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Abstract

Financial time series studies indicate that the lognormal assumption for the return of an
underlying security is often violated in practice. This is due to the presence of time-varying
volatility in the return series. The most common departures are due to a fat left-tail of the
return distribution, volatility clustering or persistence, and asymmetry of the volatility.
To account for these characteristics of time-varying volatility, many volatility models have
been proposed and studied in the financial time series literature. Two main conditional-
variance model specifications are the autoregressive conditional heteroscedasticity (ARCH)
and the stochastic volatility (SV) models.

The SV model, proposed by Taylor (1986), is a useful alternative to the ARCH family
(Engle (1982)). It incorporates time-dependency of the volatility through a latent process,
which is an autoregressive model of order 1 (AR(1)), and successfully accounts for the
stylized facts of the return series implied by the characteristics of time-varying volatility.
In this thesis, we review both ARCH and SV models but focus on the SV model and
its variations. We consider two modified SV models. One is an autoregressive process
with stochastic volatility errors (AR–SV) and the other is the Markov regime switching
stochastic volatility (MSSV) model. The AR–SV model consists of two AR processes.
The conditional mean process is an AR(p) model , and the conditional variance process is
an AR(1) model. One notable advantage of the AR–SV model is that it better captures
volatility persistence by considering the AR structure in the conditional mean process. The
MSSV model consists of the SV model and a discrete Markov process. In this model, the
volatility can switch from a low level to a high level at random points in time, and this
feature better captures the volatility movement. We study the moment properties and the
likelihood functions associated with these models.

In spite of the simple structure of the SV models, it is not easy to estimate parameters
by conventional estimation methods such as maximum likelihood estimation (MLE) or the
Bayesian method because of the presence of the latent log-variance process. Of the various
estimation methods proposed in the SV model literature, we consider the simulated max-
imum likelihood (SML) method with the efficient importance sampling (EIS) technique,
one of the most efficient estimation methods for SV models. In particular, the EIS tech-
nique is applied in the SML to reduce the MC sampling error. It increases the accuracy of
the estimates by determining an importance function with a conditional density function
of the latent log variance at time t given the latent log variance and the return at time t−1.

Initially we perform an empirical study to compare the estimation of the SV model using
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the SML method with EIS and the Markov chain Monte Carlo (MCMC) method with
Gibbs sampling. We conclude that SML has a slight edge over MCMC. We then introduce
the SML approach in the AR–SV models and study the performance of the estimation
method through simulation studies and real-data analysis. In the analysis, we use the AIC
and BIC criteria to determine the order of the AR process and perform model diagnostics
for the goodness of fit. In addition, we introduce the MSSV models and extend the SML
approach with EIS to estimate this new model. Simulation studies and empirical studies
with several return series indicate that this model is reasonable when there is a possibility
of volatility switching at random time points. Based on our analysis, the modified SV,
AR–SV, and MSSV models capture the stylized facts of financial return series reasonably
well, and the SML estimation method with the EIS technique works very well in the models
and the cases considered.
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Chapter 1

Introduction: Volatility Models and
Estimation Methods

Studies on financial time series reveal that changes in volatility occur over time for
many classes of assets such as stocks, currencies, and commodities. There are two types
of models for time-dependent variances: observation-driven and parameter-driven models.
The most well-known example of an observation-driven model is the autoregressive condi-
tional heteroscedasticity (ARCH) model, introduced by Engle (1982). In this model, the
conditional variance is taken as a function of the squares of previous observations. An
alternative to ARCH is the stochastic volatility (SV) model introduced by Taylor (1982,
1986), in which the conditional variance follows a latent stochastic process.

The SV model can successfully capture the empirical properties of the financial return
series: (1) the unconditional distribution of returns is leptokurtic or its kurtosis is larger
than that of a normal distribution, (2) volatility clustering is often exhibited, that is, a
large movement is followed by a large movement and a small change is followed by a small
change, and (3) the squared returns exhibit serial autocorrelations whereas there is lit-
tle or no serial correlation in the return series itself. The SV model is also related to a
continuous-time diffusion process that is widely used in option pricing (see Hull and White
(1987)).

Maximum likelihood estimation (MLE) is often used to estimate the parameters in ARCH
models, but it cannot be directly applied to parameter estimation in the SV model because
of the existence of a latent process. To efficiently estimate parameters and volatility in the
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SV model, various estimation methods have been proposed in the literature.

In this chapter, we describe ARCH and SV models in Sections 1.1 and 1.2. We intro-
duce some of the estimation methods for SV models and discuss their advantages and
disadvantages in Section 1.3.

1.1 ARCH Models

The basic idea of ARCH models is that the return of any underlying security yt is
serially uncorrelated but dependent, and the dependence of yt is described through the
conditional variance which is taken as a simple quadratic function of its lagged values.
Throughout Chapter 1, yt is referred to as the mean-corrected return of a security.

Let pt be a price of an underlying asset at time t; its mean-corrected return is expressed as

yt = 100

ln( pt
pt−1

)
−

∑T
t=1 ln

(
pt
pt−1

)
T

 .
Typically, the ARCH(q) model is defined by

yt =
√
λtut,

λt = α0 +

q∑
i=1

αiy
2
t−i, (1.1)

where {ut} is a sequence of identically and independently distributed (iid) random vari-
ables with mean zero and variance one. It is often assumed to follow the standard normal
or a heavy-tailed distribution such as a Student-t distribution. α0 > 0, αi ≥ 0 (i = 1, ..., q),
and 0 <

∑q
i=1 αi < 1 is a necessary and sufficient condition for a weakly stationary process

{yt}. The order of q determines the volatility persistence, which increases with the value
of q. Equation (1.1) implies that large values of squared past observations lead to a large
variance λt of the return series yt, and a small movement in squared past returns leads to
a small movement in λt. This indicates that volatility clustering can be captured by the
ARCH structure.

To study further properties of the ARCH process, consider the ARCH(1) model, given
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by

yt =
√
λtut, ut ∼ iid N(0,1),

λt = α0 + α1y
2
t−1,

where α0 > 0 and 0 < α1 < 1. Then, the unconditional moments for yt are

E[y2
t ] = E[λtu

2
t ] =

α0

1− α1

,

E[y4
t ] = E[λ2

tu
4
t ] = 3

(
α2

0 + 2α0α1E[y2
t ]

1− 3α2
1

)
.

Thus, the kurtosis of yt is given by

κ =
E[y4

t ]

E[y2
t ]

2
= 3

(
1− α2

1

1− 3α2
1

)
. (1.2)

The value of the kurtosis in (1.2) is greater than three if α2
1 < 1/3. This implies that the

ARCH(1) model can have a heavier tail than the normal distribution.

In spite of its nice properties, the ARCH model has some limitations:

1. Regardless of the sign of a shock, the effect on the volatility is the same because
it depends on the square of past shocks. In practice, this assumption is frequently
violated, particularly by stock returns: the volatility increases more after negative
shocks than after positive shocks. This is the so-called leverage effect, first introduced
by Black (1976).

2. When there are other sources of variation in financial time series such as exogenous
factors in the economy, the model does not fit the data well.

3. The model is likely to overestimate the volatility because it responds slowly to large
isolated shocks in the return series.

To overcome these weaknesses, there are many extensions of the ARCH model. The
most important extended model, proposed by Bollerslev (1986), is the generalized ARCH
(GARCH) model. Other extensions are an integrated GARCH (IGARCH) model (Boller-
slev and Engle (1993)) and a fractional integrated ARCH model (Ding, Granger, and Engle
(1993)), which account for the characteristic that volatility tends to change quite slowly,
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with the effect of shocks taking a reasonably long time to decay. To account for the asymme-
try of the volatility to shocks, the exponential GARCH (EGARCH) and threshold ARCH
(TARCH) models were proposed by Nelson (1991) and Zakoian (1994), respectively. Engle,
Lilien, and Robins (1987) proposed the ARCH-in-mean model to incorporate a risk/reward
trade-off in the ARCH model. These extended models and their advantages and disadvan-
tages are described below.

GARCH model

The GARCH model merely includes a moving average part in the ARCH model speci-
fication, and can be written as an autoregressive moving average (ARMA) model in the
squares. The GARCH(p, q) model (Bollerslev (1986)) is defined by

yt =
√
λtut,

λt = α0 +

q∑
i=1

αiy
2
t−i +

p∑
j=1

βjλt−j, (1.3)

where {ut} is a sequence of iid random variables with mean zero and unit variance. For

stationarity, it is assumed that α0 > 0, αi ≥ 0, βj ≥ 0, and
∑max(p,q)

l=1 (αl + βl) < 1. The
constraint on (αl + βl) implies that the unconditional variance of {yt} is finite, but its
conditional variance λt varies over time.

For simplicity, let us consider the GARCH model of order (1,1), denoted GARCH(1,1),
with a normal innovation ut, given by

yt =
√
λtut,

λt = α0 + α1y
2
t−1 + β1λt−1, (1.4)

where α > 0, α1, β1 ≥ 0, and α1 + β1 < 1. From Eq. (1.4), it can be easily seen that a
large y2

t−1 or λt−1 gives rise to a large λt, and a small y2
t−1 or λt−1 leads to a small λt. This

is volatility clustering.

Another nice property of the GARCH(1,1) model is obtained by letting ηt = y2
t − λt,

which is a martingale difference (MD). That is, E[|ηt|] < ∞ and E[ηt|Ft−1] = 0, which
implies E[ηt] = 0 and Cov(ηt, ηt−j) = 0 for j ≥ 1. However, {ηt} is not an iid sequence in
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the GARCH(1,1) model. Since ηt−1 = y2
t−1 − λt−1, we can rewrite Eq. (1.4) as

y2
t = α0 + (α1 + β1)y2

t−1 − β1ηt−1 + ηt,

Φ(B)y2
t = α0 + β(B)ηt,

where Φ(B) = {1− (α1 + β1)B}, β(B) = {1− β1B}, and B is a backshift operator. This
is an ARMA(1,1) process for the squared returns. In general, a GARCH(p, q) model can
be written as an ARMA(p, q) process for y2

t .

Using the unconditional mean of an ARMA(1,1) model, the first moment of the squared
yt is given by

E[y2
t ] =

α0

1− (α1 + β1)
, (1.5)

provided (α1 + β1) < 1. Equation (1.5) provides a simple parametric function to describe
the volatility evolution because E[λt] = E[y2

t ]. For any GARCH (p, q) model, we can find
a parametric form of E[y2

t ].

The kurtosis of the return yt of the GARCH(1,1) model is

E[y4
t ]

(E[y2
t ])

2
=

3[1− (α1 + β1)2]

1− (α1 + β1)2 − 2α2
1

. (1.6)

If (α1+β1)2−2α2
1 < 1, then the value of the kurtosis in (1.6) is greater than three, which in-

dicates that the tail of the GARCH(1,1) model is heavier than that of a normal distribution.

Forecasts of volatility in the GARCH(1,1) model can be obtained using methods simi-
lar to those of the ARMA process. Assume that the forecast origin is time h. That is, yh
and λh are known at time h. For the 1-step ahead forecast function, we have

λh+1 = α0 + α1y
2
h + β1λh,

and thus the 1-step ahead forecast is

λh(1) = α0 + α1y
2
h + β1λh.

For the 2-step ahead forecast, using y2
t = λtu

2
t , Eq. (1.4) can be written as

λt+1 = α0 + (α1 + β1)λt + α1λt(u
2
t − 1).
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When t = h+ 1, this equation becomes

λh+2 = α0 + (α1 + β1)λh+1 + α1λh+1(u2
h+1 − 1).

Thus, the 2-step ahead forecast, originated at time h, is given by

λh(2) = α0 + (α1 + β1)λh(1)

because E[u2
h+1 − 1|Fh] = 0. In general, the l-step ahead volatility forecast can be given,

for l > 1, by

λh(l) = α0 + (α1 + β1)λt(l − 1)

=
α0[1− (α1 + β1)l−1]

1− α1 − β1

+ (α1 + β1)l−1λh(1).

Therefore, provided α1 + β1 < 1,

λh(l) →
α0

1− α1 − β1

as l→∞.

This implies that the multistep-ahead volatility forecasts of a GARCH(1,1) model converge
to the unconditional variance of yt as the time horizon increases, assuming the existence of
the variance of yt. Nevertheless, the model has the same weaknesses as the ARCH model.
For example, the leverage effect is still not taken into account and the tail behavior of the
GARCH model is still short for the high-frequency data, even with the Student-t innova-
tions (Engle and Bollerslev (1986) and Nelson (1991)).

Integrated GARCH

The integrated GARCH (IGARCH) model is a unit-root GARCH model. If the AR poly-
nomial in (1.3) has a unit root, the GARCH model becomes the IGARCH model. In the
IGARCH model, the impact of past squared shocks (ηt = y2

t−i − λt−i) on the squared re-
turn y2

t is persistent, which is similar to the behavior of an ARIMA model. IGARCH(p, q)
(Bollerslev and Engle (1993)) is defined as

yt =
√
λtut,

λt = α0 +

q∑
i=1

αiy
2
t−i +

p∑
j=1

βjλt−j,
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where ut is a Gaussian white noise and for stationarity we assume that αi ≥ 0, βj ≥ 0 for
i = 1, ..., q and j = 1, ..., p and

∑q
i=1 αi +

∑p
j=1 βj = 1.

Exponential GARCH

The exponential GARCH (EGARCH) model was proposed by Nelson (1991). In this
model, a weight innovation is considered to allow for asymmetric effects between positive
and negative shocks in return series.

The EGARCH(p, q) (Nelson (1991)) model is defined by

yt =
√
λtut,

log λt = α0 +

q∑
i=1

αi log λt−i +

p∑
j=1

βjg(ut−j), (1.7)

where
g(x) = ωx+ δ(|x| − E|x|) (1.8)

and αi and βj are constant for i = 0, 1, ..., q and j = 1, ..., p. The function g(·) in (1.8)
is piecewise linear and contains both the size and sign effects of the shocks on volatil-
ity. The term ωx determines the sign effect and the term δ(|x| − E|x|) the size effect.
Typically, the parameter ω is positive and δ is negative. Moreover, since ut is iid, so is
g(ut). Since ut and ut−E|ut| are zero-mean iid sequences, it can be seen that E[g(ut)] = 0.

Similarly to the GARCH model, the unconditional mean of log λt is α0

1−
∑
αi

. However,
there are some differences: first, the coefficients are not required to be positive because
we take the log of the variance. Second, we account for the asymmetric effect by adding
a function g(·) in the process log{λt}. The asymmetry of information is potentially useful
because it allows the variance to respond more rapidly to drops in the market than to
corresponding rises. This is important for many equities (Schwert (1989), Sentana (1995),
Campbell and Hentschel (1992)).

Consider the simplest EGARCH(1,1) model where β1 = 1, given by

yt =
√
λtut,

(1− α1B) log λt = α0 + g(ut−1),
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where B is a backshift operator and ut is a Gaussian white noise so that E[|ut|] =
√

2/π.
A function g(·) is defined via (1.8) and has a zero mean and a constant variance so that
log λt is a stationary autoregression provided |α1| < 1. Setting α∗ = α0 − δ

√
2/π, the

model becomes

(1− α1B) log λt =


α∗ + (ω + δ)ut−1 if ut−1 ≥ 0,

α∗ + (ω − δ)ut−1 if ut−1 < 0.

This is a nonlinear function of λt so that it suffices to say that for the EGARCH(1,1) model
with β1 = 1, the conditional variance λt evolves in a nonlinear manner depending on the
sign of yt−1. In particular, the above equation can be rewritten as

λt = λα1
t−1 exp(α∗) ∗


exp

[
(ω + δ) yt−1√

λt−1

]
if yt−1 ≥ 0,

exp

[
(ω − δ) yt−1√

λt−1

]
if yt−1 < 0.

The coefficients ω+ δ and ω− δ measures the asymmetric effects on positive and negative
shocks, respectively. Furthermore, in contrast to ARCH, this model allows the autocorre-
lation function of the squared returns to be negative so that EGARCH provides oscillations
in the autocorrelation function of the squares.

Threshold ARCH (TARCH) model

The idea of the TARCH model is to divide the distribution of the innovations into two
disjoint intervals and then approximate a piecewise linear function for the conditional
standard deviation (Zakoian (1994)) and the conditional variance (Glosten, Jagannathan,
and Runkle (1993)). That is, the model distinguishes the effect of negative and positive
movements of the return on the volatility. If a threshold is zero, the TARCH(q) model in
Glosten et al. (1993) is of the form

λt = α0 +

q∑
i=1

α+
i y

2
t−i I(yt > 0) +

q∑
i=1

α−i y
2
t−i I(yt ≤ 0),

where α+
i is a coefficient when I(yt > 0) and α−i is a coefficient when I(yt ≤ 0).
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ARCH-in-mean model

In economic theory, an investor should have a reward for taking risk. This is known as
the risk/reward trade-off. To reflect this, Engle et al. (1987) proposed the ARCH-in-mean
(ARCH-M) model. This model provides an explicit link between the expected return of a
risky asset and the level of volatility. The ARCH-M model (Engle et al. (1987)) is given
by

yt = g(λ2
t , θ) + utλt,

λ2
t = α0 + α1{yt−1 − g(λ2

t , θ)}2,

where g(λ2
t , θ) is typically linear, for example, g(λ2

t , θ) = α0 + α1λ
2
t . The statistical prop-

erties have been studied by Hong (1991).

1.2 Stochastic Volatility Model

An alternative to ARCH models is to allow λt to depend on some unobserved struc-
ture. The most popular parameter-driven model is the stochastic volatility (SV) model,
introduced by Taylor (1986). Its standard form can be written

yt = exp{λt/2}ut, (1.9)

λt = α + βλt−1 + γvt, (1.10)

λ1 ∼ N

(
α

1− β
,

γ2

1− β2

)
, (1.11)

for t = 1, ..., T . The error processes ut and vt are assumed to be iid with zero mean and
unit variance, and vt is normally distributed. Both processes are serially and mutually
uncorrelated at all lags, and uncorrelated with λ1. The latent process λt is a stationary
AR(1) process with a persistent parameter β if |β| < 1 and represents the log-variance
of the observed returns yt. Its physical interpretation is the random and uneven flow of
new information, which is difficult to model directly for financial markets. γ > 0 is the
volatility of the log-variance process λt. Conditional on λt, the return series yt is simply a
heteroscedastic Gaussian noise.

Typically, the process ut is a Gaussian white noise, but it has been empirically shown
that the heavy-tailed assumption of the process, such as the Student-t distribution (Ruiz
(1994), Harvey, Ruiz, and Shephard (1994), Sandmann and Koopman (1998), and Chib,
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Nardari, and Shephard (1998)), and a generalized error distribution can capture the em-
pirical regularities of financial data (Liesenfeld and Jung (2000)). In Chapter 2 we discuss
the statistical properties of the SV models: a model with normal error (SV-normal), a
model with Student-t distributed error (SV-t), and with a model with generalized-error
distributed error (SV-GED).

1.3 Estimation Methods

In the ARCH models discussed earlier, the parameter estimation is straightforward.
Maximum likelihood estimation (MLE) is commonly used. However, this is difficult for
the SV model because of the latent process λt. We will now discuss several estimation
methods used in the parameter estimation for the SV model.

For the SV model in (1.9) and (1.10), the likelihood associated with known observations
YT = {yt}Tt=1 and latent variables ΛT = {λt}Tt=1 is given by

L(θ;YT ) =

∫
RT

f(YT ,ΛT |θ) dΛT , (1.12)

where θ denotes the vector of parameters α, β, and γ to be estimated, and f(·) is a prob-
ability density. Despite the simplicity of the model specification, an analytical solution of
the integral in (1.12) is not available, and simulations or numerical methods must be used
to estimate the integral.

There are numerous ways of performing this estimation. Some approaches use a method of
moments such as the generalized method of moments (GMM)(Hansen (1982); Melino and
Turnbull (1990)), popular in econometrics. Others approximate the likelihood using, for
example, quasi maximum likelihood (QML) (Harvey et al. (1994)). However, both GMM
and QML have some drawbacks. For example, the selection of the moment conditions is
not trivial in GMM, and QML is computationally intensive. More elaborate methods have
also been proposed, such as the simulated maximum likelihood (SML) method (Daniels-
son and Richard (1993)), the efficient method of moments (EMM) (Gallant, Hsieh, and
Tauchen (1997); Andersen, Chung, and Sorensen (1999)), and Markov chain Monte Carlo
(MCMC) (Jacquier, Polson, and Rossi (1994); Kim, Shephard, and Chib (1998)), which
strongly dominates GMM, QML, and EMM. SML is a good alternative to MCMC in the
sense that it is as efficient as MCMC and its implementation is fairly straightforward.
Danielsson (1994) showed that the finite sample properties of the ML estimator based on
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importance sampling are identical to those of the Bayesian posterior means evaluated by
MCMC (Jacquier et al. (1994)). Liesenfeld and Jung (2003) introduced the efficient impor-
tance sampling (EIS) technique in the context of SML and later developed (see Liesenfeld
and Richard (2008)) an improved MCMC method based on the Metropolis Hastings pro-
cedure using the EIS (MH-MCMC-EIS). Ozturk (2009) implemented the HM-MCMC-EIS
method for EGARCH and SV models. Since our focus is more on a stand-alone method
such as GMM, EMM, SML, or MCMC. We will discuss those stand-alone methods in the
next subsections.

1.3.1 Generalized Method of Moments

When the method of moments (MM) is used to estimate parameters in the SV model,
many possible moments could be used. In contrast to MM, GMM is designed to consider
all the moment restrictions in a reasonably sensible way, for example by weighting the
moment conditions and exploiting the convergence of selected sample moments to their
unconditional expected values.

In general, the GMM procedure can be described as follows. Let YT = {y1, ..., yT} be
a financial time series and let mt(θ) = (m1t(θ), ...,mQt(θ)) denote the vector of the sample
realizations of the moments at time t. The constant Q can be larger than the dimension of
θ, which is a parameter vector to be estimated. Then, the corresponding sample moments
MiT (θ) are given by

MiT (θ) =
1

T − j

T∑
t=j+1

mit(θ), i = 1, ..., Q,

where j is the maximum lag between variables defining the sample moments. The vector of
the analytical moments is denoted A(θ) = (A1(θ)), ..., AQ(θ)). Then, the GMM estimator

θ̂ minimizes the distance between MT (θ) = (MiT (θ), ...,MQT (θ)) and A(θ):

θ̂ = argminθ[(MT (θ)− A(θ))′ Σ−1 (MT (θ)− A(θ))],

where the matrix Σ is an arbitrary positive definite weighting matrix. Hansen (1982)
showed that the GMM estimator θ̂ is consistent and asymptotically normal, i.e.,

√
T (θ̂ −

θ0) ∼ N(0,Ω), where θ0 is the true parameter vector and Ω is an asymptotic covariance
matrix.
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Given the properties of θ̂, the optimal choice of the weighting matrix Σ is the one that
minimizes the asymptotic covariance matrix Ω. It can be given by the covariance matrix
of the standardized moment conditions:

Σ = lim
T→∞

E

[
T∑

t,τ=1

(mt(θ0)− A(θ0))(mτ (θ0)− A(θ0))′/T

]
.

This matrix can be estimated by a kernel estimator for the density of the vector of sample
moments.

For simplicity of the moment conditions, let us consider the SV model obtained by setting
λt = log σ2

t , given by

yt = σtut,

log σ2
t = α + β log σ2

t−1 + γvt.

The error ut is assumed to be standard normal. The other assumptions given in the
standard SV model in (1.9) and (1.10) also hold for this model. For k = 1, ..., K, the first
few moments are

E[y2
t ] = E[σ2

t ], E[y4
t ] = 3E[σ4

t ],

E[|yt|] =
√

2/πE[σt], E[|y3
t |] = 2

√
2/πE[σ3

t ],

E[|yt yt−k|] =
2

π
E[σt σt−k], E[y2

t y
2
t−k] = E[σ2

t σ
2
t−k], (1.13)

where, for any positive constants r and s and any positive integer k,

E[σrt ] = exp[rµ/2 + r2σ2/8],

E[σrtσ
s
t−k] = E[σrt ]E[σst ] exp[rsβkσ2/4].

Note that µ = α
1−β and σ2 = γ2

1−β2 are the unconditional mean and variance of the log-
variance process λt. For moment conditions, only lower-order moments are important
because of the erratic behavior of higher-order moments and the requirement of asymp-
totic normality of θ̂. The variances of the higher-order moments are usually large because
of the presence of the fat tail in the return series. The asymptotic normality of the GMM
estimator θ̂ requires finite variances of the moment conditions and good estimates of these
quantities in finite samples.

It should be noted that sample moments of the return series are likely to be heavily
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correlated and serially dependent; this influences the choice of an appropriate weighting
matrix for the SV model. If this factor is ignored, suitable efficiency cannot be obtained.
For example, when Andersen and Sorensen (1996) took an identity matrix as a weighting
matrix, they found that the GMM behaved badly and sometimes did not converge. Hence,
some preliminary scaling of the moments through a weighting matrix is required for mean-
ingful inference via GMM.

There are some drawbacks to this method:

1. GMM can only be applied when λt is stationary. That is, as the persistent parameter
β gets close to unity, GMM works poorly for many high-frequency financial time
series.

2. The parameter estimates are not invariant, i.e., if the model is reparameterized as
τ = f(θ), then τ̂ 6= f(θ̂).

3. Under the normal assumption for ut, the autocorrelation function of yt in the SV
model at lag k is given by

ρ(k) ≈ exp{σ2} − 1

3 exp{σ2} − 1
βk,

where σ2 = γ2

1−β2 . The derivation of ρ(k) is given in Chapter 2. This indicates

that if σ2 is small, typically the case in practice, the autocorrelation ρ(k) is small but
positive for many k. Consequently, the number of moment equations to be considered
must be high to capture the low but persistent ACF of the squares, which increases
the computational burden.

4. GMM itself cannot provide estimates of the volatility so another estimation technique
is required for volatility estimation.

5. Conventional tests are not available after fitting the model.

1.3.2 Efficient Method of Moments

EMM seeks to improve the efficiency of GMM, while maintaining its general flexibility.
Instead of using the exact moment conditions, EMM takes as a moment condition a score
function from a pseudo (or auxiliary) model rather than the true model. Hence, the key
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issue of EMM is to carefully select moment conditions with the likelihood of an auxiliary
model, depending on the characteristics of the observations. It then leads to an efficient
estimation via the standard GMM procedure.

EMM is particularly useful when the ML approach is not feasible or is computationally
intensive, as is the case in the SV model. The idea underlying EMM is to match the
efficiency of the ML estimation with the flexibility of the GMM procedure. Thus, the
efficiency of EMM is likely to fall between that of GMM and likelihood-based inference.

We first introduce some notation. The process that generates the data Y is referred to as
a structural model. In the SV model, (1.9) and (1.10) define the structural model. The
parameter vector to be estimated in the structural model, such as θ in the SV model, is
called a structural parameter vector. The vector of parameters in an auxiliary model is
called an auxiliary parameter vector, denoted η. Then, the EMM procedure can be sum-
marized in the following steps:

Step 1: Choice of an auxiliary model and its estimation

The auxiliary model should approximate the structural (true data-generating) model as
closely as possible and allow the maximum likelihood to be applicable. Let the auxiliary
model be specified as f(yt|Yt−1, η), where Yt−1 = {yt−1, ..., y1} and η is the auxiliary or
pseudo parameter vector whose dimension is greater than or equal to that of θ. Then, the
estimated η is obtained by the quasi maximum likelihood (QML) estimation method, and
the QML estimator η̂ satisfies

1

T

T∑
t=1

∂

∂η
log f(yt|Yt−1, η̂) =

1

T

T∑
t=1

S(yt, η̂) = 0, (1.14)

where S(yt, η̂) = ∂
∂η

log f(yt|Yt−1, η̂) is the score generator corresponding to the auxiliary
model. The advantage of QML is that even if the auxiliary model is misspecified, under
some regularity conditions, the QML estimator η̂ is consistent (White (1994)).

An auxiliary model could be a (full) parametric model or a semi-parametric model (SNP)
(Gallant and Nychka (1987)). Although the choice of the auxiliary model is important
for the estimation performance, there is no systematic approach to this. Thus, we need
to parametrize a potential auxiliary model in several different ways and investigate the
resulting efficiency. Because of the conditional heteroscedasticity of the SV model, ARCH
models are popular auxiliary models for a fully parameterized model, while the SNP mod-
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els vary (see Anderson et al. (1999)).

Step 2: Setting up of the moment conditions and computation of the estimated mo-
ments

For an initial value of a structural parameter θ, we generate the new series Y
(1)
new(θ), ..., Y

(N)
new (θ)

for a large N > T using the structural model. Let the sample moments be

m(θ, η̂) =
1

N

N∑
i=1

S(Y (i)
new(θ), η̂),

where Y
(i)
new(θ) = {y(i)

new,1(θ), y
(i)
new,2(θ), ..., y

(i)
new,T (θ)}. Then, the estimated moment evalu-

ated at η̂ is calculated by

m̂(θ, η̂) =
1

N

N∑
i=1

T∏
t=1

S(y
(i)
new,t(θ)|y

(i)
new,1(θ), ..., y

(i)
new,t−1(θ), η̂),

where η̂ is an auxiliary parameter estimator.

Step 3: Computation of the parameter estimates

The estimator of θ is a solution of the following minimization problem:

arg min
θ

[m̂(θ, η̂)′ V̂ −1 m̂(θ, η̂)],

where V̂ denotes a consistent estimator of the asymptotic covariance matrix V of the
sample score vector. If an appropriate auxiliary model is selected, the likelihood inference
implies that the score vector consists of a (near) MD sequence, and an estimator of the
information matrix V̂ is given by

V̂ =
1

T

T∑
t=1

S(yt, η̂)S(yt, η̂)′.

1.3.3 Simulated Maximum Likelihood

The simulated maximum likelihood (SML) method was introduced by Danielsson and
Richard (1993); it depends on Monte Carlo (MC) integration to evaluate the likelihood
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in (1.12). After estimating the likelihood by MC simulation, SML seeks values of the pa-
rameter vector θ that maximize the estimated likelihood.

Danielsson and Richard (1993) first implemented SML to estimate the SV model. It works
poorly because the latent variable λt is drawn from the density without any information
on the return series yt, and many iterations are required to achieve convergence. To resolve
this inefficiency issue, one of the variance reduction methods for MC simulation, called im-
portance sampling (IS) (Ripley (1987)), has been applied by several researchers. The two
variants used are an efficient importance sampling (EIS) technique (Liesenfeld and Richard
(2003)) and an alternative approach, proposed by Shephard and Pitt (1997), Durbin and
Koopman (1997, 2000), and Sandmann and Koopman (1998). These methods are briefly
discussed below along with a crude MC simulation.

Crude Monte Carlo Simulation

The likelihood in (1.12) can be rewritten as

L(θ;YT ) =

∫
RT

f(YT ,ΛT |θ) dΛT =

∫
RT

f(YT |ΛT , θ)f(ΛT |θ) dΛT . (1.15)

This is an expectation of the conditional density f(YT |ΛT ) under the distribution of ΛT .
Throughout this thesis, f(·) denotes a probability density function. In the crude MC

simulation, we first generate N replications Λ
(i)
T from the unconditional density f(ΛT |θ),

which is given by

f(ΛT |θ) =
T∏
t=1

f(λt|λt−1, θ). (1.16)

Then, the estimated likelihood can be obtained by

L̂(θ;YT ) =
1

N

N∑
i=1

f(YT |Λ(i)
T ),

where the Λ
(i)
T are drawn from (1.16). However, in the context of the SV model, the repli-

cations Λ
(i)
T generated from f(ΛT |θ) in (1.16) do not resemble the process λt under which

the observed returns YT were obtained. Thus, a large number N is required to achieve a
certain accuracy with the crude MC simulation, and this is quite burdensome.

To overcome this problem, IS can be applied (Ripley (1987)). The idea underlying IS
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is to take a “good” probability density function, called the importance function (IF), in-
stead of the original probability density function. The IF is good in the sense that its
distribution is known and it behaves similarly to the original density function.

In general, an IF can be any function and need not be a density function. If the IF is
not a density function, the integrand must be multiplied by a quantity that makes the
integral equal to one. One way to choose a good IF is the efficient importance sampling
(EIS) method described below.

Efficient Importance Sampling

The EIS technique (Liesenfeld and Richard (2003)) chooses in the following way an IF
that can provide a good approximation of f(YT ,ΛT |θ).

Consider the following factorization of the likelihood function in (1.15) using an IF g(ΛT |YT , θ):

L(θ;YT ) =

∫
RT

f(YT |ΛT , θ)f(ΛT |θ) dΛT (1.17)

=

∫
RT

f(YT |ΛT , θ)f(ΛT |θ)
g(ΛT |YT , θ)

g(ΛT |YT , θ) dΛT

=

∫
RT

h(ΛT , YT |θ)g(ΛT |YT , θ) dΛT (1.18)

where h(ΛT , YT |θ) = f(YT |ΛT , θ)f(ΛT |θ)/g(ΛT |YT , θ) is a remainder function (RF). To find
an IF g(ΛT |YT , θ) that depends on both λT and YT , EIS considers a particular factorization:

g(ΛT |YT , θ) =
T∏
t=1

f(λt|Λt−1, Yt−1, θ, et), (1.19)

where et is an auxiliary parameter that depends on the observations YT . Then, we find a
function k(Λt; et) such that

g(ΛT |YT , θ) =
T∏
t=1

C(λt−1, et)k(Λt; et), (1.20)

where C(λt−1, et) = 1∫
k(Λt;et)dλt

is an integral constant that makes k(Λt; et) a density func-

tion. For ease of notation, we remove θ from the functional notations of C and k.
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Moreover, the choice of C(λt−1, et) plays an important role in matching g(ΛT |YT , θ) to
the joint density f(YT ,ΛT |θ) =

∏T
t=1 f(yt, λt|Λt−1, Yt−1, θ) as closely as possible. Thus, the

estimator of et is obtained by solving the least-squares problem:

êt = arg minet

N∑
i=1

(
log[f(yt, λ

(i)
t |Λ

(i)
t−1, Yt−1, θ)/C(λ

(i)
t ; êt+1)]− ct − log k(Λ

(i)
t ; et)

)2

,

where C(λT ; eT+1) ≡ 1 and λ
(i)
t is drawn from the conditional density f(λt|λt−1, θ) for all

t. The unknown constant ct has to be estimated jointly with et for all t. This least-squares
problem can be solved recursively backward for t = T, ...., 1.

Once et is obtained and g(ΛT |YT , θ) is determined, the likelihood can be estimated as
described before. The ML estimator θ̂ is then obtained by maximizing the estimated like-
lihood. The details of the EIS implementation will be given in Chapter 2.

Alternative Importance Sampling

This method, originally proposed by Durbin and Koopman (1997, 2000) and Sandmann
and Koopman (1998), is based on a linear Gaussian state-space approximation to the orig-
inal model. In this approach, the observation equation, which approximates (1.9), is given
by

yt = λt + at + btwt, (1.21)

and Eq. (1.10) is the transition equation of the state variable λt. The error process {wt}
is iid N(0,1) and uncorrelated with the error {vt} in (1.10). The conditional density
g∗(ΛT |YT , θ) of the approximating model in (1.21) serves as the IF. Throughout this sec-
tion, the density marked with an asterisk (*) denotes the density function of the approxi-
mating model in (1.21).

The location parameter at and scale parameter bt must be selected to ensure that the
observation equation (1.21) is a good approximation to the original equation (1.9). One
way to choose “good” parameters at and bt is to equate the first and second derivatives of
the logarithm of the conditional density of yt with respect to λt for both the original (1.9)
and observation (1.21) equations.
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Since the approximating marginal density f ∗(ΛT |θ) is the same as f(ΛT |θ) in the orig-
inal model, we have the relationship g∗(ΛT |YT , θ) = f ∗(YT |ΛT , θ)f(ΛT |θ)/f ∗(YT |θ). Thus,
the likelihood in (1.15) can be written as

L(θ;YT ) =

∫
f(YT |ΛT , θ)f(ΛT |θ)

g∗(ΛT |YT , θ)
g∗(ΛT |YT , θ) dΛT

= f ∗(ΛT |θ)
∫

f(YT |ΛT , θ)f(ΛT |θ)
f ∗(ΛT |YT , θ)f(ΛT |θ)

g∗(ΛT |YT , θ) dΛT

= f ∗(ΛT |θ)
∫

f(YT |ΛT , θ)

f ∗(ΛT |YT , θ)
g∗(ΛT |YT , θ) dΛT .

This likelihood can be estimated as

L̂(θ;YT ) = f ∗(ΛT |θ)
1

N

N∑
i=1

f(YT |Λ(i)
T , θ)

f ∗(YT |Λ(i)
T , θ)

, (1.22)

where the Λ
(i)
T are generated from the IF g∗(ΛT |YT , θ) by a simulation smoother.

In summary, the algorithm of the alternative IS proceeds as follows:

1. Generate a trial ΛT from (1.10) and (1.11).

2. Find at and bt by equalizing the derivatives of the log-density of the approximating
model (1.21) and the original model (1.9).

3. Estimate ΛT from the state space model in (1.21) and (1.10) by the Kalman smoother.

4. Repeat Steps 2 and 3 until either at, bt, or ΛT converges.

5. Compute the estimated likelihood in (1.22).

Volatility Estimation

For a given θ̂ and the data YT , an estimator of the volatility is the conditional expec-
tation:

σ̂ = E[σt|YT , θ̂] =

∫
σtf(YT ,ΛT |θ̂) dΛT∫
f(YT ,ΛT |θ̂) dΛT

,
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where σt = exp{λt/2}. Applying the idea of importance sampling, the joint density
f(YT ,ΛT |θ̂) can be factorized into an IF and RF so that the conditional expectation be-
comes

σ̂ = E[σt|YT , θ̂] =
Eg[σth(ΛT , YT |θ̂)]
Eg[h(ΛT , YT |θ̂)]

. (1.23)

To calculate this expectation, the expectations in the numerator and denominator can be
estimated by the corresponding MC sample mean, where the IF g(ΛT |YT , θ) is determined
by the EIS algorithm associated with the evaluation of the likelihood function discussed in
Section 2.3.1. Therefore, the MC estimates of E[σt|YT , θ̂] are obtained as a byproduct of
the likelihood evaluation at the SML estimates of θ based on the EIS sampler.

1.3.4 Markov Chain Monte Carlo

The MCMC method is widely used in applied Bayesian statistical analysis. In the SV
context, the MCMC method is useful for the parameter estimation. However, the difficulty
of directly computing the likelihood makes it impossible to sample from the posterior dis-
tribution f(θ|YT ). Instead, the MCMC approach employs f(θ,ΛT |YT ) in sampling for θ,
where ΛT is a latent log variance process. We will briefly introduce the MCMC method
based on Gibbs sampling (Kim et al. (1998)) below. For volatility estimation, a particle
filter is usually employed with MCMC estimation in the SV model. We will describe the
implementation of a particle filter for volatility estimation in Chapter 2.

In the SV model, both ΛT and θ are to be sampled from their posterior densities. For
given initial values (Λ0

T , θ0), the Gibbs sampling algorithm to sample (ΛT , θ) is given as
follows (Kim et al. (1998)):

1. Draw λt from λt|Λ−t, YT , θ for t = 1, ..., T .

2. Draw γ2 from γ2|YT ,ΛT , µ, β.

3. Draw β from β|YT ,ΛT , µ, γ
2.

4. Draw µ from µ|YT ,ΛT , β, γ
2, where µ = α

1−β .

Here, Λ−t denotes a vector of λt excluding the tth component, that is, (λ1, ..., λt−1, λt+1, ..., λT ).
Note that a cycle through Steps 1 to 4 is called a sweep. To achieve a certain accuracy, this
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algorithm requires a sufficiently large number of sweeps, usually several thousand. Each
step needs assumptions and approximations for the prior distribution of the parameters to
be estimated. More details of the implementation will be given in Chapter 2.

1.4 Organization and Contributions of the Thesis

This thesis is organized as follows. In Chapter 2, we derive moment properties of the
SV model and perform empirical analysis with the historical data from six equity returns.
We perform parameter estimation with the SML and MCMC methods and volatility es-
timation with a particle filter. In the following two chapters, we propose other stochastic
volatility models that are based on the SV model but can specify more stylized facts of the
return series. In Chapter 3, we introduce the autoregressive with stochastic volatility errors
(AR–SV) model. Moment properties and the exact likelihood of the AR–SV model are
derived. Empirical analysis of the AR–SV model with historical data from some indices is
performed to demonstrate the benefits of the model. Chapter 4 introduces Markov switch-
ing stochastic volatility (MSSV) models. We study the statistical properties of the MSSV
model and perform empirical analysis with actual data. In Chapter 5, we summarize our
work in Chapters 1 to 4, and discuss the vector autoregressive model with SV errors. We
also present directions for future research.

New research contributions in this thesis are as listed below:

1. For the Stochastic Volatility Model,

(a) We conduct an empirical study with six actual return series to investigate the
performance of the SML with the EIS technique for the SV models with normal
and heavy-tail error assumptions,

(b) We compare the performance of SML and MCMC with the same data set.

2. For an Autoregressive Model with a Stochastic Volatility error,

(a) We derive moment properties such as kurtosis, ACF of the series, ACF of the
squares, and cross correlation between the series and the squares. We also obtain
the exact likelihood function,
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(b) We conduct a simulation study to investigate the performance of the SML with
the EIS technique for AR–SV model and a sensitivity analysis to study the
robustness of the SML method for different tail behavior,

(c) We also conduct empirical studies with four actual return series. We implement
the SML with the EIS technique for the AR–SV models with normal and t error
assumptions, determine the order of the models, and perform model diagnostics.

3. For a Markov Switching Stochastic Volatility Model,

(a) We derive the exact likelihood function,

(b) We conduct a simulation study to investigate the performance of the SML with
the EIS technique,

(c) We also conduct empirical studies with four actual return series. We implement
the SML with the EIS technique for the MSSV models with normal and t error
assumptions.
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Chapter 2

Statistical and Empirical Analysis of
Stochastic Volatility Models

In spite of the simple structure of the SV model, its estimation is not trivial because
of the existence of the latent process. Various estimation methods for this model have
been developed. We introduced in Chapter 1 several estimation methods that are com-
monly used in the literature such as the generalized method of moments (Hansen (1982)),
the efficient method of moments (Gallant et al. (1997)), the Markov chain Monte Carlo
(MCMC) (Jacquier et al. (1994) and Kim et al. (1998)), and the simulated maximum like-
lihood (SML) (Danielsson and Richard (1993)). In particular, Danielsson (1994) showed
in an empirical study using the S&P 500 index that SML was as efficient as MCMC for
finite samples. Liesenfeld and Richard (2008) proposed an improved MCMC method based
on the Metropolis Hastings procedure using EIS technique (MH-MCMC-EIS) and Ozturk
(2009) implemented the HM-MCMC-EIS method for EGARCH and SV models. However,
our focus in this thesis is more on a stand-alone method such as SML or MCMC rather
than the combined method such as MG-MCMC-EIS.

The SML method is a ML estimation approach, except that the likelihood is not directly
computed. Instead, the likelihood is estimated by the Monte Carlo (MC) method. That is,
SML seeks the parameter estimates that maximize the estimated likelihood calculated by
MC simulation. To improve the accuracy of the likelihood estimation, a variance reduction
method such as importance sampling (IS) is typically considered. Liesenfeld and Richard
(2003) introduced efficient importance sampling (EIS), and Shephard and Pitt (1997) and
Durbin and Koopman (1997, 2000) introduced another IS technique using the Kalman
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filter. Liesenfeld and Richard (2003) showed that EIS could find the MC estimates of the
likelihood efficiently. Koopman, Lucas, and Scharth (2011) combined those importance
sampling techniques and called it numerically accelerated importance sampling (NAIS)
and showed that NAIS worked as efficient as Liesenfeld and Richard’s EIS method via a
simulation study. In our empirical analysis of the SV model, we implement SML with EIS
and the MCMC method for several financial return series, and study the performance of
each method. Asymptotic properties of the SML estimator with importance sampling were
studied by Koopman, Shephard, and Creal (2009), but those of the SML with the EIS has
not been studied yet.

The organization of this chapter is as follows. The standard SV model is considered
in Section 1 and Section 2 describes certain statistical properties of the SV model with
two different assumptions for the error process ut. One assumes a normal distribution and
the other assumes a heavy-tailed distribution. Section 3 summarizes the SML and MCMC
methods for parameter estimation and specifies a particle filter for volatility estimation. In
Section 4, the empirical results from the actual data are discussed with model diagnostics.
Both normal and heavy-tailed error assumptions for the SV model are considered. Some
concluding remarks are given in Section 5.

2.1 Model

The standard SV model, proposed by Taylor (1986), is defined as

yt = exp{λt/2}ut, (2.1)

λt = α + βλt−1 + γvt, (2.2)

λ1 ∼ N

(
α

1− β
,

γ2

1− β2

)
(2.3)

for t = 1, ..., T , where T is the number of observations, yt is a financial return series and
the error processes ut and vt are uncorrelated white noises with zero mean and unit vari-
ance. The vt are assumed to be normally distributed, but the assumption for ut may be a
normal or heavy-tailed distribution. Both processes ut and vt are uncorrelated with λ1. It
is worthwhile to note that the errors ut and vt can be mutually correlated or more specif-
ically negatively correlated, similar to a common assumption for continuous-time models
in the finance literature. A negative correlation between those error processes can allow
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a volatility asymmetry. The coefficient γ > 0 is the conditional standard deviation of λt
given λt−1. It is assumed that the absolute value of the persistent parameter β is less than
1, i.e., |β| < 1, so that the log variance λt is a stationary AR(1) process. Thus, λt linearly
depends on λt−1 (see Eq. (2.2)). A small log volatility at time t− 1 implies a small λt, and
a large λt−1 leads to a large λt. This is volatility clustering, one of the empirical stylized
facts of a financial return series.

Typically, the error process ut is assumed to be a Gaussian white noise, but sometimes
the assumption of a heavy-tailed distribution for ut such as a Student-t distribution (Ruiz
(1994), Harvey et al. (1994), Sandmann and Koopman (1998), and Chib et al. (1998)) is
made to capture the heavy tail of the return distribution better than a normal innovation.
Another heavy-tailed distribution often used is the generalized error distribution (GED)
(Liesenfeld and Jung (2000)). The SV model with a normal error (SV-normal) and the SV
model with a Student-t distributed error (SV-t) are considered in this chapter and their
moment properties are discussed below.

2.2 Moment Properties

In this section, we consider the kurtosis of the series and the autocorrelation function
(ACF) of the squared series under two assumptions for the error process ut. One is a nor-
mal distribution and the other is a heavy-tailed distribution (Liesenfeld and Jung (2000)).

Let us consider the case where the error process ut follows a normal distribution with
mean zero and variance one. For |β| < 1, the unobserved log variance process λt is sta-
tionary so that it is normally distributed with unconditional mean µ = α

1−β and variance

σ2 = γ2

1−β2 . The properties of a lognormal distribution imply that all the odd moments

of yt are zero and all the even moments exist if {λt} is stationary. Thus, the second and
fourth moments of yt are given by

E[y2
t ] = E[eλt ] = exp{µ+ σ2/2}, (2.4)

E[y4
t ] = E[e2λtu4

t ] = exp{2(µ+ σ2)}E[u4
t ]. (2.5)

Hence, the kurtosis of the returns is given as

κ = E[y4
t ]/(E[y2

t ])
2 = exp{σ2}E[u4

t ]. (2.6)

The above expression for the kurtosis has two components: the kurtosis due to the term
E[u4

t ] that represents the kurtosis of the error ut, and the kurtosis due to the variation
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in the log-variance process λt. Under the normal assumption for an error process ut, the
kurtosis E[u4

t ] is equal to three, which leads to an unconditional kurtosis κ greater than
three. If we take ut to be a Student-t distribution with unit variance and ω degrees of
freedom, then E[u4

t ] = 3(ω− 2)/(ω− 4) provided ω > 4, which is greater than three. This
is consistent with the leptokurtosis of the empirical distribution of financial return series.

The ACF of the squared returns can be obtained provided E[u4
t ] < ∞ and |β| < 1.

Setting σ2
t = exp{λt}, the autocovariance of y2

t is expressed (Jacquier et al. (1994)) as

Cov(y2
t , y

2
t−k) = Cov(σ2

t , σ
2
t−k) = (exp{σ2βk} − 1)(E[σ2

t ])
2 (2.7)

for any integer k > 0. Moreover, from (2.4) and (2.5), the variance of the squared returns
y2
t is

V ar[y2
t ] = E[(σ2

t )
2u4

t ]− (E[σ2
t u

2
t ])

2

= E[(σ2
t )

2]E[u4
t ]− (E[σ2

t ])
2

= (E[σ2
t ])

2

[(
V ar[σ2

t ]

(E[σ2
t ])

2
+ 1

)
E[u4

t ]− 1

]
= (E[σ2

t ])
2(exp{σ2}E[u4

t ]− 1). (2.8)

With Eqs. (2.7) and (2.8), the ACF of the squared return at lag k, denoted ρ(k) for any
positive integer k, is

ρ(k) =
exp{σ2βk} − 1

exp{σ2}E[u4
t ]− 1

(2.9)

≈ exp{σ2} − 1

exp{σ2}E[u4
t ]− 1

βk. (2.10)

From (2.10), it can be seen that ρ(k) goes to zero as k increases.

Expressing the ACF in (2.10) as a function of its unconditional kurtosis, we can see in
the SV model the properties of high kurtosis and low, but slowly decaying, autocorrela-
tions of the squared returns. The theoretical form of the ACF of the squares, proposed by
Teräsvirta (1996), is given by

ρ(k) =
(κ/E[u4

t ])
βk − 1

κ− 1
. (2.11)

Under the assumption of a finite fourth moment of ut and |β| < 1, this function allows us to
compare the theoretical combination of ρ(k) and κ with the empirical ρ(k)/κ combination
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for a given lag k. Thus, in the SV-normal model, the first-order autocorrelation in (2.11)
can be written

ρ(1) =
(κ/3)β − 1

κ− 1
. (2.12)

Note that ρ(1) is similar to the first-lag autocorrelation of an ARMA(1,1) model. In addi-
tion, the ACF of GARCH(1,1) has the same properties as that of ARMA(1,1) and hence
the SV model behaves similarly to the GARCH(1,1) model.

Using the relationship between the ACF of the squared series and the kurtosis of the
series in (2.12), the relationship between β and κ can be described as follows. Assuming
β ≥ 0.9, which is typical for a daily return, if ρ(1) ≤ 0.15, which is often used as an
empirical first-order autocorrelation for a daily return, the predicted kurtosis is less than
11.2. On the other hand, for κ ≥ 7, also a typical value of the empirical kurtosis, the
predicted ρ(1) is greater than 0.191. Thus, the SV model with a normal innovation is
unlikely to simultaneously capture both the low but slowly decaying ACF of y2

t and the
leptokurtosis of the return distribution. This can be seen more clearly in Fig. 2.1. The
graph on the left-hand side shows the function in (2.12) for different values of β, 0.9, 0.95,
and 0.99, with the empirical ρ(1)/κ combination of six return series under a normal error
assumption. The data will be described in Section 2.4.1. Obviously, two of the empirical
values are quite far from the theoretical curves calculated by the formula in (2.12), while
the others are near or on the curves.

Suppose that the error ut follows a heavy-tailed distribution such that E[u4
t ] > 3. We

will consider a scaled Student-t distribution and the generalized error distribution (GED)
(Box and Tiao (1973) and Liesenfeld and Jung (2000)), typically used for a heavy-tailed
distribution.

First, let us consider a Student-t distribution with zero mean and unit variance for ut.
Its density function is given by

f(x) = π(ω − 2)−1/2 Γ
(
ω+1

2

)
Γ
(
ω
2

) [1 +
x2

ω − 2

]−(ω+1)/2

, (2.13)

where Γ(·) is a gamma function and the degree of freedom ω > 2. Since its variance is one,
the kurtosis of ut becomes E[u4

t ] = 3(ω−2)/(ω−4), provided ω > 4, which is greater than
three if ω is finite. Notice that the unconditional fourth moment E[u4

t ] does not exist if
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Figure 2.1: ρ(1)/κ combination for the data and its theoretical value in SV with normal
(left) and Student-t (right) error assumptions for different values of β. Asteroid(*) repre-
sents an empirical combination and lines represent a set of theoretical combinations. Solid
line for β = 0.9, solid-dotted line for β = 0.95, and dotted line for β = 0.99.
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ω ≤ 4. Plugging this into (2.11), the first-order autocorrelation of the squared returns is

ρ(1) =

(
κ(ω−4)
3(ω−2)

)β
− 1

κ− 1
. (2.14)

Another possible heavy-tailed distribution for ut is a GED. The density of a GED random
variable with zero mean and unit variance is given by

f(x) =
ν exp[−1/2|x/ξ|ν ]
ξ Γ(1/ν)21+1/ν

, 0 < ν <∞ (2.15)

where

ξ =

√(
1

2

)2/ν
Γ(1/ν)

Γ(3/ν)
.

It should be noted that the GED is identical to a normal distribution when ν = 2 and for
ν < 2, its kurtosis is E[u4

t ] = Γ(1/ν)Γ(5/ν)/[Γ(3/ν)]2, which is greater than three (Johnson
and Kotz (1970)).

The right panel of Fig. 2.1 shows the theoretical first-order autocorrelation/kurtosis com-
bination curves and the empirical values from our data in the SV model with the Student-t
error assumption. We assume ω = 8 degrees of freedom. This is equivalent to the case
where ν ≈ 1.26 in the GED distribution. Both lead to E[u4

t ] = 4.5. The two values that
deviated from the theoretical curve under a normal assumption (left panel) are now quite
close to the theoretical values. On the other hand, the four values that were close to the
curve under a normal assumption are now quite far from the theoretical values. Therefore,
the assumption of a leptokurtic distribution for the error process ut helps the model to be
more compatible with a low but persistent ACF of the squared returns and to have a high
kurtosis of the returns.

2.3 Estimation Methods

Despite the simplicity of the model, it is not easy to estimate the SV model because
of the existence of the latent process λt. There are various ways of estimating this model.
Some approaches use the method of moments, and others approximate the likelihood. In
this chapter, two of the most popular and efficient estimation methods, SML and MCMC,
are considered. We will introduce a particle filter for the volatility estimation.
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2.3.1 Simulated Maximum Likelihood

For the SV model in (2.1) and (2.2), the likelihood associated with the known observa-
tions YT = {yt}Tt=1 and latent variables ΛT = {λt}Tt=1 is given by

L(θ;YT ) =

∫
RT

f(YT ,ΛT |θ) dΛT , (2.16)

where θ denotes the vector of parameters α, β, and γ to be estimated, and f(·) is a
probability density. The simulated maximum likelihood (SML) method was introduced by
Danielsson and Richard (1993); it depends on Monte Carlo (MC) integration to evaluate
the likelihood in (2.16). After estimating the likelihood by MC simulation, SML seeks
values of the parameter vector θ that maximize the estimated likelihood. To efficiently
estimate the likelihood in (2.16), we will use the efficient importance sampling (EIS) pro-
posed by Liesenfeld and Richard (2003). The EIS implementation is discussed below.

Efficient Importance Sampling

The EIS technique (Liesenfeld and Richard (2003)) chooses in the following way an IF
that can provide a good approximation of f(YT ,ΛT |θ).

Consider the following factorization of the likelihood function in (2.16) using an IF g(ΛT |YT , θ):

L(θ;YT ) =

∫
RT

f(YT |ΛT , θ)f(ΛT |θ) dΛT (2.17)

=

∫
RT

f(YT |ΛT , θ)f(ΛT |θ)
g(ΛT |YT , θ)

g(ΛT |YT , θ) dΛT

=

∫
RT

h(ΛT , YT |θ)g(ΛT |YT , θ) dΛT (2.18)

where h(ΛT , YT |θ) = f(YT |ΛT , θ)f(ΛT |θ)/g(ΛT |YT , θ) is a remainder function (RF). To find
an IF g(ΛT |YT , θ) that depends on both λT and YT , EIS considers a particular factorization:

g(ΛT |YT , θ) =
T∏
t=1

f(λt|Λt−1, Yt−1, θ, et), (2.19)

where et is an auxiliary parameter that depends on the observations YT . Then, we find a
function k(Λt; et) such that

g(ΛT |YT , θ) =
T∏
t=1

C(λt−1, et)k(Λt; et), (2.20)
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where C(λt−1, et) = 1∫
k(Λt;et)dλt

is an integral constant that makes k(Λt; et) a density func-

tion. For ease of notation, we remove θ from the functional notations of C and k.

Estimation of et

For the SV model, the natural choice of k(Λt; et) could be proportional to a Gaussian
density for λt given λt−1. Thus, we can express the function k as a product of two func-
tions:

k(Λt; et) = ξ(λt, et) f(λt|λt−1, θ). (2.21)

Since f(λt|λt−1, θ) is a Gaussian density, an auxiliary vector et can be estimated via regres-
sion coefficients from a linear regression if ξ(λt, et) is chosen as a Gaussian density kernel
exp{e1,tλt + e2,tλ

2
t}. That is, log ξ(λt, et) approximates log f(yt|λt, θ)− logC(λt, et+1) as in

Liesenfeld and Richard (2003).

The regression equation is given by

log f(yt|λt, θ)− logC(λt, et+1) = constant+ e1,tλt + e2,tλ
2
t + at, (2.22)

for t = 1, ..., T , where at is a regression error term. Assuming C(λT ; eT+1) = 1, this regres-
sion can be done backward.

The conditional density of λt is given by

f(λt|λt−1, θ) =
1√

2πγ2
exp

[
−(λt − α− βλt−1)2

2γ2

]
. (2.23)

Substituting this density into (2.21), the function f(λt|Λt−1, Yt−1, θ, et) in (2.19) is given
by

f(λt|λt−1, yt−1, θ, et) =
1√

2πVt
exp

[
−(λt −Mt)

2

2Vt

]
,

where

Mt =

(
α + βλt−1

γ2
+ e1,t

)
Vt, Vt =

γ2

1− 2e2,tγ2
,

and logC(λt, et+1) is chosen as

logC(λt, et+1) = −M
2
t

2Vt
+

(α + βλt−1)2

2γ2
− 1

2
log

Vt
γ2
.
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Since C(λt, et+1) depends on e1,t+1 and e2,t+1, the regression coefficients are computed re-
cursively, from t = T, T − 1, ..., 1, assuming C(λT , eT+1) = 1.

Once et is estimated, we have the IF g, given by

g(ΛT |YT , θ) =
T∏
t=1

C(λt−1, êt) exp{ê1,tλt + ê2,tλ
2
t}f(λt|λt−1, θ). (2.24)

Using this IF, the corresponding likelihood is estimated by

L̂(θ;YT ) =
1

N

N∑
i=1

T∏
t=1

f(yt|λ(i)
t , θ)

C(λt−1, êt) exp{ê1,tλ
(i)
t + ê2,tλ

(i)2
t }

, (2.25)

where λ
(i)
t is drawn from g(Λ

(i)
T |YT , θ) in (2.24). Note that the conditional distribution

of yt given λt is normal with mean zero and variance exp{λt}.

In summary, the EIS algorithm to evaluate the likelihood for the SV model in (2.16),
given an initial parameter vector θ, is as follows:

1. Generate the Λ
(i)
T according to (2.2).

2. Assuming C(λT , eT+1) = 1, obtain et by performing T regressions as in (2.22), work-
ing backward from t = T to t = 1.

3. Generate the new Λ
(i)
T from the importance density g(ΛT |YT , θ) in (2.24).

4. Repeat Steps 2 and 3 until either et or the new λt converges for all t.

5. Compute the estimated likelihood in (2.25).

2.3.2 Markov Chain Monte Carlo

The MCMC method is also useful for obtaining the estimate of a parameter vector θ in
the SV model. It employs f(θ,ΛT |YT ) in sampling for θ, where λt is a latent log-variance
process. We will consider the MCMC method based on Gibbs sampling proposed by Kim
et al. (1998).
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Gibbs sampling algorithm

In the MCMC with Gibbs sampling, both ΛT and θ are to be sampled from their pos-
terior densities. For ease of computation, we will generate µ, which is the unconditional
mean of λt, by Gibbs sampling and convert it to α using the following relationship:

µ =
α

1− β
. (2.26)

Throughout this section, the parameter vector θ is (µ, β, γ).

For given initial values (Λ
(0)
T , θ0), the algorithm to sample (ΛT , θ) is given as follows (Kim

et al. (1998)):

1. Draw λt from λt|Λ−t, YT , θ for t = 1, ..., T .

2. Draw γ2 from γ2|YT ,ΛT , µ, β.

3. Draw β from β|YT ,ΛT , µ, γ
2.

4. Draw µ from µ|YT ,ΛT , β, γ
2.

Here, Λ−t denotes a vector of λt excluding the tth component, that is, (λ1, ..., λt−1, λt+1, ..., λT ).
Note that a cycle through Steps 1 to 4 is called a sweep. To achieve a certain accuracy,
this algorithm requires a sufficiently large number of sweeps, usually several thousand. The
details of each step are given below.

Step 1. Draw λt

The most difficult part of this process is to effectively sample λt from λt|Λ−t, YT , θ because
this step should be carried out T times at each sweep. To improve the computational
efficiency, an acceptance/rejection procedure can be applied in sampling λt.

The conditional density f(λt|Λ−t, YT , θ) can be expressed as

f(λt|Λ−t, YT , θ) =
f(YT |λt,Λ−t, θ)f(λt|Λ−t, θ)

f(YT |Λ−t, θ)

∝ f(yt|λt, θ)f(λt|Λ−t, θ) (2.27)
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for t = 1, ..., T . Note that, in the SV model,

f(λt|Λ−t, θ) ∼ N(mt, v
2), (2.28)

where

mt = µ+
β[(λt−1 − µ) + (λt+1 − µ)]

1 + β2
and v2 =

γ2

1 + β2
,

where µ is given in (2.26).

To establish the acceptance/rejection criterion, let the log density of yt given λt and θ
be a constant plus the logarithm of the joint density log f ∗(yt, λt, θ). Then log f ∗(·) can be
approximated by a linear function of λt using the first-order Taylor expansion, originated
at mt. That is,

log f ∗(yt, λt, θ) = −1

2
λt −

y2
t

2
exp{−λt}

≤ −1

2
λt −

y2
t

2
[(1 +mt) exp{−mt} − λt exp{−mt}]

.
= log g∗(yt, λt,mt, θ). (2.29)

Substituting (2.29) into (2.27), the acceptance/rejection probability is induced from the
given inequality:

f(yt|λt, θ)f(λt|Λ−t, θ) ≤ f ∗(yt, λt, θ)f(λt|Λ−t, θ)
≤ g∗(yt, λt,mt, θ)f(λt|Λ−t, θ).

Notice that the product of g∗(·) and f(·) on the right-hand side of the above inequality is
proportional to a normal density with variance v2 and mean m∗t = mt+

v2

2
[y2
t exp{−mt}−1].

The acceptance/rejection procedure, therefore, can be performed as follows: First, draw a
proposed λt from N(m∗t , v

2). Second, accept the value with probability f ∗/g∗; if rejected,
go to the first step.

Step 2. Draw γ2 and β

Sampling γ2 is relatively intuitive and straightforward. Assume an inverse Gamma (IG)
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distribution with parameters a/2 and b/2 as a conjugate prior for γ2. In Bayesian analysis,
an inverse Gamma distribution is commonly used as a conjugate prior for the variance
of a normal distribution. In the same spirit, it is chosen here because a log-variance λt is
normally distributed assuming a normal distribution for vt and |β| < 1. Setting a = 5 and
b = 0.01× a, the posterior becomes

γ2 |YT ,ΛT , µ, β

∼ IG

(
T + a

2
,
b+ (λ1 − µ)2(1− β2) +

∑T−1
t=1 ((λt+1 − µ)− β(λt − µ))2

2

)
,

where µ is given in (2.26).

Setting β = 2β∗ − 1, where β∗ ∼ Beta(β1, β2), a prior density of β can be written as

f(β) ∝
(

1 + β

2

)β1−1(
1− β

2

)β2−1

(2.30)

for −1 < β < 1. Other priors can be chosen for β (see Phillips (1991), Schotman and
Van Dijk (1991), Chib and Greenberg (1994), and Marriott and Smith (1992)). How-
ever, this prior is chosen to ensure stationarity. Similarly to Step 1, we can establish an
acceptance/rejection criterion for β, and the algorithm for drawing β is as follows:

1. Initialize β and set β(0).

2. Sample βprop ∼ N(β̂, v2
β), where β̂ =

∑T
t=1(λt+1−µ)(λt−µ)∑T−1

t=1 (λt−µ)2
and v2

β = γ2∑T−1
t=1 (λt−µ)2

.

3. Accept the proposed value as β(1) with probability exp[g(βprop− g(β(0)))]; if rejected,
set β(1) as β(0) and go to Step 2. A function g(β), proposed by Chib and Greenberg
(1995), is given by

g(β) = log f(β)− (λ1 − µ)2(1− β2)

2γ2
+

1

2
log(1− β2).

4. Repeat Steps 2 and 3 until convergence.
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Step 4. Draw µ and Determine α

For µ, we take an informative prior N(0, 10). This prior is chosen for the ease of likelihood
calculations (see Kim et al.(1998)). Then the posterior becomes a normal distribution
with mean

µ̂ = v2
µ

[
1− β2

γ2
λ1 +

1− β
γ2

T−1∑
t=1

(λt+1 − βλt)

]
and variance

v2
µ =

γ2

(T − 1)(1− β)2 + (1− β2)
.

Therefore, α can be obtained by the relationship in (2.26).

2.3.3 Volatility Estimation

In our empirical analysis, we found that a particle filter (Pitt and Shephard (1997))
produced better volatility estimates than a volatility estimation implied by SML. Given
this, we employ a particle filter to estimate the log-variance λt or volatility σt = exp{λt/2}
for a given estimated parameter θ̂ obtained by SML or MCMC. The idea is for a given θ̂
to draw M new samples λnewt from λt|Yt, θ̂, given λnew,1t−1 , ..., λnew,Mt−1 from λt−1|Yt−1, θ̂, where
Yt = (y1, ..., yt).

According to Bayes’ theorem, the conditional density f(λt|Yt, θ̂) is proportional to
f(yt|λt, θ̂)f(λt|Yt−1, θ̂):

f(λt|Yt, θ̂) ∝ f(yt|λt, θ̂)f(λt|Yt−1, θ̂),

where

f(λt|Yt−1, θ̂) =

∫
f(λt|λt−1, θ̂)f(λt−1|Yt−1, θ̂)dλt−1. (2.31)

Then, the integral in (2.31) can be estimated by

f(λt|Yt−1, θ̂) ≈
1

M

M∑
j=1

f(λt|λ(j)
t−1, θ̂),
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where λ
(j)
t−1 is drawn from f(λt−1|Yt−1, θ̂) for j = 1, ...,M . This leads to

f(λt|Yt, θ̂) ∝ f(yt|λt, θ̂)
1

M

M∑
j=1

f(λt|λ(j)
t−1, θ̂). (2.32)

To efficiently sample λt, we consider an acceptance/rejection procedure, simi-

lar to that in Step 1 in Section 2.3.2. Let λt|t−1 = α̂ + β̂(M−1
∑
λ

(j)
t−1) and

log f(yt|λt, θ̂) = constant + log f ∗(yt, λt, θ̂). By the first-order Taylor approxima-
tion, we obtain the following acceptance probability:

log f ∗(yt, λt, θ̂) = −1

2
λt −

y2
t

2
exp{−λt}

≤ −1

2
λt −

y2
t

2
[(1 + λt|t−1) exp{−λt|t−1} − λt exp{−λt|t−1}]

.
= log g∗(λt, λt|t−1, θ̂). (2.33)

It can also be shown via some algebra that

g∗(λt, λt|t−1, θ̂)f(λt|λ(j)
t−1, θ̂) ∝ πjfN(λt|λ(j)

t|t−1, γ̂
2), (2.34)

where fN(λt|λ(j)
t|t−1, γ̂

2) denotes a normal density with mean λ
(j)
t|t−1, and variance γ̂2,

πj = exp

[
1

2γ̂2
{(α̂ + β̂λ

(j)2
t|t−1)2 − λ(j)2

t|t−1}
]
,

and

λ
(j)
t|t−1 = α̂ + β̂λ

(j)
t−1 +

γ̂2

2
[y2
t exp{−λt|t−1} − 1].

Hence, because of the relationship in (2.34), the right-hand side of (2.32) is bounded as

f(yt|λt, θ̂)
1

M

M∑
j=1

f(λt|λ(j)
t−1, θ̂) ≤ g∗(λt, λt−1, θ̂)

1

M

M∑
j=1

f(λt|λ(j)
t−1, θ̂)

∝ 1

M

M∑
j=1

πjfN(λt|λ(j)
t|t−1, γ̂

2).
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In summary, the algorithm for drawing λt is given as follows: First, draw a proposal
λpropt for the mixture density

∑M
j=1 π

∗
j fN(λt|λ(j)

t|t−1, γ̂
2), where π∗j = πj/

∑
πj, and then

accept λpropt with probability f ∗(yt, λt, θ̂)/g
∗(λt, λt|t−1, θ̂). If rejected, go to the first step.

It should be noted that the volatility estimate supplied by the particle filter is in fact a
one-step ahead prediction (see Larsson (2005) and Pederzoli (2006)).

2.4 Empirical Analysis

In this section, we perform an empirical analysis with six actual return series.
Parameter estimation results for the SV model obtained by SML with the EIS and MCMC
methods and volatility estimation results obtained by a particle filter are discussed.
Moreover, model diagnostics based on the residual analysis are performed. All the code is
written in MATLAB 7.3.0.

2.4.1 Data

In our empirical analysis, we study the following financial time series: the weekly spot
exchange rates of the US Dollar/Japanese YEN ($/YEN) from October 1, 1981 to June
28, 1985 (Harvey et al. (1994)), the S&P500 index, which are the daily closing prices from
January 2, 1980 to December 12, 1987 (Jacquier et al. (1994)), the stock prices of IBM
from January 1, 1973 to December 31, 1991 (Anderson (1994)), the stock prices of Honda
from January 1, 1996 to August 29, 2003, the Nikkei 225 index from December 2, 1992 to
January 15, 2001, and the stock prices of CIBC from January 1, 1996 to August 29, 2003.
All the stock prices are the daily closing prices. The total number of observations and the
summary statistics for each return series are given in Table 2.1.

Note that each return series yt is mean corrected as

yt = log(pt/pt−1)−
∑T

t=1 log(pt/pt−1)

T
for t = 1, ..., T,

where pt is the price of an underlying asset at time t and YT = (y1, ..., yT ). The sample
kurtosis of the return for each series is greater than three (see Table 2.1), which indicates
that the distribution of the return is leptokurtic. In particular, the kurtoses of S&P500
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Table 2.1: Summary statistics of data

Statistics $/YEN S&P500 IBM HONDA NIKKEI 225 CIBC
Sample size 945 2023 4693 1557 2000 1700

Mean 0.0069 0.0445 0.0151 -0.0500 0.0258 0.0385
Std. dev. 0.5928 1.1399 1.4566 2.1384 1.4731 1.6171
Kurtosis 4.9632 36.1123 27.8268 6.4482 5.4816 5.3648
LBy(30) 25.0678 45.9152 50.3135 36.8192 39.7589 70.5274

(0.7217) (0.0317) (0.0115) (0.1825) (0.1096) (0.0000)
LBy2(30) 274.8873 177.7401 208.7415 284.0462 539.3733 386.2076

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

and IBM are large. This is due to the extremely unusual values in the series during the
Black Monday period.

In addition to the summary statistics in Table 2.1, we also show the autocorrela-
tions of the returns in Fig. 2.2 and the autocorrelation of the squared returns in Fig. 2.3.
All the returns, except possibly the S&P500 index and CIBC, show little autocorrelation.
The ACFs of the squares however are significant. For all the series the squares of the ACFs
start at low levels and decay slowly, implying strong persistence. This is typical empirical
behavior of return series. This is also confirmed by the Ljung-Box statistics shown in

the bottom panels in Table 2.1. LBy(30) = T (T + 2)
∑30

j=1

ρ̂2j
T−j denotes the Ljung-Box

statistic calculated with the first thirty sample autocorrelations of yt while LB2
y(30) is

that of the squares. The quantities in parentheses are the p-values. Diebold (1988) has
cautioned about the use of Ljung-Box statistics in checking for serial correlation in time
series with conditional heteroscedasticity. However, several authors in this area (see for
example Liesenfeld and Richard (2003)) still use it for checking serial correlation. Thus,
we list these values here as an indicator and not as a real test statistic.
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Figure 2.2: Autocorrelation functions of $/YEN, S&P500, IBM, Honda, Nikkei 225, and
CIBC
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Figure 2.3: Autocorrelation functions of the squares of $/YEN, S&P500, IBM, Honda,
Nikkei 225, and CIBC
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Table 2.2: SML estimation of SV-normal model

Parameter $/YEN S&P500 IBM HONDA NIKKEI 225 CIBC
α 0.0001 -0.0342 0.0020 0.0001 -0.0121 -0.0092

MC std. error 0.0008 0.0019 0.0105 0.0014 0.0010 0.0005
Std. error 0.0222 0.0159 0.0122 0.0463 0.0388 0.0428

β 0.9719 0.9728 0.9660 0.9702 0.9648 0.9707
MC std. error 0.0005 0.0008 0.0035 0.0010 0.0013 0.0004

Std. error 0.0197 0.0498 0.0325 0.0208 0.0197 0.0608
γ 0.1510 0.1982 0.2140 0.1937 0.1636 0.1746

MC std. error 0.0029 0.0016 0.0014 0.0008 0.0007 0.0013
Std. error 0.0582 0.0344 0.0329 0.0479 0.0577 0.0491

σ̂ 0.4115 0.7321 0.6851 0.6390 0.3870 0.5280
κ̂ 4.5257 6.2382 5.9520 5.6840 4.4176 5.0864

CPU time* 2052.6 2012.4 2968.1 2362.4 2491.7 2504.9

∗in seconds

2.4.2 Estimation Results: SML

In the implementation of SML, the EIS method is employed with four iterations and
an MC simulation sample size of fifty. Our initial experimentation with several values
of M , the number of MC simulations, indicated that the MC simulations converges
approximately when M = 50. Both SV-normal and SV-t models are considered.

The SV-normal estimation results are summarized in Table 2.2 along with the standard
errors and the MC sampling standard errors of the parameter estimates. The standard
error is calculated from fifty repetitions with the same random numbers, while the MC
standard error is computed with different random numbers. Both the MC standard errors
and the standard errors of the point estimators are significantly small, which indicates that
the SML estimates are quite precise. The estimated β’s are highly significant in all cases
in the sense that all the estimated values of β are above 0.95. This result is consistent
with the property of high persistence in the log-variance process. To see the leptokurtosis
of the return series implied by the models, the estimated kurtosis is calculated. Given the
estimated parameter θ̂, the estimated kurtosis is calculated by

κ̂ = exp{σ̂2}E[u4
t ],
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Table 2.3: SML estimation of SV-t distribution with ω = 8

Parameter $/YEN S&P500 IBM HONDA NIKKEI 225 CIBC
α -0.0099 0.0001 0.0051 -0.0173 0.0048 -0.0102

MC std. error 0.0007 0.0004 0.0010 0.0004 0.0006 0.0004
Std. error 0.0174 0.0227 0.0109 0.0337 0.0307 0.0189

β 0.9901 0.9899 0.9904 0.9873 0.9853 0.9882
MC std. error 0.0006 0.0004 0.0027 0.0007 0.0001 0.0003

Std. error 0.0195 0.0351 0.0206 0.0188 0.0187 0.0599
γ 0.0698 0.1794 0.1078 0.0971 0.0898 0.0899

MC std. error 0.0006 0.0012 0.0006 0.0004 0.0006 0.0003
Std. error 0.0442 0.0103 0.0211 0.0399 0.0401 0.0328

σ̂ 0.2473 1.6014 0.6082 0.3736 0.2763 0.3445
κ̂ 5.7625 22.3192 8.2668 6.5381 5.9322 6.3507

CPU time* 2679.4 2449.5 2971.5 2207.7 2641.3 2601.1

∗in seconds

where σ̂2 = γ̂2/(1 − β̂2). The values of κ̂ in Table 2.2 are somewhat close to the sample
values given in Table 2.1, except for the S&P500 and IBM series. In those two cases, the
sample kurtosis is extraordinarily large resulting from some unusual values in the series.
It is hence reasonable to consider a distribution with heavier tails for ut. We choose a
Student-t distribution with ω = 8 degrees of freedom for the error ut.

Table 2.3 shows parameter estimation results for the SV model with a Student-t dis-
tribution with ω = 8 degrees of freedom. The MC standard errors for all the series are
smaller than those from the SV-normal model. The decline in the MC standard errors may
be expected. The estimates of the parameter γ in the SV-t specification are lower than
those of the SV-normal model. This induces a reduction in the unconditional variance of
λt, which is σ2 = γ2/(1 − β2), so that the variation of the simulated latent variable λt is
smaller. Consequently, the MC sampling errors of the estimated parameters decline under
the SV-t model. Moreover, the estimated values of the kurtosis are greater than those
under the SV-normal model. In particular, the estimated kurtosis of the S&P500 series
gets even closer to the sample kurtosis of the series.

In Figs. 2.4 and 2.5, the MC estimates of the sequence of volatilities σ̂t = exp{λ̂t/2} of
all the series, resulting from the SV-normal (dashed line) and the SV-t (solid line) models,

43



are presented along with the absolute value of the return series. Both SV models seem to
capture large shocks in the return series more accurately than small shocks. For instance,
this can be seen for the S&P500 and IBM series at the October 1987 crash. Moreover,
the jumps in the volatility process associated with these extreme values are much greater
under the SV-normal than under the SV-t model. This is because the SV-t model has
a larger persistence than the SV-normal model. In most cases, the estimated volatilities
from the SV-t model exhibit smoother movements than those from the SV-normal model.

2.4.3 Model Diagnostics

The estimates of the parameters in both the SV-normal and SV-t models are reasonable
for most of the return series. However, the SV-t model performs slightly better than the
SV-normal model in capturing the regularities of the financial return series mentioned
earlier. To validate the fitted model, we performed model diagnostics for the series Nikkei
225, S&P500, and IBM. Under the normal assumption for ut, consider the standardized
residual at time t from Eq. (2.1):

ût ≡
yt
σ̂t
, t = 1, ..., T, (2.35)

where yt is the observed return and σ̂t = exp{λ̂t/2}, which is the estimated volatility
displayed in Figs. 2.4 and 2.5. If the fitted model is adequate for the data, ût follows
a standard normal distribution under the standard normal assumption and a Student-t
distribution with zero mean and unit variance under the scaled Student-t distributional
assumption.

Table 2.4: LBu(30): Ljung-Box Statistics for standardized residual ût along with p-value

Assumption NIKKEI 225 S&P500 IBM
Normal 31.8700 42.6106 42.9798

(0.3736) (0.0634) (0.0588)
Student-t 35.1249 42.5384 42.5903

(0.2381) (0.0525) (0.0636)

Figure 2.6 displays the diagnostic plots of ût for the Nikkei 225, S&P500, and IBM series
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under the normal assumption. The residual plots in the first row show that the behavior
of the residuals is quite similar to that of the actual series. In particular, large jumps still
appear for the S&P500 and IBM series. For S&P500, the ACF plot of ût shows a slightly
large spike at lag 1. However, its value is small (< 0.05), so it can be ignored. For Nikkei
225 and IBM, there are no significant autocorrelations in the standardized residuals. As
a reference, the Ljung-Box statistics are given in Table 2.4. All three p-values are greater
than 0.05. Thus, the standardized residuals ût tend to be uncorrelated for the three series
except maybe for the S&P500 series. To check normality, QQ plots of ût are given in the
last row. There are large deviations in both the left and right tails of the QQ plots for all
the data. This indicates a violation of the normality assumption for ût.

Figure 2.7 exhibits the diagnostic plots of ût when ut has a Student-t distribution with 8
degrees of freedom. In comparison with the residual plots under the SV-normal model, the
variation of the standardized residuals for the series seems to be constant. For the ACF
plots of ût, patterns similar to those under the SV-normal model are observed. Thus, the
residuals are uncorrelated for the series. The QQ plots in the last row display the sample
quantiles versus the quantiles of the Student-t distribution with 8 degrees of freedom.
Although there are small deviations from the straight lines, the sizes of the deviations are
smaller than in the normal case. Therefore, we conclude that the heavy-tailed distributional
assumption produces a better fit to the Nikkei 225, S&P500, and IBM series.

2.4.4 Estimation Results: MCMC

The initial values of the parameters are (Λ, α, β, γ) = (
−→
0 , 0.01, 0.95, 0.14), where

−→
0 is

a 1× T zero vector. The number of iterations for the log variance and parameters are 500
and 1000, respectively. We repeat Steps 1 to 4, described in Section 2.3.2, 100,000 times
so that we have 100,000 sweeps. The first 5,000 iterations are taken as a burn-in period.

The parameter estimation results under the SV-normal model are displayed in
Table 2.5. The standard errors of the parameters are small, and thus the estimated
values are statistically reasonable. For the persistent parameter β, the estimated values
are slightly larger than those under the SV-normal model via SML, but they are still
reasonably close. This implies that SML performs as efficiently as MCMC, which is
consistent with Danielsson’s finding (1994). However, the computing time (in seconds)
of the MCMC algorithm is longer than that of SML: approximately thirty times longer
for our data set. This may be the result of the large number of iterations: 100,000
sweeps and at each sweep 500 repetitions for volatility and 1,000 repetitions for a
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Table 2.5: MCMC estimation of SV-normal model

Parameter $/YEN S&P500 IBM HONDA NIKKEI 225 CIBC

α 0.0002 0.0000 0.0001 0.0000 0.0000 -0.0001
MC std. error 0.0054 0.0006 0.0003 0.0014 0.0014 0.0025

Std. error 0.0132 0.0014 0.0482 0.0468 0.0468 0.0181

β 0.9791 0.9803 0.9752 0.9806 0.9806 0.9811
MC std. error 0.0004 0.0010 0.0008 0.0006 0.0006 0.0016

Std. error 0.0171 0.0328 0.0493 0.0092 0.0092 0.0328

γ 0.1602 0.1892 0.1749 0.1349 0.1349 0.1613
MC std. error 0.0009 0.0012 0.0014 0.0007 0.0007 0.0041

Std. error 0.0479 0.0524 0.0421 0.0329 0.0329 0.0116

σ̂ 0.6205 0.9176 0.6245 0.4736 0.4736 0.6949
κ̂ 5.5793 7.5097 5.6018 4.8174 4.8174 6.0103

CPU time* 6279.4 6237.3 7368.9 6307.4 6307.4 6049.3

parameter. In general, 1,000,000 or more sweeps and more iterations are required to
minimize the dependence of the samples. However, this inefficiency of the MCMC method
can be reduced by the improved MCMC algorithm (Kim et al. (1998)). The comput-
ing time could also be reduced by the use of a different computer language such as C/C++.

In the filtering for volatilities, M = 1000, which is the number of samples for λt
for t = 1, ..., T . Figures 2.8 and 2.9 display the estimated volatility of the six series with
the MCMC parameter estimates. Similarly to the SML volatility estimation shown in
Figs. 2.4 and 2.5, sudden large jumps of the return series are clearly captured by a particle
filter for most of the return series. Overall, the filtered volatilities correspond fairly well
with the movement of the returns.

2.5 Concluding Remarks

We have implemented SML to estimate the standard SV model in the context of six
financial return series. Consistent with the well-known empirical regularities of return
series, the six series are leptokurtic and have no serial correlations in the series, but serial
correlations exist in the squares. Volatility clustering is also observed. For the parameter
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estimation, the EIS algorithm was employed for the SV-normal and SV-t models. The
kurtosis implied by the SV-t model is generally much closer than that of the SV-normal
model to the sample kurtosis. The model diagnostics indicate that the SV-t specification
is more appropriate than the SV-normal for most of our data.

In particular, the S&P500 and IBM series have extremely large sample kurtoses.
This is because of the existence of jumps in the series during the Black Monday period.
To model these extreme values more precisely, one could consider a model with a jump
component. On the other hand, if the unusual values are excluded, the tail behaviors of
these series are similar to those of the other series.

To compare the performances of SML and MCMC, we also implemented the MCMC
method with the same data set. The estimation results obtained by SML and MCMC are
similar and statistically precise in the sense of a small standard error of the parameter
estimates. Despite the efficiency of SML and MCMC, both methods have to be carefully
implemented. For SML, the common random numbers (CRN) have been used to accelerate
the convergence of EIS. For MCMC, a more efficient algorithm should be applied to
effectively draw a latent variable ΛT . In our empirical study, SML has an edge on MCMC
in terms of computing time.
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Figure 2.4: SML: Top panels: return series; Bottom panels: estimated volatilities for
$/YEN, S&P500, and IBM 48



Figure 2.5: SML: Top panels: return series; Bottom panels: estimated volatilities for
Honda, Nikkei 225, and CIBC 49



Figure 2.6: SV-normal model via SML: the residual plots are in the first row, the ACFs of
ût are in the second row, and the QQ plots are in the last row.
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Figure 2.7: SV-t model via SML: the residual plots are in the first row, the ACFs of ût are
in the second row, and the QQ plots are in the last row.
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Figure 2.8: MCMC: Top panels: return series; Bottom panels: estimated volatilities for
$/YEN, S&P500, and IBM 52



Figure 2.9: MCMC: Top panels: return series; Bottom panels: estimated volatilities for
HONDA, Nikkei 225, and CIBC 53



Chapter 3

Autoregressive Models with
Stochastic Volatility Errors

ARCH and SV models are designed to analyze and model the conditional variance
(volatility), but the specification of the conditional mean is still important. If the
conditional mean is not appropriately specified, it is impossible to find a consistent
estimator of the variance or volatility process. For instance, consider the standard SV
model. If the conditional mean of the data is captured by an adequate model, the residuals
of the model satisfy the assumption for the error ut, which provides a conditional variance
for the series yt. This can be considered to be the joint estimation of two models: that for
the conditional mean and that for the conditional variance.

Several extended models have been developed and their moment properties have
been studied. Anderson and Bollerslev (1998) and Tsay (2002) considered the ARMA–
GARCH(1,1) model to fit the US dollar and DM exchange rate and the S&P 500
index, respectively. The autocorrelation function (ACF) of the squared series in the
ARMA–GARCH model was derived by Karanasos (1999) and He and Teräsvirta (1999).
Karanasos (2001) showed the ACF of the series in the ARMA–GARCH-in-mean model.
For other combination models, Demos (2002) derived the ACF of a model combining the
EGARCH and SV models, and Karanasos and Kim (2003) studied the moments of the
ARMA–EGARCH model. Modified ARMA-GARCH models are also studied by Goldman
and Tsurumi (2005), Yoo (2010), and Pati and Rajib (2010).

In this chapter, we consider a combination model in which the conditional mean is
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modeled by an AR(p) process and the conditional variance is modeled by the SV model.
We refer to this as the AR(p)–SV model. Murphy and Izzeldin (2005) in an unpublished
manuscript examined the size and power properties of some long memory tests using
bootstrap with observations generated from few models including an autoregressive model
of order 1 with a Stochastic Volatility error model. Koopman and Bos (2004) considered
state space models with stochastic error variances and some special cases of these models
could be linked to ARMA models. Bos and Shephard (2006) discussed similar models and
implemented MCMC. Pellegrini (2009) in an unpublished thesis considered unobserved
component local trend models in which the errors had the traditional SV structure which
they referred to as ARSV(1) structure. The unobserved component local trend models
that they used are equivalent to ARIMA(0,1,1) or ARIMA(0,2,2) models. We focus in
this chapter on the moment properties, exact likelihood, and SML estimation using EIS
of AR(p)–SV model.

In spite of the simple structure of the AR(p)–SV model, its estimation is not triv-
ial because of the existence of the latent log-variance process, as in the SV model. To
efficiently estimate the model, we first consider the estimation methods used for the
SV model, such as the generalized method of moments (Hansen (1982)), the efficient
method of moments (Gallant et al. (1997)), the Markov chain Monte Carlo (MCMC)
(Jacquier et al. (1994) and Kim et al. (1998)), and the simulated maximum likelihood
(SML) (Danielsson and Richard (1993)). Based on our empirical study in Chapter 2,
both methods are powerful and efficient, but SML has an edge over MCMC. Thus, we use
the SML approach to estimate the AR(p)–SV model. We perform a simulation study to
investigate the performance of the SML with the EIS and a sensitivity analysis to examine
the robustness of our estimation method.

To choose the order of the AR process in the AR–SV model, we consider model selection
criteria such as the Akaike information criterion (AIC) and the Bayesian information
criterion (BIC). This is similar to Karanasos and Kim’s (2003) approach in the selec-
tion of the ARMA–EGARCH model. Residual analysis is performed with the fitted model.

This chapter is organized as follows. The standard AR(p)–SV model is introduced
in Section 1, and the moment properties of the model are studied in Section 2. Section 3
describes the SML method with EIS for estimating the AR(p)–SV model and a particle
filter for volatility estimation. We summarize the order determination and diagnostic
checking in Section 4. Section 5 gives a simulation study and a sensitivity analysis, and
Section 6 presents an empirical study with actual data.
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3.1 AR(p)–SV model

The AR(p)–SV model is designed to capture the conditional mean with a standard AR
process and model the conditional variance with the SV model. For any financial time
series yt, a standard AR(p)–SV model is defined as

Φ(B)yt = εt, (3.1)

εt = exp{λt/2}ut, (3.2)

λt = α + βλt−1 + γvt, (3.3)

where

Φ(B) =

p∑
i=0

φiB
i

for t = 1, ..., T . φ0 = 1 and B is a backshift operator such as Byt = yt−1. The error
processes ut and vt are uncorrelated white noises with zero mean and unit variance. vt
is assumed to be normally distributed, but the assumption for ut can be a normal or
heavy-tailed distribution. The processes ut and vt are also uncorrelated with λ1, where
λ1 ∼ N( α

1−β ,
γ2

1−β2 ). The coefficient γ > 0 is the conditional standard deviation of λt given
λt−1.

For a stationary process yt, the following assumptions are needed.

Assumption 3.1. The absolute value of the persistent parameter β is less than 1, i.e.,
|β| < 1.

Assumption 3.2. All the roots of the autoregressive polynomial Φ(B) lie outside the unit
circle.

Assumption 3.1 ensures that the latent log-variance process λt is a stationary AR(1)
process. Throughout this chapter, these two assumptions always hold. Compared with
other time-varying volatility models, the AR(p)–SV model has at least two advantages in
applications. First, it is designed to account for serial correlation in the series yt with the
AR process in Eq. (3.1), so that the model can be applied to any financial time series and
not only the return series. In contrast, the series yt is assumed to be uncorrelated in a
standard SV model. Second, the conditional variance can be captured more explicitly by
the SV structure in Eqs. (3.2) and (3.3).
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3.2 Moment Properties

The kurtosis and ACF of the AR process are well-known (for example, see Box and
Jenkins (1976)). For the SV model, most of the important properties have been discussed
by Taylor (1986, 1994). Jacquier et al. (1994) showed the covariance of the squared return
series, and the ACF of the squared returns was expressed as a function of the kurtosis by
Teräsvirta (1996).

In this section, we discuss the moment structure of the AR(p)–SV model: the kur-
tosis, the ACF of the series, the ACF of the squared series, and the cross-correlation.
First, we derive the moments of any stationary process, and then we specialize the results
to the AR(p)–SV model. Furthermore, we derive the exact likelihood function for this
model.

3.2.1 Kurtosis

Kurtosis is a basic statistical tool to measure the thickness of the tail for the distribution.
To investigate the tail behavior of the AR(p)–SV model, we study the kurtosis of yt.

Proposition 3.1. Suppose that a linear stationary process yt has a moving-average repre-
sentation of the form:

yt =
∞∑
j=0

ψjεt−j, (3.4)

where εt is an uncorrelated sequence with E[εt] = 0 and V ar[εt] = σ2
ε . Then, the second

and fourth moments of yt are given by

E[y2
t ] = V ar[yt] = σ2

ε

∞∑
j=0

ψ2
j , (3.5)

E[y4
t ] = E[ε4t ]

∞∑
j=0

ψ4
j + 6[E[ε2t ]]

2
∑
i<j

∑
ψ2
iψ

2
j , (3.6)

provided E[ε4t ] <∞. In addition, the kurtosis of yt in (3.4) is defined by

κ =
E[y4

t ]

E[y2
t ]

2
=
κ(ε)

∑∞
j=0 ψ

4
j + 6

∑∑
i<j ψ

2
iψ

2
j

(
∑∞

j=0 ψ
2
j )

2
,

where κ(ε) is the kurtosis of εt.
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Proof. For the moments, note that

y2
t =

∞∑
j=0

ψ2
j ε

2
t−j + 2

∑∑
i<j

ψiψjεt−iεt−j, (3.7)

y4
t =

∞∑
j=0

ψ4
j ε

4
t−j + 6

∑∑
i<j

ψ2
iψ

2
j ε

2
t−iε

2
t−j + 4 δ(ε) + 4 ω(ε), (3.8)

where

ω(ε) =
∑

i<j<k<l

∑∑∑
ψiψjψkψlεt−iεt−jεt−kεt−l,

δ(ε) =
∑
i<j

ψ3
iψjε

3
t−iεt−j +

∑
i<j

∑
ψiψ

3
j εt−iε

3
t−j +

∑
i<j<l

∑∑
ψiψjψ

2
l εt−iεt−jε

2
t−l.

Since the εt are uncorrelated, E[εt−iεt−j] = E[ε3t−iεt−j] = 0 for all i 6= j. Thus, moments
E[y2

t ] and E[y4
t ] are easily obtained by taking the expectation on both sides of Eqs. (3.7)

and (3.8).

For the kurtosis, substitute Eqs. (3.5) and (3.6) into the definition of kurtosis. QED

Proposition 3.1 is true for any stationary process expressed as (3.4). Therefore, the
moments of yt for the AR(p)–SV model can be obtained in a similar fashion as follows.
Under Assumptions 3.1 and 3.2, Eq. (3.1) has the following representation:

yt =
∞∑
j=0

ψjεt−j, (3.9)

where ψ0 = 1. Other ψj’s for j = 1, ..., p are obtained by comparing the coefficients in the
identity (1 + ψ1B + ψ2B

2 + · · · + ψpB
p)(1 − ψ1B − ψ2B

2 − · · · − ψpBp) = 1. In contrast
to a conventional stationary process, the error process εt for the AR(p)–SV model satisfies
the SV model specification in (3.2) and (3.3). The following results hold for the SV error
process εt (see Eqs. (2.4)–(2.6)).

Provided E[u4
t ] <∞, the second and fourth moments of εt are given by

E[ε2t ] = E[eλt ] = exp{µ+ σ2/2}, (3.10)

E[ε4t ] = E[e2λtu4
t ] = exp{2(µ+ σ2)}E[u4

t ], (3.11)
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where µ = α
1−β is the unconditional mean of λt and σ2 = γ2

1−β2 is the unconditional variance
of λt. Moreover, the kurtosis of εt is defined as

κ(ε) = κ(u) exp{σ2}, (3.12)

where κ(u) is the kurtosis of the error process ut.

Depending on the distributional assumption for ut, the kurtosis κ(u) has different
expressions. For instance, if ut is normally distributed, κ(u) = 3; if ut follows a Student-t
distribution with ω degrees of freedom, then κ(u) = 3(ω−2)/(ω−4). Under the generalized-
error distributional assumption for ut, the kurtosis is κ(u) = Γ(1/ν)Γ(5/ν)/[Γ(3/ν)]2

(Johnson and Kotz (1970)). Using Eqs. (3.10)–(3.12), we can obtain the moments and
kurtosis of yt for the AR(p)–SV model.

Theorem 3.1. Suppose that a financial time series yt follows an AR(p)–SV model. Then
the second and fourth moments of yt are given by

E[y2
t ] = exp{µ+ σ2/2}

∞∑
j=0

ψ2
j , (3.13)

E[y4
t ] = exp{2(µ+ σ2)}E[u4

t ]
∞∑
j=0

ψ4
j + 6 exp{µ+ σ2/2}

∑∑
i<j

ψ2
iψ

2
j , (3.14)

provided E[u4
t ] <∞. In addition, the kurtosis of yt is defined by

κ =
κ(u) exp{σ2}

∑∞
j=0 ψ

4
j + 6

∑∑
i<j ψ

2
iψ

2
j

(
∑∞

j=0 ψ
2
j )

2
, (3.15)

where κ(u) is the kurtosis of ut.

Proof. Substitute the results for εt in (3.12) into κ in Proposition 3.1. QED

For a special case, consider the AR–SV model of order 1 with the normal assumption
for ut. In the AR(1)–SV model, it can easily be seen that ψj = φj1 in (3.9). Thus, the
kurtosis of yt is given by

κ =

(
1− φ2

1

1 + φ2
1

)
[3 exp{σ2}+ 6φ2

1]. (3.16)
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3.2.2 Autocorrelations of the Series and Squared Series

Next, we consider the behavior of ACFs of the series yt and the squared series y2
t .

Like any other ARMA process with a heteroscedastic error process, such as the ARMA–
GARCH model, the ACF of the series in the AR(p)–SV model has the same expression as
a conventional AR(p) process. The autocovariance and ACF of yt for the AR–SV model
are given in the following proposition. The proofs of the proposition and the theorem are
standard.

Proposition 3.2. Suppose a financial time series yt follows the AR–SV model. Then the
autocovariance of yt at lag k is given by

γk = cov(yt, yt−k) =
∞∑
j=0

ψjψj+kσ
2
ε ,

and thus the ACF of yt at lag k is given by

ρy(k) =

∑∞
j=0 ψjψj+k∑∞

j=0 ψ
2
j

(3.17)

for any k > 0.

Proposition 3.2 implies that in the AR(p)–SV model, the autocorrelation of the series
is described by the AR part only. In contrast to the ACF of yt, the autocorrelation of y2

t is
impacted by the error process εt, which is governed by the SV structure in the AR(p)–SV
model. The following theorem is a special case of Corollary 1 in Palma and Zevallos (2004),
where the error εt has finite kurtosis, but satisfies the SV specification.

Theorem 3.2. Suppose a financial time series yt follows the AR(p)–SV model. Provided
E[u4

t ] <∞, the ACF of y2
t at lag k is given by

ρy2(k) =
2

κ− 1
ρ2
y(k) +

κ− 3

κ− 1

(∑∞
j=0 ψ

2
jψ

2
j+k∑∞

j=0 ψ
4
j

)
, (3.18)

where κ is the kurtosis of yt in (3.15).

In addition, we consider the cross-correlation between the levels and the squared series.
Such a measure is useful to understand volatility asymmetry. Demos (2002) derived the
cross-correlations in the time-varying parameter generalized stochastic volatility model in
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mean (TVP-GSV-M), and Karanasos and Kim (2003) derived the cross-correlation between
the level and the squared series for the ARMA–EGARCH model. Similarly, we obtain the
cross-correlation between the level and the squared series for the AR(p)–SV model.

Theorem 3.3. Suppose a financial time series yt follows the AR(p)–SV model. Provided
E[εt] <∞, the cross-correlation between the level and the squared series is given by

ρ(y2
t , yt−k) =

E[y2
t yt−k]√

V [y2
t ]E[y2

t ]
,

where

E[y2
t yt−k] =

l+k−1∑
j=0

∞∑
l=0

ψ2
jψl ρ(ε2t , εt−(l+k−j))(κ

(ε) − 1)
1
2E[ε2t ]

3
2 , (3.19)

V [y2
t ] = (κ− 1)E[y2

t ]
2,

and

E[y2
t ] = σ2

ε

∞∑
j=0

ψ2
j .

Proof. For the stationary AR(p)–SV process yt given in (3.9), the product of yt and yt−k
is written as

y2
t yt−k =

∞∑
j=0

∞∑
l=0

ψ2
jψjε

2
t−jεt−k−l + 2

∑∑
i<j

∞∑
l=0

ψiψjψlεt−iεt−jεt−l.

Because there is no correlation with εt, the expectation of the product is given by

E[y2
t yt−k] =

∞∑
j=0

∞∑
l=0

ψ2
jψjE[ε2t−jεt−k−l]. (3.20)

According to Eqs. (B.3) and (B.4) in Karanasos and Kim (2003), we have

E[ε2t−j εt−k−l] =

{
E[εt−j εt−(k+l−j)], if j < l + k,

0, otherwise

=

{
ρ(εt−j, εt−(k+l−j))(κ

(ε) − 1)1/2E[ε2t ]
3/2, if j < l + k,

0, otherwise.

Substituting the above equation into (3.20), we obtain the autocovariance of y2
t and yt−k,

satisfying (3.19). QED
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3.2.3 Exact Likelihood Function

Similarly to the derivation of the exact likelihood function for an AR process, we can
derive the likelihood function for the AR(p)–SV model. The likelihood associated with
YT = (y1, ..., yT ) in (3.1), (3.2), and (3.3), for p ≤ T , is defined by

L(ξ;YT ) =

∫
RT

f(YT ,ΛT |ξ)dΛT (3.21)

=

∫
RT

f(YT |ΛT , ξ)f(ΛT |ξ)dΛT , (3.22)

where T is the number of observations and ΛT = (λ1, ..., λT ) is a vector of the latent variable
λt. The parameter vector ξ = (Φ, α, β, γ) is to be estimated, where Φ = (φ1, ..., φp).
The density function f(ΛT |ξ) is a product of f(λt|λt−1, ξ) for all t and the conditional
distribution of λt given λt−1 is normal with mean α+βλt−1 and variance γ2. The conditional
density function f(YT |ΛT , ξ) can be factorized as

f(YT |ΛT , ξ) = f(yp+1, ..., yT |Yp, ξ,ΛT )f(y1, ..., yp|ξ,ΛT ). (3.23)

Because the AR(p)–SV model is a combination of the AR(p) process and the SV model,
the likelihood function in (3.21) has a similar functional form to that for the AR(p)
process. One notable difference between the AR(p) and AR(p)–SV models arises from the
error process. The error εt in the AR(p) process is a Gaussian white noise, while it is a
stochastic volatility error for the AR(p)–SV model. More details on the functional forms
of the likelihood function are given below.

Suppose that the error process ut in (3.2) is normally distributed with mean zero
and unit variance. In the special case of order 1 (p = 1), let σ2

t = exp{λt}. Then, the
conditional density function f(YT |ΛT , ξ) is written as

f(YT |ΛT , ξ) = f(y2, ..., yT |y1, ξ,ΛT )f(y1|ξ,ΛT ),

where

f(y1|ξ,ΛT ) =

√
1− φ2

1

σ1

√
2π

exp

[
−y

2
1(1− φ2

1)

2σ2
1

]
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and

f(y2, ..., yT |y1, ξ,ΛT ) =
T∏
t=2

f(yt|yt−1, λt)

= (2π)−
T−1
2

(
T∏
t=2

σt

)−1

exp

[
−

T∑
t=2

(yt − φ1yt−1)2

2σ2
t

]
.

Similarly, the conditional density f(YT |ΛT , ξ) for the AR(2)–SV model is written as

f(YT |ΛT , ξ) = f(y3, ..., yT |Y2, ξ,ΛT )f(y1, y2|ξ,ΛT ),

where

f(y1, y2|ξ,ΛT ) =
(1 + φ2)[(1− φ2)2 − φ2

1]

2π
∗

exp

[
(1− φ2

2)σ2
1y

2
1 − φ1(1 + φ2)σ1σ2y1y2(1− φ2

2)σ2
2y

2
2

2σ2
1σ

2
2

]
and

f(y3, ..., yT |Y2, ξ,ΛT ) = (2π)−
T−2
2

(
T∏
t=3

σt

)−1

exp

[
−

T∑
t=3

(yt − φ1yt−1 − φ2yt−2)2

2σ2
t

]
.

In general, the conditional density f(y1, ..., yp|ξ,ΛT ) for p ≤ T is given by

f(y1, ..., yp|ξ,ΛT ) = (2π)−
p
2

(
p∏
t=1

σt

)−1

|M (p,0)
p |

1
2 exp

[
−

p∑
t=1

1

2σ2
t

Y ′pM
(p,0)
p Yp

]
, (3.24)

where M
(p,0)
p denotes the covariance matrix of Yp such that

M (p,0)
p = {m(p)

ij } = (Γ(p))−1σp, (3.25)

where σp = (σ1, ..., σp)
′ and

Γ(p) =


γ0 γ1 · · · γp−1

γ1 γ0 · · · γp−2
...

. . . . . .
...

γp−1 γp−2 · · · γ0

 .
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Note that γi = Cov(yt, yt−i) for i = 0, 1, ..., p; it is different from the coefficient γ
in (3.3).

The conditional density f(yp+1, ..., yT |Yp, ξ,ΛT ) is

f(yp+1, ..., yT |Yp, ξ,ΛT ) = (2π)−
T−p
2

(
T∏

t=p+1

σt

)−1

exp

[
−

T∑
t=p+1

(yt −
∑p

i=1 φiyt−i)
2

2σ2
t

]
.

(3.26)

Thus, the conditional density f(YT |ΛT ) is the product of (3.24) and (3.26).

Suppose that ut in (3.2) has a scaled Student-t distribution with mean zero and
unit variance. When p = 1, the conditional density function f(YT |ΛT , ξ), for ω > 2, is
factorized by

f(YT |ΛT , ξ) = f(y2, ..., yT |y1, ξ,ΛT )f(y1|ξ,ΛT ),

where

f(y1|ξ,ΛT ) =

(
π(ω − 2)(1− φ2

1)

σ2
1

)− 1
2 Γ
(
ω+1

2

)
Γ
(
ω
2

) [1 +
y2

1(1− φ2
1)

σ2
1(ω − 2)

]− (ω+1)
2

and

f(y2, ..., yT |y1, ξ,ΛT ) = [π(ω − 2)]−
T−2
2

Γ
(
ω+T−2

2

)
Γ
(
ω
2

) T∏
t=2

σ−1
t

[
1 +

(yt − φ1yt−1)2

σ2
t (ω − 2)

]− (ω+1)
2

.

In general, for the order 0 < p < T , the conditional density function f(y1, ..., yp|ξ,ΛT )
(Tarami and Pourahmadi (2003)) is written as

f(y1, ..., yp|ξ,ΛT ) = (2π)−
p
2

(
ω − 2

3

)− p
2 Γ
(
ω+p

2

)
Γ
(
ω
2

) |M (p,0)
p |−

1
2

(
1 +

Y
′
pM

(p,0)
p Yp

ω − 2

)− (ω+p)
2

,

(3.27)

where M
(p,0)
p satisfies the relationship in (3.25). The conditional density

f(yp+1, ..., yT |Yp, ξ,ΛT ) is written as

f(yp+1, ..., yT |Yp, ξ,ΛT ) = [π(ω − 2)]−
T−p
2

Γ
(
ω+T−p

2

)
Γ
(
ω
2

)
T∏

t=p+1

σ−1
t

[
1 +

(yt −
∑T

t=p+1 φiyt−i)
2

σ2
t (ω − 2)

]− (ω+1)
2

. (3.28)
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Thus, the conditional density f(YT |ΛT ) is the product of (3.27) and (3.28).

3.3 Estimation Methods

Although the model specification of the AR(p)–SV model is fairly simple, its estimation
is not straightforward because of the latent log-variance process λt. This is the same
obstacle as in the SV model. Thus, one can consider the estimation methods that are
employed for the SV model. We use the simulated maximum likelihood (SML) approach
(Danielsson and Richard (1993)). Since the AR(p)–SV model has the same structure as
the SV model except that the conditional mean equation follows an AR process, the SML
approach is applicable.

Consider the likelihood function associated with the observations YT for the AR(p)–SV
model in (3.21). Since the log-variance process λt is not observed in practice, the direct
calculation of the integral in (3.21) is not feasible. To efficiently evaluate this integral, an
MC integration is used in the SML approach. In contrast to other numerical integrations,
MC simulation is independent of the dimension of the integral. Thus, high-dimensional
integration, which is usually the case, can be handled effectively. After estimating
the likelihood by MC integration, SML seeks parameter estimates that maximize the
estimated likelihood function. To reduce the MC sampling variance in estimating the
likelihood, an EIS technique (Liesenfeld and Richard (2003)) is employed. Details of the
implementation of the EIS method for the AR(p)–SV model are given below.

3.3.1 Parameter Estimation

In the AR(p)–SV model, consider the following factorization for the likelihood in (3.21):

L(ξ;YT ) =

∫
f(YT |ΛT , ξ)f(ΛT |ξ)dΛT , (3.29)

where

f(ΛT |ξ) =
T∏
t=1

f(λt|λt−1, ξ), (3.30)

f(YT |ΛT , ξ) = f(Yp|Λp, ξ)f(yp+1, ..., yT |Yp, λp+1, ..., λT , ξ), (3.31)
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where Yp = (y1, ..., yp) and Λp = (λ1, ..., λp). In a crude MC simulation, the likelihood
function in (3.21) is estimated by

L̂(ξ;YT ) =
1

N

N∑
i=1

f(YT |Λ(i)
T , ξ), (3.32)

where N sets of Λ
(i)
T are generated from the f(ΛT |ξ) in (3.30). Similarly to the difficulty

of MC simulation in the standard SV model, the factorization in (3.29) causes a large MC
sampling variance because the simulated ΛT does not resemble that where the observations
YT are obtained. As discussed in Chapter 2, Liesenfeld and Richard (2003) proposed an
EIS method that sought an IF that minimized the MC sampling variance effectively to
resolve the inefficiency problem. We will pursue only the EIS technique for the AR(p)–SV
model.

To implement the EIS technique, let us consider the following factorization:

L(ξ;YT ) =

∫
f(YT ,ΛT |ξ)
g(ΛT |YT , ξ)

g(ΛT |YT , ξ)dΛT

=

∫
h(YT ,ΛT |ξ)g(ΛT |YT , ξ)dΛT , (3.33)

where g and h denote an importance function (IF) and a remainder function (RF),
respectively.

The EIS technique chooses in the following way an IF g(ΛT |YT , ξ) that can provide
a good approximation of f(YT ,ΛT |ξ) and that depends on YT . Consider a particular
factorization:

g(ΛT |YT , ξ) =
T∏
t=1

f(λt|Λt−1, Yt−1, ξ, et), (3.34)

where et is an auxiliary vector depending on YT , as in the SV model. Then we choose a
function k(·) depending on et such that

g(ΛT |YT , ξ) =
T∏
t=1

C(λt−1, et)k(Λt; et), (3.35)

where C(·) is an integral constant that makes k(Λt; et) a density function. For ease of
notation, we remove ξ from the functional notations of C and k.
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The choice of C(λt−1, et) plays an important role in matching g(ΛT |YT , ξ) to the
joint density f(YT ,ΛT |ξ) =

∏T
t=1 f(yt, λt|Λt−1, Yt−1, ξ) as closely as possible.

For the AR(p)–SV model, a natural choice of k(Λt; et) would be proportional to a
Gaussian density for λt given λt−1. Thus, we can express the function k as a product of
two functions:

k(Λt; et) = l(λt, et) f(λt|λt−1, ξ). (3.36)

Since f(λt|λt−1, ξ) is a Gaussian density, an auxiliary vector et can be estimated via regres-
sion coefficients from a linear regression if l(λt, et) is chosen as a Gaussian density kernel
exp{e1,tλt+e2,tλ

2
t}. That is, log l(λt, et) approximates log fp(yt|λt, ξ)−logC(λt, et+1), where

the conditional density fp(yt|λt, ξ) has the following expression:

fp(yt|λt) =

{
f(y1, ..., yt|λt, ξ), if t ≤ p,

f(yt|Yp, λt, ξ), otherwise.
(3.37)

Thus, the regression equation is given by

log fp(yt|λt, ξ)− logC(λt, et+1) = constant+ e1,tλt + e2,tλ
2
t + at (3.38)

for t = 1, ..., T , where at is a regression error term. Assuming C(ΛT ; eT+1) = 1, this
regression can be done backward. The details of the functional forms are as follows.

The conditional density of λt given λt−1 is given by

f(λt|λt−1, ξ) =
1√

2πγ2
exp

[
−(λt − α− βλt−1)2

2γ2

]
. (3.39)

Substituting this density into (3.36), the function f(λt|Λt−1, Yt−1, ξ, et) in (3.34) is given by

f(λt|Λt−1, Yt−1, ξ, et) =
1√

2πVt
exp

[
−(λt −Mt)

2

2Vt

]
,

where

Mt =

(
α + βλt−1

γ2
+ e1,t

)
Vt, Vt =

γ2

1− 2e2,tγ2
,
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and logC(λt, et+1) is chosen as

logC(λt, et+1) = −M
2
t

2Vt
+

(α + βλt−1)2

2γ2
− 1

2
log

Vt
γ2
.

Since C(λt, et+1) depends on e1,t+1 and e2,t+1, the regression coefficients are computed
recursively, from t = T, T − 1, ..., 1, assuming C(λT , eT+1) = 1.

Hence, the IF g for the AR(p)–SV model is

g(ΛT |YT , ξ) =
T∏
t=1

C(λt−1, êt) exp{ê1,tλt + ê2,tλ
2
t}f(λt|λt−1, ξ). (3.40)

Using this IF, the corresponding likelihood is estimated by

L̂(ξ;Y ) =
1

N

N∑
i=1

T∏
t=1

fp(yt|λ(i)
t )

C(λt−1, êt) exp{ê1,tλ
(i)
t + ê2,tλ

(i)2
t }

, (3.41)

where

fp(yt|λ(i)
t ) =

{
f(y1, ..., yt|λ(i)

t , ξ), if t ≤ p,

f(yt|Yp, λ(i)
t , ξ), otherwise,

where λ
(i)
t is drawn from g(Λ

(i)
T |YT , ξ) in (3.40). Assuming the standard normal distri-

bution for the error {ut}, the functional forms of f(y1, ..., yt|λ(i)
t , ξ) and f(yt|Yp, λ(i)

t , ξ)
are given in (3.24) and (3.26), respectively. Under the Student-t distributional assump-

tion for ut, f(y1, ..., yt|λ(i)
t , ξ) and f(yt|Yp, λ(i)

t , ξ) are given in (3.27) and (3.28), respectively.

In summary, the EIS algorithm to evaluate the likelihood for the AR(p)–SV model
in (3.21), given an initial parameter vector ξ, is as follows:

1. Generate Λ
(i)
T according to (3.3).

2. Assuming C(λT , eT+1) = 1, obtain et by performing T regressions as in (3.38), work-
ing backward from t = T to t = 1.

3. Generate the new Λ
(i)
T from the importance density g(ΛT |YT , ξ) in (3.40).

4. Repeat Steps 2 and 3 until either et or the new λt converges for all t.

5. Compute the estimated likelihood in (3.41).
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3.3.2 Volatility Estimation

For a given estimated parameter ξ̂ = (Φ̂, α̂, β̂, γ̂) obtained by SML, a particle filter
(Pitt and Shephard (1997) and Kim et al. (1998)) can be employed to estimate the
volatility, σt = exp{λt/2}. The idea is to draw, for a given ξ̂, M new samples λnewt from
λt|Yt, ξ̂, given λnew,1t−1 , ..., λnew,Mt−1 from λt−1|Yt−1, ξ̂, where Yt = (y1, ..., yt).

According to Bayes’ theorem, the conditional density f(λt|Yt, ξ̂) is proportional to
fp(yt|λt, ξ̂)f(λt|Yt−1, ξ̂):

f(λt|Yt, ξ̂) ∝ fp(yt|λt, ξ̂)f(λt|Yt−1, ξ̂),

where fp(yt|λt, ξ̂) is given in (3.37) and

f(λt|Yt−1, ξ̂) =

∫
f(λt|λt−1, ξ̂)f(λt−1|Yt−1, ξ̂)dλt−1. (3.42)

Then, the integral in (3.42) can be estimated by

f(λt|Yt−1, ξ̂) ≈
1

M

M∑
j=1

f(λt|λ(j)
t−1, ξ̂),

where λ
(j)
t−1 is drawn from f(λt−1|Yt−1, ξ̂) for j = 1, ...,M . This leads to

f(λt|Yt, ξ̂) ∝ fp(yt|λt, ξ̂)
1

M

M∑
j=1

f(λt|λ(j)
t−1, ξ̂). (3.43)

To sample λt, we adopt the following procedure. Let λt|t−1 = α̂ + β̂(M−1
∑
λ

(j)
t−1). Note

that the logarithmic conditional density of yt given λt can be written as

log fp(yt|λt, ξ̂) = constant− 1

2
λt −

y2
t

2
exp{−λt}.

Setting log f ∗(yt, λt, ξ̂) = −1
2
λt − y2t

2
exp{−λt}, the expansion of log f ∗(yt, λt, ξ̂) by a

first-order Taylor approximation around λt|t−1 leads to:

log f ∗(yt, λt, ξ̂) ≤ −1

2
λt −

y2
t

2
[(1 + λt|t−1) exp{−λt|t−1} − λt exp{−λt|t−1}]

= log g∗(λt, λt|t−1, ξ̂), (3.44)
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where log g∗ is the right-hand side of the inequality. Also, it can be shown via some algebra
that

g∗(λt, λt|t−1, ξ̂)f(λt|λ(j)
t−1, ξ̂) ∝ πjfN(λt|λ(j)

t|t−1, γ̂
2), (3.45)

where fN(λt|λ(j)
t|t−1, γ̂

2) denotes a normal density of λt with mean λ
(j)
t|t−1, and variance γ̂2,

πj = exp

[
1

2γ̂2
{(α̂ + β̂λ

(j)2
t|t−1)2 − λ(j)2

t|t−1}
]
,

and

λ
(j)
t|t−1 = α̂ + β̂λ

(j)
t−1 +

γ̂2

2
[y2
t exp{−λt|t−1} − 1].

Hence, because of the relationship in (3.45), the right-hand side of (3.43) is bounded as

fp(yt|λt, ξ̂)
1

M

M∑
j=1

f(λt|λ(j)
t−1, ξ̂) ≤ g∗(λt, λt|t−1, ξ̂)

1

M

M∑
j=1

f(λt|λ(j)
t−1, ξ̂)

∝ 1

M

M∑
j=1

πjfN(λt|λ(j)
t|t−1, γ̂

2).

In summary, the algorithm for drawing λt is as follows: First, draw a proposal λpropt for

the mixture density
∑M

j=1 π
∗
j fN(λt|λ(j)

t|t−1, γ̂
2), where π∗j = πj/

∑
πj, and then accept λpropt

with probability f ∗(yt, λt, ξ̂)/g
∗(λt, λt|t−1, ξ̂). If rejected, go to the first step. From the

estimated log-variance λ̂t, we obtain the estimated volatility σ̂t = exp{λ̂t/2}.

Under the scaled Student-t distributional assumption for ut, the conditional density
of yt given λt is

f(yt|λt) =
(√

π(ω − 2) exp{λt}
)−1 Γ((ω + 1)/2)

Γ(ω/2)

(
1 +

y2
t

exp{λt}(ω − 2)

)−(ω+1)/2

,

and so its corresponding acceptance/rejection probability f ∗/g∗ can be described by the
following two equations:

log f ∗(yt, λt, ξ̂) =
ω

2
λt −

(ω + 1)

2
log[exp{λt}(ω − 2) + y2

t ],

log g∗(λt, λt|t−1, ξ̂) =
ω

2
λt −

(ω + 1)

2
log[(ω − 2)(1 + λt|t−1) exp{λt|t−1}

+ λt exp{λt|t−1}) + y2
t ].
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Then, the weight function πj is the same as g∗(λ
(j)
t , λ

(j)
t|t−1, ξ̂) in (3.44) and the normal

mixture density is given in (3.45). The estimation of volatility in the case of the scaled
Student-t distribution can be implemented by modifying the algorithm for the normal case.

3.4 Order Selection and Model Diagnostics

To choose the “best” model for the data, we first determine the order of the AR(p)–SV
process with some statistical model-selection criteria. Karanasos and Kim (2003) used the
Akaike information criterion (AIC) and the Bayesian information criterion (BIC) to select
the order of the ARMA process in the ARMA(p, q)–EGARCH model. Kitamura (2011)
and Ari and Ünal (2011) used the AIC to determine the order of the ARMA–GARCH
model. In the same spirit, we also use these criteria to determine the order of the AR
process in the AR(p)–SV model although the properties of AIC and BIC are currently
unknown for this model.

We start with a higher order model and reduce the order of the model to fit the data by
comparing AIC and BIC; this is referred to as the general-to-specific approach. AIC is
defined by 2k− 2 ∗ logLH, where k is the number of parameters and logLH denotes the log
likelihood. BIC is defined by −2∗logLH+k∗log(T ), where T is the number of observations.

After the model parameters are estimated, we perform a residual analysis to check
the adequacy of the fitted model. For the residual analysis, we define the standardized
residual at time t from (3.1) and (3.2) as

ût ≡
Φ̂(B)yt
σ̂t

, t = 1, ..., T, (3.46)

where yt is the observed return, Φ̂(B) is the polynomial with the estimated AR coefficients
φ̂i for i = 1, ..., p, and σ̂t = exp{λ̂t/2}, which is the estimated volatility obtained by
the particle filter described in Section 3.3.2. If the fitted model is adequate, ût follows
a standard normal distribution under the standard normal distributional assumption and
a Student-t distribution with zero mean and unit variance under the scaled Student-t
distributional assumption.
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Table 3.1: Parameter estimates: AR(1)–SV model

φ̂1 α̂ β̂ γ̂ κ κ̂

True Value 0.5 0.01 0.97 0.2
Series 500 0.5189 -0.0000 0.9668 0.2069 4.9623 4.2571
Series 1000 0.4982 0.0011 0.9783 0.1982 5.7834 5.4087
Series 2000 0.5107 0.0073 0.9737 0.2124 5.4384 5.1112

3.5 Simulation Study and Sensitivity Analysis

The purpose of the simulation study is to investigate the performance of the SML
with the EIS algorithm in the parameter estimation of the AR(p)–SV model, and that of
a particle filter for volatility estimation. In particular, we consider the AR(1)–SV model
with the parameter vector (φ1, α, β, γ) = (0.5, 0.01, 0.97, 0.2) as a true model. Three
different series are generated according to the true model. We will refer to these as Series
500, Series 1000, and Series 2000, with 500, 1000, and 2000 observations respectively.
The hypothetical values of the parameters are similar to those found empirically. For
parameter estimation, we choose the SML approach and implement the EIS algorithm to
estimate the likelihood in (3.21) when p = 1.

Figure 3.1 displays the autocorrelation functions of the simulated series and its squares.
We observe that the series have large first-lag autocorrelations followed by decaying
autocorrelation. In addition, the ACFs of the squared series show persistence. The
parameter estimation results are summarized in Table 3.1. All the estimates are close to
the true values, which indicates that the SML approach with the EIS algorithm can be
used for parameter estimations in the AR(1)–SV model. Although we show the results
only for an AR–SV model with order 1, the estimation procedure for a higher-order model
is the same as that for AR(1)–SV except that the likelihood functions are more involved
and there are more parameters to be estimated.

The empirical kurtosis, referred to as κ in Table 3.1, is directly calculated from the
series, while the estimated kurtosis, referred to as κ̂, is computed with the parameter
estimates. The values of the empirical and estimated kurtosis are close to each other
for all the simulated series. This indicates that our parameter estimates are fairly accurate.
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The estimates of the volatility are obtained by a particle filter. Figure 3.2 shows
the absolute values of the returns along with the estimated volatility for each series. We
can see that the estimated volatilities are able to capture the movement of the simulated
series. In particular, a large movement is captured more readily than a small movement.

For the model diagnostics, the standardized residual of the AR(1)–SV model is defined by

ût =
yt − φ̂1yt−1

σ̂t
,

where σ̂t = exp{λ̂t/2} and λ̂t is the estimated log variance obtained by a particle filter
for t = 1, ..., T . If the AR(1)–SV model fits the data well, this standardized residual
ût follows a normal distribution with mean 0 and variance 1. Figure 3.3 displays the
diagnostic plots: the residual plot, ACF plot, and QQ plot for each series. The residual
plots imply constant variance, and no autocorrelations are observed in any of the ACF
plots. Moreover, the QQ plots show that all the points are near or on the straight line,
which indicates no violation of the normal assumption for the error process ut. Thus, it
can be concluded that the AR(1)–SV model fits all the simulated series well, as expected.
In addition, our simulation study shows that the SML approach with the EIS algorithm
is applicable to the estimation of the AR(1)–SV model.

In order to understand the robustness of the SML method with the EIS, we generate
two sets of 1000 observations from AR(1)–SV model, assuming that ut follows a Gen-
eralized Lambda Distribution (GLD) (Ramberg, Dudewicz, and Tadikamalla (1979)):
one with the parameter vector of (λ1, λ2, λ3, λ4) = (0,−1,−1/6,−1/6) and the other
with (λ1, λ2, λ3, λ4) = (0,−1,−1/2,−1/2). We refer to the first series as ”Series A” and
the second series as ”Series B”. The sample kurtosis of the series are 4.65 and 10.88,
respectively. The true parameter values are the same as the ones used in our simulation
study. Figure 3.4 shows time series plots of two series, ACF of the series, and ACF of
the squares. For both series, ACF plot of the series displays decaying autocorrelations
indicating an AR(1) process. Based on the large kurtosis and the decaying autocorrelation,
we entertain an AR(1)–SV model for those series.

To fit AR(1)–SV model to Series A and B, we consider two error assumptions for
ut: one is a standard normal and the other is a scaled Student-t with degree of freedom
8. Table 3.2 summarizes the parameter estimation results along with the true parameter
values. Regardless of the error assumptions, parameter estimates are quite close to the
true values. Both MC standard errors and standard errors of the estimators are very small.
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Figure 3.1: The simulated series (top), autocorrelation functions of returns (middle), and
squared returns (bottom)
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Figure 3.2: Top panels: estimated volatilities; Bottom panels: absolute values of return
series.
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Figure 3.3: The residual plots are in the first row, the ACFs of ût are in the second row,
and the QQ plots are in the last row.
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Figure 3.4: Data plots of Series A and B
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Table 3.2: Parameter estimates: AR(1)–SV model with N(0,1) and t(0,1) errors

φ̂1 α̂ β̂ γ̂

True Value 0.5 0.01 0.97 0.2

Series A with N(0,1) 0.4717 0.0125 0.9599 0.2207
MC std. error 0.0002 0.0002 0.0001 0.0001

Std. error 0.0108 0.0109 0.0237 0.0197
Series A with t(0,1) 0.4918 0.0140 0.9601 0.1611

MC std. error 0.0001 0.0002 0.0002 0.0001
Std. error 0.0128 0.0101 0.0198 0.0201

Series B with N(0,1) 0.4813 0.0144 0.9719 0.2019
MC std. error 0.0003 0.0004 0.0001 0.0002

Std. error 0.0110 0.0182 0.0215 0.0201
Series B with t(0,1) 0.5191 0.0191 0.9742 0.2004

MC std. error 0.0001 0.0004 0.0003 0.0001
Std. error 0.0181 0.0136 0.0102 0.0186

Figure 3.5 shows the estimated volatility σt = exp{λt/2}, obtained by a particle
filter and the absolute returns for Series A. The dotted line is the estimated volatility
under a normal assumption and the solid line is the one under a scaled Student-t assump-
tion. The variation in the estimated volatility under the heavy-tail error assumptions is
much smaller than that under a normal error assumption. This can also be seen from the
parameter estimation results in Table 3.2. The volatility of the log-variance γ under a
scaled Student-t error assumption is less than that under a normal error assumption.

We perform a residual analysis to test the goodness of fit of AR(1)–SV model with two
error assumptions to Series A. The standardized residual of the AR(1)–SV model at time
t is obtained as in the simulation study. Diagnostic plots are given in Figure 3.6. Graphs
on the left are under a normal error assumption and those on the right are under a scaled
Student-t error assumption with degree of freedom 8. No serial correlation is observed
under a heavy tail error assumption while there is a small autocorrelation at lag 1 under a
normal assumption. In the normal QQ plot, there are some deviations at both corners, but
deviations at the corners of the Student-t QQ plot are smaller. Based on our observations
on the diagnostics plot, we conclude that the AR(1)–SV model with Student-t error fits
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Figure 3.5: Top panels: estimated volatilities; Bottom panels: absolute values of return
series

the series reasonably well.

In addition, we note that the estimates of the parameters using the SML with EIS
for the AR(1)–SV model with normal and Student-t errors are close to the true values
although the true error distribution (GLD) has somewhat different tail behavior. We thus
conclude that the SML estimation with EIS technique is robust to certain deviations from
normal or t tail behavior.

3.6 Empirical Study

In this section, we carry out an empirical analysis of the AR(p)–SV model using four
actual financial time series. The SML approach with the EIS technique is used for the
parameter estimation, and a particle filter is used to estimate volatility. Moreover, model
selection and model diagnostics are performed. All the code is written in MATLAB 7.3.0.

3.6.1 Data

Four time series are considered in our empirical analysis: the daily closing prices of the
Kospi 200 index from 1/4/1989 to 12/29/2000, the daily closing prices of RBC stock from
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Figure 3.6: Series A: The residual plots are in the first row, the ACFs of ût are in the
second row, and the QQ plots are in the last row.

80



Table 3.3: Summary statistics of data

Statistics KOSPI 200 RBC NIKKEI 225 $/YEN
Sample size 3124 3542 2000 2516

Mean -0.0340 0.0473 0.0258 0.0004
Std. dev. 2.3084 1.3445 1.4731 0.3212
Kurtosis 15.5597 5.7700 5.4816 7.2309
ρ(1) 0.156 0.106 -0.03 0.008

LB1(30) 295.6143 81.4052 39.7589 31.3883
(0.0000) (0.0000) (0.1096) (0.3965)

LB2(30) 4103.5670 916.8041 539.3733 726.2045
(0.0000) (0.0000) (0.0000) (0.0000)

5/3/1980 to 4/20/1998, the daily closing prices of the Nikkei 225 index from 2/3/1990 to
3/30/2000, and the daily closing exchange rates of US dollar to Japanese Yen ($/YEN)
from 10/4/1980 to 12/29/2000. The prices of the series are converted into the mean
corrected return, defined by yt = 100 ∗ [log(pt/pt−1) − 1

T

∑
log(pt/pt−1)], where pt is the

price of a stock or an exchange rate at time t. The total number of observations and
summary statistics for each return series are given in Table 3.3, and the data plots are
given in Fig. 3.7.

The kurtosis for each series is greater than three, which implies that the distributions
of the series have heavier tails than those of the normal distribution. At the bottom of
the table, LB1(30) denotes the Ljung-Box (LB) statistics of the series for the first thirty
lags and LB2(30) denotes the Ljung-Box statistics of the squared series for the first thirty
lags. The values in parentheses are the corresponding p-values of the LB statistics. These
indicate that there are non-negligible autocorrelations in the series except for the Nikkei
225 and $/YEN series. This can be seen in Fig. 3.8, where the autocorrelation functions
of the series are displayed. In particular, the autocorrelations at lag 1 for the Nikkei 225
and $/YEN series are not as significant as those of the RBC and Kospi 200 series. The
values of the first-order autocorrelation, denoted ρ(1), are given in Table 3.3. ρ(1) of Kospi
200 and RBC are greater than 0.1, but ρ(1) of Nikkei 225 and $/YEN are close to zero.
Figure 3.9 shows that the serial correlations in the squared series are large.
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Figure 3.7: Plots of four series: KOSPI 200, RBC, NIKKEI 225, and $/YEN

Figure 3.8: Autocorrelation functions of returns
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Figure 3.9: Autocorrelation functions of squared returns

3.6.2 Estimation Results

The AIC and BIC values of the data are summarized in Table 3.4. The log-likelihood
values in the AIC and BIC calculations are the values of the log likelihood obtained in
the parameter estimation by SML. Based on the AIC and BIC values, AR(1)–SV models
are the best choice for the Kospi 200 and RBC series because the AIC and BIC values
are the smallest. For the Nikkei 225 and $/YEN series, AR(0)–SV models are the best.
This is consistent with our observation from the ACF plots in Fig. 3.8. We see almost no
correlations in the Nikkei 225 and $/YEN series, while there are relatively large correlations
at lag 1 in the Kospi 200 and RBC series.

The parameter estimation results for the AR(1)–SV model for all the series are given in
Table 3.5. The MC sampling errors and standard errors of the estimates are small. In the
AR(1)–SV model, the coefficient φ1 is the first order autocorrelation. The estimates of φ1

for all the series are close to the values of the first-order autocorrelation in Table 3.3. In
Fig. 3.8, φ̂1 is nearly zero for the Nikkei 225 and $/YEN series. This indicates that the
SV model is more appropriate than the AR(1)–SV model for these series. The estimated
values of the persistent parameter β are greater than 0.95. The estimated kurtosis of the
series is quite close to the sample value of the kurtosis in Table 3.3. This indicates that
the AR(1)–SV model is able to capture the heavy tails of the return distribution. Further
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Table 3.4: AIC and BIC for model selection

Data Criteria AR(0)–SV AR(1)–SV AR(2)–SV AR(3)–SV

KOSPI 200 AIC 5895 5867.2 6298
BIC 5901 5891.4 6328

RBC AIC 13194 8387 10154
BIC 13219 8411.7 10185

NIKKEI 225 AIC 7910 8169.4 9425
BIC 7933 8191.8 9453

$/YEN AIC 4942 5021.4 5022 5717.8
BIC 4965 5044.7 5051 5752.8

model validation via the residual analysis is given in Section 3.6.3.

Given the parameter estimation results in Table 3.5, we estimate the volatility of σt =
exp{λt/2} by a particle filter. We use 100 simulated λt at each time step for t = 1, ..., T .
Figure 3.10 shows the estimated volatility σ̂t and the corresponding absolute values of the
returns. We observe that the AR(1)–SV model captures a large movement more readily
than a small movement.

3.6.3 Model Diagnostics

To validate the fitted AR(1)–SV models, we perform residual analysis. Under the
normal assumption for ut, consider the standardized residual at time t from (3.46):

ût =
yt − φ̂1yt−1

σ̂t
, t = 1, ..., T,

where yt is the observed return and σ̂t = exp{λ̂t/2}, which is the estimated volatility
displayed in Fig. 3.10. If the fitted model is adequate for the data, ût follows a standard
normal distribution.

Figures 3.11 and 3.12 display the diagnostic plots of ût of the four series. The
residual plots are given in the first row. The residual plot of the Kospi 200 series shows
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Table 3.5: SML estimation of AR(1)–SV model

Parameter KOSPI 200 RBC NIKKEI 225 $/YEN

φ1 0.1562 0.1582 -0.0000 0.0072
MC std. error 0.0001 0.0002 0.0001 0.0001

Std. error 0.0193 0.0255 0.0246 0.0213

α 0.0100 0.2001 0.0089 0.0184
MC std. error 0.0002 0.0002 0.0003 0.0004

Std. error 0.0213 0.0391 0.0401 0.0315

β 0.9856 0.9736 0.9765 0.9889
MC std. error 0.0001 0.0003 0.0002 0.0003

Std. error 0.0103 0.0114 0.0299 0.0201

γ 0.2201 0.1547 0.1847 0.1315
MC std. error 0.0012 0.0009 0.0015 0.0017

Std. error 0.0249 0.0392 0.0551 0.0519

κ̂ 15.6898 4.6599 6.2531 6.5655

CPU time1 11019 11948.3 8011.6 8898.7
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Figure 3.10: Top panels: estimated volatilities; Bottom panels: absolute values of return
series
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some similarity to the original return series, but the ût are fairly random for the other
series. The plots in the second row are the autocorrelation functions of the standardized
residuals. There are almost no correlations for the four series. To validate the normality
of the error process ût, QQ plots are given in the last row. There is considerable deviation
at the tails of the QQ plots of the Kospi 200 and RBC series, but the corresponding
deviation for the Nikkei 225 and $/YEN series is less serious. This suggests that an
improvement in the error assumption is necessary to capture the heavy tail of the Kospi
200 and RBC series.

We now choose a scaled Student-t distribution with 8 degrees of freedom, denoted t(0, 1),
as an alternative assumption for ut. We do the estimation and diagnostics only for the
Kospi 200 and RBC series because the violation of normality for these two series is more
serious than that of the others.

The parameter estimation results under the normal and Student-t distributional as-
sumptions are summarized in Table 3.6. The values in parentheses are the MC standard
errors of the estimates. For both series, the estimates are close to those obtained under
the normal assumption. In particular, the estimated value of the persistence parameter β
is slightly larger and the estimate of the conditional standard deviation of the log variance
γ is smaller under the Student-t distributional assumption. Based on this estimation
result, we expect that the volatility of the estimated volatility under the Student-t
error assumption is less than that under the normal assumption because of the smaller
unconditional volatility of the log variance.

Figure 3.13 displays the estimated volatilities obtained by a particle filter under
the normal and Student-t distributional assumptions. The solid line is the estimated
volatility under the Student-t distributional assumption, and the dotted line is the esti-
mated volatility under the normal assumption. The variation of the solid line is smaller,
that is, the estimated volatilities under the t(0, 1) assumption are less, as anticipated. QQ
plots of the series under the normal and Student-t assumptions are given in Fig. 3.14.
The improvement in the goodness of fit of the model can be clearly seen. Hence, for the
Kospi 200 and RBC series, the AR(1)–SV model with a Student-t distributional error
assumption provides a better fit to the data.
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Figure 3.11: KOSPI 200 and RBC: The residual plots are in the first row, the ACFs of ût
are in the second row, and the QQ plots are in the last row.
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Figure 3.12: NIKKEI 225 and $/YEN: The residual plots are in the first row, the ACFs of
ût are in the second row, and the QQ plots are in the last row.
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Table 3.6: SML estimation of AR(1)–SV model for KOSPI 200 and RBC

Data Assumption φ α β γ κ̂

Kospi 200 ut ∼ t(0,1) 0.1579 0.0112 0.9898 0.1912 17.4293
(0.0001) (0.0002) (0.0001) (0.0010)

ut ∼ N(0,1) 0.1562 0.01 0.9856 0.2201 15.6898

RBC ut ∼ t(0,1) 0.1590 0.1191 0.9785 0.1499 4.9811
(0.0003) (0.0004) (0.0002) (0.0009)

ut ∼ N(0,1) 0.1582 0.2001 0.9736 0.1547 4.6599

Figure 3.13: Series: Kospi 200 and RBC. Top panels: estimated volatility under normal
(dotted line) and Student-t (solid line) distributional assumptions; bottom panels: absolute
return
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Figure 3.14: First row: QQ plots of Kospi 200 with normal innovation (left) and Student-
t innovation (right); Second row: QQ plots of RBC with normal innovation (left) and
Student-t innovation (right)
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Chapter 4

Markov Switching Stochastic
Volatility Models

In the discussion of the stochastic volatility models in previous chapters, we assumed
that the parameters were constant over time. In the empirical analysis in Chapter 3, we
used a first-order autoregressive model to capture serial correlation in the series and the
movements in volatility over time. It seemed, however, in the analysis of the Kospi 200
series that the volatility changed drastically in the latter part of the series. Specifically, the
volatility level was low before the Asia crisis in 1997 and suddenly increased afterwards.
Such a change motivates us to consider a model in which the volatility may switch to
different levels at random points in time.

Several researchers have acknowledged a structural shift in the volatility of financial
return series and attempted to incorporate it into existing stochastic volatility models.
Lamoureux and Lastrapes (1990) identified the occurrence of switching in financial
series and suggested a Markov switching model (Hamilton (1988, 1989)) to model it.
Hamilton and Susmel (1994) proposed the Markov switching ARCH (SWARCH) model,
which incorporated the ARCH specification and switching in the conditional variance
process. Cai (1994) proposed a similar model, called the switching-AR-Markov-ARCH
model, to account for discrete shifts in the conditional variance process in the ARCH
model. The difference between the SWARCH and switching-AR-Markov-ARCH models
is the parameterization of the conditional mean process in the ARCH model. In the
GARCH specification, Gray (1996) and Klaassen (2002) first combined the Markov
process to characterize different levels of volatility with the GARCH model. Dueker (1997)
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considered some fat-tailed distributions for the error in the conditional variance, including
the Student-t distribution and GED. Marucucci (2005) extensively studied the volatility
forecasting ability of the Markov regime-switching GARCH (MRS-GARCH) model.

As an application of the Markov switching model (Hamilton (1988, 1989)) in the
SV specification, So, Lam, and Li (1998) combined the standard SV model with a first-
order Markov process, called the Markov switching SV (MSSV) model. In their paper,
they considered the MSSV model with three regimes (high-, medium-, and low-volatility
states) to fit S&P 500 weekly returns. They used the MCMC method with Gibbs sampling
to estimate the parameters and estimated the volatility by the smoothing method (Albert
and Chib (1993)). They showed that the persistence in the volatility of S&P 500 returns
was explained by low- and medium-volatility states, and the crash on Black Monday in
1987 was captured by the high-volatility state. Kalimipalli and Susmel (2004) proposed
a regime-switching stochastic volatility (RSV) model, but the primary purpose of their
model was to fit the dynamics of short-term interest rates. Shibata and Watanabe (2005)
fitted the MSSV model with two regimes (So et al. (1998)) to TOPIX weekly returns and
employed the MCMC method for parameter estimation and a particle filter for volatility
estimation.

It is worthwhile to note that all the earlier studies assumed a normal distribution
for the error in the conditional variance process in the SV specification in regime-switching
SV models. To extend So et al. (1998)’s work, we consider the MSSV model with not only
a normal error but also a heavy-tailed error. We choose a scaled Student-t distribution
as a heavy-tailed error assumption. To estimate the parameters of the MSSV model,
we consider the SML with EIS technique, and a particle filter is used to estimate the
volatility. In our empirical study, we fit the MSSV model with two regimes to four financial
series (Kospi 200, S&P 500, Russell 2000, and Nikkei 225), perform model diagnostics by
residual analysis, and compare the goodness of fit of the MSSV model with that of the
AR–SV model.

This chapter is organized as follows. We introduce the MSSV model with K regimes in
Section 1 and derive its likelihood function in Section 2. Section 3 describes the SML
method with the EIS technique for parameter estimation and a particle filter for volatility
estimation. Section 4 summarizes the results of our empirical analysis with four financial
return series.
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4.1 Model

The standard stochastic volatility model (Taylor (1986)) for a financial time series yt is

yt = exp{λt/2}ut, (4.1)

λt = α + βλt−1 + γvt, (4.2)

where the assumptions given in Chapter 1 hold. Suppose that st is a latent discrete
variable with a sample space {0, 1, ..., K − 1}. Assume that st is a K-state first-order
Markov process with transition probability matrix P given by

P =


p0,0 p0,1 · · · p0,K−1

p1,0 p1,1 · · · p1,K−1
...

... · · · ...
pK−1,0 pK−1,1 · · · pK−1,K−1

 ,

where a transition probability from state i to state j is denoted pi,j = P (st = j|st−1 = i)

and
∑K−1

j=0 pij = 1 for all i = 0, 1, ..., K − 1. The latent variable st defines a regime that
has unique properties. For instance, when K = 2, the conditional mean of the log variance
is low when st = 0 and high when st = 1.

To incorporate discrete shifts in volatility into the SV model, So et al. (1998) gen-
eralized Eq. (4.2) with a Markov-switching model (Hamilton (1988, 1989)) as

λt(st) = α(st) + βλt−1 + γvt, (4.3)

where

α(st) = α0 +
K−1∑
j=1

αjIjt (4.4)

for αj > 0 for all j = 1, ...K − 1. Ijt is an indicator variable at state j at time t and equals

one if st ≥ j or zero otherwise. The log variance λt(st) at state j is denoted λ
(j)
t for all

j = 0, 1, ...K − 1. β is a persistent parameter such that |β| < 1 and the volatility of the
log variance γ is always nonnegative. Equations (4.1), (4.3), and (4.4) form the K-state
Markov switching stochastic volatility model, denoted MSSV(K).
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In particular, when K = 2, the MSSV model (MSSV(2)) has two states and Eq. (4.3) is
written as

λ
(0)
t = α0 + βλt−1 + γvt, if st = 0 (4.5)

λ
(1)
t = α0 + α1 + βλt−1 + γvt, if st = 1 (4.6)

for α1 > 0. Here, st is a latent Markov process with a sample space {0, 1}. We will refer
to the regime when st = 0 as regime 0 and that when st = 1 as regime 1. The positive
coefficient α1 ensures a high level in volatility for regime 1. Thus, regime 0 is a low-level
volatility state and regime 1 is a high-level volatility state. The transition probability
matrix P of st has the following form:

P =

(
p 1− p

1− q q

)
.

4.2 Likelihood Function

The likelihood associated with a financial time series YT = (y1, ..., yT ) for the MSSV(K)
model is similar to the likelihood for the standard stochastic volatility model. One distinc-
tion is the coefficients in the latent log-variance process λt; they are constant over time in
the standard SV model and vary depending on the state at time t in the MSSV(K) model.
The likelihood functions under a normal and a scaled Student-t distributional assumption
for the error term ut in Eq. (4.1) are given in this section.

The likelihood associated with YT = (y1, ..., yT ) in Eqs. (4.1), (4.3), and (4.4) is
defined by

L(θ;YT ) =
T∏
t=1

f(yt, λt, st; θ) (4.7)

where T is an index of last time when returns are observed, ΛT = (λ1, ..., λT ) is a vector
of the latent variable λt, and ST = (s1, ..., sT ) is a vector of the latent variable st. The
parameter vector θ = (~αK , β, γ, P ) is to be estimated, where ~αK = (α0, α1, ..., αK−1) such
that

∑K−1
j=0 αj = 1 and P is a transition probability matrix.
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For simplicity, let us consider the MSSV model with two regimes, denoted MSSV(2). The
joint density function f(yt, λt, st; θ) in Eq. (4.7) can be written

f(yt, λt, st; θ) = f(yt, λt|st = 0)P (st = 0) + f(yt, λt|st = 1)P (st = 1)

= f(yt, λt|st = 0)P0,t + f(yt, λt|st = 1)P1,t

=
1∑
i=0

f(yt, λt|st = i)Pi,t, (4.8)

where Pi,t is the marginal distribution, which is the probability that the Markov chain
is in regime i at time t for i = 0, 1 such that P0,t + P1,t = 1. Note that the parameter θ
is ignored on the right-hand side for notational convenience, and this convention will be
followed hereafter. In Eq. (4.8), the marginal distribution P0,t has the following form:

P0,t = P (st = 0)

= (1− q)

[
f(yt|λ(1)

t−1)(1− P0,t−1)

f(yt|λ(0)
t−1)P0,t−1 + f(yt|λ(1)

t−1)(1− P0,t−1)

]

+ p

[
f(yt|λ(0)

t−1)P0,t−1

f(yt|λ(0)
t−1)P0,t−1 + f(yt|λ(1)

t−1)(1− P0,t−1)

]
, (4.9)

where f(yt|λ(i)
t ) denotes a conditional density f(yt|λt, st = i) and λ

(i)
t denotes a la-

tent variable λt in regime i for i = 0, 1.

Assuming ut follows a standard normal distribution, the conditional density f(yt|λ(i)
t ) for

i = 0, 1 has the following normal density function:

f(yt|λ(i)
t ) =

1√
2π exp{λ(i)

t }
exp

[
− y2

t

2 exp{λ(i)
t }

]
. (4.10)

Under the scaled Student-t distributional assumption for ut, it has the following form:

f(yt|λ(i)
t ) =

(√
π(ω − 2) exp{λ(i)

t }
)−1 Γ

(
ω+1

2

)
Γ
(
ω
2

) (1 +
y2
t

exp{λ(i)
t }(ω − 2)

)−ω+1
2

. (4.11)
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The conditional density f(yt, λt|st = i) in Eq. (4.8) for i = 0, 1 can be factorized as

f(yt, λt|st = i) = f(yt|λ(i)
t )f(λt|λt−1, st = i)

= f(yt|λ(i)
t )f(λ

(i)
t |λt−1), (4.12)

where the conditional density f(yt|λ(i)
t ) is given in Eq. (4.10) or (4.11) and f(λ

(i)
t |λt−1) for

i = 0, 1 can be expressed as

f(λ
(i)
t |λt−1) =

1∑
j=0

f(λ
(i)
t |λ

(j)
t−1)pji,t−1, (4.13)

where f(λ
(i)
t |λ

(j)
t−1) is a normal density function with mean α0 + α1i + βλ

(j)
t−1 and variance

γ2 and the probability pji,t is given by

pji,t =
pjiPj,t
Pi,t+1

, (4.14)

where the marginal distribution Pj,t for j = 0, 1 is given in Eq. (4.9).

4.3 Parameter Estimation

Similarly to the SV model case, the likelihood in Eq. (4.7) cannot be evaluated
analytically because of the presence of the latent process λt and the latent state process st.
To numerically evaluate the likelihood and estimate the parameters in the MSSV model,
we employ the SML method. In the implementation of the SML method for the MSSV
model, the EIS technique is applied to reduce the MC standard error. For simplicity, we
will describe the parameter estimation of the MSSV(2) model. The estimation procedure
can be generalized to the K-state MSSV model for K > 2.

Setting θ = (~α1, β, γ, P ), the likelihood function in Eq. (4.7) can be re-expressed
as

L(θ;YT ) =
T∏
t=1

1∑
i=0

f(yt|λt, st = i, θ)f(λt, st = i, θ)

=
T∏
t=1

1∑
i=0

f(yt|λ(i)
t , θ)f(λ

(i)
t |λt−1, θ)Pi,t, (4.15)
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where the marginal distribution Pi,t for i = 0, 1 is given in Eq. (4.9).

In a crude MC simulation, the MLE of a parameter vector θ can be obtained by
maximizing the estimated likelihood given by

L̂(θ;YT ) =
1

N

N∑
n=1

(
T∏
t=1

1∑
i=0

f(yt|λ(i)
t,n, θ)f(λ

(i)
t,n|λt−1,n, θ)Pi,t

)
,

where N samples of λ
(i)
t are drawn from the conditional density f(λ

(i)
t |λt−1, θ) given in

Eq. (4.13). Similarly to the SML implementation in the SV model, λ
(i)
t drawn from the

conditional density of λ
(i)
t given λt−1 will need many iterations to achieve convergence.

Instead of increasing the number of random draws λ
(i)
t for a certain accuracy, we use the

EIS algorithm to reduce the MC sampling variance with a smaller number of iterations
and to incorporate information from yt.

To apply the EIS algorithm for estimating θ in the MSSV(2) model, let us consider
the following factorization of the likelihood function in Eq. (4.7):

L(θ;YT ) =

∫ ∫
RT

f(YT ,ΛT , ST ; θ)dΛTdST

=

∫ ∫
RT

f(YT ,ΛT , ST ; θ)

g(ΛT |ST , YT , θ)
g(ΛT |ST , YT , θ)dΛTdST

.
=

∫ ∫
RT

h(YT ,ΛT , ST ; θ)g(ΛT |ST , YT , θ)dΛTdST , (4.16)

where g and h denote an importance function (IF) and a remainder function (RF),
respectively. The EIS technique chooses in the following way an IF g(ΛT |ST , YT , θ) that
can provide a good approximation of f(YT ,ΛT , ST ; θ).

Consider a particular factorization:

g(ΛT |ST , YT , θ) =
T∏
t=1

1∑
i=0

g(λ
(i)
t |λt−1, yt, θ)Pi,t (4.17)

=
T∏
t=1

1∑
i=0

f(λ
(i)
t |λt−1, yt, e

(i)
t , θ)Pi,t (4.18)

=
T∏
t=1

1∑
i=0

C(λt−1, e
(i)
t )k(Λt, e

(i)
t , st = i)Pi,t, (4.19)
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where e
(i)
t for i = 0, 1 is an auxiliary parameter vector depending on yt and C is an integral

constant that makes k(Λt, e
(i)
t , st = i) a density function, given by

C(λt−1, e
(i)
t ) =

1∫
k(Λt, e

(i)
t , st = i)dλt

.

EIS seeks a functional approximation k(Λt, e
(i)
t , st = i) that has a simpler functional form

and is more analytically tractable than the original function f(λ
(i)
t |λt−1, θ). The choice

of k(Λt, e
(i)
t , st = i) plays an important role in sampling λ

(i)
t from the conditional density

of λ
(i)
t given λt−1, yt, and st = i. It should be noted that we do not sample from the

conditional density of λt given λt−1 and st = i only. For ease of notation, we ignore θ in
the functional notations of C and k.

Estimation of et

For the MSSV(2) model, a natural choice of k(Λt, e
(i)
t , st = i) would be propor-

tional to a Gaussian density for λt given λt−1 and st = i. Thus, we can express the
function k as a product of two functions:

k(Λt, e
(i)
t , st = i) = ξ(λ

(i)
t , e

(i)
t ) f(λ

(i)
t |λt−1, θ). (4.20)

Since f(λ
(i)
t |λt−1, θ) is a Gaussian density, an auxiliary vector e

(i)
t can be estimated via

regression coefficients from a linear regression if ξ(λ
(i)
t , e

(i)
t ) is chosen as a Gaussian density

kernel exp{e(i)
1,tλ

(i)
t + e

(i)
2,t(λ

(i)
t )2}. The regression equation is given by

log f(yt|λ(i)
t , θ)− logC(λ

(i)
t , et+1) = constant+ e

(i)
1,tλ

(i)
t + e

(i)
2,t(λ

(i)
t )2 + a

(i)
t , (4.21)

for t = 1, ..., T and i = 0, 1, where a
(i)
t is a regression error term for regime i. Assuming

C(λ
(i)
T , eT+1) = 1, this regression can be done backward.

The details of the functional forms are as follows. Substituting the conditional
density f(λ

(i)
t |λt−1) in Eq. (4.13) into Eq. (4.20), the function f(λ

(i)
t |λt−1, yt, e

(i)
t , θ)

in (4.18) is given by

f(λ
(i)
t |λt−1, yt, e

(i)
t , θ) =

1√
2πV

(i)
t

exp

[
−(λ

(i)
t −M

(i)
t )2

2V
(i)
t

]
, (4.22)
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where

M
(i)
t =

(
α0 + α1i+ βλt−1

γ2
+ e

(i)
1,t

)
V

(i)
t , V

(i)
t =

γ2

1− 2e
(i)
2,tγ

2
,

and logC(λ
(i)
t , et+1) is chosen as

logC(λ
(i)
t , et+1) = −(M

(i)
t )2

2V
(i)
t

+
(α0 + α1i+ βλt−1)2

2γ2
− 1

2
log

V
(i)
t

γ2
.

Replacing ξ(λ
(i)
t , e

(i)
t ) in Eq. (4.20) with the Gaussian density, the IF g for the MSSV(2)

model is written as

g(ΛT , ST |YT , θ) =
T∏
t=1

1∑
i=0

C(λt−1, ê
(i)
t ) exp{ê1,tλ

(i)
t + ê2,t(λ

(i)
t )2}f(λ

(i)
t |λt−1, θ). (4.23)

Using this IF, the corresponding likelihood is estimated by

L̂(θ;Y ) =
1

N

N∑
n=1

T∏
t=1

f(yt|λ(i)
t,n, θ)

C(λt−1,n, ê
(i)
t ) exp{ê(i)

1,tλt,n + ê
(i)
2,t(λ

(i)
t,n)2}

, (4.24)

where λ
(i)
t,n is drawn from g(ΛT , ST |YT , θ) in (4.23).

The conditional density function f(yt|λ(i)
t,n, θ) in the numerator is given in Eq. (4.10)

for the normal error assumption and in Eq. (4.11) for the scaled Student-t error assumption.

In summary, the EIS algorithm to evaluate the likelihood for the MSSV(2) model
in (4.16), given an initial parameter vector θ0 and the transition probabilities p and q, is
as follows:

1. Generate ε from Uniform[0,1]. Set s1 = 0 if ε < π0; otherwise, s1 = 1, where
π0 = (1− q)/(2− p− q) is the steady-state probability in regime 0 for t = 1, ...T.

2. Generate ΛT from Eq. (4.13).

3. Assuming C(λT , eT+1) = 1, obtain et by performing T regressions as in (4.21), work-
ing backward from t = T to t = 1.

4. Generate the new ΛT from the importance density g(ΛT , ST |YT , θ) in (4.23).
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5. Repeat Steps 3 and 4 until either et or the new λt converges for all t.

6. Compute the estimated likelihood in (4.24).

4.3.1 Volatility Estimation

We employ a particle filter (Pitt and Shephard (1999)) to sample λt from the posterior
distribution f(λt|Yt, st, θ̂). The detailed steps of implementing the particle filter along with
the functional forms to estimate the log variance λt for the MSSV(2) model are given below.

The filtering density f(λt|Yt, st) is proportional to f(yt|λt, st, θ̂)f(λt|Yt−1, st, θ̂) by
Bayes’ theorem. The conditional density function f(λt|Yt−1, st, θ̂) is written as

f(λt|Yt−1, st, θ̂) = f(λ
(0)
t |Yt−1, θ̂)P0,t + f(λ

(1)
t |Yt−1, θ̂)(1− P0,t),

where λ
(i)
t denotes the latent variable λt in regime i for i = 0, 1, and the conditional density

f(λ
(i)
t |Yt−1, θ̂) can be written as

f(λ
(i)
t |Yt−1, θ̂) =

∫
f(λ

(i)
t |λt−1, θ̂)f(λt−1|Yt−1, θ̂)dλt−1. (4.25)

Then, the integral in (4.25) can be estimated by

f(λ
(i)
t |Yt−1, θ̂) ≈

1

M

M∑
m=1

(
1∑
j=0

f(λ
(i)
t,m|λ

(j)
t−1,m, θ̂)pji,t

)
,

where λ
(i)
t−1,m is drawn from f(λ

(i)
t−1|Yt−1, θ̂) for m = 1, ...,M and the probability pji,t is

given in (4.14). This leads to

f(λ
(i)
t |Yt, θ̂) ∝ f(yt|λ(i)

t , θ̂)
1

M

M∑
m=1

(
1∑
j=0

f(λ
(i)
t,m|λ

(j)
t−1,m, θ̂)pji,t

)
(4.26)

for i = 0, 1.

Let λ
(i)
t|t−1 = α̂ + β̂(M−1

∑
m

∑
j λ

(j)
t−1,mpji,t). Note that the conditional density of yt
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given λ
(i)
t can be written

log f(yt|λ(i)
t , θ̂) = constant− 1

2
λ

(i)
t −

y2
t

2
exp{−λ(i)

t }.

Let us call the right-hand side without the constant log f ∗(yt, λ
(i)
t , θ̂). Then, the expansion

of log f ∗(yt, λ
(i)
t , θ̂) by a first-order Taylor approximation around λ

(i)
t|t−1 leads to:

log f ∗(yt, λ
(i)
t , θ̂) ≤ −1

2
λ

(i)
t −

y2
t

2
[(1 + λ

(i)
t|t−1) exp{−λ(i)

t|t−1} − λ
(i)
t exp{−λ(i)

t|t−1}]

= log g∗(λ
(i)
t , λ

(i)
t|t−1, θ̂), (4.27)

where log g∗ is the right-hand side of the inequality. Also, it can be shown via some
algebra that

g∗(λ
(i)
t , λ

(i)
t|t−1, θ̂)f(λ

(i)
t |λ

(i)
t−1,m, θ̂) ∝ π(i)

m fN(λ
(i)
t |λ

∗(i)
t|t−1, γ̂

2), (4.28)

where fN(λ
(i)
t |λ

∗(i)
t|t−1, γ̂

2) denotes a normal density of λ
(i)
t with mean λ

∗(i)
t|t−1, and variance γ̂2,

λ
∗(i)
t|t−1 = α̂ + β̂λ

(i)
t−1 +

γ̂2

2
[y2
t exp{−λ(i)

t|t−1} − 1],

(4.29)

π(i)
m =

1∑
j=0

exp

[
1

2γ̂2
{(α̂ + β̂(λ

∗(i)
t|t−1)2)2 − (λ

∗(i)
t|t−1)2}

]
pji,t. (4.30)

From the relationship in (4.28), the right-hand side of (4.26) is bounded as

f(λ
(i)
t |Yt, θ̂) ∝ f(yt|λ(i)

t , θ̂)
1

M

M∑
m=1

(
1∑
j=0

f(λ
(i)
t,m|λ

(j)
t−1,m, θ̂)pji,t

)

≤ g∗(λ
(i)
t , λ

(i)
t|t−1, θ̂)

1

M

M∑
j=1

(
1∑
j=0

f(λ
(i)
t,m|λ

(j)
t−1,m, θ̂)pji,t

)

∝ 1

M

M∑
j=1

π(i)
m fN(λ

(i)
t |λ

∗(i)
t|t−1, γ̂

2).

In summary, the algorithm for drawing λt is as follows:
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1. Generate a Markov process st as Step 1 in the EIS algorithm given in the previous
section.

2. Draw a proposal λ
prop(i)
t for i = 0, 1 for the mixture density

M∑
m=1

π(i)∗
m fN(λ

(i)
t |λ

∗(i)
t|t−1, γ̂

2), (4.31)

where π
(i)∗
m = π

(i)
m /
∑
π

(i)
m .

3. Accept λ
prop(i)
t with acceptance/rejection probability

f ∗(yt, λ
(i)
t , θ̂)/g

∗(λ
(i)
t , λ

(i)
t|t−1, θ̂).

If rejected, go to Step1.

Hence, the estimated volatility σ̂ is calculated by σ̂ = exp{λ̂t/2}.

Under the scaled Student-t distributional assumption for ut, the conditional density
of yt given λ

(i)
t is

f(yt|λ(i)
t ) =

(√
π(ω − 2) exp{λ(i)

t }
)−1 Γ

(
ω+1

2

)
Γ
(
ω
2

) (1 +
y2
t

exp{λ(i)
t }(ω − 2)

)−ω+1
2

and so its corresponding acceptance/rejection probability f ∗/g∗ can be described by the
following two equations:

log f ∗(yt, λ
(i)
t , θ̂) =

ω

2
λ

(i)
t −

(ω + 1)

2
log[exp{λ(i)

t }(ω − 2) + y2
t ],

log g∗(λ
(i)
t , λ

(i)
t|t−1, θ̂) =

ω

2
λ

(i)
t t−

(ω + 1)

2
log[(ω − 2)((1 + λ

(i)
t|t−1) exp{λ(i)

t|t−1}

+ λ
(i)
t exp{λ(i)

t|t−1}) + y2
t ].

Then, the weight function π
(i)∗
m is given in Eq. (4.30) and the mixture density is given in

Eq. (4.31). The algorithm for the estimation of volatility in the case of the scaled Student-t
distribution can be described as before, and the estimated volatility σ̂ is calculated by
σ̂ = exp{λ̂t/2}.
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Table 4.1: Summary statistics of simulated series

Series Mean Std. Dev. Kurtosis

p = 0.5 and q = 0.01 -0.2780 13.0817 9.2602
p = 0.8 and q = 0.01 0.0145 4.4325 11.2182

4.4 Simulation Study

We conduct a simulation study to demonstrate parameter estimation using the EIS
algorithm and volatility estimation using a particle filter in the MSSV model. Two series
each with 1,000 observations were generated using the MSSV(2) model, one with p = 0.8
and the other with a smaller p = 0.5. The transition probability from regime 0 to regime
1 equals 0.2 when p = 0.8 and 0.5 when p = 0.5. The parameter q (see Table 4.1) was the
same in both series. The hypothetical values of the parameters are similar to those found
empirically. In particular, p = 0.5 and q = 0.01 gives a steady-state probability at regime
0 of 66.4% while it is 83.2% when (p, q) = (0.8, 0.01).

Table 4.1 shows the summary statistics for the two simulated series. Both series
have large kurtosis. Figure 4.1 displays time series plots of the two series, their auto-
correlations, and the autocorrelations of the squared series. It is easy to see that there
are two regimes of low and high volatility in the top and bottom plots on the left in
Fig. 4.1. Volatility clustering is observed in both series. In addition, the ACF indicates
that the simulated series are uncorrelated, but the squared series indicate persistence in
their correlations.

The parameter estimation results are summarized in Table 4.2. All the estimates are close
to the true values and the standard errors are fairly small. This indicates that the SML
approach with the EIS algorithm can be applied to parameter estimation in the MSSV(2)
model.

Volatility estimation is done by a particle filter. Figure 4.2 shows the absolute val-
ues of the returns along with the estimated volatility for each series. We can see that
the estimated volatilities are able to capture the movement of the simulated series. In
particular, the change in volatility is successfully captured.

We also performed model diagnostics to see the adequacy of the fit. The standardized
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Figure 4.1: Simulated series plots: Returns (left), ACF of returns (center), and ACF of
squared returns (right).

Table 4.2: Parameter estimates: MSSV(2) model

p = 0.5 α0 α1 β γ p q
True Value 0.01 0.3 0.97 0.3 0.5 0.01

Estimated Value 0.0059 0.3014 0.9712 0.2976 0.4998 0.0098
Std. Error 0.0321 0.0129 0.0097 0.0188 0.0107 0.0098

p = 0.8 α0 α1 β γ p q
True Value 0.01 0.3 0.97 0.3 0.8 0.01

Estimated Value 0.0099 0.3112 0.9643 0.3219 0.8176 0.0091
Std. Error 0.0362 0.0218 0.0038 0.0233 0.0212 0.0074
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Figure 4.2: Top panels: estimated volatilities; Bottom panels: absolute values of return
series.
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Figure 4.3: Diagnostic plots of simulated series

residual from the MSSV(2) model is defined by

ût =
yt
σ̂t
,

where σ̂t = exp{λ̂t/2} and λ̂t is the estimated volatility obtained by a particle filter for
t = 1, ..., T . If the estimated model is adequate, ût is approximately a normal distribution
with mean zero and variance one. Figure 4.3 displays the diagnostic plots for the first series
with p = 0.5: residual plot, ACF plot, and QQ plot. The residuals vary over a constant
band and the autocorrelations are negligible. The QQ plot indicates that the points are
close to a straight line although there is a slight deviation at the tails. We conclude that, as
expected, the MSSV(2) model fits the data fairly well . In addition, this simulation study
shows that the SML approach with the EIS algorithm is reasonable for the estimation of
the MSSV(2) model.

4.5 Empirical Analysis

We performed an empirical analysis of the MSSV(2) model using four return series.
In each series, the SML approach with the EIS technique is used for the estimation of
the parameters, and a particle filter is used to estimate the volatility. Moreover, model
selection and model diagnostics are carried out. All the code is written in MATLAB 7.3.0.
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Table 4.3: Summary statistics of data

Statistics KOSPI 200 S&P500 RUSSEL 2000 NIKKEI 225
Sample Size 3124 2681 2681 2000

Mean -0.0340 -0.0122 0.0072 0.0258
Std. Dev. 2.3084 1.3925 1.6954 1.4731
Kurtosis 15.5597 7.4143 4.0488 5.4816

4.5.1 Data

The following time series are considered for the empirical analysis: the daily clos-
ing prices of the Kospi 200 index from 1/4/1989 to 12/29/2000, the daily closing
prices of the S&P 500 and Russel 2000 indices from 1/3/2000 to 8/31/2010, and the
daily closing prices of the Nikkei 225 index from 2/3/1990 to 3/30/2000. The Kospi
200 and Nikkei 225 series were also used for the empirical analysis of the AR–SV
model. The prices of the series are converted to mean-corrected log returns, defined by
yt = 100 ∗ [log(pt/pt−1) − 1

T

∑
log(pt/pt−1)], where pt is the price of an index at time t.

The total number of observations and some summary statistics for each return series are
given in Table 4.3.

The kurtoses of all the series are greater than three, which implies that the distributions
of the series have heavier tails than the normal distribution. Figure 4.4 gives the time
series of the returns. Figure 4.5 displays the autocorrelation functions of the series, and
Fig. 4.6 gives those of the squares. The plots indicate that the volatility of the series shifts
at several points throughout the time period. The Kospi 200, S&P 500, and Russel 2000
series have one notable shift in the volatility in the later period. The ACF plots indicate
that there are few autocorrelations in the series except for Kospi 200 and large and slowly
decaying correlations in the squared series. Given these findings, it seems reasonable to
consider MSSV models for these series to capture the discrete switches in the volatility.

4.5.2 Estimation Results

The MSSV(2) model is used for each of the four return series and the SML approach
with the EIS algorithm is implemented. The results are in Table 4.4. The MC sampling

108



Figure 4.4: Plots of four series: KOSPI 200, S&P 500, RUSSEL 2000, and NIKKEI 225
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Figure 4.5: Autocorrelation plots of four return series: KOSPI 200, S&P 500, RUSSEL
2000, and NIKKEI 225

Figure 4.6: Autocorrelation plots of squared returns: KOSPI 200, S&P 500, RUSSEL 2000,
and NIKKEI 225
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errors and standard errors of the estimates are small. The estimated values of the
persistent parameter β are greater than 0.9. This is commonly seen in the empirical
analysis of stochastic volatility models. For all the series, the steady-state probabilities at
regime 0 calculated by the formula (1− q)/(2− p− q) with the estimated p and q are close
to 60%. This means that all of the series are more likely to stay in a normal state, which
is regime 0. This is consistent with the characteristics observed from the historical data.

Given the parameter estimation results in Table 4.4, we estimate the volatility
σt = exp{λt/2} by a particle filter. For this estimation we use fifty simulated λt at each
time step for t = 1, ..., T . Figure 4.7 shows the estimated volatility with the corresponding
absolute values of the returns. The plot indicates that the estimated volatility from the
MSSV model captures the movement of the return series reasonably well.

4.5.3 Model Diagnostics

We perform a residual analysis to check the adequacy of the MSSV(2) models for the
four return series. Under the normal assumption for ut, consider the standardized residual
at time t:

ût ≡
yt
σ̂t
, t = 1, ..., T,

where yt is the observed return and σ̂t = exp{λ̂t/2}, which is the estimated volatility
displayed in Fig. 4.7. If the fitted model is adequate, ût is approximately standard normal.

Figure 4.8 displays the residual plots of the four series. The standardized residuals
do not seem to be abnormal except for the Kospi 200 series. For the Kospi 200 series,
there seems to be some change in the volatility. The plots in Fig. 4.9 are the autocorre-
lation functions of the standardized residuals. The autocorrelations in the residuals are
small. In the Kospi 200 series, the first-lag correlation is similar to what was seen in the
original series. The model fitting does not seem to have captured this well.

The QQ plots are given in Fig. 4.10 to validate the normality assumption for ut.
For the Russel 2000 series, most of the points are quite close to the straight line. The
QQ plots of the S&P500 and Nikkei 225 series indicate that most of the points are close
to the straight line although there are some deviations at both ends. For the Kospi 200
series, there is an indication that the normality assumption may not be adequate and an
alternative assumption for ut such as the Student-t distribution may be more appropriate.
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Table 4.4: SML estimation of MSSV(2) model

Parameter KOSPI 200 S&P 500 RUSSEL 2000 NIKKEI 225

α0 0.1071 0.0108 0.0248 0.0157
MC std. error 0.0002 0.0002 0.0003 0.0002

Std. error 0.0341 0.0381 0.0319 0.0298

α1 0.0149 0.0157 0.0352 0.0112
MC std. error 0.0001 0.0002 0.0000 0.0001

Std. error 0.0276 0.0301 0.0277 0.0286

β 0.9002 0.9584 0.9821 0.9189
MC std. error 0.0003 0.0001 0.0001 0.0001

Std. error 0.051 0.0489 0.0701 0.0821

γ 0.1078 0.155 0.2147 0.1215
MC std. error 0.0001 0.0002 0.0001 0.0002

Std. error 0.0431 0.0378 0.0403 0.0487

p 0.4218 0.3769 0.5171 0.4714
MC std. error 0.0000 0.0001 0.0001 0.0001

Std. error 0.0712 0.0698 0.0812 0.0714

q 0.1094 0.1328 0.1489 0.1826
MC std. error 0.0001 0.0002 0.0002 0.0003

Std. error 0.0627 0.0612 0.0703 0.0729

Steady-state prob. at regime 0 (%) 60.63 58.19 63.80 60.73

CPU time1 13284 12680 12673 11973
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Figure 4.7: Estimated volatility with absolute returns of four series: KOSPI 200, S&P 500,
RUSSEL 2000, and NIKKEI 225
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We will consider such a specification for the Kospi 200 series in the next subsection. Based
on our residual analysis so far, we can conclude that the MSSV(2) model is reasonable for
capturing the time-varying volatility in the S&P 500, Russel 2000, and Nikkei 225 series.
For the Kospi 200 series, a Student-t assumption for the error ut may be necessary to
improve the goodness of fit of the model.

4.5.4 Further Analysis of Kospi 200 index

In the empirical analysis of the AR–SV model in Chapter 3, we observed a noticeable
change in volatility in the Kospi 200 series. Before the crisis in 1997 the volatility was
low, while it was high after the crisis. This finding motivated us to consider a stochastic
volatility model with regime switching. Further analysis of the Kospi 200 series with the
AR(1)–SV model and the MSSV(2) model under normal and Student-t error assumptions
is given in this section.

In the empirical analysis earlier, we indicated that the MSSV(2) model with the
normal error assumption may have to be improved to better capture the time-dependent
volatility. Specifically, the diagnostic tests suggest that the standard normal assumption
for the error term ut is not sufficient to capture the heavy tail of the return distribution
of the Kospi 200 series. To investigate this further, we fit the Kospi 200 series with the
MSSV(2) model with a scaled Student-t distribution with 8 degrees of freedom.

Figure 4.11 displays the estimated volatility of Kospi 200 from the AR(1)–SV and
MSSV(2) models along with the absolute returns. The first two graphs show the estimated
volatility from the AR(1)–SV model and the absolute Kospi 200 returns. In the first
graph, the dotted line is the estimated volatility under a normal error assumption, and the
solid line is the estimated volatility under a Student-t assumption. The last two graphs
are the estimated volatility from the MSSV(2) model and the absolute Kospi 200 returns.

Both models seem to capture the movements of the returns fairly well, but the
MSSV(2) model has a slight edge in capturing the volatility change. The AR(1)–SV model
tends to underestimate the volatility. Regardless of the error assumptions, the average
estimated volatility from the AR(1)–SV and MSSV(2) models is about 15% and 18%,
respectively. Specifically, for the large jump in volatility in 1997, the estimated volatility
of the KOSPI 200 index is only about 20% from that of the AR(1)–SV model, and about
35% from that of the MSSV(2) model. The one-year moving annualized volatility of Kospi

114



Figure 4.8: Residual plots of four series: KOSPI 200, S&P 500, RUSSEL 2000, and NIKKEI
225
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Figure 4.9: Autocorrelation plots of four series: KOSPI 200, S&P 500, RUSSEL 2000, and
NIKKEI 225
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Figure 4.10: QQ plots of four series: KOSPI 200, S&P 500, RUSSEL 2000, and NIKKEI
225
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Figure 4.11: Estimated volatility and absolute returns of KOSPI 200: First plot is the
estimated volatility from AR(1)–SV model with normal error assumption (dotted line)
and Student-t error assumption (solid line). Second and fourth plots are absolute returns
of KOSPI 200. Third plot is the estimated volatility from MSSV(2) model with normal
error assumption (dotted line) and Student-t error assumption (solid line).

200 during late 1997 and 1998 is about 55%. The estimated annualized volatility of Kospi
200 during the period is 40% for the AR(1)–SV model and 60% for the MSSV(2) model.
The estimated annualized volatility is calculated by the estimated daily volatility times
the square root of 252. The volatility estimates from the MSSV(2) model are much closer
to the actual values of the historical volatility. Given these findings, we conclude that
the MSSV(2) model is better than the AR(1)–SV model at capturing the volatility of the
Kospi 200 series.

Table 4.5 shows the parameter estimation results under the standard normal and the
Student-t with 8 degrees of freedom assumptions for ut. The persistent parameter β
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Table 4.5: SML estimation of MSSV(2) model for KOSPI 200 series: Normal and Student-t
error assumptions

Parameter Normal(0, 1) Student-t (8)

α0 0.1071 0.0941
MC std. error 0.0002 0.0001

Std. error 0.0341 0.0129

α1 0.0149 0.0132
MC std. error 0.0001 0.0001

Std. error 0.0276 0.0218

β 0.9002 0.9213
MC std. error 0.0003 0.0001

Std. error 0.051 0.0318

γ 0.1078 0.0839
MC std. error 0.0001 0.0002

Std. error 0.0431 0.0431

p 0.4218 0.3328
MC std. error 0.0000 0.0001

Std. error 0.0712 0.0522

q 0.1094 0.1182
MC std. error 0.0001 0.0002

Std. error 0.0627 0.031

Steady-state prob. at regime 0 (%) 60.63 56.93

under the Student-t error assumption is slightly larger than that under the standard
normal assumption, which is consistent with our expectation. Based on these parameter
assumptions, the estimated volatility of the Kospi 200 series is obtained; it is shown in
Fig. 4.11.

Figure 4.12 gives diagnostic plots: the plot of standardized residuals, ACF plots, and QQ
plots under the error assumptions for the MSSV(2) model. The plots on the left-hand side
are under the standard normal error assumption, and those on the right-hand side are
under the Student-t error assumption. Under the Student-t error assumption, the residuals
are more random and the autocorrelation at lag 1 becomess negligible. Moreover, there
is significant improvement in the QQ plot. Based on our diagnostic tests, the MSSV(2)
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model under a Student-t with 8 degrees of freedom error assumption fits the Kospi 200
series better than the MSSV(2) model with the standard normal error assumption.

To compare the goodness of fit of the MSSV(2) model with a heavy-tail error and
the AR(1)–SV model with a heavy-tail error, we display in Fig. 4.13 diagnostic plots of
Kospi 200 in the AR(1)–SV model with a Student-t with 8 degrees of freedom assumption.
For both cases, the standard residuals are randomly distributed and no autocorrelations
exist. However, the QQ plot of the standardized residuals from the MSSV(2) model
shows that most of the points are on the straight line; in the QQ plot corresponding
to the AR(1)–SV model there are deviations from the straight line at both ends. From
the diagnostic plots, we can conclude that the MSSV(2) model with a Student-t error
assumption is more approprite for the Kospi 200 than the AR(1)–SV model with a
Student-t error assumption. Furthermore, of the volatility models we considered in this
thesis, MSSV(2) is the best for the Kospi 200 series.
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Figure 4.12: Diagnostic plots for KOSPI 200: Standard normal (left) and Student-t (right)
distributional assumptions for error term ut in MSSV(2) model
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Figure 4.13: Diagnostic plots for KOSPI 200: Standard normal (left) and Student-t (right)
distributional assumptions for error term ut in AR(1)–SV model
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Chapter 5

Summary and Future Research

This chapter is organized as follows. We provide a summary of the results in Chapters
1–4 in Section 1. In Section 2, we consider multivariate volatility models as an important
topic for future research. In Section 3, we list some additional topics for future research.

5.1 Summary

In Chapter 1, we introduced two types of volatility models: ARCH and SV. In the
SV case, we introduced the standard SV model, proposed by Taylor (1986). We also
discussed several estimation methods for the SV model including the GMM, EMM, SML,
and MCMC methods.

We discussed the statistical properties of the SV model with two error assumptions
in Chapter 2. One error assumption is the standard normal distribution and the other
is the scaled Student-t distribution. We also described the SML method with the EIS
algorithm and the MCMC method for estimating the parameters in the SV model. For the
volatility estimation, we considered a particle filter. In the empirical study, we considered
the SV model with normal and Student-t errors and studied the performance of the SML
method with the EIS technique and the MCMC method with a Gibbs sampler using
actual return series.

Our empirical analysis shows that the kurtosis implied by the SV-t model is gener-
ally closer to the sample kurtosis of the return series than that for the SV-normal
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model. The model diagnostics indicate that the SV-t specification is more appropriate
than the SV-normal for most of our data. In particular, the S&P500 and IBM series
have extremely large sample kurtoses. This is because of the existence of jumps in the
series during the Black Monday period. To model these extreme values more precisely,
one can consider a model with a jump component. On the other hand, if the unusual
values are excluded, the tail behavior of the series is quite similar to that of the other series.

In the comparison of the performances of SML and MCMC, we found that the es-
timation results obtained by SML and MCMC are similar and statistically precise in
the sense of a small standard error of the parameter estimates, but SML has an edge on
MCMC in terms of computing time.

In Chapter 3, we considered the AR(p)–SV model to introduce autocorrelation in
the conditional mean process along with the stochastic volatility process. We studied
the moment properties and likelihood of the model. We chose the SML method with the
EIS technique to estimate the parameters and a particle filter to estimate the volatility.
To select the order p of the AR part of the model, we considered AIC and BIC model
selection criteria. To demonstrate the estimation of the AR(p)–SV model, we conducted
a simulation study with three simulated series. The results showed that the SML method
with the EIS algorithm is applicable to the estimation of the AR(1)–SV model.

To examine the robustness of the SML with the EIS for the AR(p)–SV model, we
performed a sensitivity analysis with two simulated series where the error ut follows a
Generalized Lambda distribution. We fit the series to the AR(1)-SV models with normal
and t errors. Based on the parameter estimation results and model diagnostics, we
conclude that the SML method with EIS is robust to certain deviations from normal and
t tail behavior.

In the empirical study with four data sets, we implemented the SML method with
the EIS technique for the parameter estimation and a particle filter for the volatility
estimation. Based on AIC and BIC, the AR(1)–SV model was best for the Kospi 200
and RBC series. This model can capture the persistence and the large kurtosis of the
series. However, a normal error assumption for the conditional mean process does not
capture the heavy left tail in the return distribution, which is in line with our observation
in the SV model. To study the performance of the AR(1)–SV model with a normal and
a heavy-tailed error, we performed the parameter estimation and model diagnostics with
two error assumptions for the Kospi 200 and RBC series. The results show that the
AR(1)–SV model with a scaled Student-t error assumption provides a better fit to the data.
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Although the AR(1)–SV model with a scaled Student-t error was the best model
for the Kospi 200 series in the empirical study in Chapter 3, we noticed that there was
a notable shift in the volatility of the Kospi 200 series in late 1997. To account for this
sudden shift in the volatility, in Chapter 4 we considered the regime-switching SV model
with K regimes, called the Markov switching SV (MSSV(K)) model. We derived the
likelihood function of the MSSV model and used the SML method with the EIS algorithm
to estimate the parameters and a particle filter to estimate the volatility. Our simulation
study showed that our method was reasonable for the estimation of the MSSV(2) model.

We conducted an empirical study with four series including the Kospi 200 series
used in the empirical study in Chapter 3. The MSSV(2) model with a normal error is able
to capture the time-varying volatility of the S&P 500, Russel 2000, and Nikkei 225 series,
but not that of the Kospi 200 series. We therefore fitted the MSSV(2) model with a scaled
Student-t error to the Kospi 200 series, and the goodness of fit substantially improved.

In the comparison of the AR–SV and MSSV models for the Kospi 200 series, we
found that both models capture the movement of the Kospi 200 returns well. How-
ever, the MSSV(2) model has a slight edge over the AR(1)–SV model in capturing
the volatility movement. The AR(1)–SV model tends to underestimate the volatility
during the crisis period in 1997, while the estimates from MSSV(2) are quite close to
the actual (historical) volatility. Moreover, the MSSV(2) model with a scaled Student-t
error assumption fits the data better than the same model with a normal error assumption.

5.2 Vector Autoregressive Models with Stochastic

Volatility Errors

The globalization of the economy and the use of the Internet have accelerated the
integration of world financial markets during the last decade. Since a price movement
of any financial asset in one market can affect another market easily and instantly,
the world financial markets are more dependent on each other than ever before. One
should therefore consider market phenomena jointly to better understand the dynamic
structure of global finance. In a response to the globalization, it is essential to be aware
of the interrelationship between financial markets. Accordingly, for investors or financial
institutions that hold multiple assets, the dynamic relationship between returns on assets
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is a key issue in decision making.

To incorporate the interrelationship between global securities, it would be natural
to generalize the univariate volatility models described in Chapters 1 to 4 to the multi-
variate case. Multivariate volatility models have many important financial applications.
They play a crucial role in portfolio selection and asset allocation, and can be used to
compute tail risk measures such as the conditional tail expectation (CTE) or the value at
risk (VaR) of a financial position consisting of multiple assets.

Many multivariate models have been developed to consider cross-correlations between
multiple assets in financial economics. One of the most popular and natural applications
is a straightforward extension of the univariate conditional variance models such as the
ARCH or SV models. Among the multivariate (G)ARCH models, Bollerslev, Engle,
and Wooldridge (1988) proposed the VEC-GARCH model, which is a straightforward
generalization of the univariate GARCH model. In this model, the conditional variance
and covariance are functions of their lagged conditional variances and covariances, as well
as lagged squared returns and cross-products of returns. This model is difficult to estimate
because of the high dimension of the parameter space and complicated constraints. To
reduce the number of parameters to be estimated in the VEC-GARCH model, Bollerslev
(1990) considered a time-invariant multivariate correlation model with the GARCH(p,q)
model, called the constant conditional correlation (CCC) GARCH model. An extension
to the CCC-GARCH (ECCC-GARCH) model was introduced by Jeantheau (1998).
This allows the past squared returns and variances of all series to enter the individual
conditional variance equations. Tse and Tsui (1999) proposed the multivariate GARCH
model with time-varying correlations (VC-GARCH). The time-varying correlations are
modeled as functions of the conditional correlations of the previous period and a set of
estimated correlations.

The literature on multivariate stochastic volatility models is rather more limited.
Multivariate SV (MSV) models are discussed by Harvey et al. (1994), Jacquier, Polson,
and Rossi (1995), Kim et al. (1998), Pitt and Shephard (1999), Aguilar and West (2000),
and Liesenfeld and Richard (2003). The models in these papers are equivalent to a stack
of univariate SV models and MCMC is used to estimate the models. Chib, Nardari,
and Shephard (2006) proposed a more general version of the MSV model (Harvey et al.
(1994)) with heavy-tailed errors and jumps and studied the forecasting performance of
the MSV model using a particle filter.

In the models stated above, no correlation is assumed for underlying assets, but
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time-invariant correlations are assumed for the volatilities of the assets. A natural exten-
sion to incorporate cross-correlations between multiple assets is the vector autoregressive
process (VAR) for the conditional mean process. Canova (1993), Sims (1993), Stock
and Watson (1996), and Cogley and Sargent (2001) consider VARs with drift coefficients
and time-invariant variances. Cogley (2003), Cogley and Sargent (2003), Boivin (2001),
and Ciccarelli and Rebucci (2003) used VARs with drift coefficients and time-varying
variances. Primiceri (2005) considered a VAR model with a time-varying error covariance
matrix. Some restrictions were imposed on the structure of the covariance matrix so that
it became a special case of the MSV model and then MCMC was used for estimating
parameters in the model.

In this section, we review a vector autoregressive (VAR) process and multivariate
stochastic volatility (MSV) models and consider the VAR model with the MSV innovation
to account for the interrelationship between underlying assets and between the volatilities.
To estimate the parameters in the VAR-MSV model, the SML method can be considered,
but we will leave this as future research.

5.2.1 Vector Autoregressive Model

Suppose that there are m financial time series yt. Then, the VAR model of order p is
defined as

yt = Φ0 +

p∑
i=1

Φiyt−i + εt, (5.1)

where yt = (y1,t, ..., ym,t)
′, Φ0 = (φ1,0, ..., φm,0)′, Φi is an m × m matrix, and εt =

(ε1,t, ..., εm,t)
′ is a multivariate Gaussian white noise with variance-covariance matrix Σε.

The coefficient vector Φi for all i measures the dynamic dependence of yt. To obtain the
necessary and sufficient condition of (weak) stationarity for this model, we rewrite Eq. (5.1)
as

Φ(B)yt = Φ0 + εt,

where Φ(B) = 1 − Φ1B − · · · − ΦpBp and B is a backshift operator. yt is stationary if
and only if the determinant polynomial |Φ(B)| = 0 has a root outside the unit circle.

Consider the bivariate case [i.e., m = 2,yt = (y1,t, y2,t)
′, and εt = (ε1,t, ε2,t)

′]. The
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bivariate VAR(1) model consists of the following two equations:

y1,t = φ1,0 + φ11y1,t−1 + φ12y2,t−1 + ε1,t, (5.2)

y2,t = φ2,0 + φ21y1,t−1 + φ22y2,t−1 + ε2,t (5.3)

for t = 1, ..., T . φij is the (i, j)th component of Φ1 and φi,0 is the ith component of Φ0 for
i, j = 1, 2. From Eq. (5.2), φ12 represents the linear dependence of y1,t on y2,t−1 in the
presence of y1,t−1. That is, φ12 is the conditional effect of y2,t−1 on y1,t, given y1,t−1. Thus,
if φ12 = 0, then y1,t depends only on its own past. Similarly, if φ21 = 0, then Eq. (5.3)
shows that y2,t depends only on y2,t−1.

If we consider Eqs. (5.2) and (5.3) jointly, the interpretations of φ12 and φ21 are as
follows. If φ12 = 0 and φ21 6= 0, then everything but y1,t depends on y2,t, but not vice
versa. If φ12 = φ21 = 0, then y1,t and y2,t are not related. If φ12 6= 0 and φ21 6= 0,
then there is a feedback relationship between the two series. The concurrent relationship
between y1,t and y2,t is shown by the off-diagonal element σ12 of the variance-covariance
matrix Σε. If σ12 = 0, then there is no concurrent linear relationship between the series.

Let ~µ denote the mean vector of the time series yt and ỹt = yt − ~µ denote the
mean-corrected series. Then, the bivariate VAR(1) model in (5.2) and (5.3) has the
following expression

ỹt = Φ1ỹ1,t + εt. (5.4)

By repeated substitutions, Eq. (5.4) can be rewritten as

ỹt = εt + Φ1εt + Φ2
1εt + Φ3

1εt + · · · . (5.5)

From this expression, several characteristics can be found. First, the necessary and suf-
ficient condition for weak stationarity of yt is that all eigenvalues of Φ1 are less than 1
in modulus provided that the variance-covariance matrix of εt exists. Second, since εt is
serially uncorrelated, Cov(εt,yt−1) = 0, which leads to Cov(εt,yt−j) = 0 for j > 0. Third,
multiplying (5.5) by ε

′
t and taking the expectation, it can be seen that Cov(εt,yt) = Σε

because εt is uncorrelated.

5.2.2 Multivariate Stochastic Volatility Model

The univariate stochastic volatility (SV) model can be generalized to the multivariate
SV (MSV) model in various ways (see Asai, McAleer, and Yu (2006) for a survey). In
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this section, we introduce an MSV model proposed by Harvey et al. (1994) that is
straightforward and analytically tractable.

For a multivariate time series yt, the multivariate stochastic volatility (MSV) model
(Harvey et al. (1994)) is defined as

yt = H
1/2
t ut, (5.6)

λt = α + βλt−1 + vt (5.7)

for t = 1, ..., T . yt = (y1,t, ..., ym,t)
′ contains the observations at time t, where m is the

number of series, H
1/2
t = diag[exp{λ1,t/2}, ..., exp{λm,t/2}] is the m×m diagonal matrix,

and λt = (λ1,t, ..., λm,t)
′ is the latent log-variance process. α is an m × 1 vector and β is

an m×m matrix. ut = (u1,t, ..., um,t)
′ is a multivariate normal vector with zero mean and

correlation matrix Pu, in which the elements on the leading diagonal are unity and the
off-diagonal elements are denoted ρ

(u)
ij . Moreover, vt is multivariate normal with mean

vector zero and variance-covariance matrix Σv. Note that the covariance matrices Pu and
Σv are positive-definite. If all the eigenvalues of β are less than 1 in modulus, then the
latent process λt in Eq. (5.7) is a stationary VAR(1) process provided that Σv exists.

For the simplest case, consider the bivariate MSV model, defined by

y1,t = exp{λ1,t/2}u1,t,

y2,t = exp{λ2,t/2}u2,t, (5.8)

λ1,t = α1 + β11λ1,t−1 + β12λ2,t−1 + v1,t,

λ2,t = α2 + β21λ1,t−1 + β22λ2,t−1 + v2,t, (5.9)(
ut

vt

)
∼ N

[(
0
0

)
,

(
Pu 0
0 Σv

)]
,

where the error processes ut = (u1,t, u2,t)
′

and vt = (v1,t, v2,t)
′

are bivariate normal with
the correlation matrix Pu and the variance-covariance matrix Σv given by

Pu =

(
1 ρ
ρ 1

)
and Σv =

(
σ

(v)
11 σ

(v)
12

σ
(v)
21 σ

(v)
22

)
,

where ρ is a known, constant parameter. The latent log-variance process λt follows a
VAR(1) model. The coefficient β12 describes the relationship between the log variance of
series-two λ2,t at time t− 1 and the log variance of series-one λ1,t at time t in the presence
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of λ1,t−1. Thus, we can make interpretations for βij for i, j = 1, 2 similar to those in
Section 5.2.1.

Although the MSV model in Eqs. (5.6) and (5.7) is natural and reasonable, the es-
timation cannot easily be accomplished. The main difficulty is that there are too many
parameters to be estimated. The number of parameters for the bivariate MSV process
is 10, and in general, the number of parameters is m + 2m2. To reduce the number
of parameters without losing the nice characteristics of the MSV models, Harvey et al.
(1994) set β to be an m×1 vector. That is, each log variance λt is specified as a univariate
SV model. The form of this MSV model is

yi,t = exp{λi,t/2}ui,t, (5.10)

λi,t = αi + βiλi,t−1 + vi,t, (5.11)

where all the assumptions for ut and vt are as in Eqs. (5.6) and (5.7). Equation (5.11)
is a special case of (5.7) in which the off-diagonal elements of β are zeros. In this case,
the number of parameters to be estimated is 2m+m2. If we assume that the off-diagonal
elements of Σv are all equal to zero, then the elements of the vector λt are independent.
Otherwise, the elements of λt are not independent.

For more parameter reduction, a multivariate random walk can be considered (Har-
vey et al. (1994)) for λt:

λi,t = λi,t−1 + vi,t. (5.12)

The number of parameters in this model is m2. This MSV model specification is often
used in practice, whereas the models in (5.6), (5.7), (5.10), and (5.11) are more difficult to
handle.

5.2.3 VAR–MSV Model

In this section, we will introduce a vector autoregressive (VAR) model with the
multivariate stochastic volatility (MSV) error. This is basically a vector autoregression
with an error for which the covariance matrix has the diagonal elements evolving over
time according to the stochastic volatility model specification.

There are at least two advantages of this model. First, by the addition of the
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lagged variables of the return series, the concurrent correlations of the series can be
explained. Second, by the inclusion of the stochastic volatility evolution for the error
process, the variations of several return series can be more explicitly and simultaneously
captured. Under suitable assumptions, the VAR(p)–MSV model can be defined as

yt = Φ0 +

p∑
i=1

Φiyt−i + εt,

εt = H
1/2
t ut,

λt = α + βλt−1 + vt, (5.13)(
ut

vt

)
∼ N

[(
0
0

)
,

(
Pu 0
0 Σv

)]
,

where H
1/2
t = diag[exp{λt/2}] for t = 1, ..., T . Pu is a positive definite correlation matrix

of ut with ρ
(u)
ii = 1 and |ρ(u)

ii | < 1 for i 6= j, and Σv is a positive definite covariance matrix

of vt with the elements σ
(v)
ij for i, j = 1, ...,m. The coefficient α is an m× 1 vector and β

is an m×m matrix.

Under this model specification, the number of parameters to be estimated is m + 3m2.
To reduce this number without losing the efficiency of the model, we can consider the
following VAR(p)–MSV model:

yt = Φ0 +

p∑
i=1

Φiyt−i + εt,

εt = H
1/2
t ut,

λt = λt−1 + vt, (5.14)

where H
1/2
t = diag[exp{λt/2}] for t = 1, ..., T . All of the assumptions for (5.13) hold.

Note that all of the elements of α are now set to zero and β is an m × m identity
matrix. Thus, λt follows a simple random walk in a vector form, in which the number of
parameters is only 2m2. Compared with the models in (5.13), the number of parameters is
relatively small in this model, but the estimation of the covariance matrix is still elaborate.

5.3 Topics for Future Research

In line with the results in Chapters 1–4, possible future research directions are as follows:

131



1. For the VAR–MSV model,

(a) Study the moment properties as for the univariate case. Moments and autocor-
relations of one series are influenced by the structure of the other series. This
can be exploited to study the volatility in one series using that in the other
series.

(b) Obtain the exact likelihood function.

(c) Estimate the VAR–MSV model via the SML method, and conduct simulations to
study how effectively the SML method performs. As an MC variance reduction
method, we can consider the EIS technique, as in the univariate case. Empirical
analysis can be performed with actual return series.

(d) Estimate the VAR–MSV model via the MCMC method. Compare the per-
formance of the SML method with the EIS algorithm to that of the MCMC
method, which is more popular in the literature.

(e) Consider the VAR–MSV model with a heavy-tailed error assumption in the
MSV process. Study the performance of capturing the fat left tail of the return
series with a normal and a heavy-tail distribution such as Student-t in the MSV
model.

2. For univariate SV models,

(a) Study asymptotic properties of the SML estimator with the EIS for the SV,
AR–SV, and MSSV models.

(b) Study the properties of AIC and BIC for AR–SV model.

(c) Consider other modifications for the SV models such as

i. Jumps in the conditional mean process with the stochastic volatility error.

ii. Jumps in the MSSV model.

iii. Switching in the AR–SV model.

(d) Apply either SML or MCMC methods to estimate the parameters in the models
and conduct empirical studies.

(e) Consider the generalized error distribution as another heavy-tail error assump-
tion for the SV, AR–SV, and MSSV models.
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