controlled cell fate decisions. In this section, 

we analyze the effect of neighboring cells and specifically the creation of cellular “walls” on 
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polarization. Two and four cells were added on the lateral sides (y-axis) of the cell of interest 

with respect to the point source of delivery as shown in Figure 4-17 and the x-axis was left 

unencumbered.  

 

  

  

Figure 4-17: Meshes of finite-element models used for the analysis of neighboring cell effects on PI and PO. 
Top left: three-cell adherent system. Top right: five-cell adherent system. Bottom left: three-cell gap chamber 
system. Bottom right: five-cell gap chamber system. 

 

The effect of neighboring cells in the z-axis was not studied as the gap chamber model 

does not allow for the addition of cells in this direction. Newly added cells were defined non-

reflective using model 2 and their respective center defined at ten μm from neighbors to ensure 

three-cell adherent system five-cell adherent system 

three-cell gap chamber system five-cell gap chamber system 
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overlap between cellular volumes. Internal surfaces were inactivated in COMSOL and receptor 

density kept constant for available surfaces. A two-minute 100 ng/mL EGF pulse was simulated 

with diffusion in media at 20ºC.  

 

  

Figure 4-18: Effect of neighboring cells on PI computed as per equation (50). Left: adherent system. Right: 
gap chamber. Black line: one-cell system. Blue line: three-cell system. Green line: five-cell system. 
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Figure 4-19: Effect of neighboring cells on PO computed as per equation (53) for the front and back cell 
surfaces with respect to the point source of delivery. Top Left: three-cell adherent system. Top right: five-cell 
adherent system. Bottom left: three-cell gap chamber system. Bottom right: five-cell gap chamber system. 
Black line: POfront. Blue line: POback. Green line: PO difference between the front and back surfaces. 

 

As shown in Figure 4-18, the addition of neighboring cells in the suspension system did 

not contribute to improvements of PI values. The presence of adjacent cells contributed to a local 

increase in diffusing EGF concentration initially on the front cell surface and gradually around 

the entire cell surface over time. This behavior is similar to what was observed with the addition 

of reflective boundaries around a single cell in silico. In the adherent culture system, the addition 

of two and four cells in the cell vicinity demonstrated improvements of computed PI during the 
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first two minutes, time after which the results were almost identical to the one-cell system. The 

physical obstruction of diffusion paths towards the distal cell side with a combination of 

reflective and non-reflective boundaries allows for minor PI improvements at early time points, 

result of local increase in EGF concentration on the side facing the point source of delivery. As 

the apical domain was left unencumbered, improvements were reduced over time compared to 

the single cell system due to the homogenization of EGF concentration around the cell. In the 

adherent system, the addition of more than two neighbors in the y-axis demonstrated no further 

improvements of PI. The gap chamber system exhibited the most significant improvements in 

terms of PI. While a single cell could maintain PI > 2 for approximately 2.5 minutes, the three-

cell system allowed for PI > 3 for almost three minutes and PI > 2 until the end of simulations. 

Compared to the adherent system, the gap chamber allowed for complete obstruction of diffusion 

paths in the cell vicinity, thus effectively increasing the shortest distance to the distal cell side 

and tortuosity. Results were further improved in the five-cell system as shown in Figure 4-18 and 

values were greater than the three-cell system at all times.  

 

Effects observed on occupancy levels were similar as shown in Figure 4-19. In the 

adherent system, the addition of two or four neighboring cells demonstrated significant 

improvements of occupancy differential values (from 37% after two minutes in a single-cell 

system to 56% in the three-cell system) while no further improvements were observed in the 

five-cell system. Hence, the presence of neighbors contributes to the local increase of 

concentrations on the front cell side while the reduction of the number of paths towards the back 

side improves the asymmetric potential of the EGF pulse. It should be noted that occupancy 

levels on the front and back cell sides are still consistent with a minimum of 70% subsequent Erk 
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activation in less than one minute, indicating that the cell configuration can shift the differential 

range out of target for spatially controlled activated Erk in the intracellular compartment. In the 

gap chamber, results were different as occupancy levels at the back cell side were below 15% for 

up to two minutes in the three-cell and five-cell systems while allowing near saturation on the 

front cell side in approximately one minute (30 seconds for the five-cell system). Only when the 

tortuosity was increased by the addition of both reflective (culture chamber surface) and non 

reflective boundaries (cells) could we produce conditions consistent with significant spatial 

differences in the kinetics and amplitude of Erk activation for two minutes based on Schoeberl’s 

analysis. This behavior indicates a complete adhesion to neighboring cells and both basal and 

apical surfaces is necessary for the potentiation of polarization. Polarization inside a five-cell 

wall with diffusion in media at 20ºC demonstrated a higher differential after two minutes than 

any system previously tested with mass transfer limitation in the cell microenvironment (section 

4.4.4) while keeping occupancy levels on the back cell side to a maximum of 15%. The 

formation of cellular walls or colonies is an intrinsic property of in vitro cultures that increases 

the shortest distance to the distal cell side of a cell with respect to a point source of delivery. Cell 

colony structure will dictate various responses to soluble signals and careful selection of cellular 

configurations, cell colony shapes and sizes allows for the engineering of local 

microenvironments in vitro.  

 

4.4.6 Model Correlation with Experimental Data 
 

In these simulations, the concentration of TRITC-EGF in the point source of delivery was 

100 ng/mL. The delivery length was two minutes after which the point source of delivery was 
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removed from the culture system and fluorescent imaging was then performed with a time 

interval of three minutes as described in Material and Methods. 

 
 
 

  

 
 
 

Figure 4-20: Single cell delivery of TRITC-EGF from a point source (micropipette) for model correlation. 
Top left: 40X brightfield image of a single HeLa cell cultivated in a gap chamber and visualization of the gap 
edge. Top right: finite-element sketch of a single cell culture in a gap chamber (54 μm major axis). The cell 
was modeled as an ellipse and model dimensions were evaluated based on the brightfield image. Bottom: 40X 
fluorescent imaging after two minutes following a two-minute EGF pulse. Adjustment of intensity threshold 
was used to define cell boundaries and define a ROI further used for PI measurement (white arrow).  

 
 

10 μm 
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Masks were defined as described in Material and Methods and split into two equal 

surfaces vertically for measurement of fluorescence intensity (mean gray value). For model 

correlation, we developed a three-dimensional model of a gap chamber in which the cell was 

approximated as an ellipse, kinetic model 2 defined on the cell surface and same boundary 

conditions as defined previously were used. The cell dimensions, micropipette tip diameter, 

distance from the cell and gap chamber thickness were modeled accordingly to the experimental 

setup as shown in Figure 4-20. The first experimental time point was one minute due to the time 

needed for final positioning of the micropipette, capture of brightfield image, adjustment of 

acquisition settings for fluorescence (one frame per second) and initial image capture. To 

estimate the effect of ROI boundary definition uncertainty on PI measurements, ROI boundaries 

were resized to generate +/- 10% changes in ROI surface (see appendix). Time-course imaging 

of delivery after background subtraction is presented in Figure 4-21. 
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Figure 4-21: 40X fluorescent time-course of a two-minute pulse delivery of 100 ng/mL TRITC-EGF to a 
single HeLa cell after background removal with a three-minute time interval. t = 18 was not considered for 
model correlation due to the lower level of fluorescence intensity. Time in minutes. 

 

PI measurements and simulation results are presented in Figure 4-22: 

background t = 1 t = 3 

t = 6 t = 9 t = 12 

t = 15 t = 18 t = 21 

pulse start pulse end 
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Figure 4-22: Model correlation with experimental data of a two-minute 100 ng/mL EGF pulse. Solid line: 
model results for the defined geometry with PI computed as per equation (50). Error bars indicate one 
standard deviation. 

 
 

A satisfactory fit between model simulation and experimental data is observed up to 10 

minutes. Except for the first time point, the decrease of PI as concentrations gradually 

homogenizes around the cell is confirmed with computed PI = 4 after three minutes down to PI = 

3.2 after ten minutes. The effect of ROI boundary uncertainty is maximal after three minutes and 

can be attributed to residual fluorescence in the culture media resulting from freely diffusing 

EGF molecules following delivery. Therefore, increasing or reducing the ROI surface will 

significantly affect average pixel intensity. After ten minutes, experimental data exhibited 
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slightly higher PI compared to model predictions. Figure 4-23 illustrates the cell of interest after 

six and 21 minutes post delivery and demonstrates the vesicular nature of fluorescence signal by 

the end of the experiment. As the model does not include internalization, events occurring at 

later time points are not accurately depicted such as movements of endosomal vesicles through 

cytoskeletal motion. Internalization thus appears to stabilize polarization at later time points.  

 

 

 

Figure 4-23: Comparison of fluorescence profiles after six (left) and 21 minutes (right) demonstrating the 
vesicular nature of fluorescence signals at later time points. 

 

 

We further decided to evaluate model significance with another single cell system in a 

gap chamber. The cell of interest exhibited a significantly different shape, as shown in Figure 4-

24: 

t = 6 t = 21 

10 μm 
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Figure 4-24: 40X fluorescent time-course of a two-minute pulse delivery of 100 ng/mL TRITC-EGF to a 
single HeLa cell after background removal with a three-minute time interval. Time in minutes. 

 

 

The threshold approach was not effective as fluorescence signal coming from the media 

did not allow for the proper identification of cell boundaries. In this case, we used the 

fluorescence image at five minutes to manually draw the outline of the cell and the three-

dimensional computational model was designed based on the experimental system dimensions, 

as shown in Figure 4-25: 

 

t = 1 t = 3 

t = 6 t = 9 t = 12 

t = 15 t = 18 t = 21 

background 

pulse start pulse end 
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Figure 4-25: Manual identification of cell boundaries based on fluorescence image (left) and finite-element 
model sketch (right). 

 
 
 

 
 

Figure 4-26: Model correlation with experimental data of a two-minute 100 ng/mL EGF pulse. Solid line: 
model results for the defined geometry with PI computed as per equation (50). Error bars indicate one 
standard deviation. 
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Due to the particular shape of the cell selected for pulse delivery, the cell was depicted as 

half-ellipse in COMSOL to increase model significance. Compared to the previous model fit, 

computation results exhibited greater PI at all times due to the change in cell shape. As shown in 

Figure 4-26, the proper depiction of the single cell was necessary as slight changes in cell shape 

demonstrated significant effects on computed PI (switch from half-ellipse to ellipse for 

example). The model exhibited satisfactory fit between one and ten minutes, after which 

experimental PI values were greater than computations. This is again indicative of the 

potentiating effect of internalization with vesicles concentrated on the cell side facing the point 

source of delivery.  

 

This section demonstrated model significance using finite-element systems specifically 

tailored for the experimental conditions. Of relevance, we demonstrated that assuming simple 

diffusion in the gap chamber system was a reasonable assumption and allowed for the capture of 

polarization events at the single cell level. In COMSOL, internal boundaries are inactive and 

computing PI for a cell in direct contact with neighboring cells would necessitate omitting some 

of the cellular surface for measurements. This situation may or may not be acceptable depending 

on the ability to measure surface integrals for both a front and back domain. Therefore, cells part 

of compact spherical colonies will not be candidate for modeling as the back surface could not be 

defined in COMSOL. 

 
 
 
 
 
 
 
 



151 
 

4.4.7 Analysis of Cell Colony Effects 
 

Point Source 
 

For the reasons cited previously, the analysis of colony effects was performed 

experimentally and PI was measured as described in Material and Methods following a two-

minute pulse of 100 ng/mL TRITC-EGF. Five cells were selected for analysis as shown in Figure 

4-27.  
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Figure 4-27: Two-minute pulse delivery of 100 ng/mL TRITC-EGF to HeLa colonies cultivated in a gap 
chamber. Top right: 40X brightfield image of two HeLa colonies (one seven-cell and one four-cell colony) 
with the micropipette on the left gap edge and identification of the five cells selected for analysis. The gap 
edge ad micropipette can be identified on the left side. Bottom right: manual drawing of masks (a, b, c, d, e, f, 
g and h) for front and back domains of single cells based on the orientation of available surfaces as described 
in Materials and Methods. Left: 40X fluorescent time-course of a two-minute pulse delivery of 100 ng/mL 
TRITC-EGF to HeLa colonies after background removal with a two-minute time interval. Time in minutes. 

 
 
 

The identification of the axis of separation was made as described in Material and 

Methods and masks were defined manually. Results of PI measurements are presented in Figure 

4-28. 
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Figure 4-28: Analysis of colony effects on experimental PI measurements. Cells 1 and 5 (dark blue and light 
blue line) exhibited highest PI measurements. 

 
 

With a two-minute pulse, the most distal cell of the system (3) demonstrated the lowest 

PI with a maximum of 1.27 after four minutes as shown in Figure 4-28. Other cells on the distal 

side such as (2) and (4) exhibited intermediate PI values with maximum of two after four 

minutes and PI = 1.5 by the end of the experiment. For these cells, the axis of separation between 

the front and back cell side was defined according to orientation of cell membranes available to 

freely diffusing EGF. Two cells exhibited significantly higher PI values (1 and 5). Cell (5) was 

located on the front of a small four-cell colony and was expected to be highly polarized, with a 

maximum PI of four after four minutes and PI = 2.5 by the end of experiment. Interestingly, cell 

(1) exhibited similar values between four and eight minutes and PI went as low as 1.6 after 12 

minutes. Cell (1) was located further from the point source and the direct path with respect to the 

point source of delivery was encumbered with cells in the colony as shown in Figure 4-27. The 
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fraction of cell membrane available to the media seems a possible cause for this phenomenon, 

with lower ratio of membrane available to freely diffusing EGF responsible for higher computed 

PI thus compensating the increased shortest distance to the point source. Cell (5) exhibited a 

higher fraction of available membrane and higher PI values by the end of the time-course. A 

close inspection of fluorescence images demonstrated the apparition of endocytic vesicles as 

soon as eight minutes following delivery which was not observed in any other cell. After ten and 

12 minutes, the high vesicular nature of EGF signal was clear as shown in Figure 4-29 and larger 

cytoplasmic volumes could contribute to higher polarization following internalization due to the 

limited mobility of endosomal vesicles. On the opposite, smaller cytoplasmic volumes could be 

responsible for a more rapid homogenization of cytoplasmic signal following internalization 

while the reduction of membrane surface could potentiate the negative effect of receptor lateral 

diffusion on polarization. 

 

 

  
Figure 4-29: TRITC-EGF signal in HeLa cells after four minutes (left) and ten minutes (right) illustrating the 
vesicular nature of fluorescence signals at later time points. Time in minutes. 
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It has been previously reported that the kinetics of EGFR dimerization is a regulator of 

EGFR internalization (Wang, Villeneuve et al. 2005). Hence, different quantities of bound EGF 

on different cells could be responsible for different kinetics of internalization which could further 

impair or stabilize polarization depending on the cellular volume. Finally, all PI profiles 

exhibited the same behavior as previously reported, with low measured PI for the first time point 

(two minutes) indicating the acquisition system sensitivity did not allow for the capture of early 

polarized events due to low detected signal intensity. 
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Bulk Source  
 

While the pulse delivery through a point source allowed for fine positioning with respect 

to single cells and cell colonies, we analyzed the potential for bulk delivery in the context of 

polarization. This approach enabled the polarization of a large amount of colonies of various 

sizes and shapes in a single experiment. HeLa cell colonies were cultivated in gap chambers as 

shown in Figure 4-30 and media containing 10 ng/mL TRITC-EGF was added to the culture for 

two minutes.  

 

Figure 4-30: Brightfield image of a HeLa colony prior to two-minute pulse delivery of 10ng/mL TRITC-EGF 
and cell identification. 

 
 

Figure 4-31 depicts a typical two minutes pulse of medium containing 100 ng/mL 

TRITC-EGF followed by time-lapse imaging at six minutes time interval.  



157 
 

 

Figure 4-31: 40X fluorescent time-course of a two-minute pulse delivery of 10 ng/mL TRITC-EGF (bulk 
media change) to HeLa colonies after background removal with a six-minute time interval.  
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Figure 4-32: Illustration of a polarized colony and effect of cell nucleus position on the polarization of the 
cytoplasmic compartment. Time in minutes. 

 

 When further comparing cells with lower (red arrows) and higher levels of TRITC-EGF 

(green arrows), we observed the formation of patches on the cell membrane after eight minutes 

and internalization became apparent after 14 minutes, as shown in Figure 4-32. This indicates 

significant differences in terms of the amount of EGF molecules delivered to a single cell did not 

affect the kinetic of internalization. After eight minutes, we isolated two cells exhibiting strong 

to intermediate degrees of EGF polarization (yellow arrows) and observed that by 20 minutes 

post-delivery, endocytic vesicles were localized throughout the entire cytoplasm. Conversely, 

other cells were polarized and did demonstrate a much higher degree of polarization up to 32 

t = 2 t = 8 t = 14 

t = 20 t = 26 t = 32 

nucleus position
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minutes post-delivery (blue arrows). A careful examination indicated cells with a central nuclear 

position (yellow) lost cytoplasmic polarization rapidly which highlighted the potential for rapid 

and long-distance mobility (in the μm range) of endosomal vesicles in the cytoplasm. When the 

nucleus exhibited an eccentric position, vesicles charged with growth factors appeared restricted 

to a given cell side due to a restriction of the cytoplasmic volume. 

In Chapter 2, we reviewed fundamental mechanisms of asymmetric cell division and 

described a mechanism in which the cell spindle could be asymmetrically positioned at the time 

of division, thus leading to the formation of daughter cells with different size and fate potential. 

We thereby propose non-central positioning of the nucleus could allow for the restricted 

movement of endosomal vesicles in a given subsection of the cytoplasmic compartment. 

Associated with the proper orientation of the mitotic spindle at the time of mitosis, this could 

allow for control of the repartitioning of activated signaling pathway intermediates such as the 

MAPK but also a variety of other cytoplasmic molecules and proteins relevant in the context of 

polarization. 

 

4.5 Discussion 
 

In this chapter, we developed a three-dimensional computational framework for the 

analysis of asymmetric environments of soluble factors in vitro. Diffusive transport from a point 

source delivers soluble EGF onto a cell surface on which a kinetic model of binding and 

internalization was developed. Using PI and PO, we performed a sensitivity analysis that 

identified significant parameters of the system with respect to the defined metrics. We 

demonstrated the importance of the forward rate constant, initial concentration of free receptors 
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and diffusion coefficient, which led us to simplify the kinetic model to a simple on-binding step 

in which kf and Ri were estimated experimentally to improve model significance.  

Using Schoeberl’s analysis as a reference, we aimed at identifying experimental 

conditions consistent with asymmetric MAPK activation following controlled EGF release and 

especially conditions in which POback<15%. The complexity of geometry effects was illustrated 

by comparing the two methods for EGF delivery, constant release and EGF pulse. With constant 

release, the addition of reflective boundaries in the cell vicinity contributed to reduced 

occupancy differentials on the cell surface as EGF concentration around the cell rapidly 

homogenized. When EGF was pulsed for two minutes, concentrations were increased on the 

front cell surface and this phenomenon was amplified in the adherent and gap chamber systems. 

We demonstrated that while improving the degree of polarization per se, the culture system is a 

major effector of polarization. Depending on selected delivery strategies, the effect of reflective 

boundaries in the cell microenvironment is reversed and this could not have been elucidated 

without the combinatorial use of finite-element modeling and boundary value problems. Simple 

diffusion of molecules in media at 20ºC did not allow for polarized signals at the single cell level 

as we demonstrated MAPK activation was homogeneous on the front and back cell side based on 

occupancy levels. 

The diffusion coefficient in the cell vicinity is a major effector of the polarization. 

Slowing down diffusion of soluble molecules triggers high PI values while still allowing for 

occupancy levels consistent with signal transduction, especially in the case of the gap chamber. 

Hence the culture system needs to be carefully considered in the context of polarization. Of 

relevance, this analysis allowed for the definition of experimental conditions in which MAPK 

activation was triggered exclusively on a specific cell side with occupancy levels below 15% on 
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the distal cell side at all times. In vivo, diffusion of soluble molecules in tissues will allow for 

polarized signals at the single cell level and source distance from the target cell, concentration of 

released factor, extracellular matrix viscosity as well as the presence of neighboring emitting or 

reflecting cells could provide control mechanisms for target thresholds. 

When looking at the effect of neighboring cells, we further demonstrated the beneficial 

effect of increasing the shortest distance to the back cell side with respect to the point source of 

delivery. Neighboring cells did not affect significantly polarization in the adherent system, as the 

apical / basal domains of the cells still allowed for free diffusion of EGF molecules. A significant 

improvement of PI and PO differential was computed in the gap chamber especially in the five-

cell system, demonstrating the interplay between the culture system and cell colony 

configuration. In this case, it was possible to reduce occupancy levels on the distal cell side to 

ensure below 70% MAPK/Erk activation with near saturation on the front side for two minutes. 

These highly asymmetric conditions of occupancy have the potential to generate various levels 

of downstream MAPK activation in the cytoplasm based on the position of the point source of 

delivery.  

In vivo, cells are confined in complex three-dimensional environments constituted of 

neighboring cells and extracellular matrix limiting the diffusion of soluble molecules. Soluble 

factors experience restricted diffusion in tissue in which gradients can be created by factor 

entrapment in the extracellular matrix (Dyson and Gurdon 1998; Dowd, Cooney et al. 1999). 

This is a prerequisite for the formation of polarized systems such as epitheliums in which relative 

positional information allows for the creation of basal, lateral and apical membrane domains. It 

indicates that the addition of supplementary artificial boundaries in the cell vicinity may be one 
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logical step towards further improvement of in vitro culture techniques as demonstrated in the 

gap chamber.  

Even though specific culture conditions provide major improvements of the potential for 

asymmetric delivery, the time frame during which asymmetric conditions were obtained was 

short. Occupancy levels moderately increase after pipette removal (as shown in Figure 4-9), 

which indicates long term asymmetric potential was not achieved at the single cell level. In this 

context it is important to mention that additional cells were not introduced in the model due to 

the higher complexity of meshes and difficulty for model convergence and accuracy. Our results 

demonstrated a trend that is likely applicable to larger cell aggregates and also to more complex 

colony shapes. Hence, the polarization of cells inside larger colonies has the potential for 

asymmetric MAPK profiles longer than the ones demonstrated in this computational analysis.  

The model was fitted to experimental data for a single cell cultivated in a gap chamber, 

demonstrating the relevance of a three-dimensional finite-element model of diffusion and 

boundary value problem in the context of elucidating polarized soluble signals in vitro. Proper 

analysis and prediction of polarized signals will require the accurate representation of culture 

conditions, cell shape, cell number, cell colony configuration and dimensions. We thereby 

propose that conventional culture systems lack the ability to generate polarized signals at the 

single cell level. Cultivating cell colonies in a gap chamber can increase the shortest distance to 

the back cell membrane as long as cells are attached to both gap surfaces, thus mimicking the 

limited diffusion of molecules in the complex matrix while allowing diffusion in water. 

After user-based definitions of ROIs, CAD export and finite-element model setup can be 

automated to significantly increase the speed at which complex multicellular three-dimensional 
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models can be generated and analyzed. While this analysis was performed post-delivery, it is 

now possible to envision systems in which colonies will be analyzed prior to controlled factor 

release and potential for polarization assessed according to system geometry. Target PI, PO and 

differential values could be defined and used for the optimization of system parameters (pulse 

length and factor concentration), thus enabling on demand prediction of polarization in vitro as 

shown in Figure 4-33. 

 

Figure 4-33: Automation and prediction of polarization in silico. 

 
 

Quantitative differences in signaling intermediates can generate different levels of early 

genes activation based on simple enzyme biochemistry and law of mass action. As several early 

genes products act as homo-heterodimeric transcription factors for late genes, it appears 

quantitative differences at the signaling level have the potential to elicit qualitative changes at the 

cellular level. Also, the length of MAPK activation controlled by removal of the point source in 

our system can dictate important specificity of repertoire of Jun and Fos proteins expressed 
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(Kovary and Bravo 1991; Kovary and Bravo 1992; Cook, Aziz et al. 1999). While the activation 

of MAPK/Erk can be asymmetrically triggered on a single-cell surface, all MAPK signals will 

converge towards the same nucleus and ultimately control the activity of transcription factors 

regulating the expression of two copies of the identical target gene(s). Polarization of signaling 

pathways at the single cell level will be physiologically relevant only in the context of 

appropriate cell cycle positioning. Numerous approaches are used to synchronize cells in culture 

such as serum removal or the addition of chemicals such as nocodazole and these allow for cell 

blockage at various cell cycle position (G1/S or G2/M for example) (Hoebeke, Van Nijen et al. 

1976). Polarization at the time of mitosis will enable asymmetric repartitioning of pools of 

activated transduction proteins which could then elicit different patterns of gene activation in the 

daughter cells. This also indicates that short time frames of asymmetric MAPK profiles as 

demonstrated in the gap chamber with five cells can be significant if they are properly correlated 

with the cell cycle. 

 We demonstrated the experimental feasibility of polarization and the relevance of finite-

element models for the definition measurable metrics in the context of delivery efficiency and 

asymmetry. The next chapter will study both short-term and long-term effects of polarization and 

we will analyze the subcellular localization of duo-phosphorylated MAPK (the active form of 

MAPK) and several proteins either involved in polarization complexes (Par) or acting as cell fate 

determinants (Numb) both in HeLa cells and primary cell lines. We will finally evaluate the 

potential long-term effects of polarization through long-term live-cell imaging of HeLa colonies 

cultivated in gap chambers following TRITC-EGF pulse. 
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5 Chapter 5: Physiological Effects of Pulse Delivery 

 
Chapters 3 and 4 have demonstrated how a computational framework of diffusion and 

reaction on a cell surface can be useful for the definition of a set of metrics for polarization 

analysis. These were used to demonstrate that both the culture systems and neighboring cells 

were important and should be considered in the context of polarization. Models can adequately 

capture experimental data based on the partitioning of fluorescent molecules on a cell surface 

and also be used for prediction as long as the experimental setup is accurately depicted. These 

computational approaches are a framework useful in the engineering of delivery strategies based 

on target occupancy levels (PO) and polarization index (PI) values. The physiological relevance 

of controlled pulses to single cells should now be investigated. 

 

In a first step, short term effects following the pulse will be studied using 

immunocytochemical analysis of key molecules in the context of EGF signaling, polarization 

proteins and cell fate determinants. While informative, the shortcoming of this approach is its 

destructive nature, as cells must be destroyed or fixed in order to obtain the desired information. 

To further evaluate the long-term effects of pulse delivery and polarization in vitro, methods are 

needed that enable the acquisition of data in time and space and allow for the identification of 

lineage-related effects. These systems could be used for the analysis of asymmetric properties 

between daughter cells, such as cell cycle time, morphological features, migration pathways and 

distances as well as the expression of various proteins. To achieve this, live-cell imaging stations 

should allow for the observation of cellular systems in a near-continuous manner. 
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Time course imaging and cell tracking methods were developed and implemented in the 

1960s, initially for studying generation times of monolayer cell cultures (Hsu 1960; Earle 1962; 

Froese 1964). Since then, the improvement of microscopic and computer technology has allowed 

such studies to include extraction of morphological (Geng, Cosman et al. 2004) and locomotory 

phenotypes (Niggemann, Maaser et al. 1997). More recent studies have tracked single cell 

movement through three-dimensional substrates (Niggemann, Maaser et al. 1997; Demou and 

McIntire 2002; Rabut and Ellenberg 2004). In these cases it is obvious that continuous 

observation of the system is imperative in order to obtain accurate temporal data, such as cell 

cycle time, or spatial data, such as cell migration pathways. Such studies will require the 

combination of unique imaging systems, image processing and cell tracking software, as well as 

feature extraction and pattern classification algorithms. In a second step, we will investigate the 

potential for lineage tracking in the context of cell polarization. A specific set of features are 

needed to evaluate the potential for asymmetric factor delivery and assess long-term metabolic 

and phenotypical effects of pulse delivery. HeLa colonies cultivated in gap chambers will be 

tracked for up to five days using a custom imaging system and tracking software. Analysis of 

data will focus on variations in cell cycle time based on their localization among polarized 

colonies or the time until first division following TRITC-EGF pulse.  

 
 

5.1 Material and Methods 

5.1.1 Long-Term Imaging and Tracking System 
 

In order to be adapted for live-cell imaging, a custom-built cell culture chamber has been 

implemented on the stage of a Zeiss Axiovert 200 inverted microscope as shown in Figure 5-1. 
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Figure 5-1: Cell culture environment chamber that provides control for temperature, humidity and CO2 
during long term live cell imaging. 

 

Cell culture is processed in the inner chamber surrounded by a water reservoir to control 

humidity. The outer chamber offers a control for CO2 by passive gas exchange with 5% CO2 

balance air and temperature is regulated in the whole microscope environment. The microscopy 

system has been installed in a laminar flow hood that ensures sterility in the microscope 

environment and allows for cellular micromanipulations with an open inner chamber. The 

microscope has also been implemented with a motorized stage that allows a fine control of the 

stage positioning in the x, y and z directions. The stage is controlled using a custom-built 

interface and software that allows the directed positioning of the live sample in culture while it is 

translated through the microscope’s focal point, as shown in Figure 5-2:  
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Figure 5-2: The complete three-axis robotic stage (x,y and z-axis) is on the left and the micropipette 
positioning system (or w-axis) is on the right. 

 

Custom software enables the creation of imaging “blocks” corresponding to successive 

defined positions through which the microscope stage moves sequentially and repetitively over 

time. This feature enables long-term live cell imaging (LTLCI) of relatively large fields of view 

(1cm x 1cm).  

 

5.1.2 Cell Culture 

HeLa cell culture was performed as described in Chapter 4. Mouse cortical neural stem 

cells (NSC 002) were obtained from R&D systems. NSC basal media was supplemented with 

Penicillin-Streptomycin (1X final) EGF and bFGF at a final concentration of 20 ng/mL. Aliquots 

were stored at -35ºC until use. For adherent cultures of mNSCs, TC-treated culture flasks were 

coated with poly-L-ornithine (Invitrogen, Canada) overnight at 37ºC. Flasks were subsequently 

rinsed three times and allowed to incubate overnight at 37° C and 5% CO2. A 1 µg/mL solution 

of Bovine Fibronectin (R&D Systems, USA) was freshly prepared by adding fibronectin in 
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sterile PBS and performing gentle inversion. PBS was discarded and flasks were rinsed with 10 

mL PBS and 10 mL of 1 µg/mL bovine fibronectin solution was subsequently added to each 

flask. Incubation was performed at 37° C and 5% CO2 for 3 - 30 hours after which fibronectin 

solution was discarded, flasks rinsed once with 10 mL PBS and used immediately. For adherent 

culture of mNSCs, cells were seeded on fibronectin coated flasks at a concentration of 2.0 x 105 

cells/mL. After 24 hours, 1 µL of 1000X FGF basic stock and 1 µL of 1000X EGF stock per mL 

of culture were added. Every second day, medium was replaced with fresh NSC Media. Cells 

were passaged when reaching 70-80% confluence and were cultivated up to three passages 

according to the manufacturer’s instructions. For TRITC-EGF delivery experiments, mouse 

cortical stem cells were cultivated in gap chambers coated with fibronectin as described 

previously. Cell loading was performed as described in Chapter 3 and the bead size selected for 

culture was seven μm. 

 

5.1.3 Immunofluorescence 

Samples of interests were fixed using 4% paraformaldehyde for 25 minutes at room 

temperature. Chamber was rinsed three times with PBS 1x and initial blocking was performed in 

PBS 5X Bovine Serum Albumin (BSA, Invitrogen, CA) overnight at 4ºC. Primary antibodies for 

EGFR (ab2430, ABCAM, USA), phospho-MAPK (ab50011, ABCAM, USA), Par-6 (ab45394, 

ABCAM, USA), Numb (ab14140, ABCAM, USA) were used at an assay-dependant dilution and 

prepared in PBS 1% BSA. Incubation was performed overnight at 4ºC. Chambers were rinsed 

three times in PBS 1X then secondary antibodies goat anti rabbit FITC (ab7086, ABCAM, USA) 

and goat anti mouse Cy5 (ab6563, ABCAM, USA) were used at an assay-dependant dilution in 

PBS 1% BSA and incubated overnight at 4ºC. Chambers were rinsed three times in PBS 1X and 
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stained with a DAPI / antifade solution at 20 μg/mL for 25 minutes. Chambers were rinsed three 

times in PBS 1X and protected from light. Confocal imaging was performed on an Olympus 

Fluoview FV1000 confocal microscope.  

 

5.1.4 Cell Cycle Time Analysis 

To evaluate the long term effects of polarized delivery, HeLa CCL2 colonies cultivated in 

gap chambers were pulsed for two minutes with a bulk media change of phenol-free DMEM-F12 

containing 10 ng/mL TRITC-EGF as described previously. Media was removed, phenol-free 

DMEM-F12 added to the culture and fluorescent imaging of gaps was performed to assess 

polarized cells following delivery. Cells were subsequently cultivated in DMEM-F12 and 

tracked for four days using DIC imaging with a time interval of five minutes on a Zeiss Axiovert 

200 inverted microscope in controlled atmosphere (37 ºC, 5% CO2). Lineages trees were 

generated in MATLAB using custom software CellHunter. For this purpose, cells of interest 

were manually tracked frame by frame by users. 

 
 

5.2 Results 

5.2.1 Short-Term Polarization Effects 

HeLa System 
 

In this section, we present the immunocytochemical analysis of members of the EGFR 

signaling pathway, polarization complexes and cell fate determinants in various polarized and 

non polarized colonies of HeLa cells and mouse cortical stem cells. 
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Figure 5-3: Immunofluorescence of non polarized HeLa cells cultivated in a gap chamber (40X). Blue: DAPI. 
Red: TRITC-EGF. Green: EGFR (middle) and duo-phosphorylated MAPK (right). 

 
 

As shown in Figure 5-3, the localization of EGFR on the cell surface is homogeneous 

without EGF polarization and EGFR exhibits both a nuclear and surface localization in HeLa 

cells.  The analysis of the duo-phosphorylated MAPK demonstrated nuclear and cytoplasmic 

localization and indicated a high level of basal expression. In Figure 5-4, a two-cell colony was 

pulsed with TRITC-EGF and EGF polarization on the cell surface is depicted after four minutes 

post delivery.  

 

10 μm 
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Figure 5-4: Immunofluorescence of a polarized two-cell HeLa colony after four minutes post-delivery of 100 
ng/mL TRITC-EGF (40X). Gap edge is on the right side of the cell and TRITC-EGF gradient is depicted 
accordingly. The merge image demonstrates the polarization of EGFR on the cell surface as a result of EGF 
polarization. Blue: DAPI. Red: TRITC-EGF. Green: EGFR (middle) and duo-phosphorylated MAPK (right). 

 
 
 

The localization of EGFR was not homogeneous and concentrated areas of receptors 

could be observed overlapping with EGF signal. The merge image demonstrated colocalization 

of EGF and EGFR, indicating that a polarized soluble signal could induce the polarization of 

surface receptors. To our knowledge, this is the first report indicating polarization of EGFR can 

be a result of asymmetric soluble EGF signals in the cell microenvironment in vitro. The 

activated MAPK staining exhibited higher intensity in the nuclear compartment which was 

consistent with prior reports of activated MAPK translocation towards the nucleus for the 

activation of target nuclear proteins, transcription factors and ultimately genes.   

10 μm 
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Partitioning Defective 6 (Par-6) is involved in fate determination as demonstrated in 

Drosophila in which it is asymmetrically partitioned at the time of mitosis among the Par-3 / Par-

6 / atypical Protein Kinase C (aPKC) complex (Wodarz, Ramrath et al. 2000; Ohno 2001; 

Petronczki and Knoblich 2001). Some of the Par proteins including Par-3 and Par-6 regulate the 

assembly of tight junctions in Drosophila and Par-3 phosphorylation has been shown to occur 

through EGF-mediated Src kinase signaling (Wang, Du et al. 2006). We analyzed Par-6 

localization profiles after four and 18 minutes post pulse delivery of 100 ng/mL TRITC-EGF, as 

shown in Figure 5-6 and 5-7.  

 

 
 

Figure 5-5: Immunofluorescence of non polarized HeLa cells cultivated in a gap chamber (40X). Blue: DAPI. 
Red: TRITC-EGF. Green: Par-6 (middle) and duo-phosphorylated MAPK (right). 

 

 

Par‐6

10 μm 
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Figure 5-6: Immunofluorescence of a polarized mitotic HeLa cell after four minutes post-delivery of 100 
ng/mL TRITC-EGF (40X). Gap edge is on the left side of the cell and TRITC-EGF gradient is depicted 
accordingly. Blue: DAPI. Red: TRITC-EGF. Green: Par-6. 

 

TRITC‐EGF

DAPI 

Merge

Par‐6

10 μm 
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Figure 5-7: Immunofluorescence of a polarized HeLa cell after 18 minutes post-delivery of 100 ng/mL 
TRITC-EGF (40X). Gap edge is on the left side of the cell and TRITC-EGF gradient is depicted accordingly. 
Blue: DAPI. Red: TRITC-EGF. Green: Par-6 (middle) and duo-phosphorylated MAPK (right). 

 
 

In regular culture conditions, Par-6 expression was homogeneous in the cytoplasm as 

shown in Figure 5-5 and some cells exhibited a higher perinuclear profile. Four minutes 

following TRITC-EGF pulse, Par-6 expression profile correlated with EGF polarization as non 

polarized cells exhibited homogeneous cytoplasmic expression while highly polarized cells 

demonstrated cytoplasmic polarization of Par-6 according to the EGF profile. A mitotic cell was 

able to integrate the EGF gradient and generated a polarized Par-6 response as shown in Figure 

5-6. This indicates single dividing cells can capture asymmetric signals at the time of division 

and control of soluble factors in correlation with cell cycle time could allow for asymmetric 

partitioning of cell fate determinants in daughter cells. 18 minutes after polarized delivery, cells 

 Par‐6

10 μm 
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exhibited a vesicular EGF profile with no apparent polarization with respect to the source of 

pulse delivery. Interestingly, the Par-6 staining demonstrated colocalization with EGF vesicles as 

shown in the merge image. It has been demonstrated in HeLa cells that Par-6 was necessary for 

the regulation of endocytic trafficking (Balklava, Pant et al. 2007) which raises the possibility 

EGF-containing endosomal vesicles and Par-6 interact during active vesicular transport. This 

demonstrates polarization of endosomal vesicles could be responsible for the asymmetric 

partitioning of polarization proteins such as members of the Par family.  

 

Amongst cell fate determinants, Numb is also important in the regulation of cell fate as it 

contributes to the downregulation of Notch signaling (Frise, Knoblich et al. 1996). When we 

analyzed the Numb expression profile of polarized and non polarized cells, we observed 

homogeneous cytoplasmic expression of Numb at early (data not shown) and late time points 

following pulse delivery (22 minutes), thereby indicating no polarization dependant effect on 

Numb following asymmetric EGF signals as shown in Figure 5-8 and 5-9. 
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Figure 5-8: Immunofluorescence of non polarized HeLa cells cultivated in a gap chamber (40X). Blue: DAPI. 
Red: TRITC-EGF. Green: Numb (middle) and duo-phosphorylated MAPK (right). 

Numb

10 μm 
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Figure 5-9: Immunofluorescence of a polarized HeLa cell after 22 minutes post-delivery of 100 ng/mL 
TRITC-EGF (40X). Gap edge is on the left side of the cell and TRITC-EGF gradient is depicted accordingly. 
Blue: DAPI. Red: TRITC-EGF. Green: Numb (middle) and duo-phosphorylated MAPK (right). 

 
 
 While the computational analysis was based on asymmetric levels of MAPK activation in 

the cell cytoplasm, HeLa cells exhibited a high degree of basal MAPK duo-phosphorylation with 

both cytoplasmic and nuclear expression profiles. We did not observe changes of this expression 

profile in cells polarized with TRITC-EGF, indicating the HeLa cell line is not well suited for 

this experimental validation. While the engineered system did not demonstrate effects on the 

partitioning of activated signaling pathway molecules, we did demonstrate the asymmetric 

partitioning of polarization proteins such as Par-6 in response to EGF gradient. This is significant 

in the context of asymmetric cell division as members of these complexes contribute to the 

Numb

10 μm 
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polarization of the cortical domains, prerequisite to asymmetric cell divisions. Therefore, this 

indicates that asymmetric environments could contribute to cell fate decisions. 

 

Asymmetric cell divisions were first described in the context of stem cells, and while the 

HeLa system was a good choice for model and delivery system development due to the ease of 

culture, homogeneity of cell populations, cell size and also the extensive literature available for 

kinetic studies, the physiological relevance will require the translation of these findings towards 

stem cell systems. In the next section, we will describe preliminary experiments performed in 

mouse cortical stem cells based on preliminary reports of EGFR polarization in mouse neural 

stem cells from the ventricular and subventricular zones (Sun, Goderie et al. 2005). 
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Mouse cortical stem cells 
 
 We performed pulse delivery of 10 ng/mL TRITC-EGF (bulk media change) to mNSCs 

cultivated in gap chambers as described previously and results are presented in Figure 5-10. 

 
 

Figure 5-10: Immunofluorescence of polarized mNSCs colonies after ten minutes post-delivery of 10 ng/mL 
TRITC-EGF (40X). Gap edge is on the left side of the cell and TRITC-EGF gradient is depicted accordingly. 
A: DAPI. B: TRITC-EGF. C: FITC EGFR. D: Cy5 duo-phosphorylated MAPK. 
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The analysis of TRITC-EGF signal demonstrated a less obvious polarization compared to 

what was observed with HeLa cells. The larger top colony exhibited no apparent polarization 

while the bottom colony exhibited some degree of polarization after ten minutes with respect to 

the source of TRITC-EGF. This illustrated some properties of primary cells that will complicate 

the analysis of polarization in these systems. mNSCs are significantly smaller than HeLa cells 

and we discussed in Chapter 3 the effect of cell diameter on computed PI values. Smaller single 

cells did not reach high PI values and the degree of asymmetry was not maintained for long 

periods of time. Also, the density of mNSC colonies did not seem to reach density levels of 

HeLa colonies in vitro. As such, media could infiltrate various intracellular regions and thus 

contribute to a decrease of polarization at the colony level. Finally, the reduced cell size led us to 

hypothesize that some colonies could exhibit attachment only to a single surface of the culture 

chamber, thus leading to poor polarization as demonstrated in the three-dimensional finite-

element model. Several challenges will need to be considered for full implementation of 

polarization strategies in primary cells. 

 

In the polarized bottom colony, analysis of EGFR signals demonstrated the existence of a 

population with high EGFR levels. Amongst these cells, some were consistent with TRITC-EGF 

polarization (yellow arrows) while some cells on the rightmost side exhibited high EGFR levels 

without apparent TRITC-EGF signal (white arrow). EGFR levels highlight a troublesome 

property of primary cells as these lines are heterogeneous. This will affect polarization responses 

at the single cell level as some cells may be more receptive or refractory to the molecule of 

interest based on number of available receptors and occupancy levels. Compared to the HeLa 

system, polarization of EGFR at the single cell level was not demonstrated, as it was 
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hypothesized this was a result of the limited EGF polarization of the system. Improvements will 

need to be implemented allowing for increased polarized signals based on reduced bead size 

(five μm vs seven μm), full attachment of colonies on both chamber surface and increased 

colony density. At the colony level, EGF polarization demonstrated some correlation with levels 

of EGFR expression. 

 

While mNSCs demonstrated some shortcomings in the context of polarization, this 

system seems more suited for the analysis of asymmetric activated MAPK. The level of 

expression of MAPK was low in untreated cells and no nuclear expression was detected as 

shown in Figure 5-10. In the case of the polarized colony, higher levels of duo-phosphorylated 

MAPK were detected partially overlapping with the TRITC-EGF signal. Higher resolution 

imaging will be needed to fully evaluate the potential for asymmetric MAPK signals following 

TRITC-EGF delivery. 

 

5.2.2 Long-Term Polarization Effects 
 

We were finally interested in the long term effect of EGF polarization. Following EGF 

pulse, the quantitative differences produced in signaling pathways intermediates such as duo-

phosphorylated Erk could affect the gene expression of immediate early genes such as jun and 

fos. As discussed in Chapter 2, these can further control the expression of late genes and affect 

metabolic processes. While it appears the polarization of EGF can translate into a polarized 

EGFR state on the cell surface, we were not able to observe polarization of activated MAPK in 

the intracellular compartment. Nonetheless, proteins such as Par-6, member of conserved cell 

fate complexes asymmetrically partitioned at the time of mitosis, exhibited a polarized profile 
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which seems to be lost over the course of delivery. It is unclear whether a gene’s response could 

be triggered differentially in polarized cells versus non polarized cells following mitosis. We 

performed two-minute pulse delivery of 10 ng/mL TRITC-EGF in HeLa colonies (bulk media 

change) as described in Material and Methods and analyzed the potential for asymmetric 

lineages over the course of five days using a long-term live cell imaging approach.  

The analysis of asymmetric lineage can be performed in a variety of ways. We 

hypothesized HeLa cells subject to pulses of growth factor such as EGF could exhibit a lineage 

asymmetry between daughter cells. Asymmetry could be observed through different cell cycle 

times between daughter cells (quantitative difference) or survival of only one of the daughter 

cells (qualitative difference). Long-term live cell imaging allows for the analysis of qualitative 

and quantitative information and the mosaic of polarized cells is presented in Figure 5-11: 
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Figure 5-11: Reconstructed mosaic of the polarized gap chamber and identification of polarized colonies (gap 
edge is on the top). Six polarized colonies were identified and selected for subsequent cell tracking (red 
arrows). Manual acquisition was performed for fluorescent imaging which explains the significant overlap 
between images.  

 

The time resolution of the acquisition system should allow for the unambiguous 

identification of cell identities at every time step. In this respect, the time interval was set to five 

minutes which enabled cell tracking with absolute certainty. Our group has developed a custom 

software for the acquisition of large fields of view using a robotic controller implemented on a 

microscope stage as described in Material and Methods. The long-term live cell imaging 

approach enables the generation of a mosaic of images of a cell culture (Figure 5-11) at regular 

time intervals for hours, days or weeks in brightfield/DIC imaging or fluorescence.  Cells can be 

tracked by a user at every step, thus enabling the accurate identification of cell progenies over 

time. Large-scale analysis of colonies allows for the generation of lineage trees, representing the 
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“genealogy” of the entire culture and linking cells with their parents and daughters. In the 

specific case of this analysis, fluorescent imaging can be used to score cells at time t = 0 for a 

given property such as the presence of a polarized EGF signal. This information could then be 

used to gate specific cells inside a complex lineage tree and look for specific features. One can 

also envision performing immunocytochemical analysis at the end of the culture and then run the 

movie backwards to correlate a given phenotype with properties acquired during imaging. 

For this particular analysis, HeLa colonies were cultivated in gap chambers until cell 

density was considered high enough to ensure compact colonies and high potential for 

polarization. After a two-minute pulse of 10 ng/mL TRITC-EGF, two gaps of interest were 

panned using fluorescence imaging to assess the degree of polarization of target colonies and 

cells. Imaging was started at the end of acquisition and cells imaged for up to five days. In 

parallel, a control was cultivated and imaged in identical conditions except that the bulk media 

change did not contain 10 ng/mL TRITC-EGF. Movies produced during imaging were further 

loaded in the custom MATLAB software CellHunter for tracking. During tracking, cell death 

and loss of cell identity (either due to movement out of the imaging region or loss of trackable 

features) were scored accordingly. MATLAB queries were performed to access information 

relative to cells of interest (cell IDs query). The selection of cells to include in the analysis was 

performed in two different ways: 

 

 Selection method 1: Cells that divided in the five hours following EGF pulse for 

which polarization data may or may not have been available. If no fluorescence 

information was available, cells were selected based on their location inside a 

colony (no internal cells) and polarization potential. 
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 Selection method 2: Cells for which polarization data univocally demonstrated 

polarization following EGF pulse as shown in Figure 5-12 and for which the two 

daughter cells divided. 

 

 

 

 

 

 

The length of five hours following delivery was selected based on reported lengths of G2 

and M phase in various human tissues to ensure cells chosen for analysis were either in G2 or M 

phase during polarization (Lipkin, Bell et al. 1963; Lipkin 1965; Frindel, Malaise et al. 1968; 

Winawer and Lipkin 1969). In total, 118 cells were selected in the treated block for subsequent 

analysis and 196 cells in the control block. In the case of the first selection method, only 15 cells 

in the EGF-pulsed chamber divided in the defined time frame and were selected, which indicates 

results presented in this section will be qualitative and focus primarily on the information that 

can be extracted from these systems in the context of polarization analysis. Out of these 15 cells, 

two of them did not divide over the course of the entire experiment and were not included in the 

analysis. For the control, we identified 22 cells that divided in the five hours following bulk 

Figure 5-12: Identification of polarized HeLa colonies following two-minute pulse of 10 ng/mL TRITC-EGF. 
Identification of polarized cells was made based on fluorescent profile captured following delivery and cell 
IDs of polarized cells were isolated for future analysis versus non-polarized cells (inside cells from a colony 
for example and untreated control).  
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media change (no TRITC-EGF) and out of these cells seven were removed from the analysis as 

they were identified as internal cells amongst colonies. The signals occurring inside multicellular 

structures through direct cell-cell interaction or contact with the extracellular matrix go outside 

of the scope of this analysis and for consistency purposes cells were selected exclusively based 

on the direct contact with the culture media in the context of a colony. We compared average 

daughters cell cycle time differences following mitosis between the treated and control chambers 

and results are presented in Tables 7 and 8 respectively. 

 

 

Cell ID  Daughter A  Daughter B 
Cycle time 
Difference 

38714  17.0858  17.5719  0.4861 

38399  15.0025  15.0025  0 

38822  22.8333  21.9167  0.9166 

39148  19.3333  20.3333  1 

39141  24.4164  17.1689  7.2475 

39122  20.0117  23.8475  3.8358 

39106  32.4886  23.8242  8.6644 

39099  16.0811  19.0811  3 

39113  2  18.5833  None  

38944  24.1694  21.6575  2.5119 

38743  16.6667  19.1664  2.4997 

38626  26.2408  26.9886  0.7478 

38572  2  2   None  

38460  2  2   None  

38413  18.3331  16.6667  1.6664 

 

 

Table 7: Analysis of cell cycle time asymmetry in EGF treated HeLa cells selected using method 1 (cell cycle 
time in hours). 2 indicates cells died during tracking. Cell cycle time difference average is 2.96 hours, 
standard deviation is 2.69 hours. 
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Cell ID  Daughter A  Daughter B 
Cycle time 
Difference 

39966  19.9928  21.6667  1.6739 

39690  1  1  None  

39891  25.3308  24.7475  0.5833 

39770  28.4186  32.3125  3.8939 

39717  26.8228  25.5  1.3228 

39702  19.0833  18.4797  0.6036 

39683  22.9956  22.7581  0.2375 

39528  27.5  19.1914  8.3086 

39437  20.6033  29.7581  9.1548 

39388  25.8561  30.7628  4.9067 

39315  18.5711  24.8106  6.2395 

38861  34.9747  25.8331  9.1416 

38529  22.4767  24.1458  1.6691 

39920  20  22.5072  2.5072 

39860  31.6492  24.1617  7.4875 

 

Table 8: Analysis of cell cycle time asymmetry in control (untreated) HeLa cells selected using method 1 (cell 
cycle time in hours). 1 indicates cells did not divide during the tracking period.  Cell cycle time difference 
average is 4.12 hours, standard deviation is 3.36 hours. 

 

 

The results demonstrated no significance with very high standard deviations. Some 

daughter cells exhibiting almost no difference in cell cycle time (as low as 30 minutes) while 

others exhibited up 9 hours difference both in the treated and control cells. This data set 

illustrates the complexity and heterogeneity of microenvironments at the single cell level. 

Heterogeneity and non-consistency in the results could arise from changes in the number of 

neighboring cells, contact with the extracellular matrix or even from the distance with the gap 

edge (potentially leading to oxygen and nutrient gradients and limitation when cell density is 

high). Hence, the proper analysis of long-term phenotypical effects needs to take into account 

variations in local cell environments arising from cell movements, trajectories but also the 

motion and trajectories of neighboring cells over the course of the imaging period. We thereby 
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propose collected data will need to be gated for specific properties of the culture to enable proper 

analysis and interpretation of polarization over several generations: 

 

 Cell distance from the gap edge; 

 Contacts with other cells (number of neighboring cells, position inside a colony); 

 Scoring for morphological features (does the cell look “healthy”?); 

 Variations of all these properties with respect to time.  

 

The dynamic nature of these cultures demonstrate that environmental conditions should 

be matched between cells for proper analysis of data in the short term, and the changes in these 

conditions should be matched for long-term studies. 

 

 

We discussed previously the importance of correlating polarization with cell division to 

ensure different states of cell signaling activation are transmitted in the daughter cells. 

Observation of imaging data highlighted an interesting property of dividing cells on the edge of 

colonies, as shown in Figure 5-13: 
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Figure 5-13: Example of two modes of cell division: parallel to the colony surface (top) and perpendicular to 
the colony surface (bottom). In the bottom panel, the cell indicated in blue has the potential to keep the 
polarized signal following delivery. 

 

Most of the cells on the edge of colonies divided parallel to the colony surface. This 

demonstrates the polarization could be completely cancelled by the orientation of cell division in 

the context of the colony. In the treated sample, only three cells out of the 15 analyzed did not 

divide parallel to the colony surface, as shown in the bottom panel of Figure 5-13. Cell division 

perpendicular to the colony surface is needed for the potentiation of polarization and to enable 

asymmetric MAPK signaling between daughter cells. 

 

Therefore, correlation between cell division and polarization needs to be performed at 

two levels in time and space. In Figure 5-14 we present the lineage trees for the three cells that 

divided perpendicularly to the colony surface. Figure 5-15 depicts the cellular context over the 

course of imaging for these three cells. 

Cell colony surface plane 

Cell colony surface plane 

* Inside 
colony 
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Figure 5-14: Lineages trees for the three cells (ID 38822, 39141 and 39113) that divided perpendicular to the 
cell colony surface in the treated HeLa culture. 

 
 

Two cells demonstrated an asymmetric lineage; one was quantifiable as daughter cells 

exhibited difference in cell cycle time (7.25 hours) while the other one demonstrated qualitative 

significance as only one of the two daughter cells divided again over the course of the 

experiment.  
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Figure 5-15: Identification of cellular context of daughters from cells dividing perpendicular to the colony 
surface plane. Left panels: initial tracking image and identification of mother cells (green arrows) 

 

When analyzing these cells in more detail, we observed that the daughters of cell ID 

38822 which exhibited a symmetric lineage were both located on the inside of the colony before 

their respective divisions with no direct contact with the media. In the case of cell ID 39141 and 

39119, one of the daughters exhibited contact with the media by the time they divided, indicating 

Cell ID 38822 

Cell ID 39119 

Cell ID 39141 
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that the asymmetry in their local microenvironment could be a factor in the asymmetric lineages 

observed. Hence, careful analysis of environmental data at the single cell level is needed for 

proper analysis of asymmetric lineage trees. 

 

 

  

Figure 5-16: Lineages trees for the three cells (ID 38529, 39966 and 39683) that divided perpendicular to the 
cell colony surface in the control HeLa culture. 

 

Interestingly, the three lineage trees of cell dividing perpendicularly to the colony surface 

in the control exhibited a high degree of symmetry with respect to the time until division of the 

two daughter cells (cycle time difference of 1.66, 1.67 and 0.23 hours respectively) as shown in 

Figure 5-16. Cells in the control also divided significantly more than the cells in the treated 
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chamber. An overview of the chambers demonstrated the control system was significantly denser 

which could have affected the proliferative potential over the course of five days. This again 

demonstrates that several parameters need to be taken into account to ensure the consistency 

between treated and control HeLa colonies. 

 

When cell selection method 2 (cells for which polarization data univocally demonstrated) 

was used, we identified only seven cells in the treated culture and results are presented in Table 

9. 

 

Cell ID  Daughter A  Daughter B  Cycle time Difference 

38153  26.7408  42.4908  15.75 

38700  22.2475  21.7619  0.4856 

38391  16.6667  19.1667  2.5 

38024  22.5022  18.3447  4.1575 

38614  22.905  21.9906  0.9144 

38091  22.8331  23.655  0.8219 

38069  18.8214  15.8192  3.0022 

 

Table 9: Analysis of cell cycle time asymmetry in EGF treated HeLa cells selected using method 2 (cell cycle 
time in hours). Cell cycle time difference average is 3.94 hours, standard deviation is 5.37 hours. 

 

This analysis illustrated significant challenges in the context of long-term effects of 

polarization. First, even with several colonies analyzed and a total number of cells tracked cells 

exceeding 300 cells for both the treated and control chambers, the stringent conditions for cell 

selection based either on division in the appropriate timeframe or fluorescence polarization led to 

small number of cells for analysis. These numbers were too small for statistically significant 

analysis and demonstrate the field of view will need to be significantly larger to allow for the 

acquisition of statistically relevant data. While effects were not shown, this framework is 
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particularly well suited for the analysis of asymmetric cell division. Single-cell level tracking 

allows for the generation of lineages trees which can be analyzed for asymmetric properties such 

as cell cycle time or asymmetry of survival. The mosaic of environments in which the cell will 

develop complicates the analysis of polarization effects over generations and the acquisition of 

supplementary data for each cell (distance from the gap edge, number of direct neighbors and 

location in a colony) will enable the comparison between cells in similar conditions. Also, a 

focus on the first division following mitosis would significantly reduce the complexity of these 

systems in the context of polarization analysis. We demonstrated that a very small fraction of 

analyzed cells divide on a cell surface following an orientation that could enable the persistence 

of polarized signals following mitosis. Divisions symmetric to the colony surface will 

symmetrically partition a polarized signal in the context of a colony (and potentially, polarity 

proteins such as Par-6 as demonstrated previously) while a division perpendicular to the colony 

surface could lead to the formation of only one daughter cell keeping the polarized signal. The 

further context of the daughter cells in the colony may be significant in the generation of 

asymmetric lineage trees. 
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6 Chapter 6: Conclusions and Future Work 
 
 

We initially performed a two-dimensional analysis of EGF diffusion from a point source 

in culture (micropipette) with binding to a single cell using literature values for EGF binding and 

trafficking in the context of the B82 fibroblast (HMEC) cell line. This approach enabled the 

design of a polarization system using a set of metrics to characterize delivery asymmetry 

(polarization index PI) and signaling potential (percentage occupancy PO). By analyzing 

temporal profiles of PI, PO, concentrations and velocity of formation of various members of the 

system significant in the context of downstream pathway activation (dimerized receptor-ligand 

complexes in the smooth D and coated pits H), we were able to decipher complex behavioral 

responses following controlled EGF release and evaluate two delivery strategies for the creation 

of asymmetric EGF microenvironments. Using published threshold values for MAPK/Erk 

activation, we analyzed the system in the context of generating an asymmetry of bound entities at 

the single cell level. Controlling EGF delivery in the media through a micropipette loaded with a 

gel of controlled porosity did not allow for asymmetric partitioning or occupancy levels 

consistent with signaling. When EGF was released through a micropipette in a collagen matrix in 

which the cell was embedded, asymmetry could be generated on a single cell surface consistent 

with asymmetric MAPK activation. Nonetheless, preliminary experiments demonstrated the 

technical difficulties associated with fluorescent imaging in collagen cultures. We further 

developed a three-dimensional model to analyze geometry effects to evaluate alternate strategies 

in the context of polarization in culture media with diffusive properties similar to water. 

 

In this second step, we improved model significance by evaluating kinetic parameters 

(forward rate constant kf and initial number of free EGF receptors Rinit) for the HeLa cell system 
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and used these values in a three-dimensional model in which we analyzed geometry effects from 

the culture chamber and neighboring cells. We demonstrated that culture systems with reflective 

surfaces greatly contribute to polarized signals at the single cell level and can potentiate pulsed 

growth factor signals in the cell vicinity. Nonetheless, no single cell culture system was able to 

maintain asymmetric MAPK activation based on target threshold levels. When analyzing the 

effect of neighboring cells, we demonstrated that the combination of reflective (culture chamber) 

and absorbing (neighboring cells) surfaces around a cell significantly potentiates polarization and 

allows for asymmetric delivery consistent with asymmetric MAPK activation levels. The gap 

chamber system developed in professor Jervis’ laboratory demonstrated the highest potential due 

to the effective increase in tortuosity as was selected for subsequent model validation. The model 

significance was demonstrated through fitting with experimental data in various cell 

configurations thereby confirming Hypothesis 2 - single cell level methods and experiments 

permit the analysis and prediction of soluble factor binding. 

 

When further evaluating the physiological effects of pulse delivery, we demonstrated that 

polarized receptors on a single cell surface can be the result of the asymmetric delivery of 

soluble molecules and hence validated Hypothesis 4 - Asymmetric environments of soluble 

factors (EGF) can be translated in the asymmetric partitioning of receptor-ligand complexes 

(EGF-EGFR) at the single cell level. While we were not able to demonstrate polarized MAPK 

signaling at the single cell level, the HeLa system showed that single cells can respond to 

polarized soluble factor signaling in terms of the localization of polarization proteins such as Par-

6. We observed polarization of Par-6 in a cell undergoing mitosis that correlated with the 

induced TRITC-EGF gradient, demonstrating engineered polarization could be triggered during 
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mitosis and lead to the asymmetric partitioning of polarization proteins. Nonetheless, we did not 

observe the asymmetric partitioning of the cell fate determinant Numb in HeLa cells. We further 

analyzed polarization effects in primary cells (mouse cortical stem cells). Heterogeneity of cell 

populations within the colonies (i.e. mixed progenitor populations) will be an issue to address 

and future improvements will be needed for the polarization of cells relevant in the context of 

regenerative medicine.  

 

Long-term live cell imaging is a valuable tool for the analysis of polarization over several 

rounds of division. The generation of lineage trees and identification of cellular events in a near 

continuous manner over the course of several days is necessary for elucidating asymmetric 

events at the single cell level. This approach enables cell cycle time analysis, the generation of 

migration maps and distances and the scoring of morphological features. In the context of 

polarization, we analyzed asymmetry in cell cycle time between daughter cells following a two-

minute pulse of TRITC-EGF. While using imaging blocks covering at least six cell colonies, less 

than 15 cells could be used for data analysis using two different approaches for cell gating. Non-

division of one of the daughter cells, loss of tracking features, death or movement outside of the 

field of view all contribute to the reduction of the sample for data analysis. One of the biggest 

challenges to overcome in the context of long-term phenotypical effects of polarization will be 

the ability to collect large samples of experimental data in vitro. While not providing us enough 

information to answer Hypothesis 5 - Asymmetric partitioning of receptor-ligand complexes at 

the single-cell level can lead to asymmetric cell fate decisions, this analysis demonstrated the 

long-term live cell imaging approach is well suited for the analysis of polarization. The results 

obtained with Par-6 confirm that polarized soluble EGF signals have the potential to dictate cell 
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fate decisions at the single cell level in the context of Hypothesis 3 - Soluble factor signaling 

alone can dictate the symmetry of cell division. The analysis of long-term phenotypical effects 

of controlled EGF release and polarization in stem cell populations will be needed to fully 

answer this question. 

 

Several improvements would contribute to increase model significance and improve our 

understanding of polarization while allowing for the engineering of biomimetic systems. As 

discussed in Chapter 3, actual endosomal volumes are not known which severely limits 

endosomal modeling. Recently, considerable progress has been made in understanding the two 

and three-dimensional structure of complex subcellular systems such as the endosomal 

compartment or endoplasmic reticulum (Murk, Humbel et al. 2003; Means, Smith et al. 2006). 

We propose these approaches should be implemented with diffusion and boundary value 

problems for the generation of a new class of biological models that would consider both 

quantitative and spatial properties of cellular systems.  

 

In the specific case of EGFR, several reports indicate receptors are not homogeneously 

distributed over the entire cell surface, but organized in clusters whose distribution may be 

regulated by lipid rafts (Irwin, Mueller et al. 2010). Two classes of EGFR have also been 

demonstrated in the context of EGF signaling, with some receptors existing in the form of 

predimers with different ligand binding kinetics compared to monomeric receptors. We propose 

that the inclusion of these factors will contribute to an increase of model quality and significance. 

Finally, interpretation of our computational results was based on published data associated with 

the MAPK/Erk signaling pathway. The inclusion of adaptor proteins and signaling pathway 
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intermediates up to the MAPK level will allow for better engineering of delivery strategies in the 

context of soluble factor signaling and activation of downstream signaling cascades. In the 

context of complex three-dimensional geometries of cell structure, it is possible to envision 

different pools of adaptor proteins (varying concentrations) associated with a specific subcellular 

localization around various endosomal regions (early and late). Multicellular models should be 

investigated and solutions for modeling of compact colonies should be investigated. The 

inclusion of three dimensions also allows for the creation of complex microenvironments that 

could be designed to mimic niches in vitro and further used to elucidate the complex interplay 

between niches and soluble signals in vivo. For example, recent published reviews on stem cell 

niche structure and functions (Li and Xie, 2005; Scadden, 2006) could be used for finite-element 

design. These types of models would represent a step forward in the engineering of biomimetic 

systems. 

 

The long-term analysis of polarization effects at the single cell and colony levels 

demonstrated cell numbers should be significantly increased in culture to allow for statistically 

significant analysis of polarization and asymmetric cell division at the single cell level. 

Increasing the number of tracked cells and colonies present a challenge to address as the time 

resolution needed for single cell tracking limits panning of very large areas of culture. Also, 

endpoint immunocytochemical analysis as well as the use of cell lines expressing GFP-fusion 

proteins would significantly increase our ability to extract information during and after imaging. 

For example, cell lines expressing a GFP-Par6 fusion protein would allow for the analysis of 

polarization during the early stages following delivery. Fluorescence data acquired during and 

after mitosis would enable the accurate evaluation of polarization at the single cell level. Finally, 
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the importance of the cell division orientation in the context of polarization demonstrates that 

approaches to control the cell division orientation during delivery would significantly increase 

the proportion of polarized cells. 

 

Our overall goal, Hypothesis 1 - single cell level control of asymmetric division is 

needed for the generation of a population of cells of desired purity and composition, represents 

the ideal level of cell culture control. This work sought to demonstrate that heterogeneities in 

cultures may affect long-term phenotypical effects following engineered polarization. We have 

shown that polarization of single cells with soluble factors is feasible and that long-term live cell 

imaging offers the possibility to identify these various environmental conditions in the context of 

polarized cells within colonies. We developed methods and metrics to enable the induction and 

quantification of cell polarization, tracking of progenies with asymmetric fate and selection of 

cells of interest based on microenvironmental conditions. Our analysis has led to a new 

appreciation of the complexities and challenges of producing homogeneous populations of cells 

in culture; within a culture each cell exists within its own microenvironment that can lead to 

unique concentration gradients around individual cells thereby affecting fate decisions. 
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Appendices 
 

Appendix A: Derivation of Model Fit Equation and Model Fit 
 
Statement of the Differential Rate Law  
 
The equation of the reaction for this system is given below: 

ܮ ൅ ܴ
௞೑
՜ ܥ … ሺ1ሻ 

Based on the stoichiometry of the above equation, the following equivalence of rates of reaction 

with respect to specific species can be written: 

ܮ݀
ݐ݀

ൌ
ܴ݀
ݐ݀

ൌ െ
ܥ݀
ݐ݀

… ሺ2ሻ 

The initial conditions for the concentration of each of the species, in units of 
௠௢௟

௠య  are given 

below: 

ሺ0ሻܮ ൌ ;଴ܮ ܴሺ0ሻ ൌ ܴ௜௡௜௧; ሺ0ሻܥ ൌ 0 … ሺ3ሻ 

Given the equivalence of the derivatives of ܮ and ܴ as shown in equation (2), their respective 

functions are equal up to an additive constant: 

ܮ ൌ ܴ ൅ ݇ଵ … ሺ4ሻ 

The additive constant ݇ଵ would be equal to the difference between initial concentrations of ܮ and 

ܴ and is defined as: 

݇ଵ ൌ ଴ܮ െ ܴ௜௡௜௧ … ሺ5ሻ 

given that L>>R. The rate law for this second order reaction is given by: 

ݎ ൌ ݇௙ܴܮ … ሺ6ሻ 

Substitution of (5) into (4) and then the result into (6) gives the following differential equation: 

ܮ݀
ݐ݀

ൌ ݇௙ܮ൫ܮ െ ሺܮ଴ െ ܴ௜௡௜௧ሻ൯ ൌ ݇௙ܮሺܮ ൅ ܴ௜௡௜௧ െ ଴ሻܮ … ሺ7ሻ 
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Solution of the Differential Equation 
 
Separation of Variables  
 

ܮ݀
ܮሺܮ ൅ ܴ௜௡௜௧ െ ଴ሻܮ

ൌ ݇௙݀ݐ 

Integrating both sides: 

න
ܮ݀

ܮሺܮ ൅ ܴ௜௡௜௧ െ ଴ሻܮ
ൌ න ݇௙݀ݐ ൌ ݇௙ݐ ൅ ݇ଶ … ሺ8ሻ 

where ݇ଶ is the integration constant. 

To integrate the right hand side, partial fraction expansion must be performed:  

1
ܮሺܮ ൅ ܴ௜௡௜௧ െ ଴ሻܮ

ൌ
ܣ
ܮ

൅
ܤ

ሺܮ ൅ ܴ௜௡௜௧ െ ଴ሻܮ
ൌ

ܮሺܣ ൅ ܴ௜௡௜௧ െ ଴ሻܮ ൅ ܮܤ
ܮሺܮ ൅ ܴ௜௡௜௧ െ ଴ሻܮ

 

Then it can be noted that: 

1 ൌ ܮሺܣ ൅ ܴ௜௡௜௧ െ ଴ሻܮ ൅ ܮܤ … ሺ9ሻ 

To solve for ܣ, subsitutute ܮ ൌ 0 into (9): 

1 ൌ ሺܴ௜௡௜௧ܣ െ ଴ሻܮ ՜ ܣ ൌ
1

ሺܴ௜௡௜௧ െ ଴ሻܮ
… ሺ10ሻ 

 

To solve for ܤ, substitute ܮ ൌ ଴ܮ െ ܴ௜௡௧ into (9):  

1 ൌ ଴ܮሺܣ െ ܴ௜௡௜௧ ൅ ܴ௜௡௜௧ െ ଴ሻܮ ൅ ଴ܮሺܤ െ ܴ௜௡௜௧ሻ ൌ ଴ܮሺܤ  െ ܴ௜௡௜௧ሻ ՜ ܤ ൌ
1

ሺܮ଴ െ ܴ௜௡௜௧ሻ
… ሺ11ሻ 

 

Substitution of (10) and (11) into (8) results in: 

න
ܮ݀

ܮሺܮ ൅ ܴ௜௡௜௧ െ ଴ሻܮ
ൌ න ൤

1
ሺܴ௜௡௜௧ െ ଴ሻܮ

1
ܮ

൅
1

ሺܮ଴ െ ܴ௜௡௜௧ሻ
1

ሺܮ ൅ ܴ௜௡௜௧ െ ଴ሻܮ
൨ ܮ݀ ൌ ݇௙ݐ ൅ ݇ଶ 

Factoring and integrating gives: 
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න ൤
1

ሺܴ௜௡௜௧ െ ଴ሻܮ
1
ܮ

൅
1

ሺܮ଴ െ ܴ௜௡௜௧ሻ
1

ሺܮ ൅ ܴ௜௡௜௧ െ ଴ሻܮ
൨ ܮ݀

ൌ
1

ሺܮ଴ െ ܴ௜௡௜௧ሻ
න ൤

1
ሺܮ ൅ ܴ௜௡௜௧ െ ଴ሻܮ

െ
1
ܮ

൨ ܮ݀

ൌ
1

ሺܮ଴ െ ܴ௜௡௜௧ሻ
ሾlnሺܮ ൅ ܴ௜௡௜௧ െ ଴ሻܮ െ ln ሿܮ ൅ ݇ଷ ൌ ݇௙ݐ ൅ ݇ଶ … ሺ12ሻ 

where ݇ଷ is the integration constant. 

Simplification of equation (12) gives:  

1
ሺܮ଴ െ ܴ௜௡௜௧ሻ

ln ቈ
ሺܮ ൅ ܴ௜௡௜௧ െ ଴ሻܮ

ܮ
቉ ൌ ݇௙ݐ ൅ ݇ସ 

where ݇ସ ൌ ݇ଶ െ ݇ଷ. 

Further simplification results in the following:  

ln ቈ
ሺܮ ൅ ܴ௜௡௜௧ െ ଴ሻܮ

ܮ
቉ ൌ ݇௙ݐሺܮ଴ െ ܴ௜௡௜௧ሻ ൅ ݇ହ … ሺ13ሻ 

where ݇ହ ൌ ሺܮ଴ െ ܴ௜௡௜௧ሻ݇ସ. 

 

Raising both sides of (13) to an exponent gives: 

ሺܮ ൅ ܴ௜௡௜௧ െ ଴ሻܮ
ܮ

ൌ expൣ݇௙ݐሺܮ଴ െ ܴ௜௡௜௧ሻ ൅ ݇ହ൧ … ሺ14ሻ 

Re-arranging for ܮ: (note that ܭ ൌ expሺ݇ହሻ) 

ܮ ൅ ܴ௜௡௜௧ െ ଴ܮ ൌ ܮܭ expൣ݇௙ݐሺܮ଴ െ ܴ௜௡௜௧ሻ൧ ՜ ܴ௜௡௜௧ െ ଴ܮ ൌ ܭሼܮ expൣ݇௙ݐሺܮ଴ െ ܴ௜௡௜௧ሻ൧ െ 1ሽ 

Solving for ܮ: 

ܮ ൌ
ܴ௜௡௜௧ െ ଴ܮ

ܭ expൣ݇௙ݐሺܮ଴ െ ܴ௜௡௜௧ሻ൧ െ 1
… ሺ15ሻ 

 

Application of the Initial Condition: 
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ሺ0ሻܮ ൌ  ଴ܮ

Substitution into (15): 

ሺ0ሻܮ ൌ ଴ܮ ൌ
ܴ௜௡௜௧ െ ଴ܮ

ܭ expൣ݇௙0ሺܮ଴ െ ܴ௜௡௜௧ሻ൧ െ 1
ൌ

ܴ௜௡௜௧ െ ଴ܮ

ܭ െ 1
 

 

Solving for  ܭ: 

ܭ଴ሺܮ െ 1ሻ ൌ ܴ௜௡௜௧ െ ଴ܮ ՜ ܭ଴ܮ െ ଴ܮ ൌ ܴ௜௡௜௧ െ ଴ܮ ՜ ܭ଴ܮ ൌ ܴ௜௡௜௧ ՜ ܭ ൌ
ܴ௜௡௜௧

଴ܮ
… ሺ16ሻ 

 

(16) into (15): 

ܮ ൌ
ܴ௜௡௜௧ െ ଴ܮ

ܴ௜௡௜௧
଴ܮ

expൣ݇௙ݐሺܮ଴ െ ܴ௜௡௜௧ሻ൧ െ 1
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Appendix B: Matlab m-files 
 

This section covers the three-dimensional modeling. The files used for the two-dimensional 

analysis are not presented here but are similar in structure. 

 

Model Fit and Kinetic Parameters Estimation 
 

clear 
close all 
clc 
 
%Code to fit Flourimeter Data to the Derrived Equation  
 
%Input of Constants  
EGFM = 6045; 
AvanN = 6.02e23; 
Volume = 3;  
CellRadius = 5e-6;  
CellNumber = 20886667; 
 
%Standard Curve 1 - Input of Data and Fit to get b  
StCurveRaw1 = [5760, 6120, 6400, 6800, 7000, 7080, 7400, 7760, 7810, 7820];  
Blank1 = 5290; 
StCurve1 = StCurveRaw1 - Blank1; %Subtract Blank  
StCurveConc = [0.5:0.5:5]; %St Curve Concentrations  
b1 = regress(StCurve1', [ones(10,1) StCurveConc']);  
FittedLine1 = b1(1) + StCurveConc*b1(2); 
 
% Plot the Standard Curve 1 
plot(StCurveConc, StCurve1, 'kx',StCurveConc, FittedLine1, 'k-','LineWidth',2,'MarkerSize',10) 
grid on 
set(gca,'FontSize',18,'LineWidth',2) 
xlabel('Concentration [ng/mL]','FontSize',18) 
ylabel('Relative Intensity','FontSize',18) 
title('Standard Curve','FontSize',18) 
text(0.75,2750,['The equation of the line of best fit is y = ' num2str(round(b1(2)))... 
    '*x + ' num2str(round(b1(1)))],'Background','g','FontSize',15) 
axis([0 5 0 3e3]) 
print -dtiff -r600 StCurveJuly21.tif 
 
%Input the EGF Binding Data 1 
RawData1 = [mean([6920,6940]), 6740, 6520, 6390, mean([5970,6120]), 5930] - Blank1; %Substract Blank 
ColdEGF1 = mean([7000,6890]) - Blank1; %Calculate Cold EGF Point  
ConcData1 = (([ColdEGF1 RawData1]-b1(1))./b1(2))/(EGFM)*1e3; %Convert to nmol/L 
Time = [0, 1, 3, 5, 10, 30, 45]; 
 
f = 7820/9725; %Standard Curve Correction  
 
%Input the EGF Binding Data 2 
RawData2 = [mean([8740,9000,8910]), 8120, 7900, 7340, 6825, 6720] - Blank1; %Substract Blank 
ColdEGF2 = mean([8450,8800,8600]) - Blank1; %Calculate Cold EGF Point  
ConcData2 = (([ColdEGF2 RawData2]*f-b1(1))./b1(2))/(EGFM)*1e3; %Convert to nmol/L - and correct for st. 
curve  
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ConcDataRaw = ([ColdEGF1 RawData1]+[ColdEGF2 RawData2]*f)/2;  
ConcData = (ConcData1 + ConcData2)/2; %Average Concentraion Value  
 
Error1 = [std([7000,6890,8450*f,8800*f,8600*f]) std([6920,6940,8740*f,9000*f,8910*f]) ... 
    std([6740,8120*f]) std([6520,7900*f]) std([6390,7340*f]) std([5970,6120,6825*f]), std([5930,6720*f])];  
%Calculation of an error based on all data points and standard deviation  
 
%Calculate Error Bars  
ConcDataU = ((ConcDataRaw + Error1 - b1(1))./b1(2))-ConcData/1e3*EGFM; 
ConcDataL = ((ConcDataRaw - Error1 - b1(1))./b1(2))-ConcData/1e3*EGFM; 
 
%Unit Conversion for Concentration, Define conc function   
L0 = ConcData(1);  
funfit = @(k,Time) (k(2)-L0)./(k(2)/L0*exp(k(1).*Time.*(L0-k(2)))-1);  
 
%Fit kf using nlin fit - take 0.5 and 0.5 as a guess, calculate it 
fit = nlinfit(Time,ConcData,funfit,[1 1]);  
ConcFit = funfit(fit,0:45); 
 
%Get Parameters 
kf=fit(1)*1e6; %Take fit(1) and multiply by 1e6 to convert into m^3/mol*s = 
(L/nmol*s)*(1m^3/1e3L)*(1e9nmol/mol) 
Rint=fit(2)*1e-12*AvanN*Volume/CellNumber; %Take fit(2) and convert into R number = 
(1L/1000mL)*(mol/10e9nmol)  
 
%Plot the concentration graph  
figure 
errorbar(Time,ConcData*EGFM/1e3,ConcDataU,ConcDataL,'kx','LineWidth',2,'MarkerSize',10) 
grid on 
hold on  
set(gca,'FontSize',18,'LineWidth',2) 
plot(0:45,ConcFit/1e3*EGFM,'k-','LineWidth',2,'MarkerSize',10) 
xlabel('Time [min]','FontSize',18) 
ylabel('Concentration TRITC-EGF [ng/mL]','FontSize',18) 
title('Model Fit','FontSize',18) 
axis([-1  46 0 5]) 
legend('Data','Model Fit','Location','Best','FontSize',18) 
text(-0.5,4.6,{'The fit parameters are: kf = 1.3 x 10^5 m^3/mol*s';... 
    'and R_i_n_t = 47,362'},'Background','g','FontSize',15) 
print -dtiff -r600 ModelFitJuly21.tif 

 

Model definition, PI / PO plots and Da analysis 
 

Modelsus.m 

function fem = modelsus(Time,D,Conc,fem0) 
 
global kf RDensity C ATol RTol  
 
if Conc == 1 
    Var = 'L0'; 
else  
    Var = 0;  
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end  
 
% Geometry 
g1=block3('5e-4','5e-4','5e-4','base','center','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0'); 
g2=sphere3('1e-5','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0'); 
g3=cylinder3('2.5e-6','2e-5','pos',{'2e-5','0','0'},'axis',{'1','0','0'},'rot','0'); 
g4=cylinder3('3e-6','2e-5','pos',{'2e-5','0','0'},'axis',{'0','0','1'},'rot','0'); 
g5=cylinder3('3e-6','2e-5','pos',{'2e-5','0','0'},'axis',{'1','0','0'},'rot','0'); 
g6=cylinder3('3.5e-6','1e-5','pos',{'4e-5','0','0'},'axis',{'1','0','0'},'rot','0'); 
 
% Analyzed geometry 
clear s 
s.objs={g1,g2,g3,g5,g6}; 
s.name={'Subdomain','Cell','OuterD','InnerD','End'}; 
s.tags={'g1','g2','g3','g5','g6'}; 
 
fem.draw=struct('s',s); 
fem.geom=geomcsg(fem); 
 
% Constants 
fem.const = {'D',D, ... 
  'kf',kf, ... 
  'DC','1e-14', ... 
  'DR','1e-14', ... 
  'Rint',RDensity, ... 
  'L0',C, ... 
  'DI','1e-14'}; 
 
% Initialize mesh 
fem.mesh=meshinit(fem, ... 
                  'hauto',5); 
               
% Application mode 1 
clear appl 
appl.mode.class = 'ConvDiff'; 
appl.dim = {'L'}; 
appl.module = 'CHEM'; 
appl.border = 'on'; 
appl.assignsuffix = '_chcd'; 
clear bnd 
bnd.c0 = {0,0,0,Var}; 
bnd.N = {0,0,'-kf*L*R',0}; 
bnd.type = {'N0','cont','N','C'}; 
bnd.ind = [1,1,1,1,1,3,3,3,3,3,3,3,3,1,1,1,2,1,1,1,1,1,1,1,1,1,2,4,1,1, ... 
  1,1]; 
appl.bnd = bnd; 
clear equ 
equ.D = {'D',1,'D'}; 
equ.init = {0,0,'L0'}; 
equ.usage = {1,0,1}; 
equ.ind = [1,2,2,3,2]; 
appl.equ = equ; 
fem.appl{1} = appl; 
 
% Application mode 2 
clear appl 
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appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'R','R_t'}; 
appl.assignsuffix = '_wb'; 
clear prop 
clear weakconstr 
weakconstr.value = 'off'; 
weakconstr.dim = {'lm2','lm3'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 
bnd.dweak = {0,'R_test*R_time'}; 
bnd.init = {0,{'Rint';0}}; 
bnd.usage = {0,1}; 
bnd.weak = {0,'DR*(-RTx_test*RTx-RTy_test*RTy-RTz_test*RTz)+R_test*(surf_recept)'}; 
bnd.ind = [1,1,1,1,1,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, ... 
  1,1]; 
appl.bnd = bnd; 
fem.appl{2} = appl; 
 
% Application mode 3 
clear appl 
appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'C','C_t'}; 
appl.name = 'wb2'; 
appl.sshape = 2; 
appl.assignsuffix = '_wb2'; 
clear prop 
clear weakconstr 
weakconstr.value = 'off'; 
weakconstr.dim = {'lm4','lm5'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 
bnd.dweak = {0,'C_test*C_time'}; 
bnd.usage = {0,1}; 
bnd.weak = {0,'DC*(-CTx_test*CTx-CTy_test*CTy-CTz_test*CTz)+C_test*(surf_comp)'}; 
bnd.ind = [1,1,1,1,1,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, ... 
  1,1]; 
appl.bnd = bnd; 
fem.appl{3} = appl; 
fem.frame = {'ref'}; 
fem.border = 1; 
fem.outform = 'general'; 
clear units; 
units.basesystem = 'SI'; 
fem.units = units; 
 
% Boundary settings 
clear bnd 
bnd.ind = [1,1,1,1,1,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, ... 
  1,1]; 
bnd.dim = {'L','R','C'}; 
 
% Boundary expressions 
bnd.expr = {'surf_recept',{'','-kf*R*L'}, ... 
  'surf_comp',{'','kf*R*L'}}; 
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fem.bnd = bnd; 
 
% ODE Settings 
clear ode 
clear units; 
units.basesystem = 'SI'; 
ode.units = units; 
fem.ode=ode; 
 
% Multiphysics 
fem=multiphysics(fem); 
 
% Extend mesh 
fem.xmesh=meshextend(fem); 
 
if Conc == 1 
% Solve problem 
fem.sol=femtime(fem, 'symmetric','off', 'solcomp',{'C','R','L'}, ... 
                'outcomp',{'R','C','L'}, 'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)], 'rtol',RTol, ... 
                'tout','tlist', 'atol',ATol, 'linsolver','gmres', ... 
                'prefun','amg'); 
 
else   
fem.sol=femtime(fem,'init',fem0.sol,'symmetric','off','solcomp',{'R','C','L'}, ... 
                'outcomp',{'C','R','L'},'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)],'rtol',RTol,'tout','tlist', ... 
                'atol',ATol,'linsolver','gmres','prefun','amg'); 
end 
 
% Save current fem structure for restart purposes 
fem0=fem; 
 
 
 

Modeladh.m 

function fem = modeladh(Time,D,Conc,fem0) 
 
global kf RDensity C ATol RTol  
 
if Conc == 1 
    Var = 'L0'; 
else  
    Var = 0;  
end  
 
% Geometry 
g1=block3('5e-4','5e-4','5e-4','base','center','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0'); 
g2=sphere3('12.599e-6','pos',{'0','0','-2.5e-4'},'axis',{'0','0','1'},'rot','0'); 
g3=geomcomp({g1,g2},'ns',{'g1','g2'},'sf','g1*g2','face','none','edge','all'); 
g4=block3('5e-4','5e-4','5e-4','base','center','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0'); 
g5=cylinder3('2.5e-6','2e-5','pos',{'2.2599e-5','0','-2.45e-4'},'axis',{'1','0','0'},'rot','0'); 
g6=cylinder3('3e-6','2e-5','pos',{'2.2599e-5','0','-2.45e-4'},'axis',{'1','0','0'},'rot','0'); 
g7=cylinder3('3e-6','1e-5','pos',{'4.2599e-5','0','-2.45e-4'},'axis',{'1','0','0'},'rot','0'); 
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% Analyzed geometry 
clear s 
s.objs={g3,g4,g5,g6,g7}; 
s.name={'CO1','Subdomain','InnerD','OuterD','End'}; 
s.tags={'g3','g4','g5','g6','g7'}; 
 
fem.draw=struct('s',s); 
fem.geom=geomcsg(fem); 
 
% Constants 
fem.const = {'D',D, ... 
  'kf',kf, ... 
  'DC','1e-14', ... 
  'DR','1e-14', ... 
  'Rint',RDensity, ... 
  'L0',C}; 
 
% Initialize mesh 
fem.mesh=meshinit(fem, ... 
                  'hauto',5); 
 
% Application mode 1 
clear appl 
appl.mode.class = 'ConvDiff'; 
appl.dim = {'L'}; 
appl.module = 'CHEM'; 
appl.sshape = 2; 
appl.border = 'on'; 
appl.assignsuffix = '_chcd'; 
clear bnd 
bnd.c0 = {0,0,0,Var}; 
bnd.N = {0,0,'-kf*L*R',0}; 
bnd.type = {'N0','cont','N','C'}; 
bnd.ind = [1,1,1,1,1,3,2,3,3,3,1,1,1,2,1,1,1,1,1,1,2,1,1,4,1,1,1,1]; 
appl.bnd = bnd; 
clear equ 
equ.D = {'D',1,'D'}; 
equ.init = {0,0,'L0'}; 
equ.usage = {1,0,1}; 
equ.ind = [1,2,2,3,2]; 
appl.equ = equ; 
fem.appl{1} = appl; 
 
% Application mode 2 
clear appl 
appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'R','R_t'}; 
appl.sshape = 2; 
appl.assignsuffix = '_wb'; 
clear prop 
clear weakconstr 
weakconstr.value = 'off'; 
weakconstr.dim = {'lm2','lm3'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 
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bnd.dweak = {0,'R_test*R_time'}; 
bnd.init = {0,{'Rint';0}}; 
bnd.usage = {0,1}; 
bnd.weak = {0,'DR*(-RTx_test*RTx-RTy_test*RTy-RTz_test*RTz)+R_test*(surf_recept)'}; 
bnd.ind = [1,1,1,1,1,2,1,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; 
appl.bnd = bnd; 
fem.appl{2} = appl; 
 
% Application mode 3 
clear appl 
appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'C','C_t'}; 
appl.name = 'wb2'; 
appl.sshape = 2; 
appl.assignsuffix = '_wb2'; 
clear prop 
clear weakconstr 
weakconstr.value = 'off'; 
weakconstr.dim = {'lm4','lm5'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 
bnd.dweak = {0,'C_test*C_time'}; 
bnd.usage = {0,1}; 
bnd.weak = {0,'DC*(-CTx_test*CTx-CTy_test*CTy-CTz_test*CTz)+C_test*(surf_comp)'}; 
bnd.ind = [1,1,1,1,1,2,1,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; 
appl.bnd = bnd; 
fem.appl{3} = appl; 
fem.frame = {'ref'}; 
fem.border = 1; 
fem.outform = 'general'; 
clear units; 
units.basesystem = 'SI'; 
fem.units = units; 
 
% Boundary settings 
clear bnd 
bnd.ind = [1,1,1,1,1,2,1,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; 
bnd.dim = {'L','R','C'}; 
 
% Boundary expressions 
bnd.expr = {'surf_recept',{'','-kf*R*L'}, ... 
  'surf_comp',{'','kf*R*L'}}; 
fem.bnd = bnd; 
 
% ODE Settings 
clear ode 
clear units; 
units.basesystem = 'SI'; 
ode.units = units; 
fem.ode=ode; 
 
% Multiphysics 
fem=multiphysics(fem); 
 
% Extend mesh 
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fem.xmesh=meshextend(fem); 
 
if Conc == 1 
% Solve problem 
fem.sol=femtime(fem, 'symmetric','off', 'solcomp',{'C','R','L'}, ... 
                'outcomp',{'R','C','L'}, 'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)], 'rtol',RTol, ... 
                'tout','tlist', 'atol',ATol, 'linsolver','gmres', ... 
                'prefun','amg'); 
 
else   
fem.sol=femtime(fem,'init',fem0.sol,'symmetric','off','solcomp',{'R','C','L'}, ... 
                'outcomp',{'C','R','L'},'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)],'rtol',RTol,'tout','tlist', ... 
                'atol',ATol,'linsolver','gmres','prefun','amg'); 
end 
 
% Save current fem structure for restart purposes 
fem0=fem; 
 

 

Modelgap.m 

function fem = modelgap(Time,D,Conc,fem0) 
 
global kf RDensity C ATol RTol  
 
if Conc == 1 
    Var = 'L0'; 
else  
    Var = 0;  
end  
 
% Geometry 
g1=block3('5e-4','5e-4','5e-4','base','center','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0'); 
g3=cylinder3('2.5e-6','2e-5','pos',{'2.1547e-5','0','-2.45e-4'},'axis',{'1','0','0'},'rot','0'); 
g5=cylinder3('1.1547E-5','1.0E-5','pos',{'0','0','-2.45E-4'},'axis',{'0','0','1'},'rot','0'); 
g6=cylinder3('1.1547E-5','1.0E-5','pos',{'0','0','-2.5E-4'},'axis',{'0','0','1'},'rot','0'); 
g7=cylinder3('3e-6','2e-5','pos',{'2.1547e-5','0','-2.45e-4'},'axis',{'1','0','0'},'rot','0'); 
g8=cylinder3('3e-6','1e-5','pos',{'4.1547e-5','0','-2.45e-4'},'axis',{'1','0','0'},'rot','0'); 
g16=block3('2*4.3094E-5','2*4.3094E-5','1.0E-5','base','center','pos',{'-1.07735E-5*2','0','-2.35E-
4'},'axis',{'0','0','1'},'rot','0'); 
 
% Constants 
fem.const = {'D',D, ... 
  'kf',kf, ... 
  'DC','1e-14', ... 
  'DR','1e-14', ... 
  'Rint',RDensity, ... 
  'L0',C}; 
 
% Analyzed geometry 
clear s 
s.objs={g1,g3,g6,g7,g8,g16}; 
s.name={'Block','CYL1','Cell','CYL2','CYL3','BLK1'}; 
s.tags={'g1','g3','g6','g7','g8','g16'}; 
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fem.draw=struct('s',s); 
fem.geom=geomcsg(fem); 
 
% Initialize mesh 
fem.mesh=meshinit(fem, ... 
                  'hauto',5); 
 
% (Default values are not included) 
 
% Application mode 1 
clear appl 
appl.mode.class = 'ConvDiff'; 
appl.dim = {'L'}; 
appl.module = 'CHEM'; 
appl.sshape = 2; 
appl.border = 'on'; 
appl.assignsuffix = '_chcd'; 
clear bnd 
bnd.c0 = {0,0,0,Var}; 
bnd.N = {0,0,'-kf*L*R',0}; 
bnd.type = {'N0','cont','N','C'}; 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,3,3,2,2,3,3,1,1,1,1,2,1,1,1,1,1,1,2,1,1, ... 
  4,1,1,1,1]; 
appl.bnd = bnd; 
clear equ 
equ.D = {'D',1,'D'}; 
equ.init = {0,0,'L0'}; 
equ.usage = {1,0,1}; 
equ.ind = [1,2,2,2,3,2]; 
appl.equ = equ; 
fem.appl{1} = appl; 
 
% Application mode 2 
clear appl 
appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'R','R_t'}; 
appl.sshape = 2; 
appl.assignsuffix = '_wb'; 
clear prop 
clear weakconstr 
weakconstr.value = 'off'; 
weakconstr.dim = {'lm2','lm3'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 
bnd.dweak = {0,'R_test*R_time'}; 
bnd.init = {0,{'Rint';0}}; 
bnd.usage = {0,1}; 
bnd.weak = {0,'DR*(-RTx_test*RTx-RTy_test*RTy-RTz_test*RTz)+R_test*(surf_recept)'}; 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,2,2,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1, ... 
  1,1,1,1,1]; 
appl.bnd = bnd; 
fem.appl{2} = appl; 
 
% Application mode 3 
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clear appl 
appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'C','C_t'}; 
appl.name = 'wb2'; 
appl.sshape = 2; 
appl.assignsuffix = '_wb2'; 
clear prop 
clear weakconstr 
weakconstr.value = 'off'; 
weakconstr.dim = {'lm4','lm5'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 
bnd.dweak = {0,'C_test*C_time'}; 
bnd.usage = {0,1}; 
bnd.weak = {0,'DC*(-CTx_test*CTx-CTy_test*CTy-CTz_test*CTz)+C_test*(surf_comp)'}; 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,2,2,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1, ... 
  1,1,1,1,1]; 
appl.bnd = bnd; 
fem.appl{3} = appl; 
fem.frame = {'ref'}; 
fem.border = 1; 
fem.outform = 'general'; 
clear units; 
units.basesystem = 'SI'; 
fem.units = units; 
 
% Boundary settings 
clear bnd 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,2,2,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1, ... 
  1,1,1,1,1]; 
bnd.dim = {'L','R','C'}; 
 
% Boundary expressions 
bnd.expr = {'surf_recept',{'','-kf*R*L'}, ... 
  'surf_comp',{'','kf*R*L'}}; 
fem.bnd = bnd; 
 
% ODE Settings 
clear ode 
clear units; 
units.basesystem = 'SI'; 
ode.units = units; 
fem.ode=ode; 
 
% Multiphysics 
fem=multiphysics(fem); 
 
% Extend mesh 
fem.xmesh=meshextend(fem); 
 
if Conc == 1 
% Solve problem 
fem.sol=femtime(fem, 'symmetric','off', 'solcomp',{'C','R','L'}, ... 
                'outcomp',{'R','C','L'}, 'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)], 'rtol',RTol, ... 
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                'tout','tlist', 'atol',ATol, 'linsolver','gmres', ... 
                'prefun','amg'); 
 
else   
fem.sol=femtime(fem,'init',fem0.sol,'symmetric','off','solcomp',{'R','C','L'}, ... 
                'outcomp',{'C','R','L'},'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)],'rtol',RTol,'tout','tlist', ... 
                'atol',ATol,'linsolver','gmres','prefun','amg'); 
end 
 
% Save current fem structure for restart purposes 
fem0=fem; 
 
 

Susstart.m 

clear 
clc 
 
global D kf RDensity C ATol RTol CellSurfaceArea 
 
%Input of Constants 
CellRadius = 10e-6; %m 
AvangadroNumber = 6.02e23; 
Concentration = 100; %ng/mL 
CellSurfaceArea = 4*pi*CellRadius^2; %m^2 
EGFMolarMass = 6045; %g/mol  
ReceptorN = 47362; %Receptors  
kf = 1.3627e5; %Forward Constant - m^3/mol*s 
 
%Input of Ranges  
TimePoints = linspace(0,1200,1200); 
D = logspace(-10,-12,10);  
 
%Solution Parameters 
Time = 1200; 
RTol = 1e-12; 
ATol = 1e-12;  
 
%Calculation of Specific Values  
RDensity = ReceptorN/(AvangadroNumber*CellSurfaceArea);  
C = Concentration/EGFMolarMass/1e3;  
DaNumber = (kf*RDensity*CellRadius)./D;  
D = [1.89e-10 D];  
 
%============================MODEL======================================== 
 
%Integrate - and return a matrix of D by Time  
for z = 1:2 
    if z == 1 
for j = 1:11 
fem = modelsus(120,D(j),1,0);  
fem0=fem; 
 
for k = 1:120 
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  Result = susint(k,fem); 
  PIResult(k,j,z) = Result(1); 
  POResult(k,j,z) = Result(2); 
  POFront(k,j,z) = Result(3); 
  POBack(k,j,z) = Result(4); 
end 
 
fem = modelsus(1200-120,D(j),2,fem0);  
 
for k = 1:1200-120 
  Result = susint(k,fem); 
  PIResult(k+120,j,z) = Result(1); 
  POResult(k+120,j,z) = Result(2); 
  POFront(k+120,j,z) = Result(3); 
  POBack(k+120,j,z) = Result(4); 
end 
end 
    else 
for j = 1:11 
fem = modelsus(1200,D(j),1,0);  
fem0=fem; 
 
for k = 1:1200 
  Result = susint(k,fem); 
  PIResult(k,j,z) = Result(1); 
  POResult(k,j,z) = Result(2); 
  POFront(k,j,z) = Result(3); 
  POBack(k,j,z) = Result(4); 
end 
end 
    end 
 
disp(['Runs Completed: ' num2str(j)]) 
xlswrite(['PIResult' num2str(j) '.xls'],PIResult(:,:,z),num2str(z)) 
xlswrite(['POResult' num2str(j) '.xls'],POResult(:,:,z),num2str(z)) 
xlswrite(['POFront' num2str(j) '.xls'],POFront(:,:,z),num2str(z)) 
xlswrite(['POBack' num2str(j) '.xls'],POBack(:,:,z),num2str(z)) 
end 
  
 
%Adjust the matrix for the PI and PO vs. Da Plots  
PIResult2 = PIResult([60,120,300,600,1200],2:11,1); 
POResult2 = POResult([60,120,300,600,1200],2:11,1); 
 
ColorLetters = {'k','b','r','c','g','m'}; 
 
%Additional Calculations  
PODiff = - POBack + POFront;  
TimePoints1 = [1, 2, 5, 10, 20]*60;  
 
%Create the PI and PO Da Plot  
figure 
for i = 1:5 
    semilogx(DaNumber,PIResult2(i,:),'Color',ColorLetters{i},'LineStyle','-','LineWidth',2,'Marker','x') 
    hold on  
    grid on 
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    axis([DaNumber(1) DaNumber(end) 0 120]) 
    xlabel('Damkohler Number','FontSize',12) 
    ylabel('Polarization Index','FontSize',12) 
    title('Suspension: PI = f(Da)','FontSize',12) 
    set(gca,'FontSize',11) 
end 
legend('1 min','2 min','5 min','10 min','20 min','Location','Best') 
print -dtiff -r600 SusDaPIPlot.tif 
 
figure 
for i = 1:5 
    semilogx(DaNumber,POResult2(i,:),'Color',ColorLetters{i},'LineStyle','-','LineWidth',2,'Marker','x') 
    hold on  
    grid on 
    axis([DaNumber(1) DaNumber(end) 0 50]) 
    xlabel('Damkohler Number','FontSize',12) 
    ylabel('Percent Occupancy','FontSize',12) 
    title('Suspension: PO = f(Da)','FontSize',12) 
    set(gca,'FontSize',11) 
end 
legend('1 min','2 min','5 min','10 min','20 min','Location','Best') 
print -dtiff -r600 SusDaPOPlot.tif 
 
%Figure - PI vs Time Profile  
figure 
plot(TimePoints/60,PIResult(:,1,1),'k-',TimePoints/60,PIResult(:,1,2),'k--',... 
    'LineWidth',2) 
grid on 
title('Suspension Model: PI = f(Time)','FontSize',12) 
ylabel('Polarization Index','FontSize',12) 
xlabel('Time [min]','FontSize',12) 
set(gca,'FontSize',11) 
axis([0 20 1 5]) 
legend('Pipette Removal after 2 min','No Pipette Removal','Location','Best') 
print -dtiff -r600 SusPITimePlot.tif 
 
%Figure - PO vs Time Profile  
figure 
plot(TimePoints/60,POResult(:,1,1),'k-',TimePoints/60,POResult(:,1,2),'k--',... 
    'LineWidth',2) 
grid on 
title('Suspension Model: PO = f(Time)','FontSize',12) 
ylabel('Percent Occupancy','FontSize',12) 
xlabel('Time [min]','FontSize',12) 
set(gca,'FontSize',11) 
legend('Pipette Removal after 2 min','No Pipette Removal','Location','Best') 
print -dtiff -r600 SusPOTimePlot.tif 
 
figure 
plot(TimePoints/60,POBack(:,1,1),'k-',TimePoints/60,POFront(:,1,1),'k:',... 
 TimePoints/60,POBack(:,1,2),'k--',TimePoints/60,POFront(:,1,2),'k-.','LineWidth',2)    
grid on 
title('Suspension: PO Front and PO Back = f(Time)','FontSize',12) 
xlabel('Time [min]','FontSize',12) 
ylabel('Percent Occupancy','FontSize',12) 
set(gca,'FontSize',11) 
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legend('PO Back','PO Front','PO Back with Removal','PO Front with Removal',... 
    'Location','Best') 
print -dtiff -r600 SusPOFrontBackPlot.tif 
 
%PO Front and PO Back Da Plots  
for i = 1:5 
    figure 
    semilogx(DaNumber,POFront(TimePoints1(i),2:11,1),'k-','LineWidth',2) 
    hold on 
    semilogx(DaNumber,POBack(TimePoints1(i),2:11,1),'b-','LineWidth',2) 
    semilogx(DaNumber,PODiff(TimePoints1(i),2:11,1),'k:','LineWidth',2) 
    legend('POFront','POBack','PO Difference','Location','Best') 
    title(['Suspension: PO = f(Da) for ' num2str(TimePoints1(i)/60) 'min'],'FontSize',12) 
    xlabel('Da Number','FontSize',12) 
    ylabel('Percent Occupancy','FontSize',12) 
    axis([DaNumber(1) DaNumber(end) 0 70]) 
    grid on  
    print('-dtiff','-r600',['SusDaPlot' num2str(TimePoints1(i)/60)]) 
    close all 
end 
 
 

Adhstart.m 

clear 
clc 
 
global D kf RDensity C ATol RTol CellSurfaceArea 
 
%Input of Constants 
CellRadius = 12.599e-6; %m 
AvangadroNumber = 6.02e23; 
Concentration = 100; %ng/mL 
CellSurfaceArea = 2*pi*CellRadius^2; %m^2 
EGFMolarMass = 6045; %g/mol  
ReceptorN = 47362; %Receptors  
kf = 1.3627e5; %Forward Constant - m^3/mol*s 
 
%Input of Ranges  
TimePoints = linspace(0,1200,1200); 
D = logspace(-10,-12,10);  
 
%Solution Parameters 
Time = 1200; 
RTol = 1e-12; 
ATol = 1e-12;  
 
%Calculation of Specific Values  
RDensity = ReceptorN/(AvangadroNumber*CellSurfaceArea);  
C = Concentration/EGFMolarMass/1e3;  
DaNumber = (kf*RDensity*CellRadius)./D;  
D = [1.89e-10 D];  
 
%============================MODEL======================================== 
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%Integrate - and return a matrix of D by Time  
for z = 1:2 
    if z == 1 
for j = 1:11 
fem = modeladh(120,D(j),1,0);  
fem0=fem; 
 
for k = 1:120 
  Result = adhint(k,fem); 
  PIResult(k,j,z) = Result(1); 
  POResult(k,j,z) = Result(2); 
  POFront(k,j,z) = Result(3); 
  POBack(k,j,z) = Result(4); 
end 
 
fem = modeladh(1200-120,D(j),2,fem0);  
 
for k = 1:1200-120 
  Result = adhint(k,fem); 
  PIResult(k+120,j,z) = Result(1); 
  POResult(k+120,j,z) = Result(2); 
  POFront(k+120,j,z) = Result(3); 
  POBack(k+120,j,z) = Result(4); 
end 
end 
    else 
for j = 1:11 
fem = modeladh(1200,D(j),1,0);  
fem0=fem; 
 
for k = 1:1200 
  Result = adhint(k,fem); 
  PIResult(k,j,z) = Result(1); 
  POResult(k,j,z) = Result(2); 
  POFront(k,j,z) = Result(3); 
  POBack(k,j,z) = Result(4); 
end 
end 
    end 
 
disp(['Runs Completed: ' num2str(j)]) 
xlswrite(['PIResult' num2str(j) '.xls'],PIResult(:,:,z),num2str(z)) 
xlswrite(['POResult' num2str(j) '.xls'],POResult(:,:,z),num2str(z)) 
xlswrite(['POFront' num2str(j) '.xls'],POFront(:,:,z),num2str(z)) 
xlswrite(['POBack' num2str(j) '.xls'],POBack(:,:,z),num2str(z)) 
end 
  
 
%Adjust the matrix for the PI and PO vs. Da Plots  
PIResult2 = PIResult([60,120,300,600,1200],2:11,1); 
POResult2 = POResult([60,120,300,600,1200],2:11,1); 
 
ColorLetters = {'k','b','r','c','g','m'}; 
 
%Additional Calculations  
PODiff = - POBack + POFront;  
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TimePoints1 = [1, 2, 5, 10, 20]*60;  
 
%Create the PI and PO Da Plot  
figure 
for i = 1:5 
    semilogx(DaNumber,1./PIResult2(i,:),'Color',ColorLetters{i},'LineStyle','-','LineWidth',2,'Marker','x') 
    hold on  
    grid on 
    axis([DaNumber(1) DaNumber(end) 0 150]) 
    xlabel('Damkohler Number','FontSize',12) 
    ylabel('Polarization Index','FontSize',12) 
    %title('Adherent: PI = f(Da)','FontSize',12) 
    set(gca,'FontSize',11) 
end 
legend('1 min','2 min','5 min','10 min','20 min','Location','Best') 
print -dtiff -r600 AdhDaPIPlot.tif 
 
figure 
for i = 1:5 
    semilogx(DaNumber,POResult2(i,:),'Color',ColorLetters{i},'LineStyle','-','LineWidth',2,'Marker','x') 
    hold on  
    grid on 
    axis([DaNumber(1) DaNumber(end) 0 60]) 
    xlabel('Damkohler Number','FontSize',12) 
    ylabel('Percent Occupancy','FontSize',12) 
    %title('Adherent: PO = f(Da)','FontSize',12) 
    set(gca,'FontSize',11) 
end 
legend('1 min','2 min','5 min','10 min','20 min','Location','Best') 
print -dtiff -r600 AdhDaPOPlot.tif 
 
%Figure - PI vs Time Profile  
figure 
plot(TimePoints/60,1./PIResult(:,1,1),'k-',TimePoints/60,1./PIResult(:,1,2),'k--',... 
    'LineWidth',2) 
grid on 
%title('Adherent Model: PI = f(Time)','FontSize',12) 
ylabel('Polarization Index','FontSize',12) 
xlabel('Time [min]','FontSize',12) 
set(gca,'FontSize',11) 
axis([0 20 1 5]) 
legend('Pipette Removal after 2 min','No Pipette Removal','Location','Best') 
print -dtiff -r600 AdhPITimePlot.tif 
 
%Figure - PO vs Time Profile  
figure 
plot(TimePoints/60,POResult(:,1,1),'k-',TimePoints/60,POResult(:,1,2),'k--',... 
    'LineWidth',2) 
grid on 
%title('Adherent Model: PO = f(Time)','FontSize',12) 
ylabel('Percent Occupancy','FontSize',12) 
xlabel('Time [min]','FontSize',12) 
set(gca,'FontSize',11) 
legend('Pipette Removal after 2 min','No Pipette Removal','Location','Best') 
print -dtiff -r600 AdhPOTimePlot.tif 
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figure 
plot(TimePoints/60,POBack(:,1,1),'k-',TimePoints/60,POFront(:,1,1),'k:',... 
 TimePoints/60,POBack(:,1,2),'k--',TimePoints/60,POFront(:,1,2),'k-.','LineWidth',2)    
grid on 
%title('Adherent: PO Front and PO Back = f(Time)','FontSize',12) 
xlabel('Time [min]','FontSize',12) 
ylabel('Percent Occupancy','FontSize',12) 
set(gca,'FontSize',11) 
legend('PO Back','PO Front','PO Back with Removal','PO Front with Removal',... 
    'Location','Best') 
print -dtiff -r600 AdhPOFrontBackPlot.tif 
 
%PO Front and PO Back Da Plots  
for i = 1:5 
    figure 
    semilogx(DaNumber,POFront(TimePoints1(i),2:11,1),'k-','LineWidth',2) 
    hold on 
    semilogx(DaNumber,POBack(TimePoints1(i),2:11,1),'b-','LineWidth',2) 
    semilogx(DaNumber,PODiff(TimePoints1(i),2:11,1),'k:','LineWidth',2) 
    legend('POFront','POBack','PO Difference','Location','Best') 
    %title(['Adherent: PO = f(Da) for ' num2str(TimePoints1(i)/60) 'min'],'FontSize',12) 
    xlabel('Da Number','FontSize',12) 
    ylabel('Percent Occupancy','FontSize',12) 
    axis([DaNumber(1) DaNumber(end) 0 80]) 
    grid on  
    print('-dtiff','-r600',['AdhDaPlot' num2str(TimePoints1(i)/60)]) 
    close all 
end 
 
 

Gapstart.m 

clear 
clc 
 
global D kf RDensity C ATol RTol CellSurfaceArea 
 
%Input of Constants 
CellRadius = 1.1547e-005; %m 
AvangadroNumber = 6.02e23; 
Concentration = 100; %ng/mL 
CellSurfaceArea = 2*pi*CellRadius*10e-6; %m^2 
EGFMolarMass = 6045; %g/mol  
ReceptorN = 47362; %Receptors  
kf = 1.3627e5; %Forward Constant - m^3/mol*s 
 
%Input of Ranges  
TimePoints = linspace(0,1200,1200); 
D = logspace(-10,-12,10);  
 
%Solution Parameters 
Time = 1200; 
RTol = 1e-12; 
ATol = 1e-12;  
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%Calculation of Specific Values  
RDensity = ReceptorN/(AvangadroNumber*CellSurfaceArea);  
C = Concentration/EGFMolarMass/1e3;  
DaNumber = (kf*RDensity*CellRadius)./D;  
D = [1.89e-10 D];  
 
%============================MODEL======================================== 
 
%Integrate - and return a matrix of D by Time  
for z = 1:2 
    if z == 1 
for j = 1:11 
fem = modelgap(120,D(j),1,0);  
fem0=fem; 
 
for k = 1:120 
  Result = gapint(k,fem); 
  PIResult(k,j,z) = Result(1); 
  POResult(k,j,z) = Result(2); 
  POFront(k,j,z) = Result(3); 
  POBack(k,j,z) = Result(4); 
end 
 
fem = modelgap(1200-120,D(j),2,fem0);  
 
for k = 1:1200-120 
  Result = gapint(k,fem); 
  PIResult(k+120,j,z) = Result(1); 
  POResult(k+120,j,z) = Result(2); 
  POFront(k+120,j,z) = Result(3); 
  POBack(k+120,j,z) = Result(4); 

end 
end 
    else 
for j = 1:11 
fem = modelgap(1200,D(j),1,0);  
fem0=fem; 
 
for k = 1:1200 
  Result = gapint(k,fem); 
  PIResult(k,j,z) = Result(1); 
  POResult(k,j,z) = Result(2); 
  POFront(k,j,z) = Result(3); 
  POBack(k,j,z) = Result(4); 
end 
end 
    end 
 
disp(['Runs Completed: ' num2str(j)]) 
xlswrite(['PIResult' num2str(j) '.xls'],PIResult(:,:,z),num2str(z)) 
xlswrite(['POResult' num2str(j) '.xls'],POResult(:,:,z),num2str(z)) 
xlswrite(['POFront' num2str(j) '.xls'],POFront(:,:,z),num2str(z)) 
xlswrite(['POBack' num2str(j) '.xls'],POBack(:,:,z),num2str(z)) 
end 
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%Adjust the matrix for the PI and PO vs. Da Plots  
PIResult2 = PIResult([60,120,300,600,1200],2:11,1); 
POResult2 = POResult([60,120,300,600,1200],2:11,1); 
 
ColorLetters = {'k','b','r','c','g','m'}; 
 
%Additional Calculations  
PODiff = - POBack + POFront;  
TimePoints1 = [1, 2, 5, 10, 20]*60;  
 
%Create the PI and PO Da Plot  
figure 
for i = 1:5 
    semilogx(DaNumber,PIResult2(i,:),'Color',ColorLetters{i},'LineStyle','-','LineWidth',2,'Marker','x') 
    hold on  
    grid on 
    axis([DaNumber(1) DaNumber(end) 0 150]) 
    xlabel('Damkohler Number','FontSize',12) 
    ylabel('Polarization Index','FontSize',12) 
    %title('Gap: PI = f(Da)','FontSize',12) 
    set(gca,'FontSize',11) 
end 
legend('1 min','2 min','5 min','10 min','20 min','Location','Best') 
print -dtiff -r600 GapDaPIPlot.tif 
 
figure 
for i = 1:5 
    semilogx(DaNumber,POResult2(i,:),'Color',ColorLetters{i},'LineStyle','-','LineWidth',2,'Marker','x') 
    hold on  
    grid on 
    axis([DaNumber(1) DaNumber(end) 0 70]) 
    xlabel('Damkohler Number','FontSize',12) 
    ylabel('Percent Occupancy','FontSize',12) 
    %title('Gap: PO = f(Da)','FontSize',12) 
    set(gca,'FontSize',11) 
end 
legend('1 min','2 min','5 min','10 min','20 min','Location','Best') 
print -dtiff -r600 GapDaPOPlot.tif 
 
%Figure - PI vs Time Profile  
figure 
plot(TimePoints/60,PIResult(:,1,1),'k-',TimePoints/60,PIResult(:,1,2),'k--',... 
    'LineWidth',2) 
grid on 
%title('Gap: PI = f(Time)','FontSize',12) 
ylabel('Polarization Index','FontSize',12) 
xlabel('Time [min]','FontSize',12) 
set(gca,'FontSize',11) 
axis([0 20 1 5]) 
legend('Pipette Removal after 2 min','No Pipette Removal','Location','Best') 
print -dtiff -r600 GapPITimePlot.tif 
 
%Figure - PO vs Time Profile  
figure 
plot(TimePoints/60,POResult(:,1,1),'k-',TimePoints/60,POResult(:,1,2),'k--',... 
    'LineWidth',2) 
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grid on 
%title('Gap: PO = f(Time)','FontSize',12) 
ylabel('Percent Occupancy','FontSize',12) 
xlabel('Time [min]','FontSize',12) 
axis([0 20 0 100]) 
set(gca,'FontSize',11) 
legend('Pipette Removal after 2 min','No Pipette Removal','Location','Best') 
print -dtiff -r600 GapPOTimePlot.tif 
 
figure 
plot(TimePoints/60,POBack(:,1,1),'k-',TimePoints/60,POFront(:,1,1),'k:',... 
 TimePoints/60,POBack(:,1,2),'k--',TimePoints/60,POFront(:,1,2),'k-.','LineWidth',2)    
grid on 
%title('Gap: PO Front and PO Back = f(Time)','FontSize',12) 
xlabel('Time [min]','FontSize',12) 
ylabel('Percent Occupancy','FontSize',12) 
axis([0 20 0 100]) 
set(gca,'FontSize',11) 
legend('PO Back','PO Front','PO Back with Removal','PO Front with Removal',... 
    'Location','Best') 
print -dtiff -r600 GapPOFrontBackPlot.tif 
 
%PO Front and PO Back Da Plots  
for i = 1:5 
    figure 
    semilogx(DaNumber,POFront(TimePoints1(i),2:11,1),'k-','LineWidth',2) 
    hold on 
    semilogx(DaNumber,POBack(TimePoints1(i),2:11,1),'b-','LineWidth',2) 
    semilogx(DaNumber,-PODiff(TimePoints1(i),2:11,1),'k:','LineWidth',2) 
    legend('POFront','POBack','PO Difference','Location','Best') 
    title(['Gap: PO = f(Da) for ' num2str(TimePoints1(i)/60) 'min'],'FontSize',12) 
    xlabel('Da Number','FontSize',12) 
    ylabel('Percent Occupancy','FontSize',12) 
    axis([DaNumber(1) DaNumber(end) 0 90]) 
    grid on  
    print('-dtiff','-r600',['GapDaPlotT' num2str(TimePoints1(i)/60)]) 
    close all 
end 
 
 

Susint.m 

function Result = susint(k,fem) 
 
global RDensity CellSurfaceArea 
 
TimePoints = linspace(0,1200,1200); 
 
try  
% Integrate - Back Half 
I1=postint(fem,'C', 'unit','', 'recover','off', ... 
           'dl',[6,7,8,9], 'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate - Front Half  
I2=postint(fem,'C', 'unit','', 'recover','off', ... 
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            'dl',[10,11,12,13], 'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate - R  
I3=postint(fem,'R', 'unit','', 'recover','off', ... 
            'dl',[6,7,8,9,10,11,12,13], 'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate - R  
I4=postint(fem,'R', 'unit','', 'recover','off', ... 
            'dl',[10,11,12,13], 'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate - R  
I5=postint(fem,'R', 'unit','', 'recover','off', ... 
            'dl',[6,7,8,9], 'edim',2, 'solnum',TimePoints(k)); 
         
PIResult = I2/I1; 
POResult = (1-I3/(CellSurfaceArea*RDensity))*100; 
POFront = (1-I4/(CellSurfaceArea*RDensity/2))*100; 
POBack = (1-I5/(CellSurfaceArea*RDensity/2))*100; 
 
catch exception  
    PIResult = NaN; 
    POResult = NaN; 
    POFront = NaN; 
    POBack = NaN; 
end 
 
Result = [PIResult POResult POFront POBack];  
 
 

Adhint.m 

function Result = adhint(k,fem) 
 
global RDensity CellSurfaceArea 
 
TimePoints = linspace(0,1200,1200); 
 
 try  
% Integrate - Back Half 
I1=postint(fem,'C', 'unit','', 'recover','off', ... 
           'dl',[9,10], 'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate - Front Half  
I2=postint(fem,'C', 'unit','', 'recover','off', ... 
            'dl',[6,8], 'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate - R  
I3=postint(fem,'R', 'unit','', 'recover','off', ... 
            'dl',[6,8,9,10], 'edim',2, 'solnum',TimePoints(k)); 
         
% Integrate - R  
I4=postint(fem,'R', 'unit','', 'recover','off', ... 
            'dl',[9,10], 'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate - R  
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I5=postint(fem,'R', 'unit','', 'recover','off', ... 
            'dl',[6,8], 'edim',2, 'solnum',TimePoints(k)); 
         
PIResult = I2/I1; 
POResult = (1-I3/(CellSurfaceArea*RDensity))*100; 
POFront = (1-I4/(CellSurfaceArea*RDensity/2))*100; 
POBack = (1-I5/(CellSurfaceArea*RDensity/2))*100; 
 
catch exception  
    PIResult = NaN; 
    POResult = NaN; 
    POFront = NaN; 
    POBack = NaN; 
end 
 
Result = [PIResult POResult POFront POBack];  
 
 

Gapint.m 

function Result = gapint(k,fem) 
 
global RDensity CellSurfaceArea 
 
TimePoints = linspace(0,1200,1200); 
 
 try  
% Integrate - Back Half 
I1=postint(fem,'C', 'unit','','recover','off', 'dl',[11,12], ... 
           'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate - Front Half  
I2=postint(fem,'C', 'unit','', 'recover','off', 'dl',[15,16], ... 
           'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate - R  
I3=postint(fem,'R', 'unit','', 'recover','off', ... 
           'dl',[11,12,15,16], 'edim',2, 'solnum',TimePoints(k)); 
         
% Integrate - R  
I4=postint(fem,'R', 'unit','', 'recover','off', ... 
            'dl',[11,12], 'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate - R  
I5=postint(fem,'R', 'unit','', 'recover','off', ... 
            'dl',[15,16], 'edim',2, 'solnum',TimePoints(k)); 
         
PIResult = I2/I1; 
POResult = (1-I3/(CellSurfaceArea*RDensity))*100; 
POFront = (1-I4/(CellSurfaceArea*RDensity/2))*100; 
POBack = (1-I5/(CellSurfaceArea*RDensity/2))*100; 
 
catch exception  
    PIResult = NaN; 
    POResult = NaN; 
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    POFront = NaN; 
    POBack = NaN; 
end 
 
Result = [PIResult POResult POFront POBack];  
 
 

Generateplot.m 

clear 
clc 
close all 
 
%Reads data from Excel  
PI(:,1) = xlsread('SusPI.xls','1','A1:A1200'); 
PI(:,2) = xlsread('SusPI.xls','2','A1:A1200'); 
PI(:,3) = 1./xlsread('AdhPI.xls','1','A1:A1200'); 
PI(:,4) = 1./xlsread('AdhPI.xls','2','A1:A1200'); 
PI(:,5) = xlsread('GapPI.xls','1','A1:A1200'); 
PI(:,6) = xlsread('GapPI.xls','2','A1:A1200'); 
POFront(:,1) = xlsread('SusPOFront.xls','1','A1:A1200'); 
POFront(:,2) = xlsread('SusPOFront.xls','2','A1:A1200'); 
POFront(:,3) = xlsread('AdhPOFront.xls','1','A1:A1200'); 
POFront(:,4) = xlsread('AdhPOFront.xls','2','A1:A1200'); 
POFront(:,5) = xlsread('GapPOFront.xls','1','A1:A1200'); 
POFront(:,6) = xlsread('GapPOFront.xls','2','A1:A1200'); 
POBack(:,1) = xlsread('SusPOBack.xls','1','A1:A1200'); 
POBack(:,2) = xlsread('SusPOBack.xls','2','A1:A1200'); 
POBack(:,3) = xlsread('AdhPOBack.xls','1','A1:A1200'); 
POBack(:,4) = xlsread('AdhPOBack.xls','2','A1:A1200'); 
POBack(:,5) = xlsread('GapPOBack.xls','1','A1:A1200'); 
POBack(:,6) = xlsread('GapPOBack.xls','2','A1:A1200'); 
 
PODiff = POFront - POBack;  
Time = linspace(0,1198,1198)'/60; 
Time2 = linspace(0,1199,1199)'/60; 
 
%Makes Plot 1 
plot(Time,PI(:,1),'k-',Time,PI(:,3),'k:',Time,PI(:,5),'k--','LineWidth',2) 
xlabel('Time [min]','FontSize',12) 
ylabel('Polarization Index','FontSize',12) 
title('PI = f(Time) with Pipette Removal','FontSize',12) 
axis([0 20 1 6]) 
set(gca,'FontSize',11) 
legend('Suspension','Adherent','Gap','Location','Best') 
grid on 
print -dtiff -r600 AllPIRemoval.tif 
 
%Makes Plot 2 
figure 
plot(Time,PI(:,2),'k-',Time,PI(:,4),'k:',Time,PI(:,6),'k--','LineWidth',2) 
xlabel('Time [min]','FontSize',12) 
ylabel('Polarization Index','FontSize',12) 
title('PI = f(Time) with No Pipette Removal','FontSize',12) 
axis([0 20 1 6]); 
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set(gca,'FontSize',11) 
legend('Suspension','Adherent','Gap','Location','Best') 
grid on 
print -dtiff -r600 AllPINoRemoval.tif 
 
figure 
plot(Time2,PODiff(:,2),'k-','LineWidth',2) 
grid on 
hold on 
plot(Time2,PODiff(:,4),'k--','LineWidth',2) 
plot(Time2,-PODiff(:,6),'k:','LineWidth',2) 
title('Difference in PO Front and PO Back: No Pipette Removal','FontSize',12) 
xlabel('Time [min]','FontSize',12) 
ylabel('PO Value','FontSize',12)    
axis([0 20 0 60]) 
legend('Suspension','Adherent','Gap','Location','Best') 
print -dtiff -r600 AllPODiffNoRemoval.tif 
 
figure 
plot(Time2,PODiff(:,1),'k-','LineWidth',2) 
grid on 
hold on 
plot(Time2,PODiff(:,3),'k--','LineWidth',2) 
plot(Time2,-PODiff(:,5),'k:','LineWidth',2) 
title('Difference in PO Front and PO Back: Pipette Removal','FontSize',12) 
xlabel('Time [min]','FontSize',12) 
ylabel('PO Value','FontSize',12)    
axis([0 20 0 60]) 
legend('Suspension','Adherent','Gap','Location','Best') 
print -dtiff -r600 AllPODiffRemoval.tif 
 
close all 
 

Tortuosity Analysis 
 

Modeladh3.m 

function fem = modeladh3(Time,Conc,fem0) 
 
global kf RDensity C ATol RTol D  
 
if Conc == 1 
    Var = 'L0' 
else  
    Var = 0  
end  
 
% Geometry 
g1=block3('5E-4','5E-4','5e-4','base','corner','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0'); 
g3=sphere3('12.599e-6','pos',{'2.5e-4','2.5e-4','0'},'axis',{'0','0','1'},'rot','0'); 
g5=sphere3('12.599e-6','pos',{'2.5e-4','2.5e-4+(12.599e-6)','0'},'axis',{'0','0','1'},'rot','0'); 
g6=sphere3('(12.599e-6)','pos',{'2.5e-4','2.5e-4-12.599e-6','0'},'axis',{'0','0','1'},'rot','0'); 
g8=geomcomp({g3,g5,g6},'ns',{'g3','g5','g6'},'sf','g3+g5+g6','face','none','edge','all'); 
g9=geomcomp({g1,g8},'ns',{'g1','g8'},'sf','g1*g8','face','none','edge','all'); 
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g10=block3('0.5e-3','0.5e-3','0.5e-3','base','corner','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0'); 
g11=cylinder3('3.0E-6','1.0E-5','pos',{'2.6E-4+12.599e-6','2.5E-4','5.0E-6'},'axis',{'1','0','0'},'rot','0'); 
g14=cylinder3('2.5E-6','1.0E-5','pos',{'2.72599E-4','2.5E-4','5.0E-6'},'axis',{'1','0','0'},'rot','0'); 
g15=cylinder3('3.0e-6','1e-5','pos',{'2.7E-4+12.599e-6','2.5e-4','5e-6'},'axis',{'1','0','0'},'rot','0'); 
 
% Constants 
fem.const = {'Rint',RDensity, ... 
  'L0',C, ... 
  'kf',kf, ... 
  'DC','1e-14', ... 
  'DR','1e-14', ... 
  'D',D}; 
 
% Geometry 
 
% Analyzed geometry 
clear s 
s.objs={g9,g10,g11,g14,g15}; 
s.name={'CO2','BLK1','CYL1','CYL2','CYL3'}; 
s.tags={'g9','g10','g11','g14','g15'}; 
 
fem.draw=struct('s',s); 
fem.geom=geomcsg(fem); 
 
% Initialize mesh 
fem.mesh=meshinit(fem, ... 
                  'hauto',5); 
 
% (Default values are not included) 
 
% Application mode 1 
clear appl 
appl.mode.class = 'ConvDiff'; 
appl.dim = {'L'}; 
appl.module = 'CHEM'; 
appl.sshape = 2; 
appl.assignsuffix = '_chcd'; 
clear bnd 
bnd.c0 = {0,0,0,Var}; 
bnd.N = {0,0,'-kf*L*R',0}; 
bnd.type = {'N0','cont','N','C'}; 
bnd.ind = [1,1,1,1,1,2,3,3,2,3,3,3,2,3,2,2,2,2,2,2,3,2,3,2,3,2,2,3,2,3, ... 
  3,1,1,1,2,1,1,1,1,1,1,2,1,1,4,1,1,1,1]; 
appl.bnd = bnd; 
clear equ 
equ.D = {'D',1,'D'}; 
equ.init = {0,0,'L0'}; 
equ.usage = {1,0,1}; 
equ.ind = [1,2,2,2,2,2,2,3,2]; 
appl.equ = equ; 
fem.appl{1} = appl; 
 
% Application mode 2 
clear appl 
appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'R','R_t'}; 
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appl.sshape = 2; 
appl.assignsuffix = '_wb'; 
clear prop 
clear weakconstr 
weakconstr.value = 'off'; 
weakconstr.dim = {'lm2','lm3'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 
bnd.dweak = {0,'R_test*R_time'}; 
bnd.init = {0,{'Rint';0}}; 
bnd.usage = {0,1}; 
bnd.weak = {0,'DR*(-RTx_test*RTx-RTy_test*RTy-RTz_test*RTz)+R_test*(surf_recept)'}; 
bnd.ind = [1,1,1,1,1,1,2,2,1,2,2,2,1,2,1,1,1,1,1,1,2,1,2,1,2,1,1,2,1,2, ... 
  2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; 
appl.bnd = bnd; 
fem.appl{2} = appl; 
 
% Application mode 3 
clear appl 
appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'C','C_t'}; 
appl.name = 'wb2'; 
appl.sshape = 2; 
appl.assignsuffix = '_wb2'; 
clear prop 
clear weakconstr 
weakconstr.value = 'off'; 
weakconstr.dim = {'lm4','lm5'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 
bnd.dweak = {0,'C_test*C_time'}; 
bnd.usage = {0,1}; 
bnd.weak = {0,'DC*(-CTx_test*CTx-CTy_test*CTy-CTz_test*CTz)+C_test*(surf_comp)'}; 
bnd.ind = [1,1,1,1,1,1,2,2,1,2,2,2,1,2,1,1,1,1,1,1,2,1,2,1,2,1,1,2,1,2, ... 
  2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; 
appl.bnd = bnd; 
fem.appl{3} = appl; 
fem.frame = {'ref'}; 
fem.border = 1; 
fem.outform = 'general'; 
clear units; 
units.basesystem = 'SI'; 
fem.units = units; 
 
% Boundary settings 
clear bnd 
bnd.ind = [1,1,1,1,1,1,2,2,1,2,2,2,1,2,1,1,1,1,1,1,2,1,2,1,2,1,1,2,1,2, ... 
  2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; 
bnd.dim = {'L','R','C'}; 
 
% Boundary expressions 
bnd.expr = {'surf_recept',{'','-kf*R*L'}, ... 
  'surf_comp',{'','kf*R*L'}}; 
fem.bnd = bnd; 
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% ODE Settings 
clear ode 
clear units; 
units.basesystem = 'SI'; 
ode.units = units; 
fem.ode=ode; 
 
% Multiphysics 
fem=multiphysics(fem); 
 
% Extend mesh 
fem.xmesh=meshextend(fem); 
 
if Conc == 1 
% Solve problem 
fem.sol=femtime(fem,'symmetric','off', 'solcomp',{'R','C','L'},...  
                'outcomp',{'C','R','L'}, 'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)], 'rtol',RTol, 'tout','tlist', ... 
                'atol',ATol,'linsolver','gmres','prefun','amg'); 
 
else   
fem.sol=femtime(fem,'init',fem0.sol,'symmetric','off','solcomp',{'R','C','L'}, ... 
                'outcomp',{'C','R','L'},'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)],'rtol',RTol,'tout','tlist', ... 
                'atol',ATol,'linsolver','gmres','prefun','amg'); 
end 
             
% Save current fem structure for restart purposes 
fem0=fem; 
 
 

Modeladh5.m 

function fem = modeladh5(Time,Conc,fem0) 
 
global kf RDensity C ATol RTol D  
 
if Conc == 1 
    Var = 'L0'; 
else  
    Var = 0; 
end  
 
% Geometry 
g1=block3('0.5e-3','0.5e-3','0.5e-3','base','corner','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0'); 
g2=sphere3('12.599e-6','pos',{'2.5e-4','2.5e-4','0'},'axis',{'0','0','1'},'rot','0'); 
g4=sphere3('12.599e-6','pos',{'2.5e-4','2.5e-4+12.599E-6','0'},'axis',{'0','0','1'},'rot','0'); 
g5=sphere3('12.599E-6','pos',{'2.5E-4','2.5e-4-12.599E-6','0'},'axis',{'0','0','1'},'rot','0'); 
g6=sphere3('12.599E-6','pos',{'2.5E-4','2.5e-4+2*12.599E-6','0'},'axis',{'0','0','1'},'rot','0'); 
g7=sphere3('12.599E-6','pos',{'2.5e-4','2.5e-4-2*12.599E-6','0'},'axis',{'0','0','1'},'rot','0'); 
g8=geomcomp({g2,g4,g5,g6,g7},'ns',{'g2','g4','g5','g6','g7'},'sf','g2+g4+g5+g6+g7','face','none','edge','all'); 
g9=geomcomp({g1,g8},'ns',{'g1','g8'},'sf','g1*g8','face','none','edge','all'); 
g10=block3('0.5E-3','0.5E-3','0.5E-3','base','corner','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0'); 
g12=cylinder3('3E-6','1E-5','pos',{'2.6E-4+12.599E-6','2.5E-4','5.0E-6'},'axis',{'1','0','0'},'rot','0'); 
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g14=cylinder3('2.5E-6','1.0E-5','pos',{'2.72599E-4','2.5E-4','5.0E-6'},'axis',{'1','0','0'},'rot','0'); 
g15=cylinder3('3e-6','1e-5','pos',{'2.7e-4+12.599e-6','2.5e-4','5e-6'},'axis',{'1','0','0'},'rot','0'); 
 
% Constants 
fem.const = {'Rint',RDensity, ... 
  'L0',C, ... 
  'kf',kf, ... 
  'DC','1e-14', ... 
  'DR','1e-14', ... 
  'D',D}; 
 
% Geometry 
 
% Analyzed geometry 
clear s 
s.objs={g9,g10,g12,g14,g15}; 
s.name={'CO2','BLK1','CYL1','CYL2','CYL3'}; 
s.tags={'g9','g10','g12','g14','g15'}; 
 
fem.draw=struct('s',s); 
fem.geom=geomcsg(fem); 
 
% Initialize mesh 
fem.mesh=meshinit(fem, ... 
                  'hauto',5); 
 
% (Default values are not included) 
 
% Application mode 1 
clear appl 
appl.mode.class = 'ConvDiff'; 
appl.dim = {'L'}; 
appl.module = 'CHEM'; 
appl.sshape = 2; 
appl.assignsuffix = '_chcd'; 
clear bnd 
bnd.c0 = {0,0,0,Var}; 
bnd.N = {0,0,'-kf*L*R',0}; 
bnd.type = {'N0','cont','N','C'}; 
bnd.ind = [1,1,1,1,1,2,3,3,2,3,3,2,3,3,2,3,3,3,2,3,2,2,2,2,2,2,2,2,2,2, ... 
  2,2,3,2,3,2,3,2,2,3,2,3,2,2,3,2,3,2,2,3,2,3,3,1,1,1,2,1,1,1,1,1,1,2,1, ... 
  1,4,1,1,1,1]; 
appl.bnd = bnd; 
clear equ 
equ.D = {'D',1,'D'}; 
equ.init = {0,0,'L0'}; 
equ.usage = {1,0,1}; 
equ.ind = [1,2,2,2,2,2,2,2,2,2,2,3,2]; 
appl.equ = equ; 
fem.appl{1} = appl; 
 
% Application mode 2 
clear appl 
appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'R','R_t'}; 
appl.sshape = 2; 
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appl.assignsuffix = '_wb'; 
clear prop 
clear weakconstr 
weakconstr.value = 'off'; 
weakconstr.dim = {'lm2','lm3'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 
bnd.dweak = {0,'R_test*R_time'}; 
bnd.init = {0,{'Rint';0}}; 
bnd.usage = {0,1}; 
bnd.weak = {0,'DR*(-RTx_test*RTx-RTy_test*RTy-RTz_test*RTz)+R_test*(surf_recept)'}; 
bnd.ind = [1,1,1,1,1,1,2,2,1,2,2,1,2,2,1,2,2,2,1,2,1,1,1,1,1,1,1,1,1,1, ... 
  1,1,2,1,2,1,2,1,1,2,1,2,1,1,2,1,2,1,1,2,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1, ... 
  1,1,1,1,1,1]; 
appl.bnd = bnd; 
fem.appl{2} = appl; 
 
% Application mode 3 
clear appl 
appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'C','C_t'}; 
appl.name = 'wb2'; 
appl.sshape = 2; 
appl.assignsuffix = '_wb2'; 
clear prop 
clear weakconstr 
weakconstr.value = 'off'; 
weakconstr.dim = {'lm4','lm5'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 
bnd.dweak = {0,'C_test*C_time'}; 
bnd.usage = {0,1}; 
bnd.weak = {0,'DC*(-CTx_test*CTx-CTy_test*CTy-CTz_test*CTz)+C_test*(surf_comp)'}; 
bnd.ind = [1,1,1,1,1,1,2,2,1,2,2,1,2,2,1,2,2,2,1,2,1,1,1,1,1,1,1,1,1,1, ... 
  1,1,2,1,2,1,2,1,1,2,1,2,1,1,2,1,2,1,1,2,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1, ... 
  1,1,1,1,1,1]; 
appl.bnd = bnd; 
fem.appl{3} = appl; 
fem.frame = {'ref'}; 
fem.border = 1; 
fem.outform = 'general'; 
clear units; 
units.basesystem = 'SI'; 
fem.units = units; 
 
% Boundary settings 
clear bnd 
bnd.ind = [1,1,1,1,1,1,2,2,1,2,2,1,2,2,1,2,2,2,1,2,1,1,1,1,1,1,1,1,1,1, ... 
  1,1,2,1,2,1,2,1,1,2,1,2,1,1,2,1,2,1,1,2,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1, ... 
  1,1,1,1,1,1]; 
bnd.dim = {'L','R','C'}; 
 
% Boundary expressions 
bnd.expr = {'surf_recept',{'','-kf*R*L'}, ... 
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  'surf_comp',{'','kf*R*L'}}; 
fem.bnd = bnd; 
 
% ODE Settings 
clear ode 
clear units; 
units.basesystem = 'SI'; 
ode.units = units; 
fem.ode=ode; 
 
% Multiphysics 
fem=multiphysics(fem); 
 
% Extend mesh 
fem.xmesh=meshextend(fem); 
 
if Conc == 1 
% Solve problem 
fem.sol=femtime(fem,'symmetric','off', 'solcomp',{'R','C','L'},...  
                'outcomp',{'C','R','L'}, 'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)], 'rtol',RTol, 'tout','tlist', ... 
                'atol',ATol,'linsolver','gmres','prefun','amg'); 
 
else   
fem.sol=femtime(fem,'init',fem0.sol,'symmetric','off','solcomp',{'R','C','L'}, ... 
                'outcomp',{'C','R','L'},'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)],'rtol',RTol,'tout','tlist', ... 
                'atol',ATol,'linsolver','gmres','prefun','amg'); 
end 
 
% Save current fem structure for restart purposes 
fem0=fem; 
 
 

Modelgap3.m 

function fem = modelgap3(Time,Conc,fem0) 
 
global kf RDensity C ATol RTol D  
 
if Conc == 1 
    Var = 'L0'; 
else  
    Var = 0; 
end  
 
% Geometry 
g9=block3('0.00050','0.00050','0.00050','base','corner','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0'); 
g11=cylinder3('1.0E-5','1.0E-5','pos',{'0.00025','0.00025','0'},'axis',{'0','0','1'},'rot','0'); 
g15=cylinder3('1e-5','1e-5','pos',{'2.5e-4','2.6e-4','0'},'axis',{'0','0','1'},'rot','0'); 
g18=cylinder3('1e-5','1e-5','pos',{'2.5e-4','2.4e-4','0'},'axis',{'0','0','1'},'rot','0'); 
g19=geomcomp({g11,g15,g18},'ns',{'g11','g15','g18'},'sf','g11+g15+g18','face','none','edge','all'); 
 
% Constants 
fem.const = {'kf',kf, ... 
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  'D',D, ... 
  'DC','1e-14', ... 
  'DR','1e-14', ... 
  'L0',C, ... 
  'Rint',RDensity}; 
 
% Geometry 
g3=block3('1.0E-4','4.0E-5','1.0E-5','base','center','pos',{'2.5E-4','2.5E-4','1.5E-5'},'axis',{'0','0','1'},'rot','90'); 
g10=cylinder3('3.0E-6','1.0E-5','pos',{'2.8E-4','2.5E-4','0.5E-5'},'axis',{'1','0','0'},'rot','0'); 
g11=cylinder3('3.0E-6','1.0E-5','pos',{'2.7E-4','2.5E-4','0.5e-5'},'axis',{'1','0','0'},'rot','0'); 
g13=cylinder3('2.5E-6','1.0E-5','pos',{'2.7E-4','2.5E-4','0.5e-5'},'axis',{'1','0','0'},'rot','0'); 
 
% Analyzed geometry 
clear s 
s.objs={g19,g9,g3,g10,g11,g13}; 
s.name={'BLK3','CO1','BLK2','CYL3','CYL2','CYL1'}; 
s.tags={'g19','g9','g3','g10','g11','g13'}; 
 
fem.draw=struct('s',s); 
fem.geom=geomcsg(fem); 
 
% Initialize mesh 
fem.mesh=meshinit(fem, ... 
                  'hauto',5); 
 
% (Default values are not included) 
 
% Application mode 1 
clear appl 
appl.mode.class = 'ConvDiff'; 
appl.dim = {'L'}; 
appl.module = 'CHEM'; 
appl.sshape = 2; 
appl.border = 'on'; 
appl.assignsuffix = '_chcd'; 
clear bnd 
bnd.c0 = {0,0,0,Var}; 
bnd.N = {0,'-kf*L*R',0,0}; 
bnd.type = {'N0','N','cont','C'}; 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,2,2,3,3,2,2,3,3,2,2,3,3,3,3,3,3,3,3,3,3, ... 
  2,3,3,3,3,3,3,2,2,2,2,2,1,1,1,1,3,1,1,1,1,1,1,3,1,1,4,1,1,1,1]; 
appl.bnd = bnd; 
clear equ 
equ.D = {'D',1,'D'}; 
equ.init = {0,0,'L0'}; 
equ.usage = {1,0,1}; 
equ.ind = [1,2,2,2,2,2,2,2,2,3,2]; 

appl.equ = equ; 
fem.appl{1} = appl; 
 
% Application mode 2 
clear appl 
appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'R','R_t'}; 
appl.sshape = 2; 
appl.assignsuffix = '_wb'; 



248 
 

clear prop 
clear weakconstr 
weakconstr.value = 'off'; 
weakconstr.dim = {'lm2','lm3'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 
bnd.dweak = {0,'R_test*R_time'}; 
bnd.init = {0,{'Rint';0}}; 
bnd.usage = {0,1}; 
bnd.weak = {0,'DR*(-RTx_test*RTx-RTy_test*RTy-RTz_test*RTz)+R_test*(surf_recept)'}; 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,2,2,1,1,2,2,1,1,2,2,1,1,1,1,1,1,1,1,1,1, ... 
  2,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; 
appl.bnd = bnd; 
fem.appl{2} = appl; 
 
% Application mode 3 
clear appl 
appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'C','C_t'}; 
appl.name = 'wb2'; 
appl.sshape = 2; 
appl.assignsuffix = '_wb2'; 
clear prop 
clear weakconstr 
weakconstr.value = 'off'; 
weakconstr.dim = {'lm4','lm5'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 
bnd.dweak = {0,'C_test*C_time'}; 
bnd.usage = {0,1}; 
bnd.weak = {0,'DC*(-CTx_test*CTx-CTy_test*CTy-CTz_test*CTz)+C_test*(surf_comp)'}; 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,2,2,1,1,2,2,1,1,2,2,1,1,1,1,1,1,1,1,1,1, ... 
  2,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; 
appl.bnd = bnd; 
fem.appl{3} = appl; 
fem.frame = {'ref'}; 
fem.border = 1; 
fem.outform = 'general'; 
clear units; 
units.basesystem = 'SI'; 
fem.units = units; 
 
% Boundary settings 
clear bnd 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,2,2,1,1,2,2,1,1,2,2,1,1,1,1,1,1,1,1,1,1, ... 
  2,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; 
bnd.dim = {'L','R','C'}; 
 
% Boundary expressions 
bnd.expr = {'surf_recept',{'','-kf*R*L'}, ... 
  'surf_comp',{'','kf*R*L'}}; 
fem.bnd = bnd; 
 
% ODE Settings 
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clear ode 
clear units; 
units.basesystem = 'SI'; 
ode.units = units; 
fem.ode=ode; 
 
% Multiphysics 
fem=multiphysics(fem); 
 
% Extend mesh 
fem.xmesh=meshextend(fem); 
 
if Conc == 1 
% Solve problem 
fem.sol=femtime(fem,'symmetric','off', 'solcomp',{'R','C','L'},...  
                'outcomp',{'C','R','L'}, 'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)], 'rtol',RTol, 'tout','tlist', ... 
                'atol',ATol,'linsolver','gmres','prefun','amg'); 
 
else   
fem.sol=femtime(fem,'init',fem0.sol,'symmetric','off','solcomp',{'R','C','L'}, ... 
                'outcomp',{'C','R','L'},'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)],'rtol',RTol,'tout','tlist', ... 
                'atol',ATol,'linsolver','gmres','prefun','amg'); 
end 
             
% Save current fem structure for restart purposes 
fem0=fem; 
 
 

Modelgap5.m 

function fem = modelgap5(Time,Conc,fem0) 
 
global kf RDensity C ATol RTol D  
 
if Conc == 1 
    Var = 'L0'; 
else  
    Var = 0; 
end  
 
% Constants 
fem.const = {'kf',kf, ... 
  'D',D, ... 
  'DC','1e-14', ... 
  'DR','1e-14', ... 
  'L0',C, ... 
  'Rint',RDensity}; 
 
% Geometry 
g9=block3('0.00050','0.00050','0.00050','base','corner','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0'); 
g10=block3('0.00010','5.0E-5','1.0E-5','base','center','pos',{'0.00025','0.00025','2.0E-5'},'axis',{'0','0','1'},'rot','90'); 
g11=cylinder3('1.0E-5','1.0E-5','pos',{'0.00025','0.00025','0'},'axis',{'0','0','1'},'rot','0'); 
g15=cylinder3('1e-5','1e-5','pos',{'2.5e-4','2.6e-4','0'},'axis',{'0','0','1'},'rot','0'); 
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g18=cylinder3('1e-5','1e-5','pos',{'2.5e-4','2.4e-4','0'},'axis',{'0','0','1'},'rot','0'); 
g19=geomcomp({g11,g15,g18},'ns',{'g11','g15','g18'},'sf','g11+g15+g18','face','none','edge','all'); 
g3=block3('1.0E-4','4.0E-5','1.0E-5','base','center','pos',{'2.5E-4','2.5E-4','1.5E-5'},'axis',{'0','0','1'},'rot','90'); 
g10=cylinder3('3.0E-6','1.0E-5','pos',{'2.8E-4','2.5E-4','0.5E-5'},'axis',{'1','0','0'},'rot','0'); 
g11=cylinder3('3.0E-6','1.0E-5','pos',{'2.7E-4','2.5E-4','0.5e-5'},'axis',{'1','0','0'},'rot','0'); 
g13=cylinder3('2.5E-6','1.0E-5','pos',{'2.7E-4','2.5E-4','0.5e-5'},'axis',{'1','0','0'},'rot','0'); 
g14=cylinder3('1e-5','1e-5','pos',{'2.5e-4','2.7e-4','0'},'axis',{'0','0','1'},'rot','0'); 
g16=cylinder3('1e-5','1e-5','pos',{'2.5e-4','2.3e-4','0'},'axis',{'0','0','1'},'rot','0'); 
g17=geomcomp({g19,g14,g16},'ns',{'g19','g14','g16'},'sf','g19+g14+g16','face','none','edge','all'); 
 
% Analyzed geometry 
clear s 
s.objs={g9,g3,g10,g11,g13,g17}; 
s.name={'CO1','BLK2','CYL3','CYL2','CYL1','CO2'}; 
s.tags={'g9','g3','g10','g11','g13','g17'}; 
 
fem.draw=struct('s',s); 
fem.geom=geomcsg(fem); 
 
% Initialize mesh 
fem.mesh=meshinit(fem, ... 
                  'hauto',5); 
 
% (Default values are not included) 
 
% Application mode 1 
clear appl 
appl.mode.class = 'ConvDiff'; 
appl.dim = {'L'}; 
appl.module = 'CHEM'; 
appl.border = 'on'; 
appl.assignsuffix = '_chcd'; 
clear bnd 
bnd.c0 = {0,0,0,0,Var}; 
bnd.N = {0,0,'-kf*L*R','-kf*L*R',0}; 
bnd.type = {'N0','cont','N','cont','C'}; 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,2,2,3,3,2,2,3,3,2,2,1,1,2,2, ... 
  4,2,2,2,2,2,2,2,2,2,2,2,2,4,2,2,1,4,2,2,2,2,2,2,2,2,2,2,2,2,4,1,1,3,3, ... 
  3,3,3,3,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,5,1,1,1,1]; 
appl.bnd = bnd; 
clear equ 
equ.D = {'D',1,'D'}; 
equ.init = {0,0,'L0'}; 
equ.usage = {1,0,1}; 
equ.ind = [1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,2]; 
appl.equ = equ; 
fem.appl{1} = appl; 
 
% Application mode 2 
clear appl 
appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'R','R_t'}; 
appl.sshape = 2; 
appl.assignsuffix = '_wb'; 
clear prop 
clear weakconstr 
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weakconstr.value = 'off'; 
weakconstr.dim = {'lm2','lm3'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 
bnd.dweak = {0,'R_test*R_time','R_test*R_time'}; 
bnd.init = {0,{'Rint';0},{'Rint';0}}; 

bnd.usage = {0,1,0}; 
bnd.weak = {0,'DR*(-RTx_test*RTx-RTy_test*RTy-RTz_test*RTz)+R_test*(surf_recept)', ... 
  'DR*(-RTx_test*RTx-RTy_test*RTy-RTz_test*RTz)+R_test*(surf_recept)'}; 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1, ... 
  3,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,2,3,1,1,1,1,1,1,1,1,1,1,1,1,3,2,2,2,2, ... 
  2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; 
appl.bnd = bnd; 
fem.appl{2} = appl; 
 
% Application mode 3 
clear appl 
appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'C','C_t'}; 
appl.name = 'wb2'; 
appl.sshape = 2; 
appl.assignsuffix = '_wb2'; 
clear prop 
clear weakconstr 
weakconstr.value = 'off'; 
weakconstr.dim = {'lm4','lm5'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 
bnd.dweak = {0,'C_test*C_time','C_test*C_time'}; 
bnd.usage = {0,1,0}; 
bnd.weak = {0,'DC*(-CTx_test*CTx-CTy_test*CTy-CTz_test*CTz)+C_test*(surf_comp)', ... 
  'DC*(-CTx_test*CTx-CTy_test*CTy-CTz_test*CTz)+C_test*(surf_comp)'}; 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1, ... 
  3,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,2,3,1,1,1,1,1,1,1,1,1,1,1,1,3,2,2,2,2, ... 
  2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; 
appl.bnd = bnd; 
fem.appl{3} = appl; 
fem.frame = {'ref'}; 
fem.border = 1; 
fem.outform = 'general'; 
clear units; 
units.basesystem = 'SI'; 
fem.units = units; 
 
% Boundary settings 
clear bnd 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2,1,1, ... 
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2, ... 
  2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; 
bnd.dim = {'L','R','C'}; 
 
% Boundary expressions 
bnd.expr = {'surf_recept',{'','-kf*R*L'}, ... 
  'surf_comp',{'','kf*R*L'}}; 



252 
 

fem.bnd = bnd; 
 
% ODE Settings 
clear ode 
clear units; 
units.basesystem = 'SI'; 
ode.units = units; 
fem.ode=ode; 
 
% Multiphysics 
fem=multiphysics(fem); 
 
% Extend mesh 
fem.xmesh=meshextend(fem); 
 
if Conc == 1 
% Solve problem 
fem.sol=femtime(fem,'symmetric','off', 'solcomp',{'R','C','L'},...  
                'outcomp',{'C','R','L'}, 'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)], 'rtol',RTol, 'tout','tlist', ... 
                'atol',ATol,'linsolver','gmres','prefun','amg'); 
 
else   
fem.sol=femtime(fem,'init',fem0.sol,'symmetric','off','solcomp',{'R','C','L'}, ... 
                'outcomp',{'C','R','L'},'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)],'rtol',RTol,'tout','tlist', ... 
                'atol',ATol,'linsolver','gmres','prefun','amg'); 
end 
             
% Save current fem structure for restart purposes 
fem0=fem; 
 
 

Adhe3cellstart.m 

clear global 
clear  
clc 
 
global D kf RDensity C ATol RTol Rreal AvangadroNumber 
 
CellSurfaceArea = 4*1.23903e-10;  
ReceptorN = 47362; %Receptors  
kf = 1.3627e5; %Forward Constant - m^3/mol*s 
AvangadroNumber = 6.02e23; 
EGFMolarMass = 6045; %g/mol  
D = 1.89e-10; 
Concentration = 100; 
 
RDensity = ReceptorN/(2*pi*12.599e-6^2*6.02e23);  
Rreal = 47362/(2*pi*12.599e-6^2)*4*1.23903e-10;  
C = Concentration/EGFMolarMass/1e3;  
 
%Solution Parameters 
Time = 1200; 
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RTol = 1e-12; 
ATol = 1e-12;  
 
fem = modeladh3(120,1,0);  
fem0=fem; 
 
for k = 1:120 
  Result = adhint3(k,fem); 
  PIResult(k) = Result(1); 
  POFront(k) = Result(2); 
  POBack(k) = Result(3); 
end 
 
fem = modeladh3(1200-120,2,fem0);  
 
for k = 1:1200-120 
  Result = adhint3(k,fem); 
  PIResult(k+120) = Result(1); 
  POFront(k+120) = Result(2); 
  POBack(k+120) = Result(3); 
end 
 
xlswrite('PIResultAdh3.xls',PIResult') 
xlswrite('POFrontAdh3.xls',POFront') 
xlswrite('POBackAdh3.xls',POBack') 
 
plot((1:1200)/60,POFront','k-',(1:1200)/60,POBack','b-',(1:1200)/60,POFront'-POBack','g-','LineWidth',2) 
grid on  
set(gca,'FontSize',18,'LineWidth',2) 
xlabel('Time [min]','FontSize',18) 
ylabel('Percent Occupancy','FontSize',18) 
title('PO_F_r_o_n_t and PO_B_a_c_k for Adherent 3 cell system','FontSize',18)  
axis([0 20 0 100]) 
%legend('PO_F_r_o_n_t','PO_B_a_c_k','Difference PO_F_r_o_n_t and PO_B_a_c_k','Location','SouthOutside') 
print -dtiff -r600 Adh3cellPO.tif 
 

Adh5cellstart.m 

clear 
clc 
close all 
  
CellSurfaceArea = 2*1.239026e-10;  
ReceptorN = 47362; %Receptors  
kf = 1.3627e5; %Forward Constant - m^3/mol*s 
AvangadroNumber = 6.02e23; 
EGFMolarMass = 6045; %g/mol  
D = 1.89e-10; 
Concentration = 100; 
  
RDensity = ReceptorN/(4*1.239026e-10*6.023e23);  
Rreal = 47362/(2*pi*12.599e-6^2)*4*1.23903e-10;  
C = Concentration/EGFMolarMass/1e3;  
  
%Solution Parameters 
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Time = 1200; 
RTol = 1e-12; 
ATol = 1e-12;  
  
fem = modeladh5(120,1,0);  
fem0=fem; 
  
for k = 1:120 
  Result = adhint5(k,fem); 
  PIResult(k) = Result(1); 
  POFront(k) = Result(2); 
  POBack(k) = Result(3); 
end 
  
fem = modeladh5(1200-120,2,fem0);  
  
for k = 1:1200-120 
  Result = adhint5(k,fem); 
  PIResult(k+120) = Result(1); 
  POFront(k+120) = Result(2); 
  POBack(k+120) = Result(3); 
end 
  
xlswrite('PIResultAdh5.xls',PIResult') 
xlswrite('POFrontAdh5.xls',POFront') 
xlswrite('POBackAdh5.xls',POBack') 
  
plot((1:1200)/60,POFront','k-',(1:1200)/60,POBack','b-',(1:1200)/60,POFront'-POBack','g-','LineWidth',2) 
grid on  
set(gca,'FontSize',18,'LineWidth',2) 
xlabel('Time [min]','FontSize',18) 
ylabel('Percent Occupancy','FontSize',18) 
title('PO_F_r_o_n_t and PO_B_a_c_k for Adherent 5 cell system','FontSize',18)  
axis([0 20 0 100]) 
%legend('PO_F_r_o_n_t','PO_B_a_c_k','Difference PO_F_r_o_n_t and PO_B_a_c_k','Location','SouthOutside') 
print -dtiff -r600 Adh5cellPO.tif 
 
 

Gap3cellstart.m 

clear global 
clear  
clc 
 
global D kf RDensity C ATol RTol Rreal AvangadroNumber 
 
CellSurfaceArea = 4*5.221057e-11;  
ReceptorN = 47362; %Receptors  
kf = 1.3627e5; %Forward Constant - m^3/mol*s 
AvangadroNumber = 6.02e23; 
EGFMolarMass = 6045; %g/mol  
D = 1.89e-10; 
Concentration = 100; 
 
RDensity = ReceptorN/(AvangadroNumber*(2*pi*11.547e-6*10e-6));  
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Rreal = 47362/(2*pi*11.547e-6*10e-6)*4*5.221057e-11;  
C = Concentration/EGFMolarMass/1e3;  
 
%Solution Parameters 
Time = 1200; 
RTol = 1e-12; 
ATol = 1e-12;  
 
fem = modelgap3(120,1,0);  
fem0=fem; 
 
for k = 1:120 
  Result = gapint3(k,fem); 
  PIResult(k) = Result(1); 
  POFront(k) = Result(2); 
  POBack(k) = Result(3); 
end 
 
fem = modelgap3(1200-120,2,fem0);  
 
for k = 1:1200-120 
  Result = gapint3(k,fem); 
  PIResult(k+120) = Result(1); 
  POFront(k+120) = Result(2); 
  POBack(k+120) = Result(3); 
end 
 
xlswrite('PIResultGap3.xls',PIResult') 
xlswrite('POFrontGap3.xls',POFront') 
xlswrite('POBackGap3.xls',POBack') 
 
plot((1:1200)/60,POFront','k-',(1:1200)/60,POBack','b-',(1:1200)/60,POFront'-POBack','g-','LineWidth',2) 
grid on  
set(gca,'FontSize',18,'LineWidth',2) 
xlabel('Time [min]','FontSize',18) 
ylabel('Percent Occupancy','FontSize',18) 
title('PO_F_r_o_n_t and PO_B_a_c_k for Gap 3 cell system','FontSize',18)  
axis([0 20 0 100]) 
%legend('PO_F_r_o_n_t','PO_B_a_c_k','Difference PO_F_r_o_n_t and PO_B_a_c_k','Location','SouthOutside') 
print -dtiff -r600 Gap3cellPO.tif 
 
 

Gap5cellstart.m 

clear global 
clear  
clc 
 
global D kf RDensity C ATol RTol Rreal AvangadroNumber 
 
CellSurfaceArea = 4*5.221057e-11;  
ReceptorN = 47362; %Receptors  
kf = 1.3627e5; %Forward Constant - m^3/mol*s 
AvangadroNumber = 6.02e23; 
EGFMolarMass = 6045; %g/mol  
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D = 1.89e-10; 
Concentration = 100; 
 
RDensity = ReceptorN/(AvangadroNumber*(2*pi*11.547e-6*10e-6));  
Rreal = 47362/(2*pi*11.547e-6*10e-6)*4*5.221057e-11;  
C = Concentration/EGFMolarMass/1e3;  
 
%Solution Parameters 
Time = 1200; 
RTol = 1e-12; 
ATol = 1e-12;  
 
fem = modelgap5(120,1,0);  
fem0=fem; 
 
for k = 1:120 
  Result = gapint5(k,fem); 
  PIResult(k) = Result(1); 
  POFront(k) = Result(2); 
  POBack(k) = Result(3); 
end 
 
fem = modelgap5(1200-120,2,fem0);  
 
for k = 1:1200-120 
  Result = gapint5(k,fem); 
  PIResult(k+120) = Result(1); 
  POFront(k+120) = Result(2); 
  POBack(k+120) = Result(3); 
end 
 
xlswrite('PIResultGap5.xls',PIResult') 
xlswrite('POFrontGap5.xls',POFront') 
xlswrite('POBackGap5.xls',POBack') 
 
plot((1:1200)/60,POFront','k-',(1:1200)/60,POBack','b-',(1:1200)/60,POFront'-POBack','g-','LineWidth',2) 
grid on  
set(gca,'FontSize',18,'LineWidth',2) 
xlabel('Time [min]','FontSize',18) 
ylabel('Percent Occupancy','FontSize',18) 
title('PO_F_r_o_n_t and PO_B_a_c_k for Gap 5 cell system','FontSize',18)  
axis([0 20 0 100]) 
%legend('PO_F_r_o_n_t','PO_B_a_c_k','Difference PO_F_r_o_n_t and PO_B_a_c_k','Location','SouthOutside') 
print -dtiff -r600 Gap5cellPO.tif 
 
 
 

Adhint3.m 

function Result = adhint3(k,fem) 
 
global Rreal AvangadroNumber 
 
TimePoints = linspace(0,1200,1200); 
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 try  
% Integrate - Back Half 
I1=postint(fem,'C', 'unit','', 'recover','off', 'dl',[10,11], ... 
           'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate 
I2=postint(fem,'C', 'unit','', 'recover','off', ... 
           'dl',[25,28], 'edim',2, 'solnum',TimePoints(k)); 
        
% Integrate 
I3=postint(fem,'R', 'unit','', 'recover','off', ... 
           'dl',[10,11], 'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate 
I4=postint(fem,'R', 'unit','', 'recover','off', ... 
           'dl',[25,28], 'edim',2, 'solnum',TimePoints(k)); 
        
PI = I1/I2; 
POFront = (1-I4/(0.5*Rreal/AvangadroNumber))*100; 
POBack = (1-I3/(0.5*Rreal/AvangadroNumber))*100; 
 
catch exception  
    PI = NaN; 
    POFront = NaN; 
    POBack = NaN; 
end 
 
Result = [PI POFront POBack]; 
 
 

Adhint5.m 

function Result = adhint5(k,fem) 
 
global Rreal AvangadroNumber 
 
TimePoints = linspace(0,1200,1200); 
 
 try  
% Integrate - Back Half 
I1=postint(fem,'C', 'unit','', 'recover','off', 'dl',[13,14], ... 
           'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate 
I2=postint(fem,'C', 'unit','', 'recover','off', ... 
           'dl',[42,45], 'edim',2, 'solnum',TimePoints(k)); 
        
% Integrate 
I3=postint(fem,'R', 'unit','', 'recover','off', ... 
           'dl',[13,14], 'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate 
I4=postint(fem,'R', 'unit','', 'recover','off', ... 
           'dl',[42,45], 'edim',2, 'solnum',TimePoints(k)); 
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PI = I1/I2; 
POFront = (1-I4/(0.5*Rreal/AvangadroNumber))*100; 
POBack = (1-I3/(0.5*Rreal/AvangadroNumber))*100; 
 
catch exception  
    PI = NaN; 
    POFront = NaN; 
    POBack = NaN; 
end 
 
Result = [PI POFront POBack]; 
 
 

Gapint3.m 

function Result = gapint3(k,fem) 
 
global Rreal AvangadroNumber 
 
TimePoints = linspace(0,1200,1200); 
 
 try  
% Integrate - Back Half 
I1=postint(fem,'C', 'unit','', 'recover','off', 'dl',[15,16], ... 
           'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate 
I2=postint(fem,'C', 'unit','', 'recover','off', ... 
           'dl',[40,41], 'edim',2, 'solnum',TimePoints(k)); 
        
% Integrate 
I3=postint(fem,'R', 'unit','', 'recover','off', ... 
           'dl',[15,16], 'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate 
I4=postint(fem,'R', 'unit','', 'recover','off', ... 
           'dl',[40,41], 'edim',2, 'solnum',TimePoints(k)); 
        
PI = I1/I2; 
POFront = (1-I4/(0.5*Rreal/AvangadroNumber))*100; 
POBack = (1-I3/(0.5*Rreal/AvangadroNumber))*100; 
 
catch exception  
    PI = NaN; 
    POFront = NaN; 
    POBack = NaN; 
end 
 
Result = [PI POFront POBack]; 
 
 

Gapint5.m 

function Result = gapint5(k,fem) 
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global Rreal AvangadroNumber 
 
TimePoints = linspace(0,1200,1200); 
 
 try  
% Integrate - Back Half 
I1=postint(fem,'C', 'unit','', 'recover','off', 'dl',[19,20], ... 
           'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate 
I2=postint(fem,'C', 'unit','', 'recover','off', ... 
           'dl',[66,67], 'edim',2, 'solnum',TimePoints(k)); 
        
% Integrate 
I3=postint(fem,'R', 'unit','', 'recover','off', ... 
           'dl',[19,20], 'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate 
I4=postint(fem,'R', 'unit','', 'recover','off', ... 
           'dl',[66,67], 'edim',2, 'solnum',TimePoints(k)); 
        
PI = I1/I2; 
POFront = (1-I4/(0.5*Rreal/AvangadroNumber))*100; 
POBack = (1-I3/(0.5*Rreal/AvangadroNumber))*100; 
 
catch exception  
    PI = NaN; 
    POFront = NaN; 
    POBack = NaN; 
end 
 
Result = [PI POFront POBack]; 

 

Generateplot.m 

close all 
clear 
 
Adh1 = 1./xlsread('AdhPI.xls','1','A1:A1200'); 
Adh3 = 1./xlsread('PIResultAdh3.xls','Sheet1','A1:A1200'); 
Adh5 = 1./xlsread('PIResultAdh5.xls','Sheet1','A1:A1200'); 
Gap1 = xlsread('GapPI.xls','1','A1:A1200'); 
Gap3 = 1./xlsread('PIResultGap3.xls','Sheet1','A1:A1200'); 
Gap5 = 1./xlsread('PIResultGap5.xls','Sheet1','A1:A1200'); 
 
Time = 1:1198; 
Time = Time/60; 
 
figure 
plot(Time,Adh1,'k-','LineWidth',2) 
hold on 
plot(Time,Adh3,'b-','LineWidth',2) 
plot(Time,Adh5,'g-','LineWidth',2) 
grid on 
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set(gca,'FontSize',18,'LineWidth',2) 
axis([0 20 1 10]) 
xlabel('Time [min]','FontSize',18) 
ylabel('Polarization Index','FontSize',18) 
title('Multiple Cell Systems for PI - Adherent','FontSize',18) 
legend('1 Cell','3 Cells','5 Cells','Location','NorthWest') 
print -dtiff -r600 TorAllAdhPI.tif 
 
figure 
plot(Time,Gap1,'k-','LineWidth',2) 
hold on 
plot(Time,Gap3,'b-','LineWidth',2) 
plot(Time,Gap5,'g-','LineWidth',2) 
grid on 
set(gca,'FontSize',18,'LineWidth',2) 
axis([0 20 1 10]) 
xlabel('Time [min]','FontSize',18) 
ylabel('Polarization Index','FontSize',18) 
title('Multiple Cell Systems for PI - Gap','FontSize',18) 
legend('1 Cell','3 Cells','5 Cells','Location','NorthEast') 
print -dtiff -r600 TorAllGapPI.tif 
 
 

Model Correlation with Experimental Data 
 

Modelellips.m 

function fem = modelellips(Time,Conc,fem0) 
 
global kf RDensity C ATol RTol D 
 
if Conc == 1 
    Var = 'L0'; 
else  
    Var = 0;  
end  
 
% Geometry 
g4=block3('5.0E-4','5.0E-4','5.0E-4','base','center','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0'); 
g6=block3('2.0E-4','2.0E-4','1.0E-5','base','center','pos',{'0','0','-2.45E-4'},'axis',{'0','0','1'},'rot','0'); 
g7=ellipsoid3('25e-6','54e-6','50e-6','pos',{'0','0','-2.45e-4'},'axis',{'0','0','1'},'rot','0'); 
g8=geomcomp({g6,g7},'ns',{'g6','g7'},'sf','g6*g7','face','none','edge','all'); 
g13=block3('2*1.125E-4','2.0E-4','1.0E-5','base','center','pos',{'0','0','-2.35E-4'},'axis',{'0','0','1'},'rot','0'); 
g17=cylinder3('5.5E-6','1.0E-5','pos',{'1.15E-4','0','-2.4E-4'},'axis',{'1','0','0'},'rot','0'); 
g18=cylinder3('4.5E-6','1.0E-5','pos',{'1.15E-4','0','-2.4E-4'},'axis',{'1','0','0'},'rot','0'); 
g19=cylinder3('5.5e-6','1e-5','pos',{'1.25e-4','0','-2.4e-4'},'axis',{'1','0','0'},'rot','0'); 
 
% Constants 
fem.const = {'D',D, ... 
  'kf',kf, ... 
  'DC','1e-14', ... 
  'DR','1e-14', ... 
  'L0',C', ... 
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  'Rint',RDensity}; 
 
% Geometry 
 
% Analyzed geometry 
clear s 
s.objs={g4,g8,g13,g17,g18,g19}; 
s.name={'Block','CO1','BLK1','CYL2','CYL1','CYL3'}; 
s.tags={'g4','g8','g13','g17','g18','g19'}; 
 
fem.draw=struct('s',s); 
fem.geom=geomcsg(fem); 
 
% COMSOL Multiphysics Model M-file 
% Generated by COMSOL 3.5a (COMSOL 3.5.0.603, $Date: 2008/12/03 17:02:19 $) 
 
% Initialize mesh 
fem.mesh=meshinit(fem, ... 
                  'hauto',5); 
 
% (Default values are not included) 
 
% Application mode 1 
clear appl 
appl.mode.class = 'ConvDiff'; 
appl.dim = {'L'}; 
appl.module = 'CHEM'; 
appl.border = 'on'; 
appl.assignsuffix = '_chcd'; 
clear bnd 
bnd.c0 = {0,0,0,Var}; 
bnd.N = {0,0,'-kf*L*R',0}; 
bnd.type = {'N0','cont','N','C'}; 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,3,3,3,3,2,2,3,3,3,3,1,1,1,1,2,1,1,1,1,1, ... 
  1,2,1,1,4,1,1,1,1]; 
appl.bnd = bnd; 
clear equ 
equ.D = {'D',1,'D'}; 
equ.init = {0,0,'L0'}; 
equ.usage = {1,0,1}; 
equ.ind = [1,2,2,2,3,2]; 
appl.equ = equ; 
fem.appl{1} = appl; 
 
% Application mode 2 
clear appl 
appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'R','R_t'}; 
appl.assignsuffix = '_wb'; 
clear prop 
clear weakconstr 
weakconstr.value = 'off'; 
weakconstr.dim = {'lm2','lm3'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 



262 
 

bnd.dweak = {0,'R_test*R_time'}; 
bnd.init = {0,{'Rint';0}}; 
bnd.usage = {0,1}; 
bnd.weak = {0,'DR*(-RTx_test*RTx-RTy_test*RTy-RTz_test*RTz)+R_test*(surf_recept)'}; 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,2,2,2,2,1,1,2,2,2,2,1,1,1,1,1,1,1,1,1,1, ... 
  1,1,1,1,1,1,1,1,1]; 

appl.bnd = bnd; 
fem.appl{2} = appl; 
 
% Application mode 3 
clear appl 
appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'C','C_t'}; 
appl.name = 'wb2'; 
appl.assignsuffix = '_wb2'; 
clear prop 
clear weakconstr 
weakconstr.value = 'off'; 
weakconstr.dim = {'lm4','lm5'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 
bnd.dweak = {0,'C_test*C_time'}; 
bnd.usage = {0,1}; 
bnd.weak = {0,'DC*(-CTx_test*CTx-CTy_test*CTy-CTz_test*CTz)+C_test*(surf_comp)'}; 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,2,2,2,2,1,1,2,2,2,2,1,1,1,1,1,1,1,1,1,1, ... 
  1,1,1,1,1,1,1,1,1]; 
appl.bnd = bnd; 
fem.appl{3} = appl; 
fem.frame = {'ref'}; 
fem.border = 1; 
fem.outform = 'general'; 
clear units; 
units.basesystem = 'SI'; 
fem.units = units; 
 
% Boundary settings 
clear bnd 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,2,2,2,2,1,1,2,2,2,2,1,1,1,1,1,1,1,1,1,1, ... 
  1,1,1,1,1,1,1,1,1]; 
bnd.dim = {'L','R','C'}; 
 
% Boundary expressions 
bnd.expr = {'surf_recept',{'','-kf*R*L'}, ... 
  'surf_comp',{'','kf*R*L'}}; 
fem.bnd = bnd; 
 
% ODE Settings 
clear ode 
clear units; 
units.basesystem = 'SI'; 
ode.units = units; 
fem.ode=ode; 
 
% Multiphysics 
fem=multiphysics(fem); 
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% Extend mesh 
fem.xmesh=meshextend(fem); 
 
if Conc == 1 
% Solve problem 
fem.sol=femtime(fem, 'symmetric','off', 'solcomp',{'C','R','L'}, ... 
                'outcomp',{'R','C','L'}, 'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)], 'rtol',RTol, ... 
                'tout','tlist', 'atol',ATol, 'linsolver','gmres', ... 
                'prefun','amg'); 
 
else   
fem.sol=femtime(fem,'init',fem0.sol,'symmetric','off','solcomp',{'R','C','L'}, ... 
                'outcomp',{'C','R','L'},'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)],'rtol',RTol,'tout','tlist', ... 
                'atol',ATol,'linsolver','gmres','prefun','amg'); 
end 
 
% Save current fem structure for restart purposes 
fem0=fem; 
 
 

Modelhellips.m 

function fem = modelhellips(Time,Conc,fem0) 
 
global kf RDensity C ATol RTol D 
 
if Conc == 1 
    Var = 'L0'; 
else  
    Var = 0;  
end  
 
% Geometry 
g7=ellipsoid3('2.934E-5','6.6E-5','1e-4','pos',{'2.5e-4','2.5e-4','0'},'axis',{'0','0','1'},'rot','0'); 
g9=block3('5.0E-4','5.0E-4','1e-5','base','corner','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0'); 
g10=geomcomp({g7,g9},'ns',{'g7','g9'},'sf','g7*g9','face','none','edge','all'); 
g12=block3('2.5e-4','5e-4','1e-5','base','corner','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0'); 
g15=geomcomp({g10,g12},'ns',{'g10','g12'},'sf','g10*g12','face','none','edge','all'); 
g17=block3('5e-4','5e-4','5e-4','base','corner','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0'); 
g27=cylinder3('3.0E-6','1.0E-5','pos',{'3.1E-4','2.55E-4','5.0E-6'},'axis',{'1','0','0'},'rot','0'); 
g28=cylinder3('2.5E-6','1.0E-5','pos',{'3.1E-4','2.55E-4','5.0E-6'},'axis',{'1','0','0'},'rot','0'); 
g30=cylinder3('3e-6','1e-5','pos',{'3.2e-4','2.55e-4','5e-6'},'axis',{'1','0','0'},'rot','0'); 
 
% Constants 
fem.const = {'Rint',RDensity, ... 
  'L0',C, ... 
  'kf',kf, ... 
  'DC','1e-14', ... 
  'DR','1e-14', ... 
  'D',D}; 
 
% Geometry 
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g4=block3('1e-4','2e-4','1e-5','base','center','pos',{'2.5e-4-6e-6','2.5e-4','1.5e-5'},'axis',{'0','0','1'},'rot','0'); 
g5=geomcomp({g15,g4},'ns',{'g15','g4'},'sf','g15+g4','face','none','edge','all'); 
 
% Analyzed geometry 
clear s 
s.objs={g17,g27,g28,g30,g5}; 
s.name={'BLK2','CO2','CYL1','CYL2','CO1'}; 
s.tags={'g17','g27','g28','g30','g5'}; 
 
fem.draw=struct('s',s); 
fem.geom=geomcsg(fem); 
 
% COMSOL Multiphysics Model M-file 
% Generated by COMSOL 3.5a (COMSOL 3.5.0.603, $Date: 2008/12/03 17:02:19 $) 
 
% Initialize mesh 
fem.mesh=meshinit(fem, ... 
                  'hauto',5); 
 
% (Default values are not included) 
 
% Application mode 1 
clear appl 
appl.mode.class = 'ConvDiff'; 
appl.dim = {'L'}; 
appl.module = 'CHEM'; 
appl.assignsuffix = '_chcd'; 
clear bnd 
bnd.c0 = {0,0,0,'L0'}; 
bnd.N = {0,0,'-kf*L*R',0}; 
bnd.type = {'N0','cont','N','C'}; 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,3,3,2,2,3,1,1,1,1,2,1,1,1,1,1,1,2,1,1,4, ... 
  1,1,1,1]; 
appl.bnd = bnd; 
clear equ 
equ.D = {'D',1,'D'}; 
equ.init = {0,0,'L0'}; 
equ.usage = {1,0,1}; 
equ.ind = [1,2,2,2,3,2]; 
appl.equ = equ; 
fem.appl{1} = appl; 
 
% Application mode 2 
clear appl 
appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'R','R_t'}; 
appl.assignsuffix = '_wb'; 
clear prop 
clear weakconstr 
weakconstr.value = 'off'; 
weakconstr.dim = {'lm2','lm3'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 
bnd.dweak = {0,'R_test*R_time'}; 
bnd.init = {0,{'Rint';0}}; 
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bnd.usage = {0,1}; 
bnd.weak = {0,'DR*(-RTx_test*RTx-RTy_test*RTy-RTz_test*RTz)+R_test*(surf_recept)'}; 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,2,2,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, ... 
  1,1,1,1]; 
appl.bnd = bnd; 
fem.appl{2} = appl; 
 
% Application mode 3 
clear appl 
appl.mode.class = 'FlPDEWBoundary'; 
appl.dim = {'C','C_t'}; 
appl.name = 'wb2'; 
appl.assignsuffix = '_wb2'; 
clear prop 
clear weakconstr 
weakconstr.value = 'off'; 
weakconstr.dim = {'lm4','lm5'}; 
prop.weakconstr = weakconstr; 
appl.prop = prop; 
clear bnd 
bnd.dweak = {0,'C_test*C_time'}; 
bnd.usage = {0,1}; 
bnd.weak = {0,'DC*(-CTx_test*CTx-CTy_test*CTy-CTz_test*CTz)+C_test*(surf_comp)'}; 

bnd.ind = [1,1,1,1,1,1,1,1,1,1,2,2,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, ... 
  1,1,1,1]; 
appl.bnd = bnd; 
fem.appl{3} = appl; 
fem.frame = {'ref'}; 
fem.border = 1; 
fem.outform = 'general'; 
clear units; 
units.basesystem = 'SI'; 
fem.units = units; 
 
% Boundary settings 
clear bnd 
bnd.ind = [1,1,1,1,1,1,1,1,1,1,2,2,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, ... 
  1,1,1,1]; 
bnd.dim = {'L','R','C'}; 
 
% Boundary expressions 
bnd.expr = {'surf_recept',{'','-kf*R*L'}, ... 
  'surf_comp',{'','kf*R*L'}}; 
fem.bnd = bnd; 
 
% ODE Settings 
clear ode 
clear units; 
units.basesystem = 'SI'; 
ode.units = units; 
fem.ode=ode; 
 
% Multiphysics 
fem=multiphysics(fem); 
 
% Extend mesh 
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fem.xmesh=meshextend(fem); 
 
if Conc == 1 
% Solve problem 
fem.sol=femtime(fem, 'symmetric','off', 'solcomp',{'C','R','L'}, ... 
                'outcomp',{'R','C','L'}, 'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)], 'rtol',RTol, ... 
                'tout','tlist', 'atol',ATol, 'linsolver','gmres', ... 
                'prefun','amg'); 
 
else   
fem.sol=femtime(fem,'init',fem0.sol,'symmetric','off','solcomp',{'R','C','L'}, ... 
                'outcomp',{'C','R','L'},'blocksize','auto', ... 
                'tlist',[colon(0,1,Time)],'rtol',RTol,'tout','tlist', ... 
                'atol',ATol,'linsolver','gmres','prefun','amg'); 
end 
 
% Save current fem structure for restart purposes 
fem0=fem; 
 
 

Ellipsint.m 

function Result = ellipsint(k,fem) 
 
global RDensity CellSurfaceArea 
 
TimePoints = linspace(0,1200,1200); 
 
 try  
% Integrate - Back Half 
I1=postint(fem,'C', 'unit','','recover','off', 'dl',[11,12,13,14], ... 
           'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate - Front Half  
I2=postint(fem,'C', 'unit','', 'recover','off', 'dl',[17,18,19,20], ... 
           'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate - R  
I3=postint(fem,'R', 'unit','', 'recover','off', ... 
           'dl',[11,12,13,14,17,18,19,20], 'edim',2, 'solnum',k); 
         
PIResult = I1/I2; 
POResult = (1-I3/(CellSurfaceArea*RDensity))*100; 
 
catch exception  
    PIResult(k) = NaN; 
    POResult(k) = NaN; 
 end 
  
Result = [PIResult POResult]; 
 
 

Hellipsint.m 
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function Result = hellipsint(k,fem) 
 
global RDensity CellSurfaceArea 
 
TimePoints = linspace(0,1200,1200); 
 
 try  
% Integrate - Back Half 
I1=postint(fem,'C', 'unit','','recover','off', 'dl',[11,12], ... 
           'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate - Front Half  
I2=postint(fem,'C', 'unit','', 'recover','off', 'dl',[15], ... 
           'edim',2, 'solnum',TimePoints(k)); 
 
% Integrate - R  
I3=postint(fem,'R', 'unit','', 'recover','off', ... 
           'dl',[11,12,15], 'edim',2, 'solnum',TimePoints(k)); 
         
PIResult = I1/I2; 
POResult = (1-I3/(CellSurfaceArea*RDensity))*100; 
 
catch exception  
    PIResult(k) = NaN; 
    POResult(k) = NaN; 
end 
  
Result = [PIResult POResult]; 
 
 

Ellipsoidfit_start.m 

EGFMolarMass = 6045; %g/mol  
ReceptorN = 47362; %Receptors  
kf = 1.3627e5; %Forward Constant - m^3/mol*s 
 
%Input of Ranges  
TimePoints = linspace(0,1200,1200); 
 
%Solution Parameters 
Time = 1200; 
RTol = 1e-12; 
ATol = 1e-12;  
 
%Calculation of Specific Values  
RDensity = ReceptorN/(AvangadroNumber*4*pi*10e-6*10e-6);  
C = Concentration/EGFMolarMass/1e3;  
D = 1.89e-10;  
 
fem = modelellips(120,1,0);  
fem0=fem; 
 
for k = 1:120 
  Result = ellipsint(k,fem); 
  PIResult(k) = Result(1); 
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  POResult(k) = Result(2); 
end 
 
fem = modelellips(1200-120,2,fem0);  
 
for k = 1:1200-120 
  Result = ellipsint(k,fem); 
  PIResult(k+120) = Result(1); 
  POResult(k+120) = Result(2); 
end 
  
xlswrite('PIResultEllipse.xls',PIResult') 
xlswrite('POResultEllipse.xls',POResult') 
 
TimePoints = linspace(1,1200,1200);  
Time = [0,2,5,8,11,14,20]*60; 
PIExp = [3.442785033, 4.15, 2.78, 2.54, 2.61, 2.77, 2.90]; 
STDEV = [0.193576522, 0.979198528, 0.230039059, 0.18080547, 0.165642449, ... 
    0.207771094, 0.202797271]; 
ErrorL = PIExp - 2*STDEV; 
ErrorU = PIExp + 2*STDEV; 
 
errorbar((Time+60)/60,PIExp',2*STDEV,'kx','LineWidth',2) 
hold on 
plot(TimePoints/60,1./PIResult,'k-','LineWidth',2) 
axis([0 20 1 15]) 
grid on 
set(gca,'FontSize',18,'LineWidth',2) 
xlabel('Time [min]','FontSize',18) 
ylabel('Polarization Index','FontSize',18) 
title('Model Fit to a Single Cell System','FontSize',18) 
legend('Experimental Data','Model Prediction','Location','NorthEast')  
print -dtiff -r600 DataFit.tif 
 
 

Halfellipsoidfit_start.m 

close all 
clear global  
clear 
clc 
 
global kf RDensity C ATol RTol D 
 
%Input of Constants 
CellRadius = 1.1547e-005; %m 
AvangadroNumber = 6.02e23; 
Concentration = 100; %ng/mL 
CellSurfaceArea = 2.236455e-9; %m^2 
EGFMolarMass = 6045; %g/mol  
ReceptorN = 47362; %Receptors  
kf = 1.3627e5; %Forward Constant - m^3/mol*s 
 
%Input of Ranges  
TimePoints = linspace(0,1200,1200); 
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%Solution Parameters 
Time = 1200; 
RTol = 1e-12; 
ATol = 1e-12;  
 
%Calculation of Specific Values  
RDensity = ReceptorN/(AvangadroNumber*2*pi*12.599e-6^2*6.02e23);  
C = Concentration/EGFMolarMass/1e3;  
D = 1.89e-10;  
 
fem = modelhellips(120,1,0);  
fem0=fem; 
 
for k = 1:120 
  Result = hellipsint(k,fem); 
  PIResult(k) = Result(1); 
  POResult(k) = Result(2); 
end 
 
fem = modelhellips(1200-120,2,fem0);  
 
for k = 1:1200-120 
  Result = hellipsint(k,fem); 
  PIResult(k+120) = Result(1); 
  POResult(k+120) = Result(2); 
end 
  
xlswrite('PIResultHalfEllipse.xls',PIResult') 
xlswrite('POResultHalfEllipse.xls',POResult') 
 
TimePoints = linspace(1,1200,1200);  
Time = [0,2,5,8,11,14,17,20]*60; 
PIExp = [2.421840647, 4.236346046, 3.819440962, 3.204899927, 3.319287326, ... 
    4.029629247, 4.250384957, 4.184942118]; 
STDEV = [0.307561107, 0.245454479, 0.185993254, 0.241954444, 0.304055835, ... 
    0.729719029, 0.724341442, 0.646903011]; 
ErrorL = PIExp - 2*STDEV; 
ErrorU = PIExp + 2*STDEV; 
 
errorbar((Time+60)/60,PIExp',2*STDEV,'kx','LineWidth',2) 
hold on 
plot(TimePoints/60,1./PIResult','k-','LineWidth',2)  
grid on 
set(gca,'FontSize',18,'LineWidth',2) 
axis([0 20 1 20]) 
xlabel('Time [min]','FontSize',18) 
ylabel('Polarization Index','FontSize',18) 
title('Model Fit to a Single Cell System','FontSize',18) 
legend('Experimental Data','Model Prediction','Location','Best')  
print -dtiff -r600 DataFit2.tif 
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Appendix C: ImageJ macro 
 
Vertical single cell splitting 
 
run("Set Measurements...", "area mean standard modal min centroid center perimeter bounding fit shape feret's 
integrated median skewness kurtosis area_fraction stack limit display scientific redirect=None decimal=9"); //Ensure 
that all properties are met in the results table 
imgw = getWidth(); 
 
org = roiManager("Count"); 
xCorr = 0; 
d = 10; //make sure that it has a number (number has no meaning) 
 
srcDir = File.directory(); //Stores the directory path of the file. 
srcNam = File.name(); //Stores the name of the file with the extension. 
 
setFont("Cambria",20," italic antialiased"); //Set font properties for the particle labeler function. 
drwCol = 255; //Set font colour of the particle labeler function. 
 
doit(); 
 
function doit() 
{ 
 for (i=org;i>0;i--) 
 { 
 
n = roiManager("Count") - 1; //this is the number of rois in the list, then -1 accounts for the select list with 0 being 
the first number 
 
//Left Side 
 
roiManager("Select", n); 
roiManager("Rename", "Cell " + n); 
run("Measure"); 
 
makeRectangle(getResult("X",0)+xCorr, 0, imgw - getResult("X",0), imgw); 
 
//print(getResult("X",0)+xCorr+" "+0+" "+imgw - getResult("X",0)+" "+imgw); 
 
roiManager("Add"); 
roiManager("Select", n); 
run("Make Inverse"); 
roiManager("Add"); 
 
roiManager("Select", n+1); 
setKeyDown("shift"); 
roiManager("Select", n+2); 
setKeyDown("none"); 
 
run("Make Inverse"); 
roiManager("Add"); 
 
roiManager("Select", n+3); 
roiManager("Rename", "Partition Left " + n); 
//Right Side 
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roiManager("Select", n+1); 
run("Make Inverse"); 
roiManager("Add"); 
 
roiManager("Select", n+2); 
roiManager("Add"); 
 
roiManager("Select", n+4); 
setKeyDown("shift"); 
roiManager("Select", n+5); 
setKeyDown("none"); 
 
run("Make Inverse"); 
roiManager("Add"); 
 
roiManager("Select", n+6); 
roiManager("Rename", "Partition Right " + n); 
 
//Clean up 
 
roiManager("Select", n+1); 
roiManager("Delete"); 
roiManager("Select", n+1); 
roiManager("Delete"); 
roiManager("Select", n+2); 
roiManager("Delete"); 
roiManager("Select", n+2); 
roiManager("Delete"); 
 
//Save 
 
if (xCorr-d == 1) 
{ 
 roiManager("Save",srcDir+srcNam+i+".zip"); 
} 
 
//remove the left and right partitions and the cell 
 
roiManager("Select", n+2); //Right 
run("Measure"); 
rA = getResult("Area", 1); 
//print("ra: "+rA); 
roiManager("Delete"); 
 
roiManager("Select", n+1); //Left 
run("Measure"); 
lA = getResult("Area", 2); 
//print("la: "+lA); 
roiManager("Delete"); 
 
roiManager("Select", n); //Cell 
run("Measure"); 
//roiManager("Delete"); 
 
saveAs("Measurements",srcDir+i+".xls"); 
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r = getResult("Mode", 2)/getResult("Mode", 1); 
 
//print("Cell: "+i+" Intensity: "+getResult("Mode", 2)/getResult("Mode", 1)); 
//drawString(i, getResult("X",0), getResult("Y",0)); 
run("Clear Results"); 
 
 if (xCorr-d == 1) 
 { 
   print("Cell: "+i+" Intensity: "+r); 
    
 } 
 else if (lA>rA) 
 { 
 d = xCorr; 
 xCorr--; 
 //print("xCorr: "+xCorr); 
 //print("abs(lA-rA): "+abs(lA-rA)+"-"); 
 doit(); 
 } 
 else if (lA<rA) 
 { 
 d = xCorr; 
 xCorr++; 
 //print("xCorr: "+xCorr); 
 //print("abs(lA-rA): "+abs(lA-rA)+"+"); 
 doit(); 
 } 
 } 
} 
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Appendix D: Table for the conversion Damkhöler number / 
Diffusion coefficient 

 

 


