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Abstract

This thesis considers modelling and applications of random graph processes.

A brief review on contemporary random graph models and a general Birth-Death

model with relevant maximum likelihood inference procedure are provided in chap-

ter one. The main result in this thesis is the construction of an epidemic model by

embedding a competing hazard model within a stochastic graph process (chapter

2). This model includes both individual characteristics and the population connec-

tivity pattern in analyzing the infection propagation. The dynamic outdegrees and

indegrees, estimated by the model, provide insight into important epidemiological

concepts such as the reproductive number. A dynamic reproductive number based

on the disease graph process is developed and applied in several simulated and ac-

tual epidemic outbreaks. In addition, graph-based statistical measures are proposed

to quantify the effect of individual characteristics on the disease propagation. The

epidemic model is applied to two real outbreaks: the 2001 foot-and-mouth epidemic

in the United Kingdom (chapter 3) and the 1861 measles outbreak in Hagelloch,

Germany (chapter 4). Both applications provide valuable insight into the behaviour

of infectious disease propagation with different connectivity patterns and human

interventions.
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Chapter 1

Introduction and literature survey

Contemporary science has found graph theory to be a powerful tool for study-

ing phenomena where a set of objects and their relationships are of interest. A

large number of scientific fields deal with data that can be organized into graphs.

Some examples of these fields are social sciences, information technology, artificial

intelligence, biology, chemistry, epidemiology and public health, economics, and

physics. Recent technological advancements have enhanced our ability to analyze

graph data. These developments offer compound opportunities to record intensive

graph data, perform complex computations and store the results efficiently.

A graph consists of a set of points along with a certain linking structure. These

points are called vertices (or nodes). We use the notation V = {v1, . . . , vn} to

denote the set of vertices of a graph. A link between two vertices is an edge. Two

vertices i and j are adjacent (or neighbours) if they are related by an edge1. The

collection of all edges is denoted by the set E as a subset of V × V . The pair of

1We may also talk about the neighbours of a subset of the vertex set, say V ∗ ⊂ V . If the
set differentiation is shown by −, then the neighbours of V ∗ are all vertices in V − V ∗ which are
adjacent to at least one vertex in V ∗
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(V,E) is used to denote a graph G in this work.

The current random graph models can be categorized into two types: static

and dynamic models. In static models, the graph is considered as a single random

object. Erdös-Rényi graphs are an example of this category. Conversely, dynamic

models consider sequences of graphs changing over time. That is, rather than a

single pair G = (V,E), we have a sequence of graphs {G(t) = (V (t), E(t)) : t ∈ T}

where T is the index set to indicate time. We will call this type of models dynamic

random graphs or stochastic graph models in this thesis.

A literature survey on static and dynamic models is provided in section 1.2 after

the basic definitions of graph theory in section 1.1. In section 1.3, we propose a

general birth-death model which unifies a number of current dynamic models and

provides a framework to make likelihood inference for model parameters based on

a time series observation of the graph process. This statistical inference framework

also permits modelling the graph dynamics using vertex covariates (e.g. age, gender

in human networks).

1.1 Preliminary notation and definitions

Mathematically, a graph is defined by an ordered pair G = (V,E), consisting of

a countable vertex set V = {v1, v2, · · · }, and the set of adjacency relations E =

{(vi, vj); vi, vj ∈ V }. In this thesis, the graphs are finite and the adjacency relations

are represented by an n×nmatrix E = [eij]
n
i,j=1. Rows and columns of the adjacency

matrix are labeled by the vertices in V . Each element eij reveals the corresponding

adjacency relation between vi ∈ V and vj ∈ V . Subsequently, vi and vj are referred

to, as i and j respectively.
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Various graph types are defined by quantifying the eij elements in different ways.

The graph is directed if edges are composed of directed arrows and undirected if

edges are lines connecting pairs of vertices. A directed edge from i to j is denoted

by the symbol i → j. Alternatively, an undirected edge is indicated by i ∼ j.

In a directed (undirected) unweighted graph, edges can be simply defined by the

following variable:

eij =

 1 i→ j(i ∼ j)

0 i9 j(i � j).

From this definition, the adjacency matrix of an undirected graph is a symmetric

matrix, i.e. eij = eji for all i and j. In a directed graph, eij is also called an in-edge

for j and an out-edge for i.

Vertices which are connected by an edge are called neighbours. Any edge con-

necting a vertex to itself is a loop. A graph with no loops (i.e. eii = 0 for all i ∈ V )

is called a simple graph. An example of a simple, directed graph is illustrated in

Figure 1.1. The graph in Figure 1.1 can be mathematically represented by the pair

(V,E) such that:

V = {1, 2, 3, 4} E =


0 1 0 1

0 0 1 0

1 1 0 0

1 1 1 0

 .

If all vertices in a graph G = (V,E) are isolated (eij = 0 for all i, j ∈ V ), then G is

called a null graph. Additionally, the undirected graph G is named complete if all

vertices are neighbours: i ∼ j for all i 6= j in V . Size of a graph is defined by the
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1
4

3
2

Figure 1.1: A simple directed graph.

number of edges it has, and the number of vertices in G is called the order of G. A

subgraph of G is defined as a graph whose vertex set is a subset of V and whose edge

matrix contains a subset of the corresponding elements of E. A complete subgraph

of G is called a clique. A clique of three vertices is called a triangle.

A walk on a graph refers to moving from one vertex to another through the

edges between them. The set of vertices in a walk {i, v∗1, · · · , v∗p, j}, along with the

edges between the successive vertices {vh, vh+1} for h : 1, · · · , p− 1, is called a path

if no vertex is passed twice. The length of a path is determined by the number of

edges it contains. In Figure 1.1, a path of length 3 from vertex 1 to 2 is {1, 4, 3, 2}.

Several paths may exist between any two vertices. To define a discrete distance on

a graph, we may use a path of the shortest length, i.e. geodesic path. The length

of the shortest path between vertices i and j, denoted by gdij, is called geodesic

distance. Geodesic distance is ∞ if no path exists between corresponding vertices.

A graph is connected if all vertices pairs can be connected by a path. Therefore,

the geodesic distance in a connected graph always acquires finite values.

Let G be an undirected graph with n vertices and m edges. Note that m ranges

4



from zero in a null graph, to M =
(
n
2

)
in a complete graph. The allocation of these

m edges contributes to a variety of global and local properties. These properties

explain the connectivity structure of a graph from different perspectives. Mean

geodesic distance and diameter are examples of global properties. The diameter of

G, denoted by diam(G), is defined as the maximum geodesic distance over all pairs

of vertices in G:

diam(G) = max
{i,j}∈V

gdij,

and the average of gdijs is called the mean geodesic distance. Local properties

can be investigated by local structures appearing at the subgraphs of G. For each

vertex i, we may define a degree di as the number of edges attached to it. In a

simple undirected graph, di is defined as

di =
∑
j

eij =
∑
j

eji

which is the sum over the ith row, or equivalently the ith column of the adjacency

matrix. For a positive integer k, a collection of k edges attached to one common

vertex is called a k-star.

In a simple, directed graph, the number of edges to and from a vertex are

named indegree and outdegree respectively. The outdegree and indegree of vertex i

are obtained by outdi =
∑

j eij and indi =
∑

j eji.

1.1.1 Erdös-Rényi random graphs

Like many other objects, graphs can be subject to uncertainty, and require prob-

abilistic modelling approaches. Let G = (V,E) be a graph with vertex set V =

{1, 2, · · · , n} and edge matrix E = [eij]
n
i,j=1. In the rest of this chapter, unless
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mentioned directly, graphs are assumed to be simple and unweighted (i.e. no loops

or double edges are allowed). Though the basic ideas are explained for undirected

graphs, the ultimate goal, explored in the subsequent chapters, is to study general

directed graph families which contain undirected graphs.

Erdös & Rényi (1960) adapted the notion of randomness to graph theory. They

constructed their random graphs by interpreting edges as independent Bernoulli

random variables with common probability p. In other words, for a nonrandom ver-

tex set V of n vertices, the edge matrix of a directed random graph is defined as an

n×n matrix E. The diagonal elements in E equal zero and the offdiagonal elements

are specified by n(n−1) independent random variables {eij; i 6= j , i, j = 1, . . . , n}

all distributed as Ber(p). An undirected Erdös-Rényi (ER) graph is obtained by as-

suming eij = eji for i, j = 1, 2, . . . , n and reducing the number of random variables

to n(n − 1)/2. The ER graphs are denoted by G(n, p) in this work. According to

the above assumptions, the probability that a G(n, p) graph has k edges is given

by: (
K

k

)
pk(1− p)K−k,

where K = n(n− 1) or n(n− 1)/2.

A nonhomogeneous version of the ER model can be obtained when eijs are

independent unweighted random variables with different parameters, indicated by

pij, depending on the two endvertices i and j.

The parameter p in ER graphs can be a function of n, the order of graph. Many

results are available in the random graph literature for the behaviour of G(n, p(n))

when n grows. Degree distributions and the size of the largest component are

results that are mentioned here.

Let p =
λ

n
for constant λ in an undirected ER graph G(n, p). The degree of an

6



arbitrary vertex i ∈ V , denoted by di, is a binom(n− 1, p) random variable:

P (di = k) =

(
n− 1

k

)
pk(1− p)n−1−k,

which converges to Poisson distribution as n increases. Hence, the asymptotic

degree distribution of G(n, p), when p =
λ

n
, is Poisson with parameter λ. An

analogous result is derived for the non homogeneous case by the Poisson convergence

theorem (Grimmett & Stirzaker, 2005, p. 129).

It can be proven (Bollobás, 2001) that the size of the largest component in a

graph with λ < 1 grows as O(log(n)) when the size of the graph itself is not bigger

than n/2. Also for λ > 1 the size of the largest component grows as θ(λ)n for

positive constant θ(λ). Durrett (2007) proves this result using branching processes

theory. This property contributes to a low level of connectivity in the graph for

λ < 1 and large n.

ER graphs appear to be the most thoroughly studied variety of random graphs.

See Erdös & Rényi (1960), and Karonski (1982) for early developments and Bollobás

(1998), Bollobás (2001), West (2001.), Diestel (2005), and Durrett (2007) for further

results.

Though being helpful in many applications, Erdös-Rényi graphs cannot address

all modelling applications. Some Erdös-Rényi properties are found to be violated

in a number of empirical studies. Some of the Erdös-Rényi graph properties which

are not consistent with the empirical results are listed below:

• In ER graphs all edges are determined independently from each other. This

is not intrinsic to many observed massive graphs (Rapoport, 1957, 1979).

• The asymptotic degree distribution, as mentioned above, is Poisson(λ). How-
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ever, the degree distributions of many massive graphs exhibit an inverse poly-

nomial decaying tail, called power-law distribution (more details will be pro-

vided in section 1.2.2).

• The number of triangles and other small connected subgraphs seems to be

larger in some observed graphs than what is expected from an ER graph with

corresponding parameters (See Durrett, 2007, Chap. 5).

• In a number of applications, graphs are formed by a dynamic sequence and

their dynamic properties cannot be captured by static models. Some examples

of these applications are social and communication networks and epidemic

graphs.

These inconsistencies have motivated the construction of alternate models that

are more compatible with the underlying processes which create random graphs

and empirical properties. Accommodating any of the above deviations leads to a

new type of random graph models. The following section provides a list of models

which are inspired by relaxing independence assumption, imposing different degree

distributions, or controlling the intensity of particular connectivity structures.

1.2 Literature survey on random graph models

This section reviews a number of modelling approaches which are inspired from

various fields such as social sciences, computer sciences, biology and physics. The

models are listed according to the field they are inspired from.

As a field dealing with dynamic networks of relationships among individuals, the

social sciences have motivated a variety of random graph models. Models inspired

8



by social network studies mostly involve directed stochastic graphs in which the

adjacency matrix changes over time and the vertex set remains the same during

the process. These models are reviewed in section 1.2.1.

Physics, biology and computer sciences are other fields in which graph modelling

is used. A few examples are the World Wide Web (WWW), the Internet, and

chemical interactions among genes. Random graphs in these models usually refer

to random vertex sets and random edge matrixes. Section 1.2.2 contains a quick

review on this subject.

1.2.1 Models motivated by social sciences

Wasserman (1977) and Holland & Leinhardt (1977a,b) display early attempts to

model a stochastic graph whose edge matrix changes over time. In their works,

the edge matrix of a graph with n vertices, En×n(t) = [eij(t)]
n
i,j=1, is an unweighted

matrix-valued stochastic process (Wasserman, 1980, pg. 281) in a continuous time

domain. The parameters of this model are λ0ij and λ1ij denoting the change rate

from 0 to 1 and from 1 to 0 respectively for the i, j’th element in E. These param-

eters are allowed to be functions of local and global properties of the graph and

corresponding vertices. Different sociological assumptions can be modelled through

λ0ijs and λ1ijs. Two famous models of this type are reciprocity and popularity mod-

els, discussed in Wasserman (1980) and other works.

Please note: in this section, the graphs are directed unless indicated otherwise.

Reciprocity and popularity stochastic graphs

• The Reciprocity model is based on the belief that the probability of a change

occurring in eij(t) (from 0 to 1 or vice versa) depends only on the recip-

9



rocative tie eji(t). In other words, individual i makes her decision about her

relationship with j only on the basis of j’s relation with her. Based on this

assumption we can write:

λ0ij(t) = λ0 + µ0eji(t)

λ1ij(t) = λ1 + µ1eji(t)
(1.1)

where t specifies continuous time. Also, pairs of

di,j(t) = {eij(t), eji(t)} i 6= j i, j ∈ V

are assumed to be independent. The pair di,j(t) is called a dyad. According to

the dyad independence assumption, in a graph of order n, the whole process

simplifies to n(n−1)
2

independent identical dyad processes: {di,j(t); t ∈ T} each

with the state space: {{0, 0}, {0, 1}, {1, 1}}, for i 6= j = 1, · · · , n .

• The Popularity model implements the idea that a change in eij(t) depends on

the popularity of the vertex j, measured by its indegree: e+j(t) =
∑
i

eij(t).

This assumption leads to the following equations:

λ0ij(g, t) = λ0 + π0e+j(t)

λ1ij(g, t) = λ1 + π1e+j(t).

Again, the entire process is simplified to n independent identically distributed

vector processes {e.j(t); e.j(t) = (e1j(t), e2j(t), · · · , enj(t)), t ∈ T} for j ∈ V .

Inferences about the reciprocity and popularity models can be made by observ-

ing the graph for as few as two jumps. Consider the reciprocity model given in

(1.1). Here, a single observation at time t of the edge matrix En×n(t) contains
(
n
2

)
10



independent dyads: {di,j(t); i 6= j = 1, · · · , n}. All dyads are independent realiza-

tions of a continuous time Markov process with the state-space {N,A,M} where

N , A and M represent Null: {0, 0}, Asymmetric: {1, 0}, and Mutual: {1, 1} dyads

respectively. The stationary probability distribution for this process {πN , πA, πM}

such that πN +πA+πM = 1 is derived in a PhD dissertation by Wasserman (1977).

Sufficient statistics, based on the observation at time t are given by

• The number of mutuals: M(t) =
∑

i>j eij(t)eji(t)

• The number of asymmetries: A(t) =
∑

i>j [eij(t)(1− eji(t)) + eji(t)(1− eij(t))]

• The number of nulls: N(t) =
∑

i>j(1− eij(t))(1− eji(t))

such that M(t) + A(t) + N(t) =
(
n
2

)
. The likelihood function in this case is a

function of two parameters2 namely γ1 =
λ0 + µ0

λ1 + µ1

and γ2 =
λ0
λ1

with the following

ML estimators

γ̂1 =
2M(t)

A(t)
γ̂2 =

2A(t)

N(t)
.

The likelihood function for more than one time observation {E(th); h : 1, . . . ,m , m ≥

2} is the product of the marginal probability of the first observation

P (E(t1)) = (π
M

(t1))
M(t1) (π

A
(t1))

A(t1) (π
N

(t1))
N(t1) , π

M
+ π

A
+ π

N
= 1

and the dyad transition probabilities

Pkl(th+1 − th) = P (dij(th+1) = l | dij(th) = k) h = 1, . . . ,m− 1.

Assuming that all the time intervals between two consecutive observations are

2For the interpretation of these parameters in social sciences see Proctor & Loomis (1951).
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equal, th+1 − th = τ for h : 1, · · · ,m− 1, the likelihood function is obtained as:

L(θ|E(t1), E(t2), · · · , E(tm)) = P (E(t1))
∏
kl

Pkl(τ)
∑m−1

h=1 Ikl(h)

in which Ik l(h) is the number of k , l transitions from th to th+1. Maximizing this

function cannot be done analytically, and either a Newton-Raphson type iterative

method or a graphical method (Wasserman, 1980) must be applied.

p1 stochastic graphs

The dyad independence assumption is one of the important features of the early

dynamic models such as the reciprocity and popularity models. This assumption

serves as the theoretical baseline for a more general model, called p1, suggested by

Holland & Leinhardt (1981). The p1 is not a dynamic model. Let G = (V,E) be

a directed random graph with nonrandom vertex set V . Also, let mi,j, ai,j, and

ni,j be the parameters showing the mutual, asymmetry, and null probabilities of

the corresponding pair {eij, eji} respectively. The comma is used in indexing these

parameters to indicate the unordered nature of their relation to the two vertices i

and j. Assuming that the edges (eijs) are independent random variables, one may

split the probability of E on dyads di,j = {eij, eji} as:

P (E = e) =
∏
i>j

m
eijeji
i,j

∏
i>j

a
eij(1−eji)+eji(1−eij)
i,j

∏
i>j

n
(1−eij)(1−eji)
i,j

12



which has the following form after re-parametrization ρij = log(
mijnij
aijaji

) for i > j

and θij = log(
aij
nij

) for i 6= j:

P (E = e) = exp

{∑
i>j

ρijeijeji +
∑
i 6=j

θijeij

} ∏
i>j

nij

Let e++, ei+ and e+j denote the size of G = (V,E), the outdegree of i and the

indegree of j respectively. In the case that ρij = ρ and θij = θ + αi + βj for all i

and j (i.e. in a homogenous model), we have:

P (E = e) = c exp

{
ρm+ θe++ +

∑
i

αiei+ +
∑
j

βje+j

}
(1.2)

where m =
∑

i>j eijeji is the number of mutual dyads and c is a normalizing

constant. In this model, the parameters αi and βj reveal the outdegree and indegree

effects of vertices i and j respectively. The probability distribution family given in

(1.2) defines p1 stochastic graphs. According to (1.2), the probability distribution of

the edge matrix is a function of graph statistics including: outdegree, indegree, size

and mutual relations. As reported by Holland & Leinhardt (1981), social empirical

studies are in strong agreement with this type of graph model. The p1 model

has been used and generalized in different frameworks by Fienberg & Wasserman

(1981), and Faust & Wasserman (1993).

Markov models

Models based on a strong independence assumption are criticized in the literature

for not being consistent with the nature of social networks. For example, when

individual i is a friend of individual j, i.e. eij = 1, and j is a friend of individual k,

13



it is reasonable to expect a higher higher probability that i is a friend of k. That

is, eij depends on eik and ekj.

To remove this deficiency, Frank & Strauss (1986) introduced a class of random

graph models with some dependence patterns allowed between edges. Their model

is referred to by the term Markov graph. A directed graph with a nonrandom vertex

set and a random edge matrix is a Markov graph if every two nonadjacent edges

are independent given the rest of the graph. A variety of dependence structures

can be explained by using a Markov graph.

An effective way to show and study the dependency structure between edges is

to use dependence graphs. The dependence graph of G = (V,E) is itself a graph,

denoted by D, whose vertices are the edges in G. Edges of D are determined

according to the following rule: for any dependent pair of edges in G, there must

be a link between corresponding vertices in D. For example, if the two edges in G

are dependent random variables, then, as two vertices in D, they are connected by

an edge. For an independent model, such as Erdös-Rényi graphs, the dependence

graph contains no edges.

Cliques of D refer to the mutually dependent groups of edges in G. Therefore,

dependence structures in G correspond to different classes of cliques in D. In other

words, the appearance of cliques with a specific pattern indicates the presence of

a special type of dependency. The Hammersley-Clifford theorem (Besag, 1974)

provides a useful link between graph modelling and dependence graphs. According

to the Hammersley-Clifford theorem, the probability of G can be factorized over

the cliques of D. That is, P (G) can be written in the following exponential form

P (G) =
1

c
exp{Q(G)}, Q(G) =

∑
A

λA

14



where A is a subgraph of G and λA is nonzero only if all edges in A are dependent

(conditionally on the rest of the graph), i.e. A is a clique of D. In a pure indepen-

dent graph G, the cliques of D are the sets of single vertices (edges in G). Cliques of

a Markov graph G also contain the triangles and k−stars of G. In this case, Q(G)

can be replaced by a linear function of statistics t and sk, denoting the number of

triangles and k-stars respectively (Frank & Strauss, 1986).

Exponential stochastic graphs (or p*)

Markov models were generalized to include the exponential random graphs or p*

models by Wasserman & Pattison (1996), Anderson et al. (1999) and many others.

The p1 and Markov models are special cases of the p* model (Wasserman & Patti-

son, 1996). This model relates the probability of graph G to the linear combination

of a number of graph statistics through an exponential link. The graph statis-

tics are represented by the vector x(G) while θ stands for the vector of unknown

coefficients. A p∗ model, then, is defined as:

P (G) = c(θ) exp {θ′x(G)} . (1.3)

where c(θ) is a normalizing constant, guaranteeing that P (G) is a probability func-

tion. Wasserman & Pattison (1996), Anderson et al. (1999), and Goodreau (2007)

provide a variety of different dependency patterns expressed by x(G)s.

A special case of the p∗ models is the triad model, developed by Frank & Strauss

(1986). They proposed that the probability of a triad model depends only on the size

and the frequency of 2-stars and triangles in G. That is, the model is characterized

by its transitivity and clustering properties.

The likelihood function of models such as (1.3) often contains a constant part
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c(θ), which should be computed by an enumeration over all possible graphs for

each set of parameters. This computation can be highly intensive for nontrivial

examples or in large graphs.

Different techniques are introduced to eliminate the normalizing constant from

the estimation process. Strauss & Ikeda (1990) and Strauss (1992) suggest convert-

ing the estimation problem into a logistic regression and maximizing the pseudo-

likelihood function instead. As such, let (1.3) be the probability distribution of

graph G = (E, V ) with unknown vector of parameters θ. The logistic regression is

defined by focusing on the conditional probability of the single edges eij given the

rest of the edge matrix denoted by Ec. We will show the edge matrix by E+ (E−),

whenever eij = 1 (eij = 0) . Using this, it is easy to see that

P (eij = 1 | Ec) = P (E+ | Ec) =
P (E+)

P (E+) + P (E−)
. (1.4)

In order to find the ML estimates for θ, the likelihood function P (E) in (1.3) can

be replaced by the pseudo likelihood function:

∏
i,j

P (eij = 1 | Ec)eij P (eij = 0 | Ec)(1−eij).

Strauss & Ikeda (1990) show that maximizing the above function is equivalent to

fitting the following logistic regression, assuming independent eijs,

logit(P (eij = 1|Ec)) = θ′{x(E+)− x(E−)}, (1.5)

where logit denotes the function logit(p) = log(
p

1− p
). The term x(E+) − x(E−)

quantifies how the graph statistics x(G) change when eij is modified from 0 to 1.

All the models discussed so far (p1, p∗, and Markov) can be written in a logit
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form.

Another way to approximate the likelihood function in (1.3) is to use Monte

Carlo simulations of the exponential graphs. This method was originally proposed

by Dahmström & Dahmström (1993), and Corander et al. (1998) for Markov

models. Crouch et al. (1998) generalized this method for p∗ models. The Monte

Carlo simulation is based on forming a Markov sequence of graphs in which a single

edge is updated at each time point. All the elements in E pass through the updating

mechanism consecutively. Let En and eij(n) denote the edge matrix and the edge

i→ j at the n th step of the process respectively. The transition probability of the

edge i→ j, assuming that it is being updated at time n, is given by

Pij(n, n+ 1) = P ( eij(n+ 1) = 1− eij(n) |En ) .

For all n and every i and j, this transition probability is obtained from the condi-

tional exponential distribution in (1.4)

Pθ(eij = 1|Ec) =
Pθ(E

+)

Pθ(E+) + Pθ(E−)
.

It can be proved that the distribution of En converges to the desired exponential

distribution in (1.3) when n→∞ (Geman & Geman, 1984).

Monte Carlo simulations can also be used to obtain the MCMC maximum like-

lihood estimations. Snijders (2002), and Handcock (2003) discuss this method in

detail. Also, Robins et al. (2007) and Snijders (2002) provide a review of estimation

methods for exponential random graph models.
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Actor-oriented model

The last family of models to be introduced in this section is the actor-oriented

model. Snijders (1995, 1996), Snijders & van Duijn (1997), and Snijders (2001)

constructed this model on the basis of individualism methodology by assuming

that in a social network each individual changes her relations for the purpose of

achieving her personal goals. These studies refer to an individual vertex in a social

network as an actor and a dynamic network as an actor-oriented network.

The actor-oriented model interprets a graph of social relationships as a matrix-

valued and continuous-time Markov chain. Let T represent a continuous time

domain and {G(t) = (V,E(t)); t ∈ T} denote a social network updating by time.

To obtain the transition probabilities, Snijders (2005) defined a linear function

of some local or global graph statistics that quantifies the personal goal for each

vertex in the network. For example, if the goal is characterized by having more

friends, i.e. a higher indegree, the objective function for vertex i can be defined

as: fi(E(t)) = β
∑

j eji(t). The value fi(E(t)) shows how much i is satisfied when

the graph is at state E(t). If i is the vertex that decides the next transition of the

graph, she chooses the state E(s) (s > t) which maximizes fi(E). It is also assumed

that E(s) may differ from E(t) only in one edge. So, the vertex i has to choose

one vertex (say j) to update her relation with: eij(s) = 1− eij(t). As a result, the

objective function can be written as fi(j) which shows the achievement of i when

she changes her relation with j.

The general form of fi(j) is a linear function of graph statistics (S1, . . . , SK):

fi(j) =
∑
k

βk Sk
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where (β1, · · · , βK) are the unknown model parameters. Possible values for Sks are

indegree:
∑

j eji, outdegree:
∑

j eij, number of mutual relations:
∑
eijeji and can

include any other related statistics. Snijders (2005) applies an MCMC estimation

procedure to estimate βks from longitudinal network data.

1.2.2 Models motivated by physics and computer sciences

The models described in this section are developed with an emphasis on compatibil-

ity with some empirical results. These models are often motivated by discovering a

disagreement between the observed properties and what is expected from an Erdös-

Rényi (ER) model. As we will observe later, many of these modelling ideas are not

as young as they may appear at first. However, this re-application of older stochas-

tic models is a persuasive argument for developing more efficient mathematical and

statistical tools to deal with real life phenomena.

Small world graphs

One of the deviations from ER graphs revealed in empirical studies is the connectiv-

ity structure. The connectivity structure of a graph determines how easily one may

reach one vertex from another. This notion can be defined and studied on a global

and local scale. Average geodesic distance between arbitrary pairs of vertices and

the diameter of a graph are global connectivity measurements. An example of local

measurement is the clustering coefficient. Clustering of vertex i, denoted by Ci, is

defined as the proportion of pairs of i’s neighbours who are adjacent themselves.

The maximum clustering for a vertex with degree k is obtained when all
(
k
2

)
pairs of

neighbours are adjacent. The average value of Cis over all vertices in G is defined

as the clustering coefficient. Note that as the clustering coefficient increases, so
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does the number of triangles that appear on the graph.

It was noticed (Bollobás & Chung, 1988; Newman & Watts, 1999; Albert et al. ,

1999; Barabási & Albert, 1999) that the mean length path between pairs of vertices

in some observed graphs is very small compared to the size of the graph. This

notion has become famous as the six degrees of separation theory (Watts, 2003) on

different human related networks. This theory proposes that every two people in

the world are connected at most by six relations in between. A graph with this

property displays a high global connectivity, i.e. a small diameter. A similar trait

was observed in the World Wide Web by Barabási et al. (2000). Furthermore, these

examples also exhibit a large number of triangles and other complete subgraphs,

being also highly connected at the local level. This is where the empirical results do

not agree with the classical ER model. It is known that we can make a connected

component occur with any small diameter by adjusting the parameters of G(n, p).

But the resulting graph does not necessarily contain many triangles or other small

connected subgraphs.

Aiming for random graphs with a desired level of clustering, Watts & Strogatz

(1998) suggested a model for undirected random graphs. Their model starts from a

connected graph in which every vertex has exactly k neighbours. The graph is then

updated by random replacement of edges with probability p. In a later version,

(Newman & Watts, 1999), no edge is changed, but new shortcuts are added with

probability p. The resulting graph is connected by definition and does not allow for

disconnected subgraphs. Changing p from 0 to 1, the graph moves from a highly

clustered state to pure randomness (ER graphs) with few clusters. The average

distance in these graphs is studied rigorously by Barbour & Reinert (2001).
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Graphs with known degree distribution

It is known that the asymptotic degree distribution of an ER graph is Poisson.

On the other hand, the degree distribution in the WWW, scientific collaboration

graphs, the Internet, sexual relationship graphs, and some other examples of mas-

sive graphs, do not fit a Poisson distribution function. These empirical curves fit

well on an inverse polynomial function (∼ 1

kγ
) and are called power-law or scale-free

degree distribution.

A power-law (also known as a Zipf) distribution is defined as a discrete distri-

bution function where

P (K > k) =
( c
kγ

)
k = 1, 2, · · · (1.6)

for positive values of γ and c. The logarithm of the power-law function (1.6) has a

linear relation with log(k):

log(P (K > k)) = log c− γ log(k). (1.7)

This property is helpful in testing the empirical distributions: If the log− log plot3

of an empirical degree distribution tends to be linear, then a graph model with

power-law degree distribution is a reasonable model. The slope and the intercept

of this line would be natural estimators of the parameters γ and log c.

Simon (1955) lists some of the early observations in which the empirical dis-

tribution was found to belong to the power-law family. Some examples of his list

include: the frequency of words in texts (Zipf, 1968, 1949), distribution of incomes

(Pareto, 1897), and the number of species within genera (Yule, 1925). An extensive

3In a log-log plot the log(k) is plotted versus the log(P (K > k))
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list of recently studied massive graphs that display a power-law degree distribution

is provided by Albert & Barabasi (2002). Among them are studies on the WWW

(Kumar et al. , 1999; Albert et al. , 1999; Broder et al. , 2000), scientific collabora-

tion graphs (Newman, 2001a,b), the Internet (Faloutsos et al. , 1999; Siganos et al.

, 2003), the movie actor network (Watts & Strogatz, 1998; Newman et al. , 2000),

and the phonecall graphs (Aiello et al. , 2000; Abello et al. , 1998). The WWW

and scientific collaboration network will be discussed as examples bellow.

Perhaps one of the largest massive graphs under study is the World Wide Web.

This huge directed graph is composed of web pages as vertices and hyper links

(URLs) as edges. Kumar et al. (1999), and Albert et al. (1999) announced the

early results of empirical studies about the WWW. The data in Kumar et al.

(1999) consist of a copy of the web supplied by Alexa Inc. (composed of a 1.5 year

crawl which recorded 40 million documents) and the data in Albert et al. (1999)

are gathered by a robot who recorded the degree of each vertex by following all the

URLs found in it to retrieve the related documents and URLs. This robot recorded

325, 729 web pages and 1, 469, 680 links. Both references indicate that the indegree

and outdegree of their data can be approximated by power law distributions with

parameters close to 2 (γin = 2.1, γout = 2.45 by Albert et al. (1999) and γin = 2.1,

γout = 2.38 by Kumar et al. (1999)). A more extensive experiment, which was

run by Broder et al. (2000) on data containing over 200 million web pages and 1.5

billion links (from two AltaVista crawls), also confirms these results.

In a scientific collaboration graph, scientists are the vertices and they are linked

by an edge if they collaborated in writing a paper. After studying such a graph

based on mathematics and neuroscience journals published between 1991 to 1998,

Barabási et al. (2002) proposed that the degree distribution is power-law with

parameters γmath = 2.1 and γneu = 2.5.
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In response to the disagreement between some empirical degree distributions

and the asymptotic degree distribution of ER graphs, two new modelling directions

appeared in the subject literature. A primary solution was to construct random

graphs with a known degree distribution, called fixed-degree random graphs. A later

approach was to design a stochastic process to produce graphs with a power-law

distribution (also known as scale-free models).

In the fixed-degree modelling approach, random graphs (or their probability

space) are characterized by their degree distribution. An asymptotic degree se-

quence is defined by Molloy & Reed (1995) bellow:

Definition 1.1 An asymptotic degree sequence is a sequence of nonnegative inte-

gers D = {d0(n), d1(n), d2(n), · · · } such that:

1. dk(n) = 0 if k ≥ n

2.
∑

k≥0 dk(n) = n(n− 1)

In the above definition dk(n) denote the number of vertices whose degree is k.

A random graph with degree sequence D is defined as a uniformly randomly

chosen graph from the set of all graphs with this specific degree sequence. If the

degree sequence D is generated by a cdf in (1.7), the resulting graph is a scale-free

random graph (Newman, 2001a,b). A procedure to construct a realization of a

graph with degree sequence D is provided by Molloy & Reed (1995).

Scale-free models

Modelling the stochastic graph as a growing network is perhaps one of the most

natural modelling starting points. This approach was originally introduced by
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Simon (1957) and was developed further by Barabási & Albert (1999) and Callaway

et al. (2001). A simple scale-free model starts from a single vertex and grows by

adding one vertex and one edge at a time. The new edge connects a pair of existing

vertices according to a probability rule which is defined on the basis of a special

mechanism called preferential attachment (Barabási & Albert, 1999) and leads to a

power-law degree distribution. Durrett (2007) generalized this model by letting the

the number of vertices added to the system at each time step be a Poisson random

variable. He also gives the size of the giant component and critical values for its

existence.

In a preferential attachment model, vertices with a higher degree are more likely

to absorb new neighbours. The first configuration of the preferential attachment

model by Barabási & Albert (1999) was a sequence of growing graphs converging

to a power-law graph with parameter λ = 3. This model was modified to converge

to different power-law parameters by Krapivsky et al. (2000) and Krapivsky &

Redner (2001). Their modified version of scale-free networks can be defined as

follows:

Definition 1.2 A scale-free random graph is constructed by a sequence of graphs,

starting from a single vertex and a loop, and growing in a discrete time domain

according to the following rules

• One vertex is added at each time point and it is linked to the previous vertices

by an edge.

• The probability of linking a new edge to an existing vertex with degree k is

proportional to k−λ where λ is a constant over all the graph and all times.

Barabási et al. (1999) apply the rate equation approach and mean field theory

to obtain the degree distribution of graphs as constructed above. Bollobas et al.
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(2001) obtain the asymptotic degree distribution of this model. Lastly, Barrat &

Pastor-Satorras (2005) have discussed the degree correlation between neighbouring

vertices in this model. All of these results imply a scale-free degree distribution for

the graphs generated according to 1.2.

Definition 1.2 has been generalized in different ways. For example, Dorogovtsev

et al. (2000) and Dorogovtsev & Mendes (2003) derived the equilibrium degree

distribution into a more general form of this model.

It is worth mentioning that the idea of designing a growing graph with preferen-

tial attachment is traced back to Yule (1925), when he was studying the distribution

of genera size (i.e. the number of species within a genus). An updated description

of Yule’s work and subsequent related works is given by Aldous (2001). Yule (1925)

observed that in various biological groups, the empirical distribution of size of gen-

era displays a heavier tail than the Poisson distribution. He also noticed that, the

distribution of genera size could often be approximated by an inverse polynomial.

Yule (1925) conceptualized a stochastic process for the evolution of species which

resulted in such a size distribution analytically. The basic assumptions of his evolu-

tion model are quoted from Aldous (2001, pg 24) (with slight changes in notation)

bellow:

Assumption 1 a genus starts with a single species, new species appear according

to a linear birth process with parameter λ, and all these species are in the

same genus.

Assumption 2 Within each genus, a new species of a novel genus appears, at

constant rate µ, and thereafter the new genus behaves as in assumption 1.

To formulate this problem in a graph theoretic form, let the genera be vertices

and the number of species within each genera denote the degrees. This graph is
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growing by time in a way that new vertices appear according to a linear birth

process with parameter µ and each vertex increases its degree according to another

linear birth process with parameter λ (we shall consider the edges as directed arrows

with unspecified sources, similar to Dorogovtsev et al. (2000)). This model yields

an exponentially increasing degree for a genus, and it can be mathematically proven

that the size of each genus at age t follows a geometric distribution with mean eλt.

Combining this fact with Yule (1925)’s second assumption results in the following

probability distribution for the degree of a randomly selected genus of an arbitrary

age (Aldous, 2001):

p(n) =
Γ(1 + ρ−1)

ρ

Γ(n)

Γ(n+ 1 + ρ−1)
n = 1, 2, ... (1.8)

where ρ = λ/µ. Using Stirling’s approximation:

log Γ(n) ∼ (n− 1

2
) log(n)− n+

1

2
log(2π),

it can be seen that (1.8) behaves as ρ−1 Γ(1 + ρ−1)n−(1+ρ
−1) for large n which is

a power-law with parameter 1 + ρ−1. This brilliant approach addresses the un-

desired asymptotic degree distribution of classical graph models by modelling the

underlying process of developing the graph in a dynamic framework. Yule (1925)

also mentioned that the new species are more likely to appear in the older gen-

era. This is a rephrased preferential attachment description of Barabási & Albert

(1999), which claims to guarantee not only a power-law degree distribution, but

also a higher clustering coefficient.
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Other general models

The last part of this section is devoted to general models with a larger number

of parameters. By increasing the number of parameters, these models are capable

of covering properties like the frequency of special subgraphs as well as power-law

degree distribution.

Kleinberg et al. (1999) suggests a general family of models based on observations

of the WWW. Their data set is constructed from a two-year crawl of the WWW,

provided by Alexa Inc. and containing 100 million vertices. The data was analyzed

with the help of two algorithms: HITS and Trawling4 and resulted in the following

conclusions:

• The indegree obeys a Zipf distribution P (d = i) ∼ 1

iα
for α ≈ 2.

• The number of the bipartite cliques (subgraphs consisting of two sets, where

every vertex of the first set is connected to every vertex of the second set) is

greater than what is expected from an ER graph with 100 million vertices.

The general model proposed by Kleinberg et al. (1999) is basically a stochastic

graph process. A transition in this process results from a change in either the

vertex set or the adjacency matrix. This change is allowed to be either deletion

or addition. In other words, this model can be described as a combination of

four stochastic processes, each recording a specific change in the vertex set or the

adjacency matrix.

An important feature of the Kleinberg et al. (1999) model is the added ability

to connecting a new vertex to the current graph. The mechanism which connects

4 HITS and Trawling algorithms are designed to search for authoritative web pages on a topic
and enumerating special bipartite cores and measuring the subgraph connectivities. See Kleinberg
et al. (1999) for more details.
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vertices is called copying, and it reproduces the local structures which were observed

in the WWW. Copying algorithm requires selecting a currently existing vertex and

copying its neighbours as the neighbours of the new vertex. For example, let v

be the new vertex who is going to possess k new edges. The algorithm randomly

chooses a vertex u from the existing vertex set and links the neighbours of u to v.

If u does not have enough neighbours to share, the algorithm continues to select

new vertices until it finds enough links. Also, if u has more edges than required,

the algorithm will use a random sample of them.

The properties of a special case of this model are investigated by a simulation

study in Kleinberg et al. (1999). More results can be found in Kumar et al.

(2000). These studies used the copying algorithm in two models where the size of

the graph grows either linearly or exponentially over time. The consistency of the

degree distribution and number of bipartite cliques between these graphs and the

WWW is proved through different lemmas and theorems.

1.3 A general Birth-Death graph process

In this section, a birth-death (BD) stochastic graph process is proposed which uni-

fies a number of existing growth models. These models are commonly constructed

based on a linear growth of the vertex set and the addition of new edges over time.

A BD stochastic process models a growing graph (in terms of size and order) with

general attachment rule for new vertices. In growing models such as Barabási &

Albert (1999), Dorogovtsev & Mendes (2003), Kleinberg et al. (1999) and Kumar

et al. (2000) the mechanism of adding new edges depends on the connectivity struc-

ture itself. Two famous rules for adding the new edges are preferential attachment

(Barabási & Albert, 1999; Dorogovtsev & Mendes, 2003), and copying (Kleinberg
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et al. , 1999; Kumar et al. , 2000) as discussed in section 1.2.2. The general attach-

ment rule of a BD model allows for incorporating auxiliary information from the

vertex set into the graph dynamics.

The BD model provides an estimation framework based on the maximum likeli-

hood principle. A temporal data consisting of all changes to the graph process and

their times is needed to calculate this likelihood. The general form of the likelihood

function is derived in section 1.3.1 and is adapted to a special case in section 1.3.2.

In section 1.3.2, a model is developed where vertices follow a Poisson point process

over a two dimensional Euclidean space and are connected to each other according

to their mutual distances.

1.3.1 Birth-Death dynamic graph

Let {G(t) = (V (t), E(t)), t ∈ T} be a sequence of random graphs on a continuous

time domain denoted by T . We call this sequence a birth-death stochastic graph,

or simply a BD graph, if:

• The vertex set grows as a homogeneous birth-death process.

• Each vertex is born with k edges where k is a random variable.

• The edge matrix changes by:

1. Adding the edges of a new vertex (the neighbours of a new vertex are

chosen randomly with probabilities defined by the current state of the

process.), or

2. Omitting the edges of a death vertex. (When a vertex is removed from

the graph, the corresponding row and column are removed from the edge

matrix and all related edges become zero.)
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Birth1

Birth3

Birth2

g1:

Figure 1.2: Three different B transitions that g1 can transit into are shown. The new vertex

and its edges are shown in bold type. In this example there are
(
9
2

)
= 36 possible birth graphs

since the size of g1 is 9 and the number of new edges is fixed at k = 2.

This is a process with the countable state-space of all graphs, defined on finite

subsets of N, the set of positive integers. Hereafter this space is referred to as G5.

The major characteristics of the underlying birth-death process are inherited by

the graph process, e.g. Markov property:

P (G(t) = g |G(s) for s ∈ [s1, s2] , 0 < s1 < s2 < t) = P (G(t) = g |G(s2)) .

Also, according to the birth-death properties, at most one event (a birth or a death)

is likely to occur for a small value of h, and the probability of more than one event

is proportional to h.

Note that a B or D transition can have different forms depending on how a

new vertex is connected to the graph or which one of the current vertices is to be

removed from it. For example, let g1 be a graph with n1 vertices. Adding a new

5In order to avoid technical difficulties, it is always possible to use the one-to-one correspon-
dence between G and N, and consider the measurable space of (N,FN) as the state-space of process
(FN is the power set of N).
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Death1

Death3

Death2

g1:

Figure 1.3: Three different D transitions that g1 can transit into are shown. The removed vertex

and its edges are shown in grey. In this example, 9 possible D graphs exists because the size of

g1 is 9.

vertex with k edges (i.e. a B jump) can be done in
(
n1

k

)
different ways according

to the neighbours selected by the new vertex. Therefore, there are
(
n1

k

)
possible B

jumps when G(t) = g1. Examples of different B and D graphs are shown in Figures

1.2 and 1.3.

Let λg1 be the birth rate when G(t) = g1, and the set {αg1g2 , g2 is a B state}

such that ∑
{g2; g2 is a B state}

αg1g2 = 1,

denotes the probability of different B jumps. By applying the product rule, the

transition rate from g1 to a particular B state g2 is αg1g2λg1 .

Using a similar argument, different D transitions can be specified by the set of:

{βg1g2 , g2 is a D state}

such that
∑
{g2, g2 is a D state} βg1g2 = 1, and the transition rate to a specific D

state g2 is obtained as µg1βg1g2 where µg1 is the death rate for g1.
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Hence, the transition probabilities are given by:

Pr(G(t+ h) = g2|G(t) = g1) =



αg1g2λg1h+ o(h), g2 is a B state

βg1g2µg1h+ o(h), g2 is a D state

1− (µg1 + λg1)h+ o(h) g2 ≡ g1

o(h), O.W.,

and the instantaneous transition probabilities for g1 6= g2 are:

qg1g2 = lim
h→0

P (G(t+ h) = g2 |G(t) = g1)

h
=

 αg1g2λg1, g2 is a B state

βg1g2µg1 , g2 is a D state

and

qg1 = lim
h→0

1− P (G(t+ h) = g1 |G(t) = g1)

h
= λg1 + µg1 .

The continuous time model can be embedded into a discrete-time Markov pro-

cess defined by the sequence of different jumps and the time between them. If

k = 1, 2, . . . represents discrete time, then the embedded process is denoted by

{(T (k), G(k)), k = 1, . . .}, (1.9)

where T (k) is the time between k− 1 and k th jumps (the first jump being G(0)→

G(1)). It is known that the process in 1.9 is a Markov process defined on the

Cartesian product of R+ × G (Billingsley, 1961; Basawa & Prakasa Rao, 1980).

Also, it can be shown that:

P (T (k) > t |G(k − 1) = gk−1) = e−qgk−1
t,

P (G(k) = gk |T (k − 1), G(k − 1) = gk−1) =
qgk−1gk

qgk−1

.
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In the same manner, the original observation:

{G(t), 0 < t < T} (1.10)

can be transformed into:

{(T (k), G(k)), k = 1, 2, . . . , K}. (1.11)

where G(K) is the current state of the graph. Also, T (1) is the time that the process

spent on the initial state G(0) before its first jump: G(0) → G(1). Transition

probabilities for this process are

P (T (k), G(k) |T (k − 1), G(k − 1) ) = P (G(k) |G(k − 1) )× f(T (k) |G(k − 1) )

=
q
G(k−1)G(k)

q
G(k−1)

× q
G(k−1)

e
−q

G(k−1)
T (k)

,

for k = 1, 2, 3, . . . , K. The likelihood function based on (1.11) is

L(θ) = P (G(0))×
K∏
k=1

P (G(k) |G(k − 1) ) f(T (k) |G(k − 1) ) (1.12)

= P (G(0))×
K∏
k=1

(
q
G(k−1)G(k)

q
G(k−1)

× q
G(k−1)

e
−q

G(k−1)
T (k)

)

= P (G(0))×

(
K∏
k=1

q
G(k−1)G(k)

)
× exp

{
−

K∑
k=1

q
G(k−1)

T (k)

}

It should be mentioned that the information contained in (1.11) is slightly less

than the original data in (1.10). Because the current state of the process and the

time period that it has been in this state is not included in (1.11).
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From (1.12) we have:

`(θ) = log (L(θ)) = log(P (G(0) = g0))−
K∑
k=1

q
G(k−1)

(θ)T (k) +
K∑
k=1

log q
G(k−1)G(k)

,(1.13)

and

S(θ) =
∂
∂θ
P (G(0) = g0)

P (G(0) = g0)
−

K∑
k=1

T (k)
∂

∂θ
q
G(k−1)

(θ) +
K∑
k=1

1

q
G(k−1)G(k)

(θ)

∂q
G(k−1)G(k)

(θ)

∂θ
,(1.14)

and the likelihood-based estimating equation take the form: S(θ) = 0.

The way that transition rates are parametrized describe the underlying rule

according to which the edge matrix evolves. For example, if λg1 = 1, µg1 = 0, and

αg1g2 is proportional to the degree of vertices in g1, this example fits the Barabási

& Albert (1999) model. The limiting properties of this model have been studied

by Bollobas et al. (2001). As another example, λg1 = 1, µg1 = 0, and αg1g2 = 1/n1

where n1 denotes the order of g1 indicates the uniformly grown random graph model

by Bollobás et al. (2005). In these two examples the graphs are undirected and

the number of new edges at each point in time should also be considered a fixed

value. The BD graph process introduced here also allows for deletion of vertices

and general rules for the number of new edges and the way they are added to the

existing graph.

The models above and their different variants are mostly developed with goal

of reproducing the observed properties of the WWW, e.g. the degree distribution

and clustering coefficient. To reproduce these properties effectively, the rules for

changing the edge structure is controlled by the existing degree distribution of the

network. No information about vertices is incorporated into the graph’s evolution.

However, interesting statistical problems arise when the changes in graph’s edge
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matrix are affected by the vertex characteristics.

The influence of vertex characteristics on graph process dynamics can be mod-

elled by parametrizing transition probabilities according to the properties of exist-

ing vertices at each jump. Using the familiar example of the WWW, a new vertex

might be more likely to connect to the vertices which are closer or more similar

to it. Suppose that the vertex set consists of the random points {vj, j = 1, . . . }

generated in a subset of Euclidean space such that their similarity is quantified by

their Euclidean norm dvjvl = |vj − vl|. Then, the probability of having a new edge

at each jump is a function of the distance from the newly born vertex. Section 1.3.2

considers a simplified similar situation.

1.3.2 Euclidean growth model

Let the vertex set V (t) of a graph process {G(t), t = 1, 2, . . .} consist of particles in

(−1, 1)×(−1, 1) ⊂ R2, where × stands for the Cartesian product. The vertex set is

growing as a homogeneous Poisson point process with a known parameter λ. Each

vertex is born with k edges attached to it and chooses its neighbours according to

its Euclidean distances. More specifically, a new vertex v, which is born at time t,

is connected to u ∈ V (t) with probability

pt(u) ∝ exp{−ρ duv},

where duv denotes the Euclidean distance between u and v. Define the indicator

variable It(u) such that It(u) = 1 if the degree of u increases by 1 at time t. Hence,

pt(u) = P (It(u) = 1) given the new vertex v. Therefore, the transition rate at time

t from g = (V1, E1) to h = (V2, E2), where h is obtained by adding the new vertex
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v and its k edges to g, is found as:

αgh =
1

c

∏
u∈V1

[pt(u)]it(u) [1− pt(u)]1−it(u)

where it(u) denote the realization of the random variable It(u) and the normalizing

constant c is

c =
∑

{it(u); u∈V1 ,
∑

u it(u)=k}

∏
u∈V1

[pt(u)]it(u) [1− pt(u)]1−it(u) .

X

Y

-1 0 1

-1
0

1

Figure 1.4: An snapshot of a simulated graph sequence using the model in Section 1.3.2 after

100 jumps. The model parameters are specified as λ = 2, ρ = 5 and k = 2.

According to the above assumptions we have: µgh = 0 for any D jump and

36



λgh = λ for all B jumps. The vector of parameters for this model is θ = (λ, ρ). Let

{(gn, Tn), n : 1, 2, . . . ,m} be an observation of this process, where Tn denotes the

time between two births, and gn+1 is obtained by adding vn+1 and its k new edges

to gn = (Vn, En). The likelihood function is derived by replacing

qn(θ) = λ

qnn+1(θ) =
λ

cn

∏
u∈Vn

(
e−ρduvn+1

)in(u) (
1− e−ρduvn+1

)1−in(u)
in (1.13). This leads to the following log-likelihood function:

`(θ) = log(P (G1 = g1))− λT +
m−1∑
n=1

log(λαnn+1) (1.15)

= log(P (G1 = g1))− λT + (m− 1) log(λ)−
m−1∑
n=1

cn

+
m−1∑
n=1

∑
u∈Vn

[
−in(u)

(
ρduvn+1

)
+ (1− in(u)) log

(
1− e−ρduvn+1

)]
where T =

∑m−1
n=1 Tn. As a result, the final estimating equation is:

 −T + m−1
λ

−
∑m−1

n=1
∂
∂ρ

log(cn)− SD +
∑m−1

n=1

∑
u∈Vn(1− in(u)) ∂

∂ρ
log
(
1− e−ρduvn+1

)
 = 0

in which SD is the sum of distances between all newborn vertices and their instant

neighbours.
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Chapter 2

Dynamic random graphs and

epidemic modelling

2.1 Introduction

Mathematical models are applied to identify the patterns of epidemics and sug-

gest or evaluate control methods. Compartmental models introduced by Kermack

& McKendrick (1927, 1932, 1933) are among the most widely used models in this

area. In a deterministic compartmental model the population is divided into several

compartments according to the disease status of individuals. Changes in the size

of components are modelled by differential equations. In a case where permanent

immunity from a disease is possible, the simple compartmental model is used, with

stages susceptible (S), infective (I) and removed (R); SIR when abbreviated. This

model is modified to the SIS model when no permanent immunity or death is possi-

ble. More general models can be produced by adding the exposed period (i.e. SEIS,

SEIR) or considering temporary immunity (SIRS). The stochastic epidemic models
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are constructed by considering the size of compartments as random variables and

adapting the Markov chain theory and stochastic differential equation techniques.

For a comprehensive review of deterministic and stochastic compartmental models

see Yan (2008) and Allen (2008).

Although such models provide valuable insight in studying outbreaks, they ig-

nore contact patterns exhibited by the population. According to the model, the

population is assumed to be mixed homogeneously, with an equivalent chance of in-

fection transmission from every infective to every susceptible individual. However,

in a real outbreak, each infective individual can infect only a limited number of

susceptible people with whom they make direct contact. In addition, ignoring the

attributes of the source and target in the infection transmission makes it difficult to

account for the heterogeneity between hosts in the model. The age, genetics, gender

and other types of heterogeneity play an important role in infection propagation in

a real population (Anderson & May, 1984; Greenhalgh, 1996; Colizza et al. , 2007).

The central goal of this chapter is to model an infection spread by a stochastic

graph process over the existing structure of contacts within a population. This

structure is commonly represented by a single graph called the contact network. The

contact network, Gcn = (V, Ecn), consists of all individuals V and their contacts Ecn

through which the disease may be transmitted. Individuals in a contact network can

be characterized by their geographical locations and/or personal attributes. The

structure of edges in a contact network is specific to the disease and population.

This structure can be determined based on various ways that the disease can be

transmitted.

Some applications of contact networks in epidemic modelling are given by Lil-

jeros et al. (2001), Newman (2002) and Meyers et al. (2006). Also, a number of

graphs introduced in section 1.2 are studied as contact networks in epidemic mod-
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elling by Keeling, M. and Eames, K. (2005). Brauer (2008) applies the properties

of contact networks to derive the probability and size of a major outbreak.

The model introduced in this chapter is founded on independent exponential

waiting times for infection transmission and being removed (by death or permanent

immunity) for all individuals. The memoryless property of exponential distribution

assumption is reasonable when the probability of disease transmission from an

infective individual does not change over the infective period. In addition, the

independence assumption holds when the probability that an individual becomes

infected increases linearly by increasing his infective neighbours (contacts). For

each contact edge in Gcn, a transmission hazard rate is defined as a function of

some covariates. The covariates can include individual attributes of the source and

the receiver of the infection, their location in Gcn and their mutual distance.

A considerable problem with epidemic data occurs when there is a lack of in-

formation about the actual infection pathways. In some cases, it is very hard to

accurately determine the source of infection for each patient. In other cases, ethical

issues may make it impossible to record such information. However, the actual

transmission pathways are always a subset of edges in the contact network, and

it is often possible to build a contact network before an outbreak. Living in the

same household, working in a shared environment, having common borders and

business relationships are obvious ways to define contacts, as each characterize a

potential pathway for infection. The model introduced in this chapter provides

a probability distribution over all possible pathways for each individual infection.

This sequence of probability distributions can be used to make inference about the

missing infection paths.

One vital advantage created by this model is that it produces measures which

can be used to predict the future of an outbreak and evaluate the effect of various
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control policies. We introduce a dynamic reproductive number based on the the

mean cumulative outdegree of infective vertices. A dynamic reproductive number

reflects the potential of disease propagation based on the local and global properties

of the infective and susceptible individuals at each moment. As demonstrated in

case studies later in this text, a time series plot of this measure can be used as a

monitoring tool to determine whether and/or when the disease is under control.

In addition, the expected outdegrees and indegrees can be used to quantify the

influence of each vertex in enhancing or slowing down the spread of a disease in

a specific outbreak. These influence statistics are applied to identify and compare

the two groups of ’threatening’ and ’resistant’ vertices in the United Kingdom’s

(2001) foot-and-mouth outbreak (chapter 3) and Hagelloch’s (1861) measles out-

break (chapter 4).

2.2 Competing hazards and the stochastic graph

process

Suppose Gcn = (V,Ecn) is the contact network for all individuals in a population.

The edges in Ecn are undirected and show potential pathways for disease trans-

mission. We call individuals i and j adjacent (or neighbours) if there is an edge

between them in Gcn. When i and j are neighbours, we write i ∼ j. We shall

assume that the contact network is known and does not change over time.

During an epidemic, the vertex set is partitioned into the Susceptible, Infective,

and Removed subsets, denoted by V inf
(t) , V sus

(t) , and V rem
(t) , respectively. The set V inf

(t)

contains the individuals who are capable of infecting susceptible vertices in V sus
(t)

at time t. Permanently immunized or dead individuals at time t are in the set
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V rem
(t) . The configuration of susceptible, infective and removed individuals changes

over time but their union remain constant: V = V sus
(t) ∪ V inf

(t) ∪ V rem
(t) for all t. This

partition is analogous to S(t) + I(t) +R(t) = n in a stochastic SIR compartmental

model where S, I and R denote the number of susceptible, infective and removed

individuals at time t.

Let

G = {G(t), t > 0} = {(V, E(t)) ; t > 0}

be a stochastic process indexed by time t. There exists a directed, random edge

from i to j in E(t) if and only if i ∈ V inf
(t) , j ∈ V sus

(t) and i ∼ j in Gcn. The set E(t)

can be represented by a random matrix [eij(t)] where eij(t) is zero or one, as an

edge from i to j is absent or present respectively. The direction on each edge in

E(t), for example from i to j, will denote a potential path for the future infection

from i to j. Also attached to the edge will be a probability which is proportional

to the hazard at time t that i will infect j.

To avoid the confusion between nonrandom undirected edges in Ecn and the

random directed edges in E(t), the former will be referred to as contact edges, and

the latter as hazard edges. Finally, the edges that form the actual (unobserved)

path of the infection shall be called infected edges.

Figure 2.1 shows an example of disease outbreak in a small population with a

known contact network. The contact and hazard edges are illustrated in grey and

red colours respectively. This figure shows a simulated epidemic at its first 5 events

(3 infections and 2 death).

In this chapter, the dynamics of E(t) are modelled using a competing hazard

mechanism. Our model shall assume that every infective individual i has an ex-

ponentially distributed waiting time to infect her susceptible neighbour j. The
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: The contact (grey) and hazard (red) edges in the first 4 transitions of a sample

outbreak. Red and purple dots show the infective and removed vertices respectively.
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parameter of this exponential distribution is the transmission hazard rate hij(θ),

where θ denotes a vector of unknown parameters. The infective period for vertex i

is also assumed to be exponentially distributed with a rate parameter denoted by

µi. Let µ denote the vector of these removal rates for all individuals in V . At any

given point in time, all hazard edges are competing to be the next actual trans-

mission pathway (i.e. become infected); the winner will be an edge whose waiting

time before infection is the shortest among all the hazard edges. The parameter

pij(t) represents the winning probability for eij(t). As soon as one infective vertex

is removed or one of the hazard edges become infected, the process G jumps to

a new graph with a different configuration of edges E(t), and a new competition

starts. The new configuration is a result of moving the newly infective vertex from

V sus
(t) to V inf

(t) or moving the newly removed vertex from V inf
(t) to V rem

(t) . In either case,

the edge matrix must change accordingly. These assumptions makes G a Markov

process with two jump types:

• A new infection with rate λ(t) =
∑

i∈V inf
(t)

∑
j∈V sus

(t)
hij(θ) where the summation

is over all hazard edges at time t1.

• A new removal with rate µ(t) =
∑

i∈V inf
(t)
µi.

Here, and henceforth, in λ(t) and similar expressions, we shall suppress the param-

eter θ in the notation.

Under the competing hazard model, conditionally on an infection during the

interval (t, t + dt), the probability that infection transmission is from i ∈ V inf
(t) to

j ∈ V sus
(t) is given by

pij(t) =
hij(θ)

λ(t)
.

1It is assumed that hij(θ) = 0 for all i ∈ V inf
(t) and j ∈ V sus

(t) such that i and j are not neighbours.
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Conditional on a removal during the interval (t, t + dt), the probability that the

removal is at vertex i ∈ V inf
(t) is given by

qij(t) =
µi∑

`∈V inf
(t)
µ`

=
µi
µ(t)

.

Conditional on a transition during the interval (t, t+ dt), the probability that the

transition is an infection and a removal, is

λ(t)

λ(t) + µ(t)
, and

µ(t)

λ(t) + µ(t)
,

respectively.

The process G defined here can be characterized by an embedded discrete

time process with transitions at times S(k), where k = 1, 2, 3, . . .. Let G(k) =

(V,E(k)) = G(S(k)), etc. So T (k) = S(k) − S(k − 1) is time spent at graph

G(k− 1), before jumping to graph G(k). In the discrete process, the initial state of

the graph is denoted by G(0) and S(1) is the time of the first jump: G(0)→ G(1).

It is also assumed that S(0) = 0.

From the Markov property, the time spent at G(k) is independent of the jump

it makes into G(k + 1) given G(k). That is

P{T (k + 1) > t, G(k + 1) = g |T (k), G(k)} = P{G(k + 1) = g|G(k)}

× P{T (k + 1) > t|G(k)}.

Let λ(k) = λ(S(k)) =
∑

i∈V inf
(k)

∑
j∈V sus

(k)
hij(θ) and µ(k) = µ(S(k)) =

∑
i∈V inf

(k)
µi

denote the discrete time infection and removal rates. Now, the transition probability

45



for the specific infection jump: V inf
(k+1) = V inf

(k) ∪ {`} for ` ∈ V sus
(k) is given by

P (V inf
(k+1) = V inf

(k) ∪ {`} |G(k)) =

[ ∑
i∈V inf

(k)
hi`

µ(k) + λ(k)

]
, (2.2.1)

and the transition probability for the specific removal jump: V rem
(k+1) = V rem

(k) ∪ {`}

for ` ∈ V inf
(k) is defined as2

P (V rem
(k+1) = V rem

(k) ∪ {`}|G(k)) =

[
µ`

µ(k) + λ(k)

]
. (2.2.2)

In addition,

P (T (k + 1) > t |G(k)) = exp {− (µ(k) + λ(k)) t} . (2.2.3)

Let I(k) denote an indicator function showing the type of jumps such that I(k) = 1

when (k + 1)st jump is a new infection and I(k) = 0 otherwise. Based upon

the modelling assumptions in equations (3.2.2), (3.2.3), and (3.2.4) the likelihood

function for a realization of this process as {(G(k), T (k)) : k = 1, 2, . . . , K} is given

below (a vertex which is newly infected or removed at any corresponding jump is

indicated by `, the initial state of the graph is G(0) and T (1) is the waiting time

2This jump can be equivalently characterized by V inf
(k+1) = V inf

(k) \ {`}.
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for the first jump: G(0)→ G(1).),

L(θ, µ) =
K∏
k=1

f(G(k + 1), T (k + 1) |G(k), T (k)) (2.2.4)

=

[ ∑
i∈V inf

(k)
hi`

µ(k) +
∑

j∈V sus
(k)

∑
i∈V inf

(k)
hij

]I(k) [
µ`

µ(k) +
∑

j∈V sus
(k)

∑
i∈V inf

(k)
hij

]1−I(k)

exp

−
 ∑
j∈V sus

(k)

∑
i∈V inf

(k)

hij + µ(k)

 T (k + 1)


 ∑
j∈V sus

(k)

∑
i∈V inf

(k)

hij + µ(k)

 .

Hence, the loglikelihood becomes

`(θ,µ) =
K∑
k=1

I(k) log

∑
i∈V inf

(k)

hi`

+ (1− I(k)) log µ` (2.2.5)

−

 ∑
j∈V sus

(k)

∑
i∈V inf

(k)

hij + µ(k)

 T (k + 1)

 .

When the removal rate is a constant µ over V inf(k) for all k, we have µ(k) =

|V inf
(k) | × µ. Therefore, the ML estimator for µ is given by the number of D jumps

divided by a weighted sum of transition intervals,

µ̂ =

∑
k(1− I(k))∑

k(|V inf
(k) | . T (k + 1))

. (2.2.6)

For the parameter θ, the MLE is not in closed form and must be obtained numer-

ically.

In the discrete process {(T (k), G(k)) : k = 1, 2, . . .}, the disease status of

a vertex is assumed to remain unchanged between any two jumps. Also, it is
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assumed that the underlying contact network does not change during the outbreak.

Therefore, the probability of infection transmission pij(t) remains the same for

S(k) < t < S(k + 1) for all hazard edges. These probabilities, denoted by pij(k)

are computed as

pij(k) =
hij(θ)∑

(`,m)∈ E(k)

h`m(θ)
. (2.2.7)

Note that pij(k) in (2.2.7) is only defined for hazard edges, i.e. when i ∈ V inf
k

and j ∈ V sus
k . At this point, the actual source of infection for individual j can be

inferred using the probability distribution {pij(k), i ∈ V inf
(k)} given that j became

infected at jump k.

2.2.1 SEIR generalization

In the SEIR model, each vertex can be in one of the four following states: suscep-

tible, exposed, infective or removed. That is

V = V sus(t) ∪ V exp(t) ∪ V inf(t) ∪ V rem(t) for all t ∈ T .

The exposed category contains individuals who are infected but not infective yet.

Other groups retain their definitions from the SIR model. The time of exposure for

many diseases can be estimated based on the time required for the onset of disease

symptoms. This information is required to compute the likelihood for the SEIR

model.

Under these conditions, the graph process G is a Markov process with three

types of jumps:

• Exp: A new exposure with rate ξ(t) =
∑

(i,j)∈E(t) hij(θ) where the summation
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is over all hazard edges at time t.

• Inf: A new vertex becoming infective with rate ω(t) =
∑

i∈V exp(t) ωi, where

ωi is the transition rate from E to I for vertex i .

• Rem: A new removal with rate µ(t) =
∑

i∈V inf(t) µi, where µi is the transition

rate from I to R for vertex i

Using the discrete time version {(T (k), G(k)) : k = 1, 2, . . . }, let I(k) denote an

indicator function showing the type of jumps such that I(k) = 1 when the kst jump

is an Inf and I(k) = 0 otherwise. In the same way, R(k) is a similar indicator for

Rem jumps; i.e. R(k) = 1 if the kst jump is a removal. Therefore, the likelihood

function for a realization denoted by {(T (k), G(k)) : k = 1, 2, . . . , K} is given by

(at each Exp, Inf, Rem jump the vertex which is exposed, infective or removed

respectively, is denoted by `)

L =
K∏
k=1

f(G(k + 1), T (k + 1) |G(k), T (k))

=
K∏
k=1


∑

i∈V inf
(k)
hi `

ω(k) + µ(k) +
∑

j∈V sus
(k)

∑
i∈V inf

(k)

hi j


1−I(k)−R(k)

×

 ω
`

ω(k) + µ(k) +
∑

j∈V sus
(k)

∑
i∈V inf

(k)

hi j


I(k)  µ

`

ω(k) + µ(k) +
∑

j∈V sus
(k)

∑
i∈V inf

(k)

hi j


R(k)

× exp

−
µ(k) + ω(k) +

∑
`∈V sus

(k)

∑
i∈V inf

(k)

hi `

 T (k + 1)


×

µ(k) + ω(k) +
∑
`∈V sus

(k)

∑
i∈V inf

(k)

hi `

 ,
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and the log-likelihood is

`(θ,ω,µ) =
K∑
k=1

(1− I(k)−R(k)) log

∑
i∈V inf

(k)

hi `

+R(k) log µ
`

(2.2.8)

+I(k) logω
`
−

 ∑
j∈V sus

(k)

∑
i∈V inf

(k)

hi j + µ(k) + ω(k)

 T (k + 1)

 ,
where ω and µ denote the vectors of {ωi, i ∈ V }, {µi, i ∈ V }. Note that the

subscripts, e.g. ω`, are used to show the individual rates and the parenthesis, e.g.

ω(k), are used to describe the overall rates at each jump.

In the cases where ωi and µi are constants ω and µ over the vertex set, (i.e.

µ(k) = |V inf(k)| . µ and ω(k) = |V exp(k)| . ω), then the MLE for µ and ω are given by

µ̂ =

∑
k(R(k))∑

k(|V inf
(k) | . T (k + 1))

ω̂ =

∑
k(I(k))∑

k(|V
exp
(k) | . T (k + 1))

. (2.2.9)

Jointly sufficient information required to calculate this likelihood is the indi-

vidual transition times through the susceptible, exposed, infective, and removed

states, represented by {V sus
(k) , V

exp
(k) , V

inf
(k)}Kk=1. For many diseases, including measles,

the observed data contains the time for early onset, rash, or other infectious inci-

dents. By integrating this information with the clinical facts about the disease, one

can estimate transition times between states and replace them in the log-likelihood

function (2.2.8).
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2.3 Dynamic reproductive number

2.3.1 Literature on the basic reproductive number R0

The basic reproductive number, denoted by R0, is one of the most important pa-

rameters in managing disease outbreaks. Heesterbeek & Dietz (1996) defined it

as:

“...the expected number of secondary cases produced by a typical in-

fected individual during its entire infectious period, in a population

consisting of susceptible individuals only.”

The basic reproductive number can be expressed in various ways depending on

the underlying mathematical model. Heesterbeek & Dietz (1996) and Diekmann

& Heesterbeek (2000) defined R0 based on the expected infectivity function, as

explained below. A valuable overview using counting processes is given by Yan

(2008). Hernandez-Suarez (2002) uses a geometric random variable showing the

number of contacts during the infective period to define R0. Similar results are

obtained in modelling the initial steps of epidemics as branching processes (Whittle,

1955; Heesterbeek & Dietz, 1996; Yan, 2008).

In practice, R0 is used to quantify the possibility of a major epidemic and the

immunization proportion needed to prevent it. Some R0 applications are discussed

in Whittle (1955) and Britton (2001). If R0 > 1 then there is a positive probability

that outbreak becomes a major epidemic. A large R0 may be reduced by immu-

nizing a part of the susceptible population by vaccination or other methods. The

proportion of the population which must be immunized in order to make R0 less

than 1, (i.e., to attain the herd immunity), is determined as a function of R0 and

other model parameters.
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Before introducing the stochastic graph-based reproductive number, we will

review the mathematical properties of R0 in some epidemic models.

In the Kermack-McKendrick SIR model, the size of susceptible, infective and

removed compartments are assumed to be differentiable functions of time (denoted

by S(t), I(t) and R(t) respectively). The dynamics of the spread of a disease are

modelled through the deterministic differential equations. A simple version of these

equations which does not include demographic changes is

S ′(t) = −βS(t) I(t), (2.3.10)

I ′(t) = β S(t) I(t)− α I(t),

where β and α denote the infectious contact rate and recovery rate respectively.

The basic reproductive number in this model is defined as R0 =
β

α
S(0). The system

of equations in (2.3.10) describes a growing epidemic when and I ′(t) > 0. These

conditions are satisfied when S(t) >
α

β
. Therefore, if the number of susceptible

individuals is less than
α

β
(i.e. R0 < 1) at the very beginning of the epidemic

(t = 0), then the outbreak does not become an epidemic and the number of infective

individuals decreases to zero. The same result is obtained from a stochastic model

in which the size of compartments are modelled as Markov stochastic processes (see

Allen (2008) and Allen & Burgin (2000)).

Another stochastic epidemic modelling approach is through branching processes.

In this framework, the early stage of the epidemic is approximated by a linear birth-

death process with birth and death rates β S(0) and α. Then, the disease starts

with I(0) number of infectives and eradicates without infecting a large fraction of

the population provided that R0(=
β

α
S(0)) < 1. On the other hand, it turns into
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an epidemic with probability

≈

(
1−

(
α

β
S(0)

)−I(0))

if R0 > 1 (Whittle, 1955; Heesterbeek & Dietz, 1996).

In cases where the individual infectivity is allowed to change over time, one may

use the following definition for the basic reproductive number by Heesterbeek &

Dietz (1996):

R0 = S(0)

∫ ∞
0

A(τ)dτ, (2.3.11)

where τ represents the age of the disease and A(τ) is the expected infectivity of a

single infective individual among an entire susceptible population after [0, τ ] period

of time. Heesterbeek and Dietz introduced A(τ) as the function which characterizes

the dynamics of compartment sizes in a general differential equations setting (based

on Kermack and McKendrick’s assumptions):

S ′(t) = S(t)

∫ ∞
0

A(τ)S ′(t− τ)dτ, (2.3.12)

I ′(t) = S(t)

∫ ∞
0

A(τ) I(t− τ)dτ.

If A(τ) is the deterministic decreasing function

A(τ) = α exp{−β τ}, (2.3.13)

then the equations in (2.3.12) reduce to (2.3.10) and (2.3.11) simplifies to
α

β
S(0).
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Heesterbeek & Dietz (1996) defined A(τ) in a stochastic framework as a true

expected value:

A(τ) =

∫
a(τ, i)m({di}), (2.3.14)

where a(τ, i) denotes the infectivity of individual i at infection age τ and m(.)

denotes a probability measure over i which represents different categories in the

whole population. The general definition of value (2.3.14) reduces to (2.3.13) under

the classical birth-death approach characterized by the following assumptions:

• Host homogeneity: The length of infectious period, denoted by x, is an

independent exponential distribution with rate β for all individuals.

• Homogeneous mixing: All individuals have the same infectivity function

which is characterized by the length of infectious period, denoted by x:

a(τ, i) = a(τ, x) (2.3.15)

=

β τ ≤ x

0 x < τ.

(2.3.16)

Following the branching process theory, in a homogeneous population (both in

terms of contacts and response to the infection) the disease can become an epidemic

only if R0 > 1. Britton (2001) generalizes this model for a multitype population in

order to relax the homogeneity assumption somewhat.

In recent applications of graph theory in epidemic modelling, the basic repro-

ductive number is defined as the mean excess degree - the original degree minus

one - of the contact network (Brauer, 2008). This application is effective because
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the disease cannot be transmitted back once it moves through an edge. Another

formula to calculate the basic reproductive number over a contact network is given

by Meyers et al. (2005) who states that if dg denotes the excess degree of Gcn, then

R∗0 =
E(dg)E(dg2)

(E(dg)2 − E(dg))(E(dg)− 1)
. (2.3.17)

These definitions are very helpful when the outbreak is represented by a single

graph rather than a sequence of random graphs.

2.3.2 Dynamic reproductive number, R(k)

The goal of this section is to define a dynamic measure based on the stochastic

graph process, which provides a practical guide in choosing and evaluating the

control policies during an outbreak.

For this purpose, we begin with the core of R0 definition in Heesterbeek & Dietz

(1996). According to Heesterbeek & Dietz (1996):

R0 = S(0)

∫ ∞
0

A(τ)dτ, (2.3.18)

where A(τ) is the expected infectivity of a single infective individual among a whole

susceptible population after [0, τ ] period of time. Using the real time value t instead

of the age of infection τ , A(t) is nonzero only when tinfi < t < tremi , where tinfi and tremi

denote the time points for individual i becoming infective and removed respectively.

In graph terminology, A(t) is analogous to the expected outdegree of an individual

at time t (in the stochastic graph process), E(di(t)) = E[
∑
j

ei j(t) ] where eij(t)

is a binary variable (with parameter pij(t)) corresponding to the hazard edge from
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the infective individual i to the susceptible individual j. Therefore, we have

E(di(t)) =
∑
j∈V sus

(t)

pij(t),

where pij(t) = 0 if i and j are not neighbours or i /∈ V inf
(t) or j /∈ V sus

(t) .

Assuming that the outdegree probability density function (or at least its first

moment) remains unchanged between any two jumps, we can find the discrete-time

graph-based reproductive number for vertex i as

ri =
∑
k

E(di(k)) =
∑
k

∑
j∈V sus

(k)

pij(k), (2.3.19)

where pij(k) is given in (2.2.7). Note that the pij(k) is positive only at jumps when

a hazard edge is present form i to j.

Both quantities R0 and ri count the expected number of secondary cases of an

infected individual. However, they are not formally equivalent because they are

computed under different modelling assumptions.

The set of reproductive numbers for infective individuals at jump k, {ri; i ∈

V inf
(k)}, provides information about the potential spread of the disease at this jump.

We define the dynamic reproductive number at jump k as the mean value of this

set:

R(k) =
1

|V inf
(k) |

∑
i∈V inf

(k)

ri, (2.3.20)

where |.| stands for the set cardinality. A high value of R(k) expresses a high

potential for the outbreak to grow. A time series plot of R(k) can be used as a

monitoring device during the epidemic. This will be elaborated on in an example in

section 2.5. Time series plot of R(k) can detect the time when an epidemic reaches
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a low potential for growth, i.e. it is under control.

The dynamic reproductive number introduced in (2.3.20) is identical to R0 as

defined in (2.3.18) at the initial steps of the epidemic, if Gcn is a full graph and the

transmission hazard is constant over all of the edges.

The estimated dynamic reproductive number R̂(k) is obtained by replacing the

estimates of model parameters (θ̂, µ̂) in (2.2.7) and using the p̂ij(k) as displayed in

(2.3.19).

2.4 Influence statistics

As a post-epidemic study, one might be interested in measuring the role of each

individual in disease propagation. For example, it could be that some individuals

inhibit the flow of infection by resisting the disease for a long period of time,

therefore not passing the disease to many susceptibles. Others may enhance the

epidemic growth by putting a large number of susceptibles at the risk of infection

while being infective themselves.

Let kiinf and kirem denote the jumps in which a vertex i is infected and removed

respectively. In all jumps before kiinf, the vertex i is under no threat of infection until

at least one of its adjacent vertices become infective. As such, it has an indegree

of zero until one of its neighbours is infected. From then on, the expected indegree

of i is positive and quantifies the risk of infection that i is exposed to. In the same

manner, for kiinf < k < kirem, hazard edges exist from i to its susceptible neighbours,

which show the threat that i imposes on the network.

Based on the above argument, we can measure the vertex i’s resistance prior to

infection by its cumulative indegree (CR). In addition, the threat that the vertex
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i imposes while it is infective can be measured by its cumulative outdegree (CT).

These measures are computed using the sequence of the weighted directed edges

{E(k); k = 1, . . . , K}:

CR(j) =
∑
k<kjinf

∑
i

p
ij

(k), CT(i) =
∑

kiinf<k<k
i
rem

∑
j

p
ij

(k). (2.4.21)

Categorizing vertices according to the above measures provides valuable insight into

the individual covariates which affect the spread of a disease.

(a) (b)

Figure 2.2: Figure (a) shows a contact network of order 100 with 5% super spreaders indicated
by the black diamonds. Figure (b) shows the initial phase of an epidemic simulated over this
contact network. Infective individuals and their susceptible neighbours are coloured red and
green respectively. Hazard edges are shown by red arrows and contact edges are indicated by grey
lines.
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2.5 Example

In this example, an epidemic is simulated over a hypothetical contact network and

two control strategies are compared using the dynamic reproductive number R(k).

The goal of this example is to demonstrate the application of dynamic modelling in a

simplified situation with uniform transmission and recovery rates and no covariates

(age, gender, etc.). All numbers are artificial and the contact network is deliberately

small in size and order for the sake of a clear presentation.

A contact network of order 100 and size 183 is generated as follows. The vertices

are generated by sampling 100 points uniformly from the area (−1, 1)×(−1, 1). The

edges are generated in two steps. First, an edge is placed between any two vertices i

and j with probability p
ij

= exp{−α dij} where dij denotes the Euclidean distance

between i and j. At this point, a random graph with unequal probabilities is gen-

erated. Next, 5% of the population is selected at random to act as potential ‘super

spreaders’. The term ‘super spreader’ refers to individuals with a large number of

contacts. The degree of these vertices are generated from Uniform{5, 6, 7, 8, 9} and

if needed, new neighbours are selected according to the same probabilities as in the

first step. The resulting network is displayed in Figure 2.2(a).

An SIR epidemic model as described in section 2.2 is simulated over this contact

network. The initial infectives are selected randomly from the vertex set. These

individuals are indicated in red in Figure 2.2(b) to show the initial epidemic phase.

The competing edges can also be seen in the same figure. Transmission and (perma-

nent) recovery rates are assumed to be constant over all edges and infected vertices,

respectively. These rates are denoted by µi = µ for all infective individuals i and

hij = λ for all hazard edge. In the current example, these parameters are specified

as λ = 0.38 and µ = 0.15. Without any controlling intervention, 90% of the popu-
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(a) Day 2. (b) Day 3.

(c) Day 4. (d) Week 2.

Figure 2.3: Red, green and purple bullets show the infective, susceptible and removed vertices

respectively.
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(a) Day 10. (b) Month 1.

(c) Month 3. (d) Month 18.

Figure 2.4: Red, green and purple bullets show the infective, susceptible and removed vertices

respectively.
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lation would be infected after three months, and it would take more than one year

until no more susceptible individuals remain. Some snapshots of this sequence are

displayed in Figures 2.3 and 2.4.

The dynamic reproductive number R(k) for this epidemic is computed accord-

ing to (2.3.20) and plotted versus S(k) in Figure 2.5. As shown in Figure 2.5,

R(k) decreases rapidly after the first three months, when most of the population is

infected and the epidemic has almost run out of susceptible vertices.

S(k)

R
(k
)

0.
5

1.
0

1.
2

1.
5

2.
0

2.
2

1 60 200 400 800

Figure 2.5: Dynamic reproductive number (R(k)) is plotted over the epidemic period (jump
times denoted by S(k)s). Time is measured in days. No control strategy is applied.

The static reproductive number (R0) for this epidemic can be calculated as the

mean excess degree of Gcn (which is equal to R0 = 2.66) or by the Meyers et al.

(2005) formula in (2.3.17); that is, R∗0 = 1.9. The second value is closer to the
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dynamic reproductive number during the early phase of this outbreak. In fact,

comparing the static and dynamic reproductive numbers will not lead to a conclu-

sive analysis because the static numbers rely on the properties of all individuals but

R(k) for small k (beginning phase) is specific to the starting point (early infective

individuals) of this epidemic. While R0 can be used to design control strategies

prior to an outbreak, R(k) can be helpful in studying the behaviour of the epi-

demic under different controls. Using this example, we may compare two different

control strategies by comparing the time series plots of R(k) from simulated epi-

demics. The two strategies to be compared are vaccination and adaptations to

the contact network (movement bans, quarantine, etc.). The vaccination strategy

is determined according to the traditional application of the static reproductive

number, as described below.

Let p denote the proportion of immunization p that provides a herd immunity

(i.e. prevents an endemic by reducing the basic reproductive number to a value less

than one). From Brauer (2008) we have p = 1− 1

R0

which approximates to p ≈ 0.6

(or p∗ ≈ 0.47) for this sample epidemic. Therefore, it is expected that a random

immunization of 60% (or 47% according to Meyers et al. (2005)) of the population

will prevent an epidemic. This strategy is compared to eliminating some contacts

from the contact network. In summary, the two strategies to be compared in this

example are:

I. Random vaccination of 47% of the population with a vaccine which reduces

the transmission rate to one third of the regular rate and increases the recovery

rate to twice the regular rate.

II. Eliminating all edges of super spreaders in the contact network Gcn.

Figures in 2.6 shows the 20 simulations under control strategies I and II. Under
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strategy I, the epidemic period is reduced to less than two months and the spread

of disease is controlled (R(k) shrunk to a value less than one) within the first two

weeks. On the other hand, strategy II’s epidemic period is less than 25 days and

in most cases the R(k) falls below the threshold after 7 to 10 days. In conclusion,

isolating the super spreaders resulted in a shorter epidemic period and a lower and

less variable R(k). It worth mentioning that both strategies are extreme and some-

what unrealistic formulations and are chosen with the purpose of demonstrating

the R(k) potential in comparing different control plans.

64



S(k)

R(
k)

0.2
0.5

1.0
1.5

2.0
2.5

2.8

1 5 10 15 25 32

(a) Vaccination.
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(b) Change in the contact network.

Figure 2.6: Comparing two control strategies.
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Chapter 3

Analyzing the 2001 FMD

outbreak in the UK

3.1 Introduction

Foot-and-mouth or hoof-and-mouth is a viral disease that can infect domestic ani-

mals and, sometimes, humans. Animals such as cattle, sheep and pigs are capable

of transmitting the FMD virus with variable levels of potency. FMD is highly con-

tagious and can be fatal. Due to the high chance of transmission even through

species which are not usually susceptible to this disease, all countries, including

FMD-free ones, are recommended to have control strategies in place in the event

of an FMD epidemic.

The UK FMD outbreak in 2001 involved slaughtering approximately six million

animals and had severe economic consequences. Figure 3.1 shows three snapshots

of the spread of disease during this epidemic. A detailed governmental report on

the epidemic was provided by the UK Department for Environment, Food and
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Rural Affairs (2002). Many studies have been devoted to modelling the UK 2001

FMD epidemic and determining optimal control strategies to prepare for future

outbreaks. Ferguson et al. (2001a), Ferguson et al. (2001b), and Keeling et al.

(2001) provide an early analysis of the effects of the control policies used during

this epidemic. Kobayashi et al. (2007) and Thornley & France (2009) model

the outbreak using differential equations which are solved for the optimal control

strategies. Dube et al. (2009) consider the application of networks in modelling

this outbreak.

(a) (b) (c)

Figure 3.1: Three snapshots of the disease spread over 40 days. Black spots show the suscepti-
ble/recovered farms and grey spots indicate the infectious farms at each time. Here (a), (b) and
(c) show the infectious/susceptible/removed configurations on Day 5, Day 14 and Day 44 of the
epidemic.

In this chapter, the model developed in section 2.2 is applied to analyze the

epidemic data from the FMD outbreak in the UK in 2001. The data and details

on model specification and parameter estimation is provided in sections 3.2 and

3.3. Section 3.4 considers model checking and simulation based on the estimated

parameters. Finally, the dynamic reproductive number and influence statistics are
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used to analyze the dynamics of this outbreak in sections 3.5 and 3.6. This analysis

leads to new conclusions about the spread of the infection in the 2001 outbreak.

3.2 The data and contact network

The epidemic data used in this text come from the following two sources:

1. survey information provided by the Department of Environment, Food, and

Rural Affairs in regards to the location and livestock configurations of the

farms, and

2. the outbreak data set which contains the type of infection and time of infection

for each farm.

Because of the strict rules in regards to reporting and culling animals during

the UK 2001 FMD outbreak, the resulting dataset has the advantage of possessing

records of all involved farms with rich temporal information about the propagation

of the infection. Each farm in the data set is identified by its Ordnance Survey loca-

tion (x-y coordinate) and other covariates, such as the number of sheep and cattle

owned, region, report date, cull date, livestock intensity, and estimated infected

date. Data points (farms) with unreasonable attributes or identical geographical

information are not included in this analysis.

By mapping the x-y coordinates of all farms into a plane, the vertex set V is

constructed as a set of two dimensional points. Due to the diversity in transmission

modes for the FMD virus, a realistic contact network is represented by a complete

graph over all farms V . The FMD virus can be transmitted over long distances

and through a variety of modes, such as: contact with animal products, mechanical
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transfer by people or vehicles, transfer by wild animals and birds, and long range

airborne transmission (Sellers & Gloster, 2008). On the other hand, no geograph-

ical feature has been found to significantly affect the risk of infection in the area

influenced by the outbreak. Therefore, we modelled the underlying contact network

in this epidemic by using a complete graph which allows for positive probability

of infection from an infective farm i to all farms which are susceptible when i is

infective.

3.3 Model fitting, parametrization and estima-

tion

By assuming that every infected farm i is a potential risk for a susceptible farm j

with hazard rate hij(θ), we may apply the Markov model introduced in section 2.2

to explore the dynamics of this epidemic. It is assumed that the removal rates µi

are constant over the vertex set, i.e. µi = µ for i ∈ V .

The hazard rate hi j(θ) is modelled as a function of the Euclidean distance

between farms i and j (denoted by di j), and their individual covariates through the

vector of parameters θ:

hi j(θ) = nγi n
δ
j exp{−αdβi j} , θ = (α, β, γ, δ) (3.3.1)

where ni and nj denote the livestock intensity of animals in farms i and j respec-

tively. The type of distance is chosen based on the results of Savill et al. (2006)

which indicate that Euclidean distance provides better predictions compared to the

shortest road distance and quickest road distance in this epidemic.
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The sequence of hazard edges {E(k) ; k ≥ 1} or equivalently the sequence of ver-

tex set configurations {(V inf
(k) , V

sus
(k) , V

rem
(k) ); k ≥ 1} can be constructed based on the

outbreak data. Using this sequence and the transmission hazard function (3.3.1),

the likelihood function (2.2.5) can be evaluated. However, the time resolution of

this data results in missing information in the graph sequence in the following

sense: observations are recorded only on a daily basis. However, at some points of

time, more than one infection occurred over a single day during this epidemic. Our

model assumes that the spread of an infection is dependent upon the precise order

in which individual farms (vertices) become infected. So, if two or more farms are

infected in a single day, then this ordering information is missing from the data.

To overcome this problem, we approximate the likelihood function using a Monte

Carlo method based on the random shuffling over all possible permutations of un-

observed jumps. Such solution is reasonable if it is assumed that all permutations

are equally likely in practice. In turn, this assumption will be valid if the rate

parameters hij(θ) are not too large. In this case, the probability that a newly

infected farm can infect other farms in less than one day is reasonably small, so

infections within one day are approximately independent. In addition, the infec-

tion times will be approximately uniform over a time interval of one day. Samples

of these permutations are randomly generated and their mean values are replaced

in the likelihood function. The loglikelihood is maximized using the Nelder-Mead

(simplex) method, due to its reliability in searching for local maxima. See Table

3.1 for the estimated parameters and related information.

The ML estimate for µ given by (2.2.6) is 0.0033 with (0.00313, 0.00346) confi-

dence interval. Table 3.1 displays 90% relative profile likelihood intervals for each

of the parameters. The confidence intervals for γ̂ and δ̂ include zero. Hence the

animal intensity is shown to have either very small or zero effect on the transmission
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Table 3.1: ML parameter estimates

hazard parameters ML estimates 90% RPLI

hij(θ) = nγi exp{−α dβij}nδj

α 12.43 (9, 15.5)
β 0.14 (0.1, 0.31)
γ 0.08 (−0.5, 0.8)
δ 0.03 (−0.3, 0.25)

hazard and this function can be simplified by removing the corresponding terms.

Note that the parameter α quantifies the strength of the effect of the Euclidean

distance over the transmission risk, while β controls this effect for long distances.

It is easy to verify that for identical livestock intensities, the log-ratio of the trans-

mission risk between two farms is multiplied by

{(
d′

d

)β
− 1

}
when the distance

changes from d to d′:

h′

h
=

exp{−α d′β}
exp{−α dβ}

= exp

{
−α dβ

[(
d′

d

)β
− 1

]}
.

Although individual interpretation of model parameters is helpful in understand-

ing the effect of different factors on the transmission of the disease, more practical

interpretations can be obtained by using these values to estimate the probabili-

ties pij(k) in (2.2.7) for hazard edges. The p̂ij(k)s are used in estimating dynamic

reproductive number and influence statistics.

3.4 Simulation and model checking

Simulations are used here to check the model’s adequacy in capturing and repro-

ducing the dynamics of an epidemic. Simulating an epidemic using the stochastic

graph model is similar to sampling from a stochastic process based on one realiza-
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Figure 3.2: Horizontal axis: Infection dates. Vertical axis: the cumulative ratio of infected
farms. The grey curves and the black curve represent the simulated and actual data respectively.
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(a) Constant culling rates.
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(b) Farm specific culling rates.

Figure 3.3: Outbreak simulations with two simple culling strategies. The black curve shows the

cumulative infected ratio of the data and coloured curves show the same measure in the simulation

results.

tion. A proper understanding of the model’s assumptions and limitations is crucial

in order to design and interpret simulations accurately.

An actual epidemic dataset reflects a combination of two different processes.

The first -the uncontrolled spread of infection- is inherent in the clinical properties

and transmissibility of the virus and may appear repeatedly in different epidemics.

The second is the process of human intervention which tries to control the outbreak.

Intervention is variable in different outbreaks. Therefore, in reproducing the same

epidemic, the type of control policy used has an important effect.

To run the simulations under a similar control policy, we need to quantify it

first. Due to the culling procedures completed by the infective farms during the UK

2001 outbreak, the length of the infective period must be determined by the control

policies used (culling), rather than the natural removal rates of FMD-infected live-
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stock. Farms which are infected at the early stage of the outbreak remain infectious

for a longer period when compared to the farms infected at a later date. There-

fore, a realistic simulation needs different removal rates at different times. For this

purpose µ is replaced by a piecewise constant function µ(t) where t denotes time.

This should not be confused with individual removal rates µi where i represents

vertices (farms). The values of µ(t) reflects the actual culling rates over 5 different

time periods in this epidemic.

The algorithm for this simulation is summarized as follows:

1. To start the outbreak

i. Set V inf
(1) equal to the first eight farms infected in the 2001 outbreak.

ii. Set their infect and cull dates to match those from the actual epidemic.

iii. Set S(1) to be equal to the largest actual infect date of farms in V inf
(1) .

2. At step k:

i. The hazard matrix H = [hij(θ)], where i ∈ V inf(k) and j ∈ V sus
(k) , is

computed according to (3.3.1),

ii. The amount of time until the next infection is generated from the expo-

nential distribution λ(k) =
∑

i∈V inf
(k)

∑
j∈V sus

(k)
hij(θ) and saved as variable

’temp’,

iii. The next farm to be infected, j, is sampled from V sus
(k) with probabilities{ ∑

i hij(θ)∑
i,j hij(θ)

, j ∈ V sus
(k)

}
,

iv. Farm j is moved from V sus
(k) to V inf

(k) ,

v. Update S(k) = S(k − 1) + temp.
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vi. The infect and cull date of j are set to S(k) and S(k) + x, where x is

generated from Exponential(µ(t)) for the smallest t such that S(k) < t.

vii. Update V inf(k + 1) by removing the farms for which the cull date falls

between (S(k − 1), S(k)).

3. Terminate the process if S(k) > 240 or no more infective or susceptible farms

remain.

These simulations are run over a population which includes all farms involved

in the actual outbreak in 2001 (our dataset). Some runs terminated before the

whole population could be infected. In order to compare the simulation results

with the actual data, we used the cumulative ratio of the number of infected farms

to the total number of farms which are infected before termination (or disease

eradication). This ratio is computed on each day after the epidemic starts and

represents the dynamics of the epidemic growth. Figure 3.2 displays a number of

simulations along with the epidemic data. The pattern of simulated curves in this

figure has some deviations from the actual data at the beginning and at the end of

the epidemic period. This can be improved by using a more detailed function as

µ(t).

Modelling the effects of control policies in this epidemic is a highly challenging

task. The actual control decisions seems to be varying over time. In addition to

that, the farmers’ response to the control acts could also be different. The actual

culling rates which is revealed by the data is a result of a complex combination

of all above factors. Any simple function to model the culling rates leads to a

different dynamics of the spread of the infection. As two examples, the epidemic

is simulated under two different culling strategies: I. Constant rate 1/µ = 10 for

all farms (based on the average infectious period in the dataset), II. Variable rates
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for farms µi (derived from the data). The simulation algorithm remains the same

except for part (2-vi), where the parameter of exponential distribution is changed

accordingly. Figure 3.3 displays the dynamics of a number of simulations. It can

be seen that the epidemic grows with a slower pace under both strategies compared

to the actual outbreak. In addition, the farm specific culling strategy (II) does

not cover more than 20% of the farms in the dataset in many simulations and it

mostly terminates earlier than the actual epidemic in other cases. This observation

supports the statement that the actual culling rates in this epidemic are determined

by the time of infection rather than the characteristics of the farms. Consequently,

it would be very hard to estimate the actual µis.

The last part of this section is devoted to studying the spatial direction of the

epidemic. At any jump point, the model provides probability distributions over

the sets of possible future infections. However, simulating a path by sampling from

these distributions generates an accumulated sampling variation which should be

considered in this comparison. The sampling variation strongly affects the geo-

graphical distribution of the simulated path. Hence, it is of no help to compare

the geographical propagation in the actual epidemic and simulated ones. In order

to check for general spatial pattern caused by factors like wind direction, we must

study the direction of the most likely transmission pathways, i.e. determine the di-

rection of the edges with highest probability (conditional on the infection occured)

of transmission at each jump. These edges are mapped within the unit circle in

Figures 3.4 and 3.5. The length of each line in these figures shows the value of the

likelihood function corresponding to that edge. Under biased external effects, an

uneven distribution of edges over the unit circle is expected. But, from Figures 3.4

and 3.5, no spatial preference or order can be recognized for this outbreak. The

same conclusion is made from the plot of edge angles versus the infection dates
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Figure 3.4: Most likely transmission pathways are mapped into the unit circle. The length of
each edge shows the corresponding probability.

in Figure 3.6. The angles refer to the angles of estimated infected edges with the

horizontal axis. This figure shows no dynamic pattern for the most likely directions

of transmission through the epidemic.

3.5 Estimation of dynamic reproductive number

Using the parameter estimates in table 3.1, we can estimate the dynamic reproduc-

tive number in (2.3.20). Estimates are computed for each day during the outbreak.
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Figure 3.5: Most likely transmission pathways over the whole epidemic period are mapped into
the unit circle. The length of each line indicates the transmission probability attached to it. No
spatial pattern is recognized.
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Figure 3.6: The angle (in radian) of infected edges are plotted versus the infection dates.
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Figure 3.7: The upper plot shows the number of infective farms at each jump (days). The lower
plot shows the estimated mean reproductive number at the corresponding jumps (days).
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A time series plot of R̂(k) is given in Figure 3.7 (lower plot). This plot illustrates

the mean reproductive number of individuals who are infective at the corresponding

day. The upper plot in Figure 3.7 shows the daily number of infective farms.

By comparing the two plots in Figure 3.7, the ability of R(k) to describe the

epidemic behaviour is demonstrated. It can be observed that the disease started

with a mean reproductive number higher than one which fell below one after about

50 days. Day 50 also corresponds to the time when the number of infective farms

starts to decrease. Therefore, the fact that the outbreak stops growing at day 50

is also detected by the estimated dynamic reproductive number.

3.6 Detection of influential farms

The cumulative resistance and threat to infection are two measures introduced in

section 2.4 to quantify the role that individual farms play in the epidemic. By

applying the estimated outdegrees and indegrees in equations (2.4.21), we can esti-

mate the cumulative risk and threat associated with all farms in the dataset. The

average cumulative outdegree of an infective farm i, denoted by ĈT(i), measures

the threat it has imposed on the network. On the other hand, the average cumu-

lative indegree of a susceptible farm j, denoted by ĈR(j), represents the amount

of risk it has encountered before becoming infected. These estimates are plotted in

Figure 3.8.

Two types of influential farms are defined as follows. Farm j belongs to the set

of resistant farms if ĈR(j) is greater than the 98th percentile of {ĈR(j) ; j ∈ V }.

In the same manner, farm i is a threatening farm if ĈR(i) is higher than the 98th

percentile of {ĈT(i) ; i ∈ V }. As such, the resistant group is the collection of

farms which resisted the infection for a longer span of time and/or were exposed to
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Figure 3.8: The CR(j) and CT(i) are plotted against the farm numbers respectively. These

values are computed based on the cumulative indegree and outdegree during the epidemic. The

horizontal lines indicates the 98th percentile for each plot.

stronger sources. Conversely, the threatening farms are the farms which had higher

potential to transmit the infection by being infective for a longer period and/or

having stronger edges to their susceptible neighbours. In Figure 3.8, these sets

are separated from the others by a horizontal line which shows the value of 98th

percentile of the respective group. The resistant farms are geographically concen-

trated in Cumbria county, but the threatening farms can be found in regions such

as Durham, Gloucestershire, Derbyshire and Staffordshire. It should be mentioned

that this epidemic was most intense in Cumbria.

Along with geographical dispersion, the composition of livestock (sheep and cat-

tle) in the resistant and threatening farms is significantly different. The difference

does not appear in the livestock intensity itself. For example, Figure 3.9 shows

that the kernel density estimation of the livestock intensities (one of the variables
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Figure 3.9: The kernel density estimation of livestock intensity is plotted for the two groups of
resistant and threatening farms, and for the complete data set. The solid, dashed and dotted lines
refer to the main data set, resistant subset, and threatening subset respectively. All numbers are
restricted to Cumbria.
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included in the dataset) are not very different among the threatening group, resis-

tant group, and the whole population. However, the ratios of sheep and cattle may

explain the difference between the resistant and threatening farms. Let κ denote

the ratio of sheep in the livestock:

κ =
#of sheep

#of sheep + #of cattle
.

Figure 3.10 demonstrates the kernel density estimate for κ in the two groups of

farms in Cumbrian. The estimated density is positive over small intervals outside

(0, 1) because of the smoothing effect. This comparison is limited to the farms

located in Cumbria, in order to eliminate the confounding effect of geographical

factors. As can be seen in Figure 3.10, κ has a bimodal estimated pdf (plotted in

solid line) with two modes located close to the endpoints: zero and one. However,

the estimated density over the resistant and threatening groups are concentrated

around zero and one respectively. In other words, the data suggests that farms that

belonged to the threatening group owned a higher number of sheep than cattle; this

ratio is reversed for resistant farms that inhibited the spread of the disease.

The above observation is not revealed clearly by comparing the number of sheep

and cattle in the two groups of farms. There is no significant difference between the

mean number of cattle in the threatening farms (average is 183.9) and the resistant

farms (average is 247.2). On the other hand, the number of sheep in the two farms

are different (averages are 700.7 and 120.5 for threatening and resistant groups,

respectively.).

Epidemiological facts about the development of foot-and-mouth virus can help

to explain the above results about the effects of the livestock composition. Based

on the pathogenesis of the FMD virus, cattle are more susceptible to viral airborne
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dotted lines refer to the main data, resistant subset, and threatening subset respectively.
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transmission than sheep because of their larger lung capacity (Alexandersen et al.

(2003)). However, FMD symptoms can be harder to diagnose in sheep, ibid.

Therefore, sheep can be more threatening in an outbreak, as it is likely that they

would remain infectious for a longer period than the cattle. In conclusion, in farms

that have more sheep than cattle where the sheep are acting as maintenance hosts,

a high cumulative outdegree can be observed.

More interesting results can be obtained when incorporating information about

pigs while comparing threatening and resistant farms. Although the viral dosage

required to infect pigs is much higher than that of cattle or sheep, pigs are capable of

infecting other animals with FMD without becoming ill themselves (Alexandersen

& Donaldson, 2002; Sellers & Gloster, 2008).

In fact, Alexandersen et al. (2003) states that ‘the most likely pattern of airborne

FMD spread is from pigs to cattle and sheep downwind’. Hence, carrier pigs may

propagate the disease more effectively than sheep or cattle. A similar situation is

investigated for classical swine fever epidemics by Mangen et al. (2002).

The current data set does not provide information relating to pigs at the time of

outbreak. As such, survey data from 2005 was sourced for the sake of comparison.

We derived the number of pigs (on each farm) for the threatening and resistant

farms from the survey results. The 95% confidence interval for the average number

of pigs present on threatening farms is (551.6 , 1118.4), while for resistant farms

it is significantly lower at (13.7 , 166.5). If this significant difference existed at

the time of outbreak, it can be concluded that the farms with high number of pigs

played an important role in enhancing the spread of the infection. Therefore, these

farms should be included in monitoring and clinical tests even if they have no or

few FMD-susceptible animals at the time of outbreak.
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Chapter 4

Analyzing the 1861 Hagelloch

measles epidemic

4.1 Introduction

Measles is a viral illness with a prodrome of fever and malaise followed by a maculo-

papular rash and Kopliks spots. Due to the availability of an effective vaccine, this

disease is no longer considered to be an epidemic in many countries. According to

WHO statistics, vaccination resulted in a worldwide drop in measles-related deaths

by 78% between 2000 and 2008. Over 95% of these deaths (between 2000 and

2008) occurred in low-income countries1. The first stage of measles is an incubation

period that lasts between 8 to 12 days and is followed by a high fever for 4 to 7

days. Paitients are contagious within the period of 3-5 days before the appearance

of the rash (skin eruption) to 4 days after the rash appears (Mandell et al. , 1995).

1‘http://www.who.int/mediacentre/factsheets/fs286/en/’. Last time checked: October 24,
2010.
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In this chapter we analyze the measles epidemic that occurred within a German

village called Hagelloch in 1861. All susceptible individuals in the village, 188 in

total, were eventually infected during this epidemic. The susceptible population

includes the children who were born after a previous measles epidemic in 1847

and were not immune to the disease due to isolation or previous infections. A

surprisingly thorough collection of related data is compiled in the PhD thesis of

Pfeilsticker (1863). Pfeilsticker recorded a variety of personal and clinical facts

about each patient including their gender, age, class number (grade) and house

location; he also described the temporal development of the infection from the date

of early prodromes, to the date of a rash appearing and the date of death when

relevant.

This data has been studied by Lawson & Leimich (2000) and Neal & Roberts

(2004). Groendyke et al. (2010) and Groendyke et al. (2011) model the contact

network as Erdös-Rényi and p∗ graphs respectively and infer the model parameter

(including graph parameters) in a Bayesian framework. Britton et al. (2011) uses a

three level mixing model which includes different transmission rates for housemates,

classmates and other types of contacts in the village.

4.2 Contact Network

The contact network is built over the potentially susceptible population, i.e. chil-

dren under age 14 who are not immune to measles. As described by Pfeilsticker

(1863), there were 12 children under 14 years old who were either isolated during

the epidemic, had measles already (being immigrants), or were under the age of

twelve months. We restrict the potential susceptible population to the remaining

children in the village under age 14 and leave out the adults, assuming that they
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have immunity to this virus. The data set used in this thesis includes 188 children,

all of whom were infected and 12 of whom died. Clearly, a dynamic susceptible set

will be a subset of the potential susceptible population at any given point in time.

This dynamic set consists of the neighbours of infective individuals according to

the contact network.

Determining the edge structure for this contact network is not a straightforward

decision. As such, the materials used in this work to create contact edges are

based on the clinical and physical features of the measles disease and our limited

understanding of the social structure of the Hagelloch village. Measles virus is

mostly transmitted through direct contact (with infectious droplets). In addition,

Hagelloch village is a small community with one school (30 students in grade one

and 68 students in grade two). Therefore, the contact network used in this work

is constructed by connecting every two individuals (from the potential susceptible

population) if they are classmates or they live in the same household. Living in the

same household and being classmates are also recognized to be important factors

in the transmission of measles in this outbreak by Groendyke et al. (2011), Neal &

Roberts (2004).

4.3 Model assumptions and estimation

In this chapter we apply the SEIR model embedded in a stochastic graph process

(section 2.2.1). The disease status for measles is divided into four phases: suscepti-

ble (S), exposed (E, i.e. infected but not infective), infective (I), and removed (R,

i.e. death or recovered with immunity).

Exposure rate at time k is defined as ξ(k) =
∑

(i,j) hij(θ), where the summation

is over all infective/susceptible neighbours i and j respectively and θ denotes the
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vector of unknown model parameters. Two function forms are used to model the

hazard rates hij in this work. First, is a function of the Euclidean distance between

i and j’s households (denoted by dij) and the age of i and j individuals:

hij(θ) = exp{−α dij} ageβi age
γ
j , θ = (α, β, γ). (4.3.1)

This hazard function includes the distance between households to incorporate

the possibility of a higher risk of transmission for people living in nearby households.

However, it does not include the possible effect that the size of the susceptible

population within a household may have. We will call this factor the ‘household

size’. There are 56 households in this village and 15 of them contain more than

four susceptibles. The median number of susceptibles per household is 3 and 11

households contain only one susceptible. It is possible that individuals living in

larger households (in terms of the number of susceptibles), are more likely to catch

the infection.

In order to model variable susceptibility for individuals living in households

with different sizes, we update the hazard function by adding a new term to the

exponential sentence:

hij(θ) = exp{−α dij + η sj} ageβi age
γ
j θ = (α, β, γ, η),

where sj denotes the household size of individual j.

The rates for moving from E to I, and I to R, denoted by ω and µ respectively,

are assumed to be constant over all individuals. Let nE(k) and nI(k) denote the

number of exposed and infective individuals at jump k. Then, the graph’s transition

rates for infectiveness and removal jumps are defined as ω(k) = nE(k)ω and µ(k) =
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nI(k)µ.

In order to apply the model above, the time of exposure, becoming infective

and being removed (by recovery or death) should be known for each individual.

The temporal information provided in the dataset consists of the day of the first

prodromes, rash, and the duration of prodromes. Based on this information and

using a range of clinical facts about measles, the required transition times are

estimated as described below.

The incubation period from exposure to the onset of measles symptoms ranges

from 8 to 12 days. Knowing the date of prodromes, denoted by dpi for individual

i, the time of exposure is modelled from Unif(dpi − 12, dpi − 8). In addition, the

infective period for measles starts from 4 days before the rash appears, and may

continue up to 4 days after the rash. Let dri be the date the rash appears for patient

i. The time when i becomes infective is dri − 4 and the time they are removed is

min(dri + 4, ddi), where ddi denotes the date of death. The above assumptions are

close to the model assumptions of Groendyke et al. (2010). The following timeline

summarizes this information:

Susceptible

Unif(dpi − 12, dpi − 8)

Exposed

dri − 4

Infective

min(dri + 4, ddi)

Removed

Applying the above formula for all patients in the data set results in the exposed,

infective, removed timelines shown in Figure 4.2.

Based on these assumptions, the ML estimates for the model parameters θ =

(α, β, γ, η, µ, ω) can be found by maximizing the likelihood function introduced

in (2.2.8). The estimates of µ and ω are determined according to the equations in

(2.2.9). The estimates for α, β, γ and η are obtained through numerical optimization
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Figure 4.1: Each horizontal line corresponds to an individual in the data set. The lines are
ordered according to age. The blue and light orange parts of each line indicate the exposed and
infective periods for the corresponding individual respectively.

of the loglikelihood function, using the Simplex method. Results are shown in Table

4.1.

From the information provided in Table 4.1 it can be concluded that the age

and household distance (spatial factor) have significant effect on the transmission

hazard. The spatial factor displays a significant effect on the spread of disease in

the work of Neal & Roberts (2004), is not included in Britton et al. (2011) and

is shown to have a weak effect in Groendyke et al. (2011). The age difference is
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hazard parameter(s) ML estimate 95% CI
∗

hij = exp{α dij} ageβi age
γ
j

α −0.09 (−0.11,−0.08)
β −1.24 (−1.51,−0.09)
γ 0.14 (0.08, 0.63)

hij = exp{α dij + η sj} ageβi age
γ
j

α −0.02 (−0.027,−0.007)
β −1.5 (−1.85,−1.30)
γ 0.7 (0.47, 0.88)
η 0.05 (−0.06, 0.52)

ω ω 0.1043 (−0.17, 0.38)
µ µ 0.1374 (−0.14, 0.42)

Table 4.1: ML parameter estimates. (∗ Profile likelihood CIs.)

not checked in previous works except for Groendyke et al. (2011) where it does

not appear to have a strong effect. In addition, it can be seen that adding the new

term concerning household size, changed the parameter estimates for α, β and γ.

However, η itself is not significantly different from zero with 95% confidence level.

As described in Table 4.1 the age parameters influence the hazard function in

different ways (they have different signs). Suppose the age of three individuals i, j

and j′ are such that agei = agej′ and agei = b×agej, where b is a positive constant.

In addition, assume that dij = dij′ and sj = sj′ . Then the transmission hazard from

i to j is bγ times the transmission hazard from i to j′:

hij(θ)

hij′(θ)
=

ageβi exp{α dij + η sj} ageγj
ageβi exp{α dij′ + η sj′} ageγj′

= bγ.

For example, if i is twice older than j, then the transmission hazard is 1.6 times

larger compared to the case where they were of the same age.

Although such comparisons are helpful in studying the effect of different co-

variates on the risk of transmission, they are specific to the choice of the hazard

function. In this work, it is preferred to emphasize the interpretation of the esti-
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Figure 4.2: Left plot: estimates for R̂(k) computed at different days. Right plot: estimates of

R̂(k) and other quartiles of cumulative outdegrees. The minimum, maximum and third quartile
are labeled by empty circles, triangles and plus singes respectivley.

mated epidemic factors such as dynamic reproductive number, that are obtained

using the results in Table 4.1.

4.4 Dynamic reproductive number

The dynamic reproductive number R(k) is defined as the mean cumulative outde-

gree of the infective individuals at time k in section 2.3. This value is computed

by inserting the parameter estimates into the equation (2.3.20). Figure 4.2 (left

plot) shows the changes in R̂(k) throughout this outbreak. At the beginning of the

outbreak in early November, R̂(k) is varying between 5 and 10. Within 17 - 18
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days, it attains its maximum value (≈ 10.5). After this point of time, it decreases

until falling below 1 on November 29. By the time that R̂(k) exceeds the value

10, 36.7% of susceptible individuals are infected. This ratio becomes 93% at the

time when R̂(k) < 1. That is, the disease is eradicated by infecting all susceptible

members of the population.

The dynamic reproductive number can be interpreted as the average outdegree

of a weighted network where the edge weights are cumulative transmission hazards

from infective individuals. This network is different from the stochastic graph

process at a fixed time point in the sense that the weights attached to each edge is

the cumulative probabilities pij(k) over the infectious period of i. Therefore these

weights can exceed one Other statistics such as minimum and maximum outdegree

or other quantiles provide deeper insight about the propagation of the disease.

Figure 4.2 (right plot) shows different quantiles along with the average outdegree.

Please note that during the middle phase of the outbreak, i.e. from Nov. 13 to Dec.

01, the maximum outdegree is a great distance away from the 3rd quartile. This

diversity supports the possibility that super spreaders existed in this outbreak.

4.5 Influence statistics

Now we can apply the estimated cumulative outdegrees and indegrees to compute

the influence statistics defined in section 2.4. The CT (i) and CR(i) in (2.4.21) are

computed for every individual i who was involved in this epidemic. According to

these results, four groups of individuals can be recognized: high and low CT (i)

(above and below the 3rd quartile, respectively ) and high and low CR(i) (above

and below the 3rd quartile, respectively). We compared these groups in terms of

factors such as gender, age and their household location.
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The comparisons do not indicate that gender has a strong effect on transmission

risk during this epidemic. But the effect of age is shown to be significant. According

to the data, the older individuals are capable of resisting the disease for a longer time

before becoming infected. However, they threaten more susceptibles sometimes for

a longer period while being infective. The estimated 95% confidence interval for the

age difference between patients with a low cumulative indegree (6.2 years old on

average) and a high cumulative indegree (9.2 years old on average) is (1.63 , 4.27).

In addition, the estimated 95% confidence interval for the age difference between

patients with a low cumulative outdegree (6.5 years old on average) and a high

cumulative outdegree (8.3 years old on average) is (0.3 , 3.14). More specifically,

eight-year-olds seems to be the most effective at spreading the measles’ virus in this

epidemic.

The last factor to be analyzed is the household location for each group. This fac-

tor is plotted in Figure 4.5. Although, three groups of households can be recognized

with more than one patient with a high CT (i), no overall pattern for geographical

dispersion of these two groups is revealed in this figure.
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Chapter 5

Discussion and Future Work

This thesis begins with a review of the existing modelling approaches for random

and dynamic graphs and their various applications. This survey is followed by

an introduction of a general Birth and Death (BD) model in section 1.3.1. The

BD model unifies a number of previous models such as Barabási & Albert (1999)

and Bollobas et al. (2001). But unlike these models, the BD stochastic graph

process incorporates vertex covariates in addition to graph statistics. This task is

done through a vector of unknown parameters θ which can be estimated using the

maximum likelihood method. A disadvantage of the BD model is that parameter

estimation requires a complete observation of the graph process over a period of

time. This requirement may not be realistically attainable due to the challenge of

incomplete observations when studying graph processes.

The unavailability of full monitoring during the process, motivates models which

are specific to the context of the graph data and the underlying process generating

it. Chapter 2 describes the main contribution of this thesis, a dynamic graph

process to model infectious disease epidemics. The model is determined by the
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specific rules by which a contagious disease is propagated over a network of contacts

in a population. By describing these rules as a competing hazard model, we are

able to reduce the amount of information required when describing the epidemic.

The remaining portion of this chapter is devoted to discussion of this model, and

its application in analyzing two real outbreak data.

The model developed in Chapter 2 assumes a known contact network which

is assumed to be static and non-random. The network is specified by the modes

of transmission of the disease and by the pattern of contacts in the population.

Building a contact network can be a difficult task especially when the disease has

highly variable transmission modes. In such cases, we suggest using a complete

graph for estimating the parameters. A complete contact network permits a positive

chance of transmission for all pairs of infective/susceptible individuals, similar to

simple compartmental models. In both applications here, it was observed that

the parameter estimation is not very sensitive to small changes in the assumed

form of the contact network. However, this may not be true for using the model

for prediction. Missing information about the contact network can be addressed by

building an overly connected graph. Once again, however, this conservative contact

network is only valid for estimation and not for prediction purposes.

One of the basic assumptions in this modelling approach is that the contact

network does not change during the course of an outbreak. This assumption may

not be violated in a short-term epidemic, but will not be realistic over a long-term

outbreak which involves human networks. An interesting generalization of this

model is the application of a dynamic contact network where the relationships, as

well as the vertices, are prone to change over time.

Another fundamental assumption of this model is that the waiting time for

infection transmission through the hazard edge eij follows exponential distribution
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with parameter hij. As a result, the transmission rate is modelled by a function

which is constant over time. However, in the case of some diseases, patients are not

equally contagious throughout their infective period. An example of this is measles

when a patient is most infective during the period beginning two days before the

rash appears and continuing until the rash manifests. Hence, a more suitable model

will consider a nonlinear hazard rate which allows for increase and decrease in the

infectiveness of the disease over time. This means modelling the waiting time

with a non-constant hazard rate that can increase and decrease over time. In the

measles data analysis (Chapter 4), one may replace the exponential distribution

with lognormal LN(ζ, 1) (Mann et al. , 1974; Barlow & Proschan, 1965) because

it is mathematically easy to work with and provides the desired increase/decrease

form for the infection hazard rate with one parameter. Let φ and Φ denote the pdf

and cdf of lognormal distribution respectively. Then the hazard function is

hij(t) =
φ(t; ζij, 1)

1− Φ(t; ζij, 1)

when using a Lognormal waiting time for infection transmission. In this situation,

the individual covariates of vertices and their mutual distance can be used to model

the parameter ζij. The exponential assumption can still be valuable when the

infectivity of the virus can be approximated by a uniform function. Changing this

distribution brings computational costs since the likelihood cannot be written as a

product between the jumps and time periods anymore.

In Chapter 4 the hazard function hij(θ) is modelled by an exponential function

which includes the the age of i and j as well as other covariates. This function

can be modified by replacing these two terms with one which measures the age

difference between i and j. The new kernel provides a more interpretable parameter
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estimation compared to the current estimation in which the age parameters have

opposite signs (Table 4.1).

We hope to further investigate the ability of the dynamic reproductive number

(DRN) to compare the effect of different control strategies in simulation studies.

An example in Section 2.5 is provided to examine this. The example considers two

extreme control strategies in a small artificial population. The two sets of simula-

tions are compared according to the average length of the simulated epidemics, and

the average time period over which the DRN remains above one. This comparison

can also be done by using functional data analysis (FDA) (Ramsay & Silverman,

2005).

Another generalization to the application in Section 2.5 considers the choice of

control strategies. In the first strategy, the vaccination ratio is exactly equal to the

threshold (results in R0 = 1). In real applications the actual vaccination proportion

must be above this value in order to attain the herd immunity. The second strategy

considers quarantining the potential super-spreaders. This population may contain

medical health staff, teachers, social workers, etc. in a real application. However,

a realistic quarantining usually does not eliminate all edges of these vertices. A

modification to this strategy may reduce the probabilities of the edges or a degree

reduction in the contact network. Future studies may contain more realistic and

complex control strategies over larger populations, and among different contact

networks.

An area open for further investigation is the interval estimation of model pa-

rameters. For epidemic data such as the type we are considering here, there is no

large sample limit theory available. That is, as time goes to infinity, the infor-

mation about the parameters does not increase after the epidemic has died out.

However, relative profile likelihood intervals can be obtained directly from the joint
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likelihood function even though no asymptotic theory can attach approximate con-

fidence statements to them.

The time units in which epidemic data are recorded can cause missing infor-

mation for calculating the likelihood (such as described in the FMD analysis in

Chapter 2). We addressed this problem in Chapter 3 by using random sampling

from all possible permutations for the time periods which excluded order of infec-

tion information. This approach is based on equal probability over all permutations

and will not be valid if the missing time period is long enough for infection trans-

missions from newly infected individuals. In this case, a complete solution requires

the calculation of the exact probability of each possible path. From this the tran-

sition probabilities of the jump process can be calculated. If the time intervals are

long, this approach results in a large increase of the computational complexity.
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