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Abstract

We propose multigrid methods for solving Hamilton-Jacobi-Bellman (HJB) and Hamilton-

Jacobi-Bellman-Isaacs (HJBI) equations. The methods are based on the full approxima-

tion scheme. We propose a damped-relaxation method as smoother for multigrid. In

contrast with policy iteration, the relaxation scheme is convergent for both HJB and

HJBI equations. We show by local Fourier analysis that the damped-relaxation smoother

e�ectively reduces high frequency error. For problems where the control has jumps, re-

striction and interpolation methods are devised to capture the jump on the coarse grid

as well as during coarse grid correction. We will demonstrate the e�ectiveness of the pro-

posed multigrid methods for solving HJB and HJBI equations arising from option pricing

as well as problems where policy iteration does not converge or converges slowly.
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Chapter 1

Introduction

Many real life problems such as �nancial problems [33, 19] and stochastic games

[27, 32] can be modeled as optimal control problems and formulated as nonlinear Hamilton-

Jacobi-Bellman (HJB) and Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations. HJB equa-

tion is a partial di�erential equation derived from the dynamic programming principle [7],

see derivation and proofs in [22, 18, 9]. The corresponding discrete-time equation is usu-

ally referred to as the Bellman equation. In continuous time, it can be considered as an

extension of Hamilton-Jacobi equation. HJBI equation is a variation of HJB equation

with an additional control set. In many cases, these nonlinear PDEs do not have classical

solutions. Existing methods for solving the HJB type problems includes Markov Chain

[23, 14], PDE [19, 28, 34], binomial lattice [16] and simulation based methods [6]. These

methods su�er from poor accuracy or timestep limitations due to stability considerations.

A more recent approach is based on numerical PDE methods. Since these PDEs are

nonlinear, they might have more than one solution. Hence one must ensure that the

numerical methods used will converge to the relevant solution, which, in this case, is the

viscosity solution [15]. Unconditionally monotone implicit methods, which will ensure the

convergence to the viscosity solution, are described in [5]. In these methods, a nonlinear

set of discretized equation must be solved at each time step. The common practice in the

PDE literature is to apply relaxation-type [5] and Newton-type [19] iterative methods in

each time step for the solution of the nonlinear equations. However, these two methods
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could be slow for large scale problems or even divergent for HJBI problems.

1.1 Motivation

This thesis is motivated by two �nance problems arising from nonlinear asset alloca-

tion and option pricing problems in �nancial modeling. They lead to an HJB and an

HJBI equation respectively. We note that there are other methods for solving the similar

nonlinear asset allocation and option pricing problems. Since those methods are outside

the scope of this thesis, we will refer the interested readers to [23, 36, 10].

1.1.1 HJB Case: Pension Plan Asset Allocation Problem

Suppose there are two assets in the market, one is risk free and the other is risky. The

risky asset S follows the stochastic process

dS = (r + ξσ)Sdt+ σSdZ,

where dZ is the increment of a Wiener process, σ is volatility, r is the interest rate, and

ξ is the market price of risk. Investor pays into the pension plan at a constant rate π in

the unit time. Let W (t) denote the wealth in the pension plan at time t, a proportion q

of this wealth is invested in the risky asset and the rest is invested in the risk free asset.

Then

dW = [(r + qξσ)W + π] dt+ qσWdZ. (1.1)

Let WT = W (T ) where T is the expiration time of the pension plan. The aim of

the investor is to maximize her expected terminal wealth on a given risk level, i.e.

max
q

{
Et=0 [WT ]

}
, such that V art=0 [WT ] =constant, where E [·] is the expectation op-

erator and V ar [·] is the variance operator. The superscript t = 0 indicates that the

expectation and variance are computed at time t = 0. Using a Lagrange multiplier λ > 0,

the problem is to determine the control q such that Et=0 [WT ] − λV art=0 [WT ] is maxi-

mized, subject to (1.1).

For the convenience of computation, we will follow the common practice in the litera-

2



ture to introduce a parameter τ = T − t. Let w be in a set of all admissible wealth W (t)

for 0 ≤ t ≤ T . Following the steps in [33], we de�ne an intermediate variable

V (w, τ) = inf
q∈Q̂

{
E
[
(WT −

γ

2
)2|W (T − τ) = w

]}
,

that has terminal condition

V (w, 0) =
(
w − γ

2

)2
,

where γ is a predetermined constant. The pension problem can be simpli�ed to two steps

[33]: �rst solve for V (w, T ) which satis�es an HJB equation

Vτ = inf
q∈Q̂

{
1

2
(qσw)2 Vww + [π + w (r + qσξ)Vw]

}
, (1.2)

and then compute the optimal expected wealth by solving a Black-Scholes like equation.

Equation (1.2) will be used as an example to illustrate our method for the HJB case.

1.1.2 HJBI Case: American Options and Stock Borrowing Fees

Consider the case where the cash borrowing rate and lending rate are not equal. Let

the cash borrowing rate be rb, the lending rate be rl and rl > rb. Then the price of a long

position option V is given by the nonlinear PDE

Vt +
σ2S2

2
VSS + ρ (SVS − V ) (SVS − V ) = 0, (1.3)

where

ρ (x) =


1 if x ≥ 0

0 if x < 0

.

Notice that (1.3) can be rewritten as

Vt + inf
Q∈Q̂

{
σ2S2

2
VSS + q1 (SVS − V )

}
= 0,

whereQ = (q1) and Q̂ = ({rl, rb}). This model can be extended to include stock borrowing

3



fees rf , which are paid to stock lenders when a hedger shorts a stock. In this scenario, the

holder of a short position will receive rl − rf , instead of rl, on the proceeds of the short

sale. Assuming the retail customers do not receive any interest on the proceeds of a short

sale, i.e. rf = rl, the pricing equation for a long position is

Vt +
σ2S2

2
VSS +H (−VS) [ρ (SVS − V ) (SVS − V )]

+H (VS) [(rl − rf )SVS − ρ (−V )V ] = 0, (1.4)

where

H (y) =


1 if y ≥ 0

0 if y < 0

.

And (1.4) can be rewritten as

Vt + inf
Q∈Q̂

{
σ2S2

2
VSS + q3q1 (SVS − V ) + (1− q3) [(rl − rf )SVS − q2V ]

}
= 0,

where Q = (q1, q2, q3) and Q̂ = ({rl, rb} , {rl, rb} , {0, 1}).

For an American option with payo� V ∗, its pricing equation is

min

(
−Vt −

{
σ2S2

2
VSS + rSVS − rV

}
, V − V ∗

)
= 0,

which can be written in penalty form as

Vt + sup
µ∈{0,1}

{
σ2S2

2
VSS + rSVS − rV + µ

V ∗ − V
η

}
= 0,

where σ is volatility, r is the interest rate and η � 1 is a small positive number. Now

consider the case when the stock borrowing model (1.4) is combined with American option

early exercise. This gives rise to the equation

min(−Vt − inf
Q∈Q̂

{
σ2S2

2 VSS + q3q1 (SVS − V )

(1− q3) [(rl − rf )SVS − q2V ]} , V − V ∗) = 0, (1.5)

4



Rewriting it in the penalty form, we obtain

Vτ = sup
µ∈P̂

inf
Q∈Q̂

{
σ2S2

2
VSS + q3q1 (SVS − V ) + (1− q3) [(rl − rf )SVS − q2V ] + µ

V ∗ − V
η

}
,

(1.6)

where P̂ = {0, 1}. Equation (1.6) is an HJBI equation and we will use it as an example

to illustrate our method for the HJBI case.

We note that the selection of the penalty term η can a�ect the convergence of (1.6)

and may render divergence when the theoretical conditions are satis�ed [35]. Therefore

solving (1.5) directly instead of (1.6) may yield better convergence.

1.1.3 Stochastic Games

There are also many problems in stochastic games that can be simpli�ed to HJB

or HJBI equations. Take a two-player zero-sum game for example. Consider a dynamic

system, having a �nite state space S = {1, 2, ..., N}, which is observed at times t = 0, 1, ....

The dynamic system is in�uenced by two players, P1 and P2, having opposite aims. For

each x ∈ S, there exist one �nite nonempty sets of actions for each player, denoted by

Kx for P1 and Lx for P2. Assume the system is in state x at time t, then P1 and P2 will

select an action from Kx and Lx respectively, moving the system to a new state y with

probability p (y|x, k, l), where k ∈ Kx, l ∈ Lx and
∑

y∈S p (y|x, k, l) = 1. At the same

time, P1 will receive a possibly negative amount from P2 denoted by r (x, k, l). To solve

for the total expected discounted reward for P1 and P2, we will need to solve an HJBI

problem formulated in [32].

1.1.4 General Form of HJB and HJBI Equations

The example HJB problem (1.2) can be written in the general form as

Vτ = inf
Q∈Q̂
{a(S, τ,Q)VSS + b(S, τ,Q)VS − c(S, τ,Q)V + d (S, τ,Q)} , (1.7)

5



where

a (S, τ,Q) =
1

2
q2σ2S2, b (S, τ,Q) = π + S (r + qσξ) , c (S, τ, q) = 0, d (S, τ, q) = 0.

For the case of HJBI problems, an additional set of controls P ∈ P̂ is considered. The

example HJBI problem can be written as

Vτ = sup
P∈P̂

inf
Q∈Q̂
{a(S, τ,Q, P )VSS + b(S, τ,Q, P )VS − c(S, τ,Q, P )V + d (S, τ,Q, P )} ,

(1.8)

where

a (S, τ,Q, P ) =
1

2
σ2S2, b (S, τ,Q, P ) = S (q3q1 + (1− q3) (rl − rf )) ,

c (S, τ,Q, P ) = q3q1 + (1− q3) q2 +
µ

η
, d (S, τ,Q, P ) =

µ

η
V ∗.

The initial and boundary conditions for both problems are described in details in [19, 33].

1.2 Discretization

Since solving the optimal control problem analytically is di�cult for HJB and HJBI

equations, we will consider the discrete optimal control problem and investigate numerical

schemes instead. We will brie�y discuss the discretization for the PDE in the general form

of HJB and HJBI equations in this section. A positive coe�cient discretization scheme,

which will ensure the convergence to the viscosity solution, is applied for both HJB and

HJBI case. It is shown that near quadratic convergence can be achieved as the grid size

is reduced. The details for the positive coe�cient discretization can be found in [19].

De�ne a grid {S0, S1, . . . , SM} with SM = Smax. Let V
n
i be a discrete approximation

to V (Si, τ
n) and V n = [V n

0 , . . . , V
n
M ]T . The objective function in (1.7) at

(
Si, τ

n+1
)
is

discretized using a combination of forward, backward or central di�erencing methods,

giving

(a(S, τ,Q)VSS + b(S, τ,Q)VS − c(S, τ,Q)V )i = αn+1
i (Q)V n+1

i−1 + βn+1
i (Q)V n+1

i+1 (1.9)

−
(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

)
V n+1
i ,
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where αi and βi are de�ned as

αn+1
i,central =

2ani
(Si − Si−1) (Si+1 − Si−1)

− bni
Si+1 − Si−1

,

βn+1
i,central =

2ani
(Si+1 − Si) (Si+1 − Si−1)

+
bni

Si+1 − Si−1
,

αn+1
i,forward/backward =

2ani
(Si − Si−1) (Si+1 − Si−1)

+ max

(
0,

−bni
Si − Si−1

)
,

βn+1
i,forward/backward =

2ani
(Si+1 − Si) (Si+1 − Si−1)

+ max

(
0,

bni
Si+1 − Si

)
,

such that a positive coe�cient scheme is resulted. Since forward and backward di�er-

encing guarantee a positive coe�cient method but with only �rst order accuracy, central

di�erencing is used as much as possible. We will consider fully implicit timestepping and

(1.9) to discretize (1.7) and obtain

V n+1
i − V n

i

∆τ
= inf

Q∈Q̂

{[
A (Q)V n+1

]
i
+ [D (Q)]n+1

i

}
, i < M (1.10)

where
[
A (Q)V n+1

]
i
is the matrix form of the operator de�ned in (1.9) and [D (Q)]n+1

i is

the vector form of dn+1
i (Q). The �rst and last row of matrix A and vector D are modi�ed

accordingly to handle the boundary conditions. Also we note that higher order timestep-

ping such as Crank-Nicolson timestepping can be used [19, 33]. The HJBI equation can

be discretized in a similar way as

V n+1
i − V n

i

∆τ
= sup

P∈P̂
inf
Q∈Q̂

{[
A (Q,P )V n+1

]
i
+ [D (Q,P )]n+1

i

}
. (1.11)

Since the grid may not be uniform and it is possible that forward or backward dif-

ferencing is used at some grid points, the discretization method is formally �rst order

accurate in max
i

(Si+1 − Si). However, in practice, forward and backward di�erencing are

only required at a small number of grid points and grid size is usually changed smoothly.
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Algorithm 1.1 Policy Iteration for HJB Equations

1: Let V̂ 0 ≡ (V n+1)0 = V n

2: for k = 0, 1, 2... until convergence do

3: Compute Qk ∈ arg inf
Q∈Q̂

{
An+1 (Q) V̂ k +Dn+1 (Q)

}
4: Solve

[
I −∆τAn+1(Qk)

]
V̂ k+1 = V n + ∆τDn+1(Qk)

1.3 Numerical Solution of Discretized Equations

The solution of the discretized equation (1.10) and (1.11) are not obvious. There

are two commonly used numerical algorithms for these problems: policy iteration and

relaxation scheme.

1.3.1 Policy Iteration

The policy iteration, also referred as Howard's algorithm [24, 21, 8] is a Newton-like

method [26] for nonlinear problems. It is common in literature to apply policy iteration

to solve HJB equations [21, 20]. Policy iteration consists of an iterative algorithm on the

control and the value functions and generates an improving sequence of controls to the

nonlinear problem. It �rst computes for the optimal control based on an approximate

solution, linearizes the problem with the resulting control, and then solves the linear sys-

tem to obtain a better approximate solution. More speci�cally, let V̂ k be an approximate

solution. The idea of policy iteration is to compute the optimal control Qk from V̂ k.

Then an improved approximation V̂ k+1 is obtained from Qk. The procedure is repeated

until convergence. The policy iteration scheme for HJB equation at time step n + 1 is

described in Algorithm 1.1.

Policy iteration is globally convergent for HJB equations. However, in general, the

number of policy iterations for a discrete HJB problem cannot be bounded by a constant

that is independent of the number of the grid points [27]. Moreover, the extension of

policy iteration for HJBI equations is unclear. One straightforward Newton-like extension

is shown in Algorithm 1.2.

However, the sup-inf operator is neither convex nor concave, this extension of policy

8



Algorithm 1.2 Newton-like Policy Iteration for HJBI Equations

1: Let V̂ 0 ≡ (V n+1)0 = V n

2: for k = 0, 1, 2... until convergence do

3: Compute P k, Qk ∈ arg sup
P∈P̂

inf
Q∈Q̂

{
An+1 (Q,P ) V̂ k +Dn+1 (Q,P )

}
4: Solve

[
I −∆τAn+1(Qk, P k)

]
V̂ k+1 = V n + ∆τDn+1(Qk, P k)

Algorithm 1.3 Another Extension of Policy Iteration for HJBI Equations

1: Let V̂ 0 ≡ (V n+1)0 = V n

2: Let P 0 ∈ P̂
3: for j = 0, 1, 2... until HJBI converges do
4: Û0 ← V̂ j

5: for k = 0, 1, 2... until HJB converges do

6: Compute Qk ∈ arg inf
Q∈Q̂

{
An+1

(
Q,P j

)
V̂ k +Dn+1

(
Q,P j

)}
7: Solve

[
I −∆τAn+1(Qk, P j)

]
V̂ k+1 = V n + ∆τDn+1(Qk, P j)

8: V̂ j+1 ← Ûk+1

9: Compute P j+1 ∈ arg sup
P∈P̂

inf
Q∈Q̂

{
An+1 (Q,P ) V̂ k+1 +Dn+1 (Q,P )

}

iteration for HJBI equations does not guarantee global convergence [32, 11]. Another

extension of policy iteration named Ho-4 is proposed in [11]. It is not a Newton-like

method. Unlike the algorithm above, Ho-4 separates the two sets of controls. It �rst

�xes control P ∈ P̂ to reduce the HJBI problem to an HJB equation, solves the HJB

equation using the standard policy iteration to obtain an improved approximate solution,

and then use this solution to update P . The algorithm can be implemented by nested

loops described in Algorithm 1.3.

Ho-4 is globally convergent under certain assumptions. However the nested policy

iterations increase the computation complexity. Other variations of policy iterations are

also investigated in [29, 13, 30].

1.3.2 Relaxation Scheme

Another method for solving HJB and HJBI equations is a relaxation scheme [5], also

known as the value iteration method [23]. As one of the general methods for solving

dynamic programs, relaxation scheme solve for the optimal control by computing the

9



optimal value function. Consider the HJB equation, the discrete equation (1.10) can be

written as

V n+1
i = ∆τ inf

Q∈Q̂

{
αn+1
i (Q)V n+1

i−1 + βn+1
i (Q)V n+1

i+1

−
(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

)
V n+1
i + dn+1

i (Q)
}

+ V n
i . (1.12)

Since V n+1
i does not depend on the control Q , V n

i and ∆τ are constants. Rearranging

(1.12), we obtain

0 = inf
Q∈Q̂

{
∆τ
(
αn+1
i (Q)V n+1

i−1 + βn+1
i (Q)V n+1

i+1 + dn+1
i (Q)

)
+ V n

i

−
[
1 + ∆τ

(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

)]
V n+1
i

}
,

which can be written as

0 = inf
Q∈Q̂

{[
1 + ∆τ

(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

)]
·
[
−V n+1

i +

∆τ
(
αn+1
i (Q)V n+1

i−1 + βn+1
i (Q)V n+1

i+1 + dn+1
i (Q)

)
+ V n

i

1 + ∆τ
(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

) ]}
. (1.13)

Note that αn+1
i , βn+1

i and cn+1
i are all non-negative. Then from (1.13) we obtain

V n+1
i = inf

Q∈Q̂

{
∆τ
(
αn+1
i (Q)V n+1

i−1 + βn+1
i (Q)V n+1

i+1 + dn+1
i (Q)

)
+ V n

i

1 + ∆τ
(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

) }
. (1.14)

Let V̂ k be the kth estimate for V n+1, a relaxation scheme can be derived from (1.14)

V̂i
k+1

= inf
Q∈Q̂

∆τ
(
αn+1
i (Q) V̂ k

i−1 + βn+1
i (Q) V̂ k

i+1 + dn+1
i (Q)

)
+ V n

i

1 + ∆τ
(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

)
 . (1.15)

Similarly, the relaxation scheme for HJBI problems is

V̂ k+1
i = sup

P∈P̂
inf
Q∈Q̂

∆τ
(
αn+1
i (Q,P ) V̂ k

i−1 + βn+1
i (Q,P ) V̂ k

i+1 + dn+1
i (Q,P )

)
+ V n

i

1 + ∆τ
(
αn+1
i (Q,P ) + βn+1

i (Q,P ) + cn+1
i (Q,P )

)
 .

(1.16)
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Theorem 1. Suppose that the discretization (1.10) satis�es the positive coe�cient condi-

tion [19]. Then a unique solution of the nonlinear equation (1.12) exists, and the iteration

scheme (1.15) is globally convergent for any initial estimate. Furthermore,

∥∥∥V̂ k+1 − V̂ k
∥∥∥
∞
≤ γ

∥∥∥V̂ k − V̂ k−1
∥∥∥
∞

where

γ = max
i

sup
Q∈Q̂

{
αn+1
i (Q) + βn+1

i (Q)

1 + ∆τ
[
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

]} . (1.17)

Since αn+1
i (Q), βn+1

i (Q) and cn+1
i (Q) are non-negative for all Q ∈ Q̂, we have γ < 1.

Hence the scheme (1.15) converges to the unique solution of the discretized equation. The

above argument still hold for HJBI case (1.16).

The convergence of the relaxation scheme, however, can be very slow for both HJB and

HJBI equations. Suppose Q is constant, then it can be shown that γ ' 1
1+O(h) where h is

the grid size [19]. When the grid size is small, γ is close to 1, rendering a slow convergence

on the �ne grid.

1.4 Contributions and the Chapter Plan

As shown in Section 1.3, the commonly used approaches are complicated or expensive.

On the other hand, multigrid methods are considered as e�cient numerical methods for

solving a wide variety of PDEs [31]. The rate of convergence is often independent of the

mesh size. In this thesis, convergent and e�cient numerical methods for HJB and HJBI

equations using multigrid methods are designed. We propose a multigrid method based on

Full Approximation Scheme (FAS) and a relaxation scheme smoother for both HJB and

HJBI equations. We also design restriction and interpolation methods for HJB and HJBI

equations where the control can change dramatically between neighbouring grid points.

Optimal control near the �jump� is handled explicitly to achieve better convergence.

11



In Chapter 2, we will give an introduction to multigrid methods. Then we will dis-

cuss di�erent multigrid methods for HJB and HJBI equations based on policy iteration,

relaxation scheme and FAS in Chapter 3. We will demonstrate our algorithms by mainly

focusing on two example �nance problems. A smoothing analysis will be presented in

Chapter 4, followed by numerical results on a variety of examples illustrating the conver-

gence of di�erent methods in Chapter 5.
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Chapter 2

Multigrid Methods

Multigrid methods are e�cient algorithms that solves di�erential equations using a

hierarchy of discretizations. Multigrid methods are motivated by the properties of station-

ary iterative methods, which have slow convergence for a large number of linear systems.

It is typical that applying the stationary iterations to the elliptic operators will reduce

the high frequency error quite quickly, while slow reduction in low frequency error is ob-

served. The idea of multigrid methods is to accelerate the convergence of a relaxation

algorithm by removing the low frequency error e�ciently. Since the low frequency error

is smooth, representing it on a coarser grid will keep most of the information. Also the

cost of any global computation is at least proportional to the grid size. Resolving the

error on a coarser grid will be e�ective for smooth error reduction and be less expensive.

Multigrid methods use stationary iterations as smoothers to remove the high frequencies

and removes the low frequency error by coarse grid correction. In this chapter, we will dis-

cuss how these two parts are combined by �rst focusing on smoothing properties of some

standard stationary iterative methods and then discuss the two-grid iteration, multigrid

iteration, full multigrid method and full approximation scheme.

2.1 Smoothing

In this section, we examine two stationary iterative methods: Jacobi iteration and

Gauss-Seidel iteration. Although these two iterative methods may be e�cient for solving

13



small linear systems, their convergence rates can be unacceptably slow for large scale

problems. However, we will see that these two methods are suitable for the smoothing

procedures.

2.1.1 Jacobi Iteration

Consider a discrete Poisson equation with Dirichlet boundary conditions

−4huh (x, y) = fΩ
h (x, y) , ((x, y) ∈ Ωh) ,

uh (x, y) = fΓ
h (x, y) , ((x, y) ∈ Γh = ∂Ωh) ,

in the unit square Ω = (0, 1)2 ⊂ R2 with grid size h = 1
n , n ∈ N. Assume ūh (x, y) is

the exact solution and ûkh (x, y) is the approximation solution after the kth iteration. The

iteration formula of the Jacobi iteration is

zk+1
h (xi, yj) =

1

4

[
h2fh (xi, yj) + ûkh (xi − h, yj) + ûkh (xi + h, yj)

+ûkh (xi, yj − h) + ûkh (xi, yj + h)
]
,

ûk+1
h = zk+1

h ,

with (xi, yj) ∈ Ωh. It can be generalized by introducing a damping factor ω and become

ûk+1
h = ûkh + ω

(
zk+1
h − uk+1

h

)
,

which is called the damped-Jacobi method. It is obvious that when ω = 1, the damped-

Jacobi method becomes Jacobi iteration. The damped-Jacobi iteration can be written

as

ûk+1
h = Shû

k
h +

h2

4
fh,

where

Sh =
ω

4


0 1 0

1 4
(

1
ω − 1

)
1

0 1 0


h

.
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The eigenfunctions of Sh is

ϕl1,l2h (x, y) = sin l1πx sin l2πy, ((x, y) ∈ Ωh; (l1, l2 = 1, ..., n− 1)) ,

with the corresponding eigenvalues

χl1,l2h (ω) = 1− ω

2
(2− cos l1πh− cos l2πh) . (2.1)

Let εkh = ûkh − ūh be the error after the kth damped-Jacobi iteration. Expanding εkh and

εk+1
h into discrete eigenfunction series, we obtain

εkh =
n−1∑
l1,l2=1

αl1,l2ϕ
l1,l2
h ,

and

εk+1
h =

n−1∑
l1,l2=1

χl1,l2h αl1,l2ϕ
l1,l2
h .

Thus the convergence properties is characterized by the spectral radius

ρ (Sh) = max
{∣∣∣χl1,l2h

∣∣∣ : (l1, l2 = 1, ..., n− 1)
}
,

which is the asymptotic convergence factor of the iteration. Thus, for Jacobi method, we

obtain

ρ (Sh) =
∣∣∣χ1,1
h

∣∣∣ = |1− ω (1− cosπh)| = 1−O
(
ωh2

)
< 1,

for 0 < ω ≤ 1 and ρ (Sh) ≥ 1 otherwise. This shows that the value of ω has to lie in

(0, 1] to reach convergence, and the convergence rate could be close to 1 as the grid size

decreases.

On the other hand, to analyze the smoothing properties of Jacobi method, we will

only focus on the high frequency error, i.e. n
2 ≤ max (l1, l2) ≤ n − 1. Now we de�ne the

smoothing factor of Sh (ω) as

µ (h;ω) = max
{∣∣∣χl1,l2h (ω)

∣∣∣ :
n

2
≤ max (l1, l2) ≤ n− 1

}
, (2.2)
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which represent the worst case high frequency error reduction rate. Substituting (2.1)

into (2.2), we obtain the smoothing factor for damped-Jacobi method

µ (h;ω) = max
{∣∣∣1− ω

2
(2− cos l1πh− cos l2πh)

∣∣∣ :
n

2
≤ max (l1, l2) ≤ n− 1

}
.

It is easy to show that ω = 4
5 will result the minimal smoothing factor which is bounded

above by 3
5 . This means that one iteration of damped-Jacobi with ω = 4

5 will reduce the

high frequency error by at least a factor of 3
5 . This veri�es that Jacobi iteration is e�cient

as a smoother.

2.1.2 Gauss-Seidel Iteration

Gauss-Seidel Iteration is another commonly used smoother in multigrid methods.The

iteration formula of Gauss-Seidel with damping factor ω is

zk+1
h (xi, yj) =

1

4

[
h2fh (xi, yj) + ûk+1

h (xi − h, yj) + ûkh (xi + h, yj)

+ûk+1
h (xi, yj − h) + ûkh (xi, yj + h)

]
,

ûk+1
h = ûkh + ω

(
zk+1
h − uk+1

h

)
.

The smoothing analysis of Gauss-Seidel iteration requires a di�erent tool, which will be

introduced in Chapter 4. For the same discrete Poisson equation in the previous section,

the smoothing factor of Gauss-Seidel is bounded above by 0.5 for ω = 1.

2.2 Coarse Grid Correction

Consider a linear system Ahūh = fh de�ned on domain Ωh with grid size h. Let the

exact solution of the system be

ūh = ûkh + εkh,

where ûkh is the approximate solution after the kth iteration with error εh. The residual

of ûkh is

rkh ≡ fh −Ahûkh = Ah

(
ūh − ûkh

)
= Ahε

k
h,

16



Algorithm 2.1 Coarse Grid Correction I

1: Obtain an approximate solution ûkh
2: Compute residual rkh = fh −Ahûkh
3: Compute εkh by solving Ahε

k
h = rkh

4: Obtain the exact solution ūh = ûkh + εkh

Algorithm 2.2 Coarse Grid Correction II

1: Obtain an approximate solution ûkh
2: Compute residual rkh = fh −Ahûkh
3: Solve Ahε

k
h = rkh approximately and get ε̂kh

4: Obtain an improved approximate solution ûk+1
h = ûkh + ε̂kh

and εkh can be obtained by solving

Ahε
k
h = rkh. (2.3)

Hence we can obtain ūh by following the trivial steps in Algorithm 2.1.

However, if we solve (2.3) approximately in step 2, which is cheaper, we will obtain

an improved approximate solution instead of the exact solution. Repeating these steps

results an iterative method for solving the linear system with low cost per iteration. The

idea of coarse grid correction is to approximately solve (2.3) by solving

AH ε̂
k
H = rkH ,

where AH is an appropriate approximation of Ah on a coarser grid ΩH with grid size H.

Assume two intergrid transfer operators restriction R and interpolation operator P

R : G (Ωh)→ G (ΩH) , P : G (ΩH)→ G (Ωh)

to be given. rkh is restricted to ΩH by

rkH = R · rkh,

and correction ε̂kH is interpolated to Ωh by

ε̂kh = P · ε̂kH .
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Algorithm 2.3 Coarse Grid Correction III

1: Obtain an approximate solution ûkh
2: Compute residual rkh = fh −Ahûkh
3: Restrict the residual rkH = R · rkh
4: Solve AH ε̂

k
H = rkH on ΩH

5: Interpolate the correction ε̂kh = P · ε̂kH
6: Update the approximation ûk+1

h = ûkh + ε̂kh

Algorithm 2.4 ûk+1
h = two-grid(ûkh,Ah,fh)

1: (1) Presmoothing

2: Compute ũkh by applying ν1 iterations of smoothing procedure to ûkh:
ũkh = smoothing(ûkh, Ah, fh)

3: (2) Coarse Grid Correction (CGC)

4: Compute the residual: r̃kh = fh −Ahũkh
5: Restrict the residual: r̃kH = R · r̃kh
6: Solve on coarse grid (ΩH): AH ε̃

k
H = r̃kH

7: Interpolate the correction: ε̃kh = P · ε̃kH
8: Correct the approximation: ûk,CGCh = ũkh + ε̃kh
9: (3) Postsmoothing

10: Compute ũk+1
h by applying ν2 iterations of smoothing procedure to ûk,CGCh :

ûk+1
h = smoothing(ûk,CGCh , Ah, fh)

Thus the coarse grid correction procedure can be written as Algorithm 2.3.

However, the coarse grid correction itself is not convergent due to the high frequency

error [31].

2.3 Two-Grid Cycle

The previous two sections show that the smoothing processes remove high frequency

error e�ectively but not the low frequency error, while the coarse grid correction is oppo-

site. Therefore it is natural to combine the two processes to achieve better convergence.

Each iteration of a two-grid algorithm consists of three parts: presmoothing, coarse grid

correction and postsmoothing, which can be described as Algorithm 2.4.

In this two-grid algorithm, there are some components that haven't been speci�ed,
including: the smoothing procedure, the number of smoothing iterations (ν1, ν2 > 0), the
coarse grid ΩH , the restriction (R) and interpolation (P ) operators and the coarse grid
operator AH . The choice of these components may have strong e�ects on the convergence
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of the algorithm.

2.4 Multigrid Components

In this section, we will introduce some of the commonly used components of the

multigrid methods.

2.4.1 Coarse Grids

Standard coarsening is the simplest and the most commonly used coarse grid ΩH .

It doubles the grid size h in every direction. All the results in this thesis are based on

this choice of coarse grid. There are also semicoarsening, which doubles grid size in one

direction only for 2D problems and di�erent variants for 3D problems. More about other

coarsening such as 4h-coarsening and red-black coarsening can be found in [31].

2.4.2 Coarse Grid Operator

One common coarse grid operator AH is to use the direct discretization of the operator

on coarse grid ΩH . A di�erent choice called Galerkin coarse grid operator is de�ned by

AH = R ·Ah · P,

where R and P are appropriate intergrid transfer operators. We will refer interested

readers to [31] for more information on the choice of coarse grid operators.

2.4.3 Restriction and Interpolation Operators

The choice of restriction and interpolation operators should be related to the choice of

coarse grid. We will focus on transfer operators for standard coarsening, i.e. H = 2h. A

restriction operator maps functions on Ωh to ΩH . One possibility for a restriction operator

is the �injection� operator, in which for a grid function rh (x, y), its corresponding rH (x, y)
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will have

rH (x, y) = Rinjection · rh (x, y) = rh (x, y) for (x, y) ∈ ΩH ⊂ Ωh.

Full weighting operator is commonly used and it is applied to all the results in this thesis.

Applying the full weighting operator at a coarse grid point (x, y) ∈ ΩH will result in a

nine-point weighted average of rh

rH (x, y) =
1

16
[4rh (x, y) + 2rh (x+ h, y) + 2rh (x− h, y) + rh (x, y + h)

+2rh (x, y − h) + rh (x+ h, y + h) + rh (x+ h, y − h)

+rh (x− h, y + h) + rh (x− h, y − h)] ,

and the operator can also be written in stencil notation as

1

16


1 2 1

2 4 2

1 2 1


H

h

.

Another possibility is half weighting operator:

1

8


0 1 0

1 4 1

0 1 0


H

h

.

An interpolation operator maps function on ΩH to Ωh. One frequently used interpo-

lation is bilinear interpolation, which can be written in stencil notation as

1

4


1 2 1

2 4 2

1 2 1


h

H

.

All the results in this thesis is based on bilinear interpolation.

20



Algorithm 2.5 Multigrid Cycle (Partial)

1: if ΩH is the coarsest grid then
2: Solve AH ε̃

k
H = r̃kH

3: else

4: Solve AH ε̃
k
H = r̃kH approximately by applying λ times of multigrid cycles using 0 as

the initial approximation on the coarser grid

2.5 Multigrid Cycle

The two-grid cycle is not very practical since the coarse grid problem is still com-

plicated. It can be shown that it is not necessary to solve (2.3) exactly on the coarse

grid. Therefore, to reduce the computational complexity, we can apply the same idea of

two-grid cycle again and solve (2.3) on a coarser grid than ΩH . Sometimes, the two-grid

cycle is applied more than once, say λ times. In fact, it is quite common to consider cases

of λ = 1 and λ = 2. When λ = 1, the cycle traverse downward to the coarsest grid and

then return directly upward to the �nest grid and is referred as V-cycle. When λ = 2, it

is called W-cycle. The cycle takes the form of a downward traverse, followed by a single

step up, then down, then up two levels, and so on.

The algorithm of multigrid cycle is only di�erent from two-cycle at one place: Solve

on coarse grid (ΩH): AH ε̃
k
H = r̃kH in step 2. If we replace this operation by Algorithm

2.5, we can obtain a multigrid cycle.

2.6 Full Multigrid

The idea of full multigrid is to obtain a better initial approximation by nested iteration.

It �rst solves the equation on the coarsest discretization, and then interpolate the results

to the next �ner grid. On this �ner level, one or more multigrid cycles are performed based

on the interpolated results. Then the results are again interpolated to the next �ner grid

and repeat the whole process until the �nest grid is reached. Full multigrid often results

a good initial approximation of the solution and therefore a faster convergence.
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2.7 Full Approximation Scheme (FAS)

Full Approximation Scheme (FAS) is a nonlinear multigrid algorithm proposed by

Brandt. It solves the complete original problem on every level of the grid throughout

the multigrid cycle instead of the residual equation (2.3). Consider a nonlinear problem

Nh (ūh) = fh on Ωh with the exact solution ūh and an approximate solution ûkh. Let

the error be ε̂kh = ūh − ûkh. As the operator Nh (·) is nonlinear, we cannot assume that

Nh (ūh)−Nh

(
ûkh
)

= Nh

(
ε̂kh
)
and therefore it is not obvious how to compute ε̂kh. However,

taking the usual form of the residual r̂kh = fh−Nh

(
ûkh
)
and substituting into the original

system gives

Nh (ūh) = r̂kh +Nh

(
ûkh

)
. (2.4)

FAS solves for ûH from

NH (ûH) = R · r̂h +NH (R · ûh) ,

which is e�ectively a modi�ed version of the original system, instead of the residual

equation on the coarse grid. It produces an improved approximation to the solution,

instead of a correction directly. Note that when applied to a linear system, the FAS

scheme is equivalent to the linear multigrid method in the previous section. A multigrid

FAS algorithm is described in Algorithm 2.6.

We can observe that nonlinear smoothing processes is needed while the intergrid trans-

fer can be linear. No global linearization is required except for the coarsest grid.
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Algorithm 2.6 ûk+1
h = FAS(ûkh,Ah,fh)

1: (1) Presmoothing

2: Compute ũkh by applying ν1 iterations of smoothing procedure to ûkh:
ũkh = smoothing(ûkh, Nh, fh)

3: (2) Coarse Grid Correction (CGC)

4: Compute the residual: r̃kh = fh −Nh

(
ũkh
)

5: Restrict the residual: r̃kH = R · r̃kh
6: Restrict ũkh: ũ

k
H = R · ũkh

7: Compute the right-hand-side: fH = r̃kH +NH

(
ũkH
)

8: if ΩH is the coarsest grid then
9: Solve NH

(
ǔkH
)

= fH for ǔkH
10: else

11: Solve NH

(
ǔkH
)

= fH approximately by applying λ times of FAS
cycles using ũkH as the initial approximation on the coarser grid

12: Compute correction: ε̃kH = ǔkH − ũkH
13: Interpolate the correction: ε̃kh = P · ε̃kH
14: Correct the approximation: ûk,CGCh = ũkh + ε̃kh
15: (3) Postsmoothing

16: Compute ũk+1
h by applying ν2 iterations of smoothing procedure to ûk,CGCh :

ûk+1
h = smoothing(ûk,CGCh , Nh, fh)
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Chapter 3

Multigrid method for HJB and

HJBI Equations

Literature on multigrid methods for HJB and HJBI equations is scarce. In [2, 1, 4, 3],

portfolio selection problems are modeled as HJB equations and solved by the multigrid-

Howard and the full multigrid-Howard (FMGH) algorithm. In each policy iteration, linear

multigrid method or full multigrid method is applied to solve the linearized problem.

Hoppe [20] proposed two multigrid schemes for HJB equations, MGS I and MGS II, in

which multigrid methods are applied directly to the nonlinear HJB equation. MGS I

is based on an iterative numerical scheme which requires the solution of an unilateral

variational inequality in each iteration [24] and MGS II is based on policy iteration.

MGS's are similar to but di�erent from a Full Approximation Scheme (FAS) [12] and the

main di�erence lies in the coarse grid problem construction. Bloss and Hoppe [25] later

proposed another multigrid method, MGHJB, for HJB equations. MGHJB is an updated

version of MGS II: MGHJB applies nonlinear Gauss-Seidel iteration as the smoother while

MGS II applies linear relaxation to linearized discrete HJB equation. Multigrid methods

based on a variant of policy iteration were also applied to HJBI equations [17], in which

multigrid is used to solve the linearized HJBI problem.
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Algorithm 3.1 Policy Iteration with Multigrid

1: Let V̂ 0 ≡ (V n+1)0 = V n

2: for k = 0, 1, 2... until convergence do

3: Compute Qki ∈ arg inf
Q∈Q̂

{[
An+1 (Q) V̂ k +Dn+1 (Q)

]
i

}
4: M

(
Qk
)
← I −∆τAn+1(Qk)

5: f
(
Qk
)
← V n + ∆τDn+1(Qk)

6: Solve V̂ k+1 = multigrid
(
V̂ k,M

(
Qk
)
, f
(
Qk
))

3.1 Policy Iteration with Multigrid

It is common in literature to solve the HJB equations with policy iteration. However,

in each policy iteration, it is necessary to solve a linear system with M equations and

M unknowns. This particular step becomes expensive as the grid size is reduced. Using

multigrid method to solve this linear system is proposed by [2], where standard V-cycle

full multigrid method, Gauss-Siedel smoother and linear intergrid transfer are applied.

Policy iteration with multigrid is easy to implement and its convergence rate is rapid for

some problems. The procedures are shown in Algorithm 3.1.

In other words, in each iteration k, an optimal control vector Qk is computed. Then,

a linearized system M is constructed based on Qk. The linear system is then solved by a

standard multigrid method.

3.2 FAS for HJB Equations

In this thesis, we propose to solve the nonlinear HJB and HJBI problems with FAS.

For the convenience of applying FAS, the HJB problem is rede�ned as

NQ
h

(
V n+1

)
= Bh, (3.1)

where
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Bh ≡ V n, NQ
h

(
V n+1

)
≡ V n+1 −∆τ inf

Q∈Q̂

{
LQV n+1

}
, (3.2)

and

LQV n+1 = An+1 (Q)V n+1 +Dn+1 (Q) . (3.3)

The problem on the coarsest grid can either be solved by relaxation scheme (1.15) or

policy iteration. Linear restriction and interpolation are applied for intergrid transfer.

We use the relaxation scheme as a smoother for FAS. De�ne the optimal control

Qki ∈ arg inf
Q∈Q̂

{(
FQV̂ k

)
i

}
,

where

(
FQV̂ k

)
i
≡

∆τ
(
αn+1
i (Q) V̂ k

i−1 + βn+1
i (Q) V̂ k

i+1 + dn+1
i (Q)

)
+ V n

i

1 + ∆τ
(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

) .

Then (1.15) can be written as

V̂i
k+1

=
∆τ
(
αn+1
i

(
Qki
)
V̂ k
i−1 + βn+1

i

(
Qki
)
V̂ k
i+1 + dn+1

i

(
Qki
))

+ V n
i

1 + ∆τ
(
αn+1
i

(
Qki
)

+ βn+1
i

(
Qki
)

+ cn+1
i

(
Qki
)) . (3.4)

It can be shown that applying one iteration of (3.4) is equivalent to applying one iteration

of Jacobi method to the linear problem

Jk · V̂ k+1 = lk, (3.5)

where Jk is a tri-diagonal matrix with elements

Jki,i = 1 + ∆τ
(
αn+1
i

(
Qki

)
+ βn+1

i

(
Qki

)
+ cn+1

i

(
Qki

))
,

Jki,i−1 = −∆ταn+1
i

(
Qki

)
,

Jki,i+1 = −∆τβn+1
i

(
Qki

)
,
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Algorithm 3.2 Smoothing Iterations

1: Let V̂ 0 = V n

2: for k = 0, 1, ..., µ− 1 until convergence do

3: Determine Qk ∈ arg inf
Q∈Q̂

{(
FQV̂ k

)
i

}
4: Construct Jk and lk

5: D ← diagonal(Jk)

6: V̂ k+1 = V̂ k + ω ·D−1
(
lk − JkV̂ k

)

for all i. The vector lk is de�ned as

lk = V n + ∆τdn+1
(
Qki

)
.

To achieve a better smoothing e�ect, we introduce a damping factor ω to the relax-

ation scheme, as it is used for the damped-Jacobi method. This leads us to the iterative

smoothing scheme Algorithm 3.2.

Then (3.4) becomes

V̂i
k+1

= (1− ω)V k
i + ω

∆τ
(
αn+1
i

(
Qki
)
V̂ k
i−1 + βn+1

i

(
Qki
)
V̂ k
i+1 + dn+1

i

(
Qki
))

+ V n
i

1 + ∆τ
(
αn+1
i

(
Qki
)

+ βn+1
i

(
Qki
)

+ cn+1
i

(
Qki
)) ,

With a carefully chosen damping factor, a smoothing factor close to 0.5 can be achieved.

See more detailed smoothing analysis Chapter 4.

3.3 Di�erence Between Our FAS Method and MGS in [20]

The multigrid scheme MGS described in [20] is similar to our FAS scheme. It �rst

applies smoothing, and then solve a nonlinear problem on the coarser grid, update the

current approximation using coarse grid solution and apply the smoothing again. However,

MGS and FAS are di�erent in several ways. First, MGS uses W-cycles while our FAS uses

V-cycles. Second, di�erent smoothing procedures are applied. MGS �rst linearizes the

HJB problem by �nding the optimal control based on the current approximate solution,

and then applies common smoothers in standard multigrid for a few iterations to the
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linearized problem. The output of the smoother approximates the linearized system.

However, FAS applies the non-linear damped-relaxation smoother in Section 3.2 to the

problem directly, the output of the smoother approximates the nonlinear HJB problem.

Third, the construction of coarse grid problem are di�erent. Suppose the discrete HJB

equation on the �ne grids is

inf
Q∈Q̂

{
AQh (Vh)− fQh

}
= Bh

with Bh ≡ 0. Then the coarse grid problem is de�ned as inf
Q∈Q̂

{
AQH (VH)− fQH

}
= BH

where operator AQH (·) is obtained from direct discretization. In MGS, AQh (Vh) and fQH

are considered separately. fQH is obtained from

fQH = AQH (R · Vh) +R ·
(
fQh −A

Q
h (Vh)

)
,

for all Q ∈ Q̂, where R is the restriction operator. BH is simply set to 0. In FAS,

inf
Q∈Q̂

{
AQh (Vh)− fQh

}
is considered as one nonlinear term. Let

NQ
h (Vh) ≡ inf

Q∈Q̂

{
AQh (Vh)− fQh

}

and NQ
H (·) is obtained from direct discretization, therefore as part of the coarse grid

operator, fQH is obtained from direct discretization too. BH is de�ned as

BH = NQ
H (R · Vh) +R ·

(
Bh −NQ

h (Vh)
)
.

These di�erences in the algorithm design result in di�erent convergence results, which

will be shown in Chapter 5.

3.4 Multigrid Method for HJBI Equations

We do not apply policy iteration to the HJBI equations due to its uncertainty in

convergence. Thus, as for the HJB equations, we will apply the FAS scheme we proposed
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in Section 3.2 to the HJBI problem. Applying FAS to HJBI equations is very similar to

FAS for HJB. The original nonlinear problem (1.11) is rewritten as

NQ,P
h

(
V n+1

)
= Bh, (3.6)

where

Bh ≡ V n,

NQ,P
h

(
V n+1

)
≡ V n+1 −∆τ sup

P∈P̂
inf
Q∈Q̂

{
LQ,PV n+1

}
,

with

LQ,PV n+1 = An+1 (Q,P )V n+1 +Dn+1 (Q,P ) .

The smoothing iteration is similar to the HJB case except that both Qk and P k need to

be determined. More precisely, de�ne

(
FQ,P V̂ k

)
i
≡

∆τ
(
αn+1
i (Q,P ) V̂ k

i−1 + βn+1
i (Q,P ) V̂ k

i+1 + dn+1
i (Q,P )

)
+ V n

i

1 + ∆τ
(
αn+1
i (Q,P ) + βn+1

i (Q,P ) + cn+1
i (Q,P )

) .

To �nd the optimal control values Q and P at grid point i in the kth iteration, we compute

the value of
(
FQ,P V̂ k

)
i
for every Q with a �xed P ∈ P̂ to obtain an in�mum

I (P ) =
(
FQ∗P ,P V̂ k

)
i
,

where

Q∗P ∈ arg inf
Q∈Q̂

{(
FQ,P V̂ k

)
i

}
.

Then compute the in�mum I (P ) for every P ∈ P̂ to obtain the supremum of all I (P )'s

and its corresponding optimal P ∗i . The corresponding optimal Q∗i is given by Q∗P ∗ .

This process can be easily implemented by two nested loops described in Algorithm

3.3. Linear restriction and interpolation are used for intergrid transfer. On the coarsest
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Algorithm 3.3 Optimal Control at Grid Point i for HJBI Smoother

1: Let Sup = −∞
2: for all P ∈ P̂ do

3: Let Inf = +∞
4: for all Q ∈ Q̂ do

5: if
(
FQ,P V̂ k

)
i
< Inf then

6: Inf =
(
FQ,P V̂ k

)
i
, Q∗P = Q

7: if Inf > Sup then
8: Sup = Inf , Q∗i = Q∗P , P

∗
i = P

level, the nonlinear problem is solved by applying the relaxation scheme.

3.5 Jumps in Control

The optimal control values P ∗i and Q∗i can vary signi�cantly from one grid point to

another. Take the American options with stock borrowing fees example in Section 1.1.2 for

example. In (1.6), there are two sets of controls, Q̂ is composed by di�erent combinations

of rl, rb, 0 and 1, whose values do not change signi�cantly, and so no special care is

required. The other control µ has two possible values, 0 and 1. Note that µ is used with

the penalty term: µV−V
∗

δ . Thus one can think of the control P̂ is e�ectively
{

0, 108
}
,

which will create a large jump when the optimal control P changes from grid point to grid

point. This kind of problems can also appear when the control is not bounded. Ignoring

such �jumps� in optimal control values could slow down the convergence or even render a

diverging result.

As a result, special care for intergrid transfer is need. A modi�ed version of FAS

scheme for �jumps� in optimal control is developed. The smoothing iterations and the

way to solve the coarsest grid problem are the same as FAS in previous sections, while

the restriction and interpolation procedure are di�erent. We use a two-grid FAS for an

HJB problem (3.1) with |Q̂| = 2 to illustrate the FAS scheme for �jumps� in control. The

procedure of coarser grid problem construction and coarse grid correction we proposed

are presented in this section.
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3.5.1 Coarser Grid Problem Construction

The optimal control on the coarse grid might not be consistent with the optimal

control on the �ne grid. Suppose the coarse grid function NQ
H (·) is a direct discretization

of NQ
h (·) on the coarse grid. The only information passed from the �ne grid to the coarse

grid is the approximate coarse grid solution VH , which is the restricted approximate �ne

grid solution. In the standard approach, the coarse grid vector BH is

BH = R · rh +NQ
H (VH) .

While �ne grid residual rh depends on the optimal control on the �ne grid Q∗h, N
Q
H (VH)

depends on the optimal control on the coarse grid Q∗H , which is obtained from (3.2). When

Q∗H 6= Q∗h at a coarse grid point, the two components of vector BH are inconsistent with

each other. Such discrepancy is introduced by the restriction process and mostly visible

near the jump. Consider the plot for the optimal controls of an HJB problem in Figure

3.1 as an illustrative example. The x-axis stands for the grid point indices while the y-axis

stands for the optimal control value. The �rst plot shows the �ne grid optimal control Q∗h

on each grid point: the �rst �ve �ne grid points have optimal control 108 while the others

have optimal control 0. There is a �jump� in Q∗h between grid point 5 and 6. The desired

Q∗H which would be consistent with the Q∗h in the top plot is shown in the second plot,

where Q∗H = Q∗h at all coarse grid points. Due to the restriction process, Q∗H could be

either the third plot or the last plot in which one grid point is o� near the �jump� position.

Without taking special care to the coarse grid optimal control with jump, NQ
H (VH) might

have the Q∗H shown in the third or the last plot while rh has Q∗h shown in the �rst plot,

rendering an inconsistent BH . When the �jump� size is large, the inconsistency will be

very signi�cant and the convergence of the FAS scheme will be slowed down.

To avoid such situation, the new FAS scheme forces Q∗H to match with Q∗h by altering

VH . Suppose Q
∗
H and Q∗h are di�erent at a particular grid point, i.e. Q

∗
h = q1 and Q

∗
H = q2

and q1 6= q2. From (3.2), we know that on the coarse grid, Lq2VH has to be the smallest

among LQHVH since q2 is the optimal control. Thus Lq1VH > Lq2VH . However, we need
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Figure 3.1: Fine Grid and Coarse Grid Controls

Algorithm 3.4 Coarse grid problem construction

1: for each coarse grid point do
2: iH =coarse grid index
3: ih =corresponding �ne grid index
4: if (Q∗H)iH 6= (Q∗h)ih then

5: q1 = (Q∗h)ih , q2 = (Q∗H)iH
6: δ ← a small positive number
7: Solve (Lq1VH)iH + δ = (Lq2VH)iH for (VH)iH

Q∗H = q1, i.e. Lq1VH < Lq2VH to make sure that the coarse grid control is consistent with

the �ne grid control. To force Q∗H = q1, solve for VH at the grid point where the controls

do not match by solving

Lq1VH + δ = Lq2VH , (3.7)

where δ is a very small positive number, e.g. 10−10. Equation (3.7) is linear since q1

and q2 are �xed. Also it is de�ned on one grid point, hence it is a small linear problem

which is easy to solve. This step ensures that Lq1VH < Lq2VH , yielding Q∗H = q1 and

therefore Q∗H = Q∗h. After handling all the grid points that their controls are di�erent,

the coarse grid problem becomes consistent. The construction of coarser grid problem can

be implemented as in Algorithm 3.4.

For problems with control set that has more than two values, i.e. Q̂ = {q1, q2, . . . , qn} ,
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Figure 3.2: Optimal Control Interpolation

change (3.7) to

Lq1VH + δ = min
Q∈{q2,...,qn}

{
LQVH

}
,

and keep other steps the same.

3.5.2 Coarse Grid Correction

Unlike the function V , the control does not always have a continuous control set. As

such, it is not clear how to interpolate or more precisely, how to de�ne the control on

the �ne grid from the control on the coarse grid. Consider Figure 3.2. The plots show

the optimal control for an HJB problem with a control set Q̂ = {q1, q2}, where the x-

axis represents the grid points and the y-axis represents the value of optimal control on

each grid point in 108 scale. From the coarse grid solution shown in the �rst plot, the

optimal control is determined for every other �ne grid point (grids with odd indices in

this example). When there is no �jump� in the coarse grid control, the �ne grid control

is obtained from linear interpolation of coarse grid control, thus grids with even indices

will have the same control as their neighboring grids have in the example. However, for
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grid point 6, its neighboring grid points have di�erent controls due to the �jump�. Thus

there are two possible scenarios for the optimal control on the �ne grid: Fine grid control

I and II. In other words, the optimal control at grid point 6 can either be the same as its

left neighbor, or its right neighbor. It is not clear which one of the two possible controls

we should use. The linear interpolation is not applicable at this point since the �jump�

size is large and there is no intermediate control between the two in this example. If the

control we choose to use is di�erent from the one it should be, the convergence rate can

be signi�cantly slowed down or even yield divergence.

To address this issue, let i denote the �ne grid index where the optimal control is

di�erent on its left and its right grid point (i = 6 in Figure 3.2), and (Q∗h)i denote the

optimal �ne grid control on grid i. Since there are two possible (Q∗h)i's, we will consider

them separately.

Case A. Assume the correct �ne grid optimal control is taken as Fine grid control I

in Figure 3.2. Let Q′j = (Q∗h)j for all j 6= i and Q′i = (Q∗h)i+1. Let V ′h be the improved

solution after standard coarse grid correction, i.e. V ′h = Vh+P · (VH −R · Vh) where Vh is

the approximate �ne grid solution after presmoothing, VH is the coarse grid solution and

P and R are the interpolation and restriction operator. Due to the jump in the control, the

error of V ′h near grid point i could be large. Note that the control on the �ne grid is now

�xed, NQ′

h (·) becomes a linear operator. As both NQ′

h (·) and Bh are now deterministic,

we can compute an improved �ne grid solution Ṽ ′h corresponding to Q′ by solving the

linear system NQ′

h

(
Ṽ ′h

)
= Bh. Since the jump in control mainly a�ect neighboring grid

points, a small local problem is considered instead to simplify the computation. With

a pre-determined small positive integer m, which usually lies between 2 and 5, the local

linear problem is de�ned as

[
NQ′

h

(
Ṽ ′h

)]
j

= (Bh)j , j = i−m, ..., i+m, (3.8)

which is centered at grid point i with size 2m + 1. Note that when we substitute
(
Ṽh

)
j

back into (??), the resulting optimal control might not be the same as Q′j . Hence we force

the control to be the same as Q′j by applying the same technique used in Section 3.5.1 to
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Algorithm 3.5 Coarse Grid Correction

1: Let V ′h = V ′′h = Vh + P · (VH −R · Vh)
2: for i = 2, 3, ...,M − 1 do
3: if (Q∗h)i−1 6= (Q∗h)i+1 then

4: Let (Q∗h)i = (Q∗h)i−1

5: Solve
[
N
Q∗h
h

(
Ṽh

)]
j

= (Bh)j , j = i−m, ..., i+m

6: Obtain
(
Q̃∗h

)
j
∈ arg inf

Q∈Q̂

{
LQ
(
Ṽh

)
j

}
7: for all

(
Q̃∗h

)
j
6= (Q∗h)j do

8: Solve
(
LQ∗h Ṽh

)
j

+ δ =
(
LQ̃∗h Ṽh

)
j

9: (V ′h)j =
(
Ṽh

)
j
, j = i−m+ 1, ..., i+m− 1

10: r′h = NQ
h (V ′h)−Bh

11:

12: Let (Q∗h)i = (Q∗h)i+1
13: Repeat the above procedure and obtain V ′′h
14: r′′h = NQ

h (V ′′h )−Bh
15:

16: if ‖r′h‖ < ‖r′′h‖ then
17: Vh = V ′h
18: else

19: Vh = V ′′h

the local problem, and then update V ′h by setting (V ′h)j =
(
Ṽh

)
j
.

Case B. Assume the correct �ne grid optimal control is taken as Fine grid control II in

Figure 3.2. LetQ′′j = (Q∗h)j for all j 6= i andQ′′i = (Q∗h)i−1. Let V
′
h = Vh+P ·(VH −R · Vh).

Then repeat the process of Case A and obtain the updated solution (V ′′h )j .

V ′h and V ′′h are two possible �ne grid updated solutions. In general, it is di�cult to

tell which one is the desired solution. Assuming the correct �ne grid control will yield a

solution with smaller residual, we choose the one with smaller residual norm. The scheme

is shown in Algorithm 3.5.
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Chapter 4

Smoothing Analysis

4.1 Local Fourier Analysis

We investigate the smoothing property of the damped-relaxation smoother by applying

Local Fourier Analysis (LFA) [31]. LFA evaluates the quantitative convergence behavior

and e�ciency of an operator. The idea is to linearize a general discrete operator locally

and replace it by one with constant coe�cients. De�ne grid functions as

ϕ (θ, x) = eiθx/h,

where x varies in a given in�nite grid Ωh, θ characterizes the frequency of the grid function

and is continuous. Since

ϕ (θ, x) ≡ ϕ (θ + 2πj, x) , j = 1, 2, ...,

it is su�cient to consider ϕ (θ, x) with θ ∈ [−π, π). For θ ∈ [−π, π), all grid functions

ϕ (θ, x) are eigenfunctions of any discrete operator. Consider a discrete operator Lh

corresponding to a di�erence stencil. The relation

Lhϕ (θ, x) = L̃h (θ)ϕ (θ, x)
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holds, where L̃h (θ) =
∑
κ
sκe

iθ·κ is the symbol of Lh with constant coe�cients sκ ∈ R.

Also, for the smoothing analysis, we have to distinguish high and low frequency com-

ponents for standard coarsening, which are de�ned as

ϕ low frequency component ⇐⇒ θ ∈
[
−π

2 ,
π
2

)
,

ϕ high frequency component ⇐⇒ θ ∈ [−π, π) r
[
−π

2 ,
π
2

)
.

For a discretized PDE on Ωh, let û
k
h be the old approximation of the exact solution

ūh and ûk+1
h be the new approximation after 1 iteration of smoothing. Let εkh = ūh − ûkh

and εk+1
h = ūh − ûk+1

h be the old and new error respectively. If εk+1
h = Shε

k
h where Sh is

a discrete operator, we can compute the ampli�cation factor
∣∣∣S̃h (θ)

∣∣∣. Since we will focus
on the smoothing e�ect, which is the error reduction on high frequency components, the

smoothing factor µ (Sh) is de�ned as

µ (Sh) ≡ sup
{∣∣∣S̃h (θ)

∣∣∣ : θ ∈ [−π, π) r
[
−π

2
,
π

2

)}
.

The smaller its smoothing factor is, the more desirable a smoother is.

4.2 Smoothing Analysis for HJB Equations

Assume the exact solution for time step n+ 1 is V̄ and the approximate solution after

the kth smoothing iteration is V̂ k = V̄ + εk, where εk is the error after the kth iteration.

By (1.15), we get

V̄i+ε
k+1
i = inf

Q∈Q̂

{
∆τ
(
αn+1
i (Q)

(
V̄i−1 + εki−1

)
+ βn+1

i (Q)
(
V̄i+1 + εki+1

)
+ dn+1

i (Q)
)

+ V n
i

1 + ∆τ
(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

) }
.

(4.1)

After obtaining the optimal control and rearranging terms, (4.1) can be written in vector

form as

εk+1
i =

[
∆τ ·α∗i

1+∆τ(α∗i +β∗i +c∗i )
0

∆τ ·β∗i
1+∆τ(α∗i +β∗i +c∗i )

]
·


εki−1

εki

εki+1

+ C
(
Qki

)
, (4.2)
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where

α∗i = αn+1
i

(
Qki

)
, β∗i = βn+1

i

(
Qki

)
,

c∗i = cn+1
i

(
Qki

)
, d∗i = dn+1

i

(
Qki

)
,

with

Qki ∈ arg inf
Q∈Q̂

{(
FQ

(
V̄ + εk

))
i

}
,

and

C
(
Qki

)
=

[
∆τ ·α∗i

1+∆τ(α∗i +β∗i +c∗i )
−1

∆τ ·β∗i
1+∆τ(α∗i +β∗i +c∗i )

]
·


V̄i−1

V̄i

V̄i+1


+

V n
i + ∆τ · d∗i

1 + ∆τ (α∗i + β∗i + c∗i )
.

Let Q̄i be the optimal control corresponds to the exact solution V̄ . Suppose Qki = Q̄i for

all i. From (1.12), we deduce that C
(
Qk
)
is a zero vector. Thus (4.2) can be written as

εk+1 = Sk · εk,

where

Ski,i = 0, Ski,i−1 =
∆τ · α∗i

1 + ∆τ (α∗i + β∗i + c∗i )
,

Ski,i+1 =
∆τ · β∗i

1 + ∆τ (α∗i + β∗i + c∗i )
, i = 1, 2, ...,M.

Applying Sk to the eigenfunctions ϕ (θ, x), we obtain

Skϕ (θ, x) = S̃k (θ)ϕ (θ, x) , −π ≤ θ < π,

and the symbol of Sk is

S̃ki (θ) =
∆τ · α∗i · e−iθ + ∆τ · β∗i · eiθ

1 + ∆τ (α∗i + β∗i + c∗i )
. (4.3)
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As we use the damped-relaxation scheme (1.15) for smoothing, S̃ki (θ) of the HJB smoother

can be obtained by introducing damping factor ω to (4.3)

S̃ki (θ, ω) =
∆τ · α∗i · e−iθ − (1− 1

ω ) [1 + ∆τ (α∗i + β∗i + c∗i )] + ∆τ · β∗i · eiθ
1
ω · [1 + ∆τ (α∗i + β∗i + c∗i )]

. (4.4)

Simplify (4.4), we obtain

S̃ki (θ, ω) =
ω∆τ (α∗i + β∗i ) cos θ + (1− ω) [1 + ∆τ (α∗i + β∗i + c∗i )] + iω∆τ (β∗i − α∗i ) sin θ

1 + ∆τ (α∗i + β∗i + c∗i )
.

(4.5)

4.2.1 Smoothing Factors of the Example HJB Equation

Since generating a useful analytical expression for S̃ki (θ, ω) is very complicated, we

will consider S̃ki (θ, ω) for speci�c values of θ, which represent the high, medium and low

frequency components respectively. Also, though we assume the optimal control is �xed

for each grid point from iteration to iteration, we will examine many possible values of

optimal controls for each grid point to make sure that the smoother is e�cient even with

the worst case optimal control for all grid points.

For simplicity of the analysis, we transform the equation to the log scale, which is a

common practice in option pricing literature. Let X = logW . Then W = eX . Substitut-

ing W = eX into (1.2), the HJB example problem on log grid can be written as

Vτ = inf
Q∈Q̂

{
1

2
q2σ2VXX +

(
r + qσξ − 1

2
q2σ2 +

π

eX

)
VX

}
.

For simplicity, we will assume π = 0. Then the coe�cients for the example HJB problem

on log grid in (1.7) are

a (τ,Q) =
1

2
q2σ2, b (τ,Q) = r +Qσξ − 1

2
q2σ2, c (τ,Q) = 0, d (τ,Q) = 0.

We note that the coe�cients on the log grid do not depend on X or S, which is a

desirable property for LFA. Substitute the above log grid coe�cients to (1.10) assuming
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central di�erencing and uniform grid, we obtain

α (Q) =
2a (Q)

2h2
− b (Q)

2h
=
q2σ2

2h2
−
r + qσξ − 1

2q
2σ2

2h
,

β (Q) =
2a (Q)

2h2
+
b (Q)

2h
=
q2σ2

2h2
+
r + qσξ − 1

2q
2σ2

2h
,

where h is the grid size. For the pension plan asset allocation problem, the typical values

for the parameters are σ = 0.15, ξ = 0.33, r = 0.03, ∆τ = 0.01 and q ∈ [0, 1.5].

4.2.1.1 Low Frequency Components:

Let θ ≈ 0. In this case, sin θ ≈ 0 and cos θ ≈ 1,

S̃ki (θ, ω) ≈ ω∆τ (α∗i + β∗i ) + (1− ω) [1 + ∆τ (α∗i + β∗i )]

1 + ∆τ (α∗i + β∗i )

= 1− ω

1 + ∆τ (α∗i + β∗i )

= 1− ω

1 + ∆τ · q2σ2

h2

= 1− ω

1 + 0.01 · q20.152

h2

.

Since q ∈ [0, 1.5], S̃ki (θ, ω) ∈ [1 − ω, 1 − ω

1+0.01· 1.520.152
h2

]. The modulo of S̃ki (0, ω) has

to be smaller or equal to 1 to ensure that the smoother does not diverge, therefore we

can obtain ω ∈ [0, 2]. To demonstrate the relationship between the parameters and the

ampli�cation factor
∣∣∣S̃ki (θ, ω)

∣∣∣, we �x h to be 2−6, which is a common value for grid size,

and plot
∣∣∣S̃ki (θ, ω)

∣∣∣ with di�erent values of ω for di�erent control values in Figure 4.1.

We can see that for all values of ω ∈ [0, 2],
∣∣∣S̃ki (θ, ω)

∣∣∣ < 1, which is consistent with the

analysis. Since the ampli�cation factor for low frequency components is not important in

smoother design as long as it is no greater than 1, the possible range of ω is narrowed

down to ω ∈ [0, 2]. On the other hand, �xing ω to be 2
3 and varying h would yield a plot
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Figure 4.1: Ampli�cation factor for the example HJB equation with θ ≈ 0, h = 2−6 and
di�erent values of ω

Figure 4.2: Ampli�cation factor for the example HJB equation with θ ≈ 0, ω = 2
3 and

di�erent values of h
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shown in Figure 4.2. It is clear that for di�erent values of h and control q,
∣∣∣S̃ki (θ, 2

3

)∣∣∣ ≤ 1.

4.2.1.2 Medium Frequency Components:

Let θ ≈ π
2 . In this case, sin θ ≈ 1 and cos θ ≈ 0. S̃ki (θ, ω) becomes

S̃ki (θ, ω) ≈ iω∆τ (β∗i − α∗i ) + (1− ω) [1 + ∆τ (α∗i + β∗i )]

1 + ∆τ (α∗i + β∗i )
,

and the ampli�cation factor is

∣∣∣S̃ki (θ, ω)
∣∣∣ ≈

√
[ω∆τ (β∗i − α∗i )]

2 + [(1− ω) (1 + ∆τ (α∗i + β∗i ))]2

|1 + ∆τ (α∗i + β∗i )|
.

It is easy to show that both βi (Q) − αi (Q) > 0 and αi (Q) + βi (Q) ≥ 0 for all possible

Q ∈ Q̂ with the given constants. Therefore

∣∣∣S̃ki (θ, ω)
∣∣∣ ≤ ω∆τ (β∗i − α∗i ) + |1− ω| [1 + ∆τ (α∗i + β∗i )]

1 + ∆τ (α∗i + β∗i )

= |1− ω|+
ωh∆τ

(
r + qσξ − 1

2q
2σ2
)

h2 + ∆τq2σ2
.

Let

y (ω, h) ≡ |1− ω|+
ωh∆τ

(
r + qσξ − 1

2q
2σ2
)

h2 + ∆τq2σ2
. (4.6)

With h �xed to 2−6 and ω varies between 0 and 2, Figure 4.3 presents the plot of y (ω, h),

which is smaller than 1 for di�erent values of ω and q. When ω is �xed to 2
3 , y (ω, h)

with di�erent values of h is plotted in Figure 4.4. It shows that when the grid size is very

small,
∣∣∣S̃ki (θ, ω)

∣∣∣ increases as the control q approaches 0. Substituting q = 0 into (4.6),

we obtain

y (ω, h) = |1− ω|+ ωr∆τ

h
= |1− ω|+ 3× 10−4ω

h
.

Hence as long as h > 3×10−4, y (ω, h) < 1. The analysis and the plots indicate that with

a practical grid size, all ω ∈ (0, 2) will yield an ampli�cation factor smaller than 1 and
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Figure 4.3: y(ω, h) for the example HJB equation with θ ≈ π
2 , h = 2−6 and di�erent

values of ω

Figure 4.4: y (ω, h) for the example HJB equation with θ ≈ π
2 , ω = 2

3 and di�erent values
of h
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eligible for smoothers.

4.2.1.3 High Frequency Components:

Let θ ≈ −π. In this case, sin θ ≈ 0 and cos θ ≈ −1,

S̃ki (θ, ω) ≈ −ω∆τ (α∗i + β∗i ) + (1− ω) [1 + ∆τ (α∗i + β∗i )]

1 + ∆τ (α∗i + β∗i )

= 1− 2ω +
ω

1 + ∆τ (α∗i + β∗i )

= 1− 2ω +
ω

1 + ∆τ · q2σ2

h2

(4.7)

= 1− 2ω +
ω

1 + 0.01 · q20.152

h2

.

Since q ∈ [0, 1.5], S̃ki (θ, ω) ∈ [1 − 2ω + ω

1+0.01· 1.520.152
h2

, 1 − ω]. For h → 0, S̃ki (θ, ω) ∈

[1−2ω, 1−ω] and
∣∣∣S̃ki (θ, ω)

∣∣∣ ≤ max (|1− 2ω| , |1− ω|) for all ω ∈ [0, 2]. It is easy to show

that the upper bound is less than 1 when ω ∈ (0, 1) and the upper bound is minimized

when ω∗ = 2
3 and

∣∣∣S̃ki (θ, ω∗)
∣∣∣ ≤ 1

3 . Plots for
∣∣∣S̃ki (θ, ω)

∣∣∣ with �xed h, di�erent ω and �xed

ω, di�erent h are shown in Figure 4.5 and Figure 4.6 respectively, which veri�es the above

analysis.

The analysis of the three di�erent scenarios shows that ω = 2
3 is an eligible damping

factor and it yields an e�cient smoothing e�ect among di�erent values of ω.

4.2.1.4 The Actual Smoothing Factor for the Example HJB Equation:

Since we were only able to compute the theoretical value of ampli�cation factor on

some particular frequencies, it is desirable to evaluate its actual value by making plots of∣∣∣S̃ (θ, ω)
∣∣∣ in (4.4) for di�erent frequencies, with di�erent values of ω, grid size and optimal

control.

Previous analysis shows that ω has to lie between 0 and 1 to reach convergence and

ω = 2
3 appears to produce the optimal smoothing e�ect. To con�rm this argument, we

will �rst �nd out whether the optimal ω is greater than, equal to or less than 1.
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Figure 4.5: Ampli�cation factor for the example HJB equation with θ ≈ −π, h = 2−6 and
di�erent values of ω

Figure 4.6: Ampli�cation factor for the example HJB equation with θ ≈ −π, ω = 2
3 and

di�erent values of h
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Figure 4.7: Ampli�cation factor for the example HJB equation with ω = 1.5, h = 0.025
and di�erent values of optimal control

Let h = 0.025, which is a practical value for grid size. Plotting
∣∣∣S̃ (θ, ω)

∣∣∣ against θ
which varies from −π to π, we obtain Figure 4.7 with ω = 1.5, Figure 4.8 with ω = 1

and Figure 4.9 with ω = 2
3 . Each plot has �ve curves corresponding to di�erent values of

optimal control Q∗ that varies from 0 to 1.5. It is obvious that when ω = 1.5, the smooth-

ing factor can be greater than 1 for high frequency components, rendering a diverging

iterative method. Since for all ω > 1, the plots for
∣∣∣S̃ (θ, ω)

∣∣∣ will be similar to Figure 4.7,

ω > 1 will not be considered for smoothers. When ω = 1, all the curves are below 1. The

iterative scheme is convergent, however
∣∣∣S̃ (θ, 1)

∣∣∣ reaches its maximal when θ is 0 or ±π.

While an e�cient smoother will have its smoothing factor minimized for high frequency

components, ω = 1 may not be the optimal choice. On the other hand,
∣∣∣S̃ (θ, 2

3

)∣∣∣ has the
properties of an e�ective smoother: low for high frequency components and bounded by

1 for low frequency components. It reaches its minimal when θ ≈ ±π and it is bounded

above by 1
3 when |θ| ≥ π

2 . As for all ω ∈ (0, 1), their smoothing properties are similar to

each other, we now know that the optimal range of damping factor ω is between 0 and 1.

To narrow down the range for ω, we will plot the smoothing factor with di�erent

ω ∈ (0, 1). As shown in Figure 4.9, all the curves are bounded above by Q∗ = 1.5 and

Q∗ = 0, hence making plots for these two control values will be su�cient. Figure 4.10
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Figure 4.8: Ampli�cation factor for the example HJB equation with ω = 1, h = 0.025 and
di�erent values of optimal control

Figure 4.9: Ampli�cation factor for the example HJB equation with ω = 2
3 ,h = 0.025 and

di�erent values of optimal control
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Figure 4.10: Ampli�cation factor for the example HJB equation with h = 0.025, Q∗ = 1.5
and di�erent values of ω

shows the plot for Q∗ = 1.5. Clearly, ω = 2
3 and ω = 0.8 are giving more preferable results

than others. Although ω = 0.8 has smaller ampli�cation factor on all low frequency

components and part of high frequency components, ω = 2
3 is more desirable for the

highest frequency components. Considering the purpose of smoothers, we would choose

ω = 2
3 . However in Figure 4.11, the ampli�cation factor gets smaller as ω approaches 1.

Hence we cannot determine whether ω = 2
3 or ω = 0.8 is better.

To further investigate the relationship between
∣∣∣S̃ (θ, ω)

∣∣∣ and the parameters, we will

alter the grid size h this time. WhenQ∗ = 0, as shown in Figure 4.12 and Figure 4.13, both

ω = 2
3 and ω = 0.8 have satisfactory performance and ω = 0.8 has smaller ampli�cation

factor for both high and low frequency components. However in Figure 4.14 and Figure

4.15, we can see that as h approaches 0, the �turning point� of the ampli�cation factor

gets closer to θ = ±π
2 for both ω = 2

3 and ω = 0.8, rendering larger
∣∣∣S̃ (θ, ω)

∣∣∣ for higher
frequency components. It is clear from the plots that when h is small, the performance

for ω = 0.8 is worse than ω = 2
3 . Moreover, from (4.7) we can obtain S̃ (−π, ω)→ 1− 2ω

as h→ 0. Therefore the limit of
∣∣∣S̃ (−π, 0.8)

∣∣∣ is 0.6, which is greater than 1
3 , the limit of∣∣∣S̃ (−π, 2

3

)∣∣∣. Considering the grid size we are using, ω = 2
3 appears to be preferable than
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Figure 4.11: Ampli�cation factor for the example HJB equation with h = 0.025, Q∗ = 0
and di�erent values of ω

Figure 4.12: Ampli�cation factor for the example HJB equation with ω = 2
3 , Q

∗ = 0 and
di�erent values of h
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Figure 4.13: Ampli�cation factor for the example HJB equation with ω = 0.8, Q∗ = 0
and di�erent values of h

Figure 4.14: Ampli�cation factor for the example HJB equation with ω = 2
3 , Q

∗ = 1.5
and di�erent values of h
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Figure 4.15: Ampli�cation factor for the example HJB equation with ω = 0.8, Q∗ = 1.5
and di�erent values of h

ω = 0.8.

4.2.1.5 Smoothing E�ect on High Frequency Arti�cial Error

To further illustrate the smoothing e�ect of the damped-relaxation smoother, we man-

ually �x the initial error before smoothing to be a high frequency one, and compare the

error after applying 1 and 2 iterations of smoothing to the approximate solution. Figure

4.16 and Figure 4.17 show the plots of errors before and after smoothing for di�erent

values of ω, x-axis represents the grid points and y-axis represents the value of the error.

Initial errors for all cases are the same, grid size is set to 0.0125.

Comparing the magnitude of the error after the �rst and second smoothing iteration,

it is obvious that ω = 2
3 gives the best smoothing e�ect among the four. ω = 2

3 reduces the

high frequency error approximately in a factor of 3 per iteration, which is very e�cient.

4.3 Smoothing Analysis for HJBI Equations

Similar to the HJB case, we assume the exact solution for HJBI problem at time step

n+ 1 is V̄ and the approximation solution after the kth iteration is V̂ k = V̄ + εk, where εk
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Figure 4.16: Initial error and the error after one smoothing iteration for the example HJB
equation with di�erent values of ω

Figure 4.17: Initial error and the error after two smoothing iterations for the example
HJB equation with di�erent values of ω
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is the error after the kth smoothing iteration. Assume the optimal control for every grid

point will not change from iteration to iteration. Applying a similar deduction procedure

in Section 4.2 to HJBI case, we obtain

S̃ki (θ, ω) =
ω∆τ (α∗i + β∗i ) cos θ + (1− ω) [1 + ∆τ (α∗i + β∗i + c∗i )] + iω∆τ (β∗i − α∗i ) sin θ

1 + ∆τ (α∗i + β∗i + c∗i )
,

(4.8)

where

α∗i = αn+1
i

(
Qki , P

k
i

)
, β∗i = βn+1

i

(
Qki , P

k
i

)
,

c∗i = cn+1
i

(
Qki , P

k
i

)
, d∗i = dn+1

i

(
Qki , P

k
i

)
,

with

Qki , P
k
i ∈ arg sup

P∈P̂
inf
Q∈Q̂

{(
FQ,P

(
V̄ + εk

))
i

}
.

4.3.1 Smoothing Factors of the Example HJBI Equation

As in the HJB case, let X = logS, example HJBI problem on log grid can be expressed

as

Vτ = sup
P∈P̂

inf
Q∈Q̂

{
σ2

2
VXX +

[
q3q1 + (1− q3) (rl − rf )− σ2

2

]
VX

−
[
q3q1 + q2 (1− q3) +

µ

η

]
V +

µ

η
V ∗
}
.

The coe�cients for example HJBI problem on the log grid (1.8) are

a (τ,Q, P ) =
1

2
σ2, b (τ,Q, P ) = q3q1 + (1− q3) (rl − rf )− σ2

2
,

c (τ,Q, P ) = q3q1 + (1− q3) q2 +
µ

η
, d (τ,Q, P ) =

µ

η
V ∗.

Substituting the above coe�cients into (1.11), assuming central di�erencing and uniform
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grid, we obtain

α (Q,P ) =
2a

2h2
− b

2h
=

σ2

2h2
−
q3q1 + (1− q3) (rl − rf )− σ2

2

2h
,

β (Q,P ) =
2a

2h2
+

b

2h
=

σ2

2h2
+
q3q1 + (1− q3) (rl − rf )− σ2

2

2h
,

where h is the grid size. The typical values for the parameters are rb = 0.05, rl = 0.03,

rf = 0.004, σ2 = 0.09, ∆τ = 0.01 and η = 10−6∆τ . For the same reason as in HJB case,

we will examine speci�c values of θ on all possible values of optimal controls.

4.3.1.1 Low Frequency Components:

Let θ ≈ 0. In this case, sin θ ≈ 0 and cos θ ≈ 1, (4.8) becomes

S̃ki (θ, ω) ≈ ω∆τ (α∗i + β∗i ) + (1− ω) [1 + ∆τ (α∗i + β∗i + c∗i )]

1 + ∆τ (α∗i + β∗i + c∗i )

≈ 1− ω +
ω∆τ (α∗i + β∗i )

1 + ∆τ (α∗i + β∗i + c∗i )

≈ 1− ω +
ω∆τ σ

2

h2

1 + ∆τ
(
σ2

h2
+ µ

η

)
+ ∆τ (q3q1 + (1− q3) q2)

.

To narrow down the possible range of ω, we �rst consider the simplest expression of

S̃ki (θ, ω). When µ = 1, S̃ki (0, ω) will be close to 1− ω as h→ 0 due to the penalty term.

Therefore to ensure convergence, it is required that ω ∈ (0, 2) and ω close to 1 is preferred.

When µ = 0,

S̃ki (θ, ω) ≈ 1− ω +
ω∆τ σ

2

h2

1 + ∆τ σ
2

h2
+ ∆τ · (q3q1 + (1− q3) q2)

→ 1 as h→ 0.

Figure 4.18 shows the relationship between
∣∣∣S̃ki (0, ω)

∣∣∣, ω and h when µ = 0. We can

see from the plot and the analysis that all ω ∈ (0, 2) are acceptable since they all have
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Figure 4.18: Ampli�cation factor for the example HJBI equation with θ ≈ 0, µ = 0 and
di�erent values of ω∣∣∣S̃ki (0, ω)

∣∣∣ < 1.

4.3.1.2 Medium Frequency Components:

Let θ ≈ π
2 . In this case, sin θ ≈ 1 and cos θ ≈ 0 and (4.8) becomes

S̃ki (θ, ω) ≈ ±iω∆τ (β∗i − α∗i ) + (1− ω) [1 + ∆τ (α∗i + β∗i + c∗i )]

1 + ∆τ (α∗i + β∗i + c∗i )
.

As αi (Q,P ) + βi (Q,P ) + ci (Q,P ) > 0 for all possible Q ∈ Q̂ and P ∈ P̂ and the given

constants, it is easy to show that

∣∣∣S̃ki (θ, ω)
∣∣∣ ≤ ω∆τ |β∗i − α∗i |+ |1− ω| [1 + ∆τ (α∗i + β∗i + c∗i )]

1 + ∆τ (α∗i + β∗i + c∗i )

= |1− ω|+ ω

∆τ
h

∣∣∣q3q1 + (1− q3) (rl − rf )− σ2

2

∣∣∣
1 + ∆τ

(
σ2

h2
+ µ

η

)
+ ∆τ (q3q1 + (1− q3) q2)

. (4.9)
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Figure 4.19: y∗ for the example HJBI equation with µ = 0, θ ≈ π
2 and di�erent values of

ω

Again, when µ = 1,
∣∣∣S̃ki (θ, ω)

∣∣∣→ |1− ω|, therefore ω ∈ (0, 2). When µ = 0, let

y (Q,µ = 0, ω, h) = |1− ω|+ ω

∆τ
h

∣∣∣q3q1 + (1− q3) (rl − rf )− σ2

2

∣∣∣
1 + ∆τ

(
σ2

h2
+ 0
)

+ ∆τ (q3q1 + (1− q3) q2)
.

Substituting in all possible values of Q into y (Q,µ = 0, ω, h), we obtain

y∗ = max
Q∈Q̂
{y (Q,µ = 0, ω, h)}

= |1− ω|+
∆τ
h · 0.005

1 + ∆τ
(
σ2

h2
+ 0.05

)
→ |1− ω| as h→ 0,

which is an upper bound for
∣∣∣S̃ki (θ, ω)

∣∣∣. Figure 4.19 shows the plot for y∗ with di�erent grid
size and ω. Unlike the low frequency case, the grid size does not have much impact on the

smoothing e�ect for medium frequency components. All ω ∈ (0, 2) have
∣∣∣S̃ki (θ, ω)

∣∣∣ < 1,
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therefore all ω ∈ (0, 2) are applicable for smoothers.

4.3.1.3 High Frequency Components:

Let θ ≈ −π. In this case, sin θ ≈ 0 and cos θ ≈ −1, (4.8) becomes

S̃ki (θ, ω) ≈ −ω∆τ (α∗i + β∗i ) + (1− ω) [1 + ∆τ (α∗i + β∗i + c∗i )]

1 + ∆τ (α∗i + β∗i + c∗i )

≈ 1− ω − ω∆τ (α∗i + β∗i )

1 + ∆τ (α∗i + β∗i + c∗i )

≈ 1− ω −
ω∆τ σ

2

h2

1 + ∆τ
(
σ2

h2
+ µ

η

)
+ ∆τ (q3q1 + (1− q3) q2)

.

Similarly, when µ = 1, S̃ki (θ, ω)→ 1− ω. When µ = 0,

S̃ki (θ, ω) ≈ 1− ω −
ω∆τ σ

2

h2

1 + ∆τ σ
2

h2
+ ∆τ (q3q1 + (1− q3) q2)

→ 1− 2ω

Therefore ω has to be smaller than 1 to ensure the convergence of the smoother. Fur-

thermore,
∣∣∣S̃ki (θ, ω)

∣∣∣ is bounded by max (|1− ω| , |1− 2ω|), which reaches its minimal 1
3

when ω = 2
3 . Also, Figure 4.20 shows that when ω > 1, S̃ki (θ, ω) can be greater than

1, rendering a diverging iteration. When ω = 1, S̃ki (θ, ω) is close to 1 for �ne grids,

which means the high frequency error will reduce in a very slow rate, and when ω < 1,

the smoothing factor is smaller than 1. ω = 2
3 has good performance for high frequency

components with S̃ki
(
−π, 2

3

)
≤ 1

3 for all grids, which is consistent with the analysis.

Summarizing the smoothing e�ect of low, medium and high frequency components,

we observed that ω has to be smaller than 1 for the smoother to converge. When µ = 0,

ω = 2
3 is optimal for high frequency components with

∣∣∣S̃ki (θ, 2
3

)∣∣∣ bounded by 1
3 . ω = 2

3

is also eligible for medium and low frequency components. When µ = 1,
∣∣∣S̃ki (θ, ω)

∣∣∣ is
close to 1−ω, so

∣∣∣S̃ki (θ, 2
3

)∣∣∣ is close to 1
3 for all three cases. From the analysis on speci�c
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Figure 4.20: Ampli�cation factor for the example HJBI equation with θ ≈ −π, µ = 0 and
di�erent values of ω

frequencies, ω = 2
3 appears to be optimal for smoothers.

4.3.1.4 The Actual Smoothing Factor for the Example HJBI Equation:

To justify the conclusion about the optimal value for ω and the smoothing factor, we

will plot
∣∣∣S̃k (θ, ω)

∣∣∣ for (4.8) on di�erent frequencies, with di�erent ω, grid size h and

optimal controls.

First, we �x h = 0.025, which is a practical value for grid size. Figure 4.21 shows

the plot of
∣∣∣S̃k (θ, ω)

∣∣∣ against θ for di�erent frequencies with µ = 0. We can see that

ω = 1 is optimal for low frequency components, ω = 2
3 is optimal for highest frequency

components while ω = 0.8 out performs ω = 2
3 except for the highest frequencies. Figure

4.22 shows
∣∣∣S̃k (θ, ω)

∣∣∣ with µ = 1. When µ = 1, ω → 1 is optimal, so ω = 0.8, which

gives a smoothing factor close to 0.2, is preferred to ω = 2
3 in this case. Both the plots

agree with the previous conclusion, however, it is not clear whether ω = 2
3 or ω = 0.8 is

optimal.

Figure 4.23 and Figure 4.24 shows the relationship between
∣∣∣S̃k (θ, ω)

∣∣∣ and the grid

size for ω = 2
3 and ω = 0.8 respectively. Since when µ = 1,

∣∣∣S̃k (θ, ω)
∣∣∣ is not a�ected

by h much, we only show the µ = 0 case. As the grid size decreases,
∣∣∣S̃k (θ, ω)

∣∣∣ of low
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Figure 4.21: Ampli�cation factor for the example HJBI equation with µ = 0, h = 0.025
and di�erent values of ω

Figure 4.22: Ampli�cation factor for the example HJBI equation with µ = 1, h = 0.025
and di�erent values of ω
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Figure 4.23: Ampli�cation factor for the example HJBI equation with µ = 0, ω = 2
3 and

di�erent values of h

frequency components moves up to 1 for both cases. However, for very high frequency

components on �ne grids,
∣∣∣S̃k (θ, 0.8)

∣∣∣→ 0.6 while
∣∣∣S̃k (θ, 2

3

)∣∣∣→ 1
3 . Considering the grids

we will be using, ω = 2
3 is more suitable for smoothers.

4.3.1.5 Smoothing E�ect on High Frequency Arti�cial Error

Similar to the HJB case, we manually �x the initial error before smoothing to a

high frequency one, and compare the error after applying smoothing iterations to the

approximate solution. Figure 4.25 and Figure 4.26 show the plots of errors before and

after smoothing for di�erent values of ω. Initial errors for all cases are the same, grid size

is set to 0.0125.

Comparing the magnitude of the error after the �rst and second smoothing iteration,

it is obvious that ω = 2
3 gives the best smoothing e�ect among the four and it is very

e�cient.
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Figure 4.24: Ampli�cation factor for the example HJBI equation with µ = 0, ω = 0.8 and
di�erent values of h

Figure 4.25: Initial error and the error after one smoothing iteration for the example HJBI
equation with di�erent values of ω
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Figure 4.26: Initial error and the error after two smoothing iterations for the example
HJBI equation with di�erent values of ω
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Chapter 5

Numerical Results

In this section, we will compare the convergence rates of di�erent methods that we

discussed in Chapter 1.3. Convergence study will be presented for both of the model

problems arising in option pricing and some other representative nonlinear problems. For

all the results in this chapter, the FAS scheme used is described in Section 3.2. Two pre-

and post-soothing, V-cycle and linear intergrid transfer are applied. The stopping criteria

is that the residual norm of the nonlinear problem is smaller than 10−6.

5.1 Policy Iteration for HJB Equation: A Slow Example

An example in [27] shows that in general, the number of policy iteration steps cannot

be bounded by a constant that is independent of the number of grid points. Consider an

Markovian dynamic programming (MDP) problem which can be simpli�ed to solving

Vi = max
{
Vi−1 + f1

i , Vi+1 + f2
i

}
, i = 0, · · · ,M,

where

f1
0 = f2

0 = f1
M = f2

M = 0

f1
M−1 = −1 , f2

M−1 = 2M,

f1
i = −1 , f2

i = −2,
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Grid points (M) FAS iter.

128 2

256 2

512 2

1024 3

Table 5.1: Convergence of FAS scheme for MDP problem with di�erent number of grid
points

with i = 1, . . . ,M − 1. With an initial guess V0 = 0, the Newton-like policy iteration will

correct the optimal control one by one, from grid M − 1 to grid 1, rendering an M − 1

iterations convergence. Table 5.1 shows the convergence of our FAS scheme for this MDP

problem. On the coarsest level, we solve the nonlinear HJBI problem by applying the

Newton-like policy iteration. It is clear that the number of FAS iterations is insensitive

to the number of grid points.

5.2 HJB Example in [25]

We will consider an HJB example in [25]. In this example, the problem is de�ned as


max

1≤v≤2
[Avu (x, y)− fv (x, y)] = 0, x, y ∈ (0, 1) ,

u (x, y) = 0, x, y ∈ {0, 1} ,

where

A1 = − ∂2

∂x2
− 0.5

∂2

∂x∂y
− ∂2

∂y2
, A2 = −0.5

∂2

∂x2
− 0.1

∂2

∂x∂y
− ∂2

∂y2

and

f1 = f2 = max
(
A1ū, A2ū

)
, ū = x (1− x) y (1− y) .

ū turns out to be the exact solution of the corresponding HJB equation. We apply a

uniform discretization of the second order derivatives

∂2

∂x2
≈ h−2D+

h,xD
−
h,x,

∂2

∂y2
≈ h−2D+

h,yD
−
h,y,

∂2

∂x∂y
≈ 1

2
h−2

[
D+
h,xD

+
h,y +D−h,xD

−
h,y

]
,
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Grid size (h) Level FAS iter. Rate of conv.
1
8 2 5 0.02236
1
16 3 6 0.03914
1
32 4 7 0.04366
1
64 5 7 0.05039

Table 5.2: Convergence FAS scheme on the HJB example problem in [25]

where D±h,x and D
±
h,y denote the forward and backward di�erence in x and y respectively.

We solve this HJB problem using our FAS scheme in Section 3.2. We note that the

discretization method we used here may not result in an M matrix, thus the relaxation

scheme is not guaranteed to converge. However, since the relaxation scheme converges for

this particular example, we will use it for simplicity.

Table 5.2 shows the number of levels, the number of FAS iterations in one time step

and the rate of convergence for di�erent grid sizes. On the coarsest level, we solve the

nonlinear HJB problem by applying policy iteration. We can observe that the convergence

of FAS scheme is insensitive to the grid size. The rate of convergence presented in the last

column is computed by averaging
‖rk+1‖
‖rk‖ over all the iterations, where rk is the residual

of the HJB equation after the kth FAS iteration. Figure 1 and Figure 2 in [25] show that

the convergence rate of MGHJB is approximately 0.7 for this example problem. However

as shown in the Table 5.2, all the convergence rates for di�erent grid sizes and number of

levels are smaller than 0.1 when applying our FAS scheme.

5.3 Pension Plan Asset Allocation Problem

Parameters in Table 5.3 are used for the HJB numerical tests. The grid size of the

control set Q̂ is 0.1 and the time step ∆τ = 0.01. We will show the numerical results for

three methods we have discussed: policy iteration with multigrid, relaxation scheme and

FAS scheme. Since the convergence is similar in each time step, we will only show the

data for the �rst time step.

5.3.1 Policy Iterations with Multigrid

Table 5.4 presents the convergence result for policy iterations with multigrid, which
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r 0.03

σ 0.15

T 20 years

ξ 0.33

π 0.1

γ 9.125

tolerance 10−6

∆τ 0.01

Q̂ [0, 1.5]

Table 5.3: Parameters used in the HJB example

Grid size Nonlinear Multigrid iterations per nonlinear iteration
(h) iterations 1st policy 2nd policy 3rd policy

0.02 2 2 1 N/A

0.01 2 3 1 N/A

0.005 3 4 3 1

0.0025 3 6 4 1

Table 5.4: Convergence result of policy iterations with multigrid for the example HJB
equation

is described in Section 3.1. The multigrid method used here is standard. Gauss-Siedel

smoother is applied for two pre- and two post-smoothings. Linear intergrid transfer is

applied. On the coarsest grid, the linear problem is solved directly. Column 2 shows the

number of nonlinear policy iterations required for one time step with di�erent values of

grid size. Column 3-5 show the number of multigrid iterations required for solving the

linear problem in each nonlinear policy iteration stated in the second column.

5.3.2 Relaxation Scheme and FAS Scheme

In this section we will compare the convergence of the relaxation scheme and the FAS

scheme for the model HJB problem. We will �rst look at the HJB problem on a uniform

grid and then, as the smoothing analysis in Section 4 is based on a uniform log grid, we

will compare the two schemes on the log grid too. Since the control is smooth for this

HJB problem, the standard FAS scheme is enough to generate satisfactory convergence.

On the coarsest grid , the HJB is solved by the relaxation scheme.

Table 5.5 shows the convergence for relaxation scheme and FAS scheme on the uniform

grid. The convergence rate of relaxation scheme becomes unacceptably slow as grid size
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h Relax. iter. FAS iter.

0.02 90 4

0.01 330 5

0.005 1320 6

0.0025 ≈ 4000 8

Table 5.5: Convergence of the relaxation scheme and FAS scheme for the example HJB
equation on uniform grid with ω = 2

3

h Relax. iter. FAS iter.

0.05 6 5

0.025 17 5

0.0125 50 6

0.00625 151 7

Table 5.6: Convergence of the relaxation scheme and FAS scheme for the example HJB
equation on uniform log grid with ω = 2

3

decreases, which veri�es the conclusion in Section 1.3.2. On the other hand, the number

of FAS iterations per time step is insensitive to the grid size. Compared to Table 5.4, FAS

is slightly more e�cient than policy iteration with multigrid method in terms of total

number of multigrid iterations for this example. However, using either of them would

yield satisfactory convergence.

We run the same comparison again on the log grid and obtain Table 5.6. For the log

grid case, the di�erence between the e�ciency of the two methods is smaller. However,

we can still see the trend: the number of relaxation iterations triples when the grid size

is reduced by half while the number of FAS iterations is insensitive to grid size.

5.4 Policy Iteration for HJBI Equation: Counter Example I

A pathological example where Newton-like policy iteration does not converge for HJBI

problems is shown in [32]. We will solve the counter example with policy iteration and

relaxation scheme respectively and compare their convergence. The counter example is a

discounted two-person zero-sum stochastic game, which can be simpli�ed to solving

V = max
l1∈L1

min
l2∈L2

{
R (l1, l2) +

3

4
P (l1, l2) · V

}
, (5.1)
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Algorithm 5.1 Policy Iteration for Counter Example I

1: Let V̂ 0 = 0
2: for k = 0, 1, 2... until convergence do

3: Compute lk1 , l
k
2 ∈ arg max

l1∈L1

min
l2∈L2

{
R (l1, l2) + 3

4P (l1, l2) · V̂ k
}

4: Solve V̂ k+1 = R
(
lk1 , l

k
2

)
+ 3

4P
(
lk1 , l

k
2

)
· V̂ k+1

where L1 = {1, 2}, L2 = {1, 2} and R =

 3 6

2 1

, P =

 1 1
3

1 1

. The exact solution
for this problem is V = 8. Since we are solving (5.1) by iterative methods, we will let the

approximate solution after the kth iteration be V̂ k and assume V̂ 0 = 0.

A policy iteration scheme for solving (5.1) is shown in Algorithm 5.1.

On the other hand, the update rule for the relaxation scheme is

V̂ k+1 = max
l1∈L1

min
l2∈L2

{
R (l1, l2) +

3

4
P (l1, l2) · V̂ k

}
.

The relaxation scheme will converge in 13 iterations for this problem while the solution

of policy iteration will bounce between two values and never converges. This example

shows that Newton-like policy iteration does not guarantee global convergence for HJBI

problems.

5.5 Policy Iteration for HJBI Equation: Counter Example

II

Another counter example shows that Newton-like policy iteration method does not

converge is presented in [11]. We will solve this counter example by Newton-like policy

iteration method, relaxation scheme and our FAS scheme and compare their convergence.

Consider the following discrete double-obstacle problem: �nd V ∗ = (Ui)1≤i≤N ∈ RN such
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that
max

(
min

(
−Ui−1−2Ui+Ui+1

∆s2
, γ (Ui − g (si))

)
, γ (Ui − h (si))

)
= 0, i = 1, . . . , N,

U0 = 1, UN+1 = 0.8,

where ∆s = 1
N+1 , si = i∆s, g (s) = max

(
0, 1.2− ((s− 0.6) /0.1)2

)
, and h (s) =

min
(

2, 0.3 + ((s− 0.2) /0.1)2
)
, with γ = 1000, N = 127 and a starting point V 0 such

that V 0 /∈ (g, h).The Newton-like policy iteration used here is close to the one in the

previous section and it does not converge. An iterative method that converges in 16 iter-

ations for this problem is proposed in [11]. However, it involves solving an N ×N linear

system for 95 times in total. The relaxation iteration for this problem is

V̂ k+1
i = −max

P∈{1,2}
min

Q∈{1,2}

ai (P,Q) ·
(
V̂ k
i−1 + V̂ k

i+1

)
+ ci (P,Q)

bi (P,Q)

 ,

where ai =

 − 1
∆s2

0

0 0

, bi =

 2
∆s2

γ

γ γ

 and ci =

 0 −γg (si)

−γh (si) −γh (si)

. While

convergence is guaranteed, it will take 9457 iterations for the relaxation scheme to con-

verge. On the other hand, our FAS scheme with 3 damped-relaxation pre- and post-

smoothing will converge in 13 iterations.

5.6 American Option and Stock Borrowing Fees

Parameters in Table 5.7 are used for HJBI numerical tests. The time step is chosen to

be ∆τ = 0.01. We will show the numerical results for relaxation scheme and FAS scheme.

Similar to Section 5.3.2, we will �rst look at the HJBI problem on a uniform grid and

then on a uniform log grid. The FAS introduced in Section 3.5 has to be applied to get

convergence due to the penalty term η. On the coarsest grid, the HJBI equation is solved

by the relaxation scheme. As shown in Table 5.8, the relaxation scheme converges very

slowly on �ne grid and the number of FAS iterations per time step is insensitive to the

grid size. In Column 4, the smallest value for m is presented. Parameter m is de�ned
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rb 0.05

rl 0.03

rf 0.004

µ {0, 1}
σ 0.3

T 1.0 year

K 100

∆τ 0.01

tolerance 10−6

penalty term δ 10−6∆τ

Table 5.7: Parameters used in the HJBI example

h Relax. iter. FAS iter m

10−2K 319 6 1

5× 10−3K 610 7 3

2.5× 10−3K 2500 7 3

1.25× 10−3K ≈ 10000 8 3

Table 5.8: Convergence of the relaxation scheme and FAS scheme for the example HJBI
equation on uniform grid with ω = 2

3

in Section 3.5.2. It is a predetermined small positive integer and 2m + 1 is the size of

the local problem we solve to �nd the correct �ne grid control at jump. Here we only

list out the smallest possible value for m that will result a convergent scheme. m that

is larger than the values presented in the table will also guarantee convergence, but the

convergence rate will not improve much.

For HJBI problem on the uniform log grid, Table 5.9 provides the comparison between

relaxation scheme and FAS scheme. When the grid size is halved, the number of relaxation

iterations per time step becomes four times larger while the number of FAS iterations only

increases 1. It is obvious that FAS scheme is more e�cient than relaxation scheme for the

h Relax. iter. FAS iter. m

0.025 26 5 2

0.0125 86 6 2

0.00625 340 7 3

0.00313 1350 8 3

Table 5.9: Convergence of the relaxation scheme and FAS scheme for the example HJBI
equation on the uniform log grid with ω = 2

3
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example HJBI problem on the log grid.

5.7 HJBI Example: Pursuit Game

The pursuit game example [17] can be simpli�ed to solving the stationary HJBI equa-

tion

−ρ+ ε∆V + max
α∈A

(α · ∇V ) + min
β∈B

(β · ∇V ) + ‖x‖22 = 0

on (−0.5, 0.5)2 with ε = 0.5, Neumann boundary conditions andA = {(a1, a2) |ai = ±1, 0},

B = {(0, 0) , (1, 2) , (2, 1)}. Having ρ set to constant 0.194, we solve the problem using

FAS scheme with two iterations of damped-relaxation pre- and two post-smoothing. Lin-

ear intergrid transfer is applied, and on the coarsest grid of the V-cycle, we solve the HJBI

problem by applying relaxation scheme. For �ne grid size of 2−4, 2−5, 2−6 and 2−7, the

FAS scheme will converge in 3 iterations for all four cases.
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Chapter 6

Conclusions

In this thesis, we propose to solve the discretized HJB and HJBI equations by applying

FAS with damped-relaxation smoother. We review some variations of policy iteration

and their convergence and show that unlike policy iteration, the relaxation scheme is

convergent for both HJB and HJBI equations. A damped-relaxation smoother is proposed.

When the damping factor is appropriately chosen, the high frequency error will be damped

away. Smoothing analysis based on two �nancial problems shows the e�ciency of the

smoother. Special restriction and interpolation techniques have been developed to handle

the case when there are jumps in the optimal control. Our variation of FAS is applied

to eight di�erent example problems including real life problems and examples in which

policy iteration will not converge or converges slowly. Numerical results show that our

FAS converges in small numbers of iterations for those examples.
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