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ABSTRACT

Acquisition of timely information is a critical requirement for successful management of an
agricultural monitoring system. Crop identification and crop-area estimation can be done fairly
successfully using satellite sensors operating in the visible and near-infrared (VIR) regions of the
spectrum. However, data collection can be unreliable due to problems of cloud cover at critical
stages of the growing season. The all-weather capability of synthetic aperture radar (SAR)
imagery acquired from satellites provides data over large areas whenever crop information is
required. At the same time, SAR is sensitive to surface roughness and should be able to provide
surface information such as tillage-system characteristics. With the launch of ERS-1, the first
long-duration SAR system became available. The analysis of airborne multipolarization SAR
data, multitemporal ERS-1 SAR data, and their combinations with VIR data, is necessary for the
development of image-analysis methodologies that can be applied to RADARSAT data for

extracting agricultural crop information.

The overall objective of this research is to evaluate multipolarization airborne SAR data,
multitemporal ERS-1 SAR data, and combinations of ERS-1 SAR and satellite VIR data for crop
classification using non-conventional algorithms.

The study area is situated in Norwich Township, an agricultural area in Oxford County, southern
Ontario, Canada. It has been selected as one of the few representative agricultural ‘supersites’
across Canada at which the relationships between radar data and agriculture are being studied.
The major field crops are corn, soybeans, winter wheat, oats, barley, alfalfa, hay, and pasture.

Using airborne C-HH and C-HV SAR data, it was found that approaches using contextual
information, texture information and per-field classification for improving agricultural crop
classification proved to be effective, especially the per-field classification method. Results show
that three of the four best per-field classification accuracies (I? =0.91) are achieved using
combinations of C-HH and C-VV SAR data. This confirms the strong potential of

multipolarization data for crop classification.

The synergistic effects of multitemporal ERS-1 SAR and Landsat TM data are evaluated for crop
classification using an artificial neural network (ANN) approach. The results show that the per-
field approach using a feed-forward ANN significantly improves the overall classification
accuracy of both single-date and multitemporal SAR data. Using the combination of TM3,4,5

iv



and Aug. 5 SAR data, the best per-field ANN classification of 96.8% was achieved. It
represents an 8.5% improvement over a single TM3,4,5 classification alone.

Using multitemporal ERS-1 SAR data acquired during the 1992 and 1993 growing seasons, the
radar backscatter characteristics of crops and their underlying soils are analyzed. The SAR
temporal backscatter profiles were generated for each crop type and the earliest times of the year
for differentiation of individual crop types were determined. Orbital (incidence-angle) effects
were also observed on all crops. The average difference between the two orbits was about 3 dB.
Thus attention should be given to the local incidence-angle effects when using ERS-1 SAR data,
especially when comparing fields from different scenes or different areas within the same scene.

Finally, early- and mid-season multitemporal SAR data for crop classification using sequential-
masking techniques are evaluated, based on the temporal backscatter profiles. It was found that
all crops studied could be identified by July 21.
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CHAPTER 1: INTRODUCTION

1.1 Motivations for the Research

As the 20th century draws to a close, pressures on agriculture can only increase with the
exponential growth of world population, urbanization, desertification, deforestation, soil
erosion, and other environmental stresses. It is projected that, by the year 2000, the amount of
arable land per capita will be only about 0.2 ha, as compared with about 0.5 ha in 1950 (Avery et
al., 1992). For example, Java loses nearly 20,000 hectares of cropland annually to urban
growth - enough to grow rice for some 378,000 Indonesians each year (Gardner, 1996). Each
and every day, world demand for food increases by 250,000 mouths; at this rate, world demand
for food will increase by as much as three times its current level in the next 50 years (Park et al.,
1980; Gilson, 1989; The Toronto Star, July 18, 1993). According to the World Food Council,
550 million people were too undernourished to “sustain an active, healthy life” in 1989 (Kutzner,
1991). These and other factors underscore the need for agricultural information systems that can
provide accurate and timely information on crop type, area and location, crop growing condition,
crop production, and the extent and severity of catastrophic events (e.g. tornadoes, hail, floods,
droughts, crop diseases and insect infestation) on regional, national, and global scales, such that

domestic and world agricultural policy planners can more effectively manage agricultural

resources.

At present, a central world agricultural information system does not exist; thereby making it
difficult for commodities to move within world food markets in a timely and efficient manner.
For instance, advanced information conceming food production is important for providing the
timely, accurate information necessary to stabilize fluctuations in commodity markets, which are
especially sensitive to uncertainties or fluctuations in supply and demand (Campbell, 1987).

Evidence of this was provided by the entrance of the USSR into the world wheat market in 1975



as an unexpected buyer rather than a seller. This caused world wheat prices to soar and a general

disruption of normal market conditions (Park et al., 1980).

Timely and accurate crop area and production information must be relayed at least on a country-
by-country or region-by-region basis in order for world food markets to operate at an acceptable
level of efficiency. The ability of a country or region to accurately forecast the harvest of its
major crops, coupled with the ability to analyze its position with respect to the current world
market, would enable agricultural planners to make more rational and economically rewarding
export-import decisions. Indeed, the lack of current and accurate agricultural information can be
a major obstacle to economic development. In fact, improvements in the timeliness and
accuracies of crop production data can translate into substantial economic benefits. Cost-benefit
studies for earth-resources data have shown that more timely and accurate crop production
statistics could be worth billions of dollars' (Park er al., 1980). This is especially true in
developing countries where agriculture dominates the economy and employs most of the
population. A good knowledge of cultivated areas and agricultural production is absolutely
indispensable to major policy decisions concemning national or regional development and
planning, trade-balance management and, in times of crisis, international food-aid management,
to avoid not only shortages but also surpluses, the secondary effects of which are just as

damaging (FAO, 1993).

A crop information system is one way that remote sensing can provide valuable agricultural
information to decision-makers. Remote sensing is presently the only technology that can
provide timely and accurate crop inventory information. When the advantages of various remote
sensing platforms are compared, it is clear that repetitive coverage is unique to the orbiting

spacecraft, since it is comparatively much more expensive to acquire the same coverage with

! For example, advanced knowledge of the U.S. crop yield is strategic information in maintaining a positive
balance of agricultural exports: US$13 billion in 1989, with a surplus of US$3.7 billion (RSI, 1995a).



aircraft. Effective monitoring of crop growth requires that the coverage is repeated at least four
times during the growing season. This is problematic on a global scale because the growing
season is unique to both geographic location (latitude, longitude and altitude) and to the crop.
Furthermore, the observation and control of crops is useful only at specific, well-determined
points in time during the growing season (Myers et al., 1983). The weather in Canada and in
many other parts of the world, however, often makes this impossible using sensors operating in
the visible and near-infrared (VIR) bands, as is demonstrated by the relatively few cloud-free
images obtained by Landsat and SPOT (Blakeman, 1990). Thus, there is a need for a remote
sensing system which can be employed in all weather conditions. Radar has great potential to

provide information in such a manner.

The 1990s have been, and will continue to be, the decade of spaceborne synthetic aperture radar
(SAR). In 1991 and 1995, the European Space Agency (ESA) launched the European Remote
Sensing Satellites, ERS-1 & 2. In 1992, the Japanese Earth Resources Satellite (JERS-1) was
launched. The third shuttle SAR missions, SIR-C/X SAR, were flown in 1994 for limited
durations on two separate shuttle missions, and the Canadian RADARSAT was launched on
Nov. 4, 1995. In the later part of this decade and early next decade, the future advanced SAR
missions such as ESA ENVISAT ASAR and the U.S. Shuttle Radar Topography Mission will
be launched (Ferster, 1996). All of these spaceborne SAR systems provide an excellent

opportunity to develop an operational crop information system to support decision-making.

1.2 Problem Statement and Objectives

1.2.1 Problem Statement

As discussed earlier, acquisition of timely information is a critical requirement for successful

management of an agricultural monitoring system. Crop identification and crop-area estimation



can be done fairly successfully using satellite sensors operating in the visible and near-infrared
regions of the spectrum. However, data collection can be unreliable due to problems of cloud
cover at critical stages of the growing season. The all-weather capability of synthetic aperture
radar (SAR) imagery acquired from satellites provides data over large areas whenever crop
information is required. At the same time, SAR is sensitive to surface roughness and should be
able to provide surface information such as tillage-system characteristics. With the launch of
ERS-1, the first long-duration SAR system became available. The analysis of multitemporal
ERS-1 SAR data, and their combinations with VIR data, is necessary for the development of
image-analysis methodologies that can be applied to RADARSAT data for extracting agricultural

crop information.

Previous research has demonstrated the large potential for using radar remote sensing for various
agronomic applications, as summarized by Holmes (1990) and Ban and Howarth (1996a). SAR
data are so complex, however, that the interaction of the radar signal with agricultural targets is
not fully understood. In addition, with the current state-of-the-art of interpretation methods for
SAR imagery, the accuracies of crop classification are not always as high as required for
successful operation of a crop information system (Brisco and Protz, 1982; Brown, 1987;
Foody, 1988; Foody et al., 1989; Brisco et al., 1989a; Ban et al., 1995). To be able to increase
the accuracies of crop identification and area estimation, and thus develop a viable crop
information system that makes use of SAR imagery as the primary data source, we need to:

L. have a better understanding of the crop and underlying soil characteristics that influence
radar backscatter throughout the growing season;

identify suitable methodologies to extract crop information from SAR imagery;

evaluate multipolarization airborne SAR for crop identification;

evaluate multitemporal ERS-1 SAR for crop identification; and

}AAMN

evaluate combinations of satellite SAR and VIR for crop identification.



1.2.2 Research Objectives

The overall objective of this research is to evaluate multipolarization airborne SAR data,
multitemporal ERS-1 SAR data, and combinations of ERS-1 SAR and satellite VIR data for crop
classification using non-conventional algorithms. To achieve this objective, five major issues

need to be addressed.

The first objective is to perform a comparative analysis of classification algorithms that

incorporate tonal, contextual, and/or textural information. The specific objectives are:

*  to determine the accuracy of crop classification, using standard per-pixel classification
procedures such as a maximum likelihood classifier (MLC)

. to evaluate non-parametric and non-statistical classification algorithms based on contextual,

textual, and per-field approaches for crop identification.

The second objective is to evaluate multipolarization (C-HH and C-HV) airborne SAR data for
crop classification. The specific objectives are:

. to evaluate single polarization C-HH and C-HV SAR for crop classification

. to evaluate the combination of C-HH and C-HV SAR for crop classification.

The third objective is to evaluate the synergistic effects of multitemporal ERS-1 SAR and satellite

VIR data for crop classification. The aims will be:

. to evaluate early- and mid-season crop classification accuracies using a single-date SAR
image alone and also using multitemporal SAR data

. to evaluate the synergism of multitemporal ERS-1 SAR and Landsat TM data for
improving crop classification, and

. to evaluate an ANN algorithm as a post-segmentation classifier in comparison to the

conventional maximum-likelihood classifier.



The fourth objective is to develop a better understanding of the interaction of microwave energy

with crops and their underlying soils over the growing season. This will involve:

. absolute calibration and geometric correction of ERS-1 SAR data

¢ generation of ERS-1 SAR temporal backscatter crop profiles for both 1992 and 1993 data

* identification of fields that display anomalous radar backscatter characteristics, statistically
describing the anomalous fields, and attempting to identify reasons for these anomalies

*  recommendations for the earliest time of the year to differentiate agricultural crops.

The fifth objective is to evaluate multitemporal ERS-1 SAR data for crop classification based on
SAR temporal backscatter profiles. The satellite SAR data selected for multitemporal analysis
will be representative of the different stages of development of crops. Furthermore, the
classification procedures identified in the third objective as being the most appropriate for crop
classification will be used in the analysis. The work will involve:
. analysis of ERS-1 SAR temporal backscatter crop profiles

J evaluation of multitemporal ERS-1 SAR for crop classification using sequential masking.

1.3 Implications of the Research

1.3.1 Scientific Perspective

The proposed research will contribute to two main theoretical developments. The application of
satellite radar remote sensing to agriculture is still in its infancy. Thus, the proposed study aims,
first, to provide a better understanding of the interaction of microwave energy with agricultural
crops and soils throughout the growing season and, second, to develop optimal methodologies to
extract agricultural information from SAR data.



From an applied perspective, the findings of this study are of practical significance since the
Canadian RADARSAT was successfully launched on November 4, 1995. RADARSAT is
designed to meet the data requirements and data-delivery requirements demanded by operational
programs. The earlier satellites, such as ERS-1, were primarily intended to fulfill the needs of
the research community. To be ready to use RADARSAT SAR as a primary data source for an
operational crop information system, a concentrated research effort is necessary to gain
experience using ERS-1 SAR as a research tool, since both RADARSAT and ERS-1 SAR
operate at the same wavelength (C-band). In addition, multipolarization airborne SAR studies
will benefit future spaceborne SAR missions; for example, ESA’s ENVISAT Advanced SAR

system will operate in alternating polarization modes.

1.3.2 Industrial and Socio-Economic Implications

Agriculture is one of the most important industries in the Canadian economy, employing 14.5%
of Canadians in the agri-food sector and generating about 10% of the Gross Domestic Product.
The $6.8 billion of agricultural products exported in 1989 exceeded imports by $3.5 billion,
resulting in a significant contribution to the balance of trade. Of the total of 997 million ha of
land in Canada, 76.8 million ha are in farmland, a large area managed by only 4% of the
population. Although Canada’s contribution to world food production is modest, it is still an
important player in the world market, exporting 40 to 50% of its total agricultural production. A
strong agricultural industry is vitally important to the Canadian economy and to the world.
Satellite SAR, such as RADARSAT, is perceived by the agricultural community as a potentially
important tool for supplying data to meet its timely and accurate informational requirements in

agricultural resource management (Brown et al., 1993b).



Timely and accurate information on crop type and area estimation is not only a basic need for
crop inventory and monitoring, but also for crop production forecasting. A crop information
system is needed for a variety of reasons. Government departments, such as Agriculture Canada
and Statistics Canada, require a system for administrative purposes, possibly for measures to
regulate quantities and prices, or for external trade settlements. Private firms, particularly those
engaged in wholesale and extemal trade, are interested in timely and accurate data for their
marketing and storage arrangements. Farmers themselves may use harvest data calculated for
their country and region as a basis for their seasonal sales in order to obtain particularly
favourable prices (Thiede, 1981). In addition, information on the extent and severity of
catastrophic events is important for damage assessment and relief planning (Werle, 1992). The
benefits of a crop information system can therefore be summarized as: 1. accurate estimates
resulting in price stability; 2. timely and accurate forecasts of production allowing governments
to plan domestic and foreign policy and actions; 3. accurate forecasts enabling optimal utilization
of storage, transportation, and processing facilities; and 4. detection and timely knowledge of

harmful effects on crop growth to assist in taking remedial measures.

1.4 Organization of the Thesis

The thesis is organized into eight chapters. In the first chapter, the motivations for the research,
the achievements and problems using SAR for crop classification, the objectives of the research

and its scientific and socio-economic implications have been introduced.

In Chapter 2, conventional agricultural inventory, airbomme VIR remote sensing and satellite VIR
remote sensing for agriculture are reviewed. Their roles as an input into an operational crop

information system are evaluated.



Chapter 3 provides a detailed review of the state-of-art of SAR in agricultural applications,
focusing specifically on crop identification. The advantages of radar remote sensing,
fundamental theories of the interaction between SAR and agricultural parameters, airborne SAR
agricultural studies, and spaceborne SAR agricultural studies are summarized. Methodologies to
extract crop information from SAR data are also evaluated. An overview of achievements,
limitations and the future potential of SAR data for agricultural crop identification, as explained in

the existing literature, is presented.

In Chapter 4, the geographical characteristics of the study area are discussed. The characteristics
of the airbome SAR data, ERS-1 SAR data and the ground information are described. The
important aspects of calibration of ERS-1 SAR data are discussed and procedures for derivation

of the calibration constant G° are presented.

In Chapter 5, the multipolarization airborne SAR is evaluated for crop classification. The
effectiveness of C-HH and C-HV SAR for crop classification are compared. Methodologies to
improve the classification accuracies, such as filtering, texture analysis and a per-field approach,

are tested.

In Chapter 6, the synergistic effects of ERS-1 SAR and Landsat TM data for crop classification
are evaluated. Combinations of single-date SAR and TM data, and multitemporal ERS-1 SAR
and TM data are compared with TM data alone for crop classification.

In Chapter 7, the use of multitemporal ERS-1 SAR for crop identification is presented.
Specifically, SAR temporal backscatter profiles for major crops during the 1992 and the 1993

growing seasons are generated and the earliest times of the year to distinguish crop types are



identified. Multitemporal SAR data are evaluated for crop classification using sequential-

masking techniques.

In the final chapter, Chapter 8, the major findings of this research are summarized. Conclusions

are presented and future research directions are suggested.
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CHAPTER 2: VIR REMOTE SENSING IN AGRICULTURE

2.1 Conventional Agricultural Inventory

In the past, information on crop type and area has often been compiled by conducting personal
interviews with farm operators or by conducting mail surveys. Despite the valiant efforts that
reporting agencies have made from time to time to acquire information on crop type and acreage,
whether from questionnaires sent to farmers or from direct on-the-ground surveys, it is often
uncertain whether a satisfactory estimate has been obtained. Returns from questionnaires have
often been too few, too inaccurate, and too late. Returns from direct on-the-ground surveys, due
to limitations of both time and funds, have sometimes constituted too small a sample of the vast
agricultural area of interest for them to be used with confidence (Colwell er al.,, 1970). At
regional and (inter-) national levels, the processing of these sample data is an expensive and time-

consuming procedure (Bouman, 1991b).

Agriculture is a dynamic system whose control and management call for rapid, regular, and
reliable acquisition of a great many data on the growth cycle of crops, and their sequence in time
and space (Gillot, 1980). Remote sensing is presently the only technology that can provide
timely, regular, and accurate crop inventory information. In fact, agricultural crops and forest
species were two areas of investigation to which remote sensing applications were initially

directed (MacDonald, 1984).
2.2 Airborne VIR Remote Sensing for Agriculture
2.2.1 Aerial Photography

Aerial photography using the visible and the near-infrared bands for surveying agricultural crops

is well-established. The earliest research report describing an attempt to identify crops using
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black-and-white aerial photographs was by Goodman (1959) who used a multitemporal
approach. Since then, conventional, medium-scale aerial photographs have been used in some

regions for the identification of major crops and the monitoring of crop-area allotments.

The history of remote sensing in agriculture contains a comprehensive record of exploitation of
panchromatic photos, largely by the United States Department of Agriculture (USDA); the use
was virtually exclusively for measuration. During the 1950s, the Economic Research Service of
USDA became the first to use historic as well as current air photos to perform land use and land
use change analysis in an operational context. In the last twenty-five years, the technology of
crop identification has advanced from utilization of broad-band black-and-white to black-and-
white infrared photos; then to narrower band color and then to color-infrared photographs

(Myers et al., 1983).

Crop identification by manual airphoto interpretation is accomplished by application of the
elements of photo interpretation in the context of knowledge of the local environmental setting
and the local crop calendar (i.e., typical dates of planting and harvesting). In many settings,
crops are usually observed planted in uniform, distinct fields, a single crop to a field. Precise
identification of specific crops may be difficult in the absence of detailed knowledge of local
cropping practices, such as crop rotation. For example, it is usually easy to separate small-grain
crops (wheat, oats, barley, rye) from large-grain crops (com or sorghum), although even
experienced photo interpreters may have difficulty distinguishing crops within these classes
(e.g., wheat and barley). Therefore, careful timing of the date and season of the aerial
photographs and knowledge of the crop calendar are essential for crop identification and area

estimation (Campbell, 1987).

Although black-and-white aerial photography is usually suitable for crop identification and
distinction between small-grain crops and large-grain crops, difficulty has been encountered in
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making distinctions within small grains and large grains. If color or color infrared (CIR)
photographs are available, it may be possible to interpret information concerning crop maturity,
as the time for harvest approaches. In addition, CIR photographs may permit interpretation of
the presence, location, and nature of insect infestations or diseases (Campbell, 1987). Crop
discrimination using CIR photography has been studied closely and it has been found that the
percentage accuracy depends on time of year, location and the environment. For example, in
some regions crops are planted in very small fields, or many different kinds of plants are planted
together in a single field. Under such conditions, crop identification may be much more difficult

than in the typical mid-latitude situation where ficlds are large and crops are homogeneous within

fields (Campbell, 1987).

At the present time, aerial photography is by far the most widely used remote sensing technique
in agriculture (Pacheco, 1980). The major advantages of conventional aerial photography are the
high resolution, the wide choice of methods, the availability of instruments, and the knowledge
of trained personnel. Acrial photographs also have the advantage of providing large-scale
information, indispensable when mapping at scales above 1:25,000 (Lantieri, 1993). The major
disadvantages of applying aerial photos to agriculture result from uneconomic repetitive coverage

(within a year), non-uniform and uncalibrated intensity measurements that obstruct automated

density processing, and the relatively high cost per km?2, especially for large-scale aerial surveys
(Pacheco, 1980; see Appendix A for cost-benefit analysis).

2.2.2 Airborne Multispectral Sensors for Agriculture

Since the 1960s, a major thrust of an element of the U.S. civilian remote sensing research
program has been advancing the techniques for machine processing of satellite-acquired
multispectral data. The program's primary focus has been the use of multispectral data to

identify crop type, condition, and ontogenetic stages of cultural vegetation. The research began
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as a result of a National Academy of Science (NAS) study on the applicability of remote
monitoring (NAS, 1970). It was given impetus in the mid-1960s with the introduction of the
first airborne multispectral scanner (MSS) operated by the University of Michigan. In this
period, narrow-band multispectral data were evaluated. In a separate advance, thermal infrared
technology was developed. The two technologies were combined in the 18-channel (between
0.32 and 14 pm) University of Michigan Scanner. In 1970, the University of Michigan's
airborne MSS and NASA's high-aititude photography were used in the Com Blight Watch
Experiment - the first large-scale application of remote sensing in agriculture (Myers et al., 1983;
MacDonald, 1984). In the 1970 report of the Laboratory fer Applications of Remote Sensing
(LARS) at Purdue University, results of a study were reported in which MSS data were analyzed
using pattern recognition techniques. The overall validation classification accuracies for com,
soybeans, water and a mixture of pasture and other crops were 82.8% (3 V & | NIR), 83.9% (3
V & 2 NIR) and 86.4 % (3 V,2 NIR & 1 TIR)!.

Using data acquired in the 1971 Corn Blight Watch Experiment, Kumar (1977) evaluated 12
spectral channels in the visible, near infrared, middle infrared and thermal infrared (from 0.4-
11.7 um) for discriminating agricultural cover types consisting of corn, soybeans, green forage
and forest. Overall separability of green forage (hay and pasture) from the other agricultural
cover types was found to be considerably lower than the corresponding separability of corn,
soybeans and forest. The author found that maximum separability of the agricultural cover types
was obtained when using all twelve channels. Kumar (1977) further stated that the greatest
overall statistical separability of agricultural cover types was obtained with data from the red
channel (0.61-0.70 um). Also, the overall statistical separability of the agricultural cover types
was found to be greater for the data of August 12 than the data acquired on July 16.

I'v, NIR, and TIR denote the visible, near infrared, and thermal infrared regions of the electromagnetic spectrum,
respectively.
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Multispectral scanners have certain advantages and disadvantages when compared with
photography. Particularly important advantages are (i) having the capability to provide spectral
data in wavelengths not available from photography, and (ii) being able to provide precision
radiometric data on computer compatible tape (CCT). The major disadvantages are much higher

cost and lower spatial resolution (Pacheco, 1980).

Recently, new airborne sensors have been developed which are capable of sensing vegetation
and other targets at a much finer spectral resolution. Such sensors are capable of collecting more
detailed reflectance spectra and in spectral regions outside those collected by the broad-band
instruments (Malthus et al., 1993). Such sensors include the Multi-detector Electro-optical
Imaging Sensor (MEIS II, 8 channels from 0.39um to 1.1um) (Lillesand and Kiefer, 1994), the
Advanced Visible-Infrared Imaging Spectrometer (AVIRIS, 224 contiguous channels from
0.41um to 2.45um) (Staenz and Teillet, 1993), the Compact Airborne Spectrographic Imager
(CASI, 288 channels from 0.38um to 0.89um) (Babey and Anger, 1989), and the Geophysical
and Environmental Research Corp. Scanner (GER, 63 channels from 0.47um to 2.44um) (Bach
and Mauser, 1995), The uses of such data for the remote sensing of vegetation have focused
particularly on the “red-edge,” the transition from low reflectances in the visible region of the
spectrum to high NIR reflectance (Malthus et al., 1993). For example, Clevers et al. (1994)
used AVIRIS data to monitor crop growth by using the red edge index to estimate the leaf optical
properties during the MAC Europe 1991 campaign. A number of papers on forestry applications
using these sensors were found in the literature; however, few applications in agriculture were

documented. Possible reasons are the high costs and complexity of these sensors.
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2.3 Satellite VIR Remote Sensing for Agriculture

2.3.1 Earth-Observation Satellites

The advent of earth-observation (EO) satellites led to the ability to cover much larger ground
areas than could be achieved using aircraft in a given time. The ability to examine vegetation
patterns, combined with the synoptic view and repetitive coverage of satellite sensors, provides
an opportunity to survey agricultural resources in a manner that has not been possible in the past.
The launch of Landsat-1 in July 1972 began a new era for the acquisition of information about
the earth. Although early satellites suffered from relatively poor resolution by aircraft standards,
system developments have led to the production of high-resolution images and the ability of
computers to process the high volume data at a fast rate, an essential requirement with high-
resolution images. A major breakthrough was made with the launch of Landsat-4 in 1982 and
the French SPOT satellite in 1986, which carried higher radiometric, spectral, and spatial
resolution sensors such as the Thematic Mapper (TM) and High Resolution Visible instruments
(HRYV). Satellite remote sensing technology has continued to advance, particularly in the area of
sensor systems. These advances combined with rapid developments in the field of digital
computing, have increased the potential to derive information of value for agricultural decision-
makers (Ehrlich et al., 1990). The fundamental characteristics of the data acquired by the major
earth-observation satellites are listed in Table 2.1 (Campbell, 1987; Lillesand and Kiefer, 1994;
ESA, 1995a; RESTEC, 1996a; 1996b; Satellitbild, 1996).

Studies aimed at perfecting techniques for identifying crops, and estimating acreage and yield of
crops, have intensified with these improvements in technology and the increased availability of
satellite imagery. The procedures for identifying crops and for estimating acreage and yield,
utilizing remote sensing techniques, are frequently complex. Yet, the accuracy of crop

identification with present Landsat data has been reported as being 90 percent or higher in studies
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Table 2.1. Characteristics of Earth-Observation Satellite Data

Satellite

Sensor

Spectral Range
Hm

Resolution
m

Spatial

Temporal Resolutio
days

Landsat

MSS
(Multispectral
Scanner)

0.5-0.6
0.6-0.7
0.7-0.8
0.8-1.1

80

16

Landsat

™

0.45-0.52
0.52-0.60
0.63-0.69
0.76-0.90
1.55-1.75
10.4-12.5
2.08-2.35

30

120
30

16

16
16

SPOT

HRV (XS)'

HRV(PAN)'

0.49-0.59
0.61-0.68
0.79-0.89
0.51-0.73

20

10

26 (Nadir)®

26 (Nadir)’

IRS-1A/1B

LISS*I

LISS*-II

0.46-0.52
0.52-0.59
0.62-0.68
0.77-0.86
same as above

72.5

36.25

22
for individual satellite
11
for IRS-1a/1b together
same as above

JERS-1

VNIR'

SWIR®

0.52-0.60
0.63-0.69
0.76-0.86
0.76-0.86
1.60-1.71
2.01-2.12
2.13-2.15
2.27-2.40

18

18

44

44

RESURS-{

MSU-SK

0.5-0.6
0.6-0.7
0.7-0.8
0.8-1.1
10.4-12.6

160

600

Mode (PAN).

1. SPOT has two identical HRV sensors which operate in two modes, i.e., Multispectral Mode (XS) and Panchromatic

2. Off-nadir viewing capability increases the repeat coverage at intervals of 1 to 5 days, depending upon latitude.

3. LISS: Linear Imaging Self-Scanning System.
4. VNIR: Visible and Near-Infrared; SWIR: Short-Wave Infrared. SWIR ceased to observe in December, 1993,

of areas where there are large, homogeneous, rectilinear fields with few competing crops, such
as imrigated rice in California, potatoes in New Brunswick or wheat in Western Canada.

Relatively few areas in other parts of the world, however, are structured as simply as wheat
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fields in Canada and the United States. In the developing countries, cropland is frequently
interspersed with non-cropland, fields are small and irregularly shaped, and numerous crops
have similar spectral responses. In such complex environments, a single Landsat image may not
provide enough data to be useful for purposes of crop identification (Myers et al., 1983; Avery
and Berlin, 1992). Selected studies on crop identification accuracies in different geographic
regions using Landsat MSS, TM, SPOT and IRS data are presented in Table 2.2.

In the 1970s and early 1980s, a series of large-scale agricultural satellite remote sensing projects
were implemented. The Large Area Crop Inventory Experiment (LACIE) was the first
comprehensive study to perform wheat-area estimation and production forecasting at the
regional/country level (MacDonald and Hall, 1978; Erb, 1980). Other notable projects were the
Agriculture and Resource Inventory Surveys Through Aerospace Remote Sensing Program
(AgRISTARS) in the U.S. Myers ef al., 1983) and the Agricultural Resource Investigations in
Northern Italy and Southern France (AGRESTE) (Dejace and Megier, 1980; Berg, 1981; Meyer-
Roux and King, 1992). In the late 1980s and early 1990s, agricultural inventories using remote
sensing have been quite successful worldwide. Among numerous studies described in the

literature, the major agriculture application programs are presented in Table 2.3.

The potential of satellite remote sensing for the monitoring of agricultural crops and for
estimating crop production was recognized by Canadian scientists in the early 1970s. Shortly
after the launch of Landsat-1, several investigations were undertaken to evaluate the feasibility of
crop-area estimation using satellite data (e.g., Atkinson et al., 1975; Crosson et al., 1975; Mack
et al., 1975; Mosher et al., 1978; Ryerson et al., 1979; Goodenough et al., 1980; Ryerson et al.,
1981a; Ryerson et al., 1981b; Ryerson et al., 1985). Of special interest were cereal crops which
are a major Canadian commodity on the domestic as well as international markets (Atkinson et
al., 1975; Crosson et al., 1975; Mack et al., 1975). Other studies focused on crop-condition
monitoring (Mack et al., 1977, Brown, 1986; Cihlar et al., 1986b).
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Table 2.2. Applications of Landsat MSS, TM, SPOT and IRS Data for Crop Identification
in Different Geographic Regions: Selected Studies (ESA, 1995b)

Subject Sensor Study Area Description Accuracy Reference
Classification of cereal crops at 14
Cereal crop Landsat Melfort test | locations in the spring wheat area of Mack
(wheat, oats, MsS site & North America for over 42 Landsat etal.,
barley) Delisle test | images. The level of accuracy varied 50.9-100% 1975
classification site, with the date of image selected and
North America | with the criteria to characterize
accuracy.
Crop Addressing applicability of Landsat Crop groups:
dentificati Landsat California, | imagery and digital data to aid in the gg% : Sharon
! etz;::;lon MSS USA mapping and estimation of irrigated individual: et al.,
estimation fand and specific crop types. 5-56% 1984
TM data were evaluated for classifi-
Classification of | Landsat Argentina | cation of summer crops including Badhwar
summer crops ™ soybean, corn, sorghum, sunflower, 80% - 100% etal., 1987
winter wheat, oats, and pasture. The
average field size is 150 ha.
Digital classification techniques were 92%
Large-area crop Landsat [New South Wales] developed for Australian conditions. | (wheat/non-wheat) Dawbin &
classification MSS Australia Landsat data for 5 dates were used to 97.5% Evans,
classify winter crops and other land {winter crops/ 1988
cover types. non- winter crops)}
MSS and T™M data were used to study Rye: 30%
Crop Landsat Provinces of | the relationships between Landsat- grazing crop & Hall-
monitoring and | MSS & TM Scania & based spectral differences and crops, potatos: 70% Kényves,
classification Ostergotland, | and to evaluate mono- and multi- winter & summer 1990
Sweden temporal classification accuracy, and | wheat, barley &
area estimation accuracy. oats: 40-60%
The Regione del| Two strategies to improve crop Soybeans: 91%
Improving Landsat Veneto, classification accuracies were comn: 78% Ehrlich
crop-type ™ Italy explored: (i) use of digital ancillary small grains: 94% | et al., 1990
determination data, (ii) use of multitemporal data. sugar beets &
orchards: 85.6%
Multitemporal TM data were used to
Estimation of Landsat North of estimate rice cultivated area. An Rice cultivated | Tennakoon
cropped area & ™ Bangkok, attempt was made to develop a area: > 90% et al.,
yield of rice Thailand relationship between reflectance 1992.
values and actual rice yield. A plant
process model was adopted for
estimation of rice yield.
7 Muhitemporal and multispectral SPOT ] Rice (Cl1-3): 100%
Spectral indices SPOT Thessaloniki- | data were used to calculate three sugar beets (BI):
& crop HRV (MS) | Giannitsa plain,| spectral indices, (i) radiometric means 83% Silleos
discrimination Greece (C1, C2, C3), (ii) vegetation index maize (BI): 82% |{ et al., 1992
(NDVY), (iii) brightness index (BI); & | alfalfa (NDVI, BI):
to study their relationships to crop 12%
discrimination. cotton (NDVI): 33
Pre-harvest Wheat acreage was estimated using
IRS-1A | State of Punjab,| single-acquisition [RS-1A LISS-I data. 90% Mahey
state-level LISS-I India February 1989 data were used and the | at 90% confidence | ez al., 1993
wheat acreage results were available by 11 April level
estimation 1989, before the start of harvesting.
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Table 2.3. Major Agriculture Application Programs Using EO Data (ESA, 1995b)

Project | Agency |Instrument Description Benefits/Impact Program
Title Satellites] Start Date
(Duration)
CAPE - ISRO LISS-I Provision of timely information | Accurate prediction of crop 1986
crop acreage| (India (IRS-1A) on production of major crops to | yield is now possible. This is .
estimation & Space & | MSS assist in policy decisions such as | extremely important as 75% of (on-going)
production | Research | (Landsat) buffer stock level, important population depend upon
forecasting | Organiza requirements, and price level. agriculture. Accurate data on
in India -tion) Operational since 1986. crop acreage are now available
for use in agriculture planning.
MARS - JRC Tﬂgv('(-ggg%) Project to use satellite EO data to | Project has resulted in the 1988
monitoring { (EC’s SAR provide quantitative estimations | introduction of remote sensing
agricultural | Joint (ERS-172) of crop acreage and thereby to techniques to verify the (10 years)
statistics | Research &m) provide yield estimates. implementation of the
in the EC Center) common agricultural policy of
the EU.
Main crop | Dept. of | TM This project used remote sensing | Through this project, a crop- 1991
yield Develop- | (Landsat) to develop several crop-yield yield estimation system was 4
estimation ) ment and | AVHRR estimation models, establish developed, and crop distributio:ﬂ (4 years)
in China Research | (NOAA) crop-yield estimation software maps and yield forecasts were
CNRSCC and an integrated system. The verified. In the future, the
main crops include wheat, rice system may be expanded to the
and maize in China. whole country.
ALIS - SPOT HRV Agricultural Land Information EO image data allows a more July 1991
Egyptian IMAGE (SPOT-2) System data, produced for Nile accurate assessment of the .
agricultural Valley area of Egypt for Soil and | agricultural land use and a (on-going)
land Water Rescarch Institute, detailed forecasting of area
information Egyptian Ministry of Agriculture. | yields for the main crops.
system It provides capability to measure | Detailed monitoring of urban
crop progress, land potential and | enroachment on to Nile valley
urban encroachment on to farmland is also now possible.
farmland.
Sugar beet | Logica HRV XS EO images of crop areas areused | Saving of £1.8 million per 1992
monitoring | DRA (SPOT) to generate sugar beet yield annum for British Sugar pic ”
BNSC ™ forecasts for factory catchment from improvements in beet (4 years)
(Landsat) areas. The end user is British delivery planning, operational
Sugar. factory management and
marketing non-quota sugar.
Inventory | NASA ™ Program uses Landsat scenes to Inventory using remote 1994
of University (Landsat) identify the spatial distribution sensing is quicker and more 2
| agiculture |of Kansas| . , ... | offarm landsas partofthe | cost effective than traditional (2 years)
and Conservation Reserve Program methods, allowing better land
irrigated which encourages farmers to management.
lands in convert erodable agriculture land
Kansas into grassland.
Control of | NRSC ™ Contract to use satellite imagery | Project has enabled 1994
area-based | Hunting | (Landsat) to check claims for agriculture standardization of controls. .
arable and | Technical| Pan & XS support payments under the Also cost and efficiency (on-going)
forage Services ] (SPOT) European Commission’s savings.
subsidies SAR Integrated Administration and
(ERS-1/2) | Control System (IACS)
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In addition to demonstrating the potential of visible and near-infrared (VIR) data for agriculture,
these studies highlighted the limitations of Landsat and SPOT data caused by relatively infrequent
revisits and cloud cover. This is particularly relevant in higher middle latitudes where the
growing season is short and crop development is therefore rapid. For example, in the prairie
region of Canada, 85 percent of the days during the growing seasons from 1980 to 1985 were
affected to some extent by cloud cover (Brown, 1986). This impairs data acquisition by means
of VIR sensors at important stages of crop development (Myers et al., 1983). Agricultural
applications need adequate temporal resolution since some of the critical and indicative changes in
crop phenology take place over a period of as little as four days. Therefore, the ideal potential
temporal resolution should be less than four days, even if this frequency is only needed during
critical periods of the growing season (Allen, 1990; Figure 2.1).
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Figure 2.1. Remote sensing applications in relation to spatial and temporal resolution,
illustrating the factors limiting their suitability (Allen, 1990).
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2.3.2 Environmental/Meteorological Satellites

Environmental/Meteorological satellites such as METEOSAT, GOES, NOAA (see Table 2.4 for
system characteristics) are best suited to frequent (hourly, daily or weekly) monitoring of
relatively large areas, such as continents, subregions or countries. Although they are designed
primarily for meteorological and oceanographic studies, these operational satellites provide rapid,
continuous global coverage which was not previously feasible. Data from these satellites have
been used successfully for vegetation and environmental monitoring over very broad geographic
regions at scales from 1:10,000,000 to 1:2,000,000 (Lantieri, 1993). Table 2.5 shows selected
studies of agricultural monitoring using environmental satellite systems. The major agricultural
monitoring programs using these satellite systems are presented in Table 2.6 (Philipson er al.,
1988; Manore and Brown, 1990; Hutchinson, 1991; Kalensky, 1992; Hielkema and Snijders,

1993; ESA, 1995b; FAS, 1996; Rashid, 1996).

Table 2.4. Example of Environmental Satellite Systems

(Yates et al., 1984; Kramer, 1993; TELSAT, 1995, ESA, 1996a & 1996b)

Satellite Sensor Spectral Range Spatial Resolution Temporal
am km Resolution
NOAA-POES* AVHRR** 0.58-0.68 8 at the boir oo images | 12 hours, 11 days
0.725-1.10 same as above 12 hours, 1 days
3.55-3.93 same as above 12 hours, 11 days
10.3-11.3 same as above 12 hours, 11 days
11.5-12.5 same as above 12 hours, 11 days
NOAA-GOES* VISSR** 0.55-0.70 1 30 minutes
10.5-12.5 8 30 minutes
METEOSAT MVIRI 0.5-0.9 2.5 30 minutes
5.7-7.1 2.5 30 minutes
10.5-12.5 5 30 minutes

* POES: Polar-Orbiting Operational Environmental Satellite, a NOAA weather satellite series.

GOES: Geostationary Operational Environmental Satellite, a NOAA weather satellite series.
** AVHRR: Advanced Very High Resolution Radiometer.
VISSR: Visible and Infrared Spin Scan Radiometer.
MVIRI: METEOSAT Visible and Infrared Imager, similar to VISSR.
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Table 2.5. Agricultural Monitoring Using Environmental Satellite Systems:
Selected Studies

Subject

Sensor

Study Area

Description

Reference

Examination of

crop phenology

and agricultural
practices

AVHRR

Nile Delta
Egypt

Fifteen dates of AVHRR data between May and
October 1981 were collected. For each date, a
Normalized Difference Vegetation Index (NDVI) for
each pixel was calculated. For each of the 15 dates,
a map of the vegetation index was prepared.
Individually, the maps show patterns of vegetation
and agriculture; in sequence, seasonal patterns in
irrigation, crop growth, maturity and harvest were
revealed.

Tucker et al.,
1984

Monitoring U.S.
crops during
1988 drought

AVHRR

U.S. Com Belt

Effects of the 1988 drought on crops in the U.S.
Com Belt were assessed and monitored by the
Foreign Crop Condition Assessment Division
(FCCAD), U.S. Department of Agriculture (USDA).
Using vegetation index numbers (VIN), FCCAD was
able to detect the existence of drought early in the
season, monitor changing conditions, and provide
objective assessments of the drought’s extent &
severity.

Teng,
1990

Interpretation of
crop growth
patterns

AVHRR
Landsat MSS

Zambia

A method to correlate crop production in Zambia to
the yearly evolution of the NDVI is proposed. The
method consists of the analysis of remote sensing
data together with meteorological data and simulated
crop production to obtained indicators of crop
production. Landsat MSS data were used first to
locate the agricultural area, then the NDVI time
series of the “‘agricultural” pixels were used to
calculate crop growth indicators which can be
applied to assess crop production.

Azzaii,
1991

Wheat yield
estimate and
forecast

AVHRR

Emilia
Romagna
Italy

The NDVI profiles were used as a tool for wheat
monitoring in Italy between 1986 and 1989. NDVI
has been found to be highly representative of plant
photosynthetic capacity and efficiency. Based on
NDVI integration during the wheat grain filling
period, a simple linear regression model has been
derived for wheat yield estimate and forecast.

Benedetti &
Rossini,
1993

Crop
monitoring &
early yield
assessment

AVHRR

Burkina Feso

On a 1984-1989 series of ARTEMIS-NDVI data
derived from the AVHRR sensor, a case study on
crop monitoring and early crop yield forecasting
was elaborated for the provinces of Burkina Feso.

Groten,
1993

Rice paddy
inventory

AVHRR

Yangtze deita

ﬂregion in Easterny

China

Time series NDVI, computed from AVHRR data, were
used in an attempt to locate areas of rice cultivation
in China. NDVI dynamics were examined using 16
km global area coverage data from 1988 composited|
into_12 monthly images.

Bachelet,
1995

Spring wheat
yield prediction

AVHRR

Western Canada

Weekly maximum value AVHRR NDVI composites
were used to predict spring wheat yield for Western
Canada. Results for 1991 & 1992 growing seasons
show that early season NDVI yield estimates are
within 5% of official yield estimates released 3

months followiln& harvest.

Hochheim ef al.,
1996
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Table 2.6. Major Agricultural Monitoring Programs Using
Environmental Satellite Systems

Project Agency Instrunem] Description Benefits/Impact Program
Title [Satellites Start Date
(Duration)
International Production | AVHRR Operational outgrowth of Worldwide crop assessments and | 1978
crop Estimates &] (NOAA) LACIE, PECAD analyzes, production forecasting by PECAD] (on-going)
condition Crop MSS/TM satellites images & provides advance information on
and Assessment | (Landsat) supporting information to areas which may experience food
production | Division HRV monitor and assess crop shortages. Timely information orf
analyses (PECAD). | (SPOT) conditions worldwide, and to a worldwide basis is also
FAS, analyze world agricultural important to stabilize fluctua-
USDA production and supply. tions in commodity markets.
Famine Earl% US Agency | AVHRR FEWS considers rainfall, yield | Decadal (10-day composite) NDVH 1984
Warning for (NOAA) estimates, production estimates{ images for large regions help to | (on-going)
System Internation market prices, other social reveal regional patterns that
(FEWS) Developmez:lH indicators, and AVHRR data. might not be readily observed in
(USAID) Confronted with such a wide precipitation station data alone.
array of different data types, AVHRR NDVI time series for
FEWS analysts have come to | administrative unils are compared
rely more heavily on AVHRR | 10 historical means and extremes
GAC NDVI data than any other | (e.g., the 1984 drought) to gauge
single type of information. the current conditions.
Crop CCRS AVHRR Monitoring vegetation & crop | Capability for cost-effective 1987
information | Agriculture | (NOAA) condition for all Canada. wide-area vegetation condition | (on-going)
system & Agri-FoodH Operational since 1987, after | monitoring. Early season wheat
Canada pilot project 1985-86. Product | yield indicators are produced
Canadian is NDVT map used by Agricul allowing the improved manage-
Wheat Board Division of Statistics Canada tof ment & planning of marketing &
generate vield forecasts. distribution facilities.
ARTEMIS - | FAO,UN AVHRR Crop conditions, drought ARTEMIS has been used success- | 1988
Africa Real | NASA/GFS(] (NOAA) levels and locust threat are fully by FAO & national govern- | (on-going)
Time University | MVIRI determined from EO images. ments for monitoring cereal
Environ- of Reading § (METEO- In addition, estimates of production in Africa & as an early
mental (UK) SAT) rainfall can be generated from | waming tool in assessment of
Monitoring | National cold-cloud images. Data food aid/import requirements
Information | Aerospace obtained via High Resolution | (e.g. it provides timely infor-
System Laboratory Picture Transmission (HRPT) mation to GIEWS). This system
of the & Primary Data User Station can generate timely images over
Netherlands (PDUS). entire region required thus
removing dependence on sparse
ground-based observations.
MARS- | JRC &Vm Project fo use satellite EO data | Project has resulted in the 1988
monitoring | (EC’s Joint ] (Landsar) to provide quantitative estima- | introduction of remote sensing | (10 years)
agricultural | Research HRYV (SPOT) | tions of crop acreage & techniques to verify the
statistics Center) (SERS-I r) thereby to provide yield implementation of the common
in the EC estimates. agricultural policy of the EU.
Main crop | Department | AVHRR This project used remote sensind Through this project, a crop-yield 1991
yield of Develop- | (NOAA) to develop several crop-yield | estimation system was developed] (4 years)
estimation | ment & ™ estimation models, establish | and crop distribution maps &
in China Research (Landsat) crop-yield estimation software | yield forecasts were verified. In
CNRSCC and an integrated system. The | the future, the system may be
main crops include wheat, rice | expanded to the whole country.
and maize in China.
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From the above selected studies, it is clear that AVHRR data are adequate for large-area,
operational monitoring of crops due to the sensor’s wide swath and excellent temporal resolution
which increases the likelihood of cloud-free observations during the growing season. It is also
clear, however, that AVHRR data are much too coarse to attempt mapping of individual crops
and fields. Cropping in most agricultural areas of the world is neither monocultural nor in fields
with sides larger than 1.1 km (AVHRR local area coverage) or 44 km (AVHRR global area
coverage). Vegetation indices of nearly all cells of AVHRR pixels are derived from a
preponderance of mixed pixels. Researchers (e.g., Philipson er al., 1988; Azzali, 1991;
Bachelet, 1995) found that, despite the preponderance of mixed pixels, useful global or
continental crop information can be reliably and efficiently derived from AVHRR data. The
usefulness of AVHRR data is most apparent in monitoring the effects of episodic weather events

on crops (Teng, 1990).
2.3.3 High-Resolution Satellite Systems

In the past two years, the declassification of U.S. spy satellite technology has stimulated the
development of high-resolution commercial remote sensing satellite systems, such as
ORBIMAGE, Space Imaging, and EarthWatch. Geophysical & Environmental Research Corp.
(GER) announced recently its plan to develop a satellite system for crop monitoring. The GER
Earth Resource Observation System (GEROS) is a constellation of six to eight satellites. Each
satellite will be equipped with a panchromatic and a multispectral sensor. The multispectral
sensor will have 10 m resolution and the panchromatic will have better than 10 m resolution.
GER intends to offer farmers affordable products on a rapid revisit cycle. GER is also
developing a ground system that will get the satellite data and crop information to the farmers fast
enough to save stressed crops. High cost and slow turnaround time have impeded widespread

imagery use by individual farmers for monitoring the health of their crops up to present (GER,
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1995). This and other high-resolution systems will be important data sources for precision
farming - an information and technology-based agricultural management system (Robert, 1996).

2.4 Crop Information Extraction from Satellite VIR Data
2.4.1 Temporal-Spectral Profiles for Global Based Crop Identification

The identification of cultivated crops from satellite VIR imagery has been accomplished by the
recognition of a temporal pattern of crop characteristics through the growing season of a
particular crop of interest. The main idea is to infer the time of occurrence of a particular feature
that is stable from year to year and does not overlap with similar characteristics from other crops
growing in the same geographic region. If such feature(s) could be identified, the crop of
interest could be accurately and consistently identified (Badhwar, 1984a & 1984b). Experience
with Landsat data in the LACIE and other studies demonstrated that the use of multitemporal data
greatly enbances the ability to distinguish between various crop spectral patterns. In the late
1970s and early 1980s, interest developed in utilizing characterizations of continuous patterns of
crop spectral development over time, termed "spectral profiles”, in automated crop identification
techniques (Tucker et al., 1979; Crist and Milila, 1980; 1981; Badhwar, 1982; Badhwar et al.,
1982; Badhwar, 1984a; 1984b; Crist, 1984; Odenweller, 1984; Tumer, 1986; Hall and
Badhwar, 1987). In the early stage of development, these techniques relied on the temporal
sequences of colors (i.e., non-red/red/non-red) indicating non-vegetation/vegetation/non-
vegetation in the false-color products. They also depended greatly on human analysis and
interpretation of film products and were not very effective or objective (Badhwar, 1984a;
1984b). A breakthrough in this field was made by Kauth and Thomas (1976) who developed a
technique called the Tasselled Cap. The greenness component of Tasselled Cap is the most
appropriate indicator for crop identification because it measures infrared reflectance relative to

that in the visible band (Odenweller, 1984; Hall and Badhwar, 1987).
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Although temporal-spectral profiles contain information to support crop identification at various
levels, some caveats must be attached to the use of profiles. The overall appearance of a profile
is highly dependent upon data acquisition history. If key observations are missing,
discrimination features may not be detected. Furthermore, if the labeling target is misregistered
on any acquisition, the resulting profile will be inaccurate. These are generic difficulties related

to the analysis of multitemporal satellite VIR data (Odenweller, 1984).

2.4.2 Vegetation Indices

Vegetation index (VI), a measure of "greenness,"” is directly related to the health and vigor of
vegetation. It is described in the literature as a good indicator of biomass and as an indicator of
photosynthetic activity (Ehrlich er al., 1990). Various vegetation indices have been developed
including the Ratio Vegetation Index (RVI), the Normalized Difference Vegetation Index
(NDVI), the Transformed Vegetation Index (TVI), the Tasselled Cap Transformation (for MSS),
the Crist and Cicone Transformation (for TM), Perpendicular Vegetation indices (PVTs), the
Greenness above bare soil (GRABS), and the Cereals Leaf Area Index (CLAI) (Crist and
Cicone, 1984; Jensen, 1986; Wiegand et al., 1991). VIs have been used extensively to monitor
agriculture. For example, NOAA provides standard vegetation index maps compiled weekly for
both hemispheres from AVHRR data (Jensen, 1986). Although the spectral bands of AVHRR
are not ideally positioned for vegetation analysis, as they are rather broadly defined and are not

focused on the spectral regions of maximum interest, the meaning of the vegetation index derived

is the same (Campbell, 1987).

Vegetation indices have been employed in two separate kinds of applications. Many of the first
studies defining applications of vegetation indices attempted to "validate" their usefulness by
establishing that values of the VIs are closely related to biological properties of plants. Typically,

such studies examined test plots during an entire growing season, then compared values of the
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VIs, measured throughout the growing season, to in-situ measurements of leaf-area index (LAI),
the area of leaf surface per unit area of soil surface. The objective of such studies was ultimately
to establish use of VIs as a means of remote monitoring of the growth and productivity of
specific crops, or of seasonal and yearly fluctuations in productivity in a timely and accurate

manner.

A second category of applications uses VIs as a mapping device - much more of a qualitative,
rather than a quantitative, tool. Such applications use VIs to assist in image classification, to
separate vegetated from non-vegetated areas, to distinguish between different types and densities
of vegetation, and to monitor seasonal variations in vegetative vigor, abundance, and

distributions (Campbell, 1987).

2.4.3 Classification Algorithms

Many forms of classification algorithm have been used in agricultural crop identification,
including supervised/unsupervised, parametric/non-parametric, per-pixel/per-field, textural and
contextual. The supervised maximum likelihood classifier is the most commonly used
parametric, per-pixel classifier. In contrast, however, cluster analysis is commonly used for
unsupervised, per-pixel classifications. A per-field classifier, known as ECHO (Extraction and
Classification of Homogeneous Objects), was developed by Ketting and Landgrebe (1975).
ECHO classifies a digital image into fields of spectrally similar pixels before the pixels are
assigned to categories. Classification is then conducted using the fields, rather than individual

pixels.

New developments in image classification include a knowledge-based approach through
integration of ancillary data from a GIS. For example, Janssen and Middelkoop (1992) designed

a knowledge classification method to improve crop classification. Crop data of preceding years,
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stored in a GIS, were used as ancillary data. Knowledge about crop succession, determined
from crop-rotation schemes, was formalized by means of transition matrices. The spectral data,
the data from the GIS and the knowledge represented in the transition matrix were used in a
modified Bayesian classification algorithm. Depending on the spectral class discrimination, the
accuracy of the knowledge-based classification was 6% to 20% better compared with a maximum
likelihood classification. Kontoes ez al. (1993) also used a knowledge-based system to improve
remote sensing image classification for estimates of crop acreage through the integration of easily
available geographic context information from a GIS, such as soil maps and buffered road
networks. Ehrlich et al. (1994) developed an advanced agricultural information system (AAIS)
for operational agricultural crop area estimation by integrating a variety of data types including

satellite imagery.
2.5 VIR Spectral Vegetation Identification: A Hope Unfulfilled

Early in remote sensing, and persisting to this day, investigators have tried to establish a
characteristic pattern of reflectance (a spectral "signature™) to associate with specific types of
vegetation. In some cases, results were excellent; in others, very poor. In fact, this approach
was not robust - it depended too much on luck and fortuitous circumstances. As a general class
of objects, green vegetation itself can be identified as a spectrally unique object. Nevertheless,
the whole scheme of converting MSS, and especially TM, data to a single vegetation measure
(index) rests on the fact that vegetation has a unique composition compared to objects such as
soils and rocks. Specific types of vegetation (e.g. com and soybeans) however, can (and do)
have similar optical broad band spectral properties at a given location and given time in the
season. In a particular region, one might count on a particular vegetation type having a
particularly high value of a primary measure, such as alfalfa baving a very high near-infrared

reflectance compared to many other crops. Nevertheless, the successful spectral identification of
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a crop, like alfalfa, depends on a set of circumstances that may not hold in the next region or at a

different stage of growth (Paris, 1990).

What are the alternatives to the identification of crops based on single-date spectral
measurements? The answer seems to be the element of time (seasonal or temporal change). In
the AgRISTARS Project, researchers found that one could relate to crop type the seasonal
patterns of emergence of a crop, its growth and its senescence to harvest, as seen by Landsat
MSS or TM (or any other sensor that responds to changes in standing biomass, especially foliage
biomass). An excellent example was the identification of cormn and soybeans. Using the
greenness measure from the Kauth-Thomas Tasselled Cap or the Crist and Cicone
Transformation (MSS and TM, respectively), it is possible to fit a two-parameter model to the
seasonal variations of changes in greenness in a particular field. Then, using a crop-calendar
model incorporating a non-linear distribution in greenness having characteristics of emergence-
date peak greenness and length of season, com could be distinguished from soybeans in every
crop-growing region without changing the decision rule or its parameters. This "Temporal-
Spectral Profile” approach is robust - it works everywhere for global-based crop recognition
(Hall and Badhwar, 1987; Paris, 1990).

There are two major problems, however, associated with using EO satellite VIR data as a
monitoring tool over a large area. One is the sheer volume (revisit) of imagery which must be
analyzed, while the other is the uncertainty of actually acquiring the imagery due to cloud cover.
For example, in Oxford County, southern Ontario, Canada, cloud-free SPOT imagery were not
available during the growing seasons of 1988, 1989, 1991, 1993 and 1995 (see Appendix B for
SPOT search results). In the Canadian prairies, 85% of the days during the growing season
from 1981 to 1985 were affected by cloud cover (Cihlar ez al., 1986b). Most parts of western
Europe have a cloud cover of 6/8 to 8/8 for at Ieast 50% of the time (De Loor, 1980). In general,

tropical and semi-tropical crop environments have inescapable cloud problems at least 75% of the
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time, while other areas in the world often have cloud problems from 30% to 50% of the time

(Myers et al., 1983).

As a partial solution to the cloud-cover problem, a thorough evaluation of the information content
of the NOAA AVHRR data was desirable. However, AVHRR data also suffer from serious
limitations. They have wide scan angles and low spatial resolution (1.1 km - LAC or 4.4 km -
GAC) which distort the crop information present, and they can be acquired only when the sky is
clear. Cihlar et al. (1986) concluded that the data are not suitable for crop-area estimation or for
other assessments requiring field-by-field analysis (Figure 2.1). Microwave instruments, such
as imaging radar, are very attractive data sources from the timeliness standpoint since these data

can be acquired virtually independent of the weather conditions.

2.6 Summary

The recognition of crop type, estimation of crop acreage, and timely and accurate prediction of
crop yield are matters of critical interest everywhere in the world. Perhaps no information is
more basic for yield predictions, agricultural planning, and export-import negotiations of
agricultural commodities, than data on crops being grown in a region or a country. Acquisition
of timely and regular information is a critical requirement for successful management of a crop
information system. Unfortunately, farm questionnaires are too time-consuming to administer

and there is a considerable delay in processing the information.

The use of aerial photographs recording in the visible and the near-infrared bands for surveying
agricultural crops is well established. The use of more sophisticated techniques (e.g., high-
altitude colour-infrared photography, multispectral scanning, and earth satellite imagery) offers
the potential for macroscopic agricultural surveys on a synoptic basis, along with detailed

observations of selected croplands (Avery and Berlin, 1992). Quantitative measurements of key
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agricultural crop properties, the identification of crop types, and the estimation of their areal
extents using EO satellite data have been major goals of remote sensing for several decades.
Many investigators have pursued these goals by studying the information content of VIR
sensors, such as the Landsat MSS, TM, SPOT HRV and IRS-1 LLIS (Colwell, 1983; Paris,
1990). Crop identification and crop-area estimation can be done fairly successfully using satellite
sensors operating in the VIR regions of the spectrum (accuracies of about 80%, very site-
specific). Data collection, however, can be unreliable due to problems of cloud cover and
infrequent revisits at critical stages of the growing season. AVHRR provides rapid, continuous
global coverage and is adequate for large-area, operational monitoring of crops; however, the
data are much too coarse to attempt mapping of individual crops and fields, and the data can only
be acquired when the sky is clear. Use of airborne imagery for data collection is technically
feasible, but costs become prohibitive and speed is a concen when large areas are being studied
(Howarth and Protz, 1991). Microwave instruments, such as imaging radar, appear to be very
attractive data sources from the timeliness standpoint since these data can be acquired virtually

independent of the weather conditions.
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CHAPTER 3: SYNTHETIC APERTURE RADAR FOR AGRICULTURE

3.1 Introduction

Radar remote sensing has the potential to play an important role in agricultural crop mapping and
monitoring for several reasons. In particular, radar permits the acquisition of high-resolution
data at optimal times during the crop growth cycle, regardless of atmospheric or solar
illumination conditions. This results in a high degree of timeliness or synchronization between
the Synthetic Aperture Radar (SAR) data collection and the crop calendar. Thus, growing
conditions of different crops can be monitored during crucial periods of their growth cycles.
Subsequently, crop classifications can be improved by selecting data acquisition dates to

correspond with times when the variation in radar backscatter response of dominant crops is at a

maximum (Werle, 1992).

Sensitivity refers to the ability of radar to respond to differences in crop type, growth stages,
moisture conditions, soil roughness, soil moisture and row direction. Radar is sensitive to a
variety of agricultural targets (geometric) and to moisture differences in the soil, as well as to
plant material (dielectric) (Brisco, 1993). Our understanding of the backscatter characteristics of
these agricultural targets, however, is still rudimentary. It should not be inferred that these
parameters can be extracted easily from SAR imagery. One of the major tasks is to remove the
effects of backscatter contributions from the underlying soil, including its roughness, moisture

content and directional biases. This is necessary to isolate the information of interest, such as

crop type, for operational use (Werle, 1992).
Starting in the mid-1960s, a group of scientists at the University of Kansas used aircraft-based
radar imagers (Ka- and Ku-bands) to investigate the potential of radar for crop identification,

mapping and condition assessment (Simonett et al., 1967; Haralick et al., 1969-70; Paris, 1983).
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Since then, radar remote sensing techniques have been investigated for a variety of applications
in agriculture (e.g., Ulaby and Batlivala, 1975; Ulaby et al., 1978; Ulaby et al., 1979; Brisco
and Protz, 1980a; 1980b; Ulaby, 1981; Brisco et al., 1984; De Loor, 1984; Cihlar et al., 1986a;
Ulaby et al., 1986a; Brisco et al., 1989a; 1989b; Brisco and Brown, 1990; Brisco et al., 1990;
Bouman, 1991a; 1991b; Brisco et al., 1991; Engman, 1991; Ferrazzoli et al., 1992; McCulloch
and Yates, 1992; Bouman and Hoekman, 1993; Kohl et al., 1993; Ban et al., 1995; Ban and
Howarth, 1995; Ban and Howarth, 1996b; Chen et al., 1996; Filho et al., 1996). Numerous
campaigns and investigations have been conducted by research laboratories in North America and
Europe using ground-based scatterometers and airborne imaging radars, as well as spaceborne

SARs (Holmes, 1990; Werle, 1992; Ban and Howarth, 1996a).

In Canada, the status of radar applications is still restricted, as it is elsewhere, to the research and
development stage. The scientific objectives have been clearly oriented towards future
operational use of SAR data as an input to crop information systems, with a focus on the study
of radar backscatter characteristics of crops and soils in various geographic regions. This
includes assessing the feasibility of monitoring crop conditions, crop practices, crop rotation,
soil and land deterioration (Brown, 1987; Werle, 1992). The Canadian Surveillance Satellite
Program (SURSAT) provided the first opportunity to acquire airborne and, in some cases,
spaceborne SAR data and simultaneous ground data. Several test sites were selected
representing agricultural regions both in the prairies and in the eastern portion of Canada. The
experimental program was later expanded as part of the RADARSAT project, which began in
1981, and the Radar Data Development Program (RDDP), introduced in 1986. The RDDP was
aimed at establishing a comprehensive coordinated program within Canada, designed to develop
the necessary knowledge for reliable interpretation of SAR imagery and to use these data for the

benefit of Canadian users (Brown, 1987).
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In the fall of 1993, the Canada Centre for Remote Sensing (CCRS), in cooperation with the
Canadian Space Agency (CSA), RADARSAT International Inc. (RSI) and the Intemational
Development Research Centre (IDRC) embarked upon a world-wide demonstration, training and
applications-development program labelled GlobeSAR. The former CCRS-owned Convair 580
aircraft, equipped with a C/X SAR, undertook data-collection flights in 13 countries in Europe,
Africa, the Middle East and Asia. The purpose of these flights was to acquire multidisciplinary
radar data to be evaluated for various applications, as well as to simulate the data of the Canadian

RADARSAT (Campbell ez al., 1995; Petzinger, 1995).

Recently, two major programs were initiated to stimulate research, applications and
commercialization of RADARSAT data. The CSA’s Applications Development Research
Opportunity (ADRO), jointly sponsored by the governments of Canada, United States and the
licensed commercial distributor of RADARSAT data, RSI, supports two types of projects: 1.
those which exhibit innovative scientific research utilizing RADARSAT data; and 2.
demonstrations of new radar applications or the development of products for specific applications
(CSA, 1996a). The RADARSAT User Development Program (RUDP) aims to help the
Canadian value-added industry to develop products and services that will result in greater
RADARSAT benefits and data sales, both in Canada and abroad (CSA, 1996b).

3.2 Important Parameters Affecting Radar Backscatter

An understanding of the relationships between agricultural parameters and radar backscatter is of
key importance in assessing the usefulness of SAR. It can provide the confidence required for
extending from limited test sites to larger geographic regions, and it is necessary for constructing

inversion models whereby SAR might be used, for example, as a crop monitoring tool (Cihlar,

1986; Cihlar et al., 1987).
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A wide range of parameters affect the backscatter of microwaves from vegetation and soil. [n a
recent study undertaken for ESA, for example, it was concluded that a minimum of four
instrument parameters, 28 vegetation parameters, 13 soil parameters, and 12 environmental
parameters needed to be included in a database designed for interpreting the mechanisms
controlling backscatter from vegetation (Holmes, 1990). The important characteristics of the
radiation are frequency, polarization and incidence angle. The crucial features of the target in
determining the proportion of radiation retumning to the iqstrument are plant canopy and the
underlying soil. Key parameters of the plant canopy are: plant height, plant cover, plant density,
leaf area index (LAI), plant biomass and water content, plant row direction, growing stage,
canopy structure and weed infestation. Key parameters of soil are: soil moisture, soil roughness,

soil texture and tillage direction (Holmes, 1990, Werle, 1992).
3.2.1 SAR System Parameters

3.2.1.1 Frequency

Frequency has the greatest effect on radar backscatter because the choice of Ka-, Ku-, X-, C-, L-
or P- band is the main determinant of the type and strength of the radar backscatter from an
agricultural scene. In general, the use of shorter wavelengths, such as X-band, results in direct
backscatter from the canopy and provides little information about the internal structure of a dense
canopy and the surface below the canopy layer. Longer wavelengths, such as L-band, have the
capability to penetrate the crop canopy layer and provide retums from the soil surface (Werle,
1992). In fact, soil parameters are dominant in determining the broad characteristics of co- and
cross-polar backscattering at the lower radar frequencies (e.g., L-band) (De Matthaeis et al.,
1991). The two-way attenuation of longer wavelengths by the canopy may also result in
volume-scattering effects which may become the prominent backscatter response for some crops
such as broadleaf crops. C-band has shown sensitivity to both the internal structure of the crop

canopy layer and, to a limited extent, to the soil surface underneath (Werle, 1992).
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There are reports which conclude that each of the Ku-band (e.g., Ulaby and Batlivala, 1975;
Bush and Ulaby, 1978; Ulaby, 1981; Mehta, 1983; Bouman, 1987), or the X-band (e.g., Ulaby
and Batlivala, 1975; Ulaby, 1981; Guindon et al., 1984; Hoogeboom, 1983; 1986; Pei-yu and
De-li, 1983; Bouman, 1987; Bouman and Van Kasteren, 1990a; 1990b; Brown et al., 1992;
Wever et al., 1995), or the C-band (e.g., Mehta, 1983; Paris, 1983; Brown et al., 1992; Baronti
etal., 1995; Wever et al., 1995) or the L-band (e.g., Mehta, 1983; McCulloch and Yates, 1992;
De Matthaeis et al., 1994; Lemoine et al., 1994; Baronti et al., 1995) or P-band (Chen et al.,
1996) provided best discriminations among crops. It is clear that an optimum wavelength for
general crop studies cannot be defined because the optimum waveband depends on crop type,

growth stage, conditions of test sites, etc.

While the conclusions arrived at by the many investigators are application-dependent, direct
comparison is not usually possible between crops due to the lack of studies that eliminate all
variables, including soil dielectric properties, soil roughness, plant age, etc. As Churchill ez al.
(1985) pointed out, the results of individual investigations can be seen to be unique to individual
test sites due to crop stage and test-area conditions at the time of measurement. Thus,
recommendations as to which frequency is most appropriate in all circumstances are not possible,

and no individual wavelength can be singled out as being optimum for agricultural studies
(Holmes, 1990).

Another possible reason for the conflicting findings is that many of the results have been
achieved with uncalibrated SAR data. Comparisons of different sensors, different dates, and
different sites, however, are not possible without calibrated data (Freeman, 1992). Yanasse et
al. (1992), for instance, reported that some data suffered from several serious radiometric

distortions, in addition to those caused by the antenna pattern, which might affect the conclusions

made by investigators.
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The long-established Canadian remote sensing program offers some experience in the
identification of optimal frequency for discrimination of crop type. Cihlar et al. (1986b)
summarized findings to that date. It was found that, whereas X-band provides good
discrimination, L-band was very useful for separating broad-leaved crops and fallow in some
sites. L-band did have the disadvantage of sensitivity to row direction, however, which X-band
did not exhibit. The ability of C-band to discriminate was intermediate between the X- and L-
band. Recently Brown er al. (1992) examined the similarities and differences between imagery
acquired at X-, C- and L-bands by calculating the correlations between X-, C- and L-bands in
airbome SAR data. It was found that the correlations between C- and L-band and between X-
and L-band data were very low indicating that the radar backscatter at different frequencies is
caused by different mechanisms. The correlation between X- and C-band data was low for
grains (a well-defined vertical structure), but higher for canola and peas (broad-leaved plants
with little definite structure). For L-band data, the primary cause of the radar backscatter is
probably from the underlying soil and is thus largely influenced by soil properties. For C- and
X-band data, the vegetation parameters are probably the predominant factors, particularly for the
July data set. In addition, similar crop-classification accuracies were obtained with the X- and C-
band data (with C-band being slightly better), but the classification accuracies for L-band data
were considerably lower. This analysis supports the previous conclusions that vegetation cover

is the dominant agricultural parameter driving radar backscatter at X- and C-bands, but not at L-

band.

The inherent disadvantage of using only a single frequency is obvious and the potential for
having multifrequency satellite capability in the future cannot be ignored (Holmes, 1990). There
are many recommendations that multifrequency studies are required for crop classification (e.g.,
Drake et al., 1974; Parashar et al., 1979; Ulaby et al., 1981; Van Kasteren, 1981; Freeman et al.,
1994) and many studies have demonstrated large improvements in classification by using

multifrequency (and multipolarization) measurements (e.g. Brisco and Protz, 1980a; 1980b;
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Guindon et al., 1984; Bouman, 1987; Thomson et al., 1990; Ferrazzoli et al., 1992; Freeman et

al., 1994; Wever et al., 1995; Chen et al., 1996).

3.2.1.2 Polarization

The polarization of an electromagnetic wave describes the orientation of the electric-field vector at
a given point in space during one period of oscillation. The penetration depth of an incident
microwave source depends on its polarization and frequency, such that the optical thickness of
the vegetation layer increases with increasing frequency. Whereas L-band observations are
influenced by the entire crop canopy, X-band observations are generally governed by the top
layers. Horizontally polarized (HH) radar couples weakly to vertical stalks, resulting in low
attenuation. Vertically polarized (VV) microwaves, however, are attenuated to a greater extent
causing a reduction in the penetration depth (Figure 3.1). Measurements using HH, therefore,
give information primarily about the underlying soil, while VV data are related more to canopy
structure. This statement, however, must be considered in the context of the wavelength used.
Longer wavelengths, such as L-band, tend to penetrate deeply into vegetation, whereas shorter
wavelength, such as X-band, are scattered in the upper layers. As a result, discrimination
between polarizations may be impossible at the shorter wavelengths (Bouman and Van Kasteren,

1990a; 1990b; Holmes, 1990).

There are reports which conclude that each of the HH (Ban et al., 1995), or the VV (Ulaby,
1981; Thomson et al., 1992; Anys and He, 1995), or the HV (De Matthaeis et al. 1994; Foody et
al., 1994), or the depolarization ratio (defined as the like-polarization measurement divided by
the cross-polarized measurement) (Paris, 1983), or the polarization ratio (Le Toan and Laur,
1988) provide the best discrimination among crops. It is clear that an optimal polarization for
general crop studies cannot be defined because the optimal polarization depends on wavelength,

crop type, growth stage, conditions of test sites, etc. The following general statements,
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Figure 3.1. Frequency dependency for microwave penetration into a corn canopy. Penetration

depth is defined as the depth at which the incidence power is reduced to 37% (1/e) of that incidence.

The data presented are for an incidence angle of 40°, LAI = 2.8, plant height = 2.7 m, leaf

volumetric moisture content = 0.65, stalk volumetric moisture content = 0.47 (Holmes, 1990)
however, can be made. The degree of inhomogeneity of a surface or volume is strongly
associated with the cross-polarization scattering coefficient of that surface or volume. The
separation of crop types can be enhanced using cross-polarization data; for example, two crops
having similar geometries, such as wheat and barley, may have similar like-polarization
backscatter, but it is possible to separate them with observations from cross-polarization studies.
Similarly, the distinction between bare soil and vegetation-covered surfaces is made easier using

cross-polarization, due to the fact that the vegetation canopies depolarize the incident radiation
more strongly than the bare surfaces. The cross-polarization ratio (ratio of 6°yy, t0 Gy, ) is the
useful discriminating parameter in these studies. Earlier studies were based on higher frequency
(> 8 GHz) observations and led to the conclusion that little was to be gained using cross-

polarization. Lower-frequency studies at C-band by Paris (1982) demonstrated the advantage of

using cross-polarization for discriminating corn and soybeans which could not be achieved with

like-polarization (Holmes, 1990).
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Several researchers (e.g., Ulaby, 1981; Megier ef al., 1984; Foody et al., 1994; Anys and He,
1995; Ban et al., 199S; Chen et al., 1996) found that multipolarization analysis greatly improved
the ability to discriminate between crops. This demonstrated that agricultural crop studies require
multipolarization radar if maximum information about crops is to be achieved. Since target
structure influences the extent of radiation depolarization, there is a need to understand the
depolarization on the basis of each individual crop structure. This implies that multipolarization
studies need to be made of different crops, and at different growth stages for each crop, if the
factors that influence depolarization are to be understood (Holmes, 1990).

3.2.1.3 Incidence angle

The influence of incidence angle depends on the polarization of the microwave source and the
canopy orientation under examination. If a fully grown comn canopy is considered, using L-band
radar, an increase in incidence angle from 0° to 90° has little effect on the penetration depth of
HH polarized radiation due to its low attenuation, whereas it decreases with VV polarization as
incidence angle increases (Figure 3.2). This phenomenon can be used to help to choose the most
suitable incidence angle and polarization, depending on the application and information required
(Holmes, 1990).

There is no conclusive evidence that any one angle, or narrow range of angles, is optimal for
species classification purposes. Ulaby (1981) suggested that the observation angle should be in
the 50° - 70° range (from nadir). Bouman and Van Kasteren (1990a; 1990b) confirmed Ulaby’s
suggestion. They found that the different backscattering levels at medium-to-high angles of
incidence of sugar beet and potato would result in a high probability of discrimination between
these two crops. The best angle of observation for discrimination appeared to be a high one. At
70° incidence angle, possible disturbing effects on radar backscatter such as ridge orientation in

potato and canopy architecture of sugar beet, are minimal. On the other hand,
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Figure 3.2. Polarization and incidence angle dependency for microwave penetration into a corn canopy.
Penetration depth is defined as the depth at which the incident power is reduced to 37% of that incident. LAI =
2.8, plant height = 2.7 m, leaf volumetric moisture content = 0.65, stalk volumetric content 0.47 (Holmes, 1990)

Shanmugan et al. (1983) noted an improvement in the ability to classify crops with increasing
incidence angle up to 40°, but found no improvement with higher angles. This ties in with the
conclusion of Pei-yu and De-li (1983) that angles between 42° to 72° are optimal for rice, while
Paris (1982) concluded that the optimal angle for delineating com and soybeans with C-band is
50°. Poirier et al. (1988) reported the multiangle combinations (53° + 30°) improved crop
classification using C-VV SAR data, and accuracy at an incidence angle of 53° was more
influenced by vegetation than the data at 30° incidence angle. For monitoring of crop growth,
Bouman (1987) concluded that with the X-band wavelength, steep incidence angles are most

suitable (Holmes, 1990).

The above studies show that our knowledge of the influence of incidence angle is still very poor.
Almost all incidence-angle studies have been restricted to correlative field observations and few
substantive studies aimed directly at understanding incidence effects have been made. The
optimal incidence angle for applied studies depends on the application. As with analysis of
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optimal polarization, the lack of comprehensive information for all wavebands tends to limit
interpretation. Thus, there is a clear need for future studies at all incidence angles to understand
the incidence-angle effects. The multi-incidence angle capability of RADARSAT provides an

excellent opportunity for such studies.

3.2.2 Agricultural Target Parameters
The total radar backscatter (5°) from a vegetated agricuitural field is a function of the vegetation

canopy (volume scattering), the soil surface (surface scattering) as well as the interaction of the

radar signal between the vegetation component and the soil component (Ulaby et al., 1984;

Dobson et al., 1986a; 1986b; Figure 3.3). The total backscatter is also incidence-angle (8)

6

Figure 3.3. Three Sources contributing to Somtal from a crop canopy (Ulaby er al., 1984)

dependent and can be expressed as:

60to(al (6) = sovol. (8) + 80surf. (9) + Sc,int. (3)

2348

1. volume scattering 2. surface scattering 3. multiple scattering
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3.2.2.1 Vegetation Component

The interaction of microwave energy and crops in the canopy layer is not only strongly
influenced by crop species, plant geometry and its dielectric constant, but it is also frequency-,

polarization- and incidence angle- dependent.
Crop Morphology

Radar backscatter from crops is strongly dependent on the size of the scattering elements within a
crop. This can be seen in Figure 3.4, where the size of the elements that cause maximum
backscatter varies with the wavelength of the radiation. In most instances, the greatest response
is shown to scatterers that are of a similar size to the wavelength. This is one of several crop
characteristics that contribute to the ability of multifrequency imagery to discriminate between
targets. In addition, crops usually exhibit preferential orientations in their geometry. This results

in polarization-dependent differences in the penetration and return of microwaves from the

canopy (Holmes, 1990).

Bouman and Van Kasteren (1990a; 1990b) reported that the geometrical architecture of the crop
canopy is a major factor that influenced the X-band radar backscattering of wheat, barley, oats,
sugar beet and potatoes. Row spacing, crop variety, lodging and ear orientation of barley had a
large effect on radar backscattering. The architecture of the canopy also influences the impact of
soil background on radar backscattering from the whole crop. Even stubble and straw, which
are theoretically relatively transparent to microwaves, largely determine the radar backscattering

of harvest fields.
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Figure 3.4. Radar response as a function of the size-distribution of scatterers in the canopy
(Holmes, 1990)

Crop canopies can generally be divided into several components including leaves, stalks, stems
and fruit. For example, a corn canopy can be regarded as a two-layer system with the upper
layer dominated by leaves and stems and the lower layer dominated by stalks or stems, while a
wheat canopy (after heading) can be regarded as a three-layer system with a head layer added on
top (Ulaby et al., 1984; Ulaby ez al., 1986a). Krul (1988) suggested that the structure of the
crop canopy (shape, size, orientation of canopy components) will primarily influence the spatial
distribution of the scattered energy, while the material constituents of the canopy components
(internal microstructure, moisture, etc.) will change the magnitude of the scattered energy in all

directions (Ban et al., 1993).

Plant Leaves

Canopy leaves tend to attenuate the incident radar beam, particularly as frequency increases
(Chuah and Tan, 1990; Van Kasteren, 1981; Ulaby and Wilson, 1985). The radar pulse is first
attenuated when the energy initially passes through the canopy. After surface and volume

scattering has occurred, the energy is again attenuated as it passes back through the canopy on its
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way to the sensor (i.e., two-way attenuation). The attenuation versus scattering of microwave
energy by leaves is likely related to the penetration ability of the energy, which is in turn related
to wavelength and leaf size. Bouman (1987) has shown that at short wavelengths, radar return is
sensitive to leaf size; while the longer wavelengths are less sensitive to the changes in geometry,
particularly with respect to sugar beet and potatoes. Brisco (1993) suggested that broad-leaved
plants such as com are more likely to increase backscatter as a result of canopy structure whereas

small-leaved plants such as alfalfa are more likely to attenuate the incident energy and therefore

decrease backscatter.

Leaf area and vegetation water content also affect the proportion of incident energy that is
absorbed and scattered. For all parts of the plant, an increase in moisture content generally leads
to an increase in backscatter (Ulaby and Bush, 1976). Stem moisture content, however, has a
stronger effect on the magnitude of the cross-polarized return compared to leaf moisture (Chuah
and Tan, 1990). When a leaf is comparable in size to the incident wavelength, the shape, density
and orientation of the leaf can have a major impact on radar return (Morton, 1987). In fact, Van

Kasteren (198 1) noted that a single leaf can attenuate incident energy by as much as 4-7 dB.

Plant St S

Similar to leaves, plant stems and stalks tend to scatter and absorb microwave energy (Chuah and
Tan, 1990). The importance of stems and stalks to the attenuation and/or scattering of
microwaves varies depending upon frequency, polarization, incidence angle and crop structure as
well as crop developmental stage (Ulaby et al., 1978; Ulaby et al., 1982; Ulaby et al., 1984;
Ulaby and Wilson, 1985; Chuah and Tan, 1990; Engman, 1991; Coppo et al., 1992). For
example, Chuah and Tan (1990) found that stems contribute more to total like- and cross-
polarized backscatter as frequency increases. Also, for cross-polarized returns, stems and stalks

appear to contribute more to total backscatter than leaves, especially at higher frequencies.
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Contradictory evidence exists regarding the contribution of plant stalks to radar backscatter. For
instance, when comn canopies are fully developed, the majority of scattering in C-band (HH
polarization) originates in the top | m of a 2.8 m com canopy and little backscatter was measured

below that level for view angles of 30° or greater (Daughtry et al., 1991).

Plant Fruit and Seeds

Detailed research has been conducted on the relationships between radar return and fruit and seed
development in crops. Allen and Ulaby (1984), for example, conducted attenuation

measurements on wheat heads and found that the average attenuation of the head layer of the

canopy was about 8.3 dB at 6=60°. Paris (1986) also observed a rapid fall in the corn-canopy

backscatter coefficient shortly after tasselling and cob formation. Bouman and Van Kasteren
(1990b), however, found the lack of pronounced response of radar backscattering was due to the
emergence of wheat ears. Other researchers have ignored the contribution of fruit and seeds to
total backscatter, in part to simplify the model and in part because of the results of defoliation
experiments which showed that the backscattering contribution of the fruit is much smaller than

that of stalks and leaves (Ulaby ez al., 1986a).
Crop Species

Studies to date have indicated that crop species is the single most important parameter among
those recorded in the field (e.g., Brown et al., 1984; Cihlar and Hirose, 1984; Cihlar, 1986;
Bouman and Van Kasteren, 1990a; 1990b; Brown et al., 1992; Ban et al., 1995). Crop type can
result in a unique radar return. For example, Bouman (1987) attributed the highest radar return
in beets using X-VV to its relatively higher water content or to its general geometry and larger

leaves when comparing beets, potatoes and peas. Although the reasons for many of the
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observed relationships between crops and backscatter are not fully understood, there is general
agreement that broad-leaved crops produce higher signal returns than other crops for L-, C-, and
X-band with parallel polarization. The approach of considering the cross-polarization ratio is a
useful method for species identification. Although two different crop species may exhibit similar
backscatter in one polarization mode, there is usually a morphology-dependent difference in
another mode (Holmes, 1990).

Plant Moisture (Dielectric) Content

Plant moisture content, as an indicator of stage of growth, was found to be highly correlated with
&°, based on the measurement of &° of wheat acquired during the final month of its growing cycle
using a truck-mounted Microwave Active Spectrometer (MAS) at 8-18 GHz (Ulaby and Bush,
1976). Their results indicated that 8° is quite sensitive to the physiological and morphological
changes which wheat undergoes as it ripens, particularly during the one-week period prior to
harvest. In terms of the range of sensor parameters examined, 9.4 GHz 8°v nadir data showed

the highest sensitivity to plant moisture variations and to the passage of time. At angles away

from nadir, however, higher frequencies were found more suitable.

Plant Density and Biomass

De Matthaeis et al. (1995) reported that a combined use of L- and C-band allowed discrimination
between low-density and high-density crops. To monitor biomass, L-band was more effective
for crops with low plant density, while C-band was better for high plant density crops. HV,

circular copolar and 45° crosspolar polarizations were found to be important for biomass

retrieval.
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Dubois et al. (1995) compared the L-band 6°,/G°vy ratio image and a SPOT-derived NDVT image

over the same area. Their results showed that the L-band parameter did not have a good
sensitivity to vegetation with NDVI below 0.2. This indicated that the scattering at L-band was
dominated by interactions with the underlying surface and not with vegetation when the
vegetation was very sparse. Although the correspondence between the two indices was noisy

with a wide standard deviation, their results indicated a definite correlation between the two
indices confirming the potential of the 6°,,/6",y ratio to be a good vegetation index. Their results

also indicated that the copolarized channels were less sensitive to vegetation than the cross-

polarized channels.

Plant Growth Stage

Bouman and Van Kasteren (1990a; 1990b) conducted a ground-based experiment on radar
backscattering (X-band) and crop growth. It was found that the possibilities of X-band radar for
the monitoring of crop growth were different for sugar beets and potatoes. For both crops the
backscattering increased with crop growth until a saturation level was reached at about 80% crop
cover. At full crop cover radar backscattering no longer reacted to any further increase in
biomass. Therefore, the possibilities seemed good for monitoring the early growth of sugar beet;
however, the monitoring of the growth of potatoes would be more troublesome than that of sugar
beet because the ridge orientations of potatoes (with respect to the incidence microwave)
dominated radar backscattering from bare soil stage to an 80% crop cover. In an airborne
scatterometer study, Bouman and Hoekman (1993) concluded, however, that all frequencies
(1.2-17.25) were equally useful to indicate qualitatively the growth of beet and potato in the early
growing season. The backscattering of wheat appeared not to be related to crop growth in any of

the frequencies.

49



It was also found that both VV and HH backscattering of wheat and barley decreased at all
incidence angles with crop growth until it fluctuated around a stable level from grain filling to
dying of the canopy. The decrease in radar backscattering, as opposed to the increase observed
for sugar beets and potatoes, was caused by the relative open structure of the canopy and the
small dimensions of its elements. Microwaves penetrate relatively deeply into the canopy where
they eventually become extinct through absorption by the canopy elements (stems, leaves). The
VV backscattering of oats at low to medium angles of incidence decreased during vegetation
growth and sharply increased to a steady level with the appearance of panicles. This was due to
high reflection of panicles with their cloud of small, elongated grains for VV polarized
microwaves (Bouman and Van Kasteren, 1990b). Schmullius and Nithack (1992) also noted
that the VV-polarized C- and X-band scattering is dependent on the different degrees of maturity
in the barley fields.

Van Kasteren (1981) reported that maturity was the best phase to distinguish crops from each
other on radar images. The differences in reflection level between crops were greatest at that
time. On the other hand, Foody et al. (1989) and Fischer et al. (1992) found that the crop

separability is optimal in the mid-growing season.

3.2.2.3 Soil Component

Soil roughness, soil moisture content and row direction can have a significant impact on the
magnitude of backscatter depending upon incidence angle, polarization and frequency, as well as

the amount of vegetative cover.
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Soil Roughness

If the radar frequency is short relative to the surface roughness, the surface will appear smooth
and little energy is backscattered to the sensor (Curlander and McDonough, 1991). Surfaces are
considered smooth, specular reflectors if:
h < 1/25sinT,

where, T is the depression angle and h is the vertical relief of the surfaces (Werle, 1992). If the
wavelength is roughly the same as the average surface height, a significant fraction of incident
energy will be reflected back to the sensor (Curlander and McDonough, 1991). If the average
surface height (h) exceeds 1 /4.4sinT, then the surface is considered rough and will be a diffuse

reflector (Werle, 1992).

Scatterometer measurements (Figure 3.5) have demonstrated that the effects of roughness are
minimal at incidence angles of about 10° (Holmes, 1990). Several researchers (Dobson and
Ulaby, 1986b; Beaudoin ef al., 1990; Chuah and Tan; 1990; Daughrty et al., 1991) found that
backscatter is dominated by rough-surface scattering at low incidence angles, even in the
presence of vegetation. Another notable aspect of the observations was that the effects of
different roughnesses were least with shorter wavelengths; this is because all the surfaces are

relatively rough for shorter wavelengths (Holmes, 1990).
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Figure 3.5. The typical backscatter curves against angle of incidence for smooth, intermediate
and rough surfaces (Holmes, 1990)
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Soil texture was also found to be important to determine the radar backscatter. For example,
Proud et al. (1990) examined temporal changes in radar backscatter of crop canopies due to soil
effects using C- and X-band airborne SAR and found that the sandy loam transects had the most
significant results (highest R?) compared to the clay loam and silt loam transects. Sandy loam
soils are well drained; thus soil moisture conditions fluctuate rapidly compared to the clay loam

and silt loam transects.

Soil Moisture

In general, an increase in the amount of soil moisture results in an increase in backscatter at all
incidence angles and all frequencies (Ulaby et al., 1978; Engman, 1990). The magnitude of the
increase however, is incidence-angle, polarization-, frequency- and roughness-dependent
(Schmullius and Furrer, 1992a; 1992b). Microwaves are generally sensitive to moisture in the 0-

10 cm surface layer (Bruckler et al., 1988).

The effect of soil moisture on backscatter is also dependent upon the amount and condition of
surface vegetation cover (Pultz et al., 1990; Schmullius and Furrer, 1992a; 1992b; Baronti et al.,
1995). In mid-season, the full vegetation canopy attenuates incident radar and therefore soil
moisture variations have little effect on backscatter (Paris, 1986). At the end of the season

however, the dry canopy is nearly transparent to microwaves and soil moisture conditions may

again influence total backscatter.

Paris (1983) reported that wet-surface soil moisture conditions resulted in significantly poorer
separability of corn and soybeans as compared to dry-soil conditions. On the dry-soil date, the
best separation between corn and soybeans was achieved with a C-band cross-polarized

measurement at a look angle of 50 degrees. Ulaby et al. (1981) suggested that through proper
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choice of radar parameters, radar could be used to provide quantitative information on the soil

moisture content of both bare and vegetation-covered soil.

Row Direction

There are reports that both cropped-land row direction (e.g., Mehta, 1983; Wooding, 1983) and
the soil row direction (e.g., Bradley and Ulaby, 1981; Ulaby, 1981) affect radar backscatter.
Although some researchers have concluded that the row direction effect is insignificant for
frequencies greater than 4 GHz, other observations do not fully support this hypothesis. There
is circumstantial evidence regarding the row effects on polarization. Bradley and Ulaby (1981)
and Paris (1982) noted the effects of row direction using like-polarization; Batlivala and Ulaby
(1976) noted row effects were much stronger with HH than HV.

Recent studies by Michelson (1994) have indicated that significant differences in §° occur for
fields tilled to and perpendicular to the look direction. Linear relationships between row direction
and 8°, however, were weak. The ERS-1 SAR appeared sensitive to differences in the tillage

row directions, but factors influencing this sensitivity must be analyzed before definite
conclusions are drawn. A study using airbome C-band SAR data (Brisco et al., 1991) showed

significant differences in 8" between parallel and perpendicular row directions using like-

polarized data from grain stubble fields; cross-polarized data were less sensitive to the influence
of row direction. Dubois et al. (1992) reported that the radar backscatter of agricultural fields is
very sensitive to the angle between the radar plane of incidence and the furrow direction. The
variation is fairly sharp, up to 19 dB decrease in backscatter, when the radar incident plane is 5°
off the perpendicular to the furrow plane. The observed variations are fairly independent of the
incidence angle. Using both airbome X- and L-band SAR and SEASAT L-band SAR, Cihlar

and Hirose (1984) noted that row direction effects were dominant in some crop/site combinations
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but absent in others, even for the same crop in the northern prairies of Canada. Guindon er al.
(1984) noted anomalously bright grain fields on some SAR passes at L-band. Bright returns
were only observed when the aircraft heading and crop row direction directions were parallel.

It should be emphasized that row direction does not inevitably affect backscatter to a significant
degree. For example, Sieber et al. (1982) concluded from analyzing three wavelengths (X-, C-
and L-band) that row direction does not affect SAR images in a way that will cause changes of
average backscatter cross-section. Canadian studies underline the apparent confusion about the
effects of row direction on backscatter in grain fields at one test site (especially with airborne L-
band), but no effect for equivalent fields at another test site. Also, there are no consistent

conclusions to be drawn on which crop types results in row direction having an effect on radar

return signal (Holmes, 1990).

3.2.2.2 Vegetation and Soil Interaction Component

The contribution of canopy and soil constituents to total backscatter is dependent upon

polarization, incidence angle and frequency, as well as vegetation growth and development

stages. For instance, Daughtry er al. (1991) reported that, at 6<20°, soil conditions dominate

backscatter coefficients; but at 6>20°, the influence of vegetation on total backscatter increases
and the soil contribution decreases. Daughtry er al. (1991) also found that polarization has little
effect on penetration into dense com canopies. Conversely, Holmes (1990) reported that

horizontally polarized (HH) L-band radar couples weakly to vertical stalks resulting in low
attenuation. Vertically polarized (VV) microwaves, however, are attenuated to a greater extent

causing a reduction in the penetration depth.
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3.2.3 Effects of Rain, Dew, Wind and Other Environmental Factors

Effects of rain (e.g., Fischer et al., 1992; Schmullius and Nithack, 1992) , dew (e.g., Ulaby ez
al., 1986a; Gillespie et al., 1990a; 1990b; Schmullius and Furrer, 1992a) and wind (Ulaby et al.,
1986a; Bouman and Van Kasteren, 1990a; 1990b) on radar backscatter have been reported by
some researchers. For example, Brisco et al. (1989b) reported that wheat separability may be
increased when the crop canopies contain free water, and this phenomenon may also be enhanced
using VV polarization. Bouman and Van Kasteren (1990a; 1990b) reported changes in canopy
structure due to strong winds which in turn affected radar backscatter by 1-2 dB for both sugar

beets and potatoes.
3.3 Ground-Based Scatterometer in Agriculture

Much of the knowledge available today on the interaction of microwaves with agricultural targets
has been obtained through scatterometer experiments over small test plots. These detailed
experiments have the advantage that both radar parameters and the agricultural target parameters
can be carefully controlled and measured. Scatterometer studies of this kind have been carried
out mainly by researchers in North America and western Europe including research groups
affiliated with the University of Kansas, the Radar Observation of Vegetation (ROVE) team in
the Netherlands, a French multi-disciplinary team, and the Canadian Center for Remote Sensing
(e.g., Attema, 1980; Lannelongue, 1981; Krul, 1987; 1988; Bouman and Van Kasteren, 1990a;
1990b; Bouman, 1991a; Brisco et al., 1992). The results from these ground based scatterometer
studies represent a backbone of radar remote sensing research in agriculture since data provided
by ground based scatterometers are necessary for the calibration of other sensors and serve as an
important data base for quantitative SAR investigations in agriculture (Werle, 1992). Due to the

scope of this review, studies using ground-based scatterometer data are not detailed here.
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3.4 Airborne SAR in Agriculture

Most of the research in the past three decades has used airborne radar. The notable airborne
radar campaigns includes the Canadian GlobalSAR (Campbell e al., 1995; Petzinger, 1995),
Multisensor Airborne Campaign (MAC) Europe-91 (Wooding and Attema, 1995), ESA and Joint
Research Center’s (JRC) Multiple Airborne Experiments Toward Radar Observations
(MAESTRO-1) Campaign (Wooding and Attema, 1992; Churchill and Attema, 1994; Lemoine et
al., 1994), and US’ AIRSAR Campaign (JPL, 1996).

3.4.1 Airborne SAR Systems

A wide variety of radars were used to acquire data including X-Band, C-Band, and L-band.
Major airborne SAR systems are listed in Table 3.1. (Wooding and Attema, 1992; Geomatics
Canada, 1994; Schmullius et al., 1994; Horn, 1996)

Table 3.1. Major Airborne SAR Systems

S AirborncE SARBNystemaiy |

CCRS C/X-SAR (Canada) X- and C-band HH, HV, VH, and VV
NASA/IPL SAR (U.S.) C-, L-, and P-band HH, HV, VH,and VV
DLR E-SAR (Germany) X-, C-, L-, and P-band HH and VV

3.4.2 Airborne SAR Data for Agricultural Crop Classification

3.4.2.1 Multiparameter Airborne SAR Data for Crop Classification

Multifrequency, multipolarization and multi-incidence angle airborne SAR data have been studied

intensively for crop classification in the past three decades. The interpretation success is based
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entirely on each specific investigation, which can be time specific, site specific, SAR-parameter
specific, or image-quality specific, as discussed in Section 3.2.1. In general, the results
indicated that multiparameter airbome SAR data significantly improved crop classification
accuracies. For example, Wever et al. (1995) reported that no class could be clearly separated
using monotemporal classification with one single frequency. The use of four frequencies,
however, resulted in a very good classification. Brisco and Protz (1980) also demonstrated
greater than 90% correct classification of corn fields using single-date dual-channel (X- and L-
band) SAR. Table 3.2 shows the selected studies of multiparameter airbome SAR data for

agricultural crop classification.
3.4.2.2 Multitemporal Airborne SAR Data for Crop Classification

The potential of multitemporal data has been explored and is considered a necessity especially for
crop classification. Indeed, the crop calendar and crop phenological development are some of the
most important considerations to make when classifying crops from remotely sensed data.
Improvement in crop discrimination has been achieved by synchronization of SAR data collection
with growth stages of crops since multitemporal imagery maximizes the differences in the
geometric and dielectric properties of crops. Research conducted by Bush and Ulaby (1978), for
example, showed that 90% correct classification of crop type was possible using multitemporal
radar with four revisits approximately 10 days apart. Some classification results suggest that a
single data acquisition taken during peak growth stage is of primary importance, while others
suggested during plant maturity. Data acquisition dates range from late May just after crops have
been planted to September when crops are fully grown and perhaps even harvested. The
majority of the studies, however, used data that were collected during one or more of the summer
months of June, July and August. In general, the use of multitemporal imagery has improved

classification accuracies over single-date input especially when single-date classification
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Table 3.2. Multip

arameter Airbome SAR

Crop classification

Data for Crop Classification: Selected Studies

Ulaby

Com, soybeans, ERIM SAR Huntington L-HH & L-HV:
small grains, L-band County, with multipolarization 1% etal., 1980
pasture HH, HV Indjana, USA | L-band radar L-HH: 65%
Corn, grains, ERIM SAR Univ. of Manual and automatic Corn: >90% Brisco &
hay-pasture, X-, L-band Guelph test | crop identification Hay-pasture & | Protz, 1982
HH, HV strip, Ontario, | with airborne radar grains: 50%
Canada imagery
Sugar beets, CCRS SAR | Danube River | Evaluation of the crop | X-HH, C-VV, Guindon
potatoes, winter | X-,C-, L-band Valley, classification L-HH, & L-HV: | etal., 1984
wheat, winter HH, VvV Germany performance of X-,L-, >90%
barley, oats and C-band SAR
imagery
Wheat, barley, CCRS SAR Melfort, A comparison of steep 53°:95% Poirier
canola, fellow C-vv Saskatchewan, | and shallow mode 30°: 72% etal., 1988
30° & 53° Canada (30° & 53° incidence | for site 25, July
angles) data for crop SAR data
classification
Com, barley, CCRS SAR Municipality | Multiband SAR: X- & C-band: Thomson
oats, potatoes, X- & C-band of Saint- comparison of per- up to 53% etal., 1990
forage crops, HH Léonard pixel classification X-orC-band
pasture, etc. d’Aston, and a classification alone: <45%
Quebec, using segmentation
Canada results
Sugar beet, NASA/IPL Feltwell, Crop classification 9 classes (80 Foody
potatoes, AIRSAR Norfolk, from C-band cases): 79% etal., 1994
carrots, wheat, C-band, UK polarimetric radar data | 7 classes (388
beans, grass, polarimetric cases): 61%
etc. 15 classes (412
cases): 37%
Corn, wheat, CCRS SAR Oxford Evaluation of textural | supervised: 86% | Anys & He,
soybeans, C-band County, and multipolarization unsupervised: 1995
pasture, alfalfa | HH, HV & VV Ontario, radar features for crop 75%
45°-76° Canada classification
Wheat, barley, NASA/IPL Flevoland, Classification of 95% for all Chen et al.,
lucerne, peas, AIRSAR the multifrequency covers except 1996
potatoes, stem C-, L-&P- Netherlands | polarimetric imagery peas
beans, rapeseed, band, using a dynamic
sugar beet, grass polarimetric learning neural
20°-55° network
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accuracies are low. Table 3.3 shows the selected studies of multitemporal airborne SAR data for

agricultural crop classification.

Table 3.3. Multitemporal Airborne SAR

R BN ACCHER
Corn, forest, ERIM SAR Univ. of Improving crop Multidate: 83% Brisco
grain, & other X-, L-band Guelph test | classification through Corn: 92% etal., 1984
cover types HH, HV strip, Ontario, | attention to the Grain: 51%
June 20 & Canada timing of airborne
Sept. 3 radar acquisition
Wheat, canola, ERIM SAR Melfort, Crop type Filtered data: Brown
fallow C-VV, 53° Saskatchewan, | determination from June: 60+23% | etal., 1984
June 26, July Canada multitemporal SAR July: 87+7%
31 & Aug. 13, imagery Aug.: 65+24%
1983 July & Aug.:
87+7%
Wheat, barley, ERIM SAR Melfort, Multitemporal SAR At 53°: Poirier et
canola, fellow Cc-vv Saskatchewan, | for crop classification: June: 62% al., 1988
30° & 53° Canada a comparison of steep July: 91%
June 26, July and shallow mode Aug.: 80%
31 & Aug. 13, (30° & 53° incidence July & Aug.:
1983 angles) data 9%6%
Spring wheat, VARAN SAR Feltwell, Muititemporal 3 classes: Foody
winter wheat, X-HH Norfolk, airborne SAR data for 4 dates: 90% etal., 1989
spring barley, 29°-67° UK crop classification 2 dates: 88%
sugar beet, 4 dates from using a per-field 7 classes:
potatoes, early June to approach 4 dates: 69%
carrots, grass late Aug., 1986 2 dates: 55%
Potatoes CCRS C/X Queens A comparison between C-Vv: Dobbins
SAR County, PEI, | multidate CHH & C- | June & Aug.: | etal, 1992
C-band Canada VYV SAR imagery for 81%
HH & VV potato crop monitoring| 3 dates: 79%
June 27, Aug. 8 C-HH:
& Sept. 11,1990 3 dates: 73%

3.4.2.3 Integration of Airborne SAR and VIR Data for Crop Classification

The synergistic effect of integrating SAR data and imagery acquired in the visible and infrared

(VIR) portions of the spectrum has been recognized as important for two main reasons. First,
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timeliness of SAR fills information gaps during overcast or hazy periods at critical stages of the
growing season and second, the combination of data from different parts of the spectrum often
leads to increased classification accuracy. Several researchers have demonstrated that combining
airbome SAR and satellite VIR data improves crop classification accuracies (e.g., Brisco ez al.,
1989a, Fiumara and Pierdicca, 1989; Brisco and Brown, 1995). For example, Brisco and
Brown (1995) evaluated the synergistic effects of multidate airborne SAR and Landsat TM data
for crop classification in western Canada. Four dates of C-HH SAR data (May 25, June 24,
July 21 & Aug. 10) and two dates of TM data (May 28 & July 16) were acquired over an
agricultural area near Saskatoon, Saskatchewan, Canada during the 1988 growing season. The
major crops investigated were canola, barley, wheat, summerfallow and alfalfa. The resuits
showed that VIR data were superior to the SAR data for single date classifications due to the
multispectral information content. Multidate SAR data improved the classification accuracy from
30 to 74% although multidate VIR produced the highest single sensor result of 90% correct
classification. This was slightly improved to 92% by including the SAR data with the VIR data.
The best two SAR channels and the best two VIR channels, based on their transformed
divergence statistics, produced an overall classification accuracy of 85%. Furthermore, the May
TM data combined with SAR data yielded an 87% correct classification because the grain and
alfalfa classes were much better separated when VIR data were combined with SAR data. These

results demonstrated significant synergism between the two sensors.



3.5 Spaceborne SAR in Agricuiture
3.5.1 Spaceborne SAR Systems: Past, Present and Future

The first spaceborne imaging radar was launched in 1978 on-board the SEASAT satellite. It
operated for 105 days, pioneering spaceborne radar and many other microwave instruments
(NASA and JPL, 1994). As part of a radar evaluation program, the U.S. carried out two
additional spaceborne radar missions, SIR-A and SIR-B. SIR-A and SIR-B orbited the Earth
only for a number of consecutive days in 1981 and 1984, respectively (Werle, 1992). Despite
their overall technological and scientific success, the relatively short lifetime precluded the
acquisition of seasonal data sets; for example, of vegetation-canopy phenology. Moreover, the
SEASAT and SIR-A SARs were “singlc-paraméter" instruments; i.e., they used a fixed
wavelength, a fixed polarization, and a fixed incidence angle (NASA, 1988). The SIR-B SAR
provided the first multi-incidence angle data set for surface feature (particularly forest) mapping
and topographic mapping. Also, the SIR-B data were the first to be digitally encoded and
digitally processed; they represented a significant advance in SAR image processing technology.
The sensor stimulated interesting research and applications, but the research and applications
have been limited in scope due to its short lifetime. The past spaceborme SAR system parameters
are summarized in Table 3.4 (NASA, 1988; Werle, 1992). The detailed information on
spaceborne SAR systems can be found in Appendix C.

Table 3.4. Past Spaceborne SAR System Parameters

Parameters

Frequency or 1.275 GHz 1.275 GHz 1.275 GHz
Wavelength (23.5 cm) (L-Band) (23.5 cm) (L-Band) (23.5 cm) (L-Band)
Polarization HH HH HH

Incidence Angle 23° 47° 15° - 60°

Swath Width (km) 100 50 20 - 50

Azimuth Resolution (m) 25 (4 looks) 40 (6 looks) 20 - 30 (4 looks)
Range Resolution (m) 25 40 58 - 16
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The 1990s is the decade of spaceborne SAR systems with the launch of ALMAZ-1, ERS-1 and
ERS-2, JERS-1, SIR-C/X-SAR and RADARSAT. With the launch of ALMAZ-1 on March 31,
1991, the former Soviet Union (just prior to its dissolution) became the first country to operate a
spacebome radar system (Lillesand and Kiefer, 1994). Although this system initiated a new era
in operational remote sensing from space with the ability to provide high-resolution data
independent of weather conditions and time of day, ALMAZ-1 was not well known in the SAR
research and application community due to lack of promotion by Russia. With the launch of the
European Space Agency (ESA)’s ERS-1 in July, 1991, the first long-duration spaceborne SAR
system became available. Carrying the same SAR instrument as ERS-1, the second European
Earth Resources Satellite was successfully launched in April, 1995 (ESA, 1992; Eurimage,
1994; ESA, 1995a). In February, 1992, the Japanese Earth Resources Satellite JERS-1 was
Jaunched. ERS-1&2 and JERS-1 SARs are single-parameter SAR systems with fixed
wavelengths, incidence angles and polarizations (ESA, 1992; NASDA, 1993; Eurimage, 1994;
RESTEC, 1996b). Thus, their capabilities are limited for experimental and research use. The
geometry of ERS-1 and ERS-2 SAR imaging mode is shown in Figure 3.6.

=3

Figure 3.6. ERS-1 SAR imaging mode geometry (ESA, 1989)
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The SIR-C/X-SAR system marked a big step forward with advanced SAR technologies. SIR-
C/X-SAR's unique contributions to earth observation and monitoring are its capability to
measure, from space, the radar signature of the surface at three different wavelengths, and to
make measurements for different polarizations at two of those wavelengths (NASA/IPL, 1994;
JPL, 1996). The applications of SAR-C/X-SAR, again, are limited due to its short lifetime.

Successfully launched on November 4, 1995, the Canadian RADARSAT is the first long-
duration spaceborne system with multincidence angle, multiresolution, and multiswath width
capability (CSA et al., 1994). It provides an excellent opportunity for operational environmental
monitoring and resource management, including agricultural monitoring. The present
spaceborne SAR system parameters are summarized in Table 3.5 (ESA, 1992; Luscombe et al.,
1993; NASDA, 1993; CSA et al., 1994; Eurimage, 1994; Lillesand and Kiefer, 1994; ESA,
1995a; Jordan, 1995; RSI, 1995b; CSA, 1996c; JPL, 1996; RESTEC, 1996b). The
RADARSAT SAR operating modes are shown in Figure 3.7.
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Figure 3.7. RADARSAT SAR operating modes (CSA, 1996¢)
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Table 3.5. Present Spaceborne SAR System Parameters

Parameters AENMAZ FRS-T &2 JERS-I SIR-C/X- RANARSAT
SAR SAR SAR SAR SAR
Band L-Band: 23.5cm
Freqngncy or 3GHz 5.3GHz 1.3 GHz C-Band: 5.8 cm 5.3 GHz
Wavelength or I0cm or 5.7 cm or23cm X-Band: 3.1 cm or 5.7 cm
Polarization HH \2'2 HH L & C-Band: HH
Polarimetric
X-Band: VV
Incidence Angle 30° - 60° 23° 38.5° 17°-63° 20° - 60°
Swath Width 350 100 75 L:15-90 50 - 500
(km) (left/right) (right) (right) C:15-90 (right)
X:15 - 40
Revisit Period 1-3 16-18 44 - 3+
(days)
Spatial Resolution 10-30 30 18 30 10 - 100
(m)
Lifetime 1.5 3 4 10 days (April) 5
gxears) 10 days (October)

Later this century or early next century, a few proposed spaceborne missions with advanced

multiparameter SAR systems will be launched. The operational use of SAR data will be

enhanced by the launch of these future spacebomme advanced SAR systems.  Their

multifrequency, multipolarization, multiresolution, multiswath width and multitemporal

capability will provide unbiased and consistent real-time information for an operational

agricultural monitoring system and other operational environmental monitoring systems. The

future SAR missions and systems characteristics are summarized in Tables 3.6 and 3.7 (Domier

Deutsche Acerospace and British Aerospace Space Systems, 1994; Bartholomi ez al., 1995; ESA,

1995a; Brown et al., 1996).



Table 3.6. Future Spaceborne SAR Missions
Orbit

Primary
Applications

I.aunch Date/

Mission SAR Status

tAgeney) Instrument Duration
ALMAZ-1B SAR-10 Proposed Circular, 73°, Agriculture, forestry,
(Russia) SAR-3 3 years 400 km, cartography, oceans
SAR-70 92 mins
SLR-3
SICH-2 SAR Firm/ 1997 Sun-synchronous, | Agriculture, forestry,
(NSAU) approved | 3 years near-polar, hydrology.,
98°, 670 km, environmental
98 mins monitoring,
forest and tundra fires
ENVISAT-1 ASAR Firm/ 1998 Sun-synchronous, | Environmental
(ESA) approved | 5 years polar, monitoring,
780-820 km, physical
100.59 mins oceanography,
ice and snow,
land surface
RADARSAT-3 SAR Proposed | 2005 TBD Operational sea-ice
(CSA/CNES) reconnajssance,
structural geologic
mapping, and
land-use magpin%

Table 3.7. Future Spaceborne SAR System Parameters

Parameters ALNMAZ B SICH-?2 ENVISAT- RADARSAT-3
SAR SAR ASAR SAR (TB)
Frequency or SAR-10: 9.6 cm
Wavelength SAR-3:35cm (L-Band) (C-Band)
SAR-70: 70 cm
SLR-3:3.5cm
Polarization HH&VV HH, VV,HV and HV
(TBD)
Incidence Angle L-Band: 20° - 50°
C-Band: 15° - 65°
Swath Width SAR-10: 30 - 170 40 km (detailed) | 100-400 L-Band: 100-300
(km) SAR-3: 20-35 80-120 (Survey) C-Band: 25-800
SAR-70: 120-170
resight swath 330 for
all above
SLR: 450
Spatial Resolution SAR-10: 5-7 10-50 30, 100, 1000 C-Band:
(m) (detailed), Standard: § or 10
15 (intermediate), & Spotlight: 3 x 1.7
15-40 (survey) ScanSAR:
SAR-3: 5-7 5-10 x 45-90
SAR-70: 20-40 Twin Pol:
SLR: 190-250 range, 10-20 x 5-10
1200-2000 azimuth Quad Pol:
10-20 x 5-10
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3.5.2 Spaceborne SAR for Agricuitural Crop Classification
3.5.2.1 Early Spaceborne SAR Data for Crop Classification

Compared to the numerous airborne studies, little research has been done using early spaceborne
SAR in agriculture due to the very limited amount of data collected by these short-lived missions.
An overview of past spacebome imaging radar studies in agriculture is given in Table 3.8. A
discussion of selected studies can be found in Appendix D.

3.5.2.2 Multitemporal Spaceborne SAR Data for Crop Classification

Spaceborne SAR is potentially an important new data source for agricultural applications. It
satisfies a basic agricultural requirement for reliable and frequent imaging through the crop
growing season, which cannot be met by optical satellites such as SPOT or Landsat.
Agricultural interest focuses on the use of multitemporal ERS-1 and other spaceborne SAR

images (Wooding and Laur, 1993).

Before the launch of the long-duration spaceborne SAR systems, airborne studies had
demonstrated that multitemporal SAR data could enhance the ability to distinguish between
various crop spectral patterns (see Section 3.4.2 for details). However, comparatively few
datasets have been available for study due to the increased cost and logistics of generating
multitemporal SAR data with airborne platforms. With the launch of ALMAZ-1, ERS-1, JERS-
1, and RADARSAT, world-wide spaceborme SAR data are now routinely available. They
provide researchers with an excellent opportunity for developing multitemporal SAR agricultural
applications (Ban and Howarth, 1995). Table 3.9 presents an overview of multitemporal studies
using these SAR data. A discussion of selected studies can be found in Appendix D.
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Table 3.8. Overview of Early Spaceborne Imaging Radar Studies in Agriculture

Subject

Mission

Band/

Pol.

Test \rea

Investigation

Reference

Crop-Type
Classification

Backscatter &
Agricultural
Target
Parameters

Land-Cover
Types

SAR & Soil
Moisture,
Surface
Roughness &
Crop Canopy

Backscatter &
Agricultural
Cover Types

Backscatter &
Soil
Moisture,
Surface
Roughness &
Vegetation

SAR for
Agriculture,
Forestry &
Settlements

SEASAT

CCRS

SAR-580

SEASAT
CCRS
SAR-580

SIR-B

SIR-B

SIR-B

CCRS
SAR-580

SIR-B

SEASAT

L-HH
X-HH
L-HH

L-HH
X-HH
L-HH

L-HH

L-HH

L-HH

L-HH

L-HH

L-HH

Swift Current,
Outlook,
Raymond,
Melfort,
western Canada

Swift Current,
Outlook,
Raymond,
Melfort,
western Canada

Hoosier & Lake
Diefenbaker,
Saskatchewan,
Canada

West-central
IMlinois, U.S.A.

Napierville,
Quebec, Canada

San Joaquin
Valley,
near Fresno,
California,
US.A.

The region
of Bonn,
Germany

Determination of relationships
between image tones &
parameters describing
agricultural cover types and
comparison of classification
accuracies (visual/digital)

Determination of relationships
between image tones &
parameters describing
agricultural cover types
(visual/digital)

Discrimination of prairie land-
cover types: feasibility study
(visual/digital)

Evaluation of the effects of
soil moisture, surface
roughness, and crop canopy
cover on radar backscattering
(digital)

Determination of the influence
of ground features on radar
return & comparison of
relative backscattering
coefficients collected by space
and airborne radar
(visual/digital)

Observations of microwave
backscatter dependence on soil
moisture, surface roughness,
and vegetation covers (digital)

Qualitative and quantitative
interpretation for applications
in agriculture, forestry and
urban areas (visual/digital)

Cihlar and
Hirose, 1984

Cihlar, 1986

Cihlar et al,
1986a

Dobson and
Ulaby, 1986a

Hutton and
Brown, 1986

Wang et al.,
1986

Bonsch et al.,
1988
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Table 3.9. Overview of Multitemporal Agriculture Studies Using ERS-1, JERS-1 &
SIR-C/X-SAR Data

Subject

Crop

Discrimination

Rice-Crop
Monitoring

Agricultural
Land-Use
Mapping

Crop
Monitoring

Crop

Discrimination

Crop
Monitoring

Agricultural
Land
Applications

Rice-Crop
Mapping &
Monitoring

Crop
Identification

Agricultural
Land-Use

Agricultural
Crop

Discrimination

Mission/

SAR

ERS-1
C-vv

ERS-1
c-vv

ERS-1
C-vv

ERS-1
C-vv

(airborne)
C-vv

ERS-1
C-vv

C-vv

L-HH

ERS-1
c-vv

Images

8

(1992
growing
season)

3

[¢ l992_
growing
season)

3(SAR) &
5(T™M)
(1992
growing
season)
10
(1992
growing
season)
10 (1992
growing
season)

g) (ERS-1)
3 (JERS-1)

8
(1991, 1992
& 1993)

6

(1992
growing
season)

?

April 11
g‘c‘l’;l.llwd)

14
(1992
growing
season)

Test Area

Melfort.
Saskatchewan,
Canada

Test field of Akita
Prefectural College
of Agriculture,
Japan

Northwest of Bonn,
Germany

Lechfeld. near
Munich, Germany

Four test sites in
eastern England

East Anglia
UK

Flevoland, the
Netherlands

y
Oberpfaffenhofen,
Germany

South Flevoland,
The Netherlands

[nyestigation

Evaluation of different filiering algorithms
and sizes for ERS-1 SAR, compnnson of

the separability between crops

multitemporal ERS-1 SAR dmn. and
assessment of principle components as a
mean of providing information in class

scparability

Investigation of the feasibility of
me micrawave remote sensing for
rice-crop monitoring

Investigation of suitability of unitemporal
and multil
ERS-1 SAR data for land-use inventories

Comparison of mulmcmporal ERS-| and
airborne DLR E-SAR data for crop
monitoring

Study of changes in the backscatter of
agricultural crops throughout a growing
season

Assessment of the feasibility of using
spaccbome SAR data for crop-type
discrimination.

Comparison of multitemporal ERS-1 and
JERS-1 SAR data for agricultural land
applications

Investigation of the potential of ERS-1
SAR data for rice-ficld mapping and
rice-crop monitoring

Investigation of ERS-1 SAR temporal
backscatter profile for crop identification

Investigation of agricultural landuse in
Ialy and Germany by means of the multi-
frequency SIR-C/X-SAR system

Assessment of the capability of ERS-1
wmmdmm&scg:?‘x’md

een crop types using fic
classification and dct:mlgm.mon of the
carliest possible stage in the growing
season at which crop type can be
distinguished

Reference

Brown etal..
993a

Kurosu et al.,
1993; 1995

Miiller et al.,
1993

Schmullius ez
al., 1993

Wooding et
al., 1993

Wright ez al..
1993

Borgeaud er
al., 1994

Aschbacher er
al., 1995

Ban &
Howarth, 1995

Kiihbauch er
al., 1995

Schotten et al.,
1995
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3.5.2.3 Integration of Spaceborne SAR and VIR Data for Crop Classification

Previous studies have shown that the integration of airborne SAR and satellite VIR data improves
crop classification accuracies (see Section 3.4.2 for details). Attempts have also been made by a
few researchers to improve crop classification accuracies using data from two satellite sensors
(Ban and Howarth, 1995). Table 3.8 is an overview of the synergism of SAR and VIR for crop

classification. A discussion of selected studies can be found in Appendix D.

Table 3.10. Overview of Integration of SAR and VIR Data for Crop Classification

Subject Missions  Dates Test Area Investigation Reference
/Sensors
Crop Southern part  Evaluation of combinations of Fog et al.,
Classification c-vwv of Fyn, ERS-1 SAR and SPOT data for 1993
SPOT l Denmark crop classification

Xs
Agricultural ERS-1 6 Seville, Spain; Comparison of ERS-1 and SPOT Kohl er al.,
Statistics: C-vwv Great Driffield, for crop acreage estimation of the 1993
Estimation XS
Monitoring ERS-1 6 Weilheim, Comparison of ERS-1 and Schadt et al.,
Grassland & C-vv near Munich, Landsat TM data for monitoring 1993
Detecting Landsat 3 Germany grassland and detecting changes
Changes in ™ in agricultural use.
Agricultural Use
Crop ERS-1 3 Oxford Evaluation of the synergistic Ban and
Classification C-vv County, effects of integrating satellite Howarth, 1995

Landsat 1 Ontario, SAR and VIR data for crop
™ Canada classification

3.5.2.4 Summary
The spaceborne SAR is potentially an important data source for agricultural applications. It

satisfies a basic agricultural requirement for reliable and frequent imaging through the crop

growing season, which cannot be met by optical satellites such as SPOT or Landsat.
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Agricultural interest focuses on the use of multitemporal ERS-1 and other spaceborne SAR

images.

There have been significant developments in our understanding of the radar backscatter of
agricultural crops over the lifetime of ERS-1. Prior to the launch of ERS-1 in July 1991,
research had been concentrated on experimental programs using airbomne radar systems, and
involvement in space had been limited to the brief-duration SEASAT and Shuttle Imaging Radar
(SIR-A and SIR-B) missions. The availability of frequent and reliable satellite radar data from
ERS-1 has provided new insights into the potential of multitemporal radar imaging for
monitoring agricultural crops. The excellent stability of the ERS-1 SAR calibration has been
another important factor, facilitating comparisons of crop backscatter measurements across

different test sites and over different years (Wooding, 1995).

Spaceborne SAR agricultural research has been concentrated on using ERS-1 data, although a
few studies have made use of the combinations of ERS-1 and JERS-1, and the SIR-C/X-SAR.
Most of the research has been carried out in Europe through ESA’s programs and the European
Community’s MARS projects. In Canada, research has been supported through the Radar Data
Development Program (RDDP) and the ERS-1 Soil Moisture Experiment (ERSOME). Very few

papers, however, were found from the rest of the world.

From these studies, temporal backscatter profiles for a large number of different fields have been
analyzed. It has been found that some crops generate distinctive temporal backscatter profiles
which can be exploited for crop-classification purposes. For example, rice, wheat, barley,
oilseed rape and grass, all show particularly distinctive behaviour. Time-windows exist in which
these crops are separable on the basis of their backscatter and differences in backscatter between
dates. This allows them to be classified with high orders of accuracy. All studies reported that
multitemporal SAR data improve crop classification accuracy (Wooding, 1995).
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The synergistic effects of integrating satellite SAR data and VIR data have also been investigated
by researchers. Both combinations of ERS-1 SAR/TM and SAR/SPOT data have been
evaluated. Most of the studies reported an increase in crop classification accuracy, with the
combinations of SAR and VIR data compared with either SAR data or single VIR data alone.
Surprisingly, in some cases a decrease of the classification accuracy was found by adding ERS-1

to SPOT data (Wooding, 1995).

Experience with ERS-1 has established the potential of satellite radar for agricultural applications.
With ERS-2, JERS-1, RADARSAT, ENVISAT ASAR and other spaceborne SAR systems
providing continuity of data into the next century, there are excellent opportunities for exploiting
the potential of satellite radar for operational crop monitoring. Operational multifrequency,
multipolarization radar systems being planned for early next century will extend the capabilities
even further

3.6 Crop Information Extraction from Digital SAR Data

Extensive maximum likelihood classification (MLC) experiments have been performed on
agricultural targets. In general, SAR has been out-performed by optical sensors when data
acquired on the same date(s) and multi-spectral VIR data are used. Crop classification in SAR
images using pixel-by-pixel comparisons have been found too inappropriate (less than 50%
accuracy with single-band SAR), due to problems associated with image speckle (Cihlar et al.,
1986b). Durand (1987), however, suggests that crop classification is possible using this
technique, as long as the image is filtered. In fact, it has been suggested that filtering
significantly improves visual aspects and pixel-by-pixel classification results, without losing
textural information and edges (Shi and Fung, 1994). Median filtering, for instance, has been
successfully applied to reduce SAR speckle and, hence to improve the classification accuracy
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(Goodenough et al. 1980; Brown et al., 1984; Ban et al., 1995). Even with filtering, some

classes, such as grain varieties, still remain confused.

A variety of efforts have been made to improve crop classification, including: 1. generation of
various texture measurements and segmentation techniques or per-field classifiers for crop
discrimination (e.g., Ulaby er al., 1986b; Dubé et al.: 1986; Pultz and Brown, 1987; Vallée et
al., 1987; Béni€ et al., 1989; Treitz et al., 1993; Foody et al., 1994; Anys and He, 1995; Ban et
al., 1995; Treitz et al., 1996); 2. the use of multiparameter (i.e., multifrequency,
multipolarization, multi-incidence angle, and multitemporal) SAR data (e.g., Brisco and Protz,
1982; Brisco et al., 1984; Brown et al., 1984; Guindon et al., 1984; Foody et al., 1989; Brown
et al., 1992; Wooding et al., 1993; Baronti et al., 1995; Kiihbauch et al., 1995); 3. the
combinations of SAR and VIR data for crop identification (e.g., Brisco et al., 1989a; Fiumara
and Pierdicca, 1989; Fog et al., 1993; Brisco and Brown, 1995; Ban and Howarth, 1996b); 4.
incorporation of crop rotation practices into crop classification of SAR imagery with a
knowledge-based approach (e.g., Bedard et al., 1992; Ban, 1993). These approaches have
proven effective for improving crop classification to a certain degree, however, comprehensive
understanding of the radar backscatter from crops, and the systematic, optimal methodology to

extract SAR information for input into a crop information system still remain problems.

3.7 Achievements and Limitations

Studies conducted in the past three decades have provided valuable initial insights into the
potential usefulness of SAR for agricultural applications. The findings to date can be summarized

in the following broad statements:

* Crop canopy and soil parameters: Crop type is the most important field parameter. No

definite relationships between SAR intensities and individual canopy parameters have been
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established to date, although some progress has been made. Research has indicated
relationships between radar backscatter intensities and various crop variables, including crop
type, moisture content, and leaf area index (LAI) or percent cover. Surface roughness and
moisture content are the dominant soil parameters affecting radar backscatter. The underlying
soil will have a varying contribution to the backscatter throughout the crop-growth period. It
is difficult to identify different crop types on the basis of their microwave backscatter
characteristics because we do not fully understand how varying crop and soil conditions

affect the backscatter.

Crop identification: Research has demonstrated the value of radar data in identifying crop
types. High accuracy can be achieved with SAR (particularly multifrequency and
multipolarization) data under some conditions. Classification accuracies often vary among

sites and between dates at one site. The extension of test site results to larger areas has not

been carried out.

Digital classification methodology: Digital filtering prior to classification improves results.
Per-field classifiers are generally preferable to per-pixel classifiers. Image texture offers
some potential, but has not been thoroughly explored. Image segmentation followed by
classification appears to offer an effective approach to digital analysis of SAR data; however,
segmentation of SAR imagery is difficult because of speckle. Incorporating crop rotation
information using an expert system has proven to be a promising approach to certain extent,
however, the incorporation of crop rotation knowledge into an expert system for crop

classification could be troublesome because crop rotations are strongly influenced by market

prices and the local climate.

Integration of SAR and VIR: VIR image data from Landsat TM and SPOT XS have
increasingly been merged with SAR data to take advantage of the best qualities of both types
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of imagery for agricultural crop identification. The synergism of SAR and VIR data has been
demonstrated by several researchers using airborne SAR and satellite VIR data. Very little
research, however, has been done to improve crop classification accuracies using data from

two satellite sensors. Thus, the potential of satellite SAR and VIR synergism still needs

further investigation.

Multitemporal approach: There are no clearcut conclusions as to optimal timing of
measurements for classification accuracy. For example, studies with C-VV imagery indicated
that the highest accuracy in crop separation was obtained before three general vegetation
classes reached maturity (Cihlar er al., 1986b). Van Kasteren (1981) on the other hand,
concluded that greatest accuracy in crop type separation was obtained when the crop had
reached maturity. Contrasting studies such as these reaffirm the need for a better
understanding of the parameters which influence the image. Furthermore, an inadequate
amount of airborne SAR data acquired during the growing season has limited multitemporal
studies. With the launch of ERS-1, ERS-2, JERS-1 and RADARSAT, the long-duration
spacebome SAR data becare routinely available to provide researchers with an excellent
opportunity for developing multitemporal SAR agricultural applications.

3.8 Summary

Radar remote sensing has the potential to play an important role in agricultural crop mapping and

monitoring due to its independence from solar illumination and cloud cover. Starting in the mid-

1960s, a group of scientists at the University of Kansas used aircraft-based radar imagers (Ka-

and Ku-bands) to investigate the potential of radar for crop identification, mapping and condition

assessment. Since then, radar remote sensing techniques have been investigated for a variety of

applications in agriculture. Major campaigns and investigations conducted by research
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laboratories in North America and Europe using ground-based scatterometers and airborne

imaging radars, as well as spaceborme SARs, have been reviewed in this chapter.

Previous research has demonstrated the large potential for using radar remote sensing for various

agronomic applications. SAR data are so complex, however, that their interaction with

agricultural crop targets is not fully understood; and with the current state-of-the-art of

interpretation methods for SAR imagery, the accuracies of crop classification are not always as

high as required for successful operation of a crop information system. To be able to increase

the accuracies of crop identification and area estimation, and thus develop a viable crop

information system that makes use of SAR imagery as the primary data source, we need to:

L.
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have a better understanding of the crop and underlying soil characteristics that influences

the radar backscatter throughout the growing season;

identify the suitable methodologies to extract crop information from SAR imagery;
evaluate multipolarization airborne SAR for crop identification;

evaluate the synergistic effects of satellite SAR and VIR for crop identification; and
evaluate multitemporal ERS-1 SAR for crop identification.
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CHAPTER 4: EXPERIMENTAL DESIGN

In this chapter, the geographical characteristics of the study area are discussed. The
characteristics of the airbome SAR data, ERS-1 SAR data and the ground information are
described. The important aspects of calibration of ERS-1 SAR data are discussed and

procedures for derivation of the calibration constant 6° are presented.

4.1 Study Area

The study area is situated in Norwich Township, an agricultural area in Oxford County, southern
Ontario, Canada. Approximately 15 km x 4 ki and centred at 42° 57' N, 80° 38' W (UTM 530
000 E; 4 755 000 N), this area has been selected as one of the few representative agricultural
‘supersites’ across Canada at which the relationships between radar data and agriculture are being
studied (Brown et al., 1991). As part of the Radar Data Development Program (RDDP), the
OXford County SQil Moisture Experiment (OXSOME) and the ERS-1 SOQil Moisture
Experiment (ERSOME) experiments were conducted at this site. Figure 4.1 shows the location of

the study area.
4.1.1 Relief and Drainage

Oxford County has a varied relief and possesses typical landform features associated with
continental glaciation. Elongated hills, known as drumlins, occupy much of the central part of
the county, while the southern half consists of sand plains of deltaic origin interleaved with
morainic ridges. The most continuously rugged relief is associated with the Waterloo Hills, near

the border of Waterloo and Brant Counties on the northem margin of the county (Wicklund and
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Richards, 1961). In the southeast part of the county, the relief of the study area is relatively

smooth. Overall elevation is about 260 m.

United

States

Figure 4.1. Location of the study area

Figure 4.2 shows some of the external drainage features within Oxford County. There are no
major rivers in the southern half of the county, but the study area is drained by small

intermittently flowing creeks that run in south, southeast and southwest directions.

4.1.2 Climate

Situated in the peninsular region of southwestern Ontario, Oxford County has a climate that is
strongly influenced by the Great Lakes. One of the most important aspects of climate in relation
to agriculture is the length of the growing season, i.e., the interval between the last killing frost

in the spring and the first in the autumn. In general, with increasing distance from the lakes,
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there is a shorter frost-free season. Another important aspect of climate in relation to agricultural
crops is precipitation. This region has a fairly uniform pattern of precipitation distribution
throughout the year. It has no marked wet or dry season. The region is traversed altemately by
cool dry air from the north and warm humid air from the south and southwest. Variations in the
frequency of these air currents can produce a humid hot month or an unseasonably cool month
with too much cloud and rain in the summer. The latter results in a condition of slow growth of
those crops, such as wheat and corn, that require high temperatures for maturity (Wicklund and
Richards, 1961).

Figure 4.2. Drainage systems of Oxford County (Wicklund and Richards, 1961)

4.1.3 Soils and Land Use

Soils in the study area range from silt loam in the west to clay loam in the center and loamy sand

in the east (Figure 4.3). A change in soil types runs diagonally through blocks one and seven.
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This boundary change can be located approximately by the location of strip-farming areas
(principally tobacco), which are indicative of a sandy, well-drained soil. A till plain with clay

and silty loams exists in the western end of the study area (Gardell et al., 1993).

Block 4

AN
[ =D

[__siticam [ CayLoam Sandy Loam Loamy Sand

Figure 4.3. Soil classification of the study area (Wicklund and Richards, 1961)

The major field crops of Oxford County include corn, soybeans, winter wheat, oats, barley,
alfalfa, hay, pasture, tobacco and rye. Statistics (Statistics Canada, 1992) show that improved
land' occupies 86% of the total farm-land area, unimproved pasture occupies 2.8% and all other
land occupies 11.4%. Of the improved land, 96% is devoted to crop production, 0.6% to
summer fallow, and 3.4% to improved pasture. Of total crop land, 43.2% is com, 16% is
soybeans, 14.5% is hay, 7.2% is winter wheat, 1.7% is oats, 1.8% is barley, 3% is mixed
grain, 1.7% is tobacco, 1.5% is rye and small areas of other crops (Statistics Canada, 1992). In
the study area there are notable variations. Towards the west on silt-loam and clay-loam soils,
fields are bigger and dominated by corn, soybeans, winter wheat, hay and alfalfa. Towards the

east, on loamy sand, fields are smaller and grow mostly tobacco and rye.

! For 1991, the figures shown were derived by summation of cropland, summer fallow and improved pasture.
The 1991 census did not include a separate question on “other” improved land. Therefore, some other types of
improved land (e.g., land on which buildings, barnyards, home gardens, and greenhouses are located, newly broken
land or land left idle for more than one year) will not be included in these totals.
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4.2 Data Description

4.2.1 Airborne SAR Data

Narrow-swath, C-band SAR data were collected for the study area by the CCRS Convair 580
aircraft in 1990 as part of the OXSOME project (Table 4.1). The aircraft acquired SAR data in
C-band and four polarizations (HH, HV, VH and VV). The specifications are listed in Table 4.2

(Geomatics Canada, 1994, Livingstone et al., 1987; 1988).

Table 4.1 Remotely Sensed Data of the Study Area

Sensor Spatial Resolution Date of Acquisition

Airborne SAR C-HH, C-HV 6 m x 6 m (8 looks) July 10, 1990

ERS-1 SAR C-VV 30mx30m May 27, 1992
June 15, 1992

July 24, 1992
Aug. 5, 1992
Sept. 28, 1992
Oct. 14, 1992
May 12, 1993
June 16, 1993
July §, 1993
July 21, 1993
Aug. 9, 1993
Aug. 25, 1993
Sept. 13, 1993
Sept. 29, 1993
Oct. 18, 1993
Landsat TM 30mx30m Aug. 6, 1992

SPOT HRV(XS) 200mx20m June 15, 1992
Aug. 26,1993
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Table 4.2. CCRS Airborne C/X-SAR System Characteristics

Frequency 5.3 GHz (C-band) and 9.25 GHz (X-band)

Polarization horizontal or vertical

Incidence Angles nadir mode =0 - 74°, narrow mode = 45 - 76°, wide mode = 45 - 85°
Resolution nadir- and narrow-swath (high) resolution: 6m in azimuth & range

wide-swath (low) resolution: 10m in azimuth and 20m in range

Swath Width nadir = 22 km, narrow = 18 km, wide =63 km
{with 6 km aircraft altitude)

4.2.2 ERS-1 SAR Data

Multitemporal ERS-1 SAR data were acquired during the 1992 and 1993 growing seasons (Table

4.1). The SAR system characteristics are listed in Section 3.5.1 in Chapter 3.

The fifteen scenes of ERS-1 SAR signal data were received on High Density Digital Tape
(HDDT) at the Canadian Data Reception Facility at the Gatineau Satellite Station (GSS). Among
them, six scenes of 1992 signal data were correlated to imagery using the Canadian ERS-1 SAR
Processor (CERS-1) at GSS. These SAR georeferenced fine-resolution (SGF) ground-range
images were neither radiometrically calibrated nor corrected for changes in system gain (see
Section 4.3 for details). The SGF product parameters are listed in Table 4.3 (CCRS, 1992;

Livingstone et al., 1992).

In order to gain a precise understanding of multitemporal radar backscatter properties of
agricultural crops and soils, and to develop methodologies for classification of agricultural crops,
accurate absolute calibration of SAR is necessary. The nine scenes of 1993 signal data,
therefore, were processed at the ESA Processing and Archiving Facility at the German Aerospace
Research Establishment (DLR) (D-PAF). The ESA SAR Precision (PRI) product is a multilook

(speckle-reduced), ground-range, system-corrected image (see Table 4.4). The product is
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calibrated and corrected for the SAR antenna pattem and range-spreading loss; i.e. radar
backscatter can be derived from the product for geophysical modelling, but no correction is
applied for terrain-induced radiometric effects. The image is not geocoded and terrain distortion

(foreshortening and layover) has not been removed (ESRIN/ESA, 1996). The calibration
principles are detailed in Section 4.3.

Table 4.3. The ERS-1 SGF Product Parameters

Coordinate system zero Doppler, ground range

Number of lines 8000 (image) variable swath

Number of pixels 8000

Spatial resolution nominal 30 m at azimuth by 30 m at ground range
Incidence angle 19.5° to 27°

Absolute geometric accuracy (flat terrain) 1100 m

Relative geometric accuracy (flat terrain) 40 m

Number of looks 6 (3.3 looks effective)

Type of pixel 16-bit detected

Pixel spacing 125mx 125m

Table 4.4. ESA ERS-1 SAR PRI Product Parameters

Pixel size 12.5 m at range and azimuth

Scene area 100 km at range and at least 102.5 km at azimuth
Scene size 8000 pixels and at least 8200 lines

Pixel depth 16 bits

Product location accuracy 100 m at range and 200 m at azimuth

Projection ground-range

Number of looks 3

Incidence angle 19.5° t0 26.6°

Annotation in image lat./long. of scene centre and the four corners
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4.2.3 Landsat TM and SPOT Data

Landsat TM and SPOT data were also collected in 1992 and 1993 (Table 4.1). The systems’
characteristics are described in Section 2.3.1 in Chapter 2.

4.2.4 Ground Information

Ground data were collected by field teams during OXSOME in May and July, 1990 (Hutton ez
al., 1990; Brown et al., 1991) and ERSOME during the 1992 and 1993 growing seasons. The
field boundaries were digitized into a PAMAP GIS from a SPOT image acquired during the 1990
growing season. The boundaries were updated using 1992 and 1993 SPOT images.

The study area is subdivided into eight blocks (Figure 4.3) for the convenience of the field work.
Each field has been assigned a block and a field number. Extensive ground data (known as
“green sheets”) were collected for agricultural fields and included: crop type, plant growth stage,
canopy height, percentage cover, row spacing, row direction, plant condition, and ground
photographs (Figure 4.4). Intensive sampling for soil moisture, surface roughness and/or
residue amounts were also made on some “priority fields” during May and October, 1992. As a
result of these field observations, an extensive GIS database has been developed for this area,
including agricultural field boundaries, crop information (i.e., green sheets), airborne SAR and
ERS-1 data. An example of the “green sheets” can be found in Appendix E.
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Figure 4.4. Major crops in the study area

85



4.3 SAR Radiometric Calibration

4.3.1 Introduction

The quantitative use of SAR data requires calibrated images. Researchers who want to carry out
multitemporal studies over large areas, compare data from different sensors, extract geophysical
parameters from backscatter measurements using models, build up a database of backscatter
measurements for different types of terrain/incidence angle, etc., can only do so using calibrated
SAR data products. Also, the full benefit of the new multichannel SARs will not be realized

unless the different channels can be properly compared to one another (Freeman, 1992).

The radiometric fidelity of SAR imagery is affected by intensity variations resulting from surface
scattering geometry and antenna pattern variations. The surface scattering geometry causes
radiometric distortions, because at increasing incidence angle down-range less power is received.
This results in less intense signal returns and less image brightness. The following radar equation
(4.1) states that the power received is inversely proportional to the fourth power of the range.
This relationship is known as R* power loss.

Pl Gl Al’
P= G, Equation 4.1

4 t R? 4 R?

(with the two way path losses neglected)

where P, = received power at polarization r,
P, transmitted power at polarization t,
G, gain of the transmitting antenna, in direction of target, at polarization t,
R distance between the radar and the target (slant range),
C. = radar cross-section, the area intercepting that amount of power of

polarization t which, when scattered isotopically, produces an echo

at polarization r equal to that observed from the target,
A, = effective receiving area of radar antenna aperture at polarization r, and
1/4nR* = isotropic spreading.
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The antenna pattern causes radiometric distortion in the range dimension, because an antenna
transmits more power from the center of the antenna than from its edges. This results in more
intense radar returns in the middle-range of the image swath relative to the near- and far-range
edges where illumination is less intense (Werle, 1992). Figures 4.5 & 4.6 show the azimuth cut

of the SAR antenna pattern.
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Figure 4.6. One antenna azimuth cut of ERS-1 (Lentz, 1993)
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These distortions can be compensated by calculating the range power loss and by measuring the

antenna pattern cross the image swath. Range spreading loss can be compensated in the pixel

digital number using the following equation:

R3
DN’ = DN —— Equation 4.2
R3
ref
where R is the slant range distance at the distributed target location and R ; is a reference slant

range distance; i.e., the mid-swath slant-range distance R _ = 847.0 km (Laur, 1992).

The antenna pattern (Figure 4.7) can be applied to the pixel digital number using the following

equation:

DN?
DN = Equation 4.3

comp

g°(0)
where g?(0) is the two-way antenna pattern profile (to be applied on power data) and 0 is the
look angle at the distributed target location (Laur, 1992).

IN-FLIGHT ERS-1 SAR ANTENNA PATTERN
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BORESIGHT ANGLE (in degrees)

Figure 4.7. Measured antenna pattern for ERS-1 SAR (Laur, 1992)
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4.3.2 ERS-1 SAR Radiometric Calibration

4.3.2.1 Canadian ERS-1 SAR Processor

The Canada Centre for Remote Sensing (CCRS) has been receiving ERS-1 SAR data and
recording them on HDDTs at the Canadian Data Reception Facility at the GSS and Prince Albert,
Saskatchewan Satellite Station since the launch of ERS-1 in 1991. These data are correlated to
imagery by the CERS-1 located at GSS. Because ERS-1 was initially an experimental satellite,
the design and development of the CERS-1 processor were carried out prior to the growth of
requirements in the scientific community for radiometrically calibrated imagery. As a resuit, the
CERS-1 processor was not designed to perform radiometric calibration and performs no
corrections for changes in system gain. The intention was rather to allow all fluctuations in the
sensor to flow through to the data. Any stability that it does produce is therefore inherent in the
sensor itself. There are no normalizations for slant range, incidence angle or antenna pattern

dependencies (Lukowski et al., 1993).

Since the Gatineau processor supplies much of the North American SAR data from ERS-1,
CCRS gave a contract to the Noetix Research Inc. in 1993 to develop ERS-1 SGF Image
Calibration Software based on the paper by Livingstone et al. (1992) to calibrate the ERS-1 SGF
images by removing the effects of the illumination antenna and by providing the coefficients

which convert the digital numbers on a SGF image to total power, or the normalized backscatter

coefficient 6° (Noetix Research Inc., 1993). The calibration software, however, does not

compensate for range spreading loss. Livingstone et al. (1992) estimated the accuracy for this

calibration is at +/- 2 dB.
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4.3.2.2 ESA Processing and Archiving Facilities (PAF) SAR Processor

The ERS-1 SAR PRI product is radiometrically calibrated and corrected for the SAR antenna
pattem and range-spreading loss at one of the ESA PAFs. The calibration measurements were
performed using transponders deployed by ESA/ESTEC in Flevoland, the Netherlands, a joint
effort between the ESA PAF and the ERS Central Facility at ESA/ESRIN. The combination of
internal calibration parameters and accurate on-ground measurements gives the ERS-1 user

community the first opportunity to work with precisely calibrated SAR products acquired over a
long period (Laur et al., 1993).

Internal Calibration Parameters

Two types of internal calibration parameters are measured in the ERS-1 SAR Active Microwave
Instrument (AMI). At the start and end of each SAR imaging sequence, a set of four calibration
pulse measurements and eight noise measurements is made. During the imaging sequence,
copies of the transmitted pulses (replicas) are generated and appended to the raw data. One
complete replica pulse is transmitted with every 24 raw-data range line records. These two stage
internal calibration parameters are required to ensure that the ERS-1 SAR image products are
internally calibrated, especially as the ERS-1 AMI does not have an automatic gain-control
system. The system gain can drift due to temperature changes and aging. The gain changes are
monitored via the replica pulse powers as they are passed through the SAR system. The
calibration pulse measures the majority of the gain drift with the replica pulse being used to
monitor the gain drift during the imaging sequence when the more representative pulse is not

available. The thermal noise is measured when pulses are not being transmitted at the start and

end of each imaging sequence.
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Within ESA SAR processors, a single replica pulse associated with the image product being
processed is extracted and used for gain normalization and range compression. Two problems
were identified with replica pulses. The first was that the replica pulses were being extracted
from the raw data incorrectly such that the start of the replica was misidentified by one or two
range line records. The second problem was associated with the fact that the replica pulse itself
is corrupt in that one or more of the 704 samples that make up the replica can have spurious
values. Quality checking has been introduced at the ESA PAFs including D-PAF to identify the

two problems and, if found, to select another suitable replica pulse to be used for image

generation (Laur et al., 1993).

A further problem was found. The use of a replica pulse within a processor assumes that the
replica pulse power is directly proportional to the transmitted pulse power. If this were the case,
any transmitter pulse power variations would be compensated for in the resultant SAR image. It
was found, however, that the above assumption is invalid (i.e., there is no direct relationship
between the replica pulse and the calibration pulse power). The consequence of this is that any
replica pulse power variations introduced by a SAR processor need to be removed (Laur ez al.,
1993). It was suggested by Laur et al. (1993) that users of ERS-1 SAR imagery need to correct
their imagery to obtain correctly calibrated results. This is done by comparison of the replica
pulse power used to generate the image in question with that used to generate the reference image
of Flevoland from which the calibration constant was derived. The replica pulse power used for
image generation is given in the CEOS header of each image product. The expression used for
this correction is:

image replica power
Equation 4.4

reference replica power

(The reference replica power is 205229.)
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No corrections are made for the calibration pulse power variations within the ESA ground
segment SAR processors. Because the calibration pulse power information is difficult to access

for users and corrections of its variations do not improve the calibration measurements, it is not

proposed to apply such a correction in the derivation of 6° in ESA SAR products generation

(Laur et al., 1993).

Raw Data Quality Parameters

SAR data obey a certain statistical distribution (zero mean, Gaussian amplitude and uniform
phase). Statistical checks on the data can establish whether the data are corrupted during on-
board processing such as in-phase (I) and quadrapture (Q) channel separation and analogue to
digital conversion (ADC) (Laur et al. 1993).

Laur et al. (1993) identified the ADC non-linearity as the main source of error in the
measurement of radar cross-sections or backscattering coefficients. The ADC non-linearity
occurs over large distributed targets having high backscattering levels, such as sea surfaces.
Examinations of ERS-1 SAR raw data for the period January 1992 to September 1993 indicate
an average I channel standard deviation of 6.15 (corresponding to a power loss of 0.1 dB)
together with a range of approximately 2 to 12. These findings indicate that a significant
proportion (22%) of ERS-1 SAR raw data suffers from an ADC power loss higher than 0.5 dB.
Thus, these findings clearly indicate the need to correct for ADC non-linearities when measuring

the radar cross-sections of calibration targets, especially when the targets are in a coastal area.
Table 4.5 shows the radiometric stability and the radiometric accuracy measured with the

transponder 2 before and after the ADC correction. From these results, it appears that the ADC

non-linearities correction gives substantial improvement in the precision of the radar cross section

92



measurements. The derived radiometric parameters such as the radiometric stability and the

radiometric accuracy are reduced by half.

Table 4.5. Radiometric Calibration Parameters with Correction of

ADC Non-Linearities
Transponder 2 Before correction of After correction of
(38 measurements over 2 years) ADC power loss estimate | ADC power loss estimate
Radiometric stability 0.38 dB 0.18 dB
Radiometric accuracy 0.32 dB 0.16 dB
Max. variation of the measured RCS* +0.75dB +042dB

* RCS: radar cross-section

Antenna Pattern Correction

The in-flight ERS-1 SAR antenna elevation pattern has been estimated by ESA/ESRIN using
images over the Brazilian Amazon rain-forest (isotropic targets method). The derivation of the

antenna pattern was done using the mean range profile of 10 images of uniform rain-forest with

the assumption that ¥ = ¢°/cosct is a constant value for the rain-forest (for the ERS-1 SAR
incidence angle a). The derived mean polynomial of range profiles was set to zero at the

boresight angle (look angle 8 = 20.35°). Noise compensation was applied. In order to check

the effect of ADC non-linearities over the rain-forest, a raw data image was analyzed and the
ADC power-loss in the scene was derived. The estimated ADC power loss correction was then
applied to the previously derived in-flight antenna pattern. The estimated in-flight antenna pattern
was then compensated in ESA PRI products (Laur et al., 1993; Laycock and Laur, 1994). The
in-flight ERS-1 SAR antenna pattern is shown in Figure 4.7.
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The Derivation of the Calibration Constant

The calibration constants for ESA ERS-1 products are derived from the Transponder 2 radar
cross-section on October 13, 1991. Table 4.6 gives K values (+0.75 dB) for all PRI products
processed after September 1, 1992. The calibration constant is valid for one specific product and
one specific SAR processor. The different values of K between PAFs arise from the different

gains of the PAF processors (Laur, 1992).

Table 4.6. Calibration Constant K for ESA ERS-1 SAR PRI Products

ESRIN/EECF* D-PAF UK-PAF

K =58.24 dB K = 5824 K =5949 dB

* EECF: ESRIN ERS-1 Central Facility

The estimation of ADC non-linearity corrections (computed from the raw block power analysis)
to apply to the Transponder 2 radar cross-section for this date is 0.39 dB. A confirmation of the
estimate is given by the mean ADC correction of 0.45 dB (measurements over 2 years). An

updated calibration constant is obtained when applying the ADC correction:

K(update) = K + 0.39 dB Equation 4.5
The updated calibration constant K is consistent with previous K estimated error bounds at the
end of the commissioning phase. The updated K error bounds (+ 0.42 dB) are indeed within the

previous estimation of +0.75 dB. The updated radiometric stability is 0.18 dB compared to a
previous figure of 0.38 dB (Laur et al., 1993).
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4.3.3 Derivation of the Radar Backscatter Coefficient G°

The generation of ERS-1 SAR temporal backscatter profiles of agricultural crops requires relating
pixel digital numbers (DN) on SAR images to backscatter coefficients of corresponding
distributed targets in the scene. The aim of this section is to describe the methodology for

deriving backscatter coefficients in ERS-1 SAR PRI products.

The relationship between image intensity and backscatter coefficient is given in its simplest form:

<I>=K * ¢° Equation 4.6

where: <I> s the average pixel intensity measurements,
c° is the backscatter coefficient of the distributed target, and

K is the calibration constant.

To derive a local estimate K(a) of the calibration constant, the following equation should be
applied:
sineL .,
K(o) =K * -~ Equation 4.7
sinot

The calibration constant, K, given in ESA SAR PRI products is K = K (o = 23°). The local

incidence angle o can be determined by the following equations:

R, +h)*-R2-R;
cosL, = Equation 4.8
2R, R,

where R; is the earth radius, R, is the distance between radar and the target (Figure 4.8).
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The complete equation to be applied in order to determine the backscatter coefficient 6° of an area

located at incidence angle o is:

<I> <[> sina R3 1
c° = = ° [
K@ K sina, R, g%0)

Equation 4.9

Since the ESA SAR PRI products have compensated for range spreading loss and antenna

pattern, the equation can be simplified to:

<> sinx
c°= [ Equation 4.10
K sinet,
where : | =N
<I>=--—-e3% DN}
N =

DN, is the digital number of a given pixel ¢ and is proportional to the square-root of
the intensity I received from the ground resolution cell corresponding to pixel /.

N is a large pixel number (more than 500) to ensure statistical validity to the

estimation of the mean intensity.

Expressed in decibels (6°@B) = 10 ®log,, 6°), we have:

sinot
6°(dB) = (10 @ log,,<I>) - (10 ¢ log,,K) + {10 ¢ log,, ( )}  Equation4.11
sinat,,,
0°dB) = <I>(dB) - K(dB) + BdB) Equation 4.12
sinat
where BB) = 10 @ log,, )
sSinoL
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In PRI images, the range of incidence angles & is typically from 19.5° at the near-range to 26.6°

at the far-range. The correction factor B can vary from - 0.7 dB to +0.6 dB with image swath.

Figure 4.8. ERS-1 SAR Imaging Geometry (Laur, 1992)
(*GEM6: Goddard Earth Model 6)

4.4 Summary

In this chapter, the geographical characteristics of the study area have been discussed. The
characteristics of the airborme SAR data, ERS-1 SAR data and the ground information have been
described. The important aspects of calibration of ERS-1 SAR data were discussed and

procedures for derivation of the calibration constant 6° were presented.

97






CHAPTER 5: AIRBORNE SAR FOR CROP CLASSIFICATION:
A MULTIPOLARIZATION APPROACH

5.1 Introduction

As discussed in Chapter 3, airborne SAR data have been used by researchers to identify crops
for the past two decades (e.g., Brisco et al., 1984; Brown et al., 1984; Foody, 1988; Brisco et
al., 1989a; Fischer and Mussakowski, 1989; Brown et al., 1993a; Foody et al., 1994). The
accuracy of SAR crop classification, however, varies and is not always sufficiently high for crop
inventory and analysis. This can be attributed, in part, to the performance of per-pixel classifiers
when applied to SAR data because the results of such classifications are often noisy. In order to
reduce noise and improve classification accuracy, it is necessary to take into account the spatial
correlation among pixels (Qiu and Goldberg, 1985). A per-field classification approach should
improve classification accuracy since fields in Canada are generally planted with a single crop
(Brown et al., 1984; Brisco et al., 1989a). Therefore, efforts have been directed towards
development of techniques to extract and classify homogeneous segments on SAR images (Bénié

et al., 1989; Fiumara and Pierdicca, 1989; Thomson et al., 1990).

The objective in this chapter is to evaluate spatial information processing and classification
methods for improving crop classification using multipolarization airborme SAR data.
Specifically, contextual (filtering) and textural processing techniques are investigated to examine
their effects on improving classification accuracy. Per-pixel and per-field classification
approaches are tested to determine the most appropriate classification method for use in an
agricultural environment; and co-polarization (C-HH), cross-polarization (C-HV) SAR data and

their combinations are evaluated for crop classification.
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5.2 Data Description

The C-HH and C-HV airborne SAR amplitude data used in this study were acquired in narrow
mode by the Convair 580 aircraft of CCRS on July 10, 1990 (Livingstone et al., 1987; 1988).
The detailed characteristics of the SAR systems are described in Section 4.2.1. Differentiation of
crops, based on their stage of development, is greatest in mid-July for Oxford County. As a
result, it was anticipated that crop separability in the microwave region would be optimum at this
time (Foody et al., 1989; Fischer et al., 1992). The incidence angles in the narrow mode of
collection ranged from 45 to 76 degrees for the swath width. The study site, however, fell
within approximately 15 degrees of the incidence-angle range. As a result, backscatter variation
within this range was assumed to be indicative of surface variation, rather than of incidence-angle

effects. The spatial resolution of the data was approximately 6 m (Figure 5.1).

Figure 5.1. Colour composite of C-HH texture (red), C-HV texture (green), and C-HH (blue)
for the study area acquired on July 10, 1990
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Ground data were collected by field teams during the Oxford County Soil Moisture Experiment
(OXSOME) in July, 1990 (Hutton et al., 1990; Brown et al., 1991). The field boundaries were
digitized at CCRS from SPOT satellite data acquired during the 1990 growing season. Extensive
ground data were collected for agricultural fields and included: crop species, plant maturity,

percentage cover, canopy height, row spacing, row direction and plant condition.

5.3 Methodology

Both contextual (filtering) and textural processing techniques are investigated to examine their
effects on improving classification accuracy. Per-pixel and per-field classification approaches are
tested to determine the most appropriate classification method for agricultural crop identification.
The per-field classification method was performed using field-boundary data to define
homogeneous areas. Mean and modal values for each field were calculated and used to replace
the pixel values in the field. The classifications based on field means, modes and their
combinations were performed using a non-parametric classifier. The classification accuracies
achieved using the per-pixel and per-field classification approaches, in conjunction with the

various processing methods using spatial information, are the empbhasis in this study.

5.3.1 Preprocessing

Since the development of image segmentation techniques is not the aim of this study, field
boundaries for the study area were extracted from a geographic information system (GIS) and
were used to define homogeneous areas. The geocoded (i.e., Universal Transverse Mercator
(UTM) coordinates) field-boundary file for the study area was generated using a PAMAP GIS.
First, the field-boundary file was converted from a vector format to a raster format with a pixel
size of 4 m by 4 m; then a 10-pixel buffer was applied to the field boundaries to eliminate the

effects of field boundary pixels and minor image registration errors on crop discrimination. The
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file was then imported into the PCI EASI/PACE image processing system, and the C-HH and C-
HV images were geometrically corrected to the geocoded field boundaries using a second-order
polynomial and a nearest-neighbour resampling algorithm. The accuracy of the geometric

corrections was within one pixel.
5.3.2 Contextual Information in Classification

In order to reduce speckle and within-field variability, a 5x5 median filter was applied to the raw
C-HH and C-HV data. These images were used to determine the effectiveness of simple filtering

on classification accuracy, particularly in conjunction with the field-classification approach.

5.3.3 Texture Information in Classification

A grey-level co-occurrence matrix (GLCM) is a two-dimensional array that can provide
conditional joint probabilities of all pairwise combinations of pixels within a computation
window (Haralick ez al., 1973; Haralick, 1979). The co-occurrence of grey values represents the
probability of any two pairs of grey values occurring at a user-defined interpixel sampling
distance and orientation. Texture statistics generated from the GLCM represent a single spatial
measure of image texture from which the GLCM is computed (Barber and LeDrew, 1991). The
mean texture features based on GLCMs were generated using PCI EASI/PACE software (PCI,
1994). The GLCMs used in this analysis consisted of the conditional joint probabilities of
neighbouring grey values from the 8-bit SAR image at an interpixel sample distance of 1 and
orientation perpendicular to the azimuth/flight direction. An 11x11 moving window was used in

the generation of the texture statistics. This window size was found to produce superior results

to a 7x7 window (Treitz et al., 1993).
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The pixel values of the texture images were 16-bit, so they were scaled to 8-bit values in order to

be compatible with other data types for the subsequent image processing. A supervised
maximum-likelihood classification of the four crops performed on both the 8-bit and the 16-bit

images resulted in similar classification accuracies (i.e., Kappa coefficient ([E’ ) = 0.69),
indicating that the information content remained similar after linear scaling. Schmullius et al.
(1994) also used linear scaling of 16-bit airborne SAR data to 8-bit in their study of variations of
radar backscatter over time for agricultural crops in Germany.

5.3.4 Per-Pixel Classification

In order to assess the effectiveness of the per-field classification approach, a comparison with a
traditional per-pixel classification was required. For this reason, a number of per-pixel
classifications were performed using C-HH and C-HV raw and preprocessed data (e.g., Figures
5.2t05.5).

The four major crops classified in this study were winter wheat, corn, soybeans, and alfaifa.
For each crop, pixel sample blocks were randomly extracted within representative fields in order
to calibrate the classifiers. To assess the accuracy of the classifications, validation pixels,
independent from the calibration pixels, were randomly selected for each crop. Fields that
exhibited anomalies, such as backscatter that deviated significantly from the norm of a particular
class, were excluded from both the calibration and validation samples. These anomalies usually
resulted from crop management and/or soil drainage characteristics. Calibration and validation
pixels were extracted from different fields, a requirement for the per-field approach where a field
was defined as a homogeneous area and all pixels were assigned the value of either the mean or

mode. This reduced the number of fields that could be used for calibration and validation, so
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Figure 5.3. C-HH texture image (using the mean texture statistics of the GLCM)
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Figure 5.4. C-HV image for the study area acquired on July 10, 1990

Figure 5.5. C-HV texture image (using the mean texture statistics of the GLCM)
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calibration had to be restricted to three winter wheat fields, eight com fields, five soybean fields

and seven alfalfa fields. Other crops in the study area were too few in number or size to be

included.

Calibration data were extracted for each of the crops from the imagery and the histograms were
examined in order to determine whether a parametric or non-parametric classifier was more suited
to the data distribution. The calibration data did not follow a Gaussian distribution, particularly
for the texture images, indicating that a non-parametric classifier was better suited. The
minimum-distance-to-means (MD) assigns each pixel to the class which has the minimum
distance between the pixel value and the class mean. In situations where the maximum-
likelihood classifier’s (MLC) multivariate normal distribution assumption does not hold, the MD
may perform better than the MLC. This is because the MD does not require assumptions. In this
study, the MINDIS program in the EASI/PACE software was used (PCI, 1994).

Tests were performed to compare a MD (non-parametric classifier) and a MLC (parametric

classifier). The results indicated that the MD classifier performed better under most

circumstances (Tables 5.1 and 5.2). In all cases, Kappa coefficients ( K) were higher for the
MD classification than for the maximum-likelihood classification. For example, the per-field

classification accuracy ( K) for the C-HH texture image increased from 0.81 to 0.91 when using
the MD as a post-segmentation classifier as opposed to the maximum-likelihood classifier. For

this reason, the MD classifier was used for the remaining analyses.
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Table 5.1. Comparison of MD and ML.C: Per-Pixel Classifications (%)

Image Classifier]{ Winter Corn Soybeans| Alfalfa Overall Kappa
Wheat Coefficient
C-HH MD 61.10 23.30 22.00 91.20 49.36 0.37
C-HH MLC 55.40 0.00 55.90 91.20 50.63 0.35
C-HV MD 35.30 56.40 18.00 69.80 45.41 0.33
C-HV MLC 40.60 52.20 14.50 74.50 45.85 0.28
C-HH filtered MD 89.50 55.30 60.60 100.00 75.51 0.70
C-HH filtered MLC 89.50 21.50 75.30 99.50 69.27 0.59
C-HH texture MD 99.70 63.90 68.40 100.00 82.26 0.78
C-HH texture MLC 99.70 43.20 69.70 100.00 76.69 0.69

Table 5.2. Comparison MD and MLC: Per-Field Classifications (%)

Image - Classifier| Winter Corn Soybeans[ Alfailfa Overall Kappa
Segmentation Wheat Coeflicient

C-HH - mean MD 100.00 75.00 80.00 100.00 88.20 0.85
C-HH - mean MLC 100.00 58.30 80.00 100.00 83.47 0.78
C-HH - mode MD 80.50 66.70 100.00 100.00 85.84 0.82
C-HH - mode MLC 80.50 66.70 70.00 100.00 78.75 0.72
C-HV - mean MD 100.00 100.00 60.00 80.20 85.84 0.83
C-HV - mean MLC 100.00 83.30 60.00 80.20 81.11 0.75
C-HV - mode MD 100.00 91.70 60.00 100.00 88.20 0.86
C-HV - mode MLC 100.00 91.70 60.00 100.00 §8.20 0.84
C-HH texture - mean MD 100.00 83.30 90.00 100.00 92.92 0.91
C-HH texture - mean MLC 100.00 66.70 80.00 100.00 85.84 0.81
C-HH texture - mode MD 100.00 75.00 80.00 100.00 88.20 0.85
C-HH texture - mode MLC 100.00 75.00 60.00 100.00 83.47 0.78
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5.3.5 Per-Field Classification

Field boundaries permitted segmentation of the C-HH and C-HV data into homogenecus fields
using an image-polygon-growing algorithm and homogeneous classifier (PCI, 1994). A unique
grey level was assigned as a label to each output polygon of the field-boundary file which was
then input to the homogeneous classifier as a theme channel. The homogeneous classifier then
defined the homogeneous segments of interest. There were two values that could be assigned to
segments, namely the mean and the mode. Both were tested in this study. The pixel values in
each field were replaced with mean and modal values for that field. Post-segmentation

classifications using the MD were then performed on field means and modes of C-HH and C-HV

data.
5.4 Results and Discussion

5.4.1 Per-Pixel Classification

Both single-channel C-HH and C-HV SAR data had poor validation accuracies (Table 5.3). The
overall validation accuracy for C-HH SAR data was 49.36% (IE'=0.37), while the overall

validation accuracy for C-HV was 45.41% ( K =0.33) (Table 5.3). The lower accuracy for C-
HV, however, is contrary to what one would expect from the microwave theory and the
conclusions drawn by other researchers. According to Holmes (1990), the degree of
inhomogeneity of a surface or volume is strongly associated with the cross-polarization scattering
coefficient of that surface or volume. The separation of crop types can be enhanced using cross-

polarization data. A possible reason for the contradiction is the low signal-to-noise ratio which

occurred with the C-HV data.
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The application of a 5x5 median filter to the raw data improved classification accuracies

significantly for both the C-HH and C-HV images. For example, the validation accuracies of the

filtered C-HH and C-HV images increased to 75.51% (K=0.70) and 64.55% (K=0.57)
respectively (Table 5.3). The C-HH texture image provided the highest validation accuracy of
82.26% (K=0.78) and the C-HV texture image produced a validation accuracy of 74.18%
(K=0.68) (Table 5.3). In all cases, the C-HH image provided better validation accuracies than
its C-HV equivalent. It is evident that texture statistics are able to improve classification
accuracies significantly for mapping agricultural crops. However, texture statistics in
combination with a per-pixel classifier did not appear to provide sufficient accuracy for

operational mapping of crops in southemn Ontario.

Table 5.3. Validation Accuracies (%) for Per-Pixel Classifications

Image Winter Coru Soybeans | Alfalfa Overall Kappa
Wheat Coeefficient

C-HH 61.10 23.30 22.00 91.20 49.36 0.37

C-HV 35.30 56.40 18.00 69.80 45.41 0.33
C-HH filtered 89.50 55.30 60.60 100.00 75.51 0.70
C-HV filtered 70.20 71.40 30.60 84.30 64.55 0.57
C-HH texture 99.70 63.90 68.40 100.00 82.26 0.78
C-HV texture 87.60 79.30 38.10 90.10 74.18 0.68

5.4.2 Per-Field Classification

The per-field validation accuracies for single-channel C-HH, C-HV (mean and mode trials) and
their combinations were inconclusive as to whether the mean or the modal value for defining
homogeneous areas provided the best classification results. For example, classifications based
on the field mean provided a slightly higher accuracy for the C-HH data, whereas the field mode
provided a slightly higher accuracy for the C-HV data (Table 5.2). For the majority of trials,
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particularly with image combinations, the field mean was used and applied to the post-

segmentation classifier.

All per-field classifications improved validation accuracies to varying degrees. The highest per-
field classification accuracy (Ii’ =0.91) was achieved in four separate classifications; C-HH
texture mean; C-HH filtered + C-HYV filtered mean; C-HH texture + C-HV texture mean; and C-
HH + C-HV mean (Figure 5.6). This represents more than a 40% increase in validation
accuracy over the single-channel C-HH or C-HV per-pixel classifications (Tables 5.3 and 5.4).
Among the four highest classification accuracies, three are achieved with the combinations of

CHH and C-HV data. This confirms the strong potential of multipolarization data for crop

classification.
Table 5.4. Validation Accuracies (%) for Field Classifications
Image - Segmentation Winter Corn |Soybeans) Alfalfa) Overall Kappa
Wheat Coefficient

C-HH - mean 100.00 75.00 80.00 100.00 88.20 0.85
C-HH - mode 80.50 66.70 100.00 100.00 85.84 0.82
C-HV - mean 100.00 100.00 60.00 80.20 85.84 0.83
C-HV - mode 100.00 91.70 60.00 100.00 88.20 0.86
C-HH median filter - mean 100.00 66.70 90.00 100.00 88.20 0.85
C-HV median filter - mean 100.00 100.00 60.00 80.20 85.84 0.83
C-HH texture - mean 100.00 83.30 90.00 100.00 92.92 0.91
C-HV texture - mean 100.00 100.00 50.00 80.20 83.47 0.80
C-HH + C-HH filter - mean 100.00 75.00 80.00 100.00 88.20 0.85
C-HH + C-HH texture - mean 100.00 83.30 90.00 100.00 92.92 0.91
C-HV +C-HV filter - mean 100.00 100.00 60.00 80.20 85.84 0.83
C-HV +C-HV texwre - mean 100.00 100.00 60.00 80.20 85.84 0.83
C-HH + C-HV - mean 100.00 100.00 70.00 100.00 92.92 0.91
C-HH filter + C-HYV filter - mean 100.00 100.00 70.00 100.00 92.92 0.91
C-HH texture + C-HV texture - mean 100.00 100.00 70.00 100.00 92.92 0.91
C-HH - mean + C-HV - mode 100.00 91.70 70.00 100.00 90.56 0.88
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The reason these four classifications exhibited similar classification accuracies is due, in part, to
the high correlations (r > 0.98) between these images after segmentation. Crop characteristics
analyzed on a per-field basis generally display reduced spectral variance within a crop while
leaving the mean relatively unchanged. This provides better classification decision rules for the
MD classifier. It must be remembered, however, that these accuracies are artificially high, since
in the MD classification there are no unclassified pixels, meaning that all crops within the study
area are classified into one of four classes. For example, pasture and oats are grouped into one
of the four classes. These assignments are not evident in the validation data. It is desirable,
therefore, to develop better measures for the classification accuracy in a per-field classification.
In most classifications, wheat and alfalfa are easily separated. The majority of confusion among
the four major crops occurred with corn and soybean, due to these two crops possessing similar

tones and textures.

Figure 5.6. Per-field classification resuits of a C-HH mean and C-HV mean combination
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The user must also be aware that some of these processes are more computationally intensive
than others and must be applied appropriately. For example, in this study, texture statistics (a
very CPU-intensive process) produced 5-10% improvement over simple median filtering. It may
be judged that this level of improvement is not justified based on the amount of computer
processing required. Altematively, per-field classification of multiple polarizations provide
classification accuracies similar to those which include texture features and are therefore a viable

alternative to calculating texture features.

5.5 Summary

Operational methodologies for improving agricultural crop identification have been tested using
C-HH and C-HV airborne SAR data collected on July 10, 1990. Raw SAR data, filtered SAR
data and SAR texture statistics were classified using per-pixel and per-field classification
approaches to determine their effectiveness for agricultural crop classification. The approaches
presented for improving agricultural crop classification proved to be effective, especially the per-
field classification method. Results indicate that C-HH and C-HV data, classified using a
standard per-pixel MD classifier, provide relatively poor classification accuracies. Inclusion of
texture statistics in the per-pixel classification improves accuracies by approximately 30% and
simple median filtering boosts accuracies by approximately 25%. However, using a per-field

classifier, the classification accuracies improve by about 40%.

Multipolarization SAR data were also evaluated for crop classification. Results indicated that C-
HV SAR data yielded lower overall classification accuracy (45.41%) than C-HH SAR data
(49.36%). The lower accuracy for C-HV is contradicting conclusions put forward by other
researchers. A possible reason for the contradiction is the low signal-to-noise ratio with C-HV
data. It was also found that three of the four best per-field classification accuracies (K=0.91)
were achieved using combinations of C-HH and C-VV SAR data. This confirms the strong

potential of multipolarization data for crop classification.
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CHAPTER 6: INTEGRATION OF SATELLITE SAR AND VIR DATA
FOR CROP CLASSIFICATION

6.1 Introduction

The synergistic effects of SAR data and imagery acquired in the visible and infrared (VIR)
portions of the spectrum have been recognized as important for two main reasons. First,
timeliness of SAR fills information gaps during overcast or hazy periods at the critical stages of
the growing season, and second, the combination of data from different parts of the spectrum
often leads to increased classification accuracy. Previous studies have shown that combining
airborne SAR and satellite VIR data improves crop classification accuracies (Brown ez al., 1984;
Guindon et al., 1984; Hirose et al., 1984; Brisco et al., 1989a; Fiumara and Pierdicca, 1989;
Dixon and Mack, 1990; Brisco and Brown, 1995). Very little research, however, has been done
to improve crop classification accuracies using data from two satellite sensors (Fog et al., 1993;

Kohl et al., 1993). Thus, the potential of satellite SAR and VIR synergism still needs further

investigation.

Conventional statistical classifiers, such as the maximum-likelihood classifier (MLC), make a
number of untenable assumptions about the dataset to be classified (Foody et al., 1995). For
example, this parametric approach requires data to have a Gaussian distribution. SAR data,
however, are not normally distributed due to speckle. Therefore, the accuracies of SAR crop
classification using conventional statistical classifiers are often not sufficiently high for crop
inventory and analysis. In order to improve classification accuracy, it is necessary to explore

robust classifiers using non-parametric and non-statistical approaches.

The artificial neural network (ANN) classifier presents a distribution-free approach to image

classification. It also has the special advantages of simple local computations and parallel
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processing (Schalkoff, 1992). In the past few years, studies have shown that neural networks
compare well to statistical classification methods in the classification of multidate, multisource
remote sensing/geographic data, very high dimensional data, and when classification is done
with a large number of classes (e.g., Benediktsson et al., 1990a; 1990b; Kanellopoulos et al,
1991; Paola and Schowengerdt, 1995). When applied to airbome SAR data, it was found that
for the classification of agricultural crops ANN algorithms produced higher classification
accuracies in general than those derived from statistical classifiers (Foody et al., 1994; 1995).
Therefore, it is desirable to investigate the effectiveness of ANN algorithms for crop
classifications using satellite SAR and VIR data.

The objective of this chapter is to evaluate the synergy of multitemporal ERS-1 SAR and Landsat

T™ data for crop classification using an artificial neural network approach. The specific

objectives are:

. to evaluate early- and mid-season crop classification accuracies using a single-date SAR
image alone and also using multitemporal SAR data,

. to evaluate the synergism of multitemporal ERS-1 SAR and Landsat TM data for
improving crop classification, and

. to evaluate an ANN algorithm as a post-segmentation classifier in comparison to the

conventional maximum-likelihood classifier.

6.2 Data Description

Three dates of early- and mid-season ERS-1 C-VV SAR data were acquired during the 1992
growing season (June 15, July 24 and August 5). The July 24 SAR image was acquired in
ascending mode, while the others were recorded in descending mode. One date of Landsat TM
data was also acquired on August 6, 1992. The ERS-1 SAR and Landsat TM images are shown
in Figure 6.1 and 6.2. The charateristics of the data are described in Chapters 2 and 3.
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Figure 6.1. Landsat TM imagery of the study area acquired on August 6, 1992
Red:TM4, Green:TMS, and Blue:TM3
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Figure 6.2. Multitemporal ERS-1 SAR imagery of the study area, acquired during the 1992

growing season - Red:August 5, Green:July 24, and Blue:June 15
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Detailed field information was collected at the time of the overpasses and was input to a

geographic information system (GIS) to aid in developing and understanding the classifications.

6.3 Methodology

In the analyses presented in this chapter, single-date SAR data, multitemporal SAR data, and
combinations of SAR and TM data are classified. In all cases, a per-field classification approach
is adopted since this conforms to conventional mapping strategies and has been widely used in
radar remote sensing as a means of reducing the effect of speckle (Foody et al., 1994; Ban et al.,
1995). The ANN classifier is used in post-segmentation classifications. Also, per-pixel

classifications using the MLC are performed for comparison purposes.

6.3.1 Preprocessing

The raw-signal SAR data were processed by the Atlantis Processor at the Canada Centre for
Remote Sensing and were geometrically corrected to the 1992 field boundaries (Universal
Transverse Mercator -UTM projection) to a sub-pixel accuracy. The geocoded field-boundary
file for the study area was digitized from a SPOT image in a PAMAP GIS and was then imported
into a PCI EASI/PACE image processing system. To eliminate the effects of field-boundary
pixels and minor image registration errors on crop discrimination, a S-pixel buffer was applied to

the field boundaries. This procedure is similar to the one described in Chapter 5.

6.3.2 Selection of Calibration and Validation Blocks

The major crops classified in this study were winter wheat, com, soybeans, barley/oats, alfalfa
and pasture/cut-hay/cut-alfalfa. Due to the differences in growing stages and ground-cover

density, comn and soybeans were further divided into two classes: good growth and poor growth.
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For each crop, pixel sample blocks were randomly extracted within representative fields in order

to calibrate the maximum-likelihood classifier and to train the artificial neural network.

To assess the accuracy of the classifications, validation pixels, independent from the calibration
pixels, were randomly selected for each crop. Fields that exhibited anomalies, such as spectral
reflectance/backscatter that deviated significantly from the norm of a particular class, were
excluded from both the calibration and validation samples. These anomalies usually resulted
from weed infestations, crop management and/or soil-drainage characteristics. The calibration
and validation block selections were based on the crop information; i.e., crop type, crop growth
stage, ground cover, height, row direction, etc. These data were stored in a PAMAP GIS.

Calibration and validation pixels were extracted from different fields, a requirement for the per-
field approach where a field is defined as a homogeneous area and all pixels are assigned the
mean value of the field. This reduced the number of fields that could be used for calibration and
validation, so calibration had to be restricted to fewer fields than preferable.

6.3.3 Per-Pixel Classification

In order to assess the effectiveness of the non-parametric and non-statistical approaches, a
comparison with the results of an MLC was required. A number of classifications for SAR, TM
and their combinations were performed using the MLC.

6.3.4 Per-Field Classification

In Canada, a field only grows a single crop. Thus, it is desirable to use a per-field classification.

Also a per-field approach reduces the SAR speckle effects, as discussed earlier.
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6.3.4.1 Segmentation

A per-field classifier permits segmentation of the ERS-1 SAR image into homogeneous fields
using field boundaries. A unique grey level was assigned as a label to each output polygon of
the field-boundary file which was then input to the homogeneous classifier as a theme channel.
The homogeneous classifier defined the homogeneous segments of interest. There were two
values that could be assigned to segments, namely the mean and the mode. Only the mean was

tested in this study. The pixel values in each field were replaced with the mean value for that

field.
6.3.4.2 Post-segmentation Classification

A post-segmentation classifier, an ANN, was investigated. An artificial neural network consists
of interconnected processing elements called units ("nodes” or "neurons”). These are organized
in two or more layers. There is an input layer of units which is activated by the input image data.
The output layer of units represents the output classes to train for. In between, there is usually
one or more hidden layers of units (PCI, 1994; Paola and Schowengerdt, 1995; Foody, 1996).
A feed-forward neural network structure is shown in Figure 6.3. A specific artificial neuron

computational structure is shown in Figure 6.4.

Satellite SAR Input Hidden Layers Output
& VIR Data Layer Layer
O v = O '
N2~ \N\HO — Winter Wheat
X\ ¥

7 Y IR
7 7 S50 ﬂ,‘/; ®

O N <
o 0, RORICI

‘0;:? O——— Coml

% ESDOERRIOS 2N
1) ——— ONX\ 21N 'II’\' O — Barley/Oats
,- /2

X/

Figure 6.3. A feed-forward Artificial Neural Network structure (Foody, 1996)
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Figure 6.4. A specific artificial neuron computational structure, where

1
net-ZW 0,;, 0; = f(net) = ——————- (Schalkoff, 1992)
1 +e*

The programs use a back-propagation network that leams using the Generalized Delta Rule:
AW, =13, 0, +a AW,

where 1) = learning rate, a0 = momentum, §, = error at the kth-layer, O, is the output of layer j,

and W, is the connection weight between the jth-layer node and the kth-layer node (Li and Si,
1992).

The back-propagation learning algorithm has been widely used in pattern recognition applications
of artificial neural networks. The term "back-propagation” refers to the training method by
which the connection weights of the network are adjusted. It iteratively minimizes an error
function over the network outputs and a set of target outputs, taken from a training data set. The
process continues until the error value converges to a (possibly local) minimum. The error
function is given as:
E=123,(T,- Oy

where T is the target output vector for the training set (T, ..., T,) and O, is the output vector

from the network for the given training set. On each iteration, back-propagation recursively

computes the gradient or change in error with respect to each weight in the network, dE/QW, and

these values are used to modify weights. Adding a fraction of the negative gradient to each
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weight is equivalent to performing a steepest-descent minimization of the error function with

respect to each weight in the network (Foody, 1996).

The training of the network is similar to any supervised classification procedure i.e., calibration
blocks have to be selected and used to adapt the classifier. In this case, network weights were

adapted. The back-propagation learning procedure is shown in Figure 6.5 (Schalkoff, 1992).

Initialize training
iteration counter N = 1

w *or gther reasonable values i 2 prion
o Ny b

°* check on convergence

Figure 6.5. A summary of the back-propagation learning procedure (Schalkoff, 1992)
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In this study, EASI/PACE software NNCREAT, NNTRAIN and NNCLASS (PCI, 1994) were

used to evaluate a multilayer feed-forward neural network using back-propagation.
6.4 Results and Discussion

6.4.1 Per-Pixel Classification

Although three-date SAR combination displayed a 4% improvement for classification accuracy
over the best single-date classification alone, the overall validation accuracies for both single-
date SAR and multitemporal SAR were very low (see Table 6.1). The first reason for the poor
accuracies is that the MLC is not an effective classifier for SAR data classifications, due to
speckle. The second reason for the poor performances is that the single-parameter, high
incidence angle ERS-1 SAR system does not provide sufficient differences for eight crop
classes. Satellite SAR systems with multi-incidence angle, multiresolution, multiwavelength,
and multipolarization, such as the Canadian RADARSAT, are very desirable to improve the
performance of satellite SAR data for crop classification. The third reason for the poor
accuracies is that the calibration and validation blocks were selected based on the August S field
data, but the change of crop cover over the growing season can cause confusion. For example,

an alfalfa class in June was shown as a pasture/cut-hay/cut-alfalfa class in August.

Landsat TM3,4,5 alone produced an 89.8% classification accuracy (Table 6.1). Combinations
of SAR and TM data improved the classification accuracies in general. The best overall accuracy
(91.85%) was for the combination of all three dates of SAR and TM3,4,5 imagery. This

represents a 2% increase over the TM3,4,5 classification alone.
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Table 6.1. MLC Classifications for SAR, TM Data and their Combinations

. . _
SAR, June 15  SAR, July 24  SAR, Aug. S TM345, Aug. 6 Overall Kappa

Accuracy (%) Coefficient

X 30.32 0.07
X 28.75 0.18

X 33.68 0.09

X X x 37.66 0.28
x 89.81 0.88

x X 90.30 0.39
X x 91.40 0.90

X X X X 91.85 091

6.4.2 Per-Field Classification

Per-field classification with an ANN proved to be very effective. The best single-date (Aug. 5)
SAR classification using per-field ANN improved the overall accuracy by about 26% compared
to that of the per-pixel classification (Tables 6.1 and 6.2). The crop classification accuracies
improved by almost 20% using the combination of June, July and August SAR data (Tables 6.1
and 6.2) Although these overall classification accuracies (<60%) are not sufficiently high for
operational crop inventory and analysis, both single-date and multitemporal SAR data have
demonstrated their abilities to discriminate certain crops in the early- and mid-season. For
instance, winter wheat, poor-growth com and alfalfa could be differentiated perfectly from others
using the combination of the three-date SAR (Table 6.3).

The best per-field classification of 96.8% with an ANN classifier was achieved using the
combination of TM3,4,5 and Aug. 5 SAR data (Table 6.2, Figure 6.6). It represents an 8.5%

improvement over a single TM3,4,5 classification alone. It also represents a 5% increase over
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the best per-pixel classification. In this classification, accuracies of 100% were achieved for all
crops except the alfalfa and pasture/cut-hay/cut-alfalfa classes (Table 6.4). Alfalfa had a 16.3%
commission error to the first corn class (i.e., good growth), and pasture/cut-hay/cut-alfalfa had a
15.1% commission error with the second class of soybeans (i.e., poor growth). The second-
best classification accuracy of 95.9% was achieved using the combination of TM3,4,5 and the
July 24 SAR image (Table 6.2). These results indicate that a combination of mid-season SAR
and VIR data is very well suited for crop classification. The success of this combination may
have been because the ground conditions were similar since the SAR data and TM data were

acquired only one day or a few days apart.

All classification accuracies improved using the per-field ANN except that of TM3,4,5 (Tables
6.1 and 6.2). This is possibly because the neural network for the second comn class (i.e., poor
growth) was not well trained. It resulted in poor accuracy for the second com class (only

25.9%) with a commission error to the barley/oat class of 62.1%, while all other classes were

100% correctly classified (Table 6.5).

Table 6.2. ANN Per-Field Classifications for SAR, TM Data and their Combinations

SAR, June 15 SAR, July 24 SAR, Aug. § TM34S5, Aug. 6 Overall Kappa

Mean Mean Mean Mean Accuracy (%) Coefficient

x 41.66 0.30

x 59.94 0.46

X x x 57.24 0.51

X 88.48 0.87

x X 88.08 0.86

X x 95.92 0.95

x x 96.81 0.96

x x X 93.62 093

X x X X 93.89 0.93
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Table 6.3. ANN Per-Field Classification for the Combinations of the Three-Date SAR (%)
_ - . ______ ________________ ______ .-

Winter Com 1 Com 2 Soybeans 1 Soybeans 2  Alfalfa Pasture/ Barley/

Wheat cut-hay-alf OQats
W. Wheat 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Comn 1 13.2 604 26.4 0.0 0.0 0.0 0.0 0.0
Corn 2 0.0 0.0 1000 0.0 0.0 0.0 0.0 62.1
Soybeans 1  16.1 322 7.6 44.1 0.0 0.0 0.0 0.0
Soybeans2 0.0 58.5 0.0 0.0 41.5 0.0 0.0 0.0
Alfalfa 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
P/cut-hay-alf 0.0 0.0 0.0 61.8 0.0 277 0.0 10.5
Barley/Oats 0.0 0.0 0.0 0.0 0.0 86.8 0.0 0.0

Table 6.4. ANN Per-Field Classification for the Combination of TM3,4,5
and Aug. 5 SAR Data (%)

- - ____ - _--- - —
Winter Com 1 Corn2 Soybeansl  Soybeans2  Alfalfa Pasture/ Barley/

Wheat cut-hay-alf Qats
W. Wheat 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Corn 1 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
Com 2 0.0 0.0 100.0 0.0 0.0 00 0.0 0.0
Soybeans 1 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Soybeans2 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
Alfalfa 0.0 16.3 0.0 0.0 0.0 83.7 0.0 0.0
P/cut-hay-aif 0.0 0.0 0.0 0.0 15.1 0.0 84.9 0.0
Barley/Oats 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
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Table 6.5. ANN Per-Field Classification for TM3,4,5 (%)

. _______________________________ - ______ __
Winter Com 1 Com2 Soybeansl Soybeans2 Alfalfa Pasture/ Barley/

Wheat cut-hay-alf Oats
W. Wheat 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Com 1 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
Corn 2 0.0 12.0 25.9 0.0 0.0 0.0 0.0 62.1
Soybeans 1 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
Soybeans2 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
Alfalfa 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
P/cut-hay-alf 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Barley/Oats 0.0 0.0 0.0 0.0 0.0 00 0.0 100.0

Figure 6.6. ANN per-field classification for the combination of ERS-1 SAR (Aug. 5)
and TM3,4,5 (Aug. 6) data
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6.5 Summary

The synergistic effects of multitemporal ERS-1 SAR and Landsat TM data were evaluated for
crop classification using an artificial neural network (ANN) approach. Eight crop types and
conditions were identified: winter wheat, comn (good growth), corn (poor growth), soybeans
(good growth), soybeans (poor growth), barley/oats, alfalfa, and pasture/cut-hay/cut-alfalfa.
The results show that both single-date and multitemporal SAR data yielded poor classification
accuracies using a maximum-likelihood classifier (MLC). With the per-field approach using a
feed-forward artificial neural network, the overall classification accuracy of three-date SAR data
improved almost 20%, and the best classification of a single-date (Aug. 5) SAR image improved
the overall accuracy by about 26%. Although these overall classification accuracies (<60%) were
not sufficiently high for operational crop inventory and analysis, both single-date and
multitemporal SAR data demonstrated their abilities to discriminate certain crops in the early- and
mid-season. Using the combination of TM3,4,5 and Aug. 5 SAR data, the best per-field ANN
classification of 96.8% was achieved. It represents an 8.5% improvement over a single
TM3.4,5 classification alone. This indicates that a combination of mid-season SAR and VIR

data is very well suited for crop classification.
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CHAPTER 7: ERS-1 SAR FOR CROP IDENTIFICATION:
A MULTITEMPORAL APPROACH

7.1 Introduction

Past studies have demonstrated that multitemporal SAR data can enhance the ability to
distinguish between crop spectral patterns (e.g., Brisco et al., 1984; Brown et al., 1984;
Fischer and Mussakowski, 1989; Foody ez al., 1989; Dobbins et al., 1992; see Section 3.4.2 in
Chapter 3 for the detailed review). However, comparatively few datasets have been available
for study because of the increased cost and logistics of generating multitemporal SAR data
with airborne platforms (Brisco et al., 1992). With the launch of the European Remote
Sensing Satellite (ERS-1), the first long-duration spaceborne imaging SAR system became
available to provide researchers with an excellent opportunity for developing agricultural
applications of remote sensing data using multitemporal SAR imagery (e.g., Brown et al.,

1993a; Kurosu et al., 1993; Wooding et al., 1993; Borgeaud et al., 1994).

The objectives of this study are to understand and analyze the multitemporal radar backscatter
characteristics of crops and their underlying soils over the growing season and to determine the
earliest time of the year for differentiation of individual crop types. The specific objectives
are: 1. to generate ERS-1 SAR temporal backscatter profiles for each crop type; to identify
fields displaying anomalous radar backscatter characteristics, statistically describe the
anomalous fields, and discuss reasons for those anomalies; and 2. to evaluate early- and mid-

season multitemporal SAR data for crop classification using sequential masking techniques.

7.2 Data Description

The ERS-1 C-Band (5.3 GHz) VYV polarization SAR data used in this study were acquired on

six dates during the growing season in 1992 and on nine dates during the 1993 growing season.
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Except for July 24, 1992, all data were acquired during two descending passes (Figures 7.1,
7.2,7.3,74,75 and 7.6; Table 7.1). The 1992 images were received and processed at the
Gatineau Receiving Station in Canada, while the 1993 data were processed and fully calibrated

at D-PAF, Germany. The detailed characteristics of the ERS-1 SAR data are described in

Chapter 4.

Ground data were collected by field teams during the ERS-1 Soil Moisture Experiment
(ERSOME) in the 1992 and 1993 growing seasons (Gardell et al., 1993). The 1992 field
boundaries were digitized from a SPOT satellite image at CCRS and were updated at the
University of Waterloo using a 1993 SPOT image. Extensive ground data were collected for
agricultural fields and included crop type, growth stage, percentage cover, canopy height, row

spacing, row direction and plant condition.

Table 7.1 Fifteen Dates of ERS-1 Data

Date Orbit Meode
May 27, 1992 2 Descending
June 15, 1992 1 Descending
July 24,1992 ? Ascending
Aug. 5,1992 2 Descending
Sept. 28, 1992 1 Descending
Oct. 14, 1992 2 Descending
May 31, 1993 2 Descending
June 16, 1993 1 Descending
July §, 1993 2 Descending
July 21, 1993 1 Descending
Aug.9, 1993 2 Descending
Aug. 25, 1993 1 Descending
Sept. 13, 1993 2 Descending
Sept. 29, 1993 1 Descending
Oct. 18, 1993 2 Descending
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Southern
Ontario

Figure 7.2. Multitemporal ERS-1 SAR imagery of the study area, acquired during the 1992 growing
season - Red: July 24, Green: June 15, and Blue: May 27
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Figure 7.3. Multitemporal ERS-1 SAR imagery of the study area, acquired during the 1992 growing
season - Red: Oct. 14, Green: Sept. 28, and Blue: Aug. 5

Figure 7.4. Multitemporal ERS-1 SAR imagery of the study area, acquired during the 1993 growing
season - Red: July 5, Green: June 16, and Blue: May 31
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Figure 7.5. Multitemporal ERS-1 SAR imagery of the study area, acquired during the 1993 growing
season - Red: Aug. 25, Green: Aug. 9, and Blue: July 21

Figure 7.6. Multitemporal ERS-1 SAR imagery of the study area, acquired during the 1993 growing
season - Red: Oct. 18, Green: Sept. 29, and Blue: Sept. 13
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7.3 Methodology

7.3.1 Field-Boundary Preparation

Since the development of image segmentation techniques is not the aim of this study, field
boundaries for the study area were extracted from a geographic information system (GIS). The
geocoded field-boundary file for the study area was generated using a PAMAP GIS. The file
was then imported into the PCI EASI/PACE image processing system. To eliminate the effects
of field-boundary pixels and minor image registration errors on crop discrimination, a 5-pixel

buffer was applied to the field boundaries. This procedure is similar to the one described in

Chapter 5.

7.3.2 SAR Data Radiometric Calibration And Geometric Correction

Quantitative comparisons of the multitemporal SAR data require calibrated images. The ERS-
1 SAR calibration principles and procedures are described in Chapter 4. For the 1992 data, the
effects of the illumination antenna were removed, but range-spreading loss was not
compensated (Noetix Research Inc., 1993). The accuracy for this calibration was
conservatively estimated at + 2 dB (Livingstone et al., 1992; Brown et al., 1993a). The 1993
data were radiometrically calibrated, i.e., corrected for the SAR antenna pattern and
compensated for range-spreading loss. The calibration accuracy is + 0.42 dB (Laur er al.,

1993).
The SAR images were then geometrically corrected to field boundaries (Universal Transverse

Mercator - UTM projection) with a 12.5 m pixel spacing using a second-order polynomial and

a nearest-neighbour resampling algorithm.
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7.3.3 Derivation of the Radar Backscatter Coefficient 6°

The generation of ERS-1 SAR temporal backscatter profiles of agricultural crops requires
relating pixel digital numbers (DN) on SAR images to backscatter coefficients of
corresponding distributed targets in the scene. The detailed methodology for deriving

backscatter coefficients in ERS-1 SAR PRI products is described in Chapter 4.

Using both 1992 and 1993 field-boundary files, radar backscatter characteristics for each field
were analyzed for each date using PCI EASI/PACE. First, the DN values on each image were
converted to power (amplitude squared), then the mean backscatter of each field (> 500 pixels)
was calculated in the power domain and imported to EXCEL. For 1993 data, the local

incidence angles of the study area for each scene were calculated using the central pixel
numbers of the study area from the near range. Then the local estimate K(o) of the calibration
constants was determined using Equation 4.7. Finally, the 6° (dB) of each field for both 1992

and 1993 data was derived using Equation 4.10.

7.3.4 Temporal Backscatter Profile Generation

SAR temporal backscatter profiles for both the 1992 and the 1993 growing season were
generated in EXCEL for major crop types (i.e., corn, soybeans, winter wheat, barley/oats,
alfalfa and pasture). First, the temporal backscatter profile for each individual field was

generated; then the general temporal backscatter profile for each crop was generated by

averaging the ¢” of all fields for that crop on each date.
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7.3.5 Classification of Multitemporal SAR Data: A Sequential-Masking Approach
7.3.5.1 Selection of Calibration and Validation Blocks

For each crop, pixel sample blocks were randomly extracted within representative fields in
order to calibrate the maximum-likelihood classifier (MLC). To assess the accuracy of the
classifications, validation pixels, independent of the calibration pixels, were randomly selected
for each crop. Fields that exhibited anomalies, such as backscatter that deviated significantly
from the norm of a particular class, were excluded from both the calibration and validation
samples. Calibration and validation pixels were extracted from different fields, a requirement
for the per-field approach where a field is defined as a homogeneous area and all pixels are

assigned the value of the mean. This reduced the number of fields that could be used for
calibration and validation (Ban et al., 1995).

7.3.5.2 Per-Pixel Classification

In order to assess the effectiveness of the field-classification approach, comparison with a
traditional per-pixel classification was required. For this reason, MLC classifications were

performed using early- and mid- season ERS-1 SAR data in 1992 and 1993.

7.3.5.3 Per-Field Classification

Field boundaries permitted segmentation of the ERS-1 SAR data into homogeneous fields
using an image-polygon-growing algorithm and homogeneous classifier (PCI, 1994). A unique
grey level was assigned as a label for each output polygon of the field-boundary file which was
then input to the homogeneous classifier as a theme channel. The homogeneous classifier

defined the homogeneous segments of interest. There were two values that could be assigned

134



to segments, namely the mean and the mode. Only the mean was tested in this study. The
pixel values in each field were replaced with the mean value for that field. Post-segmentation
classifications using an ANN algorithm were then performed on field means of the ERS-1 SAR
data. The procedure is similar to the one described in Chapter 6.

7.3.5.4 Sequential-Masking Classification

The sequential-masking classification procedure is an interactive human/computer interface
patterned after photointerpretation techniques in which the most distinct image features are
labelled (classified) first. Image analysis is then carried out on the less-interpretable image
features until the entire image is classified. Sequential masking employs image-processing
techniques and GIS operations simultaneously to classify multitemporal images. Sequential
masking also allows incorporation of ancillary spatial data such as thematic maps (e.g., soil
maps) into the classification process (Ehrlich et al., 1994). The classification logic of the
sequential-masking procedure is summarized in Figure 7.7. Although sequential-masking
techniques were developed using satellite VIR data for land-use mapping, the potential has not
been fully explored due to lack of multitemporal datasets (i.e., the problem of cloud cover).
The availability of multitemporal satellite SAR data provides an excellent opportunity to

investigate sequential-masking techniques for crop classification.
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Barley/QOats Iayexj

Figure 7.7. Summary of the classification logic of the sequential masking procedure
(modified from Ehrlich ez al., 1994)
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7.4 Results and Discussion

7.4.1 ERS-1 SAR Temporal Backscatter Profiles

As discussed in Chapter 3, a wide range of parameters affects the backscatter of microwaves
from vegetation and soil. The important instrument parameters, however, are frequency,
polarization and incidence angle. The crucial features of the target in determining the
proportion of radiation returning to the instrument are plant canopy (e.g., plant type, height,
density, biomass, water content and growth stage) and soil parameters (e.g., soil moisture
content, roughness and tillage direction). The SAR temporal backscatter profiles for each crop
show the complexity of the relationship between microwave and agricultural parameters over

the growing season.
7.4.1.1 ERS-1 SAR Temporal Backscatter Profiles for Major Crops: 1992

ERS-1 SAR Tem Backscatt s

The ERS-1 SAR temporal backscatter profiles for major crops are shown in Figure 7.8. From

this figure, it is possible to make the following observations for the earliest differentiation of

crop types:
* Winter wheat can be successfully separated from other crops in May and June since it is at

a very different growth stage from other crops.

» Alfalfa and pasture can be separated from other crops in the mid-season, but they both have

very similar profiles throughout the growing season.

* Corn and soybeans have similar profiles in the early and mid- season, but can be separated

from each other in the late season.
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Figure 7.8. ERS-1 SAR temporal backscatter profiles for major crops during the 1992 growing season

Anomalous Fields

Some anomalous fields were observed during the analysis. For example, on July 24, there was
more than 2 dB of difference for the backscatter of an anomalous corn field (4-31) when
compared with the average corn backscatter of more than 20 fields (Figure 7.9). This was
caused by the differences in ground coverage, growth conditions and local climate. According
to field observations, the normal fields were densely covered by com (>90%), while the
anomalous field only had 70% of corn coverage and was infested by weeds (Figure 7.10). The
fields were wet because of rain. Other anomalies observed are mainly caused by changes in
the fields. For example, one of the harvested small-grain fields (with residue) was ploughed
before the data acquisition on October 14 (Figure 7.11). This caused a 2 dB increase in radar
backscatter when compared with that of other harvested small-grain fields. There was another

2 dB increase in radar backscatter when an alfalfa field was ploughed (compared with
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backscatter of the alfalfa fields). These indicate that close attention should be given to the
changes of the field status over the growing season. In general, the anomalies usually resulted
from crop condition and crop management, and/or soil drainage and soil roughness
characteristics. These anomalies can cause confusion during classification and they should be

excluded from the selection of calibration and validation fields if a supervised classification is

used.
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Figure 7.9. Comparison of a corn anomaly and the corn average

Figure 7.10. Com: poor growth and good growth (July 20, 1992)
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Figure 7.11. Comparison of a barley/oats anomaly and the barley/oats average
7.4.1.2 ERS-1 SAR Temporal Backscatter Profiles for Major Crops: 1993

ERS-1 SAR Te Backscatter Profiles

Using multitemporal ERS-1 SAR data during the 1993 growing seasons, the radar backscatter
characteristics of crops and their underlying soils were analyzed. The SAR temporal
backscatter profiles were generated for each crop type (Figure 7.12). Using corn as an
example, radar backscatter was high in the early season when fields were relatively rough with
bare soil. With crop development, backscatter decreased due to attenuation and absorption by
the vegetation canopies. The decreasing trend continued until August 9, when corn was at cob

development stage. Then the backscatter started to increase as the crops reached the senescent

stage (Figures 7.13 & 7.14).
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Figure 7.12. ERS-1 SAR temporal backscatter profiles for major crops during 1993 growing season

June 2, 1993 June 16, 1993

July §, 1993 July 21, 1993
Figure 7.13. Corn development during the 1993 growing season
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Aug. 25, 1993

Sept. 13, 1993 Sept. 29, 1993

Oct. 18, 1993 Oct. 18, 1993
Figure 7.13. Comn development during the 1993 growing season (cont.)
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The temporal backscatter profiles shown in Figures 7.12 and 7.14, however, do not match the
general findings described earlier. Efforts were made to explain ups and downs in the
backscatter patterns. ERS-1 radiometric calibration accuracies, local climatic conditions, crop
growth conditions, etc. were taken into account, but none of these were found to be responsible
for such temporal backscatter behaviours. When the two ERS-1 orbits were separated,

however, the temporal backscatter profiles started to make sense (Figure 7.15).
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Figure 7.14. ERS-1 SAR temporal backscatter profile for com - 1993

0.00 : t . : : , .
a1-  16- 5- 21- 9- 25- 13- 29- 18-
May Jun Jul Jul Aug Aug Sep Sep Oct

-2.00 +

Y b ,

2 j - +0.42 —&—Orbit2 - -0.42 |

= 400 |- - +0.42 ~—O—oOmit1 - -0.42 |
3 |
£ -6.00 -
e |
4 i
e L
5 -8-00 ¢
.
2 1000+
[*] |
- |
@ |
-12.00 Il.
%
-14.00 +

Figure 7.15. ERS-1 SAR temporal backscatter profiles for corn derived from two orbits:
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Orbital (Incidence cts

No previous research on the relationship of C-VV backscatter coefficient 5" and angle of

incidence for crops has been found in the literature. However, Ulaby et al. (1986a) measured
incidence-angle effects on a corn canopy using C-HH. Although C-VV penetrates less into the
crop canopy than C-HH, it is clear that at higher incidence angles (>30°), the backscatter
coefficient decreases sharply when the incidence angle increases. The estimated change of

backscatter is about 3-4 dB from 20° to 25° (Figure 7.16).
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Figure 7.16. Measured & of a fully mature corn canopy in four consecutive stages of defoliation;
all the measurements were made on the same day (Ulaby ez al., 1986a)

ERS-1 orbital (incidence angle) effects were observed on all crops (Figures 7.15 & 7.17-7.20).
For 4° difference of incidence angles between the two orbits (about 21.5° and 25.5°), the
average difference of radar backscatter was about 3 dB. This is similar to the findings of
Ulaby et al. (1986a). Thus attention must be given to the local incidence effects when using

ERS-1 SAR data, especially when comparing fields from different scenes or different areas

within the same scene.
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Figure 7.17. ERS-1 SAR temporal backscatter profiles for wheat derived from two orbits:
error buffers included
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Figure 7.18. ERS-1 SAR temporal backscatter profiles for barley/oats derived from two orbits:
error buffers included
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Figure 7.19. ERS-1 SAR temporal backscatter profiles for soybeans derived from two orbits:
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Earliest Time of Year for Differentiation of Crops

Based on the SAR temporal backscatter profiles (Figure 7.12), the earliest time of the year for
differentiation of individual crop types was investigated. The results showed there were 4 dB
of difference in backscatter between wheat and comn (or soybeans or barley/oats) on May 31.
This is mainly due to the crops were at differenct development stages. For example, winter
wheat was at the stage of vegetation growth on May 31 while corn, soybeans and barley/oats
were at the stage of seed-bed preparation. Thus winter wheat could be easily separated from
all crops in the early season (May 31 and June 16). Soybeans could only be separated from the
rest of the crops on June 16 since soybeans and corn had similar backscatter profile on all
dates, except on June 16 (Figure 7.21). This was due to the effect of litter in soybeans fields so
that soybeans had a higher radar backscatter than corn on June 16. Barley/oats could be
distinguished from corn, soybeans and alfalfa/hay on July 5 and dates thereafter. However,
from July S on, barley/oats had a similar profile to wheat. In turn, wheat and barley/oats
displayed similar patterns to alfalfa/hay after July 21. The earliest time to differentiate com

from other crops was July 21.

Com

Figure 7.21. Com and Soybeans on June 16, 1993
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Within crop variations

Within crop variations for corn and barley/oats are illustrated in Figures 7.22 and 7.23. Corn
fields had larger variations at the beginning of the growing season (Figure 7.22 and Table 7.2).
The variation decreased during the mid-season and the late season. There was no clear trend,
however, for barley/oats variations mainly due to anomalous fields. The highest standard
deviation was 2.56 dB on July 21 (Figure 7.23 and Table 7.3). It was because Field 4-25 was
beginning to senesce and turn brownish yellow, while average barley/oats fields were still in
the stage of seed development. Thus such variations can be major sources of mis-classification

and attention should be given to this during crop classifications.
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Figure 7.22. ERS-1 SAR temporal backscatter profiles for corn derived from two orbits:
within crop variations
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Table 7.2. Within Crop Variations (dB): Corn

Field# | 31-May | 16-Jun | 5-Jul | 21-Jul | 9-Aug | 25-Aug | 13-Sep | 29-Sep | 18-Oct
3-10 -691 -12.19 -9.05 -11.15 -7.62 -8.77 -5.43 -6.70 452
3-11B -9.46 -11.32 -8.90 -12.00 942 -9.59 -6.36 -155 483
3-12 -8.11 -10.99 -8.62 -13.07 -9.14 -9.99 -5.66 -1.31 -541
3-32A -1.52 -11.26 -8.31 -12.69 -9.38 -9.58 -6.48 -743 -4.53
4-12 -5.88 942 -7.56 -1296 | -10.24 96 -71.32 -8.1 -5.6
4-22 -6.7 -11.11 -8.79 -12.56 -8.95 915 -6.52 -13 -5.17
4-29 -1.27 -9.80 -8.49 -12.57 -895 907 -5.84 -7.08 -4.70
4-08B -8.74 -13.71 -8.58 -11.72 -8.56 924 -6.9 -7.15 -6.28
5-07 -6.54 -1141 -8.41 -12.30 945 -10.15 -7.16 -7.38 -5.72
5-10A -7.57 993 -8.70 -13.37 | -10.48 -11.07 -6.01 -6.32 -5.28
5-21 -6.54 -1091 -7.49 -11.58 9,01 94 -6.17 -6.69 -5.08
5-45 -9.02 -12.75 -10.18 -12.51 -8.81 -9.01 -6.48 -7.16 -541
6-13 -7.99 -10.44 -8.50 -12.39 -9.34 -9.77 -6.33 -1.36 =512
6-20 -7.63 -10.77 -7.95 -12.82 9.39 943 -5.04 -593 433
6-24A -9.29 -12.27 -9.34 -13.32 -9.28 -9.80 -5.95 -6.98 -5.75
6-25 -7.20 -11.56 -8.09 -13.18 -9.28 -9.53 -5.86 -6.92 -503
Average | -7.65 -1124 | 856 | -1251 | 9.21 -9.57 -6.22 -7.09 -5.17
STDEV 1.06 1.11 0.66 0.64 0.64 0.54 0.61 0.51 0.52
Average*| -7.91 -11.23 -8.77 -12.45 9.00 948 -6.17 -7.00 -5.22

* Derived from all com fields using Equation 4.10.
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Figure 7.23. ERS-1 SAR temporal backscatter profiles for barley/oats: within crop variations
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Table 7.3. Within Crop Variations (dB): Barley/Oats

* Derived from all barley/oats fields using Equation 4.10.

7.4.2 ERS-1 SAR Data for Crop Classifications: A Multitemporal Approach

7.4.2.1 Multitemporal SAR Classifications: 1992

The overall validation accuracy for single-channel ERS-1 SAR data (Aug. 5) using a per-field
classifier was 57.7% (Table 7.4, Figure 7.24). Alfalfa had the highest validation accuracy
(91.7%). The overall validation accuracy for three-date (May 27, June 15 and July 24) SAR in
early and mid- season using a per-field classifier was 74.3%. This is a 16% improvement over
the single-date classification. The highest validation accuracy (78.2%) was achieved by
classifying four-date (May, June, July and Aug.- early and mid-season) SAR data using a per-
field approach (Table 7.5). This is a 20.5% improvement over the best single-date SAR
classification. It also represents a 30% improvement over per-pixel classification using the
same four-date combination. Specifically, winter wheat had a validation accuracy of 100%
while the alfalfa accuracy remained unchanged, but the accuracy for soybean classification

improved significantly; corn, however, was still quite low (45.7%).
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Table 7.4. Validation Accuracy for Single-Date (Aug. 5) SAR Per-Field Classification

Winter Wheat
(%)

Winter Wheat 50.0

Com 8.7

Soybeans 16.3
Alfalfa 0.0
L Overall Validation accuracy: 57.7%

Table 7.5. Validation Accuracy for a Four-Date (May 27, June 1S, July 24 and Aug. 5)
SAR Per-Field Classification

Winter Wheat

Soybeans
Alfalfa
Overall Validation accuracy: 78.2%

Figure 7.24. Per-field Classification for May 27, June 15, July 24 and Aug. 5 ERS-1 SAR
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7.4.2.2 Multitemporal SAR Classifications: 1993

Based on the temporal backscatter profiles, early- and mid-season multitemporal SAR data for
crop classification using sequential-masking techniques was evaluated. It was found that
winter wheat and alfalfa/hay were confused with each other (Table 7.6), but could be identified
from other crops because they were well into the vegetation development stage while other
crops were at the stage of seed-bed preparation or emerging (Figures 7.25 & 7.26). Using a
single-date June 16 image, winter wheat could be successfully identified (91.1%). Soybeans
could be classified with some degree of success using the combination of May 31 and June 16
SAR data (94.9% accuracy, but with high commission errors from other crops ) (Figure 7.27).
After masking out wheat and soybeans, barley/oats could be identified on July 5 and July 21
(mid-season) (Figure 7.28). Again, after masking out wheat, soybeans and barley/oats, corn
can be successfully separated from alfalfa/hay on July 21 (Figure 7.29). These results clearly
indicate that crop classification can be carried out successfully using sequential-masking

techniques with early-and mid-season multitemporal SAR.
Table 7.6. Validation Accuracy for a Per-Field Classification Using the May 31, 1993 Image

(%)
Winter Wheat X X 0.0
Com . X 32.1

Soybeans £ 215

Barley/Oats X 360

Alfalfa X X 9.7
verall Validation accuracy: §5.2%
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Figure 7.25. Winter wheat and soybeans on June 2, 1993
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Figure 7.26. ERS-1 SAR temporal backscatter profiles for major crops during 1993 growing season
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Figure 7.27. Crop separabilities after masking out winter wheat
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Figure 7.28. Crop separabilities after masking out winter wheat and soybeans
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Figure 7.29. Crop separabilities after masking out winter wheat, soybeans and barley/oats

7.5 Summary
7.5.1 Summary: 1992 SAR Data

ERS-1 SAR temporal backscatter profiles indicate that winter wheat can be successfully
separated from other crops in the early season. Alfalfa and pasture can be separated from
others in the mid-season, but they both have very similar profiles throughout the growing

season. Corn and soybeans have similar profiles in the early and mid- season, but can be

separated from each other in the late season.

A multitemporal approach using a per-field classifier proved to be effective for crop
identification. Using four dates of SAR data in the early and mid- season produced the highest
validation accuracy of 78.2%. This is a 20.5% improvement over the best single-date SAR

classification. It represents a 30% improvement over per-pixel classification using the same

four-date combination.
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7.5.2 Summary: 1993 SAR Data

Using multitemporal ERS-1 SAR data acquired during the 1993 growing season, the radar
backscatter characteristics of crops and their underlying soils were analyzed. The SAR
temporal backscatter profiles were generated for each crop type and the earliest time of the
year for differentiation of individual crop types was determined. The results showed that
winter wheat could be easily separated from all crops in the early season (May 31 and June
16). Soybeans could only be separated from the rest of the crops on June 16 since soybeans
and corn had similar backscatter profile on all dates, except on June 16. Barley/oats could be
distinguished from corn, soybeans and alfalfa/hay on July 5 and dates thereafter. However,
from July 5 on, barley/oats had a similar profile to wheat. In turn, wheat and barley/oats
displayed similar patterns to alfalfa/hay after July 21. The earliest time to differentiate corn

from other crops was July 21.

Orbital (incidence angle) effects were observed on all crops. The average difference between
the two orbits was about 3 dB. Thus attention must be given to the local incidence-angle
effects when using ERS-1 SAR data, especially when comparing fields from different scenes

or different areas within the same scene.

Based on the temporal backscatter profiles, early- and mid-season multitemporal SAR data for
crop classification using sequential-masking techniques were evaluated. It was found that
winter wheat could be easily identified using an early-season single-date SAR image (June 16).
Soybeans could be classified with some degree of success using June 16 SAR data. After
masking out wheat and soybeans, barley/oats could be easily classified on July 5 and July 21
(mid-season). Again, after masking out wheat, soybeans and barley/oats, com can be

successfully separated from alfalfa/hay on July 21 (mid-season). These results clearly indicate
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that crop classification can be carried out successfully using sequential-masking techniques

with early-and mid-season multitemporal SAR data.
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CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The overall objective of this research was to evaluate multipolarization airborne SAR data,
multitemporal ERS-1 SAR data, and combinations of ERS-1 SAR and satellite VIR data for crop

classification using non-conventional algorithms. To achieve this objective, five major issues

have been addressed.

The first objective was to perform a comparative analysis of classification algorithms that

incorporate tonal, contextual, and/or textural information.

Operational methodologies for improving agricultural crop identification were tested using C-HH
and C-HV airborne SAR data collected on July 10, 1990. Raw SAR data, filtered SAR data and
SAR texture statistics were classified using per-pixel and per-field classification approaches to
determine their effectiveness for agricultural crop classification. The approaches presented for
improving agricultural crop classification proved to be effective, especially the per-field
classification method. Results indicated that C-HH and C-HV data, classified using a standard
per-pixel MD classifier, provided relatively poor classification accuracies. Inclusion of texture
statistics in the per-pixel classification improved accuracies by approximately 30% and simple
median filtering boosted accuracies by approximately 25%. However, using a per-field

classifier, the classification accuracies improved by about 40%.

The second objective was to evaluate multipolarization (C-HH and C-HV) airborne SAR data for

crop classification.
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Multipolarization SAR data were evaluated for crop classification. Results indicated that C-HV
SAR data yielded a lower overall classification accuracy (45.41%) than C-HH SAR data
(49.36%). The lower accuracy for C-HV contradicts conclusions put forward by other

researchers. A possible reason for the contradiction is the low signal-to-noise ratio with C-HV

data. It was also found that three of the four best per-field classification accuracies (IE' =0.91)
were achieved using combinations of C-HH and C-VV SAR data. This confirms the strong

potential of multipolarization data for crop classification.

The third objective was to evaluate the synergistic effects of multitemporal ERS-1 SAR and

satellite VIR data for crop classification.

The synergistic effects of multitemporal ERS-1 SAR and Landsat TM data were evaluated for
crop classification using an artificial neural network (ANN) approach. Eight crop types and
conditions were identified: winter wheat, com (good growth), corn (poor growth), soybeans
(good growth), soybeans (poor growth), barley/oats, alfalfa, and pasture/cut-hay/cut-alfalfa.
The results show that both single-date and multitemporal SAR data yielded poor classification
accuracies using a maximum-likelihood classifier (MLC). With the per-field approach using a
feed-forward artificial neural network, the overall classification accuracy of three-date SAR data
improved almost 20%, and the best classification of a single-date (Aug. S) SAR image improved
the overall accuracy by about 26%. Although these overall classification accuracies (<60%) were
not sufficiently high for operational crop inventory and analysis, both single-date and
multitemporal SAR data demonstrated their abilities to discriminate certain crops in the early- and
mid-season. Using the combination of TM3,4,5 and Aug. 5 SAR data, the best per-field ANN
classification of 96.8% was achieved. It represents an 8.5% improvement over a single
TM3,4,5 classification alone. This indicates that a combination of mid-season SAR and VIR

data is very well suited for crop classification.
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The fourth objective was to develop a better understanding of the interaction of microwave

energy with crops and their underlying soils over the growing season.

Using multitemporal ERS-1 SAR data during the 1992 and 1993 growing seasons, the radar
backscatter characteristics of crops and their underlying soils were analyzed. The SAR temporal
backscatter profiles were generated for each crop type. For example, radar backscatter was high
in early-season when fields of comn and soybeans were relatively rough with bare soils. With
crop development, backscatter decreased due to attenuation and absorption by the vegetation
canopies. The decreasing trend continued until August 9, when com and soybeans were at cob

or seed development stage. Then the backscatter started to increase as the crops reached the

senescent stage.

The earliest time of the year for differentiation of individual crop types was determined. The
results showed that winter wheat could be easily separated from all crops in the early season
(May 31 and June 16). Soybeans could only be separated from the rest of the crops on June 16
since soybeans and corn had similar backscatter profile on all dates, except on June 16.
Barley/oats could be distinguished from corn, soybeans and alfalfa/hay on July 5 and dates
thereafter. However, from July S on, barley/oats had a similar profile to wheat. In turn, wheat
and barley/oats displayed similar patterns to alfalfathay after July 21. The earliest time to

differentiate corn from other crops was July 21.

Orbital (incidence angle) effects were observed on all crops. The average difference between the
two orbits was about 3 dB. Thus attention must be given to the local incidence-angle effects
when using ERS-1 SAR data, especially when comparing fields from different scenes or

different areas within the same scene.
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In addition, fields displaying anomalous radar backscatter characteristics were also identified and
statistically described. Anomalies were caused by differences in ground coverage, growth

conditions, tillage practice and local climate
The fifth objective was to evaluate multitemporal ERS-1 SAR data for crop classification.

Based on the temporal backscatter profiles, early- and mid-season multitemporal SAR data for
crop classification using sequential-masking techniques were evaluated. It was found that winter
wheat could be easily identified using an early-season single-date SAR image (June 16).
Soybeans could be classified with some degree of success using June 16 SAR data. After
masking out wheat and soybeans, barley/oats could be easily classified on July 5 and July 21
(mid-season); Again, after masking out wheat, soybeans and barley/oats, corn can be
successfully separated from aifalfa/hay on July 21 (mid-season). These results clearly indicate
that crop classification can be carried out successfully using sequential-masking techniques with

early- and mid-season multitemporal SAR data.
8.2 Recommendations for Future Research
The following recommendations can be made for future research:

. For a better understanding of the interactions of microwave energy with crops and the
underlying soils over the growing season, more detailed ground information on crop
growth, within-field variation, local climate, etc. are needed. Also, more fields should be
included in ground data collection for the calibration and validation of a per-field classifier.

*  Field-boundary information is costly to obtain over large areas. Image segmentation is a
relatively new image-analysis technology which offers solutions to the problem of

identifying boundaries. Further investigations on image segmentation are needed.
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Incidence angle (orbital) effects should also be further investigated for crop classification
using RADARSAT multi-incidence angle SAR data.
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APPENDIX A: COSTS AND BENEFITS OF REMOTE SENSING
(Lantieri, 1993)

A.1 Costs

The cost of remote sensing studies depends on many factors. Costs per square kilometer

generally increase when: )

s the scale is more detailed, for example, at 1:200,000 scale, generally corresponds to a
cost of US$2-4 per square kilometer; whereas at 1:25,000 scale, is US$8-15 per square
kilometer.

. the level of information required increases, for example, land potential maps are more
complex and therefore more expensive than general land cover maps.

A.2 Benefits

Compared to extensive traditional ground surveys or inquiries, the main benefits of remote

sensing are:

. the provision of an exhaustive view of the selected area: in large areas this avoids major
under- or over-estimation of phenomena or problems related to earth resources, which
can not readily be detected by ground surveys alone;

. the provision of objective and independent information: data acquired from remote
sensing are measured by very reliable instruments which are independent of scientific
judgment and/or political influences;

. the provision of updated and homogeneous information over hundreds or thousands of
square kilometers, particularly meaningful for evaluation exercises.

At small scale and medium scale - up to 1:50,000 satellite remote sensing can, in most situations,

offer a number of advantages when compared to aerial photography, such as:

. lower direct costs: the cost of satellite imagery is only 10 to 50 percent of that of the
airborne or ground surveys required for the traditional production of updated thematic
maps;

. shorter time scale and unimpeded acquisition: while the collection of ground-based
regional resource information may take months or even years for wide and complex
areas, satellite remote sensing can provide results in weeks or months and hence can
speed decision-making. Moreover, there are no political or administrative restrictions to
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the acquisition of satellite data, which is not always the case with aerial photographs and

sometimes even maps;
new activities: thanks to their large vision of the earth surface, to the availability of

specific spectral bands and to the acquisition of imagery on a regular basis all over the
world, satellite data offer new possibilities over very wide areas, impossible with

traditional aerial surveys;
high speed of delivery and high accuracy of information.
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APPENDIX B: SPOT - SEARCH RESULTS

SPOT Data is Copyright SPOT-R © CNES
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APPENDIX C: SPACEBORNE SAR SYSTEMS - PAST, PRESENT AND FUTURE

C.1 Spaceborne SAR Systems: Past

SEASAT (1978)

The first spaceborne imaging radar was the L-band SAR on SEASAT, an instrument package
launched into an 800 km altitude near-polar orbit in June 1978. This horizontally polarized

instrument operated at a fixed wavelength (23.5 cm) and at a fixed look angle (23° from nadir).

The SEASAT swath width was 100 km and the resolution was approximately 25 m. It operated
for three months. Although SAR was included in the SEASAT payload primarily for the
purpose of ocean-wave imaging, imagery obtained over land areas clearly demonstrated its

sensitivity to surface roughness, slope, land-water boundaries (NASA, 1988; Werle, 1992).

SIR-A (1981)

The next spaceborne SAR to follow SEASAT was the Shuttle Imaging Radar A (SIR-A), ferried
into a 57° inclination, 240 km altitude orbit by the Space Shuttle Columbia in November 1981.
The SIR-A SAR technology was derived from SEASAT SAR, again using the 23.5 cm
wavelength (L-band) and HH polarization. The look angle, however, was changed to a fixed
angle of 47° since the SIR-A mission was to be used principally for geological research. The
swath width was approximately SO km and the resolution was 40m. SIR-A provided much
improved images for geological analysis as they were relatively free of the layover distortion that
accompanied SEASAT SAR images of high-relief regions. One of the most exciting aspects of

the experiment was the demonstration of the radar’s ability to penetrate extremely dry surfaces,

which resulted in the discovery of ancient river channels buried beneath the Sahara Desert

(NASA, 1988, Werle, 1992).
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SIR-B (1984)

The next NASA SAR mission was SIR-B, launched in October, 1984 on the Space Shuttle
Challenger. The imaging aititude varied between 350 km, 272 km and 225 km. Wavelength and
polarization of the SAR were the same as its predecessors on SEASAT and SIR-A; i.e. L-HH.
The new feature was that SIR-B was equipped with an articulating antenna so that selectable

incidence angles could be obtained over the 15° to 60° range. This capability provided the first
multi-incidence angle data set for surface-feature (particularly forest) mapping and topographic
mapping. SIR-B data were also the first to be digitally encoded and digitally processed, which
represents a significant advance in SAR image processing technology. The swath width was 20
to 40 km. Range resolution was 58 to 16 m and azimuth resolution 20 to 30 m (4-look). The
Mission Length was 8.3 days (NASA, 1988, Werle, 1992; JPL, 1996).

C.2 Spaceborne SAR Systems: Present

Russian ALMAZ-1 (1991)

The former Soviet Union (just prior to its dissolution) became the first country to operate a
spaceborne radar system with the launch of ALMAZ-1 on March 31, 1991. Although this
system initiated a new era in operational remote sensing from space with the ability to provide
high resolution data independent of weather conditions and time of day, ALMAZ-1 was not well
known in the SAR research and application community due to lack of promotion by Russia.

ALMAZ-] was launched with a nominal altitude of 300 km (it was changed to 360 km in an

attempt to prolong its lifetime in orbit) and an orbit that ranged from 73° N to 73° S latitude. It

returned to earth on October 17, 1992, after operating for about 18 months. The primary sensor
on board ALMAZ-]1 was S-band (10 cm) SAR with HH polarization. The look angle ranged

from 30° to 60° and the spatial resolution varied from 10 to 30 m, depending on the range and
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azimuth of the area imaged. The ALMAZ-] SAR incorporated two antennas, which provided for
eastward and westward looking swaths, each approximately 350 km wide (Lillesand and Kiefer,

1994).

European Earth Resources Satellites ERS-1&2 (1991 and 1995)

The European Space Agency (ESA)’s ERS-1 was launched into a sun-synchronous near-polar
orbit at an altitude of 785 km in July 1991. The ERS-1 payload includes a C-band Active

Microwave Instrument (AMI) with VV polarization and a 23° incidence angle in mid-range. In

Image Mode, SAR obtains strips of imagery, 100 km in width, to the right side of the satellite
track. The spatial resolution is about 30 m in range direction and about 30 m in azimuth
direction. The SAR return signals are processed digitally on board and transmitted to receiving
stations. The ERS-1 SAR operated for 3 years and 10 months (ESA, 1992; Eurimage, 1994;
ESA, 1995). The second European Earth Resources Satellite was successfully launched in
April, 1995, carrying the same SAR instrument as ERS-1.

Although most of the microwave instruments on board the ERS-1 are primarily designed for the
study of oceans, ice and meteorology, this long-duration spaceborne SAR system provides the
research community with an excellent opportunity to obtain a better understanding of our land
environment and its dynamic processes. Since its launch, it has stimulated a lot of research
activities in a wide range of applications including agriculture, forestry, geology, flood
monitoring and sea-ice monitoring (ESA, 1992; Eurimage, 1994).

Japanese Earth Resources Satellite JERS-1 (1992)

The Japanese Earth Resources Satellite JERS-1 was launched in February, 1992 with an
expected lifetime of four years. The satellite is in a sun-synchronous, 568 km high orbit. The

payload of JERS-1 includes a L-HH SAR with a 38.5° incidence angle in mid-range. The image
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swath is 75 km. The spatial resolution is 18 m at 3-looks in both range and azimuth directions.
Like ESA’s ERS-1&2, the JERS-1 is an experimental satellite. Its data are used for exploration
of earth resources and monitoring land surfaces (ESA, 1995; RSI, 1995b).

SIR-C/X-SAR (1994)

The SIR-C/X-SAR mission represented a very important step forward. Not only was it the first
spaceborne SAR system which simultaneously acquired multi-frequency SAR imagery, but also
it was the first opportunity to use a multi-polarization capability from space. SIR-C/X-SAR is a
joint project of the National Aeronautics and Space Administration (NASA), the German Space
Agency (DARA) and the Italian Space Agency (ASI).

SIR-C/X-SAR is an imaging radar system launched aboard the NASA Space Shuttle in April and
October 1994. SIR-C provided increased capability over SEASAT, SIR-A, and SIR-B by
acquiring digital images simultaneously at two microwave wavelengths (L-band at 23.5 cm and
C-band at 5.8 cm). These vertically and horizontally polarized transmitted waves were received
on two separate channels, so that SIR-C provided images of the magnitude of radar backscatter
for four polarization combinations: HH, VV, HV, and VH. Data on the relative phase
differences between the HH, VV, VH, and HV returns were also acquired. This allowed
derivation of the complete scattering matrix of a scene on a pixel by pixel basis. From this
scattering matrix, every polarization configuration (linear, circular or elliptical) can be generated
during ground processing. The radar polarimetric data will yield more detailed information about

the surface geometric structure, vegetation cover and subsurface discontinuities than image

brightness alone.

Germany/Italy's X-SAR operated at X-band (3.1 cm) with VV polarization, resulting in a three-
frequency capability for the total SIR-C/X-SAR system. Because radar backscatter is most
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strongly influenced by objects comparable in size to the radar wavelength, this multi-frequency
capability has provided information about the earth's surface over a wide range of scales not
discernible with previous single-wavelength experiments. Radar images generated by SIR-C/X-
SAR have been used by scientists to help understand some of the processes which affect the
earth's environment, such as deforestation in the Amazon, desertification south of the Sahara,

and soil moisture retention in the Mid-West (JPL, 1996).

Canadian RADARSAT (1995)

The Canadian RADARSAT was successfully launched on November 4, 1995. RADARSAT is
equipped with an advanced SAR with a planned lifetime of five years. Using a single-frequency,
C-Band, the RADARSAT SAR has the unique ability to shape and steer its radar beam over a
500 km range. Users have access to a variety of beam selections that can image swaths from 35

km to 500 km with resolutions from 10 m to 100 m, respectively. Incidence angles range from

less than 20° to more than 50°.

RADARSAT provides complete global coverage with the flexibility to support specific
requirements. The satellite’'s orbit is repeated every 24 days. RADARSAT provides daily
coverage of the Arctic, views any part of Canada within three days, and achieves complete

coverage at equatorial latitudes every six days using a 500 km wide swath.
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APPENDIX D: SPACEBORNE SAR FOR AGRICULTURAL CROP CLASSIFICATION
- DISCUSSION OF SELECTED STUDIES

D.1 Early Spaceborne SAR Data for Crop Classification

Cihlar, Prévost and Vickers (1986) conducted a feasibility study to discriminate among various
land-cover categories on SIR-B L-band data. The data were acquired over agricultural areas after

harvest in southwestern Saskatchewan, Canada. The Hoosier area was imaged at an incidence

angle of 34° and the Lake Diefenbaker area at two incidence angles (15° and 34°). Images were

interpreted visually using prints. In order to facilitate the transfer of information between the
SAR image and the ground map, and to determine digital values for the visually interpreted
tones, digital SIR-B data were also processed. The images were co-registered with TM images,
and a field-by-field analysis was conducted and image tones were assigned. Since the SIR-B
data were acquired over areas with no corresponding ground observations, enhanced TM images
were employed to determine land-cover types in those areas. The results show that general land-
cover categories can be visually delineated on SIR-B images, but contextual interpretive
parameters (shape and pattern) must be used to compensate for tonal overlap between categories.
If image tone were used in isolation, it is likely that digital pixel-by-pixel analysis would not be

successful. The main difference between the 34° and 15° images was the greater tonal variation

within the latter. Similar trends were observed, however, in data collected at two incidence

angles. Soil surface roughness was a dominant factor influencing radar backscatter at L-band in

dry harvested agricultural areas.
Hutton and Brown (1986) conducted a comparative analysis of space and airbome L-HH radar

imagery in an agricultural environment near Napierville, Quebec. They attempted to determine

the extent to which agricultural ground features influenced radar returns and compared the
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relative radar backscattering coefficients derived from both a SIR-B L-HH image (October 7,
1984) and an airborne SAR L-HH image (October 25, 1984). They also compared the results of
this study with those derived from an analysis of sites in western Canada. The study was
accomplished by carrying out a visual assessment of the images and by performing digital
classifications. From visual analysis of both space and airborne SAR images, it was concluded
that the radar returns from rows or ditches dominated those of the actual ground cover in the
areas where row/field/ditch orientations were orthogonal to the sensor look direction. In all other
cases, the radar returns from the ground-cover type dominated over the row/field/ditch
orientation. Pasture, which is devoid of rows, showed no orientation dominance. The digital
results indicated that pasture, ploughed fields and unharvested com were separable on the
airborne image in most of the classifications, but harvested corn was not consistently or
accurately defined. On the spaceborne image, separability was much poorer and almost non-
existent if backscattering values (i.e., training areas) were derived from orthogonal regions.
Pasture had the highest classification accuracies of any of the ground-cover types studied. Post-
classification filtering of both types of data increased the overall accuracies in most cases. The
dissimilarities between the ground characteristics because of different farming practices did not

allow for a relevant comparison from eastern Canada to western Canada.

Cihlar and Hirose (1984) and Cihlar (1986) conducted a qualitative and quantitative analysis of
single-date digital airborne X- and L-band data, SEASAT SAR data, and LANDSAT MSS data
for four agricultural sites in western Canada which represent sub-arid and semi-arid climatic
regimes. MSS images were rectified to a UTM map and all SAR data were registered to these
images. Filters were used to reduce speckle. The boundaries of each field were outlined and
digital values for each cover type were extracted. Images were visually examined to establish
possible relationships between features imaged by SAR and ground observations. Cihlar and
Hirose (1984) also performed digital classifications for various SAR, VIR, and SAR plus VIR

combinations. One classification using individual pixels as input and one classification using
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field means as input was performed for each band combination. Results of the analysis
demonstrated the importance of cover type for determining SAR backscatter. Several crop/site
combinations exhibited distinct tones. Cover type was the single most important parameter, and
other variables (such as surface roughness, cultivation direction) were also significant in some
cases. Also highlighted was the complexity of the relationships between radar return and crop
type, agroclimatic region, and SAR sensor parameters, and the need for further detailed studies
of these relationships. A necessary part of such a study are data sets with detailed documentation
of ground conditions over the growing season, preferably on a per-pixel basis. In addition to
plant canopy development, soil surface roughness and its distribution within a field should be
adequately characterized. Amnalysis indicated that SAR return from the soil surface is often a
significant component of the total backscatter from cultivated fields, particularly under semi-arid
agroclimatic conditions with lower total biomass. Cihlar and Hirose (1984) found that for all the
combinations that included MSS data, the overall average classification accuracy of the per-field
classification was higher than the accuracies obtained using the single-pixel values. Conversely,
band combinations that included only SAR data gave mixed results in that per-field accuracies

were higher than per-pixel accuracies for some sites and lower for other sites.
D.2 Multitemporal Spaceborne SAR Data for Crop Classification

Schotten et al. (1995) conducted an assessment of the capabilities of multitemporal ERS-1 SAR
data to discriminate between agricultural crops and to determine the earliest possible stage in the
growing season at which crop type can be distinguished. The test site is located in South
Flevoland, an agricultural region in the Netherlands where 12 crop types are found. Fourteen
ERS-1 SAR images were acquired during the 1992 growing season between May and
November. The field-based classification yielded an overall classification accuracy of 80% with
the optimal data set. For potatoes, winter wheat, grass, winter rape, spring barley, fruit trees

and lucerne, an accuracy and reliability of over 80% was achieved. For sugar beet, maize,
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onions, beans, and peas, the accuracy and reliability were below 80%. The stage at which the
crop type could be assessed is crop dependent. Winter wheat, spring barley, potatoes, winter
rape and luceme could all be distinguished in the period between mid-June and mid-August.
Grass and fruit orchards could only be distinguished using images acquired after the more
seasonal crops had been harvested. Sugar beet, maize, onions, beans and peas could not be

distinguished acceptably using SAR images.

Ban and Howarth (1995) investigated ERS-1 SAR temporal-spectral profiles for agricultural crop
identification. During the growing season in 1992, six dates of ERS-1 C-VV SAR data were
acquired over an agricultural area in Oxford County, southern Ontario, Canada. Radar
backscatter characteristics for five major crops were analyzed for each date. ERS-1 temporal-
spectral SAR profiles for the five major crops were generated and the earliest time of the year for
identification of individual crop types was determined. The results showed that winter wheat
could be successfully separated in the early season, but other crops could not be differentiated
from one another until mid- and late season. The mean highest validation accuracy for four
dates in early and mid- season using a per-field classifier reached 78.2%, which represents a
20% improvement over that of the single-date classification. Fields which display anomalous
radar backscatter characteristics were identified and statistically described. It was found that
these anomalies usually result from growing conditions and crop management practices. Soil

drainage and soil roughness characteristics can also influence radar backscatter.

Aschbacher (1995a and 1995b) conducted an assessment of ERS-1 SAR for rice-crop mapping
and monitoring. A study area of approximately 10 x 10 sq. km was selected in Kanchanaburi
Province, West Thailand. Multitemporal ERS-1 SAR data were available for eight acquisition
dates, namely 1991: November 22; 1992: October 7; 1993: February 24, May 7, June 11,
August 20, October 29 and December 3. Extensive ground measurements were taken in parallel
to ERS-1 data acquisitions during the main growth period in August to December 1993. Plant
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height, plant moisture content, plant density, number and size of leaves, stalk diameters, and
height of standing water were measured, together with more general observations regarding the
state of the water/soil surface, state of plants, and weather at acquisition time. The analysis of
ERS-1 SAR data was supported by aerial photographs and a SPOT panchromatic image.
Irrigated or flooded rice fields showed a very characteristic radar backscatter signature. In radar
imagery, rice fields appear very dark during the flooded, vegetative phase, and turn brighter

during the reproductive and ripening phase. The radar backscattering coefficient 6° increases

from about -15 dB to about -8 dB during plant growth, and thus covers a dynamic range which
is significantly larger than that of any other agricultural crop. The relatively good correlation

between 6° and plant-growth parameters makes the use of ERS-1 SAR data particularly suitable

for crop-growth monitoring. As regards rice-field mapping, a simple, pixel-based maximum

likelihood classification was carried out, based on multitemporal, Gamma MAP speckle filtered

radar images (four dates, June 6, August 20, October 29, and December 3, 1993). It was found
that:

. Multitemporal ERS-1 SAR data are highly suitable for rice-field mapping. The
classification accuracy is 89% for rice fields versus other land covers.

. At least three images should be available during the growth cycle. The optimum
acquisition dates are during the flooded vegetation phase, at the end of the reproduction
phase and shortly before harvest.

. The use of a pixel-based standard maximum likelihood classifier is sufficient, although
more sophisticated methods may yield slightly better results. Speckle filtering of the
input data is mandatory.

As regards rice-crop monitoring, it was found that:

. Multitemporal ERS-1 SAR data are very suitable for rice-crop monitoring.
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. The radar backscatter coefficient 6°[dB] of rice fields is highly correlated with rice-plant

height (r=0.77). Consequently the use of radar data allows one to determine the
approximate stage of plant growth.

. The radar signal shows a potential correlation with rice yield, but the relationship may be
indirect.

D.3 Integration of Spaceborne SAR and VIR Data for Crop Classification

Ban and Howarth (1996b) investigated the synergistic effects of integrating SAR data and
imagery acquired in the VIR portions of the specrum. Combinations of ERS-1 SAR and
Landsat TM data were used to evaluate classification accuracy for eight crop classes: winter
wheat, com (good growth), corn (poor growth), soybeans (good growth), soybeans (poor
growth), barley/oats, alfalfa, and cut hay and pasture. The study area was situated in an
agricultural area in Oxford County, southern Ontario, Canada. Three dates of early- and mid-
season ERS-1 C-VV SAR data were acquired during the 1992 growing season (June 15, July 24
and August 5). July 24 SAR data were acquired in ascending mode, while others were acquired
in descending mode. One date of Landsat TM data was also acquired on August 6, 1992. Both
per-pixel and per-field classifications were performed on single-date SAR, multitemporal SAR,
single-date TM and the combinations of SAR and TM data. Two post-segmentation classifiers
(minimum distance and artificial neural network) were evaluated. Results showed that
combinations of SAR and VIR improve classification accuracies, the best results showing overall
accuracies in the mid-90% range. The per-field approach using an artificial neural network
produced better accuracies than using a per-field minimum distance classifier or a per-pixel

maximum likelihood classification.
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Kohl et al. (1993) conducted a comparison of ERS-1 SAR and SPOT XS data for crop acreage
estimation for agricultural statistics as part of the Monitoring Agriculture by Remote Sensing
(MARS) pilot project. The study was performed on two test sites: Seville, Spain and Great
Driffield, UK. Six ERS-1 Fast-Delivery (FD) scenes acquired between April and December
1992 over the Seville test site were analyzed. The information content extracted from those
scenes was evaluated relative to a four-date SPOT XS data set acquired in the 1992 growing
season and the results of a ground survey. The preprocessing of the FD data included 16- to 8-
bit conversion, speckle reduction using G-MAP and Texture/Mean filter and geometric
registration of the images. Maximum Likelihood Classifications (MLC) for 22 land-use and
land-cover classes were performed based on five-date ERS-1 SAR, a single-date SPOT XS, and
combined three-date ERS-1 SAR and a single-date SPOT XS data. The results showed a
significant increase in classification accuracy of the combined ERS-1 and SPOT data sets in
comparison to either ERS-1 or SPOT alone. For the Great Driffield site, five-date ERS-1 SAR
data from April to October and single-date SPOT data in May were acquired and analyzed. The
unfiltered FD data using a ML.C showed that the classification accuracy of four-date ERS-1 is
slightly better than that of five-date. This is probably because the late-October image is not
significant for the crop in question. The work demonstrated that the information content of the
ERS-1 data is complementary to the SPOT data and that multi-date SAR data performs better than
a single-date SPOT data for certain classes.
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