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ABSTRACT 

Acquisition of timly information is a critical requinment for successN management of an 
agricuitural monitoring system. Crop identification and cropitrea estimation cm be done fairly 

successfdiy using sateiiite swsors operating in the visible and nea t - inhd  (VIR) regions of the 

spectrum. However, data collection can be unreliable due to problems of cloud cover at criticai 
stages of the gmwing season. The ail-weather capability of syntbetic aperture radar (SAR) 
imagery acquired from satellites provides data over large areas whenever crop information is 

reqWredd At the same the,  SAR U sensitive to suface roughness and should be able to provide 
surface information such as mage-system characteristics. With the launch of ERS-1, the first 
long-duration SAR system bec- avaüable. The analysis of airbome multipolarization SAR 

data, multitemporal ERS-1 SAR data, and their combinations with VIR data, is necessary for the 
development of image-analysis mthodologies that can be applied to RADARSAT data for 

extracthg agriculniral crop information. 

The overaii objective of tbis research is to evaluafe multipolarization airbome SAR data, 
muititemporai ERS- l SAR d&a, and combinations of ERS- 1 S A R  and sateiiite VIR &ta for crop 

classincation using non-conventional aigorithms. 

The study area is situated in Norwich Township, an agricultural area in Oxford County, southem 

Ontario, Canada It has been seIected as one of tbe few representative agriculnual 'supersites' 

across Canada at which the relationships between radar data and @cultuce are king studied. 

The major field crops are corn, soybeaos, winter wheat, oats, barley, alfalfa hay, and pasture. 

Using airborne C-HH and C-HV SAR data, it was found thaî appmaches using contexhial 

information, texture information and per-field classincation for improviog agricultural crop 
classification pmved to be effective, especially the per-field cksification method. Resdts show 

that three of the four best pet-field classification accufacies (K=0.91) are achieved using 
combinations of C-HH and C - W  SAR data. This connmis the strong potential of 

multipolarization &ta for crop classincation. 

The synergistic effects of mdtitemporal ERS4 SAR and Landsat TM data are evaluated for crop 

classification using an artifïcial neural network (ANN) approach. The results show that the per- 
field approach using a feed-fomd ANN signincantiy improves the overail classincation 
accuracy of both single-date and multitemporal SAR data Using the combination of TM3,4,5 



and Aug. 5 S A .  data, the best per-field ANN classification of 96.8% was achieved. It 
represents an 8.546 irnpmvement over a single TM3,4,5 classification alone. 

Using muititemporal ERS-1 SAR data acquired during the 1992 and 1993 growing seasons, the 
radar backscatter characteristics of crops and theu underiying soils are analyzed. The SAR 
temporal backscatter profiles were generated for each crop type and the earliest tims of the year 
for differentiation of individual crop types were determined Orbital (incidence-angle) effeas 
were also observed on all crops. The average clifference between the two orbia was about 3 dB. 
Thus attention should be given to the local incidence-angie effects when using ERS4 SAR data, 
especiaily when comparing fields from different scenes or different areas within the same scew. 

Finally, early- and mid-season muititemporal SAR data for crop classification using sequentid- 
masking techniques are evaiuated, based on the temporal backscatter profiles. It was found that 

ail crops studied could be identified by July 2 1. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivations for the Research 

As the 20th cenhiry draws to a close, pressures on agriculture can only increase with the 

exponentiai growth of world population, wbanization, desertincation, deforestation, soil 

erosion, and other environmental stresses. It is pmjected that, by the year 2000, the amount of 

arable land per capita wiU be only about 0.2 ha, as compared with about 0.5 ha in 1950 (Avery et 

al., 1992). For example, Java loses ncarly 20,000 hectares of cropland annuaiiy to urban 

growth - enough to grow nce for some 378,000 Indonesians each year ( G e r ,  1996). Each 

and every &y, world demand for food hcreases by 250,ûûû mouths; at this rate, world demand 

for food wili increase by as much as three times its cunent level in the next 50 years (Park et al., 

1980; Gilson, 1989; The Toronto Star, Iuly 18, 1993). According to the World Food Council, 

550 &on people were too undemourished to "sustain an active, healthy W' in 1989 (Kutzner, 

199 1). These and other factors underscote the aeed for agriculairal information systems that c m  

provide accurate and timely uiformacion on crop type, area and location, crop growing condition, 

crop production, and the extent and severity of catastmpbic events (e-g. tornadoes, hail, floods, 

droughts, crop diseases and insect infestation) on regional, national, and global xales, such that 

domestic and world agricuinual policy plamers can more effitively maaage a@culturai 

resouces. 

At present, a central world agiculturai information system does not exist; thereby making h 

dificult for commodities to move within world food markets in a time1y and efficient marner. 

For instance, advanceci information conceming food production is important for providing the 

timely, accurate information necessary to stabilize fluctuations in comrnodity markets, which are 

especiaIiy sensitive to uncenainties or fluctuations in supply and demand (Campbell, 1987). 

Evidence of this was provided by the enûance of the USSR into the world wheat market in 1975 



as an unexpected buyer rather than a seller. This caused world wheat pnces to soar and a general 

dismption of normal market conditions (Park et al., 1980). 

Timely and accurate crop a m  and production iaformation must be relayed at least on a country- 

by-country or region-by-region basis in order for world food markets to operate at an acceptable 

level of efficiency. Th ability of a country or region to accurately forecast the harvest of its 

major crops, coupled with the ability to maiyze its position with respea to the curent world 

market, wouid enable agriculhuai plamers to make more rational and economicaily cewarding 

expon-import decisioas. Indeed, the lack of current and aocurate agriculniral Uifonnation can be 

a major obstacle to ecommic developmeni. In fact, improvements in the timeliness and 

accuracies of crop production data can translate into substantial economic benefits. Cost-benefit 

studies for eaah-cesources data have shown that more timely and accurate crop production 

statistics could be worth billions of dollars' (Park et al., 1980). This is especiaüy hue in 

developing countrïes where @cuitme dominates the economy and employs most of the 

population. A good knowledge of cultivated areas and agriculturai production is absolutely 

indispensable to major policy decisions concemiag national or regional development and 

planning, irade-balance management and, in times of cnsis, international food-aid management, 

to avoid not oniy shortages but also surpluses. the secondary ef f i ts  of which are just as 

damaging (FAO. 1993). 

A crop information system is one way tbat remote sensing can provide valuable agricultural 

Monnation to decision-makers. Remote sensing is presently the oniy technology that can 

provide timely and accurate crop invcntory information. When the advantages of various remote 

sensing platfoms are compared, it is clear that repetitive coverage is unique to the orbithg 

spacecraft, since it is comparaiively much more expensive to acquke the same coverage with 

' For example. advanced knowledge of the U.S. crop yield is strategic information in maintaining a positive 
balance of agicultural exports: US13 billion in 1989, with a surplus of US$3.7 billion (RSI, 1995a). 

2 



aircrafi. Effective monitoring of crop growth requires that the coverage is repeated at ieast four 

times during the growing season. This is problematic on a giobal sa le  because the growing 

season is unique to both gwgraphic location Uatituâe, longitude and altitude) and to the crop. 

Furthemore, the observation and control of m p s  is useful oniy at specific. weii-detennined 

points in time during the gmwing season (Myers n al.. 1983). The weather in Canada and in 

many other parts of the world, however. often &es this impossible using sensors operathg in 

the visible and near-infia& (VIR) bands. as is demonstrateci by the relatively few cloud-fÎee 

images obtained by Laadsat and SPOT (Blakeman. 1990). Thus. there is a need for a remote 

sensing system which can be employai in ai l  weathec conditions. Radar has great potential to 

provide informaton in such a manner. 

The 1990s have ken, and wiU continue to be, the decade of spaaborne synthetic apemire radar 

(SAR). In 199 1 and 1995, the Ewopea~ Space Agency (ESA) launched the Eufopean Remote 

Sensing Satellites. ERS4 & 2. In 1992, the Japanese Earth Resourçes Sateliite (ERS-1) was 

launched. The tbird shuttle SAR missions, SIR-C/X SAR, were flown in 1994 for limiteci 

durations on two separate shunle missions, and the Canadian RADARSAT was launched on 

Nov. 4, 1995. In the later part of this decade and early next decade, the future advanced S A .  

missions such as ESA ENVISAT ASAR and the U.S. Shuttie Radar Topography Mission will 

be launched (Ferster, 1996). Ail of these spacebome SAR systems provide an excelient 

opportunity to develop an operationel crop information system to support decision-making. 

1.2 Problem Statement and Objectives 

1.2.1 Problem Statemeat 

As discussed earlier, acquisition of timely idonnation is a critical requirement for successful 

management of an agriculhiral monitoring system. Crop identification and mparea estimation 



can be done fairly successfdly using sateilite sensors operating in the visible and nez-inkued 

regions of the spectrum. However, data collection can be ullfeliable due to problems of cloud 

cover at critical stages of the growing season. The all-weather capability of synthetic aperture 

radar (SAR) imagery acquhd ficm sateilites provides data over large areas whenever crop 

information is required At the same tirne, SAR is sensitive to surface rougimess and should be 

able to provide sudace idonnation such as Mage-system chanicteristics. W1th the launch of 

ERS-1, the nrSt longduration SAR system became avaüable. The analysis of rnuititemporai 

ERS-1 SAR data, and their combinations with VIR data, is necessary for the àevelopment of 

image-analysis methodologies that can be applied to RADARSAT data for exûacting agriculnual 

crop information. 

Previous research has demonstrated the large potentiai for using radar remote sensing for various 

agronomie applications, as surnmarized by Hoimes (lm) and Ban and Howarth (1996a). SAR 

data are so cornplex, however, tbat the interaction of the radar signal with agricultural targets is 

not M y  understood Ln addition, with the cumnt state-of-the-art of interpretation methods for 

SAR imagery, the accuracies of crop classification ate not always as hÏgh as required for 

successful operation of a crop information system (Brisco and Protz, 1982; Brown, 1987; 

Foody, 1988; Foody et al., 1989; Brisco et al., 1989a; Ban et al.. 1995). To be able to increase 

the accuracies of crop identification and ana estimation, and thus develop a viable crop 

information system that makes use of S A .  imagery as the primary &ta source, we need to: 

1 .  have a baier understanding of the crop and underlying soi1 characteristics that Muence 

radar backatter throughout the pwing season; 

2. ideut@ suiable methoQlogies to extract crop information h m  SAR imagery; 

3. evaluate muitipolarization airborne SAR for crop identification; 

4. evaluate multitemporal ERS-1 SAR for crop identification; and 

5 .  evaluate combinations of satellite SAR and VIR for crop identification. 



1.2.2 Research Objectives 

The overall objective of this research is to evaluate m u l t i p o l ~ o n  airborne SAR data, 

rnultitemporal ERS-1 SAR data, and combinations of ERS4 SAR and sateiiite ViR data for crop 

classincation using nonconventional aigorithms. To achieve this objective, five major issues 

need to be addressed. 

The fmt objeaive is to pesonn a comparative anaiysis of classitication algorithms chat 

incorporate tond. contextual, andlor textumi information. The specifk objectives are: 

to cietennine the accuracy of crop classification, using standard per-pixel classification 

procedures such as a maximum likelihood classifier WC) 

to evaluate non-parametic and non-stafistical classincation algorithms based on contextual, 

textual, and per-field approaches for crop identincation. 

The second objective is to evaluaîe multipolarization (C-HH and C-HV) airborne SAR data for 

crop classification. The specif'ic objectives are: 

to evaluate single polarization C-HH and C-HV SAR for crop classification 

to evaluate the combination of C-HH and C-HV SAR for crop classification. 

The third objective is to evaluate the synergistic effets of multitemporal ERS4 SAR and satellite 

VIR data for crop classification. The aims wiJl be: 

to evaluaîe eady- and mid-season crop classification accuacies using a single-date SAR 

image done and ais0 ushg multitemporal SAR data 

to evaluate the synergism of muititemporai ERS4 SAR and b d s a t  TM data for 

irnproving crop classification, and 

to evaluate an ANN algorithm as a pst-segmentation classiner in cornparison to the 

conventional maximum-likelihood classifier. 



The fourth objective is to develop a bener understanding of the interaction of microwave energy 

with crops and thei. underlying soils over the growing season. This wiii involve: 

absolute caliiratiotl and geometric correction of ERS-1 SAR data 

generation of ERS-1 SAR temporal backscatter crop profiles for both 1992 and 1993 data 

identification of fields that dispiay anomalous radar backscatter characteristics, statisticafiy 

descfl'bing the anomalous fields, and attempting to identify niasons for these anomalies 

recommendatiom for the earliest t h e  of the year to diffcrentiiate agriculturai crops. 

The hfth objective is to evaluate multitemporai ERS-1 SAR data for crop classification based on 

SAR temporal backatter profiles. The satefite SAR data seiected for multitemporal analysis 

will be representaîive of the Merent stages of development of crops. Furthemore, the 

classification procedures identified in the third objective as being the most appropriate for crop 

classiocation will be used in the analysis. The work will involve: 

analysis of ERS- 1 S AR temporal backatter crop profiles 

evaluation of multitemporal ERS4 S A R  for crop classification using sequential masking. 

1.3 Implications of the Research 

1.3.1 Scientific Perspective 

The proposed research will conainite to two main theoreticai developments. The application of 

sateiiite radar remote sensing to agriculture is still in its infancy. Thus, the proposed study allns, 

fmt, to provide a better understanding of the interaction of microwave energy with agriculturai 

crops and soils thn>ughout the growing season and, second, to develop optimal methodologies to 

extract agricuiturai idonnation nom SAR data. 



From an applied perspective, the findings of this study are of practical signifïcance since the 

Canadian RGDARSAT was successfully launched on November 4, 1995. RADARSAT is 

daigned to meet the data requirements and data-deiivery requitements demded by operational 

programs. The eadier satellites, such as ERS-1, were primariiy intendeci to NnIl the needs of 

the resemh community. To be ready to use RADARSAT SAR as a primary data source for an 

operational crop information system, a concentrateci research effort is necessary to gain 

experience using ERS-1 S a  as a research tool, since both RADARSAT and ERS4 SAR 

operate at the same wavelength (C-band). III addition, muitipolarization airborne SAR stuclies 

wiU benefit future spacebome SAR missions; for example, ESA's ENWSAT Advanceci SAR 

system will operate in alternathg po1anz;irion modes. 

1.3.2 Industrial and Socio-Economic Implications 

Agriculture is one of the most important industries in the Canadian economy, employing 14.5% 

of Canadians in the agri-food sector ancl generating about 10% of the Gross Domestic Product. 

The $6.8 büiion of agricuitural products enported in 1989 exceeded imports by $3.5 billion. 

resulting in a significant contriition to the balance of W e .  Of the total of 997 million ha of 

land in Canada, 76.8 million ha are in farmland, a large ares managed by ody 4% of tbe 

population. Although Canada's contributon to world f d  production is modest, it is stiil an 

important player in the world market, exporthg 40 to 50% of its total agricultural production. A 

strong agriculhual industry is vitally important to the Canadian eamomy and to the wodd. 

Satellite SAR, such as RADARSAT, is perceivecl by the agriculd community as a potentiaily 

important tool for supplying data to meet its tirnely and accutate informational requirements in 

agricdtural resource management (Brown et al.. 1993b). 



Timely and accuraie information on crop typ and area estunation is not ody a basic need for 

crop inventory and monitoring, but also for crop production forecasting. A crop Somation 

system is needed for a variety of reasons. Government departmena, such as Agriculture Canada 

and Statistics Canada, require a system for aàmhktrative purposes, possibly for measures to 

reguiate quantities and prices. or for extemai trade settiements. Rivate b, particuiarly those 

engaged in wholesale and extemai trade, are interested in timely and accuiate data for their 

marketing and storage arrangements. Farmers themselves may use harvest data calculated for 

their country and region as a basis for their seasonal sales in order to obtah panicularly 

favourable prices (Tbiede, 1981). In addition. information on the extent and severity of 

catastrophic events is important for damage assessrnent and relief planning (Werle, 1992). The 

benefits of a crop information system can therefm be summarized as: 1. accurate estimates 

resultiog in price stability; 2. timely and accurate forecasts of production aüowing governments 

to plan domestic and foreign policy and actions; 3. accurate forecasts enabling optimal ua'li;tritjou 

of storage, transportation, and processing facilities; and 4. detection and timly knowledge of 

harmhil effects on crop growth to assist in taking remediai measures. 

1.4 Organization of the Thesis 

The thesis is organized into eight chapters. In the h t  chapter, the motivations for the research, 

the achievements and problerns using SAR for crop classification, the objectives of the research 

and its rientific and socioeconomic implications have been intioduced 

In Chapter 2, conventional agriculturai inventory, airborne VIR remoie senshg and satefite VIR 

remote sensing for agriculture are reviewed Tbeir d e s  as an input into an operational crop 

information system are evaluated. 



Chapter 3 provides a detaüed review of the state-of-art of SAR in agriculturai applications, 

focusing speciflcally on crop identification. The advantages of radar remote senshg, 

hindamental theories of the interaction between SAR and agricultural parameten, airborne SAR 

agriculhual studies. and spacebome SAR agricuiniral studies are sWI1LIIiUiZed Methodologies to 

ex- crop information h m  SAR data are also evaluated. An overview of achievements, 

Limitations and the friture potential of SAR data for agriculturai crop identification, as explained B 

the existing Literature, is presented. 

In Chapter 4, the geographicai characteristics of the study area ~IE discwed The characteristics 

of the airborne SAR data, ERS4 SAR data and the ground information are described The 

important aspects of cal'bration of ERS4 SAR data are disnissed and procedures for derivation 

of the calibration constant a" are presented. 

In Chapter 5, the rnuitipo1anzation airborne SAR is evaluatplrl for crop classincation. The 

effectiveness of C-HH and C-HV SAR for crop classification are compareci. Methodologies to 

irnprove the classification accuracies, such as filtering, texture analysis and a per4eld approach, 

are tested. 

In Chapter 6. the sywrgistic effects of ERS4 SAR and Landsat TM data for crop classification 

are evaluated Combinations of single-date SAR and TM data, and multitemporal ERS-1 SAR 

and TM &ta are compared with TM data alone for crop classification. 

In Chapter 7, the use of rnultitemporal ERS-1 SAR for crop identification is presented. 

Specificaily, SAR temporal backatter pronks for major crops during the 1992 aud the 1993 

growing seasons are generated and tbe earliest times of the year to distioguish crop types are 



identified. Mdtitemporai SAR data are evaluated for crop ciassincation usiag sequential- 

masking techniques. 

In the fiaal chapter, Chapter 8, the major findings of this research are summarized Conclusions 

are presented and fiiture research directions are suggested. 



CHMTER 2: VIR REMOTE SENSING IN AGRICULTURE 

2.1 Conventionai Agricultural Inventory 

In the past, inforniaton on crop type and area has 0 t h  been compiied by conducting personai 

interviews with farm operators or by conducthg maü sweys. Despite the valiant efforts that 

reporting agencies have made h m  tune to tirne to acquire information on crop type and acreage, 

whether h m  questiomaires sent to farmers or fiom direct on-the-gnwnd surveys, it is often 

uncenain whether a satisfactory esthate has been obtahed. R e m s  fiom questionnaires have 

often k e n  too few, too inaccurate, and too late. Rems h m  direct on-the-ground surveys, due 

to limitations of both tirne and fiinds, have sometunes constituted too smaii a sample of the vast 

agiculturd a r a  of interest for them to be used with confidence (Colweli et al., 1970). At 

regional and (inter-) national levels, the praiessiag of these sample data is an expensive and time- 

consuming procedure (Bouman, 199 1b). 

Agriculture is a dynamic system whose contml and management cal1 for rapid, regular, a d  

reliabie acquisition of a great many data on the growth cycle of crops, and theù sequence in time 

and space (Gillot, 1980). Remote sensing is presently the only techn010gy that can p d e  

timeiy, regular, and accurate crop inventory information. In fact, agricuitural crops and forest 

species were two areas of investigation to which remote sensing applications were initiaily 

directed (MacDonaId, L 984). 

2.2 Airborne VIR Remote Sensing for Agriculture 

2.2.1 Aerid Photography 

Aerial photography using the visible and the near-infhmd bands for surveying agriculnual crops 

is weU-established. nie earliest fesearch report describing an attempt to iden- crops using 



black-and-white aerial photographs was by Goodman (1959) who used a multitemporal 

approach. Since then. conventional, medium-sale =rial photographs have been used in some 

regions for the identification of major crops and the monitoring of croparea dotments. 

The history of remote sensing in agriculture contains a comprehensive record of exploitation of 

panchromatic photos. largely by the United States Department of Agriculture (USDA); the use 

was virtually exclusively for measuration. huing the 1950s, the Economic Research Service of 

USDA became the f h t  to use historic as well as current air photos to perform land use and land 

use change analysis in an operational context. In the last twenty-five years. the technology of 

crop identification has advanced Born utili2ation of broad-band biack-and-white to black-and- 

white infkared photos; then to nanower band color and then to color-infrared photographs 

(Myers et al., 1983). 

Crop identification by manuai airphoto interpretation is accomplished by application of the 

elements of photo interpretation in the context of knowledge of the local environmental setting 

and the local crop cdendar (i.e., typical dates of plaating and harvesting). In many settings. 

crops are usuaiiy observed planted in UIilform, d i s ~ c t  fields, a single crop to a field. M i s e  

identification of specific crops may be ciifficuit in the absence of detailed knowledge of local 

cropping practices. such as crop rotation. For example, it is usuaUy easy to separate smali-grain 

crops (wheat, oats, barley, rye) from large-grain crops (corn or sorghum), although even 

experienced photo interpreters may have difficulty distinguishing crops withùi these classes 

(e.g., wheat and barley). Therefore, carefiil timing of the date and seam of the aerial 

photographs and howledge of the crop calendar are essential for crop identification and area 

estimation (Campbell, 1987). 

Although black-and-white aerid photography is usudy suitable for crop identification and 

distinction between small-grain crops and large-grain crops. difficuity has been encountered in 



making distinctions within small grains and large grains. If color or color Mkared (CIR) 

photographs are available, it may be possible to interpret information conceming crop maiurity, 

as the iime for harvest approaches. In addition. CER photographs may permit interpretation of 

the presence, location, and nature of insect infestations or diseases (Campbell. 1987). Crop 

discrimination using CIR photography has been snidied closely and it has been found that the 

perceotage accuracy depends on time of year, location and the envitonment For example, in 

some regions crops are planted in very smaü fields, or many different kinds of plants are plantai 

together in a single field. Under such conditions, crop identitication may be much more difncult 

than in the typical mid-latitude situation where fields are large and crops are homogeneous wiihin 

fields (Campbell, 1987). 

At the present t h e ,  aerial photography is by far ihe most widely used remote sensing technique 

in agriculture (Pacheco, 1980). The major advantages of conventional aerial photography are the 

hi& resolution, the wide choice of methods. the availability of instruments, and the howledge 

of nainecl personnel. Aerial photographs also have the aùvantage of providing large-sale 

information, indispensable when mapping at scales above 1:25,000 (Lantieri, 1993). The major 

disadvantages of applying aerial photos to agriculture r e d t  h m  uaeconomic repetitive coverage 

(within a year), non-uniform and uncali'brated intensity measurrmeots tbat obsüuct automated 

density processing, and the relatively high cost per km2. especialiy for large-scale aerial surveys 

(Pacheco, 1980; see Appendix A for cost-benefit analysis). 

2.2.2 Airborne Multispectral Sensors for Agriculture 

Since the 1960s. a major thmst of an element of the U.S. civiliaa remote sensing research 

program has been advancing the techniques for machine pmcessing of satellite-acquireà 

multispecîral data. The program's primary focus has been the use of multispectral data to 

idenw crop type, condition, and ontogenetic stages of culturai vegetation. The research began 



as a result of a National Academy of Science (NAS) study on the applicabüity of remote 

monitoring (NAS, 1970). It was given impetus in the mid-l96ûs with the introduction of the 

k t  airborne multispectral scanner (MSS) operateci by the University of Michigan. In this 

period, narrow-band muitispecaal data were evaluated. in a separate advance, thermal inn.ared 

technology was developed. The ovo technologies were combïned in the 18chamel (between 

0.32 and 14 p z )  University of Michigan Scanner. In 1970, the University of Michigan's 

airborne MSS and NASA's high-altitude photography were used in the Corn Blight Watch 

Experiment - the first largeescale application of remote senshg in agriculture (Myers et al., 1983; 

MacDonald, 1984). In the 1970 report of the Laboratory fcr AppLications of Remote Sensing 

(LARS) at Rirdue University, results of a study were reported in which MSS data were analyzed 

using pattern recognition techniques. The overall validation classification accuracies for corn, 

soybeans, water and a mixture of pasture and other crops were 82.8% (3 V & 1 NiR), 83.9% (3 

V & 2 NIR) and 86.4 % (3 V, 2 MR & 1 TIR)'. 

Using data acquired in the 197 1 Corn Blight Watch Experiment, Kumar (1977) evaiuated 12 

spectral channels in the visible, near infiared, middle i.&ared and t t i e d  infraced (from 0.4- 

1 1.7 pz) for discriminating agriculturai cover types consisting of corn, soybeans, green forage 

and forest. Overd sepluabiiity of green forage (hay and pasture) fiom the other agriculairal 

cover types was found to be considerably lower than the comsponding separability of corn, 

soybeans and forest. The author found that maximum separability of the agriculturai cover types 

was obtained when using aîi twelve charnels. Kumar (1977) m e r  staied that the greatest 

o v e d  statistical separability of agriculaual cover types was obtained with data nom the red 

channel (0.61-0.70 pz). Aiso, the overall statistical separability of the agricuitural cover types 

was found to be greater for the data of August 12 than the data acquired on Iuly 16. 

V. NIR, and TIR denote the visible. near infrarsd. and thermal i n h d  iegiow of the electromagnetic spectrum. 
respectivel y. 



Multispectral scanners have certain advantages and disadvamages when compared with 

photography. Paaicularly important advantages are (i) having the capabiiity to provide spectral 

data in wavelengths not avaiiable h m  photography. and (ii) king able to provîde precision 

radiometnc data on cornputer compatie tape (CCî). The major disadvantages a~ much higher 

cost and lower spatial resolution (Pacheco, 1980). 

Recently, new airborne sensors have been developed which are capable of sensing vegetation 

and other targets at a much h e r  spectral resolution. Such sensors are capable of collecting more 

detailed reflectance spectra and in spectral regions outside those collecteci by the broad-band 

instniments (Malthus et al.. 1993). Such sensors include tbe Multi-detectot Electra-optical 

Imaging Sensor (MEIS II, 8 channels b m  0 . 3 9 ~  to l. lm) (Lillesand and Kiefer, 1994), the 

Advanced Visible-Mked Imaging Spectrometer (AVIRIS, 224 contiguous channels h m  

0.41pm to 2 . 4 5 ~ )  ( S m  and Teillet, 1993). the Compact Airborne Spectrographie Imager 

(CASI, 288 chamels h m  0 . 3 8 ~  to 0.89p)  (Babey and Anger. 1989), and the Geophysicai 

and Environmentai Research Corp. Scanner (GER, 63 charnels h m  0 . 4 7 ~  to 2 . 4 4 ~ )  (Bach 

and Mauser, 1995), The uses of such data for the remote sensing of vegetation have focused 

particularly on the "rededge," the transition h m  low refiectances in the visible region of the 

spectrum to hi@ NIR reflectaace (Maithus et al., 1993). For example, Cleven et ai. (1994) 

used A W S  data to monitor crop growth by using the red edge index to estimate the leaf opticai 

properties during the MAC Europe 199 1 campaip. A number of papers on forestty applications 

using these sensors were found in the literature; however, few applications in agticultiire were 

documented. Possible reasons are the high costs and complexity of these sensors. 



2.3 Satellite VIR Remote Sensing for Agriculture 

2.3.1 Earth-Observation Satellites 

The advent of eanh-observaiion @O) satellites led to the ability to cover much larger ground 

areas than could be achieved using aircraft in a given time. The ability to examine vegetation 

patterns, combined with the synoptic view and =petitive coverage of satefite sensors, provides 

an oppominity to survey agriculnval resources in a manner that has not been possible in the past. 

The launch of Landsat-L in July 1972 began a new era for the acquisition of information about 

the earth. Although early satefites suffered fiam datively poor resolution by aucraft standards, 

system developments have led to the production of high-resolution images and the abiüty of 

cornputers to process the high vohune data at a fast rate, an essentid rqîüernent with high- 

resolution images. A major brealnhrough was made with the launch of Landsat-4 in 1982 and 

the French SPOT sateIlite in 1986, which carrieci higher radiometric, spectral, and spatial 

resolution sensors such as the Thematic Mapper (TM) and High Resolution Visible instruments 

(HRV). Satellite remote sensing technology has continwd to advance, particuiarly in the area of 

sensor systems. These advances combineci with rapid developrnents in the field of digital 

computing, have increased the paential to derive information of value for @culturai decision- 

makers (Ehrlich et al., 1990). The fuadamental characteristics of the data acquired by the major 

earth-observation sateUtes are listed in Table 2.1 (Campbell, 1987; Lillesand and Kiefer, 1994; 

ES A, 1995a; RESTEC. 199th; 1996b; Sateiiitbild, 19%). 

Studies aimed at perfecting teclmiques for identifyiag crops, and estimating acreage and yield of 

crops, have inteasfieci with these impmvements in technology and the increased availability of 

satellite imagery. The procedures for identifyiag crops and for estimating acreage and yield, 

utiliWng remote sensing techniques, are frequently complex. Yet, ihe accuracy of crop 

identification with present Laadsat data has been reported as king 90 percent or higher in studies 



Table 2.1. Cbaracteristics of Earth-Observation Satefite Data 

MSS 
(Mu1 tispectral 
Scanner) 

Spectral Range 
w 

Spatial Resolotioa 
m 

26 (Nadir)' 

26 (Nadir)' 

22 
for individual satelIite 

11 
for iRS-1 allb together 

same as above 

1. SPOT has two identical HRV sensors which operate in two modes. i.e, Multispectral Mode (XS) and Panchromati 
~~ (PAN). 

2. Off-nadir viewing capability increases the repeat coverage at intervals of 1 to 5 days. depending upon latitude. 

3. LISS: Linear Imaging Self-Sc-ng System. 
4. V N R  Visible and Near-lnfiarcd; S m :  Short-Wave ïnfrared SWIR ceased to observe in December, 1993. 

of areas where tbere are large, homogeneous, redinear fields with few cornpetkg crops, such 

as irrigated rice in California, potatoes in New Brunswick or wheat in Western Canada. 

Relatively few areas in other parts of the world, however, are stmchired as simply as wheat 



fields in Canada and the United States. In the developing countries, cropland is Ekquently 

interspersed with nonîmpiand, fields are small and irrepuiarly shaped, and numerous crops 

have similar specaal responses. In nich complex enviroments. a single Laodsat image may not 

provide enough data to be useful for purposes of crop identification (Myers et al.. 1983; Avery 

and Berlin, 1992). Selected studies on crop identification accuracies in different geographic 

regions using Landsat MSS, TM, SPOT and IRS data arr pteseated in Table 2.2. 

In the 1970s and early 1980s. a series of large-scale agicultural satefite remote sensing pmjects 

were implemented. The Large Area Crop hventory Experiment (LACTE) was the fîrst 

comprehensive study to perfom wheat-area estimation and production forecasting at the 

regionakounüy level (MacDonald and Ha& 1978; Erb. 1980). ûther notable pmjects were die 

Agriculture and Resowce Iaventory Surveys Through Aemspace Remote Sensing Program 

(AgRISTARS) in the U.S. (Myers et al., 1983) aad the Agricuiturai Resource investigations in 

Northem Italy and Southem Fraace (AGRESTE) (Dejace and Megier. 1980; Berg, 198 1; Meyer- 

Roux and King. 1992). In the late 1980s and early 199ûs, @cultural inventories using remote 

sensing have been quite successful worldwide. Among numerous studies descnkd in the 

literahue, the major agicuittue application pmgrams are presented in Table 2.3. 

The potential of satellite remote sensing for the monitoring of agricultural crops and for 

estimating crop production was recogDized by Canadia0 scientists in the eady 1970s. Shortly 

after the launch of Landsat-1, several investigations werr undertaken to evaluate the feasibility of 

crop-area estimation using satellite data (e.g., Adriason et al.. 1975; Crosson et al., 1975; Mack 

et al., 1975; Mosher et al., 1978; Ryerson et al., 1979; Goodeaough et al., 1980; Ryerson et al., 

198 1 a; Ryerun et al., 198 1 b; Ryerson et al ., 1985). Of special interest were areai crops w hich 

are a major Canadian commodity on the domestic as weli as intexnafional markets (Atkinson et 

al., 1975; Crosson et al., 1975; Mack et al.. 1975). Other shidies focused on crop-conàition 

monitoring (Mack et al., 1977, Brown, 1986; Cihlar et al., 1988).  



Table 2.2. Applications of Landsat MSS, TM, SPOT and IRS Data for Crop Identification - - 
in DBerent Geographic Regions: Selected Studies (ESA, 199%) 

Description Accuracy Subject 

Laudsat Melfort test 
MSS site & 

Delisle test 
site, 

North Americr 

Classification of ccfeal m p s  at 14 
1-ons in the spriag wheat area of 
North hm-ca for over 42 Landsat 
images- The level of accuracy varieci 
with the date of image selected and 
with the aiteria to characterize 

C e d  crop 
(wheat, oats, 

barley) 
classification 

Mack 
et al-, 
1975 

imagery and digital data to aid in the 
mapping and estimation of imgated 
land and specific crop types. individual: 

5-5646 

Crop 
identification 

â area 
es tirnation 

Landsat California, 
MSS USA 

Sharon 
er al.. 
1984 

TM data were evaluated for ciassifi- 
cation of summer crops including 
soybem, corn, sorghum. sunflower, 
winter wheat, oats, and Pasture. The 
average field size is 150 h a  
Digital ~Iassification techniques were 
developed for AustraLian conditions, 
Landsac data for 5 dates were used to 
classify winter crops and other land 

Classification of 
summer crops 

Badhwaf 
r t  al., 1987 

92% 
(w heatinon-whea 

97.5% 
(winter cropsl 

Landsat ew South Wale 
MSS 1 Australia 

Large-area crop 
classification 

Dawbin & 
Evans, 
1988 

cover types. . non- winter crops 
MSS and TM data were used to study Rye: 90% 

Landsat Provinces of 
MSS &TM Scania & 

Osterg~tland, 
sweden 

Crop 
monitoring and 
~Iassification 

the relationships between ~andsati 
based spectral differences and crops. 
and to evaluate mono- and multi- 

&rig nop t 
potatos: 70% 

winter & sumnxx 

Hall- 
Kanyves, 

1990 
temporal classification accuracy, and 
area estimation accuracy- 
Two strategis to improve crop 
classificaaon accuracks were 
explored: (i) use of digital ancillary 
data, (ii) use of muititemporai data 

wheat, barley & 
oats: 40-6095 

Soybeans: 9 1 % 
corn: 78% 

smail 9496 
sugar beets & 

Veneto, 
Italy 

Improviag 
crop- type 

de termination 

- - -  

Ehrlich 
r al-, 1990 

orchards: 85.6% 
Muititemporal TM data were used to 
estimate rice cultivated ana An Rice cultivated Estimaaon of 

cropped a m  & 
yield of rice , 

Landsat North of 
1M Bangkok, 

Thailand 

ennakoon 
et al., 
1992. 

attempt wlis made CO develop a I area:>m 
relations hip between reflectance 
values and actual rice yield A plant 
process mode1 was adopted for 1 
estimation of tice yield 
Multi temporal and mu1 tispectrai SPOT 
data were used to calculate ûuee 
spectral indices. (i) radiometric means 
(Cl. CIL, C3), (ii) vegetation index 
(NDVI), (iii) brightness index (Bi); & 
to study their relationships to crop 

l 
L 

Rice (C 1-3): 100% 
sugar beets (BI): 

83% 
(BI): 82% 

alfalfa (NDVI, BO: 
72% 

Spectral ihdices 
& crop 

discrimination 

m 1 nusaloni i i -  
HRV (MS) Giannitsa plain Silleos 

t al., 1992 

discrimination. otton (NDVO: 334 
Wheat acreage was estimateà using 
single-acquisition IRS- 1 A LlSS-1 data 
February 1989 daia were used and the at 9046 confidence 
results were available by 1 1 April level 
1989, before the start of harvestin , / Pre- harves t 

- -  

I IRS-IA State of Punjab, 
LISS-I India 

Mahey 
! al., 1993 1 state-level 

w heat acreage 1 
estimation 1 



Table 2.3. Major Agriculture Application Programs Using EO Data (ESA, 199%) 

Project Agencg 
Title I Description 

Satellites 

estimation 
production 

in India 

ISRO 1 (India 
Space & 
Research 
Organiza 
-tion) 

LISSI 
(CRS- 1 A) 
MSS 
(Landsat) 

- - - - -- - - - 

novision of timeiy infornation 
on production of major crops to 
assist in policy decisions such as 
buffer stock level, important 
requirements. and price level- 
Operational since 1986. 

- - - - - - - 

Accurate prediction of crop 
yield is now possible This is 
extcemely important as 75% of 
population depend upon 
agriculture. Accutate data on 
crop acFeage are now available 
for use in agrkulture planning, 

(on-going) 

MARS- JRC 
monitoring (EC's 
agricultural Joint 

Research 
Center) 

Pmjcct CO use satellite EO &ta to Pmject has resuited in ibe 
pmvidc quantitative atimatioos introduciioo of rernote sensing SAR 

(ERS-IR) of crop acfeage and ttiereby to techniques to verify the 
AVHRR provide yield estimates. implernentation of the 

common agricdturai policy of 
statistics 
in the EC 

1 1 the EU. 
Main cmp 
yieId 
estimation 
in China 

TM 
(Landsat) 
AVHRR 
(NOM) 

This pmject used remote sensing 
to develop several cropyield 
estimation models, establish 
crop-yield estimation software 
and an incegrated system- The 
main crops include wheat, rice 
and mai= in China 

Through this project. a crop 
yield estimation system was 
developecf, and crop disuibutia 
maps and yield forecasts were 
verif id In the future, the 
system may be expandeci to the 
whole country. 

Dept of 
Develop- 
ment and C ALIS - 

Egyptian 
agricultural 
land 
information 
system 

HRV 
(SPOT-2) 

1 Agricultwl Land Mormatioa 
System data, produceci for Nide 
Valley area of Egypt for Soi1 and 
Waw Rescarch Institute, 
Egyptian Mnistry of Agriculture. 
It pmvides capability to measure 
crop pmgress, land potenual and 
urban encroachment on to 
famiand. 

EO image data allows a more 
accurate assessrnent of the 
agriculniral land use and a 
detailed forecasting of area 
yields for the main crops. 
Detailed monitoring of urban 
enroachment on to Nile vailey 
fannland is also now possible. 

luly 1991 

(on-going) 

iugar beet 
nonitoring 

Logica 
DRA 
BNSC 

1 EO images o f m p  areas aremeci 
to g c ~ n a  sugar beet yield 
forccasts for factory catchent 
ams. The end user is British 
Sugar- 

Saving of £1.8 million per 
annurn for British Sugar pic 
fmm improvements in beet 
delivery planning, operational 
factory management and 
marketing nonquota sugar. 

nventory 
, f 
ip-culture 
uid 
mgated 
ands in 
Cansas 

NASA 
Universit~ 
of K-%w 

Rogram uses tandsat scenes to 
identify the spatial distribution 

of f -*!apds~P-ofLe. .  , 

~okervation Rcscrve Rogram 
which encourages farmers to 
convert erodable a~*culture land 
into massland- 

Inventory using remote 
sensing is quicker and more 
cost effective than traditionai 
methods, allowing better land 
management. 

:onuol of 
sea-based 
rabte and 
orage 
ubsidies 

Hunting 
Technicd 
Senrices 

[Landsac) 
Pan&XS 
: S m  
EAR 
:ERS- 112) 

Contract to use satellite imagery 
to check claims for agriculture 
support payments under the 
Eumpean Commission's 
Integrated Administration and 
Conml System (IACS) 

Roject has enabled 
standardization of controls. 
Also cost and efficiency 
savings. 

1994 

(on-going) 



in addition to demonstrating the potential of visible and near-infhmd (VIR) data for agriculture, 

these studies highlighted the limitations of Landsat and SPOT data caused by reiativeIy infiequent 

revisits and cloud cover. This is piuticulariy relevant in higher middle latitudes where the 

growing season is short and crop development is therefore rapid For example, in the prairie 

region of Canada, 85 percent of the days during the growing seasons fiom 1980 to 1985 were 

affkcted to some extent by cloud cover (Brown, 1986). This impairs data acquisition by means 

of VLR sensors at important stages of crop development (Myers et al., 1983). Agriculturai 

applications need adequate temporal resolution since some of the Cntical and indicative changes in 

crop phenology take place over a period of as littie as four days. Therefore, the ideal potential 

temporal resolution should be less than four days, even if this kquency is oniy needed duriag 

critical periods of the growing season (Men, 1990; Figure 2.1). 

Figure 2.1. h o t e  sensing applications in relation to spatial and temporal resolution, 

ilbtrating the factors Iimiting their suitability (Men, 1990). 



2.3.2 Environmentai/Meteorological Satellites 

EnWoomentaYMeteoroIogical satellites such as METEOSAT, GOES, NOAA (see Table 2.4 for 

system characteristics) are best suited to frequent (hourIy, daiiy or weekiy) monitoring of 

relatively large areas, such as continents, subregions or countcies. Although they are desigaed 

primarily for meteoro10gicai and oceanographic snidies, these operational satellites provide rapid, 

continuous global coverage which was not previously feasible. Data fiom these satellites have 

been used successhilly for vegeiation and environmental monito~g over very broad geographic 

regions at scales from 1: 10,000,ûûû to 1:2,000,000 (Lantieri, 1993). Table 2.5 shows selected 

studies of agriculairal monitoring using environmental satefite systems. The major agiculturai 

monitoring programs using these satellite systems are presented in Table 2.6 (Phiiipson et al., 

1988; Manore and Brown, 1990: Hutchinson, 1991; Kalensky, 1992; HieUrexna and Snijders, 

1993; ESA, 199%; FAS, 1996; Rashid, 1996). 

Table 2.4. Example of Environmental Satellite Systems 
(Yates et al., 1984; Kramer, 1993; TELSAT, 1995, ESA, 1996a & 1996b) 

Satellite 

NOM-POES* 

NOAA-GOES* 

* POES: Polar-Orbiting Op~ational Envïrunmental Satellite. a N O M  weather satellite series. 
GOES: Geostatiomcy Operational Envimamentai SateUite, a NOAA wcather satellite series. 

** AVHRR: Acîvanced Very High Resolution Radiometer. 
VISSR: Visible and lnf'rared Spin Scan Radiometer. 
MVIRI: MEIEOSAT Visible and Inftared Imager* similar to VISSR- 

Sensor 

AVHRR** 

* A T  

VISSR** 

Spectral Range 
W 

0-58-0.68 

0.55-0.70 

10.5- 12.5 
- - 

MMRl 

Spatial Resolution 
km 

1.1 at nadir 
8 at the border of the images 

- - 

2.5 

2.5 

5 

- - 

0.5-0.9 

5-7-7.1 

10.5-1 2.5 

Temporal 
Resolotioii 

l2 ' l daYs 

1 

8 

30 minutes 

30 minutes 

30 minutes 

30 minutes 

30 minutes 



Table 2.5. Agiculturai Monitoring Using Environmental Satellite Systems: 
Selected Studies 

Refercnce 

Tucker et al., 
1984 

Sabject Study Area Description 

Fifteen dates of AVHRR data between May and 
October 198 1 were collectd For each date, a 
Normalized Diffetence Vegelation Mex (NDW) for 
each pixel was calculated For each of the 15 dates, 

Examination of 
crop phenology 
and agiculnual 

practices 

AVHRR 

AVHRR 

AVHRR 
Landsat MSS 

AVHRR 

I 

AVHRR 

Nile Delta 
Esypt 

a rn6 of the vegetation index was prepved 
Individualiy, the maps show patterns of vegetation 
and agriculture: in se<luence, k n d  patte& in 
irrigation, crop growth, mahinty and harvest were 
revealeà 
Effets of the 1988 dmught on crops in the U.S. Monitoring US. 

crops during 
1988 dmught 

- - - -  

G.s Corn Belt 
Corn Belt were auessd-and moniiored by the 
Foreign Cmp Condition Assessrnent Division 
(FCCAD). US. Department of Agricuiture (USDA)- 
Using vegetation index numbers 0, FCCAD was 
able to detect the existence of drought early in the 
season. monitor changing conditio&, and pmvide 
objective assessments of the drought's extent & 
severity. 
A method to corrielate crop production in Zambia to Zambia Interpretation of 

cfop growth 
pattens 

Azzaii, 
199 1 

Benedetti & 
Rossini. 

1993 

Groten. 
1993 

the yearly evolution of the NbVI is pmporcd The 
method consisu of the anaiysis of remote sensing 
data togethet with meteorological data and simulated 
crop production to obtained indicaton of crop 
production. Landsat MSS data were used fint to 
locate the agn'culturai ana, then the NDVI time 
series of rhe *agrkuIturain pixels were used to 
calculate crop growth indicators which can be 
applied to assess crop production. 
Ibe NDVI profiles were used as a tool for wheat Wheat yield 

estimate and 
forecas t 

Emilia 
Romagna 

ltaly 
nonitoiing-ïn luily between 1986 and 1989. NDVI 
las been found to be highly represcntative of plant 
~hotosynitietic capacity and efficiency. Based on 
WVI inkgration during the wheat grain filling 
~riod,  a simple tinear cegression mode1 has been 

Burkina _i Feso 
laived for wheat yield estimate and forecast. 
h a 19841989 series of ARTEMIS-M)VI data 

monitoring & 
&y yield 

ien'vcd h m  the AVHRR seasor, a case study on 1 
m p  monitoring and early m p  yield forecasting 1 

assessment 
Rice paddy 
inventory 1 vas elabocatcd for the provinces of Burkina Feso. 

3me Senes NDW, computed h m  AVHRR data, wcre Bachelet, 
uscd in an anempt to locatc areas of rice cultivation 1995 
in China MlVI dynamïcs were cxamhd using 16 
km global atca coveragc data from 1988 compsited 
into 12 montbly images. 
Weeldy maximum due AVHRR NDW composites Hochheim et of., 
were used to predict spnng wheat yield for Western 1996 
Canada. Results for 199 1 & 1992 growing seasons 
show that early season NDM yield estimates are 
within 5% of officiai yield estimates released 3 

1 1 1 months following harvest. 1 



Table 2.6. Major Agrïcuiturai Monitoring Progratm Using 

- -  - -  

Project 
Ti t l e  

Ggency [nstrumti 
Satel l i te  

Dcscrip tion Program 
Start Datt 
(Duration 

d 1978 
iD (on-going) 
in 
d 
or 

Woddwide crop assessments an1 
production forecasting by PECP 
provides advance information c 
areas which may experience fw 
shortages- Timely information 
a woridwide basis is du, 
important to stabilize fluctua- 

Internation 
crop 
condition 
and 
production 
analyses 

Production 
Estimates i 
crop 
Assessmen 
Division 
(PECAD). 
FAS, 
USDA - 
US Agency 
for 
Internation 
Developme 
(USAID) 

Operational outgrowth of 
LACTEPECADanaIyzes. 
satellites images & 
supporting information to 
monitor and assess crop 
conditions worldwide, and to 
analyze world agriculnual 
production and supply. 
FEWS considers rainfall, yield 

uo& in commodity markets. 

(on-going) 

~ 
1987 
(on-going) 

1988 
(on-going) 

1988 
(10 years) 

Famine Ear 
Waming 
System 

Decadal (IO-day composite) ND' 
estimates, production estimate 
market prices, otber social 
îndicators, and AVHRR data, 
Confi.0nted with such a wide 
array of different data types, 
FEWS analysts have corne to 
rely more heavily on AVHRR 
GAC NDW data than any other 

images for large regions help ta 
reveal regional patterns chat 
might not be readily observed ii 
precipitatioa station data alone 
AVHRR NDVi time secies for 
administrative are compan 
[O historical means and exueme 
(e-g., the 1984 drougtit) to gaug 

singie type of information. 
Monitoring vegetation & crop 

the current conditions. 
Capabilty for cost-effective crop 

informatior 
system 

AR'IEMIS - 
9fn'ca Real 
Iïme 
Environ- 
nentaI 
Monitoring 
information 
System 

:CRS 
4griculture 
n A@-Fm 
h a d a  
h a d i a n  
fieat Boa 

FAO.UN 
msAK;FS( 
University 
>f Reading 
m 
Uational 
4erospace 
mboratory 
rf the 
qetherlands 

Rc 
EC's Joint 
leseasch 
:enter) 

condition for aÏl Canada 
Operationai since 1987, after 
pilot project 1985-86. Rwluct 
is NDW rnap used by Agrîculw 
Division of Statisacs Canada ti 
generate yield forecasts. 
Crop conditions, drought 
levels and locust threat are 
jetermineci fiom EO images. 
[n addition, estimates of 
anfail can be generated h m  
mld-cloud images, Data 
~btained via High Resolution 
?icture Transmission (HRPï) 
k Pnmary Data User Station 
?DUS)- 

wide-area vegetation condition 
rnonito~g- Early season wheai 
yield iadicators are producecl 
aliowîng the improved manage- 
ment & planning of marketing d 
distribution facili ties. 
A R ~ S  has been used successa 
hlly by FA0 & national gouem. 
ments for monitoring c e r d  
pmduction in Afnca & as an earl 
waming tool in assessrnent of 
2oad aidlirnport requiremencs 
:e.g. it provides timely infor- 
nation to G W S ) .  This system 
:an generate timely images over 
%tire region tequired thus 
emoving dependence on sparse 
pound- based observations. 
'roject has resulted in the 
ntroduction of remote sensing 
whniques to verifl the 
mplementation of the common 
p-cultural policy of the EU. 
lhrough this pmject, a cmp-yiel 
simation system was developec 
md crop distribution maps & 
field forecasts were verified. In 
he biture, the system rnay be 
nxpanded [O the whole country. 

'roject to use satellite EO data 
O provide quantitative estima- 
ions of cfop acceage & 
hereby to provide yield 
:stimates. 
rtiis pmjcct used remote sensin 
O devclop severai mpyield 
samation models, establish 
mpyield estimation software 
md an integrated system. The 
nain crops include wheat, ricc 
md maize in China 

m s  - 
nonitoring 
igriculniral 
Satistics 
n the EC 
Main crop 
yield 
stimation 
n China 



From the above selected studies, it is clear that AVHRR data are adequate for large-area, 

operational monito~g of crops due to the sensor's wide math and excellent tempord resoiution 

which increases the likelihood of cloud-fiee observations during the growing season. It is also 

clear, however, that AVHRR data m much too coarse to attempt mapping of individuai crops 

and fields. Cropping in most agriculaual areas of the world is neither monoculnual nor in fields 

with sides larger than 1.1 km (AVHRR local area coverage) or 4.4 km (AVHRR global area 

coverage). Vegetation indices of nearly ail ceils of AVHRR pixels are derived h m  a 

preponderauce of mixed pixels. Researchers (e-g., Philipson et al.. 1988; Azzaii, 199 1; 

Bachelet, 1995) €'und that, despite the prepondemace of mixed pixels. usehl global or 

continental cmp iaformatioa can be reliably and efficiently derived h m  AVHRR &ta The 

usefùlness of AVHRR data is mon appaRnt in m o n i t o ~ g  the effects of episodic weather events 

on crops (Teng, 1990). 

2.3.3 High-Resolution Satellite Systems 

In the past two years, the deciassification of US. spy satellite technology has stimulateci the 

development of hi&-reso1ution commercial lemote sensing sakllite system, such as 

ORBIMAGE, Space Imaging. and EarthWatch. Geophysical & Environmentai Research Corp. 

(GER) annomceci recently its plan to develop a satellite system for cmp monitoring. The GER 

Earth Resouice Observation System (GEROS) is a conste11atiou of six to eight satellites. Each 

satefite wiIl be equipped with a panchromatic and a muitispectrai sensor. The multispectral 

sensor will have 10 m resolution and the paachromatic will have better than 10 m resolution. 

GER intends to offer farmers affordable products on a rapid revisit cycle. GER is also 

developing a &round system that will get the satefite data and cmp information to the farmers fast 

enough to Save stressed crops. High cost and slow tu~izuound time have impded widespread 

imagery use by individuai famiers for monitoring the bedth of their crops up to present (GER, 



1995). This and other hi@-resolution systems WU be important data sources for precision 

farmuig - an information and technology-based @culturai management system (Robert, 1996). 

2.4 Crop Information Extraction from Satellite YIR Data 

2.4.1 Temporal-Spectral Prolücs for Global Based Crop Identification 

The identification of dtivated crops b m  sateIlite VIR imagery has been accomplished by the 

recognition of a temporal pattern of crop characteristics through the gmwing season of a 

particuiar crop of interest. The main idea is to infer the time of occurrence of a particuiar feature 

that is stable nom year to year and does not overlap with similar characteristics h m  other crops 

growing in die same geographic region. If such feahm(s) could be identifieci, the crop of 

interest could be accurately and consistently identifiecl (Badhwar, 1984a & l984b). Experience 

with Landsat data in the LACE and other studies demonstrated that the use of multitemporal data 

greatly enhances the ability to distinguish between various crop spectral patterns. In the late 

1970s and early 1980s, interest developed in utiiizing charactetizations of continuous patterns of 

crop spectral development over the, termed "spectral profiles", in automated crop identification 

techniques (Tucker et al., 1979; Crist and Milila, 1980; 1981; Badhwar, 1982; Badhwar et al., 

1982; Badhwar, 19- 1984b; Crist, 1984, Odenweiler, 19û4; Turner, 1986; Hd and 

Badhwar, 1987). In the early stage of development, these techniques relieci on the temporal 

sequences of colors (i.e., non-red/red/non-red) indicating non-vegetation/vegetation/non- 

vegetation in the fdse-color products. They also depended greatîy on human analysis and 

interpretation of nùn products and were not very effective or objective (Badhwar, 19û4a; 

1984b). A breakthrough in this field was made by Kauth and Thomas (1976) who developed a 

technique cafled the Tasseiled Cap. The greenness component of Tasseiied Cap is the most 

appropriate indicator for crop identification because it measuns innared refiectance relative to 

that in the visible band (OdenweUer, 1984; Hall and Badhwar, 1987). 



Aithough temporal-specrrai profiles contain information to support crop identikation at various 

levels, some caveats must be attached to the use of promes. Tbe overall appearance of a profile 

is highly dependent upon data acquisition history. If key observations are missing, 

discrimination f m  may not be detected Furthermore, if the lakling target is misregistered 

on any acquisition, the resuiting pronle wiU be inaccurate. These are generic difnculties related 

to the analysis of multitemporaî satellite VIR data (Odenweiler, 1984). 

2.4.2 Vegetation Indices 

Vegetation index 0, a measure of "gree~ess," is directly related <O the heaith and vigor of 

vegetation. It is d e r n i  in t&e literature as a good indicator of biomass and as an indicator of 

photosynthetic activity (Ehrlich et al., 1990). Various vegetation indices have been dewloped 

including the Ratio Vegetation Index @VI), the Normked DBerence Vegetation Index 

(NDVI), the Tramformed Vegetation Index 0, the Tasseiled Cap Transformation (for MSS), 

the Crist and Cicone Transformation (for TM), Perpendicular Vegetation indices (PVIs), the 

Greemess above bare soi1 (GRAM), and the Cereals LRaf Area Index (CLAI) (Crist and 

Cicone, 1984; Jensen, 1986; Wiegand et al., 199 1). VIs have beai used extensively to monitor 

agriculturehue For example, NOAA provides standard vegetation index maps compiled weekly for 

both hemispheres h m  AVHRR data (Jensen, 1986). Although the spectral bands of AMIRR 

are not ideally positioned for vegetation anaiysis, as  tbey are rather bmadly dehed and are not 

focused on the spectral regions of maximum interest, the meaning of the vegetation index denved 

is the same (Campbell, 1987). 

Vegetation indices have been employed in two separate kinds of applications. Many of the k t  

stuclies defining applications of vegetation indices attexnpted to "validate" their usefulaess by 

establishing that values of the Vis are closely related to biological properties of plants. Typicaliy, 

such studies examined test plots during an entire growing season, then compared values of the 



VIS, measured throughout the growing season. to in-situ measurements of leaf-area index (LAI), 

the area of le& surface per unit area of soil sucface. The objective of such studies was ultimateiy 

to establish use of VTs as a means of remote monitoring of the growth and productivity of 

specific crops, or of seasonal and yearly fluctuations in productivity in a tuaely and accurate 

rnanner. 

A second category of appfications uses VIS as a mapping device - much more of a qualitative, 

rather than a quantitative, t d .  Such applications use WS to assist in image classitication, to 

separate vegetated h m  non-vcgetated areas, to distinp*sh between ciiffereut types and demities 

of vegetation, and to monîtor seasonal variations in vegetatïve vigor, abundance, and 

distributions (Campbell, 1987). 

2.4.3 Classification Algorithms 

Many forms of classification aigorithm have been used in agricultural crop identification, 

including supervisedlunsuprvised, parametfiidnon-parametric, per-pixevper-field, texturai and 

contextual. The supervised maximum likeiihood classifier is the most commonly used 

parametric, per-pixel classifier. In contlast, however, cluster anasis is commonly used for 

unsupervised, per-pixel classincations. A per-fïeld classifier, known as ECHO (Extraction and 

Classifcation of Homogeneous Objects), was developed by Ketting and Landgrebe (1975). 

ECHO classifies a digital image into fields of spectraily similar pixels before the pixels are 

assigned to categories. Classification is then conducted using the fields, rather than individual 

pixeIs. 

New developments in image classification incluàe a knowledge-based approach through 

integration of ancillary data from a GIS. For example, Janssen and Middekwp (1992) designed 

a knowledge classification method to improve crop classification. Crop data of preceding years, 



stored in a GIS, were used as a n d a r y  data Knowledge about crop succession, detemillied 

h m  croprotation schemes, was formalized by means of transition matrices. The spectrai data, 

the data 6mm the GIS and the hiowledge represented in the transition matrix were used in a 

rnodified Bayesian classincation algorithm. Dependhg on the spectral class discrimination, the 

accuracy of the knowledge-based classincation was 6% to 2W0 better compared Mth a maximum 

likelihood classification. Kontoes et al. (1993) also used a knowledge-based system to improve 

remote sensing image classincation for estimates of crop m a g e  through the integration of easily 

available geograpbic context inhnnation h m  a GIS, such as soii maps and bufTered mad 

networks. Ehrlich et al. (1994) developed an advanceci agriculturai information system (AAIS) 

for operational agriculairal crop area estimation by integratïng a variety of data types including 

satellite imagery. 

2.5 VIR Spectral Vegetation Identification: A Hope Untdiled 

Early in remote sensing, and persisting to this day, investigators have tried to establish a 

characienstic pattem of reflectance (a spectral "signature") to associate with speciiïc types of 

vegetation. In some cases, results were excellent; in others, very poor. In fact, this approach 

was not robust - it depended too much on luck and fortuitous circumstaaces. As a general class 

of objects, green vegetation itseif cm be identifid as a specoally unique object Nevertheless, 

the whole scheme of converthg MSS, and especiaiiy TM, data to a single vegetation measure 

(index) rests on the fact that vegetation &as a unique composition compared to objects such as 

soils and rocks. Speci!ïc types of vegetation (e.g. corn and soybeans) however, can (and do) 

have similar optical broad band specttal propenies at a gîven location and given time in the 

season. In a particular region, one might count on a particular vegetation type having a 

particularly high value of a primary measure, such as alfalfa having a very high near-infrared 

reflectance compared to many other crops. Nevertheless, the successful spectral identification of 



a crop, like alfalfa, depends on a set of circumstances that may not hold in the next region or at a 

different stage of growth (Paris, 1990). 

What are the alternatives to the identification of crops based on single-date spectral 

mea~ucements? The answer seems to be the element of time (seasonal or temporal change). in 

the AgRISTARS Project, researchers found that one codd relaie to crop type the seasonal 

patterns of emergence of a crop, its growth and its senescence to harvest, as seen by Lanùsat 

MSS or TM (or any other sensor that responds to changes in standing biomass especidy foliage 

biomass). An excellent example was the identification of corn and soybeans. Using the 

greemess masure h m  the Kauth-Thomas TmeIIed Cap or the Crist and Cicone 

Transformation (MSS and TM, respectively), it is possible to fit a two-parameter mode1 to the 

seasonal variations of chmges in gnenness in a particular field. Then, ushg a crop-calendar 

mode1 incorporating a non-hear distribution in greenness having characteristics of emergence- 

date peak greenness and length of season, corn could be distinguished fiom soybeans in every 

crop-growing region without changing the decision d e  or its parameters. This 'Temporai- 

Spectrai Profile" approach is robust - it works everywhere for global-based crop recognition 

(Hd and Badhwar, 1987; Paris, 1990). 

There are two mjor problems, however, associated with using EO satellite VIR data as a 

monitoring tool over a large area. One is the sheer volume (revisit) of imagery which must be 

analyzed, while the o k r  is the uncertainty of actuaily acquiring the imagery due to cloud cover. 

For example, in Oxford County, southem Ontario, Canada, cloud-ke SPûT imagery were not 

available during the growing seasons of 1988. 1989,1991,1993 and 1995 (see Appendix B for 

SPOT search results). In the Canadian prairies, 85% of the days during the growing season 

fiom 1981 to 1985 were affected by cloud cover (Cihlar et al., 1986b). Most parts of western 

Europe have a cloud cover of 6/8 to 8/8 for at least 50% of the t h e  (De Loor, 1980). In general, 

tropical and semi-tropical crop envbnments have inescapable cloud problems at lest 75% of the 



tirne, while other areas in the world often have cloud problems fiom 30% to 50% of the time 

(Myers et al., 1983). 

As a partial solution to the cloud-cover pmblem, a thomugh evaluation of the information content 

of the NOAA AVHRR data was desirable. However, AVHRR data also suffer h m  serious 

limitations. They have wide scan angies and low spatial resolution (1.1 km - LAC or 4.4 km - 
GAC) which distort the crop information present, and they can be acquired only when the sky is 

clear. CiMar et al. (1986) concludeci that the data are not suitable for croparea estimation or for 

other assessments requiring field-by-field analysis (Figure 2.1). Mimwave instruments, such 

as imaging radar, are very attractive data sources h m  the timeiiness standpoint since these dara 

can be acquired virnially independent of the weather conditions. 

The recognition of crop type, estimation of crop acreage, and timly and accurate prediction of 

crop yield are matters of critical interest everywhere in tée world. Perhaps no infotmatïon is 

more basic for yield p~dictions, agriculturai planning, and erport-import negotiations of 

agriculturai commodities, than data on crops being grown in a region or a country. Acquisition 

of timely and reguîar information is a criticai requirement for niccessful management of a crop 

information system. Unfortunately, farm questionnaires are too time-consuming to administer 

and there is a considerable delay in processing the information. 

The use of aerial photographs recordhg in the visible and the near-infi.ared bands for surveying 

agricultural crops is weil established The use of more sophisticated techniques (e.g., high- 

altitude colour-iafrated photography, multispectd scscanniag, and earth sateliite imagery) offers 

the potential for macroscopic agricultural surveys on a synoptic bsis, dong with detailed 

observations of selected croplands (Avery and Berlin, 1992). Quantitative measurements of key 



agricuiturai crop properties, the identification of crop types, and the estimation of theu areal 

extents using EO sateIlite data have been major goals of remote sensing for severai decades. 

Many investigators have pursued these goais by studying the infomation content of VIR 

sensors, such as the Landsat MSS, TM, SPOT HRV and IRS-1 LLIS (Colweil, 1983; Paris, 

1990). Crop identification and croparea estimation can be done fairly successfbiiy using satellite 

sensors operating in the VIR regions of the spectrum (accwafies of about 80%, very site- 

specific). Data coilection, however, can be unreliable due to problems of cloud cover and 

infkquent revisits at critical stages of the growing season. AVHRR provides rapid, continuous 

global coverage and is aQsuate for large-area. operational monitoring of crops; however, the 

data are much too coarse to attempt mapping of individuai crops and fields, and the data can only 

be acquired when the sky is clear. Use of airborne h g e r y  for data collection is technically 

feasible, but cosn become prohibitive and speed is a concem when large areas are king studied 

(Howarth and Protz, 1991). Mimwave hstnunents, such as imaging radar, appear to be very 

aitractive data sources from the timelioess standpoint since these data can be acquired v M y  

independent of the weather conditions. 



CHAPTER 3: SYNTEiETIC APERTURE; RADAR FOR AGRICULTURE 

3.1 Introduction 

Radar remote sensing bas the jmtential to play an important role in agriculnaal crop mapping and 

monitoring for several reasons. h particular, rssdar permîtsi the acquisition of high-resolution 

data at optimal times during the crop growth cycle, regardlas of atmospheric or solar 

illumination conditions. This d t s  in a high degree of timeliness or synchronization between 

the Synthetic Aperture Radar (SAR) data collection and the crop calendar. Thus, growing 

conditions of Merent crops cm be monitored during crucial pends of iheir growth cycles. 

Subsequently, crop classifications can be improved by selecting data acquisition dates to 

correspond with times when the variation in radar backscatter response of dominant crops is at a 

maximum (Werle, 1992). 

Sensitivity refers to the ability of radar to respond to Merences in crop type, growth stages, 

moisnue conditions, soil roughness, soil rnoisture and row direction. Radar is sensitive to a 

variety of agriculniral targets (geometnc) and to moisture difterences in the soii, as weli as to 

plant material (dielechic) (Brisco, 1993). Our understanding of the backatter characteristics of 

these @cultural targets, however, is still mdimeniary. It shouid not be infened that these 

parameters can b extractecl easily nom SAR imagery. ûne of the major tasks is to remove the 

effects of backscatter conmiutions h m  the underlying soil, inc1udïng its roughness, moisture 

content and directional biases. This is necessary to isolate the information of interest, such as 

crop type, for operational use (Werle, 1992). 

Sianing in the mid-196ûs, a group of scientists at the University of Kaasas used aircraft-based 

radar imagers (Ka- and Ku-bands) to investigate the potential of radar for crop identification, 

mapping and condition assessrnent (Simonett et al., 1967; H d c k  et aL, 1969-70; Paris. 1983). 



Since then, radar remote sensing techniques have ken investigated for a variety of applications 

in agriculture (e-g.. Ulaby and BatLivala, 1975; Ulaby et al., 1978; Uiaby et al., 1979; Brisco 

and Rotz, 1980a; 1980b; Uaby. 198 1 ; Briro et al.. 1984; De Loor, 1984; C i a r  et al., 1986a; 

Ulaby et al., 1986a; Brisco et al., 1989a; 1989b; Brise0 and Brown, 1990; Brisco et al., 1990; 

Bouman, 1991a; 1991b; Brisco et al., 1991; Engman, 1991; Ferrazzoii et al., 1992; McCiiloch 

and Yates, 1992; Bouman and Hoekrnan, 1993; Kohl et al-, 1993; Ban et ai-, 1995; Ban and 

Howarth, 1995; Ban and Howarth, 1996b; Chen et al., 1996; Filho et al., 1996). Numerous 

campaigns and investigations have been conducteci by research laboratones in Noah America and 

Europe using ground-based scatterometers and airborne imagïng radars, as weU as spacebome 

SARs (Holmes, 1990; Werle, 1992; Ban and Howarth, 1996a). 

In Canada, the status of radar applications is stU restrïctd, as it is elsewhere, to the research and 

development stage. The scientific objectives have been clearly oriented towards friture 

operationai use of SAR àata as an input to crop information systerns, with a focus on the snidy 

of radar backatter characteristics of crops and soiis in various geographic regions. This 

includes assessing th: feasibility of monitoring crop coaditions, crop practices. crop rotation, 

soi1 and land deterioration (Brown, 1987; Werle, 1992). The Canadian Surveillance Satellite 

Program (SURSAT) provided the h t  opportunity to acquire airborne and in some cases, 

spacebome SAR data and simuitaneous ground data Severai test sites were selected 

representing agrïcultural regions both in the prairies and in the eastern portion of Canada. The 

experimentai program was later expanded as part of the RADARSAT project, which began in 

198 1, and the Radar Data Development R o p  (RDDP), introduced in 1986. The RDDP was 

aimed at establishing a comprehensive coordinated program within Canada, designed to develop 

the necessary knowledge for diable interpretation of SAR imagery and to use these data for the 

benefit of Canadian users (Brown, 1987). 



In the f d  of 1993, the Canada Centre for Remote Senshg (CCRS). in cooperation with the 

Canadian Space Agency (CSA). RADARSAT International Inc. (RSI) and the International 

Development Research Centre ( D R 0  embarked upon a world-wide demonsoation, training and 

applications-developmcnt program labelleci GlobeSAR. The former CCRS-owned Convair 580 

aircraft, equipped with a C/X SAR, undertmk data-coilection nights in 13 countries in Europe, 

Africa, the Middle East and Asia. The purpose of these flights was to acquire muitidisciplinary 

radar data to be evaluated for various applications, as weli as to simulate the data of the Canadian 

RADARSAT (Campbell et al., 1995; Peainger, 1995). 

Recently, two major programs were initiated to stimulate research, applications and 

comme~iialization of RADARSAT data. The CSATs Applications Developmeat Research 

ûpportunity (ADRO), johtly sponsored by the governments of Canada, United States and the 

licensed commercial distributor of RADARSAT data, RSI, supports two types of projects: 1. 

those which exhibit innovative scientific research utiiizjng RADARSAT dais; and 2. 

demonstrations of new radar applications or the development of products for specific applications 

(CSA, 1996a). The RADARSAT User Development hogram (RUDP) aims to help the 

Canadian value-added industry to develop pducts and s c ~ c e s  that wiU r e d t  in greater 

RADARSAT benefits and data sales, both in Canada and abroad (CS4 1996b). 

3.2 Important Parameters Anecting Radar Backscatter 

An understanding of the relationships between agriculniral parameters and radar backatter is of 

key importance in assessing the usefühess of SAR. It can provide the confidence required for 

extending from iixnited test sites to larger geographic regions, and it is necessary for constxucting 

inversion models whereby SAR migbt be used, for example, as a cmp monitoring tml (Cihlar, 

1986; Cihlar et al., 1987). 



A wide range of parameters affect the backscatter of microwaves from vegetation and soil. h a 

ment study undertaken for ESA, for example, it was concluded that a muiimm of four 

instrument parameters, 28 vegetation parameters, 13 soi1 parameters, and 12 environmental 

parameters needed to be included in a database designed for interpreting the mechanisms 

controiling backscatter from vegetation (Holmes, 1990). The important characteristics of the 

radiation are frequency, polatization and incidence angle. The cnicial features of the target in 

determining the proportion of radiation retuniing to the instrument are plant canopy and the 

underlying soil. Key parameters of the plant caaopy are: plant height, plant cover, plant density, 

leaf area index (LAI), plant biomass and water content, plant row direction, growing stage, 

canopy structure and weed infestation. Key parameters of soil are: soil moisture, soil roughness, 

soil texture and mage direction (Holmes, 1990, Werle, 1992). 

3.2.1 SAR System Parameters 

3.2.1.1 Frequency 

Frequency has the greatest effect on radar backscatter because the choice of Ka-, Ku-, X-, C-, L- 

or P- band is the main determinant of the type and strength of the radar backscatter fPom an 

agricultural scene. In generai, the use of shorter wavelengtbs, such as X-band, results in dùect 

backatter h m  the cawpy aud provides littie information about the intemal structure of a dense 

canopy and the surface below the canopy layer. Longer wavelengths, such as L-band, have the 

capability to penetrate the crop cawpy layer and provide retums b m  the soil surface (Werle, 

1992). In fact, soil parameters are domhant in detennining the broad characteristics of CO- and 

cross-polar backscatteriag at the lower radar fhquencies (e.g., L-band) @e Matthaeis et al., 

1991). The two-way attenuation of longer wavelengths by the canopy may ais0 resuit in 

volume-scattering effects which may become the prominent backscatter response for some crops 

such as broadleaf crops. C-band has shown sensitivity to both the interna1 structure of the crop 

canopy layer and, to a limited extent, to the soil swface undemeath (Werle, 1992). 



There are reports which conclude that each of the Ku-band (e.g., Ulaby and Batlivala, 1975; 

Bush and Uaby, 1978; Ulaby, 1981; Mehta, 1983; Bouman, 1987), or the X-band (e.g., Uaby 

and Batlivala, 1975; Ulaby, 198 1; Guindon et al, 1984; Hoogeboom, 1983; 1986; Pei-yu and 

De-Li, 1983; Bouman, 1987; Bouman and Van Kasteren, 1990~ 1990b; Brown et al., 1992; 

Wever et al., 1995). or the C-band (e-g., Mehta, 1983; Paris, 1983; Brown et al., 1992; Bmnti 

et al., 1995; Wever et al., 1995) or the L-band (e-g., Mehta, 1983; McCuiioch and Yata, 1992; 

De Matthaeis et ai., 1994; Lemoine et al., 1994; Bamnti et ai-, 1995) or P-band (Chen et al.. 

1996) provided best discriminations among crops. It is clear thaî an optimum wavelength for 

general crop studies carmot be defined because the optimum waveband depends on crop type, 

growth stage, conditions of test sites, etc. 

While the conclusions acrived at by the many investigators are applicationdependent, direct 

cornparison is not usudy possible between crops due to the lack of studies that eliminate ail 

variables, including soil dielectric properties, soi1 roughness, plant age, etc. As Churchill et al. 

(1985) pointed out, the resuits of individual investigarions c m  be seen to be unique to individual 

test sites due to crop stage and test-area conditions at the time of measurement. Thus, 

recornmendations as to which frequency is most appropriate in aii circumstances are not possible, 

and no individual wavelength can be singled out as being optimum for agriculnual studies 

(Holmes, 1990). 

Another possible reasou for the conflicthg finduigs is th many of the results have been 

achieved with uncalibtated SAR data. Cornparisons of different sensors, different dates, and 

Merent sites, however, are not possible without cali'brated data (Freeman, 1992). Yanasse et 

al. (1992), for instance, reported that some data suffered h m  several serious radiomehic 

distortions, in addition to those cawd by the antema pattern, which might affect the conclusions 

made by investigators. 



The long-estabtished Canadian remte sensing program offers some experience in the 

identification of optimal fkquency for discrimination of crop Cihlar et ai. (1986b) 

summarized finciings to that date. It was found that, whereas X-band provides good 

discrimination, L-band was vexy useful for separahg bmad-leaved crops and fdow in some 

sites. L-band did have the disadvantage of sensitivity to row direction, however, which X-band 

did not exhibit The ability of C-band to was interniediate between the X- and L- 

band. Recently Brown et ai. (1992) examined the similarities and differwices between imagery 

acquired at X-, C- and L-bands by calculating the comiations between X-, C- and L-bands in 

airborne SAR data. It was found that the correlations between C- and L-band and between X- 

and L-band data were very low indicating that the radar backatter at dinerent fiequencies is 

caused by different mechanisrns, The correlation between X- and C-band data was low for 

grains (a well-defined vertical structure), but higher for canola and peas (broad-leaved plants 

with Little definite structm). For L-band data the primary cause of the radar backscatter is 

probably nom the underlying soil and is thus large1y influenced by soil properties. For C- and 

X-band data, the vegetation parameters are probably the predomiaant factors, particularly for the 

July &ta set. In addition, similar mp-classification accufacies were obtained with the X- and C- 

band data (with C-band being siightly better), but the classification accuiacies for L-band data 

were considerably lower. This analysis supports the previous conclusioos that vegetation cover 

is the dominant agricuitural parameter driving radar backatter at X- md C-bands, but not at L- 

band. 

The inherent disadvantage of using only a single fkequency is obvious and the potential for 

having multifrequency satefite capability in the firture cannot be ignored (Hohes, 1990). Thae 

are many recommendations that multifiequency studies are requind for crop classincation (e.g., 

Drake et al., 1974; Parasbar et al., 1979; Ulaby et al., 198 1; Van Kasteren, 198 1 ; Freeman et al., 

1994) and many stucües have demonstrateci large improvements in classification by using 

multifrequency (and multipolarization) measurements (e .g. Brisco and Proa, 1 98Oa; 1 %Ob; 



Guindon et al., 1984; Bouman, 1987; Thomson et al., 1990; FerrazzoIi et al., 1992; Freeman et 

al., 1994; Wever et al., 1995; Chen et al., 1996). 

3.2.1.2 Polarization 

The polarizaüon of an electmmagnetic wave descri i  the orientation of the electnc-field vector at 

a aven point in space during one period of oscillation. The peneoaiion depth of an incident 

microwave source depends on its polarization anci ftequency, such that the optical thickness of 

the vegetation layer increases with increasing fiequency. Whereas L-band observations are 

influenced by the entire crop canopy, X-band observations are genedy governed by the top 

layers. Horizontdy polarized 0 radar couples weakly to vertical stalks, resulthg in Iow 

attenuation. Vertically polarized ON) microwaves, however, are attenuated to a greater extent 

causing a reduction in the penetmtion depth (Figure 3.1). Measurements using HH, therefore, 

give information primarüy about the underlying soil, while W data are related more to canopy 

structure. This statement, however, must be considered in the context of the wavelength used. 

Longer wavelengths, such as L-band, tend to penetrate àeeply into vegetation, whereas shorter 

wavelength, such as X-band, are scattered in the upper layers. As a result, discrimination 

between polarizations may be impossible at the shorter wavelengths (Bouman and Van Kasteren, 

1990a; 199ûb; Holmes, 1990). 

There are reports which conclude that each of the HH (Ban et al., 1995). or the W (Cnaby, 

198 1; Thomson et al., 1992; Anys and He, 1995), or the HV (De Matthaeis et al. 1994; Foody et 

ai., 1994), or the depolarization ratio (defineci as the like-polarization measurement divided by 

the cross-polarized masurement) (Paris, 1983), or the polarization ratio (Le Toan and Law, 

1988) provide the best discrimination among crops. It is clear that an opimal polarization for 

general crop studies cannot be defbed because the optinml polarization depends on wavelength, 

crop type, growth stage, conditions of test sites, etc. The following geneml statements, 
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Figure 3.1, Frequency kpendency for microwave peneiraiion into a corn canopy. Penemtion 
depth is defined as the àepth at which the incidence power is reduced to 37% (l/e) of that incidence- 
The data presented are for an angle of 40'. LAI = 2.8, plant height = 2.7 m. leaf 
volumetric moisture content = 0.65, stalk volumetnc moisture content = 0.47 (Holmes, 1990) 

however, can be made. The degree of inhomogeneity of a d a c e  or volume is strongly 

associated with the cross-polarization scattering coefficient of that surface or volume. The 

separation of crop types can be enhanced using cross-polarization &ta; for example, two crops 

having similar geometries, such as wheat and barley, may have s i d a r  Lüre-plarizaton 

backatter, but it is possible to separate hem with observations fiom cross-polarization studies. 

Similarly, the distinction between bare soi1 and vegetatioacovered surfaces is made easier using 

cross-polarizaîion, due to the fad that the vegetaîion canopies deplarize the incident radiation 

more strongiy than the bare surfaces. 'Ibe cross-polarization ratio (ratio of b, to aom ) is the 

usefd discriminating parameter in these shidies. Eariier studies were based on higher fiequency 

(> 8 GHz) observations and led to tbe couclusioa that little was to be gained using cross- 

polatization. Lower-fkequency studies at C-band by Paris (1982) demonstrated the advantage of 

ushg cross-polarization for discrimiaating corn and soybeans which could not be achieved with 

like-polarization (Holmes, 1990). 



Several researchea (e.g., Ulaby, 198 1; Megier et al., 1984; Foody et al., 1994; Anys and He, 

1995; Ban et al., 1995; Chen et al.. 1996) found that multipolarization analysis greatly improved 

the abüity to discriminaie between crops. This demomtrated that agricuitural crop studies require 

muitipolarizatioo radar if maximum information about crops is to be achieved. Since target 

structure influences the extent of radiation depolarization, tbae is a need to understand the 

depolarization on the basis of each individual crop structure. This irnplies tbat multipoIarization 

studies need to be made of different crops, and at dinerat growth stages for each crop, if the 

factors that influence depolarization are to be understd (Hohes, 1990). 

3.2.1.3 Incidence angle 

The influence of incidence angie depends on the polarization of the microwave source and the 

canopy orientation under examination. If a fdly grown corn canopy is considemi, using L-band 

radar, an increase in incidence angle 6rom O' to 90' has little effect on the peuetration depth of 

HH polarized radiation due to its low attenuation, whereas it ciareases with W polarization as 

incidence angle increases (Figure 3.2). This phenomewn can be used to help to choose the most 

suitable incidence angle and polarization, depending on the application and information required 

(Hohes, i99û). 

There is no conclusive evidence that aay one angle. or narrow range of angles, is optunal for 

species classification purposes. Ulaby (1981) suggested that the observation angie should be in 

the 50' - 70' range ( h m  nadir). Bouman and Van Kasteren (lm, 1990b) coanmied Ulaby's 

suggestion. They found that the different backattering levels at medium-to-high angles of 

incidence of sugar beet and potato would result in a high probabiiity of discrimination between 

these NO crops. The best angle of observation for discrimination appeared to be a high one. At 

70' incidence angle, possible disturùing effects on radar backatter such as ridge orientation in 

potato and canopy architecture of sugar beet, are muùmal. On the other hand, 



30 60 90 
Incidence angIe (deg) 

Figure 3.2. Polarization and incidence angle dependency for microwave penetration into a corn canopy. 
Peneaation depth is defineci as the depth at which the incident power is redired to 37% of that incident, LAI = 
2.8, plant height = 2-7 m, leaf vofwnemc moisture content = 0.65, stalk volumetric content 0.47 (Holmes, 1990) 

Shanmugan et al. (1983) noted an improvement in the abi1ity to c l a s s ~  crops with inc~asing 

incidence angle up to 40'. but found no improvement with higher @es. This ties in with the 

conclusion of Pei-yu and De-ii (1983) that angles between 42' to 72' are optimal for rice, while 

Paris (1982) concluded that the optimal angle for delineating corn and soybeans with C-band is 

50'. Poirier et al. (1988) ~ported the muitiangk combinations (53' + 30') improved crop 

classification using C-W SAR data, and accuracy at an kridence angle of 53' was more 

infiuenced by vegetation thaD the &ta at 30' incidence angle. For monitoring of crop growtb, 

Bouman (1987) concluded that with the X-band wavelength, steep incidence angles are most 

suitable (Hoimes. 1990). 

The above studies show that our lmowledge of the influence of incidence angle is still very poor. 

Almost all incidence-angle studies bave been restricted to correlative field obsenrations and few 

substantive studies aimed directly at understanding incidence effets have been made. The 

optïmai incidence angie for applied studies depends on the application. As with analysis of 



optimal polarbation, the lack of comprehensive information for aii wavebands tends to iimit 

interpretation. Thus, there is a ckar need for friture studies at ail incidence angles to understand 

the incidence-angle effects. 'Zhe muiti-iacidence angle capabiïity of RADARSAT provides an 

excellent opportunity for such snidies. 

3.2.2 Agricolturd Target Parameters 

The total radar backscatter (BO) fiom a vegetateà agricuiturai field is a function of the vegetation 

canopy (volume scattering), the soi1 surface (surface scattering) as weil as the interaction of the 

radar signal between the vegetation component and the soi1 component (Ulaby et al., 1984, 

Dobson et al., 1 9 8 6 ~  1986b; Figure 3.3). The total backscatter is also incidence-agie (8) 

dependent and c m  be expressed as: 

1. volume scattering 2. surface scatterhg 3- multiple scattering 

Figure 3.3. Three Sources contributing to 6OtOtd h m  a crop canopy (Uiaby et al.. 19û4) 



3.2.2.1 Vegetatioa Component 

The interaction of microwave energy and crops in the canopy Iayer is not ody strongly 

influencecl by crop species, plant geometry and its dielectric constant, but it is also fkquency-, 

polarization- and incidence angle- dependent 

Crop Morphology 

Radar backscatter from crops is strongly dependent on the size of the scattering elements within a 

crop. This can be seen in Figure 3.4, where the size of the elements that cause maximum 

backscatter varies with the wavelength of the dat ion.  In most instances, the greatest response 

is shown to scatterers that are of a simüar size to the wavelength. This is one of severai crop 

characteristics that con@%ute to the ability of multifrequency imagery to discriminate between 

targets. in addition, cmps usually exhibit preferentiai orientations in their geometry. This results 

in polarization-dependent diffenmces in the peuetration and retum of microwaves from the 

canopy (Holmes, 1990). 

Bouman and Van Kasteren (l990a; 1990b) reporteci that the geometrical architecture of the crop 

canopy is a major factor thaî inauenced the X-band radar backscatte~g of wheat, barley, oats, 

sugar beet and potatoes. Row spacing, crop variety, lodging and ear orientation of barley had a 

large effect on radar ba~kscattering~ The architecture of the canopy also influences the impact of 

soi1 background on radar backattering from the whole crop. Even stubble and straw, whic h 

are theoreticaliy relaîively transparent to microwaves, largely cietennine the radar backattering 

of harvest fields. 



Figure 3.4. Radar response as a function of the size-distribution of scatterers in the canopy 

(Holmes, 1990) 

Crop canopies can generally be divided into several components including leaves, stalks. stems 

and fruit. For example, a corn campy can be regarded as a two-layer system with the upper 

layer dominateci by leaves and stems and the lower layer dominateci by stalks or stems, while a 

wheat canopy (after headuig) can be regarded as a three-Iayer system with a head layer added on 

top (Ulaby et al,, 1984; Uaby et oL, 1986a). Knil (1988) suggested that the structure of the 

crop canopy (shape, size, orientation of canopy cornponents) will primarily influence the spatiai 

distribution of the scattered energy, while the material constituents of the canopy components 

(internai microstructure, moisture, etc.) will change! the magnitude of the scatterd energy in ail 

directions (Ban et al., 1993). 

Plant Leaves 

Canopy leaves tend to attenuate the incident r a b  km, particularly as fkquency increases 

(Chuah and Tan, 1990; Van Kasteren, 198 1; Ulaby and Wilson. 1982). The radar puise is first 

attenuated when the energy initially passes tbrough the canopy. After surface and volume 

scattering has occurred, the energy is again attenuated as it passes back through the canopy on its 



way to the sensor (Le., two-way attendon). The attenuation versus s c a t t e ~ g  of microwave 

energy by leaves is ükely related to the petration ability of the energy, which is in nim relateci 

to wavelength and leaf size. Bouman (1987) has shown that at short wavelengths, radar return is 

sensitive to leaf size; while the longer wavelengths are less sensitive to the changes in geometry, 

particuiarly Mth respect to sugar beet and potatoes. Brisco (1993) suggested that broad-leaved 

plants such as corn are more likely to increase backatter as a result of canopy structme whereas 

srnall-leaved plants such as alfalfa are more Wrely to attenuate the incident energy and therefore 

decrease backscatter. 

Leaf area and vegetation water content also affect the proportion of incident energy tùat is 

absorbed and scattered. For all parts of the plant, an increme in moisture content generally leads 

to an increase in backscatter (Ulaby and Bush, 1976). Stem moisture content, however, has a 

stronger efkct on the magnitude of the cross-polarized return compand to lea€ moisture (Chuah 

and Tan, 1990). When a leaf is comparable in size to the incident wavelength, the shape, density 

and orientation of the leaf c m  have a major impact on radar r e m  (Morton, 1987). In fact, Van 

Kasteren (198 1) noted that a single le& can attenuate incident energy by as much as 4-7 dB. 

Plant Stems and Stalks 

Similar to leaves, plant stems and stalks tend to scatter and absorb micmwave energy (Chuah and 

Tan, 1990). The importance of stems and stallrs to the aîtenuation andlor scattering of 

microwaves varies depending upon fkquency, polarization, incidence angle and crop structure! as 

well as crop developmental stage (Ulaby et al.. 1978; Ulaby et al., 1982; Ulaby et al.. 1984; 

Ulaby and Wilson, 1985; Chuah and Tan, 1990; Engman, 1991; Coppo et al., 1992). For 

example, Chuah and Tan (1990) found that stems coneiiute more to total me- and cross- 

polarized backscatter as hquency increases. Also, for cross-polarized retums, stems and s t a k  

appear to contnbue more to total backscatter than leaves, especiaily ai higher fkequencies. 



Contradictory evidence exists regarding the conaibution of plant stalks to radar backscatter. For 

instance, when corn canopies are M y  developed. the majority of scattering in C-band (HH 

polarkation) originates in the top 1 m of a 2.8 rn corn canopy and little backscatter was measured 

below that level for view angles of 30' or pa te r  (Daughüy et al., 1991). 

Plant Fruit and Seeds 

Derailed research has been conducted on the relationships between radar retum and nuit and seed 

development in crops. Ailen and Ulaby (1984), for example, conducted attenuation 

measurements on wheat heads and found that the average attenuation of the head layer of the 

canopy was about 8.3 dB at @=6û0. Paris (1986) also observed a rapid fidl in the com-canopy 

backscatter coefncient shortiy aller tasseilhg and cob formation. Bouman and Van Kasteren 

(1990b), however, f d  the lack of pronounced response of radar backattering was due io the 

emergence ofwheat ears. Other researchea have ignored the coatn%ution of f i t  and seeds to 

total backscatter, in part to simple the mode1 and in part because of the resuits of defoiiation 

experiments which showed that the backscatte~g contnion of tbe bit is much d e r  than 

that of stalks and leaves (Ulaby et al., 1986a). 

Crop Species 

Studies to date have indic& that crop species is the single most important parameter ammg 

those recorded in the field (e.g., Brown et 02.. 1984, Cihlar and Hirose, 1984; Cihlar, 1986; 

Bouman and Van Kasteren, 1990a; 1990b; Brown et al., 1992; Ban et al., 1995). Crop type can 

result in a unique radar retum. For example, Bouman (1987) attributed the highest radar r e m  

in beets using X-W to its relatively higher water content or to its general geometq and larger 

leaves when comparing beets, potatoes and p a s .  Aithough the reasons for many of the 



observed relationships between crops and backscaner are not M y  understood, there is general 

agreement that broad-leaved crops produce higher signal returns than other crops for L-, C-, and 

X-band with parailel polarization. The approach of considering the cross-polarization ratio is a 

useful method for species identification. Although two daennt crop species may exhibit similar 

backatter in one polarization mode, there is usuaiiy a morphology-dependent Merence in 

another mode (Hoimes, 1990). 

Plant Moisture (Dielectn'c) Content 

Plant mois- content, as an indicator of stage of growth, was found to be highly correlated with 

6', based on the measurement of S of wheat acquired during the fiad month of its growing cycle 

using a truck-mounted Microwave Active Spectrometer (MAS) at 8-18 GHz (Ulaby and Bush, 

1976). Their resuits mdicated that 6' is quite sensitive to the physiological and morphologicai 

changes which wheat undergoes as it ripens, pdculariy during the one-week period prior to 

harvest. In terms of the range of sensor parameters examineci, 9.4 GHz 6'v nadir data showed 

the highest sensitivity to plant mois- variations and to the passage of the. At angles away 

fkom nadir, however, higher fkequencies were found more suitable. 

Plant Densi4 and Biomass 

De Matthaeis et al. (1995) reported that a combined use of L- and C-band aliowed discrimination 

between low-àensity and highdsity crops. To monîtor biomass, L-band was more effective 

for crops with low plant density, while C-band was bettec for high plant density crops. HV, 

circula copolar and 45" crosspolar polarizaîions were found to be impottant for biomass 

reîrieval. 



Dubois et al. (1995) compared the L-band a O & ~ O ,  ratio image and a SPOTdenved NDVI image 

over the same area. Their results showed t& the L-band parameter did not have a good 

sensitivity to vegetation with NDVI below 0.2. This indicahxi that the scattering at L-band was 

dominated by interactions with the underlying suffice and not with vegetation when the 

vegetation was very spane. Although the conespondence between the two indices was noisy 

with a wide standard deviation, their results indicated a definite correlation between the two 

indices contiming the potential of the ratio to be a good vegctation index. Their results 

also indicated that the copolarized channels were less sensitive to vegetation than the cross- 

polarized charnels. 

Plant Growth Stage 

Bouman and Van Kasteren (1990a; 1990b) conducted a ground-based experiment on radar 

backscattering @-band) and crop growth. It was f m d  that the possibilities of X-band radar for 

the monitoring of crop growth were different for sugar beets and potatoes. For both crops the 

backscattering increased with crop growth until a saturation level was reached at about 80% crop 

cover. At full crop cover radar backscatteriag no longer mtad to any m e r  increase in 

biomass. Therefore, the possibilities seemed good for monitoring the early growth of sugar beet; 

however, the monitoring of the growth of potatoes would be more troublesome than that of sugar 

beet because the ridge orientations of poiatoes (with respect to the incidence microwave) 

dominated radar backattering fkom bare soil stage to an 80% crop cover. In an airborne 

scatterorneter study, Botunan and Hoekman (1993) concluded, however, that aii fkquencies 

(1.2- 17.25) were equaily useful to indicate qualitatively the gowtb of beet and potato in the early 

growing season. The backscattering of wheat appeared not to be related to crop growth in any of 

the fkequencies. 



It was aiso found that both W and HH backscattering of wheat and barley decreased at al1 

incidence angles with crop growth until it fluctuateci arwnd a stable level h m  grain nIling to 

dying of the canopy. The decrease in radar backscatterhg, as opposed to the increase observed 

for sugar beets and potatoes. was caused by the relative open structure of the canopy and the 

small dimensions of its elements. Microwaves penetrate relatively deeply into the canopy where 

ihey eventuaily becorne extinct thmugh absorption by the canopy elements (stems, leaves). The 

W backscattering of oats at low to medium angles of incidence decreased during vegetation 

growth and sharply increased to a steady level with the appearance of panicles. This was due to 

high reflection of panicles with their cloud of smali, eloagated grains for W polarized 

microwaves (Bouman and Van Kasteren, 1990b). Schrnullius and Nithack (1992) also noted 

that the W-polarized Co and X-band scat te~g is dependent on the different degrees of maturity 

in the barley fields. 

Van Kasteren (198 1) ~ported that maturity was the best phase to distiaguish crops aom each 

other on radar images. The differences in ~flection level between crops were greatest at that 

time. On the other hand, Foody et ai. (1989) and Fischer et al. (1992) found that the crop 

separability is optimal in the mid-growing season. 

3.2.2.3 Soil Component 

Soil roughness, soil moisture content and row direction can have a significant impact on the 

magnitude of backatter depending upon incidence angie. polarization and frequency, as weli as 

the amount of vegetative cover. 



Soil Roughness 

If the radar kquency is short relative to the d a c e  roughness, the surface wili appear smooth 

and littie energy is backscattereà to the sensor (Curiander and McDonough, 1991). Surfaces are 

considered smooth, specuiar reflectoxs if: 

h < 1 / 25sinT, 

where, T is the depression angle and h is the vertical relief of the d a c e s  (Werle, 1992). If the 

wavelength is roughly the same as ihe average surface height, a signincant k t i o n  of incident 

energy will be reflected back to the sensor (Culander and McDonough, 199 1). If the average 

surface height (h) exceeds 1 /4.4sinT, then the surface is considered rough and wiU be a diffuse 

reflector (Werle, 1992). 

Scattermeter rneasurements (Figure 3.5) have demonstmîed that the effects of roughness are 

minunal at incidence angles of about 10' (Holmes, 1990). Severai researchers @obson and 

Ulaby, 1986b; Beaudoin et al., 1990; Chuah and Tan; 1990; Daughrty et al., 199 1) found ihat 

backscatter is dominated by rough-surface scattering at Low incidence angles, evee in the 

presence of vegetation. Another notable aspect of tbe observations was that the effects of 

different roughnesses were least with shorter wavelengths; ihis is because ail  the surfaces are 

relatively rough for shorter wavelengths (Holmes, 1990). 

incidence angle Ideg) 

Figure 3.5. The typical backscatter curves against angle of incidence for smooth. intermediate 
and rough surfaces (Holmes, 1990) 



Soii texture was also found to be important to determine the radar backscatter. For example, 

Roud et al. (1990) examined temporal changes in radar backatter of crop canopies due to soi1 

effects using C- and X-band airborne SAR and found that the sandy loam traosects had the most 

significant redts (highest R2) compaced to the clay loam and silt loam transects. Sandy loam 

soils are weli drained; thus soil moistue conditions fluctuate rapidly compared to the clay lom 

and silt loam transects. 

In general, an increase in the amount of soil moishue results in an incrase in backscatter at ail 

incidence angles and aN liequencies (Ulaby et al., 1978; Engman, 1990). The magnitude of the 

increase however, is incidence-angle, polarization-, frequency- and roughness-dependent 

(Schmuliius and Furrer, 1992a; 1992b). Microwaves are generally sensitive to moisture in the 0- 

10 cm surface iayer (Bruckler et al., 1988). 

The effect of soii moisture on backatter is also dependent upon the amount and condition of 

surface vegetation cover (Puitz et al., 1990; Schmullius aaà Furrer, 199%; 1992b; Bmnti et al., 

1995). In mid-season, the bill vegetatioa canopy attenuates incident radar and therefore soil 

moistwe variations have littie effect on backatter (Paris, 1986). At the end of the season 

however, the dry canopy is nearly transparent to rnicrowaves and soii moistun conditions may 

again influence total backscatter. 

Paris (1983) reporteci tbat wet-surface soil mois- conditions resulted in significantly poorer 

separability of corn and soybeans as compared to dry-soi1 conditions. On the dry-soi1 date, the 

best separation between corn and soybems was acbieved with a C-band cross-polarized 

measurement at a look angle of 50 degrees. Ulaby et al. (198 1) suggested that through proper 



choice of radar parameten, radar could be used to provide quantitative information on the soil 

moisture content of both bare and vegetation-coveresi soil. 

Row Direction 

There are reports that both cropped-land row direction (e.g., Mehta, 1983; WOOding, 1983) and 

the soil row direction (e.g., Bradley and Ulaby, 1981; Ulaby, 1981) e t  radar backscatter. 

Although some mearchers have concluded that the row direction effect is insignincant for 

fkequencies p a t e r  tban 4 GtIz, other observations do not M y  support this hypothesis. There 

is circumstantial evidence regarding tbe row effects on polarization. Bradley and Ulaby (198 1) 

and Paris (1982) noted the effects of row direction using k-polarization; Batlivala and Uaby 

(1976) noted row effects were much stronger with HH than W .  

Recent snidies by Michelson (1994) have indicated that signiIlcant differences in 6' occur for 

fields tilled to and perpendicular to the look direction. Linear relatiomhips between row direction 

and SO, however, were weak. The ERS-1 SAR appeared sensitive to ciifferences in the tiUage 

row directions, but factors ionwncing this sensitivity must be malyzed before definite 

conclusions are drawn. A study using airbome C-band SAR data (Brisco et al., 199 1) showed 

signincant Merences in 6' between p d e l  and perpendicular row directions using iike- 

polarized data h m  grain stubble fields; cross-polarized data were less sensitive to the infiuence 

of row direction. Dubois et al. (1992) reported that the radar backscatter of agricdtural fields is 

very sensitive to the angle between the radar plane of incidence and the h o w  direction. The 

variation is fairly sharp, up to 19 dB decrease in backscatter, when the radar incident plane is 5' 

off the perpendicular to the h w  plane. The observed variations are fairly independent of the 

incidence angle. Using both airbome X- and L-band SAR and SEASAT L-band SAR, Cihlar 

and Hirose (1984) noted that row direction efiects were dominant in some crop/site combinations 



but absent in others, even for the same crop in the northem prairies of Canada. Guindon et al. 

(1984) noted anomalously bright grain fields on some SAR passes at L-band. Bright returns 

were only observed whm the aircran heading and crop row direction directions were parailel. 

It should be emphasized mat mw direction does not inevitably a&ct backscatter to a signincant 

degree. For example, Sieber et ai. (1982) concluded h m  adyzhg three wavelengths O(-, C- 

and L-band) that row direction does not affect SAR images in a way that wiU cause changes of 

average backscatter cross-section. Canadian studies utlàerline the apparent coahision about the 

effects of row direction on backscatter in grain fields at one test site (especially with airborne L- 

band), but no effect for equivalent fields at another test site. Also. there are no consistent 

conclusions to be drawn on which crop types results in row direction having an effect on radar 

r e m  signal (Holmes, 1990). 

3-2.2.2 Vegetation and Soi1 Interaction Component 

The contn%ution of canopy and soil constituents to total backscatter is dependent upon 

polarization, incideace angle and fiequency, as weil as vegetaîion growth and development 

stages. For instance, Daughtry et aL (1991) repoited that, at 6k20°, soil conditions dominate 

backscatter coefficients; but at 8>20", the influence of vegetation on total backscatter increases 

and the soil contribution decreases. Daughûy et al. (1991) also found thaî polarization has linle 

effkct on penenation into dense corn canopies. Conversely, Hohes (1990) reported that 

horizontally polarized (HH) L-band radar couples weakiy to vertical stalks resulting in low 

attenuation. Vertically polarized (W) microwaves, however, are a t t e n d  to a -ter extent 

causing a reduction in the penetration depth. 



3.2.3 Effects of Rain, Dew, Wind and Other Environmental Factors 

Effects of min (e.g., Fischer et al., 1992; Schmullius and Nithack, 1992) , dew (e.g., Ulaby et 

al., l986a; Gillespie et al., 1990a; 1990b; Schrnullius and Furrer, 1992a) and wind (Ulaby et al., 

1986a; Bouman and Van Kasteren, 1990a; 1990b) on radar backscatter have k e n  reported by 

some researchers. For example, Brisco et al. (1989b) reported that wheaî separability may be 

increased when the crop canopies contain fkee water, and this phenornenon may also be enhanced 

using W polarization. Bouman and Vau Kasteren (19%; 1990b) reported changes in-canopy 

structure due to strong winds which in tum affited radar backscatter by 1-2 dB for bath sugar 

beets and potatoes. 

3.3 Ground-Based Scatterometet in Agriculture 

Much of the knowledge available today on the interaction of microwaves with ag&ulh>ral targets 

has k e n  obtained through scatterometer experiments over d test plots. These detadeci 

experiments have the advantage that both radar parameters and the agriculturai target parameters 

can be carehilly contmlled and measured. Scatterorneter studies of this kind have been carried 

out mainly by researchers in North America and western Europe including research groups 

affiliated with the University of Kaosas, the Radar Observation of Vegetation (ROVE) team in 

the Netherlands. a French multi-disciphary team, and the Canadian Center for Remote Sensing 

(e.g., Attema, 1980; Laonelongue, 198 1; W, 1987; 1988; Bouman and Van Kasteren, 199th; 

1990b; Bouman. 1991a; Brisco et al., 1992). The results fkom these ground based scatterometer 

studies represent a backbone of radar remote sensing research in agriculture shce data provided 

by ground based scatterometers are necessary for the caii'bration of other sensors and serve as an 

important data base for quantitative SAR investigations in agriculture (Werle, 1992). Due to the 

scope of this review, studies using ground-based scatterometer data are not detaiied here. 



3.4 Airborne SAR in Agriculture 

Most of the research in the past thtee decades has used airborne radar. The notable airbome 

radar campaigns includes the Canadian GlobdSAR (Campbeîi et al., 1995; Petziager, 1995). 

Multisensor Airborne Campaign (MAC) Europe-91 (Woodhg and Attema, 1999, ESA and Joint 

Research Center's (JRC) Multiple Airborne Experiments Toward Radar Observations 

(MAESTRO-1) Campaign (WOOdiflg and Attema, 1992; Churchill and Attema, 1994; Lemoine et 

al., 1994). and US' AIRSAR Campaign (PL. 1996). - 

3.4.1 Airborne SAR Systems 

A wide variety of radars w'ere used to acquire data including X-Band. C-Band, and L-band. 

Major airborne SAR systems are Listed in Table 3.1. (Wooding and Attema, 1992; Geomatics 

Canada, 1994; Schmuiiius et al., 1994; Hom, 1996) 

Table 3.1. Major Airborne SAR Systems 

1 DLR E-SAR (Gemany) ( X-, C-. L-, and P-ùand 1 HH and W 1 

CCRS C/X-SAR (Canada) 
I 

NASA/JPL SAR (U.S.) 

3.4.2 Airborne SAR Data for Agriculhinl Crop Classification 

3.4.2.1 Multiparameter Airborne SAR Data for Crop Classification 

X- and C-band 

C-, L-, and P-band 

Multifiequency, mu1 tiplarization and multi-incidence angk airbome S AR data have been studied 

intensively for crop classification in the past three decades. The interpretation success is based 

HH, HV, VH, and W 

HH,W,VH,andW 



entirely on each -c investigation, which can be time specific, site specific, SAR-parameter 

specific, or imagequality specific, as discwed in Section 3.2.1. In generai. the results 

indicami that muitiparameter airborne SAR data sipnincantly improved crop classification 

accuracies. For example, Wever et al. (1995) reported that no class could be clearly separated 

using m o n o t e m ~  classincation with one single fkquency. The use of four fkequencies, 

however, resulted in a very good classification. Brisco and Ro<z (1980) also demonstrated 

greater thaa 90% correct classZcation of corn fields usiag singledate dud-channel (X- and L- 

band) SAEL Table 3.2 shows the seleaed studies of dtiparameter airborne SAR data for 

agricuitwai crop classification. 

3.4.2.2 Multitemporal Airborne SAR Data for Crop Clossification 

The potential of multitempod data bas been explored and is conside~d a necessity especiaiiy for 

crop ciassification. Indeed, the crop calendar and crop phenological development are some of the 

most important considerations to make when classifyhg crops from remotely sensed data 

Improvement in crop discrimioaîion has been achieved by synchronization of SAR data collection 

with growth stages of crops since mdtitemporal imagery maxirnizes the differences in the 

geometric and dielecaic properties of crops. Research conducted by Bush and Ulaby (1978), for 

example, showed that 90% correct classincation of crop type was possible using multitemporal 

radar with four revisits approximate1y 10 days apart. Some classification results suggest thaî a 

single data acquisition taken during peak growth stage is of primary importance, while othea 

suggested duriag plant matwity. Data acquisition dates range h m  late May jus< after crops have 

been planted to September when crops are M y  grown and perhaps even harvested. The 

majority of the snidies, however, used &ta that were collected during one or more of the summer 

months of June, July and August. In geneerai, the use of multitempraî imagery has improved 

classification accuracies over single-date input especidy when singledate classification 



Tabie 3.2. Muitipafameter Airborne SAR Data for Cmp Classification: Selected Snidies 

Corn, soy beans 
srna11 

pashire 

ERIM S A R  
f.-band 
HH,m 

Huntington 
Couaty, 

Indiana, USA 

Crop classification 
with multipotarizatio~ 

I L-band radar 

L-HH & L-HV 
71% 

L-HH= 65% 

Ulaby 
et al,, 1980 

Corn, grains, 
hay-p=-* 

- - 

Univ. of 
Guelph test 

strip, Ontario, 
Canala 

Con: >!Ml% 
Hay-pasture & 
grains: 5046 

Sugar beets, 
potatoes, wintei 
wheat, winter 
barley, oats 

CCRS SAR 
X-,C-, L-band 

m, w 

Danube River 
Valley, 

Ge-y 

Evaluation of the c q  
classification 
performance of X-L-, 
and C-band S A R  
imagery 

x-m, c-w* 
L-HH, & L-HY 

>go% 

Wheat, barley, 
canola, fellow 

CCRS SAR 
c-w 

30° & 53" 

- 

Melfort, 
Saskatchewan, 

Canada 

- -- 

A cornparison of steel 
and shailow mode 
(30" & 53O incidence 
angles) data for crop 
classification 

53": 95% 
30": 72% 

for site 25, Juiy 
SAR data 

Poirier 
etal., 1988 

Corn, barley, 
oats, potatoes, 
forage crops, 
pastue, etc- 

CCRS SAR 
X- & C-band 

HH 

Municipaiity 
of Saint- 
l i ? o d  
d'Aston, 
Quebec* 
Canada 

Muhiband SAR: 
cornparison of per- 
pixel classification 
and a classification 
using segmentanon 
d t s  

X- & C-band: 
up to 53% 

X- or C- band 
alone: ~ 4 5 %  

Thomson 
et al., 1990 

Sugar beet, 
potatoes, 

carrots, w heat, 
beans, grass, 

etc. 

NASrnL  
AIRSAR 
c-band, 

polarimeaic 

Feltwell, 
NorfoUr, 
UK 

Cmp classification 
fium C-band 
polannemc radar data 

9 classes (80 
cases): 79% 

7 classes (388 
cases): 61% 

15 classes (412 
cases): 37% 

F ~ Y  
et al., 1994 

Corn, wheat, 
soytieans, 

pasture, alfdfa 

- - 

CCRS SAR 
C-band 

HH,Hv&W 
45"-76" 

Oxfd 
County, 
Ontario, 
Canada 

- .  

Evaluation of texturaï 
and multipolarization 
radae f w  for crop 
classification 

Anys & He, 
1995 

Wheat, barley, 
Iucerne, peas, 
potatoes, stem 
=* rapeseed, 
ugac beet, grass 

NASAAPL 
AIRSAR 

C-, L- & P- 
band, 

polarimetnc 
20"-55" 

Fievoland, 
the 

Nekhnds 

Classification of 
rnultiii'equency 
poiarimetric imagery 
using a dynamic 
leaming neural 
network 

95% for ail 
covers except 

peas 

Chen et al., 
1996 



accuracies are low. Table 3.3 shows the selected studies of multitemporal airborne SAR data for 

agricuinual crop classification. 

Table 3.3. Multitemporal Airborne SAR Data for Crop classification: Selected Snidies 

Corn, Forest, 
grain, & oiher 

cover types 

Wheat, canola, 
fallow 

ERlM SAR 
x-, L-band 
m, HV 

June 20 & 
Sepic 3 

ERIM SAR 
c-W. 53" 

June 26, July 
31 & Aug. 13, 

1983 

Univ, of 1 Guelphtest 
1 strip, Ontario, 

Canada 

Melfort, 
Saskatchewan, 

Canada 

Impmving crop 
classification througb 
anentïon to the 
timing of airborne 
radar acquisition 

C ~ P  type 
determination h m  
multitemporal SAR 
imagery 

Multidate: 83% 
Corn: 92% 
Grain: 5 1% 

Filteml data: 
June: 60+-23% 
July: 87&7% 

Aug.: 65&24% 
July & Aug.: 

87*7% 

Wheat, barley, 
canola, feltow 

ERIM SAR 
c-w 

30" & 53" 
June 26, July 
31 & Aug. 13, 

1983 

, Melfort, 
Saskatchewan, 

Canada 

Multitemporal S AR 
for crop clôssification: 
a cornparison of steep 
and stiallow mude 
(30" & 53" incidence 
angles) 

At 5 3 O :  
June: 62% 
July : 9 1 96 
Aug.: 80% 

JuIy & Aug-: 
%% 

S pring wheat, 
winter wheat, 
spring barley, 

sugar beet, 
potat=, 

carrors, grass 

Potatoes 

VARAN SAR Feltwell, 
Norfolk, 

' 29"-67" UK 
4 &tes h m  
eady June to 

late Aug., 1986 

CCRS C M  m m  
SAR County, PEI, 

C-baml Canada 
HH&W 

June 27, Aug. 8 

Muttitemporal 
airborne SAR data for 
crop classitication 
using a per-field 
wF=h 

3 classes: 
4 dates: 90% 
2 &tes: 88% 

7 classes: 
4 dates: 69% 
2 dates: 55% 

- - -  - -  

A cornparison between 
multidate C-HH & C- 
W SAR imagery for 
potato m p  monitoring 

C-w: 
June & Aug.: 

81% 
3 dates: 79% 

C-HH: 

I 1 i Sept. 11,1990 1 L 1 3dates:73% 

1 B k o  
et al., 1984 

Brown 
et al., 1984 

Poirier et 
al., 1988 

Dobbins 
et al., 1992 

3.4.2.3 Lntegation of Airbome SAR and VIR Data for Crop Classüicatioii 

The synergistic effat of integrating SAR &ta and imagery acquired in the visible md inûared 

(VIR) portions of the spectnun has been recognized as important for two main reasons. First, 



timeliness of SAR fills information gaps during overcast or hazy periods at critical stages of the 

growing season and second, the combination of data h m  Merent parts of the spectnim often 

Leads to increased classincation accuacy. Several mearchers have demonstrated tbat combining 

airborne SAR and satellite VIR data impmves crop classification accuracks (e-g., Brisco et ai., 

1989% Fiumara and Pierdicca, 1989; Brisco and Brown, 1995). For example, Brisco and 

Brown (1995) evaluated the synergistic effects of multidate airborne SAR and Laadsat TM data 

for crop classification in western Canada. Four dates of C-HH SAR data (May 25, June 24, 

Iuiy 21 & Aug. 10) and two dates of TM data (May 28 & Juiy 16) were acquired over an 

agricuihnai area near Saskatoon, Saskatchewan, Canada during the 1988 growing season. The 

major crops investigated were canola, barley, wheat, summerfdow and alfalfa The results 

showed that VIR data were superior to the SAR data for single date classifications due to the 

multispeciral infofmation content. Mdtidate SAR data improved the classincation accuracy fkom 

30 to 7446 although multidate VIR produced the highest single sensor resuit of 90% correct 

classification. This was slightly improved to 9246 by including the SAR data with the VIR data 

The best two SAR channels and the best two VIR channels, based on their transfonned 

divergence statistics, produced an overall classincation accuracy of 85%. Furthemore, the May 

TM data combiaed with SAR data yielded an 87% correct classification because the grain and 

&alfa classes were much better separated when WR data were cornbined with SAR data. These 

results demonstrated significant synergistn between the two sensors. 



3.5 Spaceborne S M  in Agriculture 

3.5.1 Spaceborne SAR Systems: Past, Present and Future 

The first spacebome imaging raciar was launched in 1978 on-board the SEASAT sateIlite. It 

operated for 105 days, pionee~g spaceborne rack and many other microwave instruments 

(NASA and JPL, 1994). As part of a radar evaluation program, the US. carried out two 

additionai spacebome radar missions, SIR-A and SIR-B. SIR-A and SIR-B orbited the Eacth 

oniy for a number of consecutive &ys in 198 1 and 1984, nspectively (WerIe, 1992). Despite 

their overail technological and scientific success, the relatively short lifetime precluded the 

acquisition of seasonai data sets; for exampk, of vegetation-cawpy phenology. Moreover, the 

SEASAT and SIR-A SARs were 4C~ingie-parameter" instruments; Le.. they used a h e d  

wavelength, a hxed polarkation, and a fixed incidence angle (NASA. 1988). The SIR43 SAR 

provided the î k t  multi-incidence angk data set for surface featwe (particularly forest) mapping 

and topographie mapping. Aiso, the SIR-B data were the first to be digitally encoded and 

digitaliy pcocessed; they represented a signincant advauce in SAR image processing technology. 

The seosor stimuiated interesting resxah and applications, but the re~eafch and applications 

have been limited in scope due to its short Iifetime. The p s t  spacebome SAR system parameters 

are summarized in Table 3.4 (NASA, 1988; Werle, 1992). The detailed idormation on 

spacebome SAR systems can be fond in Appendix C. 

Table 3.4. Past Spaceborne S AR System Parameters 

I Frequency or 
Wavelength I 1.275 GHz I 1.275 GHz I 1.275 GHz 

(235 cm) (LBand) (35 cm) &-Band) (23-5 cm) &Band) 1 

Swath Width (km) 

Azimuth Resolution (m) 

Range Resolution (m) 

100 

25 (4 looks) 

25 

50 

40 (6 look) 

40 

20 - 50 

20 - 30 (4 looks) 

58 - 16 



The 1990s is the decade of spacebome SAR systems with the launch of ALMAZ-1, ERS4 and 

ERS-2, ERS- 1, SIR-CX-SAR and RADARSAT. With the l aunch of ALMAZ-1 on March 3 1, 

199 1, the former Soviet Union (just prim to its dissoiution) became the first country to operate a 

spacebome radar system (Lillesand and Kiefer, 1994). Although this system initiaied a new era 

in operational remote sensing h m  space with the ability to provide high-resolution data 

independent of weather conditions auci time of day, ALMAZl was not weli known in the S A R  

research and appLication community due to lack of promotion by Russiô With the Iaunch of the 

Europem Space Agency (ESA)'s ERS-1 in July, 1991, the first longduration spacebome S M  

system became available, Canying the same SAR instrument as ERS-1, the second European 

Eaah Resources Satellite was successfully lauacbed in April, 1995 (ESA. 1992; Eurimage, 

1994; ESA, 1995a). In Febniary, 1992, the Japanese Earth Resources Satellite ERS-1 was 

launched. ERS-1&2 and JERS-1 SARs are single-parameter SAR systems with h e d  

wavelengths, incidence angles and polarizations (ESA, 1992; NASDA, 1993; Eurimage, 1994; 

RESTEC, 1996b). Thus, theu capaôilities are limiteci for experimental and research use. The 

geometry of ERS-1 and ERS-;? SAR imaging mode is shown in Figure 3.6. 

Figure 3.6. ERS- I SAR imaging mode geometry (ESA, 1989) 
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The SIR-C/X-SAR system marked a big step fonuard with advanced SAR technologies. SIR- 

CIXSAR's unique contri'butio~~~ to eanh observation and m o o i t o ~ g  are its capabiüty to 

measure, from space, the radar sipanire of the surface at three different wavelengths, and to 

make measurements for different polarizations at two of those wavelengths (NASA/JPL, 1994; 

PL, 1996). The applications of SAR-C/X-SAR, again, are limited due to its short Metirne. 

SuccessfWy launched on November 4, 1995, the Canadian RADARSAT is the first long- 

duration spaceborne system with multincidence angle. multiresolution, and multiswath width 

capability (CS A et al., 1994). It provides an excellent opportunity for operational environmental 

monitoring and resowe management, inc1udibg agricultural monitoring. The present 

spacebome SAR system parameters are Nmmarued in Table 3.5 (ESA, 1992; Luscombe et al., 

1993; NASDA 1993; CSA et al., 1994; Euritnage, 1994; Lillesand and Kiefer, 1994; ESA, 

1995a; Jordan, 1995; RSI, 199%; CSA, 1996~; PL, 1996; RESTEC, 1996b). The 

RADARSAT SAR operating modes a~ shown in Figure 3 7  

Figun 3.7. RADARSAT SAR operating modes (CSA, 19%) 
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Table 3 5. Present Spacebome SAR System Parameters 

I Freqaency or 3 GHz 53 GHz I 5 3  GHz 
Wavelengtb X-Band: 3.1 cm or 5.7 cm 

Polarization HI W W L & C-Band: HI4 
Polatimetnc 
X-6- W 

Incidence Angle 30" - 60° 23 O 38.5' I 7 O  - 63' 20" - 60" 

Swath Width 350 100 75 L:15 - 90 50 - 500 
(km) (leftkight) (right) ( r m t )  (215 - 90 (right) 

E l 5  - 40 
Revisit Period 1-3 16-18 44 - 3+ 

(days) 

Spatial Resolution 10-30 3 0  18 30 10 - 100 
(ml 

Lifetime 1.5 3 4 t O days (April) 5 
( years) 10 days (ûctober) 

Later this cenniry or early next century, a few proposed spacebome missions with advanced 

multipatameter SAR systems wil l  be launched. The operational use of SAR data will be 

enhanced by the launch of these funire spacebome advanced SAR systems. Their 

multifiequency, multipolarization, multiresolution. muitiswath width and muititemporal 

capability will provide unbiased and consistent reai-time informaiion for an operational 

agriculturai monitoring system and other operational environmentai monitoring systems. The 

future SAR missions and systems characteristics are summarized in Tables 3.6 and 3.7 (Domier 

Deutsche Aerospace and British Aerospace Space Systems, 1994; Bartholomii et al., 1995; ES A, 

1995a; Brown et al., 1996). 



Table 3.6. Future Spaceborne SAR Missions 

ALMAZ-1B 
(Russia) 

SAR- 10 

SAR-70 

Circular, 73", Agsïcuinue, fo~wtry, 
400 km, cartography. oceans 
92 mins 

Sm-3 
SICH-2 SAR F i d  1997 Sun-synchronous, Agriculture, forestry, 
(NSAU) approved 3 years near- po lar, hydrology, 

98O, 670 km. environmental 
98 mins monitoring, 

forest and tundra fires 
ENVISAT-1 ASAR F i d  1998 Sun-synchronous, Environmencal 
(ESA)  approved 5 years polar, monitoring, 

780-820 km, p hysical 
100.59 mins oceanography, 

ice and snow, 
land surface 

RADARSAT-3 SAR Proposed 2005 IBD Operational sea-ice 
(CSAICNES) reconnaissance, 

structural geologic 
rnapping, and 
land-use mapping 

Table 3.7. Funire Spacebome SAR System Parameters 

Frequency or 
Wavelength 

53 GHz 
(C-Band) 

GBand and C-Band 

SLR-3: 3 5  cm 
Polarization HH&W HH. W, HV and HV 

0) 
Incidence Angle L-Band: 20" - 50" 

C-Bd:  15" - 65" 

Swath Width SAR-IO: 30 - 170 4û km (detailai) 100-400 L-Band: 1001300 
(km) SAR-3: 20-35 80-1 20 (Survey) C-Band: 25-800 

SAR-70: 120-1 70 
resight swath 330 for 
al1 above 
SLR: 450 

Spatial Resolatioa SAR-IO: 5-7 10-50 30. 100, 1OOO C-Band: 

(m) (detailed), Standard: 5 or 10 
15 (intermediate), & Spotlight: 3 x 1.7 
15-40 (survey) ScanSAR: 
SAR-3: 5-7 5-10 x 45-90 
SAR-70: 20-40 Twin Pol: 
SLR: 1901250 range, 10-20 x 5-10 
1200-2000 azimuth Quad Pol: 

- 10-20 x 5-10 



3.5.2 Spaceborw SAR for Agricultural Crop Classification 

3.5.2.1 Eariy Spaceborne SAR Data for Crop Classification 

Compared to the numemus airborne s u e s ,  littie research has k e n  done using early spacebome 

SAR in agriculture due to the very limited amount of data coUected by these short-lived missions. 

An overview of past spacebome imaging radar studies in agriculture is given in Table 3.8. A 

discussion of selected studies can be found in Appendix D. 

3.5.2.2 Multitemporal Spaceborne SAR Data for Crop ClassiTication 

Spacebome SAR is potentialiy an important new daia source for agricufturai applications. It 

satisfies a basic agricultinal requirement for reliable and frequent imaging tbrough the crop 

growing season, which canwt be met by optical satellites such as SPOT or Landsat. 

Agriculturai interest focuses on the use of muititemporal ERS-1 and other spacebome SAR 

images (Woodiag and Law, 1993). 

Before the launcb of the long-duration spaceborne SAR systems, airborne studies had 

demonstrated that multitemporal SAR data couid enhaace the ability to distinguish between 

various crop spectrai patterns (see Section 3.4.2 for details). However, comparatively few 

datasets have been available for study due to the increased cost and logistics of generating 

multitemporal SAR data with airborne platforms. With the launch of ALMAZ-1, ERS- 1, ERS- 

1, and RADARSAT, world-wide spacebome SAR data are now routinely availabie. They 

provide researchers with an excellent opportunity for developing multitemporal SAR agricultural 

applications (Ban and Howarth, 1995). Table 3.9 presents an overview of multitemporal studies 

using these SAR data A discussion of selected studies can be fomd in AppendU D. 



Table 3.8. O v e ~ e w  of Eady Spaceborne Imaging Radar Studies in Agricuinire 

Crop-Type SEASAT 
Classification CCRS 

Backscatter & SEASAT 
Agricultural CCRS 
Target SAR-580 
Parameters 

Land-Cover SIR-B 
Types 

SAR & Soil SIR-B 
Moisture, 
Surface 
Roughaess & 
Crop Canopy 

Backscatter & SIR-B 
Agricultural CCRS 
Cover Types SAR-580 

Backscatter & SIR-B 
Soil 
Moisture, 
Surface 
Roughaess & 
Vegetation 

SAR for SEASAT 
Agriculture, 
Forestry & 
Settlements 

LEM 
x-HH 
L-HH 

L-HH 
X-HH 
L-HH 

L-HH 

L-HH 

LHH 
LHH 

L-HH 

L-HH 

Swifi Current, 
Outlook, 
R~nond,  
Me 1 fort, 
western Canada 

Swift Cunent, 
Outlook, 
Raymond, 
Me1 fort, 
western Canada 

Hoosier & Lake 
Diefenbaker, 
Saskatchewan, 
Canada 

West-central 
Illinois, U.S.A. 

San Joaqwn 
Valley, 
near Fresno, 
California, 
U.S.A. 

nie region 
of Bonn, 
Germany 

Deteminaiion of refationsbips Cihlar and 
berween Unage tones & Hirose, 1984 
parameters descniing 
a~-culturai cover types and 
cornparison of classification 
accuacies (Visuavdigïtai) 

Determination of relationships Cihlar, 1986 
between image tones & 
parameters descniing 
agricultural cover types 
(visuaVdigita1) 

Disc~l~mination of  prairie land- Cihiar et al., 
cover types: feasibiiity study 1986a 
(visddigital) 

Evaiuation of the effects of Dobson and 
soi1 moisture, surface Ulaby, 1986a 
roughness, and ctop canopy 
cover on radar backscattering 
(digital) 

Determination of the influence Hutton and 
of grouad features on radar Brown, 1986 
cenini & cornparison of  
relative backscanering 
coefficients collecîed by space 
and airbome radar 
(visuaüdigital) 

Oôservatioas of microwave Wang et aL, 
backscafter dependence on soii 1986 
moisture, siaface roughness, 
and vegetation covers (digital) 

Qualitative and quantitative Bonsch et al., 
interpretation for applications 1988 
in agriculture, forestry and 
urban areas (visuaüdigital) 



Table 3.9. Overview of Muftitemporal Agriculture Saidies Using ERS-I, E R S 4  & 

SIR-C/X-SAR Data 

Crop 
Discrimiaation 

ERS-1 
c-w 

ERS-1 
c-w 

ERS-1 
c-w 

ERS- 1 
c-w 
E-SAR 
(airborne) 
c-w 
ERS-1 
C-w 

ERS4 
c-w 

ERS-1 
C - w  
JERS-1 
L-HH 

ERS- 1 
C - w  

ERS-1 
C - w  

SIR-C/X- 
SAR- L- 
ac-band, 
polarimc- 
mc. X-W 

ERS-1 
c-w 

Test field of Aam 
Prcfcctunl collcgc 
of Adculturt, 
Iapm 

Rice-Cro p 
Monitoring 

iuvdg;iti*on of swtlibility of unitempoml 
and multimponl 
ERS4 SAR d;ua for lad-use inventories 

Agricul tu ta1 
Land-Use 
Mapping 

Crop 
Monitoring 

Crop 
Discrimination 

Asscssmcllt of the fbbilily of &g 
spaeqbc!rnc- SAR data for croptype 
disauaui;iaoa 

Wright et oL. 
1993 Crop 

Monitoring 

CompYisoa of  mulatcmponl ERS-I and 
IERS-1 SAR chta for -cultural land 
applia-olls 

Agricultural 
Land 
Applications 

hvcstigiuiua of tk poceniial of ERS-l 
SAR data fot rie-field mapping and 
rice-crop monitocing 

Rice-Crop 
Mapping & 
Monitoring 

Investigation of ERS-1 SAR temporal 
twckscaact proale fw m p  ideaufication Crop 

Identification 

KJhbuch et 
al., 1995 Agricultural 

Land-Use 

Assessmat of Uœ cqmbility of ERS- I 
SAR pccision data to discriminait 
-CUI crop typs using field-basai 
C ~ ~ O C I  and determidon of tht 
uriicst possible stage in the growing 
season at which cmp type cim bc 
dininguïshcd 

Agricultaral 
Crop 
Discrimination 



3.5.2.3 Integration of Spaceborne SAR and VIR Data for Crop Classification 

Previous studies have shown that the integration of airborne SAR and satellite VIR data ïmproves 

crop classification accuracies (see Section 3.42 for deiaüs). Attempts have also ken made by a 

few mearchers to impmve crop classification accuacies ushg data 6rwi two satellite sensors 

(Ban and Howarth, 1995). Table 3.8 is an o v e ~ e w  of the synergism of SAR and VIR for crop 

classification. A discussion of selected studies c m  be found in Appendix D. 

Table 3.10. O v e ~ e w  of kitegration of SAR and VIR Data for Crop Classification 

Agricul turat 
S tatistics: 
Crop Acreage 
Estimation 

Monitoring 
Grassfand & 
Detecting 
Chaoges in 
Agticultural Use 

Crop 
Classification 

c-w 
smr 1 
XS 

ERS- 1 6 
c-w 
SUYr 4 

XS 

ERS- 1 6 
c-w 

Landsat 3 
TM 

ERS-1 3 
c-w 

Landsat 1 
'TM 

Seville, Spain; 
Great Driffield, 

UK 

Weilheirn, 
near Munich, 

Germany 

Onford 
County, 
Ontario. 
Canada 

ERS-1 SAR and SPOC data for 1993 
crop classification 

Cornparison of ERS4 and SPOT Kohl er aL, 
for crop acfeage esamation of the 1993 
MARS project 

Cornparison of ERS4 and Schadt et ai.. 
Lan&at TM data for monitoring 1993 
grassland and detecting changes 
in agricultural use. 

Evaluation of the synergistic Ban and 
effects of inregrathg satellite Howarth, 1995 
SAR and VIR &ta for crop 
classification 

3.5.2.4 Summary 

The spacebome SAR is potentiaily an important data source for agricuiturai applications. It 

satisfies a basic agricuitwal requirement for =fiable and fiequent imaging tiuough the crop 

growing season, which cannot be met by opticai sateUites such as SPOT or Landsat. 



AgriculRual interest focuses on the use of multitemporal ERS-1 and other spacebome SAR 

images. 

There have been signiscant developments in our understanding of the radar backatter of 

agriculniral crops over the lifetime of ERS-1. EVior to the lauach of ERS-1 in Juiy 199 1, 

research had been concentrated on experimental pro- using airborne radar systems, and 

involvemeut in space had been limited to the briefduration SEASAT and Shuttie Uaaging Radar 

(SIR-A and SIR-B) missions. The avaiIability of fiequent and diable satefite radar data h m  

ERS-1 bas provided new insights hto the potentiai of multitemporal radar imagiag for 

monitoring agicultural crops. The exeuent stability of the ERS-1 SAR caiiiration has been 

another important factor, facilitaîing cornparisons of crop backscatter measwements across 

different test sites and over different years (WOOdiDg, 1995). 

Spaceborne SAR agricdtural mearch has been concentrated on using ERS-1 data, although a 

few studies have marie use of the combinations of ERS-1 and JERS-1, and the! SIR-C/X-SAR. 

Most of the research has been carrieci out in Europe through ESA's programs and the European 

Community's MARS projects. In Canada, research has beeo supported through the Radar Data 

Development Rogram (RDDP) and the ERS-1 Soi1 Moishue Expriment (ERSOME). Very few 

papers, however, were found from the rest of the world 

From these shidies, temporai backatter profiles for a large number of different fields have ken  

analyzed. It bas been found that some crops generate distinctive temporal backscatter prof* 

which can be exploiteci for mp-classificatioa purposes. For example, rice. wheat, barley, 

oilseed rape and grass, a l l  show particularly distinctive behaviour. Tirne-windows exist in which 

these crops are separable on the basis of their backscatter and ciifferences in backscatter between 

dates. This allows them to be classifieci with high orders of accuracy. AU studies reported that 

multitemporal SAR data improve crop classification accuracy (WOOdiag, 1995). 



The synergistic effects of integrating sateliite SAR data and VIR data have also been invesagated 

by researchers. Both combinations of ERS-1 SAR/LU and SMSPOT data have been 

evaluated Most of the saidies reportecl an increase in crop classification accuracy, with the 

combinations of SAR and VIR data compared with either S A R  &ta or single VIR data aloae. 

Surprisiagly, in some cases a decrease of the classincation accuracy was found by adchng ERS-1 

to SPOT data (Wooding, 1995). 

Experience with ERS4 bas estabLished the potential of satefite radar for agriculniral applications. 

With ERS-ZT JERS-1, RADARSAT, ENVISAT M A R  and other spacebome SAR systems 

providing continuity of data into the next century, there excellent opportunities for exploithg 

the potentid of sateliite radar for operational crop monitoring. Operational multifkquency, 

multipolarization radar systems king planned for early next cenhny will extend the capabüities 

even M e r  

3.6 Crop Information Extraction from Digitai SAR Data 

Extensive maximum likelihood classification (MLC) experiments have been performed on 

agriculhiral targets. In gened, SAR has been out-perfomed by opticai sensors when data 

acquired on the same! date(s) and muiti-spectral VIR data are used. Crop classif?cation in SAR 

images using pixel-by-pixel comp~sons  have been found too inappropriate (iess ihan 50% 

accuracy with single-band SAR). due to problems associateci with image speckle (Cihlar et al., 

1986b). hirand (1987), however, suggests that crop classincation is possible using this 

technique, as long as the image is filtend. In fact, it has been suggested that filtering 

significantiy improves visuai aspects and pixel-by-pixel classification results, without losing 

texnuai i a f o d o n  and edges (Shi and F ~ n g ,  1994). Median fdtering, for instance, has beea 

successfhUy applied to duce  SAR speckle and, hence to improve the classification accuracy 



(Gdenough et ai. 1980; Brown et al., 1984; Ban et aL, 1995). Even with fdtering, some 

classes, such as grain varieties, still remain coafiised. 

A variety of efforts have b e n  made to irnprove crop classification, iacluding: 1. generation of 

various texhue measurements and segmentation techniques or pet-field classiners for crop 

discrimination (e.g., Ulaby et al., 1986b; Dubé et al.: 1986; Puitz and Brown, 1987; Vdée et 

al., 1987; Bénié et al., 1989; Treitz et al., 1993; Foody et al., 1994; Anys and He, 1995; Ban et 

al., 1995; Treia et al., 1996); 2. the use of muhiparameter (Le., multifrequency, 

muitipolarization, multi-incidence angle, and dtitempord) SAR data (e.g., Brisco and Protz, 

1982; Brisco et al., 19W, Brown et al., 1984; Guindon et aL, 1984; F d y  et al., 1989; Brown 

et al., 1992; Wooding et al., 1993; Baronti et al., 1995; Kühbauch et al., 1995); 3. the 

combinations of SAR and VIR &ta for crop identification (e-g., Brisco et aL, 1989a; Fiumara 

and Pierdicca, 1989; Fog et ai., 1993; Brisco and Brown, 1995; Ban and Howarth, 1996b); 4. 

incorporation of crop rotation practices into crop classification of SAFt imagery with a 

knowledge-based approach (e.g., Bedard et al., 1992; Ban, 1993). These approaches have 

proven effective for improving crop classification to a cenain degree, however, comprehensive 

understancüng of the radar backscattet h m  crops, and tbe systematic, op- methodo10gy to 

extract SAR iafomtion for input into a crop information system still remain pmblems. 

3.7 Achievements and Limitations 

Studies conducted in the past three decades have provided valuabie initial insights into the 

potential usefuiness of SAR for agricuitural applications. The hdings to &te cm be summarUed 

in the followiag broad statemenu: 

Crop canopy and soi1 parameters: Crop type is the most important field parameter. No 

definite relationships between SAR intensities and individuai canopy parameters have been 



establisbed to date, although some progress has been made. Research bas indicated 

relationships between radar backscacter intensities and various crop variables. uifluding crop 

type, moisaire content, and leaf a m  index (LAI) or percent cover. Surface roughness and 

rnoistwe content are the dominant soil parameten afkcting radar backscatter. The underlying 

soi1 will have a varyiag contni'bution to the backscatter throughout the cropgrowth period. It 

is diffl.cuit to idenw difcerent crop types ou the basis of their microwave backscatter 

characteristics because we do w t  M y  understand how varying crop and soi1 conditions 

affect the backscatter. 

Crop identincation: Reseiuch bas demonstrated the value of radar data in identifyiag crop 

types. High accuracy c m  be achieved with SAR (particulady muitilÏequency and 

multipolarizaiion) data under some conditions. Classification accufacies o h  vary among 

sites and between dates at one site. The extension of test site results to larger areas bas not 

been carried out, 

Digital classification method010gy: Digital filtering prior to classincation impmves results. 

Per-field classifiers are generally preferable to per-pixel classifiers. Image texture offers 

some potential, but bas not been thoroughly expiored. Image segmentation foliowed by 

classification appears to offer an effative approach to digital anaiysis of SAR data; however. 

segmentation of SAR imagery is diaicuit because of speckle. Incorporating crop rotation 

information using an expert system has proven to be a promising approach to certain extent, 

however, the incorporation of crop rotation knowledge iato an expert system for crop 

classification could be troublesome because crop rotations are smngly inauencd by market 

prices and the local climate. 

Integration of SAR and VIR: VIR image data from Landsat TM and SPOT XS have 

increasingiy been merged with S A R  data to take advantage of the best qualities of both types 



of imagery for agricuitural crop identification. The synergism of SAR and VIR data bas been 

demonstrated by several researchers using airborne SAR and satefite VIR data Very littie 

research, however, has k e n  done to improve crop classifkation accuracies using data fbm 

two satefite sensors. Thus, the potential of satefite SAR and VIR synergism stiîi needs 

m e r  investigation. 

Multitemporal approach: There are no clearcut conclusions as to optimal timing of 

measuements for classincation accinacy. For example, studies Mth C-W imagery hdicated 

that the highest accuracy in crop separation was obtained before thtee general vegetation 

classes reached mahirity (Cibiar et al., 1986b). Van Kasteren (198 1) on the other hand, 

concluded that &reatest accuracy in crop type separation was obtaiaed when the crop had 

reached maturity. Contrasting snidies such as these reaffirm the need for a better 

understanding of the parameters which inauence the image. Furthemore, an inadequate 

amount of airborne SAR data a c q d  during the growing season has iïmited multitemporal 

studies. With the launch of ERS- 1, ERS2, JERS-1 and RADARSAT, the long-duration 

spacebome SAR data ôecame routinely availabk to pmvide researchers with an excelient 

opportunity for developing multitempod SAR agricuitwal applications. 

3.8 Summary 

Radar remote sensing has the potential to play an Unportant d e  in agricultural cmp mapping and 

monitoring due to its independence from solar illumination and cloud cover. Starting in the mid- 

1960s, a group of scientists at the University of Kansas used airrraf-based radar imagers (Ka- 

and Ku-bands) to investigate the potential of radar for crop identification, mapping and condition 

assessrnent Sînce then, radar remote sensing techniques have been investigated for a variety of 

applications in agriculture. Major campaigns and investigations conducted by ~search 



laboratones in North America and Europe using ground-based scatterometers and airborne 

imaging radars, as weli as spacebome SARs, have been reviewed in this chapter. 

Previous research has demonstrated the large potential for using radar remote sensing for various 

agronornic applications. SAR data are so cornplex, however, that their interaction with 

agriculturai crop targets is not M y  undeistood; and with the current state-of-the-art of 

interpretation methods for SAR imagery, the accwacies of crop classification are not aiways as 

high as nquired for successfid operation of a crop information system. To be able to iarrease 

the accuracies of crop identification and area estimation, and thus develop a viable crop 

information system that makes use of S A R  imagery as the primary data source, we need to: 

1 . have a better understanding of the crop and underlying soil characteristics that influences 

the radar bacbatter throughout the grorowiDg season; 

2. identify the suitable methodo10gies to extract crop information from SAR imagery; 

3 .  evaluate multipolarizatioa airborne SAR for crop identification; 

4. evaiuate the synergistic effects of satefite SAR and VIR for crop identification; and 

5 .  evaluate muititemporai ERS4 SAR for crop identification. 





CHAPTER 4: EXPERIMENTAL DESIGN 

In this chapter, the geograpbical characteristics of the study area are discussed. The 

characteristics of the airborne SAR data, ERS-1 SAR data and the ground idonnation are 

described. The important aspects of cal't,raticm of ERS4 S A .  data are discussed and 

procedures for denvation of the caü'bration constant 0" are presented. 

4.1 Study Area 

The study area is sihiated in Norwich Township, an agriculturai area in Oxford County, southem 

Ontario, Canada. Approximately 15 km x 4 km and centred at 42' 57' N, 80' 38' W (UT' 530 

000 E; 4 755 000 N), this area has been selected as one of the few representative agriculturd 

'supersites' across Canada at which the relationships between radar data and agriculture are king 

shidied (Brown et ai., 1991). As part of the Radar Data Developmnt Program (RDDP), tbe 

Oxford County Soi1 Moisture Experiment (OXSOME) and the ERS-1 Soi1 Moisture 

Experirnent (ERSOME) experiments were conducted at this site. Figue 4.1 shows the location of 

the study area. 

4.1.1 Relief and Drainage 

Oxford County has a varied reiief and possesses typicai landfom features associated with 

continental glaciation. Elongated hüls, hown as dnimlins, occupy much of the central part of 

the county, while the southem half consists of smd plains of deltaic ongh interleaved with 

morainic ridges. The most continuously mgged ~ l i e f  is associated with the Waterloo Hills, near 

the border of Waterloo and Brant Counties on the northem margin of tbe county (Wicklund and 



Richards, 1961). in the southeast part of the county, the reiief of the study area is relatively 

smooth. Overall elevation is about 260 m. 

Figure 4.1. Location of the study area 

Figure 4.2 shows some of the extemal drainage featu~s within Oxford County. The= are no 

major rivers in the southem balf of the county, but the saidy area is drained by smaii 

intermittently flowing creeks that m in south, southeast and southwest directions. 

4.1.2 Climate 

Situateci in the peninsular region of southwestern Ontario, Oxford County has a climate that is 

strongly influenced by the Great Lakes. One of the most important aspects of cîimate in relation 

to agricuiture is the length of the growing seasou, Le., the h k ~ d  between the last killing frost 

in the spring and the fmt in the autumn. In general, with increasing distance h m  the lakes, 



there is a shorter fiost-free season. Another important aspect of climate in relation to agiculturai 

crops is precipitation. This region has a fairly d o m  pattern of precipitation distribution 

throughout the year. It has no marked wet or dry season. The region is traversed aitemately by 

cool dry air h m  the north and wann humid air h m  the south and southwest. Variations in the 

fiequency of these air currents can produce a humid hot month or an unseasonably cool month 

with too much cloud and rain in the ammer. The latter results in a condition of slow growth of 

those crops, such as wheat and corn, mat require high temperames for rnaturïty (Wicklund and 

Richards, 196 1). 

Figure 4.2. Drainage systems of Oxford County (Wickiund and Richards, 1961) 

4.1.3 Soils and Land Use 

Soils in the study area range fkom silt loam in the West to clay loam in the center and loarny sand 

in the east (Figure 4.3). A change in soii types nuis diagonaiiy through blocks one and seven. 



This boundary change can be locateà approximately by the location of snipfanning areas 

(p~cipaIiy tobacco), which are indicative of a sandy, well-cirauied soil. A tiil plain with ciay 

and silty loams exists in the western end of the shidy area (Gardeii et al, 1993). 

Figure 4.3. Soii classification of the study area (Wicklund and Richards, 1961) 

The major field crops of Oxford County include corn, soybeans, winter wheat, oats. barley, 

alfaMa, hay, Pasture, tobacco and rye. Statistics (Statistics Canada, 1992) show that improved 

land1 occupies 86% of the total fami-land area, unimpmved pasture occupies 2.8% and all other 

land occupies 11.4%. Of the improved land, 96% is devoted to crop production, 0.6% to 

summer fallow, and 3.496 to improved pashue. Of total crop land, 43.2% is corn, 16% is 

soybeans, 14.5% is hay, 7.2% is winter wheat, 1.7% is oats. 1.8% is barley, 3% is mixeci 

grain, 1.7% is tobacco, 1.5% is rye and smd areas of other crops (Statistics Canada, 1992). In 

the study area there are notable variations. Towards the West on silt-loam and clay-Ioam soils, 

fields are bigger and dominated by corn, soybeans. winter wheat, hay and alfalfa, Towards the 

east, on loamy sand, fields are smailer and grow mostly tobacco and rye. 

' For 1991, the figures show were denved by summation of cropland, sumwr fallow and hpmved pasture. 
The 1991 census did not incluâe a separare question on ''other" Unpmvd land. Therefore, some other types of 
improved land (e.g., land on wtiich buildings, barnyards, home gardens, and greenhouses are located, newiy broken 
land or land left idle for more than one year) will not be included in these totais. 



4.2 Data Description 

4.2.1 Airborne SAR Data 

Narrow-swath, C-band SAR data were coU8cted for the study area by the CCRS Convair 580 

aircraft in 1990 as part of the OXSOME pmject (TabIe 4.1). The aimait acquired SAR data in 

C-band and four polarizations (FEI, HV, VH and VV). The speciflcations are iisted in Table 4.2 

(Geomatics Canada, 1994; Livingstone et al*, 1987; 1988). 

Table 4.1 Remotely Sensed Data of the Study Area 

Airborne SAR C-HH, C-HV 6 m x 6 m (8 looks) 

ERS-L SAR C - W  30 m x 30 m 

Landsat TM 

SPOT HRV(xS) 

July 10, 1990 

May 27, 1992 

June 15, 1992 

Iuly 24, 1992 

Aug. 5, 1992 

Sept. 28, 1992 

Oct. 14, 1992 

May 12, 1993 

Junc 16, 1993 

July 5, 1993 

Iuly 2 1, 1993 

Aug. 9, 1993 

Aug. 25, 1993 

Sept 13, 1993 

Sept. 29, 1993 

Oct. 18, 1993 

Aug. 6, 1992 

June 15, 1992 

Aug. 26,1993 



4.2.2 ERS4 SAR Data 

Table 4.2. CCRS Airborne CBC-SAR System Characteristics 

Muititemporaf ERS4 SAR data were acquired during the 1992 and 1993 grouhg seasom (Table 

4.1). The SAR system characteristics are listed in Section 3.5.1 in Chapter 3. 

w 

F w ~ ~ w  

Pol arization 

Incidence Angles 

Resolution 

I 

Swath Width 

(with 6 km aircrafi altitude) 

The tiffeen scenes of ERS-1 SAR signal data were received on Kigh Density Digital Tape 

D D T )  at the Canadian Data Reception Facility at the Gatineau Satellite Station (GSS). Among 

them, six scenes of 1992 signal data were conelated to imagery using the Canadian ERS-1 SAR 

Processor (CERS-1) at GSS. These SAR geoieferenced 6ne-resoiution (SGF) ground-range 

images were neither radioxnetricdy cali'bmted nor corrected for changes in system gain (see 

Section 4.3 for details). The SGF product parameters are listed in Table 4.3 (CCRS, 1992; 

Livingstone et al., 1 992). 

5.3 GHz (C-band) and 9.25 GHz (X-band) 

horizontal or vertical 
I 

nadir mode = O - 74". narrow mode = 45 - 76O, wide mode = 45 - 8S0 

nadir- and narrow-swaîh (high) cesotution: 6m in azimuth & range 

wide-swath (iow) resolution: 10m in &uth and 20m in range 

na& = 22 km, namw = 18 km, wide = 63 km 

In order to gain a precise understandkg of mdtitemporal radar backatter properties of 

agriculturaf crops and soils, and to develop methodologies for classification of agricultural crops, 

accurate absolute calfiration of SAR is necessary. The nine scenes of 1993 signal data, 

tberefore, were pmessed at the ESA Processing and Archiving Facility at the German Aerospace 

Research Establishment (DLR) @PAF). The ESA SAR Precision (PM product is a multüwk 

(speckle-reduced), ground-range. system-corrected image (see Table 4.4). The product is 



calibrateci and corrected for the SAR antenna pattern and range-spreading loss; i-e. radar 

backatter c m  be denved fiom the product for geophysical modehg,  but no correction is 

applied for terrain-induced radiometric effects. The image is not geocoded and terrain distortion 

(foreshortenhg and layover) bas not been removed (ESRINESA, 1996). The cal'bration 

principles are detailed in Section 4.3. 

Table 4.4. ESA ERS4 SAR PRI Product Parameters 

Table 4.3. The ERS- 1 SGF Product Parameters 

Cootdinate system 

Number of tines 

Number of pixels 

Spatial tesolution 

incidence angle 

Absolute geometric accuracy (flat temin) 

Relative geometric accuracy (flat terrain) 

Number of looks 

Type of pixel 

Pixel spacing 

Annotation in image lat~long. of scene centre and the four corners 

zero Doppler, p o n d  range 

8000 (image) variable swath 

8000 

nominal 30 rn at azirnuth by 30 m at -und range 

19.5" to 27" 

1100m 

4ûm 

6 (3.3 look effective) 

16- bit derected 

125 m x 125 m 

' pixel size 

Scene area 

Scene size 

Pixel depth 

Product location accmcy 

Projection 

Number of looks 

125 m at range and azimuth 

100 km at range and at lest  1025 km at azimuth 

8000 pixels and at least 8200 lines 

16 bits 

1 0 0  rn at cange and 200 m at azimuth 

ground-me 

3 



4.2.3 Landsat TM and SPOT Data 

Landsat TM and SPOT data were also collecteci in 1992 and 1993 (Table 4.1). The systems' 

characteristics are descnkd in Section 23.1 in Chapter 2. 

4.2.4 Ground Information 

Ground data were coliected by field teams during OXSOME in May and July, 1990 (Hutton et 

al., 1990; Brown et al.. 1991) and ERSOME during the 1992 and 1993 growing seasons. The 

field boundaries were digitized into a PAMAP GIS fkom a SPOT image acquired during the 1990 

growing season. The boundaries were updated using 1992 and 1993 SPOT images. 

The study area is subdivided into eight blocks (Figure 4.3) for the convenience of the field work. 

Each field has been assigned a block and a field number. Extensive ground data (known as 

"green sheets") were co11ected for agriculhiral fields and included: crop type, plant growth stage, 

canopy height, percentage cover. row spacing, row direction, plant condition, and ground 

photograpbs (Figure 4.4). Intensive sampiing for soil moisture. d a c e  roughness andor 

residue amounts were also made on some "priority fields" during May and October, 1992. As a 

result of these field observations, an extensive GIS database has been developed for this area, 

includîng agricdNal field boundaries, crop information (Le.. green sheets), airborne SAR and 

ERS- I data. An example of the ''green sheets" can k found in Appendix E. 



Soybeans 

Pasture 

Figure 4.4. Major crops in the study area 



4.3 SAR Radiometric Cdibration 

4.3.1 Introduction 

The quantitative use of SAR data requires caiibrated images. Researches who want to carry out 

multitemporal studies over large areas, compare data h m  dinerent sensors, extract geophysicai 

parameters nom backscatter measurements using models, build up a database of backscatter 

measurements for different types of teffaioricidence angle, etc., can oniy do so using cali'brated 

SAR data products. Also, the full knefit of the new rnultictiannei SARs will not be reali;ted 

uniess the different channels can be properly compared to one auother (Freeman, 1992). 

The radiomeaic fidelity of SAR imageiy is &ected by intensity variations resulting fiom surface 

scattering geometry and antema pattern variations. The surface scattering geornetry causes 

radiornenic distortions, because at increasing incidence angle dom-range less power is received. 

This resuits in less intense signal renims and less image bnghtuess. The foiiowing radar equation 

(4.1) States that the power received is inversely proportional to the fourth power of the range. 

This relationship is known as R4 power loss. 

Pt Gt Ar 
Pr=------a, Equation 4.1 

41r R~ 4zR2 

(with the two way path losses neglected) 

received power at polarhion r, 
transmitted power at polarization t, 
gain of the transmitting antenna, in direction of target, at polarization t. 
distance between the radar and the target (slant range), 

radar cross-section, the m a  intercepting that amount of power of 

polarization t which. when scattered isotopically. produces an echo 
at polarisation r equal to that observed fkom the target, 

effective receiving area of radar antenna aperture at polarization r, and 

isotropie spreading. 



The antenna pattern causes radiometnc distortion in the range dimension, because an antenna 

transmits more power from the center of the antema than from its edges. This results in more 

intense radar returns in the middie-range of the image swath relative to the near- and far-range 

edges where illumination is Less intense (Werle, 1992). Figures 4 5 & 4.6 show the azimuth cut 

of the SAR antema pattern. 

Figure 4.5. Measurements of the SAR antenna pattem, ushg azirnuth cuts (Lena. 1993) 

Figure 4.6. One antenna azimuth cut of ERS-1 (Lentz, 1993) 



These distortions can be compensated by calculating the range power loss and by measuring the 

antenna pattem cross the image swath. Range spreading loss can be compensated in the pixel 

digital number using the following equation: 

Equation 4.2 

where R is the slant range distance at the distributed target location and R, is a reference siant 

range distance; i.e.. the mid-swath slant-range distance R, = 847.0 km (Law, 1992). 

The antenna pattern (Figure 4.7) can be applied to the pixel digital number using the following 

equation: 

Equation 4.3 

where g2(8) is the two-way antema pattern profile (to be applied on power data) and 0 is the 

look angie at the distributeci target location (Law, 1992). 

IN-FUGHT ERS4 SAR ANTENNA QAITERN 

Figure 4.7. Measured antenna pattern for ERS- I SAR (Law 1992) 



4.3.2 ERS-1 SAR Radiometric Calibration 

4-3-2.1 Canadian ERS4 SAR Processor 

The Canada Cena for Remote Sensing (CCRS) has been receiving ERS-1 SAR data and 

recording them on HDDTs at the Canadian Data Reception Facility at the GSS and Prince Albe~t, 

Saskatchewan Satellite Station since the lawich of ERS- 1 in 199 1. These daîa are correlated to 

imagery by the CERS-1 located at GSS, Because ERS4 was initially an experimentai satefite. 

the design and development of the CERS4 processor were camed out prior to the growth of 

requirements in the scientific community for radiometricdy caliirated imagery. As a result, the 

CERS4 processor was not designed to perform radiomehic caiiiration and performs no 

corrections for changes in system gain. The intention was rather to d o w  ail fluctuations in the 

sensor to flow through to the data. Any stability that it does produce is therefore inherent in the 

sensor itself. There are no normalizacions for siant range, incidence angle or antenua pattern 

dependencies (Lukowski et al., 1993). 

Since the Gatineau processor supplies much of the Noah American SAR data nom ERS-I. 

CCRS gave a contract to the Noetix Research Inc. in 1993 to dcvelop ERS4 SGF Image 

Calibration Softwate based on the paper by Livingstone et al. (1992) to calibrate the! ERS- 1 SGF 

images by removing the e f f ~  of the illumination autenna and by providing the coefficients 

which convert the digital numbers on a SGF image to total power, or the nomialized backatter 

coefficient d (Noetix Research hc.. 1993). The caliiration soffware, bowever. does not 

compensate for range spreading loss. Livingstone et al. (1992) estimateci the accuracy for this 

calibration is at +/- 2 dB. 



4.3.2.2 ESA Processing and Archiving Facilities (PAF) SAR Processot 

The ERS4 SAR PR1 product is radiometricaüy caiibrated and correcteci for the SAR antema 

pattern and range-spreading loss at one of the ESA PAFs. Tbe calibration measurements were 

performed using traosponders deployed by ESAESTEC in Fievoland, the Netherlanâs, a joint 

effort between the ESA PAF and the ERS Centrai Facility at ESNESRIN. The combination of 

internai caii'bration parameters and accurate on-ground measucewnts gives the ERS-1 user 

community the fmt opportunity to work with precisely caii'brated S A .  products acquired over a 

Long period (Law et uf-, 1993). 

Interna1 Cabbration Parameters 

Two types of interna1 cali'bration parameters are meanired in the ERS- 1 SAR Active Mimwave 

Instrument (AMI). At the start and end ofeach S A R  imaging sequence. a set of four caliraiion 

puise measurements and eight noise measurements is made. During the imaging sequence, 

copies of the transmined pulses (replicas) are generated and appended to the raw data. One 

cornpiete replica puise is transmitted with every 24 raw-data range h e  records. These two stage 

intemal calibration parameters are required to ensure that the ERS-1 SAR image products are 

intemaiiy caii'brated, especialiy as the ERS-1 AMI  does not have an automatic gain-control 

system. The system gain can drift due to temperature changes and aging. ?ne gain changes are 

monitored via the replica pulse powers as they are passed through the SAR system. The 

caliration pulse measuns the majority of the gain drift with the replica puise king used to 

monitor the gain drift during the imaging sequence when the more representabve puise is not 

available. The thermal noise is measured when pulses are not king traasmitted at the start and 

end ofeach imaging sequence. 



Within ESA SAR procasors, a single replica puise associated with the image product being 

processed is exhacted and used for gain nomialiiaiion and range compression. Two problems 

were identifid with repiica pulses. The first was tbat the replica pulses were being extracted 

Born the raw data inconectiy such that the start of the replica was misidentifieci by one or two 

range line records. The second problem was assuciated Mth the fat that the replica pulse itself 

is compt in that one or more of the 704 samples that make up the replia can have spurious 

values. Quality checking has been introduced a .  the ESA PAR including D-PAF to ident* the 

two problems and, if found, to select another suitable replica pulse to be used for image 

generation (Laur et aL., 1993). 

A M e r  problem was found. The use of a replica pulse within a processor assumes tbat the 

replica puise power is directiy proportional to the transmitted plse power. If this were the case, 

aay transmitter pulse power variations would be compensated for in the resultant SAR image. It 

was found, however, ibat the above essumption is invalid (Le., there is no direct relationship 

between the replica pulse and the cah%ration pulse power). The consequence of this is that any 

replica pulse power variations introduced by a SAR processor need to be removed (Law et al.. 

1993). It was suggested by Laur et al. (1993) that users of ERS-1 SAR imagery need to correct 

their imagery to obtain comctiy cali'brated resuits. This is done by cornparison of the replica 

puise power used to generate the image in question with tbat used to generate the reference image 

of Flevoland nom wbich the calibration constant was derived The replica pulse power used for 

image generation is given in the CEOS header of each image product The expression used for 

this correction is: 

image replica power 

reference repiica power 

(The reference teplica power is 205229.) 

Equation 4.4 



No corrections are made for the caiibration pulse power variations within the ESA ground 

segment SAR processors. Because the cal'bration pulse power iafomation is diffidt to afcess 

for users and corrections of its variations do oot improve the caliiration measurements, it is not 

proposed to apply such a corzection in the derivation of a" in ESA SAR products generation 

Raw Data Quaiity Parameters 

SAR data obey a certain statistical distriaution (zero mean, Gaussian amplitude and uniform 

phase). Statistical checks on the data cm establish whether the data are cormpted during on- 

board processing such as in-phase O and quadraptue (Q) channel sepamion and analogue to 

digital conversion (ADC) (Law et al. 1993). 

Law et al. (1993) identifid the ADC non-linearity as the main source of error in the 

measurement of radar cross-sections or backscattering coefficients. The ADC non-lineanty 

occurs over large dismiuted targets having high backscattering levels, such as sea surfaces. 

Examinations of ERS4 SAR raw data for the period January 1992 to September 1993 inàicate 

an average I chaoael standard deviation of 6.15 (comsponding to a power loss of O. 1 dB) 

together with a range of approximately 2 to 12. These fïndings indicate that a signincant 

proportion (22%) of ERS4 SAR raw data suffers h m  an ADC power loss higher than 0.5 dB. 

Thus, these fiadings clearly indicate the need to conect for ADC non-Liaearities when masuring 

the radar cross-sections of calibration targeis, especidy when the targets are in a coastal area 

Table 4.5 shows the radiomeaic stabiiity and the radiometnc accuracy measured with the 

transponder 2 before and after the ADC correction. From these results, it appears that tùe ADC 

non-linearities correction gives substmtiuf inprovernent in the precision of the radar cross section 



measurements. The denved radiomemc parameters such as the radiometric s tability and the 

radiomeüic accuracy are reduced by ha@ 

Table 4.5. Radiornetric Caliiration Parameters with Correction of 
ADC Non-Linearities 

I Transponder 2 I Before correction of I Afier correction of 
(38 measurements over 2 yem) AIX power loss estimate ADC power loss estimate 

1 Radiometric stability 1 0.38 dB 1 0.18 dB 

1 Radiometric accuracy 1 0.32 dB 1 0.16 dB 

1 Max. variation of the measured RCS* 1 - + 0.75 dB I + 0.42 dB 
œ 

The in-flight ERS-1 SAR antenna elevation pattern has been estimated by ESA/ESRIN using 

Mages over the BraPlian Amazon rain-forest (isotmpic targets method). The derivation of the 

antema pattem was done using the mean range profile of 10 images of uniform rain-forest with 

the assumption ibat y = flcosa is a constant value for the rain-forest (for the ERS-1 SAR 

incidence angie a). The derived me;m polynomial of range prohles was set to zen, at the 

boresight angle (look angle 0 = 20.3S0). Noise compensation was appiied. In order to check 

the effect of AM- non-linearities over îhe rain-forest, a raw data image was analyzed and the 

ADC power-ioss in the scene was derived. The estimated ADC power loss correction was then 

applied to the previously derived in-tlight antenna pattern. The estimated in-flight antenna pattem 

was then compensated in ESA PRI products (Law et aL, 1993; Laycak and Law, 1994). The 

in-flight ERS-1 S A .  antenna pattern is shown in Figure 4.7. 



The Derivation of the Caiibration Constant 

The caiiiration constants for ESA ERS-1 products are derived h m  the Transponder 2 radar 

cross-section on October 13, 1991. Table 4.6 gives K values e0.75 dB) for all  PRI products 

processed afker September 1, 1992. The cali'bration constant is valid for one spec~cproduct und 

one specijk SAR processor. The Tbeerent vaiues of K between PAFs arise fiom the different 

gains of the PAF processors (Law, 1992). 

Table 4.6. Caiibration Constant K for ESA ERS4 SAR PRI Products 

* EECF: ESRIN ERS4 Central Facility 

ESRINIEECF* 

K = 58.24 dB 

The estimation of ADC non-linearity cowctiom (computed fkom the raw block power analysis) 

to apply to the Transponder 2 radar cross-section for this date is 0.39 dB. A c o ~ o n  of the 

estimate is given by the mean ADC coffection of 0.45 dB (measuremena over 2 years). An 

updated cal'bration constant is obtained when applying the ADC correction: 

K(update) = K + 0.39 dB Equation 4.5 

D-PAF 

K = 58.24 

The updated caliraiion constant K is consistent with previous K esh'mated emr bounds at the 

end of the commissioning phase. The updated K error bounds & 0.42 dB) are indeed within the 

previous estimation of fl.75 dB. The updated radiometric stability is 0.18 dB compared to a 

previous figure of 0.38 dB (Law et al.. 1993). 

UK-PAF . 
K = 59.49 dB 



4.3.3 Derivation of the Radar Backscatter Coefficient a0 

The generation of ERS- 1 SAR temporal backatter profiles of agricdturai crops requires relating 

pixel digital numbers (DN) on SAR images to baclscaiter coefficients of correspondhg 

disuibuted tacgets in the scene. The aim of this section is to describe the methoàology for 

deriving backscatter coefficients in ERS4 SAR PR1 products. 

The relationship between image intensity and backscatter coefficient is given in its simplest fom: 

d > = K * a O  Equation 4.6 

where: CI> is the average pixel intensity measurements, 

O" is the backscatter coefncient of the distn'buted target, and 

K is the caiibration constant. 

To denve a local estimate K ( a )  of the cal'bration constant, the foilowing equation should be 

appiied: 

sin- 
K(a) = K * Equation 4.7 

The calibration constant, K, given in ESA SAR PR1 products is K = K (4, = 23"). The local 

incidence angle a can be determineci by the following equations: 

(R,+h)2-&2-&2 
cos% = Equation 4.8 

2%R, 

where R, is the earth radius. % is the distance between radar and the target (Figure 4.8). 



The complete equation to be applied in order to determine the backatter coefficient a" of an ara 

Located at incidence ange a is: 

Since the ESA SAR PR1 produca have compensated for range spreading loss and antenna 

pattern, the equation can be simplifieci to: 

where : 

Equation 4.10 

DN, is the digital oumber of a given pixel i and is pmponional to the square-mot O f 

the intensity & received from the ground resolution ce11 corresponding to pixel 1. 

N is a large pixel aumber (more than 500) to ensure statistical vaiidity to the 

estimation of the mean intensity, 

Expressed in decibels (a"(d~) = 10 log, GO), we have: 

Equation 4.12 



In PR[ images, the range of incidence angles a is typicaiiy fiom L9.S0 at the near-range to 26.6" 

at the far-range. The correction factor can vary h m  - 0.7 dB to M.6 dB with image swath. 

Figure 4.8. ERS- 1 SAR Imaging Geomeüy (Laur. 1992) 

(*GEM6: Goddard Earth Mode1 6) 

4.4 Summary 

In this chapter, the geographical characteristics of die snidy area have becn discussed. The 

characteristics of the airborne S A R  data, ERS-1 SAR data and the ground information have been 

descnbed. The important aspects of calibration of ERS4 SAR data were discussed and 

procedures for derivation of the calibration constant a0 were presented* 





CHAPTER 5: AIRBORNE S A R  FOR CROP CLASSIFICATION: 

A MULTIPOLARIZATION APPROACH 

5.1 Introduction 

As discwed in Chapter 3, airborne SAR data have been used by researchers to ideniify crops 

for the past two decades (e.g., Brisco et al., 1984; Brown et al., 1984, Foody. 1988; Brisco et 

al.. 1989a; Fischer and Mussakowski, 1989; Brown et al-, 1993a; Foody et al., 1994). The 

accuracy of SAR crop classification, however, varies and is not aiways suffcientîy high for crop 

inventory and aaalysis. This can be attti'buted, in part, to the performance of per-pixel classifiers 

when applied to SAR data because the results of such classifications are often noisy. In order to 

reduce noise and impmve classification accuracy, it is necessaxy to take into account the spatial 

correlation among pixels (Qiu and Goldberg, 1985). A per-field classification approach should 

improve classification accuracy since fields in Canada are generally planted with a single crop 

(Brown et al., 1984; Brisco et al., 1989a). Therefore, efforts have been directed towards 

development of techniques to extract and classify homogeneous segments on SAR images (Bénie 

et al., 1989; Fiumara and Pierdicca, 1989; Thomson et aL, 1990). 

The objective in this chapter is to evaiuate spatial information processing and classification 

methods for impmving crop classincation using multipoIarization airborne S A R  data 

Specïîïcally, contextuai (filtering) and textwal processing techniques are investigated to examine 

their effects on improving classification acauacy. Per-pixel and per-field classification 

approaches are tested to determine the most appropriate classification ~ILethod for use in an 

agricuitural environment; and CO-polarjzation (C-HH), cross-polarization (C-HV) SAR data and 

their combinations are evaluated for crop classification. 



5.2 Data Description 

The C-HH and C-HV airborne SAR amplitude data used in this study were acquired in narrow 

mode by the Convair 580 airrraft of CCRS on July 10, 1990 (Livingstone et ai., 1987; 1988). 

The detailed characteristics of the SAR systems are descriid in Section 4.2.1. DifEerentiation of 

crops, based on their stage of development, is greatest in mid-Jdy for Oxford County. As a 

resuit, it was anticipated that crop separability in the microwave region would be optimum at this 

time (Foody et ai., 1989; Fischer et al., 1992). The incidence angles in the narrow mode of 

coilection raaged f?om 45 to 76 degrees for the swath width. The study site, however, feii 

witbin approumaiely 15 de- of the incidence-angle range. As a result, backatter variation 

wiihui this range was assumed to be indicative of surface variation, rather than of incidence-angle 

effects. The spatiai resolution of the data was appmxuPate1y 6 m (Figure 5.1). 

Figure 5.1. Colour composite of C-HH texture (red), C-HV texture (green), and C-HH (blue) 
for the study m a  acquired on July 10, 1990 



Ground data were collected by field teams during the Oxford County Soi. Moisture Experirnent 

(OXSOME) in Jdy, 1990 (Hutton et al.. 1990; Brown et al.. 199 1). The field boundaries were 

digitized at CCRS nOm SPOT sateIlite data acquired during t&e 1990 growing season. Extensive 

ground data were coliected for agridairal fields and included: crop species, plant manirity, 

percentage cover, canopy height, row spacing, mw direction and plant condition. 

5.3 Methodology 

Both contextuai (filtering) and textural processing techniques are investigated to examine their 

effects on impmviog classfication accuracy. Per-pixel and per-field classification approaches are 

tested to dete& the most appropriate classification rnethod for agriculhual crop identification. 

The per-field classification wthod was performed using field-boundary data to defme 

homogeneous areas. Mean and modal values for each field were calcuiated and used to replace 

the pixel values in the field. The classifications based on field meaas, modes and their 

combinations were performed ushg a non-parametric classifier. The classification accuracies 

achieved using the per-pixel and per-field classification approaches, in conjunction with the 

various processing methods ushg spatial information, are the emphasis in th* study. 

5.3.1 Preprocessing 

Shce the development of image segmentation techniques is not the a h  of this study, field 

boundaries for the snidy arui were extracted h m  a geographic information system (GIS) and 

were used to defint homogeneous areas. The geocoded (i.e., Universal Transverse Mercator 

(UTM) coordinates) field-boundary file for the snidy area was generated using a PAMAP GIS. 

Fit, the field-bomdary file was converted h m  a vector format to a rastcr format with a pixel 

size of 4 m by 4 m; then a IO-pixel b a e r  was applied to the field bomdaries to eliminate the 

effects of field boundary pixels and minor image regisaation errors on crop discrimination. The 



fde was then importeci into the PCI EASVPACE image processing system, and the C-HH and C- 

HV images were geometrically cornected to the geocoded field boundaries using a second-order 

polynomial and a nearest-neighbour iesamphg algorithm. The accuracy of the geometric 

corrections was within one pixel. 

5.3.2 Contextual laformation in Classification 

In order to reduce speckle and witbin-field variability, a 5x5 median nIter was appiied to the raw 

C-HH and C-HV data. These images were used to determine the effectiveness of simple filtering 

on classification xcuracy, particuiarly in conjunction with the fieldclassification approach. 

5.3.3 Texture Information in Classification 

A grey-level co-aicurrence matrix (GLCM) is a two-dimensional array thaî can provide 

conditional joint probabilities of aii pairwise combinations of pixels within a computation 

window (Haralick et al., 1973; Haralick, 1979). The cooccurrence of grey values represents the 

probability of any huo pairs of grey values occucring at a userdefhed interpixel sampiïng 

distance and orientation. Tex- statistics generateâ h m  the GLCM represent a single spatiai 

measure of image texture from which the GLCM is computed (Barber and LeDrew, 199 1). The 

mean texture features basexi on GLCMs were g e n e d  using PCI EASYPACE software (PCI, 

1994). The GLCMs used in this anaiysis consisted of the conditional joint probabilities of 

neighbouring grey values h m  the 8-bit SAR image at an interpixel samp1e distance of 1 and 

orientation perpendicular to the azimutb/f'hght direction. An 11x1 l moving window was used in 

the generation of the texture statistics. This window size was found to produce superior results 

to a 7x7 window ("ïreib et al., 1993). 



The pixel values of the texture images were ldbit, so they were scaled to &bit values in order to 

be compatible with other data types for the subsequent image processing. A supe~sed 

maximum-tikelihood classification of the four crops perfonned on both the &bit and the ldbit 

images resulted in similar classification accuacies (Le., Kappa coefficient (%) = 0.69). 

indicating that the information content remaineci similx after iinear scahg. SchmWus et al. 

(1994) also used linear scaüng of &bit airborne SAR data to 8-bit in their study of variations of 

radar backatter over tirne for agricultural crops in Germany. 

5.3.4 Per-Pixel Classification 

In order to assess the effectiveness of the per-field classification approach, a cornparison with a 

traditionai per-pixel classincation was required For this reason, a number of per-pixel 

classifications were performed using C-HH and C-HV raw and preprocessed data (e.g., Figures 

5.2 to 5.5). 

The four major crops classified in this study were winter wheat, corn, soybeans, and aifalfa. 

For each crop, pixel sample blocks were raadomly extracted within representative fields in order 

to calirate the classifiers. To assess the accuracy of the classfications, validation pixels, 

independent h m  the calibration pixels, were randomly selected for each crop. Fields that 

exhibited anomalies, such as backatter that deviated signincantly fiom the nom of a particular 

class, were excluded h m  both the caliiration and validation samples. These anomalies usualiy 

resulted from crop management andlor soi1 drainage characteristics. Caiiiration and validation 

pixels were extracted h m  different fields, a requirernent for the per-field approach where a field 

was defined as a homogeneous area and al l  pixels were assigned the value of either the mean or 

mode. This reduced the number of fields that could be used for cali'bration and validation, so 



Figure 52.  C-HH image for the study ana acqukd on July 10, 1990 

Figure 5.3. C-HH texture image (using the mean texture statistics of the GLCM) 



Figure 5.4. C-IN image for the study area acqairrd on July 10, 1990 

Figure 5.5. C-HV texture image (ushg the mean texture statistics of the GLCM) 



calibration had to be restricted to three winter wheat fields, eight corn fields, five soybean fields 

and seven alf&Ka fields. Other crops in the saidy area were too few in number or sUe to be 

inchded. 

Cali'bration data were extracted for each of the crops fkom the irnagery and the histograms were 

examinecl in order to determine whether a paramctric or non-parametnc classifier was more suited 

to the data distriïution. The caiibraîion data did not foiiow a Gaussian distribution, particularly 

for the texaire images, indicating that a non-parametric classifier was better suited. The 

minimum-distance-to-mearis (MD) assigns each pixel to the class which has the minimum 

distance between the pixel value and the class mean. In situations where the maximum- 

likelihood classifier's (MLC) multivariate normal distribution assumption does not hold the MD 

may perform better than the MLC. This is because the MD does not require assumptions. In this 

study, the MINDIS program in the EASWACE software was used (pcr, 1994). 

Tests were performed to compare a MD (non-pararnetric classiner) and a MU3 (paranietric 

classitier). The results indicated that the MD classifier performed better under most 

circumstances Pbles  5.1 and 5.2). In aU cases. Kappa coefficients ( %) were higher for the 

MD classincation than for the maximum-iikelihood classincation. For example, the per-field 

classification accuracy ( k) for the C-HH texture irnage increased fiom 0.8 1 to 0.9 1 when using 

the MD as a pst-segmentation classiner as opposed to the maximum-Iikelihood classifier. For 

this reason, the MD classifier was used for the remaining analyses. 



Table 5.1. Cornparison of MD and MLC: Per-Pixel Classincations (%) 

Table 5.2. C o m p h n  MD and MLC: Per-Field CLassincations (46) 

2 

Corn 

23.30 

0.00 

56.40 

52-20 

Soybeans 

22.00 

55.90 

1 8.00 

14-50 

60.60 

75.30 

68-40 

69.70 

Image 

C-HH 

C-HIH 

C-HV 

C-HV 

C-HH texture - mean MLC 100.00 66.70 80.00 100.00 85.84 0-81 

C-HH texture - rnak MD 100.00 75 .O0 80.00 100.00 88.20 0-85 

C-HH texture - mode MLC 1 00.00 75-00 60.00 100.00 83.47 O, 78 . 

Corn 

75.00 

58-30 

66.70 

66.70 

100.00 

83. 30 

9 1-70 

91-70 

83-30 

Soybeans 

80.00 

80-00 

100.00 

70-00 

60.00 

60.00 

60.00 

60.00 

90.00 

Image - 
Segmentation 

L 

C-HH - mean 

C-HH - mean 

C-HH - mode 

C-HH - m& 

C-HV - mean 

C-HV - mean 

C-HV - modt 

C-HV - d e  
1 

C-HH texture - mut0 

AIfalfa 

9 1.20 

91-20 

69-80 

74-50 

100.00 

99.50 

100-00 

100,OO 

C-HH filtered 

C-HH filtercd 

C-HH tex- 

C-HH tepwe 

Classifier 

MD 

MLC 

MD 

MLC 

Classifier 

MD 

MLC 

MD 

MLC 

MD 

MLC 

MD 

MLC 

MD 

Wintcr 
Whert 

61.10 

55.40 

35-30 

40.60 

Kappa 
Coefficient 

0.85 

O. 78 

0.82 

O. 72 

0.83 
I 

O. 75 

0-86 

O, 84 

0.9 1 

Winter 
W bea t 

100.00 

100,OO 

80.50 

80.50 

100.00 

100.00 

1 00100 

100.00 

100.00 

Alfalfa 

100.00 

100.00 

100.00 

100.00 

80.20 

80.20 

100.00 

100.00 

100.00 

MD 

MLC 

MD 

MLC 
- 

Overall 

49.36 

50-63 

45.4 1 

45.85 

75.5 1 

69.27 

82.26 

76.69 

Overall 

88.20 

83.47 

85.84 

78.75 

85.84 

81.1 1 

88.20 

88.20 

92.92 

Kappa 
Coefficient 

0.37 

0.35 

0.3 3 

0.28 

0.70 

0.59 

0.78 

0.69 

89.50 55.30 

89.50 

99-70 

99.70 

2 1.50 

63.90 

43-20 



5.3.5 Per-Field Classification 

Field bouadaries pennitted segmentation of the C-HH and C-HV data into homogeneuus fields 

using an image-polygon-growing algorithm and homogeneous classifier (PCL, 1994). A unique 

grey Ievel was assigwd as a label to each output polygon of tbe field-boundary file which was 

then input to the homogeneous classifier as a theme chamel. The homogeneous classifier then 

defmed the homogeneous segments of interest, There were two values that could be assigned to 

segments, namely the mean and the mode. Both were tested in ihis study. The pixel values in 

each field were replaced with mean and modal values for that field. Post-segmentation 

classifications using the MD were then performed on field means and modes of C-HH and C-HV 

data, 

5.4 Results and Discussion 

5.4.1 Per-Phel Classification 

Both singlechamel C-HH and C-HV SAR data had poor validation accuracies (Table 5.3). The 

overail vaüdatim accuracy for C-HH SAR data was 49.36% (kr0.37). while the o v e d  

validation accuracy for C-HV was 45.41 % ( k4.33) fiable 5.3). Tbe lower a~curacy for C- 

W. however, is contrary to what one wodd expect h m  the microwave theory and the 

conclusions dram by other researchers. According to Hohes  (1990). the degree of 

inhomogeaeity of a surface or volume is strongly associated with the cross-polarkation scattering 

coefficient of that surface or volume. The separation of crop types can be enhanceci using cross- 

polarization data. A possible reason for the contradiction is the low signal-toaoise ratio which 

occurred with the C-HV data. 



The application of a 5x5 median filter to the raw data improved classification accuracies 

significantly for both the C-HH and C-HV images. For example, the validation accufacies of the 

fdtered C-HH and C-HV images increased to 75.51% (K=0.70) and 64.55% (K=0.57) 

respectively (Table 5.3). The C-HH texture image provided the highest vaiidation acciiracy of 

82.26% (Kt0.78) and the C-HV texture image produced a vaiidation accuiacy of 74.18% 

(K=û.68) (Table 5.3). In ai i  cases, the C-HH image provided better validation accuracies <han 

its C-HV equivalent. It is evident that texture statistics are able to improve classification 

accuracies sigdicantly for mapping ecuitural crops. However, texture statistics in 

combination with a pr-pixel classifier did not appear to provide sufncient accuracy for 

operational mapping of crops in southem Ontario. 

Table 5.3. Validation Accuracies (%) for Per-Pixel Classifications 

5.4.2 Per-Field Classification 

The per-field validation accuracies for singlechamel C-HH, C-HV (man and mode trials) and 

their combinations were inconchsive as to whether the mean or the modal value for defining 

homogeneous areas provided the best classification results. For example, classifications based 

on the field mean provided a slightly higher accuracy for the C-HH data, whereas the field mode 

provided a slightly higher accuracy for the C-HV data flable 5.2). For the majority of trials, 
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particularly with irnage combinations, the field mean was used and applied to the pst- 

segmentation classifier. 

Ail per-field classincations improved validation accuracks to varying degrees. The highest per- 

field classincation accuracy (%=0.91) was achieved in four separate classifications; C-HH 

texture mean; C-HH filtered + C-HV filtered mean; C-HH texture + C-HV texture mean; and C- 

HH + C-HV mean (Figure 5.6). This represents more than a 40% increase in validation 

accuracy over tbe singlechamel C-HH or C-HV per-pixel classifications fiables 5.3 and 5.4). 

Among the four highest classification accmacies, three are achieved with the combinations of  

CHH and C-HV data This confimis the strong potential of multipdarization data for crop 

classification. 

Table 5.4. Validation Accufacies (%) for Field Classincations 

Image - Segmentation 

C-HH - rnean 

C-HH - mode 
C-HV - mean 

C-HV - mode 

C-HH median filter - mean 

C-HV median filter - mean 

C-HH tanire - mean 

C-HV texture - mean 

C-HH + C-HH filter - mean 

C-KH + C-HH texture - mean 

C-HV + C-HV fiIter - mean 

C-HV + C-HV texaire - mean 
1 

C-HH + C-HV - 
C-HH tilter + C-HV mter - mean 

C-HH texture + C-HV texture - mean 

C-HH - mean + C-HV - mode 

Kappa 
Coeff ic ient  

0.85 
w 

0.82 

0.83 . 
0.86 

rn 

0.85 

0-83 

0.9 L 

0.80 
I 

0.85 

0.9 1 
1 

0.83 

0.83 

0.9 1 

0.9 1 

0.9 1 
I 

0.88 

Winter 
Wheat 

100.00 

80.50 

100.00 

100.00 

100.00 

100.00 

100.00 

IOO.OO 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

Corn 

75.00 

66-70 

100.00 

91.70 

66.70 

100.00 

83-30 

100.00 

75.00 

83.30 

100.00 

100.00 

100.00 

100.00 

100.00 

91.70 

Soybeans 

80.00 

100,OO 

60.00 

60.00 

90.00 

60.00 

90.00 

50.00 

80.00 

90.00 

60.00 

60.00 

70.00 

70.00 

70.00 

70.00 

Alfalfa 

100,OO 

100.00 

80.20 

100.00 

100.00 

80.20 

100.00 

80.20 

100,OO 

100-00 

80.20 

80.20 

100.00 

100.00 

100.00 

100.00 

Overall 

88.20 

85.84 

85-84 

88.20 

88-20 

85.84 

92.92 

83 -47 

88-20 

92.92 

85-84 

85.84 

92.92 

92.92 

92.92 

90.56 



The ceason these four classifications exhibited similar classification accuracies is due, in part, to 

the high correlations (r 2 0.98) between these images after segmentation. Crop charactexïstics 

analyzed on a per-field basis generally display reduced spectrai variance within a crop while 

leaving the mean relatively unchanged This provides better classification decision d e s  for the 

MD classifier. It must be remembered, however, that these accuracies are artificially high, since 

in the MD classincation there are no unclassified pixels, meaning that a i i  crops within the study 

area are classifieci into one of four classes. For example, pas- and oats are grouped into one 

of the four classes. These assignments are not evident in the validation data. It is desuable, 

therefore, to develop bettcr measUres for the classification accuracy in a per-field classification. 

In most classifications, wheat and aifalfa are easily separated The majority of confusion among 

the four major crops occurred with corn and soybean, due to these two crops possessing similar 

tones and textures. 

Figure 5.6. Per-field classification resuits of a C-HH mean and C-HV mean combination 





CHAPTER 6: INTEGRATION OF SATELLITE SAR AND VIR DATA 

FOR CROP CLASSIFICATION 

6.1 Introduction 

The synergistic effefts of S A R  data and imagery acquired in the visible and i h d  (VIR) 

portions of the specmim have been recogoized as important for two main reasons. First, 

timehess of SAR fills information gaps during overcast or hazy penods at the critical stages of 

the growing season, and second the combination of data fiom different parts of the specmim 

ofien leads to increased classification accuracy. Previous studies have shown that combining 

airborne S A R  and satellite VIR data impmves crop classification accuracies (EBrown et al., 1984; 

Guindon et al., 1984; Hirose et al., 1984; Brisco et al., 1989a; Fiumara and Pierdicca, 1989; 

Dkon and M e  1990; Brisco and Brown, 1995). Very little research, however, has been done 

to improve crop classincation accufacies using data nom two sateIlite sensors (Fog et al.. 1993; 

Kohl et al., 1993). Thus, the potentid of sateIlite SAR and VIR synergism still needs m e r  

investigation. 

Conventional statistical classifiers, such as the maximum-iikelihd classifier (MLC), make a 

number of untenable assumptions about the dataset to be classified (Foody et al., 1995). For 

example, this parametnc approach requires data to have a Gaussian distribution. SAR data, 

however, are not n o d y  distributed due to speckle. Therefore, the accuracies of SAR crop 

classification using conventional statistical classifiers are often MH sufficiently high for crop 

inventory and analysis. In order to improve classification accuracy, it is necessary to explore 

robust classifiers using non-pararnetric and non-statistical approaches. 

The artificial neural network (ANN) classifier presents a distriiution-fhe appmach to image 

classification. It also has the special advaotages of simple local computations and parallei 



processing (Schalkoff, 1992). In the past few years, snidies have shown that neural networks 

compare well to statisticai classification methods in the classification of multidate, multisource 

remote sensinglgeographic data, very high dimensional data, and when classification is done 

with a large number of classes (e.g., Benedümson et al., 1990a; 1990b; Kaneiiopouios et al, 

1991; Paola md Schowengerdf, 1995). When applied to airborne SAR data, it was found that 

for the ciassincation of agicuitUrai crops ANN algorithms pioduced higher classincation 

accwacies in general than those derived h m  statistical classiners ( F d y  et al., 1994; 1995). 

Therefore, it is desirable to investigate the effectiveness of ANN algorithms for crop 

classincations using satefite SAR and VIR data. 

The objective of this chapter is to evaiuate the synergy of multitempord ERS-1 SAR and Landsat 

TM data for crop classification using an &cial neutal network approach. The specific 

objectives are: 

to evaiuate early- and mïd-season crop cIassi£ication accuracies using a single-date SAR 

image alme and also ushg multitemporal SAR data, 

to evaluate the synergism of multitemporal ERS-1 SAR and Landsat TM data for 

improving crop classification, and 

to evaluate an ANN algorithm as a pst-segmentation classifier in cornparison to the 

conventionai maximum-iikeiihood classifier. 

6.2 Data Description 

Three dates of earIy- and mid-season ERS-1 C-W SAR data were acquired during the 1992 

growing season (June 15, July 24 and August 5). The July 24 SAR image was acqukd in 

ascending mode, wbile the others were recordeci in descendhg mode. (nie &te of Landsat TM 

data was also acquked on August 6, 1992. The ERS4 SAR and Landsat RiI images are show 

in Figure 6.1 and 6.2. nie charateristics of the data are descriid in Chapters 2 and 3. 



Figure 6.1. Landsat TM imagery of the study iuea acquired on August 6. 1992 

Red:TM4. Green:TMS, and B lue:TM3 

- -  
Figure 6.2. Multitemporal ERS-1 SAR imagery of the study a m ,  acquired during the 1992 

growing season - Red:August 5. Green:July 24, and Blue:lune 15 



Detailed field information was collecteci at the time of the overpasses and was input to a 

geographic information system (GIS) to aid in developing and understanding the classifications. 

6.3 Methodology 

In the analyses presented in this chapter, single-date SAR data, multitemporal SAR data, and 

combinations of SAR and TM data are classinecl. In aU cases, a per-field classification approach 

is adopted since this conforms to conventional mapphg strategies and has been widely used in 

radar remote sensing as a means of reducing the effect of speciùe (Foody et al., 1994; Ban et ai., 

1995). The ANN classiner is used in pst-segmentation classifications. MSO, per-pixel 

classifications ushg the MLC are p e r f o d  for cornparison purposes. 

6.3.1 Preprocessing 

The raw-signal SAR data were processed by the Atlaatis Rocessor at the Canada Centre for 

Remote Sensiug and were geometricaliy correcteci to the 1992 field boudaries (Universal 

Transverse Mercator -UTM projection) to a sub-pixel accuracy. The geocoded field-boundary 

file for the study area was digitized fimm a SPOT image in a PAMAP GIS and was then Unported 

into a PCI EASVPACE image processing system. To elimhak the effects of field-boundary 

pixels and minor image registration emrs on crop discrimination, a 5-pixel buffer was applied to 

the field boudaries. This procedure is simiiar to the one describeci in Chapter 5. 

6.3.2 Selection of Calibration and Validation Blocks 

The major crops classilied in this study were winter wheat, corn, soykans, barleyhats, alfalfa 

and pashuelcut-haylcut-alfalfa Due to the ciifferences in growing stages and ground-cover 

density, corn and soybeans were funher divided into two classes: good growth and poor growth. 



For each crop, pixel sample bloclcs were randomly extracted within rep~sentative fields in order 

to calibrate the maximum-likelihood classifTer and to train the artificial neural network, 

To assess the accuracy of the classifications, validation pixels, independent fkom the calibraîion 

pixels, were randody selected for each crop. Fields thaî exhibiteci anomalies, such as spectral 

reflectandbackscatter thaî deviated signincantiy h m  the nom of a particular class, were 

excluded fkom both the cal'bration and validation samples. These anomalies usudy multed 

£iom weed infestations, crop management andhor =il-drainage characteristics. The caii'bration 

and validation block selections were based on the crop information; i-e., crop type, crop growth 

stage, ground cover, height, row direction, etc. These data were stored in a PAMAP GIS. 

Calibration and validation pixels wem extrixted kom different fields, a requirement for the per- 

field approach where a field is defined as a homogeneous area and aU pixels are assigned the 

mean value of the field This reduced the number of fields that codd be used for cal'bration and 

validation, so cali7,ration had to be restricted to fewer fields than preferable. 

6.3.3 Pet-Pixel Classification 

In order to assess the effitiveness of the non-parametric and non-statistical approaches, a 

cornparison with the results of an MLC was required. A number of classifications for S M ,  TM 

and their combinations were perfomed using the MLC. 

6.3.4 Per-Field Classification 

In Canada, a field only grows a single crop. Thus, it is desirable to use a per-field classi.fication. 

Also a per-field approach reduces the SAR speckle effe*s, as discussed earlier. 



6.3.4.1 Segmentation 

A per-field classifier permits segmentation of the ERS4 SAR image into homogeneous fields 

using field boudaries. A unique grey level was assigned as a label to each output polygon of 

the field-boundary hle which was then input to the homogeneous classifier as a theme channel. 

The homogeneous classifier defined the homogeneous segments of interest. There were two 

values that could be assigned to segments, namely the mean and the mode. Only the mean was 

tested in this study. The pixel values in each field were replaced with the mean value for that 

field. 

6.3.4.2 Post-segmentation Classification 

A post-segmentation classifier, an ANN, was investigated. An artificial neural network consists 

of interconnected processing elements caiied units ("nodes" or "neurons"). Tbese are o r g k d  

in two or more layers. There is an input layer of units which is activated by the input image data 

The output layer of units represents the output classes to train for. In betweea, there is usiialiy 

one or more hidden layers of uni& (PCI, 1994; Paola and Schowengenlt, 1995; Foody, 1996). 

A feed-forward neural netwodc stmcture is shown in Figure 6.3. A specific artiflcial neuron 

computational smichiie is show in Figure 6.4. 

Satellite SAR Input Hidden Layers Output 
& VIR Data Layer Layer 

L -4 Winter Wheat 
L - corn 1 - BarleyiOats 

Figure 6.3. A feed-forward Anificial Neural Network structure (Foody, 1996) 



(Act izmtion) Ou tpir ts 

Figure 6.4. A specific artificial neumn computationai structu~, whete 
1 

netFxv, O, Oi = f(neti) = 
3 1 + '=4 

(Schalkoff, 1992) 

The programs use a back-propagation netwodc that leams using the Generalized Delta Rule: 

Awjk = f) oj + 0 A \Hjk 

where q = learning rate, a = momentum, 4 = enor at the kth-layer, Oj is the output of layer j, 

and Wjk is the coanection weight between the jth-layer node and the kth-1ayer node (Li and Si, 

1992). 

The back-propagation leaming algorithm has been widely used in pattern recognition applications 

of artificial neural networks. The tem "back-propagation" refea to the training methal by 

which the comection weights of the network are adjusted It iteratively minimizes an emr 

function over the network outputs and a set of target outputs, taken h m  a training data set. The 

process continues until the enor value converges to a (possibly local) minimum. The emr 

function is given as: 

E =  inZ(q-o,)= 

where Ti is the target output vector for the training set (TI, . . ., T,) md O, is the output vector 

from the network for the given training set. On each iteration, back-propagation recursively 

cornputes the gradient or change in emx with respect to each weight in the network, aE/'W, and 

these values are used to rnodify weights. Adding a fraction of the negative gradient to each 



weight is equivalent to perfoxming a steepest-descent m o n  of the emr function with 

respect to each weight in the netwodr (Foody, 1996). 

The training of the netwotk is similar to any supervised classification procedure Le., calibration 

blocks have to be selected and used to adapt the classifier. In this case. network weights were 

adapted. The back-propagation learning procedure is shown in Figure 6-5 (Schalkoff, 1992). 

and c m W e  mit 
resoonselsl 

Stdp; 
netmwk balred 

Figure 6.5. A summary of the back-propagation leaming procedure (Schalkoff, 1992) 
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In this snidy, EASUPACE software NNCREAT, NNTRAIN and NNCLASS ( P a  1994) were 

w d  to evaluate a multilayer feed-forward neural network ushg back-propagation. 

6.4 Results and Discussion 

6.4.1 Per-Pixel CIassif ication 

Although h a a t e  SAR combination displayed a 4% improvement for classification accuracy 

over the best single-date classfication alone, the overail validation accuracies for both singie- 

date SAR and muititemporal SAR were very low (see Table 6.1). The nrSt reason for the poor 

accuracies is that the MLC is not an effective classifier for SAR data classifications, due to 

speckle. The second reason for the poor performances is that the single-parameter, high 

incidence angle ERS4 SAR system does not provide sufncient dinerences for eight crop 

classes. Sateilite SAR systems Mth multi-incidence angle, multiresolution, multiwavelength. 

and muitipoIarizaîion, such as the Canadian RADARSAT, are very desirable to improve the 

performance of sateiiite SAR data for crop classificaaon. The third reason for the p r  

accuracies is that the caliration and validation blodrs were selected based on the August 5 field 

data, but the change ofcrop cover over the growing season can cause confusion. For example, 

an alfalfa class in June was shown as a pasWcut-hay/cut-alfalfa class in August. 

Landsat TM3,4,5 alone produced an 89.8% classification accuracy flable 6.1). Combinations 

of SAR and TM data improveà the classification accuracies in general. The best overall aauracy 

(9 1.85%) was for the combination of all three dates of SAR and TM3,4,5 imagery. This 

represents a 2% increase over the TM3.43 classification alone. 



Table 6.1. MLC Classifications for SAR, TM Data and their Combinations 

SAR, June 15 SAR, July 24 SAR, Augc 5 TM345, Aug. 6 Overail Kappa 

Accuracy (96) Coefficient 

6.4.2 Pet-Field Classification 

Per-field classification with an ANN proved to be very effective. The best singledate (Aug. 5) 

S A R  classification ushg per-field ANN improved the overall accumcy by about 261 compared 

to that of the per-pixel classifîcation cables 6.L and 6.2). The crop classification accufacies 

improved by almost 2046 using the combination of June, Iuly and August S A R  data (Tables 6.1 

and 6.2) Although these overall classification accuracies (<60%) are not sufnciently high for 

operational crop inventory and analysis, both single-date and multitemporal SAR &ta have 

demonstrated their abilities to disaiminate certain crops in the early- and mid-season. For 

instance, winter wheat, poor-growth corn and alfalfa couid be differentiated perfectly fiom others 

using the combination of the three-date SAR (Tale 6.3). 

The best per-field classification of 96.8% with an ANN classifier was achieved using the 

combination of TM3,4,5 and Aug. 5 SAR data ('Table 6.2, Figure 6.6). It represents an 8.5% 

improvement over a single TM3,4,5 classincation alone. It also represents a 5% increase over 



the best per-pixel classification. in this classitication, accuracies of 100% were achieved for ail 

crops except the &alfa and pasWcut-haylcut-alfalfa classes (Table 6.4). Alfalfa had a 16.3% 

commission enor to the f k t  corn class (Le., good growth), and pasWcut-baylcut-alfia had a 

15.1% commission error with the second class of soybeans (Le., poor growth). The second- 

best classification accuraicy of 959% was achieved using the combination of TM3,4,5 and the 

July 24 SAR image (Table 6.2). These d t s  indifate that a combination of mid-season SAR 

and VLR data is very well suited for crop classincation. The success of this combination may 

have been because the ground conditions were similar since the SAR data and TM data were 

acquired only one day or a few days apart. 

Ail classification arcuracies improved using the per-field ANN except that of TM3,4,5 (Tables 

6.1 and 6.2). This is pssibly because the neural network for the second corn class (Le., poor 

growth) was not weU trained. It resulted in poor acniracy for the second corn class (only 

25.9%) with a commission emr to the badeylaat class of 62.146, while a l l  other classes were 

100% correctly classifieci (Table 6.5). 

Table 6.2. ANN Per-Field Classifications for SAR, TM Data and their Combinations 

SAR, June 15 SAR, July 24 S M ,  Aug. 5 TM345, Aug- 6 Overall Kappa 
Mean Mean Mean Mean Accitracy (96) Coefficient 



Table 6.3. ANN Per-Field Classification for the Combinations of the The-Date S A R  (%) 

Water Corn 1 Corn 2 Soybeans 1 Soybeans 2 Alfalfa Pasture/ Barley/ 
Wheat cut-hay-aif Oats 

W- Wheat 

Corn 1 

Corn 2 

Soybeans 1 

Soybeans 2 

Alf ia  

Pfcut-hay-alf 

BarieyfOats 

Table 6.4. ANN Per-Field Classification for the Combination of TM3,4,5 
and Aug. 5 SAR Data (96) 

Wnter Corn 1 Corn 2 Soybeans 1 Soybeans 2 Alfalfa Pasture/ Bade~/ 
Wbeat cut-hay-aif Oars 

- . - 

W- Wheat 

Corn 1 

Corn 2 

Soybeans 1 

Soybeans 2 

Alfalfa 

P/cut-hay-alf 

Barley/Oats 



Table 6.5. ANN Per-Field Classification for TM3,4,5 (%) 

Wmter Corn 1 Corn 2 Soybeans 1 Soybeans 2 Alfalfa Pasture/ Bariey/ 
Wheat cut-hay-aif Oats 

. - - - - - - - - 

W. Wheat 

Corn 1 

Corn 2 

Soybeans 1 

Soybeans 2 

Alfdfa 

Pfcut- hay-alf 

B arley/Oats 

Figure 6.6. ANN per-field classification for the combination of ERS-1 SAR (Aug. 5 )  

and TM3,4,5 (Aug. 6) data 



6.5 Summary 

The synergistic effets of multitemporal ERS-1 SAR and Landsat TM data were evaluated for 

crop classincation using an artifidal neural network (ANN) appach. Eight crop types and 

conditions were ideniined: winter wheat, corn (good growth), corn (poor growth). soybeans 

(good growth), soybeans ( p r  growth). barley/oats, alfalfa, and pas Wcut-bayfcut-alfalfa, 

The results show that both singledate and muititemporal SAR data yielded poor classification 

accuracies using a maximum-Iikelihood classifier (MLC). With the per4ïeld approach using a 

feed-foward artificial neural network, the overd classincation accuracy of threedate SAR data 

improved alrnost 20%, and the best classincation of a singledate (Aug. 5) SAR image improved 

the overail accuracy by about 26%. Aithough dKse overail classification aauracies ( ~ 6 0 % )  were 

not sufncientiy high for operational crop inventory and analysis, both singledate and 

multitemporai SAR data demonstrated their abilities to discriminate certain crops in the early- and 

mid-season. Using the combination of TM3,4,S and Aug. 5 SAR data, the best per-field A N .  

classification of 96.8% was achieved It represents an 8.5% improvement over a single 

TM3.43 classification alone. This indicaies tbat a combination of mid-season SAR and VIR 

data is very weli suited for crop classification. 



CaAPTER 7= ERS-1 S A R  FOR CROP IDENTIFICATION: 

A MUtTITEMHlRAI; APPROACH 

7.1 Introduction 

Past studies have demonstrated that multitemporal SAR data can enhance the ability to 

distinguish between crop spectral patterns (e.g., Brisco et al., 1984; Brown et al.. 1984; 

Fischer and Mussakowski, 1989; Foody et al., 1989; Dobbins et al., 1992; see Section 3.4.2 in 

Chapter 3 for the detailed review). However, comparatively few datasets have been avaiiable 

for study because of the increased cost and logistics of generating multitemporal SAR data 

with airborne pladoms (Bnsco et al., 1992). With the launch of the European Remote 

Sensing Satellite (ERS-1), the b t  long-duration spaceborne imaging SAR system becarne 

available to provide researchers with an excellent opportunity for developing agriculaual 

applications of remote sensing data using multitemporal SAR imagery (e.g., Brown et al.. 

1993a; Kurosu et al., 1993; Wooding et al., 1993; Borgeaud et al., 1994). 

The objectives of this study are to understand and analyze the multitemporal radar backscatter 

characteristics of cmps and their underlying soiis over the growing season and to determine the 

earliest t h e  of the year for differentiation of individual crop types. The specific objectives 

are: 1. to generate ERS-1 SAR temporal backscatter profiles for each crop type; to iden- 

fields displaying anomaious radar backscatter characteristics, statisticaily describe the 

anomalous fields, and discuss reasons for those anomalies; and 2. to evduate early- and mid- 

season multitemporal SAR data for crop classincation using sequentiai masking techniques. 

7.2 Data Description 

The ERS- 1 C-Band (5.3 GHz) W polarization SAR data used in this shidy were acquired on 

six dates during the growing season in 1992 and on nine dates during the 1993 growing season. 



Except for July 24, 1992, ail data were acquired during two descending passes (Figures 7.1, 

7.2, 7.3, 7.4, 7.5 and 7.6; Table 7.1). The 1992 images were received and processed at the 

Gatineau Receiving Station in Canacia, wbiIe the 1993 data were processed and M y  calibrated 

at D-PAF, Germany. The detailed characteristics of the ERS4 SAR data are descnbed in 

Chapter 4. 

Ground data were coilected by field teams during the ERS-1 Soi1 Moisture Experiment 

(ERSOME) in the 1992 and 1993 growing seasons (Gardeil et al., 1993). The 1992 field 

boundaries were digitized fkom a SPOT satellite image at CCRS and were updated at the 

University of Waterloo using a 1993 SPOT image. Extensive ground data were coiiected for 

agriculturai fields and included crop type, growth stage, percentage cover, canopy height, row 

spacing, row direction and plant condition. 

Table 7.1 Fifteen Dates of ERS- 1 Data 

Daîe 

May 27, 1992 

June 15,1992 

Sept 28,1942 

Oct. 14,1992 

May 31,1993 

June 16, 1993 

Juiy 5,1993 

July21.1993 

Aug. 9,1993 

Aug. 25,1993 

Sept 13,1993 

Sept. 29. 1993 

Oct. 18, 1993 

Orbit 

2 

1 

Mode 

Descending 

Descending 

- - 

1 

2 

2 

1 

2 

1 

2 

1 

2 

1 

2 

- - - - - 

Descending 

Descending 

ûescending 
1 

Descending 

Descending 

Descendhg 

Descending 

Descending 

Descending 

Descending 

Descending 



Figure 7.1, ERS-1 satellite orbits of the study area 

Figure 7.2. Muititemporal ERS-1 SAR imagery of the study area, acquired during the 1992 growing 
season - Red: July 24, Green: June 15, and Blue: May 27 



Figure 7.3. Multitemporal ERS-1 SAR imagery of the study area, acquired during the 1992 growing 
season - Red: Oct. 14, Green: Sept. 28, and Blue: Aug. 5 

Figure 7.4. Multitemporal ERS-1 SAR imagery of the study ana, acquired dunng the 1993 growing 

season - Red: July 5, Green: June 16, and Blue: May 31 



Figure 7.5. Multitemporai ERS-1 SAR ïmagery of the study area. acquired during the 1993 growing 
season - Red: Aug. 25, Green: Aug. 9, and Blue: M y  21 

Figure 7.6. Multitemporal ERS-1 SAR imagery of the stuây area, acquired during the 1993 growing 

season - Red: Oct. 18, Green: Sept. 29, and Blue: Sept. 13 



Since the development of image segmentation techniques is not the a h  of this study, field 

boundaries for the study area were exmcted nom a geographic information system (GIS). The 

geocoded field-bomdary fie for the study area was generated using a PAMAP GIS. The fde 

was then imported into the PCI EASYPACE image processing system. To elhinate the effects 

of field-boundaty pixels and minor image registration errors on crop discrimination. a 5-pixel 

buffer was applied to the field boundacies. This procedure is simüar to the one described in 

Chapter S. 

7.3.2 SAR Data Radiometric CalibraLion And Ceomettic Correction 

Quantitative cornparisons of the multitemporal SAR &ta require caiibrated images. The ERS- 

1 SAR calibration principles and procedures are described in Chapter 4. For the 1992 data, the 

effects of the illumination aatenna were removed, but range-spreading l o s  was not 

compensated (Noetix Research Inc., 1993). The accuracy for this calibration was 

conservatively estimated at 2 dB (Livingstone et al., 1992; Brown et al., 1993a). The 1993 

data were radiometrïcally calibrated, i.e., corrected for the SAR antenna pattern and 

compensated for range-spreading loss. The calibration accuracy is + 0.42 dB (Law et al., 

1993). 

The SAR images were then gwmeuicaiiy corrected to field boundaries (Universal Transverse 

Mercator - UTM projection) with a 12.5 m pixel spacing using a second-order polynomial and 

a nearest-neighbour resampling algorithm. 



733 Derivation of the Radar Backscatter Coefficient a" 

The generation of ERS-1 SAR temporal backscatter profdes of agricultural crops requires 

relating pixel digital numbers (DN) on SAR images to backscatter coefficients of 

correspondhg distributed targets in the scene. The detded methodology for deriving 

backscatter coefficients in ERS-1 SAR PR1 products is descrikd in Chapter 4. 

Using both 1992 and 1993 field-boundary mes, radar backscatter characteristics for each field 

were analyzed for each date using PCI EASUPACE. First, the DN values on each image were 

converted to power (amplitude squared), then the mean backscatter of each field (> 500 pixels) 

was calculated in the power domain and imported to EXCEL. For L993 data, the local 

incidence angles of the study area for each scene were calculated using the central pixel 

numbea of the study area fiom the near range. Then the local estimate K(a) of the calibration 

constants was deterrnined using Equation 4.7. Fiiaily, the a' (dB) of each field for both 1992 

and 1993 data was derived using Equation 4.10. 

73.4 Temporai Backscatter Proflie Geaeration 

S A R  temporal backscatter profdes for both the 1992 and the 1993 growing season were 

generated in EXCEL for major crop types (Le.. corn. soybeans. winter w heat, barleyloats, 

alfalfa and pastue). First, the temporal backscatter profile for each individuai field was 

generated; then the general temporal backscatter profde for each crop was generated by 

averaging the d of ail fields for that crop on each date. 



73.5 Classification of Mdtitemporol SAR Data: A SequenüabMasking Approach 

73 3.1 Selectioa of Caübration and Validation Blocks 

For each crop, pixel sample bloclrs were randomiy extracted within representative fields in 

order to calibrate the maximum-likelihood classifier 0. To assess the accuracy of the 

classifications, validation pixels, independent of the calibration pixels, were randomly selected 

for each crop. Fields that exhibited anomalies, such as backscatter that deviated simcantiy 

from the nom of a particular class, were excluded from both the caübration and validation 

samples. Calibration and validation pixels were extracted from different fields, a requirement 

for the per-field approach where a field is defmed as a homogeneous area and al1 pixels are 

assigned the value of the mean. This reduced the number of fields that could be used for 

calibration and validation (Ban et al., 1995). 

7.3.5.2 Per-Pixel CIassitication 

In order to assess the effectiveness of the field-classification approach, comparison with a 

traditionai per-pixel classification was required. For this reason, MLC classifications were 

performed using early- and mid- season ERS-1 SAR data in 1992 and 1993. 

7.3.5.3 Pet-Field CIassüïcation 

Field boundaries permitted segmentation of the ERS-1 SAR data into homogeneous fields 

using an image-polygon-growiog aigorithm and homogeneous classifier (PCIT 1994). A unique 

grey level was assigned as a label for each output polygon of the field-boundary file which was 

then input to the homogeneous classifier as a tbeme channel. The homogeneous classifier 

defined the homogeneous segments of interest. There were two values that could be assigned 



to segments, namely the mean and the mode. Oniy the mean was tested in this study. The 

pixel values in each field were replaced with the mean value for that field. Post-segmentation 

classifications using an ANN algorithm were then perfonned on field means of the ERS-1 SAR 

data. The proceàure is similar to the one described in Chapter 6. 

The sequential-masking classification procedure is an interactive humankomputer interface 

pattemed after photointerpretation techniques in which the most distinct image feanires are 

labeiied (classified) first. Image analysis is then carried out on the Iess-interpretable image 

features until the entire image is classified. Sequential masking employs image-processing 

techniques and GIS operations simultaneously to classify multitemporal images. Sequential 

masking also allows incorporation of ancillary spatial data such as thematic maps (e.g., soil 

maps) into the classification process (Ehrlich et aL, 1994). The classification logic of the 

sequential-masking procedure is summarized in Figure 7.7. AIthough sequential-masking 

techniques were developed using satellite VIR data for land-use mapping, the potential has not 

been fdly explored due to lack of multitemporal datasets (Le., the problem of cloud cover). 

The availabiüty of multitemporal satellite SAR data provides an excellent opportunity to 

investigate sequential-masking techniques for crop classircation. 



Corn '"' 

Figure 7.7. Summary of the classification logic of the sequential masking procedure 
(modified from Ehrlich et al., 1994) 



7.4 Results and Discussion 

7.4.1 ERS-1 SAR Temporai Backscatter Pnijlïes 

As discussed in Chapter 3, a wide range of parameters affects the backscatter of microwaves 

from vegctation and soil. The important instrument parameters, however, are frequency, 

polarization and incidence angle. The cruciai features of the target in detemuning the 

proportion of radiation returnïng to the instrument are plant canopy (e-g., plant type, height, 

density, biomass, water content and growth stage) and soi1 parameters (e.g., soiI moisture 

content, roughness and tillage direction). The SAR temporal backscatter profles for each crop 

show the complexity of the relationship between microwave and agiculturai parameters over 

the growing season. 

7.4.1.1 ERS-1 SAR Temporal Bacbtter  ProWes for Mqior Crops: 1992 

ERS- 1 SAR Temwrai Backscatter Profiles 

The ERS4 SAR temporal backscatter pronles for major crops are shown in Figure 7.8. From 

this figure, it is possible to make the following observations for the earkst differentiation of 

crop types: 

Winter wheat can k successfully separated h m  otber crops in May and June since it is at 

a vesy different growth stage nom other crops. 

Alfdfa and pastue cm be separated Grom other crops in the mid-season, but they both have 

very similar pronles throughout the growhg season. 

Corn and soybeans bave similar profiles in the early and mid- season, but caa be separated 

fiom each other in the Iate season. 



-14  

Figwe 7.8. ERS-1 SAR temporal backscatter profies for major mps during the 1992 growing season 

Anomalous Fields 

Some anomalous fields were observed during the anaiysis. For example, on Idy 24, there was 

more than 2 dB of difference for the backscatter of an anomaious corn field (4-31) when 

compared with the average corn backscatter of more than 20 fields (Figure 7.9). This was 

caused by the ciifferences in ground coverage, growth conditions and local cba te .  According 

to field observations. the normal fields were densely covered by corn (>!JO%). while the 

anomalous fied only had 70% of corn coverage and was infested by weeds (Figure 7.10). The 

fields were wet because of raia. Other anomalies observed are maialy caused by changes in 

the fields. For example, one of the harvested small-grain fields (with residue) was ploughed 

before the data acquisition on October 14 (Figure 7.11). This caused a 2 dB increase in radar 

backscatter when compared with that of other hawested small-grain fields. There was another 

2 dB increase in radar backscatter when an alfalfa field was ploughed (compared with 



backscatter of the alfalfa fields). These indicate that close attention should be given to the 

changes of the field status over the gmwing season. In general, the anomalies usualiy resulted 

from crop condition and crop management, andlor soil drainage and soil roughness 

charactenstics. These anomalies cm cause conhision during classincation and they should be 

excluded nom the selection of calibration and vaiidation fields if a supe~sed ciassification is 

used. 

A v e r a g e  ' 
- - -O- -  4-31 , 

Figure 7.9. Cornparison of a corn a n o d y  and the corn average 

- - -  - -  

Figure 7.1 O. C O ~ :  poor growth and good growth (July 20, 1992) 



- - - - - - - - - - - - - - .. - 

Figure 7.1 1. Cornparison of a barleyloats anomaly and the barleyloats average 

7.4.1.2 ERS-1 SAR Temporal Backatter Profiles for Major Crops: 1993 

ERS- I SAR Temporal Backscatter Profiles 

Using multitemporal ERS-1 SAR data during the 1993 growing seasons, the radar backscatter 

characteristics of crops and their underlying soils were analyzed. The SAR temporal 

backscatter profies were generated for each crop type (Figure 7.12). Using corn as an 

example, radar backscatter was high in the early season when fields were relatively rough with 

bare soil. With crop development, backscatter decreased due to attenuation and absorption by 

the vegetation canopies. The decreasing mnd continued until August 9, when corn was at cob 

development stage. Then the backscatter sianod to increase as the crops nached the senescent 

stage (Figures 7.13 & 7.14). 



Figure 7.12. ERS4 SAR temporal backatter profiles for major crops during 1993 growuig season 

O + 1 1 

June 2,1993 

- 2  

June 16,1993 

31- 16- 5 - 21 - 9 - 25- 13-  2 9 - 18- 
MBY Jun Jul Jul A W  Aug Sep Sep Oct - 

luly 21,1993 

Figure 7.13. Corn developrnent d u ~ g  the 1993 growing season 



Aug. 25,1993 

Sept. 13, 1993 Sept. 29, 1993 

Figure 7.13. Corn development during the 1993 growing scason (cont) 



The temporal backscatter profdes shown in Figures 7.12 and 7.14, however, do not match the 

general fmdings described earlier. Efforts were made to explain ups and downs in the 

backscatter patterns. ERS4 radiomecric calriration accuracies. local climatic conditions, crop 

growth conditions. etc. were taken into account, but none of these were found to be responsible 

for such temporal backscatter behaviours. When the two ERS-1 orbits were separated. 

however, the temporal backscatter pronles started to make sense (Figure 7.15). 

0.00 , I 1 I 
3p- 16- 5 - 21 - 9- 25- 13- 29- 18- 
Mty Jun Jul 

-2-00 
Jul Aug Aug Sep Sep bct  

Figure 7.14. ERS- 1 SAR temporal backscatter profiie for corn - 1993 

3$- 16- 5 -  21- 9- 25- 13- 29- 18- 
May 3un Jul 

-2-00 j- 
Jul Aug Aug Sep Sep Oct 

Figure 7.15. ERS-1 SAR temporal backscatter profiles for corn derived fkom two orbits: 
error buffers included 



Orbital &cidence Anelel Effects 

No previous research on the relationship of C - W  backscatter coefficient 6 and angle of 

incidence for crops has been found in the literature. However, Ulaby et al. (1986a) measund 

incidence-angle effects on a corn canopy using C-HH. Although C - W  pewtrates less into the 

crop canopy than C-HH. it is clear that at higher incidence angles (>30°), the backscatter 

coefficient decreases sharply when the incidence angle increases. The estimated change of 

backscatter is about 3 4  dB from 20' to 25' (Figure 7.16). 

Polar kation= HH 
Whole Plant..- ...................... 
Stalks and Coôs Mo LeavesL.1. Zï 

......................... 
.................................... 

A Stalks Only O. 82 
6 Soil OO(Jl 
2 Two Overlapping Points 
3 Three Overlapping Points 

O 1) 30 45 60 75 
Angle of I ncidence e (Degreesi 

Figure 7-16. Measured 6 of a M y  matue corn canopy in four consecutive stages of defoiiation; 
al1 the measurements were made on the same &y (Ulaby et al., 1986a) 

ERS-1 orbital (incidence angle) effects were observed on all crops (Figures 7.15 & 7.17-7.20). 

For 4' difference of incidence angles between the two orbits (about 21 .Se and 25.S0), the 

average ciifference of radar backscatter was about 3 dB. This is similar to the fidings of 

Ulaby et al- (1986a). Thus attention must be given to the local incidence effects when using 

ERS-1 SAR data, especially when cornparhg fields from dinerent scenes or different areas 

within the same scene. 
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Figure 7.17. W-1 SAR temporal backscatter profiles for wheat derived nom iwo orbits: 
error buffers inciuded 

Figure 7.18. ERS4 SAR temporal backscatter profdes for barieyloats denved fiom two orbits: 
error buffers included 



Figure 7.19. ERS4 S A R  temporal backscatter profiles for soybeans derived fiom two orbits: 
error buffers included 

-16.00 - 
Figure 7.20. ERS4 S A R  temporal backscatter protiles for alfalfdhay derived from two orbits: 

error buffers included 



Based on the SAR temporal backscatter pronles (Figure 7.12). the earliest tirne of the year for 

differentiation of individual crop types was investigated. The results showed there were 4 dB 

of ciifference in backscatter betwan wheat and corn (or soybeans or barleyloats) on May 3 1. 

This is maidy due to the crops were at differenct development stages. For example, winter 

wheat was at the stage of vegetation growth on May 3 1 wMe corn, soybeans and barleyloats 

were at the stage of seed-bed preparation. Thus winter wheat could be easily separated fiom 

ail crops in the early season (May 3 1 and Juae 16). Soybeans could only be separated Born the 

rest of the crops on June 16 since soybeans and corn had sllnilar backscatter profde on ail 

dates, except on June 16 (Figure 7.21). This was due to the eEect of litter in soybeans fields so 

that soybeans had a higher radar backscatter than corn on June 16. Barleyloats could be 

disthguished fiom corn, soybeans and aüaifahay on July 5 and dates thereafter. However, 

from July 5 on, barleyloats had a similar profiie to wheat. in tum, wheat and barleyloats 

displayed similar patterns to alfalf 'ay after July 21. The earliest the to differentiate corn 

fiom other crops was July 2 1. 

Corn Soy beans 

Figure 7.2 1. Corn and Soybeans on June 16,1993 



Within c r o ~  variations 

Within crop variations for corn and barleyloats are Uustrated in Figures 7.22 and 7.23. Corn 

fields had larger variations at the beginoing of the growing season (Figure 7.22 and Table 7.2). 

The variation demased duri~g  the mid-season and the late season. There was no clear trend, 

however, for barleyloats variations mahly due to anomalous fields. The highest standard 

deviation was 2.56 68 on July 21 (Figure 7.23 and Tabk 7.3). It was because Field 4-25 was 

beginning to senesce and hirn brownish yellow, while average barleyloats fields were stiU in 

the stage of seed development. Thus such variations can be major sources of mis-classifcation 

anci attention should be given to this during crop classincations. 

Figure 7.22. ERS- I SAR temporal backscatter profües for corn derived fiom two orbits: 
within crop variations 



Table 7.2, Within Crop Variations (dB): Corn 

* Derived fiom al1 corn fields using Equation 4.10. 

Figure 7.23. ERS-1 SAR temporal backscatter profües for barley/oats: within crop variations 



Table 7.3. Within Crop Variations (dB): Barley/Oats 

7*43 ERS-1 SAR Data for Crop Cldcations: A Mdtitemporal Approach 

Average 

STDDEV 
Average* 

7A.2.1 Multïtempomi SAR Classifications: 1992 

The overali validation accuracy for single-chamel ERS-1 SAR data (Aug. 5) using a per-field 

classifier was 57.7% (Table 7.4, Figure 7.24). Alfalfa had the highest validation accuracy 

(9 1-71). The overail validation accuracy for three-date (May 27, June 15 and July 24) SAR in 

early and mid- season using a per-fied classifier was 74.396. This is a 16% improvement over 

the single-date classification. The highest validation accuracy (78.2%) was achieved by 

class@ing four-date (May, June, July and Aug.0 early and mid-season) SAR data using a per- 

field approach (Table 7.5). This is a 20.5% improvement ovet the best single-date SAR 

classification. It also represents a 30% improvement over per-pixel classificatiou using the 

same four-date combination. SpecificalIy, winter wheat had a validation accuracy of LOO% 

while the alfalfa accuracy remained unchanged but the accuracy for soybean classification 

improved sigrüficantiy; corn, however, was still quite low (45.7%). 

* Derived fiom al1 barley/oats fields using Equation 4.10. 
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Table 7.4. Validation Accuracy for Single-Date (Aug. 5)  SAR Per-Field Classification 

Table 7.5. Validation Accurrmcy for a Four-Date (May 27, June 15, Juiy 24 and Aug. 5)  

SAR Per-Field Classification 

Wïnier Wheat Corn Soy bans Al fd fa 
(96) (96) (46) (96) 

Winter Wheat 100.0 0.0 0.0 0.0 

Corn 8.7 45.7 17.4 0.0 

So y beans 0.0 0.0 755 0.0 

1 A.Ifa"a 0.0 0.0 8 3  91.7 
i 

I 

Winter Wheat 

Corn 

Soy beaus 

Figure 7.24. Per-field Classification for May 27, June 15, July 24 and Aug. 5 ERS-1 SAR 

151 

II Alfalfa 1 0.0 1 0.0 1 8.3 1 91.7 1 

Corn 
(9s) 

30.0 

S&5 

42.9 

Winter Wbeat 
(%) 

50.0 

8.7 

163 

Soy beans 
('16) 

0.0 

26.1 

327 
I 

Al fa1 fa 
(%) 

20.0 

8.7 

8 2  

4 



7.4.2.2 MuMitemporal S A R  Classifications: L993 

Based on the temporal backatter profiles, early- and mid-season multitemporal SAR data for 

crop classification using sequentiai-masking techniques was evaluated It was found that 

winter wheat and atfalfahay were confused with each other (Table 7.6), but could be identified 

fiom other crops because they were weii into the vegetation development stage while other 

crops were at the stage of seed-bed preparation or emerging (Figures 7.25 Br 7.26). Ushg a 

single-date Iune 16 image, winter wheat could be successfdiy identified (9 1.1 %). Soybeans 

codd be classified with some degree of success using the combination of May 3 1 and Iune 16 

SAR data (94.9% accuracy, but with high commission e m  Born other crops ) (Figure 7.27). 

Mer masking out wheat and soybeans, barleyloats could be identified on July 5 and July 21 

(mid-season) (Figure 7.28). Again, after masking out w kat.  soy bans and barleyioats, corn 

can be successfully separated nom alfalfdhay on July 21 (Figure 7.29). These results clearly 

indicate that crop classification can be camed out successfully using sequential-masking 

techniques with early-and mid-season multitemporal SAR. 

Table 7.6. Validation Accuracy for a Per-Field Classifcation Using the May 3 1, 1993 hage  

Overall Validation accuracy: 55.2% 



Figure 7.25. Winter wbeat and soybeans on June 2. 1993 
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Figure 7.26. ERS-1 S A R  temporal backscatter profiies for major crops during 1993 growing season 
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Figure 7.27- Crop separabilities after masking out winter wheat 

Figure 7.28. Crop separabilities after masking out winter wheat and soybeans 
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Figure 7.29. Crop separabilities after masking out winter wheat, soybeans and barleyfoats 

7.5.1 Summary: 1992 SAR Data 

ERS-1 SAR temporal backscatter profdes indicate that winter wheat can be successfully 

separated fiom other crops in the early season. Malfa  and Pasture can be separated from 

others in the mid-seasoo, but they both have very similar profdes throughout the growing 

season. Corn and soybeans have similar profiles in the early and mid- season, but c m  be 

separated fiom each other in the late season. 

A multitemporal approach using a per-field classifier proved to be effective for crop 

identification. Using four dates of SAR data in the early and mid- season produced the highest 

validation accuracy of 78.2%. This is a 20.596 improvement over the best single-date S A R  

classification. It represents a 30% improvement over per-pixel classification using the same 

four-date combination. 



7.5.2 Summary: 1993 SAR Data 

Using muftitemporal ERS4 SAR data acquired during the 1993 growing season, the radar 

backscatter characteristics of crops and their underlying soils were anaiyzed. The SAR 

temporal backscatter profiles were generated for each crop type and the eariiest time of the 

year for differentiation of individuai crop types was determined. The results showed that 

winter wheat could be easily separated from ali crops in the early season (May 3 1 and June 

16). Soybeans could only be separated fiom the rest of the crops on Iune 16 since soybeans 

and corn had simüar backscatter pronle on al1 dates, except on June 16- Barleyhats could be 

distinguished Born corn, soybeans and alfalfahay on July 5 and dates thereafter. However, 

from July 5 on, barley/oats had a similar profile to wheat. in tum, wheat and barley/oats 

displayed similac patterns to alfalfdhay after July 21. The earliest thne to differentiate corn 

fiom other crops was July 21. 

Orbital (incidence angle) effects were observed on ai l  crops. The average ciifference between 

the two orbits was about 3 dB. Thus attention must be given to the local incidence-angle 

effects when using ERS-1 SAR data, especiaily when comparing fields from different scenes 

or different areas within the same scene. 

Based on the temporal backscatter profiles, early- and mid-season multitemporai SAR data for 

crop classification using sequential-masking techniques were evaluated. It was found that 

winter wheat could be easily identified using an eady-season singe-date SAR image (June 16). 

Soybeans codd be classified with some degree of success using June 16 SAR data. After 

masking out wheat and soybeans, barleyloats could be easily classified on July 5 and July 21 

(rnid-season). Again, after masking out wheat, soybeans and barley/oats, corn can be 

successfÙily separated from alfalfaay on July 21 (mid-season). These results clearly indicate 



that crop classification c m  be carried out successfully using sequential-masking techniques 

with early-and mid-season multitemporal SAR data 





CHAPTER 8: CONCLUSIONS AND RECOMMENIDATIONS 

8.1 Conclusions 

The overail objective of this ~search was to evaluate rnultipolan'7ation airborne SAR data, 

multitemporal ERS4 SAR data, and combinations of ERS-1 SAR and satellite VIR data for crop 

classification using non-conventional algorithms. To achieve this objective, five major issues 

have been addressed- 

nie first objective wus to pefonn a comptarive a ~ i ) s i s  of clasFjcation algorihm t h  

incorporate tonal, contextual, d o r  texl~raf mfomn'on, 

Operational method010gies for improving agricdtural crop identification were tested using C-HH 

and C-HV airborne S A R  data collected on July 10, 19W. Raw SAR data, filtered SAR data and 

SAR texture statistics were classified using per-pixel and per-field classification approaches to 

detennine their effectiveness for @cultural crop classification. The approaches presented for 

improviag agricdturai crop c1assifl:cation proved to be effective, especially the per-field 

classification method. Results indicated that C-MI and C-HV data, classified ushg a standard 

per-pixel MD classiner, provided relatively poor classincation accuracies. Inclusion of texture 

siatistics in the per-pixel classification improved accuracies by approximately 30% and simple 

median 6Itering boosted acctmcies by appmximately 25%. However, using a per-field 

classifier, the classification accuracies improved by about 4û%. 

The second objective wwas to evaIuate muftipo larization (C-Ml unù C H )  airbonte SAR dara for 

crop chss~~cation~ 



Multipolarization SAR data wexe evaluated for crop classification. Results indicated that C-HV 

SAR data yielded a lower o v e d  classincation accufacy (45.41%) than C-HH SAR data 

(49.36%). The lower accinacy for C-HV conttadicts conclusions put forward by other 

researchers. A possible nason for the contradiction is the low signal-to-noise ratio with C-HV 

data It was ais0 found that three of the four best per-field classification accutacies ( ~ = 0 . 9 1 )  

were achieved using combinations of C-HH and C-W SAR data This connrmS the strong 

potentid of multipolarization data for m p  classification. 

The thinl objective wus to e v a i ~ e  the synergisîic effects of muItitemporaC ERS4 SAR and 

satellite WR data for crop ~Ias~cution. 

The synergistic effects of multitempod ERS-1 S A R  and Landsat TM data were evaiuated for 

crop classincation using an artificial neural network (ANN) approach. Eight crop types and 

conditions were identitied: -ter wheat, corn (good growth). corn (poor growth). soybeans 

(good growth), soybeans (poor growth), barley/oats. alfalfa, and pasnire/cut-haykut-&alfa 

The results show that both singie-date and muititernporal SAR data yielded poor classification 

accuracies using a maximum-likelihood classifier (MX).  With the per-field approach using a 

feed-forward artinciai neural network, the overail classification accuracy of threedate SAR data 

improved almost 20%. anci the best classification of a singie-date (Aug. 5) SAR image improved 

the overall accuracy by abwt 26%. Although these overall classification accuzacies (<6046) were 

not sufficiently high for operational crop inventory and analysis. botû singie-date and 

multitemporal SAR data demonstrated their abilities to discriminate certain crops in the early- and 

mid-season. Ushg the combination of TM3,4,5 and Aug. 5 SAR data, the best per-field ANN 

classincation of 96.8% was achieved It represents an 8.5% improvement over a single 

TM3,4,5 classibtion aione. This indicates that a combination of mid-season SAR and VIR 

data is very weli suited for crop classifîcation. 



nte fourth objective wus to develop a bener underfianding of the mtermti'n of microwuve 

energy with crops and their underIj+ng soils over the growing seuson. 

Using mdtitemporal ERS-1 SAR data during the 1992 and 1993 powing seasons, the radar 

backscatter characteristics of crops and their underlying soik were analyzed The SAR temporal 

backscatter profies were pnerated for each crop type. For example, radar backscatter was high 

in early-season when fields of corn and soybeans were ielatively rough with ban soils. With 

crop developrnent, backscatter decreased due to attenuation and absorption by the vegetation 

canopies. The decreasing trend continued uoàl August 9, when corn and soybeans were at cob 

or seed development stage. Then the backscaner started to increase as the crops reached the 

senesceat stage. 

The earIiest time of the year for differentiation of individual crop types was deterrnined. Tbe 

results showed that winter wheat could be easily separated from all crops in the early season 

(May 3 1 and June 16). Soybeans could only be separated from the rest of the crops on June 16 

since soybeans and corn had sunilar backscatter pronle on ai l  dates, except on June 16. 

Barleyloats couid b distinguished h m  corn, soybeans and alfaffa(hay on July 5 and dates 

thereafter. However, from July 5 on, badeyloats had a similar pronle to wheat In aim, wheat 

and barley/oats displayed simiiar patterns to alfalf'ay after July 21. The earliest time to 

differentiate corn Born other crops was July 2 1. 

Orbital (incidence angle) effects were obse~ed on al l  crops. The average difference between the 

two orbits was about 3 dB. Thus aîtention must be given to the local incidence-angle effects 

when using ERS-1 SAR data, especially when cornparhg fields h m  different scenes or 

different areas within the same scene. 



In addition, fields displaying anomalous radar backscatter characteristics were also identined anci 

staîisticaiiy descnid. Anomalies were caused by dinerences in ground coverage, growth 

conditions, tiiiage practice and local climate 

Thejijth objective was tu evaluaie multitemporal E R S 4  SIR &tu for crop clas~ifscation~ 

Based on the temporal backscatter profiles, early- and mid-season multitemporal SAR data for 

crop classincation ushg sequentiai-masking techniques were evaluated It was found that winter 

wheat could be easily identified ushg an eady-season singledate SAR image (lm 16). 

Soybeans could be classified with some degree of success using June 16 SAR data AAer 

masking out wheat and soybeans, barley/oats could be easiiy classified on July 5 and July 21 

(mid-season); Again, after masking out wheat, soybeans and barleyloats. corn can be 

successfully separafed Born aifalfdhay on Juiy 21 (mid-season). These results clearly iadicate 

that crop classification cm be c&ed out successfully using sequential-masking techniques with 

early- and mid-season muhitemporai SAR data. 

8.2 Recommendations for Future Research 

The foliowing recommendations can be made for friture research: 

For a better understanding of the interactions of microwave energy with crops and the 

underlying soils over tbe growing season, more detailed ground information on crop 

growth, within-field variation, local clirnate, etc. are needed. Also, more fields should be 

included in ground data co11ection for the calibration and validation of a per-field classiner. 

Field-boundary information is costly to obtain over large mas. Image segmentation is a 

relatively new image-analysis technology which offers solutions to the problern of 

identifying boundaries. Further investigations on image segmentation are needed. 



Incidence angle (orbital) effects shouid also be m e c  investigated for crop classification 

using RADARSAT multi-incidence angle SAR &ta. 
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APPENDIX A: COSTS AND BENEFITS OF REMOTE SENSING 
(Lantieri, 1993) 

A.1 Costs 

The cost of remote sensing studies depends on many factors. Costs per square kilomm 

generaiiy increase when: 
the SC& is mre detailed, for example, at 1:200,ûûû scde, generaiîy corresponds to a 

cost of US$2-4 per square kilomeier; whereas ai 1:25,000 scale. is US$$-15 per square 
kilome ter. 
the level of infomtion required increases, for example, land potential maps are more 

complex and therefore more expensive than general land cover maps. 

Am2 Benefits 

Compared to extensive traditional ground surveys or inquuies, the main beneh of remote 

sensing are: 
the provision of rm e x h a d e  view of the selected cppa. in large areas ihis avoids major 

under- or over-estimation of phenornena or problerns related to earth resources, which 

can not readily be detected by ground sweys  alone; 

the provision of objective and independent ihfomtion: data acquired from remote 

sensing are rneasured by very reliaMe instruments which are independent of scientSc 

judgment a d o r  political influences; 
the provision of ypdmed d homogeneous informah'on over hundieds or thousands of 

square kilometers, particularly meanin@ for evaluation exercises. 

At smaii scale and medium sale - up to 150,000 satellite remote se&g can, in most situations, 

offer a number of advantages when compared to ueriolphotography, such as: 

lower direct co rn  the cost of satellite imagery is oniy 10 to 50 percent of that of the 

airborne or ground s w e y s  required for the traditionai production of updated thematic 

maps; 
shorter finie scule mid unimpeded 0cquisitton.- while the coliection of ground-based 
regional resource informaton may take months or even years for wiàe and complex 

areas, satellite m t e  sensing can provide results in weeks or months aud hence can 
speed decision-making. Moreover, there are no political or administrative restrictions to 



the acquisition of satefite data, which is not dways the case with aerial photographs and 
sornetimes even maps; 
new activities: th& to th& large vision of the d surface, to the availabiity of 
specific spectrai bands and to the acquisition of imagexy on a reguiar basis ail over the 
world, sateilite data offer new possibüities over very wide areas, impossible with 
traditionai aerial sweys; 

high speed of deliery a d  high accuncy of infomtion. 



APPENDIX B: SPOT - SEARCH RESULTS 

SPOT Data is Copyright SPOT-R O CNES 
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APPENDIX C: SPACEBORNE S A .  SYSTEMS - PAST, PRESENT AND FUTURE 

C.l Spaceborne SAR Systems: Past 

SEASAT (1978) 

The fmt spaceborne imaging radar was the L-band SAR on SEASAT, an instrument package 

launched into an 800 km altitude near-polar orbit in June 1978. This horizonially polarized 

instrument operated at a fked wavelength (23.5 cm) and at a fixed look angle (23O b r n  nadir). 

The SEASAT swath width was 100 km and the resolution was approximately 25 m. It operated 

for three monihs. Although SAR was included in the SEASAT payload primady for the 

purpose of ocean-wave imaging, imagery obtained over land areas clearly demonstrated its 

sensitivity to surface roughness, slope, land-water boundarïes (NASA, 1988; WerIe, 1992). 

SIR-A (1981) 

The next spaceborne SAR to foiiow SEASAT was the Shuttle Imaging Radar A (SIR-A), ferried 

into a 57" inclination, 240 km altitude orbit by the Space Shuttie Columbia in November 198 1. 

The SIR-A SAR technology was derived from SEASAT SAR, again using the 23.5 cm 

wavelength (L-band) and HH polarkation. The look angle, however, was changed to a 6xed 

angle of 47O siuce the SIR-A mission was to be used principally for geological research. The 

swath width was approximately 50 km and the resolution was Mm. SIR-A provided much 

improved images for geological analysis as they were relatively fkee of the layover distortion that 

accompanied SEASAT SAR images of high-relief regions. One of the most exciting aspects of 

the experiment was the àemonstration of the radar's ability to penetrate extremly dry surfaces, 

which resulted in the discovery of ancient river chaanels buried beneath the Sahara Desert 

(NASA, 1988, Werle, 1992). 



SIR-B (1984) 

The next NASA SAR mission was SIR-B, launched in October, 1984 on the Space Shuttle 

Challenger. The imaging altitude varied between 350 km, 272 km and 225 km. Wavelength and 

polarization of the SAR were the same as its predewssors on SEASAT and SIR-A; Le. L-HH. 

The new feature was that SIR-B was equippeà with an articdating antenna so tbat selectable 

incidence an@ could be obtaiwd over the 15" to 6û0 range. This capability provided the f h t  

mdti-incidence angle data set for surface-feanire (particuiariy forest) mapping and topgraphic 

mapping. SIR-B data were also the hrst to be digitally encoded and digitally processed, which 

represents a signincant advance in SAR image processing techwlogy. The swath width was 20 

to 40 km. Range resolution was 58 to 16 m and azimuth resolution 20 to 30 m (4-look). The 

Mission Length was 8.3 days (NASA, 1988, Werle, 1992; PL, 1996). 

C.2 Spaceborne SAR Systems: Present 

Russian ALMAZ-1 (1991) 

The former Soviet Union Qust prior to its dissolution) becam the f h t  country to operate a 

spacebome radar system with the launch of ALMAZL on March 31, 1991. Although this 

system initiated a new era in operational nmote sensing from space with the ability to provide 

hi& resolution data independent of weather conditions and time of &y, ALMAZ-1 was not well 

known in the S A R  research and application communïty due to la& of promotion by Russia* 

ALMAZ-1 was launched with a nominai altitude of 300 km (it was changed to 360 km in an 

attempt to prolong its lifetime in orbit) and an otûit that ranged h m  7 3 O  N to 73' S latitude. It 

returned to earth on October 17,1992, after operathg for about 18 months. The primary sensor 

on board ALMAZl was S-band (10 cm) SAR with HH polarization. The look angle ranged 

From 30" to 60° and the spatial resolution varied fkom 10 to 30 m, depending on the range and 



azimuth of the area imaged. The ALMAZ-1 SAR incorporated two antennas, wùich provided for 

eastward and wesnvard Iooking swaths, each appmximateIy 350 km wide (Lillesand and Kiefer, 

1994). 

European Eortb Resources Satellites ERS-1&2 (1991 and 1995) 

The European Space Agency (ESA)'s ERS-1 was launched into a sun-synchronous near-polar 

orbit at an altinide of 785 km in July 1991. The ERS-1 payload includes a C-band Active 

Microwave Instrument (AMI) with W polarization and a 23O incidence angle in mid-range. In 

Image Mode, SAR obtains strips of imagery, 100 km in width, to the right side of the satefite 

track. The spatial resolution is about 30 m in range dueftion and about 30 m in atimuth 

direction. The SAR retum signais are processed digitally on board and ttaasmitted to receiving 

stations. The ERS-1 SAR operated for 3 years and 10 months (ESA, 1992; Eurimage, 1994; 

ESA, 1995). The second European Earth Resources Satellite was successhilly launched in 

April, 1995, canying the same SAR instrument as ERS-1. 

Although most of the microwave instnimetlts on board the ERS-1 are pcimarily designed for the 

study of oceans, ice and meteorology, this long-duration spacebrne SAR system provides the 

research community with an exdent opportunity to obtain a better understanding of our land 

environment and its dynamic processes. Since its launcb, it has stimulated a lot of research 

activities in a wide range of applications including agriculture, forestry, geology, flood 

monitoring and sea-ice monitoring (ES& 1992; Eurimage, 1994). 

Japanese Earth Resources Satellite JERS-1 (1992) 

The Japanese Earth Resources Satefite JERS-1 was launched in Febniary, 1992 witb an 

expected Lifetime of four years. The satefite is in a sun-syncbronous, 568 km high orbit. Tùe 

payload of ERS-1 includcs a L-HH SAR with a 38S0 incidence angle in mid-range. The image 



swath is 75 km. The spatial resolution is 18 m at 3-looks in both range and mimuth directions. 

Like ESATs ERS-1&2, the ERS-1 is an experimental satellite. Its data are used for exploration 

of earth resources and monitoring land surfaces (ES A. 1995; RSI, 199%). 

The SIR-CB:-SAR mission represented a very important step forward. Not only was it the hrst 

spacebome SAR system which simultaneously acquired multi-kquency SAR imagery, but also 

it was the hrst opporerinity to use a multi-poIarization capability h m  space. SIR-CBC-SAR is a 

joint pmject of the National Aemautics aud Space Administration (NASA). the German Space 

Agency @ARA) and the Itaiian Space Agency (ASI). 

SIR-C/X-SAR is an imaging radar system launched aboard the NASA Space Shuttie in April and 

October 1994. SIR-C provided increased capab'rlity over SEASAT, SIR-A, and SIR-B by 

acquiring digital images simdtaneously at two microwave wavelengths (L-band at 23.5 cm and 

C-band at 5.8 cm). Tbese vercicaily and horizontally polarized transmitted waves were ~ceived 

on two separate chaanels, so that SIR-C provideci images of the magnitude of radar backscatter 

for four polarization combinations: HH, W, HV, and VH. Data on the relative phase 

ciifferences between the HH, W. VH, and HV returns were also acquired. This ailowed 

derivation of the complete scattering maaix of a scem on a pue1 by pixel basis. From this 

scattering matrix, every polarization configuration (iinear, circuiar or eliipticai) cm be generated 

during ground pmcessing. The radar polarimetric data wiU yield more detailed information about 

the surface geomeaic structure, vegetation cover and subsurface discontinuities than image 

brightness done. 

Germanyntaly's X-SAR operated at X-band (3.1 cm) with W polarization. resulting in a three- 

frequency capabiiity for the total SIR-C/X-SAR system. Because radar backscatter is most 



strongly Muenced by objects comparabie in size to the radar wavelength, this multi-frequency 

capability has proMded information about the earth's surface over a wide range of scales wt 

discemiMe with previous single-wavelength experimeats. Radar images generated by SIR-C/X- 

SAR have been used by scientists to help understand some of ibe processes which afféct the 

earth's environment, such as deforestation in the Amazon, desertification south of the Sahara, 

and soi1 moisture retention in the Mid-West (PL, 1996). 

Canadian RADARSAT (1995) 

The Canadian RADARSAT was successfully launched on November 4, 1995. RADARSAT is 

equipped with an advaaced SAR with a planned iif'etime of five years. Using a single-frequeacy, 

C-Band, the RADARSAT SAR has the unique ability to shape aud steer its radar beam over a 

500 km range. Users have access to a variety of beam selections that can image swaths fiom 35 

km to 500 km with resolutions Born 10 m to 100 m, respectively. Incidence angles range h m  

less than 20" to more than 50". 

RADARSAT provides amplete global coverage with the flexi'bility to support specific 

requirements. The satellite's orbit is repeated every 24 days. RADARSAT provides d d y  

coverage of the Arctic, views any part of Canada within threc days, and achieves complete 

coverage at equatorial latitudes every six days using a 500 km wide swath. 





APPENDIX D: SPACEBORNE SAR FOR AGRICüLTURAL CROP CLASSIFICATION 

- DISCUSSION OF SELECTED STUDES 

D.1 EPrly Spaceborae SAR Data for Crop Classification 

Cihlar, Prévost and Vickers (L986) conductecl a feasibiIity study to discriminate among various 

land-cover categories on SIR-B L-band data. The data were acquurd over agricdtumi anas after 

harvest in southwestern Saskatchewan, Canada. The Hoosier acea was imaged at au incidence 

angle of 34" and the Lake Diefenbaker area at two incidence angies (LSO and 34"). k g e s  were 

interpreted visually using prints. In order to facilitate the transfer of information between the 

S A R  image and the ground map, and to determine digital values for the viaially interpreted 

tones, digital SIR-B data were &O processed. The images were CO-registered with TM images, 

and a field-by-field analysis was conducted and image tones were assigned. Since the SIR-B 

data were acquired over areas with no coaesponduig ground observations, enhanoed TM images 

were employed to determine land-cover types in those areas. The nesults show thai general land- 

cover categones can be visualiy deheated on SIR* images, but contexnial interpretive 

parameters (shape and pattern) must be used to compensate for tonal overlap between categones. 

If image tone wen used in isolation, it is likely thaî digital pixel-by-pixel analysis would not be 

successful. The main ciifference between the 34" and I f  images was the greater tonal variation 

within the latter. Similar trends were observed, however, in data coilected at two incidence 

angles. Soi1 surface roughness was a dominant factor intluencing radar backscatter at L-band in 

dry harvested agricuitural mas. 

Hutton and Brown (1986) conducted a comparative andysis of space and airborne L-HH radar 

imagery in an agricuitufai environment near Napiemilie, Quebec. They attempted to determine 

the extent to which agriculnual ground feanires influencecl radar rems and compared the 



relative radar backattering coefficients derived nom both a SIR-B L-HH image (October 7, 

1984) and an airborne SAR L-HH image (October 25,1984). They dso compared the resuits of 

this study with those derived fiom an anaiysis of sites in western Canada The study was 

accomplished by carrying out a visual assessrnent of the images and by performing digitai 

classincations. From vWal analysis of both space and airborne SAR images, it was concluded 

that the radar retum Born rows or ditches dominated those of the =tuai ground cover in the 

areas where row/field/ditch orientations were orthogonal to the sensor look direction. In aii other 

cases. the radar retums fÏom the ground-cover type dominated over the rowlfieldlditch 

orientation. Pasture. which is devoid of rows, showed no orientation dominance. The digital 

results iadicated that pasture, ploughed fields and unhawested corn were separable on the 

airborne image in most of the classincations, but harvested corn was not consistently or 

accurately defmed. ûn the spaceborne image, sepacability was much p r e r  and almost non- 

existent if backscatte~g values (Le., aaining areas) were derived fkom orthogonal regions. 

Pashue had the highest classification accuacies of any of the ground-cover types studied. Post- 

classification filtering of both types of data increased the overail accunries in most cases. The 

dissimilarities between the grouad characteristics because of Merent famiing pmctices did not 

ailow for a relevant cornparison from eastem Canada to western Caaach 

Cihlar and Hirose (1984) and Cihlar (1986) conducted a qualitative and quantitative analysis of 

singledate digital airborne X- and L-band data, SEASAT SAR data, and LANDSAT MSS data 

for four agriculhiral sites in western Canada which represent s u M d  and semi-arid cümatic 

regimes. MSS images were rectined to a UTM map and ali  SAR data were registered to these 

images. Filters were used to reduce speckle. The boundaries of each field were outlined and 

digital values for each cover type were extracted. Images were visually examined to estabfish 

possible relationships beiween features imaged by SAR and ground observations. Cihiar and 

Hirose (1984) aiso performed digital classifications for various SAR, VIR, and SAR plus VIR 

combinations. One classitication using individual pixels as input and one classifîcation using 



field means as input was performed for each band combination. Results of the analysis 

demonstrated the importance of cover type for d e t e m g  SAR backscatter. Seveml croplsite 

combinations exhibiteci distinct tones. Cover type was the single most impomt parameter, and 

other variables (such as surface roughness, cultivaiion direction) were also significant in some 

cases. Also highüghted was the complexity of the relationships behiveen radar rem and crop 

type, agrochatic region, and SAR sensor parameters, and the need for m e r  detailed s u e s  

of these relatioaships. A necessary part of such a study are data sets with detaiied documentation 

of ground conditions over the growing season, p r e f d y  on a per-pixel basis. Ln addition to 

plant canopy development, soil surface mughness and its distn'bution within a field should be 

adequateIy characterized Analysis indicated that SAR return fiom the soil sudace is often a 

sigaificant component of the total backscatter k m  cultivated fields, paaicularly under semi-arid 

agroclimatic conditions with lower totai biomass. Cihlar and Hirose (1984) found that for dl the 

combinations that included MSS data, the o v e d  average classifkation accuracy of the per-field 

classification was higher dian the accuracies obtained using the single-pixel values. Conversely, 

band combinations that included only SAR data gave mixed results in ihat per-field accuracies 

were higher than per-pixel accuracies for some sites and lower for other sites. 

D.2 Multitempord Spaceborne SAR Data for Crop Classification 

Schotten et al. (1995) conducted an assessrnent of the capabilities of multitemporal ERS-1 SAR 

data to discriminate betweea agicultural crops and to detemine the earliest possible stage in the 

growing season at which crop type c m  be distinguished. The test site is located in South 

Flevoland, an agriculturai region in the Neiherlaiids where 12 crop types are found. Fourteen 

ERS4 SAR images were acquired during the 1992 growing season between May and 

November. The field-based classification yielded an overall classification accuracy of 80% with 

the optimal daia set. For potatoes, winter wheat, grass, winter rape, spring barley, f i t  trees 

and Lucerne, an accriracy and reliability of over 80% was achieved. For sugar beet, maize, 



onions, beans, and p a s ,  the accuracy and reliability were below 80%. The stage at which the 

crop type could be assessed is crop dependent Wimer wheat, spring barley, potatoes, winter 

rape and luceme could ail be distînguished in the p e n d  between m i d h  and mid-August. 

Grass and nuit orchards could ody be distinguished using images acquired after the more 

seasonal crops id been harvested. Sugar beet, maîze, onions, beans and peas could not be 

distinguished acceptably using S A R  images. 

Ban and Howarth (1995) hvestigated ERS-1 SAR temporal-spectrai prohles for agricuiturai crop 

identification. D-g the growing season in 1992, six dates of ERS-1 C-W SAR data were 

acquired over an agricultural ana in Odord County, southem Ontario, Canada Radar 

backscatter characteristics for five major crops were analyzed for each date. ERS-1 temporal- 

spectral SAR profîles for the five major crops were generated and the earliest t h e  of the year for 

identification of individual crop types was determined. The results showed that winter wheat 

could be successfiiuy sep~t~ated in the early seasoa, but other crops could not be differentiated 

from one another und mid- and late season. The mean highest validation accurafy for four 

dates in early and mid- season using a per-field classifier reached 78.296, which represents a 

20% improvement over that of the singledate classincation. Fields which display anomalous 

radar backscatter characteristics were identified and statistidy described. It was found that 

these anomalies usuaiiy resuit h m  growing conditions and crop magement practices. Soi1 

drainage and soi1 roughness characteristics cm also influence radar backscatter. 

Aschbacher (1995a and 1995b) conducted an assessrnent of ERS-1 SAR for rice-crop mapping 

and monitoring. A study ana of approximatC.ly 10 x 10 sq. km was selecteà in Kaachanaburi 

Province, W a t  Thailand. Multitemporal ERS-1 S A R  data were available for eight acquisition 

dates, narnely 199 1: November 22; 1992: Octobcr 7; 1993: Febmary 24, May 7, June 1 1, 

August 20, ûctober 29 and December 3. Extensive ground measurements were taken in parailel 

to ERS-1 data acquisitions during the main growth period in August to December 1993. Plant 



height, plant moisture content, plant density, number and size of leaves, s t a l k  diameters, and 

height of standing water were measured, together with more general observations regadhg the 

state of the water/soil surface, state of plants, and weather at acquisition the. The analysis of 

ERS-1 SAR data was supported by aerial photograptis and a SPOT panchromtic image. 

Irrigated or flooded rice fields showed a very cbaracteristic radar backatter signahue. in radar 

imagery, rice fields appear very dark during the flooded, vegetative phase, and tum brighter 

during the reproductive and ripening phase. The radar bacbatterhg coefficient aO inmases 

fiom about -15 dB to about -8 dB duriag plant growth, and thus covers a dynarnic range which 

is significantly larger than that of my other agricuitural crop. The relatively good correlation 

between aO and plant-growth parameters makes the use of ERS-1 SAR data particularly suitable 

for crop-growth monitoring. As regards rice-field mapping, a simple, pixel-based maximum 

lüceühood classification was carried out, based on multitemporal, Gamma MAP speckle nItered 

radar images (four dates, lune 6, August 20, October 29, and December 3, 1993). It was found 

that: 

O Multitemporal ERS-1 SAR data are highly suitable for nce-field mapping. The 

classification accuracy is 89% for rice fields versus other land covers. 

At least thiee images should be avaüabe drniag the growth cycle. The optimum 

acquisition dates are during the flooded vegetatioa phase, at the end of the reproduction 

phase and shody before harvest. 

The use of a pixel-based standard maximum likelihood classifier is sufncient, although 

more sophisticated methods may yield siightly better results. SpecLle filterhg of the 

input data is mandatory. 

As regards rice-crop monitoring, it was found that: 

Multitemporal ERS- 1 SAR data are very suitable for nce-crop monitoring. 



0 The radar backscatter coefficient @[dB] of rice fields is highly correlated with rice-plant 

height (d.77). Consequently the use of radar data aliows one to determine the 

approxhate stage of plant p w t h .  

The radar signai shows a potential correlation with rice yield. but the reiationship may be 

indirecî. 

D.3 Integration of Spaceborue SAR and VIR Data for Crop Classification 

Ban and Howarth (1996b) investigated the synergistic effects of integrating SAR data and 

imagery acquired in the VIR portions of the spectnun. Combinations of ERS-1 SAR and 

Lanâsat TM data were used to evaluate classification accuracy for eight crop classes: wintec 

wheat, corn (good growth), corn (poor growth). soybeans (good growth), soybeans (poor 

growth), barleyloats, alfalfa, and cut hay and pasture. The study area was situated in an 

agicultural area in Oxford County, southern Ontario, Canada. Three &tes of eariy- and mid- 

season ERS-1 C - W  SAR data were acquired during the 1992 growing season (June 15, July 24 

and August 5). July 24 SAR data were acquired in ascending mode. while others were acquired 

in descending mode. One date of Landsat TM data was also acquired on August 6. 1992. Both 

per-pixel and per-fîeld classifcations were perfonned on singledate SAR, multitemporal SAR, 

single-date TM and the combinations of SAR and TM data. Two pst-segmentation classifiers 

(minimum distance and artScid neural necwotk) were evaluated. Resuits showed thaî 

combinations of S A R  and VIR impmve classincation accuracies. the best cesdts showing overd 

accuracies in the mid-90% range. The per-field appmach using an artificial neural network 

produced betier accuracies than using a per-field minimum distance classifier or a per-pixel 

maximum likelihood classification. 



Kohl et al. (1993) conducted a cornparison of ERS-1 SAR and SPOT XS data for crop acreage 

estimation for agricuitural statistics as part of the Monitoring Agriculture by Remote Sensing 

(MARS) pilot project. The study was paformed on two test sites: Seviile, Spain and Great 

hinield, W. Six ERS4 Fast-Delivery (FD) scenes acquired between A p d  and DeCernber 

1992 over the Seville test site were aaalyzed. The idormation content extracteci h m  those 

scenes was evaluafed relative to a four-date SPOT XS data set acquiFed in the 1992 growing 

season and the results of a ground m e y .  The preprocessing of the FD data hcluded 16 to 8- 

bit conversion, speckle reduction using G-MAP and Texnue/Mean nIter and geometric 

registration of the images. Maximum Likelihood Classifkations (MLC) for 22 land-use and 

land-cover classes were performed based on five-date ERS-1 SAR, a singie-date SPOT XS, and 

combined three-date ERS4 SAR and a singledate SPOT XS data The results showed a 

significant inctea~e in classification accuracy of the combined ERS4 and SPOT data sets in 

cornparison to either ERS-1 or SPOT alone. For the Great Drifneld site, five-date ERS-1 S A R  

data from Apd to October and singieaate SPOT data in May were acquired and analyzed. The 

unfiltered FD data using a MLC showed that the classification accuracy of four-date ERS- 1 is 

slightly better than that of five-date. This is probably because the late-ûctober image is not 

significant for the crop in question. The work demonstrated tbat the information content of the 

ERS- 1 data is complernentary to the SPOT data and that muitidate SAR data performs better than 

a single-date SPOT data for certain classes. 








